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A combination of electron bombardment with high pressure should
give larger displacements for lines which are strengthened by strong
electrical conditions. The following evidence bears this out: (¢) The
lines which are strong in the arc relatively to the furnace have large
pressure displacements. (b) Enhanced lines as a class are found to-be
displaced by pressure more than arc lines. (¢) For a given pressure
the enhanced lines are displaced more in the spark than in the arc.

The details of this investigation, with corroborative evidence from
other spectra, will be published in the Astrophysical Journal.
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Not a few mathematicians have dealt with the problem of setting up
criteria by means of which the irreducibility of certain expressions
in certain domains may be seen at a glance from the character of the
expressions. Gauss, Kronecker, Schoenemann, Eisenstein, Dedekind,
Floquet, Koenigsberger, Netto, Perron, M. Bauer, and Dumas have
written on the subject.! The work of these authors may be said to
center around the Schoenemann-Eisenstein theorem, which, however,
is an exceedingly special case of various theorems obtained (for example,
of theorem IV when interpreted for situation 1). With the exception
of Floquet and Koenigsberger, the authors mentioned deal exclusively
with the case where the expressions are polynomials, and chiefly with
the case of polynomials whose coefficients belong to the domain of
rational numbers. Floquet and Koenigsberger have extended the
investigation to the case of linear homogeneous differential expressions.

A variety of methods have been employed. Thus the theory of
algebraic fields, the theory of algebraic functions, the character of the
solutions of linear homogeneous differential equations, and even geo-
metric representation (Dumas, loc. cit.) have been used. Elementary
methods, requiring no such means, have succeeded in yielding only
the less general results.

One of our objects is to show that elementary and comparatively
short considerations may be made to yield results more general than
any hitherto obtained. In fact, for a complete comprehension of the
proofs, little more is required in the way of specific knowledge than an
understanding of the definition of the various expressions considered
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Moreover, our results have a most intimate connection with the work
of every author cited, and, in most cases, the results bearing on the
problem before us that are contained in the articles quoted subordinate
themselves as special cases to the theorems obtained here.?

A sharp distinction has been made in the literature (as regards poly-
properties of the coefficients and those that proceed from the consider-
ation of the magnitude of the coefficients.* One of the interesting results
is that the gap between these two types of investigation may, in a cer-
tain sense, be bridged. As a consequence, it is possible to show how
the various theorems obtained flow from certain general considerations
as a common source, and thus a surprising unification of the material
is achieved.*

Our work deals with polynomials (for the various kinds of coefficients
considered, see situations 1-5 incl.), linear homogeneous differential
expressions, linear homogeneous difference expressions (for the first
time as regards our problem, as far as the writer knows), and more
general expressions. There is no better way of making what is essential
in the proofs come to the front than by treating the subject in abstract,
postulational fashion. Thereby also the interconnection between the
results and the unification above referred to are made manifest. Thus,
it is easy to see, as Koenigsberger has pointed out by an example, that
the Schoenemann-Eisenstein theorem cannot be directly extended to
the case of linear homogeneous differential expressions; but our abstract
treatment furthermore lays bare the underlying reason—by no means
evident otherwise—why it breaks down, and at once indicates what
analogous theorem may replace it.* The abstract treatment is, more-
over, especially fitting here because a small number of simple assumptions
is sufficient for the foundations of the theory.

We start® with any aggregate © whatsoever and shall deal w1th finite,
ordered subaggregates E = (¢o, €1, €5, - - , €m) of S, 6 {#=0,1,2, - -, m}
being an element of &.

Such a finite, ordered subaggregate E we shall call a ‘ parenthesis’ of
©; m will be called the ‘order’ of E. We assume that the ‘product’
A-B=(a¢ a1, as- -, a,) - (bo, by, bs, - - -, b;) of any two parentheses of
& is equal to a parenthesis C=(co, ¢1, 2, - - - , ) of & for whichn =17+ .
We assume furthermore that with every element ¢ of & there is asso-
ciated a single number »n, called the ‘rank of e, n being an integer or
— » (never + «), such that when 4 - B =C one of the following 3 sets
of relations holds (see situations 1-10 that make either I or II or III
valid):
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1 a) 'Y,é xmv("’\+ﬂﬂ)’ {”=07 1:2""3”}7
b) W= )‘r:?-v(a)“"ﬁp); {V='0) 1’ 2)"'7”})
if a) + B, attains its maximum, X and u varying so as to satisfy the rela-

tion A+ u = », for a single pair of values of X and u. Here ay, 8,, 7» =
rank’ of a,, by, ¢,. '

I a) ’Yyé)‘r:g,(a)‘.-l'ﬂ“), {"=0) 1) 2)""”}’

b) 'Yr=)\m,(a)\+ﬁn)7 {"=0, 1721"'}”}:
if & + B, attains its maximum M, (A and p varying so as to satisfy
A+ u =) for a single pair of values of A and u, and if M, = a) + 8,
whenever A 4+ u < ».

Ix a') 'Yv§)\+mx¢_,(a).+ﬁp+°'), {"=0,1:2)”"”},

o being an integer such that 0 <o <.

b) xv=xm,(a)\+ﬁu), {"=0’1)2:""”}’
if &y + B, attains its maximum M, (A and x varying so as to satisfy
A+ =) for a single pair of values of A and p, and if M,> o)+ 8, +¢
for A+ p+ o =vand ¢>0. ‘

It is to be noted that I implies II and that II implies ITI. Hence
every theorem proved for all & (i.e., for all © having property III) is
valid fotI' every S and S'; and every theorem proved for all S™ holds for
every &

We shall now describe various important situations where I or II or
IIT holds. For this purpose, we must define in each case the aggregate
&, the parentheses of &, the product of two parentheses and the rank of
every element of &.

I holds in the following situations (1-7 incl.):

1. & consists of the set of rational numbers. We understand by the
parenthesis (e, €1, €s," * *, €m) 0f & the rational polynomial egy™ + e;y™ ' +
-+ +e, in the letter y. The product of two parentheses (ao, a1, ‘- -,
a,) - (b, by, -+, b;) is defined, as usual, to be equal to the parenthesis
(co, €1, * - *, €), where n =r+ s and ¢o = aoho, ¢1 = aob1+ aibo, - - -,
¢s=a,b,. The rank of an element ¢ =¢’ /¢” (where ¢’ and ¢’’ are integers)
is defined with reference to a fixed prime p. First let ¢ 3 0; let ¢’ be
divisible by p* but not by p¥*!; ¢”, by »*' but not by p*'**. We
define the rank of ¢ by the equation y =d”’—d’. Moreover, we (natu-
rally) define the rank of 0 to be — .

2. & consists of the class of the Hensel p-adic numbers. The pa-
rentheses of & and the product of two parentheses are defined as in 1.
The rank of the p-adic number e is the negative of Hensel’s? ‘order’ of e
with respect to p.

3. © consists of the class of rational fractions ¢ = ¢’ (xy, - - -, xx)/e"”
(21, “ -+, x3) in & letters xy, 23, - - -, %3, ¢’ and ¢’ being polynomials with
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arbitrary complex numerical coefficients.® The parentheses and the
product of two parentheses are defined as in 1. The rank 5 of an
element ¢ (3 0) is defined as d’—d”, where d’ and d’’ represent respec-
tively the degrees (in the usual sense) of ¢’ and ¢” in the k letters x;,
-++, &3. The rank of 0 is defined to be — .

4. & consists of the collectivity of elements e = z ¢\ 27X, where
A=0

the ¢’s are arbitrary complex numbers, that is, e is a Laurent series
having only a finite number of terms with positive exponents.’® The
parentheses and the products of parentheses are defined as in 1. The
rank of e (3 0) is defined to be the exponent of x in the first non-zero
term of the development of e. The rank of 0 is (naturally) defined to
be — .

5. © consists of the collectivity of fractions e = ¢’/e”’, where ¢’ and
¢’ are power series in & letters x;, x3, - - -, x; with arbitrary complex
coefficients:

@ @
e = 2 :c’h.h,"', )‘kxlhxzh"' x}k, "= E :0')‘;,)‘,,"-.)\,,-”1”“’2)"'” X,
AL AL, "5 0 =0 AL NSt A =0

The rank of e (3= 0) is defined as d’’—d’, where d’ and d”’ represent the
lowest degrees (in the usual sense) in the % letters x;, 23, - - , %, of a non-
zero term of ¢’ and e’ respectively. The rank of 0 is — .

6. © consists of all rational fractions e (x) = ¢’ (x)/e” (x) in x (¢’ (x)
and ¢” (x) being polynomials) with arbitrary complex coefficients. The
parenthesis (e, €, - - -, €,) of © is the linear homogeneous difference
.expression €, Y, 4m + €1 Vegm—-1+ -+ €y y.. The product 4-B =
(@0, @1, - - -, @,) - (bo, by, - - -, ;) of two parentheses of & is the ordinary
symbolic product of the linear difference expressions 4 and B and is
equal to (co, ¢1, - - -, ¢,) Wwhere # = ¢ 4+ s and

6= @by G@rr=), =012,
A=0

The rank of e (x) is what is ordinarily called the degree of e (x), i.e.,
d’'— d"", where d’'= degree of ¢’ (x) and d”’ = degree of ¢ (x).

7. © and rank are defined as in 4; parentheses and products of
parentheses, as in 6.

II holds in the following situations (8-9 incl.):

8. © and rank are defined as in 6. The parenthesis (e, €, * -, €n)
of & is the linear homogeneous differential expression

"y

Tt tea@y.

eo (%) % + e (%)
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The product 4 - B = (a9, ¢, - *, @a,) - (bo, by, " - -, b,;) of two parentheses
is the ordinary symbolic product of the linear differential expressions

A and B and is equal to (co, ¢1, " * -, ¢4), Where w =7+ s and
=33 (172 o
= M Oy~
=t \v b -\ da” " X

{(V—r;i)) - (V"u—g-!-?f)iv+n) !}.

9. © and rank are defined as in 4; parentheses and products of
parentheses, as in 8.

IIX holds in the following situation:

10. & consists of the collectivity of fractions e = ¢’/¢’’, where ¢’ and ¢’/
are power series in x—k (= =, cf. 5) with arbitrary complex coefficients.
The rank of ¢ is defined as in 5. The parentheses of & and products
of parentheses are defined as in 8.

We shall now proceed to the statement of certain consequences of
the assumptions made that relate to factorization properties of a given
parenthesis C = (co, ¢1, - - -, ¢4) of ©. We base all further considera-
tions on the tentative assumption that C may be expressed as a prod-
uct A-B=(8o,a1, ", a,) (bo, by, - - -, b,) of two parentheses wherer=1
and s=1. When other assumptlons to be made in the theorems con-
tradict this assumption of ‘reducibility,” it must be that C is under
those later assumptions incapable of being expressed as a product of
two parentheses whose orders are at least 1. C is then said to be
‘irreducible.” (In general, the terminology employed for our abstract
situation is parallel to that for the ordinary concrete situations.) We
assume furthermore throughout in what follows that v., the rank of co, is
finite (ie., &+ — ). We introduce the following notations (partly for
the purpose of indicating our method of investigation and partly for
the purpose of simplifying certain future statements):

{Ao=ao—ao=0, A=ay—aq,* ", A=a,—ap.
A’0=60;30=0, A;'_"ﬁl_ﬁoy T, A.:‘_"ﬁ:—ﬁo'

G=,7%,();Ar=last A, {v=1,2, -+ 7} equal to G.
G'=1<v,(A); An=last Ay fv=1,2, -, 5} equal to G'.

M —ISrSr<:) -Atl——laStAv {r=1, 2, -+ 7} equal to M.

14

’ ’ ’
M'=1£?53<A'), A"— last 22 {v=1,2,--- s} equal to M’,
Sr3s\7, ”
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The following results (lemmas" I-VI incl., theorems 1-X incl.) are valid
for every S

Lemma 1. If G0 and G' 20, v,— v0= 0 for every ».

LemmalIl. If G20 and G' 20, ¥r4r' — vo =G+ G’ Z v» — 70 for
every v.

LemmaIIL. If M > M and M>0(M'>M and M'>0),M = ..__”"“'0 >

v 7°<M’ ":7°27’ 7°>for every v 0, the > sign alone holding
14

1 4
when v >t (v D).
LemmaIV. If M > M'20(M’ > M 2 0), there is no fixed k such that

V&> vy and 7";7°27'_7°f0revery v+0, k.
1 4
Lemma V. If M> M'>0(M’'>M>0) there is no fived k such that

T2 and‘y" k% 2 Y27 for every »> 0.
14

’
Lemma VI If M=M'>0, MEL2T0 _ 3f = 3" (-%- ﬁ,) >

Y70 for every v > 0, the > sign alone holding when v >t + 1.
14

Theorem 1. If, for a fixed k, vj—v0>0 and'y";'" Uik Ly P

14

-+, n}, at least one of the following n —k -+ 1 congruences holds:
k
—9o=0{mod —),
o (m (k,a))

where o takes the successive values k —r, k—r+1, - -, n—r (or k—s,
kE—s+1, -, n—s) and (k, o) represents, as usual, the G.C.D.of kand o. -
Theorem 11. If, for a fixed k, v—v0>0, 7";% 2T, =, 2,
1 4
-, n} and (vi—vo, k) =1, the parenthesis C contains an irreducible factor
of order = k.

Theorem III (a special case of I). If‘Y.—'yo>Oand7"_1'é'y'—'y°
n »

{"=17 2,---,n—1}, 'Yn_'YoEO(mOd " )-
(n,1)

Theorem IV (a special case of III). If v,— v¢>0, 7”;‘” gt

4
{r=1,2, -+, n—1} and (ys—v0, 8) =1, C is srreducible.
Theorems V-X ‘inclusive materially extend and generalize Perron’s
theorem, J. Math., Berlin, 132, 304 (1907), which Perron designates
as ‘ein sehr allgemeines Kriterium.’




380 MATHEMATICS: H. BLUMBERG

Theorem V. If G 20, G’ 20, 1> v, for every vk and "_';"" >

Y Y50 every v 0, the following relations hold:
1 4

k=t+t; t=r ¢ =7; (&=G; & =G).
Theorem V1. If Gz 0, G' =0, v4> v, for every v % k, ‘Yk;n' >

Y2 Y0 or every v£0, k, and (vi — o, k) = 1, C is irreducible.
1 4

Theorem VIL. If G>0, G'>0, v, 2, for every » and T=Y0 >

k
Yr =0 for every v£0, the same conclusions may be drawn as in theorem V
14

with the possible exception of t=1 and I =7'.
Theorem VIIL. If G>0, G'>0, v, =, for every », "';"" > T

1 4
for every v£0, k, and (vi — vo, k) = 1, C is irreducible.
Theorem IX (generalizes VI). If G20, G' 20, v;> v, for every vk,
L ; Y0 > Y770 for every v 0, and if furthermore every parenthesis (e,
1 4
e, ", €w) that may occur as a factor of C is such that ny = 1o for at least
one v>0, every decomposition of C into a product of parentheses contains
at most (v,—o, k) factors.
Theorem X (generalizes VIII). If G>0,G >0, v, = v, for every v,
L ; Yo Y " Y0 for every v 0, and if furthermore every parenthesis
14
(eo, €1, - -, €y) that may occur as a factor of C is such that g9, > no for at
‘least one v, every decomposition of C into a product of parentheses contains
at most (y; — vo, k) factors.
The lemmas leading up to theorems XI and XII are omitted.
Theorem X1. Theorem 1 holds for every &' if the inequality vi—v0>0
is replaced by v, — 10 <O0.
Theorem XI1. Theorem 1 holds for every S™ if the inequality yy—v0>0

i:repzacedby”_‘;_"—">1.

The results here outlined will be offered for publication in extenso to
the Tronsactions of the American Mathematical Society.
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1 Gauss, Disquisitiones arithmeticae (1801) Art. 341; Kronecker, J. Math., Berlin, 29, 280
(1845), 100, 79 (1887),J. Maih., Paris, 19, 177 (1854) and ser. 2, 1, 399 (1856) ; Schoenemann, J.
Math., Berlin, 32, 100 (1846) and 40, 188 (1850); Eisenstein, J. Math., Berlin, 39, 160 (1850);
Dedekind, J. Math., Berlin, 54, 27 (1857); Floquet, Ann., Sci. Ec. norm., Paris, (1879), cited by
Koenigsberger; Koenigsberger, J. Math., Berlin, 115, 53 (1895), 121, 320 (1900), Maih. Ann.,
Leipsig, 53, 49 (1900); Netto, Math. Ann., 48, 81 (1897); Perron, Math. Ann., 60, 448 (1905),
J. Math., Berlin, 132, 288 (1907); M. Bauer, J. Math., Berlin, 128, 87 and 298, (1905), 132,
21 (1907), 134, 15 (1908); Dumas, J. Math., Paris, ser. 6, 2, 191 (1906).

2 Thus the work on the subject before the publication of the Schoenemann-Eisenstein
theorem is summarized and generalized by that theorem, which, as previously indicated, is
a very special case of theorem IV. In fact, theorem I alone, for example, includes as special-
cases a great bulk of the results heretofore published, and, in particular, the following: the
theorem of Floquet—quoted by Koenigsberger—, all the results contained in the 1895 paper
of Koenigsberger, nearly all contained in his 1900 Math. Ann. paper, almost all the results
of Netto and almost all the results in the 1905 paper of Perron. Cf. also the paragraph pre-
ceding the statement of theorem V.

& Perron, J. Maih., Berlin, 132, 288, and Loewy, in Pascal’s Repertorium (1910) Analysis I,
292 and 293.

4I may perhaps be permitted to remark, for the purpose of indicating that the results
given are less artificial than one would at first suppose, that I had obtained my chief results
with little knowledge of the literature. Their intimate connection with results already
obtained points to a degree of ‘naturalness’ of these results that one would hardly attribute
to them in the absence of such a connection.

§ As a matter of fact, two distinct theorems obtained may be propetly regarded as (highly)
generalized Schoenemann-Eisenstein theorems for the case of linear homogeneous differential
expressions: theorem I for situation 8 and theorem XTI for situation 10. Curiously, Koenigs-
berger himself has obtained theorems—special cases of XII—for differential expressions
that may be properly regarded as generalized Schoenemann-Eisenstein theorems, without
his having noticed this relation.

¢ 1t is possible to build up just as general a theory as ours by dealing exclusively with
‘parentheses’ whose elements are ‘ranks’—see below in the same paragraph—and hence
always integers or— . The reader who prefers a more concrete, tho necessarily less gen-
eral, discussion may, for example, at once interpret &, ‘parenthesis,’ ‘product’ and ‘rank’—
see below in the same paragraph—as in situation 8. In that case, IT will hold.

7In general, we denote the rank of an element represented by a Latin letter by the
corresponding Greek letter. By )‘_:_”:‘:, (ax—+Bu), )\r:%, (ax+Buw, 7\+m-'
(ar+Bu+0)—see II and ITI below—we naturally understand the largest value attained
by the numbers of the set ax =+ Bu, ax + Bu, ax + Bu + 0, N, u and o varying so as
to satisfy the relations A+ u=», A+ u =v, N+ u -+ ¢ =, and in addition, of course,
0<\A\Srand0=u=Ss.

8 Hensel, J. Maih., Berlin, 127, 51-84, §2 (1904) or Zahlentheorie (1913), chaps. 3 and 6.

9 More generally, the numerical coefficients may belong to any abstract system (K, +, X),
where K is a class, such that if @ and b are elements of K both a + b and a X b are elements
of K. This remark applies just as well to the numerical coefficients in situations 4-10 incl.

10 The question of convergence does not enter here because the formal character of the
series is sufficient for our purpose. More generally, we may have such series in two or more
variables, the required change in the definition of rank being evident.

11 These lemmas lead up to the theorems I-X and are given partly for the purpose of
indicating the nature of the proofs and partly because they are believed to be of interest
in themselves. ’
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