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PREFACE

This book is written for the purpose of furnishing college
classes with a thoroughly usable textbook in analytic geometry.
It is not so elaborate in its details as to be unfitted for practical
classroom use; neither has it been prepared for the purpose
of exploiting any special theory of presentation; it aims solely
to set forth the leading facts of the subject clearly, succinctly,
and in the same practical manner that characterizes the other
textbooks of the series.

It is recognized that the colleges of this country generally
follow one of two plans with respect to analytic geometry.
Either they offer a course extending through one semester or
they expect students who take the subject to continue its
study through a whole year. Tor this reason the authors have
so arranged the work as to allow either of these plans to be
adopted. In particular it will be noted that in each of the
chapters on the conic sections questions relating to tangents
to the conic are treated in the latter part of the chapter.
This arrangement allows of those subjects being omitted for
the shorter course if desired. Sections which may be omitted
without breaking the sequence of the work, and the omission
of which will allow the student to acquire a good working
knowledge of the subject in a single half year are as follows:
46-53, 56-62, 121-134, 145-163, 178-197, 225-245, and part
or all of the chapters on solid geometry. On the other hand,
students who wish that thorough foundation in analytic geom-
etry which should precede the study of the higher branches of
mathematics are urged to complete the entire book, whether
required to do so by the course of study or not.

111



.

iv PREFACE

This book is intended as a textbook for a course of a full
year, and it is believed that many of the students who study
the subject for only a half year will desire to read the full text.
An abridged edition has been prepared, however, for students
who study the subject for only one semester and who do not
care to purchase the larger text.

It will be observed that the work includes two chapters on
solid analytic geometry. These will be found quite sufficient

" for the ordinary reading of higher mathematics, although they
do not pretend to cover the ground necessary for a thorough
understanding of the geometry of three dimensions.

It will also be noticed that the chapter on higher plane
curves includes the more important curves of this nature,
considered from the point of view of interest and applications.
A complete list is not only unnecessary but undesirable, and
the selection given in Chapter XII will be found ample for
our purposes.
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GREEK ALPHABET

The use of letters to represent numbers and geometric mag-
nitudes is so extensive in mathematics that it is convenient
to use the Greek alphabet for certain purposes. The Greek

letters with their names are as follows:
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ANALYTIC GEOMETRY

CHAPTER 1
INTRODUCTION

1. Nature of Algebra. In algebra we study certain laws
and processes which relate to number symbols. The proc-
esses are so definite, direct, and general as to render a
knowledge of algebra essential to the student’s further
progress in the study of mathematics.

As the student proceeds he may find that he has forgotten certain

essential facts of algebra. Some of the topics in which this deficiency
is most frequently felt are provided in the Supplement, page 283.

2. Nature of Elementary Geometry. In elementary geom-
etry we study the position, form, and magnitude of certain
figures. The general method consists of proving a theorem
or solving a problem by the aid of certain geometric prop-
ositions previously considered. We shall see that analytic
geometry, by employing algebra, develops a much simpler
and more powerful method. '

It is true that elementary geometry makes a little use of algebraic
symbols, but this does not affect the general method employed.

3. Nature of Trigonometry. In trigonometry we study
certain functions of an angle, such as the sine and cosine,
and apply the results to mensuration.

The formulas of trigonometry needed by the student of analytic

geometry will be found in the Supplement.
1
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4. Nature of Analytic Geometry. The chief features of
analytic geometry which distinguish it from elementary
geometry are its method and its results. The results will be
found as we proceed, but the method of procedure may
be indicated briefly at once. This method consists of indicat-
ing by algebraic symbols the position of a point, either fixed
or in motion, and then applying to these symbols the proc-
esses of algebra. Without as yet knowing how this is done,
we can at once see that with the aid of all the algebraic
processes with which we are familiar we shall have a very
powerful method for exploring new domains in geometry,
and for making new applications of mathematics to the

study of natural phenomena. B
The idea of considering not merely fixed points, /\\
as in elementary geometry, but also points in

E

motion is borrowed from a study of nature. For

“example, a ball 3 thrown into the air follows a cer-
tain curve, and the path of a planet £ about its sun
is also a curve, although not a circle.

5. Point on a Map. The method by which we indicate
the position of a point in a plane is substantially identical
with the familiar method employed in map drawing. To
state the position of a place on the surface of the. earth
we give in degrees the distance of the place east or west of
the prime meridian, that is, the longitude of the place;
and then we give in degrees the dis- N
tance of the place north or south of the
equator, that is, the latitude of the place.

For example, if the curve NG4S represents w E
the prime meridian, a meridian arbitrarily
chosen and passing through Greenwich, and

if WA BE represents the equator, the position S
of a place P is determined if A Band BP are known. If 4B =70°and
BP =45° we say that P is 70° east and 45° north, or 70° E. and 45° N.
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6. Locating a Point. The method used in map drawing
is slightly modified for the purposes of analytic geometry.
Instead of taking the prime meridian and the equator as
lines of reference, we take any two intersecting straight lines
to suit our convenience, these being designated as Y'Y’ and
XX, and their point of intersection as O.

Then the position of any point P in the
plane is given by the two segments 04 and X’ X
AP, AP being parallel to YY",

If we choose a convenient unit of measurement for these
two segments, the letters @ and b may be taken to repre-
sent the numerical measures of the line segments 04 and
AP, or the distances from O to 4 and 4 to P respectively.

It is often convenient to draw PB
parallel to 40 and to let BP=aq, as here
“shown. That is, we may locate the point
P by knowing 04 and 4P, or 04 and
OB, or BP and 4P, or BP and OB.

7. Convention of Signs. As in elementary algebra we
shall consider the segment 04, or the distance @, in the
figure next above, as positive when P is to the right of YY",
and as negative when P is to the left of ¥'¥’. Similarly, we
shall consider the segment 4P, or the distance 6, as positive
when P is above XX, and as negative

when P is below XX ng}-@g—\%l P
\ loh

y \ ‘\
In this figure P, is determined by z, and : o ¥

by z, and y,. Furthelmore, Ty, Tyy Yy Yo ATE B %3
positive, and ,, x5, ¥5, ¥, are negative.

We shall hereafter speak of a line segment and its numerical
measure as synonymous, and shall use the word line to mean a
straight line, unless confusion is likely to arise, in which case the
language will conform to the conditions which develop.

N
=+
¥, Py by 2, and y,, P, by z, and y,, and P, X’ ?/3\l> \:\u}» X
“Xa N



4 INTRODUCTION

Exercise 1. Locating Points

Using 1 in. to represent 20°, and considering the surface of
the earth as a plane, draw maps locating the following places:

1. 20°W., 40°N. 3. 20°W., 20°S. 5. 0°W., 0°N.
2. 20°E, 40°N. 4. 20°E, 30°S. 6. 10°W., 0°N.

Using 1 in. as the unit of measure, draw any two inter-
secting lines and locate the following points :

7.a=3,b=—2. 9.a=—4,0=6. 11.a=0,5=0.
8.a=40b=5  10.a=—50=0. 12.a=—7,0=—4.

13. Given z, =— 4, y, = 0, locate the point P, and given
x, = 0, y, = 8, locate the point P, and then draw the line P P,
Find the pair of numbers which locate the mid point of P P,

14. In this figure OBA is an equilateral
triangle whose side is 6 units in length.
Taking XX' and YT’ as shown, find the
five pairs of numbers which locate the three
vertioes 4, B, O and the mid points 3, and
M, of 04 and AB respectively.

15. Given the equilateral triangle ABC in which 4B =6,
Taking XX’ along the base, and Y'Y’ along Y

the perpendicular bisector of the base, find B
the five pairs of numbers which locate the Iy

. . . 1 My
three vertices 4, B, C and the mid points ,
M, and M, of AB and BC respectively, as X 4 > X
shown in the figure. Yy’

16. In this figure 4B and CD are parallel, and BD is
perpendicular to each. The length of BD
is 7 units. Draw the circle as shown, tan-
gent to the three lines. Taking XX'along
CD, and YY' along BD, find the pairs of
numbers which locate the center of the c D
circle and the three points of tangency. X' -

N

3

&

A




COORDINATES )

8. Definitions and Notation. In this figure the lines
XX and YY' are called respectively the z azis and the
y azts, O is called the origin, 04, or a, is
called the abscissa of P, and AP, or b, is
called the ordinate of P. The abscissa and
the ordinate of the point P taken together
are called the coordinates of P.

Every pair of real numbers, « and 4, are the coordinates
of some point P in the plane; and, conversely, every point
P in the plane has a pair of real coordinates.

‘When we speak of the point «, 4, also written (a, 8), we
mean the point with « for abscissa and & for ordinate.

For example, the point 4, — 3, (4, —3), or P (4, — 3) has the
abscissa 4 and the ordinate — 3, and the point (0, 0) is the origin.

The method of locating a point described in §6 is
called the method of rectilinear coordinates.

Rectilinear coordinates are also-called Cartesian coordinates, from
the name of Descartes (Latin, Cartesius) who, in 1637, was the first
to publish a book upon the subject.

When the angle XOY is a right angle, the coordinates
are called rectangular coordinates; and when the angle X0V
is oblique, the coordinates are called oblique coordinates.

Following the general custom, we shall employ only rectangular
coordinates except when oblique coordinates simplify the work.

In the case of rectangular coordinates the
axes divide the plane into four gquadrants,
XOY being called the first quadrant, YOX’
the second, X’ 0Y' the third, and Y'OX the
fourth, as in trigonometry.

9. Coordinate Paper. For convenience in locating points,
paper is prepared, ruled in squares of convenient size. This
is called coordinate paper.
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Exercise 2. Locating Points

1. Draw a pair of rectangular axes, use }in.as the unit,
and locate the following points : (4, 2), (2, 4), (— 2,4), (— 4, 2),
(_ 4, — 2)’ (— 2, — 4)) (27 - 4)’ (4: - 2)'

2. Draw a pair of rectangular axes, use any convenient
unit, and locate the following points: (—1, 4), (0, 2), (1, 1),
(2’ é)’ (3’ %)’ (4’ %)’ (57 T%)‘

It should be noticed that in Exs. 1 and 2 the points lie on curves of
more or less regularity.

3. Draw a pair of rectangular axes, use } in. as the uni’b,
and locate the following points: (5, 5), (5, — 8), (— 5, b),
(=5, —5), (0, 5), (5, 0), (—5,0), (0, —5).

4. Draw a pair of rectangular axes, use¢ any convenient
unit, and locate the following points: (30, —10), (25, 17),
(— 20, — 24), (—12, 20), (— 30, —10), (21, 28), (— 21, 28).

In each of the above four examples the drawing of the axes has been
mentioned, and the unit also has been mentioned. Hereafter it will be
understood that the axes are to,be drawn and a convenient unit is to be

taken. Itissuggested, however, that the student hereafter use coordinate
paper as described in § 9.

Locate each of the following pairs of points and calculate
the distance between the points :
5. (0,2),(0,5). 8. (0,2),(0,—5). 1L (4,0),(8,0).
6. (4, 0), (4, 6). 9. 0, — 2), (0, 5)‘ 12. (—6, 2)’ (4’ 2).
7. (6,2), (6,8).10. (4, — 3),(4,3).~13. (—1,0),(0,—1).
14. Locate the following points and calculate the distance
from the origin to each point: (3, 4), (— 3, 4), (— 4, — 3),
(2, — b), (— 6, — 3), (5, b).

In place of calculating square roots, the table of square roots given
on page 284 in the Supplement may be used.

15. Locate the following points and calculate the distance
of each from the origin: (8, 4), (— 8, 4), (— 8, — 4), (7, — 2).
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- 16. Draw perpendiculars from P (—8, —8) and P,(— 2, —4)
to both axes, and find the coordinates of the mid point of PP,
17. Draw perpendiculars from P (5, 6) and P,(11, 8) to
both axes, and find the coordinates of the mid point of P P,

18. In this figure it is given that 04 =7 |y
and OB =4. Find the coordinates of each B P
vertex of the rectangle and of the intersection ¢ L
of the diagonals. o 7 4 X

19. If the mid point of the segment P P, is (0, 0), and the
coordinates of P, are «, 0, find the comdmates of P,

20. In this figure it is given that BAO is a right triangle,
M, is the mid point of OB, and 2/, is the mid B
pomt of AB. If the coordinates of B are 13, w2
11, find the coordinates of A7, and M, TFrom
the result show that 37,27, is parallel to 04. 0 4 X

21. In the figure of Ex. 20 produce M A7, to meet OY at A/,
and find the lengths of 737, A 11,, and Oﬂ[

22. Construct a circle through the three points A4 (6, 0),
B(0, 8), and 0(0, 0), and find the coordinates of the center

and the length of the radius.

23. Draw the bisector of the angle X0} and produce it
through 0. On this line locate a point whose abscissa is — 4
and find the ordinate of the point.

M

24. A point P(xz, y) moves so that its abscissa is always
equal to its ordinate, that is, so that « is always equal to y.
Find the path of P and prove that your conclusion is correct.

25. Draw the path of a point which moves so that its ordi-
nate always exceeds its abscissa by 1.

26. Describe the position of all points 7’(z, y) which have
the same abscissa.

For example, consider the points whose abscissas are all equal to 5.

27. Describe the position of all points 7 (x, ) which have
the same ordinate.
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10. Lines and Equations. Having learned how to locate
points by means of coordinates, we now turn to the treat-
ment of lines, straight or curved.

For our present purposes, a line may conveniently be
regarded as made up of all the points which lie upon it.

Consider, for example, the bisector

AB of the angle X0Y. Here we Yy ., B
see that the coordinates of every y P,y)
point P(a, y) on the line AL are Y
equal; that is, in every case z=y. » 16} —x
And conversely, if z=y, the point vy

(z, y) is on AB. A

Hence the equation z=y is true
for all points on 4B, and for no other points. We therefore
say that the equation z=y is the equation of the line AB,
and refer to 4B as the graph, or locus, of the equation z = y.
Again, consider the circle with center at the origin and
with radius 5. If the point P (z, y) moves along the circle,
z and y change; but since z and y are
the sides of a right triangle with hypote-

Y
nuse 5, it follows that 22 + 32 = 25. This (a:,y)
equation is true for all points on the
circle and for no others; it is the equa- ‘v
tion of this particular circle, and the circle
is the graph of the equation 2?4 7%= 25.

We therefore sec that a certain straight line and a certain
circle, which are geometric, are represented algebraically
in our system of coordinates by the equations 2=y and
22+ y?*= 25 respectively.

Whenever an equation is satisfied by the coordinates of
all points of a certain line, and by the coordinates of no

other points, the line is called the graph of the equation, and
the equation is called the equation of the graph.
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11, Two Fundamental Problems. The notion of corre-
spondence between graphs and equations gives rise to two
problems of fundamental importance in analytic geometry:

1. Given the equation of a graph, to draw the graph.
2. Given a graph, to find its equation.

These problems, with the developments and applications
to which they lead, form the subject matter of analytic
geometry. A few examples illustrating the first of these
problems will now be given, the second problem being
reserved for consideration in Chapter II1.

The word locus is often employed in place of the word graph
above. So also is the word curve, which includes the straight line
as a special case.

12. Nature of the Graph of an Equation. In general an
equation in 2 and y is satisfied by infinitely many pairs
of real values of z and y. Each of these pairs of values
locates a point on the graph of the equation. The set of
all points located by these pairs usually forms, as in the
examples on page 8, a curve which contains few or no
breaks, or, as we say, a curve which is continuous through
most or all of its extent.

In dealing with graphs of equations in the remainder
of this chapter, and again in Chapter III, we shall assume
that the graphs are continuous except when the contrary
is shown to be the case.

The study of the conditions under which the graph of
an equation is not continuous, together with related topics,
is a matter of considerable importance in the branch of
mathematics known as the calculus.

In special cases it may happen that the graph of an equation
consists of only a limited number of real points. For example, the
equation 22 4 y? = 0 is satisfied only by x =0, y = 0, and its graph
is a single point, the origin.
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13. Plotting the Graph of a Given Equation. If we have
given an equation in z and y, such as 3y — 5248 =0, we
can find any desired number of points of its graph, thus:

Whenaz=| —-2(|-1

<

1

2 3 4

then y=|—6 _4%_ -1

1O
W0

2 21| 4

cola

Each pair of values thus found satisfies the equation and

locates a point of the graph. By plotting
these points and connecting them by a
curve we are led to infer, although we
have not yet proved it, that the graph
is a straight line.

The above process is called plotting the
graph of the equation, or simply plotting
the equation.

[ [
1 /|

NS
i

I

i
i/ ,
If

As a second illustration of plotting an equation we may
consider the case of y =1+ z —2a® Proceeding as before:

When z=|— 8|{—2|—-1| 0 | 1 21 3 4
then y=|—11]-5|—-1] 1 | 1 |-1|-5|—11
Joining the points by a smooth curve, g
xL
we have a curve known as the parabola, s
which is defined later. _X’_.7'1~ Oer ]
It may be mentioned at this time that a I] \\
ball thrown in the air would follow a parabolie 1 \
path if it were not for the resistance of the | ]
air; that the paths of certain comets are pa< / \\
rabolas; that parabolic arches are occasionally ] \
used by engineers and architects; and that the / p L
cables which support suspension bridges are [ 7 [+ i

usually designed as parabolas.
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Exercise 3. Graphs of Equations

1. Plot the equation y — 2x 4 2 =0.

2. Plot the equations 3z +2y =6 and 3z + 2y =12.

3. Plot the equations 4x — 3y =10 and 3z + 4y =12.

4. Plot the equation y = «? taking x =—4, — 2, 0, 2, 4.

5. Plot the equation y = + Vz, locating the points deter-
mined by giving to « the values 0,1, 4, 9, and 16. By examin-

‘ing the graph, determine approximately V6, V12, and V14.

The value of each square root should be estimated to the nearest
tenth. The estimates may be checked by the table on page 284.

6. The equation 4 = 7 gives the area of a circle in terms
of the radius. Using an A axis and an » axis as here shown,
plot this equation, taking 7 = %2, and assigning to » the
values 0, 1, 2, 3. Estimate from the graph the
change in area from » =1 to » = 2, and from
r=2tor=3. 0

A

‘Why were no negative values of r suggested ?

7. From each corner of a sheet of tin 8 in. square there is
cut a square of side « inches. The sides are then bent up to
form a box. Knowing that the volume V is the
product of the base and height, express V in
terms of x. Using a ¥ axis and an =z axis plot
the equation, taking « =0, 1, 2, 3, 4. From
the graph, determine approximately the value
of « which seems to give the greatest volume %
to the box. If your estimate is, say, between
2 =1and x = 2, plot new points on the graph, taking for « the
values 1}, 11, 13, and endeavor to make a closer estimate
than before. Estimate the corresponding value of V.

«~ 8in. -

z 1T z

Why were no values of ¢ greatér than 4 or less than 0 suggested ?
Questions involving maxima and minima, such as maximum strength,
maximum capacity, and minimum cost, are very important both in
theory and in practice. The subject is considered at length in the
calculus, but analytic geometry affords a valuable method for treating it.
AG
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8. The attraction 4 between the poles of an electromagnet
varies inversely as the square of the distance d between the
poles; that is, 4 = k/d? k being a constant. Taking the case
A = 25/d?% plot the graph for all integral values of d from
2 to 10. Estimate from the graph the amount by which 4
changes between d = 2 and d = 3; between d =8 and d = 9.

9. Certain postal regulations require that the sum of the
girth and the length of a parcel to be sent by parcel post shall
not exceed 7 ft. Supposing that a manu-
facturer wishes to ship his goods by parcel
post in boxes having square ends and with l
the girth plus the length equal to 7 ft., study the variation
in the capacity of such a box as the dimensions vary.

We evidently have the equations 4s + =7 and V =52 =s2(T—45s).
Giving to s the values 0, 1, 1, 2, 2, plot the equation V' = s2(7 — 4 s), and
estimate from the graph the value of s which gives the maximum value
of V. Try to improve the accuracy of this estimate, if possible, by closer
plotting near the estimated value of s. .

10. Consider Ex. 9 for a cylindric parcel of length ¢ inches
and radius # inches.

The circumference is 2 7rr and the volume is 72l

11. A strip of sheet metal 12 in. wide is to be folded along
the middle so as to form a gutter. Denoting the width across
the top by 2x, express in terms of x the area 4 of the cross
section of the gutter. Plot the graph of this equation in 4
and x, and determine approximately the width corresponding
to the maximum capacity of the gutter.

12. A rectangular inclosure containing 60 sq. yd. is to be laid
off against the wall 4 B of a house, two end walls of the inclosure
being perpendicular to 4B, and the other wall being parallel to
AB. In terms of the width « of the inclosure, express the total
length T of the walls to be built, and plot the graph of this
equation in 7 and . What value of x makes 7" the minimum ?

-13. Find the dimensions of the maximum rectangle that can
be inscribed in a circle having a diameter of 16 in.
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14. Graphs of Trigonometric Equations. In a trigonometric
equation like y =sinz, x is an angle instead of a length;
but by letting each unit on the x axis represent a certain
angle, we can plot the graph as in the case of an algebraic
equation. Taking the values of sin z from the table on
page 285 of the Supplement, we have the following:

z = | 0°15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 180°-..
y=[0 .26 .50 .71 .87 .97 1 .97 .87 .71 50 .26 0

If we let each unit on the y axis represent 0.20, and each
unit on the z axis represent 30°, the graph is as follows:

] YT
FAREL FARE\Y
y: y.
r4 LY / \Y
' \ O]/ [ 60°] 120°] \180" | 270°[ | 360
" Fa60°] 2707 180X [ [-90 of 30°| 90° | 150°\
N yi kY Vi
X Jd b
A\ /
b ,
[T 1] LT

The graph shows clearly many properties of sinz. For example,
the maximum value of sin z is 1 and the minimum value is —1; as x
increases from 0° to 90°, sin z increases from 0 to 1; and so on. The
arbitrary selection of 80° as the unit on the z axis does not affect
the study of these properties; it affects merely the shape of the curve.

Exercise 4. Trigonometric Graphs

1. From the graph of y=sinx in § 14 estimate how much y,
or sinz, changes when « increases from 0° to 30°; when 2 in-
creases from 30° to 60° when x increases from 60° to 90°. Where
is the change most rapid ? Where is the change the slowest ?

2. In Ex.1 at what values of x is sin « equal to 1? By
how much do these values-of z differ ?
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3. From the graph of y =sinz in § 14 find between what
values of = the value of sin z is positive, and between
what values of x it is negative. At what values of x does sinz
change from positive to negative ? from negative to positive ?

4. Show how to infer from the graph in § 14 the formulas
sin (180° — x) = sin z and sin (180° 4- ) = — sin .

5. Draw the graph of y = cos z, from z = — 90° to z-= 360°.

For the equation y = cosz, consider each of the following :

6. Ex. 1. 7. Ex. 2. 8 Ex.3. 7 9. Lx 4
10. Plot the graphs of y =sin« and y = cosz on the same -

axes; show graphically, as in Ex. 4, that sin (90° + x) = cos .

11. The formula for the area of this triangle, as shown in

trigonometry, is 4 =% - 2. 3. sinz. Plot this
equation, showing the variation of 4 as = 2
increases from 0° to 180°. By looking at the

graph, state what value of ® makes 4 greatest. 8

12. From a horizontal plane bullets are fired with a certain
veloeity, at various angles @ with the horizontal. If the distance
in yards from the point where a bullet
starts to the point where it falls is given by

find the value of x which makes d greatest. d
13. In Ex. 12 estimate from the graph the value of d when
x = 19° and estimate the value of = which makes d = 1050 yd.
14. If the earth had no atmosphere, the amount I7 of heat
received from the sun upon a unit of surface at P would vary

as cos z, where x is the angle between the verti- v

cal at P and the direction of the sun from P; S
that is, H =k cosz. If xz = 27° at noon on a z
certain day, through what values does = vary

from sunrise to sunset ? Plot the particular case P

H =10 cos « between these values, and find between what values
of z the value of H increases most rapidly during the morning.



CHAPTER II
GEOMETRIC MAGNITUDES

15. Geometric Magnitudes. Although much of our work
in geometry relates to magnitudes, the number of different
kinds of magnitudes is very small. In plane analytic as
well as in synthetic geometry, for example, we consider
only those magnitudes which are called to mind by the
words length, angle, and area.

In this chapter we shall study the problem of calculating
the magnitudes of plane geometry as it arises in our coordi-
nate system.

16. Directed Segments of a Line. Segments measured in
opposite directions along a line are said to be positive for
one direction and negative for the other.

For example, 4B and BA denote the same segment
measured in opposite directions. That is, AB=— B4, and
BA=—AB, AB and BA being each the /
negative of the other. 1 B

The coordinates of a point are considered as directed
segments, the abscissa being always measured from the
y axis toward the point, and the ordinate
from the « axis toward the point.

That is, in this figure, z; is 04, not 4,0; but
A,0 =—z,. Similarly, x, = 04,, but 4,0 =—z,,.
Also, 4,4, is not x, + x}, for A, 4, = 4,0+ 04, =— z,+ 2, =z, — z,.
These conventions, of little significance in elementary geometry, are

of greatest importance in our subsequent work.
15
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17. Distance between Two Points. When the coordinates
of two points B (2, ;) and E(z,, y,) are known, the dis-
tance d between the points is easily found.

Drawing the coordinates of £ and B, and drawing EQ
perpendicular to 4,E, we have

RQ=04,— 0d,=2,—z, Y a7 e
QE=A4,8— 4,0 = Yo— Y15 P (1,30, T, Q
and in the right triangle RQE T
];_P;2=I';—Q)2+ Q_If. ol A, A X

Therefore, d=+/ (x,— )" + (¥, — v,)

18. Standard Figure. The figure here shown is used so
frequently that we may consider it as a standard. R and B
may be any two points in the plane, ¥
so that 4;, 4, and By, B, may be any p |- B,

two points on the # axis and y axis sl B V[ 0
respectively, determined by B and B. !

But in every case, whether O is to the 5 A4 X

left of 4, and 4,, or between them, o . o

or to their right 40 4
gt A4 o

Ay = 4,0+ 04y =— 04, + Ody= — oy + vy = 25— 2y,
and similarly B;B, =y,— y;.

19. Distance in Oblique Coordinates. When the axes are
not rectangular, it is the custom to designate the angle
XO0Y by w. Then, by the law of cosines,

hav . . P,
o e
2=EQ"+QB—2EQ-QEcos(180°—w).  / 1;52-.-95};@ -

That is, since cos (180°— ») =— cos w, &/ X

d= \/(xz — %)+ (4, — ¥)" + 2(x;, — x) (¥, — ¥,) c0s @.
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Exercise 5. Distance between Two Points

Find the distances between the following pairs of points,
drawing the standard figure (§ 18) in each case and specify-
ing the length of each side of the triangle :

1. (3, 3) and (7, 6). 3. (6,2)and (—2, —4).
2. (—6,2) and (6, — 3). 4. (—24,5) and (— 8%, —3).

Find the distances between the following pairs of points :
5. (2,1) and (5, 1). 8. (0, 0) and (2, 5).
6. (6, 0) and (0, 6). 9. (0, 0) and (a, b).
7. (—6,0)and (0, — 6).  10. (0, 0) and (La, L aV3).
11. Show that the distance of P(x, y) from 0 is Va4
12. Draw the figure and deduce the formula of § 17 when
P, is in the second quadrant and P, is in the third.
© 13. Show that (7, 2) and (1, — 6) are on a circle whose
center is (4, — 2), and find the length of the radius.
14. Determine %, given that the distance between (6, 2) and
(3, k) is 5. Draw the figure.

Draw the triangles with the following vertices and show by
the lengths of their sides that they include equilateral, isosceles,
scalene, and right triangles, and that two of them, if regarded
as triangles at all, have no area:

15. (—4,3), (2, =5), (3,2).  18. (—6,8), (6,—8), (8, 6).

16. (4,0), (—4,0), (0,— 4V3). 19. (5,1), (2, — 2), (8, 4).

17. (2,3), (—4, 1), (6, —2).  20. (—1,—1), (0,0), (3, 3).

21. In this parallelogram OF, = 6,
OF, = 4, and the angle F,0F, =120°.
Using oblique coordinates as in the
figure, find OR and F,F, S § X

Notice that this is a simple case in the parallelogram of forces.
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/4
20. Inclination of a Line. When a straight line crosses-
the z axis, several angles are formed. The positive angle

to the right of the line and above oY

the z axis is called the angle of !
tnclination of the line, or simply the a /{
inclination, and is designated by a. 2] X

In the above figure the inclination of [
is a; that of I is @’. In analytic geometry an angle is positive if it is
generated by the counterclockwise turning of a line about the vertex. -
The inclination of a line has numerous important applications
to the study of moving bodies, involving such questions as relate to
force, work, and velocity.

If the coordinates of two *r!-—!vijl:——AJ’?) f@
points are given, the inclina- |---'——t ! A ]—
tion of the line determined by | | | | /;-;/(l’fAmi‘_ Q—
these points is easily found. AT

LI

For example, in the case of T T
P (1, 3) and P,(8, 7) we find

that P,Q =8 —1=7, and that QP, =7—3 =4; whence tan a = %.

21. Slope of a Line. The tangent of the angle of incli-
nation is called the slope of the line and is denoted by .
The formula for the slope of
the line through two points

R (@, yy) and B (2 y5) I

By 1)
Y-

R(zuyy) <4

i
i
1
i
|
]
|
1
1
I
1
i
i

—_ Zo-2y
m=tan a= y_z—y]. .
X, — Xy
That is, m is equal to the X iO X

difference between the ordi- )

nates divided by the corresponding difference between the abscissas.
If @ is between 0° and 90°, m is positive.
If a is between 90° and 180°, m is negative. ,
If @ =0° m = tan 0° = 0, and the line is parallel to XX
If a=90° the line is perpendicular to XX'.
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Exercise 6. Inclinations and Slopes

Find the slope of the line through each of the following
pairs of points, and state in each case whether the angle of
inclination is an acute, an obtuse, or a right angle :

1. (2, 3) and (— 6, 8). 4. (—4, —1) and (5, 8).
i9. (=1, 4)and (6, — 3). !5, (4,1) and (4, — 4).
3. (7, — 2) and (— 3, — 2). 6. (3, — %) and (%, §).

7. Show how to construct lines whose slopes are 3, 4, 2,
©—3,1,—1,0, 0, and b/a.

8. Draw a square with one side on the z axis, and find the
slopes of its diagonals.

9. Draw an equilateral triangle with one side on the z axis
and the opposite vertex below the x axis. Find the slope of
each side, and the slope of the bisector of each angle.

10. Draw the triangle whose vertices are (4, —1), (— 3, 2)
and (— 2, 6), and find the slope of each side.

11. Show by slopes that the points (— 2, 12), (1, 3) and
(4, — 6) are on one straight line.

12. If A4(— 5, — 3) and B(3, 7) are the ends of a diameter
of a circle, show that the center is (— 1, 2).

13. Draw the circle with center (0, 0)

and radius 5. Show that 4(4, 3) is on A(4,3)

this circle. Draw 4B tangent to the circle

at 4, and find the slope of AB. a’ e
o "B X

First find tan «’, and then find tan a.

14. If the slope of the line through (—%, 3) and (5, —%)
is 1, find the value of k. Plot the points and draw the line.

15. Show that the angle of inclination @ of the line through
the points (— 2, —4) and (3, 8) is twice the angle of inclination
a' of the line through the points (3, —1) and (6, 1).

Show that tan @ = tan 2 a’.
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22. Angle from One Line to Another. When we speak of
the angle between 4B and CD, we use an ambiguous expres-
sion, inasmuch as there are two supplemen-

. D. B
tary angles formed by these lines, namely, A)%
0 and ¢. To avoid this ambiguity we shall R
speak of the angle from AB to CD as the ¢
smallest positive angle starting from 4B and ending at CD.

In the figure the angle from AB to CD is 6, either BRD or

ARC, but not DRA. The angle from CD to AB is ¢, either
DRA or CRB, but not BRD.

23. Parallel Lines. Since a transversal cutting two par-
allel lines makes corresponding angles equal, it is evident

that parallel lines have the same slope. v

In this figure, a; = a,, and hence m; = m,,
since they are the tangents of equal angles. @ las
The angle from one line to the other is 0° —5 X
in the case of parallel lines.

24. Perpendicular Lines. If we have two lines, /; and I,
perpendicular to each other, we see by the figure that
ay = 90° + ay, 13
and hence we have

tan a, = — cot @,
_ 1
tan a;
1
Hence m, = — —,

1
where m; is the slope of I; and m, is the slope of I,.

“That is, the slope of either of two perpendicular lines is
the negative reciprocal of the slope of the other.

The condition m, = —1/m, is sometimes written m m, = —1, or
mym, +1=0. This law has many applications in analytic geometry.
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25. Anglebetween Two Lines in Terms of their Slopes. If
I, and [/, are two lines with slopes m,; and m, respectively,
the angle from 7, to I,, which we will designate by 6, is
found by first finding tan 6. In the figure below w2 see

that @, = 6 + @, and hence that § = a,— a;. Therefore

tan 6 = tan (a,— a;)
_ tana,—tana;
1+ tana, tana,’
m, — m,

or tanf = 2L,
1+ mym,

To find the angle ¢, from [, to /;, we have
tan ¢ = tan (180° — §) = — tan @
I
1+ mym,

Thus, either arrangement of m; and m, in the numerator gives
one angle or the other; that is,  or ¢. If, however, the conditions
of a problem call for the angle from the first of two lines to the
second, the slope of the second must come first in the numerator.

For example, consider the triangle whose vertices are
A(—5,—38),B(4, —1), and C(3, 4). Here the angle B is
the angle from BC to B4, or, in

the figure, from /; to /,. Then since ceH
Ut
Sk Gl O
™M= o
—1—-(—3) 2 g 5
d = — =, — ;
an My = (—5) 9 A(-5,-3)

fan B2 35 _ 4 yg
14+mmy, 14+2(—=5) —3%
What is indicated with respect to the angle B by the fact that
tan B is negative and also numerically large?
From the figure what is probably the sign of tan 4 ? of tan C?
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Exercise 7. Angles

1. The line through (4, — 2) and (2, 3) is parallel to the
line through (10, 3) and (12, — 2).

Hereafter the words ** prove that or *‘show that’’ will be omitted
in the statements of problems where it is obvious that a proof is required.

2. The line through (—3, —5) and (7, —2) is perpendicular
to the line through (— 2, 6) and (1, — 4).

Find the slope of the line which is perpendicular to the line
through each of the following pairs of points:

3. (2,1) and (3, —1). 5. (—a,2¢)and (1, a).

4. (—1, 3) and (4, 2). ~ 6. (— 6, 0)and (0, 2).

7. If a circle is tangent to the line through (— 2, 5) and
(4, 3), find the slope of the radius to the point of contact.

8. Draw a circle with center (3, — 4) and passing through
(5, 2). Then draw the tangent at (5, 2) and find its slope.

- 9. Find the slopes of the sides and also of the altitudes
of the triangle whose vertices are 4(3, 2), B(4, —1), and
c(—1,—3).

10. Show by means of the slopes of the sides that (0, — 1),
3, — 4), (2, 1), and (5, — 2) are the vertices of a rectangle.

11. As in Ex. 10, show that (2, 1), (5, 4), (4, 7), and (1, 4)
are the vertices of a parallelogram having a diagonal parallel
to the x axis.

12. Draw the triangle whose vertices are 4(2, 1), B(—1, —2),
and C(— 3, 3), and find the tangents of the interior angles of
the triangle and also the tangent of the exterior angle at 4.

13. If the slopes of [ and ' are 3 and m respectively, and
the angle from [ to ' is tan~' 2, find m.

The symbol tan —1 2 means the angle whose tangent is 2.

14. Find the slope of [, given that the angle; from 7 to the
line through (1, 3) and (2, — 2) is 45°; 120°.
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26. Division of a Line Segment. If 4 and B are the end
points of a segment of a line and P is any point on the line,
then if P lies between 4 and B, it divides
AB into two parts, AP and PB. Since 4P
and PB have the same direction, their ratio, designated
by AP:PB or by AP/PB, is positive.

If P is either on 4B produced or on B4 produced, we
still speak of it as dividing 4B into the
two parts AP and PB as before, but in each 4 B P
of these cases the two parts have opposite
directions, and hence their ratio is negative.

We therefore see that the ratio of the parts is posi-
tive when P divides 4B internally, and negative when P
divides 4B externally. '

P B

P A B

The sum of the two parts is evidently the whole segment; that
is, AP + PB = AB. Thus, in the last figure, since AP =— P4, we
have AP + PB =AP + PA + AB = AB.

27. Coordinates of the Mid Point of a Line Segment. In
the figure below, in which % (2, y,) is the mid point of BB,
it is evident from elementary geometry that

Boly =3 (BiR + ByB),
and AoTy =} (4B + 4,B),
for By and 4,F are medians of the trapezoids B,REB,
and 4,4,BER. We therefore have

X = X, + X, BOQ__-_.‘P.O_-__ B
0= ——2 ’ B 12 /’1% .
/;Pl /"?/0 ;72
and gttt e 7
°T e O A, 4y A

Although in general we use rectangular coordinates, in this case
we have taken oblique axes because the case is so simple. Manifestly,
a property which is proved for general axes is true for the special case
when the angle O is 90°.
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28. Division of a Line Segment in a Given Ratio. If the
coordinates of the end points B (z, ,), B (2, ¥,) of a line
segment RE are given, we can find the coordinates of the
point K (4,y,) which divides the segment in a given ratio r.

RE _ 4,4,
= —_— =

Since
BE A4,
we have r=20""%
Ty, =%
. x, + rx,
Solving for z,, X, = 11+ - 2
.. Y+ ry,
Similarly, Y= 11 T 72 N

As in § 27, we have taken oblique axes to show the generality
of these important formulas.

29. Illustrative Examples. 1. Find the point which divides
the line segment from (6, 1) to (— 2, 9) in the ratio 3:5.

Since z; = 6, z, =— 2, and » = £, we have
o 1+% 8

. 1427 32

Similarly, Yo = 1+§ =—§—=4.

Hence the required point is (3, 4).

2. Find the point which divides the line segment from
(—4, —2) to (1, 3) externally in the ratio 8:3.

Since z; =— 4, 2, =1, and r =— §, we have
— _ 8 — 20
L
1+(— %) -3
- —24+(—%):3_—-10
Similarly, = - = = 6.
e Y S

Hence the required point is (4, 6).



~
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Exercise 8. Points of Division

Determine, without writing, the mid point of each of these
line segments, the end points being as follows :

1. (7, 4), (3, 2). 4. (4, —1), (— 4, 1).
2.(6,—4),(—2 —2). 5. (1), 1,oa).
3. (—3,1), (2, 7). 6. (0, 0), (0, 3).

Find the mid point of each of these line segments, the end
points being as follows :
7. (1.3, — 4.5), (2.9,12.3). 9. (147, —14.7), (0, 12.2).
8. (— 2.8, 6.4), (—3.9,7.2). 10.(—33, —75),(23, —41).

Find the point which divides each of these line segments
in the ratio stated, drawing the figure in each case :

1. (2,1)to (3, —9); 4:1.  13. (— 4, 1) to (5, 4); — 5:2.

12. (5, — 2) to (5,8); 2:3. ™ 14. (8,5) to (—13, —2); 4:3.

Find the two trisection points of each of these line segments,
the end points being as follows : N

15. (—1,2),(—10,—1). 16. (11,6),(2,3). 17. (7,8), (1,—6).

18. Find the mid points of the sides of the triangle the '
vertices of which are (7, 2), (—1, 4), and (3, — 6), and draw
the figure.

19. In the triangle of Ex. 18 find the point which any
median has in common with the other two medians.

By a proposition of elementary geometry the medians are concurrent
in a trisection point of each.

20. Given 4 (4, 7), B(5, 3), and C (6, 9), find the mid points
- of the sides of the triangle ABC.

21. If one end point of a line segment is 4 (4, 6) and the
mid point is 3 (5, 2), find the other end point of the segment.
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30. Area of a Triangle. Given the coordinates of the
vertices of a triangle, the area
of the triangle may be found
by a method similar to the
one used in surveying.

In this figure draw the line
R @ through E, parallel to 0X, ) Bla,)
and draw perpendiculars from | ]
B and E to BQ. Then

AREE = trapezoid RQRE — ARERE — ARQE.

B(%5,15)

Noting that the altitude of the trapezoid is z, — z;, we
can easily find the areas of the figures and can show that

AREE = Tﬁ'(xxyz — XY + XY — XY, + XYy — X,Y;)-

The student who is familiar with

1

determinants will see that this equa- . . ., 5 Y zl N 1
tion may be written in a form much 1h2hs 2 Y2
Ty Y 1

more easily remembered, as here shown.

The area of a polygon may be found by adding the
areas of the triangles into which it can be divided.

31. Positive and Negative Areas. Just as we have posi-
tive and negative lines and angles, so we have positive
and negative areas. When we trace the boundary of a plane
figure counterclockwise we consider the area as positive, and
when we trace the boundary clockwise

we consider the area as negative. Y D
For example, calling the area of this
triangle T, if we read the vertices in the (8,3)
order (4, 1), (8, 3), (2, 7), we say that 7' is (4,1)
positive; but if we read them in the reverse <

order, we say that 7" is negative.
Usually, however, we are not concerned with the sign of an area,
but merely with its numerical value.
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Exercise 9. Areas

Draw on squared papér the following triangles, find by
Jormula the area of each, and roughly check the results by
counting the unit squares in each triangle :

1. (3,8),(—1,—2), (—3,4). 3.(1,3),(30), (—4,3).

2. (0,0), (12, — 4), 3, 6). 4. (—2,—2), (0, 0), (5, 5).

5. Find the area of the quadrilateral (4, 5), (2, — 3), (0, 7),
(9, 2), and check the result by counting the unit squares.

6. The area of ‘the quadrilateral P, (z,, ¥,), P,(z, ¥,)
Py(@y ), Py, yy) 18

% (xl?/2 — Xy XYy — Yy Y, — XYy Yy, — 2y,

7. Find the point P which divides the median 437 of the
triangle here shown in the ratio 2:1.

8. In the figure of Ex. 7 join P to A, | . M_H___':".'f: ]

B, and C, and show that the triangles ABP, [~
BCP, and CAP have the same area. l:o

From elementary geometry we know that P is
the common point of the three medians, and that j-j-
it is often called the centroid of the triangle. + /

In physics and mechanics P is called the center |_|_A ]
of area or center of mass of the triangle. Why are E2 5
these names appropriate?

9. Given the triangle 4 (4, —1), B(2, 5), C(— 8, 4), find the
area of the triangle and the length of the altitude from C to 4 B.
10. Find the lengths of the altitudes of the triangle
A(— 4, —3), B(—1,5), C(3, — 4).
11. If the area of the triangle 4 (6, 1), B(3, 8), C (1, k) is
41, find the value of %. '
12. By finding the area of ABC, show that the points
A(—1, —14), B(3, — 2), and C(4, 1) lie on one straight line.
13. Join in order 4(7, 4), B(—1, —2), C(0, 1), D(6, 1),

and show by Ex. 6 that area ABCD is 0.
AG
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Exercise 10. Review

Determine, without writing, the slopes of the lines through
the following pairs of points :

1. (3,4),(5,7). 3. (—2,2),(24). 5. (1, ), (a, 1).

2. (3,3), (4,1). "4 (4,—2),(—1,1). 6. (0,0), (1, 1).

Determine, without writing, the slopes of lines perpendicular
to the lines through the following pairs of points:

7. (2,4), 4 2). 9. (6, 4), (0, 1). 11. (0, 2), (0, a).

8. (1, 3), (2, b). 10. (3, 3), (4,4). Y 12. (4, 0), («, 0).

13. Find the angle of inclination of the line through (3, 1)
and (— 2, — 4).

14. The inclination of the line through (3,2) and (— 4, 5)
is supplementary to that of the line through (0, 1) and (7, 4).

15. If P (5, 9) is on a circle whose center is (1, 6), find the
radius of the circle and the slope of the tangent at P.

16. The points (8, 5) and (6, — 3) are equidistant from (3, 2).

17. Given 4 (2, 1), B(3, — 2), and C(— 4, —1), show that
the angle BA C is a right angle.

18. The line through (a, 0) and (e, d) is perpendicular to
the line through (b, — @) and (d, — ¢).

19. Draw the triangle 4 (4, 6), B(— 2, 2), C(— 4, 6), and
show that the line joining the mid points of AB and AC is
parallel to BC and equal to half of it.

20. Show that the circle with center (4, 1) and radius 10
passes through (— 2, 9), (10, —7), (12, — 5). Draw the figure.

21. If the circle of Ex. 20 also passes through (—4, k),
find the value of Z.

22. Through (0, 0) draw the circle cutting off the lengths
a and b on the axes, and state the coordinates of the center
and the length of the radius.
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23. If (3, k) and (%, —1) are equidistant from (4, 2), find
the value of Z.

24. If (3, k) and (4, — 3) are equidistant from (— 5, 1), find
the value of %.

25. If (@, b) is equidistant from (4, — 3) and (2, 1), and is
also equidistant from (6, 1) and (— 4, — 5), find the values of
a and b and locate the point (a, ).

26. The point (4, 13) is the point of trisection nearer the
end point (3, 8) of a segment. Find the other end point.

27. The line 4B is produced to C, making BC equal to ] 4B.
If 4 and B are (5, 6) and (7, 2), find C. '

28. The line AB is produced to C, making AB:BC =4:T7.
If 4 and B are (5, 4) and (6, — 9), find C.

29. If three of the vertices of a parallelogram are (1, 2),
(— 5, — 3), and (7, — 6), find the fourth vertex.

30. Derive the formulas for the coordinates of the mid point
of aline as a special case of the formulas of § 28, using the proper
special value of + for this purpose.

Plot the points A(—4, 3), B(2, 6), C(7, —38), and
D(—8, —8) and show that:

31. These points are the vertices of a trapezoid.

32. The line joining the mid points of 4D and BC is parallel
to AB and to CD and is equal to half their sum.

33. The line joining the mid points of 4D and BC is parallel
to AB and to C'D and is equal to half their difference.

34. The points P (x, ¥,), P,(x,, ¥,), and Py(x,, y,) are the
vertices of any triangle. By finding the points which divide
the medians from P, P, and P, in the ratio 2:1, show that
the three medians meet in a point.

35. The points 4 (2, — 4), B(5, 2), P(3, — 2) are all on the
same line. Find the point dividing 4B externally in the same
ratio in which P divides 4B internally.
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36. Given the four points 4 (6, 11), B(— 4, — 9), C (11, — 4),
and D(— 9, 6), show that AB and CD are perpendicular diam-
eters of a circle.

37. Draw the circle with center C'(6, 6) and radius 6, and
find the length of the secant from (0, 0) through C.

Two circles pass through A (6, 8), and their centers are
C (2, 6) and C'(11, — 4). Draw the figure and show that:

38. B(—1,1) is the other common point of the circles.

39. The common chord is perpendicular to C'C'".

40. The mid point of 4B divides CC'in the ratio 1:17.

Draw the circle with center C(—1, — 8) and radius 5, and
answer the following :
41. Are P/(2,1) and P,(— 4, 1) on the circle ?
42. In Ex. 41 find the angle from CP, to CP,
43. Find the acute angle between the tangents at P and P,

Griven that F is on the line through BE and that r is the
ratio RE /BB, d? aw the figure and study the values of r for
the following cases :

44. P is between P and P, Show that »> 0.

45. P is on P P, produced. Show that »<—1.

46. P is on PP, produced. Show that —1 < <0.

47. Given the point 4 (1, 1), find the point B such that the
length of AB is b and the abscissa of the mid point of 4B is 3.
- 48. In a triangle ABC, if 4 is the point (4, —1), if the mid

point of 4B is A1 (3, 2), and if the medians of the triangle meet
at P (4, 2), find C.

49. Find the point Q which is equidistant from the coordi-

nate axes and is also equidistant from the points 4 (4, 0) and

B (-2, 1).
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50. Given theApoints A4 (2, 3) and B(8, 4), find the points
which divide 4B in extreme and mean ratio, both internally
and externally. Draw the figure and

P T | ] [
locate the points of division. T p B
By elementary geometry, P divides 4B in gfj‘ﬁ ERERE
extreme and mean ratio if B ;_ N
. 1 ‘
AP:PB=PB: AB. AO _,,_411_.51 ] lX
The abscissa of P (a, b)is found by noting that . -

A,P,:P,B, = P,B;: A B, and that 4,P, = a— 2, P,B, =8 — a, and
A,B, =8 — 2. Similarly the ordinate b can be found. The two roots of
the quadratic equation in a are the abscissas for both the internal and
external points of division, only the former being shown in this figure.

51. Given the points 4 (— 3, — 8) and B(3, — 2), find the
points P, (1, 0) and P,(c, d) which divide 4B internally and
externally in the same ratio.

52. The vertices of a triangle are 4 (— 6, — 2), B(6, — 5),
and C'(2, — 8), and the bisector of angle C meets AB at D.
Find D.

Recall the fact that the bisector of an interior angle divides the oppo-
site side into parts proportional to the other two sides.

53. In Ex. 52 find the point in which the bisector of the
exterior angle at C meets A D.

Given A(1, — 8) and B (4, 1), find all points P meeting the

Jollowing conditions, drawing the complete figure in each case :
54. P (3, k), given that AP is perpendicular to PB.
55. P (5, k), given that 4P is perpendicular to PB.
Explain any peculiar feature that is found in connection with Ex. 55.
56. P(2, k), given that angle 4PB = 45°.

57, P(%, 10), given that angle APB = 45°.

Explain any peculiar feature that is found in connection with Ex. 57,
58. P(a, a), given that angle 4 PB = 45°.
59. P(a, ), given that AP = PB and the slope of OP is 1.
60. P (a, b), given that OP = 5 and the slope of OP is 2.
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61. Given that AP = PB, AP is perpendicular to PB, 4 is
(2, 3), and B is (— 3, — 2), find the coordinates of P.

62. The mid point of the hypotenuse of a right triangle is
equidistant from the three vertices.

This theorem, familiar from elementary geom- B
etry, makes no mention of axes. We, therefore, - b
choose the most convenient axes, which, in this
case, are those which lie along 04 and OB. From o) T
the coordinates of 4 (a, 0) and of B(0, b), we can
find those of M and the three distances referred to in the exercise.

63. In any triangle 4BC the line joining c
the mid points of 4B and 4C is parallel to
BC and is equal to 1 BC.

The triangle may be regarded as given by the

coordinates of the vertices. 4 B X

64. Using oblique axes, prove from this figure that the diag-
onals of a parallelogram bisect each other.

In proving this familiar theorem by analytic (0,0) (2,2)
geometry it is convenient to use oblique axes as
shown by the figure. Show that the diagonals have 0 (@0)

the same mid point.

65. The lines joining in succession the mid points of the sides
of any quadrilateral form a parallelogram. Q)

66. Using rectangular axes as shown [@7 R(32)
in this figure, prove that the diagonals

of a parallelogram bisect each other. O P(?2,?)

67. The diagonals of a rhombus are perpendicular to each
other.

Since we have not yet studied the slope of a line with respect to
oblique axes, we choose rectangular axes for this case. We may use the
figure of Ex. 66, making OP equal to OQ. Assuming that the coordinates
of @ are a and b, what are the coordinates of P and R ?

68. The vertices of a triangle are 4(0, 0), B(4, 8), and
C (6, —4). If M divides 4B in the ratio 3:1, and P is a point
on AC such that the area of the triangle 4 PM is half the area
of ACB, in what ratio does P divide 4C ?




CHAPTER III
LOCI AND THEIR EQUATIONS

32. Locus and its Equation. In Chapter I we represented
certain geometric loci algebraically by means of equations.

For example, we saw that the coordinates Y
of the point P (z, y), as this point moves on P(z,y)
a circle of radius » and with center at the

origin, satisfies the equation 22 + y2 =2 This
is, therefore, the equation of such a circle. QJ X
In this connection two fundamental

problems were stated on page 9:

1. Gliven the equation of a graph, to draw the graph.
2. Given a graph, to find its equation.

It is the purpose of this chapter to consider some of the
simpler methods of dealing with these two problems.
‘We have already described on pages 10-14 a method of dealing

with the first of the problems; but this method, when used alone,
is often very laborious.

33. Geometric Locus. In elementary geometry the locus
of a point is often defined as the path through which the
point moves ir accordance with certain given geometric
conditions. Itis quite as satisfactory, however, to disregard
the idea of motion and to define a locus as a set of points
which satisfy certain given conditions.

Thus, when we say that a locus of a point is given, we mean that
the conditions which are satisfied by the points of a certain set are

given, or that we know the conditions under which the point moves,
33
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34. Equation of the Line through Two Points. The method
of finding the equation of the straight line through two
given points is easily understood from the special case
of the line through the points 4(2, —8) and B(4, 2).

If P(x, y) is any point on the line, it is evident that
the slope of AP is the same as the slope of 4B. Hence,

by § 21,
y+3 5. y B(4,2)
—92° 9’ X
v 2 Y Plz,y)
that is, 2y—Hz+16=0. lAG2,-3)

If P(z, y) is not on the line, the slope of 4P is not the

~ same as the slope of 4B, and this equation is not true.
This equation, being true for all points P (z, y) on the

line and for no other points, is the equation of the line.
It should be observed that the equation is true for all points on

the unlimited straight line through A and B and not merely for all
points on the segment A4 B.

35. Equation of a Line Parallel to an Axis. Let the
straight line 4B be parallel to the y axis and 5 units to
the right. As the point P (z, y) moves along AB, y varies,
but z is always equal to 5. The equation z=>5, being

true for all points on 4B and
Y B

for no other points, is the equa- g F

tion of the line. 3 P(z,y)
Similarly, the equation of the 2 5 x

line CD, parallel to the y axis c o A

and 2 units to the left, is z=—2.
Similarly, the equation of the line EF, parallel to the
z axis and 3 units above, is y = 3.
In general, the equation of the line parallel to the y axis
and a units from it is z=a, and the equation of the line
parallel to the z axis and & units from it is y =b.
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Exercise 11. Equations of Straight Lines

1. Find the equation of the line which passes through
(4,—1) and (— 2, 2).

2. Given the triangle with vertices (4, — 2), (— 2, — 3),
and (2, 4), find the equations of the sides.

3. In Ex. 2 find the equations of the medians, and show
that these equations have a common solution. What inference
may be drawn from the fact of the common solution ?

4. Find the equation of the line through (3, 1) and
(=2, —9), and show that the line passes through C(5, 5).

Show that the coordinates of C satisfy the equation of the line.
5. Find the equation of the line through (3, 3) and (— 2, 4)

~ and that of the line through (1, 1) and (5, — 1), and show
that (— 7, 5) is on both lines.

Find the equatz'oﬁs of the lines through the following points :
6. (3,1) and (— 2, a). 8. (—1, — 2)and (— 2, — 4).
7. (2, 4a) and (1, 2 a). 9. (a, b) and (e, d).
10. Find the equation of the line which passes through
4 (3, — 2) and has the slope 2.
The condition under which P (z, y) moves is that the slope of AP is §.

Find the equations of the lines through the following points
and parallel to the z axis:

1. (4, —2).  12.(47).  13.(2,0). - 14, (—a,—b).
Find the equations of the lines through the following points
and parallel to the y axis:
15.(2,—1). ~16.(6,6).  17.(0,m).  18.(—p, —q).
“19. The equation of the z axis is y = 0.
20. Find the equation of the y axis.
21. The points (1, 1), (2, 0), (0, 2) lie on a straight line.
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36. Equation of a Circle. The general equation of the
circle with a given center and a given radius is easily
deduced after considering a special case.

Let C(2, 8) be the center and 7 the radius of a given
circle. Then if P(z, y) is any point on the circle, we have

CP=1T, y
whence (2 — 2)%24(y — 3)2=49, Play)
and 2+ yt—4zx—6y=306,
which is true for all points (z, ¥) o C%3)
on the circle and for no other points. \J X
In general, if C'(a, b) is the center

and 7 the radius of any circle in the
plane, and if P (z, y) is any point on the circle, the equa-
tion of the circle may be found from the fact that

CP=r.
Hence V(z—a)?2+ (y —b)2=r; §17
that is, x—a+@y—b*=r?
or X+ —2ax—2by+c=0,

where ¢ stands for a2+ 82 — 72

The form of this equation should be kept in mind so as to be
instantly recognized in the subsequent work. The equation has
terms in 2% % z, y, and a constant term, and the coefficients of z?
and y? are equal and have the same sign. In special cases any or
all of the numbers @, b, and ¢ may be 0.

For example, 2%+ y2— 62 + 8 y =11 represents the circle with
center (3, — 4) and radius 6, since the equation may be written

22— 6z+9+y2+8y+16=11+9 +16,
or (z—3)2+ (y + 4)>=36.

In particular, the equation of the circle with center O (0, 0)
and radius 7 is xt4 yi=rt.
We shall study circles and their equations further in Chapter V.
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) . ' Exercise 12. Equations of Circles

Draw the following circles and find the equation of each :

1. Center (4, 3), tangent to the x axis.

Center (ﬂ— 5, 0), tangent to the y axis.

Through (0, — 8), tangent to the x axis at the origin.
. Tangent to 0Y and to the lines y = 2 and y = 6.
Tangent to the lines x =—1,2 =5, and y = — 2.
Through 4 (— 6, 0), B(0, — 8), and 0(0, 0).

Notice that 4B is a diameter of the circle.

o o ow oo

7. Find the equation of the circle with center (2, — 2)
and radius 13; draw the circle; locate the points (— 3, 10),
(14, 3), (3, 10), (2, 11), and (2, —15); and y
determine through which of these points the
circle passes. 2

8. Find the equation of the circle inseribed
in the square shown at the right. 0 X

9. Find the equation of the circle circumseribed about the
square shown in the figure above. Y

10. Find the equation of the circle inscribed in
the regular hexagon here shown.

11. Find the equation of the circle circum-
scribed about the regular hexagon in Ex. 10. o[x

Find the center and the radius of each of the circles repre-
sented by the following equatiops, and draw each circle :

12. 2+ — 22— 6y =15. " 15, 2 4+ ¢y* = 6x.

13. 2 +9y*+6x+3y=1. 16. 2*+ 9>+ 22— 4y = 20.

14. 222+ 2y —4+10y=21. 17. 22 + 4> =6y 4+ 16.

18. On the circle *+ y* — 6x + 2y =17 find each point

whose ordinate is 3, and find each point in which the circle
cuts the x axis.
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37. Equations of Other Loci. The method set forth in
§§ 34—386 enables us to find the equations of many other
important curves. For example, 5

consider the case of the locus of a 0 P(5,y)
point which moves so that its dis- Y
tance from the point (4, 0) is equal
to its distance from the y axis.

I (4,0) X

This being a locus not thus far
considered, we shall not attempt to draw it in advance,
but shall first take any point P (a, y) which satisfies the

. diti
given condition FP = QP.

Expressing FP in terms of 2 and y (§17), and remem-
bering that QP is z, the abscissa of P, we have

V(-4 + i =u
whence > —8z+16=0,

which is the required equation.
Assigning values to y, we have:

Wheny=| 0 +1 | +2| 3| +4
2 3L | 4

then z=| 2 2{;

[ ST

Plotting these points and connecting them by a smooth
curve, we have the locus here shown.

38. General Directions. The above method of finding the
equation of a given locus may be stated briefly as follows:

1. Draw the axes, and denote by P (z, y) any point which
satisfies the given geometric condition.

2. Write the given condition in the form of an equation.

3. Write this equation in terms of x and y, and simplify
the result.
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Exercise 13. Equations of Other Loci

Find the equation of the locus of the point P and draw the
locus, given that P moves subject to the following conditions :
1. The sum of the squares of its distances from (3, 0) and
(— 3, 0) is 68.
2. The sum of the squares of its distances from (2, —1) and
(—4,5) is 86.
3. Its distance from (0, 6) is equal to its distance from 0X.
‘The resulting equation should be cleared of radicals.
4. Tts distance from (8, 2) is twice its distance from (4, 1).

5. Its distance from (3, 0) is 1 less than its distance from
the axis OY.

6. Its distance from (—1, 0) is equal to its distance from
the line « = 5.
7. Its distance from OX exceeds its distance from the point
(=3 Dby 3
8. The angle APB = 45°, where 4 is the point (4, —1)
and B is the point (— 2, 3).
9. The angle APB =135° A and B being as in Ex. 8.
10. Tan APB = %, where 4 is (5, 3) and Bis (—1, 7).
11. Area PAB = area PQR, where 4 is (2, 5), B is (2, 1),
Qis (3, 0), and R is (5, 3).
12. Its distance from 4 (4, 0) is equal to 0.8 of its distance
from the line = 6.25.
13. The sum of its distances from 4 (4, 0) and B(— 4, 0) is 10.
14. Its distance from A (5, 0) is § its distance from the
line & = 3.2.
15. The difference of its distances from (5,0)and (— 5,0)is 8.
16. The produeﬁ of its distances from the axes is 10.

17. The sum of the squares of its distances from (0, 0),
(4, 0), and (2, 3) is 41.
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Find the equation of the locus of the point P under the
conditions of HKxs. 18-21:

18. The distance of P from the line y = 3 is equal to the
distance of P from the point (0, — 3).

19. The sum of the distances of P from the sides of a
square is constant, the axes passing through the center of
the square and being parallel to the sides. D

20. The sum of the squares of the distances of P from the
sides of a square is constant, the axes being as in Ex. 19.

21. A moving ordinate of the circle 2* 4 3 = 36 is always
bisected by P. .

22. The rod 4B in the figure is 4 ft. long, has a knob (P) 1 ft.
from 4, and slides with its ends on OX and OY respectively.
Find the equation of the locus of P. v

From the conditions of the problem P moves pg
so that OK : KA =3:1.

23. In Ex. 22 find the equation of the Ploy)
locus of the mid point of the rod 4B, and -5 ax
draw the locus.

24. If every point P of the plane is attracted towards
0(0, 0) with a force equal to 10/ OP” and towards 4(12, 0)
with a force equal to 5/ AP’, find the equation of the locus of
all points P which are equally attracted towards O and 4, and
draw this locus.

25. If a certain spiral spring 6 in. long, attached at 4 (8, 0),
is extended e inches to P, the pull at P is 5 e pounds. A 3-inch
spring of like strength being attached at B(— 2, 0), it is required
to find the equation of the locus of all points in the plane at
which the pull from 4 is twice that from B.

The pull along PA is not five times the number of inches in P4, but
only five times the excess of this length over 6 in., the original length of
spring. It is assumed that the coordinates are measured in inches.

Similarly, the pull along PB is five times the excess of the length of
PB over 3in.
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39. Graph of an Equation. We shall now consider the
other fundamental problem of analytic geometry, given on
pages 9 and 33: Glven an equation, to draw its graph.

Although simple methods for solving this problem have already
been given, certain other suggestions concerning it will be helpful.

40. Equations already Considered. We have already con-
sidered a few equations of the first degree, and have inferred
that Az + By + C =0 represents a straight line.

We have also shown (§ 86) that the equation

22+ 12—2ar—2by+¢=0
represents the circle of center (, b) and radius Va2+ 02— c.

41. Other Equations. As shown on page 10, in the
case of other equations any desired number of points of
the graph may be found by assigning values to either of
the coordinates, = or y, and computing the corresponding
values of the other.

The closer together the points of a graph are taken, the
more trustworthy is our conception of the form of the
graph. If too few points are taken,
there is danger of being misled.

i |

". ;
For example, consider the equation | AICT T
12y =122 —252%—15 22+ 34 z + 24. ‘g /”/’\\ ™~

B l| d” Ad:
When z=|—1 0 1 2 y / \
Vi

then y= 1 2 2.5 2 Q

If we locate only A4, B, C, D in the figure above, the heavy line
might be thought to be the graph; but if we add the six points in
the table below, the graph is seen to be more like the dotted line.

Whenz=|-12 |—-07 |—-03 0.6 1.7 2.2

then Y= 2.47 0.36 1.10 | 2.93 1.32 3.43
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42. Examination of the Equation. Since the tentative
process of locating the points of the graph of an equation
is often laborious, we seek to simplify it in difficult cases
by an examination of the equation itself. For example,

taking the equation Y
922 4+ 25 2= 225,
we have
Y=+ %\/ m, 0 X
from which the following
facts are evident:

1. The variable # may have any value from — 5 to 5
inclusive; but if z<—5 or if 2> 5, y is imaginary.

2. To every value of z there correspond two values of
y, numerically equal but of opposite sign. It is evident
that the graph is symmetric with respect to the z axis.

8. Two values of z, equal numerically but of opposite
sign, give values of y that are equal. It is therefore evi-
dent that the graph is symmetric with respect to the Y axis.

For example, if z =2 or if = —2, we have y =+ 3V21l. We
may therefore locate points to the right of the y axis and merely
duplicate them to the left.

4. As z increases numerically from 0 to 5, y decreases
numerically from 3 to 0.

From this examination of the equation we see that it is
necessary to locate the points merely in the first quadrant,
draw the graph in that quadrant, and duplicate this in
the other quadrants. For the first quadrant we have:

Whenz=| 0 1 2 3 4 5

then y=| 8 |29 |27|24 |18 0
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43. Symmetry. The notion of symmetry is familiar from
elementary geometry, and therefore the term was freely
employed in § 42. We shall, however, use the word fre-
quently as we proceed, and hence it is necessary to define
it and to consider certain properties of symmetry.

Two points are said to be symmetric with respect to a
line if the line is the perpendicular bisector of the line
segment which joins the two points.

” Y P
For example, P(z, y) and P'(z, —y) 9~ =z T~ 5,
in this figure are symmetric with respect | _, i
to 0X. i‘?/ 0 _y X

Two points are said to be sym- g
metric with respect to a point if this
point bisects the line segment which joins the two points.

Thus, P (z, y) and P’ (— x, — y) in the figure above are symmetric
with respect to the origin O.

A graph is said to be symmetric with respect to a line
if all points on the graph occur in pairs symmetric with
respect to the line; and a graph is said to be symmetrie
with respect to a point if all points on the graph occur in
pairs symmetric with respect to the point.

The following theorems are easily deduced :

1. If an equation remains unchanged when y is replaced
by — y, the graph of the equation is symmetric with respect
to the z axis.

For if (2, y) is any point on the graph, so is (z, — ).

2. If an equation remains unchanged when x is replaced
by — =z, the graph of the equation is symmetric with respect
to the y axis.

3. If an equation remains unchanged when xz and y are
replaced by — x and — y respectively, the graph of the equatwn

18 symmetric with respect to the origin.
AG
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44. Interval. On page 42, in studying the graph of the
equation 92”4 25 y* = 225, we suggested considering the
values of 2 in three sets of numbers: (1) from — o to
— 5, (2) from — 5 to 5, and (3) from 5 to oo.

The set of all real numbers from one number a to a
larger number & is called the #nterval from a to &. -

The notation @ =z = b means that z is equal to or greater .
than @, and is equal to or less than &; that is, it means
that # may have any value in the interval from « to b,
inclusive of a and b.

The notation @ < <b means that 2 may have any value
in the interval from a to b, exclusive of « and b.

In examining a quadratic equation for the purpose of
determining the intervals of values of # for which y is real,
we are often aided by solving the equation for y in terms
of z, factoring expressions under radicals if possible.

For example, from the equation
y?2—2224+122—-10=0

we have y== m

If —w=x<1, both x —1 and 2 — 5 are negative, and y is real.

If 1<z<5, then z —1 is positive, z — 5 negative, and y imaginary.

If 5<z =, both 2 —1 and « — 5 are positive, and y is real.

45, Intercepts. The abscissas of the points in which a
graph cuts the z axis are called the z intercepts of the graph.

The ordinates of the points in which a graph cuts the
y axis are called the y intercepts of the graph.

Since the ordinate of every point on the z axis is 0 and
the abscissa of every point on the y axis is 0,

To calculate the x intercepts of the graph of an equation,
put 0 for y and solve for x.

To calculate the y intercepts of the graph of an equation,
put 0 for x and solve for y. ‘ .



INTERVALS AND INTERCEPTS 45

Exercise 14. Graphs of Equations

Ezamine the following equations as to intercepts, symmetry,
the x intervals for which y is real, and the x intervals for
which y is imaginary, and draw the graphs :

1. ¥ — 22 4+ 122 =10. 12. 82— 3*— 8 =0.

2. ¥+ 8x+16=0. 13. 22+ 94> =09.

3. 8y2—2*=0. 4. 2 — * — 8=0.

4. 42— 922=2Tx—90. V15. 3° — a2 — 8=0.

5. 402+ 942 —36=0.  16. 42* + 917 =T2.

6. 422 — 99y —36=0. 17. 42* + 3y* =16z —12.
7. 9a% 4+ 44> —36=0. 18. (y — 5 =a —ax —12.
8. 3x=6— 44" 19, yP=(z—1)(z— 3)(x—4).
9. ¥+ 92— 9=0. 20. ¥ =22 +10a® — 28 .

—
e

22+ 49— 62 =16. 21. 9y =4x(8 —2x— a?).
11. 82 — 56 @ + 240 = 9% 22. 1P =(x —1)(x — 3)%
InEx.9writey =+V—92%2 + 9 =43V — (@ + 1) (& — 1).

In Ex. 11 write y =4 V322 — 66z + 240 = £ V(3z — 20) (z — 12)
=+ V3@ — 2P) (z —12). -
In Ex. 14 writey = + V22 — 8 = + V (z +V8) (z — V8).

Ezxamine the following equations as above, arranging each
as a quadratic in y and using the quadratic formula :
23. 2 — 22y + 29+ 62— 8y +2=0.

As a quadratic in y we have 292 — 2(x + 4)y + 22 + 6 + 2 = 0.
Using the quadratic formula as given in the Supplement on page 283,

y_2(:c+4):1:\/4(z+4)2—8(12+6:1:+2)
- 4
_z+4i\/—a;2—4m+l2_m+4:|:\/—(a:+6)(m—2)'
- 2 - 2

24, 2’ —4*+ 62+ 8y +1=0.
25, a’— P —4ax—6y—5=0.
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Ezamine each of the following equations with respect to
tntercepts and symmetry, solve for x in terms of y, determine
the y intervals for which x is real or imaginary, assign values
to y, and draw the graph :

26. 3z =06—4~ 29. 4(*+ )=y~

7. Pt —at—4y=0. 30. 3a*+ 24*— 2y =12.

28. (y —x)P=8y —16. 3 31. 42° 4+ 1742 =y + 10.

In Ex. 29 the point (0, 0) is called an isolated point of the graph.

32. A rectangle is inscribed in a circle of radius 12. If one
side of the rectangle is 2, find the area 4 of the rectangle in
terms of x, plot the graph of the equation in 4 and =z, and
estimate the value of  which gives the greatest value of A.

33. In Ex. 32 express the perimeter P in terms of », draw
the graph of the equation in P and z, and estimate the value
of @ which gives the least value of P.

34. Consider Ex. 32 for arectangle inscribed in a semicircle.

35. Find by a graph the volume of the greatest cylinder
that can be inscribed in a sphere of radius 10 in.

36. In this figure 4 and B are two towns, 4Q is a straight
river, BQ is perpendicular to 4Q, 4Q =38 mi., 4 Pz Q
and BQ = 5 mi. A pumping station P is to
be built on the river to supply both towns
with water. Express in terms of x the total
cost C of laying the pipes at $600 a mile B
for AP and $1000 a mile for PB, plot the equation, and
estimate the most economical position for the pumping station.

37. Two sources of heat, 4 and B, are 10 ft. apart, and 4
gives out twice as much heat as B. If P is on the line 4B and
is z feet from 4 and «' feet from B, and receives 50/x* units of
heat from A and 25/x'? units of heat from B, express the total
number H of units of heat received by P from both 4 and B,
draw the graph of the equation, and find the coolest position
for P between 4 and B.
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46. Asymptote. If P is a point on the curve € and PA
is perpendicular to the line [, then if 24— 0 when P moves
indefinitely far out on €, the line { is said

P
to be an asymptote of the curve. c

The notation PA —>0, which was used in A

the definition above, and for which the notation ¢

PA =0 is also sometimes used, is read, “ P4

approaches zero as a limit.” In general, z —> a means “z approaches
a as a limit”; but x — 0 means “z increases without limit.”

At present we shall consider only those asymptotes which are
parallel to the y axis or x axis, calling them respectively vertical
asymptotes and horizontal asymplotes. Methods of dealing with other
asymptotes are given in the calculus. .

An asymptote is often a valuable guide in drawing a curve.

47. Vertical Asymptote. The advantage of considering
the vertical asymptote in certain cases may be seen in
examining the equation zy —2z—4y+10=0. Solving
for y, we have 2210

with respect to which the following == Y=
observations are important: ~

o
1. When z<4, let « approach 4 as a / *
limit; 22— 10 is negative and approaches
— 2 as a limit, and 2 — 4 is negative and approaches 0 as a
limit. Hence y is positive and increases without limit.

Drawing the vertical line z = 4, we see that the graph approaches
the line z = 4 as an asymptote.

2. When 2>4, let z approach 4-as a limit; 22 —10-
approaches — 2 as a limit, and z—4 is positive and
approaches 0 as a limit. Hence y is negative and decreases
without limit.

We see that as the graph approaches the line z = 4 it runs from
the left upward toward the line, and runs from the right downward.
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48, Horizontal Asymptote. Taking the equation of § 47,
we shall now consider the graph as it extends indefinitely
to the right; that is, as = increases without limit.

As z increases without limit the numerator 22 —10 and
the denominator  —4 both increase without limit and the
value of y appears uncertain ; but if we divide both terms
by «, we have

910
y= —,
1-2

r

from which it is evident that as = increases without limit
10/z— 0, and 4/z— 0, and lience y — 2.

Similarly, when #— — oo, that is, when =z decreases
without limit, y — 2.

Therefore the graph approaches, both to the right and
to the left, the line y =2 as an asymptote.

49. Value of a Fraction of the Form 2. It is often
necessary to consider the value of a fraction the terms of
which are both infinite. Such a case was found in § 48, and
most cases may be treated in the manner there shown.

For example, the fraction (8 22— 2)/(222— z +1) takes
the form oo/00 when 2 —-o0. But we may divide both terms
of the fraction by the highest power of = in either term,
and (32%— 2)/(22%— z +1) then becomes

2
S
1 1
2otz

This fraction evidently approaches 2 as a limit as =

increases without limit.
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50. Finding the Vertical and Horizontal Asymptotes. In
order to find the vertical and horizontal asymptotes of a
curve, we first solve the equation for y. If the result is
a rational fraction in lowest terms, as in § 47, we see that

To every factor x — a of the denominator there corresponds
the vertical asymptote x = a of the graph.

We also see from § 48 that

To every walue o which y approaches as a limit as =z
tnereases or” decreases without imit there corresponds the
horizontal asymptote y = a' of the graph.

For example, in the equation

, _422-122—-16
y= ?—22—-15

the factors of the denominator are z + 3 and x — 5, and hence the
lines # =— 3 and z = 5 are vertical asymptotes; and as x —>w or
as £ — — o we see that y — 4, from which it follows that the line
y =4 is a horizontal asymptote.

Certain other types of equation to which these methods do not
‘apply, such as y = tanz, y = log z, and y = a%, will be considered in
Chapter XIT on Higher Plane Curves.

51. Examination of an Equation. We are now prepared
to summarize the steps to be taken in the examination of
an equation under the following important heads:

1. Intercepts.

2. Symmetry with respect to points or lines.

3. Intervals of values of one variable for which the
other is real or imaginary.

4. Asymptotes.

This examination is best illustrated by taking two
typical equations, as in § 52.

Other methods of examining equations are given in the calculus.
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52. Illustrative Examples. 1. Examine the equation
_42—122-16
T 22— 2z2—-15

1. When y=0,then 42— 122—16 =0, and z =— 1 or 4, the two
z intercepts. When z = 0, then y =1.1 —, the y intercept.

2. The graph is not symmetric with respect to OX, OY, or O.

3. As to intervals, y is real for all real values of x.

4. As to asymptotes, the vertical ones are z =— 8 and z = 5; the
horizontal one is y = 4, as was found in § 50.

» and draw the graph.

We may now locate certain points suggested by the above discus-
sion and draw the graph.

Convenient values for z are — 8, — 3.5, — 2.5, 2, 4.5, 5.5, and 10.
The two values of z near — 3 and the two near 5 enable us to
notice the graph’s approach to the vertical asymptotes, while the

values — 8 and 10 suggest the approach to the horizontal asymptote.
4(z4+D)(x—49)

In computing the values of 7, notice that y =
puting Y Y=+ 8)(z —b)

Then, for example, when z =— 2.5, we have
(=P __ 52
=—20 _2/-_"—"=-104.
3(—7P) 5
' . . 4(z+D(z—49

2. Examine the equation y*=

(z4+38)(@—5)

1. The second member being the same as in Ex. 1, the z intercepts
are — 1 and 4. The y intercepts are easily found to be + 1.03.

2. The graph is symmetric with respect to OX.

3. As to intervals, when the sign of the fraction, which depends
upon four factors, is negative, then y* is negative and hence y is
imaginary. Let us follow z through the successive intervals deter-
mined by — 38, —1, 4, 5, thus: .

When — o < z < — 3, all four factors are negative ; hence y is real.

When —8<z<—1, the factors z+1, x—4, and z— 5 are
negative, but z 4+ 3 is positive; hence y is imaginary.

The student should continue the discussion of intervals.

4. The vertical asymptotes are z = — 3, x = 5; and since y2—-4
when £ —>w or — o, the horizontal asymptotes are y =2, y =— 2.

We may now locate certain points and draw the graph.
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53. Limitations of the Method. The method of {finding
intervals and asymptotes described in this chapter is evi-
dently limited to equations whose terms are positive inte-
gral powers of z and y, products of such powers, and
constants. Moreover, the requirement that the equation
be solved for one of the variables z and y in terms of
the other is a simple one when the equation is of the
first or second degree with respect to either of these
variables, but it becomes difficult or impossible of ful-
fillment in the case of most equations of higher degrees.

Exercise 15. Graphs of Equations

Examine the following equations and draw the graphs :

1. zy = 6. 10. 2%y +y =10.
2. zy =— 6. 11. @+ )@+ 4)=122~
3. 3zy =6y + . 12. *(54+2)=—2"
4. 3wy=9y + 2x — 8. 13. B +z)=a*(3 — ).
5. 2y +16 = ay. 4. (@ —4)—2*(x—8)=0.
6. oy — 2y = x* — 16. 15. *(y + 8)+ »* = 0.
7.3 —ay —4dax+y="T. 16. Py ="+~

xyt . 9(@*—2x—8)
8. _4—:1:—4' 17.g/————-——()[;.1__696_{_5

9 1 x—4

YU=ga T Erd W UVTipor—a

19. 4 and B are two centers of magnetic attraction 10 units
apart, and P is any point of the line 4B. P is attracted by the
center 4 with a force F, equal to 12/4P7
and by the center B with a force F, equal
to 18/BP% Letting x=AP, express in
terms of z the sum s of the two forces, and draw a graph
showing the variation of s for all values cf .

10
A B P
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54. Degenerate Equation. It occasionally happens that
when all the terms of an equation are transposed to the
left member that member is factorable. In this case the
equation is called a degenerate equation.

It is evident that the product of two or more factors
can be 0 only if one or more of the factors are 0, and
that any pair of values of z and y that makes one of the
factors 0 makes the product 0 and satisfies the equa-
tion. It is therefore evident that all points (z, y) whose
coordinates satisfy such an equation are precisely all the
points whose coordinates make one or more factors 0. In
other words,

The graph of a degenerate equation consists of the graphs
of the several equations obtained by placing equal to O the
several factors that contain either x or y, or both x and y.

For example, the graph of the equation 22 —2y -8y +38z =0,
which may be written (z — y) (z + 3) = 0, consists of the two lines
r—y=0andz+3=0.

Exercise 16. Degenerate Equations

Draw the graphs of the following equations :

1. (@—y)(y—3)=0. 5. ¥+ 9 =12y =0.

2. 2* = ay. 6. (x— 4=y + 2>~

3. B4 ay=0. 7. (@ —y)P=09.
y@+y) _22°+3ay

4. 36 =. 8. 224+3y= 2oty

9. If we divide both members of the cubic equation

(x —y)(x*— 6) = (x — y)x by & —y, we have the equation

2> — 6 = x. How do the graphs of the two equations differ ?

10. Show that the graph of the equation xy = 0 consists of
the x axis and the y axis.

11. Draw the graph of the equation (2? + 3%)* — 9 &? = 92
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55. Intersections of Graphs. The complete solution of
two simultaneous equations in x and y gives all pairs of
values of the unknowns that satisfy both equations. More-
over, every pair of values of 2 and y that satisfies both
equations locates a point of the graph of each equation.
Hence we have the following rule:

To find the points of intersection of the graphs of two
equations, consider the equations as simultaneous and solve
Jor z and y.

If any one of the pairs of values of 2 and y has either z or y
imaginary, there is no corresponding real point of intersection. In
such a case, however, it is often convenient to speak of (z, y) as an
imaginary point of intersection.

Exercise 17. Intersections of Graphs

Draw the graphs for each of the following pairs of equa-
tions and find their points of intersection :

1. 22 —y=28 4. =122
:c+J—7 29+x=2

2.3z —2y=4 5. =4z
20+5y=9 =%y

3. 2*+yP=25 6. 2+ > =16
x+y="T P4y —4x=12

7. By finding the pomts of intersection, show that the line
through (0, 5) and (3, 9) is tangent to the circle a® + y* = 9.

Consider the following pairs of eguatzons with respect to
the tangency of their graphs:

4+ yt=41 2y +x—y=38

10. Find the points of intersection of the circles «* 4+ y* =16
and 2+ — 22 — 2y =14.
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56. Variable and Constant. A quantity which is regarded
as changing in value is called a variable. A quantity
which is regarded as fixed in value is called a constant.

Frequently a symbol such as «, used to represent a con-
stant, is free to represent any constant whatever, in which
case it is called an arbitrary constant.

For example, the equation (z — a)? 4 (y — 0)® = r? represents a
circle (§ 36) with any center (a, b)) and any radius », and so we speak
of @, b, and r-as arbitrary constants and of z and y as variables.

57. Function. The student’s work has already shown
him that mathematics, pure and applied, is often concerned
with two or more quantities which are mutually dependent
upon each other according to some definite law.

For example, since 4 = 7r? the area of a circle depends upon the
radius; and,conversely, the radius may be said to depend upon the area.

Since the strength of a steel cable is given by the equation .S = &%,
where k is a constant, we see that the strength of a steel cable of
given quality depends upon the diameter of the cable.

Since the number of beats per second of a pendulum / meters long
is given approximately by the equation n =1/13, we see that the
number of beats per second depends upon the length of the pendulum.

Since the distance through which a body falls from rest in ¢ seconds
is given by the equation s = } g%, where g is a constant, we see that
the distance traversed depends upon the number of seconds of fall.

In each of these cases, when one of the variables is given, the
other is easily determined.

If the first of two quantities depends upon the second in
such a way as to be determined when the second is given,
the first quantity is called a function of the second.

For example, z2 v m, and a*logz are functions of z. In the
case of A = m% A is a function of », and r is a function of A.

Every equation in z and y defines a functional relation.

For example, the equation 4 2% — 3* = 25 defines y as a function
of z, for y = V4 2% — 25. It also defines z as a function of .
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58. Algebraic Function. A function obtained by apply-
ing to 2 one or more of the algebraic operations (addition,
subtraction, multiplication, division, and the extraction of
roots), a limited number of times, is called an alyebraic

Junction of z.
x

o, 1 s .
For example, z°, ik and 8 2% + - —V1— z are algebraic func-
z

tions of z.

59. Transcendent Function. If a function of 2 is not
algebraic, it is called a transcendent function of .

Thus, log z and sin z are transcendent functions of 2.

60. Important Functions. Although mathematics includes
the study of various functions, there are certain ones, such
as y = az”, which are of special importance. IFor example,
in § 57 we considered three equations, 4 = 7% S = kd? and
s =L gt% all of which were of the same form, namely:

one variable = constant x (another variable)?
or y = ca?
The most important functions which we shall study are
algebraic functions of the first and second degrees.

61. Functional Relations without Equations. In making
an experiment with a cooling thermometer the temper-
ature ¢ at the end of m minutes was found to be as follows:

m=| 0 1 2 3 4 516718109

t=| 98 |65.6] 44 [29.5|19.4|18.2(8.9 |59 4 |21

We have no equation connecting t and m; yet ¢ is a
function of m, the values of ¢ being found for given
values of m by observation.

Such a functional relation may be represented by a
graph in the usual manner.
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62. Functional Notation. The symbol f(2) is used to
denote a function of 2. It is read “f of 2” and should
not be taken to mean the product of £ and . It is often
convenient to use other letters than f. Thus we may
have ¢ (), read “phi of 2,” F(z), R(z), and so on.

In a given function such as f(z) we write f(a) to
mean the result of substituting « for z in the function.

For example, if f(z) =a*— a—lc, then f(1)=1-1=0, f(3) = 83.

Exercise 18. Functions and Graphs

L If () = (3 — ), find £(1), £(2), £(3), and f(4).

2. If £(y) =1/(1 — ), find (= 1), £ (0), £(}), and f(5).

3. Draw the graph showing the relation between ¢ and m
as given in the table in § 61, page 55. .

4. From the following table draw two graphs, one showing
the variation in per cents of population in cities of more than
2500 inhabitants, and the other that in rural communities :

Census | 1880 | 1390 | 1900 | 1910 | 1920

Cities 295 | 36.1 | 40.5 | 46.3 | 52.3

Rural 70.5 | 63.9 | 59.5 | 53.7 | 47.7

5. From the following table draw a graph showing the varia-
tion of the time (¢) of sunset corresponding to the day (d) of
the year at a certain place, 4.49 meaning 4 hr. 49 min. p.m.:

d=]1 |31 |61 |91 |121|151|181|211|241|271{301(331|361

t = {4.49]5.20|5.53(6.2316.5217.18|7.29]7.13(6.36|5.48|5.05|4.40|4.45

Can points on the graph be found approximately for d =10? for
d=104? What kind of number must d be ? Should the graph be a
continuous curve ? How many points are there on the entire graph ?
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Exercise 19. Review

Show that each of the following equations represents two
straight lines and draw the graph of each equation :

1. 22— 9*=0. 5. *+b5ay +6¢y*=0.
2. 422 — 942 = 0. 6. ¥ —xy —1222=0.
3. 222 —9¢4*=0. 7. 83282 —2xy —y*=0.

4. 2 — 62y +8¢y*= 0. 8. 62> —13xy + 6¢y*= 0.

9. Two vertices of a triangle are A(— 4, 0) and B (4, 0).
The third vertex P moves so that AP 4+ BP* = 64. Find the
equation of the locus of P and draw the locus.

10. The point > moves so that the slope of .17 is half that
of BP, where 4 is (0, 0) and B is (0, — 6). Find the equation
of the locus of P and draw the locus.

11. Find the equation of the locus of a point which moves
so that its distance from the y axis is equal to the square of
its distance from (%, 0).

12. Find the equation of the locus of a point P which moves
so that the sum of the squares of its distances from (— 3, 0),
(3, 0), and (0, 6) is equal to 93. Draw the locus.

13. Find the equation of the locus of a point P which moves
so that the angles APO and OPB are equal, where O is (0, 0),
A is (— 4, 0), and B is (2, 0). Draw the locus.

If the angles are ¢ and ¢, then tan ¢ = tan ¢’.
14. Solve Ex. 13 when 4 is (0, — 4) and B is (0, 2).

15. Given 4 (— 4, 0) and B(4, 0), find the equation of the
. locus of a point P which moves so that the angle PAB is equal
to twice the angle PBA. Draw the locus.

16. The equation of the straight line which bisects the
angles between the axes in the first and third quadrants is
x =y, and the equation of the line which bisects the angles
between the axes in the other two quadrants is x = — .
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17. The fixed points 4 and B are on OX and OY respec-
tively, and O = OB =2 a. A point P moves so that the angles
OP4 and BPO are equal. Show that the equation of the locus
of Pis (x — y) (&*+ y* — 2 ax — 2ay) = 0, and draw the locus.

18. The x intercept of the line y =6 — z is equal to the
7 intercept.

19. If the x intercept of the line y = ax — 3 is half the
y intercept, find the value of @ and draw the line.

20. If the graph of the equation z* — xy + ay® = 23 passes
through the point (3, — 2), find the value of a.

21. If the graph of the equation y = ax® + bx passes through
the points (— 1, — 3) and (2, 18), find the values of @ and b.

22. Show that the graph of the equation y =log, x
approaches, in the negative direction, the _7/ axis as an asymp-
tote, and draw the graph.

A table of logarithms (page 284) may be used for plotting points close
together on this graph. But if the student will recall the well-known
logarithms of the numbers 1, 10, 100, - .., and also of the numbers 0.1,

0.01, 0.001, . . ., he will see the character of the graph clearly after plotting
a few of the corresponding points.

23. Show that the graph of the equation y = 2% approaches
the 2 axis as an asymptote, and draw the graph.

24. Draw the graph of the equation & = log, ¥ and compare
it with the graph in Ex. 22,

25. Draw the graph of the equation 2 = 27 and compare it
with the graph in Ex. 23.

26. Draw czueful]y in one figure the graphs of the equations
y==, y=2a% y=a and y = «*, locating the points having
z equal to 0, 0.3, 06, £, 1, 2, 3. Extend each graph by
considering its symmetry.

A large unit of measurement, say 1in., should be employed.
27. Consider Ex.26 for the equations y=z", y=a"% y=2"3
28. Draw the graphs of the equations y* = «* and »* = 2®



CHAPTER IV

THE STRAIGHT LINE
PROBLEM. THE SLOPE EQUATION

63. To find the equation of the straight line when the slope
and the y intercept are given.

Solution. Let m be the given slope, b the given y inter-
cept, and ! the line determined by m and b.

Since b is the y intercept, I cuts OY in @ (0, b).

Take P (z, y) as any point on /. Then we have

slope of QP =slope of I;

- y—b_ .
that is, x—O_m’ §21
whence y=mx+b.

This equation is called the slope equation of the line.

When m = 0, then y = b, and the line is parallel to the z axis.

When & = 0, then y = ma, and the line passes through the origin.

When m = b =0, then y =0, and the line coincides with the z axis.

Since the y intercept is given, the line cuts the y axis, and the
equation y = mz + b cannot represent a line which is perpendicular
to the z axis.

AG 59
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THEOREM. EQUATION OF ANY STRAIGHT LINE
64. The equation of any straight line of the plane is of the
first degree in x and y.

Proof. Since every line of the plane with the exception
of lines parallel to the y axis has its slope m and its

y intercept b, its equation is y = maz + b. § 63
Every line parallel to the y axis has for its equation
z=a, where a is the distance from the y axis. §35

Hence in every case the equation is of the first degree.

When we speak of a line of the plane we refer to the plane deter-
mined by the axes of x and y. We shall in general use the word
line to mean a straight line where no ambiguity can result.

Exercise 20. The Slope Equation

Given the following conditions relating to a straight line,
draw the line and find its equation :
1. The slope is 5 and the ¥ intercept is 7.
Each of the two intercepts is 10.
The slope is — 4 and the point (0, 6) is on the line.
. The line contains (6, — 3) and the y intercept is 8.
. The line passes through the points (4, 2) and (0, — 2).

S o b oW

The x intercept is — 5 and the y intercept is 3.
7. The line passes through the points (2, 0) and (2, 6).

Write each of the following equations in the slope form,
draw each line, and find the slope and the two intercepts :
8. 3y =6x+410. 10. 3y — 22 —12=0.
9. x+y=6. V11, 12 - 2y =92
12. The lines 3« +4y = 24 and 8 y + 6 = 45 are parallel.

13. The lines 2 — 5y = 20 and 5z + 2y =— 8 intersect
at right angles on the ¥ axis.
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THEOREM. EQUATION OF THE FIRST DEGREE

65. Every equation of the first degree in x and y represents
a straight line.

Proof. Taking 4, B, and C as arbitrary constants,
Az +By+C=0
represents any equation of the first degree in z and g.

Tt is evident that A4, B, or C, or both 4 and C, or both B and C,
may be 0; but both 4 and B cannot be 0, for ' would then be 0
and we should have only the identity 0 = 0.

If B =0, the equation becomes Az+ C'=0, or z=— C/4,
the equation of a line parallel to the y axis.
If B+ 0, we may divide by B and write the equation in

the form A C
Yy=—5r— 3
B B
which is the equation of a line with slope m =— 4/B and
y intercept b =—C/B. § 63

Therefore in every case the equation Az +By+C =0
represents a straight line.

66. COROLLARY 1. The slope of the line is — A/B.

67. COROLLARY 2. The line passes through the origin
when and only when the equation has no constant term.

For Az 4 By =0 is satisfied by the coordinates of the origin (0, 0);
but Az + By + C'= 0 is not satisfied by x =0, y = 0 unless C = 0.

68. Determining a Line. Although a line is determined
by its slope and its y intercept, it is also determined by
other conditions, as by two points, by its slope and one
point, and so on. A few of the resulting equations of a
line are used so frequently as to be regarded as funda-
mental. The slope equation y =mz + b is a fundamental
equation, and we shall now consider others.
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PROBLEM. THE POINT-SLOPE EQUATION
69. 7o find the equation of the straight line through a given
point and having a given slope.

P(z,9) Y

Solution. .Let R (2, y;) be the given point, m the given
slope, and [ the line determined by them.
Take P (=, y) as any point on /. Then we have

slope of PR =slope of 7;

that is, =N _ gy, g§21
X — r
whence y—y,=m(x—x).

This equation is called the point-slope equation of the line.

Exercise 21. The Slope and Point-Slope Equations

Find the intercepts and slope of each of the following lines,
and by the aid of the intercepts draw each line :

1. 6z + 5y = 30. 4. 29y +Tx=—09.
2. 42 —-18=3y. 5. x —3y—8=0.
3. 3x =4y —12. 6. 2y —44+5x=0.

Draw each of the following lines and find the slope :
7. y=38=x. 9. 3x="Ty. N1 424+ 3y=0.
8. z=2y. 10. 2y = 5. 122 24+ 2y=0.
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Find the equations of the lines subject to the following con-
ditions, and draw each line :

13. Through (4, — 2) and having the slope — 3.

14. Through (—1, 2) and parallel to the line 3z —y =T.

15. Through (4, 1) and parallel to the line through the
points (5, 2) and (4, 4).

16. Having the slope 2 and the x intercept — 5.

17. Having the slope m and the x intercept a.

18. Through (3, — 2) and having the intercepts equal.

Determine the value of k, given that :

19. The line 22 — ky = 9 passes through (— 3, 1).

20. The slope of the line 24z —Ty + 4 =01is 1.

21. The line 3z + %y = 3 has equal intercepts.

22. The line ¥ — 2 = k(= — 4).has equal intercepts.

23. The line through the point (4, —1) with slope % has the
¥ intercept 10.

24. Draw the line 2& — ky = 9 for the values £ =1, 2, ,
0, —1, — 3, and — 6.

25. Find the equation of the line through (4, — 2) which
makes with the axes a triangle of area 2 square units.

26. Temperatures on the Fahrenheit and centigrade scales
are connected by the linear relation F=aC 4 6. Knowing
that water freezes at 32°F. or 0°C., and boils at 212°F. or
100° C., find the values of ¢ and & and draw the graph.

Should this graph extend indefinitely in both directions ?

27. A certain spiral spring is stretched to the lengths 3.6 in.
and 4.4 in. by weights of 81b. and 12 1b. respectively. Assum-
ing that varying weights w and the corresponding lengths  are
connected by a linear relation, find that relation and draw the
graph. What is the length of the unstretched spring ?

Should this graph extend indefinitely in both directions ?
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PROBLEM. THE TWO0-POINT EQUATION

70. To find the equation of the straight line through two
given points.

B(xy,92)

Solution. Let K (2, y;) and E(z, y,) be the given
points, [ the given line, and P (z, ) any point on I. Then
the equation of { is found from the usual condition that

slope of PR =slope of RE;

that is, y=u _%h—4h, §21
xX—x, x,—x

This equation is called the two-point equation of the line and is

often written y — y, = B (x — zy).
T4

71. Determinant Form of the Two-Point Equation. Stu-
dents who are familiar with the determinant notation should
notice that the two-point equation may conveniently be
written in the following form:

z y 1
z, y, 1|=0.
zy Yy 1

This equation, when the determinant is expanded, is
identical with the equation of § 70 when cleared of fractions,
as the student may easily verify.

Without expanding the determinant the student may
observe the effect of substituting 2, for #, and y, for y.
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72. Parallel Lines. Since two lines are parallel if they
have the same slope, the equations y=mz+band y=m'z+¥'
represent parallel lines when m =m/'.

The equations dz+By+ C=0 and A2+ By +C'=0
represent parallel lines if

A A' A S . A D
—§=—§; tha,tls, le—_—Ea Orlfz=ﬁ- §66
For example, the lines 83z —2y =7 and 6z —4y—389 =0 are
arallel, since 322
L
73. Perpendicular Lines. Since two lines with slopes m
and m' are perpendicular to each other when m'=—1/m

(§ 24), two such lines are represented by the equations
y=mz+b and y=—;1;x+b’.

The equations Adz+By+ C=0 and d'z+ By+C'=0
represent two lines perpendicular to each other if
/
AL atis it A B
B _—4/B B 4
This condition is often written 44'+ BB'= 0.
If Az + By + C =0 is the equation of a certain line, then
the line Ax + By + K =0 s parallel to the given line and the
line Bx — Ay 4+ H= 0 s perpendicular to the given line.

74. Lines at any Angle. The angle # from one line,
y=mz+ b, to another, y=m'z+ ', may be found from the

relation
e O ,m/_ m

tan 6 = -

§ 25

In the case of the pair of lines 4z+By+C=0 and
A'z+ B'y+C'=0 we have m=—4/B and m'=—4'/B';
A'B— AP

whence tan 0 = YEY A
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Exercise 22. Two-Point Equation, Parallels, Perpendiculars
1. Find the equation of the line through (4, — 3) and
parallel to the line 5x + 3y = 8.

The slope of the given line is — %, and hence § 69 applies.

2. Find the equation of the line through (4, — 3) and
perpendicular to the line 62 — 4y =13.
The slope of the given line is evidently %, and hence the slope of the
required line is — £. Then apply § 69.

Find the equations of the lines through the following points :
3. (4, 6) and (3, —1). 5. (7, — 2) and (0, 0).
4. (5,2) and (— 4, — 3). 6. (—6,1) and (2, 0).
7. (—1, 3)and the intersection of £ —y =3 withx 42y =09,
8. (2, 4) and the intersection of 2x + y = 8 with the x axis.
9. The common points of the curves 3* = x and 2* = .

10. Find the equation of the line through the point (4, — 2)
and parallel to 4x — y = 2.

11. Find the equation of the line through the point (2, 2)
and parallel to the line through (—1, 2) and (3, — 2).

12. Find the equation of the line through the point (— 3, 0)
and perpendicular to Tx — 3y =1.

13. Find the equation of the line through the point (—1, — 3)
and perpendicular to the line of Ex. 4.

Draw the triangle whose vertices are A(5, 8), B(7, —1),
C(—1, 6), and find the equations of the following lines :

14. The three sides of the triangle.
15. The three medians of the triangle.
16. The three altitudes of the triangle.

17. The three perpendicular bisectors of the sides.
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18. Given that the line Az + By + 10 = 0 is parallel to the
line 3z 4+ y =7 and meets the line x + y =7 on the  axis,
find the values of 4 and B.

Through each of the vertices A (6, 3), B(7, —1), C(—1,5)
of the triangle ABC draw a line parallel to the opposite side,
and for the triangle thus formed consider the following :

19. The equation of each of the three sides.

20. The coordinates of each of the vertices.

21. The mid points of the sides are 4, B, and C.

22. The three medians are concurrent.

Show that the intersection of any two medians is on the third.

23. The three altitudes are concurrent.

24. The perpendicular bisectors of the sides are concurrent.

25. Draw the line from the origin to 4 (7, — 3) and find
the equation of the line perpendicular to O at ..

26. Draw the circle 2 + »* = 34, show that it passes through

A4 (5, 3), and find the equation of the tangent at 4.

27, Draw the circle * + y* — 2z + 4y — 5 = 0 and find the
equation of the tangent at (2, 1).

28. Given that the line kxz — y = 4 is perpendicular to the

- line kx + 9y = 11, find the value of %.

29. Locate 4 (12, 5), on 04 lay off OB equal to-10, and find
the equation of the line perpendicular to 0.4 at B.

30. Find the distance from the line 12z 4+ 5y — 26 = 0 to
the origin. .

. 31. Given that three vertices of a rectangle are (2, — 1),
(7, 11), and (— b, 16), find the equations of the diagonals.
32. Find the point @ such that P(3, 5) and Q are symmetric

with respect to the line y + 22 = 6.

Denote @ by (a, b), and find a and b from the two conditions that PQ
is perpendicular to the line and the mid point of P@Q is on the line.
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PROBLEM. THE NORMAL EQUATION

75. To find the equation of the straight line when the
length of the perpendicular from the origin to the line and
the angle from the x axis to this perpendicular are given.

l Y
\ .
4

B X

o A\

Solution. Let ! be the given line and OR the perpen-
dicular from O to I. Denote the angle XOR by 8 and the
length of OR by p.

Since the slope of OR is tanp, then the slope of 7 is
—1/tan B, or — cosB/sin B. §78

And since in the triangle OA4R, cosB = p/04, it follows
that 04 = p/cos B, and hence 4 is the point (p/cosf, 0).

Therefore the required equation of 7 is

o__cosB/ — p >,
y—0= sin B(x cosf3 ' 369
or xcos B+ ysinf—p=0.

This equation is called the normal equation of the line.
Since p is positive, the constant term — p in the normal equation
is always negative. The angle 8 may have any value from 0° to 360°.

76. Line through the Origin. If [ passes through O,
p =0 and the equation of / is zcosB+ ysinB=0.

In this equation we shall always take 8 < 180° so that sinf3, the
coefficient of y, is always positive.
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PROBLEM. THE INTERCEPT EQUATION

77, To find the equation of the line in terms of the intercepts.

Solution. Denoting the 2 intercept of the given line /
by @ and the y intercept by &, it is evident that / cuts

the z axis at 4(a, 0) and the y axis at B(0, b).
student may now show that the equation of [ is

x y
-4+ =1
a+b

This equation is called the intercept equation of the line.

The

78. Changing the Form of the Equation. The equation
of the straight line has now appeared in six different forms:

1. General de+By+C=0
2. Slope y=mzr+b
3. Point-slope y—y=m(x—x)
o, . YY1
4. Two-point Y—% P (@—2)
5. Normal zcosB+ysinB—p=0
6. 1 Ty¥ 1
ntercept o + 5

§ 65
§ 63
§ 69

§ 70
§ 75
§ 77

Each of these forms may be reduced to the general form,
and the _general form may be written in each of the other

forms, as is illustrated in the following examples:
1. Change the slope form to the general form.
Transposing, we have the general form —mz + y — b = 0.
2. Change the general form to the slope form.
Dividing by B and transposing, we have the result.

3. Change the general form to the intercept form.

Transpose C, divide each term by — C, and divide both terms of

each fraction by the coefficient of the numerator.
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79. Changing the General Form to the Normal Form. The
change from the general form to the normal form is not so
simple as the changes in the three examples of § 78.

In the normal form, zcos 8+ ysin 8 —p =0, it is evi-
dent that neither cos 8 nor sin B can exceed 1, and hence
that each is, in general, a proper fraction. Therefore, in
order to change Az + By+4 C=0 to the normal form we
divide by some number %, the result being

A B C
TR tE=

In order to determine % we first note that A4/% is to be
cosB, and B/k is to be sin 8. Then since cos?B+4-sin2B=1,
k must be so chosen that

A\? [ B\?
({3

Therefore k=+VA?+ B
and the sign of & must be such that C/k is negative (§ 75)
or, when C'=0, so that B/k is positive (§ 76).

Hence, to change Ax+By+ C=0 to the normal jorm
divide by vV A2+ B* preceded by the sign opposite to that of
C, or, when C=0, by the same sign as that of B.

The result is

A ot B y+ ¢ ]
V2L B VAT VLB
from which it appeafs that
A B o C
VAR B ~Verr LT VEL B

For example, to change 4 z + 8 y + 15 = 0 to the normal form we

divide by —+/42 4 82, or — 5. We then have — tz—3y—38=0,in

which cos 3=— 4%, sin8=— %, and p =3. It is therefore evident
that B is an angle in the third quadrant.

cos B= y sinfB=
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Exercise 23. The Normal Equation X

1. Find the distance from (0, 0) to the line 4z — 4y = 9.
Since only the length of p is required, we may divide at once by
/16 + 16, or 4 V2, without considering the sign.

The normal equation is used chiefly in problems involving the distance
of a line from the origin.

2. Find the equation of the line which is 7 units from
the origin and has the slope 3.

Since m = 8, the equation is ¥y = 8z + b, which becomes, in normal

form, (— 38z + y —b)/(£V10) =0, from which p =b/(+ V10)=7T;

whence b= £ 7V10. Hence two lines satisfy the given condition;
namely, y =3z 4+ 7vV10 and y = 32 — 7V10.

Write the following equations in slope, intercept, and nor-
mal forms and find the values of m, b, a, p, and B:

3. 6o — 8y = 35. 6. y=6(x—3).
4. 22=3y — 0. N7.3y—6x2+410=0.
5. 2y — Bz = 20. 8. 2y —3x=0.

Find the distance from (0, 0) to each of the following lines :

9. 5y =122 — 91. 12. y = mx + .

10. y =Tz — 3. 13. y — 2=m(x — b).
Ty y—k _
11.2+5—1. 14'm—l_m'

Determine k so that the distances from the origin to the
Jollowing lines shall be as stated :

15, y=kax 4+ 9; p=0. 16. y+1=rk(@x—3); p=2.

Find the equations of the lines sulject to these conditions :
17. Slope — 3; 10 units from the origin.

18. Through (2, 5); 1 unit from the origin.

19. Midway between O and the line 3z — 4y — 30 = 0.
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80. Two Essential Constants. Although the equation
Az + By + C =0, which represents any line of the plane,
has three arbitrary constant coefficients, we may divide
by any one of these coefficients and reduce the number to
two. For example, if we divide by C, the equation becomes

4 B
from which it appears that only two arbitrary constants,
the coefficients of z and y in this form of the equation,
are essential to determine the equation.
We therefore say that the equation of the straight line
involves two essential constants.

81. Finding the Equation of a Line. To find the equation
of the line determined by two given conditions we choose
one of the six fundamental forms (§ 78) to represent the
line. The problem is to express the two given conditions
in terms of the two required constants in the chosen form
and thus to find these constants.

For example, find the equation of a line, given that its
y intercept is twice its x intercept and that its distance
from the origin is 12 units.

Suppose that the form y =mx + b is chosen. Then by § 45 the
y intercept is b and the z intercept is — b/m. Therefore the first
condition is that b =—2b/m.

Since by § 79 the distance from O to y =mz + b is /(£ V1 + m?),
the second condition is that b/(£V1+ m2) =12.

Solving the equations that represent these conditions, we have

m=— 2,
and b=+12V5.

The required equation is, therefore,
oy =—2z+12 V5.

That is, there are two lines, as is evident from the conditions.
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82. System of Straight Lines. All lines which satisfy
a single condition are said to form a system of lines or a
Jamily of lines.

Thus, y =6z + b represents the system of lines with slope 6.
These lines are evidently parallel, and any particular one is deter-
mined when the arbitrary constant 4 is known.

Similarly, y — 6 = m (z — 8) represents the system of lines through
(3, 6). In this case we have what is known as a flat pencil of lines,
and any one of them is determined when m is known.

Any equation of the line which involves only a single
arbitrary constant, such as kr— 2y + 5 =0, represents a
system of lines, each line of the system corresponding to
some particular value of k. If a second condition is given,
it is evident that % is thereby determined.

X

Exercise 24. Equations of Lines

Gliven y =mzx+ b, the equation of the line 1, determine m
and b under the following conditions :

1. Line / is 4 units from 0, and the x intercept is — 8.

2. Line 7 has equal intercepts and passes through (5, — 3).

N 3. Line 7 passes through 0, and the angle from 7 to the line
4o —Ty—28=0is 45°

4. Line [ passes through 4 (10, 2) and cuts the z axis in C,
AC being equal to 18.

5. Line [ passes through 4 (4, 6) and cuts the axes in B and
C in such way that 4 is the mid point of BC.
Given E+% =1, the equation of the line I, determine a
a
and b under the following conditions :

6. Line [ is 4 units from O, and the =z intercept is — 8.

)

7. Line / has equal intercepts and passes through (5, — ).
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GHiven x cos B+ y sin B — p =0, the equation of the line I,
determine the constants under the following conditions :
8. Line / passes through (— 4, 12), and g8 = 45°.
9. Line / passes through (14, — 2), and p = 10.
10. Line 7 touches the circle 2* 4 »* =16, and tan 8 = 4.

Given y — 4 =m(x+6), the equation of a line I passing
through (— G, 4), determine m under the following conditions :

11. Line [ is 2 units from the origin.

12. The intercepts of the line / are numerically equal, but
have unlike signs.

13. The x intercept of the line Zis — 9.

Find the equations of the following lines :

14. The line passing thr ouoh 0 and meeting the line z+y =17
at the point P such that 0P =

15. The line passmo through the point (1, 7) a,nd tangent to
the circle a* 4 72 = 25.

16. The line cutting the lines x + 2y =10and 22 — y =10
in the points A and B such that the origin bisects A B.

17. The line having the slope 6 and cutting the axes at 4
and B so that AB = \/""

18. Find the distance from the line 4z + 3y =15 to the
point (6, 9).

First find the equation of the line through the point (6, 9) parallel to
the given line, and then find the distance between these lines.

19. Find the distance from the line 5x + 12 y = 60 to the
point P(8, 6) by the following method : Draw the perpendicular
PK to the line; draw the ordinate /P of P, and denote by Q
its intersection with the line; then find KP from the right
triangle PN Q, in which the angle PAQ is equal to the angle 8
for the line 5 + 12 y = 60. '
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PROBLEM. DISTANCE FROM A LINE TO A POINT

83. Given the equation of a line and the coordinates of
a point, to find the distance from the line to the point.

Solution. Let 7 be the given line and let its equation in
the normal form be zcos 8+ ysin B —p =0, in which B
and p are known; and let P;(z;, y;) be the given point.

We are to compute d, the distance KP;, from [ to P.

Draw ON perpendicular to . Then ON=p. Draw P 4
perpendicular to 0.\, and P, Q and 4R perpendicular to ON.

Then d=NQ=0Q —ON

To find OR and RQ, and thus to find d, we first see that
OR =, sin R40
=z, cos .
Producing RK to meet AR at S, we have SE=RQ,
AE =y, and both 4R and 4F, perpendicular to the sides

of B. Therefore, whatever the shape of the figure, one of
the angles formed by 4R and AF is equal to B, and hence

RQ=y,sinB.
Therefore - OR +RQ =z, cos B+ y, sinf,
and d=x,cosf+y,sinf — p.

AG
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84. Distance from a Line to a Point. The result found
in the preceding problem (§ 83) may now be stated in the
following rule:

To find the distance from a given line to a given point
B (z, y,), write the equation of the line tn the normal form
and substitute x; for x and y, for y. The left-hand member
of the resulting equation expresses the distance required.

If, as is commonly the case, the equation is given in
the general form 4z + By + C =0, we have

_ Ax + By, +C :
+VA?+ B
where the sign of V424 B? is chosen by the rule of § 79.

d

Thus, the distance from the line 4 z—5y+10=0 to P(—6,3) is
; 4(—6)—5-34+10 29
d= =

VP i(—5p il
while the distance from the same line to P (5, 1) is’
_4-5-5-1410 25
T Vet (oay VA

One of these distances is positive, while the other is negative.

d

85. Sign of d. Only the length of d, without regard to
the sign, is usually required, although the sign is occasion-
ally essential. In the work on page 75, d denotes the
directed length KP|; that is, the distance measured from
{ towards P,. In other words, d = 0Q — ON, where ON is
always positive (§ 75). Hence d is positive when 0Q> ON,
and negative when 0Q<ON.

That is, d ¢s positive when it has the same direction as the
perpendicular from O to I, and is megative when it has the
opposite direction.

If [ passes through O, the direction of p is from O along the upper
part of the perpendicular, since 8 < 180"
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86. Distance to a Point from a Line Parallel to an Axis.
To find the distance to a given point £ (2, ;) from a line
parallel to an axis, say from the line = a, is a special case
of §83. In this case the distance
is easily seen to be

d
i K == P, (%4,
d=0Q—a=z,—a. =Px(41 yl)l
a H
Similarly, the (l.lstance frm‘n a line ¢ s @ X
parallel to the z axis, say the line y =10, 1
to the point (x;, y,) is d = y,— 0. N

Exercise 25. Distance from a Line to a Point

Find the distances from the following lines to the points
specified in each case:

1. Line 8+ 6y =553 points (10, 2), (9, 6), (4, 5), (4, —1),
(-1, 1).
2. Line 5o — 12y = 26; points (13, 0), (— 2, — 3), (0, 0).
3. Line y = ¢« — 5; points (3, 6), (6, 1), (2, 2), (—1, 3),
(— 2, — 6). ‘
4. Line y— 22 +7=0; points (—1, 1), (0, — 1), (6, — 3),
(—1, 3).
5. Line y = 5a; points (4,1), (2, — 2), (— 3,0), (—1, — 5).
6. Line y = mx + 4; points (0, 0), (1, 1), (— 4, 2), («, D).
7. Line y = mz + 0; points (4, — 1), (3, 2), (a, 1), (I, 1).
8. Line y—6=m (z+1); points (VI+u?, 64+ VI 4 m?),
1,4),(—2,1).
Find the altitudes of the triangles whose vertices are :
9. (4,1),(8,—2), (1, — 8). 10. (—5,—1),(5,%), (— 8,11).
Find the altitudes of the triangles whose sides are :
11. 8y+x+34=0zc—y=2,2x+y="T.
12. 3z =47, 62 +8y—5=0,52—12y —17=0.
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Draw the line represented by each of the following equations,
locate C, draw the circle with center C' and tangent to the line,
and find the radius and the equation of the circle :

13. 62— 8y —25=0;C(4,3). 15. 2y=5z;C(—1,4).

14, y=3z+10; C(3,— 2). 16. y = z; C(0, 6).

Find the value of m in each of the following cases :

17. The line y = 5 ma 4 8 is 5 units from the point (4, 5).

18. The line y = mx + 10 is tangent to the circle with
radius 6 and center (0, 0).

19. The line y —1=-m(2—7) is tangent to the circle
x? + y* = 25. _

20. The lines 8x 4+ 6y =11 and 8mx — 8y =7 are equi-
distant from the point (1, — 2).

Find the equations of the lines described as follows :

21. Perpendicular to the line Tax +y =05 and 4 units
from (6, 1). '

22. Passing through (— 1, — 4) and 6 units from (3, 2).

23. Parallel to the line 52 — 12y = 17 and tangent to the
circle 2* + 32 — 8 + 12y =12.

24. Find the values of m and 0 if it is given that the line
y=mx + b is 6 units from the point (4, 1) and 2 units from
the origin.

To find m and b from the resulting equations first divide the members
of one equation by those of the other.

25. Find the values of m and & if the line y = mz + 0 is
equidistant from the points (4, 1), (8, 2) and (5, — 3).

26. Find the values of m and 0 if the line y = mx + b passes
through the point (12, — 6) and the « intercept is § of the
distance from the origin.

27. Find the values of a and & if the line z/a + y/b =1
passes through (3, 4) and is 3 units from (6, 5).
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28. Find the values of « and b if the line «/a + y/b =1 has
equal intercepts and is 4 V2 units from (5, — 2).

29. Find the values of ¢ and b if the line z/a +y/b =1
is 2 units from (@, — 3) and the a intercept exceeds the
v intercept by 5.

30. Find the equation of the line which is 4 units from
the point (— 2, 6), the angle from the line to the line
Tx+y=0 being 45°

31. Find the equation of the line which is as far from (4, 1)
as from (1, 4) and is parallel to the line 5o — 2y =1.

32. Find the equation of the line which is equidistant from
(2, —2), (6, 1), and (— 3, 4).

33. Find the equation of the line the perpendicular to which
from (1, — 6) is bisected by (4, — 2).

Given the following conditions, find k and 1 :

34. Given that (%, ) is equidistant from the lines
4x=3y—12,92+ 12y =18, and 6x — 8y = 25.

In the formula of § 84 the signs + before the radical correspond to
distances on opposite sides of the line. Ilere we have d = + d’ = 4 d”,
giving four cases. The student should complete one of them.

35. Given that (&, 7) is —4 units from the line
122 — 5y =49 and — 3 units from the line 4y = 3z 4 24.

36. Given that (%, /) is equidistant from the lines 3z —y =0
and x 4+ 3y =4, and that £ =/

37. Given that (%, ) is equidistant from the lines
4x — 2y =15 and z — 2y = 5, and also equidistant from the
linesz+y=6and x =v.

38. Given that (%, 7) is on the line 2y +y + 2 =0, and is
4 units from the line 3z — 4 y = 10.

39. Find the equation of the locus of a point which moves
so that its distance from the line 6x + 2y =13 is always
twice its distance from the line y = 3z + 8.
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THEOREM. LINES THROUGH THE INTERSECTION OF LINES

87. Given Ax+ By+ Ci=0 and A+ By + Cy=0,
the equations of the lines I, and 1, respectively, then the equa-
tion Ajx + B,y + Cy+ k (Ayz + Byy + C)) = 0, where k is an
arbitrary constant, represents the system of lines ly through
the intersection of the lines I, and 1,

Proof. The equation of /; is of the first degree in z and
9, whatever may be the value of %, and hence represents a
straight line. § 65

Furthermore, /; passes through the intersection of 7, and
l,, since the pair of values which satisfies the equations of
I, and /, also satisfies the equation of Z,.

Moreover, & can be determined by the condition that I,
passes through any other point (2, y;) of the plane, for
the substitution of z; for  and of y; for y in the equation
of I; leaves k£ the only unknown quantity.

Hence the equation 4,2+ By + Ci+k(Ayx+Byy+Cy) =0
represents, for various values of %, all the lines passing
through the intersection of 7/, and Z,.

88. Illustrative Examples. 1. Find the equation of the
line through the intersection of the lines 82— 2y =4 and
y=4x—17, and through (4, — 2).

By § 87 the equation is 3z —2y—4 + k(y—42+7) =0. Since
the line passes through (4, — 2), by substituting 4 for z and — 2
for y we find that £=1%. Substituting 1%} for £ and simplifying we
have 8 z + 2 y = 8 as the required equation.

2. Find the equation of the line through the intersection
of the lines 4z+y—11=0 and 32—y =3, and perpen-
dicular to the line z+10y =T.

Indz+y—114+ kB 2z—y—38)=0, kis to be so chosen that the
slope is 10; that is, — (4 + 3 k)/(1 — k) =10; whence k= 2. Sub-
stituting 2 for k£ and simplifying, we have 102~y —17 = 0.
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THEOREM. EQUIVALENT EQUATIONS

89. The equations Av + By + C=0and A'z+B'y+C'=0
represent the same line if and only if the corresponding
coefficients are proportional.

Proof. The equations represent the same line if and
only if either can be reduced to the other by multiplying
its members by a constant, say ». Then the equations
Az+By+C=0 and rd'z+rB'y+rC' =0 are the same,
term for term, so that r4'=4, »B'=B, and rC'=C.
That iS, A B C

TH T

For example, if mx + ny + 6 =0 and 4z — 2y + 3 = 0 represent
the same line, then m/4 = n/— 2 = 6/3, and hence m = 8, n=— 4.

The above proof assumes that A4’, I’, and C” are not zero. If 4°=0,

then 4 =0, and both A and 4’ disappear from the equations.
Similar remarks apply if B”=0, or if ¢"=0.

.

Exercise 26. Lines through Intersections

Find the equation of the line through the intersection of
each of these pairs of lines and subject to the condition stated:

1. 3z —2y=13and x + y — 6 = 0, passing through (2, — 3).

2. 4x4+y—T7=0and 3z — 2y =10, parallel tox — 3y = 6.

3. 324+ 5y —13=0and x +y —1= 0, perpendicular to
Tx—5y=10.

4. Find ¢ if the line g + 2y = 3 passes through the inter-
section of the lines 4x + 3y =7 and 22 — y =10.

Since the equations 4r+3y—74+k(2xz—y—10)=0 (§87) and
qxr + 2y = 3 represent the same line, § 89 may be used to find gq.

5. Show that the lines 22 +y—5=0, 2 —y+2=0,
and « + y =4 are concurrent.

That is, show that the third line, € + y — 4 = 0, is the same as the
line2x 4+ y — 54 k(x — y + 2) = 0 for a certain value of k.
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Exercise 27. Review

Find the equation of the line through the point (— 3, 4)
and subject to the following conditions :
1. It is parallel to the line 5z + 4y = 6.
2. It is perpendicular to the line through (4,1) and (7, 3).
3. The z intercept is 10.

4. The sum of the intercepts is 12.

In Ex. 4, as in many of the other problems in this exercise, there {s
more than one line that satisfies the given conditions. The complete
algebraic treatment of such a problem should be given, thus finding all
the lines in each case.

5. The product of the intercepts is 50.

6. It is 2 units from the origin.

7. It is 5 units from the point (12, 9).

8. It is as far as possible from the point (10, 6).

9. It is equidistant from the points (2, 2) and (0, — 6).

10. It passes through the intersection of the lines x +y =8
and 4 — 3y =12.

11. The sum of the intercepts is equal to twice the excess
of the y intercept over the x intercept.

Find the equation of the line with slope —54 and subject
to the following conditions :

12. The « intercept is 6.

13. It forms with the axes a triangle whose perimeter is 24.

14. It is 6 units from the origin.

15. It is 4 units from the point (10, 2).

16. It is equidistant from the points (2, 7) and (3, — 8).

17. It is tangent to the circle #* + 32 — 4o — 8y = 5.

That is, the distance from the line to the center of the circle is equal
to the radius.
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Find the equations of the following lines :

18. The line forming with the axes an isosceles triangle
whose area is 60 square units.

19. The line through (— 1, 3) and having equal intercepts.

20. The perpendicular to the line 4x — y =7 at that point
of the line whose abscissa is 1.

21. The line which has equal intercepts and is tangent to
the circle with center (4, — 2) and radius 10.

22. The line parallel to the line 32 — y = 4 and tangent to
the circle * + y* = 9.

23. The line midway between the parallel lines 32 — y = 4
and 6z — 2y =9.

24. The line through the point Q(4, 2) and cutting the
z axis at 4 and the y axis at B so that 4Q:QB=2:3.

25. The line parallel to the parallel lines 3x + 4y =10
and 3z + 4y = 35, and dividing the distance between them
in the ratio 2:3.

26. The line through the point (0, 0) and forming with
the lines 4z — y =7 and x4+ 2y =8 an isosceles triangle.

A line through the origin is usually most conveniently represented by
the equation y = mz.

27. The lines through the point (4, 3) and tangent to the
circle #* + y*> = 4.

28. The lines tangent to the two circles z* + 3> =16 and
P+ —2x—8y=19.

29. The lines tangent to three circles whose centers are
(2, —3), (6, —1), and (— 5, 1) and whose radii are pro-
portional to 1, 2, and 3 respectively.

30. The line with slope 4 and passing as near to the circle
* 4+ > =1 as to the circle «* + »* — 122 = — 27.

31. The diagonals of a parallelogram having as two sides
42— 2y="Tand 3z + = 6 and as one vertex (12, — 3).
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32. The hypotenuse of a right triangle is B, where 4 is
the point (3, 1) and B is the point (8, 7). If the abscissa of
the vertex C of the right angle is 5, what is the ordinate of C'?

33. The hypotenuse 4B of an isosceles right triangle ABC
joins (3,1) and (0, 0). Find the coordinates of C.

34. The vertex C of the right angle of a right triangle A BC
is (2, 3), and 4 is the point (4, —1). If the hypotenuse is
parallel to the line 2 =y — 7, find the equations of the
three sides of the triangle.

35. Find the distance between the parallel lines 2x 4+ y = 10
and 2z + y =15.

36. Find the equations of the tangents from (7, 1) to the
circle z? 4 3* = 25.

For any straight line prove that :
37. b =—ma. 38. m=—cotB.  39. «*wm?=p*(1+4 m?).

Find the point which is:

40. Equidistant from the line 3y = 4 2 — 24, the x axis, and
the y axis.

41. On the x axis and 7 units from the line 42 + 3 y = 15.

42. In the second quadrant, equidistant from the axes and
2 units from the line 6z — 8y = — 33.

43. Equidistant from (4, 2) and (— 2, 3) and also equidistant
from the lines 2z +y=10and 2z +4y + 9= 0.

Given the points 4(2, 4), B(S8, 8), and C (11, 3), draw
the triangle ABC and find the following points :

44. M, the intersection of the medians.

45. L, the center of the circumscribed circle.

46. N, the intersection of the altitudes.

47. Show that the points L, A7, and N, found in the three
problems immediately preceding, are collinear. Show also that
NM:ML =2:1.
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Given the points A (0, 1), B(0, 9), and C(3, 5):

48. Find the point P such that the triangles BAP, ACP, and
CBP are equivalent.

Because of the double sign (4) in the formula for the distance from
a line to a point, there are four cases.

49. On the lines 4B, BC, and C4 lay off the segments 4, 5,
and 10 respectively, and find P such that the triangles having
P as a vertex and these segments as bases are equivalent.

50. Consider Ex. 49 for the case in which the three segments
are a, b, and ¢ respectively.

51. Let the three lines 7, 7, and 7, be 2y =, y =, and
y = 3z respectively. Then on Z locate the points . (8, ?) and
A'(14, ?); on 7, the points B(7, ?) and B'(9, ?); and on [ the
points €' (2, ?) and C'(5, ?).

52. The three pairs of corresponding sides of the triangles
ABC and A'B'C'" in Ex. 51 meet in collinear points.

The corresponding sides are AB and A’B’, BC and B'C’, CA and ¢’4’,
and so in all similar cases hereafter.

Taking any triangle ABC, letting the z axis lie along AB
and the y axis bisect AB, and denoting the vertices by A(—a, 0),
B(a, 0), C(k, 1), proceed as follows :

53. Find the common point P of the g ¢
perpendicular bisectors of the sides. W

54. Find the common point A of the 4 o BX
medians.

55. Find the common point H of the altitudes,

56. Using the notation of Exs. 5355, prove that P, M, and
H are collinear.

57. Show that the points P, M, and H referred to in
Exs. 53-56 are such that PM:MH =1:2.

It is not necessary to find the lengths PM and MH.
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If the parallel lines Ax+ By+ C=0 and Az + By + C'=0
are represented by L=0 and L'=0 respectively, show that:

58. L + kL' = 0 represents a line parallel to them.

59. L+ L'= 0 represents a line midway between them.

60. L — L'= 0 represents no points in the plane.

61. If L =0 and L'= 0 represent the normal equations of
any two lines, then L + L'=0and L — L' = 0 represent lines
which are perpendicular to each other.

It should be noted that the symbols L and L’ in Ex. 61 do not denote
the same expressions as in Exs. 58-60.

62. In the system of lines (k +1)a + (k —1)y = &* —1 the
difference between the intercepts is the same for all the lines.

63. Draw the lines of the system in Ex. 62 for the following
values of £: —5, —4, —3, —2,—1,0,1, 2, 3, 4, 5. Describe
the arrangement of the system.

It will be found best to use coordinate paper with ten squares to
the inch. Extend every line to the margins.

64. The lines of the system 4z + 4y = % are concurrent.

Find the common point of any two lines of the system and show that
this point is on each of the other lines.

65. If ris the radius of a circle with center at (0, 0), all lines
of the system y = mx + r V1 + m?* are tangent to the circle.

66. All lines represented by the equation
k+ x4+ — h)yy =10 Vi + 1?
are tangent to the circle =* 4 3? = 50.
67. Rays from a point of light at 4 (10, 0) are reflected
from the y axis. Find an equation which represents all the

reflected rays and prove that all these reflected rays, when
produced through the y axis to the left, pass through (—10, 0).
The direct ray and the reflected ray make equal angles with OY.

From A draw a ray to any point B(0, k) of the y axis. Then draw
the reflected ray, find its slope in terms of k, and write its equation.
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If 42— 8y =12 represents the line l; and 12245y =0
represents the line l,, find the equation of the locus of P under
the following conditions :

68. P is twice as far from / as from 7,
69. P is equidistant from /, and Z,
70. P is as far from O as from /.

71. P is the vertex of a triangle of area 20 and of base 8,
the other two vertices lying on Z.

72. AB=10and CD =13, 4B is a segment of /, and CD is
a segment of 7, and P moves so that the triangles PAL and
PCD have equal areas.

73. Find the equations of the bisectors of the angles formed
by the lines Az + By + C =0 and A'x + B'y + ¢'= 0.

74. Using oblique axes with any angle, find the equation
of the line through the points P (z,, y)
and P,(x,, 7,)-

Draw P,Q, P,Q, P,R, and PR parallel
to the axes, P (z, y) being any point on the
linel. The required equation is then found
from the condition RP/P,R=QP,/P,Q. But
RP = y — y,, and similarly for other values.
It will be seen that the result is the same as ¢ /0 X
in rectangular coordinates. :

75. Using oblique axes, find the equation of a line in terms
of its intercepts.

Employing the result of Ex. 74, use the same method as the one em-
ployed for rectangular coordinates (§ 77).

76. In the figure of Ex. 74, denote the constant ratio
QP :P,Q or RP: PR by m, and find the equation of the line Z
when 2 and a point P, (x, y,) are given.

77. Asin xs. 74 and 76, find the equation of  when m and
b are given.

The equations found in Exs. 74-77 are identical in form with the

corresponding equations in rectangular coordinates; but m is not equal
to tan a, that is, m is not the slope of 1.
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If OD and OB are any two lines, and AB and AC any
other two lines, the oblique axes being taken as shown in the
Sfigure, and the points A, B, and E
being (a, 0), (0, b), and (e, f) respec-
tively, find the following :

78. The equations of OB and AC.

79. The coordinates of C.

80. The equations of OD and 4B
and the coordinates of D.

81. From the coordinates of C and D as found in Exs. 79
and 80 find the equation of C'D, and find the coordinates of the
point @ in which C'D cuts the x axis.

82. Find the coordinates of the point R in which BE cuts 0A.

83. Show that the points R and Q divide 04 internally and
externally, respectively, in the same ratio.

o ) Aa,0)

84. For all lines in the plane prove that %.2 +

1
= —,, where
. . )"
@, b, and p have their usual meanings. 1

172
85. Since in any given length the number of centimeters
¢ is proportional to the number of inches 7, it is evident that
¢ = ki, where k£ is a constant. Given that 10 in. = 25.4 em,,
find the value of £ and plot the graph of the equation ¢ = %¢.
From the graph estimate the number of inches in 20 cm.
If the graph is accurately drawn on a reasonably large scale, any

desired number of inches may be converted into centimeters at a glance,
and vice versa. Such a graph is called a conversion graph.

86. Given that 2 cu. ft.=15 gal.,, find the conversion for-
mula for gallons and cubic feet, and draw the graph.

87. Two variables « and y are related by the linear for-
mula y = ax + b. If, by substituting for  any value, say ', we
obtain for y the value ¢/, and if, by substituting for 2 a changed
value z' 4+ %, we obtain for y the changed value y' + %, prove
that & = eh. That is to say, prove that the change in y is
proportional to the change in .
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88. A wheel 3 ft. in diameter makes 20 rev./sec. A brake is
then applied and the velocity of the rim decreases F ft./sec.,
F being a constant. If the wheel comes to rest in 4 sec., find
a formula for the velocity » of the rim in ft./sec. at the end
of ¢ seconds after the brake is applied, and draw the graph.

The symbol ‘‘rev./sec.”” is read ‘* revolutions per second,’” and simi-
larly in the other cases.

89. The height % of the mercury in a barometer falls prac-
tically 0.11 in. for each 100 ft. that the barometer is carried
above sea level, up to a height of 2000 ft. An airplane ascends
from a point 500 ft. above sea level, the barometer at that
place reading 29.56 in. Find in terms of % the formula for
the height I of the airplane above sea level, assumning that I/
does not exceed 2000 ft. and that there is no disturbance in
the weather conditions. Draw the graph.

It is evident that A = ¢ — 0.11 H/100, where & and ¢ are measured in
inches and ¢, the barometric reading at sea level, is to be found.

90. If £ is the effort required to raise a weight 1 with a
pulley block, E and W are connected by a linear relation. If
it is given that W = 415 when E =100, and W = 863 when
E = 212, find the linear relation and draw the graph.

91. In testing a certain type of crane it was observed that
the pull P required to lift the weight W was as follows:

P= 48 65 83.5 106.8 129 145

W= 800 1200 1600 2000 2400 2800

Locate points with these pairs of values and note that they
lie approximately on a straight line. This suggests a linear
relation between P and W. Draw the straight line which seems
to fit the data best and find its equation, measuring the coordi-
nates of two of its points for this purpose.

The two points should be taken some distance apart. Different units
may be used on the two axes.
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92. From the equation found in Ex. 91 compute the values
of W for the values of P given in the table and compare the
results with the given values of W.

Some values of W found from the equation should be more and others
less than the values given in the table. Add together such of the differ-
ences as represent excesses over the true values and also add such of
the differences as represent deficiencies and compare the totals. If these
totals are about equal, leave the line as it-is; but if one of them ditfers
considerably from the other, move the line accordingly, find the equation
again, and then test it as before.

93. In a study of the friction between two oak surfaces it
was found that the following table shows the pull P which is
required to give a slow motion to the weight W :

P= 5 12 19.4 26.2 34 39.5 48

W= 2 4 6 8 10 12 14

Find the relation between P and W as in Ex. 91.

94. Test the equation of Ex. 93 as in Ex. 92,

95. The condition in determinant form that the three lines
Az +By +C =0, Az +By+C'=0,and A"z +B"y+C"=0
shall be concurrent is that

A B C
A" B C'|=0.
jl” ]3!! C”

Ex. 95 should be omitted by those who have not studied determinants.

96. From P (4,6) and Q (7,1) draw the perpendiculars PR
and QS to the line 5x — 3y = 36, and find the length of RS.

RS is called the projection of the segment PQ D
upon the line. For a simple solution, see Ex. 97. ! H
[}
97. Show that the projection of the il ----E

line / upon the line AB is equal to / cos «, i
and then find the projection of 7 upon a 4 L
line C'D which is perpendicular to 4 B.

Q—



CHAPTER V

THE CIRCLE
PROBLEM. EQUATION OF THE CIRCLE
90. 7o find the equation of the circle with given center and
given radius.

Solution. Let C(a, b) be the center and » the radius of
the circle. Then if P (z, y) is any point on the circle, the
circle is defined by the condition that

CP=r,
and since . V(z—a)*+ (y—b):=CP,
we have V(z—a)+(y—bi=r
or (x—a’+@—b)=r. 'e))

This is the desired equation. It may be written
2+ y?—2ar—2by 4+ a¥+ 12— r2=0,
or xX’+y —2ax—2by+c=0, )
in which ¢ stands for a2+ 62— 72
If the center of the circle is the origin, then a=0, =0,
and the equation is x’ ‘+ ——

It must not be inferred that every equation which has one of the
above forms represents a real circle. For example, there are no real
points (z, ) that satisfy the equation

(@ —2)%+ (y + 3) =— 20,
because (z —2)2+ (y + 3)?% being the sum of two squares, cannot

be negative.
AG o1
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THEOREM. CONVERSE OF § 90

91. An equation of the form a®+ 42— 2az — 2by +c=0
represents a real circle except when a* + b? — ¢ is negative.

Proof. Writing the given equation in the form
2—2ar+y*—2by=—c
and completing both squares in the first member, we have
x2—2ax+a2+g/2——2by+62=a2—|—b2—c,
or (x—a)2+(y—b)é=a2+bz—c.
Letting a? 4 8% — ¢ =%, we have
@@=+ — b=,
an equation which evidently (§ 90) represents a real circle
with center (a, b) and radius » =Va? 4 12 — ¢ except when
a? 4+ b? — ¢ is negative. :

When «2+4+02—c¢ =0, we see at once that »=10. Then the
equation (z—a)2+ (y—0)?=0, since it is satisfied by no values
except = a and y = b, represents only one point, (a, ). This point
is called a point circle.

When a? + 12 — ¢ is negative, say equal to — &, we say that the
equation (z — @)%+ (y — b)?=— k represents an imaginary circle.

92. COROLLARY. An equation of the second degree in z
and y represents a circle if and only if it has no term in zy
and the coefficients of 2% and y? are equal.

For such an equation, say 42?4+ 4y?+ Bx+ Cy+D =0,

may be written B c D
$2+y2+21’+23/+220,

which is in the form 22432 — 2ax — 20y +¢=0.

It will be observed that many equations of the second degree
in z and y do not represent circles, as, for example, the equation
922 + 25 y2 = 225, which was discussed in § 42.
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Exercise 28. Center and Radius

Find the center and the radius of cach of the jfollowing
circles and draw the figure :
1. 2+ —8x+4y=5. 5. 2?4+ yP—6x=0.
2. 2+ —1220— 2y =12. 6. 2>+ 9> — 62 =16.
3. 28+ P+ 8x+6y=0. N7 22424+ 8y=0.
4. 222 +2y*—82+10y=11}. 8. 2®+ y*+ 22 +2=2y.
9. The circle 2® + 32 — 2ax = 0 is tangent to the y axis
at the origin.
10. The circle 2>+ 3* +8x — 4y +16 = 0 is tangent to
the « axis.
11. Given that the circle (x — 2)*+ (y — 5)>=1r* passes
through (10, —1), find the value of .
12. Find the area of the square circumsecribed about the
civele 2 + ¢ +4a + 4y =38.
13. Draw the two circles 2?4+ 32 —42—6y +9=0 and
2+ +122 + 6 y — 19 = 0, and prove that they are tangent.
Show that the line joining the centers is equal to the sum of the radii.
14. The circle a® + 4> —18x 4+ 45 =0 is tangent to the
liney =4a— 2.
15. Show that the equation
Pty +aet+k@+y—2x+y—1)=0
represents a circle, and find the center and the radius.

Draw the circles described below, and find their equations :
16. Center (—1, 2), radius 6.

17. Center (4, 0), tangent to the line z = 8.

18. Center (3, 4), tangent to the line 8 y =15 — 6 =.

19. Passing through the points (4, 0), (0, — 8), and (0, 0).
20. Tangent to the lines « = 6, x =12, and y = 8.

21. Radius 10, = intercepts 0 and 12.

\Y
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93. Three Essential Constants. The equation of the cir-
cle involves three essential constants. If the equation is
in the form (2 —a)?+4(y —b)2=1r% these constants are
a, b, r; if it is in the form 22+ 42— 2a2— 20y +¢=0,
the constants are a, b, c.

In either case it is evident that three constants are necessary and
sufficient to fix the circle in size and in position.

To find the equation of the circle determined by three
conditions we choose either of the two standard forms,
(z—a)?+(y—0)2=12 or 2+y*—2ax—2by+¢=0. The
problem then reduces to expressing the three conditions
in terms of the three constants of the form selected.

94. Illustrative Examples. 1. Find the equation of the
circle through the points 4 (4, — 2), B(6, 1), C(—1, 3).
Let 22 4+ 42 — 2 ax — 2 by + ¢ = 0 represent the circle. Then, since
A is on the circle, its coordinates, 4 and —2, satisfy the equation.
That is, 42+ (—2)2—2a:-4—-20(—=2)+c¢=0,

whence 8a—40b—c=20.
Similarly, for B, 12a¢+2b—c¢ =37,
and for C, 2a—060+ c=—10.
Solving, we have a = %3, b = 13, ¢ = — %*, and the equation is
a? gt — AP — APy — =0,
or 52245y — 28218y —34 =0.

2. Find the equation of the circle through (2, —1),
tangent to 2+ y =1 and having its center on y=— 2.

If we choose the form (z — «)? + (y — b)* = % the first condition is
@C—al+(—1-0)2=r,ora®+0*—4a+2b+5=r>~

Since the distance from the line 2 + y =1 to the center (a, ) is
7; the second condition is (¢ + b —1)/(£ V2) =

Since (a, b) is on the line y = — 2 z, the third conditionis b =— 2 a.

Solving for @, b, and 7% we have ¢ =1, b =— 2, »*=2, and the
required equation is (x —1)24 (y +2)2=2.
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Exercise 29. Equations of Circles

Draw circles passing through the following sets of points,
and find the equation of each circle :
1. (4,2), (5, —1), (—2,4). 3. (0,4), (0, —4), (6,0).
2. (6, —3), (4, —2), (0,4). 4. (5,1), (3,2), (3, 1).

Draw circles subject to the following conditions, and find
the equation of each circle:
5. Having « intercepts 6 and 10 and one y intercept 8.
6. Having « intercepts — 4 and 2, and radius 5.
7. Passing through (0, 0) and (—1, 1), and having radius 5.
8. Having a diameter joining (6, 3) and (— 2, — 5).
9. Tangent to the z axis at (6, 0) and tangent to the y axis.
10. Tangent to both axes and passing through (2, 1).
11. Tangent to both axes and to the line 2 + = 6 ++/20.
12. Tangent to the lines & =6 and x =10, and passing
through the point (8, 3).
13. Having one y intercept 10 and tangent to the x axis at
the point (— 5, 0).
14. Passing through (0, 0) and the common points of the
circles @+ ¢* =25 and &* + 3y — 4z + 2y = 15.
15. Inscribed in the triangle whose sides are the lines
4x—3y=12,8x + 6y =36,and 122 — 5y = 36.
16. Passing through (0, 0) and cutting a chord 5+/2 units
in length from each of the lines z — y =0 and « + y = 0.
17. Having for a diameter that segment of the line y = ma
which is intercepted by the circle «*+ y* — 2 ax = 0.
18. Tangent to the lines 4z — 3y =10 and 6= + 8 y = 35,
and having radius 10.

19. Tangent to the circle >+ 3>+ 4o« — 4y =1, and having
its center at the point (4, 10).
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PROBLEM. EQUATION OF A TANGENT

95. 7o find the equation of the tangent to the circle
2+ yt=1r2 at any point F(x;, y,) on the circle.

Y
SNEB@v1)
/- X
Solution. The center O is at the origin. §90
The slope of the radius OR is 5. §21
7y
Since the tangent at £ is perpendicular to OR, the slope
of the tangent at K is — i §24
%
Therefore the equation of the tangent at F is
Z
y—h=—(z—=z), §69
91
or 2@+ Y1y = of + Y-

This is the required equation. It may be simplified in
the following manner:
Since the point (2, »;) is on the circle, we have
of +yf =12
and hence the equation of the tangent as deduced above
may be more simply written
xx+yy=r-.

It will be noticed that the equation of the tangent is simply the
equation of the circle 22 + »2 =r? with 2 written for 2% and y,y
written for 2
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PROBLEM. TANGENT AT A GIVEN POINT

96. 70 find the equation of the tangent to the circle
224y — 2ax— 2by+c=0 at any point F, (z1,y,) on the circle.

o
Solution. The center C of the circle is (a, ). §90
The slope of the radius CE is L1 — b § 21
T — B
Hence the slope of the tangent at F is —; Z- § 24
L —
Therefore the equation of the tangent at R is
L Tm—a 69
Y=Y v b (z—2), §

or  zz+yy —ar—by —(zf +yf — ax; — by) = 0.
This equation may be simplified in the following manner:
Since the point (z;, ;) is on the circle, we have
xf-,l—yf—?axl—Qbyl—kc:O, § 90
whence xl + yt — axy — by, = ax; + by, — c.
Therefore the equation of the tangent may be written
@@ + Y1y — az— by — (az; + by, — ) =0,
or in simpler form
xx+yy—alx+x)—bly+y)+c=0.

As in § 95, it will be noticed that the equation of the tangent
is simply the equation of the circle 22 + y* — 2ax — 2 by + ¢ = 0 with
2,z written for 22, y,y for 3% z 4 z, for 2z, and y + y, for 2.
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PROBLEM. TANGENTS WITH A GIVEN SLOPE

97. To find the equations of the tangents to the circle
22 + y% = 12 having a given slope m.

O\ 4

’ !

Solution. If we let y =mx+ ¢ represent any line of
slope m, the problem reduces to finding the value of ¢ for
which the line y=maz+-¢ is tangent to the circle 224 y2=72

To find the points in which the line cuts the circle, we

solve the equations as simultaneous. Substituting, we have
24 (mz + ¢)?= 12
or A4+m¥)a?+ 2mex + A— 2= 0.

The two roots of this quadratic in z are the abscissas
of the common points of the line and the circle; but in
order that the line shall be tangent, these points must
coincide and thus have the same abscissa, and hence the
roots of this quadratic in # must be equal. -Since the con-
dition that the roots of any quadratic 42?2+ Bxr+C=0
shall be equal is that B2— 4 4C =0, we must have

4m22— 4(14+m?)(E— 1) =0,
whence, e=+rVvV1i4mi
Therefore the required equations of the tangents are
y=mx=xrvV1+ m.
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98. Normal. The line which is perpendicular to a tan-
gent to a curve at the point of contact is called the normal
to the curve at that point.

99. Angle between Two Circles. When two circles inter-
sect and a tangent is drawn to each B n
circle at either point of intersection,
the angle between these tangents is
called the angle between the circles.

In the figure the angle between the
two circles is A PB.

100. Illustrative Examples. 1. Find the equations of
the tangent and the normal to the circle 22+ 32=29 at the
point (5, — 2).

Since 5% 4 (— 2)% = 29, the point (5, — 2) is on the circle, and hence
the equation of the tangent at this pointis 5z — 2y = 29 (§ 95).

Since the normal passes through (5, — 2) and is perpendicular to
the tangent, its equation (§ 69)isy + 2 =— % (z —5),or22 + 5y = 0.

2. Find the equations of the tangents to the circle
22+ y>=13 which pass through the point (— 4, 7).

Since (— 4)% 4 7% is not equal to 13, the point (— 4, 7) is not on
the circle and therefore the point of contact is unknown. In such
cases it is often better to use the equation y =z £ rvV1+ mi
~ In this example » =13, and m is to be chosen so that the
tangent y = mz +V13 V1 + m? passes through (— 4, 7); therefore
7=—4m+V13V1+ n? Solving this equation, m =— % or — 18.

If m =— %, the tangents are y =— 2 +V13V1+ § (§97), or
2z + 3y =413, but only 22 4+ 3 y =13 passes throtﬁh (—4,D).

If m = —18, the tangents are y=— 18z +v13 V1+324 or
18z + y =4+ 65, but only 18z + y =— 65 passes throngh (—4, 7).

3. If the line 4z —3y=>50 is tangent to the circle
224 y2=100, find the point of contact.

If (x,, y,) is the point of contact, z, 2+ y,y=100 is the tangent (§ 95).
But the tangent is 4z — 3 y.= 50. IHence z;:4 = y,: —3 =100:50,
by § 89. Then z, = 8, y; = — 6, and the point (z,, y,) is (8, —6).
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Exercise 30. Tangents and Normals

In each of these cases show that E, is on the given circle, and
Jind the equation of the tangent and also of the normal at R :
1 2+ 32=25; P/(3,4). 4. a’+y*=1; P (L, —1V3).
2. ¥4+ 97=29; P (2,—5). 5. 2*+y*=20; P,(—4,—2).
3. 2’ +*=34; P (—5,3). 6. a'+y*=38T; P(—1,—6).
7. 8+ —6x+2y=0; P2 2).
8. P+ y'+4x—Ty—11=0; P (3, 2).

Find the equations of the tangents to the following circles
under the stated conditions, and find the points of contact :

9. 2% + y* = 25; the slope of the tangent is $.

10. % 4+ y* = 49; the slope of the tangent is — L2,

11. a? 4+ y* = 36; the tangent is parallel to4dz =3 4.

12. 2% 4 9 = 13; the tangent is perpendicular to z =% y.

13. a? 4 y®> = 104 ; the point (— 8, 12) is on the tangent.

14. 2* + 3y = 64; the tangent passes through (8, 4).

Since y = mx +/64 V1 + m? must be satisfied by (8, 4) we have the
equation 4 =8m + 8V1 + m?, whence 1— 4m +4m?2 =4+ 4m?, or
0.m? + 4m + 3= 0. This may be considered as a special quadratic, and
its solution is considered in § 6 on page 283 of the Supplement.

. 15. In this figure, if PF represents the direction and inten-
sity of a force applied to a wheel at P, PF is the resultant of

two other forces, a tangential component Y

PT which turns the wheel, and a normal

component PN which produces no turn- . NP

ing. Then PF is the diagonal of the paral- 0 N X

lelogram of forces of which PT and PN W T

are sides. If, now, it is given that P is

(4, 3), F is (58, 7%), and 04 is 5, find the values of PT and PN.

16. Find the angle between the circles 2* + 4> — 34 =0
and #* +y*— 52+ 10y +1=0.
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THEOREM. SYSTEIM OF CIRCLES THROUGH TwWO POINTS

101. Denoting the two expressions 22 + y* — 2 ax — 2 by +¢
and 24+ y2—2dz—2Vy+¢ by S and S respectively, the
equation S+kS' = 0, k being an arbitrary constant, represents
the system of circles through the two points of intersection of
the circles S=0 and §' = 0.

Proof. Writing S+ £S5 =0 in full, we have

24y —2ar— 2by+c+k(P+y2—2d'2— 20y 4 H)=0,
or A+k)2+(+k)y?—2(a+d k) z—2(b+Vk)y+c+ k=0,
which (§ 92) represents a circle for every value of %, with
the exception of the value t=—1.

Since each pair of values that satisfies both §=0 and
S§'=0 also satisfies S+ kS’ =0, the circle S+ %48 =0
passes through the common points of the circles S=0
and §'=0.

And since the substitution of z for # and of y, for y in
the equation S+ £S'=0 leaves %k the only unknown, we
see that £ can be so determined that the circle S+ £S'= 0,
which passes through the common points @ and E of the
two circles, passes through any third point (z. ).

Hence S+ &8'= 0 represents all circles through @ and &.

For example, the circle passing through (2, —1) and the common
points of the circles 22+ y>— 2+ 2y =3 and 2* + > — 6z =14 is
22+ —r+2y—3+k(@*+y*—62—4)=0, where £ is to be so
chosen that the equation is satisfied by z =2 and y =—1; that is,
k = — y4. Hence the required equation is 9 22+ 9 )2+ 24 22 y =25,

102. Radical Axis. If k=—1, the equation S+ £8'=0
becomes § — 8'=0,0or 2(a—a)z+2(b—-0)y+—c=0.
This equation, therefore, represents the straight line through
the common points of the circles S=0 and §'=0. Such
a line is called the radical azis of the two circles.
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PROBLEM. LENGTH OF A TANGENT

103. Tb find the length of the tdngent Jrom any external
point B (z, y;) to the circle (z — a)?+ (y — b)2=1r%

v Q

T R(xlyyl)

o X

Solution. Let C' (a, b) be the center of the circle and
@ the point of tangency. Then in the right triangle CERQ
the side /@ is the tangent the length of which is required.

Since EQ*=TR* -
=(@— )+ (y;— b)*— 1% §17
we have BQ=V(x,— a)’ + (y,— b)*— r*.

That is, the length of the tangent from an external point
(2, yy) to any circle may be found by transposing to the first
member all the terms of the equation of the, circle, substituting
z, for x and y, for y, and taking the square root of the result.

Exercise 31. Two Circles and Lengths of Tangents

1. The radical axis of any two circles is perpendicular to
the line of centers.

2. The radical axis of any two real circles is real, even if
the circles do not intersect in real points.

—= 3. The tangents to the circles S =0 and §'= 0 from any

point on the radical axis are equal.

4. The three radical axes determined by three circles meet
in a point.
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Exercise 32. Review
1. In the circle 2+ y* — 4z + 6 y = 12, find the z inter-
cepts and the sum, product, and difference of these intercepts.

2. Find the sum, difference, and product of the x intercepts
and of the y intercepts of the circle #*+ >+ 22 —13y+40=0.

Given any circle 2® 4+ y* — 2 ax — 2 by + ¢ = 0, prove that :
3. The difference of the « intercepts is 2 Va? — ¢.
4. The sum of the x intercepts is 2« and the product is c.
5. The sum of the y intercepts is 2 and the product is c.

6. The difference of the squares of the chords cut by the
circle from the axes is 4 («® — 7).

Find the equation of each of the following circles :

7. Tangent to OY at the point (0, 6) and cutting from 0X

a chord 16 units in length.
Notice that the chord is equal to the difference of the z intercepts,

and then use the result of Ex. 3.

8. With center (— 3, 5), the product of the four intercepts
being equal to 225.

9. Tangent to both axes and having the area included
between the circle and the axes equal to 16 (4 — 7).

10. Passing through (4, 2) and (— 1, 3) and having the sum
of the four intercepts equal to 14.
After the equation of the circle has been found, draw the circle, find

the four intercepts, and note that two of these intercepts are imaginary.
How much do these imaginary intercepts contribute to the given sum ?

11. Show that the square of the tangent from the origin to
the circle 2® 4+ 3> — 2 ax — 2 by 4+ ¢ = 0 is equal to ¢, and there-
fore show that the origin is outside the circle when ¢ > 0, on the
circle when ¢ = 0, and inside the circle when ¢ < 0.

12. A ray of light from (10, 2) strikes the circle «* + y* =25
at (4, 3). Find the equation of the reflected ray.
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13. Find the equation of the circle having (a, ) as center
and passing through the origin.

14. The tangent to the circle a* + y* — 2z — 26y = 0 at
the origin is ax + by = 0.

15. Show that the tangents drawn from the origin to the
circle (x — a)® + (y — 0)*=1* are also tangent to the circle
(& — ka)*+ (y — kb)* = (kr)*, where k is any constant. 4 ‘

16. The circles «* 4+ * = 36 and ? + y* — 24z = 108 inter-
sect at right angles.

Such circles are said to be orthogonal.

17. The condition that the circle z* + y* + Dx + Ey+F=0
shall be tangent to the x axis is that D* = 4 F.

18. Find the condition that 2® + »* + Dz +Ey + "= 0 and
2?4+ y* 4+ D'z 4+ E'y + F'= 0 shall be tangent circles.

19. Find the equations of the three circles with centers (2, 5),
(5, 1), and (8, 5), each circle being tangent to both the others.

20. Find the points of intersection of the line 3z —y =3
with the circle 2> + > +2 — 4y — 3= 0.

21. Find the points of intersection of the line 22 +y+3=0
with the circle z°+3* —4ax — 6y =7.

22. Find the points of intersection of the = axis with the
circle 2¥? +9*—22 +4y=8.

23. Find the condition that the line lx + my + n = 0 shall
be tangent to the circle z* + * = 2

24. Find the equation of the circle with radius 10 and tangent
to the line 3 y = 4z + 3 at the point (3, 5).

25. Given that the circle 2> + 9> — 62 + ky + 1 = 0 is tan-
gent to the line 4 y = 3 — 8 at the point (4, 1), find % and ¢

The results found in §§ 96 and 89 may be employed to advantage.

26. Find the equation of the chord through the two points of
contact of the tangents from P(—1, 7) to the circle 2%+ 4*=25.

Such a chord is called the chord of contact.
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27. The equation of the chord of contact of the tangents
from (z,, y,) to the circle °4 y*= " is zx + y,y =~

How is this fact related to the fact that when (z,, %) is on the circle
the equation of the tangent at (z,, ;) isz,;z + y, = r>? The correspond-
~ ing problem for the parabola is solved in § 215.

28. A wheel with radius 1 V41 ft. is driven by steam, the
pressure being transmitted by the rod 4B, which is 10 ft.
long. If the thrust on 4B is

25,000 1b. when B is at (2, §), ,I’Y\
find the corresponding tangen- Y] B/'/,,-—} Q
tial and normal components of To /

the thrust. p

For the explanation of the tech- 4 0 X
nical terms, see Ex. 15, page 100.
It will be found convenient to take

the origin at the center of the circle.

If the segment BQ represents the thrust of 25,000 1b., BT and BN
represent the required components. Since BT = BQ cos ¢, the prob-
lem reduces to finding ¢ by means of the slopes of BT and BQ.

29. Two forces, F=201b. and

F’
F'=301b., are applied at P(12, b),
a point on the circle z* + y*> =169, F -
acting along a line with slope } and P

F' along a line with slope 2. Find
the sum of the normal components of
Fand F'

30. If a wheel with radius 5 ft. rotates so that a point P
on the rim has a speed of 10 ft./sec., find the vertical and
the horizontal components of the speed
of P when P is at the point (—4, 3).

In the figure, if P@Q = 10, the problem is to
find PV and PH.

31. In Ex. 30 find a formula for the
horizontal speed of P at any instant;
that is, when 7’ is at any point on the rim.
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32. If two tangents are drawn from (@, 0) to the circle
2*+ y*=1% find the equation of the circle inscribed in the
triangle formed by the two tangents and the chord of contact.

33. A ray of light parallel to X0 N
enters a circular disk of glass of {
- radius 13 cm. at P (12, 5) and is re-
fracted in the direction PQ. If the
direction PQ is determined by the
law sin 6 =1%% sin$, PN being
the normal at P, find the equa-
tion of PQ.

34. Show that the three circlesa* 4 y* — 62 —12y + 41 =0,
2249yt —10x —8y=—37, and *+ 3y  — 14z —4dy=—49
have two points in common.

35. Find the equation of a circle passing through the point
(1, 3) so that the radical axis of this circle and the circle
22+ —8x+Ty=10is 22 — 3y =0.

36. Find the locus of a point which moves so that the square
of its distance from a given point is equal to its distance from
a given line.

37. A point moves so that the sum of the squares of its
distances from the sides of an equilateral triangle is constant.
Show that the locus of the point is a circle.

38. Given an equilateral tuangle ALC find the locus of the
point P which moves so that P4 A= PB4+ 1C’

39. If the point 7 moves so that the tangents from P to
two given circles have a constant ratio, the locus of P is a
circle passing through the common points of the given cireles.

40. In the triangle ABC it is given that A2 =10in., that
AC =12 in., and that 4 revolves about A while 4 B remains
fixed in position. Find the locus of the mid point of BC.

41. Given any two nonconcentric circles § = 0 and §' =
and % any constant, then the center of the circle $ 4 £S'=0
is on the line of centers of S =0 and S'= 0.
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42. In Ex. 41 show that the line of centers is divided by
the center of S + £8'= 0 in the ratio %4:1.

‘What interpretation is to be given to the problem if k=02 if k =1°?

43. The equation of the circle determined by the three
given points (x,, 7)), (=, ¥,), and (x,, y,) may be written in
determinant form as follows :

2+ @

ol +yi @ oy
oty x Y,
x+ys T Y,

[T WY
Il
154

Comparing the coefficients of 22 and %2 in the expansion of the deter-
minant, show by § 92 that the equation represents a circle. Then show
that the equation is satisfied when z, is substituted for &, and y, for y, and
similarly for the coordinates of (z,, ¥,) and (zg, ¥;). The exercise may
be omitted by those who are not familiar with determinants.

44. Determine the point from which the tangents to the circles
2?4+ —22—6y+6=0 and *+3*—2y—22+14=0
are each equal to V102.

45. Find the equation of the locus of the point P which moves
so that the tangent from P to the circle 2+ > — 6z +y =T
is equal to the distance from P to the point (—7, 5).

46. The point P moves so that the tangents from P to the
circles #*4- 32— 62 =0 and 2’4+ 3’4+ 6x— 2y =6 are in-
versely proportional to the radii. Find the locus of P. :

47. Find the equation of the locus of the point P which moves
so that the distance from P to the point (6, —1) is twice the
length of the tangent from P to the circle &+ y* — Tz = 17.

48. Show that the locus of points from which tangents to
the circles 2 +9* —12x=0and 2+ *+8x—3y—4=0
are in the ratio 2: 3 is a circle. Find the center of this circle.

49. If three circles have one and the same radical axis, the
lengths of the tangents to two of the circles from a point

on the third are in a constant ratio.
AG
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50. Find the equation of the circle having the center (5, 4)
and tangent internally to the circle a* + 3 — 6x — 8y = 24.

51. Find the equation of the circle having the center ( %, k)
and tangent internally to the circle 2* + 3> — 2 ax — 2 by + ¢ =0.

52. If the axes are inclined at an angle o, the equation of
the circle with center (@, 0) and radius » is

@E—a))+H—0"+2(@—a)(y —b)cosw=r2

Find the equation of the locus of the center of a variable
circle satisfying the following conditions :

53. The circle is tangent to two given fixed circles one of
which is entirely within the other.

54. The circle is tangent to a line A B and cuts the constant
length 2 ¢ from a line A C perpendicular to A B.

55. The circle is tangent to a given line and passes through
a fixed point at a given distance from the given line.

56. Given the two lines y =mx — 4 and y =— %x +4;
)

when m varies, the lines vary and their intersection varies.
Find the locus of their intersection.

Regarding the equations as simultaneous, if we eliminate m we obtain
the required equation in ¢ and y; for this equation is satisfied by the
coordinates of the intersection of the lines, whatever the value of m.

57. Find the equation of the locus of the intersection of the

lines y = ma:-i—'\/m +2andy=—1x+ L

m?
To eliminate m transpose the = term in each equation, clear of frac-
tions, square both members, and add.

58. All circles of the system «* + 3> — 2ax — 2ay + a2 =0
are tangent to both axes. .

59. All circles of the system «*+ 4> —2ax —4day +4a*=0
are tangent to the line 4 y = 3 and also to the y axis.

60. Find the equation that represents the system of circles
with centers on O and tangent to the line y = =.



CHAPTER VI
TRANSFORMATION OF COORDINATES

104. Change of Axes. The equation of the circle with
center C'(2, 3) and radius 4 is, as we have seen,

(z— 2)%+ (y — 8)2=16.

Here the y axis and 2 axis are respectively 2 units and
3 units from C. But if we discard these axes and take a
new pair CX, CY through the center C,

Y ‘
then the equation of the circle referred to A N
these axes is At at—16 /AN \
= i
e ty ’ U [Feenl
which is simpler than the other. -\ ld y
In general, the coeflicients of the equa- ] \,<F X

tion of a curve depend upon the position
of the axes. If the axes are changed, the coefficients are,
of course, usually changed also, and it is to be expected
that often, when we know the equation of a curve referred
to one pair of axes, we may find a new pair of axes for
which the equation of the same curve is simpler.

The process of changing the axes of coordinates is
called transformation of coordinates, and the corresponding
change in the equation of the curve is called transformation
of the equation.

The two transformations explained in this chapter are merely
the special ‘cases which” are most often needed in our work. The
general problem is to change from any pair of axes to any other
pair, rectangular or oblique.

109
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PROBLEM. TRANSLATION OF AXES

105. 7o change the origin from the point (0, 0) to the point
(h, &), without changing the direction of the axes.

Y Y
___________________ P

O'|(h,k) M’ X'

(@) A M X

Solution. Let OX, OY be the given axes, O’ the point
(h, k), O'X', 0'Y' the changed axes. Denote by (z, y) the
coordinates of any point P referred to the given axes, and
by (', y") the coordinates of P referred to the changed axes.

Then =04 + AM,
and y=A0'+M'P.
That is, x=x'+h,
and y=y'+k.

Hence, when we know the equation of a curve referred
to one pair of axes, we find its equation referred to another
pair of axes through (%, k) parallel to the given axes by
putting 2'+ % for z and y'+ & for y in the given equation.
No confusion results if in the new equation in 2’ and ¥’
we drop the primes and write z and y for 2’ and ¥

That is, to find the transformed equation write x+ h for
z and y + k for y in the given equation.

106. Translation of Axes. The kind of transformation
discussed in § 105 is called a translation.

It is customary to speak of the translation of coordinates or of the
translation of axes.
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107. Simplifying an Equation by Translation. Let us
examine the possible effects of translation upon the equation

22— Bzy+ y*+ 52 —-3y—10=0.
If the new origin is (%, k), then the new equation is
2@+ k) —3@+ D) Y+E)+y+E)*+5@+h)
—3(y+k)—10=0,
or 222—3azy+ 2+ (4h—3k+5)a+(—3h+2k—3)y
+ 22— 3hk+K2+5h—3k—10=0.

Only the z term, the y term, and the constant term
depend on A and &k To make the equation simpler, let
us determine % and % so that the coefficients of two of
these terms, say the z term and y term, vanish; that is,
so that 42 —8%k+4+5=0and —324+2k—-3=0.

This gives A =1, £=3; and the new equation, referred
to axes through (1, 3) and parallel to the old axes, is

222 — 3xy + y2=12.

108. Equation Ax*+ By*’+ Cx+Dy+E=0. We shall
frequently meet an equation of the second degree which
has an 22 term and a y? term but no zy term.

The following example shows an easier method than the
one given above for transforming such an equation into an
equation which has no terms of the first degree.

For example, consider the equation 222 —632 —162z —12y =1.
We may first write it in the form

2(x*—-8x)—6@*+2y)=1,
and then 2(z—4)?—-6(@+1)2=1+32—-6=27.

Tt is now obvious that the desired new origin is (4, —1); for, by
writing z + 4 for  and y — 1 for y, we have

22%—6y%2=27.
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PROBLEM. ROTATION OF AXES

109. 76 change the direction of the axes without changing
the origin, both sets of axes being rectangular.

[
O M R X

Solution. Let (z, ) be a point P referred to the given
rectangular axes 0OX, OY, and let (<, y") be the same point
referred to the changed axes 0X’, OY'. Then we have

OM=z, MP=y, ON=2, NP= Y.
Let 6 represent the angle XOX'. Draw N@ perpendicular

to PM, and NR perpendicular to OX. Then angle QPN=6,
since their sides are perpendicular each to each.

Hence OM =OR— QN=ON cos § — NP sin 6,

that is, X =x'cos@ — y'sin 6.
Also MP=RN+ QP= ONsin 6 + NP cos 6,
that is, y=Xx'sin@ + y' cos 6.

Hence, when we know the equation of a curve referred
to one pair of rectangular axes, we can find its equation
referred to another pair of rectangular axes with the same
origin and making the angle 6 with the given axes.

To find the transformed equation write z cos @ — y sin 0
Jor z and x sin 0 + y cos 0 for y in the given equation.

110. Rotation of Axes. The kind of transformation dis-
cussed in §109 is called a rotation.
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THEOREM. ELIMINATION OF THE xy TERM

111. In rectangular coordinates it is always possible to
determine a rotation which transforms any equation of the
second degree into an equation which lacks the zy term.

Proof. Let a2®+ 2 hay + by*+ cx + dy + e = 0 represent
any equation of the second degree. Rotation of the axes
through an angle 6 transforms this equation into

a(zcosf@—ysind)’+2h(xcosd—ysind)(zsinfd+y cosd)
+ b (xsin 6 + y cos 0)*+ (terms of lower degree) = 0.

In this equation, collecting all the 2y terms, we have as
the coefficient of zy
—2asinfcos 0 + 2% cos?d — 2 L sin%0 + 2 b sin 6 cos 6.
Then, since by trigonometry 2sinf cosf =sin 260 and
cos?f —sin%0 = cos 2 6 (page 286), the coefficient of zy is
—(a—0)sin260+2hcos 26.

Then, as is always possible, we choose & so that
—(a—b)sin260+2hcos260=0;

2%

a—b

The transformed equation will then have no zy term.

that is, so that tan 26 =

For example, to transform the equation 8 2% + 3 2y — »%2 =1 into
an equation which has no zy term, we have tan26 = 3. Since we
must use sin @ and cos §, we substitute $ for tan 20 in the formula
tan260= —-12 t:.n f % (page 286). Clearing of fractions and simplifying,

—tan
we have 8 tan26 + 8 tan § — 3 = 0, whence tan § = } or — 3. Choosing
tan =1, we find by calculation that sin §=1/+/10 and cos =3 /V/10.
Completing the transformation of the equation 82?4+ 3 zy —y2=1
by writing (3 x — y)/V10 for z and (z + 3 y)/\/lO for y and simpli-
fying, we have the transformed equation 722 — 3832 — 2 = 0.
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Exercise 33. Transformation of Equations

Transform each of the following equations by means of a
translation, making O the new origin :

1. 22— 22— 6x+8y=9; 0'(3, 2).
p—Adx+dy+8=0; 0'(l, — 2).
(x—a)+(y+a)==xy; 0'(a, — a).

?—6ay+y —6x+2y+1=0; 0'(0, —1).
3 — 2wy — 3y +14x+6y=6; 0'(—1, 4).

ouR WD

Transform each of the following equations into an equation
which has no first-degree terms :

6. 2+ —6x+2y=06.

7. 28— 2y —8x—4y=2>.

8. 30 +ay— 2y +4x+ 9y =15.

9. «* — 3wy — 3+ 6x+12y =16.

Transform each of the following equations by means of a
rotation of the axes through the acute angle 6 :

10. o — =43 0 = 45"

11. (w+y — 2)*=4wxy; 6 = 45°

12. 22° + 242y — 5y =8; f=sin"1§.

13. 2 — 2wy + 2 =1; 6 = tan~12.

Transform each of the following equations into an equation
which has no zy term:

14. a2y =12. 16. a* — 2wy+y2=\/_2-(m+7_/).

15. 2> + > +ay = 3. 17. 32 +12xy + 8> = 5.

18. Show that there is no translation of axes which trans-
forms the equation > — 6 y — 2 x + 11 = 0 into an equation with

no first-degree terms. Find a translation which removes two
of the terms of the given equation.



CHAPTER VII
THE PARABOLA

112. Conic Section. The locus of a point which moves so
that the ratio of its distances from a fixed point and a fixed
line is constant is called a conic section, or simply a conie.

We shall designate the moving point by P, the fixed
line by 7, the fixed point by #, the distance of P from
F by d, the distance of P from ! by &', and the constant
ratio d : d' by e. The fixed line 7 is called the &
directriz of the conic, the fixed point F is called WP
the focus of the conic, and the constant ratio e . I
is called the eccentricity of the conic.

Conic sections are so called because they were first studied by
synthetic geometry as plane sections of a right circular cone. We
shall now study conic sections by means of coordinates, a plan much
simpler than the ancient geometric plan.

The proof that conic sections, as defined above, are plane sec-
tions of a right circular cone is not given in this book.

113. Classes of Conics. The form of a conic depends
on the value of the ratio d: d'.

If e=1, that is, if d=d’, the conic is called a parabola.

If e<1, the conic is called an ellipse.

If ¢ >1, the conic is called a hyperbola.

As we shall see later, the circle is a special case of the ellipse.

114, Parabola. The locus of a point P which moves so
that its distances from a fixed point # and a fixed line {

are equal is called a parabola.
115
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PROBLEM. EQUATION OF THE PARABOLA

115. 7o find the equation of the parabola when the line
through the focus perpendicular to the directriz is the z axis
and the origin s midway between the focus and the directriz.

Q P(x,y)
K o\ #
'l

Solution. By the definition in § 114 it follows that a
locus is a parabola if it satisfies the condition P = QP.

Denote by 2 p the fixed distance K# from / to #. Then O,
the mid point of KF, being equidistant from { and 7, is a
point on the parabola. Taking the origin at the point O
and the z axis along K7, the fixed point Fis (p, 0); and
if P(z, y) is any point on the parabola, the equation of the
parabola is found from the condition

that is, \/(z —p)i+yi=p+a
Therefore Y =4px.

This equation of the parabola is the basis of our study of the
properties of this curve.

116. Position of the Focus and Directrix. The focus of
the parabola 32 = 4 pz is evidently the point (p, 0), and the
directrix is the line z=— p.

Thus (6, 0) is the focus of the parabola »* = 24 z, and the directrix
is the line z =— 6.
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117. Drawing the Parabola. Since the equation of the
parabola g2 =4 pr may be written y =+ 2Vpz, the parab-
ola is evidently symmetric with respect
to OX. From the equation it is also
apparent that as z increases, y increases
numerically.

If p is positive, the curve lies on the
positive side of OY because any nega-
tive value of # makes y imaginary.

If p is negative, ¥ lies on the left of
I and the curve lies on the left of OY.

To draw a parabola from its equation, plot a few of
its points and connect these points by a smooth curve.

118. Axis and Vertex. The line through # perpendicular
to the directrix is called the axis of the parabola, and the
point O where the parabola cuts its axis is called the vertex.

119. Focus on the y Axis. When the y axis is taken as

the axis of the parabola, the origin Y
being at the vertex as in this figure,
by analogy with the result of §115 P
the equation of the parabola is F/ x
2 ol !
x*=4py. Q K -

120. Chord. A line joining any two points on a conic
is called a chord of the conic. A chord passing through
the focus of a conic is called a focal chord. A line from the
focus of a conic to a point on the curve is
called a focal radius.

The focal chord perpendicular to the axis
is called the focal width or latus rectum.

For example, AD, BC, and BE are chords of
this parabola; 4D and BC are focal chords; FB
is a focal radius; and 4D is the focal width.
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Exercise 34. Equations of Parabolas

Draw each of the following parabolas ; find the focal width,
the coordinates of the focus, and the equation of the directriz ;
mark the focus and draw the directriz in-each figure :

1. =82 N3. =122 5. 6zx=—y% |7. 2°=—8y.
2. *'=—8=x. 4. x=2y% 6. 2*=38y. 8. 22*=9y.

In the equation y*>=4 px find the value of p under each
of the following conditions :
9. The parabola passes through the point (2, 6).
10. The focal width is 16.
11. The distance from the vertex to the focus is 3.
12. The focus is the point (— 5, 0).

Under each of the following conditions find the equation of
the parabola whose vertex is at the origin and whose axis is
one of the coordinate axes: '

13. The line from (— 2, 5) to (— 2, — b) is a chord.

14. The line from (— 2, 6) to (2, 6) is a chord.

15. The focus is (0, — 3).

16. The focus is on the line 3z + 4y =12.

17. The directrix is the line y = 6.

18. Show that the focal width of the parabola y*=4 pz is 4 p.

19. For what point on the parabola x? =— 12y is the ordi-
nate twice the abscissa ?

20. From the definition of the parabola give a geometric con-
struction by which points on the parabola may be found when
the directrix and focus are given.

21. The distance from the focus to any point P, (z,, y,) on
the parabola »? = 4 px is p + x,.

22. If the distance from the focus to a point P on the
parabola 3*= 4« is 10, find the coordinates of P.
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23. In the parabola y?*=4pz an equilateral triangle is
inscribed so that one vertex is at the origin. Find the length
of one side of the triangle.

A figure is inscribed in a curve if all the vertices lie on the curve.

24. Given the parabola =16, find the equation of the
circle with center (12, 0) and passing through the ends of the
focal width. By finding the points of intersection of the circle
and parabola, show that the circle and parabola are tangent.

Draw the graphs of each of the following pairs of equations
and find the common points in each case:

25. ’=9x; 3z —Ty+30=0. 30. 2’ =y; y'==.
26. ’'=3x; x—4y+12=0. N 31 a2=4; 42=09.
27. 2’=18y; 22— 6y +3=0. 32. 22=4y; *=9x.
28. *=12x; x —y=09. 33. *=9y; y*=2nx.
29. 2+t —de=4; x =3~ 4. P=y; y=1.

35. Draw the parabola y*= 6« and the chords made by the
parallel lines y =z, y =« — §,and y =2 — §. Show that the
mid points of these chords lie on a straight line.

36. Draw the parabola #*=— 4y and on it locate the point
P whose abscissa is 6. Join P to the focus F and prove that
the circle whose diameter is FP is tangent to the « axis.

From the definition of the parabola find the equation of the
. parabola in each of the following cases:

317. The y axis lies along the directrix and the x axis passes
through the focus.

38. The « axis is the axis of the parabola and the origin is
the focus.

39. The directrix is the line 2 = 6 and the focus is the
_ point (4, 2).

40. The directrix is the line 3z =4y — 3 and the focus is
the point (1, 1).
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PROBLEM. MORE GENERAL EQUATION OF THE PARABOLA

121. 7o find the equation of the parabola with its axis
parallel to the x axis and with its vertex at the point (h, k).

Solution. Letting V(% k) be the vertex, we are to find
the equation of the parabola referred to the axes 0X, 0Y.

If we suppose for a moment that the axes are taken
through 7 parallel to O.X and OY, the equation of the par-
“abola referred to these axes is 32 =4 pz. Referred to 7 as
origin, O is the point (—4, — k). If we move the origin
to O (§105), we must write z — 4 for z and y — £k for y
in the equation y*= 4 pz, and the equation becomes

(W— AP =4p(x—h).

This is therefore the equation of the parabola referred
to the axes OX, OY.

122. CororLARY. The equation Ay?+ By + Cx+ D =0,
where A%+ 0 and C # 0, represents a parabola with its axis
parallel to the x axis.

For, by completing the square with respect to the terms A2 + By,
this equation may be written in the form (y — k)2 =4p (z — 7).

For example, the equation 3 32—12y — 52 + 2 =0 may be written
S3(PP—4y)=5z—2,0r3(y—2)2=5x+10,0or (y—2)2=§(z + 2).

This is therefore the equation of a parabola with its axis parallel
to OX and with its vertex at the point (— 2, 2).
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123. Axis Parallel to the y Axis. When the axis of a
parabola is the y axis and the vertex is the origin, the
equation of the parabola (§119) is 22=4 py. Therefore
by § 121 the equation of a parabola with its axis parallel
to OY and with the vertex (4, k) is

(x—hy=4p(@y—k);
and if 4+ 0 and C # 0, every equation of the form

A2+ Bx+ Cy+D=0 §122
represents a parabola with its axis parallel to the y axis.

Exercise 35. Axis Parallel to OX or to OY

Find the vertex V of each of the following parabolas, draw
new axes through V parallel to the given axes, find the new
equation, and draw the parabola :

1. #—4y—62+10=0. 4. ¥=3x+2y+5.
2. 29 +12y+32+3=0. 5. y=22*— 62 + 3.
3. 3+ 12y + 16 =4a. 6. 52’ —bu=4y.

7. What are the coordinates of the focus of the parabola

2y=8y+3x+1°?
8. Find the focal width of the parabola 32*— 6x=4y—11.

9. Show that the two parabolas 2* — 22 =5y — 11 and
=4y + 5x—9 have the same vertex, and find the other
point of intersection.

10. The equations y = ax®*+ bz + ¢, x = py* + qy + r repre-
sent parabolas with axes parallel to OY and OX respectively.
Find the equation of the parabola, given that:
~ 11. The vertex is (2, — 3) and the focus is (6, — 3).
12. The focus is (6, 8) and the directrix is the line y =— 2.
13. The vertex is (4, 3) and the directrix is the line z = 6
14. The focus is (0, 0) and the vertex is (p, 0).
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124. Tangent. We have hitherto regarded a tangent to
a circle as a line which touches the circle in one point and
only one. This definition of tangent does not, however,

apply to curves in general.

Thus, we may say that { is tangent to this A_1 /B

curve at A, although [ cuts the curve again at B.

If ¢ is any curve and P any point on it, we define the
tangent to ¢ at P as follows:

Take another point @ upon the curve, and draw the
secant P@. Letting @ move along the curve toward P,
as @ approaches P the secant P@ turns about P and ap-
proaches a definite limiting position PZT. 0
The line PT 1s then said to be tangent to % _P =
the curve ¢ at P. - T

The secant PQ cuts the curve in the two points P
and Q. As the secant approaches the position of the
tangent P 7, the point @ approaches the point P; and when
the secant coincides with the tangent, @ coincides with P.

We therefore say that a tangent to a curve cuts the curve
tn two coincident points at the point of tangency.

The tangent may even cross the curve at P, as shown in this

figure, but in such a case the tangent cuts the 0
curve in three coincident points, as is evident P
if the secant PQ is extended to cut the curve T

again at the left of the point P.

125. Slope of a Curve. The slope of the tangent at a
point P on a curve is called also the slope of the curve
at the point P.

Thus, in the case of the parabola shown on the opposite page, the
slope of the curve at the point P, is the slope of the tangent P, 7.

While the slope of a straight line does not vary, the slope of
a curve is different at different points of the curve.
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PROBLEM. SLOPE OF THE PARABOLA

126. 7o find the slope of the parabola y*=4pz at any
point B (2, y) on the parabola.

Solution. Take another point Q(z,+ %, y,+ k) on the
parabola. Then the slope of the secant BQ is k/k, and
the slope m of the tangent at E is the limit of the slope
of the secant as @ approaches F. That is,

.k
m=lim -
Q-p
Since £ and @ are both on the parabola, we have
yi=4px, Y
and (n+ k)= 4 p(a + ). @
Subtracting (1) from (2), we have
kEQy,+k)y=4ph;
whence k/h=4p/(2y,+ k).
Now when @ — B, k— 0; and hence lim k/h=4p/2 y,.
But lim k/h = m, the slope of the tangent R7.

Hence m=—.

That is, the slope of the parabola y* =4 pzx at any point is

equal to 2p divided by the ordinate of the point.
AG
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PROBLEM. TANGENT TO THE PARABOLA

127. To find the equation of the tangent to the parabola
Yyt =4 pz at any point R(z;, y,) on the parabola.

Solution. Since the tangent passes through the point
(2, y;) and has the slope 2p/y,, its equation is

2
y—y="L@—z). § 69
Y1

Clearing of fractions, we have

$y Yt =2pr—2py;
and since (z;, y,) is on the parabola y%=4 pz, we have
yf=4pr, and the equation takes the convenient form

yy=2p(x+x).

For example, the equation of the tangent to the parabola y2 =12z
at the point (}, —2)is —2y=6(z+ §),or3z+y+1=0.

128. Slope of any Curve. The method of finding the
slope of the parabola (§ 126) may be used to find the slope
of any curve when the equation of the curve is known,
thus solving a problem not only of great historic interest
but of the greatest practical importance.

Finding the limit of %/2, the slope of the secant, turns out to be

a difficult matter in the case of many curves, and the treatment of
such cases is explained in the calculus.

129. Subtangent and Subnormal. The projections upon
the 2 axis of the segments of the tangent and the normal

included between the point of tangency P P
and the z axis are called the subtangent and
the subnormal for the point P. T

O @ N

Thus, in the figure, if PT is the tangent at P
and PN is the normal, 7'Q is the subtangent, and QV the subnormal.
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Exercise 36. Tangent at the Point (x, )

In each of the following parabolas show that P s on
the curve, and find the equations of the tangent and the
normal at P:

1. 2=8z; P(2,4). 3. P+ =0; P(—1,1).

2. *=—10x; P(—3.6, —6). 4. 2=93%; P(9, —1).

5. Find the intercepts of the tangent to the parabola
y* =12z at the point (4%, 8).

6. Find the intercepts of the tangent to the parabola
y*= 4 px at the point P, (x,, ,). Show that the x intercept is
— x, and that the y intercept is &y,. Draw the figure.

,"\

_ 9. From Ex. 6 find a geometric construction for the tan-
gent to any parabola at any point on the parabola.

8. Find the equations of the tangents to the parabola
92 =—16x at the ends of the focal width. Show that these
tangents are perpendicular to each other and that they meet
on the directrix.
9. The tangents to any parabola at the ends of the focal
width meet at right angles on the directrix.
10. A tangent is drawn to the parabola »* = 4 2 at the point
(9, 6). Find the subtangent and the subnormal.
' 11. A tangent is drawn to the parabola y® = 4px at the
point (x,, 7). Find the subtangent and the subnormal.
12. On the parabola 3*=10 z find the point («, 0) for which
the subtangent is 12.
13. On the parabola 3z + 83?= 0 find the point P such
that the tangent at P has equal intercepts.
14. On the parabola 2¢?= 9z find the point P such that
the tangent at P passes through the point (— 6, 3).
15. Suppose that a ray of light from the focus strikes the
parabola y*= 4« at the point (9, 6). Draw the figure, draw
the reflected ray, and find the equation of this ray.
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130. Properties of the Parabola. One important property
of the parabola was proved in §126; namely, that the
slope of the curve y*= 4 pz at the point (z;, ;) is 2p/y;.
Other properties were expressed in Exercises 84-36, and
the parabola has, of course, a great many more. The
following properties, arising in connection with the tan-
gent to the parabola y?=4 pz at the point (2, y;), are
of special importance and should be carefully studied:

Y
“'13/3
N7
aj
Lo/
CTEONZ @ N X

1. The subtangent TQ s bisected at the origin.

Proof. The equation of the tangent at I;(z;, z,) is
Yy =2p(x+2z). The x intercept 07 is found by letting
y =0 in this equation and finding z. In this way we find
that 2=—2;=07. But 0Q==a,, and hence 07 and 0Q
have the same length, so that O is the mid point of 7.

2. Taking F as the focus and FR as the perpendicular to
the directric KR, the tangent at R bisects the angle REF.

Proof. We have FR=FF. §114
Furthermore, ER=p+x,
and, by property 1, TF=7T0+O0F=0Q+ OF
=+ p.
Therefore RE=TF =FR.

Hence TFER is a rhombus and 8= a.
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3. If RR, is produced to any point S, FE and ES make
equal angles with the normal EN.

Proof. We have =g from property 2. But it is evident
from the figure that angle FEN is the complement of , and
that angle NRS is the complement of B.

Hence angle FEN = angle NES.

This is the important reflection property of the
parabola.

Rays of light from F are reflected parallel to
the axis. This fact is used in making headlights,
searchlights, and reflecting telescopes. Sound or
heat from I” is also reflected parallel to the axis.

4. The subnormal QN s equal to 2p for all positions of I}
on the parabola.

Proof. Since T7FRR is a rhombus, RF is perpendicular
to TE. Hence RF is parallel to BN.
Therefore the triangles RKF and RQN are congruent,

and QN =KF=2p.

5. Through any point (h, k) in the plane there are two
tangents to the parabola y?= 4 pz.

Proof. The tangent at (zy, y;) is v, = 2p (2 +2,), and
this passes through (%, k) if and only if 3,k =2 p (% + z)).

Since yZ = 4 pxz,;, the second equation reduces to

yk=2p(h+ ﬂlz_ .
1 427

or Yyt — 2ky,+ 4 ph=0,

which is satisfied by two values of y,. Hence there are two
points (z;, y;) the tangents at which pass through (%, k).

The two tangents may be distinct or coincident, real or imaginary.
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Exercise 37. Properties of the Parabola

Draw the figure given on page 126, and prove that :
1. The tangent at P, bisects RI" at right angles.

2. The lines 7P, I}, and the y axis meet in a point.
~3. The line joining I and L is perpendicular to I'P,.

and N.

4. The focus is equidistant from 7, P, ¢

5. The focus is equidistant from the points in which the
tangent cuts the directrix and the focal width produced.
6. The segment RF is the mean proportional between the
segment /P, and the focal width.
The student will probably have difficulty in finding a geometric proof
of this statement, but the analytic proof is simple.
- 7. TK®.KO = TF.d* where d is the distance from K to TP,
8. The proof of property 2, § 130, is geometric. Give an
analytic proof, using the slopes of P, TP, FP,.
9. Give an analytic proof of property 4, § 130.
As the first step the student may find the x intercept of the normal.
. 10. A line revolving about a fixed point on the axis of the
parabola 3* = 4 px cuts the parabola in P and Q. Show that

the product of the ordinates of P and Q is constant, and like-
wise that the product of the abscissas is constant.

11. The line  revolves about the origin and cuts the parab-
olas 4 = 4 px and y*= 4 gz again in R and S. Show that the
ratio OR : OS is constant for all positions of

12. Using property 1, § 130, find a geometric construction
for the tangent to a parabola at a point P, on the curve.

13. Consider Ex. 12, using property 4, § 130.

14. Find a geometric construction for the tangent to a
parabola from a point not on the curve, using Ex. 1 above.

15. There are three normals from (%, k) to the parabola
y? = 4 px, and either one or three of them are real.
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PROBLEM. TANGENT WITH A GIVEN SLOPE

131. 76 find the equation of the line which has the slope
m and s tangent to the parabola y* = 4 pz.

i

~

Solution. Let y = mz + k represent the tangent ¢ whose
slope is m. The problem then reduces to finding £ from
the condition that ¢ is tangent to the parabola; that is,
that ¢ cuts the parabola in two coincident points (§ 124).

To find the common points of ¢ and the curve we solve
the equations y =mz+ % and 2= 4pz as simultaneous.

Then (mz+ k)2=4pzx;
that is, o omAR42(km —2p)z+ k2 =0.

The roots of this quadratic in z are the abscissas of the
common points of ¢ and the parabola. But since these
points coincide, the roots are equal. Now the condition
under which any quadratic 4224 Bzx+ C=0 has equal
roots is that B2— 4 AC=0. Therefore we have

4(km—2p)r—4BPm?*=0;
whence k& = p/m, and the equation of the tangent is
_ b
y =mx+ E .

This is called the slope equation of the tangent to the parabola.
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Exercise 38. Tangents with Given Slopes

Find the equations of the tangents to the following parabolas

under the specified conditions :

1. 9> =16z, the tangent having the slope 2.

2. y*= 12z, the tangent having the slope — 1.
2 3. y*=4ux, the tangent being parallel to 22 + 3y =1.

4. 3y® =z, the tangent being perpendicular to x + y = 0.

5. 342+ 16x = 0, two perpendicular tangents, one of the
two points of contact being (— 3, 4).

6. y* =12z, through the point (— 2, — 5).

The given point is not on the parabola. Let y = mx 4+ 3/m be the
tangent, and find m from the condition that (— 2, — 5) is on the tangent.

7. =237 from the point (8, — 2).
8. 234 Tx = 0, from the point (— 3, 150).
9. 33®=— 4z, having equal intercepts.
10. Show that the line y =— 3z + 2 is tangent to the
parabola »?=— 24x, and find the point of contact.
11. Find the point of contact of the line which is tangent
to the parabola y* = 3« and has the slope %
12. Find in terms of m the coordinates of the point of
contact of the tangent with slope m to the parabola 3 = 4 pz.
13. Show that the intercepts of the tangent with slope m
to the parabola y* = 4 px are — p/m?* and p/m.
14. A line with slope m is tangent to the parabola 5% = 8«
and forms with the axes a triangle of area 10. Find .
15. A line with slope m is tangent to the parabola 3 3= 80z
and is also tangent to the circle #* 4+ 3 = 9. Find m.
16. If the line x — 2y + 12 = 0 is tangent to the parabola
¥* = cx, find c.
17. If two tangents to a parabola are perpendicular to each
other, they meet on the directrix.
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PROBLEM. PATH OF A PROJECTILE

132. To find the path of a projectile when the initial
velocity s given, disregarding the resistance of the air.

vyl €
P

i
o 4 X

Solution. Take as axes the horizontal and vertical lines
through the initial position of the projectile. Let the
initial velocity be v, directed at the angle a with OX.

Without the action of gravity the projectile would con-
tinue in the straight line 0@, and after ¢ seconds would
reach a point @ distant vt from O; that is, 0Q = vt.

But the action of gravity deflects the projectile from 0Q
by a vertical distance P@, which in ¢ seconds is 19t

It is assumed that the student is familiar with the fact that a body
falls from rest §gt* feet in ¢ seconds; and that a body projected

upwards loses in ¢ seconds % g¢* feet from the height it would have
attained without the action of gravity.

Therefore the coordinates 0.4 and 4P of the position P
of the projectile after ¢ seconds are
x = vt Ccos @,
and y=vtsina — g%
That is, eliminating ¢, we have

g

y=xtanq — ——
2 V¥ cos’a

But this equation is of the form A2+ Bz+ Cy+D =10,
which is the equation of a parabola (§123).
Therefore the path of a projectile is a parabola.
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PROBLEM.. MID POINTS OF PARALLEL CHORDS

133. 7o find the locus of the mid points of a system of
parallel chords of a parabola.

'Y

Solution. Represent the parabola by 32 = 4 pz, the slope
of the parallel chords by m, and any one of the parallel
chords, say EB, by y =mz +b.

To find the coordinates of F, and E we solve the equations
y?*=4pr and y=mr+b as simultaneous. Substituting
y2/4 p for z in the equation y =mz + b, we have

my* —4 py + 4 pb = 0.

The roots of this quadratic are the ordinates y, and y,
of B, and B; and the ordinate y, of the mid point M of BB, -
is half their sum (§ 27); that is, y, =1 (y, +9,)-

But the sum of the roots of the quadratic is 4 p/m.

Therefore Yo = 2p/m, a constant.

Hence the locus of the mid points of all parallel chords
with slope m is the line parallel to the z axis and distant
2 p/m from it, and the equation of this locus is

_2f
_Tn-'

y
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134. Diameter of a Conic. The locus of the mid points of
any system of parallel chords of a conic is called a diameter
of the conic.

The diameter of a circle is perpendicular to the chords bisected
by it, but, in general, the perpendicularity is not true for other conics.

Exercise 39. Diameters

Find the equation of the diameter which bisects chords of
the following parabolas under each of the specified conditions :

1. y* =12, chords parallel to 32 — y = 1.

2. 32 = — z, chords parallel to 2 + y = 0.
~ 3. 3z = A chords perpendicular to 2z =5y — 2.

4. y* =6y + 42 — 1, chords parallel to 2z = .

5. In the parabola y*= 9« find the coordinates of the
mid point of the chord Za — 3y = 8.

6. In the parabola y*> = 8z find the equation of the chord
whose mid point is (6, 2).

7. In the parabola 3> =— 10« what is the slope of the
chords which are bisected by the line y =—17?

8. In the parabola 3? = 4 pa, if the diameter which bisects
all chords with slope m cuts the parabola in P, the tangent
at P is parallel to these chords.

9. In the parabola 3* = 4 pz find the equation of the chord
whose mid point is (a, 0).

10. Having a parabola given, how do you find its axis?
How do you find its focus ?

11. Find the coordinates of two points 4 and B on the
parabola 3? =4z, and prove that the tangents at 4 and B
meet on the diameter which bisects 4B.

12. A line / bisects all chords of slope m in the parabola
y* =4 px. Find the slope of the chords bisected by 7 in the
parabola ¢* = 4 ¢x.
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Exercise 40. Review

In the equation of the parabola y*=4px find the value
of p, given the following conditions:
1. One end of the focal width is the point (6, 12).
2. The parabola passes through the point (—10, 6).

3. One end of the focal width is 5 /5 units from the
vertex of the parabola.

4. For a point P on the parabola the subtangent is 15 and
the focal radius is 10.

5. The line 32 — 4y =12 is tangent to the parabola.

6. The tangent to the parabola at a point whose abscissa
is 6 has 2 for its y intercept.

7. Find the points on the parabola 3* =122 which are
9 units from the focus.

8. Find the points on the parabola 3*=— 24z which are
9 units from the vertex.

9. A parabolic trough is 4 ft. across the top and 2 ft. deep.
Choose suitable axes and find the equation of the parabola.

10. If a parabolic reflector is 6 in. across the face and 5 in.

deep, how far from the vertex of the parabola should the light
be set that the rays may be reflected parallel to the axis ?

11. This figure represents a par- D
abolic arch, with 4 B =20 ft., CD=06 ft.
Find the height of the arch at inter- / -\
vals of 2 ft. along AB. A o] B

12. In the Brooklyn Bridge the distance 4B between the
towers is 1595 ft., the towers AP, BQ rise 158 ft. above the
roadway 4 B,and PAQ is designed as a parabola. Q
Find the length of an iron rod from PMQ per-
pendicular to 4B, 100 ft. from A. A I B

Assume AMB to be a straight line. This is not
quite the case with this bridge. The cable PMQ would not form a
parabola unless so weighted at regular intervals as to cause it to do so.
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Find in each case the equation of the parabola subject to
the following conditions :

13. The vertex is (4, 6) and the focus is (4, 0).

14. The focus is (2, — 3) and the directrix is « = 8.

15. The vertex is on the y axis, the axis is the line y = 2,
and the focus is on the linex + 2y =7T.

16. The equation of a parabola with axis parallel to OX
or parallel to 0 involves three essential constants and may
always be written in the form y = aa®+ bz 4 ¢, when the
axis is parallel to OY, or x = «y® + by + ¢, when the axis is
parallel to OX.

17. What is the graph of the equation 43>+ By + Cx+D=0
when C =07 :

18. Find the equation of the parabola through the points
(2, 1), (5, — 2), and (10, 3), the axis being parallel to OX.

Represent the parabola by one of the forms given in §§ 121 and 123,
or by one of those given in Ex. 16 above.

19. What parabola has the point (6, 5) for its vertex, has
its axis parallel to 0V, and passes through the point (10, 15)?

Find the wvertex, focus, and focal width of each of the
Sollowing parabolas, and draw the figure :

20. «* +y=—0. 22. x =9 +y +1.

21. 3¢y*=12y + 22 —16. 23. 322+ 8ax — Ty =16.

Griven the parabola y*+ Ay + Bx+ C= 0, find the follow-
ing in terms of 4, B, C:

24. The focus. 26. The focal width.

25. The vertex. 27. The directrix.

28. Show that the two parabolas > — 4y =52—19 and
5y =1+ 6z — 2* are congruent. Draw the figures.

Prove that the distance from vertex to focus is the same for both.
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29. What does the equation 3= 4px become when the
origin is moved to the focus ?

30. Two congruent parabolas that have a common axis and
a common focus but extend in opposite directions intersect at
right angles.

31. Find the lowest point of the parabola y =3 2*+ 32— 2.

32. Find the highest point of the parabola y =2 — 3z — L a2

33. What point of the parabola # = 23* — 4y + 5 is nearest
the ¥ axis ?

If a projectile starts with a velocity of 800 ft./sec. at an
angle of 45° with the horizontal, find :

34. How high it goes, taking ¢ = 32.

35. How far away, on a horizontal line, it falls.

This distance is called the range of the projectile. For present pur-
poses ignore the resistance of the atmosphere.

If a projectile starts with a velocity of v ft./sec. at an angle
of @ degrees with the horizontal, prove that :

36. Its range is v*sin 2 a/g, and is greatest when a = 45°.

37. It reaches the maximum height «* sin®a/2 g.

38. The paths corresponding to various values of « all have
the same directrix.

39. Find the area of the triangle formed with the axes by the
tangent at the point (— 2, — 4) to the parabola 3* = — 8.

40. The slope of the tangent to the parabola %> = 4 pz at the
point whose ordinate is equal to the focal width is .

41. Find the equations of the tangents to the parabola
4> =42 at the points for which the focal radius is 10.

42. Tind the sine and the cosine of the angle made with OX
by the tangent at (— 9, 3) to the parabola 3* + « = 0.

43. Tind the equation of the normal at (,, 7,) to the parab-
ola y* = 4 px, and show that the = intercept is , + 2.
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44. The angle between the tangents to the parabola y*=8=x
at the points P,(§, — 6) and P,(8, 8) is equal to half the angle
between the focal radii to P, and P,.

45. The tangent to the parabola 6 = 3* at the point (z, ")
passes through the point (4, 7). Find «' and y'.

46. Find the tangents to the parabola 3*= 4x that pass
through the point (— 12, 6).

47. A tangent to the parabola 3*>= 20« is parallel to the
line « = y. Find the point of contact.

48. Given that the line y = 3 x + % is tangent to the parabola
y? =10z, find the value of %.

49. No line y=kx — %k, where % is real, can touch the
parabola & = 32

50. The condition that the line ax + by + ¢ = 0 shall be
tangent to the parabola y*= 4pz is ac = pl*

51. Find the locus of the intersection of two perpendicular
tangents to the parabola ¥* = 4 pu.

52. Given a parabola, find the locus of the intersection of
two tangents whose inclinations are complementary.

53. A point P moves along the parabola y?=122x with a
constant speed of 20 ft./sec. Find the horizontal and vertical
components of the speed of P when P is at (3, ?); that is,
find the speeds of P parallel to OX and OY.

Draw the rectangle with sides parallel to OX and OY, and with the
diagonal P lying along the tangent, P @ representing 20, the speed.

54. A point starts at the vertex and moves on the parabola
y? = 8 with a constant horizontal speed of 16 ft./sec. Find
its speed in its path, that is, in the direction of the tangent,
at the end of 2 sec.; at the end of ¢ seconds.

55. If A denotes the attraction between the sun and a
comet C' which moves on the parabola #* = 4z, the sun being
at the focus, find the tangential and normal components of 4
when C is at the point (9, 6).

For the technical terms see Iix. 15, page 100.
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56. The slope of the parabola y =ca® at (x,, y,) is 2ex,.

57. Using the result of Ex. 56, find the tangential and nor-
mal components of a weight of 1000 lb. attached to the parabola
a? =16 y at the point (16, 16).

58. The tangents to the parabola 3*=4 px at the points (7, k)
and (%', &'y intersect at the point (V22', 1[% + &'7).

59. If the ordinates of P, Q, R on the parabola y*=4 px are
in geometric progression, the tangents at P and R meet on the
ordinate of Q produced. "

60. If a right triangle is inscribed in a parabola with the
vertex of the right angle at the vertex of the parabola, then
as the triangle turns about this vertex the hypotenuse turns
about a fixed point on the axis of the parabola.

61. If a line / through the vertex cuts a parabola again in
P, and if the perpendicular to 7 at P meets the axis in Q, the
projection of PQ on the axis is constant.

62. Draw a parabola y*> = 4 pa, and from any point Q on the
focal width 4B draw perpendiculars QR, QS to the tangents
through .1 and B respectively. Find the coordinates of 2 and S,
and prove that 12 is tangent to the parabola.

63. Any circle with a focal radius of the parabola 3% = 4 px
as diameter is tangent to the y axis.

64. Any circle with a focal chord of the parabola 3* =4 px
" as diameter is tangent to the directrix.

65. Find the locus of the mid points of all ordinates of the
parabola ¥* = 4 pz.

66. Find the locus of the mid points of all the focal radii of
the parabola #* = 4 pax.

67. As a point P moves indefinitely far out on a parabola -
its distance from any line in the plane increases without limit.

68. T'ind the focus of the parabola which passes through
the points (0, 6) and (3, 9) and has its axis along the y axis.



CHAPTER VIII
THE ELLIPSE

135. Ellipse. Given a fixed point F and a fixed line /,
an ellipse is the locus of a point P which moves so that
the ratio of its distances from # and ! is a constant less
than unity; that is,
FP/RP=¢ (§118). R P

Drawing K7 perpen-
dicular to 7, there is on
KF apoint 4" so situ- — F <
ated that A'F/KA'=e,
and on K/ produced a
point 4 so situated that FA/KA =e. Therefore 4" and .1
are on the cllipse. Now let A'4=2qa, and let O be the
mid point of 4’4, so that 4'0=04 =«

Let us now find A0 and 70 in terms of « and e.

Since A'fr=e . KA, and FAd=e¢. K4, we have

AP+ FAd=e(KA' +K4).

l

But AF+FA=2a, KA'=KO — a,
and KA=KO + a.
Then 2a=¢.2KO0;
whence KO = ‘,
Also, FA—A'F=e(KA—KA4");
that is, (FO+a)—(a—FO)=e.2a;
whence FO= ae.

AG 139
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PROBLEM. EQUATION OF THE ELLIPSE

136. To find the equation of the ellipse.

. P B R
|
i 0 A K’
K 2 il <
BI

Solution. Taking the origin at O, the z axis perpendic-
ular to the directrix, and the y axis parallel to the directrix,
let P (z, y) be any point on the ellipse.

Then the equation may be found from the condition

FFP=e¢.RP. § 135

Since Fis (— ae, 0), then FP =V (z+ ae)2+ 3% §17

Since RP=KO — MO = g + 2 §135
then A e-RP=e<g+x>=a+ex.

Therefore V(z+ae)i+ 2 = a+ ex,
or A-A22+ y*=a?(1— &2).

This equation of the ellipse, simple as it is, may be even
more simply written by dividing both members by a2 (1— ¢?),
and then, letting a?(1— ¢?) = 0% we have

xz yZ
—4==1,
az-!-b2

We shall often write this equation in the form »%? + «%? = 2
It may also be written k2?4 ly? =1, where £ =1/a? and [ =1 /1>
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137. Drawing the Ellipse. Solving the general equation,
which was found in § 136, we have

y:ié Vaz—mzu
a

From this result we may easily prove that:

1. The z intercepts are ¢ and — a.
2. The y intercepts are o and — b.

Since in the solution of the problem in § 136 we put 4% for a?(1—e¢?),
and since e<1 by § 113, we see that b <a.

3. The value of y is real when — a = z = 4, and imaginary
in all other cases.

4. The curve is symmetric with respect to the coordinate
axes 0X and 0Y, and with respect to the origin O.

Let us now trace the ellipse in the first quadrant. As
« increases from 0 to a, y decreases from & to 0, decreasing
slowly when 2 is near 0, but decreasing rapidly when =z
is near a. These facts are represented by the curve B.{,
which we may now duplicate symmetrically in the four
quadrants to make the complete ellipse.

For the plotting in a numerical case see § 42.

We therefore see that to draw an ellipse when the
equation is in the form found in § 136 we may first find
the intercepts + @ and =+ b, and then sketch the curve.

138. Second Focus and Directrix. If the figure shown
in §186 is revolved through 180° about the y axis, the
ellipse revolves into itself, being symmetric with respect to
the y axis. The focus then falls on OX at F’, making
OF' = FO, and the directrix KR falls in the position K'R'.
Hence the ellipse may equally well be defined from the
focus and directrix in the new positions, and we say that
the ellipse has two foci, ¥ and #7, and two directrices.
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139. Axes, Vertices, and Center. The segments 4’4 and
B'B are called respectively the major axis and the minor
azis of the ellipse. The ends 4’ and 4 of the major axis
are called the vertices of the ellipse; the point O is called
the center of the ellipse; and the segments 04 and OB, or
a and b, are called the semiazes of the ellipse.

140. Eccentricity. The eccentricity e is related to the
semiaxes a and b by the formula ?=a?(1—¢?). §136
vVa — v

Hence e=
a

It is, therefore, evident that the distance ae from focus
to center (§185) is FO=ae=Va2— 2

141. Focal Width. The focal width or latus rectum
(§ 120) of the ellipse 22/a®+ y?/6% =1 is found by doubling
the positive ordinate at the focus; that is, the ordinate
corresponding to z=va? —82 (§140). Substituting this
value of z, we have for the positive ordinate y = 0?/a.

Hence focal width = .27172 .

142. Major Axis as y Axis. If the y axis is taken along
the major axis, that is, along the axis on which the foci
lie, the equation of the ellipse is obviously, Y

as before, 2 . B
¥_
atE=t / A
X

But in this case @ is the minor semiaxis A4’ o Ja

and b is the major semiaxis, so that @ and & \F'

change places in the preceding formulas. B,
We therefore see that Kl 1

2=12(1—e?), e =V02—a2/b, F'O=be =VI*— a2, K'O=Db/e.
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THEOREM. SUM OF THE FOCAL RADII

143. The sum of the distances from the foct to any point
on an ellipse is constant and equal to the major axis.

R’ P \R R
K’ ﬁ /m K
!/

Proof. Let E(z;, y;) be any point on the ellipse, # and
F' the foci, and KR and K'R' the directrices. By § 135,

FB=¢.BR=e¢(OK —2,)= e<9— x1>= a— ez,
e i

and F'h=e¢.R E=e(OK'+x)= e<g+xl>= a + ex;.
©\e

Therefore FE+F'E=2a,
which, since @ represents a constant, proves the theorem.

Hence an ellipse may be drawn by holding a moving pencil point
P, against a string, the ends of which are fastened at " and F".

144, Illustrative Examples. 1. Show that the equation
42249 y*=36 represents an ellipse, and find the foci,
eccentricity, directrices, and focal width..

The equation, written in the form 22/9 + »2/4 =1, represents an
ellipse (§ 136) with a® = 9 and 4* = 4. Using a =3 and b =2, the foci
(§140) are (£+/3, 0); the eccentricity (§140) is 1V/5; the direc-
trices (§185) are z =+ 9/V/5; and the focal width (§141) is 23.

2. Find the equation of the ellipse with the foci (+ 8, 0)
and having e = 3.

‘From the equations Va?—*=3 and Va?— 0*/a =32 we have
a =5 and ) = 4. Hence the required equation is 22/25 + 42/16 =1.
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Exercise 41. Equations of Ellipses

Draw the ellipse for each of the following equations and
find the foct, eccentricity, directrices, and focal width :

1. 4% 4 25 o =100. 6. 9a®+ 47 = 36.
2. 927 4+ 167 = 144. ~Q 7. 2?4 2597 = 25.
3. 322+ 442 =12. 8. 6x% 4+ 9% = 28.
4. 3at 4442 = 24. 9. 222 =1 — 42

5. 25 2% + 947 = 225. 10. 8+ 3y*=Tb.

11. The equation 4a? + 9y* =— 36 can be written in the
form of the equation of an ellipse, a*/a® 4 »?/0* = 1, but there
are no real points on the locus.

12. The equation A2? 4 Biy? = (', where 4 and B are positive,
represents an ellipse that is real if C is positive, a single point
if ¢ = 0, and imaginary if C' is negative.

13. ¥ind in terms of 4, B, and C the focus of the ellipse
Ax* + By? = C where 4 and B are positive and 4 < B.

Given the following conditions, find the equations of the
ellipses having axes on XX' and YY', and draw the figures :

14. Foci, (+ 4, 0); vertices, (4 6, 0).

15. Foci, (& 3, 0) ; directrices, = 4 12.

16. Minor axis, 6; foci, (£ 4, 0).

17. Vertices, (+ 8, 0); eccentricity, $.

18. Vertices, (0, + 8); eccentricity, §.

19. Eccentricity, 4 ; major axis, 12; foci on 0.

20. Vertices, (+ 7,0) ; the ellipse passes through (1, 1).

'?1. Eccentricity, £; focal width, 32, ‘

22. The points (2, 1) and (1, \/g) are on the ellipse.

The form kx? + ly? =1, given in § 136, is the simplest for this case.

23. Find the equation of the ellipse if the distance between
the foci equals the minor axis and the focal width is 4.
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24. The line joining one end of the minor axis of an ellipse
to one of the foci is equal to half the major axis.

25. An arch in the form of half an ellipse is 40 ft. wide and
15 ft. high at the center. Find the height of the arch at inter-
vals of 10 ft. along its width.

26. An ellipse in which the major axis is equal to the minor
axis is a circle.

27. In an ellipse with the fixed major axis 2« and the
variable minor axis 290, as & approaches « the directrix moves
indefinitely far away, the eccentricity approaches 0, and the
foei approach the center.

28. Draw an ellipse having the major axis 2 ¢ and the minor
axis 25. Describe a circle having the major axis of the ellipse
as diameter. Taking any abscissa 0] = x, draw the correspond-
ing ordinates of the points P and P’ on the ellipse and circle
respectively. Show that the ordinates /P and MP' are in the
constant ratio 4/a.

29. Draw au ellipse, and then draw a circle on its major
axis as diameter. Draw rectangles as in this figure. From
Ex. 28 show that each rectangle R
with a vertex on the ellipse and the
corresponding rectangle R' with a ver-
tex on the circle are related thus:
R =0R'/a. Then, increasing indefi-
nitely the number of rectangles, show
that the area of the ellipse is 7rad.

It should be observed that a circle is
a special kind of ellipse, that in which
a=>b=r. In the circle wab = waa = #r2.

30. Prove the converse of the theorem of § 143; that is,
prove that the locus of a point which moves so that the sum
of its distances from two fixed points I and I is a constant
2 a is an ellipse of which the foci are F' and F, and of which
the major axis is 2 a.
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PROBLEM. ELLIPSE WITH A GIVEN CENTER

145. To find the equation of the ellipse having its center
at (hy, k) and its axes parallel to the coordinate axes.

Y Y.

/-
< C(h,k) o
\Ic

h X

(9]

Solution. The equation of the ellipse referred to the
axes CX’ and CY’, taken along the axes of the ellipse, is

22 y‘Z : R

Now make a translation of the axes CX' and CY’, mov- -
ing the origin €' to the point O, which with respect to C‘as
origin is the point (=4, — k). To effect this (§ 105) we
write z — & for z and y —k for y, and the new equation
ot the ellipse, referred to OX and 0, is

=1 @=H

a i

It should be observed that this equation, when cleared of frac-
tions, is of the form Az?+ By?+ Cx + Dy + E =0.

If a is greater than §, the major axis of the ellipse is parallel to
OX; but if a is less than 5, the minor axis is parallel to OX.

The form of the equation of an ellipse whose axes are not parallel
to the coordinate axes will be considered in Chapter X.
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THEOREM. THE EQUATION Ax?+4 By?+ Cx+ Dy+E=0

146. If A and B have the same sign and are not 0, every
equation of the form Az*+ By?+ Cx+ Dy + E= 0 represents
an ellipse having its axes parallel to the coordinate axes.

Proof. By the process of completing squares such an
equation may always be written in the form
A(x—h)*+B(y —k)?=G,

where %, k, and G' are constants.
But this equation may be written

AN — )2
A(z—1h) +B(gj k) _1,
G G
0P, —FF_,
G/4 + G¢/B
which, by § 145, represents an ellipse having its center

at the point (4, &) and its semiaxes a and & such that
a?= G/4 and v®*=G/B.

or

For example, from the equation

4224+ 9> —16z+18y =11

we have 4(@2—4x)+ 902 +2y =11,

or 4(x—2)+9(y+1)2=36.
—9)2 2

Then @2 0') +-———("/-Zl) =1

When the equation Ax?+ By?+ Cx+ Dy+ E =0 is reduced to
the form A (x —h)?+ B(y—k)?= G, if G has the same sign as .
and B, the ellipse is obviously real; that is, real values of z and y
satisfy the equation. If G' =0, the graph consists of one point only,
the point (%, %), and is called a point ellipse. 1f G' differs in sign
‘from A and B, there are no real points on the graph, and the
equation represents an imaginary ellipse. In this book we shall not
consider imaginary conics.
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Exercise 42. Axes Parallel to OX and OY

Draw the following ellipses, and find the center, eccentricity,
and foci of each : '
a4y —6x—24y4+41=0.
42?499 +162— 18y —11=0.
422+ 25y —8x— 100y +4=0.
2224+ 516+ 20y + 42 =
250+ 494+ 50— 8y =1T71.
2243y +122—-12y =6.
92+ yf—4y =5
92?4+ 16y* — 122+ 16y = 64.
3+ Ty —4dx + y=20.
cat 22— 6y =9.75.

11. The equation 4a? 4 By* + Cx -+ Dy + E = 0, represent-
ing an ellipse, involves four essential constants and can always
be written in the form a? + ¢y* + dx + ey +f=0.

In finding the equation of an ellipse which satisfies the given con-
ditions in'a problem, it is well to make a choice among this form of the
equation, the forms given in § 136, and the form given in § 145.

O 0 3 O Gt B W O e

-
(=]

In each of the following cases find the equation of the ellipse
having its azes parallel to OX and OY and fulfilling the
gtven conditions, and draw the figure :

12. Center (4, 3), eccentricity 1, and major axis parallel
to 0X, 12.

13. Foci (6, — 2) and (— 2, — 2), and major axis equal to
twice the minor axis.

14. Center (1, 2), and passing through (1, 1) and (3, 2).
15. Vertices (0, — 2) and (0, 10), and one focus (0, 0).
16. Intercepts 2 and 8 on OX, and 2 and 4 4 on OY.
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PROBLEM. SLOPE OF THE ELLIPSE

147. To find the slope of the ellipse 2%/a® + y2/b2 =1 at
any point F (zy, y;) on the ellipse.

Solution. I.et a second point on the given ellipse be
Q(xy+h, y, + k), where PR=h, RQ = k.

Then the slope of the secant BQ is k/h.

Since the points B (2, ;) and @ (2, + 4, y; + k) are on
the ellipse %% + a?y? = a2b? we have

P2l + a*y} = o?l?, ¢y

and V(2 + 1)+ a?(yy + k)2 = a?b2 (2)

Subtracting (1) from (2), we have

k(2 a%y, + a®k) = — h (2 V% + B?h);

when k__20n+ 00

ence R 2a%,+ak
Now when @ — B, h— 0 and £— 0; and hence

limk/h = — 2 b%x,/2 a?y,.

But lim k/k = m, the slope of the tangent at P (z,, y,).

Hence m=—-2,

which is also the slope of the ellipse at F (z;, ;). §125
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PROBLEM. TANGENT TO THE ELLIPSE

148, To find the equation of the tangent to the ellipse
22/ + y2 /B2 =1 at the point F (x4 y;)-

Solution. ,The slope of the tangent at R being—%ﬂ '
a

(§147), the equation of the tangent is s
."/—yl—__“(x 1) § 69
that is, b2,z + a?yy = i+ %y
Since (zy, ;) is on the ellipse, we have (%% + a?y} = %%
Hence b + oy y = a®?,
or xlx + yi/ =1.

The equation of the tangent, therefore, may be obtained from the
equation of the ellipse by writing z,z for 22, and y,y for y*

149. CorOLLARY 1. The equation of the mormal to the
ellipse a2/a® + y?/V> =1 at the point B(zy, y,) ts

a’y
Yy—-uy = ble(x — X,).
1

150. COROLLARY 2. The intercepts of the tangent and
normal at the point F (2, y,) on an ellipse are as follows :

1. z intercept of tangent, x= ;.;
: 1
b2
2. y intercept of tangent, y= 7 ;
1
3.  intercept of L ox=2"P e §140
3. z intercept of normal, x=—— x,=¢%x; § )
b — a2
4. y intercept of normal, y=——y,.
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PROBLEM. TANGENTS HAVING A GIVEN SLOPE

151. 7o find the equations of the lines which have the slope
m and are tangent to the ellipse 2%/a® + y*/b* =1.

P
N

Solution. Let the equation y=mz+ k& represent any
line having the slope m. To find the common points of
this line and the ellipse we regard their equations as
simultaneous. Thus, the equation of the ellipse being

1)2.’1?2 + a2_y2 = (12[)2,
we have b2 4 % (mz + k)% = a?,
or (0% + a*m?) 2% + 2 aPmkx + a2 (k2 — %) = 0.

The roots of this quadratic in = are the abscissas of the
common points.

The condition under which the line y = mz + £ is tangent
to the ellipse is that the common points coincide, and
thus have the same .abscissa; that is, that the roots of
the above quadratic in z are equal, which requires that

(2 a?mk)? — 4 (B + a®m?) a2 (B2 — 1?) =0
whence k=4 Vaim?+ b2
Hence there are two tangents having the slope m, namely,

y=mxExVam + .
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Exercise 43. Tangents and -Normals

In each of the following equations show that P is on the
ellipse, find the tangent and normal at P, and draw the figure :

1. 324+ 8y*=35; P(1,2). 4.9y +a2*=25; P(4,—1).

2. 522+ 2y*=98; P(4,3). 5. 92 +3°=25; P(—1,—4).

3. &+ 4y*=25;P(3,—2). 6. 62°+11y°=98; (3, — 2).

7. Find the equations of those tangents to the ellipse
7%+ 3 y* = 28 which have the slope £, and also find the point
of contact and the intercepts of each tangent. -

8. Draw the ellipse 2%+ 25 y* =169, the tangent at the point
P(12, 1), and two other tangents perpendicular to that tan-
gent. Find the equations of the tangents.

9. Find the equation of that tangent to the ellipse
3 2? + 4 y* = 72 which forms with the axes a triangle of area 21.

The student should find that there are eight such tangents.

10. If the normal at P to the ellipse 1 2* + 23? = 50 passes
through one end of the minor axis, find P.

It is obvious geometrically that the minor axis itself is such a normal,
but there may be others. Let P be the point (&, k).

11. Through any point (%, k) two tangents to the ellipse may
be drawn. _

Consider the case of two coincident tangents and the case of imaginary
tangents. The student may refer to property 5, § 130.

12. Find the equations of the tangents through the point
(8, —1) to the ellipse 22*+4 53> ="70.

13. Find the equations of those tangents to the ellipse
16 2* + 93 = 144 which have equal intercepts.

14. An arch in the form of half an ellipse has a span of.
40 ft. and a height of 15 ft. at the center. Draw the normal at

the point of the ellipse which is 10 ft. above the major axis,
and find where the normal cuts the major axis.
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Find the distance to a focus of the ellipse V2% + a?y? = a2b?
JSrom a tangent drawn as follows :

15. At any point (x,, ,) on the ellipse.

16. At one end of a focal width.

17. Having the slope m.

Find the distance to the center of the ellipse b2+ a%y? = a°)?
Jrom a tangent drawn as follows :

18. At one end of a focal width.
19. Having the slope m.

20. Parallel to the line passing through one focus and one
end of the focal width through the other focus.

21. Parallel to the line passing through one vertex and one
end of the minor axis.

22. Using the proper formula in § 150, construct the tangent
to the ellipse a?/a* + »*/0* =1 at the point (z, y,).

23. If we regard the major semiaxis @ as constant, but regard
h as having various values, then the equation 2?/u* + 72/i* =1
represents many ellipses, one for each value of 5. Show that
all the tangents to these ellipses at points which have the same
abscissa meet on the z axis.

24. By Ex. 23 construct the tangents to a given ellipse from
any point on the major axis produced.

~ 25. No normal to an ellipse, excepting the major axis, passes
between a focus and the vertex nearer that focus.

26. The product of the x intercepts of the tangent and
normal at the point (x, y,) is the constant «* — 72

27. The product of the y intercepts of the tangent and
normal at the point (x,, »,) is the constant 4% — o>

28. The tangent and normal at the point P(x,, 7,) bisect the
angles between the focal radii of P.

Use the slopes of the lines concerned, and thus find the angles.
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THEOREM. PROPERTY OF A NORMAL

152. The normal at any point R (x,, y,) on an ellipse
bisects the angle between the focal radii of the point .

e

Proof. Since F'O=OF = ae, §§ 138, 135
and the « intercept of the normal is ON, where
ON = %, $ 150
we have PN _F0+0N
NF — OF—ON
_ae+ ek,
T e — ez,
_a + ex,
Ta— e,

Since in proving the theorem of § 143 we showed that
F'E=a+ex; and FI,=a — ex;, we have
F'N _F'ER
NF — FR
Therefore, since RN divides F'F into segments propor-
tional to F'E and FR, KN bisects the angle F'RT.

This proves an interesting property of the ellipse in regard to
reflection. If a source of light, sound, or heat is at one focus, the
waves are all reflected from the ellipse to the other focus.
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Exercise 44. Properties of the Ellipse

1. The axes of an ellipse are normal to the ellipse, and no
other normal passes through the center.

Jo4

[72) I

In the above figure, F and F' are the foci of the ellipse ;
ET is the tangent at K (zy, y,), the slope of this tangent
being m; EN s the normal at R: F'E', 0Q, and FE are
perpendicular to RT; and ES and BS' are perpendicular
to the axes. Prove the following propertics of the ellipse :

2. ST =(a* — af)/z, 8. 0Q-NP,=0B" = I~

3. 81" =0~ yi)/y, 9. 0Q-N'P,=d%

4. NS =z [ 10. N'P. NP = F'P . FP,
5. N'S' = a%y, /I 11. N'P,. NP,=T'P . P T.
6. ON .0T = 01" 12. FE.FE' =12

7. 0S.0T =01" = a 13. a?. SPl =12 A'S . 84.

14. As the tangent turns about the ellipse the locus of £,
the foot of the perpendicular from F to the tangent, is the circle
having the center O and the radius «.

A simple method is to represent the tangent P,T by the equation
y = mx +Va2m? + b2 and the line through F(ae, 0) perpendicular to
P, T by the equation y =— (z — ae)/m, or & + my = ae; then, regarding
these equations as simultaneous, eliminate m and obtain the equation
#2 + y2 = a2, which is the circle with center O and radius a.

AG
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PROBLEM. LOCUS OF MID POINTS OF PARALLEL CHORDS

153. To find the locus of the mid points of a system of
parallel chords of an ellipse.

M,

7/
ey

Solution. Let the ellipse be represented by the equation
0%2 + a?y2= a2b?; the slope of the parallel” chords by m;
any one of the chords, say BB, by y=mx+k; and the
mid point of this chord by M (2, y').

For the coordinates of B and E we regard the equations
02+ a?y?= a?b? and y = mx + k as simultaneous.

Eliminating y, we have

b2+ a? (mx + k)2= a?l?;
that is,  (am?+ 82) 2%+ 2 a2mkx + a2k — a2?= 0.

The roots of this quadratic in  are the abscissas z; and
xy of the common points K and B, and the abscissa of
the mid point M is half their sum. That is, since the sum

. 2 a’mk
of the roots #; and z, is — ———, we have
a?m? 4 02
2
: a?mlk
/1 .
=5+ 0)=— 5
b (Tt ) am?+ b2

@

If the student does not recall the fact that the sum of the roots
of the general quadratic Aa? + Ba?+ (/=0 is — B/, he may con-
sult § 2 on page 283 of the Supplement.
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Since M (2, ') is on the line y = mz + k, we have
y' =mal + k. 2

We now have relations (1) and (2) involving 2/ and
4/, the constant slope m, and the y intercept %, which is
different for different chords. If we combine these rela-
tions in such a way as to eliminate %, we obtain the
desired relation between the coordinates z' and y' of the
mid point of any chord. Substituting in (1), we have

2. ! ]
,=_am(y—mx)_
b2+ a?m?
I ’ ® o,
that is =——20;
’ y a?m”

or, using z and y for the variable coordinates of

v
Yy=———2x 3

p 3
This is the equation of the diameter which bisects the
chords having the slope m. It is obviously a straight
line through the center of the ellipse, and it is evident
that every straight line through the center is a diameter.
The above method fails if the chords are parallel to O, for then
the equation of any one of the chords is z = £/, and not y = mz + .

But chords parallel to OY are bisected by the major axis, since the
ellipse is symmetric with respect to the z axis.

154. CorOLLARY. If m' is the slope of the diameter
which bisects the chords of slope m, then

Since the equation of the diameter is (3) above, its slope is
— b%/a®m. That is, m" =— 0¥/«®m, and m'm = — V?/d>
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THEOREM. CONJUGATE DIAMETERS

155. If one diameter of an ellipse bisects the chords parallel
to another diameter, the second diameter bisects the chords

parallel to the first.
R

S

Proof. Let m/ be the slope of the first diameter 2§, and
m the slope of the second diameter R.S.
Since by hypothesis P() bisects the chords parallel to BS,
m'm =— 0%/a% § 154
But this is also the condition under which RS bisects the
chords parallel to PQ, and hence the theorem is proved.

156. Conjugate Diameters. If each of two diameters
of an ellipse bisects the chords parallel to the other, the
diameters are called conjugate diameters.

Exercise 45. Diameters

Given the ellipse 922+ 16 y* = 144, find the equations of :

1. The diameter which bisects the chords having the slope %

2. The chord of which the mid point is (2, —1).

3. Two conjugate diameters, one of which passes through
the point (1, 2).

4. The chord which passes through the point (6 10) and is
bisected by the diameter « + 2y = 0.

5. In Ex. 4 find the mid point of the chord 3 — 2y =T.
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THEOREM. TANGENTS AT ENDS OF A DIAMETER

157. The tangents at the ends of a diameter of an ellipse
are parallel to each other and to the conjugate diameter.

Proof. Let P (z;, y,) and @(—z;, — ;) be the ends of
any diameter P@. Then the slope m of PQ is y,/x,. Hence
m/, the slope of the conjugate diameter .S, found from the
relation mm' =—0%/a?(§ 154) is —b%z,/a%y,. But the slopes
of the tangents at P (x, y;) and Q(—=z,, —y,) are both
— 0%, /oy, (§147), and hence these tangents are parallel
to each other and to the conjugate diameter.

PROBLEM. ENDS OF A CONJUGATE DIAMETER

158. Giiven one end P (zy, y;) of a diameter of an ellipse,
to find the ends of the conjugate diameter.

Solution. Let P@Q be the diameter through P and let &S
be the conjugate diameter.
We may show, as in the proof of § 157, that the slope
2 2
of RS is —%; then the equation of RS is y=— %x
ay, @Y1
To find the coordinates of R and S, we regard this
equation and the equation of the ellipse d2a2+ a?y?= a?b?
as simultaneous. Eliminating y and simplifying, we have
gl eyt '
a*yf
But since P (2, ) is on the ellipse, b2} + a’y} = a?b2
H mz_a22 d wes? T
ence 2'=ooyf and w=toy, y=——lo=F -z,

Y1
and the ends of the conjugate diameter RS are

a b a b
R<— 7w ;x1> and S (Z Yo—- x1>.
'
|
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THEOREM. ANGLE BETWEEN CONJUGATE DIAMETERS

159. If 0 is the angle from one semidiameter a' of an ellipse
to its conjugate b, then sin @ = ab/a't’.

R

N

L)

S

Proof. Let OP and OR be the semidiameters a' and &'
with inclinations @ and &/, and let P be the point (2, ;).

Then R is the point (— ay,/b, bz;/a). § 168
Then sina=y,/a', cosa=ux/d/, sina'= (wz’/a = 51;7 Ty
and cosa’ —~M=——?— 1
o oo’
Since 8 = a'— a, sin 8 = sin &’ cos @ — cos @’ sin a, or
b 71 7/1 Pal+ oyl o ab
sin 0 = 7+ 4+ g 01 A abal

Exercise 46. Conjugate Diameters

1. In general, two conjugate diameters of an ellipse are
not perpendicular to each other. State the exceptional case.

2. Two conjugate diameters of an ellipse cannot both lie
within the same quadrant.

3. If o' and ' are any two conjugate semidiameters of an
ellipse, then a'? + 02 = a® + 0%
4. Find the equations of the four tangents at the extremities

of two conjugate diameters of the ellipse 5% 4 2 y% = 38, one
of the extremities being the point (2, — 3).
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160. Auxiliary Circle. The circle having for diameter
the major axis of the ellipse is called the major auailiary
circle of the ellipse; obviously, its equation is a?+ y2= a2

If P is a point on the ellipse

. Q
ABA', and the ordinate AP pro- i
duced meets the major auxiliary B :.P
circle in @, the points P and Q are |
sald to be corresponding points b ;
of the ellipse and the circle. 47 0 M A

The cirele 22+ »2 = 0% which has for diameter the minor axis, is
called the minor auxiliary circle of the ellipse.

161. Eccentric Angle. The angle M0Q is called the
eccentric angle of the ellipse for the point P, and is denoted
by the letter ¢.

THEOREM. ELLIPSE AND MAJOR AUXILIARY CIRCLE

162. The ordinates of corresponding points on the ellipse
0%? + a?y? = a?0? and the major auxiliary circle are in the
constant ratio b: a. '

Proof. Denote by 2 the common abscissa OM of P and
@. Then since P (z, MP) is on the ellipse and Q(z, MQ)
is on the circle, we have

b222 4 2 MP2 = a2l?,

and 22+ MQ* = a?;
ho—

whence MP =+ 5\/a2 — 22

and MQ=+Va2—a2

Obviously, then, we have the proportion
MP:MQ=0:a.
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PROBLEM. ECCENTRIC ANGLE

163. Tb express the coordinates of any point P(z, y) on
an ellipse in terms of the eccentric angle for the point P.

B

L

\d
A 0O M A

Proof. Since 0Q =a, we have x = a cos ¢.

And since MP =g - MQ, §162
we have _! UQ = b asin ¢.
=3 a )
That is, x=acosg,
and y=bsing.

These equations possess the advantage of expressing the variable
coordinates z and y in terms of the single variable ¢.

Exercise 47. Eccentric Angles

Find the eccentric angle for each point in Exs. 1 and 2 :

1. The point (2, '\/3) on the ellipse z* + 4 = 16.

2. The point (z,, 7,) on the ellipse &%* + «’* = a®%

3. The tangent to the ellipse 0%® + a*/* = o’ at the point
for which the eccentric angle is ¢ is dx cos ¢ + ay sin ¢ = ab.

4. If ¢ is the eccentric angle for an end of a diameter of
the ellipse o%* + a®y® = a®? the ends of the conjugate diameter
are (— a sin ¢, b cos ¢) and (e sin ¢, — b cos ).

5. The eccentric angles for the ends of two conjugate semi-
diameters differ by 90°.
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Exercise 48. Review

1. The ellipses 42?4 93* = 36 and 42® 4 9 = 72 have the
same eccentricity.

2. The ellipses 16 2* + 9y =144 and 172>+ 104> =170
have the same foci.

3. If the ellipse 42% 4+ 73 = 36 is rotated 90° about its
center, it coincides with the ellipse 7a? 4 4 y* = 36.

4. All the ellipses which are represented by the equation

2y

atp="5h
for various positive values of %, have the same center, have
their axes in the same ratio, and have the same eccentricity.

5. Draw any two of the ellipses of Ex. 4 and a number of
parallel lines cutting chords from both ellipses. Then the line
which bisects the chords of one ellipse also bisects the chords
of the other ellipse.

6. The two segments of any line intercepted between the
two ellipses of Ex. 5 are equal, and any chord of the larger
ellipse which is tangent to the smaller ellipse is bisected at
the point of tangency.

7. All the ellipses which are represented by the equation
xi 2

T LYy
a"+/c+bz+k—

for various values of %, have the same foci.

1,

If k is negative and its absolute value lies between a? and b2, either
the 22 term or the y2 term is negative. In neither case does the equation
represent an ellipse.

8. Draw the axes of an ellipse, having given the foci and
one point on the curve.

9. Having given one point of an ellipse and the length
and position of the major axis, draw the minor axis and
the foci.
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10. This figure represents an arch formed by less than half
an ellipse. Chord 4B is 20 ft. long and is 4 ft. from the
highest point E. Chord

E
CD is 16 ft. long and is — ]
2 ft. from E. Find the 2 D
height of the arch at inter- A/ \B

vals of 5 ft. along 4 B.

11. Find the ratio of the two axes of an ellipse if the center
and foci divide the major axis into four equal parts.

Find the equations of the ellipses having axes on the coordi-
nate azes and satisfying the following conditions :

12. Sum of axes, 54 ; distance between the foci, 36.
13. Major axis, 20; minor axis equal to the distance between
the foci.

14. Sum of the focal radii of a point on the ellipse, three
times the distance from focus to vertex ; minor axis, 8.

15. Draw a circle and an ellipse having the same center,
the diameter of the circle being less than the major axis and
greater than the minor axis of the ellipse. Prove that the
quadrilateral having for vertices the four common points of
the circle and ellipse is a rectangle having its sides parallel to
the axes. If this rectangle is a square and the axes of the
ellipse are given, find the radius of the circle.

16. The minor semiaxis of an ellipse is the mean proportional
between the segments of the major axis made by a focus.

17. Prove the theorem of Ex. 3, page 160, by using the
result of Ex. 4, page 162, and that of §163.

18. If an end P of a diameter of an ellipse (§163) is the
point (a cos ¢, b sin ), then, from Ex. 4, page 162, an end
of the conjugate diameter is the point R(— a sin¢, b cos ¢).
Write the equations of the tangents at P and- R, and prove
that these tangents intersect at the point whose coordinates are
a (cos ¢ — sin ¢) and b (cos ¢ + sin ¢).
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Find the equations of the ellipses having axes parallel to
the coordinate axes, and satisfying the following conditions :

19. Origin at the left end of the major axis.

20. Origin at the right end of the major axis.

21. Origin at the upper end of the minor axis.

22. Origin at one focus.

23. Axes 10 and 16; center (— 3, 2).

24. Center (— 1, 1); one focus (—1, 5); one end of major
axis (—1, —5).

25. Given an ellipse, find by construction its center, foci,
and axes.

26. Show that the two ellipses 22*+ 3y +4x—6y =0
and 22* 4 59>+ 42 — 10y = 0 have the same center, and find
the coordinates of their common points.

If the origin is first moved to the common center, the solution of the
simultaneous equations is much simpler.

27. Find the ratio in which the abscissa of any point P on
the ellipse 0%* + a** = o®*® is divided by the normal at P.

28. Given an ellipse, find the locus of the intersection of
tangents which are perpendicular to each other.

If y = ma + Va?m? + b2 represents one tangent, then the other is rep-

resented by y =— 1. T + /a2<— 1>2 + b2 Seenote to Ix. 14, page 155.
m m

29. Find the locus of the intersection of a tangent to the
ellipse and the perpendicular from the origin to the tangent.

This locus, obviously passing through the ends of the axes of the
ellipse but elsewhere a little broader than the ellipse, is called an oval.

30. The tangents at the ends of any chord of an ellipse
intersect on the diameter which bisects the chord.

31. Find the points at which tangents that are equally in-
clined to the axes touch the ellipse 0%® + a?)® = %>
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32. Find the condition that the line z/m + y/n=1 is
tangent to the ellipse x?/a®+4 y?/0* =1.

33. The parallelogram which is formed by the four tangents
at the ends of two conjugate diameters of an ellipse has a
constant area.

Recall that the area of a parallelogram is a’d’sin 6, where a’ and b’
are adjacent sides and @ is the included angle, and then use § 159.

34. If the ends P and P' of any diameter are joined to any
point @ on the ellipse %* + a*y* = @®? the diameters parallel
to PQ and P'Q are conjugate.

Prove that the product of the slopes of P@Q and P’Q is — b2/a2.

35. Draw the rectangle formed by the tangents at the ends
of the axes of an ellipse. Prove that the diameters along the
diagonals of the rectangle are conjugate and equal.

36. Find the eccentric angles for the ends of the equal
conjugate diameters of Lx. 35.

37. The path of the earth is an ellipse, the sun being at one
focus. Find the equation and eccentricity of the ellipse if the
distances from the sun to the ends of the major axis are
respectively 90 and 93 millions of miles.

38. Find the locus of the mid points of the ordinates of a
circle that has its center at the origin.

39. Find the locus of the mid points of the chords drawn
through one end of the minor axis of an ellipse.

40. The sum of the squares of the reciprocals of two per-
pendicular diameters of an ellipse is constant.

41. If the tangents at the vertices 4’ and 4 of an ellipse
meet any other tangent in the points C' and C respectively,
then 4'C'- AC =P

42. Determine the number of normals from a given point to
a given ellipse.

43. The circle having as diameter a focal radius of an ellipse
is tangent to the major auxiliary circle.



CHAPTER IX
THE HYPERBOLA

164. Hyperbola. Given a fixed point # and a fixed line /,
a hyperbola is the locus of a point P which moves so that
the ratio of its distances from # and [ is a constant greater
than unity; that is, #P/PR =e¢ (§ 113).

R—P\
Y o K[ 4 F
!

Draw KF perpendicular to /. Then on KF there is a
point 4 such that 4#/KA4=e, and on FK produced there
is a point A4’ such that 4'F/A'K=e. Thatis, AF=¢ . KA,
and A'F=e¢. AK.

Then, by definition, 4 and A4’ are on the hyperbola.
Now let 4’4=2a, let O be the mid point of 4’4, so that
A'0O=04=a, and find OK and OF in terms of « and e.

Since  A'F— AF=e(4'K —KA),

that is, 2a=e(a+ O0K—a— 0K),
we have oK - 2.
: e
Also, AF+AF=20F=¢(AK+KA)=e¢-2a;
whence OF = ae.

167
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PROBLEM. EQUATION OF THE HYPERBOLA
165. Tb find the equation of the hyperbola.

Y |g

P
B

FjAa O AFr M X

Solution. Taking the origin at O (§164), the z axis
perpendicular to the directrix, and the y axis parallel to the
directrix, let P (z, y) be any point on the hyperbola.

Then the equation may be found from the condition

FP=c¢.RP. § 164
Since F is (ae, 0), then FP =\/(z——ae)2+—y2. §17
Since RP=0M—OK=x—a/e, §164
then e-RP=ce¢(z—aje)=ex—a.
Therefore ex —a =V (x—ae)?+ y?;
whence (@—1D22—y2=a?( 1),
or ol

@ @ (62 )
Letting the positive quantity a?(e? —1)= 0% we have
x2 2
_¥_.

@& v

This equation is often written %% — a%? = «%?% Tt may also be
written lz® — ly?2 =1, where ' =1/a?and [ =1/b% Compare §136.
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166. Shape of the Hyperbola. The shape of the hyper-
bola is easily inferred from the equation
2 P
a B
or from the derived equation

Y=+ gx/xz— a

=1,

From this equation we may easily prove that:

1. The z intercepts are a and — a.

2. The y intercepts are imaginary.

3. The value of y is real when z is numerically equal
to or greater than @, and is either positive or negative ; but
y is imaginary when —a<z<a.

4. The curve is symmetric with respect to the axes OX
and 0%, and also with respect to the origin O.

Let us trace the hyperbola in the first quadrant. When
z=a, y=0; and as z increases without limit, y increases
without limit. Duplicating the curve symmetrically in each
of the other quadrants, we have the complete hyperbola.

167. Second Focus and Directrix. As in the case of the
ellipse (§ 188), the hyperbola may equally well be defined
from a second focus F' and a second directrix K'R'. It is
evident that #' and F, and K'R' and KR, are symmetrically
located with respect to OY.

168. Axes, Vertices, and Center. The segment 4’4 is
called the real azis and the point O the center of the hyper-
bola. The points 4’ and 4 are called the wertices. Though
the curve does not cut the y axis (§ 166, 2), we lay off
OB =10, OB'=—b, and call B'B the conjugate axis.

The real axis is also commonly called the transverse axis; but since
the term is often confusing we shall use the simpler one given above,
leaving it to the instructor to change to the older usage if desired.
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169. Eccentricity. The eccentricity e is related to the
semiaxes @ and b by the formula a?(¢? —1) =02 (§ 165).

—\/a2+bz
_-—a_°

Hence e

It is, therefore, evident that the distance ae from center
to focus (§164) is OF = ae =Va2 + 12

170. Focal Width. The focal width (§120) of the hyper-
bola a2/a? — 42/0? =1 is found by doubling the positive
ordinate at the focus; that is, by doubling the ordinate cor-
responding to 2 =Va2 + {2 (§ 169). This gives, as in § 141,

focal width = % .

171. Real Axis as y Axis. If the y axis is taken along
the real axis, that is, along the axis on which the foci lie, the
z and y terms of §165 exchange places

in the equation, and we have ¥
¥ z

< =1

b2 a? ’ B K
where 25 denotes the real axis B'B, X’A 4
and 2a the conjugate axis 4'4. Also [0{, X

we have the changed formulas —B]
@ = 52(82—1), e=\/a2+b‘l/b, /F,
OF =be=Va®+12 OK=b/e Y’

The student should compare this work with that given in § 142.

172. Asymptote. It follows from the definition of an
asymptote in § 46, that if any segment between a curve
and a straight line approaches 0 when the segment moves
indefinitely far away, the line is an asymptote to the curve.
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THEOREM. ASYMPTOTES TO THE HYPERBOLA

173. The lines y = Sx and y = — %x are asymptotes to
[2

the hyperbola b2a% — o2y? = a?b2

¢ Y|

B D

Proof. Let 4B and CD represent the lines y =+ bz/a
through O. Let P and @ be points on the hyperbola and 453
respectively having the same abscissa s We are to prove
that PQ — 0 when % increases without limit.

Since (A, RQ) is on the line y = bz/a, then BQ = bl /a.

Since P (h, RP) is on the hyperbola 0%2— a?y?= a??,
then 8242 — a?EP* = a2l?; whence RP = bV /12— a?/a.

Hence PQ=RQ—RP= :—:(h —Vi2— a?).

(h—Vi2—a2) (h+Vi— a?) _ a?
h4VIiE— g2 TV h2— g2

But A—Vi2—a2=

which approaches 0 when % increases without limit.
Therefore PQ — 0, and AB, or y="bx/a, is an asymptote
to the hyperbola $%?— a%y?= %’ §172
Since the hyperbola is symmetric with respect to OX; the
line y =— ba/a, or CD, is also an asymptote.

AG
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174. Drawing the Hyperbola. The lines perpendicular to
the real axis at the vertices 4/, 4 and the lines perpen-
dicular to the conjugate axis at the points B, B form a
rectangle. The diagonals
of this rectangle are ob-
viously the asymptotes

B
7—-bx and ——bx b
Y= p ¢ K a A a__JA
Hence, when the equa-
tion of the hyperbola B’
@
@ B

is given, a simple way to draw the hyperbola is to draw
this rectangle, produce its diagonals, and sketch the curve
approaching these lines as asymptotes.

175. Conjugate Hyperbolas. The two hyperbolas

22 2 2P

i 52— =1 and %—@=1
are closely related. The real and conjugate axes of one
are respectively the conjugate and real axes of the other.
Moreover, the rectangle described in § 174 is the same for
both, and therefore the two hyperbolas have the same
asymptotes. The two hyperbolas are said to be conjugate.

176. Rectangular Hyperbola. If the hyperbola has its
axes equal to each other, so that a=¥b, the equation becomes
z—z—— 2 =1, or 22— 32= a% Hence the asymptotes are y ==
and y =— z, which are at right angles to each other. Such
a hyperbola is called a rectangular hyperbola. It is also
called an equilateral hyperbola.

Evidently the hyperbola y?— a?= a2 is also rectangular.
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Exercise 49. Equations of Hyperbolas

Draw the following hyperbolas, and find the foci, eccen-
tricity, focal width, and directrices of each :

1. 4 2% — 25 4% =100. 5. 2 — 1 =— 064

2. 92 — 4 4* = 36. 6. 3x° — 837 =48.
~d 3. 442 —922=36. N7, a? 4= 4

4. 2 — y* =064 8. Ta?— 2¢y=—63.

9. Show that the equation Aa®+ By*=C, where 4 and B
have unlike signs, represents a hyperbola, and find the foci,
eccentricity; and asymptotes.

Find the equations of the hyperbolas which have their azes
along the coordinate aves and satisfy the following conditions,
drawing the figure in each case:

10. One vertex is (4, 0), and one focus is (5, 0).

~ 11. One vertex is (0, 8), and the eccentricity is 2.

12. One asymptote is 2 y = 3, and one focus is (13, 0).

13. The point (4, \/_%) is on the curve, and (2,0) is one vertex.

14. The points (4, 6) and (1, 1) are on the curve.

«J 15. One asymptote is 32 — 4 y =0, and one vertex is (0, 10).

16. The hyperbola is rectangular, and one focus is (8, 0).

17. One vertex bisects the distance from center to focus, and
the focal width is 18.

18. The focal width is equal to the real axis, and one direc-
trix is « = 4.

19. One focus is F(6, 0), and FP =5, where P is a point
on the curve which has the abscissa 4.

20. If a hyperbola is rectangular, show that the eccentricity
is V2 and that the focal width is equal to each of the axes.

21. Show that the four foci of two conjugate hyperbolas are
equidistant from the center.
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22. Every line parallel to an asymptote of a hyperbola cuts
the hyperbola in one point at a finite distance from the center
and in one point at an infinite distance from the center.

23. The intersections of the hyperbola 0%* — a*y* = a’?
with a line through the center, which has the slope m such
that — b/a >m >0 /a, are imaginary.

24. The equation x*/a? — 3?/0* = 0 represents both asymp-
totes of the hyperbola a*/a* — 3*/0* =1.

25. The line from a vertex of a hyperbola to one end of
the conjugate axis is equal to the distance from the center
to a focus.

26. If e and ' are the eccentricities of two conjugate hyper-
bolas, then 1/¢* +1/e"” =1.

27. If two hyperbolas have the same foci, show that the
one that has the greater eccentricity has its vertices nearer
the center. Compare the positions of the asymptotes.

28. If two hyperbolas have the same asymptotes and lie in
thie same pair of vertical angles of the asymptotes, they have
the same eccentricity. A

29. If 26 denotes the angle between the asymptotes of a

hyperbola, show that
2Vert—1

tan29=w-

From this result show that all hyperbolas having the same
eccentricity have the same angle between their asymptotes.

In § 178 it was shown that m = b/a, and hence tan § = b/a.

30. The perpendiculars to the real axis at the vertices of a
hyperbola meet the asymptotes in four points which lie on the
circle the diameter of which is the line joining the foci.

31. If two hyperbolas have the same center and the same
directrices, the distances from the center to the foeci are propor-
tional to the squares of the real axes.
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THEOREM. DISTANCES FROM THE FOCI TO A POINT

177, The difference between the distances from the foci to
any point on a hyperbola is constant and equal to the real axis.

Y

S R
Q Py

/0

Proof. Let KQ and LR be the directrices, F’ and F the
corresponding foci, and e the eccentricity of the hyperbola.
If the point E (z;, ;) is on the right-hand branch,
FR=¢.QP= e(QS+sz§)=e<g+xl>,

and FE=ce -R]{=e(SE—SR)=e<xl—%>. § 164

That is, F'E = ex,+ a,
and FE = ex, —a.
" Therefore FR—FE=2a,

which, since 2 a is the real axis, proves the theorem.

The above proof applies with slight changes when P, is on the
left-hand branch of the curve, but in that case
FP,— F'P,=2a.

We have seen that there are simple mechanical means for con-
structing the ellipse (§143) and the parabola (Ex. 20, page 118).
For constructing the hyperbola there are no such simple means.
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PROBLEM. HYPERBOLA WITH A GIVEN CENTER

178. 710 find the equation of the hyperbola having its center
at the point (h, k) and its real axis parallel to the z axis.

Solution. Since the solution is similar to that given for
the ellipse (§ 145), it is left to the student, who should
find that the equation is

=B @R _

p B 1.

If the real axis is parallel to the y axis, b denotes the real
semiaxis of the hyperbola, and the equation is

A a7 =],

y—k)? (z—h)? -
W _E=l oy §171

THEOREM. THE EQUATION Ax?— By? 4 Cx +Dy+4+E=0

179. If 4 and B have the same sign and are not 0, every
equation of the form Aa*— By?+ Cx + Dy + E = 0 represents
a hyperbola having its axes parallel to the coordinate axes.

Proof. By the process of completing squares the equa-
tion may be written 4 (z — k)*— B(y — k)?>='F, where &, k,
and F are constants, and this equation may then be written

(@—h?_ (y_]c)2=1_
74 7/B

This equation represents a hyperbola having its axes
parallel to the coordinate axes. §178

For a more detailed explanation of the method see § 146.

In the special case when F =0, the lefthand member of the
equation 4 (z — k)2 — B(y — k)? = 0 can be factored into two linear
expressions. The equation then represents two straight lines, which
we call a degenerate hyperbola.
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Exercise 50. Drawing Hyperbolas

Draw the following hyperbolas and find the eccentricity,
Joct, and wvertices of each :
1. 42*°—9*—162+18y=29. 5. 3*—22*—122x=34.
2. 92—+ 36x+6y+18=0. 6. 44*—2*+2x+16y=1.
3. 32°— 2y 182 —8y+1=0.7. o228, —48.
4. 22>°—59y*—20x +18 = 0. 8. 2’—y*=8y.
9. The general equation of the hyperbola having its axes
parallel to OX and OY involves four essential constants.
10. The equation of a hyperbola having its axes parallel to
0X and 0Y may be written in either of the following forms:
la® — my* + px + gy =1, 1)
e —h)y?—m(y —k)yP=1. 2
11. Find the equation of the hyperbola 4 2* — * =16 when
the origin is moved to the left-hand focus.

Find the equations of the hyperbolas satisfying the follow-
ing conditions, and draw each figure :
12. The foci are (4, 0) and (10, 0), and one vertex is (6, 0).

- If the equation is assumed in the form given in § 178, A, k, and ¢ may
be found by observation, and b is found from the fact that the distance
from the center to a focus is Va2 + b2,

13. The foci are (3,5) and (13, 5), and the eccentricity is §-

14. The two vertices are (— 1, — 6) and (— 1, 8), and the
eccentricity is V2.

15. The two directrices are 2 = — 2 and # = 4, and one focus
is F(LE, 6).

16. The center is (4, 1), the eccentricity is %\/ 13, and the
point (8, 4) is on the curve.

17. The hyperbola passes through the four points (5, 1),
(=38, —1), (=3, 1), and (—2,1V2).
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180. Ellipse and Hyperbola. The equation of the ellipse

2?
C+d=1 @
differs only in the sign of 42 from that of the hyperbola
2y 2y
ﬁ —_ b'E = 1, or — + 62 1- (2)

Therefore, when certain operations performed in connec-
tion with equation (1) produce a certain result for the
ellipse, the same operations performed in connection with
equation (2) produce for the hyperbola a result which
differs from the result for the ellipse only in the sign of 2

While we shall employ this method for obtaining certain results

for the hyperbola, the student may obtain the same results inde-
pendently by methods similar to those employed for the ellipse.

PROBLEM. SLOPE OF THE HYPERBOLA'

181. T find the slope of the hyperbola 2?/a® — y2/0* =1 at
any point R (zy, y,) on the hyperbola.

Solution. The slope of the ellipse 42/a?+ y2/62=1 at
any point B (z;, y,) on the ellipse is — b2z, /a%y; (§ 147).

Then the slope m of the tangent to the hyperbola, and
hence the slope of the hyperbola (§125), at E (2, y,) is

b’x,
a’y,

182. COROLLARY. The slope m' of the conjugate hyperbola
Yy —afat=1 at any point R (z;, y,) on the hyperbola is
b’x,

a’y, )

The proof is left to the student. Notice that the equations of the

conjugate hyperbola and ellipse differ only in the sign of a2

f
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PROBLEM. TANGENT TO THE HYPERBOLA

183. 7o find the equation of the tangent to the hyperbola
2?/a? — y2/B*=1 at the point R(xy, yy) on the hyperbola.

Solution. Applying § 180 to the result of § 148, we have

184. CorOLLARY 1. The equation of the normal to the
hyperbola &*/a?— y?/b*=1 at the point R(xy, y,) s
a’y,
y—yh=—5—(x—x).
1 ble 1

The proof of §§ 184 and 185 is left to the student.
185. CorROLLARY 2. The intercepts of the tangent and

the normal to the hyperbola 2%/a® — y*/b2=1 at the point
E(zy, y,) are as follows:

at
1. z intercept of tangent, x=_;
1 bz
2. y intercept of tangent, y=— 17;
1
a+ v
3. z intercept of normal, xX= :; x, =ex, ;
a + b?
4. y intercept of normal, y= b_-l; Y,.

PROBLEM. TANGENTS HAVING A GIVEN SLOPE

186. 70 find the equations of the lines which have the slope
m and are tangent to the hyperbola a2/a?— y*/b?= 1.
Solution. Applying § 180 to the result of § 151, we have

y=mx=x~/a*m* — ¥,

Hence there are two tangents which have the slope m.
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THEOREM. TANGENT TO THE HYPERBOLA

187. The tangent to a hyperbola at any point E (z, y,)
on the hyperbola bisects the angle between the focal radii
of the point.

Proof. Since F'0 = OF, §167
OF = ae, § 164
a2
and or=-—, §185
251
2
| ae+<
F'T FO+0T x;  ex;+a
we have —= = = .
TF OF — 0T e at  ex;—a
7
Since F'E =ex;+a
and FE = ex,— a, §177
we have rr_rR
TF — FE

Thus, ET divides F'F into segments proportional to
F'E and FE, and therefore E7 bisects the angle F'LF.

188. COROLLARY. The tangent at E bisects two vertical
angles formed by producing the focal radii, and the normal
at E bisects the other two vertical angles so formed.
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Exercise 51. Tangents and Normals

In each of the following cases show that P is on the hyper-
bola, find the equations of the tangent and the normal at P,
and draw the figure :

1. 42 — o> = 64; P (5, 6).

2. 2 — 9y*=25; P(—13,4).

v 3.yt —a*=16; P (3, b).

4. 222 — 3y =505 P(7, —4).

5. Find the equations of the lines which are tangent to the
hyperbola 16 2>—25 =400 and parallel to the line 2z —2 y=5.

6. Draw the hyperbola x* — 3* =16, the tangent at the
point P(5, 3), and another tangent perpendicular to OP. TFind
the equations of both tangents.

7. Find the points of contact of the lines which are tangent
to the hyperbola 4 22— 3 =96 and parallel to the line y=2a.

8. ¥ind 2 and % such that the tangent to the hyperbola
5a? — 24* =18 at the point (%, k) passes through (1, — 4).

9. Find m such that the line with the slope m and tangent
to the hyperbola x* — »* = 9 passes through (3, 9).

10. Prove that from any point in the plane two tangents
" can be drawn to a hyperbola. Under what conditions are these
tangents real and distinct, real and coincident, or imaginary ?

11. Find the equations of the lines passing through the
point (— 6, —1) and tangent to the hyperbola 9 2*— 25 f: 225.

12. If the normal to the hyperbola 2* — y*> =T at the point
(%, k) on the curve passes through (0, 6), find % and 7.

13. Find the point of contact of that tangent to the hyper-
bola 2? — 4 * = 16 which has equal intercepts on the axes.

14. If a tangent is drawn to a rectangular hyperbola, the
subnormal is equal to the abscissa of the point of contact.

15. Find each point on the hyperbola 9 2* — 25 3* = 225 for
which the subtangent is equal to the subnormal.
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16. Show how to construct a tangent and a normal to a
hyperbola at any point on the curve.

A simple construction may be found by the results of § 185.
17. Find the condition under which the linez/% + y/k = 11is
tangent to the hyperbola x*/a® — y*/0* =1.

If the line is tangent, its equation may be written in another form,
z,2/a? — y,y/V? =1. This being done, we may compare the two equa-
tions of the line (§ 89) and use the fact that (z,, ¥,) is on the hyperbola.

18. Find the equation of a tangent drawn to the hyperbola
#* — y* =4 and having a segment /15 between the axes.

19. There is no tangent to the hyperbola 0%? — o/ = a%?
which has a slope less than /a and greater than — 4 /a.

20. If b > «, no two real tangents to the hyperbola
Vit — a*y? = a®* can be perpendicular to each other.

21. Find the locus of the foot of the perpendicular from a
focus of a hyperbola to a variable tangent.

Sece note to Ex. 14, page 155.

22. Prove that the locus of the intersection of two perpen-
dicular tangents to a hyperbola is a circle. State the condi-
tions under which this circle is real or imaginary.

Compare Ex. 20, above.

23. Find the locus of the foot of the perpendicular from the
center of a hyperbola to a variable tangent.

24. No tangent to a hyperbola is tangent to the conjugate
hyperbola. . _

25. All the tangents at points having the same abscissa to
two or more hyperbolas having the same vertices meet on the
real axis.

26. If the tangent to the hyperbola 2 a® — ky*={ at (4, 2)
passes through (1, — 2), find %4 and 7 '

27. If a hyperbola is rectangular, find the equation of a tan-
gent passing through the focus of the conjugate hyperbola.
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In this figure given that FT is the tangent to the hyperbola
at B (z;, ¥,), BN is the normal, SE is perpendicular to 0X,
and FE, 0Q, and F'E' are perpendicular to KT, establish
the following properties of the hyperbola :

yN’'

2 __ 42 2
L8 75 =02 3. Ns=— 2
J}l . (75
. 29. ON . 0T = OF". 34. N'P.PN=F'P . FP,
30. 0S.0T = a® 385. N'P,-P.N=T'P,. TP,
31. 0Q - NP, =— I~ 36. F'E'. FE = — I
32. 0Q-N'P, = d% 37. TF.0S =a - FP,.

The student will find it interesting to compare these properties of the
hyperbola with the similar list for the ellipse on page 1565. In Iix. 32 draw
I8’ perpendicular to OY and observe that the triangles 7T0 and T'P, N’
are similar, Then 0Q:8’P; = OT : N'P;,whence 0Q-N'P, = 8’P, . OT.

38. If a variable tangent toa hypelbola cuts the asymptotes
at the points 4 and B, then 04 - OB is constant.

39. The product of the distances to the asymptotes to a
hyperbola from a variable point on the curve is constant.

40. If the hyperbola in the above figure is rectangular, SP, is
the mean proportional between 0S8 and 7'S.

41. Only one normal to a hyperbola passes between the foci.
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189. Diameter. By §§ 153 and 180 the equation of the
diameter which bisects the system of chords of the hyper-
bola %2 — a?y? = 2% that have the slope m is

V=G
If m' is the slope of this diameter, then m'm = 02/a2

THEOREM. CONJUGATE DIAMETERS

190. If ome diameter of a hyperbola bisects the chords
parallel to another diameter, then the second diameter bisects
the chords parallel to the first.

Proof. The condition under which the diameter with
slope m/ bisects that with slope m is m/m = 02/a? (§ 189).

But this is also the condition under which the second
diameter bisects the chords parallel to the first diameter.

191. Conjugate Diameters. If each of two diameters of
a hyperbola bisects the chords parallel to the other, the
diameters are called conjugate diameters.

THEOREM. POSITION OF CONJUGATE DIAMETERS

192. In every pair of conjugate diameters of the hyperbola
02?2 — a?y? = a®?, the diameters pass through the same quad-
rant and lie on opposite sides of the asymptote in that quadrant.

Proof. Since m'm = 0%/a?, the slopes of two conjugate
diameters are both positive or both negative. Hence the
diameters pass through the same quadrant.

. 2 b b
Since m'm = —, if |m|<- we see that |m'|>—-.
a? a a
By |m| is meant the numerical value of m, irrespective of sign.

But the slopes of the asymptotes are b/¢ and —b/a
(§173),.and so the conjugate diameters lie as stated.
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THEOREM. ENDS OF CONJUGATE DIAMETERS

193. Of two conjugate diameters one meets the hyper-
bola in real points and the second does not; but the second
diameter meets the conjugate hyperbola in real points.

Proof. Let y=mz and y =m'z be the conjugate diam-
eters, and take |m|<bd/a and |m'| >b/a. § 192
The abscissas of the points in which the diameter y = mz
meets the hyperbola #%2— a%y%= a%? are the two roots of
the quadratic equation d%2— a? (mz)*= a?b%
Hence r=+ __—ab .
V2 — a2m2

But since|m|<b/a, it follows that a?m?<?2 and hence
these roots are real.

Tt is left to the student to prove that the diameter y = m’z does
not meet the hyperbola %x? — «2y? = a%? in real points, but does meet
the conjugate hyperbola a?y? — 0%% = a®? (§ 175) in real points.

194. Ends of the Diameters. The real points in which
the conjugate diameters meet the two hyperbolas are called
the ends of the diameters.
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THEOREM. DIAMETER OF THE CONJUGATE HYPERBOLA
195. The diameter bisecting those chords of the hyper-

22 o2
bola ,_v; - % =1 which have the slope m bisects also those chords
PERY)

% — fT: = 1 which have the slope m.

Proof. The equations of the hyperbolas differ only in

the signs of % and 42 But the equation of the diameter

2
b? v

have the slope m is yiﬁz (§189). Therefore this is

of the conjugate hyperbola

2
bisecting those chords of the hyperbola x_z_ =1 which
@

also the equation of the diameter bisecting those chords
of the conjugate hyperbola which have the slope m.

THEOREM. CONJUGATE DIAMETERS

196. Two diameters which are conjugate with respect to
a hyperbola are also conjugate with respect to the conjugate
hyperbola.

Proof. The condition under which two diameters are con-
2

jugate with respect to the one hyperbola is m'm = 6_2 (§190).
a

By the method of § 195 it is also the condition under which
they are conjugate with respect to the conjugate hyperbola.

PROBLEM. ENDS OF A CONJUGATE DIAMETER

197. Given an end P(z,;, y,) of a diameter of. the hyper-
bola. b2 — a%y? = a??% to find the ends of the comjugate
diameter.

Tt is left to the student to show, by the method employed in the
case of the ellipse (§ 158), that the ends of the conjugate diameter

on the conjugate hyperbola are (% Y1 gxl) and (-« %yl, - gxl) .
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Exercise 52. Diameters

1. Draw the hyperbola 162* — 9 3* = 144, the chord made
by the line =z =y + 10, and the diameter which bisects this
chord. Find the equation of the diameter.

2. Draw the diameter conjugate to that of Ex. 1, and find
its equation.

3. Draw the hyperbola 9 2* — 43* = 36 and the chord hav-
ing the mid point (4, 3). Find the equation of the chord.

4. Find the mid point of the chord determined by the
hyperbola 42* — 254* =100 and the line 5y =« 4 15.

5. Draw the hyperbola y* — 2 = 4, and find the equation
of the chord through the point (— 2, — 2) and bisected by the
diameter having the slope 4.

6. Find the equations of two conjugate diameters of the
hyperbola 3 a? — 4 4* = 48, given that one meets the curve at
the point having the abscissa 8 and a negative ordinate.

7. The tangents at the ends of a diameter of a hyper-
bola are parallel to each other and are also parallel to the con-
jugate diameter.

8. Draw two conjugate hyperbolas and also draw a straight
line cutting them in four real points. Denote these points in
order by 4, B, C, D, and prove that AB = CD.

9. If the tangent to a hyperbola at P meets the conjugate
hyperbola at 4 and B, then AP =PB.

10. If o' and &' are conjugate semidiameters of a hyperbola,
then a'? — 52 is constant.

11. If 6 is the angle from a diameter to its conjugate, then
sin 6 = ab/a'b".

Compare the corresponding theorem for the ellipse (§ 159).

12. The area of the parallelogram formed by the tangents

to two conjugate hyperbolas at the ends of conjugate diameters

is constant.
AG
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PROBLEM. ASYMPTOTES AS AXES

198. 7o find the equation of a hyperbola referred to the
asymptotes as awes of coordinates.

Solution. The equations of the asymptotes 0¥’ and 0X’
of the hyperbola 8%2%— a%y%= a%? are (§173) bx —ay =0
and bz + ay = 0. Therefore, if PS and PK are the perpen-
diculars from P (2, ) to OX' and OY' respectively, by § 84

bx+ay bz—ay b%P—a%?  a??

SP.KP = . = = . 1

Vare Varp  @re arp O

Denote by 2a the angle X'0Y’, and by 2' and y' the
coordinates of P when OX’ and OY’ are taken as axes. Then
#=RP and y'=@QP. Then SP=y sin 2a, KP=2'sin 2a,

and hence
z/ ’sin22a—ﬁ. (2)
Y T a2 02
But tan @, which is the slope of 0Y', is .2- Therefore
sina@ = b oS & = —
Va?+ b2 Va2 + 82
and Sin2a=23inacosa=ﬂ.
a?4 b2

Hence, dropping the primes in (2), we have
dxy=a®+ v
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199. Rectangular Hyperbola referred to Asymptotes. The
result of §198 is of special interest in the case of the rec-
tangular hyperbola, for which the asymptotes are perpen-
dicular to each other. In this case, a = b, and the equation

4 zy = a? + b2
may be written
2zy = a3,
or xy=1ad

This figure shows a
rectangular hyperbola
~ drawn with its asymp-
totes in the lorizontal
and vertical position.

Therefore the equa-
tion zy = ¢, where ¢ is
any constant excepting
0, is the equation of a hyperbola referred to its asymptotes
as axes. If ¢ is negative, then the values of 2 and y must
be unlike in sign, and hence the hyperbola lies in the
second and fourth quadrants.

In the case of the rectangular hyperbola, the equation of
which is zy = ¢, where ¢ is positive, the semiaxis @, or 04,
may be found from the fact that ¢=1a2 Thus, for the
distance 04 from the center to the vertex of the rectangular

53
.

hyperbola zy =18, we have 18 =1 a?; whence « =6

-YI

Boyle’s Law of Gases, vp = ¢, which states that the product of
the volume of a gas and the pressure upon the gas is constant, is
represented graphically by the upper branch of the above figure,
since there are no negative values of v and p.

There are many other laws of physics and chemistry which are
expressed by the equation 2y = k, a constant. Similarly, in mensura-
tion we frequently have cases in which xy = %, as for example in the
formula for the area of a rectangle, the area of an ellipse, and so on.
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Exercise 53. Review

1. The slope of a focal chord of the hyperbola z? — 3? = 8
is 7. In what ratio is the chord divided by the focus ?

2. Given the hyperbola «* — 4 3* = 100, find the slope of a
chord which passes through the center and has the length 30.

3. Show that the equation y =+ V4a? — 8z represents a
hyperbola, and draw the curve.

4. Consider Ex. 3 for the equation y = 4 V4 2? 4 8.

5. If the asymptotes of a hyperbola are perpendicular to
each other, the semiaxes ¢ and 4 are equal.

6. Given that a line through a focus I of a rectangular
hyperbola and parallel to an asymptote cuts the curve at G,
find the length of FG.

7. Given that a perpendicular to the real axis of a hyper-
bola at A7 meets the curve at P and an asymptote at Q, prove
that 27Q° — MP" is constant.

8. The distance from the center of a rectangular hyperbola
to any point 2’ on the curve is the mean proportional between
the distances from the foci to P. i

9. All hyperbolas having the same foci and the same
asymptotes coincide.

10. If two hyperbolas have the same asymptotes, they have
the same eccentricity or else the sum of the squares of the
reciprocals of their eccentricities is 1.

11. Find the eccentricity of every hyperbola having the
asymptotes y = 4 max.

12. What does the equation of the hyperbola 9 2* — 4 3* = 36
become when the asymptotes are taken as axes ?

13. If the asymptotes are perpendicular to each other, find
the coordinates of the vertices of the hyperbola xy = 36.

14. Consider Ex. 13 for the case in which the angle between
the asymptotes is 2 a.
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15. Find the equation of the hyperbola having the direc-
trix 3z — 4y =10, the corresponding focus (6, 0), and the
eccentricity 2.

16. The distance from a focus of a hyperbola to an asymp-
tote is equal to the conjugate semiaxis.

17. The foci of a hyperbola are F' and F, a tangent ¢ is
drawn to the curve at any point P, and the perpendicular
from F upon ¢ meets F'P at H. Prove that F'H is equal to
the real axis of the hyperbola.

18. The segment of a tangent to a hyperbola intercepted
between the tangents at the vertices subtends a right angle
at each focus.

19. A focus of a hyperbola is I, a focal ordinate is FQ, a
tangent ¢ is drawn to the hyperbola at @, and the ordinate 377>
of any point P on the curve is produced to meet the tangent
t at 2. Prove that FP = MR.

20. If the circle through the foci of a hyperbola and any
point P on the curve cuts the conjugate axis at Q and R, then
the tangent at P passes through one of the points @, R, and
the normal at P passes through the other.

The analytic proof is laborious. The use of §187 leads to an easy
geometric proof.

21. Any two conjugate diameters of a rectangular hyperbola
are equal.

22. The tangents at any two points P, and P, on a hyper-
bola meet on the diameter which bisects 7, P,

23. If the line through the points Q and R on a hyperbola
meets the asymptotes at P and S, the mid points of PS and QR
coincide, and hence PQ =RS.

24. If the ordinate drawn from any point P on the hyperbola
Vx* — a®® = a™? is produced, if necessary, to meet the rectan-
gular hyperbola a® — 3* = a® at Q, the ratio of the ordinates
of I’ and Q is constant.
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Gliven the system of hyperbolas 2*/a? — y2/02 = k, where k
takes various values but a and b are fixed, prove that :

25. Through each point of the plane there passes one and
only one hyperbola of the system.

26. All the hyperbolas have the same asymptotes.

27. All the hyperbolas for which % is positive have the
same eccentricity, and so do all those for which % is negative.

+ '/ d =1, prove

Letting E represent th uation
ctting E represent the eq o k Ty

the statements in Hxs. 28-31:

28. For each negative value of Z numerically between «®
and 0% E represents.a hyperbola; for each other value of %,
E represents an ellipse.

29. All the curves E have the same foci.

30. Given that o> = 4 and * =1, through (2, 1) two of the
conics E, one an ellipse and one a hyperbola, can be passed.

31. The two conics E of Ex. 30 intersect at right angles.

A simple proof is suggested by §§ 152, 187, and 188.

32. Given a hyperbola, show how to find by construction
the center and axes.

33. The locus of the center of a circle which is tangent
to two fixed circles is a hyperbola the foci of which are the
centers of the fixed circles.

34. Find the locus of the center of a circle which cuts from
the axes chords of constant length 2 « and 2.

35. Given that two vertices of a triangle are 4(3, 0) and
B(— 3, 0), find the locus of the third vertex P if P moves so
that the angle ABP is twice the angle PAB, draw the locus,
and show how to trisect any angle by means of it.

36. If two hyperbolas have the same vertices, and the
perpendicular to the real axis at any point 27 cuts one hyper-
bola at 4 and the other at B, then M4 and.AMD are to each
other as the conjugate axes of the respective hyperbolas.



CHAPTER X

CONICS IN GENERAL
THEOREM. EQUATION OF THE SECOND DEGREE
200. Every equation of the second degree in rectangular
coordinates represents a conic.
Proof. The general equation in = and y is
ar?+ 2 hxy + by’ + 292+ 2 fy + ¢ = 0,

where a, £, b, g, f, and ¢ are arbitrary constants, but a, 2,
and b are not all three equal to 0.

By rotating the axes through a properly chosen angle
(§ 111) we can eliminate the 2y term, the equation becoming

a2+ 024292+ 2fy+ =0,
an equation which represents an ellipse (§146), a hyper-
bola (§179), or a parabola (§§ 122, 123).

THEOREM. EQUATION OF ANY CONIC

201. The equation of any conic referred to rectangular
coordinates s of the second degree.

Proof. The equation of any conic referred to axes taken
through any origin O parallel to certain lines is

Az?+ By*+ Cx + Dy + E = 0.

The equation of the same conic referred to axes through
O making any angle € with the other axes is found by

substitutions (§ 109) which do not change the degree.
193
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PROBLEM. CLASSIFICATION OF THE CONICS

202. 70 find the conditions under which the general equation
az?+ 2 hxy + by?+ 2 gx + 2fy + ¢ = 0 represents a parabola,
an ellipse, or a hyperbola.

Solution. Rotate the axes through an angle 6 such that
tan 2 6 = 2 h/(a — b), thus eliminating the 2y term (§ 111).
Putting = cos @ — y sin 6 for z and z sin 6 4y cosf for y,
the general equation takes the form

a'a®+ b'y?+ (terms of lower degree) =0, €Y
where a' = a cos?0 + b sin0 4 2 /v sin 6 cos 6, )
and b' = a sin20 + b cos20 — 2 J, sin 6 cos 6. 3)

We know that (1) represents a parabola if either ¢'= 0
or =0 (§§122, 123); an ellipse if &' and & have like
signs (§146); or a hyperbola if o' and ' have unlike
signs (§179). Furthermore, we may express these three

conditions in terms of a, b, and A by means of (2), (3),
and the fact that

tan 20 =2 A/(a—b)=sin 26/cos 20 ;
that is, 0=(a—"b)sin260—2hcos286. €))
Adding (2) and (3), then subtracting (3) from (2) and

recalling that sin?64 cos20=1, cos?0 — sin20 = cos 26, and
2 sinf cos @ =sin 260, we have

a'+b=a+b, »)
and ad—b=(—0b)cos260+2hsin26. (%)
Eliminating 6 by squaring (4) and (6) and adding, we have
(@' —b)y2=(a—b)2+4 2 )
Subtracting (7) from the square of (5), we have
a't! =ab— h*.
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We may now make the following summary :
If ab — A2= 0, the given conic is a parabola.
For then either a’ = 0 or & = 0.

If ab — A2>0, the conic is an ellipse.

For then @’ and §" must have like signs.

If ab — 72 <0, the conic is a hyperbola.

For then o’ and " must have unlike signs.

Since az®+ 2 hx + b has equal factors if (2/4)2—4 «b =0, we see
that az? 4+ 2 hay + by* is a perfect square if 22— «h = 0. Then the
conic is a parabola when the terms of the second degree form a
perfect square, as in the equation 422 + 122y + 9> -3z 4+ y =7.

203. Central Conics. The ellipse and hyperbola have cen-
ters and hence are called central conics. 1f ab — %+ 0, an
equation of the second degree represents a central conic.

204. Standard Equations. We shall refer to the follow-
ing as the standard equations of the conics:

For the parabola, ¥ =4 pz. §115

For the elli A § 130
or the ellipse, atE=L §

22 g2 .

For the hyperbola, ST ETE 1. § 165

We now proceed to the problem of reducing the general
equation of the second degree to these forms.

For the central conics, we move the origin in order to
eliminate the = terms and y terms (§107), and we then
rotate the axes in order to eliminate the zy term (§111).

205. Choosing #. There are always two values of 26
less than 860° for which tan 26 =2 4/(a—?b), and one of
them is less than 180°, in which case 6 <90° In the
treatment of central conics we shall always take 6 <90°.
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PROBLEM. MOVING THE ORIGIN FOR CENTRAL CONICS

206. Gven the equation of a central conic referred to any
azxes, ar®+ 2 hxy +by? + 2 gr+ 2. fy + ¢ = 0, where ab — 2+ 0,
to move the origin to the center.

Solution. To move the origin to any point 0’ (m, ») we
must write z + m for z and y 4+ » for y in the given equa-
tion (§105). This gives the equation

az?+ 2 hay + by  + 2(am + hn+ g) =
+2(m+bn+f)y+ =0, @
where ¢/ = am? + 2 hmn + 2+ 2gm + 2 fn + c.

Now choose m and = so that the coefficients of the

z term and the y term are 0; that is, so that

am+hn+g=0,

and hm+bn+f=0; &)
' hf —bg
or so thaat m = m,
hg — af
and n= T2 3

Then the transformed equation becomes
ax’ + 2 hxy+ by* + ¢'=0. (©))

The test for symmetry (§ 43) shows that the graph of
this equation is symmetric with respect to the new origin
O', which is therefore the center of the conic. Hence
equation (4) is the required equation.

207. CorOLLARY. The coordinates (m, n) of the center
of a central conic ax?+ 2 hxy + by + 29+ 2fy +c=0 are
_hf—bg n_hg—af

m=w—_r Py
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PROBLEM. TO ELIMINATE THE xy TERM

208. To trangform the equation az*4 2 hxy + by?+ =0
of a central conic into an equation which has no xy term.

Solution. Rotate the axes through an angle 6 such that
tan 260 =214/(a— b) (§111), writing zcos § — y sin 8 for =
and zsin 8 + y cos 6 for y. This gives a'a?4b'y2+ ¢ =0,

xz y2
or o t—— =1 @
a0

This completes the reduction of any equation of a central
conic to the standard form. It is desirable, however, to have
formulas giving the values of &, ¥/, and ¢/ in terms of the
coefficients of the general equation.

By §202, d/+¥t=a+band o/ —b'=+V(a—b)2+ 472

Therefore a' =%(a +bEV(a— by +4 1) (2
and v =3(a+bFV(a—b}+41?). )

‘Whether to use the upper or the lower signs before the radicals
depends upon the value of 6. From tan 26 =2 %/(a — b) we obtain

sin20=‘)h/v(a—-b)2+ 412 =20/(a’ = ¥).

But 26 <180° (§205), and hence sin 28 is positive. Therefore
o' — U’ must have the same sign as %, and o’ and 4" must be so chosen.

-We also have (§ 206) the following relations:

= am?2+ 2 hmn +‘Zm2+ 2gm+2fn+e
=m(am+n+g)+n(hm+bn+f)+gm+fn+e
=gm+fn+ec § 206, (2)

_abc— af” — bg*— ch® + 2 fgh
- ab— K

Heﬁce c § 207
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PROBLEM. REDUCTION FOR THE PARABOLA

R09. 70 reduce to the standard form the equation of the
parabola ax®+ 2 hxy + by*+ 2 gz + 2 fy + ¢ =0 where it is
given that ab — h?= 0.

Solution. Since ab— 42=0, az?+ 2 hxy + by? is a perfect
square (§ 202), and the given equation may be written

Gy +re)?*+ 292+ 2fy+c=0, €Y
where s=V3 and r = +Va, s being always positive and r
having the same sign as . It is obvious that rs = A.

We now rotate the axes through an angle € such that
tan 26 =2 h/(a — b), that is, such that

2tanf  27s
1—tan20 72— g2’

. r 8
whence tan@d=—-or =.
s r

Any resulting value of & serves to remove the zy term
(§111) from the given equation. The reduction is then
completed by moving the origin to the vertex.

If we choose tan 8 =— r/s, we see that if » is negative,
tan @ is positive, and we take 6 <90°; if  is positive, tan 8
is negative, and we take 270°<6<360° In either case,

sin @ = —r/Vr2+ s
and cos 0 = s/Vri+ s
In (1), putting z cos 6 —y sin € for z and = sin 8 +y cos 6

for y (§ 109), that is, putting (sz+ ry)/Va+b for z and
(—re+ Sy)/\/a + b for y, we have
Ay + By + Dz +c=0,
 where Ad=a+b, B=2m_+'?f:, and D = 23.‘]—7.7".
at N
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By completing the square (§ 122), we reduce the equa-
tion Ay*+ By + Dz + ¢ =0 to the form
AW - =~ D(@—p)
where ¢ =— B/2 4, and p =B%*/4 AD —¢/D.
Then moving the origin to the vertex (p, ¢), we have

P=—"uzx; §§ 105, 121

that is, =2 X.

PROBLEM. DEGENERATE CONICS

210. GHven the equation ax?+2hry+by*+29x+2fy+c=0,
to find the condition under which it represents two straight lines.

Solution. If the equation represents two straight lines,
that is, if the conic is degenerate (§ 54), the left member
can be factored (§ 179, note) thus:
ar®+ 2 hay +by?+ 2 ge+ 2 fy + e = (le+ my +n) (pr+ qy+1).

Then a=Ip, b=mq, c=nr,

2h=1lg+mp, 2¢g=1Ilr+mnp, 2f=mr+nq
These conditions are expressed in terms of a, b, ¢, f, g, &

thus: 2f«2g-2h=2Imnpgr+ lp(m**+ n*g)

o+ mg (B4 )+ (B i)

that is, 8 fgh = 2 abe + a (22— 2 be)
+b6C@C = 2a)+ (R — 2ab),
or abc + 2 fgh — af* — bg®> — ch®*= 0.

211. Discriminant. The left member, that is, the expres-
sion abe + 2 fyh — af?2— bg®>— cl?, is called the discriminant
of the equation of the second degree, and is denoted by A.
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212. Illustrative Examples. 1. Determine the nature of
the conic 8422+ 24 2y + 4142 — 202 +140 y + 50 = 0 and
draw the figure.

Here ab — i = 84 x 41—-122>0, and the conic is an ellipse (§ 202).

To find the center O’ (m, n), we have, by § 206 (2),

34m+12n—-10=0
and 12m+412+70 =0,
whence m=1 and n =— 2, so that the center is 0"(1, — 2).

The equation of the conic referred to axes 0'Q, O’R through 0’
and parallel to OX and OY is (§ 206)

8422424y +41y°+ ¢ =0,
where, by ‘§ 208, c=gm+fun+ec
=—10x1+70(—2)+ 50
=—100.

Now turn the axes through the angle 6 such that (§ 208)

2% 24
t 2 9 = —_— =
an a—1b 7
and construct the angle 2 @ accordingly, making it less than 180°;
then construct §. The line 0’X” making the angle 6 with OX is the
new z axis, and by §208 the trans- -
formed equation is

a2+ VP +=0,

XI

where ¢’=—100, as shown above,
a’=%(75+ 25), and =} (75 F25).
Since @” — b must have the same sign
as h, we see that a’= 50 and ¥ = 25,
and so the new equation is
2 2

S+l

= / M 0O X
which at once suggests that we lay
off the semiaxes on O’X"and 0'}Y’. We then draw the ellipse in the

customary way.
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2. Given the conic 22— 4ay 4+4 42— 62+ 2y =0, deter-
mine the nature of the conic and draw the figure.

Since ab — 42 = 0 the conic is a parabola, and we write the equation
in the form @y —aYm 6242y =0. O
Then s =2, r=—1, and we rotate the axes (§209) through
an angle @ such that tan @ = — 7/s = 4. Therefore sinf = 1/V5,
cos @ = 2/V/5, and we write (22 — y)/V5 for z and (z + 2 7/)/\/_ for
y in equation (1). Then we have Y

(5]/) 10 10
—_r _y:O,
) \/o V5 B

or Va4 2y=2z , X'

Y
which may be written in the form \ (]
Vo (y—)t=2@—p)

whereq=—i_andp=— !

7
V5 2V
Completing the reduction by moving the origin to the vertex

(ps q), that is, to the point <—- 1 , L>, we have

N

St

Vs

o
=

V

=
to
Il
|0

. 2)

S

Therefore we draw through 17 a line V.X” making with OX the
acute angle 6 = tan—14, and this is the new z axis. The line 1Y,
perpendicular to ./, is the new y axis, and the curve is drawn by
plotting a few points, using equation (2) and the new axes.

3. Given the parabola (42— 3 y)*=2502—100, find
the coordinates of the vertex.

Take tan § = %; then sin =% and cos§ = #. Rotating the axes
through the angle 6, the new equation is 2+ 8y — 62 +4 =0, or
(y +4)? =06 (xz+2). Referred to the new axes (§122) the vertex is
V(—2, —4). If V, referred to the old axes (§109), is (a, b), then
a=—2-3—(—4)-4=2and b=—-2-% +(—4)# =—4, and hence
the vertex of the parabola is the point (2, — 4).
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213. Illustrative Examples. Degenerate Cases. By com-
puting the value of the discriminant A (§211) we can
always determine in advance whether or not a given conic
is degenerate. But when ab — 22+ 0, it is usually simpler
to begin the work of reduction for a given equation in the
manner explained in Ex. 1, § 212. In that case if the equa-
tion happens to represent a degenerate conic, the fact will
soon become apparent.

If the equation represents two lines, it follows from § 210 that

A =0. Tt is evident that, conversely, if A =0, the steps may be
retraced, and the equation represents two lines.

1. Given the equation y>— zy — 6 22— 3 z + y = 0, deter-
mine the nature of the conic and draw the figure.

Since ab — h2=— 6 x 1 — } <0, the conic is a hyperbola.

By § 207 the center is O'(— }, — £), and when the origin is moved
to 0, the new equation is 32— a2y — 622 =0.

But a polynomial containing terms in z2 %2, and zy, and no other
terms, can always be factored. The factors may have real or imagi-
nary coeflicients.

The equation y%? — zy — 6 22 = 0 may be written

Y—32)(y+22)=0,

which represents two lines, y — 3z =0 and y + 22 = 0. Since their
equations have no constant terms, both the lines pass through the
new origin 0’, and the figure is easily drawn.

2. Given the equation 22— 2zy+ y?— 424+ 4y—12=0,
determine the nature of the conic and draw the figure.

Here ab — #2= 0 and A = 0, and hence the equation is degenerate.
The factors of the polynomial are found simply, thus:

(=P —d@—y—12=0;
hence @—y—06@—-y+2)=0.

This equation represents the parallel lines z—y—6=0 and
z—y+2=0, which are easily drawn.
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Exercise 54. Equations of the Second Degree

In each of the following examples determine the nature of
the conic and draw the figure :
1. 524+ 20y + 54— 122 —12y = 0.
2t —Baxy+ 9P+ 82— 20y +15=0.
cat - 2ay— P+ 8x+4y —8=0.
=22y + P+ 22—y —1=0.
a4+ 4ay+8y*—16x+ 8y —16=0.
9a? — 242y +164* — 202 +110y — 75 = 0.,
Ta?—1Tay +6y*+ 232 — 2y — 20 = 0.
362 + 24 ay + 294 — T2z + 126y + 81 — 0.
252 —120ay +1444* — 22 — 29y —1=0.
22— 6ay+4yPf—ax+4y—3=0.
At dey+ P —4ax—2y+1=0.
4 —122y+94P4+6x—9y—10=0.
13. 2+ ay+ =1,
14. Show by means of §202, (5) and §208, (1) that if

a + b = 0, the equation ax®+ 2 hay + 0y + 2gx + 2fy +c=0
represents a rectangular hyperbola.

15. Prove the converse of the theorem of Ex. 14.

16. Solve ax® + 2hxy + 0"+ 29+ 2fy +¢=0 for « in
terms of y, and show that if abe + 2 fgh — af? — bg* — ch* = 0,
the equation represents a pair of lines.

© 0 =3 O Ot P W W
Dt SN

e
N = O

This method of solving the problem of § 210 fails when a has a certain
special value. What is that value ?

17. Find the foci of the conic xy — 2y =5.

18. Given the conic #* — 22y + y* = 5=, find the equation
of the directrix.

19. Show how to determine whether or not two given equa-

tions represent two congruent conies.
AG
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214. Conic through Five Points. The general equation

a® + 2 hay + 02+ 292+ 2fy+¢=0 €Y
has six terms. If we divide by ¢, the equation becomes
P2+ qey +ry?+ sz +ty +1=0. (2

The equation therefore involves five essential constants,
and hence a conic is determined by five conditions.

For example, let us find the equation of the conic
passing through the five points 4 (1, 0), B(3, 1), €(0, 3),
D(—4, — 1), E(—2, —3).

Consider the two following methods:

1. Let equation (2) represent the conic. Since 4 (1, 0) is on the
conic, p + s +1=0; and since B, C, D, E are on the conic, we get
four other equations in p, ¢, 7, s, &. From these we find the values of
P, 9, 7, 5, t; and substituting these values in (2), we have the desired
equation 24 22— 732y + 295>+ 332 — 68y — 57 =0.

If this method fails, it means that ¢ = 0 and that dividing (1) by ¢
was improper. In that case we may divide by some other coefficient.

2. The equation of the line AB is 2y — z +1=0; that of the
line CD is y — x — 8 = 0; and that of the pair of lines 4B, CD is

@y—z+1)(y—z—3)=0. ®)
Similarly, the equation of the pair of lines A D, BC is
Gy—2z+1)By+2zx—-9)=0. “

Now form the quadratic equation

Ry—z+)(y—z—3)+tGBy—z+1)By+2z—-9)=0, (5)
which represents a conic (§ 200). Since the values of  and y which
satisfy both (8) and (4) also satisfy (5), the conic (5) passes through
the common points of the conics (8) and (4); that is, through the
points 4, B, C, and D.

‘We now determine £ so that (5) also passes through E (— 2, — 3).
Substituting — 2 for  and — 8 for y in (5) we find £ =— 5. Put-
ting — 3'5 for k in (5) and simplifying, we have the desired equation
24 22— T3 zy+ 29+ 382 —68y—57=0.
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PROBLEM. POLES AND POLARS

215. To find the equation of the chord of contact of the
tangents from a point F, (zy, y,) to the parabola y®= 4 pz.

Solution. Let C (%, k&) and C'(A/, k") be the points of
contact of the tangents ¢ and ¢ from £ to the parabola.
Then the equations (§127) of the tangents ¢ and ¢ are

ky=2p(x+h) and FKy=2p@@+1).
And since ¢ and ¢’ pass through F (z,, %,), we have
ky=2p (z+ 1) @
and kyy=2p (z+ 1. &)
But (1) and (2) show that the points (%, k), (¥, k")
are on the line vw=2p0+x),

and therefore this is the required equation.

This equation is of the same form as that of the tangent at any point
on the curve. In fact, as P, (z,, y;) approaches the curve at /', the
chord of contact approaches the tangent at ',

216. Pole and Polar. The point £ is called the pole of
the line ¢ with respect to the conic, and the line ¢ is
called the polar of the point R.
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217. Poles and Polars for Other Conics. The method
of §215 is obviously applicable to the other conics, the
equation of the polar in each case having the same form as
the equation of the tangent at a point (z;, ;) on the curve.
Hence the equations of the polars of the point B (z;, %;)
with respect to the other conics are as follows:

The circle 22+ y2= 12, xx+yy=ri
.22 P x,x
The ellipse Eé+%§=l, ?.4_%:1.
’ PR a XX yy
The hyperbola AR 1, ;1_ — ?: 1.

The polar of a real point with respect to a conic whose equation
has real coefficients is a real line, although the tangents to a conic
from a point inside meet the conic in imaginary points.

THEOREM. RECIPROCAL RELATION OF POLARS

218. If the polar of the point E (x;, y,) with respect to
any conie passes through the point B(x,, y,), the polar of the
point B with respect to the conic passes through the point E.

Proof. We shall prove this theorem only in the case of
the circle, but the method of proof evidently applies to all
other conics.

The polar of the point E (2, ;) with respect to the circle

2_ .23
a4yt =1t is zx+yy=r% § 217

By hypothesis this line passes through the point & (z,, ¥,)3
that is ’
2@+ Y1y = 1%

But this equation shows that E (z;,y;) is on the line
2,z + Yoy =% which is the polar of E.

It will be instructive for the student to draw for each kind of
conic a figure showing the relations described in this theorem.
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Exercise 55. Poles and Polars

Find the equation of the polar of P with respect to each of
the following conics, and in each case draw thé figure, showing
both tangents from P, if real, and the polar:

1. 422+ 9y* =36, P(— 2, — 2).

2. 162 — 9% =144, P (6, 3).

3. 4a® + f = 254, P(2, 3).

4. 2* +* =169, P(— 5, 12).

5. If O is the center of the circle 2® 4+ 3 = #% and the polar
of P (x,y,) with respect to the circle cuts OP, at Q, then the
polar is perpendicular to OP, and OP, . 0Q = 7%

6. Give a geometric construction for the polar of a given
point with respect to a given circle, the point being either
inside or outside the circle.

7. The points P, and Q in Ex. 5 divide the diameter of the
circle harmonically.

That is, the points divide the diameter of the cxrcle internally and

externally in the same ratio.

8. Show that the polar of the focus of a given parabola,
ellipse, or hyperbola is in each case the directrix, and investi-
gate the existence of the polar of the center of a circle.

9. Find the coordinates of the pole of the linedoz —2y =3
with respect to the ellipse 4 2® + ¢* = 9.

If the pole is (z,, ¥,), the polar is 4z, + ¥,y = 9. By comparing these
coefficients with those of 4z — 2y = 3 it is easy to find «, and y,.

10. The diameter which bisects a chord of a parabola passes
through the pole of the chord.

11. Find the points of contact of the tangents from the point
(1, 2) to the circle a* + 3* =1.

12. The polars with respect to a given conic of all points on
.a straight line pass through the pole of that line.
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Exercise 56. Review

1. Find the coordinates of the vertex of the parabola
—2xy+y*—6x—10=0.

2. Show that the equation 2* — 6y + 9 3> = 25 represents
a pair of parallel straight lines, and draw these lines.

3. Draw the conic 22 — 5y + 632 = 0.

4. If the equation ay + ax + by 4+ ¢ = 0 represents two
lines, one of these lines is parallel to 0X and the other to OY.

5. Two conics intersect in-four points, real or imaginary.

6. Find the equation of the conic passing through the
points (1, — 1), (2, 0), (1, 1), (0, 0), (0, —1).

7. Find the equation of the conic passing through the
point 4 (2, — 2) and through the four common points of the
conics 2’ + a2y — 29+ 6z —1=0and 2* — P —z —y = 0.

Show that the conic 22 + xy — 292+ 6z — 1+ k(222 —y2—2—y)=0
passes through the common points of the two given conics, and then find
k so that this conic passes through 4.

8. Find the equation of the real axis of the hyperbola
52 —24ay— 2y — 4+ 3y="T.

The axis passes through the center and makes the angle § with OX.

9. Find the equation of the tangent drawn to the parabola
at—2axy + y*— 4x 4+ y — 10 = 0 at the vertex.

10. The equation at + y% =at represents a parabola which
is tangent to both axes.

11. The discriminant abe + 2 fgh — af? — bg? — ch? can be
written in the form of a determinant, as follows:

a h g
h b f
g f ¢

Ex. 11 should be omitted by those who have not studied determinants.

12. Given the conic aa’+ 2 haxy + by*+ 2 gz + 2 fy + ¢ =0,
find the slope at any point (z', ') on the coniec.



CHAPTER XI
POLAR COORDINATES

219. Polar Coordinates. We have hitherto located points
in the plane by means of rectilinear coordinates. We shall
now explain another important method of locating points.

Let O be a fixed point and OX a fixed
line. Then any point P in the plane is
determined by its distance OP from O
and by the angle 6 from 0OX to OP. P
The distance OP is denoted by p.

The magnitudes p and @ are called
the polar coordinates of P, p being
called the radius vector, and 6 the vec-
tortal angle. The point O is called the pole or origin, and
the line OX is called the polar azis. Polar coordinates
are denoted thus: (p, 6).

220. Convention of Signs. We regard # as positive when
it is measured counterclockwise and as negative when
measured clockwise. We regard p as positive when it is
measured from O along the terminal side of # and as
negative when measured in the opposite direction.

Pp,0)

o X

Thus, in this figure we may locate I if it is given that 6 = 30°
and p =7. The same point P is located by § = 210° and p =—7, as
well as in any one of several other ways. But

given any point P, we shall, whenever we are P
free to choose, always take 6 as the positive L
angle XOP, the corresponding value of p being (i

therefore positive. o X
209
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221. Special Equations. We shall now consider two im-
portant equations and their graphs.

1. Consider the graph of the equation p = 2 a cos 6.

This equation represents a circle with diameter 2 a, the circle
passing through the pole and having its
center on the polar axis. P

For if P (p, 6) is any point on the circle,
OP = p and the angle OPA = 90° Ilence
cos 0 = p/2 a, or p =2 a cos §, and this equa-
tion is obviously not true unless P is on the
circle. This equation is called the polar
equation of this circle.

2. Consider the graph of p = 2 a sin 6. <7

This equation represents a circle with diam-
eter 2 a, the circle being tangent to the polar
axis at O.

This is apparent when we consider that in
this case we have cos (90° — 0) = p/2 a; that s, A
that p = 2asin 6. o X

222. Relations of Rectangular and Polar Coordinates. If
P is any point in the plane and has the rectangular
coordinates (z, y) and the polar coor-

dinates (p, 8), then P

i
x=pcosd iy

and y=psiné. |
Hence, if the equation of a curve O x X

is known in rectangular coordinates,
the polar equation of the curve may be found by making
the above substitution.

To change an equation from polar to rectangular coor-
dinates we must substitute the following values:

p=Vx+y?, cos=x/Vx*+y?, sind=y/Vx+
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Exercise 57. Polar Coordinates

Plot the following points: .
1. (4, 45°), (2, 90°), (3, 60°), (— 3, 60°), (3, 240°), (1, 0°).
2. (5,120°), (2, 180°), (— 2, 180°), (— 6, 330°), (— 3, — 30°).
3. (8, 390°), (— 8, 210, (7, 15°), (-- 7, — 240°), (5, 120°).
4. Plot the following points, and give for each a pair of
- coordinates in which the radius vector is positive: (— 4, 225°),
(— 10, 300°), (— 4, 75°), (— 9, — 60°), (— 8, 36°).

5. What is the locus of all points for which p=10?

What is the equation in polar coordinates of a circle having
a radius » and its center at the origin ?

6. What is the locus of all points for which 6 =70°?
. What is the equation in polar coordinates of a line passing
through the origin ?

7. Draw the line ! perpendicular to the polar axis at Q so
that 0Q = a. Let P’(p, 6) be any point on 7/, draw p and 6,
and show that the equation of 7 is p cos § = a.

‘8. The equation of the line parallel to the polar axis and
. distant ¢ from it is p sin 6 = a.

Change the following to equations in polar coordinates :

9. y*=12z. 13. @ —2ay + =2 — 4.

10. 2?4+ 3f =4 14. 2y =T.

11. a® — 3* = 20. 15. 22 —ay + 9  — 6+ y=1.
12. 4o+ 2 =4. 16. (2 +9°)° = 4 (x® — o).
Change the following to equations in rectangular coordinates :
17. p=2acosé. 20. p’cos 260 =—1.

18. psin 6 = 10. 21. pcos (6 — 30°)=1.

19. p =4sin26. 22. p(sin O+ 2 cos 0) = 6.

In Ex. 19 recall the fact that sin 26 = 2 sin 4 cos 6.
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223. Graphs in Polar Coordinates. To plot the graph of
an equation in polar coordinates we assign values to €,
compute the corresponding values of p, and from these
values locate a sufficient number of points of the curve.

. 10
1. Plot the graph of the equation p = ———.
stap 4 P 2 —cosf
6= 0° 30° 60° 90° 120° 150° 180°
p= 10. 0 8.8 6.7 5.0 4.0 3.5 3.3

Since cos (— ) = cos 6, it appears that a negative value of 6, say
6 = — I, leads to the same 190° 0> 60° 30°
value of p as the positive ’
value 6 =1, and hence
the curve is symmetric 1507~
with respect to OX. Itis
only necessary to assign g4
to 6 values between 0°
and 180°, draw the curve
above OX, and then draw 210
below OX a curve that is / S
symmetric to it. S0 570 3007 330°

.0°
1360

2. Plot the graph of the equation p =10 sin 2 6.

0= 0° 15° 30° 45° 60° 75° 90°

p= 0 5.0 8.7 10.0 8.7 5.0 0

It is left to the student to assign values
to 0 in the other three quadrants and to
complete the graph.

If the student has forgotten the trigono-
metric functions of the familiar angles 0°,
30°, 45°, ---, he may refer to page 285.

Paper conveniently ruled for plotting
the graphs of equations in polar coordi-
nates can be obtained from stationers.
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224. Polar Equation of a Conic. Let F be the focus, ! the
directrix, and e the eccentricity of any conic, and denote by
2 p the distance from [ to #. Draw RP perpendicular to FX.

Let P (p, ) be any point on the conic. Then the equa-
tion of the conic in polar coordinates is found from the
definition of a conic (§ 112) as the locus of a point P
which moves so that the ratio of its distances from # and
! is a constant, this constant being the
eccentricity e.

Then FP_ e,

QP
that is, FP=¢.SRE

— ¢(SF+FR);
whence p=re(2p+pcosb),

which is the desired equation. Solving this equation for
p in terms of 6, we have

2ep

“1—ecosf

~ This is the equation (§118) of the parabola, ellipse, or
hyperbola, according as e=1, e<1, or e>1.

In the figure we have taken the focus to the right of the directrix.
Hence the equation obtained assumes that the left-hand focus is the
pole in the case of the ellipse, but that the right-hand focus is the pole
for the hyperbola (§§138,167). In the case of the ellipse or the hyper-
bola, if the other focus is taken as the pole, the student may show
that the resulting equation is

= 2e
P=T¥ecosd’

which differs from the equation given above only in the sign of one
of the quantities involved in the fraction.
Since e =1 in the case of the parabola, it is evident that the

equation of this curve is 2p
P =T "cos 8’



214 POLAR COORDINATES

Exercise 58. Polar Graphs

Plot the graphs of the following equations :

- 1. p=10sin@. 7. p=06sin36.
- 2. p=10cos . 8. p = 6(cos § + sin 6).
" 3. p=1+4cosé. 9. p=4cosf — 2siné.
4. p=6(1—COS 0) ) 10. p2:1(isin€.
5. p=14siné. . 11. p*=8cos 2.
6. p=4cos20. 12. p(cos § — 3 sin )= 8.

13. Find the equation of the ellipse in polar coordinates,
taking the right-hand focus as the pole.
14. Find the equation of the hyperbola in polar coordinates,
taking the left-hand focus as the pole.
15. The equation of the ellipse, when the center of the
ellipse is the pole and the major axis is the polar axis, is
- a®?
P = 17 c0s*0 + a? sin0
This may be shown most
simply by changing the equa-

tion in rectangular coordinates
to one in polar coordinates

20°

TP
(§222). For a direct derivation
draw the triangle FPO, where
O is the center and P(p, 6) 530°

-is any point on the curve.
Draw PQ perpendicular to K
OX. Then we have FO =+/a? — 07 (§ 140), 0Q = pcosfd, QP = psinf,
FP=a+e-0Q=a+ epcosd. (§143), and, finally, FQ* + QP = FP".

16. Find the equation of the hyperbola when the center
is the pole and the real axis is the polar axis.

17. Given a circle with radius » and the pole O on the
circle; if the center is the point (r, @), the equation of the
circle is p = 27 cos (6 — ).

18. Draw the graph of the equation 2 p cosd = 2 + p.
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19. Where are all points for which §=0°? for which
6 =180°? for which p=07?

20. Draw the graph of the equation p =10 sin 1 4.

21. Draw the graph of the equation p = 8/(2 — cos 6).

22. Draw the graph of the equation p = 8/(1 — 2 cos 6).

23. From the polar equation of the parabola show that the
focal width is 4 p.

24. From their polar equations find the focal widths of the
ellipse and the hyperbola.

25. Find the intercepts on the polar axis of the ellipse,
hyperbola, and parabola.

26. Change the equation p*=10cos 26 to an equation in
rectangular coordinates.

Since cos 24 = cos?f — sin®d, the equation may be written in the
form p* =10 (p? cos?d — p? sin2f).

27. Draw the graph of the equation (2*4- »*)* =102*—10 3?
by first changing the equation to an equation in polar coordinates.

Which of the two equations appears the easier to plot ?

28. How does the graph of the equation p = @ cos 6 differ
from that of p*> = ap cos 6, obtained by multiplying the members
of p=acosfbyp?

The equation p?=ap cosf, or p>— ap cosf =0, is degenerate. Consider
the factors of the left-hand member.

29. Draw the graphs of p = e sin § and pf = afsin 6.

It should be observed that the second equation is degenerate.

30. Determine the nature of the graph of the general
equation of the first degree in polar coordinates.

31. Find the equation of the locus of the mid points of
the chords of a circle which pass through a point O on the circle.

32. Draw a line from the focus Fto any point Q on an ellipse,
prolong FQ to P making FQ = QP, and find the equation of
the locus of P.
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33. A straight line OB begins to rotate about a fixed point
O at the rate of 10° per second, and at the same instant a point
P, starting at 0, moves along OB at the rate of 5 in. per second.
Find the equation of the locus of P.

34. The sum of the reciprocals of the segments FP and FQ
into which the focus F divides any focal chord of a conic is
constant.

If the angle XFQ = ¢, then PFX = 180° 4+ ¢, and the corresponding
values of p in the polar equation of the conic are Q) and FP, where F
is taken as the pole and FX as the polar axis.

35. The product of the segments into which the focus
divides a focal chord of a conic varies as the length of the
chord ; that is, the ratio of the product of the segments to the
length of the chord is constant.

36. The sum of the reciprocals of two perpendicular focal
chords of a conic is constant.

37. If PFP' and QFQ' are perpendicular focal chords of a

1 .
t.
PF-FP’+ oF . FQ is constan

38. Find the locus of the mid point of a variable focal radius
of a conic.

conic, then

39. Find the equation of a given line in polar coordinates.

Denote by p the perpendicular distance from the pole to the line,
and by B the angle from OX to p. Take any point P (p, 6) on the line,
and show that p cos (6 — 8) = p.

40. The equation of the circle with center C(a, ) and
radius 7 is p?+ a* — 2apcos (6 — @) =12

Draw the coordinates of C and of any point P(p, ) on the circle,
and draw the radius CP.

41. Find the polar equation of the locus of a point which
moves so that its distance from a fixed point exceeds by a con-
stant its distance from a fixed line. Show that the locus is a
parabola having the fixed point as focus, and find the polar
equation of the directrix.



CHAPTER XII
HIGHER PLANE CURVES

225. Algebraic Curve. If the equation of -a curve
referred to the rectilinear coordinates z and y involves
only algebraic functions of 2 and y (§58), the curve is
called an algebraic curve.

We have studied the algebraic curves represented by
equations of the first and second degrees. It is a much
more difficult matter to discover all the kinds of curves
represented by equations of the third degree and by equa-
tions of degree higher than the third.

Newton was the first to make a searching investigation of the

curves represented by equations of the third degree, and according
to his classification there are seventy-eight kinds.

In the first part of this chapter we shall describe a few
curves of special interest the equations of which are of
the third and fourth degrees.

226. Transcendent Curve. If the equation of a curve
referred to rectilinear coordinates involves transcendent
functions of z or y (§ 59), the curve is called a transcend-
ent curve. Such, for example, are the graphs of the equa-
tions involving sinz, logz, and 10°. 'We shall examine a
few of these curves in this chapter.

As an example of a useful formula containing a constant raised
to a variable power, it is easily seen that y, the amount of $1 at 6%
interest compounded annually for x years, is found from the equation

y = 1.06%, and that the graph of this equation is a transcendent curve.
217
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227. Cissoid of Diocles. Let OK be a diameter of a
circle with radius 7, and let KX be tangent to this circle at
the point K. Let the line OR from O to KH cut the circle
at S, and take OP on OR so that OP = SR. The locus of
the point P as OR turns about O is called a eissoid.

To find the equation of the
cissoid referred to the rectangular
axes OX and 0Y, draw the coor-
dinates , y of P, draw SIK, and
.draw SN perpendicular to OX.
NS

oN €Y

|

Then Y
z

We have now only to find
each of the lengths &S and ON
in terms of # and y, which may
be done as follows:

Since SR=O0P,
we have NK=ux
and ON=2r —u.

In the right triangle OSK it is evident from elementary

geometry that NS is the mean proportional between ON
and NK, and hence we have

NS=VON.NK
=V (2r—=2)a

Substituting these values of ON and NS in (1), and
squaring to remove radicals, we have

x*
2r—x

y'=

This is one of the simplest curves having equations of the third
degree in z and y.
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228. Shape of the Cissoid. From the equation of the
cissoid we see that the curve is symmetric with respect
to OX (§ 43), has real points only when 0 =2 <27, and
approaches the vertical asymptote z =27 (§47).

Also, as P approaches O the secant OPR approaches a
horizontal position of tangency at O (§124).

The student should note that y = 4+ » when « =r. That is, the

cissoid bisects the semicircumferences above and below OX.
This curve was thought by the ancients to resemble an ivy vine,

e

and hence its name, the word cissoid meaning “ivylike.”

229. Duplication of the Cube. The cissoid was invented
by Diocles, a Greek mathematician of the second century
B.C., for a solution of the problem of finding the edge
of the cube having twice the volume of a given cube.

To duplicate the cube, draw a line
through C, the center of a circle of v B
radius 7, perpendicular to OX, and on Q.
it take CB = 27r. Draw BK cutting the
cissoid in @. Then, since CK=1 CB,

EK=1EQ. But from the equation of o K
the cissoid we have , CE X
=3 3
E_Qz— (03 OF
EK ~ L1EQ

whence EQ°=20E"

Hence if @ is the edge of a given cube, construct & so
that OE: EQ=a:b. Then OE®: EQ*=a®: 1% and since
EQ*=20E® we have 13= 243, and the problem is solved.

In like manner, by taking CB = nr, we can find the edge of a
cube n times the given cube in volume.

The student will readily imagine, however, that the instruments
of geometric construction with which he is familiar — the straight

edge and compasses — will not suffice for drawing the cissoid.
AG
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230. Conchoid of Nicomedes. If a line OP revolves about
a fixed point O and cuts a fixed line ! in the point R, the
locus of a point P such that EP has a constant length ¢ is
called a conchoid.

To find the equation of the conchoid, take rectangular
axes through the fixed point O, so that OY is perpendicular
to the line /. Denote by a the distance from O to [, and
take P(z, y) any point on the curve. Draw PB perpen-
dicular to OX and cutting [ in the point 2.

Then, whether the distance RP, or ¢, is laid off above !
or below /, we have the proportion

OP:RP=BP:MP;
that is, Va2 +yie=y:y—a,
or (*+y")(y—ay=cy’

RN
-

When P is below /, the student may find it difficult to see that
MP =y — a. But this is simple, for BM = a, and hence MB =— a.

The above figure shows the curve for the case ¢ > a. The student
should draw the curve for the cases ¢ < a and ¢ = a.

The equation of this curve is of the fourth degree, as shown above.

This curve was thought by the ancients to represent the outline
of a mussel shell, and hence its name, the word conchoid meaning
“shell-like.”
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231. Shape of the Conchoid. The conchoid is symmetric
with respect to OY. Furthermore, if we solve for 22 the
equation of the conchoid, we have

202 _ 12 (1 — )2
2 Sy (y2 o
-
whence we see that y =a, which is the line [, is a horizontal

asymptote for both branches of the curve, the one above {
and the other below 7

232. Trisection of an Angle. The conchoid was invented
by Nicomedes, a Greek mathematician of the second century
B.C., for the purpose of solving the problem of the dupli-
cation of the cube. It is also applicable to the trisection
of an angle, a problem not less
celebrated among the ancients.

To trisect any angle, as 40B,
lay off any length 0Q on OB. [
Draw QK perpendicular to 04,
and lay off K4=20Q. Now \
draw a conchoid with O as the ||
fixed point mentioned in the defi- [-g
nition, QK as the fixed line, and Vi —TQ !
K4 as the constant length c. 0] LT

At @ erect a perpendicular to QK cuttmg the curve 111
the point P. Then OP trisects the angle 40B.

To prove this, bisect PR at S.

P |

A
=Y ;‘ﬁ |

=
l

et
N\ |

Then QS=8P=1RP=1KA4A=0¢,
and /80Q=/QS0=2/QPS8S=2/A0P.
Therefore £40P =1} LA0B.

Since 40B is any angle whatever, and £ 40P is one third
of it, the problem is solved.



222 HIGHER PLANE CURVES

233. Lemniscate of Bernoulli. The locus of the inter-
section of a tangent to a rectangular hyperbola with the
perpendicular from the center to the tangent is called the
lemniscate of Bernoull.

N'H‘ I T T

To find the equation of the lemniscate of Bernoulli, we
have first the rectangular hyperbola 22— y2= a2 We have
also the equation of the tangent at (2, y,),

z@— Yy = @
and the equation of the perpendicular to the tangent from 0,
2y + yyz = 0. )

If we regard (1) and (2) as simultaneous, z and y are
the coordinates of the intersection of (1) and (2).
Finding z; and g, in terms of z and y, we have

o =a/(@+9),  yi=—Cy/(@P+ YD)

But (z;, y;) is on the hyperbola, and hence 22— y2= a2
Substituting, we have the desired equation

(e +¢) =d"(x* - ¢).

This curve was invented by Jacques Bernoulli (1654-1705).
Fagnano discovered (1750) its principal properties, but the analytic
theory is due chiefly to Euler. The name means “ribboned.”
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234. Cycloid. The locus of a point on a circle as the
circle rolls along a straight line is called a cycloid.

To find the equation of the cycloid, take OX as the
x axis, and take the point O, where the curve meets OX,
as the origin.

Zenin
;(D ﬁ

)T
\‘_

R M\ X

!

|
S

|

Let P(z, y) be any point on the curve, r the radius
of the rolling circle, and 6 the angle PCR, measured in
radians. Then arc PR =r6, and arc PR is equal to OR,
the line over which the circle has rolled since P was at O.

Then 2=0R —PN=r0—rsinf,
and y=RC—NC=r¥rcos0.
That is, x=r(f —sinf)
and y=r(1—cos¥).

Students not familiar with radian measure should consult page 285.

It is not difficult to eliminate the variable 6 from these
equations and thus obtain the equation of the curve in
the variables z and y. But the resulting equation is not
nearly so simple as these two equations, and hence the
latter are commonly used in studying the curve.

Eliminating 6 from the above equations we have

x:rcos—l—r_yiFV‘Brg/—yﬂ.
Y

The curve consists of an unlimited number of arches, but a single
arch is usually termed a cycloid. The name means * circle-like.”
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235. Properties of the Cycloid. To find the z intercept
OM, let y=0 in the equation y =r(1— cos#) obtained
in §234. Then 6=0, 2m, 4m, ..., and 2=0, 27,
4 7r, ... Hence the cycloid meets the z axis in the points
(0,0), (27r, 0),(47r, 0), - - -, and the length of OM is-2 7rr.
The value of y is obviously greatest when cos 6 is least,
that is, when 6 =, in which case y = 27.

These facts are also easily seen geometrically.

The invention of the cycloid is usually ascribed to Galileo. Aside
from the conics, no curve has exercised the ingenuity of mathema-
ticians more than the cycloid, and their labors have been rewarded
by the discovery of a multitude of interesting properties. Thus the
length of the arch OQAI (§ 234) is eight times the radius, and the
area OQJ is three times the area of the generating circle.

Also, the cycloid is the curve of quickest descent, the brachisto-
chrone curve; that is, a ball rolls from a point P to a lower point Q,
not vertically below P, in less time on an inverted cycloid than on
any other path.

236. Parametric Equations. When the coordinates z and
y of any point P on a curve are given in terms of a third
variable 6, as in § 234, 0 is called a parameter, and the
equations which give z and y in terms of 6 are called the
parametric equations of the curve.

To plot a curve when its parametric equations are given,
assign values to the parameter, compute the corresponding
values of 2 and y, and thus locate points.

For an easy example of parametric equations of a curve, draw a
circle with radius » and center at (0, 0). Draw the coordinates z, y
of any point P on the circle. Denoting the angle XOP by 0, we have
x =rcosf and y =7 sinf as parametric equations of the circle.

In the study of the ellipse (§ 163) we expressed z and y in terms
of the eccentric angle ¢ for the point P (z, y) as 2=acos¢ and
y=>sin ¢; hence these are parametric equations of the ellipse.

The student may prove that the parametric equations z = (t —1)2
and y = 2 (¢ — 1) represent the parabola y*>=4 z.
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237. Hypocycloid. The locus of a point on a circle which
rolls on the inside of a fixed circle is called a hypocycloid.
- : SN TN \ ‘I
|- N

‘ |

Taking the origin at the center O of the fixed circle and,
the z axis through a point 4 where the locus meets the
fixed circle, let P (z, y) be any point on the locus.

Draw the line of centers OC, and let the ratio 07: ¢7T = n,
Then if CT=r, we have OT = nr and OC =(n—-1)n

Let £AOT =6 radians. Then the arc PT is equal to the
arc AT over which it has rolled, that is, r x ZPCT=nr . 6.

Hence LPCT =né.

Also, ZQCP=m—/0CD— /PCT

=lmr—(m-1)6.
Then z=0Q+ QR
=0Ccos 0+ CP sin QCP,
y=QC—-DC
=0Csin § — CP cos QCP.
Therefore x=(n—1)rcosd + r cos(n—1)0,

y=(n—1)rsin — rsin(n—1)4.
If n = 4, the hypocycloid has four cusps, as in the figure.
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Exercise 59. Higher Plane Curves

1. Find the polar equation of the cissoid.

This may be done by the substitution of p cosé for z and of p sin @ for
y, or it may be done independently from the figure of § 227 by observing
that p = OP = OR — 08 and finding OR and OS in terms of p and 4.

2. Find the polar equation of the conchoid.

3. Tind the polar equation of the lemniscate of Bernoulli.

4. Draw a circle with radius », take the origin O on the cir-
cle, and take the
polar axis through
the center. A line
rotating about O
cuts the circle at
the point R, and a
point P is taken ]
on OR so that the
"length RP is a con-
stant a. Tind the o210}
equation of the
locus of P. Sketch
the curve for the <2
three cases where
a<2r,a=2rand JT \ .
a>2r. 270 S0

The polar equation is easily found if it is noted that OR = 27 cos§.

This locus is called a limagon (from the Latin limaz, ‘* a snail’’). When
a = 27 it is called a cardioid (meaning ** heart-shaped ).

5. If F and F' are two fixed points, find the equation of the
locus of a point P when F'P.FP=da?
where @ is a constant.

This locus is called Cassini's oval, named
from Giovanni Domenico Cassini (1625-1712).
The student may show that when a = ¢, where X’
2c¢ = F’F, the oval becomes a lemniscate ;
and that when a<c the curve consists of two
distinct ovals.

) :)0 ?

360°
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6. In a circle tangent to two parallel lines at the points 0
and B the chord OR turns about O and cuts the upper tangent

at 4. If AM is drawn per-
pendicular to OX and RP

perpendicular to 421, the |
locus of P is as shown in
this figure. Find its equa-

tion and plot the curve.

This curve is called the witch of Agnesi in honor of Maria Gaetana
Agnesi (1718-1799), professor of mathematics at Bologna.

7. When the radius of the rolling circle is half the radius
of the fixed circle, the hypocycloid (§ 237) becomes the x axis.

8. A circle of radius # rolls on the inside of a fixed circle
of radius 27, and a diameter of the small circle is divided by

the point P into the segments
a, b. Show that the paramet-
ric equations of the locus of
are y =0 sinf and = = a cos 6,
where 6 is the angle indicated
in the figure. Eliminate 6 from
these equations and show that
the locus is an ellipse.

By Ex. 7 the point @ on the
smaller circle moves along X0, and
the point B on the smaller circle

moves along some diameter of the
larger circle. Show that B moves

ﬁ
a9b b

Y]
o

&)

along OY. Then when @ moves from X to @, R moves from O to R,
the diameter OX moves to RQ, and the point P moves from 4 to P.

9. The rectangular equation of the hypocycloid of four

cusps is x¥ + y§‘ =4 r)%.

Take cos 36 =4 cos®§ — 3 cos§ and sin 834 = 8sinf — 4 sin34.

10. Find the parametric equations of the locus of a point P
on a circle which rolls on the outside of a fixed circle.

This locus is called an epicycloid.
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238. Spiral of Archimedes.

Let us plot the graph
of the equation p=186.
Taking 6 as the num-
ber of radians in the
vectorial angle and the
approximate value 31
for 7, the table below
shows a:few values of p.

The heavy and dotted
lines show the curve for
positive and negative values

of @ respectively.
This curve is due to

The graph of the equation
p = ¢, where ¢ is constant, is called the spiral of Archimedes.

Archimedes (287-212s.c.).

0= 0

™

3

1
6

S | el
<t

P= O 0.3

239. Logarithmic Spiral.
p=2a’ is called the loga-
rithmic spiral.

To plot the spiral in the
case p=2% we may use
the form log,,p =6 log,,2

3
S

7

L/

\J

\
N\

- { : ‘/ / i‘()

/

&

The graph of the equation

ST

i

and compute the following ') \ )(/ ﬂ]\ \u -
values by logarithms:
0= 0 Lo | o | dm | 37 | ¢ s
p= 1 14 | 21 | 8.0 | 43 | 6.1 | 88

The student may also consider the graph for negative values of 6.
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240. Exponential Curve. The graph of the equation
y = ca®, where a is a positive constant and ¢ is any con-
stant, is called an exponential curve.

We shall confine our attention to the curve y= a7
since it is only necessary to multiply its ordinates by ¢ in
order to obtain the graph of the equation y = ca®

LY

Fic. 2

It is obvious that the curve y =a” passes through the
point (0, 1) and that y is positive for all values of .

When z is a fraction, say x = p/q, a® =%/a?, and we regard this
as denoting the positive ¢th root of a”. For example, we take 16%
to be 2, not £ 2.

If @ >1, a” increases without limit when 2 does, and
a®*— 0 when z decreases without limit.

‘When a<1, a®— 0 when 2 increases without limit, and
a”® increases without limit when 2 decreases without limit.

Considering now the special case a =3, let us plot a
few points of the curve y = 3” and draw the graph. The
result is shown in Fig. 1.

Fig. 2 represents the equation y = (1)"

In each case points on the graph have been plotted for the values
z=-3,—-2,—-1,0,1,2, 3.
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241. Logarithmic Curve. The graph of the equation
y = log,z, where the base a is any positive constant, is
called a logarithmic curve.

Before considering the nature of this curve the student
should observe, from the definition of a logarithm, that if

z=da,
then y is the logarithm of = to the base a; that is,
y = log, .

We shall consider the common case of a>1.

] | 10 ' o ! |
%I‘\li }:"_\' : f1 ifi_i" (27,8)
e T [T
l k/'é\— I — 1 \

olf__ . r_‘ ‘X
__[__y|\\ [ | | i | T
25c SEREAENAE] S KR B

| i | \ Tl

A negative number has no real logarithm since a* and
a~* are both positive, a~* being the same as 1/a*. Hence in
the equation y =log,z it is evident that  must be positive.

When z <1, log z is negative, as is evident in the cases
of log;,0.01 =— 2 and log;,0.001 = — 3. Furthermore,
log,z decreases without limit when z— 0, and log, in-
creases without limit when z does.

Consider the case of a=3, and plot the curve y=log,z.
We may plot the above figure from the following values:

e= | 3| 1l 1] 8| 9 |eor
y= | -2 -1 0 | 1| 2| 8|

The student should draw the graph of y = log,z when a = }.
Jacques Bernoulli had this curve engraved upon his tombstone.
The rude figure may still be seen in the cloisters at Basel.
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242. Napierian Logarithms. For ordinary computations
common logarithms are convenient; that is, logarithms to
the base 10. But the student of higher mathematics will
meet with various algebraic processes in which a certain
other base is far more convenient. This base, called the
Napierian base in honor of the inventor of logarithms, we
shall not now define; but its value is approximately 2.7,
and it is usually denoted by e.

The value of e is 2.718281828 .... This is not the base used by
Napier, but was probably suggested by Oughtred in Edward Wright’s
translation of Napier’s Descriptio published in 1618.

243, Relations of Exponential and Logarithmic Curves:
The equation y =log,z may, according to the definition
of a logarithm, be written # = a%. It appears, therefore, that
the equations y =log,z and y=a? or 2=0a and y = a2,
are related in a simple manner; namely, that if in either
equation we interchange z and y, we obtain the other.

When two functions such as log,z and a* are related
in this manner, each is called the inverse of the other.

The geometric transformation which changes y into z
and z into y changes any point P(z, y) to the point
P'(y,z). Such atransformation is neither

: Y ’
a rotation of the axes through an angle 4 — P(y,x)
in the plane nor a translation of the axes,

but is a rotation through the angle 180° P(z,y)
of the plane about the line which bisects y
the first and third quadrants, that is, —¢ T X

about the line y = 2, the axes remaining
in the same position as before. These statements may be
easily verified by the student.

Such a rotation consequently changes the curve y =1log,x
into the curve y = a?, and conversely.
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Exercise 60. Exponential and Logarithmic Curves

1. In the equation y = 2.7% find y when  =— 2, — 1, 0,
1, 2, 12 and draw the graph.
In some of these cases, as when z = 1,2, the simplest computation is
to take the common logarithm of each member of the equation y = 2.7,
We then have log,,y = x log,,2.7, and for any value of z we may find
the value of y from a table of logarithms,
2. Draw the graph of the equation y = log, .

Here e is to be taken, as usual, to represent approximately 2.7.
Before assigning values to z, write the equation as e¥ =z. Then
y log;o e = log,, .

3. From the graph of the equation y = 37, considered as a
special case in § 240, draw the graphs of the equations y = — 3
and y = 2 x 3~

4. Show that the graph of the equation y = 3-* may be ob-
tained by rotating the graph of the equation y = 3® about the
v axis through an angle of 180°.

5. Draw the graph of the equation y = €22

6. Draw the graph of the equation y = Ve®.

The student should notice that V'e* is the same as e,

7. Draw the graph of the equation y = 2%+ and show that
it is the same as the graph of the equation y = 2 x 2*.

8. Draw the graph of the equation y = e~ *".

This graph is known as the probability curve.

9. At 49, interest, compounded annually, the amount of
$1 at the end of z years is 1.04% dollars. Draw a graph showing
the growth of the amount for 10 yr.

10. Draw the graph of the equation y = log, .
11. Draw the graiph of the equation y = log, 2.

It should be recalled that log 2% = logx + log 2. Since the graph of
y = log, @ was drawn in Ex. 10, the graph of y = log,,22 may be found
by adding log,,2, or about 0.3, to each ordinate of the graph of y =log,,z ;
that is, the entire graph of ¥ = log,,« is moved up about 0.3.

i



TRIGONOMETRIC CURVES 233

244, Trigonometric Curves. In §14 we drew the graph
of the equation y = sin z, and the student should now find
it easy to draw the graphs of the equations y = cosz,
y=tanz, y=cotz, y=secr, y=csca. It is advisable,
however, to become so familiar with the graphs of y=sin z,
y = cosz, and y = tan z that they may be sketched at once
without stopping for computations, since these three curves,
and particularly the first two, are of considerable impor-
tance in many connections.

In the case of y=tan z it may be noted that the vertical line drawn
at z = 90° is an asymptote to the graph. This is evident for the reason
that tan z increases without limit when z — 90° from the left, and
tan z decreases without limit when 2 — 90° from the right.

Similar remarks apply to the cases of y =cotz, y=secz, and
y =cscz. Any convenient units may be chosen for z and y. When
z is given in radians, use any convenient length on OX for = radians.

245. Inverse Trigonometric Curves. The graphs of the
equations y=sin"lz, y=cos 1z, and so on are called
tnverse trigonometric curves.

The symbol sin—1z, also written arc sin z, means an -
angle whose sine is 2, and hence the equation y=sin-1z
may be written 2 = sin y.

We shall consider at this time only the equa-
tion y =sin~la, and shall mention two simple .
methods of drawing the graph.

As a first method we may write the equation
y=sin"'z in the form z=sin g, assign values
to g, and then compute the corresponding values
of z, thus obtaining points on the graph.

As a second method, knowing the graph of

y = sin 2, we may obtain from it the graph of z=siny by

rotating through the angle 180° the curve y = sin z about
the line y =z, as explained in § 243.
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Exercise 61. Trigonometric Curves

1. Draw the graph of the equation y = sinz.

In the problems on this page,  represents radians. As convenient
units, the student may take a length of }in. to represent an angle of
4 m radians on the z axis, and } in. to represent 1 on the y axis.

2. Draw the graph of the equation y = cos z.

3. Show that in the interval — 1 7 < 2 < } 7 the graph of
the equation y = tan « passes through the points (—§ 7, — 1),
(0, 0), (} 7, 1), and approaches from above the vertical asymp-
tote 2 = — 4 7 and from below the vertical asymptote = = 1 .
Draw the graph in this interval, and draw and discuss the
graph in an interval to the right of this one.

4. Draw and discuss the graph of the equation y = cotz
in the interval from x = 0 to « = 7, and in one more interval.

5. Draw and discuss the graph of the equation y = seca
in the intervals 1 m <z <7 and §r<a<im

6. Draw the graph of the equation y = sin 2 and compare
its period with that of y =sinz.

It is evident from the graph of the equation y = sinz (§ 14) that the
sine returns periodically to any given value, and that this period is 2 .

7. Draw the graph of the equation y = cos 1 # and com-
pare its period with that of y = cosa.

8. The translation of axes in which the origin is changed

_to the point (1 7, 0) transforms the equation y = sinx into the
equation y = cos .

9. Show how the graph of the equation y = cota may be
obtained from that of y = tana by a translation of axes.

10. Show how the graph of the equation y = sin (x + «) may
be obtained from that of y = sinz by a translation of axes.

11. Draw the graph of the equation y = cos (z + ¢ m).

12. Draw the graph of the equation y = sin (z — 1 ).

13. Draw the graph of the equation y = cos 3z — 2 ).
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Exercise 62. Review

1. Find the equation of the locus of the foot of the per-
pendicular from the point (— @, 0) upon the tangent to the
parabola 3* = 4 ax, and draw the locus.

This locus is called a strophoid, which means *‘like a twisted band.”

2. The locus of the foot of the perpendicular from the vertex
of the parabola ¢* = — 4 ax upon the tangent is a cissoid.

3. If » denotes the radius of a circle rolling on a straight
line, b the distance of any point on the radius from the center
of the circle, and 6 the same angle as in § 234, show that the
equations of the locus of the generating point on the radius
are x = r6 — bdsinf and y =r — b cos 6.

This locus is called a trochoid, which means ** wheel-like.”’

4. Draw the curve in Ex. 3 when o < » and when b > ».

When b < 7, the curve is called the prolate cycloid, and when b > r, it
is called the curtate cycloid. When b = r, it is evident that the curve is
the cycloid, as described in § 234.

5. Assuming that ¢ in the equation p?=¢/f is a positive
constant, and taking the value p = Ve¢/2 7 when 6 = 2 7, show
that p increases without limit when 6 decreases from 27 to 0,
and that p — 0 when 6 increases from 2 7 without limit. Draw
the curve, and also consider the case of p =— Ve/2 .

This curve is called the lituus, which means ** a bishop’s staff.”” The
reason for the name will be evident from the figure.

6. Draw the graph of the equation p = ¢/6.
This curve is called the reciprocal spiral.

7. Let P(p, 6) be any point on the reciprocal spiral p = ¢/6.
Draw a circular arc clockwise from P and meeting the polar
axis at the point Q, and prove that the arc PQ is constant.

8. If P (p,; 6,), P,(py 0,), P;(p, 0,) are any three points of
the logarithmic spiral p = «f and if the vectorial angles 6,, 6,, 6,
are in arithmetic progression, then the radius vectors p, p,, p,

are in geometric progression.
AG
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9. Show that the spiral of Archimedes is cut by any line
through the origin in an infinite number of points. Denote
by P and @ two such successive points, and prove that the
length PQ is constant when the line revolves about the origin.

If P is the point (p,, 6,), then Q is (p,, 6, + 2 ).

10. This figure represents a wheel rotating about the fixed
center C and driven by the rod 4Q, the point 4 sliding on
the line AC. Show that z=(b—a)cos+ Vr*—a?sin*d and
y = bsinf, where a =A4Q, b =AP, .
and § =Z£CAQ,are the equations 0
of the locus of a point P on 4Q. P

Draw QD perpendicular to AC. Then —4 — g D C X
D@ = a sin 4, and z can be found from W
2=CB=—BC=— (4D — AB + DC).

11. Draw the locus in Ex. 10 when ¢ =12, =5, »r = 8.

12. The locus in Ex. 10 is an ellipse when ¢ = ».

Y

13. In the figure of Ex. 10 draw a line perpendicular to
AC at A, and let it meet C'Q produced at R. Find the para-
metric equations of the locus of R and draw the locus. Prove
that when a = » the locus is a circle.

Take as parameter either the angle # or the angle 4 CQ, denoting the
latter angle by ¢. This is an important locus, B being known as the
instantaneous center of the motion of 4 Q.

14. If the circle 2* 4 y* = r* is represented by parametric
equations, one of which is @ = ¢ — 7, find the equation which
represents ¥ in terms of ¢.

15. A line 04 begins to turn about the point O at the rate
of 2° per minute while a point P begins to move from O along
0OA at the rate of 2 in. per minute. Find the parametric equa-
tions of the locus of P.

16.  Find the parametric equations of the locus of the end of
a cord of negligible diameter unwinding from a fixed circle.

17. Draw the graph of the equation y = sin 2z and obtain
the graph of y = sin(2x — | 7) by a translation of axes.



CHAPTER XIII
POINT, PLANE, AND LINE

246. Locating a Point. The position of a point in space
may be determined by its distances from three fixed planes
that meet in a point. The three fixed planes are called the
coordinate planes, their three lines of interscction are called
the coordinate axes, and their common point is called the
origin. In the work that follows we shall employ coordi-
nate planes that intersect each other at right angles, these
being the ones most frequently used.

Let X0Y, Y0Z, and ZOX be three planes of indefinite
extent intersecting each other at right angles in the lines
XX, YY', and ZZ'. These coordinate planes are called
the ay plane, the yz plane, and the zz plane respectively,
and the axes XX,
YY', ZZ' are called
the axes of =, y, 2
respectively. L Y’

The distances P
LP, QP, NP of a X' 0 X
point P in space
from the coor- , N

. Y Z
dinate planes are
called the coordinates z, y, z of P, and the point is denoted
by (z, y, 2) or by P (z, y, 2).

There are various other methods of locating a point in space
besides the one described above. Two of the most important of

these methods are explained in §282.
237

Z
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247. Convention of Signs. If through any point P in
space we take the three planes parallel to the coordinate
planes, we have with the coordinate planes a rectangular
parallelepiped, as shown in the left-hand figure below.

Z Z
K Q
L P ' P
]
iz
0 M X 0 r X
R “ L
Y Y N.

The coordinate z of P is LP, SQ, RN, or-OM; the coor-
dinate y of P is QP, SL, MN, or OR; and the coordinate
z of P is NP, RL, M@, or. OS.

One of the most convenient ways of drawing the coordinates of a

point is shown in the figure at the right, y being drawn from the end
of z, and z being drawn from the end of .

Choosing the directions 0X, 0Y, OZ as the positive direc-
tions along the axes, we regard the coordinate z of a point
as positive when it has the direction of OX, and as negative
when it has the direction of OX'; we regard the coordinate
y of a point as positive when it has the direction of 0¥
and as negative when it has the direction of OY'; and
similarly for the coordinate z.

The coordinate planes divide space into eight portions,
called octants. The octant XYZ, in which the coordinates
z, y, z of a point are all positive, is called the first octant.

It is not necessary to assign to the other seven octants such a
specified order as second, third, and so on.

For the sake of simplicity we shall, when the conditions allow,
draw the diagrams in the first octant.
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PROBLEM. DISTANCE BETWEEN TwWO POINTS

248. 10 find the distance between two points F (xy, ¥y, 21)
and B (Zy Y 23)-

Z| . S
B Ret
R X9~y ,»é
,Q)‘\v
K
(9) % // x

}7

Solution. Through each of the two given points E and
E, pass planes parallel to the three coordinate planes, thus
forming the rectangular parallelepiped whose diagonal is
RE, and whose edges KL, LK, KF, are parallel to the axes

of z, y, 2z respectively.

Then @2=?L2+17(2+]?1§2.

Now EL is the difference between the distances of E
and F, from the ys plane, so that FL =z, —x.. For a like
reason LK =y,—y,, and LS=KE=z,—2,. Hence, denoting
the distance FZ by D and substituting in the above equa-
tion, we have

D =\/(JC2 - xl)z + (yz - 1»’1)2 + (zz - 1)2;

which is the required formula.

If P, and P, are taken in any other octant than the first, it will
be found that PyL = 2y — 21, LK = y; — y;, and KPy = 2, — z;.

249. CoROLLARY. The distance from the origin to any
point P(z, y, 2) is given by the formula

OP’ =x*+y* + 2%
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250. Direction Angles of a Line. Denote by «a, B, v the
angles which a directed line makes with the positive direc-
tions of the axes of z, y, z respectively. These angles are
called the direction angles of the line, and their cosines
are called the direction cosines of the line.

The angles a, B, y are always positive and never greater than 180°.
They correspond to one direction along the line, while to the oppo-
site direction correspond the angles 180° — «, 180° — 3, 180° — y, the
cosines of which are equal to — cos@, — cos 3, — cos .

THEOREM. DIRECTION COSINES OF A LINE

251. The sum of the squares of the direction cosines of any
line s equal to 1.

Z N
Y 7|\
B\ N7
7B
M K
0 X
Y

Proof. Through R and E, any two given points, pass
planes parallel to the coordinate planes, thus forming the
rectangular parallelepiped whose diagonal is £ B. Then
from the right triangles RLE, RME, ENL we have

2%

b

T, — —
cosa:—z—,?l, cosB=y2Dyl, cosy =

where D =EE. Squaring and adding, we have (§ 248)
cos?a + cos?B + cos?y =1.

The above formulas for cos @, cos 38, cosy show how to find the
direction cosines of the line through two given points.
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252. COROLLARY 1. If p is the distance from the origin
to any point P(z, y, 2), then

x=pcosa, y=pcosP, z=pcosy.

253. COROLLARY 2. A line can be found having direction
cosines proportional to any three numbers a, b, c.

Using a, b, ¢ as coordinates, locate the point P (a, b, ¢), and from
the origin O draw OP. We then have OP =Va? + % + ¢ and the
direction cosines of OP, or of any line parallel to OP, are (§ 251)

a
+Vaz+ b2+ c?
cos,B:————b—»
i\/az+b2+c2
c
—
+Va+ 12+ c?

cos a=

cosy =

and these values are easily seen to be proportional to a, b, c.

The plus sign for the radical corresponds to one direction along
the line, and the minus sign corresponds to the opposite direction.
Whenever we are not concerned with the directions along the line
we shall take the value given by the plus sign.

Exercise 63. Points and Direction Cosines

1. Locate the points (6, 2, 5), (—4, 1, 7), (2, —1, —4),
0, 6, — 3), (0, 0, 2), (0, 2, 0).

2. Show that each of the points (3, 1, 0), (— 2, 0, — 3),
(0, 4, —1), (a, b, 0), (0,0, 0) is in one of the coordinate planes.

3. Show that each of the points (4, 0, 0), (0, 7, 0), (0, 0, — 5),
(0, , 0) is on one of the coordinate axes.

4. Show that the numbers 0.2, —1, 0.4 cannot be the three
direction cosines of a line.

5. Show that the numbers 1, 1, % cannot be the three
direction cosines of a line.

6. If two direction cosines of a line are 3, 4, find the other.
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PROBLEM. DIVISION OF A LINE

254. To find the coordinates of the point which divides
the line joining the points K (zy, yy, 21) and B (Zy Yo 2,)
n a given ratio my : Mg,

Z P b
i !
E S ; S Sy
O i ; E /', I" X '
/ R Lo
Y B /
R,

Solution. Denote by P the required point and draw its
coordinates z, y, 2. Draw the coordinates z;, y;, 2, and
Ty Yy 2, Of the given points B and E respectively, as
shown in the figure.

Then HP _ }f#{{ _ 58,
PE ER, 85,
or m_rTh,
my Ty—T
Solving for z, we have
m2x1 + m1xz
ml + m2

X =

By the aid of other figures analogous to the above, the
student should show that

— myy, + m1yz’

y
m1+m2
m,z, + mz
and z=_21 11,
m, + m,

The above method and the results also hold for oblique axes.
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Exercise 64. Direction Cosines and Points of Division

Find the length and the direction cosines of the line joining
each of the following pairs of points:

£7(4,2,—2),(6,—4,1). 3. (2, —4,—1), (27, 6)

2. (3,2,4), (—3,5,5). 4. (5,0, 0), (0, 4, — 2).

5. Locate the point P (2, 3, 6) and draw PK perpendicular
to the zy plane and KL perpendicular to OX. Draw PL and
find cosa for the line OP. Draw other lines and in the same
~ way find cos B and cos y.

6. Locate the points P,(4, 2, 4) and P,(8, 5, 10). Draw the
parallelepiped having P P, as diagonal and having edges par-

allel to the axes. Find the length of each edge, the length of

P,P,, and tlie direction cosines of P P,

Find the direction cosines of each of the following lines :
4 The line in the yz plane bisecting the angle Y0Z.
8 The = axis; the y axis; the z axis.
97 The lines for which ¢ = 60° and 8=120°.

/0. The line for which @ = 8=y.

11. Find the direction cosines of a line, given that they are
proportional to 12, — 4, 6; to — 3, — 2, 3.

12. The line that passes through the points (— 6, 6, 2) and
(— 6, 2, — 2) has the direction angles 90°, 45°, 45°.

13. The coordinates of the mid point of the line which joins
the points P (z,, ¥, z,) and P,(x,, v, 2,) are x =} (x, +x,),
y= %(;7/1 + .7/2)’ 2= %‘(”"1 + z,).

14. Find the coordinates of the point which divides in the
ratio 5: 2 the line that joins the points P (— 2, — 3, —1) and
P,(— b, — 2, 4).

15. The equation 2?4 y*+ 2 =25 is true for all points
(=, y, #) on the sphere with radius 5 and with center at the
origin, and for no other points.
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16. The four lines joining the vertices of a tetrahedron to
the points of intersection of the medians of the opposite faces
meet in a point R which divides each line in the ratio 3:1.

The point R is called the center of mass of the tetrahedron.

Oblique axes may be employed, the axes lying along three concurrent
edges of the tetrahedron.

17. If from the mid point of each edge of the tetrahedron in
Ex. 16 a line is drawn to the mid point of the opposite edge,
the four lines thus drawn meet in a point which bisects each
of the lines.

18. If the point (z, 7, #) is any point on the sphere with center
(a, b, ¢) and radius », show that (x — a)*+ (y — )+ (2 — ¢)* =12

Observe that this equation of the sphere is similar to that of the circle.

19. Where are all points (z, , #) for which x =6?  =0?

20. Find the locus of all points for which z = 2; for which
y = 4; for which z = 2 and y = 4 at the same time.

21. Find an equation which is true for all points (x, ¥, 2)
which are equidistant from the points (2, 3, —7) and (—1, 3, 3).

22. Through the point 4 (3, 2, 8) draw a line parallel to 0Z.

If P is a point on this line such that OP =7, find the coordi-
nates of P.

23. If the point P(z, y, #) moves so that its distance from
the point 4 (2, 3, — 3) is equal to its distance from the ay plane,
find an equation in «, y, # which is true for all positions of P.

24. Find the coordinates of a point in the xy plane which
is 5 units from the origin and is equidistant from the points
4(3,4,2)and B(5, 1, 1).

25. Find a point that is equidistant from the three points
4(2,0,0),B(1,2,—1), C(2,—1,0).

The number of such points is, of course, unlimited.

26. Find the center and the radius of the sphere circum-
seribed about the tetrahedron having the vertices 4 (2, 0, 0),
B(, 2, —1), C(2,—1, 0), and 0 (0, 0, 0).
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255. Projection of a Line Segment. Let BE in the figure
of § 256 be any line segment, and let 7 be any straight line
in space. Pass planes through K and E perpendicular to [
at the points B, and R, respectively.

The points B, and R, are called the projections of the
points B and B on [, and the segment R;R, is called the
projection of the line segment RE, on I. If the segment is
ER, taken in the opposite direction, its projection is R, R;.

There are other kinds of projection, but we shall employ only the
projection described above, which is called orthogonal projection.

PROBLEM. LENGTH OF PROJECTION

256. To find the length of the projection of a given line
segment on a given line.

B -5
i

Solution. Let the given segment be RE, or a; ¢ the
angle which RE makes with the given line /; and # and &
planes perpendicular to I through £ and E respectively.

Through E draw a line parallel to /, meeting the plane
N at the point S, and draw ES. Then the angle SEE=¢,
and S is equal to the projection B, R, which we are to find.

But obviously RS =« cos ¢, and hence the length A of
the projection of ¢ on ! may be found from the formula

h=acos ¢.
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THEOREM. PROJECTION OF A BROKEN LINE

257. The sum of the projections of the parts AB, BC, CD
of a broken line ABCD on any line I is equal to the projec-
tion of the straight line AD on L.

!

A' C’ B’ D’

Proof. Let the projections of 4, B, C, D on 1 be 4', B/,
C', D'. Then the projections of the segments 4B, BC, CD,
AD on I are A'B', B'C', C'D', A'D' respectively, and the
proof of the theorem follows from the fact that

A'B'+B'C'+C'D'=4'D'.

It should be remembered that the projections are directed seg-

ments; thus, if A’B’ is positive, B’C” is negative. The theorem is

obviously true for a broken line having any number of parts. It is
not assumed that the parts of the broken line all lie in one plane.

258. Equation of a Surface. If P(z, y, 2) is any point on
the sphere of radius » having the origin as center, then
22+ 32+ 22= 12, since this equation expresses the fact that
OP*=12 The equation 224324 22=72 is true for all points
(7, y, ) on the sphere, and for no other points, and is
called the equation of the sphere.

In general, the equation of a surface is an equation which
is satisfied by the coordinates of every point on the surface,
and by the coordinates of no other points.

The subsequent work is concerned almost entirely with equations

of the first and second degrees in z, y, and z, and with the surfaces
which these equations represent.
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PROBLEM. NORMAL EQUATION OF A PLANE

259. 7o find the equation of a plane when the length of the
perpendicular from the origin and the direction cosines of
this perpendicular are given.

Solution. Letting OF be the perpendicular to the plane
ABC from the origin O, denote the length of OF by p and
the direction angles by a, B, . Let P be any point in the
plane, let OM, MN, NP be its coordinates z, y, 2 and
draw OP. Then the projection of OP on OF is equal to
the sum of the projections of O, MN, NP on OF (§ 257).
But as the plane is perpendicular to OF, p is the projec-
tion of OP on OF, and the projections of OM, MN, NP on
OF are respectively z cosa, y cos B, z cosy (§ 256).

Hence we have the required equation

xcosa+ycosf+zcosy=p.

This equation is called the normal equation of the plane, and in
work with planes it is of great iimportance.

For example, if the direction cosines of the line OF in the
figure above are 2, §, %, and if OF =5, the equation of the plane
perpendicular to OF at F is #2+4+ $y+ %22z=>5, which may be
written 3z + 6y + 2z = 35.
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THEOREM. EQUATION OF THE FIRST DEGREE

260. Every equation of the first degree in z, y, and z
represents a plane.

Proof. The general equation of the first degree in z, y, 2 is
Az + By+ Cz24+ D =0. €Y

Dividing by V 42+ B2 4 C?% denoted by S when preceded
by the sign opposite to that of D, we have

4 B C D
§x+§y+—S-Z——§- )
But these coefficients of z, y, z are the direction cosines
of some line L § 253
Hence (2) is the equation of the plane perpendicular
to ! at the distance —D/S from the origin. § 259

261. ConroLLARY 1. 70 reduce any equation of the first
degree in z, y, 2 to the normal form, write it in the form
Az + By + C2 4+ D=0 and divide by V A2 + B2 + C? preceded
by the sign opposite to that of D.

For example, to reduce the equation 32 — 6y + 2z +14 =0, we
divide by '— V9 + 36 + 4, or — 7, obtaining — 3z + §y—2z=2.
Thus the length of the perpendicular from the origin to the plane
is 2, and the direction cosines of the perpendicular are — %, &, — 2.

262. COROLLARY 2. The direction cosines of any straight
line perpendicular to the plane Az + By +Cz+D =0 are

A B c
IVEIB1O EVALBLC EVALBLC

and are proportional to 4, B, C.

The notation «:0:¢ = d:e:f will be used to indicate that a, b, ¢
are proportional to d, ¢, f; in other words, that the ratios of «, 0, and
¢ are equal to the ratios of d, ¢, and f respectively; or, again, that
a:d=b:e=c:f
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PROBLEM. INTERCEPT EQUATION OF A PLANE

263. To find the equation of a plane in terms of the
intercepts of the plane on the axes.

Solution. Denote the intercepts of a given plane on the
axes of #, y, 2 by a, b, ¢ respectively. Let the equation
Ax+ By + Cz=D
represent the plane. This equation must be satisfied by
the coordinates of the points (a, 0, 0), (0, &, 0), (0, 0, ¢),

the end points of the intercepts.

Hence Aa=D, Bb=D, Cc=D;
that is, a=D/A4, b=D/B, ¢=D/C.
But the equa,tion of the plane ma,y be written in the form
4 —1
I)/A + D/B + D/C ’
and hence z ~+3 y 5t Z_

264. Plane through Three Points. The equation of the
plane Az + By + Cz=D has four terms. If we divide by
D, we have the form lz + my + nz=1. llence the equation
involves three essential constants, and a plane is determined
by any three independent and consistent conditions.

For example, find the equation of the plane which passes through
the three points (1, — 2, 2), Q(6, 2, 4), and R (4, 1, ).

Let the equation Iz 4+ my 4+ nz =1 represent the plane. Since P,
Q, and I are on the plane, their coordinates must satisfy the equation
of the plane. Substituting, we have

[—2m+2n=1, 6l4+2m+4n=1, 4l+m+5n=1.

Solving, we find that [ = §, m =— %, and n = j1;. Therefore the
required equationis 3z — Y5y + fpz=1L 0or 2z -3y + 2z =10.

This method fails if the plane contains the origin, for the equa-
tion is then A2 + By + Cz =0.
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PROBLEM. PLANE PERPENDICULAR TO A LINE

265. 1o find the equation of the plane passing through the
point K (xy, ¥y, 2,) and perpendicular to a line I whose
direction cosines are known.

Solution. Represent the plane by the equation
Az + By + Cz =D. [¢))

Since the plane is perpendicular to the line /, the coef-
ficients 4, B, C must be chosen proportional to the known

direction cosines of I § 262
Since the plane passes through R (2, y;, 2,), we have
Ax;+ By, + Cz;=D. 2

Putting this value of D in (1), we have the equation
A(x—x)+B@y—y)+C(z—2z)=0,

where 4, B, C are any three numbers proportional to the
direction cosines of the given line Z

Exercise 65. Equations of Planes

Given the points A(2, 1, — 1), B(— 2, 2, 4), C(3, 2, — 2),
find in each case the equation of the plane which :

V1. Passes through 4, B, and C.

2. Passes through 4 perpendicular to BC.

3. Passes through B perpendicular to-4C.

4. Ts perpendicular to 4B at A.

5. Is perpendicular to A C at the mid point of AC.

‘6. Passes through 4, making equal intercepts on the axes.
7. Passes through B and C parallel to the z axis.

8. Passes through 4 and B, the ¥ mtelcept exceeding the
z intercept by 5.

9. Contains the point (3, 1, 0) and the line 4B.
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PARALLEL PLANES

THEOREM. PARALLEL PLANES

266. If Az + By +Cz=D and A'x+ B'y+ C'z =D’ repre-
sent two parallel planes, A: B: C = A': B': C', and conversely.

T

Proof. Let ! denote a line perpendicular to the first
plane, and let d, e, f be three numbers proportional to
the direction cosines of I

Then A:B:C=d:e:f. § 262
Since the planes are parallel, [ is perpendicular to the
second plane also.

Then A:B':C'=d:e:f
and hence A:B:C=A4":B":C.
Conversely, if 4:B:C=4":B":C', we have
A:B:C=d:e:f,
and A:B:C'=d:e:f.
Hence the second plane is perpendicular to 7, and the
planes are parallel.

267. COROLLARY. The equation of the plane that passes
‘through the point F,(z,, y;, 2,) and is parallel to the plane
Az +By+Cz=D is

A(x—x)+B@y—y)+C(z—z)=0.

The desired equation represents a plane parallel to the given plane
Az + By + Cz= D (§ 266), and since the equation is satisfied by the

coordinates of P, (z,, ¥,, ;), the plane also passes through P,.
AG
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268. Special Planes. It is important to find what planes
are represented by such special equations of the first
degree as z=a and dz+By=D. It is easily seen that

The equation x=a represents the plane parallel to the
yz plane at the distance a.

For all points (z, y, z) for which z has the same value «a lie in
that plane, and all points in that plane have the same value of x;
that is, 2 = a.

Similarly, the equation y = b represents the plane parallel
to the zx plane at the distance b, and z=c represents the
plane parallel to the zy plane at the distance c.

Consider the plane 4z + By = D, denoting by a, B, v the
direction angles of a line ! perpendicular to the plane.

Then we see that cosy=10 (§ 262). Hence the line !
is perpendicular to the z axis, and the plane, being per-
pendicular to [, is parallel to the 2z axis. Therefore

The plane Ax+ By =D is parallel to the z axis, the
plane Az + Ce=D is parallel to the y axis, and the plane
By + Cz=D is parallel to the x axis.

A single illustration will make the above statements
clearer. For example, find the equation of the plane
through 4 (38, 1, —1), B(2, —1, 3) and parallel to OX.

Let the equation of the plane be

By + Cz=D. ‘ ¢S
Dividing by D, we may write this equation in the form
ly+mz=1, )

where I = B/D and m = C/D.
Since 4 and B are on the plane, we have from (2)

l—m=1,
and —1l+38m=1.

Solving for ! and m, we find that =2, m =1, and hence the
required equation is 9y +z=1
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PROBLEM. DISTANCE OF A POINT FROM A PLANE

269. 7o find the perpendicular distance of a given point
rom a given plane.
9 r

Solution. Let the normal equation of the given plane be
zcosa+ ycosB+zcosy=p. § 259

Let B (2, ¥y, ;) be the given point, and let the plane M
pass through A parallel to the given plane. Denote by d the
distance from the given plane to this second plane Then
d is the distance we are to find.

The equation of the plane M is evidently

zcosa+ycosB+zcosy=p+d;
and since it is given that this plane passes through the point
B (z, ¥yy 2), We have
x cosa+y cosB+zcosy=p+d;
whence d=x,cosa+y, cosf+2z cosy—p.
That is, to find the distance of the point B, from the plane

z cosa + y cos B + z cos y = p, substitute the coordinates of F,
Jor z, y, and z in the expression  cos @ +y cos B + z cos y— p.

270. COROLLARY. The distance of the point E, (xy, yy, 2,)
Srom the plane Az + By+ Cz+D =0 s
Ax,+ By, +Cz,+D
- ———— 2
:!:\/A2 +Bz +C?

where the sign of the radical is the same as that of D.

When the point P; is on the side of the plane away from the

origin O, then d has the same direction as p and is therefore positive.
" When P, is on the same side of the plane as the origin O, then d
is negative. The sign may be neglected if simply the numerical
distance is required.
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Exercise 66. Equations of Planes

Find the equation of each plane determined as follows :
1. Perpendicular to a line having direction cosines propor-
tional to 2, 3, — 6, and 7 units from the origin.
2. Passing through the point (4, 3, — 6) and perpendicular
to a line having direction cosines proportional to 1, 2, 1.
3. Passing through the point (1, — 2, 0) and perpendicular
to the line determined by the points (2, — 4, 2) and (— 1, 3, 7).
4. Passing through the points (1, 2, —2), (0, 6, 2), (3,4, —5).
5. Passing through the point (2, 2, 7) and having equal
intercepts on the axes.
6. Passing through the points (2, 3, 0) and (1, —1, 2) and
parallel to the z axis.
7. Parallel to the plane 4z — 2y — # = 12 and passing
through the origin.
8. Parallel to the plane # — y + # = 7 and passing through
the point (2, 3, 3).
9. Perpendicular to the line P P, at its mid point, where
P, is the point (4, 7, — 8) and P, is the point (— 2, 1, — 9).
10. Parallel to the plane 22 — 6y + 3~ =17 and 9 units
from the origin.
11. Parallel to the plane 22 — 6y — 3z = 21 and 3 units
further from the origin.
12. Tangent at I>(4, — 12, 6) to the sphere with center at
the origin 0 and with radius OP.
13. Passing through the point (— 2, — 4, 3), 2 units from
the origin 0, and parallel to 0Y.
14. Passing through the point (3, — 2, 1), having the
# intercept 7, and having the x intercept T.

The intercept equation (§ 263) is a simple basis for the solution.
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15. The equation of a plane cannot be written in the inter-
cept form when the plane either passes through the origin or
is parallel to an axis.

16. The equation of the ay plane is z = 0, that of the
za plane is y = 0, and that of the yz plane is « = 0.

17. What is the locus of all points (z, 7, z) for which 2 = 0
and y = 07 for which x =0 and 2 = 0? for which y =0 and
z=07? Prove each statement.

18. Where are all points (z, y, z) for which 2 =3andz=27?
Prove the statement.

19. Tind the distance of the point (4, 3, 3) from the z axis.

20. Find the distance of the point (3, — 2, 3) from the plane
6x—2y—32+8=0.

21. The vertex of a pyramid is the point (2, 7, — 2), and
the base, lying in the plane 22— 5y + 2 —12 =0, has an
area of 32 square units. Find the volume of the pyramid.

22. The vertices of a tetrahedron are (1, 1, 1), (3, — 2, 1),
(— 3, 4, 2),and ¥ (10, — 8, 3). Find the length of the perpen-
dicular from ¥ upon the opposite face.

23. Find the value of %k for which the plane 22 —y+424-%=0
passes at the distance 4 from the point (3, — 1, 7).

24. Tind the distance from the plane 3z —4y+ 22 =10
to the parallel plane 3 — 4y + 22 = 30.

25. Find the equation of the locus of points equidistant from
the origin and the plane 6x 4+ 2y — 3z = 8.

26. The direction cosines of a line perpendicular to a
plane are proportional to the reciprocals of the intercepts of
the plane.

27. The sum of the reciprocals of the intercepts of planes
through a fixed point whose coordinates are equal to each other
- is constant.

28. TFind the volume of the tetrahedron formed by the three
coordinate planes and the plane Az + By 4+ Cz = D,
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THEOREM. PLANES THROUGH A LINE

271. If the equations of two planes M and N which intersect
nlare Ax+ By+Cz+ D=0 and A'z+ B'y+ C'z2+ D' =0,
then Az + By +Cz+D+k(Adz+By+C'2+D')=0, k be-
ing an arbitrary constant, is the equation of the system of
planes containing L.

Proof. The last equation, being of the first degree, rep-
resents a plane R and is obviously satisfied by the coor-
dinates of every point which is on both planes M and N.
Hence the plane I contains /.

Furthermore, every plane which contains / is represented
by the last equation. For if the point K (z;, y;, 2) is any
point in space, the substitution of ay, y;, 2, for =z, ¥, 2
respectively leaves & as the only unknown quantity in the
equation, and therefore 4 can be determined in such a
way that the plane 2 passes through the point P,.

In the special case when P, is on the first plane, we see that £ = 0.

But when P, is on the second plane, there is no finite value of %;
and in this case it is sometimes said that L = .

272. Straight Lines. Any straight line in space may be
regarded as the intersection of the two planes

de+ By + C2+D=0
and Az+By+C'2+D'=0.

Therefore the coordinates of every point (#, y, 2) on the
line satisfy both of these equations; and, conversely, every
point (z, y, ) whose coordinates satisfy both equations is
a point on the line.

We therefore say that a straight line in space is rep-
resented by two equations of the first degree, regarded
as simultaneous.
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PROBLEM. SYMMETRIC EQUATIONS OF A LINE

273. Tb find the equations of the line passing through the
point Py (xy, Yy, 21) and having given direction angles.

A
P L~
Y g
R 1@ h L
RN
o K
r” X
Y ~

Solution. Let P (@, g, 2) be any point on the line. Draw
the rectangular parallelepiped having PFE as diagonal and
edges parallel to the axes, and let PR =r.

Then REL=2—a, LKk=y—y,, KP=z—2, and (§ 251)

T—w=1rcosq, Y—Y =rcosPB, z2—z=rcosy;
X—x Y-y zZ—z
cosa  cosf  cosy

@

that is,

each fraction being equal to 7.

These equations are called the symmetric equations of a line.

274. CorROLLARY 1. The equations of the line through
E (2, yq» 2;) with direction cosines proportional to a, b, ¢ are

X=X _Yy—y _z—2z @

a b c
This comes by multiplying the denominators of (1) by a constant.

275. COROLLARY 2. [The equations of the line passing
through the points B (xy, ¥y, 2)) and E (Zy Yy, 2,) are
X=X _ Y-y _Z2-%
X=X Y-y 2z—-z
For cos @:cos Bicosy =z, — z,:y, — y,:2, — 3;, by § 251.
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276. Equations of a Line reduced to the Symmetric Form.
The symmetric equations of a line (§ 273) may be re-
garded as expressing one of the variables z, y, 2z in terms of
each of the others. This suggests a method for reducing
the general equations of a line (§ 272) to the symmetric
form, as in the illustration below.

For example, reduce to the symmetric form the follow-
ing equations of a certain line:

Te—2y+32=2,

1Mz—6y—6z=—24, [€))
Eliminating z, we have 25 x — 10 y =— 20, whence z = 2 (y — 2).
Eliminating y, we have z =— § (z — 2). These two new equations

may be written z = 3 (y — 2) =— 3 (2 — 2), and they take the sym-
metric form when we divide each fraction by the number which
removes the coefficients of the variables, thus:

y—2 _ z—2

§ -3’
or, multiplying the denominators by 6,

z =

—_—= = e .

: 9
: 6 15 —4 ®

This is the symmetric form. The direction cosines of the line
are proportional to 6, 15, — 4.

The student should observe that each of the three equations in
(2) involves only two of the variables z, y, 2z, and therefore repre-
sents a plane parallel to an axis (§ 268).

If a line is parallel to one of the coordinate planes, it
is perpendicular to.an axis; that is, if it is parallel to.
the zy plane it is perpendicular to 0Z, and hence it follows
that cosy=0. In such a case the equation of the line
cannot be written in symmetric form, for cos y appears in
a denominator in the symmetric equations (§ 273), and a
fraction cannot have 0 as a denominator.
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PROBLEM. LINE THROUGH A POINT PERPENDICULAR TO A PLANE

R77. To find the equations of the line which passes through
the point F(xy, yy, 2,) and is perpendicular to the plane
Ax+By+ Cz+D=0.

Solution. Since the direction cosines of the line must be
proportional to 4, B, C (§ 262), the required equations are

X=X _Yy—¥_2—2 § 273
A B c

PROBLEM. ANGLE BETWEEN TWO LINES

278. To find the angle 0 between two lines 1 and I in
terms of their direction angles a, B, v and a', B', '

Solution. Draw through O the lines m and m' parallel to
{ and ' respectively. Draw the coordinates OM, MK, KF
of any point P (a, b, ¢) of m' and let OP =1r.

Projecting the broken line OMKP on m and noticing
that the sum of the projections of OM, MK, and KP is
equal to the projection of OP, we have

a cos @+ b cos B+ ¢ cos y=r cos 6, § 257

that is, 7 cosa’ cosa+ r cosB' cosB

o
(8]
Ut
[ 3]

+ 7 cos ' cos y=r cos 0,
or cos @ = cos a cos a' + cos B cos B’ + cosy cos y'.
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279. COROLLARY 1. The line l is perpendicular to the line
U if and only if
cos a cos a' + cos B cos B’ + cos y cos y' = 0.
For if { is perpendicular to , cos § = 0 (§ 278).

280. COROLLARY 2. Let a, b, ¢ be proportional to the
direction cosines of l, and a', V', ¢' to those of U'. Then 1 is
respectively perpendicular or parallel to U if and only if

ad +bb+cc'=0 or a:ad=0b:b=c:c.
For the direction cosines of [ are
a b ¢
Vitbte Vetrtad Vetitd
and those of !” are
a b [l

Var+ 12+ Vat+bidc?r Va4 b2 4 R

§ 253

We may now apply § 279 to prove the first part of this corollary.

In proving the second part the student should recall that [ is
parallel to I” if the direction cosines of / are either equal to those of
U or are the negatives of those of [, and not otherwise (§ 250).

281. COROLLARY 3. The angle 0 between the two planes
Az +By+Cz+D =0 and A'z+ B'y + C'z+D' =0 is given
by the equation

AA'+ BB' 4 CC'
cos 0=+ + + —_—
\/A2+BZ+C2'\/A'2+B'2+C'2
Through any point S draw QST T,
perpendicular to one of the given S

(o

planes, and draw RS perpendicular to

the other. Let the plane QSR cut the ‘
intersection of the given planes at P.
Then 6 is equal to the angle RST, ‘
both being supplements of the angle "
QSR. Finding then the direction

cosines of RS and ST by § 262, the

formula follows by § 278.
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Exercise 67. Straight Lines

Describe the line represented by each of the following pairs
of equations :

1. x=4,y=6. 5. 2=0,y=0.
2. y=—2,2=1. 6. 2=0,2=0.
3. 2=0,y=6. 7.2=1,2=1.
4. y=3,2=0. 8. y=2,z=

Find the equations of the lines determined as follows :

@ Passing through the points (4, 3, — 2) and (1, 1, 3).

10. Passing through the point (2, 0, 1) and perpendicular to
the plane 22 — y + 3z = 6.

{"1;1. Passing through the point (— 1, 3, 3) and parallel to the
line }(z —1)=3(y +2)=}(z — 3).

12 Passing through the point (2, 0, 0) and parallel to the
line2x4+y+2=10,2— 3y +2=15.

13. Find the direction cosines of the linex +y =5, y = 2.

@)1. The vertices of a tetrahedron are 4 (2, 1, 0), B(0, 4, 2),
c(—1, 2, =3), D(6, — 2, 2). Find the face angle ACB, and
the angle between the planes which intersect along AC.

,15 Find the angle formed by the two lines 2a 4y —2=71,
eFy+=z =10andx—3y+22=53xz—3y+=2="1.

16. Find the angle formed by the two lines z =y == and
22 =y=1—=

17. The points (1, — 2, 0), (10, — 6, 6), (— 8, 2, — 6) lie on
one straight line.

18. Find the equations of the lines in which the coordinate
_ planes are cut by the plane 2z + 5y —72= 8.

19. Show how to find the coordinates of several points
on a giveén line; for example, on the line 8z — y 4 2 =4,
20 +2y—3z=28.
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282. Other Systems of Coordinates. There are many
systems of coordinates for locating points in space, other
than the rectangular system which we have been employ-
ing, and two of the most important of these systems are
here explained.

1. Spheric Coordinates. Lt OX, 0Y, 0OZ be three lines
each perpendicular to the other two, as in the rectangular
system. Then any point P in Z
space is located by the distance
OP, or p, the angle 6 which OP
makes with the z axis, and the
angle ¢ which the 2z plane makes
with the plane determined by 0Z
and OP. The three quantities
p, 0, ¢ are called the spheric
coordinates of the point P, and are denoted by (p, 6, ¢).

After examining carefully the above figure, the student -
will have no difficulty in showing that the rectangular
coordinates z, y, 2 of the point P bear the following rela-
tions to the spheric coordinates p, 6, ¢ of P:

x=psinfcosp, y=psinfsing, z= pcoséh.

For example, z = 0Q cos ¢ = p cos (90° — ) cos ¢.
Spheric coordinates are employed for many investigations in
astronomy, physics, and mechanics.

2. Cylindric Coordinates. © Again, the point P may be
located by the distance 0@, or r, the angle ¢, and the
distance z. The quantities r, ¢, 2 are called the cylindric
coordinates of P and are denoted by (7, ¢, 2).

Obviously, the cylindric coordinates are related to the
rectangular coordinates z, y, z as follows:

x=rcos¢, y=rsing, z=2z.
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Exercise 68. Review

Draw the tetrahedron having the vertices A(4, 8, 0),
B(2,5,—2), C(5 % 2), D(5,1,2), and find the following:
1. The length and the direction cosines of A B.
. The equations of 1B and BC.
. The cosine of the angle ABC.
. The equation of the plane containing A, B, and C.
. The altitude measured from D to the plane A BC,

D ot W D

. The equations of the line through D perpendicular to the
plane 4ABC.

7. The cosine of the dihedral angle having the edge AB.

8. The equations of the line perpendicular to the face A BC
at the point of intersection of the medians of that face.

9. The equation of the plane through A4 parallel to the
plane BCD.

10. The equation of the plane through C perpendicular to 4 B.

11. Find the equations of the line through the origin per-
pendicular to the plane 3x — 2y + 72 =10.

12. Find the equations of the line through the point (2, 1, 3)
parallel to the line 22z —y 4+ 22=5,2 —3y 4 32 = 8.

13. Find the coordinates of the point in which the line
through the points (2, 2, —4) and (6, 0, 2) cuts the plane
6x—8y+2z=4

14. Find the coordinates of each of the points in which the
line 3z +y —32=10, 2 + 2y — z =4 cuts the three coor-
dinate planes.

15. Find the coordinates of the points in which the line

_y+t2_z2=9

x—4= 1= —‘%_ cuts the sphere a? + 3* + 2?2 = 49,

16. Find the common point of the planes = + y + 2z = 4,
2=y +=zand 3z —y +2x=0.
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17. The planes Zx4+y+2—10=0,z -y +32—14 =0,
4x —y+T72—20=0 have no common point but meet by
pairs in parallel lines.

18. Find the equation of the plane that contains the line
x+y==2 3x+2y+ 2=10 and the point (6, — 2, 2). '
19. Find the equation of the plane that contains the line

x =y =z—6and is V6 units from the origin.

20. Find the equations of the planes which bisect the angles
between the planes 2 —y++=5andz+y — 22=38.

21. The direction cosines of the line determined by the planes
Ax +By+ Cz+D =0, A'v+B'y+C'z+D'=0 are proportional
to BC'—B'C, AC'— A'C', AB' — A'B.

22. The planes Ax+By+Cz2+D=0, A'c+B'y+C'2+D=0
are perpendicular to each other if A4'+ BB'+ CC'= 0, and
conversely.

23. Show that the line 1(x — 2)= 1 (y + 1) = % = intersects
the line _}4(9; —H=Ly+1)= % z, and find the equation of
the plane determined by them.

) . x vy 2z 1
24. The equation of the plane through | y, 2z 1
the points (x,, ¥, 2,), (T Yy 25)s (X Yy Z5) ml ‘7/‘ ‘zl 1= 0
. E] o 2 J2 %2
may be written in the determinant form .1
Ty Ys %

here shown.
Ex. 24 should be omitted by those who have not studied determinants.

25. In splierie coordinates the equation of the sphere with
center 0 and radius » is p?(sin’*¢ + cos?6) = %

Find the equation of the locus of the point P which satisfies
the conditions in each of the following cases:

26. The ratio of the distances of P> from (2, 0, 0) and
B(— 4,0, 0) is a constant.

27. The distance of P from the zz plane is equal to the dis-
tance from P to 4 (4, — 2, 1).



CHAPTER XIV
SURFACES

283. Sphere. If P(z, y, 2) is any point of the surface of
the sphere having the center C'(a, b, ¢) and the radius 7,
then C'P =r; that is, by § 248,

(x— P+ — B + (2 — O =1~ e))
This equation may also be written
X+ Y+ —Rax—2by—2cz+d=0, (2

where d = >+ 0>+ 2 —»% It is an equation of the second
degree in which the coefficients of 22 42 and 22 are equal,
and it contains no zy term, yz term, or xz term.

Every equation of the form (2) can be reduced to the
form (1) by a process of completing squares, and it repre-
sents a sphere having the center (a, b, ¢) and the radius 7.

For example, the equation 22+ y2+ 224+ 62 —4y—42=8 can be
written (z + 3)%2 4+ (y — 2)% + (¢ — 2)® = 25, and represents a sphere
with center (— 3, 2, 2) and radius 5.

As in the case of the circle (§ 91), we have a point sphere if r = 0,
or an imaginary sphere if r? is negative.

If the center of the sphere is the origin (0, 0, 0), the
equation of the sphere is evidently

X+ y 422 =ri

We shall hereafter use the term sphere to mean the surface of
the sphere; and similarly in the cases of the cylinder, cone, and
other surfaces studied.

265
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284. Cylinder Parallel to an Axis. In plane analytic
geometry the equation 22+ y2= 72 represents a circle. We
shall now investigate the locus in space of a point whose
coordinates satisfy the equation 22+ y2=r2

In the zy plane draw the circle with center O and radius r.
The equation of this circle in its plane is 22+ 32 =% Let
P! (z, y, 0) be any point on the circle. Through P’ draw a
line parallel to the z axis, and

let P (z, y, 2) be any point on z -
this line. Then the coordinates Y
of P’ obviously satisfy the equa- 2z ?
tion 224 %= 1% 2
But the z and y of P are the o= ,
same as those of P/, and hence T §/ X

the equation 2%+ y* =142 is true
for P and is also true for every
point of the line P'P. IFurther, since P’ is any point on the
circle, the equation 2%+ y? =% is true for every point of
the circular cylinder whose elements are parallel to the
z axis and pass through the circle, and for no other points.

Similarly, the equation 222+ 8 y2=18 represents the
cylinder whose elements are parallel to the z axis and pass
through the ellipse 222+ 3 y2=18 in the 2y plane.

In general, then, we see that

Y

Any equation involving only two of the variables z, y, =
represents a cylinder parallel to the axis of the missing vari-
able and passing through the curve determined by the given
equation in the corresponding coordinate plane.

As a further example, the equation y2 = 6 z represents the cylinder
parallel to the z axis and passing through the parabola 2 =6z in
the yz plane.

The term cylinder is used to denote any surface generated by
a straight line moving parallel to a fixed straight line.
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285. Trace of a Surface. The curve in which a surface
cuts a coordinate plane is called the ¢race of the surface
in that plane.

Since 2= 0 for all points in the a2y plane and for no
others, the equation of the ay trace of a surface is found
by letting z= 0 in the equation of the surface.

By the zy trace of a surface is meant the trace of the surface in
the zy plane. Thus the zy trace of the plane 3 z—y—z=1 is the line
3z—y=1,2=0.

The equation of the zz trace of a surface is found by
letting y = 0 in the equation of the surface, and the equa-
tion of the yz trace is found by letting 2= 0.

286. Contour of a Surface. The curve in which a plane
parallel to the zy plane cuts a surface is called an zy contour
of the surface; and, similarly, we have yz contours and
2x contours.

To find the 2y contour which the plane z =% cuts from
a surface, we evidently must let 2= % in the equation of
the surface. To find the zz contour made by the plane
y =k, we let y="F in the equation; and for the yz contour
made by the plane z=4%, we let z=1% in the equation.

For example, the zy contour of the
sphere 2% + % + z* = 25 made by the Z
plane z =2 is the circle 22 + 32 = 21,
of which DE is one quadrant.

Observe that this circle is not rep-

resented by one equation, but by the E
two equationsa? + %> =21,z = 2, or we 2

may speak of the circlea? + 32=21in p

the plane z = 2. The single equation O 5 X
2% + y2 = 21 represents in space a cylin-

der parallel to 0Z (§ 284).

It is not necessary to draw more /y
than one octant of the sphere.

AG
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287. Cone having the Origin as Vertex. The equation
2y 22
ATETa
is satisfied by the ooordmates 0, 0, 0 of the origin 0. Let
@', y', 2 be any other numbers which satisfy equation (1).
Then it is obvious that the numbers &2/, ky', &2/, where k
is any constant whatever, must also satisfy equation (1).
But P(k2/, ky', k2") repre-
sents any and every point 4 B
of the straight line deter-
mined by the origin and the '
3 ! / !/ A A i
point P' (2, ¥/, /).

=0 @

]

|

This may be seen directly from i

a figure, or by using the results 'p i
of § 254 and taking P, and P, of E
1

0 ’
§ 254 as (0, 0, 0) and (2, ¥, ) ! Iz
in the present discussion. Ekz' !
]
Hence all points of the O — f - ; f' e
line determined by the origin h é,k’\y i ; '
and any point of the locus Y \1"5'

of (1) lie on the locus.

Moreover, the section of the locus made by the plane
z=c is the ellipse

+ ‘Zz =1,z=c ()

Therefore the locus of (1) is the cone having the origin
as vertex and passing through the ellipse (2).

The above method of reasoning applies also to the

2 52

equations 2 j:‘gz %: 0, to y?2= axz, and in fact to any
homogeneous equation in z, y, 2z; that is, to any equation
in which all terms are of the same degree. Every such
equation ‘represents a cone having the origin as vertex.
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Exercise 69. Spheres, Cylinders, Cones

Find the equations of the spheres determined as follows :
. Passing through the i)oini: (4, — 2, 2) and having its
centey at the point (2, 1, — 4).
. Center (4, — 4, 3), and tangent to the 2y plane.
3. Tangent to the plane 62 — 2y — 3z = 28 and having
its center at the point (6, 5, — 1).
4. Tangent to the coordinate planes and passing through
the point (5, 10, 1).
5. Passing through the four points (3, 2, —4), (— 2, — 3, 8),
(_ 5, 2, 4)) (4’ -7 0)'
6. Having as diameter the line joining P, (4, — 1, 3) and
P,(—8, 3, —3). .
7. Radius 10, center on the linexa +y+2=4,x =y + 2,
and tangent to the plane 3z — 2y + 62z = 21.

Draw the following cylinders and cones :

8. x* 4 3 = 25. Z?. 2+ 2 = 6.

g. x? 4 22 = 25. 13. 22+ 22 —2x — 42 =4.
f0. p =122 14. 42% — 254 — 1002 = 0.
’{1/1. x* — y* =16. 15. P =4 zz.

Find the traces of the following surfaces on the coordinate
planes, and find the equations of the sections made by the
planes parallel to the coordinate planes and 1 unit from them,
drawing each trace and sectzon

16. 2 +y* + 2" = 20 . 19 z=ua? 4 %
Yr. 2= 9wy. £20. z = xy.
18. * +422=4. 21l. z=42* 4+ 942

22. Hind the center and also the radius of the sphere
B4y 424+ 62— 8y + 22=10.
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288. Quadric Surface or Conicoid. Any surface which is
represented by an equation of the second degree in z, y,
and z is called a quadric surface or a conicoid.

The sphere, cylinder, and cone are familiar conicoids. We have
already discussed these surfaces and shall now discuss other conicoids.

289. Ellipsoid. Let us first consider the equation

The xy trace, yz trace, and zz trace of the locus of the
given equation are all ellipses. § 285

The student should write the equation of each trace and should
draw the trace. Thus the zy trace is 22/a® + 32/b% = 1.

The zy contour made by the plane z=£% is the ellipse
a2 12
B2 2
This contour is largest when k= 0; it decreases as k
increases numerically; it becomes a point when k= c¢;
and it is imaginary when & > c.
The yz contours are ellipses which vary in a similar
manner, and so are the zz contours.
The intercepts of the locus on the axes are + a on 0X,
+bon 0Y, and + ¢ on OZ.
The surface is called an ellipsoid.



CONICOIDS 271

290. Simple Hyperboloid. Let us consider the equation
x2 yZ zZ

The zy trace\of the locus of this equation is the ellipse

22 4P
_+bZ

The yz trace and zz trace are hyperbolas.

The zy contour made by the plane z = £ is an ellipse, the
smallest ellipse being formed when 2= 0; the ellipse in-
creases without limit as % increases without limit.

The above facts are sufficient to make clear the shape
of this surface, which is called a simple hyperboloid, or
a hyperboloid of one sheet.

The student should discuss the yz contours and the zx contours.

a?  gp A .
291. Asymptotic Cone. The cone — R B 2 0 is called

the asymptotic cone of the hyperbolold.
That the hyperboloid approaches this cone as an asymptote may

be seen by examining the traces of the cone and the hyperboloid
on the yz plane and on the zz plane.
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292. Double Hyperboloid. Let us consider the equation

N T < 1
v
? z <
\ \
\ [}
1 )
)0 X
: Y !
l' II
\
The zy trace of the locus of this equation is the hyperbola
2y
az

The 2z trace is the hyperbola

The =z trace is imaginary, being the imaginary hyperbola
y (o) te) y

2 2
% + ; = — 1.
The yz contour made by the plane z =% is the ellipse
» o2k
®2' e a

This ellipse is imaginary when |k|<a; it becomes a
single point when|k|=a; and it is real when |£|>a, both
major and minor axes increasing without limit as |%| does.

The shape of the surface is now evident. The surface is
called a double hyperboloid, or a hyperboloid of two sheets.

The student may discuss the zy contours and the zz contours of the

surface and show that the 2y trace and the zz trace are asymptotic

2 2 ~2
. x 7
to the corresponding traces of the cone — — ¥ _% - 0.
a
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293. Elliptic Paraboloid. Let us consider the equation
2 2
z + y_ =2cz.

c—

Y
The equation of the z J trace of the locus is evidently

UK
+b2 0,

which represents a single point (0, 0) in the zy plane
The y=z trace is evidently the parabola
y2 = 2 b2cz.

The 2z trace is evidently the parabola
22 = 2 a?ez.
The 2y contour made by the plane z=£ is the ellipse

¥ _
+ 7z 2 ck,
its axes increasing without limit when % does. The ellipse

is imaginary when % is negative
The above statements indicate the shape of the surface,
which is called an elliptic paraboloid.

If ¢<0, the surface is below the zy plane.
The student may show that the zz contour is a parabola which

remains constant; and similarly for the yz contour.
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294. Hyperbolic Paraboloid. Consider the equation

xz y2
——Z =2cz.
a v

The equation of the xy trace of the locus is evidently

2
_ % —0,
which represents the two straight lines 04 and OB (§ 54).

The yz trace is the parabola y?=— 2 8%z, or OD.

The zx trace is the parabola 22= 2 a%cz, or OC.

The yz contour made by the plane 2 = £ is the parabola
y2=— 2%z + 0%32/a% This parabola remains constant in
form, since it always has the focal width 2#%. Also, if
¢>0, the axis of the parabola has the negative direction
of the z axis.

The locus is symmetric with respect to the zz plane;
for if z, y, z satisfy the given equation, so do z, — g, 2.

The surface may therefore be regarded as generated by
a parabola of constant size moving with its plane parallel
to the yz plane, its axis parallel to 0Z’, and its vertex on
the fixed parabola 22= 2 a%z in the zz plane.

The surface is called a hyperbolic paraboloid, the zy con-
tours being hyperbolas.

|8
ol to

a
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In the investigation on page 274 we found the nature
of the surface without actually finding the @y contours and
the 2z contours. It is easily proved that the xy contours are
hyperbolas, as shown in this figure.

When in the equation of the hyperbolic paraboloid we
let z =0, we saw that the zy trace was a pair of straight
lines; and in this connection it is interesting to note that
the cone and cylinder are not the only surfaces on which it
is possible to draw straight lines. It is also possible to draw
straight lines on the simple hyperboloid (Ex. 20, page 277),
but not on the other conicoids. This is a matter of con-
siderable importance in the study of certain surfaces.
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295. General Equation of the Second Degree. The general
equation of the second degree in z, y, and z is

az? + by? + c2® + dzy + eyz + fex 4+ gr + hy + 124+ 5 = 0.

By transformations of coordinates analogous to those
which we employed in Chapters VI and X, this equation
can always be reduced to one of the two forms

a2+ by 42 =d, @))
a2+ by =z )
The theory of transformations in three dimensions, and the

reductions referred to in the above statement, will not be given in
this book.

The ellipsoid and hyperboloids are included under (1),
and the paraboloids under (2). These are the only sur-
faces which are represented by equations of the second
degree, and are called conicoids (§ 288). They include as
special cases the sphere, cylinder, and cone.

296. Locus of any Equation. The nature of the locus of
a point whose coordinates satisfy any given equation in
z, y, and z may be investigated by the method which we
have employed in §§ 289-294; that is, by examining the
traces and contours of the locus.

It is evident that these traces and contours are curves
of some kind, since when any constant % is substituted for
z in the equation, we obtain an equation in two variables,
and this equation represents a curve in the plane z=£.

We then see that

Every equation in rectangular coordinates represents a
surface tn space.

It is often difficult to form in the mind a clear picture of the sur-
face represented by an equation, even after the traces and contours
have been studied.
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Exercise 70. Loci of Equations

1. Sketch the ay trace, the yz trace, and the zx trace of the
surface # = #* + y* — 9. Discuss the xy contour, and represent
the surface by a figure.

2. Sketch the xy trace, the yz trace, and the zx trace of the
surface 2> — 4 1* 4+ 2* = 36. Choose one or more sets of con-
tours, discuss each, and represent the surface by a figure.

As in Ex. 2, sketch and discuss the following surfaces :

3. 22+ + 1622 =16. 10. 2= 2uzy.

4. 2?4+ f + 162 = 25, 11. 2y =10=.

5. 922+ 4+*=30y. 12, =4z —42%
6. f—4t=2a>— 4. 13. 2?9 = 22
7. 4o — 3 — P =— 4. 14. >+ 2= 8=,
8. #¥+ 2+ 25 =2~ 15. 2=z — .

9. y*=12x — 36. 16. yz =10.

17. Find the equation of the locus of a point which is
equidistant from the point (8, 0, 0) and the plane =z =— 8§,
and sketch the surface.

18. Find the equation of the locus of a point P which
moves so that the sum of the distances of P from the points
(1, 0, 0) and (— 1, 0, 0) is 6, and sketch the surface.

19. Find the equation of the locus of a point P which
moves so that the distances of P from the plane 2 =y and
the point (3,1, 1) are equal.

20. Show that the plane y = b cuts the simple hyperboloid
in two straight lines.

The student should let the equation of § 290 represent the surface.

21. Find the equation of an ellipsoid having the contours
4+ 42=16,z=1and 16>+ 2" =64, =1.
Let the equation px? + gy> + r22 = 1 represent the ellipsoid.
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PROBLEM. SURFACE OF REVOLUTION

297. To find the equation of the surface gemerated by a
given curve revolving about the x axis.

Z

D,
4
Solution. Let BD be the given curve in the zy plane.
Let its equation, when solved for y in terms of a, be
represented by y=/f(z), and let P’ be any point of the
curve. Since CP' is the y of P/, then CP'= f(z). §62
As the curve revolves about OX, the point P’ generates
a circle with center € and radius CP'. Let P(z, y, 2) be
any point on this circle. Then P is any point on the surface,
and obviously Yy
Y24+ 2=CP '=CP'";
that is, ¥+ 22 = [f(x)]%
For example, if the given curve is 22% 4 3y?> =2, then we find
y=V2—22%=f(z). This ellipse revolving about OX generates
the surface y%+ 22 = (V2 —22%)% or 222 + 52+ 2 =2.

298. COROLLARY. The equations of the surfaces generated
by revolving the curve x=f(2), y =0 about the z azxis and
the curve x=f(y), 2= 0 about the y axis are respectively

2+ yP=[f@) and x*+2°=[f(W)]"
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Exercise 71. Surfaces of Revolution

1. Find the equation of the surface generated by revolving
the ellipse 4 2% 4+ 9 3* = 36, z = 0 about the y axis.

In this case it is necessary to find = in terms of y. Solving for z, we have
=136 —9y2. Thus the required equation is 22 + 22 = 1 (36 — 9¢?),
or 4x2 + 9y? + 422 = 36.

In each of the following examples find the equation of the
surface which is generated by the given curve revolving about
the axis specified :

2. The parabola #* = 4 px, = = 0 about 0X.
3. The parabola y* = — 4 px, z = 0 about OY.

This surface, having an equation of the fourth degree, is not a conicoid.
The student may show that some of its contours are not conics.

4. The parabola 2* = 4 px, y = 0 about 0X.

5. The parabola 2* = 4 pz, ¥ = 0 about 0Z.

6. The ellipse 0%® + «*y* = «¥? z = 0 about OY.

7. The ellipse 0%* + a’* = a®? y = 0 about 0Z.

8. The hyperbola 0°x* — «*y* = a®? 2z = 0 about OX.

9. The hyperbola 0%* — a’y* = «*? z = 0 about OY.
10. The circle 2 + y* = 25, = = 0 about 0X ; about OY.
11. The line y = ma, z = 0 about 0Y.

12. The circle #* + 3> — 122 4+ 32 = 0,2 = 0 about OX.
13. The circle 2 + 4> — 122 + 32 = 0, z = 0 about OY.

This surface is not a conicoid. It has the shape of a bicycle tire and
is called a torus or anchor ring.

14. The curve y = sinz, z = 0 about OX.

15. The curve z = €%, y = 0 about 0Z.

16. A parabolic headlight reflector is 8 in. across the face

. and 8 in. deep. Find the equation of the reflecting surface.
17. Find the equation of the cone generated by revolving

the line y = max + b, 2= 0 about OX.
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299. Equations of a Curve. The points common to two
surfaces form a curve in space. The coordinates of every
point on this curve satisfy the equation of one surface and
also satisfy the equation of the other surface.

A curve in space, therefore, has two equations, regarded
as simultaneous ; namely, the equations of two surfaces of
which the curve is the intersection.

For example, the equations z = 2z 4+ y and 22 4+ y? 4+ 22 = 25 rep-
resent separately a plane and a sphere. Regarded as simultaneous,

they are the equations of the circle formed by the intersection of
the plane and the sphere.

300. Elimination of One Variable. If we eliminate one
variable, z for example, from the two equations of a curve,
we obtain a third equation which contains the other two
variables  and y. This equation represents a third sur-
face, a cylinder (§ 284), which contains the curve. The
zy trace of this cylinder is the projection of the curve
upon the zy plane, and the cylinder is called the zy pro-
jecting cylinder of the curve.

For example, eliminating z from the equations z=2z + » and
224 y2 + 22 =25 of the circle described in § 299, we obtain the equa-
tion 522+ 292+ 42y =25. This equation represents a cylinder
parallel to OZ. The trace of this cylinder on the zy plane is the
curve 522 + 2 y2 + 4 xy = 25, = = 0, which is an ellipse.

Eliminating z, we obtain the xy projecting cylinder; eliminating
7, we obtain the zx projecting cylinder.

301. Parametric Equations of a Curve. The three equa-
tions x = f(v), y =9 ((v), 2=h(v), giving z, y, and 2 in
terms of a fourth variable », represent a curve in space.
For eliminating » from the first two equations gives one
equation in z and y; and eliminating v from the last two
equations gives one equation in y and z. These two new
equations define a curve in space (§ 299).
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Exercise 72. Review

1. Find the equation of the plane tangent to the sphere
o + y* + 2% = +* at the point (x', ¥/, '), and show that it can
be reduced to the form z'z + y'y + 22 = 2

2. If the two spheres S =0 and $'= 0 are given, where
S denotes #* + 4 + 2> — 2ax — 20y — 2 ¢z + d and S’ denotes
224y 4+ 22— 2a'e — 20’y — 2¢'z + d', show that the equation
S — 8'= 0 represents the plane which contains the circle of
intersection of the spheres, and that this plane is perpendicular
to the line of centers.

3. The square of the length of a tangent from the point
(2!, y', 2") to the sphere (x — «)’+ (y — 0)*+ (2 — ¢)*=1* is
@ — a) o (= B+ (2 — o) =

4. The hyperbola cut from the hyperbolic paraboloid
V*x* — a®y* = a¥’cz by the plane » = k has its real axis parallel
to OX when % is positive, but parallel tc OY when % is negative.

5. The asymptotes of any axy contour of the hyperbolic
paraboloid in Ex. 4 are parallel to the asymptotes of any
other xy contour of the surface.

6. Show by means of traces and contours that the equation
(x —a)?+ y* — 2" = 0 represents a right circular cone having
the point (a, 0, 0) as vertex.

7. Draw the yz trace of the surface «® + 3° + 2*= 0.

8. Find the equation of the cone which passes through
the origin and which has its elements tangent to the sphere
24y 4+ 22— 202+ 36 = 0.

9. Find the equation of the paraboloid having the origin
as vertex and passing through the circle «* 4 32 = 25, 2z =

10. A tank in the form of an elliptic paraboloid is 12 ft.
deep and the top is an ellipse 8 V/3 ft. long and 12 ft. wide.

If the upper part of the tank is cut off parallel to the top 3 ft.
below the top, find the axes of the ellipse forming the new top.
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Given the points A(4, 0, 0) and B(—4, 0, 0), find the
equations of the loci in Exs. 11-15, and state in each case
what kind of surface the locus s :

11. The locus of a point P such that the ratio of the dis-
tances AP and BP is constant.

12. The locus of a point P such that the sum of the squares
of the distances AP and BP is constant.

13. The locus,of a point P such that the difference of the
distances AP and BP is constant.

14. The locus of a point P such that the distance AP is
equal to the distance of P from the plane x = — 4.

15. The locus of a point P such that the distance 4P is four
fifths the distance of P from the plane z = 25,

16. Draw the ellipsoid 42 + 4 5* 4 2522 =100, z, , and =
being measured in inches, and draw a rectangular box having
its vertices on the ellipsoid and its edges parallel to the axes.
If the volume of the box is 72 cu. in. and the dimension parallel
to the z axis is 2 in., find the other dimensions.

17. Find the length of the segment of the linez =3,y =5
intercepted between the plane x — y 4+ 3 2 =10 and the hyper-
boloid 3a* — 24* — 2* = — 123.
~ 18. Find the coordinates of the points in which the line
x = y = z cuts the paraboloid 3a*+ 43> =12 .

19. Find the coordinates of the points in which the line
through the points (2, 0, 2) and (3, 2, — 1) cuts the sphere
having the center (2, 1, 2) and the radius 7.

The solution of the simultaneous equations of the line and the sphere
may be obtained by finding ¥ and z in terms of z from the equations of
the line and substituting these values in the equation of the sphere.

20. Evely section of a conicoid (§ 288) made by a plane
parallel to one of the coordinate planes is a conie.

Since any plane could be taken as the zy plane, this theorem shows
that every plane section of a conicoid is a conic.
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I. TeE QUADRATIC EQUATION az?+br+c¢=0
—b+VB—4ac ac

2a
2. Sum of Roots. The sum of the roots is — g

1. Roots. The roots are z =

3. Product of Roots. The product of the roots is ‘.
a

4. Real, Imaginary, or Equal Roots. The roots are real
and unequal if 2—4ac>0, equal if 62— 4ac=0, and
imaginary if 52— 4 ac<0.

5. Zero Roots. One root of the equation is 0 if and only

if ¢=0, the equation in this case being a2?+ bz = 0; both
roots are 0 if and only if ¢=0 and 6=0.

6. Infinite Roots. One root of the equation increases
without limit, or, as we say, is infinite, if and only if a — 0
both roots are infinite if and only if ¢ — 0 and & — 0.

This may be shown by considering the equation

ax?+bx+c=0. ¢Y)
If we let z = - and clear of fractions, equation (1) becomes
y
cy®’+ by + a=0. @)

If one value of y in (2) is very small, then one value of z in (1) is

very large, since z = =. Thus, when y —> 0, z is infinite. But the
Y

condition that one value of y approaches 0 as a limit is that a —0

(§ 5 above). Therefore z is infinite when a— 0, and the same

method shows the conditions for which both roots are infinite.
AG 283
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II. LoGARITHMS OF NUMBERS FrROM 0 TO 99

N| O 1 2 3 4 5 6 7 8 9
1] 000 | 041 | 079 | 114 | 146 | 176 | 204 | 230 | 255 | 279
2| 301 | 322 | 342 | 362 | 380 | 398 | 415 | 431 | 447 | 462
3| 477 | 491 | 505 | 519 | 531 | 544 | 556 | 568 | 580 | 591
4| 602 | 613 | 623 | 633 | 643 | 653 | 663 | 672 | 681 | 690
5| 699 | 708 | 716 | 724 | 732 | 740 | 748 | 756 | 763 | 771
6| 778 | 785 | T92 | 799 | 806 | 813 | 820 | 826 | 833 | 839
7] 845 | 851 | 857 | 863 | 869 | 875 | 881 | 886 | 892 | 898
8] 903 | 908 | 914 | 919 | 924 | 929 | 934 | 940 | 944 | 949
9] 954 | 959 | 964 | 968 | 973 | 978 | 982 | 987 | 991 | 996

The mantissas of the logarithms of numbers from 1 to 9 are given
in the first column. Decimal points are understood before all man-
tissas. To find log 84, write 1 as the characteristic and read the -
mantissa after 8 and under 4; thus, log 84 = 1.924.

. III. SQUARE Roots oF NUMBERS FROM 0 TOo 99

0 1 2 3 4 5 6 7 8 9

0.00 | 1.00 | 1.41 | 1.73 | 2.00 | 2.24 | 2.45 | 2.65 | 2.83 | 3.00
3.16 | 3.32 | 3.46 | 3.61 | 3.74 | 3.87 | 4.00 | 4.12 | 4.24 | 4.36
4.47 | 4.58 | 4.69 | 4.80 | 4.90 | 5.00 | 5.10 | 5.20 | 5.29 | 5.39
5.48 | 5.57 | 5.606 | 5.74 | 5.83 | 5.92 | 6.00 | 6.08 | 6.16 | 6.24
6.32 | 6.40 | 6.48 | 6.56 | 6.63 | 6.71 | 6.78 | 6.86 | 6.93 | 7.00
7.07 ( 7.14 | 7.21 | 7.28 | 7.35 | 7.42 | 7.48 | 7.55 | 7.62 | 7.68
7.75 | 7.81 | 7.87 | 7.94 | 8.00 | 8,06 | 8.12 | 8.19 | 8.25 | 8.31
8.37 | 8.43 | 8.49 | 8.54 | 8.60 | 8.66 | 8.72 | 8.77 | 8.83 | 8.89
8.94 | 9.00 | 9.06 | 9.11 | 9.17 | 9.22 | 9.27 | 9.833 | 9.38 | 9.43
09.49 | 9.54 | 9.59 [ 9.64 | 9.70 | 9.75 | 9.80 | 9.85 | 9.90 | 9.95

©®ITO W= O |2

The square roots of numbers from 0 to 9 are in the top row of
the table. Thus the square root of 6 is 2.45.

To find the square root of a number having two digits, find the
tens’ digit in the column under N, the units’ digit in the row to the
right of N, and take from the table the number which corresponds.
Thus V39 = 6.24. The roots are given to the nearest hundredth.
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IV. VaALUEs or TRIGONOMETRIC FUNCTIONS

Angle sin cos tan cot
1° 0.017 1.000 0.017 57.29 89°
2° .035 0.999 .035 28.64 88°
3° .052 .999 .052 19.08 87°
4° .070 .998 .070 14.30 86°
5° .087 .996 .087 11.43 85°
10° 174 .985 176 5.67 80°
15° .259 .966 .268 3.73 75°
20° 342 .940 .364 2.75 70°
25° .423 .906 466 2.14 65°
30° .500 .866 577 1.73 60°
35° 574 .819 .700 1.43 55°
40° .643 766 .839 1.19 50°
45° 707 707 1.000 1.00 45°
cos sin cot tan Angle

V. RADIAN AND MIL MEASURE FOR ANGLES

In a circle whose radius is » units of length, let AB be
an arc whose length is one radius. Then the angle AOB at

the center is called a radian, and 0.001 B
of a radian is called a mil.
An angle of 2 radians obviously cuts off an /N

arc of length 27: an angle of % radians cuts off 4

an arc whose length [ is given by the equation
1= kr.

Since r is contained 2 7r times in the circumference, the entire
angle about O is 2 7r radians ; that is, a little more than 6 radians, and

2 7r radians = 360°,
Ience, also, 7r radians = 180°; g radians = 90°; 7—;-1*aclia1ls =60°;

1 radian = 57.2958°; and 1 mil = 0.057°, approximately.
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SUPPLEMENT

VI. TricoNOMETRIC FORMULAS

1
sind =——
sc4d

sind

cos4
sin’4 + cos’A =1
sin (180° — 4) =sin4
cos (180° — A) = —cos 4
tan(180° — 4) = —tan4
sin 24 =2sinA cosA

tand =

c0sd = .L
secA
tand = _1_
cotd

1+ tan’4 =sec’4
sin(— 4)=—sind
cos(— A) =cos4

tan(— A) =—tand

cos 24 = cos’4 —sin’4

2 tand cot?4 —1
tan 24 = ——— cot24d=-""___
1—tan’4 2 cotAd

sin(4 £ B)=sin4 cosB=%cos 4 sinB

cos(4 £ B)=cosA cosB=Fsind sinB
tan4 +tanB
1Ftand tanB

cotA cotB=x1
cotB=cotAd

tanld =:I:\’ﬂ
2 14cosd-

cotld = :I:\j1+ cos4
1—cosd

cosA = coszéA - smzéA

tan(4 £ B) =

cot(4 £ B)=

sinlA=:!: -—I—COSA
2 J 2

cos 1A =\ /L“‘ﬂ
2 2

sind =2 sin %A cos %A

2 tan %A cotZ%A -1
tand =— 2% cotd =—=—
1—tan2%A . 2 cot%A

sinA4 + sinB_tané(A + B)
sind —sinB  tanl(4 — B)




NOTE ON THE HISTORY OF ANALYTIC
GEOMETRY

Since a considerable part of analytic geometry is con-
cerned with conic sections, it is of interest to observe that
these curves were known to the Greeks, at least from the
fourth century B.c. We know that Menzchmus (¢. 350 B.C.)

may have written upon them,
that for a long time they were
called Menachmian triads, that
Aristeeus, Euclid (e 300 B.C.),
and Archimedes (e. 250 B.C.) all
contributed to the theory, and that
Apollonius (e. 225 B.C.) wrote
an elaborate treatise on conies.
So complete was this work of
Apollonius that it seemed to
mathematicians for about eigh-
teen hundred years to have ex-
hausted the subject, and very few

additional discoveries were made.

DESCARTES

Most of the propositions

given today in elementary treatises on analytic geometry
are to be found in the writings of Apollonius, and some
idea of coordinates may also be seen in certain passages of
his work. The study of conics by ancient and medieval
writers was, however, of a purely geometric type, the
proofs of the propositions being of the same general
nature as the proofs of the propositions in Euclid’s

celebrated work on geometry.
287
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During the Middle Ages there appeared two works
entitled De Latitudinibus Formarum and Tractatus de
Uniformitate et Difformitate Intensionum, both written by
Nicolas Oresme (c. 1328-1382), a teacher in the Collége
de Navarre at Paris. In these works Oresme locates
points by means of coordinates, somewhat as places are
located on a map by means of latitude and longitude. In
geographic work this method of
location had been used long be-
fore by such Greek scholars as
Hipparchus, Marinus of Tyre,
Ptolemy, and Heron.

While there was some re-
vival of an interest in conics in
the works of such writers as
Kepler (15671-1630), it was not
until Descartes (Latin, Cartesius,
1596-1650) published his epoch-
making little work La G'éométrie,
in 1637, that the fundamental
ideas of analytic geometry were laid before the mathemat-
ical world. It is true that Fermat (e. 1601-1665), as
shown by his correspondence with contemporary scholars,
had already conceived the idea that the properties of a curve
could be deduced from its equation, but, as in the case of his
contributions to the theory of numbers, he published noth-
ing upon the subject, and so the work of Descartes stands
as the first to make known the ideas of analytic geometry.
Although Descartes had the idea of an analytic geometry of
three dimensions, his work is confined entirely to the plane,
and it was left for men like Parent (1700), and especially
Clairaut (1731) and Euler (1760), to extend the theory
to curves of double curvature and to surfaces.

Frryat
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