
MATHEMA TICS: BARNETTAND NATHAN PROC. N. A. S.

SPHERE GEOMETRY AND THE CONFORMAL GROUP IN
FUNCTION SPACE

By I. A. BARNETT AND DAVID NATHAN

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CINCINNATI

Communicated April 14, 1932

1. Sphere Geometry in Function Space.-By analogy with the definition
of a sphere in Euclidean n-dimensional space, a sphere in the Euclidean
function-space Rx is represented by the equation'

rff2Jp(y)dy - 2f p(y)f(y)dy + w = 0, (1)

where f(x) and (p(x) are continuous functions on the interval 0 _ x _ 1,
and o- and w are real numbers on the interval 0 _ a, co :. 1. Here, ((x),
a, w are considered fixed for the moment, while f(x) denotes the variable
point in Rx. Writing (1) in the form

f(y)- p(y)]2 = 2y)dy
we observe that the distance from the fixed point p(x)/lo to the vanrable
pointf(x) is constant. We shall call (p(x)/l the center of the sphere, while
* ** 2 Ji°f~2(y)dy - oc

the radlus r iS given by r = 2yf
The angle 0 between two spheres

ocjff2(y)dy- 2fpi(y)f(y)dy + w, = 0, (2)

a2ff2(y)dy- 2fP2(y)f(y)dy + c"2 = 0,

will be defined by the expression
r4 + r2 - d2

Cos 0 =
2r1r2

where r1 and r2 are the radii, and d the distance between the centers.
Two spheres are said to intersect orthogonally when and only when
cos 0 = 0. It follows at once that a necessary and sufficient condition
that two spheres (2) in Rx be orthogonal, is

2f(pj(y)qo2(y)dy- OlW2 - oi = 0- (3)

We shall call the left member -of (3) the polar of the quadratic functional
f (p2(y)dy- o.

A sphere (1) is completely fixed when a(x),a and w are given, so that
we may take w(x),, c as the homogeneous sphere co6rdinates of the
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function-space R'. If then we take as element the sphere in Rx, we shall
obtain a geometry which we shall call the sphere geometry of Rx since it is
the analogue of the elementary sphere geometry of n-space. A second type
of sphere geometry in Rx, analogous to Lie's sphere geometry in n-space,
arises when use is made of the co6rdinates p(x), y, c, p connected by the
relation

p2 = -w2(y)dy-a
This type of geometry will be considered in a subsequent paper.

2. The Group of Conformal Transformations.-In order to proceed with
the study of the sphere geometry in Rx we consider the linear, homo-
geneous functional transformations

{'(X) = A(x)p(x) + fB(x, y)(p(y)dy + C(x)o + D(x)w,
XTo' = sfE(y)(p(y)dy + Fa + Gw, (4)
(TOt = fH(y)X(y)dy + Ka + Lw,

which take a point {so(x), a, wo} of the function space R" into another
point [(p'(x), a', w']. Here the functions A(x), B(x, y), C(x), D(x), E(x),
H(x) are continuous on their respective ranges, while F, G, K and L are
constants; r is a factor of proportionality, so that { p(x), a, co } and {rm(x),
TCa, TW} are the same point in the function space R1.
Let us consider in particular the special transformations (4) which leave

unchanged the quadratic functional equation

fp,2(y)dy - ow = 0 (5)
so that

fp'2(y)dy - o'W' = M2[f(p2(y)dy- o],

where M is an arbitrary constant. The following relations are shown to
exist between the coefficients of a transformation of this kind:

' f C2(y)dy -KF = 0, fD2(y)dy -GL = 0, A2(x) - M2 = 0
2f C(y)D(y)dy - FL + M2 - GK = 0,
2A(x)C(x) - FH(x) - KE(x) + 2fB(y, x)C(y)dy = 0, (4')

8 2A(x)D(x) - GH(x) - LE(x) + 2fB(y, x)D(y)dy = 0,
2A (x)B(x, y) - E(x)H(y) + 2f B(z, x)B(z, y)dz + 2A (y)B(y, x) -

E(y)H(x) = 0.

Thus the transformations defined by (4) and (4') take a sphere of zero
radius in into another sphere of the same kind. In other words, the most
general linear point transformations in the space R" which leave (5) in-
variant will be the analogue of the conformal transformations in n-space,
expressed in homogeneous sphere coordinates. We shall therefore call
the transformations (4) and (4') conformal transformations in Rx. It
may be readily shown that such transformations are further characterized
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by the property that they transform orthogonal spheres in Rx into or-
thogonal spheres.
We may show without difficulty that the product of two conformal

transformations in Rx is another conformal transformation in Rx. The
question of the existence of a unique inverse is determined by a method
used by Hildebrandt2 in the inversion of a projective transformation3 in
R,. The system of linear integral equations (4) is reduced to a single
Fredholm integral equation, whose Fredholm determinant

o B(x, xj)/AC(x,)/A D(xi)/A d

..+ ... fE(xi) F G dx. .=1..n 6
H(xj) K L (ij1.nY6

will be called the determinant of the conformal transformation. It is seen
at once that a conformal transformation (4) has a unique inverse if and
only if the expression (6) is different from zero. It follows, further, that
every non-singular conformal transformation of this kind, has a unique
inverse and this inverse is again a non-singular conformal transformation
in Rx.

Finally, since the determinant of the product of two conformal trans-
formations in Rx is equal to the product of the separate Fredholm deter-
minants of these transformations, it follows that the totality of non-singular
transformations in Rx form a group which we shall call the conformal group
in Rx.

3. Infinitesimal Conformal Transformations.-To obtain the most
general infinitesimal conformal transformation in Rx we may, without
loss of generality, take L in (4) to be unity, since this coefficient may be
incorporated in the factor of proportionality ir. Thus we must determine
the transformations of the form

d_(x) = v(x)p(x) + f3(x, y)(p(y)dy + y(x)o + 5(x)w,
dt

da - fe(y)9p(y)dy + ao + bw,
dt
dw - A(y)p(y)dy + ca
dt

which leave invariant the expression (5), and these are shown to be

S dt(x) = k(p(x) + ff3 (x, y3)p(y)dy + y(x)a + 6(x) W,

dar = 2 f 5(y)(o(y)dy + 2ko-, (7)

dt
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where y(x) and a(x) are arbitrary continuous functions, k an arbitrary
constant and :(x, y) + X3(y, x) = 0. The transformations (7) are pre-
cisely the regular infinitesimal conformal transformations obtained by
Kowalewski4 as the most general infinitesimal angle-preserving trans-
formations in Rx. This again brings out the analogy with the situation
in n-space.
Kowalewski showed that the infinitesimal conformal transformations

in Rx written in non-homogeneous co6rdinates form a group in the sense
'that the commutator of any two such transformations is one of the same
kind. Using a more general definition of commutator, we find that the
transformations (7) constitute a group in the sense of Kowalewski.
A given infinitesimal conformal transformation in Rx generates a one-

parameter group of non-singular conformal transformations in Rx, and
there are formulas determining the coefficients of the generated finite
transformations in terms of the coefficients of the infinitesimal transforma-
tions. The method by which these results are established is that used
by Barnett5 to obtain the corresponding results for the projective group
in Rx.

1 All integrations will be Riemannian and the range will be from 0 to 1.
2 T. H. Hildebrandt, Bull. Am. Math. Soc., 26, p. 400 (1920).
3 L. L. Dines, Trans. Am. Math. Soc., 20, p. 45 (1919).
4 G. Kowalewski, Compt. Rend., 153, p. 1452 (1911).
I. A. Barnett, Bull. Am. Math. Soc., 36, p. 273 (1930).
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The present paper is devoted to a solution of a problem proposed by
G. T. Whyburn.1

In what follows the letter Z will denote a collection (or system) of closed
point sets such that both the sum of every two elements of Z and every
closed subset of an element of Z are elements of Z.

Definition.2-A separable metric space S is said to be uniordeied relative
to a system Z provided that for every point p of S there exists a monotone
decreasing sequence of neighborhoods U1, U2, U3, . . ., of p whose bounda-
ries B1, B2, B3, . . . are elements of Z, and such that p is the only point
common to all the sets U1 + B1, U2 + B2, U3 + B3,.
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