Bezugsbedingungen:

Preis des Heftes 1 bis 112 je 1 Mk,

zu beziehen durch Julius Springer, Berlin W. 9, Linkstr. 23/24;

für Lehrer und Schüler technischer Schulen 50 Pfg,

zu beziehen gegen Voreinsendung des Betrages vom Verein deutscher Ingenieure, Berlin N.W. 7, Charlottenstraße 43.

Von Heft 113 an sind die Preise entsprechend auf 2 $\mathcal M$ und 1 $\mathcal M$ erhöht.

Eine Zusammenstellung des Inhaltes der Hefte 1 bis 124 der Mitteilungen über Forschungsarbeiten zugleich mit einem Namen- und Sachverzeichnis wird auf Wunsch kostenfrei von der Redaktion der Zeitschrift des Vereines deutscher Ingenieure, Berlin N.W., Charlottenstr. 43, abgegeben.

Heft 125: Wild, Die Ursache der zusätzlichen Eisenverluste in umlaufenden glatten Ringankern. Beitrag zur Frage der drehenden Hysterese. Heft 126: Preuß, Versuche über die Spannungsverminderung durch die Ausrundung

scharfer Ecken.

Preuß, Versuche über die Spannungsverteilung in Kranhaken.

Preuß, Versuche über die Spannungsverteilung in gelochten Zugstäben.

Mitteilungen

über

Forschungsarbeiten

auf dem Gebiete des Ingenieurwesens

insbesondere aus den Laboratorien der technischen Hochschulen

herausgegeben vom

Verein deutscher Ingenieure.

Heft 127 und 128.

--+++----

Springer-Verlag Berlin Heidelberg GmbH

ISBN 978-3-662-01954-2 ISBN 978-3-662-02250-4 (eBook) DOI 10.1007/978-3-662-02250-4

Inhalt.

Seite Biegungsversuche mit gußeisernen Stäben. Von Rudolf Schöttler 1

Biegungsversuche mit gußeisernen Stäben.

Von Rudolf Schöttler.

Einleitung.

Vor mehr als zwanzig Jahren veröffentlichte Herr v. Bach einen Aufsatz »Die Biegungslehre und das Gußeisen«¹), in welchem er eine größere Anzahl von Versuchsergebnissen mitteilte, aus denen hervorgeht, daß die Biegungsfestigkeit *B* des Gußeisens viel größer ist als seine Zugfestigkeit *Z*, während die Biegungstheorie davon ausgeht, daß beide gleich sind. Als Biegungsfestigkeit ist der Wert $B = M: \frac{J}{e}$ anzusehen, welcher erhalten wird, wenn das Kraftmoment *M* den Bruch veranlaßt.

Bach zeigte, daß das Verhältnis B: Z von der Querschnittform des zerbrochenen Stabes abhängig und um so größer ist, je näher die Flächenelemente des Querschnitts der Nullinie liegen. Er fand z. B. für den Kreis den Wert ∞ 2 und für das **I** den Wert ∞ 1,5.

Weiterhin schloß er, daß man bei Wahl der zulässigen Biegungsbeanspruchung dieser Erscheinung Rechnung tragen könne, und schlug in dem späteren Aufsatze »Zur Biegungsfestigkeit des Gußeisens«²) vor, als solche

$$k_b = \alpha \sqrt{\frac{e}{z_0}} k_s$$

zu nehmen. In dieser Formel bedeutet

- k_z die als zulässig erkannte Zugspannung,
- e die Entfernung der äußersten Zugfaser von der Nullachse,
- z_0 die Entfernung des Schwerpunktes der Querschnittfläche auf der Zugseite der Nullachse von dieser,
- α einen Zahlenwert, der für Querschnitte, die von zur Nullachse parallelen Linien begrenzt werden, = $\frac{6}{5}$ bis $\frac{5}{4}$, für Kreis und übereck stehendes Quadrat = $\frac{4}{3}$ ist.

Bach maß ferner mit den bekannten Bauschingerschen Geräten in der Werder-Maschine die Durchbiegungen, welche die an beiden Enden gestützten und in der Mitte gelagerten Stäbe bei verschiedenen Belastungen erlitten, und berechnete aus diesen den Elastizitätsmodul. Er fand, daß dieser nicht, wie die Biegungslehre voraussetzt, unveränderlich ist, sondern daß er mit wachsender

¹) Z. d. V. d. I. 1888 S. 193, 221.

²) Z. d. V. d. I. 1888 S. 1089.

Mitteilungen. Heft 127 u. 128.

Belastung stark abnimmt. War z. B. für die Spannungsgrenzen 60 bis 185 kg/qcm E = 1016 t/qcm, so entsprach den Spannungsgrenzen 740 bis 920 kg/qcm E = 807 t/qcm. Die früher von Bauschinger und Tetmajer festgestellte Tatsache, daß der aus Zugversuchen gefundene Elastizitätsmodul immer größer ist, als der aus Biegungsversuchen berechnete, erklärt er durch den Einfluß der Schubkraft, die von beiden vernachlässigt wurde, und der um so bedeutender wird, je größer das Verhältnis der Querschnitthöhe zur Stützweite ist; ferner aus dem Einflusse der Auflagerreibung.

Die Bachsche Regel findet sich noch in der fünften Auflage seiner Festigkeitslehre von 1905. Jedoch erläutert Bach hier die Spannungsverteilung über den Querschnitt und folgert, daß die im gebogenen Stab im Augenblicke des Bruches wirklich auftretende Zugspannung nicht wesentlich größer ist, als bei dem unmittelbaren Zugversuche. Damit wird also die größere Bruchfestigkeit als gar nicht wirklich vorhanden, sondern nur als eine Folgerung aus einer unrichtigen Annahme über die Spannungsverteilung hingestellt. Ich hebe das scharf hervor, weil die Nichtbeachtung der letzteren Ausführung zu Mißverständnissen führen kann und geführt hat. Würde also z. B. für eine bestimmte Querschnittform und eine bestimmte Gußeisensorte das Verhältnis B: Z = 1,5sein und das Gußeisen bei der Spannung 1200 kg/qcm reißen, so wäre der Bruch bei Beanspruchung auf Biegung durch das Kraftmoment $M = 1,5 \cdot 1200 \frac{J}{e}$ zu erwarten, nicht aber würde behauptet, daß in der Zugfaser des gebogenen Stabes die Spannung 1800 kg/qcm eingetreten sei.

Die Bachschen Untersuchungen haben Veranlassung zu einigen anderen Arbeiten gegeben.

Die erste ist von Ludwik¹) und beschäftigt sich mit der Untersuchung gekrümmter Stäbe. Ludwik beweist, daß die Bruchspannung bei der Beanspruchung auf Biegung dieselbe ist, wie die Bruchspannung bei der Beanspruchung auf Zug, wenn man für die Dehnungen die Annahme eben bleibender Querschnitte beibehält und bei der Berechnung der Spannungen aus ihnen den abnehmenden Elastizitätsmodul berücksichtigt. Es sind also die von Bach gefundenen Unterschiede beider Bruchspannungen in Wahrheit nicht vorhanden, beide scheinen nur verschieden zu sein, weil die Berechnung der Biegungsspannungen mit unveränderlichem Elastizitätsmodul vorgenommen wurde.

Die zweite Arbeit von Tiraspolski ist in russischer Sprache verfaßt und also schwer zugänglich; Hr. von Bach machte mich auf sie aufmerksam. Tiraspolski beschäftigte sich mit geraden rechteckigen Stäben; er kommt für diese zum gleichen Ergebnis wie Ludwik. Er geht weiter als dieser, indem er die Durchbiegungen mißt. In der Hauptsache aber ist seine Arbeit darauf gerichtet, den Nachweis zu führen, daß für den Zusammenhang von Spannung und Dehnung die bekannte Formel $\varepsilon = \alpha \sigma^m$ zutreffend ist und daß eine Verschiebung der Nullinie gegenüber der Schwerlinie stattfinden muß.

Während ich die im Folgenden besprochenen Versuche durchführte, erschien noch eine einschlägige Arbeit von Pinegin »Versuche über den Zusammenhang von Biegungsfestigkeit und Zugfestigkeit bei Gußeisen«²) und ein mit dieser im Zusammenhange stehender Aufsatz von Eugen Meyer »Die Berechnung der Durchbiegung von Stüben, deren Material dem Hookeschen Gesetze nicht folgt«³).

¹) Technische Blätter 1905 S. I.

²) Z. d. V. d. I. 1906 S. 2029 und Mitteilungen über Forschungsarbeiten Heft 48.

³) Z. d. V. d. I. 1908 S. 167.

Nachdem meine Versuche abgeschlossen waren, kam endlich noch die Arbeit von Herbert »Ueber den Zusammenhang der Biegungselastizität des Gußeisens mit seiner Zug- und Druckelastizität«¹) hinzu. Da diese Veröffentlichungen meine Arbeit nicht mehr beeinflussen konnten, so werde ich erst am Schlusse dieses Berichtes auf sie zurückkommen.

Es erschien mir bedenklich, aus den Bachschen Versuchen einen so weitgehenden Schluß zu ziehen, wie es durch die Regel $k_b = \alpha \sqrt{e: z_0} k_Z$ geschieht; denn diese Regel ist aus Bruchversuchen abgeleitet, also aus Beanspruchungen des Stoffes, die weit jenseits der Elastizitätsgrenze liegen. Nun kann man ja allerdings in strenger Auftassung von einer solchen bei Gußeisen in keinem Sinne reden; denn auch bei kleiner Belastung verschwinden die Formänderungen niemals völlig, und ebensowenig besteht bis zu einer gewissen Belastungshöhe Proportionalität zwischen Spannung und Dehnung. Aber immerhin kann das Verhalten des Stoffes bei Beanspruchungen, wie sie mit Rücksicht auf Sicherheit gegen Bruch oder übermäßige Formänderung üblich sind, wesentlich anders sein als bei hohen Belastungen, die der Bruchgrenze nahe kommen.

Wenn für einen bestimmten Querschnitt und eine bestimmte Gußeisensorte die Zugspannung Z den Stab zerreißt und das Kraftmoment $M = B \frac{J}{e}$ ihn zerbricht, wobei die auf die äußerste Zugfaser entfallende Spannung tatsächlich auch Z ist, so muß aus der obigen Regel, wenn sie überhaupt Bedeutung haben soll, folgen, daß wenn ich den Stab auf Zug durch $k_Z = Z:n$ beanspruche, das Kraftmoment $k_b \frac{J}{e}$ mit $k_b = B:n$ in ihm auch die Spannung k_Z hervorruft. Beispielsweise: Ich habe für eine Gußeisensorte die Zugfestigkeit Z = 1000 kg/qcm und das Verhältnis B: Z = 1,5 ermittelt. Ich will jetzt einen auf Biegung beanspruchten Stab herstellen und dessen äußerste Zugfaser nur mit 200 kg/qcm beanspruchen. Dann ist derselbe nicht nach $M = 200 \frac{J}{e}$, sondern nach $300 \frac{J}{e}$ zu bemessen.

Um die Zulässigkeit dieser Folgerung zu prüfen, erschien es mir wünschenswert, Biegungsversuche mit gußeisernen Stäben bei geringen Beanspruchungen anzustellen und die dabei auftretenden Dehnungen unmittelbar zu messen. Es lag nahe, das letztere mit Spiegeln zu tun, wie sie von Martens nach Bauschingers Vorgange angegeben sind. Ganz neu ist das Verfahren nicht; Föppl hat es z. B. einmal angewendet, um die Durchbiegung von steinernen Balken zu messen²).

Um die Versuche in größerem Maßstabe durchführen zu können, leistete mir die Jubiläumsstiftung der deutschen Industrie dankenswerte Beihülfe.

Die Arbeit ist infolge einiger Beobachtungen, die weiterer Aufklärung bedurften, umfangreicher und langwieriger geworden, als anfänglich beabsichtigt war. Ich habe sie auch nicht auf Gußeisen beschränkt, sondern Gußstahl, Flußeisen und Mannesmannrohr zum Vergleiche herangezogen.

Ich gebe die einzelnen Versuchsreihen nicht in der Reihenfolge, wie sie gemacht wurden, sondern nach Stoffen geordnet. Für alle Stoffe wurden zunächst Zug- und Druckversuche zur Bestimmung des Elastizitätsmoduls gemacht, aus deren Ergebnissen die Elastizitätslinie $\sigma = f(\epsilon)$ abgeleitet und diese Linie der Berechnung der Biegungsversuche zugrunde gelegt.

¹). Z. d. V. d. I. 1910 S. 1387 und Mitteilungen über Forschungsarbeiten Heft 89.

²) Mitt. aus dem mech. techn. Laborat. der Technischen Hochschule München 1896 S. 1.

Letztere wurden mit verschiedenen Stoffen und verschiedenen Querschnittformen zunächst für drei Stützweiten: 120, 80 und 40 cm und drei Belastungsstufen durchgeführt, weiterhin wurde noch eine Anzahl ergänzender Versuche gemacht.

Leider sind nicht alle gußeisernen Stäbe aus demselben Gußeisen gefertigt. Die beiden \Box -Stäbe wurden gegossen, bevor der Versuchsplan feststand; die anderen sollten alle aus einer Pfanne gegossen werden; es wurden dabei aber die **T**-Stäbe unganz, sie mußten später nochmals angefertigt werden. Es handelt sich also um drei Sorten Gußeisen. Absichtlich wurde kein Eisen besonderer Güte gewählt, sondern gewöhnliche Handelsware, wie sie eine hiesige kleinere Gießerei zur Anfertigung von Dampfzylindern verwendet. Die Stäbe sind in Masse geformt und liegend mit besonders hohen Steigern gegossen.

Sämtliche Versuche sind mit der 100 t-Werder-Maschine des mechanischen Laboratoriums der Techn. Hochschule Braunschweig durchgeführt. Dabei wie bei der Ausrechnung der Ergebnisse, leisteten mir die Diplomingenieure Karl A. E. Müller, Brüser, Dr. Zacharias, Strombeck und Stud. Tiemann wesentliche Hülfe.

Die Querschnitte sämtlicher Stäbe sind in den Fig. 1 bis 9 dargestellt und ihre Konstanten in Zahlentafel 1 eingetragen.

Stoff	Quer- schnitt- form	Quer- schnitt- fläche <i>f</i> cm ²	Trägheits- moment J cm ⁴	Quer- schnitt- modulus J e cm ²	Quer- schnitt- funktion F cm ²	
Stahl Flußeisen Mannesmannrohr. V uəsiəgn B U Y S	© © I I I I	93,3 94,3 12,4 89,5 50,3 36,7 27,3 26,2 35,9	725 741 45,2 666 634 352 338 325 313	I5I I53 I4,9 I4I I27 70,3 67,6 65,0 Zug 97,4 Druck46,2	77,8 78,6 8,28 74,6 30 24,5 13,8 13,4 18,6	

Ableitung der Formeln für die Biegeversuche.

Gibt man dem Stabe Fig. 10 die Anfangsbelastung P_0 , so ist das Kraftmoment für den gefährlichen Querschnitt

es entsteht in ihm in der äußersten Faser des gefährlichen Querschnitts die Spannung

 $k_0=M_0:\frac{J}{e},$

$$s_0 = \frac{1}{48} \frac{P_0 l^3}{JE}$$

Erhöht man die Belastung bis P, so ändern sich die Werte M, k und s entsprechend. Es ist also für die Belastungsstufe $P - P_0$

Als Elastizitätsmodul E ist derjenige Wert einzusetzen, welcher für die Spannungsstufe $k - k_0$ durch Zug- und Druckversuche gefunden wurde. Da aber diese Versuche im allgemeinen für Zug und Druck nicht dieselben Werte liefern, so ist das Ergebnis $s - s_0$ unsicher. Man wird notgedrungen mit dem Mittel beider Werte rechnen. Aus der das Verhältnis der Spannungen und Dehnungen darstellenden Linie $\sigma = f(\varepsilon)$ entnimmt man also gemäß Fig. 11

Fig. 11. Linie für Spannungen und Dehnungen.

und die Durchbiegung ist

Aus den Beobachtungen an den Bauschinger-Geräten kann man folgern

$$k - k_0 = 12 \frac{e}{l^2} E(s - s_0). \quad . \quad . \quad . \quad . \quad (IV),$$
$$E = \frac{1}{4s} \frac{l^3}{J} \frac{P - P_0}{s - s_0}. \quad . \quad . \quad . \quad . \quad . \quad (V)$$

und diese Werte mit denen der Theorie (I) und der Beobachtung (III) vergleichen Man muß aber, genau genommen, dabei beachten, daß die beobachteten Werte $s - s_0$ mit den theoretischen nicht vergleichbar sind, weil sie den Einfluß der Schubkraft enthalten. Diese vergrößert die dem Kraftmoment entsprechende Durchbiegung um

$$\varDelta s = \frac{M}{GF}$$

wo die Querschnittfunktion F gemäß Fig. 12 durch die Beziehung

$$\frac{1}{F} = \int_{-e_2}^{+e_1} \left(\frac{\int_{y}^{e} df}{\frac{y}{zJ}}\right)^2 df$$

bestimmt ist.

Man hat also von den Beobachtungswerten $s-s_0$ den Betrag

abzusetzen, wenn man die aus der Durchbiegung folgende Spannung oder den Elastizitätsmodul ausrechnen will.

Man kann auch aus der beobachteten Durchbiegung auf die Gestalt der elastischen Linie schließen:

$$M = -\frac{1}{2} P_x$$

$$\frac{dy}{dx} = \frac{1}{4} \frac{P}{EJ} \left(\frac{l^2}{4} - x^2\right) \propto \alpha$$

$$\alpha EJ = \frac{1}{4} P\left(\frac{l^2}{4} - x^2\right) \begin{cases} \alpha = 12 \frac{l^2}{4} - x^2 \\ l^3 = 12 \frac{l^2}{4} - x^2 \end{cases}$$

Den theoretischen Wert

kann man mit dem aus der beobachteten Durchbiegung abgeleiteten

vergleichen, wenn man ihn mit den wegen des Einflusses der Schubkraft verbesserten Beobachtungswerten $s - s_0$ berechnet.

Die Spiegelgeräte wurden so angesetzt, wie Fig. 13 zeigt. Die Spiegel drehen sich nun aus zwei Gründen; einmal wegen der Krümmung der elastischen

Linie und das andere Mal wegen der Dehnung. Die Gesamtdrehung γ setzt sich also aus den Einzeldrehungen « und β zusammen. Wie die Fig. 14 bis 17 zeigen,

Die Dehnung verteilt sich nicht gleichmäßig über die Länge c. Wegen

$$\varepsilon = \frac{k}{E} = \frac{M}{\frac{J}{e}E} = -\frac{1}{2} \frac{Pt}{EJ} x = Cx \text{ und } \varepsilon_s = Cz$$

$$\lambda = \int_{z-1/2}^{z+1/2c} dx = Ccz,$$

$$\varepsilon_m = \frac{\lambda}{c} = Cz = \varepsilon_s$$

ist aber die Dehnung in der Mitte gleich der mittleren Dehnung der Meßstrecke. Also bezieht sich der beobachtete Wert

$$e_s = \frac{\lambda}{c}$$

auf die Entfernung z vom Auflager. Im gefährlichen Querschnitte hat sie den Wert $\varepsilon = \frac{\lambda}{c} \frac{l}{2z}$,

und es entspricht demnach der Belastungszunahme $P - P_0$ die Dehnungszunahme

$$\varepsilon - \varepsilon_0 = \frac{1}{c} \frac{l}{2z} \frac{r}{2b} \{ (a - a_0) + 2b (a - a_0) \}.$$

Da nun bei allen Versuchen $\frac{r}{2b} = \frac{1}{1000}$ war, und da das zweite Glied verhältnismäßig klein ist, so kann bei diesem von der nicht ganz genauen Uebereinstimmung der Werte r der verschiedenen Spiegel abgesehen werden. Mit hinreichender Genauigkeit ist r = 0.44 cm, also 2b = 440 cm, und damit

$$\varepsilon - \varepsilon_0 = \frac{\mathrm{I}}{\mathrm{Iooo} c} \frac{l}{2z} \left\{ (a - a_0) + 440 (a - a_0) \right\} \ldots \ldots (\text{VIII}).$$

Den zugehörigen Spannungsunterschied $k-k_0$ ermittelt man am besten unmittelbar aus der Elastizitätslinie $\sigma = f(\varepsilon)$, indem man zunächst zu dem aus P_0 folgenden Werte $k_0 = \frac{1/4}{2} \frac{P_0 l}{\varepsilon}$ die zugehörige Dehnung ε_0 mißt, diese zu dem Werte

 $\varepsilon - \varepsilon_0$ addiert, den zu dem so gefundenen ε gehörigen Wert k mißt und k_0 davon abzieht.

In die Formel (VIII) dürften am besten die aus der Durchbiegung folgenden Werte $\alpha - \alpha_0$ der Formel (VII) eingesetzt werden.

Der gefundene Wert $k - k_0$ ist dann mit dem theoretischen der Formel (I) und dem aus der Durchbiegung gefolgerten der Formel (IV) vergleichbar.

Bestimmung des Elastizitätsmoduls.

Die Versuche zur Bestimmung des Elastizitätsmoduls wurden so angestellt, wie es die beiden als Beispiele angefügten Protokolle, Zahlentafel 2 und 3

Zahlentafel 2.

Zugversuch. Mannesmannrohr, Stab Z 13. Meßfedern 150 mm lang. äußerer Dmr. D = 61,39 mm innerer Dmr. d = 46,02 » f = 12,97 qcm. Uebersetzung 1:500.

	:	Belastur	ng			.]	Entlastu	ng			y y
Last During P		Able Spi	sung egel	samte Form- nderung λ_g $\gamma = a_1 + a_2$	$\begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		Ablesung Spiegel		bleibende rmänderung $a_1 + a_2$	federnde Formänderung $\lambda = \lambda_s - \lambda_b$	stizitätsmoduls ο, ι ξο (σ – σ₀) :
	N O	Nr. 1	Nr. 2	ge Y		ซีษั	Nr. 1	Nr. 2	Fo		E
		a_1	a_2	$\mathbf{m}\mathbf{m}$			a_1	a_2	mm	mm	e e e
kg	kg/qem	$\mathbf{m}\mathbf{m}$	mm	1000	$\mathbf{k}\mathbf{g}$	kg/qcm	$\mathbf{m}\mathbf{m}$	mm	1000	1000	t/qcm
4 500	347	10,7	11,2	21,9	500	38,5	0,0	0,2	0,2	21,7	
*	»	10,7	11,2	21,9	»	»	0,0	0,2	0,2	21,7	
»	»	10,7	11,2	21,9	»	»	0,0	0,2	0,2	21,7	2132
8 500	656	21,8	22,I	43,9	»	»	0,0	0,2	0,2	43.7	
»	»	21,8	22,I	43,9	»	»	0,0	0,2	0,2	43.7	
»	»	21,8	22,1	43,9	»	»	0,0	0,2	0,2	43,7	2119
12 500	963	32,8	33,I	65,9	»	»	0,1	0,1	0.2	65.7	
· »	»	32,9	33,I	66,0	≫	»	о,́ і	0,1	0,2	65,8	
»	»	32,9	33,0	65,9	»	»	0,1	0,1	0,2	65,7	2112
16 500	1271	4 4,0	44,0	88,0	»	»	0,2	0.1	0.3	87.7	
»	»	44,0	43,9	87,9	>	»	0,2	0,2	0,4	87.5	
»	»	44,0	43,8	87,8	»	· »	0,1	0,1	0,2	87.6	
»	»	44,0	43,8	87,8	»	»	0,1	0.0	0.I	87.7	
»	»	43,9	43,8	87,7	»	»	0,1	_0,1	0,0	87.7	
»	×	43,9	43,8	87,7	»	»	0,0	-0,2	0,2	87,9	
»	»	43,8	43,7	87,5	»	»	0,0	-0,2	-0,2	87,7	2112
20 500	1580	55,0	54,7	109,7	»	*	0,0	-0,2	-0,2	109.9	
»	»	55,0	54,7	109,7	»	»	0,0	_0, 2	-0,2	109,9	
»	»	55,0	54,7	109,7	»	» .	0,0	-0 ,2	-0,2	109,9	2110

Druc

	Zahlentafel 3.	
kversuch.	Gußeisen B, Stab D 31.	Meßfedern 150 mm lang
	D = 60, 10 mm; f = 28,37 qcm.	Uebersetzung 1:500

<u></u>		Belastur	ng			I			~		
Last P	$\delta pannung \sigma = P: f$	Ablesung Spiegel		gesamte ormänderung $l_{g} = a_{1} + a_{2}$	Last P_0	$pannung 0 = P_0:f$	Ablesung Spiegel		bleibende Drmänderung $b = a_1 + a_2$	federnde Formänderung $\hat{\lambda} = l_g - \lambda_b$	stizitätsmoduls 0,150 (σ-σ ₀):
	02 -	Nr. 1	Nr. 2	E.		øр	Nr. I	Nr. 2	, F		EI3
		<i>a</i> ₁	a_2	mm			a_1	a_2	$\mathbf{m}\mathbf{m}$	$\mathbf{m}\mathbf{m}$	F
kg	kg/qcm	$\mathbf{m}\mathbf{m}$	mm	1000	kg	\mathbf{kg}/\mathbf{qcm}	$\mathbf{m}\mathbf{m}$	$\mathbf{m}\mathbf{m}$	1000	1000	t/qcm
		. 0								1	1
3 000	106	5,8	4,9	10,7	1000	35	0, 0	0,0	0,0	10,7	
»	»	5,8	4,9	10,7	»	»	0,0	0,1	0,1	10,6	
»	»	5,0	4,9	10,7	»	»	0,0	0,2	0,2	10,5	
"	"	5,0	5,1	10,9	»	»	0,0	0,2	0,2	10,7	997
5 000	176	12,1	9,9	22,0	»	»	0,1	0,2	0,3	21,7	
»	»	12,1	9,9	22,0	»	»	0,1	0,2	0,3	21,7	
*	»	12,1	10,0	22, I	»	»	0,1	0,2	0,3	21,8	
»	»	12,1	10,0	22,1	»	»	0,1	0,2	0,3	21,8	970
7 000	247	18,2	15,3	33.5	»	»	0,1	0.2	0.3	33.2	
»	»	18,2	15,2	33,4	»	»	0,1	0.2	0,3	33.I	
»	»	18,2	15,2	33,4	»	»	0,1	0,2	0,3	33,I	
*	»	18,2	15,2	33,4	»	»	0,1	0,2	0,3	33,I	960
9 000	317	24.1	20.7	44.8	*	»	от	02	0.2	44.5	-
»	»	24.2	20,8	45.0	»	»	0.1	0.2	0,3	44,5	
»	»	24,1	20,7	44.8	»	»	0.1	0.1	0.2	44,7	
»	»	24,1	20,7	44,8	»	»	0,I	о, 1	0,2	44,6	950
11 000	388	30.1	26.3	564	»	»	ОТ	0 2	0.2	=6 T	,,,
»	»	30,1	26,3	56,4	»	»	0,1	0.2	0.3	56.1	
»	»	30,1	26,3	56,4	»	»	0.1	0.2	0.3	56.1	
»	»	30,1	26,3	56,4 I	»	»	0,1	0,2	0,3	56,1	944

zeigen¹). Die Belastung wurde für jede Laststufe so oft aufgebracht, daß die federnde Formänderung schließlich gleich blieb, oder wenn sich das nicht erzielen ließ, daß die Werte um ein Mittel schwankten.

Die Erscheinung, daß sich ein Stab bei der Entlastung gelegentlich mehr verkürzte, als er sich bei der Belastung verlängert hatte, also negative bleibende Formänderung zeigte, ließ sich durchaus nicht beseitigen. Ich lasse dahingestellt, ob das Folge von Spannungen im Stoffe ist, die von der Herstellung abstammen, oder ob geringe Spiegelrutschungen stattfanden. Da es sich nur um die federnde Formänderung handelt, so ist die Erscheinung für das Ergebnis bedeutunglos und macht nur häufigeren Belastungswechsel nötig.

Das Verfahren, den Stab nach jeder Belastung wieder zu entlasten, ist sehr zeitraubend. Man macht deshalb die Versuche häufig so, daß man, von der Anfangslast ausgehend, diese stufenweise steigert, ohne wieder auf die Anfangslast zurückzugehen. Es liegt eine Reihe von Vergleichsversuchen vor, bei denen derselbe Stab nach beiden Verfahren behandelt wurde.

Zunächst ist eine Reihe von Druckversuchen mit Mannesmannrohr in Zahlentafel 4 zusammengestellt. Da die Stäbe nicht genau gleiche Querschnitte

¹) Die Versuchstäbe sind so bezeichnet: Z bedeutet Zugstab, D Druckstab, B Biegungsstab, Z 22 B 5 den aus dem Biegungsstab 5 gefertigten Zugstab 22, Z 24 D 21 B 5 den aus dem Druckstab 21, welcher aus dem Biegungsstab 5 stammt, gefertigten Zugstab 24.

4	
ntafel	
Zahle	

		Mittal			I.	1	I	1	ł		243 J	2330	2280	2140	2240
	សូ		D 14	•	13,0	26,5	40,8	54,9	69,2	-	2380	2330	2270	2250	2230
	3elastu		D 13		12,3	25,6	39,I	53,0	67,0	-	2420	2320	2280	2240	2220
	c ende I	nmer	D 12		12,7	26,6	40,5	55,0	69,3		2450	2340	2300	2260	2240
	cspring	tabnun	II Q		11,5	24,5	37,5	51,0	64,4		2550	2390	2340	2300	2270
	rücł	22	D IO		12,4	26,0	39,7	54,4	66,6		2360	2250	2220	2150	22 20
			- 6 a		12,2	2 5,I	38,6	52,2	65,7		2410	2340	2280	2250	2240
			Tettin		1		I	1	1		2420	2330	2270	2250	2230
	80		D 14		12,7	26,5	40,8	55,0	69,3		2430	2330	2270	2250	2230
	selastur		D 13	0	12,3	25,9	39,7	53,I	66,9	n.	2420	2300	2250	2240	2220
E	b ende F	mmer	D 12	n : Io	12,7	26,5	40,7	55,I	69,3	t/qe	2450	2350	2290	2260	2240
100 m	tschreit	Stabnu	11 Q	in m	11,5	24,5	37,8	50,9	64,4	dul in	2550	2390	2330	2300	2270
inge	for		D IO	rung	12,5	25,8	39,6	53,2	66,7	itsmoe	2340	2270	2220	2200	2190
Meßlä			6 a	nände	12,6	25,3	38,8	52,2	65,6	astizitä	2330	2320	2270	2250	2240
	əj -sZav	utes la Ute	a _a	For	1000 5000	0000	13000 13000	1000 17000	1000 1000	Elé	1 000 5 00 0	1000 9000	1000 13000	1000 17000	0001
			Mittel			I	I	I	1		2420	2240	2170	2190	2170
	80 80		D 14		12,7	13,8	14,3	14,2	14,3		2430	2240	2160	2180	2160
	3el a stur		D 13		12,3	13,6	13,8	13,4	13,8		2420	2190	2150	2220	2160
	α tende 1	mmer	D 12		12,7	13 , 8	14,2	14,4	14,2		2450	2250	2190	2160	2190
	tschrei	Stabnu	11 Q		11,5	13,0	I3,3	13,1	13,5		2550	2250	2200	2240	2170
	ţō		D I O		12,5	13,3	13,8	13,6	I3,5		2340	2200	2120	2150	2170
			6 <i>G</i>		12,6	12,7	I3,5	I 3,4	13,4		2330	2310	2180	2190	2100
JIUCEV	ej •sZu	utesle tute	к К В		1 000	5000 9000	9000 13000	13000 17000	1 7000 2 1 00 0		1000 5000	5000 9000	9000 13000	13000 17000	17000

hatten, so konnten die Stufen nur durch die für alle Stäbe gleichen Belastungen, nicht aber durch die Spannungen angegeben werden. Die Verlängerungen für die verschiedenen Stabnummern sind deshalb nicht genau vergleichbar.

Bei fortschreitender Belastung erhält man, wenn die Fig. 19 die Elastizitätslinie darstellt, die Elastizitätsmodel für die Spannungsgebiete o1, 12, 23 ..., bei rückspringender aber für die Gebiete o1, 02, 03 Beide sind nur vergleichbar, wenn man aus dem Teile a der Zahlentafel den Teil b bildet. Dann aber stimmen b und c so gut überein, daß man danach keiner Prüfungsweise den Vorzug geben kann. Bei einzelnen Stäben zeigen sich zwar größere Ab-

Zahlentafel 5.

Zugversuche.

е.	Mannesmannrohr, Stab Z 14.	
	D = 61,3 mm; d = 46,0 mm; f = 12,89 qcm.	Meßlänge 150 mm.

Formänderungen in mm 1000										Elastizitätsmodul in t/qcm					
a fortschreitende Belastung			b fortschreitende Span- Belastung			tende ng	c rückspringende Belastung			a fortschreitende Belastung		Span-	b fort- schrei-	c rück- sprin-	
Span- nungs-	V	ersuo numn	ehs- ner	nungs- stufe		Versuchsnummer					Span- nungs-	Mittel	stufe	Belas	stung
stufe kg/qcm	I	2	Mittel	kg/qem	r	2	Mittel	I	2	Mittel	sture kg/qcm		kg/qcm	Mi	ttel
40 350	21,6	21,2	21,4	40 350	21,6	21,2	21,4	21,4	21,2	21,3	40 350	2170	40 350	2170	2180
350 660	21,6	21,8	21,7	40 660	43 ,2	43,0	43,1	4 2 ,8	43,0	4 2 ,9	350 660	2 140	40 660	2160	2170
660 970	21,6	21,9	21,7	40 970	64,8	64,9	64,8	64,3	64,9	64,6	660 970	2140	40 970	2150	2160
970 1 2 80	21,5	22,0	21,7	40 1280	86,3	86,9	86,6	86,1	86,9	86,5	970 1 28 0	2140	40 1280	2150	2150
1280 1590	21,6	21,8	21,7	40 1 59 0	107,9	108,7	108,3	107,8	108,8	108,3	1280 1590	2140	40 1590	2150	2150

Span-]1	Formänderı Bela	$\frac{\text{ing in }}{100}$	0
stufe	stei	gend	fal	lend
		Versuch	snummer	
kg/qem	I	2	I	2
40 1590	109,7	109,1	109,4	109,8
1590 1900	2 1,9	22,2	21,7	21,9
1900 2 210	22,0	22,6	21,9	21,9
2210 2520	22,0	22,5	21,7	21,9
	175.6	176,4	1 74.7	175,5

Zahlentafel 6.

weichungen, aber die doch wohl maßgebenden Mittel aus allen Stäben zeigen solche nicht.

Zwei Zugversuche sind in Zahlentafel 5 zusammengestellt. Derselbe Stab wurde zweimal hintereinander so behandelt, wie oben beschrieben. Das Ergebnis war das gleiche: auch hier stimmen die Mittel der Reihen b und c so gut überein, daß für den Wert der Prüfungsverfahren nichts daraus zu folgern ist.

Daß die bleibende Formänderung immerhin eine Rolle spielen kann, geht aus zwei Versuchen hervor, welche wieder mit demselben Stabe vorgenommen wurden, bei denen aber die Belastung höher getrieben ist. Sie ist gemäß Zahlentafel 6 stufenweise fortschreitend aufgebracht, stufenweise rückschreitend wieder entfernt. Bei beiden Versuchen war die Verlängerung größer als die Verkürzung; es blieb nach Fortnahme der Last eine Verlängerung von etwa o,5 vH der ganzen zurück. Jeder Versuch dauerte ungefähr eine Viertelstunde.

Ferner liegen drei Versuchsreihen mit Gußeisen A vor. Es wurde jeder Stab sechsmal hintereinander stufenweise fortschreitend belastet. Zur Mittelbildung wurden nur die vier letzten Belastungsfolgen verwendet, um anfänglich auftretende Unregelmäßigkeiten zu beseitigen. Aus den in Zahlentafel 7 bis 9 unter a wiedergegebenen Ergebnissen wurde Zahlentafel b gebildet. Ein weiterer mit höheren Belastungen, aber rückspringend angestellter Versuch ist unter c wiedergegeben. b und c lassen sich nun von 159 bis 318 kg/qcm vergleichen, wenn man die Formänderung zwischen diesen Grenzen aus b interpoliert. Es ergibt sich so Zahlentafel 10. Das sind ganz beachtenswerte Unterschiede. Als zuerst Gußeisen A behandelt wurde, habe ich, um Zeit zu sparen, mit stufenweise fortschreitender Belastung gearbeitet. Da mir aber das einmalige Durchlaufen der Stufen doch unsicher erschien, so ging ich zu sechsmaliger Wiederholung über, wie oben beschrieben. Das kostete aber etwa

Zahlentafel 7.

Zugversuche. Gußeisen A. Stab Z 19. d = 20,00 mm; f = 3,14 qcm. Länge der Meßfedern 100 mm. Uebersetzung 1:500.

				u				
Span- nungsstufe $\sigma_{n+1} - \sigma_n$		Form	ttel aus 3 bis 6	Elastizi- tätsmodul				
kg/qem	I	2	3	4	5	6	MI Nr.	t/qem
32-112 112-192 192-272 272-352	9,8 10,8 11,3 11,8	9,9 10,6 11,1 11,7	9,8 10,8 11,2 11,7	9,9 10,6 11,2 11,7	10,0 10,9 11,1 11,6	9,9 10,8 11,4 11,4	9,9 10,8 11,2 11,6	808 740 714 690
	43,7	43,3	43,5	43,4	43,6	43,5	43,5	

Aus fortschreitender Belastung.

Aus rückspringender Belastung.

	U	
Spannungs- stufe $\sigma - \sigma_0$	Form- änderung <i>l</i>	Elastizitäts- modul
kg/qem	mm : 1000	t/qem
32-112 32-192	9,9 20,7	808 773
32-272 32-352	31,9 43,5	752 736

	-			
Spannungs- stufe $\sigma - \sigma_0$	Form- änderung λ	Elastizitäts- modul		
kg/qcm	mm:1000	t/qem		
159—318 159—477 159—636	20,9 46,3 77,0	761 687 620		

Zahlentafel 8.

Zugversuche.

Gußeisen A. Stab Z 20.

d = 19,98 mm; f = 3,14 qcm. Länge der Meßfedern 100 mm. Uebersetzung 1:500.

Span- nungsstufe $\sigma_{n+1} - \sigma_n$ Formänderung $\hat{\lambda}$ in $\frac{mm}{1000}$ g τ <th></th> <th colspan="13">a</th>		a												
kg/qcm I 2 3 4 5 6 \overrightarrow{H} t/q 32-112 9,1 9,2 9,3 9,2 9,1 8,9 9,1 87 112-192 9,9 10,0 10,0 10,2 10,4 10,1 79	stizi- modul	Elas tätsr	ttel aus 3 bis 6			Span- nungsstufe $\sigma_{n+1} - \sigma_n$								
32-112 9,1 9,2 9,3 9,2 9,1 8,9 9,1 87 112-192 9,9 10,0 10,0 10,0 10,2 10,4 10,1 79	lem	t/g	Mi Nr.	6	5	4	3	2	I	kg/qcm				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	79 92 84 28	87 79 78 72	9,1 10,1 10,2 11,0	8,9 10,4 10,3 11,1	9,1 10,2 10,1 11,2	9,2 10,0 10,2 11,0	9,3 10,0 10,3 10,9	9,2 10,0 10,5 10,7	9,1 9,9 10,4 11,4	32—112 112—192 192—272 272—352				

Aus fortschreitender Belastung.

Aus rückspringender Belastung. c

b									
Spannungs- stufe $\sigma - \sigma_0$	Form- ânderung J	Elastizitäts- modul							
kg/qem	mm : 1000	t/qem							
32-112 32-192 32-272 32-352	9,1 19,2 29,4 4°,4	879 834 817 792							

Spannungs- stufe $\sigma - \sigma_0$ kg/qcm	Form- änderung λ mm : 1000	Elastizitäts- modul t/qcm
159—318	20,5	776
159—477	45,3	70 2
159—636	74,6	639

Zahlentafel 9.

Zugversuche. Gußeisen A. Stab Z 21.

d = 20,00 mm; f = 3,14 qcm. Länge der Meßfedern 100 mm. Uebersetzung 1:500.

a											
Span- nungsstufe $\sigma_{n+1} - \sigma_n$		Form	ttel aus 3 bis 6	Elastizi- tätsmodul							
kg/qcm	I	2	3	4	5	6	Mi Nr.	t/qem			
32-112 112-192 192-272 272-352	9, 8 10,4 11,1 11,7 43.0	9,9 10,5 11,0 11,8 43,2	10,1 10,5 11,1 11,4 43,1	9,9 10,5 11,6 11,4 43.4	9,9 10,8 10,8 11,4 42,9	9,7 10,6 11,2 11,6 43,1	9,9 10,6 11,2 11,4	804 755 714 702			

Aus	fortschreitender	Belastung.
1100	ion isom onemuer	Dorastung.

Aus rückspringender Belastung.

	b	
Spannungs- stufe $\sigma - \sigma_0$	Form- änderung λ	Elastizitäts- modul
kg/qcm	m m : 1000	t/qem
32-112 32-192 32-272 32-352	9,9 20, 5 31,7 43,1	804 781 754 743

	С									
Spannungs- stufe $\sigma - \sigma_0$	Form- änderung l	Elastizitäts- modul								
kg/qem	mm : 1000	t/qem								
159–318 159–477 159–636	21,1 47,1 78,3	754 676 609								

		Z	ahlentafel 10.			
Zugvers	uche. (<u>łußei</u>	senstäbe Z 19–	21.		
Snannungs-			Formänderung 2 in n	nm : 100	D	
stufe	Stab Z 19	Stab Z 19		Stab Z 20		
kg/qcm	aus b	aus c	aus b.	aus c	aus b	sus c
32—159	$20,7 \frac{159-32}{192-32} = 10,4$		$19,2 \frac{159-32}{192-32} = 15,2$		$20,5 \frac{159-32}{192-32} = 16,3$	
32-319	$43.5 \frac{319-32}{352-32} = 39.0$		$40,4 \frac{319-32}{352-32} = 36,2$		$43, I \frac{3I9-32}{35^2-32} = 38,7$	
159-319	22,6	20,9	21,0	20,5	22,4	21,1

ebensoviel Zeit als die rückspringende Belastung, und so wurde weiterhin diese immer angewendet.

Die Bestimmung des Elastizitätsmoduls für die zähen Stoffe bot keine besonderen Schwierigkeiten. Bei Stahl und Flußeisen wurden aus einer Stange je I Biegungsstab von den Querschnitten Fig. I und 2 und 1500 mm Länge, 4 Normalstäbe für Zugversuche von rd. 20 mm Dmr. und 4 Stäbe von rd. 40 bis 45 mm Dmr. und 180 bis 200 mm Länge für Druckversuche gefertigt. Die Zug- und Druckstäbe wurden in gewöhnlicher Weise mit Spiegeln untersucht; die Beanspruchung ist bei Stahl bis rd. 1400 kg/gcm, bei Flußeisen bis rd. 1200 kg/qcm getrieben. Von einer Länge Mannesmannrohr wurden 2 Biegungsstäbe vom Querschnitte Fig. 3 und 1500 mm Länge, 6 Stäbe zu Zugversuchen von 500 und 6 zu Druckversuchen von 200 mm Länge abgeschnitten. Die Zugstäbe erhielten Köpfe nach Fig. 20. Die Beanspruchung stieg bis 1600 kg/qcm. Die Ergebnisse der Versuche sind in den Zahlentafeln 11 bis 13 zusammengestellt.

Zahlentafel 11. Gußstahl. Elastizitätsmodul aus Zugversuchen in t/qcm. Stabnummer Spannung für chung vom Mittel 3,14 qcm Querschnitt Belastungs-stufe größte Abwei-Z 3 **Z** 4 ΖI Z 2 Mittel vΗ ii Querschnitt in gem 3,14 3,14 3,14 3,14 kg kg/qcm 400 125 2160 2160 2100 2120 2140 **_1**,9 1200 380 400 125. 2140 2120 2120 2130 2130 ±0,5 2000 640 400 125 2130 2110 2120 2120 2120 ±0,5

2120

2110

2110

2120

2120

2120

2120

2120

-0,5

-0,5

2800

400

400

4400

3600

890

125

1150

125

1400

2120

2120

-	15	-	

Zahlentafel 11 (Fortsetzung). Elastizitätsmodul aus Druckversuchen in t/q¢m.

20	får ltt		Stabn	um mer			i- it'el
stung tufe	nung qcm rsehn	DI	D 2	D 3	D 4	ttel	Abwe m M vH
Bela	Spani 15 Que		Querschni	tt in gem		Mİ	rößte ng vc in
kg	kg/qcm	15,19	15,18	15,19	14,39		chu chu
100 0 6000	65 400	2 100	2140	2 160	2150	2140	-1 ,9
1000 11000	65 730	2120	2170	2160	2160	2150	-1,4
1000 16000	65 1060	2120	2170	2160	2160	2150	-r,4
1000 21000	65 1400	2140	2160	2170	2160	2160	-0,9

Zahlentafel 12.

F10	Flubersen. Erastrattatsmodul aus Augverstenen in Gem.								
	får Itt		Stabnummer				i- itel		
stung tufe	aung 4 qen rschni	Z 5	<i>z</i> 6	Z 7	Z 8	ttel	Abwe m Mi vH		
Bela	Spani 3,1 Quei		Querschni	itt in gem		IW	rößte ng vo in		
kg	kg/qem	3,11	3,14	3,14	3,11		chu		
400 1200	125 380	20 90	2090	2 090	2130	2100	+1,4		
400 2000	125 640	2090	2070	2 080	2100	208 0	+1,0		
400 2800	125 890	2070	20 90	2080	207 0	2080	±0,5		
400 3600	125 1150	2070	20 80	2 090	2 070	208 0	±0,4		

Flußeisen. Elastizitätsmodul aus Zugversuchen in t/qcm.

Elastizitätsmodul aus Druckversuchen in t/qcm.

ġ,	tt n tgr		Stabn	ummer			i- ttel
istung stufe	nung 20 qei rschni	D 5	D 6	D 7	D 8	ttel	Abwe m Mi vH
Bels	Span 13, Que	Querschnitt in gem			W	rößte. ng vc in	
kg	kg/qcm	13,19	13,19	13,19	13,17		ehu 19
1000 4000	75 300	207 0	2050	2 040	2070	2060	-1,0
1000 800 0	75 610	207 0	2030	207 0	2 070	2 060	1,5
1000 12000	7 5 910	2080	2 040	2070	2 080	2070	— 1 ,5
1000 16000	75 1210	20 80	2050	207 0	2080	2070	-1,0

20 20	für itt			Stabn	ummer				i- ttel	
Belastung stufe Spannung 13 qcm Querschn		Z 9	<i>Z</i> 10	<i>Z</i> 11	Z 12	Z 1 3	Z 14	ttel	Abwe m Mi vH	
					Mil	ößte ig vo in				
kg	kg/qem	13,05	12,24	12,84	12,81	12,97	13,61		g1 chui	
500 4500	40 345	2090	2200	2150	2 160	2130	2190	2150	-2,8	
500 8500	40 655	2090	2200	2130	2160	2 120	2160	2 140	+2,8	
500 1 25 00	40 965	2100	2190	2130	2140	2110	2150	2140	+2,3	
500 16500	40 1275	2100	2180	2120	2150	2110	2140	2130	+2,3	
500 20500	40 1585	2100	2180	2110	2140	2110	2140	2130	+2,3	

Zahlentafel 13. Mannesmannrohr. Elastizitätsmodul aus Zugversuchen in t/qcm.

Elastizitätsmodul aus Druckversuchen in t/qcm.

	fůr itt				i- ittel					
Belastung stufe Spannung 13 qcm Querschn		Dg	D IO	DII	D 12	D 13	D 14	tel	ößte Abwe ig vom Mi fn vH	
				Querschni	itt in gem			Mi		
kg	kg/qcm	13,61	13,65	13,65	12,86	13,4 4	1 2 ,94		gr chur	
1000 5000	75 385	2410	2360	2550	24 50	2420	2380	2430	+ 5,3	
1000 9000	75 690	2340	2250	2390	2340	2320	2 330	2330	-3,4	
1000 13000	75 1000	2280	2220	2 340	2300	2280	2270	2 2 80	+2,6	
1 000 1 7 000	75 1310	22 50	2150	2 300	22 60	2 2 40	2 2 50	2240	-4,0	
1000 21000	75 1620	22 40	2220	2° 2 ,70	2240	22 20	2230	22 40	+ r,3	

Weil man bei der Werder-Maschine mit einer Anfangspannung beginnen muß, sehen die Schaulinien $\sigma = f(\epsilon)$ so aus, wie Fig. 21 zeigt; sie bestehen aus 2 Aesten $A_1 B_1$ und $A_2 B_2$. Der Bequemlichkeit wegen sind diese dann so weit parallel zur σ -Achse verschoben, daß ihre Tangenten in A durch den Koordinatenursprung O gehen; das Stück AOA ist also ohne versuchsmäßige Begründung.

Die drei Schaulinien, Fig. 22 bis 24, lassen wie die Zahlentafeln 11 bis 13 erkennen, daß sich die Elastizitätslinie nur wenig von einer Geraden unterscheidet. Auffallend ist, daß bei der Beanspruchung auf Zug die Dehnungen aller drei Stoffe ein wenig schneller als die Spannungen wachsen, während sich Stahl und Flußeisen bei der Beanspruchung auf Druck umgekehrt verhalten, Mannesmannrohr aber in diesem Fall ein stärkeres Wachsen der Dehnungen zeigt. Indessen ist die Abweichung von der Proportionalität nur im letzten Falle so groß, daß sie überhaupt Beachtung verdient, aber doch wieder auch hier so gering, daß sie bei Beurteilung der Biegungsversuche unberücksichtigt bleiben kann. Auffällig ist bei Mannesmannrohr auch der Knick im Nullpunkte, der bei Stahl gar nicht, bei Flußeisen in ganz geringem Maße, aber in umgekehrtem Sinne zu bemerken ist. Die Mittelwerte des Elastizitätsmoduls sind in Zahlentafel 14 zusammengestellt.

Zahlentafel 15 gibt noch die Zugfestigkeiten für diese Stoffe an. Das Mannesmannrohr mußte, um sie bestimmen zu können, in der Mitte bis etwas

unter den Kerndurchmesser des aufgeschnittenen Gewindes, Fig. 20, abgedreht werden — selbstverständlich nach einer ganz flachen Kurve.

Die Druckfestigkeit ist nicht ermittelt, weil sie bekanntlich von der Länge der Probestäbe stark abhängt, und, wenn man diese ganz kurz nimmt, der Beginn der Zerstörung schwer erkennbar ist.

	Zah	len	tafel	14.		
Gußstahl,	Flußeis	sen	und	Manne	esman	nrohr.
Mittlere	Werte	des	Ela	stizitä	tsmod	luls.

Guß	stahl	Fluß	eisen	Mannesmannrohr			
Zugseite Spannung 125–1400 kg/qcm	Druckseite Spannung 65-1400 kg/qcm	Zugseite Spannung 125—1150 kg/qcm	Druckseite Spannung 75–1210 kg/qcm	Zugseite Spannung 40—1585 kg/qem	Druckseite Spannung 75–1620 kg/qcm		
2140	2150	2085	2065	2140	2303		
21	40	20	275	2220			
	aus dei	Elastizitätslinie	zeichnerisch er	mittelt			
21	40	20	080	2:	210 ¹)		
	stärkste Abweich	ing eines Einzel	wertes von diese	em Mittel in vH			
-1,9	- 1 ,9	+2,4	-1,9	-5,5	+15,3		

¹) Mit der sich am besten der Elastizitätslinie anschließenden, durch den Nullpunkt gehenden Geraden folgt E = 2185 t/qcm. Die geometrische Bestimmung der mittleren Ordinate der Elastizitätslinie ergab aber 2210 t/qcm, und es erscheint doch wohl richtiger, diese Zahl, welche mit dem Mittelwerte der Zahlentafel übereinstimmt, als wirklichen Mittelwert in Rechnung zu stellen.

Zahlentafel 15.

Zusammenstellung der Zugfestigkeiten zäher Stoffe in kg/qcm. Gußstahl.

Stabnummer

ZI	Z 2.	Z 3	Z 4
6215	6120	6090	6090
Mittal 6120.	antifito Aburoi	hung won die	ann I T 2 TH

Mittel 6130; größte Abweichung von diesem + 1,3 vH.

Flußeisen.

	Stabna	ummer	
Z 5	<i>z</i> 6	Z 7	Z 8
2800	1050	1800	2020

3890 | 3950 | 3890 | 3920 Mittel 3905; größte Abweichung von diesem + 1,2 vH.

Mannesmannrohr.

Stabnummer	
------------	--

Z 9	<i>Z</i> 10	<i>Z</i> 1 1	Z 12	Z I 3	Z 14
5550	5770	5680	5660	5560	5740
Mit	tel 5660; gi	ößte Abweic	hung von di	lesem ± 1.9	vH.

- 18 -

Große Schwierigkeiten machte die Bestimmung des Elastizitätsmoduls für Gußeisen. Es war ursprünglich beabsichtigt, ebenso wie bei den zähen Stoffen zu verfahren, und bei den Quadratstäben aus Gußeisen A ist das auch geschehen.

Hier ist von zwei Stäben vom Querschnitte Fig. 4, die in Masse geformt und aus einer Pfanne gegossen sind, je ein Biegungsstab von 1500 mm Länge abgeschnitten, der Rest aber zur Anfertigung von 7 Normalzugstäben von 20 mm Dmr. und 6 Druckstäben von rd. 45 mm Dmr. und 200 mm Länge verwendet. Leider wurde verabsäumt, zu bemerken, von welcher Stange die einzelnen Zugund Druckstäbe stammen. Da sich nämlich bei den späteren Versuchen starke Schwankungen im elastischen Verhalten der einzelnen Stäbe zeigten, so würde es möglicherweise zur Klärung dieser Erscheinungen beitragen, wenn man sich den Ursprung jedes Probestabes genau vermerkt hätte.

Die Zahlentafel 16, wie die Elastizitätslinie Fig. 25, zeigen nichts besonders Auffälliges. Die Dehnungen wachsen viel schneller als die Spannungen; von einem unveränderlichen Elastizitätsmodul ist nicht mehr die Rede. Daß Gußeisen ein ungleichmäßiger Stoff ist, geht aus den Zusammenstellungen der

Zahlentafel 16.

Gußeisen A.

Elastizitätsmodul aus Zugversuchen.

		Stabnummer										
Belastungs-	Spannung für	Z 15	<i>z</i> 16	Z 17	Z 18	Z 19	Z 20	Z 2 I				
stufe	3,14 qcm Querschnitt	Querschnitt in qcm										
kg	kg/q cm	3,14	3,14	3,14	3,14	3,14	3,14	3,14				
100 350	30 110	908	830	823	850	788	868	798	838			
100 600	30 190	811	768	772	807	768	829	775	790			
100 850	30 270	79 2	743	761	784	749	814	754	771			
100 1100	30 350	767	711	730	760	735	7 8 8	741	747			

Elastizitätsmodul aus Druckversuchen.

		Stabnummer										
Belastungs-	Spannung für	D 15	<i>D</i> 16	D 17	D 18	D 19	D 20					
stufe	15,0 qcm Querschnitt	Querschnitt in qcm										
kg	kg/qcm	16,20	15, 83	15,61	14,20	14,20	14,40					
1000 3500	65 235	928	868	865	885	917	931	8 99				
1000 6000	65 4 00	893	843	831	859	888	900	869				
1000 8500	65 5 65	880	827	82 2	8 49	884	891	859				
1000 1000	65 735	874	821	816	842	880	886	850				
							2*					

Zahlentafel 17 deutlich hervor; die erstere zeigt die bekannte Erscheinung der Abnahme des Elastizitätsmoduls mit wachsender Beanspruchung sehr deutlich.

Ganz wunderlich berühren aber die Zahlen für Gußeisen B. Es wurden aus diesem 10 Biegungsstäbe in 5 verschiedenen Profilen und daneben vier Stäbe gegossen, aus denen die Zug- und Druckproben entnommen wurden. Alle diese Stäbe sind in nur zwei Kästen in Masse geformt und aus einer

Fig. 25. Elastizitätslinie für Gußeisen A aus Probestäben.

Zahlentafel 17.									
Gußeisen A.									
Abnahme	des	Elastizitätsmoduls mit wachsender	Belastung.						

ĩ

			Zu	gseite							D	rucks	eite			
pan- ings- tufe			Sta	bnum	mer			ttel	pan- ings- tufe	Stabnummer						ttel
w ∃ ∞ kg/qcm	Z 15	Z 16	Z 17	Z 18	Z 19	Z 20	Z 2 I	Mi	W kg/qcm	D 15	D 16	D 17	D 18	D 19	D 20	Mi
30 1 1 0	100	100	100	100	100	100	100	100	65 235	100	100	ťoo	100	100	100	100
30 190	89	93	94	95	97	95	97	94	65 400	96	97	96	97	97	97	97
30 270	87	90	92	9 2	95	94	94	92	65 565	95	95	95	96	96	96	96
30 350	84	86	89	89	93	91	93	89	65 735	94	95	94	95	96	95	95
			Abv	veich	unge	en vo	om N	fittel	l in vH	des	letz	teren	l.			
30 110	+8,4	_1 ,0	-1,8	+1,4	-6,0	+3,6	-4,8		65 235	+3,2	-3,4	-3,8	-1,6	+2,0	+3,6	
30 190	+2,7	-2,8	-2,3	+2,2	-2,8	+4,9	-1,9		65 400	+2,8	-3,0	-4,4	_1, 1	+2,2	+3,6	
30 270	+2,7	-3,6	-1,3	+1,7	-2,9	+5,6	-2,2		65 565	+2,4	—3,7	-4,3	-1,2	+ 2 ,9	+3,7	
3 0 350	+2,7	-4,8	-2,3	+ I ,7	-1,6	+5,5	_0,8		65 735	+2 ,8	-3,4	-4,0	0,9	+3,5	+4,2	
G	rößte	Abwe	ichun	g voi	n Mit	tel au	ıf der	Zugs	seite 6,0	vH, a	uf de	r Dru	ckseif	te 4,4	vH.	

Pfanne gegossen. Das Profil der Stäbe für die Zugproben war ein Rechteck von 100×40 mm, das für die Druckproben ein Kreis von 63 mm Dmr. Die Zugproben selbst waren Normalstäbe von 25 mm, die Druckproben Stäbe von rd. 60 mm Dmr. und 200 mm Länge. Die Schwankungen sind hier bei den Zugversuchen so groß, daß durchaus Zweifel an der Richtigkeit der Messung gehegt werden mußten. Es wurde daher die ganze Untersuchung wiederholt. Dabei ergaben sich gegenüber der ersten Messung Abweichungen, die zwar nicht immer verschwindend gering waren, aber das Bild nicht veränderten; die Abweichungen der einzelnen Stäbe untereinander blieben gerade so groß. Deshalb mußten beide Messungen als gleichwertig erachtet werden; in Zahlentafel 18 sind also auch die Mittel eingetragen. Die größte Abweichung beider Versuchsreihen von ihrem Mittel 3,3 vH. Beachtenswert ist, daß mit der Spannung die Uebereinstimmung wächst; für die höchste Belastungsstufe ist sie durchaus

Zahlentafel 18.

Gußeisen *B*.

Elastizitätsmodul aus Zugversuchen.

	tt B	Stabnummer									
stung: tufe	anung 8,4 q schni	Z 32	Z 33	Z 34	Z 35	Z 36	Z 37	tel			
Belas	Spar für 2 Quer			Querschn	itt in gem		·	Mit			
kg	kg/qcm	4,91	4,91	4,91	4,91	4,95	4,91				
250 600	50 120	977 937 957	951 926 938	810 759 784	951 977 964	814 814 814	783 820 801	881 872 876			
250 950	50 195	938 914 926	9 26 897 911	728 736 732	914 914 914	791 774 782	77 ^I 760 765	845 832 838			
250 1300	50 265	918 900 909	9°3 886 869 886	706 706 706	884 884 884	768 756 762	$ \begin{array}{c} 723 \\ 743 \end{array} $ $ 733 $	817 810 813			
2 50 1650	50 335	⁸⁸⁹ 883 878 883	860	689 688 688	872 872 872	743 748 745	$713 \\ 717 715$	7 95 794 794			

*	tt m		Stabnummer								
stung: tufe	nnung 91 q schni	D 31	D 32	D 33	D 34	D 35	D 36	tel			
Bela	Spa für 4 Quer			Querschn	itt in qcm			Mil			
kg	kg/qcm	28,4	28,4	28,4	28,4	28,4	28,4				
1000 3000	35 105	997	1006	98 7	1025	1006	10 1 6	1006			
1000 5000	35 175	970	974	958	989	989	975	976			
1000 7000	35 245	960	960	95 3	97 2	960	900	961			
100 0 9000	35 315	950	955	934	960	95 2	947	950			
1000 1000	35 385	94 4	9 4 4	927	950	940	935	940			

Elastizitätsmodul aus Druckversuchen.

gut; man findet für diese im Mittel 0,06 vH, im einzelnen höchstens 0,7 vH. Die Untersuchung von 4 weiteren Zugstäben ist nicht viel besser ausgefallen, auch hier zeigten sich Schwankungen bis 12 vH; ich verzichte auf Mitteilung der Ergebnisse, doch sind sie bei Bildung der Elastizitätslinie in Fig. 26 berücksichtigt.

Fig. 26. Elastizitätslinie für Gußeisen B aus Probes^täben.

Im Gegensatze zu den Zugversuchen ergeben die Druckversuche befriedigendere Uebereinstimmung der sechs Versuchstäbe untereinander, wie aus den Zahlentafeln 18 und 19 zu entnehmen ist.

Zahlentafel 19.

Gußeisen B.

		Zug	seite				Druckseite								
Belastungs-			Stabn	ummer			Belastungs- Stabnummer						•		
stuie kg/qcm	Z 32	Z 33	Z 34	Z 35	Z 36	Z 37	stufe kg/qcm	D 31	D 32	D 33	D 34	D 35	D 36		
50 120	ICO	100	100	100	100	100	35 105	100	100	100	100	100	100		
50 195	97	97	93	95	96	96	35 175	98	97	97	97	97	9 6		
50 265	95	95	90	92	94	92	35 245	96	96	97	95	95	. 95		
50 335	9 2	92	88	91	9 2	90	35 . 315	95	95	95	94	94	93		
							35 385	95	94	94	93	93	92		
		Abw	veichu	ng vo	om M	ittel i	n vH des 1	letzte	eren.						
50 120	+ 9,3	+7,1	_10 ,5	+10,0	7, 1	-8,6	35 105	-0,9	<u>+</u> 0	_1 ,9	+ 1 ,9	70	+1,0		

Abnahme des Elastizitätsmoduls mit wachsender Belastung.

— 22 —

Zahlentafe	l 20.
Gußeisen	С.
Elastizitätsmodul aus	Zugversuchen.

Belastungs-	Spannung íür	Z 55	z 56	Z 57	Z 58	Z 5 9	<i>z</i> 60	
stufe	4,86 qcm Querschnitt			Querschni	itt in qem			MILLEI
kg	kg/qem	4,75	4,91	4,91	4,83	4,91	4,87	
250 600	51 124	774	819	759	732	792	758	772
250 950	51 196	726	763	709	685	75 I	708	724
250 1300	5 I 268	693	730	675	651	714	687	69 2
250 1650	51 340	665	706	643	638	690	661	667
250 2000	51 412	606	671	606	599	659	635	6 2 9
250 2700	51 556	543	6 09	546	547	593	581	570
250 3400	5 I 700	496	557	496	496	540	525	518

Elastizitätsmodul aus Druckversuchen.

	Spannu	ıng für								
Belastur	ngsstufe	Quers	ehnitt	D 49	D 50	D 51	D 52	D 53	D 54	M244-1
		19,70 qem	23,82 qem		Q	uerschni	tt in qe	m		MITTEI
D 49-50	D 51-54	D 49—50	D 51-54	19,71	19,69	23,83	23,82	2 3,83	23,80	
1000 2000	1000 3000	51 101	42 126	873	91 9	905	894	892	934	903
1000 3500	1000 4500	51 178	42 189	869	882	896	874	88 I	911	885
1000 5000	1000 6000	51 254	42 252	852	854	865	85 6	855	882	861
1000 6 5 00	1000 7500	51 330	4 2 3 15	838	834	851	842	847	870	847
1000 8000	1000 9000	51 416	42 378	830	824	838	830	833	859	836
10000	1000 11000	5 I 508	42 40 2	820	814	824	818	824	838	823
1000 13000	1000 15000	51 660	42 630	799	7 97	805	812	805	821	806
1000 17000	100 0 20000	51 863	42 840	792	782	794	795	802	803	795

Es lag nahe, dies auf die Form der Stangen zurückzuführen, aus denen die Versuchstäbe angefertigt waren; bei dem Rechteckprofile von 100×40 mm konnte die ungleichmäßige Abkühlung nach dem Guß eine weit größere Rolle spielen als bei dem Kreisprofile von 65 mm Dmr. Deshalb wurden aus einem verbliebenen Materialreste von letzterem noch zwei Zugstäbe gefertigt und untersucht.

Auch diese Untersuchung wurde zweimal vorgenommen; beide Ergebnisse stimmen ziemlich gut überein: die Schwankung beträgt höchstens 2,1 vH und im Mittel für alle Stufen 1,4 vH. Aber die beiden Stäbe unterscheiden sich wieder wesentlich voneinander; die Schwankung ist höchstens 7,1 vH und im Mittel 4,3 vH. Immerhin ist das Ergebnis besser als bei den Zugstäben aus dem Rechteckprofile.

Zahlentafel 21.

Gußeisen C.

	Zugseite						Druckseite							
Span- nungs-			Stabn	ummei	r		Span- nungs-	St. num	ab- mer	Span- nungs-		Stabn	ummer	r
kg/qcm	Z 55	z 56	Z 57	Z 58	Z 59 [°]	z 60	kg/qcm	D 4 9	D 50	kg/qem	D 51	D 52	D 53	D 54
50 125	100	100	1 0 0	100	100	100	50 100	100	100	40 125	100	100	100	100
50 195	94	93	94	94	95	94	50 180	100	96	40 190	99	98	99	9 8
50 270	90	8 9	89	89	90	91	50 255	98	93	40 250	96	96	9 6	94
50 340	86	86	85	87	87	87	50 330	96	9 1	40 315	94	94	95	93
50 410	78	82	80	82	83	84	50 415	95	90	40 380	9 3	93	94	92
50 5 55	70	74	72	75	75	77	50 510	94	89	40 46 0	91	92	92	90
50 700	64	68	65	68	68	69	50 660	9 2	87	40 630 ·	89	91	90	88
					- 		50 860	90	85	40 840	8 8	89	9 0	86
			Abw	eichu	ıng v	rom 1	Mittel ir	n vH	des	letztere	n.			
50 125	+0,3	+6,1	-1,7	-5,2	+2,6	-1,8	50 100	—3, 3	+1,8	40 125	+0,2	-1,0	-1,2	+3,4
50 195	+0,3	+5,4	-2,I	-5,4	+3,7	-2,2	50 180	-1,8	-0,3	40 190	+1,2	-1,2	—0,5	+2,9
50 270	+0,1	+5,5	-2,5	-5,9	+3,2	-0,7	50 255	-1,0	-0,8	40 250	+0,5	-0,6	-0 ,7	+ 2 ,4
50 3 4 0	0,3	+5,8	-3,6	-4,3	+3,5	- 0, 9	50 330	-1,1	-1,5	40 315	+0,2	-0,6	±0	+2,7
50 410	3,7	+6,7	-3,7	-4,8	+4,8	+1,0	50 415	-°,7	-1,4	40 380	+0,1	-0,7	—°,4	+2,8
50 555	-4,7	+6,8	-4,2	-4,0	+4,0	+1,9	50 510	-0,4	_I ,1	40 460	+0,1	_0, 6	+0,1	+1,8
50 700	-4,2	+7,5	-4,2	-4, 2	+4,2	+1,4	50 660	-0,9	-1, 1	40 630	-0,1	0,7	-0,1	+1,9
							50 860	-0,4	-1,6	40 840	-0,1	±0	+0,9	+1,0

Abnahme des Elastizitätsmoduls mit wachsender Belastung.

Deshalb sind, als sich die Biegungsstäbe T mit Gußfehlern behaftet zeigten und neue gegossen werden mußten, hier auch für die zugehörigen Zugversuche die Probestäbe aus dem Kreisprofile gearbeitet. Wie die Zahlentafeln 20 und 21 und die Elastizitätslinie Fig. 27, zeigen, stimmen in der Tat die Werte für Gußeisen *C* besser als die für *B*, immerhin aber noch schlecht genug.

Fig. 27. Elastizitätslinie für Gußeisen C aus Probestäben.

Um nun einmal zu sehen, ob die Unterschiede der einzelnen Stäbe auch bei größerer Belastung erhalten bleiben, ist noch eine weitere Untersuchung mit Gußeisen B auf Zug gemacht, und zwar mit allen vorhandenen Stäben, mit Ausnahme eines, der bereits zerrissen war. Bei dieser Untersuchung wurde die Spannung bis 8_{15} kg/qcm getrieben. Ferner wurden, um das Ergebnis möglichst zu sichern und um festzustellen, ob die Stäbe an sich gleichmäßig seien, zwei Spiegelpaare angesetzt, wie Fig. 28 zeigt. Die Ergebnisse sind aus

Zahlentafel 22. Gußeisen B. Elastizitätsmodul aus Zugversuchen.

										0 -				
	Span- nung						Sta	bnumr	ner					
Be- lastungs-	für 4,9 t	Spiegel-	Z 3 3	Z 34	Z 35	<i>z</i> 36	Z 37	Z 38	Z 39	<i>2</i> 40	Z 4 I	Z 42	Z 43	Mittol
stufe	q cm Quer-	num me r		Querschnitt in qcm									MILLEI	
kg	schnitt kg/qcm		4,91	4,91	4,91	4,95	4,91	4,91	4,91	4,91	4,91	4,91	4,91	
1000 bis	205 bis	1 u. 2 3 » 4	830 840	686 677	856 840	715 697	707 693	673 707	640 653	757 764	734 744	687 683	720 757	7 2 8 733
2000	410	Mittel	835	681	848	706	700	690	646	760	739	685	738	730
1000 bis	205 bis	I u. 2 3 × 4	752 776	635 615	759 752	635 610	622 612	589 6 2 3	567 560	665 687	653 653	609 603	643 677	648 652
3000	610	Mittel	764	625	755	622	617	606	563	676	653	606	660	650
1000 bis	205 bis	I u. 2 3 × 4	684 704	571 555	690 682	570 548	561 549	525 562	504 500	622 600	590 589	545 538	584 613	586 585
4000	815	Mittel	694	563	6 8 6	559	555	543	502	611	589	54I	598	585
Sel	iwa nku n	gen; Be	elastur ,	ngsstuf ` `		84 8 — 764 —	646 = 563 = 502	202; 201; 192:	202 : 201 : •	7 30 = 650 = 585 =	0,277	7, >, 3.		

Zahlentafel 23.

- 26 -

Zugversuche. Gußeisen A. Stäbe Z 19–21. d = 20,0 mm; f = 3,14 qcm. Meßlänge 100 mm.

Spannungstufe	Formän	derung	Elastiziţätsmodul t/qcm						
$\sigma - \sigma_0$	gemessen n	nit Spiegel	gemessen n	nit Spiegel					
kg/qem	I und 2	3 und 4	I und 2	3 und 4	Mittel				
		Stab Z	19.						
159—318 159—477 159—636	2 0,9 46,3 77,0	21,1 46,5 77,8	761 687 620	754 684 613	757 685 616				
		Stab Z	20.						
159—31 8 159—477 159—636	20,5 45,3 74,6	20,0 43,8 73,0	776 702 639	795 726 653	785 714 64 6				
		Stab Z	21.						
159 —318 159—477 159—636	21,1 47,1 78,3	20,8 46,5 76,7	754 676 609	765 684 623	759 680 616				

Zahlentafel 24. Zugfestigkeit des Gußeisens A.

Herkunft der Stäbe	aus denselben Stangen wie die Biegungsstäbe B5 u. B6	aus den aus B5 gefertigten Druckstäben							
Stabnummer	Z 16 Z 17 Z 18 Z 19 Z 20 Z 21 Mittel	Z 23 Z 24 Z 25 Z 26 Z 27 Z 28 Z 29 Z 30 Z 31 D 21 D 21 D 22 D 23 D 23 D 30 D 30 D 30 D 30 D 30							
Zugfestigkeit in kg/qcm	1128 1083 1115 1098 1019 1113 1093	1138 1131 1122 1132 1138 1108 1122 1031 1059 1109							
	Gesamtmittel für Gußeisen A 1102	kg/qcm; größte Abweichung 7,5 vH.							

Zugfestigkeit des Gußeisens B.

Herku	nft der St	äbe	aus einer besonders gegossenen Stange von 🗌 Querschnitt										
Stabnumn Zugfestig	ner keit in kg/	Z	32 Z 33 85 1230	Z 3 4 1238	Z 35 Z 1325 I	2 36 Z 3; 2 3 3 122	7 Z 40 3 1383	<i>2</i> 41 1280	Z 42 1260	Z 43 1250	Mittel 1287		
desgleich	en von 🔿	Querschni	tt	aus d	lem Bild	ungsstabe	B7 g	efertigte	e Flach	stäbe			
Z 38	Z 3 9	Mittel	Z 49 B 7	Z S B	;0 <i>Z</i> 7 1	51 2 87	8 52 B 7	Z 53 B 7	Z 5 B 1	4	Mittel		
1105	1065	1085	1620	IIC	00 I	740 1	630	1630	168	0	1567		

Zugfestigkeit des Gußeisens C.

Herkunft der Stäbe	aus besonders gegossener Stange								
Stabnummer	Z 55	<i>2</i> 56	Z 57	Z 58	z 59	<i>2</i> 60	Mittel		
Zugfestigkeit in kg/qcm	802	1023	979	782	866	961	902		

Gesamtmittel für Gußeisen C 902 kg/qcm; größte Abweichung 13,4 vH.

Zahlentafel 22 zu entnehmen. Die beiden Spiegelablesungen für denselben Stab zeigen Unterschiede bis zu 6,8 vH des Mittels; die einzelnen Stäbe unterscheiden sich stark voneinander; die Schwankung steigt bis 32,8 vH. Bei den 3 Stäben Z 19 bis Z 21 aus Gußeisen A, die auch nochmals bei höherer Beanspruchung geprüft wurden, ist der Unterschied der Angaben beider Spiegelpaare viel geringer; die Schwankung höchstens 3,3 vH des Mittels, siehe Zahlentafel 23.

Es ist also nicht anders: die Proben aus demselben Stabe sind sehr verschieden untereinander und nicht einmal in sich gleichmäßig. Es ist also höchst bedenklich, ja wohl unzulässig, gußeiserne Konstruktionen nach besonders hergestellten Proben zu beurteilen, auch wenn diese mit dem zu beurteilenden Stücke aus einer Pfanne gegossen sind. Es mag ja Gußeisen geben, welches ein gleichmäßigeres elastisches Verhalten zeigt; das vorliegende war ganz gewöhnlicher Maschinenguß. Auf solchen ist aber meist nur zu rechnen.

Auch die Festigkeitsuntersuchung, Zahlentafel 24, bestätigt die Ungleichmäßigkeit. Die Schwankung beträgt hier für Gußeisen B, Stäbe Z 32 bis Z 37,

welche zuerst geprüft wurden, nicht weniger als 25,6 vH vom Mittel; für Gußeisen C, Stäbe Z 55 bis Z 60, gar 26,7 vH.

Es wurde deshalb, nachdem die Biegungsversuche bei geringeren Spannungen durchgemacht waren, von jedem Profil ein Biegungsstab geopfert und zur Bestimmung des Elastizitätsmoduls benutzt. Er wurde mit passenden Köpfen versehen, im ganzen eingespannt und auf Zug untersucht, siehe Fig. 29 bis 33. Bei den Köpfen nach Fig. 30 war zunächst der Stift fortgelassen, er wurde aber später eingezogen, um zu sehen, ob dadurch die Verteilung der Spannungen über den Querschnitt verändert würde. Das war nicht der Fall; die Spannungen verteilten sich schon infolge der Keilverbindung gleichmäßig über den Querschnitt, wenigstens in der Mitte der Stablänge. Später wurden dann drei Stücke von 200 mm Länge abgetrennt und gedrückt. Die Ergebnisse zeigen die Zahlentafeln 25 bis 30 und die Fig. 34 bis 39. Bei den Zugversuchen wurden immer gemäß Fig. 28 beide Spiegelpaare angesetzt, und zwar an den Stellen, an denen sie bei den Biegeversuchen gesessen hatten; bei den Druckversuchen konnte nur ein Spiegelpaar angebracht werden, das auf der Mitte des Stabes saß.

Ζ	a	hl	en	ta	fel	2	5.
• .			- 1			٠.,	α

Е1	asti	izită	itsmo	dul	aus	Versuch	ien i	nit	Gußeisen	A,	Stab	B	5 L].
----	------	-------	-------	-----	-----	---------	-------	-----	----------	----	------	---	-----	----

5 2	- 8.5		Elastizitätsmodul in t/qem									
stung tufe	nnung tafe	Zug	Zug Druck									
Bela s	Spaus		Mittel	Mittel für Zug und Druck								
kg	kg/qcm	Z22 B5	D 21 B 5	D 22 B 5	D 23 B 5							
6000 13000	70 145	877	988	96 4	975	976	926					
6000 2 0000	70 225	858	963	952	957	957	907					
6000 27000	70 300	822	937	926	94 2	935	878					
6000 34000	70 375	785	924	909	918	917	851					

Zahlentafel 26.

Elastizitätsmodul aus Versuchen mit Gußeisen B, Stab B7 💿.

5	- 52		Elastizitätsmodul in t/qcm									
stung tufe	nnung tufe	Zug	Zug Druck									
Bela	Spar		Mittel	Mittel für Zug und Druck								
kg	kg/qcm	Z44 B7	D 37 B 7	D 38 B 7	D 39 B 7		Ŭ					
3000 6000	60 120	1144	1390	1390	1360	1380	1262					
3000 9000	60 180	1110	1310	1280	1330	1307	1208					
3000 12000	60 240	1088	1270	1280	1260	1270	1179					
3000 15000	60 300	1073	1250	1250	1 2 30	1243	1158					

Zahlentafel 27. Elastizitätsmodul aus Versuchen mit Gußeisen B, Stab B9 ©.

\$, Q	Elastizitätsmodul in t/qem										
stung tufe	nung tufe	Zug										
Bela s	Spar		Mittel	Mittel für Zug und Druck								
kg	kg/qcm	Z46 B9	D 40 B 9	D41 B9	D42 B9		Zug und Druck					
2000 4000	5 5 110	9 2 0	948	1130	1100	1059	989					
2000 6000	55 165	895	964	1090	1050	1035	965					
2000 8000	55 220	880	9 5 3	1040	995	996	938					
2000 11000	2000 55 850 1000 300 850		9 26	985	957	956	903					

Zahlentafel 28.

		Elastizitätsmodul in t/qem									
stung tufe	mung. tufe	Zug		Dri	uck						
Bela	Spar s		Mittel	Mittel für Zug und Druck							
kg	kg/qcm	Z 47 B I I	D 43 B 1 1	D 44 B I I	D 45 B 11	MIDEI	Zug und Diuck				
1500 3000	55 110	970	965	1000	98 2	98 2	976				
1500 4500	5 5 165	916	957	9 92	9 2 4	958	937				
1500 60 0 0	55 220	894	938	970	9°7	938	916				
1500 17500	55 275	873	929	952	905	9 29	901				
1500 95001)	55 350²)	842	918	934	900	917	879				
¹) für	Druck 100	000 kg.	²) für Druc	k 370 kg/a	em.						

²) für Druck 370 kg/qcm.

	y !		Elastizitätsmodul in t/qcm										
stung tufe	anung tufe	Zug	Zug Druck										
Bela	Spar		Mittel	Mittel für Zug und Druck									
kg	kg/qcm	Z 48 B 13	D 46 B 13	D 47 B 13	D 48 B 13	MINUOI	Zug und Diuck						
1500 3 500	60 135	940	940	957	907	935	937						
1500 5500	60 210	8 8 0	922	911	911	915	897						
1 500 7 500	60 285	848	913	8 9 8	90 2	904	876						
1500 10000	60 380	817	911	891	90 2	901	859						

Zahlentafel 29. Elastizitätsmodul aus Versuchen mit Gußeisen B, Stab B13 [.

Zahlentafel 30. Elastizitätsmodul aus Versuchen mit Gußeisen C, Stab B15 **T**.

	- 	Elastizitätsmodul in t/qem								
stung: tufe	nung tufe	Zug		Dr	uck					
Bela	Spar		Mittal	Mittel für Zug und Druck						
kg	kg/qcm	Z61 B15	D 55 B 15	D 56 B 15	D 57 B 15	MILLEI	Zug und Druck			
2000 4000	55 110	845	860	809	.932	867	856			
2000 6000	55 165	805	861	816	910	862	833			
2000 8000	55 225	765	860	822	898	8 60	812			
2000 11000	55 305	736	854	816	882	851	793			
2000 16000	55 445		833	813	856	834	-			

Vergleicht man nun die so gefundenen Ergebnisse mit denen aus den früheren Probestäben, so bemerkt man erhebliche Abweichungen. Die Zahlentafeln lassen sich nicht unmittelbar für die Vergleiche benutzen, weil die Spannungsstufen in beiden Versuchsreihen nicht dieselben sind, wohl aber die Elastizitätslinien. Aus diesen ist die sich auf den gleichen Spannungsbereich beziehende Zahlentafel 31 gebildet.

Hier ist nun deutlich zu sehen, daß die Schwankungen bei den verschiedenen Gußeisensorten und bei den verschiedenen Stäben aus demselben Gußeisen ganz außerordentlich groß sind.

ŀ	Class	tizi	täts	smo	dul	für	Guß	eis	en	aus	d e	n E	las	tiz	ität	slir	iei	1.	
	G	ußei	sen 4	4					Guße	isen	В					G	Gußeisen C		
	Zu	g	Dr	uck	Zug					D	ruck	c		Ζt	ıg	Dr	uck		
kg/dcm Spannungsstufe	ståbe Z I 5 – Z 2 I	stab Z 22 B 5 🗌	stäbe D I 5 – D 20	stäbe D 21 B 5 – D 23 B 5 🗌	stübe Z 32 — Z 43	stab Z44 B7 0	stäbe Z49 B7-Z54 B7 aus O	stab Z46 B9 ©	stab Z47 BII I	stab Z48 B13 [štäbe <i>D</i> 31 – <i>D</i> 36	städe D 37 B 7 - D 39 B 7 💿	stäbe D 40 B 9 – D 42 B 9 💿	stäbe D 43 B II – D 45 B II \blacksquare	548be D 46 B 13 - D 48 B 13 [stabe Z 55 — Z 60	stabe Z 61 B 15 T	stabe D 49 – D 54	stabe D 55 B 15 - D 57 B 15 T
kg/qcm		<u>.</u>		02			02	02	02	02		01	- 502	- 02		<u>~</u>	1	02	
50 150	781	870	888	987	823	1112	1081	89 6	9 49	910	978	1340	1050	998	9 3 0	774	816	8 6 6	8 68
50 250	767	836	885	953	7 8 8	1083	1038	865	903	859	954	1 27 0	9 79	9 58	914	693	755	852	860
50 350	736	793	873	929	755	1074	1012	814	864	823	946	1226	946	946	90 4	666	73 2	831	848

Zahlentafel 31.

Fig 39. Elastizitätslinie für den Stab B 15 aus Gußeisen C.

- 31 -

Zahlentafel 32. Gul	Beisen A.		
Elastizitätsmodul aus Zugve	ersuchen	in	t/qcm.

sstufe	tt - ti			Stabnummer				ung vH					
ssgur	ung t qen sehni	Z23 D21 B5	Z24 D21 B5	Z25 D22 B5	Z26 D23 B5	Z27 D23 B5	Mit-	weicl el in					
Belastı	Spanr 3,1, Quer		Querschnitt in qcm										
kg	kg/qcm	3,12	3,14	3,12	3,09	, 3 ,12		grð V0)					
100 400	30 130	794	786	794	786	770	786	-2,0					
100 700	30 225	756	74 4	766	786	768	764	+2,9					
1000	30 3 2 0	728	722	741	754	744	738	-2,2					
100 1300	30 415	706	701	712	722	714	7,11	+1,6					
100 1600	30 515	666	670	660	684	669	670	+2,I					
100 1900	30 610	6 2 6	631	640	650	639	637	+2,0					
Elastizitätsmodul aus Druckversuchen in t/qcm.													

r Belastungsstufe	ar Spannung für B 12,57 gcm B Querschnitt	Stabnummer									
		D24 D21 B5	D 25 D 21 B 5	D26 D22 B5	D 27 D22 B5	D28 D23 B5	D 29 D 23 B 5	tel	weicł el in		
		Querschnitt in qcm									
		12,57	12,41	12,38	12,55	12,58	12,32		größ vom		
400 1600	30 125	888	924	874	9°5	89 6	9 2 4	90 2	-3,1		
400 2 100	30 225	881	862	874	884	872	90 3	879	+2,7		
400 4000	30 320	864	890	858	865	85 2	885	869	+ 2 ,4		
400 5200	30 415	854	885	853	861	848	87 6	863	+2,6		
400 6400	30 510	84 2	869	839	850	842	860	850	+2,2		
400 7600	30 605	825	866	835	847	835	857	844	+2,6		
Elastizitätsmodul aus Zugversuchen in t/qcm.											

Belastungs-	Spannung für 3,14 qcm	718 D10 Pr	Stabnummer	Mittel	größte							
stufe		<u>Z 20 D 30 D 5</u>	229 030 85		vom Mittel							
	Querschnitt	Q	uerschnitt in qe									
kg	kg/qcm	3,16	3,06	3,15		in vii						
100 400	30 130	828	830	758	805	-5,8						
100 700	30 225	796	789	749	778	-3,7						
1000	30 320	769	754	701	741	-5,4						
100 1300	30 415	735	725	676	712	—5,0						
100 1600	30 515	700	686	633	673	-5,9						
100 1900	30 610	660	640	592	631	-6,2						
Von Gußeisen A wurden, wie bereits oben gesagt, zwei Stangen gegossen und die Probestäbe aus Abschnitten dieser Stangen gefertigt. Es ist bedauerlich, daß nicht bemerkt wurde, aus welcher der beiden Stangen jeder einzelne Probestab stammt; man könnte dann den Vergleich weiter treiben. Immerhin bemerkt man, daß die Zahlen für das -Profil größer sind, als die für die Rundstübe, und zwar findet sich unter den letzteren kein einziger, welcher größere Werte als der Quadratstab zeigte. Also kann durch den erwähnten Mangel kein Zweifel an der Richtigkeit der Beobachtung begründet werden. nur ist die Größe des Unterschiedes nicht erkennbar. Um nun diesem Mangel abzuhelfen, wurden aus den drei Druckstäben, welche aus Stab B 5 stammen. nochmals 6 Zug- und 6 Druckstäbe gefertigt und untersucht; allerdings hatten die ersteren nun nicht mehr die normale Länge. Die Ergebnisse sind in Zahlentafel 32 vermerkt, ebenso die von 4 weiteren Zugstäben etwas größerer Länge, welche aus einem verbleibenden Reste vom Stabe B 6 angefertigt wurden. Keiner dieser Stäbe erreicht die Zahlen des Stabes B 5, aus dem sie stammen. Ob der Grund hierfür im größeren Querschnitt liegt, oder darin, daß bei der Bearbeitung die äußeren Teile des Querschnittes des Stabes B 5 entfernt wurden, oder was sonst für eine Ursache vorliegt, mag dahingestellt bleiben. Die Tatsache steht unzweifelhaft fest, und der Unterschied ist erheblich. Deshalb dürfte es gerechtfertigt sein, für die Biegeversuche immer die Elastizitätslinie zu benutzen. welche am Biegestabe selbst ermittelt wurde.

Bei den vier Profilstäben, Zahlentafel 31, aus Gußeisen *B* fällt auf, daß sehr große Unterschiede zwischen ihnen bestehen. Zahlentafel 33, zusammengestellt aus 31, zeigt das sehr deutlich. Die Mittelwerte folgen bei allen Belastungen in der Reihe \bigcirc , \mathbf{I} , \bigcirc , [, und ebenso ist es mit den Werten für die Zugseite, nur daß die beiden letzten etwa gleich sind, während die für die Druckseite die Reihenfolge \bigcirc , \bigcirc , \mathbf{I} , [aufweisen. Weshalb der Unterschied besteht, ist aber ganz undeutlich, keinesfalls kann man ihn, wie vielleicht vermutet werden könnte, auf das Verhältnis Inhalt: Umfang zurückführen. Dieses Verhältnis ist in der Zahlentafel angegeben, die Reihenfolge ist \mathbf{I} , \bigcirc , \mathbf{L} , \bigcirc . Es ist aber sehr wohl möglich, daß die Abkühlung nach dem Gusse ganz anders

Spannungs- stufe kg/qem	Art der Be- anspruchung	0	I	0	C	Mittel	größte Ab- weichung vom Mittel in vH						
50 his 150	Zug Druck	1112 1340	949 998	896 1050	910 930	967 1079	15,0 24,1						
	Mittel	1226	973	973	920	1023	19,8						
50 his 250	Zug Druck	1083 1270	903 958	865 979	859 914	927 1030	16,8 23,3						
5 5	Mittel	1176	930	922	886	978	20,2						
50 bis 350	Zug Druck	1074 1226	864 946	814 946	823 904	894 1005	20, I 22,0						
5 55	Mittel	1150	9°5	880	863	949	21,1						
Iı Um Verhältnis Inh	nhalt in qcm fang in qcm salt : Umfang	50,3 65,2 0,77	27,3 35,0 0,78	36,7 54,3 0,68	26 ,2 37,0 0,71								
Mitteilunge	n. Heft 127 u. 128	s.					3						

Zahlentafel 33. Gußeisen B. Vergleich der Elastizitätsmodel in t/qcm, welche an den vier Profilstäben gewonnen sind. vor sich gegangen ist, als diesem Verhältnisse, das ja sowieso keine großen Unterschiede zeigt, entsprechen würde, und daß diese Zufälligkeit die Schuld trägt. Dann aber ist es fast ausgeschlossen, mit irgend welchem Mittelwerte für Gußeisen zu rechnen, denn die größte Abweichung vom Mittel aus allen 4 Proben beträgt 24,1 vH.

Besonders genau wurde das Profil 🖸 untersucht. Es schien zweifelhaft, ob bei den Zugversuchen wegen der aus Fig. 30 ersichtlichen Einspannung ohne den gezeichneten Stift die Spannungen sich gleichmäßig über den Querschnitt verteilen. Es wurde deshalb zunächst der Stab zweimal geprüft, das zweite Mal aber um 90° gedreht, so daß also die Spiegel auf den anderen Seiten der Profile saßen; auch wurden die Spiegel gemäß Fig. 40 bis 42 oben,

unten und in der Mitte angesetzt; einer dieser Versuche auch nach Vertauschung der Spiegelpaare wiederholt. Wie aus Zahlentafel 34 folgt, war die Ueberein stimmung der Ergebnisse sehr gut. Vergleicht man insbesondere die fünf-Versuche, bei denen die Spiegel in der Mitte saßen (die Mittel daraus sind in Zahlentafel 26 eingetragen), so findet man als größte Abweichung eines Einzelwertes vom Mittel nur 1,3 vH. Die Bezeichnung »Seite D unten, Spiegel unten« entspricht der Fig. 42; es ist offenbar von gleicher Bedeutung, wenn Seite D oben liegt und die Spiegel oben sitzen, was des Ablesens wegen bequemer ist. Weiter wurde die Einspannung noch durch den erwähnten Stift verbessert. Aus Zahlentafel 34 geht hervor, daß dieser Stift keinen erheblichen Einfluß ausübt.

Zahlentafel 34.

Elastizitätsmo	d u l	l aus	Versucl	ıen	mit	Gußeisen	B,	Stab	\mathbf{Z}_{44}	B_7	0	١.
----------------	-------	-------	---------	-----	-----	----------	----	------	-------------------	-------	---	----

	Einspa	ınnu	ng			mit Stift								
	untere	Sei	te			D			C			C	B	
٨r.	Höh	enla	ge	oben	Mitte unten oben Mitte unten			Mi	itte					
sitz 1	links	٦	vorn	I	I	4	I	I	4	4	Mitte	I	I	Mitte
fels		h	inten	2	2	3	2	2	3	3		2	2	
Spie		v	orn	4	4	r	4	4	I	I		4	4	
	rechts	hinten		3	3	2	3	3	2	2		3	3	1
kg	3 000 6 000	сm	60 120	1144	1144	1144	1116	II 29	1144	1129	1136	1130	1159	1144
sstufe	3 000 9 000	kg/q	60 180	1109	1109	1109	1100	1109	1113	1093	1106	1114	1107	1110
astung	3 000 12 000	ganan	60 240	1099	1090	1081	10 81	1086	1095	1069	1086	1090	1082	1086
Bel	3 000 15 000	Sps	60 300	1080	1074	1071	1080	1080	1077	1059	1074	1077	1067	1072

Um auch festzustellen, inwieweit zwei gleiche Stäbe gleichmäßig ausgefallen

sind, wurden die beiden Stäbe $\odot \mathbb{Z}_{45} \mathbb{B}_{10}$ und $\mathbb{Z}_{46} \mathbb{B}_{9}$ auf Zug geprüft. Da die Belastungsstufen nicht die gleichen waren, so ist die Zusammenstellung in Zahlentafel 35 aus den Elastizitätslinien entnommen. Man sicht: Stab $\mathbb{Z}_{46} \mathbb{B}_{9}$ zeigt kleinere *E*-Werte als $\mathbb{Z}_{45} \mathbb{B}_{10}$, der Unterschied ist nicht unerheblich.

Um zu sehen, ob sich gewöhnliche Probestäbe ebenso wie die Profilstäbe verhalten, eine Frage die bei dem Gußeisen A, wie erwähnt, nachträglich geklärt werden konnte, wurden aus Stab \mathbb{Z} 44 \mathbb{B}_7 , Gußeisen \mathbb{B} , noch sechs Flachstäbe gefertigt und auf Zug untersucht. Die Ergebnisse sind aus Zahlentafel 36 zu entnehmen. Man sieht, die Werte für das volle Profil sind entschieden höher als die für die Probestäbe, wie das auch schon für Gußeisen A bemerkt wurde.

Zugversuch.

such. Zahlentafel 35. Elastizitätsmodul aus Versuchen mit Gußeisen B, Stab Z45 B 10 und Z46 B9.

Span- nungsstufe	Stabnı	ımmer	Mittel	Abwei- chung
kg qem	Z45 B 10	Z45 B9		in vH
50 100	934	883	908	2,9
50 150	900	862	8 8 1	2,1
50 2 00	889	827	858	3,6
50 250	865	814	839	3,0
50 300	846	8 07	8 2 6	2,4
50 350	814	771	792	2,7

Zahlentafel 36.

Gußeisen **B**.

fe	1					Ver- B7 asti- 35					
tungsstu	nung fü 8 qem erschnitt	2 49 B 7	Z 50 B 7	Z 5 I B 7	Z 52 B 7	Z 53 B 7	Z 54 B 7	ittel	is den ' it Z44 mäß Els fe, Ffg.		
Belas	Span 2, Que			М	rte au hen m st, ge ätslin						
kg	kg/qem_	2,75	2,81	2,76	2,82	2,83	2,8 3		We: sucl selb zft		
150 350	55 125	1090	1060	1180	1015	1130	1 11 0	1097	1130		
150 550	55 195	1030	1050	1115	1000	1015	1040	10 42	1098		
150 750	55 270	1020	1020	1095	10 20	1040	1040	1039	1077		
150 950	55 3 40	1010	1 010	1070	987	1005	1020	1017	1074		

Elastizitätsmodul aus Zugversuchen mit Flachstäben aus Stab B7 .

Die Abweichungen, welche sich bei den aus den Profilstäben entnommenen Abschnitten ergaben, die auf Druck beansprucht wurden, sind zum Teil recht erheblich. Man vergleiche z. B. Zahlentafel 27 Stab $D_{40} B_9$ und $D_{41} B_9 \odot$. Das Material desselben Stabes muß also in seinen einzelnen Teilen verschieden sein. Allerdings kann es auch an der Druckverteilung über den Querschnitt liegen, wenn man verschiedene Werte findet; denn diese ist bei den Druckstäben längst nicht so sicher wie bei den langen Zugstäben. Ein Beweis dafür liegt schon in dem Umstande, daß derselbe Stab, wenn man die Spiegel nahe dem Ende ansetzt, ganz andere *E*-Werte ergibt, als wenn die Spiegel in der Mitte sitzen. Die in Zahlentafel 37 mitgeteilten Ergebnisse lassen das deutlich erkennen. Auch hier unterscheidet sich Stab $D_{41} B_9$ beträchtlich von deⁿ beiden anderen.

Diese Beobachtung gab Veranlassung, einen aus Gußeisen A Stab B_5 verbliebenen Abschnitt, Stab D_{30} B_5 , ausführlich in dieser Richtung zu prüfen. Es wurde die Dehnung in drei Querschnitten, nämlich in der Mitte und (bei 330 mm Stablänge) um 65 mm aus der Mitte nach beiden Enden zu gemessen. In allen drei Querschnitten wurde sie für beide Seitenpaare ermittelt, und zwar wurden die Spiegel jedesmal sowohl nahe der Kante als auch in der Mitte der Seite angesetzt. Es waren also 18 Meßstellen vorhanden, an jeder Stelle wurden zwei Belastungsstufen angewendet. Die Ergebnisse finden sich in Zahlentafel 38

Zahlentafel	37.
Gußeisen	<i>B</i> .

Elastizitätsmodul	aus Druckversuchen	mit Stäben	aus Stab B7.

fe	-	Spiegelsitz											
ıgsstu	ing fü qem ebnitt		nahe de	em Ende		in der Mitte							
elastur	pannu 36,8c Quers	s	tabnumm	er	6	s	tabnumm	er					
ň	20	D 40 B 9	D 41 B 9	D 42 B 9	Mitte	D 40 B 9	D 4 I B 9	D 42 B 9	Mitte				
kg	kg/qem	1			1				 				
2 000 4 000	55 110	1170	1540	1010	1240	948	1130	1100	1059				
2 000 6 000	55 165	IICO	1400	970	1157	964	1090	1050	1035				
2 000 8 000	55 220	1060	1270	970	1100	953	1040	9 95	996				
2 000 11 000	55 3 00	10 1 0	1140	949	1033	9 2 6	985	957	956				

Zahlentafel 38. Gußeisen A. Elastizitätsmodul aus Druckversuchen mit Stab D 30 B 5.

Querschni	• •	I				п					III										
obere Seit	te		•••		A			В			A			В			А			В	
Spiegelsit	z	• • •	• •	0	m	u	0	m	u	0	m	u	0	m	u	0	m _.	u	0	m	u
Be- lastungs-	6000 1 2 00 0	Span- nungs-	75 150	894	950	864	874	950	883	844	905	863	905	938	854	800	950	826	905	927	8 08
stufe kg	6000 30000	stufe k g /qem	75 375	883	896	834	8 87	898	885	854	878	832	893	878	860	821	8 8 6	813	877	885	825

und werden aus der Fig. 43 besonders deutlich; in dieser sind die Dehnungen stark vergrößert eingetragen, so daß man die Formänderung der Querschnitte erkennt. Die Unregelmäßigkeiten sind sehr erheblich. Wie bei dem ⊙-Profil, Zahlentafel 37, ist der Elastizitätsmodul in der Stabmitte (Querschnitt II) erheblich kleiner als an den Enden, übrigens in allen Querschnitten in der Seitenmitte größer als an den Kanten.

Diese Beobachtung wird ferner durch Versuche mit verschiedenen Meßlängen bestätigt, die an den Stäben $D_{37} B_7$ bis $D_{39} B_7$ aus Gußeisen B durchgeführt wurden. Die Zusammenstellungen, Zahlentafel 39, zeigen, daß die Zusammendrückung in der Stabmitte sehr viel größer sein muß als an den Enden.

Man ersieht aus all diesen Versuchen, daß Gußeisen ein Material von sehr ungleichem elastischem Verhalten ist. Es erscheint zweifelhaft, ob es überhaupt zulässig ist, bei den Biegeversuchen mit so unsicheren Zahlen zu rechnen. Da aber die Biegeversuche bereits gemacht waren, bevor die Zug- und Druck-

Zahlentafel 39. Elastizitätsmodel für Gußeisen B, Druck.

er.	Balastung	Sneunung	Meßlänge	150 mm	Meßlänge	100 mm
Stab num	P kg	σ kg /q c m	Dehnung ε I:Ι000000	Elastizitäts- modul t/qcm	Dehnung ε I:Ι000000	Elastizitäts- modul t/qem
	3000 6000	60 121	39	1550	44	1390
B 7	3000 9000	60 1 8 1	82	1480	92	1310
D 37	3000 12000	60 24 I	127	1420	142	1270
38 B7	3000 15000	60 302	178	1360	194	1 2 50
	3000 6000	60 121	37	1660	44	1390
38 B7	3000 9000	60 1 8 1	80	1 510	94	1280
D 38	3000 12000	60 241	123	1470	I 41	1280
	3000 15000	60 302	173	1400	194	1250
	3000 6000	60 121	38	1600	45	1360
B 7	3000 9000	60 181	79	1520	91	1330
D 39	3000 12000	60 24 1	124	1460	144	1260
	3000 15000	60 30 2	171	1410	196	1230
	3000 6000	60 121	38	1600	44	1380
tel	3000 9000	60 181	80	1 500	9 2	1310
MII	3000 12000	60 241	125	1450	142	1270
	3000 15000	60 30 2	174	1 390	195	1240

gewonnen wurden; und da wenigstens bei den Zugversuchen die Dehnungen an denselben Stellen gemessen wurden wie bei den Biegeversuchen, so verschwindet glücklicherweise damit ein großer Teil der Unsicherheit, welchen die Zug- und Druckversuche hervorrufen. Schließlich sind in den Zahlentafeln 40 bis 42

> Zahlen-Guß-Spannungen in kg/qem; (Aus den ursprünglichen

Fig. 43.

		_					_										<u> </u>	
oan- ung										Zug; S	tabnum	mer						tel
No a		-	-	0	-			Z 22	Z23D21	Z24D21	Z25D22	Z26 D23	Z27 D23	Z28 D30	Z29 D30	Z30D30	Z31 D30	Ę
kg/qcm	Z 15	Z 10	Z 1 7	Z 18	Z 19	Z 20	Z 2I	B 5	B 5	<i>B</i> 5	B 5	B 5	<i>B</i> 5	B 5	B 5	B 5	B 5	17
														1				Ī
100	110	120	122	118	125	115	125	114	126	128	126	120	121	121	121	131	136	122
200	243	258	257	247	260	240	258	230	261	266	258	249	256	249	250	273	279	255
300	378	406	398	385	401	371	398	359	406	410	402	390	398	397	391	423	432	397
400	528	564	556	530	546	508	511	504	559	564	553	542	55 I	539	542	585	596	546
500	[-	-	-	-	-	738	739	733	717	733	766	713	778	778	737
600	1								943	938	924	907	925	899	914	1003	928	931

Zahlen-Guß-Spannungen in kg/qcm; (Aus den ursprünglichen

gung												Zu	g											
pannı											Stab	num	mer											[e]
бб kg/qcm	Z 32	Z 33	Z 34	Z 35	Z 36	Z 37	Z 38	Z 39	Z 40	Z 41	Z 42	Z 43	Z 44 B 7	Z 45 B 10	Z 46 B 9	Z 47 B 11	Z 48 B 13	Z 49 B 7	Z 50 B 7	Z 51 B 7	Z 52 B 7	Z 53 B 7	Z 54 B 7	Mitt
										1	1		1	1										
100	104	107	128	104	121	125	124	134	116	116	124	112	88	113	109	104	107	91	94	85	98	89	90	108
200	214	218	269	216	253	259	261	273	241	241	260	234	180	235	224	218	223	191	190	177	199	192	190	224
300	33 I	34 1	423	337	393	409	410	426	380	378	411	336	277	365	349	342	350	291	293	274	299	289	288	347
400	459	477	587	469	563	569	577	616	525	539	583	538	372	524	467	469	482	4óo	411	388	411	412	430	490
500	592	624	759	616	743	750	762	818	688	710	765	707				• •		516	536	503	526	532	552	650
600	735	77 I	932	763	925	931	949	1019	853	881	949	875						633	662	616	645	654	673	804

nochmals die zu den Spannungen 100 bis 600 kg/qcm, oder so weit die Belastung sonst getrieben wurde, gehörigen Dehnungen zusammengestellt. Diese Spannungen sind aus den Originalprotokollen durch Interpolation gemäß Fig. 44 gefunden. Gemessen sind die Spannungen $\sigma_0, \sigma_1, \sigma_2 \ldots$ und die Dehnungsunterschiede $\varepsilon_1, \varepsilon_2 \ldots$ Es folgt zunächst

tafel 40. eisen A. Dehnungen in 1:1000000. Beobachtungsreihen interpoliert.)

Druck; Stabnummer													tel		
D15	D 16	DI7	D18	D19	D20	D21 B5	D22 B5	D23 B5	D24 D21 B 5	D 25 D 21 B 5	D 26 D 22 B 5	D 27 D 22 B 5	D 28 D 23 B 5	D 29 D 23 B 5	Mitt
108 216 330 447 564 681	115 231 351 474 600 724	116 231 354 479 603 729	113 226 343 462 583 704	109 218 330 446 561 675	107 215 327 442 556 671	101 206 317 430	104 209 313 439	103 207 317 433	113 227 337 466 591 714	109 227 338 450 572 690	115 229 348 468 594 717	110 225 344 463 584 706	112 229 350 469 592 716	109 220 336 454 578 698	110 221 336 455 582 702

tafel 41. eisen *B.* Dehnungen in 1:1000000. Beobachtungsreihen interpoliert.)

									Drue	k								
	Stabnummer																	
D3I	D32	D33	D34	D 35	D 36	D 37 B 7	D 38 B 7	D 39 B 7	D 40 B 9	D 4 1 B 9	D 4 2 B 9	D 43 B 1 1	D 4 4 B 1 1	D 45 B 11	D 46 B 13	D 47 B 13	D48 B13	Mit
100 205 314	99 206 313	100 208 318	97 202 310	99 206 314	97 205 313	62 130 206	60 130 207	64 134 214	105 210 322	89 186 298	91 194 306	104 211 322	100 204 314	102 215 327	107 216 328	103 216 330	110 220 333	94 194 299
422	422	428	419	424	426	280	283	291	437	409	418	434	426	440	439	445	444	421

Zahlentafel 42. Gußeisen C. Spannungen in kg/qcm; Dehnungen in 1:1000000.

(Aus den ursprünglichen Beobachtungsreihen interpoliert.)

Zı					ug				Druck									
Spannung		Stabnummer										Sta	bnum	mer				F
kg/qcm	Z 55	<i>z</i> 56	Z 57	<i>z</i> 58	Z 59	<i>z</i> 60	<i>z</i> 61 <i>B</i> 15	Mitte	D 49	D 50	D 5 1	D 52	D 53	D 54	D 55 B 15	D 56 B15	D 57 B 1 5	Mitte
							0						(0					
100	1.30	122	132	137	127	132	119	128	110	163	165	167	168	160	110	123	107	143
200	272	259	277	289	263	278	252	270	232	340	336	342	341	329	232	244	220	291
300	432	410	447	456	420	436	382	426	355	528	524	526	526	511	351	368	337	447
400	630	580	642	639	593	613	543	606	480	729	792	717	713	696	475	492	459	617
500	862	781	863	863	802	819	_	832	606	910	905	909	904	889	601	616	582	769
600	1103	998	1114	1108	1028	1048		1066	736	IIII	1105	1099	1105	1083	-		_	1040

$$\epsilon_0 = \epsilon_1 - \frac{\sigma_0}{\sigma_1 - \sigma_0}$$

und damit

$$\varepsilon = \varepsilon_0 + \varepsilon_1 + (\varepsilon_2 - \varepsilon_1) \frac{\sigma - \sigma_1}{\sigma_2 - \sigma_1}$$

Bis 400 kg/qcm sind die Zahlentafeln in Fig. 45 zeichnerisch dargestellt. Die mittleren Dehnungen aus den Zahlentafeln 40 bis 42 sind in Zahlentafel 43 nochmals eingetragen; daneben stehen die daraus folgenden Werte der Elastizitätsmodel.

Aus diesen ist dann wieder das Mittel für das ganze Spannungsgebiet o bis 400 kg/qem gebildet; in der Zahlentafel 43 durch einfache Addition der Einzelwerte. In der Zahlentafel 44 sind diese Mittelwerte nochmals zusammengestellt, aber so gebildet, wie es die Fig. 46 und 47 erläutern. Nach Fig. 46 ist für die Zugseite oder Druckseite die Elastizitätslinie durch eine Gerade gemäß der Beziehung

Zahlentafel 43.

Mittlere Elastizitätsmodel für Gußeisen aus den Zahlentafeln 40 bis 42.

sung			A					В					C		
pann	Z	Zug Druck Mittel			Zu	g	Dı	uck	Mittel	Zı	ug	Dr	uck	Mittel	
σ	ϵ_1	E_1	E2	E_2	E	ε	E_1	ε_2	E_2	E	E1	E ₁	£2	E_2	E
100 200 300 400	122 255 397 546	820 784 756 733	110 221 336 455	909 906 894 8 79	864 845 825 806	108 224 347 490	926 893 865 816	94 194 299 421	1063 1031 1003 950	994 9 62 934 883	128 270 426 606	781 741 705 660	143 291 447 617	700 687 671 649	740 714 688 654
Mittel	- 1	773	-	897	835		875	-	1012	943	-	722	-	677	699

Zahlentafel	44.
-------------	-----

Mittlerer Elastizitätsmodul für Gußeisen gemäß Fig. 46 und 47.

	А	В	С
$egin{array}{c} E_1 \ E_2 \ E \end{array}$	763	864	707
	895	1000	672
	824	936	688

$$\frac{1}{2} \sigma \varepsilon_4 = \frac{\sigma_4 + \sigma_3}{2} \left(\varepsilon_4 - \varepsilon_3 \right) + \frac{\sigma_3 + \sigma_2}{2} \left(\varepsilon_3 - \varepsilon_2 \right) + \frac{\sigma_2 + \sigma_1}{2} \left(\varepsilon_2 - \varepsilon_1 \right) + \frac{\sigma_1}{2} \varepsilon_1,$$
$$\sigma = 100 \left\{ 7 - 2 \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_1}{\varepsilon_4} \right\}$$

ersetzt. Nach Fig. 47 aber gilt für das ganze Gebiet von -400 kg/qcm bis +400 kg/qcm:

$$\sigma \frac{\varepsilon_{4}' + \varepsilon_{4}''}{2} = \frac{\sigma_{4} + \sigma_{3}}{2} \left(\varepsilon_{1}' + \varepsilon_{4}'' - \varepsilon_{3}' - \varepsilon_{3}'' \right) + \frac{\sigma_{3} + \sigma_{2}}{2} \left(\varepsilon_{3}' + \varepsilon_{3}'' - \varepsilon_{2}' - \varepsilon_{2}'' \right) \\ + \frac{\sigma_{2} + \sigma_{1}}{2} \left(\varepsilon_{2}' + \varepsilon_{2}'' - \varepsilon_{1}' - \varepsilon_{1}'' \right) + \frac{\sigma_{1}}{2} \left(\varepsilon_{1}' + \varepsilon_{1}'' \right) \\ \sigma = Ioo \left\{ 7 - 2 \frac{\varepsilon_{3}' + \varepsilon_{3}'' + \varepsilon_{2}' + \varepsilon_{2}'' + \varepsilon_{1}' + \varepsilon_{1}''}{\varepsilon_{4}' + \varepsilon_{4}''} \right\}.$$

Diese Mittelwerte von ε unterscheiden sich selbstredend etwas von denen der vorigen Zahlentafel und sind wohl richtiger; eine noch genauere Mittelbildung, etwa mit Hülfe der Methode der kleinsten Quadrate, ist aber mit Rücksicht auf die Genauigkeit der Beobachtungen und den Zweck der Arbeit überflüssig.

Die Biegeversuche.

Die Biegeversuche wurden zunächst für Stahl und Flußeisen an je einem Stabe, für Mannesmannrohr und Gußeisen an je zwei Stäben durchgeführt. Die Spannungen wurden in mäßigen Grenzen gehalten, bei Stahl und Flußeisen 800 kg/qcm, bei Mannesmannrohr 1200, bei Gußeisen 300 nicht überschritten. Durchbiegung und Dehnung wurden bei drei Belastungsstufen gemessen. Es ergaben sich so zwei Versuchsreihen

Bg I mit den 9 Stäben B 1, 2, 3, 5, 7, 9, 11, 13, 15undBg II \gg 7 \gg B 4, 6, 8, 10, 12, 14, 16.

Jede Versuchsreihe erstreckte sich auf drei Stützweiten von 120, 80, 40 cm; die entsprechenden Versuche sind mit dem Zusatze a, b, c bezeichnet. Manchmal kamen auch verschiedene Seiten des Stabes zum Anliegen; bei dem O-Profile sogar alle vier. Die entsprechenden Versuche erhielten dann 1 bis 4 Striche

Zahlentafel 45.

Flußeisen, Stab B2.

Versuchsnummer	Bg	III <i>a</i> .	
----------------	----	----------------	--

Stützweite 120 cm, Seite A liegt an, D oben,

	and constant on the set			Bau	schinger-Geräte)		
Belastung P	u ₀	<i>a</i> 1	a2	$\frac{a_1 + a_2}{2}$	$b = \frac{a_1 + a_2}{2} - 200$	$c = a_0 - 100 - b$	0,02 c	$s - s_0$
kg	<u> </u>				. 4			
		100	000	100	0	0	0	
1000	100	200	200 7	200	Т.б	15.0	0 200	0.300
2300	110,5	202,3	200,7	201,5	-,,		0.000	0.300
2200	1165	200,0	200,0	2015	Ť.5	15.0	0.300	0.300 Å
1000	100.1	200.0	200.2	200.1	0,1	0	0,000	0,300
2300	116.5	202.4	200.8	201.6	1 ,6	14,9	0,298	0,298
1000	100,1	200,0	200,2	200,1	0,1	0	0,000	0,298
2300	116,3	202,3	200,8	201,5	1,5	14,8	0,296	0,296
1000	100,0	200,0	200,1	200,0	0	0	0 ,0 00	0,296
2 300	116,7	202,2	200,8	201,5	1,5	15,2	0,304	0 ,30 4
1000	100,1	200,0	200,1	200,0	0	0,1	0,002	0,302 Y
1300								0,299
3600	132,8	204,8	201,3	203,0	3,0	29,8	0,596	0,594
1000	100,0	199,8	200,3	200,0	0	0	0,000	0,596
3600	132,9	204,6	201,3	202,9	2,9	30,0	0,6 00	0,6001
1000	100,1	199,8	200,2	2 0 0,0	0	0,1	0,002	0,598
3600	132,8	204,6	201,4	203,0	3,0	29,8	0,596	°,594
1000	100,0	199,7	200,3	2 00,0	0	0	0,000	0,596
3600	132,8	204,4	201,4	202,9	2,9	29,9	0,598	0,598
1000	100,0	199.8	200,2	200,0	0	0	0,000	0,598 ¥
2600								0,597
4900	148,8	206,2	202,0	204,1	4,1	44,7	0,894	0,894
1000	100,2	199,5	200,4	199,9	0, I	o, 3	0,006	0,888
4900	149,0	206,1	202,T	204,1	4, 1	44,9	0,898	0,892
1000	100,2	199,3	200,7	200,0	0	0,2	0,004	0,894
4900	149,1	206,0	202,2	204,1	4,1	45,0	0,900	0,090
1000	100,0	199,0	200,7	199,8	0,2	45.0	0,004	0,090
4900	149,0	100.0	202,3	100.0	4,0 0 I	45,0	0.006	0.894 Y
3000	100,2	- , , , , , , , , , , , , , , , , , , ,	200,0	- 77,7	-,-	-,,,	- , -	0.894
0900	1	008 4	0016	006 r	6 5	755	T 5 T 0	T 504
7500	102,0	108.2	204,0	200,5	0,5	/3,3	0.014	1,304
7500	182.0	208.0	205.0	206,5	6.5	75.5	1.510	1.496≻
1000	101.0	198.0	202.5	200.2	0,2	0,8	0,016	1,494
7500	182,0	207,8	205,2	206,5	6,5	75,5	1,510	1,494
IOCO	100,9	197,7	202.8	200,2	0,2	0,7	0,014	1,496
7500	181,9	207,2	205,3	206,2	6,2	75,7	0,514	1,500
1000	100,8	197,2	202,9	200,0	o	0,8	0,016	1,498¥
6500								1,496
10100	211.4	209.2	207.7	208.4	8.4	106,0	2,120	2,104
1000	101.6	196.9	203.8	200.3	0.3	1,3	0,026	2,094
10100	214,5	209,0	207,9	208,4	8,4	106,1	2,122	2,096
1000	101,5	196,5	203,9	200,2	0,2	I,3	0,026	2,096
10100	214,3	208,7	208,0	208,3	8,3	106,0	2,120	2, 094
1000	101,9	196,2	2 04,0	200,1	0,1	1,8	0,036	2,084
10100	214,8	208,2	208,0	208,1	8, 1	106,7	2,134	2,098
1000	101,9	196,0	· 204 ,0	200,0	0	1,9	0,038	2,096 Y
9100	ł							2,094

als Kopfindex. Es wurden auch wohl die Spiegel gemäß den Fig. 40 bis 42, S. 34, oben, in der Mitte und unten am Querschnitt angesetzt; die Versuche sind dann mit dem Fußindex 1 bis 3 versehen. Es bedeutet also z. B. Bg I b₂" einen Biegeversuch mit dem betreffenden Stabe der Neunerreihe bei 80 cm Stützweite;

			i
<u>""</u>	50	- B	<u> </u>
	10 6 G	6 10	

 $\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}\\
\end{array}\\
\end{array} \\
\end{array} \\
\begin{array}{c}
\end{array} \\
\end{array} \\
\end{array}
\begin{array}{c}
\end{array} \\
\end{array}$ \begin{array}{c}
\end{array} \\
\end{array}

\begin{array}{c}
\end{array} \\
\end{array}

Uebersetzung 1: 500. Spiegel in der Mitte, Ablesungen in mm.

<u> </u>			Spiege	elgeräte			
	Zug	seite	an ar an		Druc	kseite	
links S	Spiegel 4	rechts \$	Spiegel 2	links S	piegel 3	rechts S	piegel I
		0		0		0	
8,8	8,8	9,0	9,0	8,6	8,6	8,9	8,9
o	8,8	0	9,0	o	8,6	0	8,9
8,9	8,9	9,0	9,0	8,7	8,7	8,9	8,9
0	8,9	0	9,0	0	8,7	0	8,9
8,9	8,9	9,0	9,0	8,6	8,6	8,9	8,9
0	8,9	0	9,0	0	8,0		0,9 8 8
8,8	8,8	9,0	9,0	8,4	0,4	o,o 0	8,8
80	0,0	0	9,0	86	8,4	80	8.0
8,9	8,9	9,0	9,0	0,0	8,6	0,9	8.9
-	80	U .	9,0	Ŭ	86		8.9
17.0	0,9	180	18.0	1 170	17.0	178	17.8
1/,3	1/,3	18,0	18,0	17,0	17,0	17,0	17.8
17.2	17.2	180	18,0	17.0	17.0	17.8	17.8
-7,5	17.3	0	18.0	0	17.0	0	17,8
17.3	17.3	18.0	18,0	17,0	17,0	17,8	17,8
0	17,3	o	18,0	0	17,0	0	17,8
17,3	17,3	18,0	18,0	17,0	17,0	17,8	17,8
0	17,3	0	18,0	0	17,0	0	17,8
	17,3	1	18,0		17,0		17,8
26,0	26,0	26,8	26,8	25,5	25,5	26,2	26,2
0	2 6, 0	0	26,8	0	25,5	0	26,2
26,0	26,0	27,0	27,0	25,8	25,8	26,2	26,2
0	26,0	0	27,0	0	25,8	0	20,2
26,0	20,0	26,9	20,9	25,0	25,0	20,2	26.2
260	20,0	26.0	26,9	25 8	25.8	262	26.2
20,0	26.0	-0,9	26.9	,o	25.8	0,-	26,2
	26.0		26.9	· · · · · · · ·	25.7		26.2
12.4	42.4	44.8	44.8	42.0	42.0	42.0	42.0
43,4	43,4	44,0	44,8	43, 0	43,0	43,7	43.9
43.3	43,3	44,8	44,8	43,0	42,9	43,8	43,8
0,1	43,2	0	44,8	0,1	42.9	0	43,8
43,4	43,3	44,8	44,8	43,0.	42,9	43,8	43,8
0,1	43,3	0	44,8	0,1	42,9	0	43,8
43,4	4 3, 3	44,8	44,8	43,0	42 9	43,8	43,8
0,1	43,3	0	44,8		43,0	o	43,8
	43,3	·	44,8		42,9		43,8
60 ,9	60,8	62,1	62,1	60, 1	60 , 1	60,9	60,9
0,3	60,6	0	62, t	0,2	59,9	0	60,9
60,9	6 0,6	62,0	62,0	60,1	59,9	61,0	61,0
0,2	60,7	60.0	02,0 61.0	0,2	59,9	61.0	61,0
00,9	60,7	· 02,0	61.0	03	59,9 50 8	01,0	61.0
60. 9	60.5	62.0	62.1	60.3	60.0	61.0	61.0
0,3	60,6	. 0	62 2	0.4	59,9	0	61,0
	60,6	I	62,1		59,9		61,0

Zahlentafel 46.

Flußeisen, Stab B11.

Versuchsnummer $Bg \ I c'$.

Stützweite 120 cm, Seite A liegt an, B unten,

	Bauschinger-Geräte													
Belastung P	an	<i>a</i> 1	a_2	$\frac{a_1 + a_2}{2}$	$b = \frac{a_1 + a_2}{2} - 200$	$c = o_0 - 100 - b$	0,0 2 c	s 8 0						
600	100	200	200	a 00	0	0								
1200	100	200 4	200	200	т 8	0	0.018	0.018						
600	102,7	201.4	200.2	200.8	0.8	-0.7	-0.014	0,010						
1200	102.8	2022	201.4	200,0	2,2	0,7	0.014	0.024						
600	102,0	202.0	200.2	2011	2,5 T T	-10	-0.020	0.020						
1200	102.7	203.5	201.4	202.4	2.4	0.3	0.006	0.026						
600	100.1	202.3	200.4	201.3	-,+ I.3	-1.2	-0.024	0.030						
1200	102.5	203.8	201.4	202.6	2.6	-0.1	-0.002	0.022						
600	99.9	202.4	200,4	201.4	I,4	-1,5	-0,030	0.028						
600			,.	,.				0,026						
1800	104.8	204.6	202.3	203.4	3.4	I.4	0.028	0.058						
600	100.0	202.3	200,3	201.3	I.3	-1.3	-0.026	0,054						
1800	105,0	204,7	202,4	203,5	3,5	1,5	0,030	0,056						
600	100,0	202,3	200,3	201,3	1,3	-1,3	-0,026	0,056						
1800	105,0	204,8	202,4	203,6	3,6	1,4	0,028	0,054						
600	100,0	202,3	200,3	201,3	I,3	-1,3	-0,026	0,054						
1800	104,8	204,8	202,4	203,6	3,6	1,2	0,0 2 4	0,050						
600	99,9	202,4	200,3	201,3	1,3	-1,4	-0,028	0,0524						
1200	1				· · · · · · · · · · · · · · · · · · ·		1	0,052						
2400	107,1	205.7	203.3	204,5	4.5	2,6	0,052	0.080						
600	99.8	202,7	200,5	201,6	1,6	-1,8	-0,036	0,088						
2400	107,0	205,8	203,4	204,6	4,6	2,4	0,048	0,084						
600	99,6	202,7	200,6	201,6	1 ,6	-2,0	-0,040	0,088						
2400	106,9	206,0	203,6	204,8	4,8	2,1	0,042	0,082						
600	99,7	202,9	200,6	201,7	1,7	-2,0	-0,040	0,082						
2400	107,0	206,2	203,8	205,0	5,0	2,0	0,040	0,080						
600	99.4	20 2 ,8	200,6	201,7	1,7	-2,3	-0,0 4 6	0,086¥						
1800								0,082						

- 44 -

die zweite Seite lag an, und die Spiegel saßen, wie gewöhnlich, in der Mitte des Querschnittes.

Die Stäbe der Reihe Bg II sind, wie früher erwähnt, später zur Bestimmung des Elastizitätsmoduls benutzt und dabei zerschnitten; mit denen der Reihe Bg I ist noch eine weitere kleinere Versuchsreihe Bg III bei 120 und 40 cm Stützweite durchgeführt. Diese sollte einerseits zur Kontrolle dienen, anderseits aber wurden bei 120 cm Stützweite die Beobachtungen bei erhöhter Spannung fortgesetzt und schließlich die Stäbe zerbrochen. Stets folgte der Belastung die Entlastung bis auf die mit Rücksicht auf festen Sitz gewählte Ausgangspannung.

Einige weitere Versuche dienten besonderen Zwecken; sie sind durchweg nur mit dem Stabe B_5 aus Gußeisen A angestellt. Diese Reihen werden später behandelt werden; sie sind mit Bg IV bis VI bezeichnet.

Bei den zuerst angestellten Versuchen saßen die Federschneiden der Spiegel, siehe Fig. 13, S. 6, 6 cm aus der Mitte der Stäbe; diese Entfernung wurde später auf 5 cm verringert; anfänglich wurde mit Federn von 15, später 10 cm Länge gearbeitet.

[≈] Uebersetzupg 1:500. Spiegel in der Mitte, Ablesungen in mm.

Uebersetzung 1:500.

Spiegelgeräate										
	Zug	seite		Druckseite						
links Spiegel 3		rechts S	Spiegel 1	links S	piegel 4	rechts Spiegel 2				
0				0		0				
4.2	4.2	4.3	1.2	2.8	28	2 T	2 Т			
0.3	3.9	0.3	4.0	-0.6	3.4	-02	2 2			
4.3	4,0	4,4	4,1	2.7	3.3	3.0	3,2			
0,4	3,9	0,3	4,1	-0.7	3.4	-0.3	3.3			
4,4	4,0	4,4	4,1	2,7	3,4	2,9	3,2			
0,5	3,9	0,3	4,1	-0,7	3,4	-0,3	3,2			
4,4	3,9	4,5	4,3	2,5	3,2	2,8	3,1			
° , 7	3,7	0,4	4,1	_0,8	3,3	-0,4	3,2			
	3,9		4,1		3,3		3,2			
8,7	8,0	8,8	8,4	5,8	6,6	6,2	6,6			
0,7	8,0	0,6	8,2	-0,8	6,6	-0,6	6,8			
8,7	8,0	8,9	8,3	5,8	6,6	6,2	6,8			
0,7	8,0	0,5	8,4	-0,9	6,7	-0,6	6,8			
8,7	8,0	8,9	8,4	5,7	6,6	6,2	6,8			
0,7	8,0	0,6	8,3	-0,9	6,6	-0,6	6,8			
8,7	8,0	8,9	8,3	5,6	6,5	6,2	6,8			
°,7	8,0	0,6	8,3	-1,0	6,6	_0,6	6,8			
······································	8,0		8,3		6,6		6,8			
12,9	12,2	13,4	12,8	8,9	9,9	9 ,8	10,4			
0,7	12,2	0,8	12,6	-1,I	10,0	-0,7	10,5			
12,9	12,2	13,6	12,8	8,8	9,9	9,7	10,4			
°,7	12,2	0,8	12,8	-1,I	9,9	-0 , 7	10,4			
12,9	12,2	13,6	12,8	8,8	9,9	9,7	10,4			
0,8	12,1	0,9	12,7	-1,1	9,9	-0,7	10,4			
13,0	12,2	13,7	12,8	8,8	9,9	9,7	10,4			
0,8	12,2	0,9	12,8	I,I	9,9	-0,8	10,5			
	12,2		12,8		9,9		10,4			

Daraus ergibt sich folgende Zusammenstellung:

	G B	ußeisen gIund	A II	Gu und	ßeisen <i>Bg</i> III Fluße	A isen	alle übrigen Versuche		
l	120	80	40	120	80	40	120	80	40
c	15	10	10	10	10	10	10	10	10
x z	39	24	4	44	24	4	45	25	5
	46,5	29	9	49	29	9	50	30	10

Um zu zeigen, wie die Versuche ausgeführt wurden, teile ich zunächst beispielsweise zwei Versuchsprotokolle für Flußeisen und Gußeisen B mit, siehe Zahlentafel 45 und 46.

Bei Beobachtung der Bauschinger-Geräte wurde aus Bequemlichkeitsrücksichten der Zeiger am mittleren Gradbogen nach Aufbringen der Last auf den Punkt 100 der Skala, die Zeiger an den seitlichen Gradbögen aber wurden auf 200 eingestellt. Die Ablesung a_0 bezieht sich auf den ersteren, a_1 und a_2 beziehen sich auf die letzteren. Die Durchbiegung entspricht also der Ablesung $= a_0 - 100$ mit $b = (a_1 + a_2): 2 - 200$ und hat wegen der Uebersetzung 1:50

die Größe 0,02 c; sie ist mit Rücksicht auf die Anfangslast wie in den Formeln des 2. Abschnittes mit $s - s_0$ bezeichnet.

Aus den Spiegelablesungen ist gemäß Fig. 13 sowohl für die Zugseite wie für die Druckseite das Mittel aus rechts und links genommen und damit die Dehnung nach Gl. (VIII) berechnet.

Die Bauschinger-Geräte haben mancherlei Fehlerquellen, aber wenn man auch von diesen ganz absieht, so kann die Genauigkeit der Messung doch nicht sehr weit getrieben werden, weil sie durch die Genauigkeit der Ablesung beschränkt wird. Nimmt man an, daß man auf einer Millimeterteilung ¹/₅ mm durch Schätzung sicher abliest, so würde man also statt der richtigen Durchbiegung

$$s = 0,02 \left[a_0 - \frac{a_1 + a_2}{2} \right]$$

die falsche

$$s = 0.02 \left[a_0 + 0.02 - \frac{a_1 + a_2}{2} + 0.02 \right]$$

erhalten können, also einen Fehler von

 $\Delta s = 0,0008 \text{ cm}$

machen können. Nun beträgt aber gelegentlich bei kleiner Belastung und kleiner Stützweite die berechnete Durchbiegung nach Abzug des von der Scherkraft herrührenden Teiles überhaupt nur 0,0016 cm. Es ist also nicht auffällig, wenn sich bei Wiederholung desselben Versuches große Abweichungen in den Ergebnissen zeigen, und es ist gefährlich, aus solchen Abweichungen Schlüsse zu ziehen, wenn sic sich nicht vielfach und regelmäßig wiederholen. Bei großer Spannweite und hoher Belastung arbeitet man selbstverständlich viel sicherer; hat man Durchbiegungen von 0,08 cm, so kann die Ablesung nicht wohl mehr als 1 vH Fehler verursachen.

Bei der Berechnung der Dehnungen gemäß den Beziehungen

$$\varepsilon - \varepsilon_0 = \frac{1}{1000 c} \frac{l}{2 z} \{a - a_0 + 440 (a - a_0)\},\$$
$$a - a_0 = 12 \frac{\frac{l^2}{4} - x^2}{l^3} (s - s_0)$$

erhält man für das zweite Glied der oberen Gleichung bei Annahme des vorhin berechneten Fehlers von 0,0008 cm die Abweichung:

für
$$l = 120 \text{ cm} \dots x = 45 \text{ cm} \dots 440 \cdot 12 \cdot \frac{3600 - 2015}{1728000} \cdot 0,0008 = 0,00386,$$

* $l = 40^{\circ} \dots x = 5^{\circ} \dots \dots \dots 440 \cdot 12 \cdot \frac{400 - 25}{64000} \cdot 0,0008 = 0,0248,$

also mit dem Ablesungsfehler 0,2 mm den Dehnungsfehler:

für
$$l = 120 \text{ cm} \dots z = 50 \text{ cm} \dots \Delta \varepsilon = \frac{120}{1000 \cdot 10 \cdot 100} (0,020 + 0,004) = 3 \cdot 10^{-6},$$

» $l = 40$ » $\dots z = 10$ » $\dots \Delta \varepsilon = \frac{40}{1000 \cdot 10 \cdot 20} (0,020 + 0,025) = 9 \cdot 10^{-6}.$

Da die Dehnungen bei kleiner Belastung etwa $100 \cdot 10^{-6}$ betragen, so macht das bei großer Spannweite 3, bei kleiner 9 vH aus. Bei starker Belastung kommt man im ersten Falle also auch auf etwa 1 vH.

Ein Fehler in der Einstellung der Längen l, x und z äußert sich erheblich nur in dem Faktor l: 2z. Nimmt man nun 0,5 mm als falsche Einstellung an, so kann man als Abweichung - 47 -

für
$$l = 120 \text{ cm} \dots z = 50 \text{ cm} \dots \frac{120,5}{100 - 1} - \frac{120}{100} = 0,017 \text{ oder } \frac{0,017}{1,2} \cdot 100 = 1,4 \text{ vH},$$

» $l = 40$ » $\dots z = 10$ » $\dots \frac{40,5}{20 - 1} - \frac{40}{20} = 0,132$ » $\frac{0,132}{2} \cdot 100 = 6,6$ »

erhalten.

Die Dehnungsmessung ist also auch nicht sehr genau. Selbstverständlich werden die Ergebnisse besser, wenn man die Ablesungen, wie geschehen, mehrfach macht. Man erreicht dann bei Wiederholungsversuchen bei großer Stützweite schöne Uebereinstimmung; bei kleiner aber ist solche nicht zu erzielen.

Es mag auch vorkommen, daß die Spiegel etwas rutschen. Das macht aber nichts, wenn man, wie geschehen, die Belastungen so oft wieder aufbringt, bis die Ablesungen stimmen.

Ein anderer Fehler liegt in der Kraftanzeige der Werder-Maschine. Da sich die Versuche über mehrere Jahre erstreckten, so ist dieser Fehler für die einzelnen Versuche verschieden groß. Selbstverständlich wurde die Maschine während dieser Zeit mehrfach in üblicher Weise geeicht; dabei betrug der Fehler nie mehr als I vH. Er blieb unberücksichtigt, ebenso der Fehler, der von der Auflagerreibung herrührt, die möglichst klein gehalten wurde.

Die Biegungsversuche mit zähen Stoffen.

Gußstahl. Zahlentafel 47.

Zunächst fällt auf, daß Versuchswiederholungen nicht genau übereinstimmen. Die Bauschinger-Geräte dürften, wie oben erörtert, infolge von un-

Zahlentafel 47.Stab B_{1} .Ergebnisse der Biegeversuche mit Gußstahl
berechnet mit E = 2140 t/qcm.

hsnummer	elastung $P - P_0$	ítmoment M — M ₀	Durch cpnet	biegung chtet ac	s — s ₀ wegen der	in cm wegen des Kraft-	Elast modu t/	tizitäts- 11 E in qcm aus der	Deh & - aus Spieg I:IC	$\begin{array}{c} \text{nung} \\ - \epsilon_0 \\ \text{den} \\ \text{geln in} \\ 000000 \end{array}$	Spa	aus der	$k - k_0$ aus d al	in kg/ len Spi olesunge	qcm egel• en
Versuc	kg	enkg	s, bere	* beot	Scher- kraft ⁸¹	mo- mentes ⁸ 2	beob- achtel	Durch- bie- gung	Zug- seite	Druck- seite	berecl	bie- gung	Zug- seite	Druck- seite	Mittel
						Stütz	weite	120 cm							
$Bg \ Ia$	1300 2600 3900	39000 78000 117000	0,0 302 0,0603 0,0905	.0,0 3 07 0,0623 0,0931	0,0006 0,0013 0,0019	0,0301 0,0 61 0 0,0912	2 140	2145 2117 2124	130 258 392	127 256 384	260 520 780	259 525 785	278 554 839	272 548 821	275 551 830
Bg III a	1300 2600 3900 7800 15600	39000 78000 117000 234000 468000	0,0302 0,0603 0,0905 0,1810 0,3619	0,0307 0,0608 0,0911 0,1819 0,3656	0,0006 0,0013 0,0019 0,0038 0,0075	0,0301 0,0595 0,0892 0,1781 0,3581	2140	2145 2170 2171 2175 2163	126 254 379 758 1511	126 251 374 750 1500	260 520 780 1560 3120	259 512 768 1534 3082	270 544 810 1622 3237	270 537 802 1605 3210	270 540 806 1613 3223
			•			Stütz	weite	80 cm							
$Bg~\mathbf{I}b$	1950 3900 5850	39000 78000 117000	0,0134 0 ,0268 0,0402	0,0 12 9 0,0 271 0,0 41 4	0,0006 0,0013 0,0019	0,012 3 0, 02 58 0,0395	2 140	2332 2223 2181	127 257 389	125 251 380	26 0 520 780	23 8 500 765	272 550 832	267 537 817	269 543 824
						Stütz	weite	40 cm							
Bg Ic	3900 7800 11700	39000 78000 117000	0,00 <u>3</u> 4 0,0068 0,0101	0,0044 0,0074 0,0108	0,0006 0,0013 0,0019	0,0038 0,0061 0,0089	2140	1888 2351 2418	134 258 384	126 240 360	260 520 780	2 94 473 6 9 0	286 552 821	270 516 770	278 534 795
$Bg \prod c$	3900 7800 11700	39000 78000 117000	0,0034 0,0068 0,0101	0,0030 0,0072 0,0121	0,0006 0,0013 0,0019	0,00 2 4 0,0059 0,0102	2140	2988 2432 2110	124 250 386	110 228 350	260 520 780	186 455 790	265 535 826	235 488 749	250 511 787
Bg IIIc*	3900 7800 11700	39000 7 800 0 117000	0,0034 0,0068 0,0101	0,0030 0,0 06 9 0,0112	0,0006 0,0013 0,0019	0 ,0024 0,0056 0,0093	2 140	2988 2563 2312	122 244 374	112 234 354	260 520 780	186 434 721	261 522 800	2 40 501 757	250 511 778
				Vers	uch III	c* ist ei	ne W	iederhol	ung v	on III	с.				

vermeidlichen Ablesungsfehlern nicht mehr als $8 \cdot 10^{-4}$ cm Unterschied in der Durchbiegung ergeben. Die Versuchsreihen Ia und IIIa zeigen aber solche bis zu $20 \cdot 10^{-4}$ cm. Also sind die Bauschinger-Geräte nicht vollkommen zuverlässig, was ja auch wohl erklärlich ist. Doch sind die Abweichungen nicht sehr groß, die Einzelwerte der Durchbiegungen weichen höchstens um 1,3 vH vom Mittel beider Versuche ab. Daß bei kleiner Spannweite, wo die Durchbiegungen sehr klein sind, Wiederholungsversuche stark voneinander abweichen, ist zu erwarten. Bildet man die Mittel für die Versuche Bg Ic, Bg IIIc und Bg IIIc^{*}, so findet man, daß Abweichungen der Einzelwerte vom Mittel bis zu 31 vH vorkommen.

Aehnlich ist es bei den Spiegelversuchen. Bei großer Spannweite beträgt die Abweichung eines Einzelwertes der Dehnung 1,7 vH vom Mittel der beiden, bei kleiner 8,0 vH vom Mittel der drei vorliegenden Versuche. Der Ablesungsfehler erklärt hier nur Unterschiede bis $2,4\cdot10^{-6}$ bei großer, bis $8\cdot10^{-6}$ bei kleiner Spannweite, es finden sich $13\cdot10^{-6}$ bei großer und $16\cdot10^{-6}$ bei kleiner Spannweite. Also sind die Spiegelgeräte auch nicht völlig zuverlässig.

Der Theorie nach sollen die Durchbiegungen der Belastung proportional sein.

Versuchsreihe Bg III a liefert als Mittel aus allen Belastungen, bezogen auf die größeste Belastung 468000 cmkg, die Durchbiegung

$$\frac{35^{81} + 17^{81} \cdot 2 + 892 \cdot 4 + 595 \cdot 6 + 301 \cdot 12}{5 \cdot 10000} = 3579 \cdot 10^{-4} \text{ cm.}$$

An Stelle der Reihe

301 595 892 1781 3581

müßte also, wenn die Proportionalität vollkommen sein sollte, die Reihe

treten.

Die Mittel aus den Reihen Ia und IIIa liefern für die Belastung 117000 cmkg die Durchbiegung

$$\frac{902 + 602 \cdot 1,5 + 301 \cdot 3}{3 \cdot 10000} = 903 \cdot 10^{-4} \text{ cm.}$$

Die Proportionalität ist also vollkommen.

Die Mittel aus den Reihen BgIc, IIIc und IIIc* liefern für die Belastung 117000 emkg die Durchbiegung

$$\frac{95 + 59 \cdot \mathbf{i}, 5 + 29 \cdot 3}{3 \cdot 10\,000} = 90 \cdot 10^{-4} \text{ cm.}$$

95

An Stelle der Reihe

müßte also die Reihe

treten, wenn die Proportionalität vollkommen sein sollte.

Damit kann man den Nachweis, daß die Durchbiegungen den Belastungen proportional sind, als geführt erachten.

Die beobachteten Durchbiegungen unterscheiden sich bei den Versuchsreihen BgIa und IIIa so wenig von den berechneten, daß mit Rücksicht auf die Beobachtungsgenauigkeit kein Wert auf diese Unterschiede gelegt werden kann.

Nimmt man die Mittel aus den Versuchen III c, so ergibt sich Zahlentafel 48.

29 59

	Zahlentai	tel 48.	
Mittlere	Durchbiegungen	für 40 cm	Spannweite.

Belastung		Durcht	iegung	
cmkg	8'	8	<i>8</i> 1	⁸ 2
39 000 78 000 117 000	0,0034 0,0068 0,0101	0,0035 0,0072 0,0114	0,0006 - 0,0013 0,0019	0,0029 0,0059 0,0095

Sehr genaue Uebereinstimmung ist ja nicht zu erwarten. Beachtet man aber, daß immer $s > s' > s_2$ ist, so scheint es fast, als ob der Einfluß der Scherkraft überschätzt wäre. Möglich ist das immerhin; denn einmal ist die theoretische Formel für denselben nie geprüft, weiter aber der Gleitmodul nicht durch Versuche ermittelt, sondern als 3/8 des Elastizitätsmoduls angenommen.

Mit Rücksicht darauf, daß die Versuche bei kleiner Spannweite doch recht unsichere Ergebnisse liefern, in erster Linie also nur Wert auf die mit großer Spannweite gelegt werden kann, darf man wohl sagen, daß die theoretische Berechnung der Durchbiegungen durch die Versuche als ziemlich richtig bestätigt ist.

Für die Spannweiten 120, 80, 40 cm sollen sich die Durchbiegungen der Theorie nach verhalten wie 9:4:1. Nimmt man für 120 cm die Mittel aus den beiden, für 40 cm die aus den drei vorliegenden Versuchen, so ergibt sich Zahlentafel 49.

Belastun g	Stützweite in cm					
cmkg	120	80	40			
39 000	301 9	123 3,7	29 0,87			
78 0 00	602 9	258 3,9	59 0,88			
117 000	907 9	395 3,9	95 0.95			

Zahlentafel 49. Mittlere Durchbiegungen bei verschiedenen Spannweiten.

Die Durchbiegung nimmt also mit der Stützweite nicht nur absolut, sondern auch relativ ab; diese Abnahme vermindert sich aber mit wachsender Belastung. Das deutet wieder auf Ueberschätzung des Einflusses der Scherkraft, daneben aber auf Reibung an den Auflagern hin.

Berechnet man den Elastizitätsmodul aus den Biegeversuchen Ia und III a, so erhält man als Durchschnitt aus den acht vorliegenden Versuchen 2151 t/qcm gegenüber dem aus Zug- und Druckversuchen folgenden Werte 2140 t/qcm. Die Versuche bei kleiner Stützweite ergeben aber viel höhere Zahlen und können also zu seiner Bestimmung nicht benutzt werden.

Der Theorie nach sollen die Dehnungen den Belastungen proportional sein. Als mittlere Dehnung für alle Belastungsstufen liefert die Versuchsreihe BqIIIa, bezogen auf die Belastung 468000 cmkg,

Zugseite	$1511 + 758 \cdot 2 + 379 \cdot 4 + 254 \cdot 6 + 126 \cdot 12$	5 16. TO ⁻⁶
	5 • 1 000 000 - 1	510.10 ,
Druckseite	$1500 + 750 \cdot 2 + 374 \cdot 4 + 251 \cdot 6 + 126 \cdot 12$	502.10-6
	<u>5.1000000</u> = 1	503.10 *.
ngen. Heft 127 u	. 128.	4

Mitteilungen. Heft 127 u. 128.

An Stelle der Reihe

Zug	126	254	379) 758	1511,	Druck	126	251	374	75°	1500
müßte	also,	wenn	die	Propor	tionalität	vollkommen	sein	sollte,	die	Reihe	

Zug 126 253 379 758 1516, Druck 125 250 376 751 1503 treten.

Die Mittel aus den Versuchsreihen B_{ij} I a und III a liefern für die Belastung 117000 cmkg die Dehnung

Zugseite $\frac{385 + 256 \cdot 1.5 + 128 \cdot 3}{3 \cdot 1000000} = 384 \cdot 10^{-6},$ Druckseite $\frac{379 + 253 \cdot 1.5 + 126 \cdot 3}{3 \cdot 1000000} = 379 \cdot 10^{-6}.$

Die Proportionalität ist also vollkommen.

Die Mittel aus den Reihen Bg I c, III c und III c* geben

Zugseite
$$\frac{381 + 251 \cdot 1, 5 + 127 \cdot 3}{3 \cdot 1 \cos 000} = 379 \cdot 10^{-6},$$

Druckseite
$$\frac{355 + 234 \cdot 1, 5 + 116 \cdot 3}{3 \cdot 1000000} = 351 \cdot 10^{-6}.$$

An Stelle der Reihen

	Zug	127	251	381,	Druck	116	234	355
müßte	also die	Reihe						
	Zug	126	253	379,	Druck	117	234	351

treten, wenn die Proportionalität vollkommen sein sollte.

Die Abweichungen sind so gering, daß man, ohne zu weit zu gehen, völlige Uebereinstimmung mit der Theorie als festgestellt ansehen kann.

Der Theorie nach müßte die Dehnung unabhängig von der Spannweite sein. Die Zahlentafel 50 zeigt, daß dies auch zutrifft; nur die etwas geringeren Dehnungen auf der Druckseite bei 40 cm Spannweite fallen auf und bleiben ohne Aufklärung.

Mittlere Dehnungen bei verschiedener Spannweite und Belastung, bezogen auf 39000 cmkg.

		Zugseite	è	Druckseite						
Belastung	Stützweite in cm									
cmkg	120	80	4 0	120	80	40				
39 000 78 000 117 000	128 128 128	127 128 130	127 125 127	126 126 126	125 125 127	116 117 118				

Die Theorie unterscheidet auch Zug- und Druckseite nicht. Wenn nun, und das ist offenbar der Fall, die Dehnung auf der Druckseite etwas kleiner als auf der Zugseite ist, so kann das daher rühren, daß die Nullinie des Querschnittes etwas nach der Druckmitte verschoben ist. Wäre dem so, so würde die Verschiebung bei kleiner Stützweite beträchtlich größer als bei großer sein, die Nullinie müßte die Querschnitthöhe, die etwa 100 mm ist, im Verhältnisse 126:117 teilen, die Verschiebung also etwa 2 mm betragen.

Des unveränderlichen Elastizitätsmoduls wegen gilt für die Spannungen dasselbe wie für die Dehnungen.

Vergleicht man die Spannungen, welche sich nach der Theorie ergeben sollen, mit denen, die aus der beobachteten Durchbiegung abgeleitet werden können, so kann das wegen der Unsicherheit der letzteren bei kleiner Spannweite nur mit den Mittelwerten aus den vorliegenden Versuchsreihen geschehen. Ist nun auch die Uebereinstimmung der Spiegelbeobachtungen besser, so wird auch hier vorgezogen, auf die Mittelbildung zurückzugreifen, Zahlentafel 51.

	Spannung								
Belastung	berechnet	aus Durchi	der Diegung	aus den Spiegelablesungen, Mittel für Zug und Druck					
emkg		120	40	120	40				
39 000 78 000 117 000	26 0	259 259 259	222 227 244	272 273 273	259 259 262				

Zahlentafel 51. Vergleich der mittleren Spannungen.

Man sieht, daß die aus der Durchbiegung gefolgerten Spannungen bei 120 cm Stützweite mit den berechneten stimmen, daß man aber bei 40 cm viel kleinere Werte erhält. Die Spiegelablesungen ergeben aber bei 120 cm Stützweite größere Werte als die Rechnung und stimmen bei 40 cm Stützweite überein.

Da nun die Zugspannungen größer als die mittleren, also erst recht größer als die berechneten sind, so kann man wohl behaupten, daß der Stab stärker beansprucht ist, als es der Theorie nach scheint. Bezogen auf die Belastung 39000 cmkg, ergeben die Versuche I a und III a die Zugspannung 274 kg/qcm statt der berechneten 260 kg/qcm. Die wirkliche Beanspruchung ist also ∞ 5 vH größer als die angenommene.

Flußeisen. Zahlentafel 52.

Die beiden Versuchsreihen Ia und IIIa zeigen größere Unterschiede in der Durchbiegung als bei Stahl; diese wachsen bis $34 \cdot 10^{-4}$ cm oder 1,9 vH Abweichung vom Mittelwert; dagegen stimmen die Versuche mit kleiner Stützweite, I c, III c', III c'', viel besser untereinander; hier weicht kein Einzelwert um mehr als 15 vH vom Mittel ab.

Bei großer Spannweite beträgt die Abweichung der Dehnung vom Mittel beider Versuche 1,5 vH, bei kleiner vom Mittel der drei vorliegenden Versuche nur $_{3,3}$ vH – diese Uebereinstimmung ist besser als bei Stahl.

Versuchsreihe III a liefert als Mittel aus allen Belastungen, bezogen auf die größte Belastung

 $\frac{2050 + \mathbf{14}64 \cdot 7:5 + 875 \cdot 7:3 + 584 \cdot 7:2 + 293 \cdot 7}{5 \cdot 10000} = 2047 \cdot 10^{-4} \text{ cm};$

an Stelle der Reihe

293 584 875 1464 2050

müßte also bei vollkommener Proportionalität die Reihe

292 585 877 1462 2047

treten.

Zahlentafel 52.

Stab B 2. Ergebnisse der Biegeversuche mit Flußeisen berechnet mit E = 2080 t/qcm.

ner	50	ment M ₀	Durch	biegung	s — s ₀	in em	Elas	tizitäts- dul in	Del	nung	Spa	nnung l	$k - k_0$	in kg/	qem
uehsnumr	Belastung $P - I_0$	raf mome <i>M</i> - M ₀	rechnet	obachtet	wegen der Scher-	wegen des Kraft-	t t	aus der	aus Spier	den geln in	chnet	aus der Durch-	aus al	den Spi olesunge	egel- en
Vers	kg	⊠ emkg	s, Be	0 Q 8	kraft ⁸¹	mentes 82	berech	bie- gung	Zug- seite	Druck- seite	bere	bie- gung	Zug- seite	Druck- seite	Mittel
						Stütz	weite	120 cm							
Bg Ia	1300 2600 3900	39000 78000 117000	0,030 3 0,0607 0,0910	0,0310 0,0620 0,0928	0,0006 0,0013 0,0019	0,0304 0,0607 0,0909	2 080	2077 2080 2084	133 267 400	132 264 395	255 510 764	256 511 765	277 555 832	275 549 821	276 552 856
Bg III a	1300 2600 3900 6500 9100	39000 78000 117000 195000 273000	0,0303 0,0607 0,0910 0,1516 0,2123	0,0299 0,0597 0,0894 0,1496 0,2096	0,0006 0,0013 0,0019 0,0032 0,0044	0,0293 0,0584 0,0875 0,1464 0,2052	2080	2153 2161 2163 2154 2150	132 262 391 653 911	129 259 385 644 900	255 510 764 1273 1782	247 493 737 1233 1724	274 545 813 1359 1895	268 539 800 1340 1873	271 542 806 1301 1879
)	.75	, , , ,	, , ,	,	Stütz	weite	80 cm		-	• •	, .		, ,	, ,,
$Bg \ Ib$	1950 3900 5850	39000 78000 117000	0,0135 0,0269 0,0404	0,0144 0,0282 0,0422	0,0006 0,0013 0,0019	0,0138 0,0269 0,0403	2080	2033 2086 2088	130 257 387	128 253 378	255 510 764	261 509 764	270 534 804	266 526 786	268 530 795
						Stütz	weite	40 cm							
$Bg \ Ic$	3900 7800 11700	39000 78000 117000	0,0034 0,0067 0,0101	0,0040 0,0066 0,0110	0,0006 0,0013 0,0019	0,0034 0,0053 0,0091	2080	2062 2648 2312	131 246 380	120 231 354	255 510 764	258 402 689	273 512 791	249 481 736	261 496 763
B_{g} III c	3900 7800 11700	39000 78000 117000	0,0034 0,0067 0,0101	0,0040 0,0080 0,0118	0,0006 0,0013 0,0019	0,0034 0,0067 0,0099	2080	2062 2093 2125	127 255 380	1 2 2 2 4 0 3 5 7	255 510 764	258 508 750	264 531 790	254 499 742	259 515 766
Bg IIIc*	3900 7800 11700	39000 78000 117000	0,0034 0,0067 0,0101	0,0036 0,0079 0,0126	0,0006 0,0013 0,0019	0.0030 0,0066 0,0107	2080	2337 2125 1967	124 258 389	115 244 365	25 5 510 764	227 500 811	258 536 808	239 508 758	248 522 783
		•		Versuo	h Bg I	IIc* ist	eine	Wiederl	olung	Bg II	I <i>c</i> .				

Die Mittel aus den Reihen BgIc, IIIc und IIIc* liefern, bezogen auf die Belastung 117000 cmkg, die mittlere Durchbiegung

$$\frac{892 + 595 \cdot \mathbf{i}, 5 + 298 \cdot 3}{3 \cdot 10000} = 893 \cdot 10^{-4} \text{ cm},$$

was fast genauer Proportionalität entspricht.

Für 40 cm Spannweite erhält man die mittlere Durchbiegung aus den drei vorliegenden Versuchen, bezogen auf 117000 cmkg, als

$$\frac{99 + 62 \cdot 1,5 + 33 \cdot 3}{3 \cdot 10000} = 97 \cdot 10^{-4} \text{ cm},$$

die auch ganz befriedigend stimmt.

Die beobachteten Durchbiegungen s_2 unterscheiden sich bei Versuch I a und III c fast gar nicht von den berechneten s', so daß die etwas größeren Abweichungen der anderen Versuche auf unvermeidliche Ungenauigkeiten der Versuchsanordnungen und Ablesungen zurückgeführt werden können. Bildet man die Mittel, wie oben, so ergibt sich

für
$$l = 120$$
 cm $s' = 910 \cdot 10^{-4}$ cm $s_2 = 892 \cdot 10^{-4}$ cm,
 $l = 40$ » $s' = 110 \cdot 10^{-4}$ » $s_2 = 99 \cdot 10^{-4}$ »,

also eine ganz leidliche Uebereinstimmung, die noch besser sein würde, wenn etwa der Einfluß der Scherkraft überschätzt wäre. Die Abhängigkeit der Durchbiegung von der Spannweite geht aus der gemäß S. 49 zusammengestellten Zahlentafel 53 hervor.

-												
Belastung	Stützweite in cm											
emkg	120	80	40									
39 000 78 000	289 9 595 9	138 4,2 269 4,1	33 1,0 62 0,94									
117 000	892 9	403 4 1	99 1,0									

Zahlentafel 53. Mittlere Durchbiegungen bei verschiedenen Spannweiten.

Diese bestätigt also die bei Stahl gefundenen Beziehungen nicht, schließt sich vielmehr der theoretischen Reihe 9:4:1 an.

Die Berechnung des Elastizitätsmoduls aus den Biegeversuchen I und IIIa ergibt als Durchschnitt aus den acht vorliegenden Versuchen 2128 t/qcm gegenüber dem aus Zug- und Druckversuchen felgenden Werte 2080 t/qcm. Das kann man zur Not noch gelten lassen; die Versuche bei kleiner Stützweite ergeben aber wie bei Stahl wenigstens durchschnittlich viel höhere Zahlen und können also zur Bestimmung des Elastizitätsmodls nicht benutzt werden.

Die Spiegelablesungen stimmen bei Wiederholungsversuchen sehr schön, die größte Abweichung bei großer Spannweite ist $10 \cdot 10^{-6}$ bezw. 1,3 vH vom Mittel, bei kleiner Spannweite $13 \cdot 10^{-6}$ bezw. 3,3 vH vom Mittel.

Versuchsreihe B_{ij} III a liefert als mittlere Dehnung, bezogen auf die Belastung 273000 cmkg,

Zugseite
$$\frac{9^{11} + 653 \cdot 7 : 5 + 39^{1} \cdot 7 : 3 + 26^{2} \cdot 7 : 2 + 13^{2} \cdot 7}{5 \cdot 1000000} = 916 \cdot 10^{-6},$$

Druckseite
$$\frac{9^{00} + 644 \cdot 7 : 5 + 385 \cdot 7 : 3 + 259 \cdot 7 : 2 + 129 \cdot 7}{5 \cdot 1000000} = 902 \cdot 10^{-6}.$$

An Stelle der Reihe

Zug 132 262 391 653 911, Druck 129 259 385 644 900 müßte bei vollkommener Proportionalität die Reihe

Zug 131 262 392 654 916, Druck 129 258 386 644 902 treten.

Die Mittel aus den Versuchsreihen BgIa und IIIa liefern für die Belastung 117000 emkg die Dehnung

Zugseite
$$\frac{395 + 264 \cdot 1.5 + 132 \cdot 3}{3 \cdot 1000000} = 396 \cdot 10^{-6}$$
,
Druckseite $\frac{390 + 261 \cdot 1.5 + 130 \cdot 3}{3 \cdot 1000000} = 390 \cdot 10^{-6}$.

Die Proportionalität ist fast vollkommen.

Die Mittel aus den Versuchsreihen BgIc, IIIc' und IIIc" liefern für 117000 cmkg die mittlere Durchbiegung

Zugseite
$$\frac{3^{83} + 2^{53} \cdot 1, 5 + 127 \cdot 3}{3 \cdot 1000000} = 3^{81} \cdot 10^{-6},$$

Druckseite $\frac{359 + 2^{38} \cdot 1, 5 + 119 \cdot 3}{3 \cdot 1000000} = 35^{8} \cdot 10^{-6}.$

An Stelle der Reihe

	Zug	127	253	383,	Druck 119	238	359
müßte	bei voll	komm	ener Pro	portional	lität also die Reihe		
	Zug	127	254	381,	Druck 119	239	358
treten.							

Völlige Uebereinstimmung mit der Theorie ist damit festgestellt.

Zahlentatel 54

Mittlere Dehnungen bei verschiedener Spannweite und Belastung, bezogen auf 39000 cmkg.

		Zugseite	3	Druckseite						
Belastung		1	Stützwei	te in cr	n					
emkg	1 2 0	8 0	40	120	80	40				
39 000 78 000 117 000	132 132 132	130 128 129	127 126 128	130 130 130	128 126 126	119 119 120				

Zahlentafel 54 zeigt dieselbe Erscheinung wie 50 für Stahl; die Dehnungen sind fast unabhängig von der Spannweite, nur die bei 40 cm Stützweite auf der Druckseite fallen etwas ab.

Auch hier, wie bei Stahl, ist die Dehnung auf der Druckseite durchweg etwas kleiner als auf der Zugseite.

In Zahlentafel 55 sind die Spannungen für Flußeisen ebenso wie die für Stahl in Zahlentafel 51 zusammengestellt.

Belastung	berechnet	aus Durch	der b iegung	aus den Spie Mittel für Z	gelablesungen, ug und Druck	
emkg		120	40	120	40	
39 000 78 000 117 000	255	251 251 250	248 235 250	273 273 272	256 255 257	

Zahlentafel 55. Vergleich der mittleren Spannungen.

Die Zahlen stimmen recht schön, mit Ausnahme des einen Wertes 235, der, wie aus Zahlentafel 52 zu ersehen, von einer stark aus der Reihe fallenden Durchbiegungsbeobachtung beeinflußt ist. Uebrigens stimmen die aus der Durchbiegung abgeleiteten Spannungen gut mit den berechneten, während die Spiegelablesungen, besonders bei 120 cm Stützweite, größere Werte als die Rechnung ergeben. Das war bei Stahl ebenso.

Auch hier sind die Zugspannungen größer als die Druckspannungen, also erst recht größer als die berechneten; der Stab wird also wieder stärker beansprucht, als es der Theorie nach erscheint. Bezogen auf die Belastung 39000 cmkg, ergeben die Versuche I a und III a die Zugspannung 273 kg/qcm statt der berechneten 255, also ∞ 7 vH mehr.

- 55 -

Mannesmannrohr. Zahlentafel 56.

Das schwache Profil der Mannesmannrohre, dessen Querschnittsmodul nur gleich dem zehnten Teil desjenigen der Stäbe aus Stahl und Flußeisen ist, hat zur Folge, daß die anzuwendenden Belastungen recht klein werden; sie beginnen mit 200 kg. Es erschien zweifelhaft, ob die 100 t-Werder-Maschine für so kleine Belastungen noch genau genug arbeitet. Deshalb wurden zwei aus derselben Rohrlänge stammende Biegungsstäbe untersucht, und zwar jeder zweimal; bei der zweiten Untersuchung wurde der Stab um 90° gedreht. Die Versuche mit dem Stabe B3 sind mit BgIa'b'c' und BgIa"b"c", die mit dem Stabe B_4 entsprechend $Bg \amalg a'b'c'$ und $Rg \amalg a'b'c''$ bezeichnet. Die Beobachtungen sind in Zahlentafel 57 zusammengestellt. Da, wie früher bereits erwähnt, bei den Versuchen zwei Spiegelpaare rechts und links vom Kraftangriff angesetzt wurden, so ergeben sich also für die Berechnung der Dehnungen jedesmal 8 Beobachtungen, deren Mittel weiter verwendet sind. Die Uebereinstimmung der Wiederholungsversuche ist um so besser, je größer die Stützweite und je größer die Belastung ist. Bei kleinster Belastung beträgt die größte Abweichung vom Mittel

für 120 cm Stützweite 1,5 vH auf der Zug-, 1,6 vH auf der Druckseite,

»	80 »	»	3,3 »	»	»	», 4	4,4 »	»	» ,	2	
»	40 »	»	4,8 »	»	»	»,.	4,9 »	»	»	>>	

```
Stäbe B3 u. 4.
```

Zahlentafel 56.

Ergebnisse der Biegeversuche mit Mannesmannrohr berechnet mit E = 2215 t/qcm.

Versuchsnummer	Stabnummer	Belastung $P - P_0$	Kraftmoment $M - M_0$	Durch perechnet	pieguns peop s chtet	wegen der Scherkraft	in cm wegen des Kraft- mo- mentes	Elas mod t/ echtet	tizitäts- ul E in 'qcm aus der Durch- bie- gung	Deh e- aus Spieg I:IC Zug- seite	nung $-\epsilon_0$ den geln in 00 000 Druck- seite	berechnet	aus der Durch- bie- gung	$k = k_0$ aus al Zug- seite	in kg/ den Spi olesung Druck- seite	qcm egel- en
		kg	emkg	*	8	81	82	I	8408			I				<u> </u>
							Stützw	eite	120 em							
Bg (I u. 11)a	$\vec{x} = \begin{pmatrix} 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\$															
Bg IIIa	B 3	200 400 600 1000 1400	6000 12000 18000 30000 42000	0,0721 0,1442 0,2162 0,3604 0,5046	0,0763 0,1506 0,2269 0,3787 0,5315	0,0009 0,0017 0,00 26 0,0044 0,0061	0,07 54 0,1489 0,2243 0,3743 0,5254	2 210	2112 2138 2129 2129 2124	205 408 604 1027 1439	199 395 598 990 1388	403 805 1208 2013 2818	421 833 1255 2092 2940	453 902 1335 2270 3180	440 874 1320 2188 2967	446 888 1327 2229 3073
							Stütz	weite	80 cm							
<i>Bg</i> (I u. II) <i>b</i>	<i>B</i> 3 u. B 4	300 600 900	6000 12000 18000	0,03 2 0 0,0641 0,0961	0,0341 0,0680 0,1023	0,0009 0,0017 0,0026	0,0332 0,0663 0,0997	2210	2138 2140 2134	2 03 407 613	194 391 586	403 805 1208	418 835 1257	449 900 1355	429 864 1295	439 882 1325
							Stütz	weite	40 cm							
Bg (I u. II)c	<i>B</i> 3 u. <i>B</i> 4	600 1200 1800	6000 12000 18000	0.0080 0,0160 0,0 23 9	0,0087 0,0181 0,0275	0,0009 0,0017 0,00 26	0,007 8 0,0164 0,0249	2 210	2274 2163 2137	212 432 654	168 344 5 2 0	403 805 1208	392 825 1253	467 955 1445	371 760 1149	419 857 1297
Bg III \mathfrak{c}	B 3 1	600 1200 1800	6000 12000 18000	0,0080 0,0160 0,0 2 39	0,0092 0,0193 0,0 288	0,0009 0,0017 0,00 2 6	0,0083 0,0176 0,0262	2 2 10	2140 2018 2033	220 442 662	174 354 528	403 805 1208	418 886 1318	486 977 1458	385 782 1167	435 879 1312
Bei d	en	mit B	3 und	B4 bez	zeichnet	en Ver	suchen	hande	elt es si	ch um	das M	fittel	aus vier	· Vers	uchen;	jeder

der beiden Stäbe wurde zweimal geprüft.

Zahlentafel 57. Beobachtungswerte für die Biegeversuche mit Mannesmannrohr.

		Mi 4 V	ttel aus ersuchen		128	257	387		114	228	341		61	122	181		
	uckseite	Stab B_4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		127 128 127 127 127	255 255 257 256 256	385 386 387 390 387		113 119 113 113 114	224 239 227 228 229	338 357 335 341 343		60 61 60 63 61	I20 [123 122 121 121	182 187 183 182 183		
1 in cm : 100	Dr	Stab B,	links rechts $I' = I' = I'$ I'' I''		128 129 130 130 129	255 261 258 260 258	386 385 392 390 388		1 13 1 12 1 11 1 15 1 14	224 222 229 233 227	337 335 342 348 340		58 60 63 63 61	116 121 124 126 122	176 182 190 190 179	$I'' + \frac{II' + II''}{2}$ (rechts).	14
agung		Mi 4 V	ttel aus ersuchen		133	266	400		120	239	360		83	166	250	+ 7 + 7	
Spiegelable	seite	Stab B_4	links rechts II' II' II' II'	o cm .	33 132 131 131 132	66 265 264 263 265	98 401 401 402 400	o em.	20 119 123 121 121	38 239 241 243 240	59 357 367 363 361	o em.	80 81 82 85 82	62 163 166 167 164	45 248 251 251 249	$\frac{II''}{+} + \frac{II' + II''}{2} (links) - \frac{II''}{2} + \frac{II''}{2} (links) - \frac{II''}{2} + \frac{II'''}{2} + \frac{II'''''}{2} + II'''''''''''''''''''''''''''''''''''$	6
	3nZ	Stab <i>B</i> :	Ilbks rechts I' I' I' I'	a. Stützweite 12	35 I 35 I 32 I 34 I 34 I	.67 270 265 266 267 21	99 407 398 401 401 3 ¹	b. Stützweite 80	120 116 120 121 119 1	·39 232 240 243 238 2	59 351 360 366 359 3	c. Stützweite 4	80 82 87 84 83	61 166 173 170 167 1	41 248 262 257 252 2	I'+ mmen nicht genau	t sind:
	aus	Mit 4 Ve	tel ersuchen		0,0750	0,1504	0,2270 ³		0,0341	0,0680	0,1023		0,0087	0,0181	0,0275	Tafel sti lentafel s	o gebilde
egungen in cm	Stab B ₁	Versuch Nr.	Bg II' Bg II''		0,0740 0,0755 0,0747	o,1495 o,1507 o,1501	o,2254 0,2282 0,2268		o,o349 o,o333 o,o341	o,0678 0,0678 0,0679	o,1026 0,1015 0,1020		0,0089 0,0084 0,0086	o,0177 0,0179 0,0178	o,0269 0,0270 0,0269	Die Hauptmittel dieser denen. die für die Zah	fur diese die Mittel s
Durchbie	B;		Mittel		7 0,0753 0	7 0,1508 c	6 0,2273 c		5 0,0342 (4 0,0682 6	8 0,1027 6		2 0,0088 (6 0,0184 c	3 0,0281 6	mit	weil
	Stab 1	Versuch Nr.	Bg I' Bg I''		,0759 0,074	,1510 0,150	1,2281 0,226		,o339, o,o34	,0681 0,068.	,1027 0,102		,0084 0,009:	,0182 0,0180	,0279 0,028		
	Rel	laston	g		200 400	200 600 0	200 800 0		300 600 0	300 900 0	300 1200 0		600 1200	600 1800	600 0. 2400 0.		

- 56 -

für	120	cm	Stützweite	1,3	vH,
»	80	»	»	2,3	»,
»	40	»	»	5,7	» .

Später wurden noch zwei Versuchsreihen mit Stab B_3 durchgeführt, die Reihen Bg III a und c der Zahlentafel 56. Die erste stimmt in bezug auf die Durchbiegung sehr gut mit den früheren, die letztere zwar weniger gut, aber doch immer noch viel besser, als bei Stahl und Flußeisen. Das ist wohl Folge der größeren Durchbiegung infolge des schwächeren Profiles und dieses deshalb hier im Vorteile.

Die mittlere Durchbiegung ist für die Versuchsreihe Bg III a, bezogen auf ± 2000 cmkg,

$$\frac{5254 + 3743 \cdot 7:5 + 2243 \cdot 7:3 + 1489 \cdot 7:2 + 754 \cdot 7}{5 \cdot 10000} = 5243 \cdot 10^{-4} \text{ cm},$$

so daß also an Stelle der Reihe

754 1489 2243 3743 5254

bei vollkommener Proportionalität die Reihe

749 1498 2247 3745 5243

treten müßte.

Für die anderen Versuchsreihen ergibt sich, wenn man berücksichtigt, daß der Durchschnitt von I und II bei Verbindung mit III vierfach gezählt werden muß,

für		120 cm			80 cm		40 cm				
statt	744	1487	2244	332	663	997	79	166	252		
	745	1490	2236	332	664	996	82	164	246		

bei vollkommener Proportionalität.

In dieser Richtung wird also die Theorie voll bestätigt. Auch die Uebereinstimmung der berechneten Durchbiegungen mit den gemessenen ist leidlich, die letzteren sind durchweg etwas größer; man findet für die Belastungseinheit 6000 cmkg aus den Versuchen Bg (I und II) a bis c für die Stützweiten

auch die g	gem	ess	sen	en	ste	ehe	n	im	Ve	\mathbf{rh}	ältı	niss	se			9	:	4	:	Ι.		
berechnet	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	721		320		80	»	,
gemessen	•	•	•		•	•	•	•	•	•	•	•		·	•	744		332		81.1	0-4	cm,
																120		80		40 C	m	

Der Elastizitätsmodul aus der Durchbiegung ist immer etwas zu klein, was ja aus dem Verhältnisse der berechneten zu den gemessenen Durchbiegungen ohne weiteres folgt; er ist

für	120	\mathbf{cm}	Stützweite	2140)			
»	80	»	*	2137	im Mittel	2156	statt	2210.
»	40	»	»	2191)			

Die Proportionalität der Dehnungen ist selbst bei der kleinen Stützweite 40 cm nicht schlecht. Auffällig ist, daß sie auf der Zugseite mit abnehmender Stützweite wachsen und auf der Druckseite abnehmen; immer aber sind sie auf der Zugseite größer als auf der Druckseite. Für die Belastungseinheit 6000 cmkg ergibt sich als Mittel für alle Belastungsstuffen für die Versuchsreihen Bg (I und II) a bis c als Mittel

für	120	cm	Stützweite,	Zugseite	202,	Druckseite	196.	10-	6,
»	80	»	»,	»	204,	»	195	»	,
»	40	>>	»,	»	216,	»	171	»	•

Zahlentafel 58 ist aus allen Versuchsreihen zusammengestellt.

Zahlentafel 58.

Mittlere Dehnungen bei verschiedener Spannweite und Belastung, bezogen auf 6000 cmkg.

		Zugseite	9	Г	rucksei	te
Belastung		1	Stützwei	te in cn	n	
cmkg	120	80	40	120	80	40
6000	203	203	214	196	194	169
I 2000	202	203	217	196	195	173
18000	203	204	219	198	195	174
Mittel	203	203	217	197	195	172

Auch bei Stahl und Flußeisen ist die Dehnung auf der Zugseite größer als auf der Druckseite, die Abhängigkeit von der Stützweite aber nicht erkennbar; sie scheint also eine Folge der Querschnittform zu sein und ist vielleichder Formänderung zuzuschreiben. Diese ist ja bei so geringen Belastungen noch nicht nachweisbar, wohl aber trat sie später bei großen dauernden Durcht biegungen hervor; der mittlere Querschnitt wurde ellipsenähnlich.

Die aus der Durchbiegung gefolgerten Spannungen sind durchweg etwas höher, als die berechneten; die mit den Spiegeln bestimmten sind es noch mehr. Der größte Unterschied beträgt nicht weniger als 21 vH; im Mittel aus allen Versuchen findet man für die Belastungseinheit 6000 cmkg statt der berechneten Spannung 403 kg/qcm auf der Zugseite 459, auf der Druckseite 415 kg/qcm, d. i. auf der ersteren 14 vH mehr! Dieser Umstand dürfte bemerkenswert sein; man muß demgemäß die Sicherheit, welche man anzuwenden wünscht, für die Rechnung um 14 vH, ja bei geringer Stützweite noch um mehr erhöhen, um sie wirklich zu erhalten. Der Unterschied gegenüber den 5 vH, welche für Stahl, 7 vH, welche für Flußeisen gefunden wurden, dürfte auf die Querschnittform zurückzuführen sein. Weitere Versuche hierüber wären am Platze, wenngleich Querschnitte, bei denen die Breite in der äußersten Schicht null ist, für die Beanspruchung auf Biegung weniger häufig angewendet werden.

Zähe Stoffe.

Zusammenfassend kann man aus den Versuchen mit zähen Stoffen schließen: »die elastischen Verhältnisse für diese stimmen mit den Annahmen der Biegungstheorie überein; sie liefert aber die Beanspruchung zu klein; diese ist um so höher, je schmaler der Querschnitt in der äußersten Schicht ist. Man hat zu den berechneten Beanspruchungen 5 bis 20 vH zuzuschlagen, um die wirklichen zu erhalten*. Doch bedarf dieser Ausspruch, um als Gesetz anerkannt zu werden, noch weiterer Bestätigung durch Versuche.

Die Biegungsversuche mit Gußeisen.

Gußeisen A. Zahlentafel 59.

Von diesen Versuchen sind die bei 120 cm Stützweite vorgenommenen die ersten, welche überhaupt gemacht wurden. Das Laboratorium besaß damals nur ein Spiegelpaar; jeder Versuch wurde zweimal gemacht, die Spiegel saßen gemäß Fig. 13, S. 6, einmal rechts, einmal links von der Mitte. Ferner wurden, um zu sehen, ob sich die Dehnung in den Querschnittecken anders ergibt, als in der Stabmitte, die Spiegel nacheinander oben, in der Mitte und unten gemäß Fig. 40 bis 42, S. 34, angesetzt; im letzteren Falle wurde, um nicht zu lange Spiegelstiele zu bekommen und besser ablesen zu können, der Stab herumgedreht, so daß die Spiegel wirklich auch oben saßen. Endlich wurde dieselbe Versuchsreihe — es wird darauf zurückzukommen sein — nochmals durchgeführt, die Spiegel aber wurden nicht nahe der Mitte, sondern nahe den Auflagern angesetzt.

Da nun die Bauschinger-Geräte bei allen Versuchen angewendet wurden, so wurde auf diese Weise dieselbe Durchbiegung zwölfmal gemessen und also nebenher ein gutes Bild von der Genauigkeit der Messung gewonnen. In Zahlentafel 60 sind diese zwölf Messungen für drei Belastungsstufen zusammengestellt. Man sieht, die Bauschinger-Geräte arbeiten für die große Stützweite von 120 cm ganz leidlich — die größeste Abweichung vom Mittel ist 3,6 vH.

	C	, 0				5								
stufe						Versuch	snumme	er						chung t vH.
stungs				I						1		-	littel	Abweid ittel in
Belas	а	, '	a	ı''	a	.'''	a	,	a	."	a	,'''	W	Bte A n Mi
kg	rechts	links	rechts	links	rechts	links	rechts	links	rechts	links	rechts	ilnks		Grö
500 900	0,0232	0,0226	0,0217	0,0230	0,0 22 4	0,0 22 4	0,0225	0,0221	0,0221	0,0226	0,0227	0,0230	0,0225	3,6
500 1300	0,0463	0,0467	0,0452	0,0 4 65	0,0457	0,0462	0,0463	0,04 63	0,0460	0,0463	0,0463	0,0469	0,04 62	2,2
500 1700	0,0710	0,0707	0,0691	0,0710	c , 0708	0,0718	0,0706	0,070 7	0,0725	0,0710	0,0708	0,0707	0,0709	2,5

Zahlentafel 60.

Durchbiegungen s des Stabes B 5 aus Gußeisen A bei 120 cm Stützweite in cm.

Während bei den zähen Baustoffen die Durchbiegungen den Belastungen proportional waren, ist das hier nicht der Fall, sondern wegen des stark abnehmenden Elastizitätsmoduls wachsen jene schneller als diese.

Die beobachteten Durchbiegungen s_2 sind immer kleiner als die berechneten s', ja schon s ist es, aber ihr Wachsen mit der Belastung ist dasselbe.

Versuch Bg III a ergibt für

die	Belastungen	• • • • •	•	•	•	•	•	•	•	Ι	2	3	4,5	6
»	berechneten Dure	chbiegungen	•		•					I	2,07	3,20	4,81	6,43
»	beobachteten	»	•	•	•	•	•	•	•	I	2,05	3,13	4,87	6,68

Die Mittel aus allen Versuchen sind in Zahlentafel 61 zusammengestellt, wobei beachtet ist, daß in Zahlentafel 59 bei Versuch BgIa die Mittel aus den sechs Beobachtungen der Zahlentafel 60 unter I eingetragen sind, und daß es sich bei Versuch BgIIa um die Mittel aus zwei Beobachtungen handelt.

Sta	abnumi	ner		1	3 5	-	· -			в 6	5					Ŀ	3 5		В	6		1	35				B	6		-	
1	Versuch numme	ıs- r		B_{ξ}	g I	a	Bg	II	a		Bg	11	La			Bg	11	5	Bg	11 b	-	Bg	10	;	Bg	11	с	Bg	11)	c	
	$\begin{array}{c} \text{Belastung} \\ P-P_0 \end{array}$	kg		400	800	1200	400	800	1200	400	800	1200	1800	2400		600	1200	1800	600	1200 1800	-	1200	2400	3600	1200	2400	3000	1200	2400	3000	
	Kraft- moment	cmkg		12000	24000	36000	12000	24000	36000	12000	24000	36000	54000	72000		12000	24000	30000	1 2 000	24000 36000	-	12000	24000	36000	12000	24000	30000	12000	24000	30000	
D	be- rechnet			0,0239	0,0495	0,0765	0,0239	0,0495	0,0765	0,0239	0,0495	0,0765	0,1151	0,1537		0,0106	0,0220	0,0340	0,0106	0,0220	-	0,0027	0,0055	0,0085	0,0027	0,0055	0,0085	0,0027	0,0055	0,0005	Dle
ırchbiegung	be- oheehtet		-	0,0223	0,0458	0,0700	0,0217	0,0457	0,0705	0,0227	0,0464	0,0709	0,1104	0,1514		0,0101	0,0204	0,0324	2600'0	0,0207 0,0314	- • •	0,0026	0,0048	0,0076	0,0024	0,0049	c,0074	0,0024	0,0056	6,00%	Elastizitäts
$x - y_0$ in	wegen der Scher-	kraft 8.		0,0005	0,0010	0,0015	0;0005	0,0010	0,0015	0,0005	0,0010	0,0015	0,0023	0,0031		0,0005	0,0010	0,0015	0,0005	0,0015	-	0,0005	0,0010	0,0015	0,0005	0,0010	0,0015	0,0005	0,0010	0,0015	smodel sind
cm	wegen des Kraft-	momentes	Stütz	0,0218	0,0448	0,0685	0,0212	0,0447	0,0690,0	0,0222	0,0454	0,0694	0,1081	o,1483	Stüt	0,0096	0,0194	0,03c9	0,0092	0,0197 0.0299	Stüt	0,0021	0,0038	0,0061	0,0019	0,0039	0,0059	61c0 ' 0	0,0046	0,0072	I die Mitte.
Elastiz	ρę	Zug	welte 12	854	810	781	854	810	781	854	810	781	775	775	zweite 8	854	810	781	854	810 781	zweite 4	854	810	781	854	8 I0	781	854	8 10	781	l aus zw
zitätsmoc	obachtet	Druck	to cm	953	937	915	953	937	915	953	937	915	914	914	o cm	953	937	915	953	937 915	o em	953	937	915	953	937	915	953	937	915	rei Messu
dul in t		Mittel	-	903	873	848	903	873	848	903	873	848	844	844		903	873	848	<u>9</u> 03	873 848	-	903	873	848	903	873	848	903	873	848	ungen a
qem	berec	hnet	-	166	966	948	1019	968	940	973	953	935	900	875		1001	992	934	1045	975 965		1144	1265	1181	1264	1232	1222	1264	1044	0001	n der E
Dehnung	aus den f in I:IC	Zug- seite	_	94	190	162	94	195	298	92	192	294	457	633		94	186	2 91	92 20	188 280		84	171	267	84	180	276	90	061	285	lastizitä
E - E0	spiegeln 000 000	Druck- seite		93	186	284	93	190	290	16	1 89	288	443	603		96	182	284	92	188 284	-	84	165	253	82	166	258	82	174	267	tslinie.
$\mathbf{s}_{\mathbf{p}}$	berec	hnet		85	170	255	85	170	255	85	170	255	383	511		85	170	255	85	170 255		85	170	255	85	170	255	85	170	255	
annug	aus der Durch-	bie- gung		78	155	229	75	155	231	79	156	231	358	493		77	152	233	74	154 225	- 1	68	118	184	19	121	178	61	143	217	
$k-k_0$ i	Spieg	Zug- seite	-	80	155	229	80	159	234	79	157	2 31	354	491		80	152	228	78	153 227	-	72	139	208	72	146	215	77	154	223	
n kg/qe	aus den elablesu	Druck- seite		89	176	260	89	179	265	87	178	263	405	552		16	172	560	80	178 260		80	154	231	78	155	236	. 78	т63	244	
m	ngen	Mittel		84	165	244	84	169 1	249	83	167	247	379	52I		85	162	244	83	165 242	C t	76	146	219	75	150	225	77	158	233	

Zahlentafel 61. Zunahme der Durchbiegung mit der Belastung.

	,		٤	32	
Belastung	8	120	80	40	Mittel
т	Ļ	Ţ	т	<u>-</u>	т
2	2,07	2,06	2,08	2,05	2,06
3	3,20	3,17	3,24	3,20	3,20

Da sich hier der Unterschied $s - s_2$ durch falsche Einschätzung der Scherkraft nicht erklären läßt, so deutet er darauf hin, daß die benutzten Elastizitätsmodel zu klein sind, während aus Zahlentafel 60 vermutet werden kann, daß der Charakter der Elastizitätslinie richtig ist.

Bei gleicher Belastung sollen sich die Durchbiegungen bei verschiedener Stützweite verhalten wie 9:4:1. Die Versuche ergaben bei zähen Stoffen im Mittel:

	Gußstahl			•					•		•				9:3,8:0,90
	Flußeisen							•							9:4,1 : 0,98
	Mannesma	nni	roh	r	•	•		•	•		•	•	•		9:4,0:1,00
Hier	findet man	1													
	Belastung	I				•			•	•	•	•	•	•	9:3,9:0,83
	»	2					•	•	•	•	•	•	•	•	9:3,9:0,82
	»	3	•	•	•	•	•	•	•	٠	•	•	•	•	9:4,0:0,84
	im Mittel	•		•	•	•		•	•	•	•	•	•	•	9:3,9:0,83

Das deutet wieder wie bei Stahl auf einen Einfluß der Lagerung hin, der sich aber bei Flußeisen und Mannesmannrohr nicht zeigt. Daß sich aber die Lager bei den verschiedenen Versuchsreihen in stark verschiedenem Zustande befunden hätten, ist nicht anzunehmen.

Daß es hoffnungslos ist, den Elastizitätsmodul durch Biegeversuche zu bestimmen, ist bei dem durch Abschnitt 3 nachgewiesenen unzuverlässigen elastischen Verhalten des Gußeisens zu erwarten. Die in Zahlentafel 59 eingetragenen Ergebnisse geben ihn auch bei großer Spannweite viel zu groß, lassen aber ein Sinken mit der Belastung gut erkennen.

Während bei zähen Stoffen die Dehnungen den Belastungen proportional sind, wachsen sie hier, wie das dem abnehmenden Elastizitätsmodul entspricht, viel schneller als die Belastungen. Versuch Bg III a ergibt die Verhältniszahlen:

Belastung		I	2	3	4,5	6
	Zugseite .	I	2,09	3,20	4,97	6,88
Dehnung	Druckseite	I	2,08	3,17	4,87	6,66
	Mittel	I	2,08	3,18	4,92	6,77

Teilt man die berechneten Spannungen durch die beobachteten Dehnungen, so erhält man für den Elastizitätsmodul eine Reihe, welche mit der, die die Zug- und Druckversuche ergeben haben, leidlich übereinstimmt. Große Genauigkeit ist hier selbstverständlich nicht zu erwarten.

Spannungen	85	170	255	383	511
mittlere Dehnungen	91	190	291	450	618
Elastizitätsmodul	935	896	877	851	827
Zug- und Druckversuche ergaben	903	873	848	844	844

Wiederholt man die Rechnung für die Mittel aus allen Versuchen, so erhält man Zahlentafel 62 und 63.

Stützweite	in cm		120			80			40			Mitte	el
Belastung		I	2	3	I	2	3	I	2	3	I	2	3
	Zugseite	т	2,06	3,16	I	2,01	3,12	I	2,09	3 ,2 1	I	2,05	3,16
Dehnung	$\left\{ \frac{\text{Druckseite}}{\text{Mittel}} \right\}$	I I I	2,04 2,05	3,12	I	1,97 1,99	3,02	I I	2,02	3,12 3,16	I I	2,01	3,08

Zahlentafel 62. Wachsen der Dehnungen mit der Belastung.

Zahlentafel 63.

Elastizitätsmodul in t/qcm aus berechneter Spannung in kg/qcm und gemessener Dehnung in 1:1000000.

Stützweite in cm	12	<i>,</i> 0	8	lo	40				
Seite	Zug	Druck	Zug	Dr uck	Zug	Druck			
Spannungen	85 170 255 83 192 294 915 885 868 854 810 781	85 170 255 92 188 287 924 905 889 953 937 915	85 170 255 93 187 290 915 910 880 854 810 781	85 170 255 94 185 284 905 919 898 953 937 915	85 70 255 86 180 276 989 945 925 854 810 781	85 170 255 83 168 259 1025 1012 985 953 937 915			

Sicher ist also, daß die Dehnungen schneller zunehmen als die Belastungen, die einzelnen Versuchszahlen aber stimmen nicht gerade gut überein, die Abweichung einer Einzelzahl vom Gesamtmittel beträgt bis $3^{1/2}$ vH. Daß die Elastizitätslinie des Stabes B_5 ohne weiteres auf B_6 übertragen ist, kann nicht viel ausmachen, weil die mit beiden Stäben angestellten Versuchsreihen Bg I acund II ac weniger von einander abweichen als die an demselben Stab angestellten Reihen II ac und III ac.

Bei 40 cm Spannweite sind die Dehnungen auf beiden Seiten kleiner als bei größerer Spannweite; die betreffenden Werte sind in Zahlentafel 64 zusammengestellt. Es deutet das wieder auf einen Einfluß der Lager hin.

Zahlentafel 64.

Mittlere Dehnungen bei verschiedenen Stützweiten und Belastungen in 1:1000000.

		Zugseite	3	Druckseite						
Belastung	Stützweite in em									
cmkg	120	80	40	120	80	40				
12 000 24 000 36 000	93 192 294	93 187 2 90	86 180 276	92 188 287	94 185 284	83 168 259				

Die Dehnungen auf der Zugseite sind durchweg größer als auf der Druckseite, der Unterschied ist aber so gering, daß er bei kleiner Belastung nicht deutlich erkennbar ist; er ist bei kleiner Spannweite am größten und steigt bis zu 7 vH. Während die Dehnungen dasselbe Verhalten zeigen, wie bei zähen Stoffen, ist das der Spannungen das entgegengesetzte: sie sind auf der Druckseite immer größer als auf der Zugseite. Das rührt selbstverständlich von der großen Verschiedenheit der Elastizitätsmodel für Zug und Druck her. Uebrigens entspricht der Abnahme der Dehnungen mit der Stützweite eine Abnahme der Spannungen. Diese sind nur bei großer Spannweite auf der Druckseite größer als die berechneten, und zwar bis zu ∞ 5 vH.

In Zahlentafel 65 sind die mittleren Spannungen zusammengestellt. Zahlentafel 65.

		M	ittlere	s Spar	nnung	en in l	kg/qer	n.		
Belastung emkg					Stützweit	;e				1
		120			80			berechnete Spannung		
	Zug	Druck	Mittel	Zug	Druck	Mittel	Zug	Druck	Mittel	
12 000 24 000 36 000	80 157 231	88 178 263	84 167 247	79 152 227	89 175 260	84 163 243	74 146 215	79 157 237	76 151 226	85 170 255

Es ist bereits erwähnt, daß Versuche gemacht wurden, um zu sehen, ob sich die Spannungen gleichmäßig über die Querschnittsbreite verteilen, indem die Spiegel gemäß den Fig. 40 bis 42, S. 34, angesetzt wurden. Die Spiegelablesungen

für diese Versuche sind in die Zahlentafel 66 eingetragen, auch für die bereits

Zahlentafel 66.

Spiegelablesungen $a - a_0$ in cm: 100 am Stabe B_5 , Gußeisen A,

bei 120 cm Stützweite.

6.	-	_				_		Druc	kseit	e							
stung							Spiegel	sitz							74 44 47		
Bela	oben		unter	ı	tel	mitten	tel		oben		1	inter	1 ·	tel	mit	ten	tel
cınkg	1 r	Mit- tel l	r	Mit- tel	Mit	1 r	Mit	1	r	Mit- tel	1	r	Mit- tel	Mit	1	r	Mit
				ي.	Spiege	elsitz nal	e den	Aufl	agern								
12000 24000 36000	54 53 107 109 165 165	53 5 108 10 165 15	2 53 7 108 9 160	52 107 159	53 108 162	52 54 109 108 166 166	53 108 166	52 107 164	52 109 162	52 108 163	53 107 160	52 106 162	52 106 161	52 107 162	53 107 162	52 107 166	52 107 164
	- ,				Spie	gelsitz ı	nahe de	ər Mi	itte							•	
12000 24000 36000	96 94 198 187 301 290	95 9 192 19 295 29	5 96 7 189 8 293	95 193 295	95 193 295	93 98 191 195 291 298	95 193 294	87 178 274	91 184 283	89 181 278	90 188 290	90 183 285	90 185 287	89 183 283	93 186 285	95 190 290	94 188 287

erwähnten später zu besprechenden Versuche mit Spiegelsitz außen. Es geht daraus mit Sicherheit hervor, daß die Annahme, die Spannungen verteilen sich gleichmäßig über die Querschnittbreite, richtig ist.

Gußeisen B . Zahlentatel 67.

Ich habe schon im zweiten Abschnitt auf den hohen Wert des Elastizitätsmoduls aufmerksam gemacht, den Stab B_7 zeigte. Wenngleich nun die aus diesem Stabe gefertigten Flachstäbe Z_{49} B_7 bis Z_{54} B_7 entschieden kleinere Werte aufweisen, so sind doch auch diese noch viel höher als die der aus dem-

Stäbe B7 u. 8.

Zahlentafel 67.

Ergebnisse der Biegeversuche mit Gußeisen B O, berechnet mit Hilfe der Elastizitätslinie des Stabes B7.

cm	ngen	Mittel		101 203 297	125 254 375	132 265 526 670		100 201 293	126 259 379		90 181 2 63	113 233 348	119 244 362
in kg/q	aus den gelablest	Druck- seite		107 213 311	133 267 387	138 273 530 666		105 209 303	131 267 384		84 168 241	107 216 320	112 228 332
$k-k_0$	Spieg	Zug- seite		96 193 284	118 242 363	1258 258 2222 242 242		96 193 284	121 252 374		96 195 286	120 251 377	127 261 392
gunung	aus der Durch-	bie- gung		98 195 283	118 242 355	12 250 250 550 645		90 186 274	115 245 363		58 125 203	89 194 315	111 246 381
IS	berec	hnet		189 189 283	189 189 283	и 1 89 1 89 2 83 2 83 2 83 2 83 2 83 2 83 2 83 2 83		94 189 283	94 189 283		94 189 283	94 189 283	94 189 283
g ε - ε ₀	s piegeln 000 000	Druck- seite		84 173 264	104 216 332	108 221 335 570		83 169 257	10 3 216 328		66 136 206	84 176 272	284 284 284
Dehnun	aus den S in 1:10	Zug- seite		88 180 276	108 227 349	241 241 507 650		88 180 276	112 236 361		88 182 278	110 236 366	116 244 378
t/qcm	beree	chnet		1141 1121 1107	95 I 900 882	899 867 847 815 815 815		1250 1177 1146	974 89 2 863		1941 1740 1546	1262 9966	1010 885 823
ul E fn	t	Mittel		1179 1146 1104	1179 1146 1104	1179 1104 1146 1104 1104		1179 1146 1104	1179 1146 1104		1179 1146 1104	1179 1146 1104	1179 1146 1104
ltälsmod	eob a chte	Druck	20 cm	1275 1228 1170	1275 1228 11228	1275 1170 1228 1170 1170	o em	1275 1228 1170	1275 1228 1170	to em	1275 1228 1170	1275 1228 1170	1275 1228 1170
Elastiz	ā	Zug	zweite I	1083 1064 1038	1083 1064 10 38	1083 1038 1064 1038 1038	zweite 8	1083 1064 1038	1083 1064 1038	zweite 2	1083 1064 1038	1083 1064 1038	1083 10 64 1038
cm	wegen des Kraft-	momentes ⁸²	Stüt	0,0199 0,0405 0,0616	0,0239 0,0507 0,0772	0,0 25 3 0,0524 0,0805 0,1096 0,1392	Stat	0,0081 0,0172 0,0265	0,0104 0,0227 0.0352	stut	0,0013 0,00 29 0,0049	0,0020 0,0045 0,0076	0,00 25 0,0057 0,00 9 2
8 — 80 in	wegen der Scher-	kraft ⁸ 1		0,0009 0,0018 0,0029	0,0009 0,0018 0,0029	0,0009 0,0018 0,0029 0,0039		0,0009 0,00 18 0,0029	0,0009 0,001 8 0,00 2 9		0,000 0,0018 0,0029	0,0009 0,0018 0,0029	0,000 0,0018 0,00 29
rchbiegung	be-	0.Dachtet 8		0,0208 0,0423 0,0645	0,0248 0,0523 0,0801	0,0262 0,0542 0,0834 0,1135 0,1440		0,0090 0,0190 0,0 29 4	0,0113 0,0245 0,0381		0,0022 0,0047 0,0078	0,0029 0,0063 0,0105	0,0034 0,0075 0,0121
Du	be-	s,		0,0192 0,0395 0,0618	0,0192 0,0395 0,0618	0,0192 0,0395 0,0618 0,0824 0,1030		0,0086 0,0176 0,0275	0,0086 0,0176 0,0275		0,0021 0,0044 0,0069	0,0021 0,0044 0,0069	0,0021 0,0044 0, 0069
	Kraft- moment M — M ₀	cmkg		12000 24000 36000	12000 24000 36000	12000 24000 36000 48000 60000		12000 24000 36000	12000 24000 36000		12000 24000 36000	12000 24000 36000	12000 24000 36000
	Belastung $P-P_0$	يم مع		400 800 1200	400 800 1200	400 800 1600 2000		600 1200 1800	600 1200 1800		1200 2400 3600	1200 2400 3600	1200 2400 3 60 0
	Versuch numme	is- er		Bg Ia	$Bg \amalg a$	Bg III a		Bg I b	Bg II b		Bg Ic	Bg II c	B _J III c
st	abnum	mer		B 7		B 8		B 7	B 8		B 7	B	8

selben Gußeisen gefertigten Stäbe B_{9} , 11 und 13. Aber es handelt sich hier auch nur um Stab B7; das elastische Verhalten des zugehörigen Zwillings B8 ähnelt offenbar dem der anderen viel mehr. Das geht aus den beobachteten Durchbiegungen und Dehnungen hervor, die hier viel größer sind, als bei B7.

Zah	entafel	68.

Beobachtungen am S	Stabe B7	aus Gußeisen	B.	. Profil	0
--------------------	----------	--------------	----	----------	---

Sti	ützweite in cm			120	5				80				40				
auf	liegende Seite	A	В	o o	D	Mittel	A	В	c	D	Mittel	A	B	C	D	Mittel	
					Du	rchbieg	ungen	8-80	in c	m : 10	o o oo.						
	12 000	211	207	208	208	208	94	90	87	90	90	22	21	26	21	22	
	24 000	425	421	424	423	423	194	191	188	188	190	47	48	52	46	47	
	36 000	647	642	645	645	045	295	295	292	293	294	78	81	83	72	18	
			8	Spiege	elbeob	achtung	gen a-	$-a_0$ a	uf de	r Zug	seite ir	ı cm	1 00.				
	12 000	64	6r	63	64	63	58	57	57	58	58	41	38	39	39	40	
••	12 000	64	63	64	64		59	59	58	59		42	43	44	4 I		
lk g	44.000	132	130	129	131	121	116	118	115	118	118	80	79	80	79	80	
сц	24 000	132	132	138	132	101	119	120	119	119	110	84	85	86	86	04	
in	(201	198	199	200	000	178	178	177	179	100	119	119	120	119	104	
nt	36 000	202	201	202	203	200	181	183	182	181	180	125	130	131	130	124	
ome			Sr	iegel	beoba	chtunge	n a-a	an au	f der	Druc	kseite	in cm	: 100				
Ň		60	62	61	61		51	54	53	53		30	29	28	29		
	12 000	62	62	62	63	01	56	56	53	54	54	29	31	30	29	29	
		124	125	124	124		TOO	TIT	107	TOO		50	50	=6	50		
	24 000	126	127	127	128	126	109	112	107	109	110	60	62	61	58	59	
				_0	_ 0 _		- 6 -		-6.			00	00	۰.			
	-36 000	107	191	189	187	190	102 168	167	104	100	166	00	00	°4	80	89	
1		190	194	194	1951	 	100	109 ;	100	100	 	90	93	94	091		
	Die obei	reu Za	amen	genor	en zu	un nuk	.s, uie	unte	ren z	um re	sents al	ugeora	aciter	i spie	serba	are.	

	Be	oba	cht	ung	en a	z m St	Lahl abe	enta B 8	fel aus	69. G u	ßeise	en B	, Рı	ofil	0.	
St	ützweite in cm			12	0		80					40				
aut	fliegende Seite	A	В	C	D	Mittel	A	B	C	D	Mittel	A	B	c	D	Mittel
					Du	rchbieg	unger	n <i>s-</i> -{	, in c	m : 10	000.					
	12 000 24 000 36 000	2 43 516 796	240 520 802	249 524 801	261 533 809	248 523 801	113 240 377	120 251 379	107 240 379	114 250 389	113 245 381	26 57 101	31 68 109	29 61 104	30 66 106	29 63 105
			1	Spiege	elbeob	achtun	gen a-	-·an a	uf de	r Zug	seite ir	n em :	100.			
•	12 000	7 ⁸ 79	80 80	79 81	81 84	80	72 75	75 75	73 76	73 76	74	49 51	50 51	47 5 I	48 53	49
emkg	24 000	163 167	168 168	166 170	166 174	168	148 151	154 158	150 157	• 1 5 7 161	154	100 107	10 2 105	100 108	99 111	104
ent in	36 000	253 257	258 260	259 265	257 269	260	228 237	231 239	23 I 242	237 247	236	151 165	156 163	152 164	152 171	159
om	and the second se		S	piegel	beoba	chtunge	en a-	a au	f der	Drue	kseite i	in cm	:100			
Μ	12 000	75 76	73 78	73 76	76 79	76	67 69	67 69	65 69	66 69	67	36 37	36 37	34 39	36 39	36
	24 000	153 159	152 162	152 160	155 160	156	137 141	139 143	133 140	138 14 3	139	72 75	73 76	71 78	74 79	74
	36 000	2 34 242	234 246	233 245	238 245	240	207 216	206 216	203 215	207 219	211	109 112	110 117	107 117	111 120	112
	Die oberen Zahlen gehören zum links, die unteren zum rechts angebrachten Spiegelpaare. Mitteilungen. Heft 127 u. 128. 5															

Deshalb ist die Berechnung der Werte für B8, bei denen der Elastizitätsmodul aus B7 benutzt werden mußte, wertlos.

An sich sind die Beobachtungen recht sicher. Sie wurden bei den Versuchsreihen Bg I und II für alle Spannweiten viermal gemacht, und zwar stützte sich jedesmal eine andere Profilseite gegen die Auflager. Sie sind in den Zahlentafeln 68 und 69 zusammengestellt; diese lassen die schöne Uebereinstimmung der zusammengehörigen vier Versuche, wie auch den Unterschied zwischen den beiden Stäben deutlich erkennen. In Zahlentafel 67 erscheinen die Versuchsergebnisse für Bg I *abc* als Mittel aus diesen vier Versuchen. Ein unmittelbarer Vergleich der Stäbe B_7 und 8 ist danach nicht zulässig, insbesondere kann man für B 8 weder die beobachtete mit der berechneten Durchbiegung noch der Spannung vergleichen, während der falsche Elastizitätsmodul auf die Dehnungen fast keinen Einfluß hat.

Die Durchbiegungen wachsen auch hier, wie selbstverständlich ist, schneller als die Belastungen. Für Stab B_7 ergibt sich als Mittel aus vier Versuchen die Zahlentafel 70. Auffällig ist, was bei Gußeisen A nicht beobacht werden konnte, das zu- nehmende Wachsen mit abnehmender Stützweite.

		Zahlentafel 70.		
Aenderung	der	Durchbiegung mit Belastung	und	Stützweite.
		Gubelsen B P.		

Stabnummer.				B 7		<i>B</i> 8				
Belastungsstufe	• •	•••	I	2	3	I	2	3		
Durchbiegung in cm	ite in cm	120 80 40	0,0199 0,0081 0,0013	0,0405 0,0172 0,0029	0,0 616 0,02 65 0,0049	0,0 239 0,0104 0,00 2 0	0,0 5 05 0,0 227 0,0045	0,0772 0,0352 0,0076		
Verhältnis- zahlen	Stützwe	120 80 40	I I I	2,03 2,12 2,23	3,10 3,27 3,77	I I I	2,11 2,18 2,25	3,23 3,38 3,80		
im Mittel .	• •		I	2,13	3,38	I	2,18	3,47		
Verhältnis der Durchbieg	b ere ch ungen	nneten	I	2,06	3,22	I	2,06	3,22		

Auch für Stab B8 liegen vier Wiederholungen der Versuche vor. Hier stimmen diese ja, besonders inbezug auf die Durchbiegungen, nicht so gut überein, wie bei Stab B_7 , aber das kann sehr wohl an Ungleichmäßigkeit des Eisens liegen. Die Zahlen finden sich in Zahlentafel 69. Wir erhalten mit ihren aus Zahlentafel 67 zu entnehmenden Mitteln die auch in Zahlentafel 70 eingetragenen Werte, also ganz ähnliche Zahlen wie für Stab B7. Allerdings ist hier ein Umstand zu erwähnen. Bevor die ersten Versuche mit 80 und 40 cm Stützweite gemacht wurden, aber nachdem die ersten mit 120 cm fertig waren, erhielt der Stab versehentlich eine Belastung unbekannter Größe. Es ist also sehr wohl möglich, daß er überlastet gewesen ist. Der Vergleich der Versuche Bq IIa, ausgeführt vor diesem Ereignis, und Bg IIIa, nachher ausgeführt, spricht dafür. Sowohl die Durchbiegungen wie die Dehnungen sind bei Bg IIIa größer als bei $Bg \amalg a$. Da der Unterschied aber nicht gerade bedeutend ist, so habe ich die Versuche nicht gänzlich verworfen; sie sind aber jedenfalls nur mit Vorsicht benutzbar. Unter dieser Einschränkung stelle ich die Zahlen auch noch für Bg IIIa zusammen:

Belastung	•		Ι	2	3	4	5
Durchbiegung	•	•	I	2,07	3,18	4,33	5,50.

- 67 -

Bei gleicher Beanspruchung sollen sich die Durchbiegungen für die drei Stützweiten wie 9:4:1 verhalten. Wirklich findet man für

			Stab B		Stab B8			
Stützweite	• •	I 2 0	80	40	120	80	40	
	I	9	3,7	0,59	9	3,9	0,75	
Beanspruchung	2	9	3,8	0,64 ₋	9	4,1	0,80	
i	3	9	3,9	0,72	9	4,1	0,99	

Das sind arge Abweichungen. Nimmt man an, der Einfluß der Scherkraft sei überschätzt, so erhält man ohne jede Rücksicht auf diese

			Stab B	7		Stab 4	B 8
Stützweite	•••	120	80	40	120	80	40
	(1	9	3,9	0,95	9	4,1	1,05
Beanspruchung	2	9	4,0	1,00	9	4,2	1,08
	13	9	4,1	1,09	9	4,3	1,18

Jetzt liegen also, wie zu erwarten, die Abweichungen gegenüber der theoretischen Reihe nach der anderen Seite. Es ist also wohl möglich, daß der Einfluß der Scherkraft überschätzt ist; deuteten doch schon einige andere Beobachtungen darauf hin.

Wührend bei Gußeisen A die beobachtete Durchbiegung s_2 hinter der berechneten s' zurückblieb, ist das jetzt nur bei kleinerer Stützweite der Fall, bei großer aber ist $s_2 > s'$. Läßt man aber die Scherkraft außer acht, so ist immer s > s', während bei Gußeisen A das Gegenteil der Fall ist.

Daß die Dehnungen hier stärker wachsen als die Belastungen, ist zu erwarten. Versuch Bg III a ergibt die Verhältniszahlen

Belastung	• • • • •	Ι	2	3	4	5
i	Zugseite .	I	2,10	3,23	4,41	5,66
Dehnung	Druckseite	I	2,05	3,10	4,19	5,28
	Mittel	I	2,07	3,16	4,30	5,47.

Diese Reihe stimmt mit der für Gußeisen A vorzüglich überein. Teilt man die berechneten Spannungen durch die mittleren beobachteten Dehnungen, so erhält man als Elastizitätsmodul

Spannungen	•	94	189	283	378	473
mittlere Dehnungen	•	III	231	353	480	610
Elastizitätsmodul .	•	847	819	801	788	775.

Nimmt man an, daß sich unter übrigens gleichen Umständen die Elastizitätsmodel umgekehrt verhalten wie die Durchbiegungen, so erhält man aus der Elastizitätslinie des Stabes B_7 gemäß Bg I a für B 8

Belastung in cmkg	•	•	•	•	12000	2 4 000	36 000
Elastizitätsmodul .	•	•	•		927	887	844 .

also gar keine Uebereinstimmung. Macht man dieselbe Voraussetzung für die mittleren Dehnungen, so erhält man

Belastung in cmkg.	•	•	•	•	I 2 000	2 4 000	36 000
Elastizitätsmodul .	•	•			914	823	817 .

also ein auch nicht gerade befriedigendes Ergebnis. Doch kann der Mangel von der erwähnten Ueberlastung herrühren.

Für Stab B_7 folgt aus den Versuchen BgIabc und für B8 aus BgIIabc die Zahlentafel 71. Diese Werte stimmen ziemlich gut mit denen überein, welche für Gußeisen A gefunden wurden.

	68	
--	----	--

Zahlentafel 71. Wachsen der Dehnung mit der Belastung bei Gußeisen B 🖻.

Stützweite in	nem	120				80		40		
Belastung .		I 2 3 I 2 3				I	2	3		
				Stab	B 7.					
Dehnung in	{ Zugseite } Druckseite	I I	2,04 2,06	3,14 3,14	I I	2,04 2,04	3,14 3,10	I I	2,07 2,06	3,16 3,12
1.1000000	Mittel	I	2,05	3,14	I	2,04	3,12	I	2,06	3,14
				Stab	B 8.					
Dehnung in	Zugseite Druckseite	I I	2,1 0 2,08	3,23 3,19	I I	2,11 2,10	3,22 3,18	I I	2,14 2,10	3 ,33 3 ,2 4
1:1000000 (Mittel	I	2,09	3,21	I	2,10	3,20	I	2,12	3,28

Auch hier sind, wie aus Zahlentafel 67 unmittelbar entnommen werden kann, die Dehnungen bei 40 cm auf der Druckseite viel kleiner als bei 120 cm Stützweite; bei Gußeisen A trat dieser Unterschied allerdings auch auf der Zugseite hervor, wenn auch in geringerem Grade.

Ebenfalls sind auch hier die Spannungen auf der Druckseite größer als auf der Zugseite, aber bei 40 cm Stützweite ist das Gegenteil der Fall. Die Mittel aus beiden sind größer als die berechnete Spannung, nur bei Stützweite 40 cm kleiner, wie bei Gußeisen A allgemein gefunden wurde. Stab B 8 kann selbstverständlich wegen mangelnder Kenntnis des Elastizitätsmodulus für diese Betrachtung nicht herangezogen werden. Für Stab B_7 sind die Spannungen für die Versuche Bg I abc in Zahlentafel 72 nochmals zusammengestellt.

Zahlentafel 72. Spannungen im Stabe B7.

				:	Stützweit	e				
Belastung 120				80			berechnete Spannung			
cmkg	Zug	Druck	Mittel	Zug	Druck	Mittel	Zug	Druck	Mittel	~ pannang
12 000 24 000 36 000	96 193 284	107 213 311	101 203 297	96 193 28 4	105 209 303	100 201 293	96 195 286	84 168 241	90 181 262	94 189 283

Gußeisen B . Zahlentafel 73.

Die Stäbe B_9 und 10 wurden gelegentlich der Versuchsreihen BgI und II je zweimal untersucht, nach der ersten Untersuchung wurde der Stab um 90° gedreht, so daß eine andere Erzeugende anlag. Die Durchbiegungen wie die Spiegelablesungen sind ja nun, wie die Zusammenstellungen in den Zahlentafeln 74 und 75 zeigen, für Stab B_{10} etwas größer als für Stab B_9 . Da aber die Versuche Bg III mit Stab B_{10} sich von Bg II mit demselben Stabe, wie Zahlentafel 73 zeigt, um mehr unterscheiden, als BgI und II, so hat es kein Bedenken, die Elastizitätslinie des Stabes B_9 auch auf B_{10} anzuwenden. Der Zugelastizitätsmodul ist übrigens für beide Stäbe ermittelt, Zahlentafel 35, S. 35, zeigt, daß die Werte sich nicht allzusehr von einander unterscheiden.

Bei Versuch III a entspricht der Belastungsreihe

dio	I Durabbiagungsraiba	2	3	4,25	5,5
ule	I	1,97	3,01	4,43	5,82.
Zahlentafel 73.	Ergebnisse der Biegungsversuche mit Gußeisen B ©, berechnet mit Hülfe der Elastizitäts/inie des Stabes B 9.				
-----------------	---	--			
-----------------	---	--			

Sta	V n			Du	Irchbiegung	<i>s</i> - <i>٤</i> ₀ in	cm	Elast	izitätsmc	dul in	t/qem	Dehnung	3 E - E0	ŝ	pannung	$k - k_0$	in kg/q	cm
bnumn	ersuch: nummer	Belastung $P - P_0$	Kraft- moment	be- rechnet	be- obachtet	wegen der Scher-	wegen des Kraft-	22	eobachte	et	berech	in I: I of	Spiegeln	berech	aus der Durch-	Spie	aus den gelables	ingen
ner	8-	ъ К К	cmkg	`x	æ	ктал. <i>8</i> 1	momentes 8-	Zug	Druck	Mittel	net	Zug- seite	Druck- seite	nnet	bie- gung	Zug- seite	Druck- seite	Mittel
							Stütz	zweite I	[20 cm									
B	Bg	7 00	6000	0,0220	0,0220	0,0007	0,0213	865	266	928	961	98	85	85	82	85 85	84	84
9	Ia	600	18 000	0,0730	0,0450 0,0683	0,0023	0,0660	692	912	84 0 8	941 931	309	268 268	256	15/ 231	238	159 225	107 231
	Bg	7 00	6000	0,0220	0,0220,0	2000,0	0,0213	865	266	928	196	001	68	85	82	86	88	87
	IIa	6 00	12000 18000	0,0730 0,0730	0,0466 0,0714	0,0015 0,0023	0,0451 0,0691	618 269	910 912	864 840	800 889 889	209 323	185 283	171 256	162 242	171 248	168 258	169 253
B		200	6000	0.0220	0.0247	0.0007	0.0240	865	902	928	853	113	ъ	8	03	80	04	af
IQ	Bg	400	12000	0,0474	0,0489	0,0015	0,0474	819	016	864	863	228	192	171	170	187	175	181
	II II	600	18000	0,0730	0,0745	0,0023	0,0722	769	912	840	850	342	288	256	253	263	2 62	262
	Ia	850	25500	0,1035	0,1097	0,0033	0,1064	694 269	912	840 840	817	506	422	363	373	388	384	386
	-	-			((++))	(+>>(>	stüt	zweite	80 cm	0+0	000		1 0 + 0	404	4.4	110))) (
		-		•	-	-	-			4	-	-	-	0	-		4	
₿	<i>Bg</i> 1	300 600	6 000 12000	0,0098 0.0210	0,0097 0.0200	0,00015	0,00)0 0.0185	865 819	992 910	928 864	1010 083	104	83 168	85 171	150	90 891	82 153	86 160
9	[b	900	18000	0,0325	0,0309	0,0023	0,0286	769	912	840	955	313	256	256	225	142	234	237
B	Bg]	300	6000 12000	0,0098 0.0210	0,0102	0,0007	0,0095	865 810	99 2	928 864	958	107	87	85	83 160	93 174	86 160	89 167
0	[]b	006	18000	0,0325	0,0329	0,0023	0,0306	692	912	s+0+8	892	324	273	256	241	249	249	249
							Stüt	zweite	40 cm									
В	Bg	600	6000	0,0025	0,0020	0,0007	0,0013	865	992	928	1748	108	52	2°5	45 21	93	25	72
9	Ic	1800 1	18000	0,0081	0,0075	0,0023	0,0052	269	919	840 840	1312	346	170	256	164	266	155 155	2 10
	B_{ℓ}	600	6000	0,0025	0,0023	0,0007	0,0016	865	2 66	928	1420	114	56	85	56	66	55	77
	y II	1200	12000	0,0053	0,0051	0,0015	0,0036	819	910	864	1262	234	120	171	211	161	601	1 50
ß	c	1800	1 8000	0,0081	0,0083	0,0023	0,0060	269	912	8 40	1136	364	186	256	681	280	170	225
10	Bg	600	0009	0,0025	0,0025	0,0007	0,0018	865	2 66	928	1262	114	, 60	85	6 <u>3</u>	66	59	64
	III c	1200 1800	0002 I	0,0053 0,0081	0,c060 0,c096	0,0015 0,0023	0,0045 0,0073	819 769	910	840 840	1010 933	236 372	126	171 256	146 230	193 286	115 184	154 235

Zahlentafel 74. Durchbiegungen $s-s_0$ der Stäbe B9 und B 10, Gußeisen $B \odot$, in cm : 10000.

			I	20 cr	n					8	80 en	1					4	o em	1		
Kraft- moment		<i>B</i> 9			<i>B</i> 10				<i>B</i> 9			<i>B</i> 10				<i>B</i> 9			<i>B</i> 10	•	
in cmkg	Se	ite	ittel	Se	ite	littel	Mitte]	Se	ite	littel	Se	ite	littel	Mitte	Se	ite	littel	Se	ite	litel	Mitte
	A	B	N	A	B	A		A	B	~	A	B	~		A		~	A	B	4	
6000 12000 18000	22 7 458 693	213 443 674	22 0 450 683	223 478 727	218 455 701	220 466 714	220 458 699	97 201 308	97 199 310	97 200 309	109 222 334	96 205 324	102 213 329	100 207 319	20 49 78	21 42 73	20 45 75	25 54 87	22 49 80	23 51 83	22 48 79

Zahlentafel 75. Spiegelablesungen $a-a_0$ an den Stäben B_9 und B_{10} , Gußeisen $B \odot$, in cm : 100.

									Zug	seite											
6 000	73 75	70 71	72	76 75	71 73	74	73	68 69	66 66	67	70 69	64 67	67	67	49 53	49 49	50	50 53	53 53	5 2	51
120C O	151 155	142 143	148	160 156	146 149	153	150	139 141	131 131	135	148 144	132 136	140	138	102 111	100 101	103	105 110	106 105	106	105
18000	233 237	218 219	227	245 241	225 230	235	231	211 215	202 202	207	220 214	206 211	213	210	152 170	153 184	157	161 168	163 160	163	160
									Druc	kseit	te.										
6000	60 60	62 62	61	64 63	64 66	64	63	52 52	55 55	53	56 54	54 56	55	54	22 22	22 22	22	23 25	23 22	23	23
1 2000	124 125	126 127	125	136 132	126 134	132	129	105 106	108 110	107	112 111	112 115	112	110	45 45	47 45	45	50 49	49 49	49	47
18000	189 191	191 196	192	2 06 2 03	199 205	203	197	161 160	166 168	164	170 169	173 176	172	168	68 71	71 68	69	75 75	73 74	74	72

Die obere Ziffer entspricht dem Spiegelsitz links, die untere dem rechts.

Die Mittel aus allen Versuchen, wobei die Versuche I und II doppelt gerechnet sind, ergeben

Stützweite	120	cm		•	•	•				•	I	2,06	3,14
»	80	»	•	•		•	•	•	•		I	2,08	3,22
»	40	»		•	•	•	•		•	•	I	2,33	3,93
								N	litt	el	I	2,16	3,41
** * ***		•			~	1	. .						

Verhältnis der berechneten Durchbiegungen 1 2,15 3,32.

Die Verhältnisse liegen hier also ähnlich wie bei dem
- und
- Profile. Wie bei diesen, so sind auch hier die beobachteten Durchbiegungen s2 durchweg beträchtlich kleiner als die berechneten s'.

Für die drei Stützweiten findet man das Verhältnis der Durchbiegungen statt 9:4:1

Stützweite .	•	120	80	40
(I	9	3,8	0,62
Belastung	2	9	3,8	0,70
(3	9	3,9	0,78.

Das sind die früher beobachteten Erscheinungen, stärker als bei 🗌, etwa gleich stark wie bei 💿 hervortretend. Ohne Berücksichtigung der Scherkraft erhält man

Stützweite	•••	120	80	40
	I	9	4,0	0,88
Belastung	2	9	4,0	0,98
	3	9	4,1	1,04.

Die Abweichungen von der theoretischen Reihe liegen jetzt nur noch bei größerer Belastung nach der anderen Seite; etwaige Ueberschätzung der Scherkraft erklärt also den Unterschied nicht genügend.

Die beobachtete Durchbiegung s_2 bleibt hinter der berechneten s' zurück, und zwar um so mehr, je kleiner die Stützweite ist.

Nur Versuch Bg III a macht eine Ausnahme, hier ist $s_2 > s'$. Weshalb aber bei diesem Versuch s_2 durchweg entschieden größer ist als bei dem Parallelversuch Bg II a am selben Stabe, ist nicht einzusehen. Der Unterschied wiederholt sich zwischen Versuch III c und II c. Man ist versucht zu glauben, daß der Stab bei Versuch II überlastet gewesen ist, doch ist das ganz ausgeschlossen.

Für das Wachsen der Dehnungen mit der Belastung liefert Versuch B_{ij} III a die Verhältniszahlen

Belastung		I	2	3	4,25	5,5
	Zugseite .	I	2,02	3,03	4,48	5,89
Dehnung	Druckseite	I	2,02	3,03	4,44	5,77
	Mittel	I	2,02	3,03	4,46	5,83.

Die Reihe steigt etwas langsamer als diejenige für Gußeisen $B \odot$, stimmt aber übrigens mit ihr überein. Teilt man die berechneten Spannungen durch die mittleren beobachteten Dehnungen, so erhält man als Elastizitätsmodul

Spannungen	•	85	171	256	363	469
mittlere Dehnungen		104	210	315	464	606
Elastizitätsmodul .	•	817	814	813	782	774.

Diese Zahlen stimmen auffällig gut mit denen für Gußeisen B . Nimmt man an, daß sich die Elastizitätsmodel unter übrigens gleichen Umständen umgekehrt wie die Durchbiegungen verhalten, so erhält man aus der Elastizitätslinie des Stabes B_9 gemäß Bg I a

Elastizitätsmodul 824 792 768.

also keine befriedigende Uebereinstimmung mit vorstehender Reihe.

Im Mittel erhält man für beide Stäbe unter Berücksichtigung doppelter Anrechnung der Versuchsreihen BgI und II die Zahlentafeln 76 und 77.

Zahlentafe	1 76.
Mittlere Dehnungen	in 1:1000000.

			Zugseite		I	Oruckseit	e
Belastun	g	I	2	3	I	2	3
Stützweite	120 80 40	102 105 112	210 209 230	321 318 358	89 85 55	182 172 116	278 264 183

		Zahlentafel 77.	
Wachsen	der	Dehnungen mit den B	elastungen.

Stützweite .	• • • • •		120		100 M	80			40	
Belastung .		I	2	3	I	2	3	I	2	3
Dehnung	Zugseite	I I	2,06 2,05	3,15 3,12	I I	1,99 2,02	3,03 3,11	I I	2,06 2,11	3,20 3,33
((Mittel	I	2,05	3,13	I	2,00	3,07.	I	2,08	3,26

Man erkennt deutlich, daß die Dehnungen auf der Zugseite durchweg größer sind als auf der Druckseite (bis über doppelt so groß), daß sie schneller als die Belastung zunehmen und daß sie auf der Zugseite mit abnehmende^r Stützweite wachsen, auf der Druckseite abnehmen.

Die Zusammenstellung der mittleren Spannungen in Zahlentafel 78

Zahlentafel 78.

				Stüt	tzweite in	n cm				
Belastung		120			80			40		berechnete Spannung
cmkg	Zug	Druck	Mittel	Zug	Druck	Mittel	Zug	Druck	Mittel	
6 000 12 000 18 000	88 172 247	88 166 246	88 169 246	91 171 245	84 156 241	87 163 243	97 188 276	55 106 167	76 147 221	85 171 256

zeigt, daß Zug- und Druckspannungen bei großer Stützweite etwa gleich sind und mit der berechneten Spannung gut übereinstimmen, daß aber bei kleiner Stützweite die Zugspannung, obwohl sie nicht viel über die berechnete hinausgeht, viel größer wird als die Druckspannung. Diese wird so klein, daß selbst die mittlere noch beträchtlich unter der berechneten bleibt. Immerhin wird man wegen der wachsenden Zugspannung bei kleiner Stützweite mit größerer Sicherheit konstruieren müssen als bei großer.

Gußeisen B I. Zahlentafel 79.

Alle Versuche der Reihen Bg I und II mit diesem Stabe sind doppelt ausgeführt, einmal lag der eine, das anderemal der andere Flansch an den Auflagern. Die Versuche mit 120 cm Stützweite sind außerdem für Stab B_{12} so wiederholt, daß die Spiegel nach Fig. 40 bis 42, S. 34, in der Mitte und an beiden Kanten des Flansches angesetzt wurden. Es wurde also die Durchbiegung bei diesen Versuchen bei gleicher Belastung sechsmal gemessen; die gefundenen Werte sind in Zahlentafel 80 zusammengestellt.

Zahlentafel 80. Durchbiegung $s - s_0$ in cm : 10000.

Belastung			Versuch	snummer		, Paramata da	
cmkg	$Bg \prod a_1'$	Bg II "2'	B g 11 a ₃ '	B y II a ₁ "	$Bg \ {f II} \ a_2"$	$Bg II a_3''$	Mittel
6 000 12 000 18 000	238 483 746	236 48 2 744	235 484 740	236 486 749	233 489 741	237 489 744	236 485 744

Die Uebereinstimmung ist also sehr gut, trotzdem die Belastungen nur klein sein konnten. Weniger gut stimmen die Spiegelablesungen, die sich in Zahlentafel 81 finden.

Das deutet auf Unregelmäßigkeiten im Eisen; jedenfalls kann man nicht folgern, daß die Dehnungen an den Flanschrändern anders als in der Mitte sind, was ja leicht möglich sein könnte. Allerdings findet man ja, wenn man die Mittel aus $Bg \amalg a_2'$ und a_2'' mit denen aus $Bg \amalg a_1'$, a_3' , a_1'' und a_3'' vergleicht, siehe Zahlentafel 82, etwas größere Werte für die letzteren; aber der

Zahlentafel 79.	Ergebnisse der Biegeversuche mit Gußeisen BI, berechnet mit Hülfe der Elastizitütslinie des Stabes B 11.		-
-----------------	--	--	---

cm	ngen	Mittel		87	259	94	187 280	67	189	283	443 61 2		84 169	253	90 183 275		75 151	229	83 165	246	86 171	255
in kg/q	aus den gelablest	Druck- seite		88	268	94	190 288	97	061	288	445 607		85 170	260	89 183 280		70 143	2 19	78 156	236	82 160	244
$k - k_0$	Spieg	Zug- seite		86 160	25I	94	185 273	98	189	278	441 617		83 168	247	91 183 270		81 160	239	88 174	257	90 1 8 3	267
annung	aus der Durch-	bie- gung		80 162	245	87	174 262	94	189 1	270	421 576		73 153	234	77 166 255		46 95	157	53	187	81 164	247
$\mathbf{s}_{\mathbf{p}}$	bered	ehnet		90 1 X0	270	oğ	1 8 0 270	06	180	270	405 541		06 081	270	90 180 270		90 180	270	06 I	270	06 081	270
9 ε - ε ₀	Spiegeln 200.000	Druck- seite		90 186	286	67	202 307	100	202	307	475 648 848		87 181	277	92 195 299		72 152	234	80 164	252	84 170	260
Dehnun	aus den i in I:I(Zug- seite		94 102	262	103	210 323	701	215	329	521 729		161 161	262	99 208 320		182 182	282	96 1 98	304	98 808 808	316
t/qcm	berec	hnet		1046 1000	926) 196	928 909	892	890	880	842 823		1140 1058	1014	1089 972 928		1822 1690	1508	1577 1435	1268	1029 984	957
ul E in	st	Mittel		945	891	945	от6 891	945	016	891	168 162		945 910	891	945 910 891		945 910	168	945 910	891	945 910	891
itätsmod	eobachte	Druck	20 cm	973 041	937	973	941 937	973	116	937	937 937	80 cm	973 941	937	973 941 937	40 em	973 941	937	973 941	937	973 941	937
Elastiz		Zug	zweite 1	917 870	846	617	879 846	617	879	8+6	846 846	tzweite	618 879	846	$917 \\ 879 \\ 846 $	tzweite	616 879	840	917 879	846	917 879	846
сШ	wegen des Kraft-	momentes 82	Stüt	0,0204	0,0655	0,0222	0,0459 0,0703	0,0239	0,0479	0,0726	0,1137 0,1552	Stü	0,0083 0,0179	0,0280	0,0087 0,0195 0,0306	Stü	0,0013 0,0028	o,0047	0,0015 0.0033	0,0056	0,0023 0,0048	0,0074
s — 80 in	wegen der Scher-	kraft ^{s1}		0,0012	0,0039	0,0012	0,002 0 0,0039	0,0012	0,0026	0,0039	0,0052 0,0078		0,0012 0,0026	0,0039	0,0012 0,0026 0,0039		0,0012 0,0026	0,0039	0,0012	0,0039	0,0012	0,0039
rchbiegung	be- choot+04	opacifier 8		0,0216 0.0452	0,0694	0,0234	0,0485 0,0742	0,0251	0,0505	0,0765	0,1189 0,1630		0,0095 0,0205	0,0319	0,0099 0,0221 0,0345		0,0025 0,0054	0,000,0	0,0020	0,0095	0,0035 0,0074	0,0113
Du	be-	8, s		0,0226 0.0469	0,0718	0,0226	0,0718	0,0226	0,0469	0,0718	0,1070 0,1435		0,0100 0,0208	0,0319	0,0100 0,0208 0,0319		0,0025	0,000,0	0,0025 0,0052	0,0080	0,0025 0,0052	0,0080
	Kraft- moment $M - M_0$	cmkg		6000 12000	1 8000	6000	1 2000 I 8000	6000	12000	18000	25000 36000		6000 12000	1 8000	6000 12000 18000		6000 12000	1 0000	6000 12000	18 000	6000 12000	1 8000
	Belastung $P-P_0$	kg		200 400	600	200	600 600	200	400	600	900 1200		300 600	006	300 600 900		600 1200	1 900	600 1200	18 00	600 1200	CO3 I
,	Versuci numme	ns- er		Bg]	Ia	Bg	II ·ı		Bq	111	 а		Bg I	Ь	By II b		BgIc	;	Bg I	Ic	B , I	[] c
St	abnum	mer		BI	τ			BI	2				BI	I	B 12		BII			B	[2	

73 — ___

Zahlentafel 81.

Spiegelablesungen $a-a_0$ in cm: 100.

Be-			Zug	seite			el la			Druc	kseite			el
lastung cmkg	$\begin{array}{c} Bg II \\ a_1 \end{array}$	$\begin{bmatrix} B g \\ a_{2} \end{bmatrix}$	$\begin{array}{c} B \ g \ \amalg \\ a_{3}' \end{array}$	$\begin{vmatrix} Bg \\ a_1 \end{matrix}$	$\begin{vmatrix} B g \\ a_2 \end{matrix}$	$\begin{bmatrix} Bg \\ a_3 \end{bmatrix}$	Mitt	$Bg II a_1'$	$\begin{array}{c} Bg \\ a_{2}' \end{array}$	$\begin{bmatrix} B g \\ a_3 \end{bmatrix}$	$\begin{bmatrix} Bg \\ a_1 \end{bmatrix}^{II}$	$\begin{array}{c}Bg \\ a_2 \end{array}^{II}$	$\begin{array}{c}Bg II\\a_3^{\prime\prime}\end{array}$	Mitt
		I		1			1	<u> </u>	1	1	1	1		<u> </u>
6 000	79 79	76 74	74 74	74 76	74 76	76 76	76	69 73	7 I 72	75 74	70 72	70 72	7 2 74	72
12 000	155 157	153 152	153 153	150 156	153 155	153 155	154	143 152	144 147	148 147	145 148	145 150	144 150	147
18 000	240 242	23 7 2 38	235 236	229 237	231 236	2 35 2 36	236	222 231	221 227	22 I 222	220 226	218 226	217 227	223

Die oberen Zahlen beziehen sich auf den Spiegelsitz links, die unteren auf den Spiegelsitz rechts.

Zahlentafel 82. Mittlere Spiegelablesungen in cm:100.

		Spieg	elsitz	
Belastung	Zug	seite	Drue	kseite
emkg	Mitte	außen	Mitte	außen
6 000 12 000 18 000	75 153 235	76 154 236	72 146 223	73 148 223

Zahlentafel 83.

Beobachtungen an den Stäben B11 und 12, Gußeisen BI.

					_											_					
50			12	20 cm						80	em						40	em			
astun		В 11	[B 12		littel	•	<i>B</i> 11	:		B 12		littel		<i>B</i> 11	[B 12		littel
Bel	$\begin{array}{c} Bg \\ Ia' \end{array}$	Bg Ia''	Mittel	$\frac{Bg}{II a_2}$	Bg 11 a 2"	Mittel	4	Вд 16'	Bg 1 b"	Mittel	Бд 11 b	Вд 11 b''	Mittel	A	Bg 1 c'	Bg I c "	Mittel	Вд 11 с	Bg 11 c ''	Mittel	M
						Du	rchbie	egung	en s	8 0	in e	m : I	0 00	o.							
6 000	212	220	216	236	233	234	225	97	94	95	94	105	99	97	2 6	25	25	23	31	27	26
12 000	446	459	452	482	489	485	469	210	20I	205	215	228	221	213	52	56	54	61	58	59	57
10 000	000	/03	1094	/44	/41 Stud	/44 logo]a		1 3 4 4	315	319	330	333	345	002	02	90	80	90	95	951	91
				Spiegela			biesu	ngen	u-0	<i>(</i> алц	em.	: 100	, zu	gseite							
6 000	68 70	68 69	69	76 74	74 76	75	72	60 60	6 0 60	60	64 65	67 68	6 6	63	39 41	41 41	41	43 42	44 44	43	42
12 000	138	140	140	153	153	153	147	127	123	125	135	138	T 2 6	131	8 0	82	82	89	87	80	86
	142	142		152	155	-)]		128	124		135	138	-) -		83	84		90	90	Ĵ	•••
18 000	215 217	217 217	216	237 238	231 236	235	225	194 195	188 189	191	206 206	212 213	2 09	200	122 128	126 128	1 2 6	134 137	134 137	135	131
			1		Spie	gelab	lesun	gen a	ι—α ₀	in	cm:	100,	Dru	cksei	te.			57	57		
(64	67		71	70	- 	60	57	57	_ 0	58	61		-	33	32		34	34		
000	64	66	65	72	72	71	69	58	59	58	60	64	61	59	32	33	32	36	36	35	34
12 000	13 2	135	125	144	145	T46	141	119	116	118	120	127	126	122	66	65	68	7 0	70	72	70
500	134	140	- 55	147	150	-+•		119	120		127	132		198	68	7 1	50	77	73	/ "	
18 000	203	204	207	221	218	223	215	183	176	181	183	194	193	187	99	99	102	105	106	109	106
	400	414		44/	440			101	103		1-93	203			104	100		114	112	- 1	

Unterschied ist gegenüber den Schwankungen der Einzelwerte zu klein, um einen sicheren Schluß zuzulassen.

Für Zahlentafel 79 sind aber nur die Werte benutzt, welche sich bei dem Spiegelsitz in der Mitte ergeben. Die Versuchsreihen I und II sind also durchweg doppelt, III ist nur einfach gemacht.

Die Zusammenstellung der Beobachtungen für die beiden Stäbe in Zahlentafel 8_3 zeigt übrigens deutlich, daß die Uebertragung des an B_{11} gefundenen Elastizitätsmoduls auf B_{12} nicht zulässig ist; sowohl die Durchbiegungen als auch die Dehnungen sind für B_{12} entschieden größer. Auf die Beurteilung der letzteren hat das ja aber keinen Einfluß.

Als Beziehung zwischen Kraftmoment und Durchbiegung ergibt sich für StabB12, Versuch $Bg\,{\rm III}\,a$

Kraftmoment .		•	•	I	2	3	4,5	6
Durchbiegung	•	•	•	I	2,00	3,04	4,76	6,50

und für beide Stäbe, Versuch BI und II, die Zahlentafel 84.

Zahlentafel 84.

Wachsen der Durchbiegungen mit den Belastungen.

Stabnummer			<i>B</i> 11			B 12			Mittel	
Belastung .		I	2	3	I	2	3	I	2	3
Stützweite	120 cm 80 » 40 »	I I I	2,09 2,16 2,15	3,21 3,37 3,62	I I I	2,07 2,24 2,20	3,17 3,53 3,73	I I I	2,08 2,20 2,17	3,19 3,45 3,67
	Mittel	I	2,13	3,40	I	2,17	3,48	I	2,15	3,44

Zahlentafel 85.

Abhängigkeit der Durchbiegung von der Stützweite.

Belastung					Sta	вb В	II			8	Stal	b B I	2			S Vers	stab uch	B 13 Bg 1	2 II a c		
					I		2		3		I		2		3		I		2	3	
				Du	rchbi	egu	ng 62	be	ei Berü	ck	sichtig	un	g der	Se	herkr	aft.					
Stätemoito	5	120	em		9		9		9		9		2		9		9		9	9	
Stutzweite)	40 40	»		3,7 0,57		3,0 0,59		3,9 0,6 5		3,5 0,61		5,8 5,65		5,9 5,71	с	,87	0	,90	0,9	2,
				Du	rchbie	guı	ng s d	hr	ne Berü	ick	sichtig	;un	g der	Se	herkr	aft.					
	(120	cın		9		9		9		9		9		9		9		9	9	
Stützweite	5	80	»		4,0		4,1		4, I		3,8	4	1, ¹	4	,2						
	(40	»		1, 04		1,08	1	1,12		1,04	1	1,10	1	,15	I	,25	I	,32	1,3	3

Die Abhängigkeit der Durchbiegungen von der Stützweite im Vergleich mit der Reihe 9:4:1 erhellt aus Zahlentafel 85. Die ungeheuerlichen Abweichungen des ersten Teiles können ja zum Teil von der Unsicherheit, welche über die Verteilung der Stabspannungen über den Querschnitt besteht, herrühren. Nimmt man allerdings, wie es wohl geschieht, an, daß die Querkraft sich nur über die Stegbreite verteilt, so muß, da die Funktion F jetzt noch kleiner wird, der Einfluß der Schubkraft noch wachsen. Läßt man ihn aber unberücksichtigt, so liegt, wie der untere Teil der Zahlentafel 85 zeigt, die Abweichung nach der anderen Seite. Die Dehnungen für Versuch Bg III a verhalten sich gegenüber den Kraftmomenten so:

Belastung		I	2	3	4,5	6
Dehnung	Zugseite .	Ι	2,01	3,07	4,87	6,82
	Druckseite	I	2,02	3,07	4,75	6,48.

Für die Dehnungen, deren Berechnung die Kenntnis des Elastizitätsmoduls nur sehr nebensächlich bedingt, darf man die Mittel aus allen Versuchen bilden wobei I und II doppelt zu rechnen sind. Man erhält für sie selbst und ihre Abhängigkeit von der Stützweite die Zahlentafel 86.

Zahlentafel 86. Mittlere Dehnungen und ihr Verhältnis zur Stützweite.

Stützweite i	n c	em	•	•	•		-	120						80				40	
Belastung .	•	•	•	•	•	I		2		3		I		2	3		I	2	3
						 	D	ehnung	en i	in I	:	1000	000						
Zugseite . Druckseite	•	•	•	•	•	100 95		204 196	3	14 99		95 89		199 188	306 288		93 78	19 4 160	2 98 246
							ve	rhältni	smä	ßige	e I	Drehu	ang	gen					
Zugseite . Druckseite	•	·	•	•	•	I I	1	2,04 2,06	3 - 3 -	14 15		I I	•	2,09 2,11	3,2 3,2	2	I I	2,09 2,05	3,20 3,16
			7	litt	el	I	ł	2,05	3,	14		I		2,10	3,2	3	I	2,07	3,18

Die Dehnungen nehmen also auf der Zugseite weniger, auf der Druckseite mehr mit der Stützweite ab; übrigens sind die Zugdehnungen immer erheblich größer als die Druckdehnungen; der Unterschied nimmt mit abnehmender Stützweite zu.

Die Spannungen sind in Zahlentafel 79 nur für Stab B_{11} richtig berechnet. Sie sind auf der Druckseite eher größer als auf der Zugseite, nur bei 40 cm Stützweite ist es umgekehrt. Sie sind durchweg kleiner als die berechneten.

Bedenkt man, daß für Stab B_{12} sicherlich mit zu großem Elastizitätsmodul gerechnet wurde, so bestätigen die an diesem Stabe gefundenen Ergebnisse die von B_{11} .

Gußeisen B [. Zahlentafel 87

Mit diesen Stäben wurden nur die Versuchsreihen I und II durchgeführt, da der eine, wie immer, vor der Anstellung der Versuchsreihe III zur Ermittlung des Elastizitätsmoduls verbraucht, der andere aber versehentlich zerbrochen wurde.

Sämtliche Versuche sind doppelt ausgeführt, die anliegende Seite wurde gewechselt. Die Spiegel wurden einmal auf der Stegseite, das anderemal auf der offenen Seite angesetzt, um zu sehen, ob sich Unterschiede in der Dehnung ergeben. Die Durchbiegung ist also für jede Stützweite und Belastungsstufe für jeden Stab viermal gemessen; Zahlentafel 87 gibt die Ergebnisse wieder. Die vier Versuche stimmen gut überein; man erkennt aber deutlich, daß Stab B_{14} elastischer als B_{13} ist. Sind die Unterschiede auch im Mittel nicht allzu groß, so betragen sie im einzelnen doch bis 10 vH, so daß eine Uebertragung der Elastizitätslinie vom Stabe B_{13} auf B_{14} bedenklich erscheint.

8
ahlentafel

Ergebnisse der Biegeversuche mit Gußeisen **BL**, berechnet mit Hilfe der Elastizitätslinie des Stabes **B**13. Spiegel auf der Stegseite.

St	1	-		Du	rchbiegung	; s — f0 in	cm	Elastiz	ritätsmod	ul E in	t/qem	Dehnun	ς ε — ε ₀	Sp	annung	$k - k_0$	in kg/qc	8
abnum	Versuel numme	Belastung $P - P_0$	Kraft- moment $M - M_0$	be-	be-	wegen der Scher-	wegen des Kraft-		eobachte		bered	aus den i in 1:10	Spiegeln	beree	aus der Durch-	Spieg	aus den relablesu	ngen
mer	ns- er	k¢	emkg	s' s'	opachter s	kraft	momentes \$2	Zug	Druck	Mittel	chnet	Zug- seite	Druck- seite	ehnet	bie- gung	Zug- seite	Druck- seite	Mittel
							Stütz	sweite I	120 cm									
B I 3	Bg I a ₂	200 600	6000 12000 18000	0,0247 0,0513 0,0780	0,0242 0,0502 0,0774	0,0013 0,0028 0,0042	0,0229 0,0474 0,0732	877 833 806	915 899 898	8 96 866 852	968 9 36 90 8	105 212 325	97 201 307	92 185 277	86 171 259	89 177 262	89 181 276	89 179 269
B 14	Bg 11 a ₂	200 400 600	6000 12000 18000	0,0247 0,0513 0,0780	0,0268 0,0543 0,0827	0,0013 0,0028 0,0042	0,0255 0,0515 0,0785	877 833 806	915 899 898	896 866 852	870 862 847	110 227 347	107 216 329	92 185 277	186 278 278	96 189 279	98 194 295	97 191 287
	-	-					stat	zweite	80 cm									
B 13	Bq 1b ₂	300 600 900	6000 12000 18000	0,0110 0,0227 0,0346	0,0122 0,0253 0,0390	0,0013 0,0028 0,0042	0,0109 0,0225 0,0348	877 833 806	915 899 898	896 866 852	903 875 849	107 220 339	103 208 317	92 185 277	91 183 277	94 183 273	187 284 284	185 2785
B 14	$Bg{ m II}b_2$	300 600 900	6000 12000 18000	0,0110 0,0227 0,0346	0,0123 0,0260 0,0403	0,0013 0,0028 0,0042	0,0110 0,0232 0,0361	87 833 806	915 899 898	896 866 852	896 850 819	231 231 356	105 213 331	92 185 277	92 187 288	98 192 285	96 192 297	97 192 291
							Stüt	zweite	40 em									
B 13	Bg Ic ₂	600 1200 1800	6000 12000 18000	0,0027 0,0057 0,0087	0,0040 0,00 86 0,0137	0,0013 0,0028 0,0042	0,0027 0,0058 0,0095	877 833 806	915 899 898	896 866 852	912 849 777	гт8 244 378	94 192 294	185 277	91 187 303	103 203 304	86 173 264	94 188 284
<i>B</i> 14	Bg II c ₂	600 1200 1800	6000 12000 18000	0,0027 0,0057 0,00 8 7	0,0045 0,0095 0,0150	0,0013 0,0028 0,0042	0,00 32 0,0067 0,0108	877 833 806	915 899 898	896 866 852	770 734 684	126 260 404	104 208 320	92 185 277	107 217 345	110 217 3 26	187 287 287	10 2 30 6

Als Verhältnis zwischen mittlerer Durchbiegung und Belastung folgt aus Zahlentafel 88:

Belastung .			I	2	3
	(Stützweite	120 cm	I	2,06	3,17
Durchbiegung) »	80 »	I	2,10	3,26
Durenbiegung) »	40 »	I	2,17	3,48
	Mittel.	• • •	Ι	2,11	3,30

Zahlentafel 88. Durchbiegungen der Stäbe B13 und 14 aus Gußeisen B.

			Stab .	B 1 3				Stab 1	B 14		Mi	ttel
Belastung	v	ersuch	snumm	er		v	ersuch	snumm	er			
cmkg	I ₁ ′	I 1"	1 <u>,</u> '	\mathbf{I}_2''	Mittel	II 1'	II_1''	II ₂ ′	$\Pi_2^{\prime\prime}$	Mittel	8'	82
					Stützwei	te 120	em					
6000 12000 18000	244 508 770	244 504 778	241 500 775	243 504 774	243 504 774	256 544 831	252 528 815	267 541 822	269 545 832	261 539 825	252 521 799	239 493 757
					Stützwe	i t e 80	cm					
6000 12000 18000	118 249 387	124 252 388	121 251 386	123 255 394	121 252 389	126 265 406	123 261 408	126 261 402	121 260 404	124 262 405	122 257 397	109 229 355
					Stützwe	ite 40	cm					
6000 12000 18000	41 88 137	42 88 140	42 90 141	39 83 133	41 87 138	43 94 145	44 98 151	47 97 149	43 94 152	44 96 149	42 91 143	29 63 101

Die Mittel stimmen mit denen der Zahlentafel 87 nicht, weil für diese nur die Versuche I_2 und II₂ benutzt wurden; diese bezieht sich überhaupt nur auf die Versuche, bei denen die Spiegel auf der Stegseite saßen.

An Stelle der Beziehung 9:4:1 zwischen Durchbiegung und Spannweite tritt

Belastung	• • • •	• • •	I	2	3
1	Stützweite	120 cm	9	9	9
Durchbiegung	»	80 »	4,10	4 , 09	4,22
	»	40 »	1,09	1,15	1,20.

Wir haben hier also die entgegengesetzte Abweichung wie bei allen auderen Versuchen. Bis dahin nahm die Durchbiegung mit der Stützweite verhältnismäßig ab, hier nimmt sie zu. Das ändert sich auch nicht wesentlich, wenn man annimmt, daß sich die Scherkraft nur über den Steg verteilt.

Die Durchbiegung s_2 ist hier wesentlich kleiner als die berechnete, die beobachtete *s* aber ist bei großer Spannweite kleiner, bei kleiner größer als *s'*.

In den Zahlentafeln 89 und 90 sind die Spiegelablesungen aller Versuche zusammengestellt, in Zahlentafel 91 die daraus abgeleiteten mittleren Dehnungen für beide Stäbe, die Mittelbildung ist ja hier zulässig.

Was schon die Durchbiegungen besagten, wird durch diese Beobachtungen bestätigt: der Stab B_{14} ist elastischer als B_{13} .

Weiter aber sieht man, daß die Beanspruchung an der Stegseite größer als an der offenen Seite ist. An dieser sind Zug- und Druckdehnungen ziemlich gleich groß; an der Stegseite aber sind die Zugdehnungen entschieden größer als die Druckdehnungen, und zwar um so mehr, je kleiner die Stütz-

Zahlentafel 89. Spiegelablesungen $a-a_0$ auf der Zugseite der Stäbe B_{13} und 14 in cm: 100.

						III U.	m • 1 0	0.						
		Spie	egel an	der o	ffenen	Seite			\mathbf{s}_{1}	piegel a	ın der	Steg	seite	
Belastung	S	tab B	13	s	tab B	14	tel	s	tab B	13	s	tab B	14	tel
emkg	I1'	I_1 "	Mittel	II ₁ ′	II_1''	Mittel	Mit	I ₂ '	${\bf I_2}''$	Mittel	11_{2}^{\prime}	${\rm II_2}''$	Mittel	Mit
					St	tützwei	te 120	em						
6000	67 67	65 67	66	67 71	67 69	68	67	73 76	72 77	74	81 80	81 79	80	7
12000	140 139	133 137	137	143 149	139 143	143	140	152 155	152 158	154	166 162	166 162	164	15
18000	212 212	202 207	208	21 9 2 2 8	217 224	222	215	234 239	235 239	2 37	255 250	254 249	252	24
				_	s	Stützwe	ite 80	cm						
6000	55 56	52 53	54	58 60	57 57	58	56	70 72	69 69	70	73 74	73 73	73	72
I 2000	114 114	112 110	113	118 121	114 119	118	115	142 146	142 140	142	150 153	151 150	151	14
18000	172 175	170 166	171	180 186	178 185	182	176	217 222	221 217	219	232 236	234 229	231	22
					s	tützwe	ite 40	cm						
6000	2 7 30	26 26	27	2 8 30	30 30	2 9	28	55 52	48 52	52	53 55	53 52	53	52
12000	53 58	48 52	53	54 58	58 60	57	55	110 106	98 104	104	110 114	107 109	110	107
18000	81 87	73 78	80	81 85	88 91	86	83	166 162	153 160	160	170 175	165 168	169	16

Zahlentafel 90.Spiegelablesungen $a-a_0$ auf der Druckseite der Stäbe B_{13} und 14in cm:100.

		Spie	gel an	der o	ffenen	Seite			$\mathbf{s}_{\mathbf{I}}$	iegel a	ın der	Stegs	eite	
Belastung	s	tab B	13	s	tab B	14	tel	s	tab B	13	s	tab B	14	tel
cmk g	I ₁ '	I 1"	Mittel	II_1'	II 1"	Mittel	Mit	\mathbf{I}_{2}'	$\mathbf{I}_{2}^{\prime\prime}$	Mittel	${\bf II}_2'$	$\mathbf{II}_{2}^{\prime\prime}$	Mittel	Mit
					S	tützwei	te 120	em						
6000	66 68	67 70	67	71 69	69 68	69	68	69 72	70 7 2	71	76 78	76 79	77	74
12000	138 140	135 142	139	150 148	146 145	147	143	141 147	144 149	145	151 157	156 158	155	150
18000	210 214	209 217	212	229 228	226 224	227	220	218 226	21 9 225	222	230 240	237 240	237	229
					\mathbf{s}	tützwe	ite 80	cm						
6000	54 57	53 55	55	59 59	59 58	59	57	64 67	66 67	66	67 69	68 70	68	67
1 20 00	116 117	116 115	116	127 124	124 121	124	120	131 133	135 134	133	136 139	137 142	138	136
18000	178 180	179 179	179	194 191	190 184	190	184	197 204	207 205	203	207 214	210 218	212	207
					\mathbf{S}	tützwei	ite 40.	em						
6000	23 22	27 27	25	2.7 2.8	2 7 2 6	27	26	39 40	38 42	40	41 43	42 44	42	41
12000	50 50	58 54	53	60 56	61 58	59	56	75 79	76 84	78	82 87	81 86	84	81
18000	82 79	90 84	84	93 91	95 89	9 2	88	114 120	114 125	118	125 130	123 130	127	123

		Zahlen	tafel 91.			
Mittlere	Dehnungen	der Stäbe B13	und 14,	Gußeisen B	[in	I: 1000 000

		120	em			80	em			40	cm	
Belastung	offene	e Seite	Steg	seite	offene	e Seite	Steg	seite	offen	e Seite	Steg	;seite
cm/kg	Zug	Druck	Zug	Druck	Zug	Druck	Zug	Druck	Zug	Druck	Zug	Druck
6 000 12 000 18 000	94 197 301	95 200 307	106 220 336	102 209 318	89 184 283	91 191 293	111 227 349	104 212 324	74 148 228	70 150 238	122 252 392	100 200 308
			Mit	tel aus	Zug- u	nd Dru	ckdehn	ungen.				
6 000 12 000 18 000	1 3	94 98 04	1 2 3	04 14 27	1 2	90 87 88	1 2 3	07 19 36	12	72 49 33	1 2 3	11 ,26 50

weite ist. Eigenartig ist auch, daß auf der offenen Seite die Zug- und Druckdehnungen mit abnehmender Stützweite abnehmen, während auf der Stegseite die Zugdehnungen mit abnehmender Stützweite wachsen, die Druckdehnungen ziemlich gleich bleiben. Die Mittel aus Zug- und Druckdehnungen aber nehmen auf der offenen Seite mit abnehmender Stützweite entschieden ab, während sie auf der Stegseite eher zunehmen. Das deutet auf eine Verteilung der Dehnungen über den Querschnitt hin, die bei kleiner Stützweite vom Geradliniengesetze stark abweicht.

Die Spannungen aber auf der also allein maßgebenden Stegseite, für deren Beurteilung ja nur Stab B_{13} herangezogen werden kann, stimmen bei großer Stützweite mit der berechneten gut überein. Bei kleiner Stützweite aber ist die Spannung auf der Zugseite etwa 10 vH größer als die berechnete, was von Bedeutung sein kann. Wenn man nun beachtet, daß die Spannungen für Stab B_{14} sicherlich mit zu großem Elastizitätsmodul berechnet sind, so bestätigen seine Ergebnisse die von Stab B_{13} durchaus.

Gußeisen $C \mathbf{T}$. Zahlentafel 92.

Bei den Versuchsreihen I und II wurden die Spiegel nicht nur am Steg und gegenüber in der Mitte des Flansches angesetzt, sondern auch noch oben und unten an letzterem, gemäß Fig. 40 bis 42, S. 34, um zu ermitteln, ob sich die Zugdehnungen an diesen Stellen von denen in der Mitte unterscheiden. Auf diese Weise ist also dieselbe Durchbiegung dreimal bestimmt, in die Zahlentafel 92 ist aber nicht das Mittel aus den drei Beobachtungen, sondern nur die bei Anbringung der Spiegel in der Flanschmitte eingetragen.

Die drei gleichwertigen Durchbiegungen finden sich in der Zahlentafel 93. Sie stimmen gut überein mit Ausnahme des Versuches mit Stab B_{15} bei der Stützweite 40 cm, doch sind hier die größeren Abweichungen durch die Kleinheit der Durchbiegung leicht erklärlich. Stab B_{16} ist offenbar weniger elastisch als B_{15} , so daß die Uebertragung der Elastizitätslinie des letzteren auf den ersteren bedenklich sein dürfte.

Die Durchbiegungen stehen gemäß Zahlentafel 93 zu den Belastungen in dem mittleren Verhältnis

Belastung		I	2	3
(120 cm	Ι	2,07	3,14
Stiitzweite	80 »	I	2,06	3,19
Stutzweite	40 »	Ι	2,00	3,39
	Mittel .	I	2,04	3,24

Zahlentafel 92.	geversuche mit Gußeisen BL, berechnet mit Hilfe der Elastizitätslinie des Stabes BI	
Zahl	sse der Biegeversuche mit Gußeisen B	
	Ergebn	

Stal	Ve n		Kraft-	Á	archbiegun	<u>s 8 - 80</u> in	cm	EI3	stizitä in t	tsmodu /qem	il E	Dehnun	ι ε - ε ₀		Spannt	lng k –	- k ₀ in k	g/qcm	
b num	ersuch umme	Belastung P P ₀	moment M — M ₀	be-	be-	wegen der Scher-	wegen des Kraft-	pé	obacht	tet	ber	aus den in I:I	Spiegein 200 000	bere	chnet	aus Durchb	der Jiegung	aus de gelable	esu
mer	ıs- er	kg	cmkg	,8	8 8	kraft 81	momentes ⁸ 2	Zug	Druck	Mittel	echnet	Zug- seite	Druck- seite	Zug	Druck	Zug	Druck	Zug	
							Stü	zweite	120	cm									
B	Bg	150 200	4500	0,0200	0,0202	0,0007	0,0195	848 848	872	860	885	00	118	46	86	44	96	40	н.
15	Ia_2	450	13500	0,0642	0,0424	0,0024	0,0610	774	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	806 806	044 848 848	108 163	241 362	93 139	190 294	90 126	197 289	89 126	CI (M)
	В д	15°	4500	0,0200	0,0183	0,0007	0,0176	848	838	860	980	47	103	46	98	4 0	87	40	
	IIa	300	9000	0,0411 0,0642	0,0373	0,0015	0,0358	825	853 813	839 806	964	98	209	93	961	26	172	81	н (
B	3				- 16-1-		·+C>(>	- t	*/0		940	0 61	3 4 0	139	294	113	250	011	
I	B	150	4500	0,0200	0,0191	2000,0	0,0184	x x x	838 838	793	938	64	601	46	86 8	4 7	16	42	
	g I	200	9000	0,0411	0,0,00	0,0015	0,0307	852 1 2 1 2	\$3 \$	8 39	940	98	209	93	961	81	177	81	н
	Πd	640 641 6	1,5,000	0,0046		0,0024	7550,0	4/2	030	000	929	151	319	139	294	115	259	L11	61
	a2	006	27000	0,1304	0,1197	0,0049	0,0044 0,1148	748	872 872	793 860	92 1 901	232	487 659	209 278	440 587	170	400 544	174 234	4 u
							Stür	zweite	80 80	E	•	- >	-		-	'n	-	-	ר -
j	В	225	4500	0.0000	0.0080	7000.0	0 0083	878	873	860	200	ç	- I V	4,	80	•	ŀ	ç	
8 I	g I	450	0006	o,o186	0,0181	0,0015	0,0166	825	853	839	925	103 1	220	4 6 6 6	96 196	4 00 1 6	180	4 ¥ 7 ₩	Ĥ
5	<i>b</i> 3	675	13500	0,0286	0,0285	0,0024	0,0261	774	838	80 6	882	157	35 I	139	294	122	278	121	6
В	Bg	225	4500	0,0090	0,0084	0,0007	0,0077	848	872	860	966	48	IOI	46	98 8	39	85	41	
16	II	450	0006	0,0186	0,0169	0,0015	0,0154	825	853	839	996	95	203	93	196	17	167	78	н
	b2	075	13500	0,0280	0,0203	0,0024	0,0239	774	838	8 06	963	147	312	139	294	112	254	114	1
-							Stüt	zweite	40 C	8									
B	Bg	450	4500	0,0023	0,0022	0,0007	0,0015	848	872	860	1277	46	92	46	98	31	99	39	
15	Ic_2	900	9000	0,004 0	0,0039	0,0015	0,0024	825	8 5 3 8 5 3	839	1595	82	182	93	961	4 0 8 7	104	68	н.
	1			* /	o/oo/o	t =00 0	0,0040	+ / +	060	000	/611	- ? C	7.07	139	294	00	061	101	N
	3 g]	450	4500	0,0023	0,0016	2000'0	0,0009	848	872	860 860	2125	40	82	46	96 8	18	4 0	34	
F	II c	1250	9000	0,0040	0,00,0	0,001 5	0,0015	025	053 053	0 39	2558	42	100	93	196	30	65	63	-
3 1	3 B			4/00.0	o	0,000 to	0,00,5 k	//4	030	000	1005	011	250	139	294	00	130	16	4
6	g I	450	4500	0,0023	0,0022	2000'0	0,0015	848	872	860	1277	42	86	46	98	3 г	99	36	~
	Πd	900	9000	0,0040	0,0054	0,0015	0,0039	825	\$ 5 3	839 839	983	86	176	93	196 I	78	6 9 1	71	ĥ
	2	0071	1,3000	7.200,0	Tonnin	0,0024	0,0057	774	030	806	935	132	504	139	294	106	243	102	57

Zahlentafel 93. Durchbiegungen der Stäbe B15 und 16 in cm: 10 000.

		Stab 1	8 15			Stab 2	B 16		
Belastung	Ve	rsuchsnum	mer	tel	Ver	suchsnum	mer	tel	littel
emkg	Bg I a ₁	Bg 1a2	Bg I a3	Mit	By II a ₁	By II a2	Bg 11 a ₃	Mit	r.
			Stütz	weite 12	.0 em				
4 5 00 9 000 13 500	206 414 634	202 424 634	202 415 623	203 418 630	178 369 566	183 373 570	177 379 574	179 374 570	191 396 600
			Stütz	zweite 8	o em				
4 500 9 000 13 500	91 192 296	89 181 285	84 184 287	88 186 289	84 168 256	84 169 263	84 170 261	84 169 260	86 177 274
			Stütz	weite 4	o em				
4 500 9 000 13 500	22 42 65	22 39 70	16 43 68	20 41 68	15 33 54	16 30 56	15 31 54	15 31 55	18 36 61

Das Verhältnis der Durchbiegungen zu den Stützweiten bei gleicher Belastung ist:

Belastung		I	2	3
	120 cm	9	9	9
Stützweite	80 »	4,1	4,0	4,1
	40 »	0,85	0,82	0,92.

Die Versuchsreihe III stimmt mit II nicht gut überein, sowohl bei a als c sind die Durchbiegungen der ersteren größer und nähern sich denen der Versuchsreihe I des Stabes B_{15} , ohne daß ein Grund dafür erkennbar ist. Versuch III a liefert die Reihe:

Belastung	•		I	2	3	4,5	6
Durchbiegung		•	I	1,99	3,03	4,59	6,24.

Bei Stab B_{15} , der hierfür allein in Betracht kommen kann, sind die Durchbiegungen s_2 stets kleiner als die berechneten s', und bei 40 cm Stützweite sogar viel kleiner. Läßt man die Scherkraft unberücksichtigt, so stimmt die beobachtete Durchbiegung s mit der berechneten s' fast überein.

Nach Zahlentafel 92 wachsen die Dehnungen mit den Belastungen bei Versuch Bg III a folgendermaßen:

Belastung	• • • • ·	I	2	3	4,5	6
Dehnung	Zugseite .	I	2,00	3,08	4,74	6,39
Donnung	Druckseite	I	1,92	2,93	4,47	6,05.

Die Dehnungen auf der Zugseite sollen sich dem Geradliniengesetze gemäß verhalten wie 32,2:67,8 = 1:2,10; sie verhalten sich aber wirklich so:

Belastung	I	2	3	4,5	6
Druckdehnung : Zugdehnung	2,22	2,13	2,11	2,10	2,10

Für die mittleren Dehnungen aus allen Versuchen, Zahlentafel 94, folgt die Zahlentafel 95.

- 83 -

Zahlentafel 94.

Spiegelablesungen *a-a*₀ auf der Zugseite der Stäbe 15 und 16 in em: 100.

	Sta	b B I	5			Stab	<i>B</i> 16	i	
Belastung	Versuchsnummer	ttel	Versuchs- nummer	ttel	Versuchs	snummer	ttel	Versuchs- nummer	ttel
	$Ia_1 I I a_3$	Mi	Ia_2	Mi	II a_1	II a ₃	N N	I a ₂	Wi
cmkg	$l \mid r \mid l \mid r$		$l \mid r$		$l \mid r$	l r		$l \mid r$	
			Stützweite	120	em				
4 500 9 000 1 3 500	31 32 33 3 64 66 65 6 96 102 99 10	32 66 99	33 34 69 71 104 110	33 70 107	31 31 64 64 96 98	30 31 62 63 94 96	31 63 96	31 32 64 66 97 102	31 65 99
			Stützweite	80 0	em				
4 500 9 000 13 500	27 27 27 2 50 56 52 5 80 90 75 8	7 27 5 53 5 83	29 30 59 62 89 95	29 60 92	24 28 52 57 76 87	27 27 52 53 77 82	26 53 80	28 28 57 56 82 90	28 56 86
			Stützweite	e 40 o	em				
4 500 9 000 13 500	18 18 16 1 35 33 34 3' 52 50 53 4	5 17 33 51	18 18 34 34 52 50	18 34 51	17 18 32 33 48 51	17 18 33 33 50 50	17 33 50	17 18 31 35 49 50	17 33 49

Zahlentafel 95. Mittlere Dehnungen in 1:1000000.

			Zugseite	,	I)ruckseit	8
Belas	tung	I	2	3	I	2	3
Stützweite	120 cm 80 » 40 »	49 48 43	101 99 81	155 152 127	110 106 87	220 216 173	334 331 265

Zahlentafel 96.

Wachsen der Dehnungen mit der Belastung.

			Dehn	ungen				Verhältnis	5
Belastung		Zugseit	е		Drucksei	ite	Zug:	Druckdeh	nung
	I	2	3	I	2	3	I	2	3
Stützweite $\begin{cases} 120 \text{ cm} \\ 80 \\ 40 \end{cases}$	I I I	2,06 2,06 1,88	3,16 3,17 2,96	I I I	2,00 2,04 1,99	3,04 3,12 3,05	2,24 2,21 2,02	2,18 2,18 2,14	2,15 2,18 2,09

Für die Beurteilung der Spannungen ist nur der Stab B_{15} maßgebend; Zahlentafel 92, S. 81, zeigt, daß die wirklichen Zugspannungen durchweg kleiner sind als die berechneten, die wirklichen Druckspannungen bei großer Spannweite aber größer als diese.

Zusammenfassung der Ergebnisse der Biegungsversuche mit Gußeisen.

Die Durchbiegungen wachsen infolge des abnehmenden Elastizitätsmoduls durchweg schneller als die Belastungen. Daß dies nicht gleichmäßiger geschieht, wie die Zahlentafel 97 unter s' zeigt, ist eine Folge des unregelmäßigen elastischen Verhaltens des Gußeisens. Im ganzen bestätigen die Beobachtungs-

	Zahlentatel 97.	
Wachsen	der Durchbiegungen mit den Belast	ungen.

Durchbiegung	b	erechne	et <i>s'</i>				be	obachte	et 82				mer	fel
Stützweite					1 2 0			80			40		mnu	lenta
Belastung	I	2	3	I	2	3	I	2	3	I	2	3	Stab	Zah
Protil » • » • » • » •	I I I I I I	2,07 2,06 2,15 2,08 2,07 2,05	3,19 3,20 3,32 3,18 3,15 3,20	I I I I I I	2,05 2,03 2,04 2,09 2,07 2,10	3,14 3,10 3,10 3,21 3,20 3,13	I I I I I I	2,02 2,12 2,06 2,16 2,06 2,02	3,22 3,27 3,18 3,37 3,19 3,18	I I I I I I	1,81 2,23 2,31 2,15 2,15 1,60	2,91 3,77 4,00 3,62 3,52 3,07	B 5 B 7 B 9 B 11 B 13 B 15	59 67 73 79 87 92

werte s_2 die berechneten s'; aber die Uebereinstimmung könnte besser sein, insbesondere bei kleiner Stützweite; hier sind die Abweichungen zum Teil recht erheblich. Durchschnittlich ist wohl mit abnehmender Stützweite das Wachsen der Durchbiegung stärker, als es der Rechnung nach sein sollte, aber recht deutlich wird das Gesetz nicht. Auch die Verschiedenheit der Profile äußert sich nicht deutlich; bei großer Stützweite ist überhaupt kein Einfluß der Querschnittform wahrnehmbar. Die Versuchsreihe IIIa, bei der die Belastungen weiter getrieben wurden, läßt gemäß Zahlentafel 98 allerdings einen Einfluß der

Zahlentafel 98. Wachsen der Durchbiegungen mit den Belastungen. Stützweite 120 cm.

Durchbiegung		beo	bachtet	82			be	rechnet	s'	
Belastungen	I	2	3	4	5	I	2	3	4	5
Profil > ©	I	2,04 2,07	3,13 3,18	4,29 4,34	5,47 5,51	I I T	2,07 2,06	3,19 3,20	4,2 ⁸ 4,27	5,35 5,34
° ↓	I I	2,00 1,99	3,01 3,04 3,03	4,19 4,07	5,27 5,35 5,14	I I	2,08 2,05	3,32 3,18 3,20	4,42 4,24 4,33	5,52 5,30 5,42

Profilform erkennen: Es scheint, als ob bei den massiven Profilen \Box und \odot die Durchbiegungen schneller, bei den weniger massiven \odot , **I**, **T** langsamer wüchsen, als nach dem Verlaufe der Elastizitätslinie zu erwarten steht. Doch ist diese eine Versuchsreihe wohl nicht genügend, um aus ihr Folgerungen zu ziehen, die doch nicht in jeder einzelnen Zahl der Tafel ihre Begründung finden, um so weniger, als hier ja Elastizitätszahlen benutzt wurden, die nicht am Stabe selbst gewonnen sind, sondern an dessem Zwillinge.

Aus Zahlentafel 99 ist zu entnehmen, daß die Durchbiegung mit abnehmender Spannweite weit stärker abnimmt, als es der Theorie nach sein sollte, welche das Verhältnis 9:4:1 erwarten läßt. Der Unterschied ist erheblich; die Zahlen aber schwanken sehr und lassen insbesondere einen Einfluß des Profiles nicht erkennen. Am auffälligsten ist die Abweichung des **L**-Profiles. Es ist möglich, daß die Abweichung teils eine Folge der Auflagerreibung, teils eine Ueberschätzung des Einflusses der Scherkraft ist, doch ist sie meist zu bedeutend, um auf diese Umstände allein zurückgeführt werden zu können. Da die Auflagerreibung bei der Werder-Maschine lediglich wälzender Bewegung entspricht, so kann sie nicht groß sein. Die Ueberschätzung des Einflusses der Scherkraft aber

Zahlentafel 99. Abhängigkeit der Durchbiegung von der Stützweite.

Durchbiegung		weg	en d	es F	Craft	tmom	ente	s, <i>s</i>	2				insg	esai	nt, <i>s</i>				mer	fel
Belastung		I			2			3			I			2			3		uunu	lenta
Stützweite	120	80	4 0	120	80	40	120	8 0	40	120	80	40	120	80	40	120	80	4 0	Stab	Zah
Profil	9 9 9 9 9 9 9	4,0 3,7 3,8 3,7 4,3 3,8	0,87 0,59 0,55 0,57 1,06 0,69	9 9 9 9 9	3,9 3,8 3,8 3,8 3,8 4,3 3,6	0,7 6 0,64 0,62 0,59 1,10 0,53	9 9 9 9 9 9	4,1 3,9 3,9 3,9 4,3 3,9	0,80 0,72 0,71 0,65 1,17 0,68	9 9 9 9 9 9	4,1 3,9 4,0 4,0 4,5 4,0	1,05 0,95 0,82 1,04 1,49 0,98	9 9 9 9 9 9	4,0 4,0 4,0 4,1 4,5 3,8	0,94 1,00 0,90 1,08 1,54 0,83	9 9 9 9 9 9	4,2 4,1 4,3 4,1 4,5 4,0	0,98 1,09 0,99 1,12 1,59 0,99	B 5 B 7 B 9 B 1 1 B 1 3 B 1 5	59 67 73 79 87 92

Zahlentafel 100.

Verhältnis der beobachteten zur berechneten Durchbiegung, s2:s'.

Stützweite in cm		120			80			40		ab- imer	len- fel
Belastungsstufe	I	2	3	I	2	3	I	2	3	Sta num	Zah ta:
Profil	0,91	0,90	0,89	0,90	0,88	0,9 1	0,78	0,69	0,72	B 5	59
» 0	1 ,04	1,02	0,99	° ,9 4	0,98	0,96	0,62	0,66	0,71	<i>B</i> 7	67
» ()	0,97	0,92	0,9 0	0,92	0,88	o 88	0,52	0,57	0,64	<i>B</i> 9	73
* [0,90	0,91	0,91	0,83	0,86	0,8 8	0,52	0,54	0,59	<i>B</i> 11	79
» I	0,93	0,92	°,94	0,99	0,99	1,00	1,00	1,02	1,09	B 1 3	86
« T	0,98	1,00	0,95	0,91	0,89	0,91	0,65	.0,5 2	0,64	B 15	92

wird wahrscheinlich, wenn man die beobachteten gesamten Durchbiegungen s, deren Verhältnis ebenfalls in die Zahlentafel eingetragen ist, in Betracht zieht.

Aus Zahlentafel 100 ist zu entnehmen, daß die beobachtete Durchbiegung mit der berechneten bei großer Spannweite leidlich übereinstimmt, aber bei kleiner Spannweite viel kleiner ist. Nur das **[**-Profil macht eine unerklärte Ausnahme.

Aus Zahlentafel 101 ist der Anteil zu ersehen, den die Scherkraft an der Durchbiegung hat. Die Art und Weise, wie sie berücksichtigt wurde, ist keineswegs einwandfrei; man sieht aber, daß selbst ein erheblicher Fehler bei 120 cm Stützweite nicht viel ausmachen kann. Dagegen sind die Versuche mit kleiner Stützweite auch aus diesem Grunde sehr vorsichtig zu behandeln. Unerklärt

Zahlentafel 101.

Anteile der Scherkraft und des Kraftmomentes an der gesamten Durchbiegung. Verhältnisse s₁:s und s₂:s in vH.

Stützweite			I	2 0						80					4	ļo			er	
Belastungs- stufe	I			2		3		I		2		3		I		2	3	3	aumme	entafe
Verhältnis	$\frac{s_1}{s}$	8 <u>2</u> 8	$\frac{s_1}{s}$	$\frac{s_2}{s}$	s 1 8	<u>82</u> 8	$\frac{s_1}{s}$	82 8	81 8	82 8	8 ₁ 8	82 8	8 1 8	82 8	81 8	82 8	$\frac{s_1}{s}$	8 3 8	Stabı	Zahl
Profil [] * • * • * • * •	2,2 9 4,3 9 3,2 9 5, 6 9 5 ,4 9	7,8 5,7 6,8 4,4 4,6	2,2 4,2 3,3 5,8 5,6	97,8 95,8 96,7 94,2 94,4	2,1 4,5 3,4 5,6 5,4	97,9 95,5 96,6 94,4 94,6	5,0 10 7,2 13 11	95,0 90 92,8 87 89	4,9 9,5 7,5 13 11	90,5 90,5 92,5 87 89	4,6 10 7,5 12 11	95,6 90 92,5 88 89	19 41 35 48 33	81 59 65 52 67	21 38 33 48 33	79 62 67 52 67	20 37 31 45 31	80 63 69 55 69	B 5 B 7 B 9 B 11 B 13 P 15	59 67 73 79 87

bleibt die Schwankung der Werte mit dem Profile; sie ist erheblich, aber eine Gesetzmäßigkeit kann ich nicht erkennen.

Bei Zusammenstellung der Zahlentafeln 97 bis 101 sind nur die Versuche mit den Stäben ungerader Nummer benutzt, weil nur an diesen der Elastizitätsmodul unmittelbar bestimmt ist. Für die Berechnung der Dehnungen aus den Spiegelbeobachtnngen aber trägt ein Fehler in der Annahme des Elastizitätsmoduls wenig aus, es sind deshalb für die folgenden Zusammenstellungen alle Versuche benutzt und bei der Mittelbildung ist die Anzahl der gleichwertigen berücksichtigt.

Das Wachsen der Dehnungen mit den Belastungen geht aus den Zahlentafeln 102 und 103 hervor. Es scheint nur vom elastischen Verhalten des Baustoffes abhängig zu sein; ein erheblicher Einfluß der Profilform wird nicht erkennbar. Auch verhält sich die Zugseite nicht viel anders als die Druckseite.

Zahlentafel 102.

Wachsen der Dehnungen mit den Belastungen. Versuchsreihe IIIa.

			Zugseite)			Γ	rucksei	te		te
Belastungsstufe ¹)	I	2	3	4	5	I	2	3	4	5	Sei
Profil	I	2,09	3,20	4,38	5,61	I	2.08	3.17	4,30	5.47	61
» O	I	2,10	3,23	4,41	5,66	г	2,05	3,10	4,19	5,28	67
» (o)	I	2,02	3,03	4,19	5,33	Т	2,02	3,03	4,16	5,24	71
» I	I	2,01	3,07	4,27	5,52	г	2,02	3,07	4,19	5,33	76
» T	I	2,00	3,08	4,19	5,29	I	1,92	2,93	3,96	5,00	82

¹) Die Werte unter 4 und 5 sind durch Interpolation gefunden.

Zahlentafel 103.

W	ach	isen	der	Del	hnunge	n mi	t den	Be	lastungen.	Vers	uchsreihen	Ι	u.	Π	Ĺ.
---	-----	------	-----	-----	--------	------	-------	----	------------	------	------------	---	----	---	----

					Zugs	eite							Γ	ruck	seite				fel
Stützweite		12	0		80	0		40	5		I 2	0		8	c		40)	lenta
Belastungsstufe	I	2	3	I	2	3	I	2	3	I	2	3	I	2	3	I	2	3	Zah
										Γ					1				Ē
Profil	I	2,06	3,16	I	2,01	3,12	I	2,09	3,21	I	2,04	3,12	I	1,97	3,02	Ι	2,02	3,12	62
» O	II	2,04	3,14	τ	2,04	3,14	I	2,07	3,16	I	2,06	3,14	I	2,04	3,10	I	2,06	3,12	71
» (O)	I	2.06	3,15	I	1,99	3,03	I	2,06	3,20	I	2,05	3.14	I	2,02	3.11	I	2,11	3.33	77
» Ī	1	2,04	3,14	I	2,09	3,22	I	2,09	3,20	1	2,06	3,15	I	2,11	3.24	I	2.05	3.16	86
»Т	I	2,08	3.17	I	2,05	3,15	1	2,07	3,22	Т	2,05	3,12	I	2.04	3.12	1	2.00	3.08	01
» 🕇	I	2,06	3,16	I	2,06	3,17	I	1,88	2,96	I	2,00	3,04	I	2,04	3,12	I	1,99	3,05	95

Da die Dehnungen sowohl stärker als die Belastungen, wie auch stärker als die Spannungen zunehmen, so wird sich das Verhältnis zwischen Spannung und Belastung weniger ändern. Zahlentafel 104 zeigt, daß die Spannungen mit wachsender Belastung im allgemeinen abnehmen. Zieht man aber die weitergehende Versuchsreihe III a mit Zahlentafel 105 heran, was ja wegen der Uebertragung des Elastizitätsmoduls nicht ohne weiteres zulässig ist, so erkennt man das Verhalten deutlicher: Anfangs nimmt die Spannung mit wachsender Belastung ab, später aber wachsen die Spannungen schneller als die Belastungen. Da die Ansätze zu diesem Verhalten bereits in Zahlentafel 104 erkennbar sind, so darf man für diese Erkenntnis auch Zahlentafel 105 benutzen, wenngleich die absoluten Elastizitätsziffern für sie nicht ganz zutreffeud sind.

Zahlentafel 104. Aenderung der Spannungen mit den Belastungen. Versuchsreihe I.

					Zugse	eite							I	Druck	seite					fel
Stützweite		12	0		80)		40)		I 2	0		80	,		40	>	stab	lenta
Bela- stungsstufe	I	2	3	I	2	3	I	2	3	I	2	3	I	2	3	I	2	3	02	Zah
Profil » » » * • • • • • • • • • •	I I I I I I	1,94 2,01 1,94 1,97 1,99 2,12	2,87 2,96 2,80 2,92 2,95 3,00	I I I I I I I	1,90 2,01 1,87 2,02 1,95 2,03	2,86 2,96 2,68 2,98 2,91 2,88	I I I I I I	1,93 2,03 1,97 1,98 1,98 1,75	2,89 2,98 2,86 2,95 2,96 2,59	I I I I I I	1,98 2,00 1,89 1,99 2,03 2,00	2,92 2,91 2,68 3,05 3,10 2,94	I I I I I I	1,89 1,99 1,87 2,00 2,00 2,00	2,85 2,87 2,86 3,06 3,03 3,00	I I I I I I	1,92 2,00 1,89 2,04 2,01 1,94	2,88 2,87 2,99 3,13 3,07 2,96	B 5 B 7 B 9 B 1 1 B 1 3 B 1 5	59 67 73 78 87 92

	Z	Zahlentafe	1 105.		
Aenderung	der	Spannung	; mit	der	Belastung.
	(Ve	rsuchsreihe	Bg II	[<i>a</i> .)	

			Zugse	ite			I	rucks	eite				Mitte	el	
Belastung	I	2	3	4	5	r	2	3	4	5	I	2	3	4	5
Profil □	I I I I I	1,99 2,05 1,91 1,93 1,93	2,93 3,04 2,69 2,84 2,79	3,96 4,15 3,72 3,95 3,70	5,06 5,35 4,72 5,10 4,63	t I I I I	2,05 1,98 1,86 1,96 1,87	3,03 2,87 2,79 2,98 2,81	4,12 3,84 3,83 4,05 3,80	5, 22 4,84 4,83 5,15 4,80	I I I I	2,02 2,01 1,89 1,95 —	2,98 2,94 2,74 2,91 —	4,04 4.00 3,77 4,00	5,14 5,07 4,78 5,12

Zahlentafel 106.

Verhältnis zwischen beobachteter und berechneter Spannung in vH der letzteren.

Profil					0			0			I			C			Т	
Stabnummer	B 5				B 7			B 9			<i>B</i> 11			B 13			<i>B</i> 15	
Belastungs- stufe	I 2 3			ľ	2,	3	I	2	3	I	2	3	I	2	3	I	2	3

Zugseite

 $\begin{array}{c} \underbrace{3}{2} \underbrace{3}{2$

Druckseite

Mittel für beide Seiten

-z	Ð	Ħ	120	0,99	0,97	0,96	1,07	1,07	1,05	0,99	0,94	0,90	0,97	0,95	0,96	0,97	0,97	0,97		-	-
üt	ei	ల	80	1,00	0,95	0,96	1,06	1,06	1,04	1,01	0,94	0,93	0,93	0,94	0,94	1,02	1,00	1,01	- 1		
$\overline{\omega}$	Μ	đ	40	0,89	0,86	0,86	0,96	0,95	0,93	0,85	0,82	0,82	0,83	0,84	0,85	1,02	1,02	1,03			—

Aus Zahlentafel 106 sieht man, daß die Spannungen auf der Zugseite bei \Box , **I**, **T** mit der Stützweite abnehmen, bei \odot sind sie unabhängig von ihr, bei \odot und **I** nehmen sie zu. Die Druckspannungen nehmen immer ab.

Die Spannung auf der Druckseite ist bei großer Spannweite bei \Box , \odot , \mathbf{I} , \mathbf{L} , \mathbf{T} größer als auf der Zugseite, nur \odot zeigt das entgegengesetzte Verhalten. Bei kleiner Spannweite aber ist es bei \odot , \mathbf{I} , \mathbf{L} gerade umgekehrt. Zur Erklärung dieser beachtenswerten Erscheinung reichen die Versuche leider nicht aus. Von praktischer Bedeutung ist besonders, daß bei \odot und \Box die Zugfaser bei kleiner Stützweite bis 10 vH stärker beansprucht ist, als es der Rechnung nach sein sollte. Höchst auffällig ist die kleine Druckspannung des \odot -Profiles bei geringer Stützweite. Es ist zu vermuten, daß bei diesem die Verteilung der Spannungen über den Querschnitt beträchtlich von dem angenommenem Geradliniengesetz der Dehnungen abweicht.

Die Versuchsreihe III a kann zur Bestimmung der Spannungen nicht mit gleicher Sicherheit benutzt werden, weil der Elastizitätsmodul von Reihe I aübertragen werden muß. Da sie aber in den Belastungen weiter geht, so sind die Spannungen nichtsdestoweniger ausgerechnet und in Zahlentafel 107 zusammengestellt. Sind also die absoluten Werte derselben auch anfechtbar, so geht doch

Verhältnis zwischen beobachteter und berechneter Spannung. Versuchsreihe Bg III a, 120 cm Stützweite.

Zahlentafel 107.

Profi	1					0			0			I			Т	
Stabnum	mer		<i>B</i> 6			<i>B</i> 8			BIC	>		B 12	6		<i>B</i> 16)
Seite		Z	D	Mittel	Z	D	Mittel	Z	D	Mittel	Z	D	Mittel	Z	D	Mittel
Belastungs- stufe ·	1 2 3 4 5	0,93 0,92 0,90 0,93 0,96	1,03 1,05 1,03 1,06 1,08	0,9 8 0,9 8 0,97 0,99 1,0 2	1,34 1,37 1,35 1,38 1,43	1,47 1,44 1,40 1,40 1,41	1,40 1,40 1,37 1,39 1,42	1,15 1,10 1,03 1,07 1,09	1,11 1,02 1,02 1,06 1,07	1,13 1,06 1,02 1,06 1,08	1,09 1,05 1,03 1,09 1,14	1,08 1,06 1,07 1,10 1,12	1,08 1,05 1,05 1,09 1,13	0,91 0,87 0,84 0,83 0,84	0,97 0,91 0,91 0,93 0,93	

deutlich aus ihr hervor, daß auch bei stärkerer, aber immerhin noch weit von der Bruchspannung entfernter Belastung die theoretische Spannung keineswegs soviel größer ist, als das Verhältnis $B: \mathbb{Z}$ bedingt, daß sich vielmehr das Verhältnis mit der Belastung wenig und in unregelmäßiger Weise ändert.

Ergänzende Versuche.

Die Bruchversuche.

Sämtliche Gußeisenstäbe sind in der Mitte gebrochen und zeigen gesunde Bruchflächen. Die Festigkeiten sind in Zahlentafel 108 eingetragen.

vergreien u	UI DIUC	m- unu		greating	KUIU.
Gußeisensorte	A		C		
Profil		0	0	I	Т
Bruchfestigkeit . Zugfestigkeit ¹) . Verhältnis	1850 1100 1,68	1840 1360 1,35	1710 1360 1,26	1930 1360 1,42	1920 900 2,14

Zahlentafel 108. Vergleich der Bruch- und der Zugfestigkeit.

¹) Nach Zahlentafel 24, S. 26.

Die von v. Bach gefundene Erscheinung, daß die Bruchfestigkeit immer erheblich größer als die Zugfestigkeit ist, ist damit bestätigt. Die weitere Beobachtung aber, daß das Verhältnis beider Festigkeiten um so größer ist, je mehr sich die Querschnittsfläche ihrem Mittelpunkte nähert, konnte nicht gemacht werden, obgleich die Versuche mit A und B ihr auch nicht gerade widersprechen. Aber das Verhalten von Gußeisen C ist sehr sonderbar. Es liegt hier wohl wieder eine Bestätigung dafür vor, daß man aus besonders gegossenen Probestäben nicht sicher schließen kann.

Uebrigens ist diese Beziehung zwischen Zug- und Bruchfestigkeit keineswegs eine Eigentümlichkeit des Gußeisens; dieselbe Eigenschaft äußert sich bei zähen Baustoffen, nur anders. Diese sind ja bei den in der Maschine möglichen Durchbiegungen überhaupt nicht zum Bruche zu bringen; aber schon, wenn erhebliche bleibende Formänderungen auftreten, berechnet man nach der Formel M = kJ:e Spannungen, welche höher als die Zugfestigkeit sind.

So wurde Mannesmannrohr bei 120 cm Stützweite belastet, bis es sich bei 3000 kg um 67 mm durchbog, was, nebenher bemerkt, eine starke Veränderung der Querschnittsform zur Folge hatte. Dieser Belastung würde, wenn die Theorie bis zu ihr richtig wäre, eine Spannung von $3000 \cdot 30:14.9 = 6040$ kg/qcm in der äußersten Faser entsprechen Von einer Zerstörung dieser ist aber weder auf der Zug- noch auf der Druckseite etwas wahrzunehmen, obwohl die Zugfestigkeit des Mannesmannrohres nur 5660 kg/qcm ist.

Ebenso wurde der Stahlstab bei 120 cm Stützweite mit 40 000 kg durchgebogen; nach der Entlastung zeigte sich die bleibende Durchbiegung 77,8 mm. Es müßte also in dem belasteten Stabe eine Spannung von mehr als $40\ 000\ \cdot\ 30\ :\ 151\ =\ 7950\ kg/qcm$ geherrscht haben, während der Zugmodul nur 6130 kg/qcm ist.

Flußeisen zeigte bei 120 cm Stützweite und 20 000 kg Belastung 32 mm Durchbiegung, von der 27,5 mm blieben; es müßte im belasteten Zustande die Spannung 20 000 \cdot 30 : 150 = 4000 kg/qem aufgetreten sein — der Zugmodul ist 3905 kg/qem.

Den genannten Belastungen müßten der Theorie nach die Durchbiegungen

für Stahl
$$\frac{400\ 000 \cdot 120^3}{48 \cdot 2\ 140\ 000 \cdot 725} = 0.93$$
 cm statt mehr als 7.78 cm,
für Flußeisen $\frac{20\ 000 \cdot 120^3}{48 \cdot 2\ 080\ 000 \cdot 741} = 0.47$ cm statt 3.2 cm, federnd 0.45 cm,
für Mannesmannrohr $\frac{3000 \cdot 120^3}{48 \cdot 2\ 210\ 000 \cdot 45.2} = 1.08$ cm statt 6.7 cm

entsprechen.

Auch bei zähen Baustoffen muß also nicht nur der Elastizitätsmodul mit wachsender Belastung stark abnehmen, sondern auch eine ganz andere Spannungsverteilung im Querschnitte stattfinden, gerade so, wie bei Gußeisen.

Aus Bruchversuchen können also keinerlei Folgerungen auf das elastische Verhalten der Stoffe oder über die Spannungsverteilung bei üblichen Beanspruchungen gezogen werden.

Die Gestalt der elastischen Linie.

Um die wirkliche Gestalt der elastischen Linie mit der theoretischen, die den Rechnungen zugrunde gelegt ist, vergleichen zu können, wurden an dem Gußeisenstab *B* 6 aus Gußeisen *A* die vier Spiegel in gleichen Abständen von der Mitte auf der Zugseite und auf der Druckseite angelötet und aus den Ablesungen die Winkel $\alpha - \alpha_0 = \frac{a - a_0}{2b}$ bestimmt. Diese Versuche wurden bei der Spannweite 120 cm und für drei Querschnittspaare des Stabes vorgenommen. Das Ergebnis ist in der Zahlentafel 109 und durch die Fig. 48 dargestellt; bei

Zahlentafel 109.

Gestalt der elastischen Linie. Gußeisen A, Stab B 6, Stützweite 120 cm, Belastung 1700 – 500 = 1200 kg = 36000 cm/kg. Fernrohrabstand b = 300 cm.

1 cm	Durch	Durchbiegung $s-s_0$ in cm				Spiegelablesungen $a-a_0$ in cm					Tangentenwinkel $a-a_0$			
oiegelabstand der Mitte in	berechnet mit $E = 848$	beob- achtet	wegen der Scher- kraft	egen der cher- sraft tes	Zugseite Druckseite st tions st tions s		berechnet mit E = 848	berechnet aus der mit Durch- $E = 848$ biegung	aus den Spiegel- ablesunger					
SI	8'	8	81	82	lin	rec	Mi	lfn	rec	Mi			~	
10 30 50	0,0765 0,0765 0,0765	0,0724 0,0731 0,0730	0,0015 0,0015 0,0015	0,070 9 0,0716 0,0715	0,33 0,80 1,05	0,34 0,83 1,01	0,33 0,81 1,03	0,40 0,83 1,07	0,31 0,82 1,02	0,35 0,8 2 1,04	0,34 0,82 1,04	584·10-6 1433·10-6 1859·10-6	542·10-6 1343·10-6 1739·10-6	567·10-6 1367·10-6 1733·10-6

Fig. 48.

letzterer sind die Ordinaten im 400 fachen Maßstabe der Abszissen gezeichnet. Man sieht, daß die elastische Linie wirklich etwas weniger krumm ist, als sie der Theorie nach gemäß der Beziehung $\alpha - \alpha_0 = \frac{1}{4} \frac{P - P_0}{EJ} \left(\frac{l^2}{4} - x^2\right)$ sein sollte. Die Berechnung der Temperaturwinkel aus der beobachteten Durchbiegung gemäß der Beziehung $\alpha - \alpha_0 = 12 \frac{\frac{l^2}{4} - x^2}{3}$ ($s - s_0$) liefert mit den Spiegelablesungen gut übereinstimmende Werte. In Fig. 48 ist die anfängliche Durchbiegung der Anfangslast entsprechend, also $s_0 = 0.0299$, eingetragen, während die Anfangswerte der Tangentenwinkel $\alpha_0 = 229, 561, 727 \cdot 10^{-6}$ sind.

Sehr beruhigend wirkt in dieser Beziehung die kleine Versuchsreihe IV. Sie wurde bei 120 cm Stützweite mit den Stäben B_5 und B_6 aus Gußeisen Aangestellt und unterscheidet sich von den Reihen II und III nur dadurch, daß die Spiegel nicht in der Nähe der Stabmitte, sondern in der Nähe der Auflager angesetzt wurden, und zwar so, daß die Federschneiden nicht 6 cm von der Mitte, sondern 6 cm vom Auflager entfernt waren, wie Fig. 49 zeigt. Es ist also

Fig. 49. Probestab mit den Spiegeln in der Nähe der Auflager.

-- 91 --

mit x = 21 cm statt 39 cm, z = 13,5 cm statt 46,5 cm zu rechnen und zu beachten, daß wegen der Umkehrung der gegenseitigen Lage von Federschneide und Spiegel das zweite Glied in Gl. (VII) negativ wird, so daß die Formeln zur Berechnung der Dehnung lauten:

$$\alpha - \alpha_0 = 12 \frac{\frac{l^2}{4} - x^2}{l^3} (s - s_0)$$

$$\varepsilon - \varepsilon_0 = \frac{1}{1000 c} \frac{l}{2z} \left\{ (a - a_0) - 440 (a - a_0) \right\}.$$

Der in Zahlentafel 110 durchgeführte Vergleich zeigt eine so schöne Uebereinstimmung der Dehnungen, wie nur irgend erwartet werden kann.

	beobachtete s ir	Durchbiegung cm	a	Dehnung in I: 1000 000 aus den Spiegelablesungen					
Belastung			Zug	seite	Druckseite				
	Versuo	chsreihe		Versuchsreihe					
em/kg	By I,	Bg IV	Bg I	Bg IV	Bg I	Bg IV			
		Stab B	5.						
15 000	0,0223	0,0223	94	92	93	89			
39 0 00	0,0458	0,0461	190	187	186	184			
51 000	0,0700	0,0717	291	288	2 84	282			
		Stab B	6.						
	Bg II	Bg IV	Bg II	Bg IV	Bg 11	Bg I			
15 000	0,0217	0,0213	94	95	93	92			
39 000	0,0 45 7	0,0457 0,0453		195 190		184			
51000	0,0705	0,0701	298	285	290	279			

				Zahle	ntaf	elı	10.					
Vergle	icl	ı de	er V	ersuch	sreil	hen	Bg I	u.	\mathbf{II}	mit	$Bg \ I$	V.
Gußeisen	A	\mathbf{mit}	den	Stäben	B 5	und	B 6,	St	ütz	weite	120	cm

Andere Untersuchungen mit gebogenen gußeisernen Stäben.

Schüle hat ein Verfahren angegeben, wie man mit Hülfe der Elastizitätslinie $\sigma = f(\varepsilon)$ das zu erwartende Bruchmoment aus der Zugfestigkeit bestimmen kann¹).

Ueber den ganzen Querschnitt eines gebogenen Stabes gilt die Beziehung

$$\int \sigma df = 0,$$

welche für rechteckigen Querschnitt

$$\int \sigma dy = 0$$

lautet. Nach der Annahme der eben bleibenden Querschnitte ist die Dehnung einer Faser im Abstande y von der Nullachse

 $\varepsilon = Cy,$

also gilt auch

$$\int \sigma d\varepsilon = 0.$$

¹) Bach, Elastizität und Festigkeit 5. Aufl. S. 260.

Macht man also in Fig. 50 die Ordinate $A'B' = \sigma_1 = Z$ der Zugfestigkeit, so ist ε_1 die zu Z gehörige Dehnung, und die Fläche A'SB' stellt das Integral $\int_{0}^{\varepsilon_1} \sigma d\varepsilon$ dar, wo ε_1 die Entfernung der äußersten Zugfaser von der Nullachse ist. Macht man nun die Fläche A''SB'' = A'SB', so stellt A''SB'' das Integral $\int_{0}^{-\varepsilon_2} \sigma d\varepsilon$

dar, welches sich auf die Druckseite des Querschnittes bezieht, und die ganze Fläche A'B'SB''A'' ist das ganze Integral $\int_{\sigma}^{+\epsilon_1} \sigma d\epsilon$.

Da nun anderseits

$$M = \int \sigma y df$$

das äußere Kraftmoment ist, so muß für rechteckigen Querschnitt von der Breite \boldsymbol{b}

$$\boldsymbol{M} = \frac{b}{C^2} \int \sigma \varepsilon \, d\varepsilon = b \left(\frac{e_1}{\varepsilon_1}\right)^2 \int \sigma \varepsilon \, d\varepsilon = b \left(\frac{e_1}{\varepsilon_1}\right)^2 F u$$

sein. Es wird also durch das statische Moment der genannten Fläche inbezug auf die σ -Achse dargestellt. Ist der Maßstab der Spannungen 1 cm = m kg/qcmund der der Dehnungen 1 cm = n, so bedeutet 1 qcm der Fläche mn kg/qcm, 1 cm der Länge u aber die Dehnung n. Demnach ist

$$M = \frac{b e_1^2 m n^2 F u}{\varepsilon}$$

in mkg das der Zugfestigkeit nach zu erwartende Bruchmoment.

Bach fand nun bei seinen Eingangs erwähnten Versuchen, daß das so berechnete Bruchmoment etwa gleich dem beobachteten war, und durfte also zwanglos schließen, daß die scheinbar größere Bruchfestigkeit des Gußeisens nur eine Folge der falschen Annahme eines unveränderlichen Elastizitätsmoduls sei.

Aehnliche Versuche hat nun neuerdings Pinegin angestellt¹). Er fand zwar die Bachsche Beziehung

$$B = \alpha \sqrt[]{e}_{z_0} Z$$

¹) Mitteilungen über Forschungsarbeiten Heft 48; Auszug Z. d. V. d. I. 1906 S. 2029.

(Seite 1) bestätigt, nicht aber die Uebereinstimmung zwischen dem berechneten und dem beobachteten Bruchmoment. Das letztere war vielmehr stets beträchtlich größer. Das bedeutet also, daß der Unterschied zwischen Zug- und scheinbarer Bruchtestigkeit nicht allein auf den Umstand, daß der Elastizitätsmodul des Gußeisens keine Konstante ist, zurückgeführt werden kann.

Pinegin machte seine Versuche nicht allein an rechteckigen, sondern auch an Stüben **I**-förmigen Querschnittes. Auch auf solche ist das Schülesche Verfahren anwendbar. Denn ist die Breite z des Querschnittes veränderlich, in der äußersten Faser aber b, so kann man $\mathbf{z} = \alpha b$ setzen und

$$\int \sigma df = \frac{b}{c} \int \sigma \alpha d\varepsilon = 0; \qquad M = \frac{b}{c^2} \int \sigma \alpha \varepsilon d\varepsilon$$

schreiben. Man braucht dann die Kurve $\sigma = f(\varepsilon)$ nur so umzuzeichnen, daß man anstelle von σ den Wert $\alpha \sigma$ setzt. Allerdings ist die Durchführung des Verfahrens weit mühsamer; denn da man von vornherein die Lage der Nullachse nicht kennt, so muß man zunächst A''B'' in Fig. 50 beliebig annehmen und gemäß Fig. 51 so lange verschieben, bis man Gleichheit der Flächen A'SB'und A''SB'' erhält.

Eugen Meyer hat gezeigt, wie man die Durchbiegung mit Rücksicht auf die Veränderlichkeit des Elastizitätsmoduls, gegeben durch die elastische Linie, berechnen kann¹):

Zwei benachbarte Querschnitte, Fig. 52, die den Abstand dx haben, neigen sich infolge der Biegung um $dq = \varepsilon_1 dx : e_1$, die Durchbiegung in der Mitte des Stabes ist also gemäß Fig. 53

 $\lim_{t \to 0} \frac{1}{2} = \int_{0}^{\frac{l}{2}} x dq = \int_{0}^{\frac{l}{2}} x \frac{\varepsilon_{1}}{\varepsilon_{1}} dx.$ Da nun wegen $\varepsilon_{1} : \varepsilon_{2} = \varepsilon_{1} : \varepsilon_{2} \cdot \cdot \cdot \frac{\varepsilon_{1}}{\varepsilon_{1}} = \frac{\varepsilon_{1} + \varepsilon_{2}}{\varepsilon_{1} + \varepsilon_{2}} = \frac{\varepsilon_{1} + \varepsilon_{2}}{h}$ $\varepsilon = \varepsilon_{1} \frac{y}{\varepsilon_{1}} = \frac{\varepsilon_{1} + \varepsilon_{2}}{h} y$

¹) Z. d. V. d. I. 1908 S. 67.

ist, so lautet die Bedingung, daß der resultierende Elastizitätswiderstand null sein muß, für ein Rechteck von der Höhe h und der Breite b

$$\int \sigma df = \frac{bh}{\varepsilon_1 + \varepsilon_2} \int \sigma d\varepsilon = 0,$$
$$-\varepsilon_2$$

d. h. also, es muß in Fig. 50 die Fläche

also

$$A' S B' = A'' S B''$$

sein. Geht man also von der berechneten Zugspannung $\sigma_1 = M : \frac{J}{e}$ aus, so kann man mit Hülfe der Elastizitätslinie, indem man die beiden Flächen gleich macht, σ_2 bestimmen. Dann ist das Moment der äußeren Kräfte

1 -

$$M = \int \sigma y df = \frac{b h^2}{(\varepsilon_1 + \varepsilon_2)^2} \int_{-\varepsilon_2}^{+\varepsilon_1} \sigma \varepsilon d\varepsilon = \frac{1}{2} Px,$$
$$x = \frac{2}{P} \frac{b h^2}{(\varepsilon_1 + \varepsilon_2)^2} \int \sigma \varepsilon d\varepsilon$$
$$s = \frac{1}{h} \int_{0}^{1/2} (\varepsilon_1 + \varepsilon_2) x dx.$$

Das Integral ermittelt man bequem zeichnerisch als Fläche F_s gemäß Fig. 54 und erhält damit

Fig. 54.

Hat der Stab keinen rechteckigen Querschnitt, sondern besitzt dieser die veränderliche Breite z so ist, wie vorhin erläutert, zu verfahren. Anstelle des Integrals $\int \sigma d\varepsilon$ tritt $\int \sigma \frac{z}{b} d\varepsilon$, also anstelle der Elastizitätslinie A'A'' der Fig. 50 eine andere Kurve, deren Ordinaten die mit z:b multiplizierten Ordinaten der ersteren sind. Die Breite b kann dabei ganz beliebig gewählt werden, nur muß man sie nicht gleich null setzen; am besten wird man b gleich dem größten Werte z machen oder z. B. bei einem Kreisringe gleich dessem äußeren Durchmesser. Aber das Verfahren wird jetzt allerdings außerordentlich mühsam, weil bei der Bestimmung jedes einzelnen x-Wertes das vorhin erwähnte Probieren wiederholt werden muß. Es ist deswegen kaum anwendbar. Der Versuch Bg I a mit Stab B 5, Zahlentafel 59, S. 59, ist in dieser Weise behandelt. Bei Benutzung der Elastizitätslinie in Fig. 34, S. 31, ist zu beachten, daß die Anfangsbelastung $P_0 = 500$ kg betragen hat und also die drei Belastungsstufen sich auf die Gebiete 900 bis 500, 1300 bis 500 und 1700 bis 500 kg beziehen. Da die Spannungseinheit in dieser Figur in der ursprünglichen Zeichnung 1 kg/qcm = 0,04 cm und die Dehnungseinheit = 0,5 cm genommen wurde, so ist die Einheit des Integrals $\int \sigma d\varepsilon$ also 1 kg/qcm = 0,02 qcm oder 1 qcm der Fläche

= 50 Einheiten des Produktes $\sigma \epsilon$. Dieses Produkt ist in Fig. 55 als Funktion von ϵ durch die stark ausgezogene Linie dargestellt, und zwar sind 10000 Einheiten = 15 cm gemacht, so daß also 1 cm = 667 Einheiten ist. 1 qcm der Fläche unter der letztgenannten Linie bedeutet also 1333 Einheiten des Integrals $\int \sigma \epsilon d\epsilon$. Mißt man nun das Integral in qcm und $\epsilon_1 + \epsilon_2$ in cm, so ist

$$x = \frac{2 \cdot 9,46^3 \cdot 1333}{4 P} \frac{\int \sigma e de}{(\epsilon_1 + \epsilon_2)^2} = \frac{564 400}{P} \frac{\int \sigma e de}{(\epsilon_1 + \epsilon_2)^2}.$$

Damit ist nun Fig. 56 gezeichnet, und zwar ist 0,2 cm als Einheit von x, 0,0025 cm als Einheit von $x(r_1 + r_2)$ genommen. Demnach ist die Einheit des Produktes 0,0005 qcm, oder 1 qcm der Fläche stellt 2000 Einheiten des Produktes dar. Das erhaltene Ergebnis für die Durchbiegung s ist dann noch durch 100000 zu teilen, weil die Dehnungen in Fig. 55 in diesem Maßstabe eingetragen sind. Bei der Planimetrierung ist s_0 gleich abgezogen. Die bei der Untersuchung gebrauchten Zahlenwerte sind in Zahlentafel 111 und 112 eingetragen.

Ζ	ah	1	en	tat	fel	III.	
					-		

Punkt	ε ₁ in Ι:100000	σ ₁ kg/qem	$\sigma_1 \varepsilon_1$ cm	ε2 in I: 100000	σ_2 kg/qcm	σ ₂ ε ₂ cm	$\epsilon_1 + \epsilon_2$ cm	$\begin{vmatrix} \varepsilon_1 + \varepsilon_2 & \text{in} \\ I : I 00000 \end{vmatrix}$
							_	
a	6	54	,49	5,6	54	° , 45	5,8	11,6
b	9	80	1,08	8,4	85	1,07	8,7	17,4
c	12	105	1,89	11,2	112	1,89	11,6	23,2
d	15	133	2,99	1 4,0	143	3,00	14,5	29,0
e	18	160	4,33	16,9	168	4,26	17,4	34.8
f	24	2 08	7,50	22,5	220	7,48	23,3	46,6
g	30	255	11,5	28,2	2 70	11,4	29,1	58,2
ħ	36	297	16,0	33,8	320	16,3	34,9	69,8
i	40	327	19,6	37,6	353	19,9	38,8	77,6

Verzeichnung der Linie $\sigma \varepsilon = f(\varepsilon)$, Fig. 54.

Zahlentafel	112.

Verzeichnung der Linie $x(\varepsilon_1 + \varepsilon_2) = f(x)$, Fig. 55.

$\varepsilon_1 + \varepsilon_2$		$\varepsilon_1 + \varepsilon_2$ in	$+e_1$	P ==	1700 kg	P = 1	1300 kg	P =	900 kg	P =	500 kg
	$\epsilon_1 + \epsilon_2 \mathrm{III}$ I : 100000	$\begin{vmatrix} \int_{-e_2}^{0.2 \text{ for } n \text{ for } n} \\ -e_2 \\ \text{qcm}^{1} \end{vmatrix}$	x cm	$x(\iota_1+\epsilon_2)$	x cm	$x \left(\varepsilon_1 + \varepsilon_1 \right)$	x cm	$x(\iota_1+\varepsilon_2)$	x em	$x(\varepsilon_1+ au_2)$	
a b c d e f g h i	5,8 8,7 11,6 14,5 17,4 23,3 29,1 34,9 38,8	11,6 17,4 23,2 29,0 34,8 46,6 58,2 69,8 77,6	0,96 3,16 7,50 14,2 25,1 59,0 114 194 263	9,5 13,9 18,5 22,4 27,5 36,1 44,6 53,0 58,0	110 241 429 649 956 1690 2600 3700 4500	12,4 18,2 24,2 29,3 36,0 47,3 58,2 69,4	144 316 562 850 1250 2210 3380 4840	17,9 26,3 34,9 42,4 51,9 68,2	208 457 810 1230 1810 3180	32,3 47,2 62,8	375 820 1460

¹) **s.** Fig. 55: 0.44 + 0.52 = 0.96 usw.

In Zahlentafel 113 sind die Schlußergebnisse mit den in Zahlentafel 59, S. 59, festgelegten verglichen; die Abweichung ist nicht erheblich; bei größerer Belastung stimmen die Werte etwas besser mit den beobachteten als die nach Gl. (II) berechneten.

Zahlentafel 113.

Durchbiegung des Stabes B 5	Belastung $P-P_0$ in kg				
infolge des Kraftmomentes in cm	400	800	1 20 0		
nach Fig. 55	0,0 243 0,0 2 39 0,0 21 8	0,047 2 0,0495 0,0448	0,0 732 0,0765 0,06 85		

Erst nachdem die Versuche, welche dieser Arbeit zugrunde liegen, beendet waren, wurde die Arbeit von Herbert, »Ueber den Zusammenhang der Biegungselastizität des Gußeisens mit seiner Zug- und Druckelastizität« veröffentlicht¹). Herbert hat, wie ich, die Dehnungen der äußersten Fasern des gebogenen Stabes mit Spiegeln gemessen; seine Versuchsanordnung ist aber besser als die meinige, weil er die Scherkraft, welche die Erkenntnis sehr erschwert, beseitigte, indem er statt des an den Enden gestützten und in der Mitte belasteten Stabes einen solchen anwendete, der durch zwei Kräfte symmetrisch zur Mitte beansprucht wird. Das zwischen den Angriffspunkten der Kräfte liegende Stabstück ist dann auf reine Biegung beansprucht, und zwar durch ein stets gleiches Biegungsmoment. Den Nachteil seiner Einrichtung, daß sich der ganze Stab etwas dehnen kann, hat Herbert auf eine sinnreiche Weise unschädlich gemacht, indem er mit dem Stab einen festen Spiegel verband, der dem beweglichen parallel gegenüberstand und auf den das Fernrohr gerichtet wurde. Nicht berücksichtigt ist bei seinen Versuchen die Schiefstellung der Spiegel infolge der Krümmung der elastischen Linie. Falls etwa die Spiegel in der Stabmitte angebracht gewesen sein sollten, findet ja auch solche Schiefstellung nicht statt; dann aber ist nicht die Dehnung in der Stabmitte gemessen, sondern die in der Mitte der Meßfederlänge, und es fehlt die Reduktion. Lag aber Mitte Meßfeder neben Mitte Stab, so hätte die Schiefstellung der Spiegel eine Rolle gespielt. Aber sowohl der eine wie der andere Umstand machen selbstverständlich viel weniger aus als bei meinen Versuchen, bei denen des zentrischen Kraftangriffes wegen die Mitte Meßfeder meist um 10 cm aus der Stabmitte lag.

Herbert zeigt nun, wie man aus den beobachteten Dehnungen auf die Spannungen schließen kann, ohne die Dehnungslinie $\sigma = f(\varepsilon)$ zu Hülfe nehmen zu müssen, wenn man nur die Voraussetzung macht, daß die Querschnitte des Stabes während seiner Biegung eben bleiben. Er beschränkt sich auf den rechteckigen Querschnitt. Aus der Fig. 51 folgt

$$\epsilon_1 dx : \epsilon_1 = dx : \varrho, \qquad \epsilon_2 dx : \epsilon_2 = dx : \varrho,$$

also mit $\varkappa = \frac{\mathbf{r}}{\varrho}$

$$\varepsilon_1 = \varkappa e_1 \text{ und } \varepsilon_2 = \varkappa e_2, \qquad \varepsilon_1 + \varepsilon_2 = \varkappa (e_1 + e_2) = \varkappa h$$
 $e_1 = \frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2} h, \qquad e_2 = \frac{\varepsilon_2}{\varepsilon_1 + \varepsilon_2} h.$

Damit liegt die neutrale Schicht fest.

Aus den Gleichgewichtsbedingungen

$$\int \sigma df = 0 \text{ und } \int \sigma y df = M$$

folgt für rechteckigen Querschnitt mit df = b dy

$$\int \sigma dy = 0 \text{ und } \int \sigma y \, dy = \frac{M}{b},$$

und wegen $\epsilon' = \epsilon_1 \frac{y'}{e'} = xy'$ und $\epsilon'' = \epsilon_2 \frac{y''}{e_2} = xy''$
$$\int_{-\epsilon_2}^{\epsilon_1} \sigma \epsilon d\epsilon = 0 \text{ und } \int_{-\epsilon_2}^{\epsilon_1} \sigma \epsilon d\epsilon = \frac{M \kappa^2}{b}.$$

¹) Mitteilungen über Forschungsarbeiten Heft 89, Auszug Z. d. V. d. I. 1910 S. 1387. Mitteilungen. Heft 127 u. 128. 7

Aendert sich das Kraftmoment M um dM, so ändern sich auch die Krümmung \varkappa und die Integrationsgrenzen ε_1 und ε_2 . Die Integrale von der Form

$$W = \int_{a}^{b} f(\boldsymbol{x}, r) \, \boldsymbol{dx}$$

sind also Funktionen von a, b und r; also ist

$$d W = \frac{\partial W}{\partial a} da + \frac{\partial W}{\partial b} db + \frac{\partial W}{\partial r} dr,$$

$$\frac{\partial W}{\partial r} = f(a, r) \frac{da}{dr} + f(b, r) \frac{db}{dr} + \int_{a}^{b} \frac{\partial f(x, r)}{\partial r} dx.$$

Da nun aber bei festen Grenzen ε_1 und ε_2 eine Aenderung weder von $\sigma = f(y, x)$ noch von $\sigma \varepsilon = f(y, x)$ stattfindet, so ist das letzte Integral gleich null, und wir erhalten durch Differentiation der beiden Gleichgewichtsbedingungen

Zahlen-Ergebnisse der Biegungsversuche mit

mmer	uch	Kraft-	D in	Dehnungen I:I000000			Acnder	rungen		Quotienten			
Stabnu	Vers	M cmkg	Zug- seite E ₁	Druck- seite E2		⊿м	Δε ₁	$\Delta \epsilon_2$	Azh	ΔM Δ×h	$\frac{\Delta \epsilon_1}{\Delta \star h}$	Δε3 Δ×h	
	BgIa	0 12000 24000 36000	0 94 190 2 91	0 93 186 2 84	0 187 376 575	12000 12000 12000	94 96 101	93 93 98	187 189 199	64,2 63,5 60,3	0,503 0,508 0,508	0,497 0,492 0,492	
B 6	$Bg \prod a$	0 12000 24000 36000	0 94 195 298	0 93 190 290	0 187 385 588	12000 12000 12000	94 101 103	93 97 100	187 198 203	64,2 60,5 59,1	0,503 0,510 0,507	0,497 0,490 0,493	
	Bg III a	0 12000 24000 36000 54000 72000	0 92 192 294 457 633	0 91 189 288 443 603	0 183 381 582 900 1236	12000 12000 12000 18000 18000	92 100 102 163 176	91 98 99 155 160	183 198 201 318 336	65,6 60,7 59,7 56,6 53,6	0,503 0,50 5 0,507 0,513 0,5 2 4	0,497 0,495 0,493 0,487 0,476	
B 5	$B_{\mathcal{Y}} I b$	0 12000 24000 36000	0 94 186 291	0 96 182 284	0 190 368 575	I 2000 I 2000 I 2000	94 92 105	96 86 102	190 178 207	63,1 67,4 58,0	0,495 0,517 0, 5 07	0,505 0,483 0,493	
B 6	$Bg \amalg b$	0 12000 24000 36000	0 92 188 289	0 92 188 284	0 184 376 573	12000 12000 12000	92 96 101	92 96 96	184 192 197	65,2 62,5 61,0	0,500 0,500 0,513	0,500 0,500 0,487	
<i>B</i> 5	$Bg~\mathbf{I}c$	0 12000 24000 36000	0 84 171 267	84 165 253	0 168 336 520	12000 12000 12000	84 87 96	84 81 88	168 168 184	71,4 71,4 65,2	0,500 0,518 0,522	0,500 0,482 0,478	
B 6	$Bg \amalg c$	0 12000 24000 36000	0 84 180 276	82 166 258	0 166 346 534	12000 12000 12000	84 96 96	82 84 92	166 180 188	72,3 66,7 63,8	0,506 0,533 0,510	0,494 0,467 0,490	
	Bg III c	0 12000 24000 36000	0 90 190 285	0 82 174 267	0 172 364 552	12000 12000 12000	90 100 95	8 2 9 2 9 3	172 192 188	69,8 62,5 63,8	0,523 0,521 0,505	0,477 0,479 0,495	

 $\sigma_1 \frac{\partial \varepsilon_1}{\partial x} - \sigma_2 \frac{\partial \varepsilon_2}{\partial x} = 0$

und

$$\sigma_{1} \varepsilon_{1} \frac{\partial \varepsilon_{1}}{\partial \varkappa} + \sigma_{2} \varepsilon_{2} \frac{\partial \varepsilon_{2}}{\partial \varkappa} = \frac{1}{b} \left\{ 2 \boldsymbol{M} \varkappa + \varkappa^{2} \frac{\partial \boldsymbol{M}}{\partial \varkappa} \right\}$$

 oder

$$\sigma_1 e_1 \frac{\partial \epsilon_1}{\partial \varkappa} + \sigma_2 e_2 \frac{\partial \epsilon_2}{\partial \varkappa} = \frac{\mathbf{I}}{b} \left\{ 2 M + \varkappa \frac{\partial M}{\partial \varkappa} \right\},$$

wo das Zeichen ∂ statt *d* andeuten soll, daß die Differentiation sich nur über den Querschnitt und nicht über die Länge des Stabes erstreckt. Mit den beiden letzten Gleichungen wird gefunden

$$\sigma_1 = \frac{2 M + \varkappa \frac{\partial M}{\partial \varkappa}}{b h \cdot \frac{\partial \varepsilon_1}{\partial \varkappa}}; \qquad \sigma_2 = \frac{2 M + \varkappa \frac{\partial M}{\partial \varkappa}}{b h \cdot \frac{\partial \varepsilon_2}{\partial \varkappa}}$$

Die in Zahlentafel 59, S. 59, berechneten Versuche sind nun in Zahlentafel 114 nochmals und zwar nach den Herbertschen Gleichungen berechnet. Man sieht:

tafel 114. Gußeisen A. Berechnet nach Herbert.

Diffe	erentialquot	ienten		Bei	20	Span in k	nungen g/qcm
<u>ðΜ</u> Öxh	$\frac{\partial \varepsilon_1}{\partial \varkappa h}$	$\frac{\partial \epsilon_2}{\partial \varkappa h}$	$2M + \varkappa \frac{\partial M}{\partial \varkappa}$	$N_1 = b h \frac{\partial r_1}{\partial x}$	$N_2 = b h \frac{\partial R_2}{\partial \kappa}$	Zug- seite	Druck- seite
63,8	0,505	0,495	359 5 0	42 80	4190	84	86
61,9	0,508	0,492	71 2 70	4300	4170	166	171
62,3	0,506	0,494	35 65 0	4285	41 85	83	85
59,8	0,508	0,492	71050	4300	4170	165	170
63,1	0,504	0,496	35 5 50	4270	4200	83	8 5
60,2	0,506	0,494	70950	4285	4185	166	169
58,1	0,510	0,490	105800	4320	4150	245	255
55,1	0,518	0,482	157600	4390	4080	359	387
65,2	0,506	0,494	36380	4 285	4185	85	87
62,7	0,512	0,488	71080	4340	4130	164	172
63, 8	0,500	0,500	35740	4235	4235	84	84
61,7	0,506	0,494	71200	4285	4185	167	170
71,4	0 ,5 09	0 ,491	36000	4310	4160	84	87
68,3	0,5 20	0,480	70950	4405	4065	161	175
69,5	0,519	0,481	35530	4395	4075	81	87
65,2	0,521	0,479	70540	4410	4060	160	174
66,1	0,5 22	0,478	35370	44 2 0	4050	80	87
63,1	0,513	0,487	70840	4345	4125	163	172

die letzteren Spannungen sind durchweg etwas höher als die ersteren, aber der Unterschied ist gering, ja bei 120 cm Spannweite verschwindend. Die Zahlentafel 115 erleichtert den Vergleich. Es folgt also, daß meine Messungen richtig

	Stützweite in cm										
Belastung	120		80			40			berechnete Spannung		
cmkg	Zug	Druck	Mittel	Zug	Druck	Mittel	Zug	Druck	Mittel		
				na	ch Herbe	ert					
12 000	83	85	84	84	85	85	82	87	84	85	
24 000	166	170	168	165	171	168	162	174	168	170	
				nach	Zahlentaf	el 59					
12,000	80	88	84	79	89	84	74	79	76	85	
24 000	157	178	167	152	175	163	146	157	151	170	

Zahlentafel 115. Mittlere Spannungen in kg/qcm.

gewesen sind, denn wenn die Annahme, daß die Querschnitte eben bleiben, dasselbe Ergebnis wie die durch Versuche ermittelte Elastizitätslinie $\sigma = f(\epsilon)$ liefert, so kann das nicht wohl auf einen anderen Zusammenhang zurückgeführt werden.

Herbert ließ bei dreien seiner Bruchversuche die Spiegel bis zum Bruche sitzen, konnte also aus der letzten Dehnungsbeobachtung die Bruchspannung nach seiner Rechnungsweise ermitteln. Die Zug- und Druckfestigkeit bestimmte er aus Stäben, die den Bruchstücken in der Nähe der neutralen Schicht entnommen wurden, Zahlentafel 116.

Zahlentafel 116.

Vergleich zwischen Bruch- und Zugfestigkeit nach Herbert.

Stabnummer	I	3	4	5
berechnete Bruchfestigkeit beobachtete { Zugseite Bruchfestigkeit Zugfestigkeit	3074 1952 2770 1616	3248 1818	3004 156 2 3925 1515	3197 2053 2955 1464
Verhältnis zwischen Bruch- und Zugfestigkeit { beobachte	i,91 et 1,21	1,79	1,98 1,03	2,19 1,40

Wieder wird die Bachsche Beobachtung bestätigt; doch zugleich ist erkennbar, daß der Unterschied zwischen Zugfestigkeit und Bruchfestigkeit nicht lediglich auf der Abweichung vom Hookschen Gesetze beruht. Doch sind die Zahlen zu unregelmäßig, um weitere Schlüsse zuzulassen.

Schluß.

Die Tatsache, daß die scheinbare Bruchfestigkeit des Gußeisens viel größer als dessen Zugfestigkeit ist, ist keine Eigentümlichkeit dieses Stoffes. Auch in zähen Stoffen entstehen bei der Biegung bereits vor dem Eintreten des Bruches scheinbar Spannungen, welche größer als die Zugfestigkeit sind.

Gußeisen zeigt ein sehr unregelmäßiges elastisches Verhalten, das wahrscheinlich auf unregelmäßige Abkühlung zurückzuführen ist. Dieses Verhalten verdunkelt die Versuchsergebnisse so, daß sichere Schlüsse nur selten gezogen werden können; insbesondere nicht, wenn die Stützweite und die Belastung klein sind.

Die Anwendung der an besonders gegossenen Probestäben gefundenen Elastizitätszahlen auf Konstruktionen ist ganz unzulässig.

Die Spannungen, welche in gebogenen Stäben auftreten, die nur in zulässiger Höhe beansprucht sind, unterscheiden sich von den in üblicher Weise berechneten allerdings, stehen zu ihnen aber keineswegs in gleichem Verhältnisse wie die Zugfestigkeit zur scheinbaren Bruchfestigkeit.

Es ist deshalb nicht angängig, als zulässige Beanspruchungen bei der üblichen Berechnungsweise gebogener Stäbe aus Gußeisen Werte anzunehmen, die diesem Verhältnisse entsprechend höher als die für Zugbeanspruchung als zulässig erkannten sind.

Die Untersuchung gußeiserner Konstruktionsteile durch Bruchversuche ist irreführend; man soll statt ihrer, wo es angängig ist, Dehnungsmessungen vornehmen und aus diesen mit Hülfe möglichst einwandfrei ermittelter Werte des Elastizitätsmoduls auf die entstehenden Spannungen schließen.

- 101 -

Sonderabdrücke

aus der Zeitschrift des Vereines deutscher Ingenieure,

die in folgende Fachgebiete eingeordnet sind:

- 1. Bagger.
- Bergbau (einschl. Förderung und 2. Wasserhaltung).
- Brücken- und Eisenbau (einschl. Behälter).
- Dampfkessel (einschl. Feuerungen, 4. Schornsteine, Vorwärmer, Überhitzer).
- Dampfmaschinen (einschl. Abwärmekraftmaschinen, Lokomobilen).
- Dampfturbinen. 6
- Eisenbahnbetriebsmittel. 7.
- Eisenbahnen (einschl. Elektrische 8. Bahnen).
- Eisenhüttenwesen (einschl.Gießerei). Elektrische Krafterzeugung und 10. -verteilung.
- 11. Elektrotechnik (Theorie, Motoren usw.).
- Fabrikanlagen und Werkstattein-12. richtungen.
- Faserstoffindustrie. 13.
- Gebläse (einschl. Kompressoren, 14. Ventilatoren).

- 15. Gesundheitsingenieurwesen (Heizung, Lüftung, Beleuchtung, Wasserversorgung und Abwässerung).
- 16. Hebezeuge (einschl. Aufzüge).
- 17. Kondensations- und Kühlanlagen.
- 18. Kraftwagen und Kraftboote.
- 19. Lager- und Ladevorrichtungen (einschl. Bagger).
- 20. Luftschiffahrt.
- 21. Maschinenteile.
- 22. Materialkunde.
- 23. Mechanik.
- 24. Metall- und Holzbearbeitung (Werkzeugmaschinen).
- 25. Pumpen (einschl. Feuerspritzen und Strahlapparate).
- 26. Schiffs- und Seewesen.
- 27. Verbrennungskraftmaschinen
- (einschl. Generatoren).
- 28. Wasserkraftmaschinen.
- 29. Wasserbau (einschl. Eisbrecher). 30. Meßgeräte.

Einzelbestellungen auf diese Sonderabdrücke werden gegen Vorein-sendung des in der Zeitschrift als Fußnote zur Überschrift des betr. Aufsatzes bekannt gegebenen Betrages ausgeführt.

Vorausbestellungen auf sämtliche Sonderabdrücke der vom Besteller ausgewählten Fachgebiete können in der Weise geschehen, daß ein Betrag von etwa 5 bis 10 M eingesandt wird, bis zu dessen Erschöpfung die in Frage kommenden Aufsätze regelmäßig geliefert werden.

Zeitschriftenschau.

Vierteljahrsausgabe der in der Zeitschrift des Vereines deutscher Ingenieure erschienenen Veröffentlichungen 1898 bis 1910.

Preis bei portofreier Lieferung für den Jahrgang

3,- M für Mitglieder. 10,- M für Nichtmitglieder.

Seit Anfang 1911 werden von der Zeitschriftenschau der einzelnen Hefte einseitig bedruckte gummierte Abzüge angefertigt.

Der Jahrgang kostet $2, -\mathcal{M}$ für Mitglieder.

4,- M für Nichtmitglieder.

Portozuschlag für Lieferung nach dem Ausland 50 Pfg für den Jahrgang. Bestellungen, die nur gegen vorherige Einsendung des Betrages ausgeführt werden, sind an die Redaktion der Zeitschrift des Vereines deutscher Ingenieure, Berlin NW., Charlottenstraße 43 zu richten.

Mitgliederverzeichnis d. Vereines deutscher Ingenieure.

Preis 3,50 M. Das Verzeichnis enthält die Adressen sämtlicher Mitglieder sowie ausführliche Angaben über die Arbeiten des Vereines.

Bezugsquellen.

Zusammengestellt aus dem Anzeigenteil der Zeitschrift des Vereines deutscher Ingenieure. Das Verzeichnis erscheint zweimal jährlich in einer Auflage von 35 bis 40000 Stück. Es enthält in deutsch, englisch, französisch, italienisch, spanisch und russisch ein alphabetisches und ein nach Fachgruppen geordnetes Adressenverzeichnis. Das Bezugsquellenverzeichnis wird auf Wunsch kostenlos abgegeben.