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It is well known that the frequency functions of a set of quantities and
of their measures are different;' if the error of measurement is comparable
in magnitude to the quantity determined, they may be decidedly dissimilar.
In the case of good photographic parallaxes the reported probable errors
average about eight one-thousandths of a second of arc, making a
dispersion of twelve. Moreover, as we have shown,2 there appears to be a
Lexian ratio of 1.25 here involved which would increase the true dispersion
to o = 15. This might well seriously disturb the frequency distribution
of the large number. of parallaxes which lie between - 0.'15 and +0. '050.
To obtain a fairly comparable set of stars for discussion we restricted

our list to a spread of one magnitude in apparent brightness and found
313 determinations3 of parallax by the Allegheny, McCormick and Mt.
Wilson observatories of stars between magnitudes 5 and 6. For some stars
there were several determinations; it was decided to discuss the frequency
distribution of the measures, and thus each measure was counted separately.
To have combined by averaging, the plural measurements would have
introduced a variety of different weights; to have chosen one of the meas-
ures and discarded the rest would have involved a more or less arbitrary
choice.4
The frequency curve obtained is very skew, but looks like a logarithmic

transform, and is, in fact, normal in x = logio (C + 20) the parallax co
being taken in thousandths of a second of arc. Plotted on probability paper,
the distribution nowhere departs from a straight line more than 2 or 3
per cent, which is about the magnitude of the errrors of sampling. The
fit appears better than would be expected on chance (figure 1, line with
points).

It may therefore be assumed that the frequency distribution of these
parallax-measurements is:

f(x) = x -xo) /27 XO = 1.625 r = 0.275.

The method of passing from this to the frequency function of the paral-
laxes themselves, given by Whittaker and Robinson' is not very satisfac-
tory on account of the slow convergence of the series

D212a log,o e e([log1o(ca +20)-.1.6212/2t' D-d/doi
s%/27r+ (Co +20)

2 70 PROC. N. A. S.;
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The term D4 cannot be neglected and the expressions become much in-
volved. It is, however, possible to calculate the moments' of f(x) on the
basis of the variable co and to express the moments of the true distribu-
tion (so) in terms of them and of a = 15.

Let logio G = xo = 1.625, logio H = 2/2. log.o e = 0.087,

90

50

10

1.00 1.20 1.40 1.60 1.80 2.00 2.20
FIGURrE 1

Plot on logarithmic-probability paper of the distribution of observed paral-
laxes (pointed line) with scale giving log lo (& + 20) and of the fitted logarithmic
transform (above) with scale giving logio (Co + 6.3).

then G is the median of the distribution f and GH is its arithmetic mean
measured from the origin Co = -20. The moments about the mean are:

A = G2IP(H2-1), As = G'H(HI-1)2 (H + 2)
A4= G4H4(H2 - 1)2 (Hs + 2H6 + 3H'- 3)

The observational errors distributed normally with a' = 15 do not disturb
the mean and the third moment but change the second and fourth moment
of the true frequency function into:'

g2= R-a2bI22=A- u~4 = 4 -6a2p2t+,304.
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We have logio GH = 1.712, GH = 51.5, and the mean of c is 3L5. Fur-
thermore p2 = 1308, U3 = 116,000, A4 = 26,400,000; and if the value of
v be '15 we have- j.4 = 1083, 14 = 24,600,000. This gives for the new
-curve the Pearsonian constants:

1 = 10.6 l"? = 3.26, j32 = 21.0 k1 = 4, k2 = 7.4.

With these values a Pearson curve of type VI may be fitted, but the origin
thus found has apparently nothing to do with the astronomical problem,
the numerical' formula is involved, and the solution is generally unsatis-
factory, as is often the case.
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FIGURE 2

Graphs on a parallax base of the frequency distributions given in figure 1.
The vertical line to the left of the origin is located at C =-2.7 and represents
the true origin of parallaxes when allowance is made for the average parallax
of the comparison stars. The lower curve gives the distributions of observa-
tions and the higher curve of the paArallaxes themselves.

There is, however, available.another method which may be followed.
The transformed curve must in this 'case be a good deal like a logarithmic
transform with the origin drawn in from' - -20 toward C = 0. As
a first approximation we' may determine .that logarithmic transform
which has its first three moments identical with the above computed for
the transformed true frequency curve.

Let the new'origin be at a, on the scale of W-+ 20. Then

GH= 51.5 = G'H' + a; (G'H')2-(H'2-1) = U2 1083

j =>j,3 = 116,000 (G'H!')3 (N12 1)2(H'2 + 2).

~272 PRtOC. N. A. S.



VOL. 1l, 1925 ASTRONOMY: WILSONAND LUYTEN

These equations may be solved for G'; H'; and a, to give
a = 13.7, G' = 2&.7, H' = 1.32, H'2 = 1.75,'and

f ( ) log1o e e- [logic (co + 6.3) - 1.4612/2p,f(c,)= ,~~ep=O0.324.
V27r p (C' + '6.3)

The observed median or geometric mean is 41.7 - 20 21.7; the median
or geometric mean ex observational errors is 28.7 - 6.3 = 22.4. The
observed mode is G/H2 = 27.6' measured from the origin co = -20, or at
parallax X = 7.6; the corrected mode is at G'/H'2 = 16.4, or at co =
16.4 - 6.3 = 10.1. There are no parallaxes under -6.3; there are only
seven parallaxes out of 311 that are negative, instead of 41 observed. As
there is a systematic correction2 of 2.7 which should be added to the paral-
laxes to reduce them to absolute: values some of the parallaxes might be
negative. In this distribution log (-2.7 + 6.3) = log 3.6- 0.56 which
departs from 1.46 by 0.90 = 2.8p and occurs only once in 350 times, or once
in our series instead of 25 times as' before. The new distribution is there-
fore a great improvement.
The fourth moments of the new and old curves do not check as they-

should. But the maximum contribution to these moments on either curve
lies out in the region of parallaxes 200 to 250 where observations are so
few that no confidence can be placed in the values of the moments. In-
deed the maximum contribution to the third .moments, though not nearly
so far out, is still far enough to render somewhat doubtful the identifica-
tion of M3 = M' = 116,000 as a device to determine the new curve.
Consequently the location of the mode on the new curve and the minutiae
of its configuration'cannot be regarded as well established; but we believe
that its general characteristics are as portrayed and that it gives a far
better picture of the frequency'distribution of these parallaxes than does
the original curve. The example serves to point out how seriously two
such frequency distributions may differ (fig. 2).

1 Whittaker and Robinson,. Calculus of Observations, Art. 105, p. 206.
2 These PROCEEDINGS, 10, 129 (1924).
3Two parallaxes, at -25 and -31, were rejected.
4 On the whole, the procedure followed seems as good as any, though it makes the

frequency distribution of the parallax-measurements slightly different from that in which
no star was represented by more than one parallax. The effect is most pronounced in
the part of the distribution determined by the larger parallaxes, which is the part of
less interest in the present discussion.

See, e.g., Arne Fisher, Mathematical Theory of Probabilities, 2nd Ed., Chap. XVI,
p. 237.

6 If a frequency curve sp (x) has each of its elements i0 dx subject to dispersion by a
normal error function, the resulting observed frequency function f(t) is

= P(x)dx x) 222.
=xJ /, e)2'
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Then Jt tk f(t) t J J [(t - x) + xl e-( x)22f2dtdx.

As d(t- x) = dt, the integration in t may be performed as

Jkf(t)dt = Jx (Mk + kMk-1 x + 2 k(k- )Mk-2 x2 +. . + xk) V(x)dx
where Mk are the moments of order k for the normal frequency function and are simply
expressible in terms of a (the moments of odd order vanish). Next an integration with
respect to x gives

Vk = tkf(t)dt = Mk + kMk-I v' + I k(k - 1)Mk-2 ;2 + *-+

where v are the moments about any origin the observed frequency function f and v'
those about the same origin for the true frequency function sp.
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1. In the Monthly Notices for 1924, November, Dr. Jeans considers the
effect on a variable massMof a central acceleration M/r2. He writes down
the equations in polar co6rdinates, namely,

d2- r d - M r2 const., (1.1)
and the equation deducible from these, namely,

d (1 fdr\2+ 1 dO2 M _ dM (1.2)
dt 2 \dtl 2 \dt/ r r dt

He puts - M/2a for the terms in brackets where 2a is the major axis in an
elliptic orbit, so as to obtain

d (M) 1dM (1.3)
dt 2a r dt

Then, pointing otut that the mean value of l/r is 1/a, he deduces

Ma = const. (1.4)
2. Suppose, however, we should write (1.2) in the form

d{ (dr~\2 1 (do' 2 MO0dd {1 (dr)+ 1 r2 (d@) _ Mo = (M-Mo) - () (2-5)
dt 2 dt 2 dt r dt

and put - Mo/2a for the portion in parentheses in the left hand member,
we should get
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