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PREFACE.

Tae exhaustive character of the late Professor
Maxwell's work on Electricity and Magnetism has
necessarily reduced all subsequent treatises on these
subjects to the rank of commentaries. Hardly any
advances have been made in the theory of these branches
of physics during the last thirteen years of which the
first suggestions may not be found in Maxwell's book.
But the very excellence of the work, regarded from
the highest physical point of view, is in some respects
a hindrance to its efficiency as a student’s text-book.
Written as it is under the conviction of the para-
mount importance of the physical as contrasted with
the purely mathematical aspects of the subject, and
therefore with the determination not to be diverted
from the immediate contemplation of experimental
facts to the development of any theory however fas-
cinating, the style is suggestive rather than didactic,
and the mathematical treatment is occasionally some-
what unfinished and obscure. It is possible, therefore,
that the present work, of which the first volume is
now offered to students of the mathematical theory
of electricity, may be of service as an introduction
to, or commentary -upon, Maxwell's book. Its aim
is to state the provisionally accepted two-fluid theory,
and to develop it into its mathematical consequences,
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regarding that theory simply as an hypothesis,
valuable so far as it gives formal expression and
unity to experimental facts, but not as embodying an
accepted physical truth.

The greater part of this volume is accordingly
occupied with the treatment of this two-fluid theory
as developed by Poisson, Green, and others, and as
Maxwell himself has dealt with it. The success of
this theory in formally explaining and co-ordinating
experimental results is only equalled by the artificial
and unreal character of the postulates upon which it
is based. The electrical fluids are physical impossi-
bilities, tolerable only as the basis of mathematical
caleculations, and as supplying a language in which
the facts of experience have been expressed and
results calculated and anticipated. These results
being afterwards stated in more general terms may
serve to suggest a sounder hypothesis, such for
instance as we have offered to us in the displace-
ment theory of Maxwell.

In the arrangement of the treatise the first three
chapters are devoted to propositions of a purely
mathematical character, but of special and constantly
recurring application to electrical theory. By such
an arrangement it is hoped that the reader may be
able to proceed with the development of the theory
in due course with as little interruption as possible
from the intervention of purely mathematical processes.
Few, if any, of the results arrived at in these.three
chapters contain anything new or original in them,
and the methods of proof have been selected with a
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view to brevity and clearness, and with no attempt
at any unnecessary modifications of demonstrations
already generally accepted. '

All investigations appear to point irresistibly to a
state of polarisation of some kind or other, as the
accompaniment of electrical action, and accordingly the
physical properties of a field of polarised molecules
have been considered at considerable length, especially
in Chapter XI, in connection with the subject of
specific induction and Faraday’s hypothesis of a com-
posite dielectric, and in Chapter XIV, with reference
to Maxwell’s displacement theory. The value of the
last-mentioned hypothesis is now universally recog-
nised, and it is generally regarded as of more promise
than any other which has hitherto been suggested in
the way of placing electrical theory upon a sound
physical basis.
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CHAPTER L
GREEN’S THEOREM.
Arricte 1.] Ler § be any closed surface, » and ' any two

func_tions of #, y, and 2z, which are continuous and single-valued
everywhere within 8. Then shall

du dv’  du dw’  du dw’
f//{dw G Ty dy }d”dydz
_ffu dS—fffu Viu dudy dz
dv’
=ffu d?:.d w dedydz;

in which the triple integrals are taken throughout the space

~ enclosed by 8, and the double integrals over the surface, d» is

an element of the normal to the surface inside of S, but measured

outwards in direction, and V? stands for
d2 dZ
(o tag t @)
For let a line parallel to # cut the surface in the points
2, 9 2 and @, y, 2. Then integrating by parts between
Zz = and z =z, we have

[, d? L) %3 du, du
=0 5) (e E), ), e
Let dyde be the base of a prlsm of whlch the line between z,
and 2, is one edge. Then

dﬁ
dydzf ud—zdx
,du 2 du du’
_.dydz((u%—c)xz ) ) ddf = 7 %

Now if 7,, my, n, be the directlon-cosmes of the normal to §

« drawn outwards at the point 2y, 7, 2, and if d§; be the element of

;

area cut out at that point by the prism,
dydz =—1,dS,,
VOL. I. B



2 GREEN'S THEOREM. [2.

and using corresponding notation at the point @, , 2,

dydz = 1,d8S,.
Therefore

dyda f Z 2 o
2 du du’

__(u——) LS+ —) 4ds,- dydzfl % 7 de.

Therefore, noting that #; and @, are functions of 7 and z, inte-
grating and transposing, we obtain

2
fffdu{lﬁd dydz = fu l——dS—fffu'gm—gdxdydz,

in which the triple integrals comprise the whole space within &,

and the surface integrals comprise the whole surface of &§.
Similar equations, mutatis mutandis, hold for 7 and =.
Therefore

du du’ dutzzi’_l-dudu dedud
fff{dwdac dy dy " dz dz} s
...f/ du’+md +ngu ds fffu V2u dedydz
fu-—dS—ffﬁa’V’udxdydz;
v
_ff —dS— fffuvzu dxdydz by symmetry.

‘We have supposed the line through y 2 to cut § in two points
only, #;, 7, z and @,, 7, 2. It may cut it in any even number
of points, but all the reasoning would apply to each pair so
long as 2, relates to the point of ingress, and «, of egress. The
equation will therefore hold equally where lines can be drawn
cutting the surface in more than two points.

Further, the proof evidently holds for the space between two
surfaces, 8, and §,, whereof §, completely encloses §;.

On the Application of the Theorem to the Infinite External Space,

2.] Let us consider more closely the case of two surfaces, .§;
and §,, of which §, completely encloses &,.
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Applying the theorem to the space between them we have

du duw’ du dv’  du du’
f_/]{dx 06 a3l s }d dode

_f —dS +/f w o ds, —fffu'vmdxdydz;

in which the first of the double integrals relates to 5;, and the
second to §,, and the normals on &, are measured inwards as
regards the space enclosed by ;.

Now let §, be removed to an infinite distance. If in that

case the surface integral f f o Z—’; ds,, extended over the infinitely

distant surface §,, vanishes, the theorem is true for the infinite
space outside of §;, as well as for the finite space within it, the
normal being in this case measured inwards as regards &, .

In order that f f u’% dsS, should vanish, when extended over

the infinitely distant surface, it is sufficient and necessary
that u’ should be of less degree than —1, In the physical
theorems with which we are concerned, this will generally be
the case.

Generalisation of Green’s Theorem.

8.] Let K be any continuous function of , 7, 2z Then
du dw’ clu duw  du dv’
fffK{dx dx dy @4- dz dz }dwdydz
= f / KOs
d du
- [[f« {dx + g K} + i K} deays

by the same process of partlal integration as before. The con-
dition for application of the theorem to the external space will
in this case be that Kus” must be of less degree than —1,

It will sometimes be convenient to denote the expression

du.
L+ B+ (K by Tho
'.82
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4.] We have assumed » and «” to be continuous functions of
@, y, and z. If at a certain surface within §, one of them,
suppose #, is discontinuous but finite, and its differential co-

. dw du du
efficients A
requires modification as follows :—

It still remains true,  being always finite, that

dv’ dvw’ du du’
[ ud (B o = (u K2 —~(wE ) = I‘K(E%dw

» or one of them, are infinite, the theorem

and from this we may deduce Green’s theorem in the form

fff {d“ el }dxdydz
__ff K-dS —/fqu}u’dmdydz.

But we cannot assert the truth of the theorem in the al-
ternative form

ff (EJ—E(—ZE+&C ) daedydz

_ff 'K—ds—fffu o dedyis.

If » become infinite at any point within 8, we cannot include
in the integration the point at which the infinite value occurs.
But we may describe a surface §” completely enclosing, and very
near to, that point, and apply the theorem to the space between
8 and §’, regarding »" and its differential coeflicients as constant
throughout 8”. For instance, let » become infinite at a point P
within S. Let 8" be a small sphere described about P, and let

7

u,, du’”, and K, be the values of «’, d_u’ and K in or on the
T av

surface of 8. Then we obtain

fqu%— dS+ K, /f s’ — fffuvxu’dwdydz
=ffu’KZ—ZdS+ pupff a8’ — fffu Viudxdydz.

In this form the theorem can be made use of whenever the

two surface integrals relating to §’, namely f »d$§ and f f %dﬁ’
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are finite or zero. For instance, if u:l, where 7 is the
distance of any point from P, &

/fudS’:O and f‘/@dS'=—477,
dv 4

and the equation becomes

K du

/rdvdS /:/f Vixw dedydz
—f’KdldS L T S AT IR N
S ER ‘fff“ () dadyds—4m K,

The Correction for Cyclosis.

5.] We have assumed also that » and «" are single-valued
functions of #, 7, z; that is, that for any such function the line

integral f % dl, taken round any closed curve that can be

drawn within the space § to which Green’s theorem is applied,
is zero. The functions with which we shall have to deal in this
treatise will generally satisfy this condition.

If however for any function # the condition / fl—? dl =0 be

not satisfied for certain closed curves drawn within §;-the state-
ment of Green’s theorem requires modification in the manner
pointed out by Helmholz and Sir W. Thomson. The reader
will find the subject fully treated in Maxwell’s Electricity and
Magnetism, Second Edition, Arts. 96 b-96 d.

It will be sufficient here to shew the modification required in
a simple case. Suppose, for instance, § con-
sist of an anchor-ring, Fig. 1, and that for

any closed curve drawn within it, so as
t? embrace the axis, as OPQO, f % dl = H, ‘
but for closed curves not embracing the axis

@dl— 0. Let us suppose # to be mea- Fig. 1.

sured from a section §, of the ring. Let O be a point in the
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section §,. Then, if we start from O, with #, for the value of
u, and proceed round the curve OPQO, # will, on arriving again
at O, have assumed by continuous variation the value w,+ /7.

Let 8; be any other section of the ring. Then &, and §;
divide the space within the ring into two parts, §,PS§, and
8, Q8,. No curve embracing the axis can be drawn wholly
within either 8,P8, or §;QS,. Therefore Green’s theorem may
be applied to either space. Applying it to §,PS;, we have

fff}{{du o8 + &e. }dwdydz
[ o [t e
_f/fuv“’xu dedydz.. .. .. (1)

in which the first double integral relates to the surface of the
ring, and the other two to the sections §, and 8, respectively.

Again, applying the theorem to §;QS,, and regarding the
normals to §, and §, as measured in the same direction as in
the former case, that is inwards as regards the space now in
question, we have

fff (d“d“ +&c.) dudyds
—ff}( a5— f/ul ——dS
_ff(uo+H)K dg; i fffw? o dosdy s e )

If we now add the two equations (1) and (2) together, we
obtain for the whole space within the ring

ff KD | o) dudyds

—ff K—-—dS—fffuV}u’dxdydz—ﬂffK%dSo

Hence —H f f K ‘;—1:7 dS, is the correction for cyclosis in this

case. Its value depends on the section of the ring arbitrarily
chosen as the starting-point from which » is measured.
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Deductions from Green's Theorem.,

6.] Let «" be a constant. Then, since d_u, @—, nd i
dz " dy

severally zero, we obtain the result that for any functlon u,

ffK —ds —/ffV’Kudmdydz,

the integrals being taken over any closed surface § and the
enclosed space.

7.] (a) There exists one function u of ®, y, and z whick kas arbi-
trarily assigned values at each point on a closed surface 8, and
satisfies the condition Vyu =0 at eack point within 8, K bemy
everywhere positive.

For evidently an infinite number of forms of the function
u exist satisfying the condition that » has the assigned
value at each point of §, irrespective of the value of VZiu
within §,

For any function » let the integral

fff {(dx) + (dy) +( ) }dwdg/dz

throughout the space enclosed by § be denoted by Q.

This integral is necessarily positive, and cannot be zero for
any of the functions in question, unless the assigned values are
the same at every point of &, in which case a funection having
that same constant value within § satisfies all the conditions
of the problem.

If the assigned values of # be not the same at each point of &8,
then of all the functions which satisfy the surface conditions,
there must be some one, or more, for which @, being necessarily
positive, is not greater than for any of the others. Let # be
such function.

Let # + " be any other function which satisfies the surface con-
ditions, so that «'= 0 at each point of §. Then also 602
satisfies the surface conditions, if § be any numerical quantity
whatever, positive or negative.
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Then

Qu+0u’

_/‘/‘fK d(u+6u)) ) (d(u+0u )) i (d(u+6u')) }dxdydz

du du du du’  du du’
2 4
=Qu+0 Q“+2eﬂfK{dwdw dy dy iy 7 }da:dydz

= Qu+6*Quw+20 ffKu —dS-—fffu’V;udmdg/dz};

by Green’s theorem,

= Qu+ 0 Qu— 26fffu’\7§udmdydz,

because = 0 on S.
Now Q+ev 1s by hypothesis not less than @),, and therefore

2 Qu— 20fffu'V§udxdydz

cannot be negative for any value of 6, or any value of «".
But unless V2z# be zero at each point within 8, it is possible
to assign such values to #, consistently with its being zero on S,

as to make
fffu’V§udacdydz

differ from zero. Therefore, it is possible to assign such a value
to 0 as to make

0% Qu— 20fffu Viudxdyde
negative,

It follows that Vi # = 0 at each point within §, when = is a
function satisfying the surface conditions for which @, is not
greater than for any other function satisfying these conditions.

Cororrary. If #-+%" be any other function satisfying the
surface condition, but such that V%« is not zero at all points
within S, evidently

Quiv = Qu+ Qu.

(%) The theorem can also be applied to the infinite space out-
side of § with a certain modification, namely, Z%ere exists a
SJunction w of ®, y, and z which has arbitrarily assigned values at
each point on S, and satisfies the condition Viu = 0 at each point

outside of S, K being positive, and such that Ku? is of lower degree
than —1.
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Tor of all the functions which satisfy the surface conditions on
S and the condition as to degree, there must be some one or
more for which the integral @, extended through the infinite ex-
ternal space is not greater than for any of the others.

Let #” be another function which is zero on S, and satisfies
the condition as to degree. Then Green’s theorem may be
applied to the infinite external space with » and « for functions.
And it can be proved by the same process as used above that,
unless V% = 0 at every point in the external space, some
value may be given to #” which will make @+, less than Q,.
Therefore when @, has its least possible value for all functions
satisfying the conditions, V3 # must be zero at all points outside
of 8.

8.] The theorems can be extended to the case where V3w,
instead of being zero, has any given value p, a fanction of 2, z, 2,
at each point within the limits of the triple integral, i.e. within
or outside of § as the case may be.

For let 7 be a function of the required degree which satisfies
ViV = p at all points within the limits of the triple integral.
Such a function always exists independently of the surface con-
ditions *. 2

Then if o be the assigned value of # on §, there exists, by
Art, 7, a function ¥, having at each point on § the value
o—7V, and such that Vi ## = 0, at all points within the limits
of the triple integral. Let v = W 4 7.

Then # has at each point on § the value o— 7+ 7, that is,
the required value o, and

Viu=ViV+ViW
=:ViV
at each point within the limits of the triple integral.

9.] If the value of % be given at each point on §, and if the
value of V2gw, whether zero or any other assigned value, be
given at each point within 8, # has a single and determinate
value at each point within 8.

3 pdx’' dy dZ : -
By o—aV1 (-9 )t =77 is one such function.
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For, let » and #” be two functions both satisfying the con-
ditions.
Then »=%" and »—»"= 0 at each point on §; and

Viu—Viw =0, or Vi(u—u) =0, .... ... .. (1)
at each point within 8. Then

fff K{(d(qiz;ul))z (d L u”) +(d(u filp }dmdydz

=ffK(u_u’) d_wd:vi-)-dS—fff(u——u’) Vi (u—u')dedyds .. (2)

=0 by (1)

It follows that
duw du du _d du _dw

dw  dw’ Tdy’ dx &
at each point within S, and therefore » and «/, being equal on §,
have identical values at each point within §.

It follows as a corollary that, as stated above, if # be constant
at each point on §, and if V%2« = 0 everywhere within §, » has
the same constant value everywhere within §. For the constant
satisfies both the surface and internal conditions, and there can
be no other function which does satisfy them.

The last theorem can be applied to the infinite space outside
of § as well as to the space within it, if we add the condition
that Ku? is of a less degree than —1, without which Green’s
theorem could not be applied to deduce (2).

10.] There exists a function w of @, y, and z whick satisfies the
conditions following ; namely—

(1) # has values constant but arbitrary over eack of a series
of closed surfaces Sy, S,,...8,, and given constant values over
each of a second series of closed surfaces Sy, ... 8, .

(2) w is of lower degree than —3%.

d d
0 [[ias=a [[ios =0
d
nd f%dSn=en,

where e, e,, ... e, are given constants, and the double integrals are
taken over 8y, S, ... 8,.
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(4) V22 = 0 at every point not within any of the surfaces

PR SoRaeNS L and i Sy 5

For, consider a function # which satisfies (1) and (2), and also
satisfies

(¢) wetu,e,+...+u,6,=2E, or Sue=E,

where Z is any arbitrary constant, and #, ... u, are the constant
values assumed by # on §, ... §,.

Evidently there exists an infinite variety of such funections.

For every such funetion #, the volume integral

0.= [[[{Gar+ G+ Gy} amaya:

extended throughout all space not within the surfaces, cannot be
zero, if # be not zero, and is positive.

There must therefore be some one or more of such functions
for which @, is not greater than for any other.

Let # be such function.

Let u +« be any other function satisfying (1), (2), and (a).

Then «’ has constant values, u, #,, &c. on the surfaces 8§,

.. 8, which satisfy wie, +uy e, + &e. = 0, is zero on each of
the surf'wes 8, ... 8,/, and is of the required degree.

These are 1ts only conditions. Also % being of less degree
than —% may be used with # in Green’s theorem for external
space.

Let 6 be any numerical quantity, positive or negative. Then
u+ 0 also satisfies (1), (2), and (). Then

Qu+9u’— Qu+62@u’+26fff{@idl + &c. }dxdydz
= Qu+602Qu+20 u’—-dS + u’d—udS + &e.
il dv 1 dv ™1
—f/fu’vgudxdydz}
, [[du L [dw
=Qu+620u'+26 {’lefcﬁ dSl+u2f a‘;dSz-l'&C.

_ff/u’VZdedydz}a

since %’ is constant on each of the surfaces §;... 8, and is zero
on each of the surfaces 8§, ... 8.
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Now Q.+ cannot be less than @Q,, whatever %" may be, and
whatever 6 may be.

But unless the factor of 20 in the last expression be zero,
there must be some value of 8 which makes @, less than ()%

The quantity multiplied by 26 must therefore be zero for all
values of # consistently with its conditions. _

V2 must therefore be zero at all points within the triple
integral, and

d
ul’ff%dSl+u2’ff£dS2+&c. =0

for all values of #/’, u,, &c. consistent with
w, e, +u, e, +&e. = 0.
Therefore we must have

du 2 du
/fﬁ; a8, =pe,, ff% as, = pe,, &e.,

where p is some constant, the same for all the surfaces & ... §,.

If the function » be found for any value of Z, then  is known
from («), and is proportional to E.

There must, therefore, be some value of Z for which u is unity,
and the function # determined for that value of F safisfies (1),
(2), (3), and (4).

11.] The theorem can be extended to the case where V?,
instead of being zero at every point within the limits of the
triple integral, has any assigned value p, a function of , 7, 2.

For let 7 be a function of the required degree which has
constant but arbitrary values on each of the surfaces &§;...S,, has
the given constant values on §,"...8,, and satisfies V2V = p at
all points external to both series of surfaces. The existence of
such a function is proved in Art. 8. 7 being so determined, let

av
fle—;dsl = ff?—:d& L

Then, as we have proved, there exists a function # of the
required degree having, some constant values on &, ... S,, the
value zero on §'...8,’/, and satisfying

aw . [raw ) %
f Edlgl =e—e, ffﬁ d32 =e—e,, &C-,

and V2// = 0 at all points external to all the surfaces.
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Let u= W + V.
Then # has some constant values on each of the surfaces

8;...8,, and the given constant values on each of the surfaces
ot 9,

Also ; ff%dsl=el_ell+elf= e
S iy, f Z—sta T

&ce. = &e.,
and Viu=ViW+ ViV =p

at all external points,

12.] If u be a function which satisfies the conditions (1), (2),
and (3) of Art. 10, and for which V2« has any assigned value, zero
or otherwise, at every point not within any of the surfaces, then
% has single and determinate value at each point in external
space.

For let » and #" be two functions, each of degree less than
— 3, satisfying the surface conditions, so that » and #” are both
constant on each surface, and

du _ [fdw d(u—u') .o _
//Cndsl— f%dSl, or/‘f—(zv—dSl—O,

and so on for each of the surfaces.

Also V24 and V2" both have the same given value at each
point in the external space, and therefore V% (x—#") = 0 at
every point in that space.

Then

ff/‘{ d (u— u’))_l_(d(u u’))+(d(u u)) }dxdydz

—_-ff(u_u')”i(”;:—“)dsl +ff(u—u')i(—%;—“3ds,+&c.

—[/](u—u’) V2 (u—w') dady dz
= (=) [[[ X a4 () [ i,

= f f f (u— ) (V24— V) dudyd
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du _du  du__ du du  du
Therefore - =~—: & ¥ and =%
and since # =/ at an infinite distance, # = «” at every point not

within any of the surfaces.
13.] We proved in Art.10 that if f / > dS be given for each of

the surfaces S, 8, ... S,, and « be constant on each surface, and
of degree lower than —}, then the triple integral @, has its
least value when V2z = 0 at each point in external space.

We can now prove that given f f % dS as before for each

surface and given VZx = p at each point not within any of the
surfaces, and # of degree lower than —%, @, has its least value
when # is constant over each surface. For let # be the function
which satisfies the four conditions of Art. 10, #” any other function
of degree less than —3} which satisfies conditions (3) and (4) of
that Article, but is not constant on each of the surfaces §, ... S,.
Then
w=utu — u,

and if @, and @, denote the triple integral @ for # and #’ re-
spectively, we have, as in the preceding articles,

o=+ ][ {(d(‘g; o el ”)) + (G0 deaya

+2{uff%u—)dk?—/ffuv*(u’—u)dwdydz},

in which the double integral is understood to relate to each of
the surfaces in succession. The second line is zero by the condi-
tions, and therefore if %’ differ from «,
Qu’ = Qu+ Qu—u-
The theorems of the last three articles can also be extended to
the more general case in Which the value of

d du
( dx)+_(K EZ‘(KE;)’ or Viu

instead of Vzu are given Wlthm the limits of the triple integrals,

and
du d
[/K% ds, = e, ﬂz%m: €y, &e., e
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where K is positive and constant for each surface, and Ku? of
lower degree than —1.

For, we have only to replace VZ« by the more general ex-
pression

(dx)+ (K )+ (](dz),
and @, by
fff {du )2+(j~:)2}dxdydz,

and every step in the process applies as before.

or Vigu,

14.] Again, if § be a closed surface, or series of closed surfaces
external to each other, and if o be a function having arbitrarily
assigned values at each point on §, there always exists a funetion
u satisfying the condition

di
(1) d—L; = o at each point on S,

(2) V2u = 0 at each point in external space,
(8) u is of lower degree than —3.
For there must be an infinite variety of functions U which
satisfy the conditions (4) ([ UodS = E, where Z is any arbi-

trary quantity differing from zero, and (5) U is of lower degree
than —1,.

For any such function the integral @, must be greater than
zero. There must therefore be some one or more of such functions
for which this integral is not greater than for any other. Let «
be any such function. Let %+ %" be any other function satisfying

(4) and (5), and for which therefore f f wedS = 0.

Then it can be shewn by the same process as in Art, 10 that
du

dv

properly choosing # we may make g—z =o¢ and VZz =0 as

before, and that Q,+w = Q,+ Q.. This theorem also, as in the
preceding, may be extended to the case in which v2#, instead of
being zero, has assigned values at all points in the external
space.

x o, and VZx = 0 at all points external to 8, and that by
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Again, as there always exists a function u satisfying the
conditions, so it can be shewn that it has single and determinate
value at all external points.

For, if possible, let there be two functions » and " of degree
du _ du’
dv_ dv
at each point on 8, and VZu = V2#/, or V2(u—') = 0 at all
external points. Then

f/] {(ﬂud;—u,)f +&c.} dedydz
=ff(u—u') (B e —/ff(u-u')w(u—u') dwdyds
=10

and therefore ? j , &ec., and # = %/, since both vanish at
an infinite distance. :
15.] We can shew also by the same process that there exists a

function # satisfying the condition that ¢%» = 0 at all points

less than — 3, both satisfying the conditions, so that —

in the internal space, and gﬁ = ¢ at all points on §, provided

f f odS = 0.
For if that condition were not satisfied, the condition
uodS = I might be satisfied by making # a constant, in

which case @, would not have a minimum value greater than
zero, and the proof would fail. In fact, if V2u = 0 everywhere

within §, f f —d8 =0; and therefore
at all points on § unless f / cdS=0.

5 " cannot be equal to o

If V24, instead of being zero, is to have the value p within
S, the problem may be solved, provided f cdS = f / / pdadydz,

as follows.
Let W be a function such that V2W = p at every point
within §, and therefore that

f/ od§= f—ds
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Then there exists a function 7 such that
v dw

g

Ry

at each point on §, and V27 = 0 at each point within 8. Let

#w=V+W. Then
du dV 4w

- Y T
at each point on §, and
Viu = V2V 4+ VW =p
at each point within 8.

It can easily be shown also that if » and #” be two functions
both satisfying the conditions, gﬁ 2 , &e., at all points within
S, and therefore % can only differ from %' by a constant.

16.] Let p, ¢, » be any functions of #, y and 2, each of degree
less than — 3, satisfying the conditions

p+mg+nr=c . (1)
at every point on S, where ¢ is any arbitrary function, and
dp dg , dr _
+ @" + i (2)

at all points without S.
Then we know that there exists a function # of degree less
than —} satisfying the conditions "

du du du du
dv ™~ l— @ b P i
at each point on §, and
dduv ddu dd
Yix dmdw+:l?/g_y+dzd:=0 ()
at all external points. Therefore the system
duw du du
p= -(290_ ’ qg= ;l—g;s r= Ez—’
satisfies (1) and (2). :
It can now be shewn that the integral

f f (p*+ @* +r?) dedydz,

VOL. 1. o]

X
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extended throughout the space external to §, has less value when

@ &c., than when p, ¢, and 7 are any other functions

of degree less than — 3 satisfying (1) and (2). For if
du du du,
i Zy +8, &
be any other three functions of the required degree satisfying
(1) and (2), a, B, and y must satisfy

1y

la+mB+ny =0 (4)
at each point on §, and

da dB dy

SR T D10, 5

dw+ dy. +(lz . )

at each point in external space.

fff{ +a )+(d +ﬁ)+(——+‘y)}dwdydz
—fff ) + (dy) + (—— dwdjdz+ff {a*+p° +7°} dedydz
5 4/:[ a%g +B—£ +}'—(l?;}dwdydz.

By integrating the last term by parts, and attending to (4)
and (5), we prove it to be zero. Because %a, 3, and »y being

of less degree than —2, the double integrals f f unadydz &e.

vanish for an infinitely distant surface. Hence the integral

fff{(é‘z}2+ &c.}dmdydz
fff{(%ﬁ +a)2+&°-}dwdydz.

A corresponding proposition can be proved for the space
within § without restriction on the degree of p, ¢, 7, and .
17.] The propositions of Arts. 14 and 15 can be extended to the

is less than

: . du . :
case in which K(—;{' 1s written for % at the surface, and Vi
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for V2u at points in space ; and Art. 16 may be similarly extended
to prove that

ff % (P*+ @+ 1Y) dedydz

has a minimum value when
du du du
P=K:Jl—{l}, q—K@, T—K%
K being in each case a given positive function of #, 7, and 2, and

such that Kp &e. are of lower degree than —3.

E)

Cc2 -



CHAPTER IL
SPHERICAL HARMONICS.

Arricie 18.] Definition.—If » be a homogeneous function
of the n*® degree in 2, 7, and z, satisfying the condition V2% = o,
where V2 represents the operation

2 A= 2

aztapt e
then # is said to be a spherical karmonic function of the n*h degree
in z, ¥, and 2.

If % be any function of #, y, 2 satisfying the condition
V?u = o, then every partial differential coefficient of #, as

dA’HL-f-vu

FEY T will also satisfy the condition

dA+}L+v w
| T s N T K,
VG g
For since the order of partial differentiation is indifferent, it
follows that

dA+fl-+v w dAtety v

dx* dy* dz* = dx dy* dz” i
= 0.

19.] Let any point O be taken as origin of rectangular co-

ordinates, and let the coordinates of

P H Pbew g,z Leto(z g 2) be any

function of #, , 2. Let OH be any

axis drawn from O and designated

by %, and let @ be any point in this
o axis, and let 0Q = p.

Fig. 2. Let & 7, ¢ be the coordinates of P

referred to @ as origin, with axes

parallel to the axes through O. Then the limiting value of
the ratio

V2

d)(f’ 7, O—‘i’(w, Y, z),
P
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as p is indefinitely diminished, is denoted by

d
2 oy o)
It is clear that
d do
ﬁcp(x,y,z), or =
is itself generally a function of #, 7, z; and therefore if another
axis OH’, denoted by #’, be drawn from O, we may find by a
similar process

a )

and so on for any number of axes.

If » be any function of =z, y, 2z satisfying the condition
V2y = 0, and if 4, 4,, ... #; denote any number of axes drawn
from the origin, and the expression

C P
dhy dk, Ak "
be found according to the preceding definition, then
d d d
2 —
S e o A

For let /,, m,, n, be the direction cosines of the axis ;. Then
by definition

du_,dudu du
dhy,~ Vda T Ay T ™Az
But by hypothesis
Viu = 0.
Therefore
du 2clu g du
V d'_w’ V ’ V (’i‘z_
are severally equal to zero. Therefore
du
B S ey (YW
Vign= 0
and therefore by successive steps
V:— R s i % = 0.

dhy dhy, " dh,
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20.] If

= (@’ +y*+7%),
lisa spherical harmonic function of degree — 1.
7
d 1 @
For 0755 (;) = —-;3,
! 3*
@wP =t
8 1 3y
Similarly 7 (;) =—t =5
1 3z
and 7 (;) 2 ] +
whence
cl2 ol2 3(x*+y*+2%) 38 8. 2

21.] Whatever be the directions of the i-axes Z,, Z,, ... %;, the

function
AT %}
o e et e

where 3/ is any constant, is a spherical harmonie function: of
degree —(i+1).

For it is evidently a homogeneous function of that degree,
and since

V(=) =0,
it follows that
d d
p I
W dh, dh, dh ( )_0

If we write this function in the form ]7, Yl » ¥, 1s a function

of M, the direction cosines of the axes %, izz, ... k;, and those
of ». To fix the ideas we may conceive a sphere from the centre
O of which are drawn in arbitrarily given directions the i-axes
OH,, OH,, ... OH, cutting the sphere in H,, H,, ... H;. Then
if 0Q be any radius, at every point P on 0Q or 0Q produced
Y, has a definite numerical value, being a function of the di-
rection cosines of OH, ... OH;, and of 0@, and independent of #
or OP. 1f &y, Ay, ... k; be the fixed axes of any harmonic, P any

N SSY —
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variable point, ¥; at P is spoken of as the harmonic at P with
axes Ay, Ay, ... Ay

Since each axis requires for the determination of its direction
two independent quantities, ¥; will be a function of the two
variable magnitudes determining the direction of » and the 2i
arbitrary constant magnitudes determining the directions of
the z-axes. Y, may also be expressed in terms of the i-cosines
B1s Moy ... p; of the angles made by » with the i-axes and the

iﬁ;l—) cosines of the angles made by the axes with each other,

and an expression for ¥; in this form may be found without
much difficulty.

22.] If 7; be a spherical harmonic function of degree —(;+ 1),
and if 7 = /2 4+ 7%+ 2%, then 72¢+1 7, will be a spherical har-
monie function of degree 3.

For by differentiation

& G T — (02 2i—1 1 9V
%(r V)= (2i+ 1) gV, +0? T

2
;_mé (V) = (264 1) (2¢e—1) 723 2P,
+(2i+1) 17,

; Lesd V.

y —]1 [

+2.(2¢4+1) 2 @t
o T
+7.21.+1 dw‘z %

Similar expressions hold for
a3 . G
E:_‘;_Z_ (,,.2 i+l V1) and _ﬂ (,,.2 +1 V;).

Adding these expressions, and remembering that

m2+y2+z2 — ,,.2,
we obtain -
V2 (1Y) = (24 1) (26 +2) 2T,

av, av,  av,

. pi-1) (, OV QY5 i
+2(2z+l)(r )(x e +Yy dy +2 dz)
N )

J»r: (¥

s 3 A4 (e ‘\
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but m‘?;" +y(lei +z%=-—(z’+l)Vi,
and ViV, = 0.
Therefore
V(YY) = {(2¢+1) (2¢+2)—2.(2¢+1) G+ 1} 257,
=0y

and 72i+17, is a homogeneous function of @, 7, 2z of degree i:
and is therefore a spherical harmonic function of degree %.

‘We have seen that ;3:—"1, as above defined, is a spherical har-

monic function of degree — (i +1).
It follows then that

Y,
2441 i i
T e I Y'.

is a spherical harmonic function of degree i.

28.] Every possible spherical harmonic function of integral
positive degree, 7, can be expressed in the form #¢Y; if suitable
directions be given to the axes 4y, 4,, ... %; determining 7.

For if H; be a homogeneous function of the ¢th degree it

contains (Z+1)_2(1L2) arbitrary constants. Therefore V2H, being

of the degree i —2 contains z—(t—:l—) arbitrary constants.

In order that V2H, majr be zero for all values of z, 7, and 2,
the coefficient of each term in VZH; must be separately zero.

This involves z_(z;_l) relations between the constants in /. -
leaving G+ 1)2(l+ & Z(Z; D] or 2i+1 of them independent.

Therefore every possible harmonic function of degree i is to be
found by attributing proper values to these 274 1 constants.
But the directions of the i-axes 4, 4,, ... %; involve 24 arbitrary
constants, making with the constant 2, 2¢4+ 1 in all. It is
therefore always possible to choose the ¢-axes %, Z,,... 4; and
the constant 3/, so as to make
p2it1 _d_ d d M

b Ay e e
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equal to any given spherical harmonic function of degree <.
Therefore 7Y, is a perfectly general form of the spherical har-
monic function of positive integral degree i.

Again, every possible spherical harmonic function of negative

L
g+l

integral degree —(7+ 1) can be expressed in the form

For if 7, be any spherical harmonic function of degree
—(i+1), it follows from Art. 22 that #2¢*17; is a spherical
harmonic function of degree ¢. Hence, ¢ being integral, it
follows by the former part of this proposition that 72i+17; can
always be expressed in the form 7Y, by suitably choosing the
axes of Y;, and therefore that 7; may be expressed in the form
Y,

1

Pl
Therefore 7Y, and ;’1—% are the most general forms of the

spherical harmonic functions of the integral degrees ¢ and
—(¢+ 1) respectively.
Y, is defined as the sugface spherical harmonic of the order ¢,

i
i+l

where ¢ is always positive and integral ; #Y; and are called

the solid harmonics of the order 7.

24.] If Y; and 7; be any two surface spherical harmonics
with the same origin O, and referred to the same or different

axes, and of orders ¢ and j respectively, and if f f Y. Y;d8 be

found over the surface of any sphere with centre O, then
f Y,Y;dS = 0, unless ¢ =j.

Let H, and H; be the solid spherical harmonics of degrees
¢ and j respectively corresponding to the surface harmonics T;
and ¥, so that
H, =Y, H;=rY,.
Make U and U’ equal to H, and H; respectively in the equation
of Green’s theorem taken for the space bounded by the aforesaid
spherical surface, then
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di, dH; dH,. di; dH;,dH;
fff{ de de dy dy t 3 dz }d dpde

—ffﬂ ’dS_ffH 58,

because V2H; and -V2H, are each zero at every point within the

sphere ;
ffHdHde_f/H ¥
dH; dH; «d yd  =zd o
B W = e g el

and similarly,

af; ¢

P S
7 being the radius of the sphere;

¢ [[mmas = [[mmas,
r r
gt [[ 17,08 = iwvm [ 7, 7o,

or (i—j)fflq. Y,d8=0;
therefore either
i=3j, or f Y, ¥;dS=0.

that is

25.] Definition.—The points in which the axes %, 4,,...4
drawn from any origin O meet the spherical surface of radius unity
round O as centre are called the poles of the axes 4y, 4y, ... 4;.
When all these poles coincide, the corresponding spherical har-
monics are called zonal spherical harmonics solid and superficial
respectively, referred to the common axis, and the surface sphe-
rical harmonic of order 7 is in this case written Q.

If u be the cosine of the angle between » and the common
axis in the case of the surface zonal harmonic @; of order i, then
Q; is the coefficient of ¢ in the expansion of

1
V1=2ue+é
in ascending powers of e.
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Let Od be the common axis, and let OP be » and the angle
P04 be 6.

In 04 take a point M at the P
distance p from O, Then if 7, be A
the solid zonal harmonic of degree
—(2+ 1) corresponding to the sur-
face zonal harmonic @,, it follows M
from definition that
Fig. 3.

o= (%) W’

when p is made equal to zero after differentiation.

Let p = ¢7 and let cos 6 = p.

T d :
Then V e e Wlth e = 0.
. (df’)7w/1——2;w+e2

1

But Z— = — and is constant ; therefore
0
1_14
dp~ rde’
1
T e (— ——y h = O.
Vt vT'ﬂ (de) '\/—-v—-—_l—-2}l.6+62 (WHCILEE
1 % "
Butif ——— be expanded in ascending powers of e,
N1—2pe+e? ; 4 ¥
the coefficient of ¢ in the expansion is, by Maclaurin’s theorem,
1

— () ————: when e=0.

|2 (de) V1=2pe+é
Let it be denoted by 4;.

)

Therefore o= ;L"?Ai. A
But V;= ,);1 Qi
Therefore Q, =4,
Hence @, =4,=1 and @, = 4, =p. Also when u=1

1
v 1—2pe+teé 5eT—e
and therefore each coefficient @ is unity.

= l+e+e+&e,
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It is evident from definition that the zonal surface harmonie
at P referred to OQ as axis is equal to the zonal surface

harmonic at @ referred to OP as
P axis.

26.] Let a be the radius of a spherical
surface § described round O as centre.
Let P be any point within or without
8. Let OP =f. And, I being any
point on the surface, let PE = D,

e 4 LEOP = 6. Then
1

Fighe Vi +a*—2facosd

E

| =

2k : if f>a,
4 ,\/1+iz 2% cosd
J"2 s
=% if 7 <
V1+——2—cos6
1
f{l-'- Q]‘l' Qz'l'&cs
1 f according as f > or < a.
a{ Q1+‘_‘Qz+&c:
Ll 'Q
f f according as f > or < a.
or — Q,
Therefore, 1f f>a
d 1 1

2fde +5= 22{z+1}f,+1Q+2fm ;

=_z(2z‘+1)fm9i.

But
d g3l 1  —2/+2facos 0+ f*+a*—2facosb
2f——+—-= =
i D "D {f*+a*—2facosb}z
- fz_az
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Therefore ; g
fi_D—‘éi = 2(27:'*‘1)}%@1 Qs

and similarly if £ < 4,

“zpzf =3(2i+1) L5

1+1
27.] With the same notation as before we can prove that

f f ; f42{ "% when P is without S,

and f f %3 = 3”;2 when P is within S,

the integrations being taken over the surface &,

Let ZOP = 0, and let ¢ be the angle between the plane of
EOP and a fixed plane through OP ; then

do = a?sinfd0do,

ff%;':‘?ﬂ'aﬂ "sm@d@ﬁ

TR L
Also D? = a®—2afcos 0+ f*%;
0 0.00 = DT";D-;

» f e

D"‘ ‘
the limits on the right-hand side bemg
J—a and f+a when P is external,
a—f and a+4f when P is internal
/‘ 27m { 1

1
—— % when P is external,
f-a  fta }

and

2 TA { 1 1 } e
= when P is internal ;
f la—f " atf

doeo _a 47a 4Ta
or f ﬁ=]_"'f3-—a2 and az—f2
in the respective cases.
Hence

[t an et [ :

do=4mna

29
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for external and internal positions of P respectively, and for both

cases
al e
ltf=afff G do =4rna.

28.] In the last case let '(E) be any function of the position
of F on the surface which does not vanish at the point in which
OP cuts the surface, nor become infinite at any other point on
the surface, let Q, be the surface zonal harmonic at % of order 2,
the common axis being OP, then, if P be made to approach the
surface, ultimately shall

PP = {ff@o F(E)do-+3f 0, F (E)do

+5fo?E(E)da+&c.}-

For with the notation of the last Article let

_ff (f?~ az)F(E)dG

then when P approaches the surface and f is indefinitely nearly
equal to @, every element of the integral vanishes except when
D is indefinitely small. In this case P is ultimately on the
surface, and the integral has the same value as if #(Z) were
equal to F(P), its value at the point of § with which P ulti-
mately coincides, or

2~ (12 2 ~ 2
G f / ry Lo ar=r () f f L2245 when f=a ultimately.

Therefore

T
Vi g F(p).u,ﬂfffzpz“ do

= 47a F (P) by the last Article.
Suppose that f is originally greater than e, then

BEo-

1 2 ___ 2
and F(P):—.ltf=au=——}—.ltf=afffD3a F(E)ds;

" FB=——ly, ff{2fdf1) D}I’(E)da
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And, by Art. 25,
1
B 7

Performing the differentiations and substituting, we get

4;(12 {fooF(E)dH 3f Q, F(E)do

+5fo2F(E)da+&c.}-

{@owlf +szz +&c}

F(P) =

29.] If 7, be any surface spherical harmonic of the order s,
and if @, be the zonal surface harmonic of the same order and
origin referred to any axis OP, and if do be an element of a
spherical surface of radius o described round the origin O as

centre, then
! ' 47 a?
f Vi Qido = oo (),

where () is the value of ¥, at P the pole of @, the integra-
tions being over the spherical surface 4.8.

Substitute ¥, for F(Z) in the last proposition.

Then F(P) is the value of ¥; at P;

1
— {/f@o Y,.da+3f Q. 7. do
+ 5/]@2 Y,do+ &e. }~
And, by Art. 24, each double integral vanishes except

e

Y, (atP):T;:/fQiY‘da,

[feriae =315,

if (X;) denote the value of ¥; at P.
By putting ¥; = @, we obtain

fo2 = 24::&1

since, by Art. 25, Q;, = 1 at the pole.

Y, (ot P) =
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80.] If F(E) be a spherical surface harmonic, i.e. F(E) = ¥,
then, whether P be on the surface or outside of it,

AL +1
fffD3“ F(E)do = i7a G F(P)

e i
For f le)s“ F(E)do =ff(2i+1)f?TQ,.I’}da-,
by Arts. 24 and 26,

4 ai+2
= _:,W (Y9,
where ( ;) denotes the value of ¥ at the common axis of the zonal
harmonics, that is, along OP.

Therefore
2__ o2 i+1
fff 75 F(E)dc:47ra(%) (Y,)

31.] Considered as a function of u derived by the expansion of
1
M 1—2pe+e
coeffficient of order i, and is frequently written 2.
‘We can prove the following properties of the coefficients 2.
(@) As proved above, if p = 1,
1 1
—_—=—— =1 = & .
Ve B TTET A O +e+e+ &e
Hence, if p == 1, P, = 1 for all values of ¢; if p = —1,

» the zonal harmonic @, is called the Zegendre's

1 1
— = = 1—e+4e*—&e.
V1—2pet+e 1+e
Hence, if p =— 1, P; =+ or —1 according as ¢ is even or odd.
If p <1 ——————— is always finite, and is finite if e = 1.
& Vi1—2pete Y ;

Hence the series P; 4 P,+... is a convergent series,
(6) It is evident from the formation of P; as the coefficient of
¢ in the expansion of
(1—2pe+e)F or (1—e2p—ey?
that P; must contain pf, 2, w'~%, &c., but can contain no
higher powers of u than pf, and no powers of which the index
differs from 7 by an odd number. Hence if 7 be even, P; has the
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same value for +p as for —p, and if ¢ be odd the same value
with opposite sign.

Hence also p’ can be expressed in terms of P;, P,_,, &ec.

. 1

(e) f P,Pdu =0 if i %3,

-1
= E?—T-_l if 2 =J-
For since p = cos 6,
dp = —sin 0d0.

Also P; and P; are both functions of p, and therefore of 6.

Hence

1 i T
[ P,P;dp =f P,P;sinfdo
J=1 0

1
=Wf P,indO'

over the surface of a sphere of radius 2; = 0 by Art. 24, unless
i=J.
And if ¢ =j,

[lPﬂd et [fria, - N
Jo T g f‘ 7= girl

1
(d) f P,uidu =0 if ¢ >j, orif j—2 is odd.
i

For expanding p’ in terms of the P’s, the integral is resolved
into a number of integrals of the form f : P, P;dp, in each of
which ¢ =/, and is therefore zero. 2

(¢) To find the value of A lp.“P,. du, where k is any positive

number integral or fractional ¥,

Let P, =api+Bu2+....
Then
1 = »e a ﬁ
fo e S T
= 23 if 7 be even,
(k+i+1) (k+i—1)... (k+1)’
K/

, if ¢ be odd.

= (kFit1) (xFi—T)... (x+2)
* See Todhunter’s Functions of Laplace, Lamé, and Bessel, Art. 84, 35.
VOL. I. D
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Let ¢ be even. Then if « has any of the values 7—2, i— 4, &e.,
or zero, the left-hand member

1 3t
f M"P.;dl*:g[ p Pidp
JO J=1

=10}
and therefore X = 0.
It follows that 7
K=AkKk.k—2k—4..k—0+2.
Also A is the coefficient of the highest power of «; therefore
A=a+8+y...
= P;(n) when u =1
= 1.
Hence, if 7 be even,
1 RATRDESD s S ey
“Pdp= : : .
./o‘p g (k+2+1) (k+i—1) ... (k+1)
Similarly, if ¢ be odd,
4 k—1Kk—3..k—1+2
P dp = : : .
A KL= 000 (kki=1) ... (k+2)
If « be either an integer or a fraction whose denominator
when reduced to its lowest terms is odd, then

1 1
fMKP.'dM=2fF"PidV-,
-1 0

if ux P, does not change sign with g,
=0,
if u*P; does change sign with p.
(/) Hence any function, f(u), which can be expanded in a
series of positive powers of u, whether integral or fractional, can
be expanded in a series of the form

F(W)=A4,+ 4, P+ 4,P,+ ...

For we have

1 1
f_ A /: Plap
2

T 2i+1
2z+1
fPsf(H)di‘:

or
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which determines 4;, if f(u) is known in terms of positive
powers of p.
It is perhaps necessary to show that the series
A+ 4, P+ 4, P, + &e.
converges, if f(u) can be expanded in a converging series of
ascending powers of u.

For let ¢, p* be any term in the expansion of f£(u). Then the
term in 4; derived from this term in f(u) is

27 1
Cie l+1f Piﬂkdﬂ)

and the corresponding term in 4, is

2t+5 %
& — f_leM dp;

. . - . . 1
from which it is easily seen from the expressions for / Pucdu
-1

above obtained that, if ¢ be large enough, 4;,, < 4,.

Now the series P, 4- P, P,... converges,

Hence 4,+ 4, P, + 4,P,+ &e. converges.

32.] We have hitherto regarded the coefficients @ or P as
functions of u derived from the expansion of

S
¥ i=3 pe+ e

We may however take for initial radius any line OC not
coinciding with the common axis, and the direction of the
common axis O/ of the zonal harmonics may be defined with
reference to this line by the usual angular coordinates, namely,
6 = LHOC, and ¢’ the angle between the plane HOC and a
fixed plane through OC. In this case the angular coordinates
defining the dlrectlon of OP or r will be 6 and ¢, and thc
cosine of the angle HOP will be

os 0 cos 0’ + sin 0 sin 8" cos (¢ ~ ¢).

Now @, is, as we have seen, a function of cos [/OP, and is

therefore a function of
¢0s 8 cos @’ + sin 0 sin 6" cos (p— '),

It is evidently symmetrical with regard to 6 and ¢’. So that

the value of @, at P, when OH is the common axis, is the same
D2

=1+Q,¢,+ @, +&c.
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as the value of Q; at H, when OP is the common axis, see Art. 25,
In this form @), is called a Laplace’s coeflicient.

33.] Of the differential equation which a spherical surface
harmonic satisfies.

By definition any spherical harmonic # satisfies the equation

d s d s d 2
{(d_.z) + (@) e (d_z) }’“—
If we change the variables to the usual spherical coordinates
7, 0, ¢, where
x=rsinfcosdp, y=rsinfsing, z=rcosd,

the equation becomes

d%u +2du+ldl¢+ 1 _cf’_u_,_ cot & du b :

arr T rdr T A T Psin?0de* T 2 do (1)

Y, ; : : §
Let = 'r‘—*'l Then # is a spherical harmonic function of

degree —(i-+ 1), and satisfies the above differential equation.
Now Y, = r**1u, where ¥ is independent of #, therefore 7#*1u
is independent of 7, whence

(¢+1) r‘u+7"'+1%= 0,
d%u

; A
s (7 t—1 g e +1 —
and 1+ 1)rud2(@+1)r dr+’r’ -z 0,
d*uw  2duw  i(@@i+1)u
e W g
Hence the differential equation becomes
d%u 1 du
T +co t0 smz()d([)’ +i(f4+1)w=0. .ccoverennnn(2)

Let us now change the variable from ¢ to cosd, and let

cos9=1y. Then
d?u du
@ Tl =

Substituting in the differential equation, we obtain

du
= (Sind @ e==)¢
y( dy)

d o\ dut 1 diu
= SR et =0;
dy{(l y)dy} 1= ag +i(i+1)u ,
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Y,
or restoring ;H—l for #,

d 1 4y,
dy{l—y - }+ T g D F= 0 3)

This is true for any spherical surface harmonic ¥}, and therefore
for the zonal harmonic Q; as a particular case.

In the case of the zonal harmonic, if the common axis be taken
for the initial line from which 6 is measured, Q; is, as above
mentioned, written P, and P; is independent of ¢. Hence P,
satisfies the equation

—— dP S
i{l—yz———‘}+z(z+l)1’i=0,

dy dy
d e M
o dﬂ{l—p, dM}+®(z+l).P,-_O......,........,...(4)

34.] If we differentiate equation (4) of last Article % times,
we obtain the equation

(=3 d+2f: W 1 e P—O- )

From (4) and (5) above it appears that P; and —JFP; respectively
satisfy the differential equations
dy .
— 2 — — y C—
(1 >d 2u gl i+ 1)y =0,
s . ©
(1 —-;L"’) d_,ﬁ A (%+ 1)’“"5;7 + (@+k+1)Ei—k)y =0.

3

o2
We may also prove that P, and dd pa are the only solutions of

(6) both finite and integral in w.
For if in the former of equations (6) we write P;« for y, we
obtain a differential equation in # which gives on integration
dp
Pri—)
where 4 and 4" are arbitrary constants and the integral com-
mences from some fixed Limit ;

7 ap
y= AP AP gy

If 4 = 0, y = AP, an integral finite solution in p.

u=Ad+4
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If 4’50, the expression for 7 contains the term

P du
42 gy

and therefore can be neither finite nor integral.
Hence P; or AP, is the only finite integral solution in u of
the former of equations (6). And in the same way it may be

arP; .
proved that i
second of equations (6).
35.] By means of equation (5) of the last Article we may
generalise the proposition of Art. 24 by proving that

LRI
/ e ST Wd p=0 when i j

is the only finite integral solution in p of the

21/+1 -(E4+k) (¢ +k=1) ... (¢—k+1) when ¢ =.

For if we multiply the left-hand side of (5) of Art. 34 by
(1—p2)%, it may be written
d P;

e {(1_”2)”1(1"“}’ +(E+E+1)E—R)(1— p.z)"d =10
dp ApFH du ’
and changing % into £—1 this becomes
d 2\ k

@‘{(1—!‘)
But integrating by parts, we get

+1 kP, gk +1gk—1
[P BT [0R,

<1 dp*  dpk =t dp

since the integrated terms vanish ; and therefore

1 AP, PP,
1— 2y }d
f_I{( 1) i s

d*p, : [ _, AP,
o }+(z+k)(z_ic+1)(1_,ﬂ)k g

g AL S e A
= (i+k) (Z—k+1)£1 (1—p2y d’l.lc—li TFF-TJ dp;

and therefore by successive reductions,
Tl d* P, d* P;
1—
f-l {( (> dpF  dpk }d“
+1
=(@+7c)(i+lc—1)...(i—lc+1)f P2, apy
: -1
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and therefore by Art. 31,

d* P, dP
f (1—p2)r ——+ ol T k’dp_O if ¢5£5

21_!_1 (C+k) G+E—1) ... 6—k+1) if ¢ =].

86.] To expand @; in a series of cosines of multiples of
(p—9").

Since @), is the coefficient of ¢’ in the expansion of

{1—2¢(cos 0 cos 6 + sin 0 sin & cos (p—¢’)) +¢*} 73,
it follows that the term in Q; which involves cos £(¢p—¢’) must
contain (sin 6)* as a factor, or in other words, that the required
expansion of @, must be of the form
0o+ 4, €08 (h— ') + &, + g 008 b (h— ') + &,

where ¢, = (sin 0)* f(cos 0), and the function denoted by f is
rational and integral.

If we perform the requisite differentiations on @;, substitute
in (6) of last Article and equate to zero the coefficients of
cos k(¢p—¢’), we obtain the equation

d2 d ; ; ;
(=7 FF —2 e+ 1)y T 46141 6B F= o,
where y = cos 6.

And since f is a finite integral function of y, it follows from
Art. 34 that

fAkdk’

where 4, is independent of y or of 6.
Now @, is a symmetrical function of 6 and ¢’, if therefore we
“denote cos ¢’ by y it will follow that 4, must be of the form
e} HEY
[ e d}/" H
where P, is the same function of y” that P; is of y, and therefore
that

=", P‘+a13m031n6'dp 4xs

cos((p ¢’) + &e.

+ a,, sin 6% sin ¢'* Z ded;: cosk (p—¢') + &e.
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For most of the applications of Q; the actual values of the
numerical coefficients ay, a;, a, are not required, they may
however be determined without much difficulty as follows.

37.] To prove that

2
ET GHR) GE—1) ... G—k+ 1)

For
d*P, dEP
Q; = a, P, P/t &e. +a, —* e ey dy
Square both sides and integrate with respect to ¢ from 0 to
2w, remembering that the integrals of all terms containing
products of cosines of unequal multiples of ¢— ¢’ are zero, and
that the integrals of all quantities of the form (cosw(p—¢"))?
are equal to w and the integral of a2 P2 P;? is 2wa2, P2 P/?;
2w .
3! f (% = w{ 2(a, P, P)*+ &e.
0
% ’
+ (a,‘ofi 1,: ‘fi;" sin 6% sin 6%)? + &e. }

Again, integrate both sides with regard to y from —1 to +1,
remembering that

1 2w 49
2 =%
[ [ @raras =517
and we get

47 1
- oAl 2 pr2 2
] ﬂ{zao /s 1P + &ec.

sin 0% sin 6" cos & (¢ — ") + &e.

+ o (sin o+ S 24 )f(
Butif@:@'and¢_¢,Qi=1,

. 4w 4T ; I
ST 2ha {aoP,. 24 &e.+ a"(dy”‘ sm()“)2+&c.}. B3)

For in this case @, becomes
adP; aes
P ’ 1 X% 2
(518 +a, %sm& &y } + &e. +ak{sm 0 v } + &e.

The two expressions on the right-hand sides of (a) and (8)
cannot be equal for all values of 6’ unless the corresponding
terms are separately equal ;

{ sin %Y + &e. } ()
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. 3 P, /
a"Z(SmGkoily”‘)f ( s1n0")2dy._ E a"(d ksmG"),

27+1
=
2z+1
f &
1
./-1(d
2

=GR GFh—1) . =kt 1)
38:] If ¥; be any surface spherical harmonic of the * order,

then Y; is a rational and integral function of cos#@, sin 9,
cos ¢, and sin ¢, for

¢ sin 6‘) dy-

‘yki sin 0%)*dy = 2 +1 (C+E)... G—k+1);

et g g (
~ ¢ ak; dh T dk, A

Also if /, m, n be direction cosines of the axis Z,

O TN
. B R e MR L
T A
-—-—-—-———...-———: () =

where /¢ means the product of p, I’s, and so of m® and 2", and
where p+o 47 = i.

d 1 Ax™y*2?
But W(;)= —"_2';':1——’: where m+n+_p_1,,
also x = 7 cos 0 cos ¢, = rsin@sing, z=rcosf;
b Aa™y"2? _  Asin0 cos 6" cos ¢” sin ([)”
p2it1 Y pitL

therefore ¥ is of the form stated above.
89.] ¥, is of the form
arp
3, {a, coskp+ B, sinkep} sin 0¥ F’
where a, and 3, are numerical constants.
It is clear that we may assume the coeflicients of cos £¢ and
sinZ¢ in ¥; to be 4, and B,, where 4, and B, are functions of
6 to be determined.

Also we may assume 4, = a, sin 6%, where a; is constant and
v to be determined.
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But Y, and therefore the coefficient of the cosine and sine of
every multiple of ¢ satisfies the second of equations (6) of Art. 34;

d*v dv
e G v e . . — o
(1 y)dy2 2(/c+1)'vdy+(z+k)(1+7c+l)'v 0;

v=A

AEPYe 2k+1 dkP
FrR s N e
[ a—y)

Now vsin 6% is to be a rational and integral function of y and

~/1—92, which clearly cannot be attained so long as the second
term in » remains;
d*P
dy dyt’
k
dy*

v=4 —

A, = a sin 6* .
Similarly
i g
B, = ﬁkSlnakE—ks
where a, and /3,‘ are numerical constants ;

= 2 {a,coskp+ B, sink ¢} sin O* (fl I,::

the constants o, and B, depending upon the directions of the
i-axes.
It has already been proved, Art. 24, that

1 2x
f / Y, Y;dydd =0
J—1./0

unless 2 = j, and we may now see that the same result follows
from the general form of the function ¥; or 7.

k

For Y,.=E(akcosk¢+ﬂksinkd>)sin6’°OCZZZ,:',

= i AT
and Y; = Z () coskp+ 3, sink ) sin 6% dy"J :

If now we multiply ¥; by ¥; and integrate with regard to
¢ from 0 to 27, all the terms will vanish except those in which
the multiples of ¢ are the same, and the result therefore will be

of the form
d*FP; (l P

2k
2 4 (sin 6) P
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If we again integrate with regard to y from —1 to +1, the
result will be of the form

dr P, d P;
2k .7
EA/ (sin @ Ty ——=2dy;
and by Art. 24 each of these terms is zero unless 7 = / &
It does not follow that

1 2m
f f Y, Y;dydo
-1 JO

1s always finite, inasmuch as the values of the 4’s may be such
that although each term in the integral is finite, their sum may
be equal to zero. The values of the A’s depend_ upon the
inclinations of the two sets of i-axes of the ¥; and Y/, and
when these axes are so related that

1 2w
[ [rrriavas
-1 J0

is zero, the two spherical harmonics are said to be conjugate.

For example, take two spherical harmonics of the first order
Y, and Y. If 6 and ¢ be the polar coordinates determining
the axis of Y, and 6” and ¢” those for the axis of ¥, then

12
¥, may be easily seen to be

€08 8 cos ¢ +sin 0 sin 6" cos (p—¢"),
and similarly Y,” is cos 6 cos 6 +sin 0 sin 6” eos (p—¢”),

and
1 2" 47r 4 7, * =% 74 / r/’
Y, ¥ldyddp= =4 (cos 6’ cos 8" + sin & sin §” cos ¢’ cos ¢
-1 Jo
+sin 6" sin 6" sin ¢ sin ¢”)
4m
= (i + mm” + nn"),
if 7, m, n be direction cosines of the axis of ¥, &, w’, #’ those
of Y7,
* In a similar manner the proposition of Art. 26

4ma?
fotYd” TSR

may be deduced from the form of Y5 proved in this article.
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If therefore these axes are at right angles to one another,

1 27
f f Y, Y/ dydd =0,
-1 JO

or two spherical harmonics of the first order are conjugate when
their axes are perpendicular to each other.

For the second and higher orders there is no such simple
geometrical relation,



CHAPTER IIL
POTENTIALL.

Arricre 40.] Ir the forces acting on a material system he
such that the work done by them upon the system in itg motion
from an initial to a final position is, whatever those positions
may be, a function of the coordinates defining those positions

only, and independent of the course taken between them, the

system is said to be Conservative. The wbrk done by the forces
on the system in its motion from any position §to any given
position which may be chosen as a position of reference, is
defined to be the potential energy, or shortly the pofential, of
the system in the position § in relation to the forces in question.

If we denote by U the potential, and by 7 the kinetic, energy
of the system, then, as shown in treatises on dynamies, 7+ U
is constant throughout any motion of the system under the
influence of the forces in question. If ¢ be any one of the
generalised coordinates defining the position of the system, it

follows from definition that — %]bq is the work done by the
forces on the system as g becomes ¢+ 3¢, and therefore the force

tending to increase the coordinate ¢ 1s — N7

If the system be a material particle of unit mass, situated at
the point P, we may without inaccuracy speak of the potential
as the potential of the forces at P.

41.] We are in this chapter concerned only with forces of
attraction and repulsion to or from fixed centres, the force
varying inversely as the square of the distance from the centre.
Now if the central force be any continuous function of the
distance, whether varying according to the law of the inverse
square or any other law, a potential exists.

D
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For let there be at O a particle of matter of mass » which
repels any other particle of mass 7" with the force m#f(r), where
f (r) represents any continuous function of 7, the distance between’
m and »’; then it can be shown that if O be fixed, the work
done by the force upon =’ as m' moves from a point at the
distance 7, from O, to another at the distance 7, from O, is a
function of 7, and 7, the initial and final values of 7, and of these
quantities only, and is independent of the form of the curve de-
seribed by 7" between these initial and final positions, and of the
directions from O in which the distances #; aud 7, are measured.

For at any instant during the motion let 7’ be at P, and let
@ be a point in the course indefinitely
near to P. Let PQ =ds, the angle
OPQ =¢, OP =17, 0Q =r+dr.

In the limit, if @ be taken near
enough to P, the force of repulsion may
be considered constant, as 7’ moves
from P to @, and equal to mu'f(r). .

Therefore the work done by the force in moving the repelled
particle from P to @ is —mm’ f(r) eos pds, or mui f(r)dr, and is
independent of ¢ if d@r be given.

Therefore the whole work done by the force in the motion
from distance r; to distance 7, from O is

mm’ /; :2 J(r)dr,

and depends upon 7, and 7,, and these quantities only.

We have for simplicity considered = fixed at O, but the proof
evidently holds if both » and =’ be moveable, and move from a
distanee 7, to a distance 7, apart under the influence of the
mutual repulsive force mm’f(r). If the mutual force had been
attractive instead of repulsive, in other respects following the
same law, the expression for the work done would be the same
as that for the repulsive force, but with reversed sign. If in
any case on effecting the integrations the expression for the
work done prove to be negative, this result must be interpreted
as expressing the fact that positive work is done against, and
not &y, the force in the motion considered.

Fig. 5.
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In either case, whether the force be repulsive or attractive,
the work done is proved to be a function of » and 7, only, and
independent of the course taken between the initial and final
positions of #’.

‘We have thus shown that if f(») be any continuous function of
the distance between the two particles 7 and 7, a potential exists.

At present, as above stated, we are concerned only with the

1

case in which f(r) =3 In that case the work done by the

mutual force between = and 7/, as their distance varies from 7,

S 15 2 Torl: 2
to 7,, is, if the force be repulsive, mm’ [ —ﬁdr, that is
o rl

fr
G i S e e oY
BRRLT
and if the force be attractive
,§ 1 1 }
—_—I d— ——— e
bogri -y
42.] We shall now consider two kinds of matter, such that
two particles, both of the same kind, repel one another with a
mutual force varying directly as the masses of the particles, and
inversely as the square of the distance between them, and two
particles of different kinds af#ract one another according to the
same law,
Then the work done by the mutual force between two par-
ticles 7 and #/, as they move from a distance r, to a distance 7,
apart, is, if the masses be of the same kind, and therefore the

force repulsive, |
mmn’ 3— — —} 7
Tis 2o

If now we agree to regard all particles of one kind of matter as
positive, and all particles of the other kind as megative, we can
combine both results under one formula

i
mm’ {———¢
T Ty

in which 7 or m’ may have either sign, expressing the work
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done by the mutual force between m and #’ in the motion from
distance 7, to r, apart.

Finally, we will take for the position of reference to which
potential is measured, the position in which the two particles
are at an infinite distance apart, that is, in which 7, is infinite.
Then we shall arrive at the following definition.

The potential of two material particles » and #»’, distant » from
each other, is the work done by the force of mutual repulsion as
they move to an infinite distance apart; that is, mm’ f 72% dr,

when 7, is infinite, that is

o and is positive or negative

according as 7 and # are of the same or different kinds of matter.

In physics a body which is within the range of the action of
another body is said to be in the field of that other body, and
when it is so distant from that other body as to be sensibly out
of the range of its action it is said to be out of the field.

The following definition is therefore equivalent to the one above
adopted. e potential of two material particles distant v apart
is the work done by their mutual repulsion as they move from the
distance r apart to suck a distance as to be out of the field of one
another’s action, attraction being included as negative repulsion.

Taking m' = 1, we define % to be the potential of % at a
point distant 7 from 7.

43.] The potential at any point of any mass occupying a finite
portion of space is evidently the sum of the potentials at
that point of all the particles of which the mass is composed.
If m be any particle of this mass, and 7 the distance of » from P,

the potential of the mass at P is 3 ?’ where the summation

extends throughout the mass, or if p be the density of the mass
at z, y, 2, the potential is ;

e,

Let this potential be denoted by 7.
44.] The repulsion at P of a mass at O resolved in any
direction is the rate of diminution of the potential of the mass
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per unit of length in that direction. This is a particular case
of the general theorem proved above, that the force tending to

increase any coordinate ¢ is — i
If 7 be the potential of the particle m, and ds the given

direction,

av._ 4V dr
T ds  dr ds
om odr m
S i P (r, ds)

= the repulsion resolved in ds.
And this proposition being true of every particle of which the
mass is composed is evidently true of the whole mass.

Hence, if 7 be the potential at P of any mass M, the re-
av

pulsion of the mass in the direction indicated by ds is — b

45.] If 8 be any closed surface, d8 an element of its area, N the
repulsive force at dS resolved along the normal to dS measured
outwards arising from a particle of matter of mass m placed at the
point O, then if the integration extend over the whole surface :

S S NAS = 4wm, if m be within S;
and SSNAS =0, if m be without S.

Let a line drawn from O in any direction cut the surface § at
the point 2 distant » from O, and let this line make the angle ¢
with the surface § at P.

Let a small cone with solid angle dw be described about OP
as axis, cutting off from § in the neighbourhood of 7 the ele-
mentary surface 8.

2
The area of d§ is equal to :iflzm , also the repulsion at P
from O is %, and the resolved part N of this repulsion in

the direction of the normal to § at P drawn outwards from &§ is
m ., m .
+ g sing or — o sing,

according as OP is passing out of § from within, or into § from
without ;
NdS=+4mdw, or —mde

in the two cases respectively.
VOL. I. E
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But if O be within 8, the line drawn from it in any direction
as above must emerge from § one time more than it enters
it, and therefore the sum of all the values of NdS for this line
= + mdo.

Taking the corresponding sum for all lines drawn from O we
get the integral //' N d§, and therefore

JSSNIS=4m fdo =47m;
since the sum of the solid angles about O is 4.

If O be without § the line drawn from it in any direction
must meet § in an even number of points, and therefore the
sum of all the values of Vd§ for every such line must be zero;

therefore 1n this case
SSNds=o.

This proposition is true for any particle within or without §
respectively.

Therefore it follows that if any quantity of matter of mass
M be distributed in any manner within a closed surface §, and
if V be the repulsive force of that matter at any point on §
resolved in the direction of the normal at that point drawn

outwards, then
SS NS =4n M.

And, similarly, that if 2/ be without §, then
SSNdS=0;

and writing — 7 for N, by Art. 44 we have

ffﬂr—ds=—47r]l[, ol ff‘-’l-zds= 0,
dv dy

in the two cases respectively.

46.] It follows from Art. 45, that if p, the density of matter,
be finite in any portion of space, the first differential coeflicients
of 7 cannot be discontinuous in that portion of space.

For consider a cylinder whose axis is parallel to 2 and of
length /. Let the proposition be applied to this cylinder. IfZ be
very small compared with the dimensions of the base, we may
neglect that portion of the surface integral which relates to the
curved surface, and the proposition becomes

ff%dydz =—4n///)pdxdydz,
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in which the surface integral is taken over the ends of the
cylinder, and the triple integral throughout the interior space.

Also in the surface integral gZV is the rate of increase of 7 with

the normal measured outwards from the enclosed space, in the
case of both ends of the cylinder. If it be measured in the same
direction in space for both ends, the surface integral may be
written

f/{ }d dz=—4n [/ [ pdedydz.

Now if p be ﬁnlte, the ‘mple integral ultimately vanishes when /,
and therefore the enclosed space, become infinitely small; and

therefore the left-hand member also vamshes, and (d_p: cannot
differ by any finite quantity from ( 7 ) or cannot be dis-

continuous. Therefore also 7 cannot be dxscontlnuous.

Equations of Poisson and Laplace.

47.] In the equation of Green’s theorem let 7 be the potential
of any distribution of matter of which the density p is every-

where finite, and therefore such that gl_lf ) QZ and Ax are con-
dz ~ dy dz

tinuous, let § be any closed surface, and let »’= unity. Since

aw’  du du’
e » and —— 7, are zero, the equation becomes

f f r a8 = f f f VeV dwdyd.

But ——EZ-; is the repulsxve force of the matter referred to

resolved in the normal to S outwards from the surface element
dS. And therefore by Art. 45

_ff-—dS ]ff/‘lwpdxdydz.

Therefore also

—/ffVZdedydz =/ff4_ﬂpdmdydz.
E 2 :
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Since this equation holds for every possible closed surface, it
follows that ViV 4 4mp =0
at every point. This is called Poisson’s equation,

At a point in free space p = 0, and the equation becomes

ViV =o0.

This is called Laplace’s equation.

It follows as a corollary from Poisson’s equation that if 7 be
the potential of any material system at 2, g, z,

1 VY,
V_—Erffdexdydz,

where = (@—a) + (y—y ) + (2 —¥)**;
and the integral is throughout all space.
48.] Laplace’s equation can be deduced by direct differentiation

of ; . For if the density of matter at 2/, 3, 7 is p, the potential

at , 7, 2 is

r=1ll7 <w—m>'?ifif> T2

_-/:/‘fpdw’dy'dz'.
= r

Now if O, or 2, 7, 2, be any point not within the mass, the
limits of the integration are not altered by any infinitely small
change of position of 0. Hence we may place the symbol V2
under the integral sign, and obtain

Vi = f f f PV L def dyf d = 0.

But if O be within the mass, we cannot, in forming the triple
integral for 7, include in integration the point O at which the

% 1 2 5 g . :
element function = becomes infinite. It is necessary in this

* Tt may be proved by Green's theorem to be identically true for all functions
(V) vanishing at infinity that

1 vV
_—Efff’? dedydz,

the integration being extended over all space, and 7 being the distance from the
point at which V is estimated to the element dzdydz; and this proposition may,
of course, be made the foundation of an independent proof of Poisson’s equation

vV +47p = 0.
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case to take for the limits of integration some surface inclosing
O and infinitely near toit, and to form 7 as the sum of two separate
integrals, one on each side of that surface. Hence any infinitely
small change of position of O involves in this case a change in
the limits of integration, and we are not at liberty in forming V27
to insert V2 under the sign of integration. This is the reason
why Laplace’s equation fails at a point occupied by matter.

49.] Definition. We have hitherto supposed the matter with
which we have been concerned to be distributed in such a
manner that the density p is finite, or in other words-that the
mass vanishes with the volume of the space in which it is
contained. According to this conception the mass of a small
volume dv of density p, is pdv, 1.e. p is the limiting ratio of the
mass to the containing volume when that volume is indefinitely
diminished. At all parts of space for which this condition is
satisfied we have obtained the equation

ViV 4mp =0,
if 7 be the potential of any distribution at the point at which
the density is p.

It may, however, happen that p becomes indefinitely great at
certain points. The distribution may be such that although the
volume becomes infinitely small the mass comprised in it may
remain finite,

Suppose such a state of things to hold at all the points on a
certain surface §, so that the mass of matter comprised between any
portion of this surface, an adjacent surface §” infinitely near to it,
and a cylindrical surface whose generating lines are the normals
to § along its bounding curve, remains finite however close 8’ is
taken to S, then if the mass vanishes with the area of §, inclosed
by this bounding curve, we call the distribution superficial in
distinction from the volume distribution hitherto considered.

In this conception of superficial distribution we disregard the
distance between S and § altogether, and we say that the mass
corresponding to an element of surface 4§ is od8, where o is the
superficial density, o being in other words defined as the limiting
ratio of the mass corresponding to, or as we say om, the surface
d8 to the area of ¢, when 48§ is indefinitely small,
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Still further there may be points for which not only p, but o
also, is infinite, and such that if a line / be drawn through
these points, the mass of the superficially distributed matter
comprised between this line /, an adjacent indefinitely near and
parallel line 7, and perpendiculars to 7 at its extremities remains
finite, however near / be taken to /. In such cases the distri-
bution is said to be finear, and neglecting as before the distance
between 7 and #, we say that the quantity of matter corresponding
to, or on the element ds of / is Ads, where X is the linear density
at ds.

50.] On the modification of Poisson’s equation at points of
superficial distribution of matter.

Let 48 be an element of the surface, and let us form on 48
a cylindrical surface like that mentioned in the definition of the
last article.

Let p be the uniform density of matter within that eylindrieal
surface. If @8, denote any element of that surface, including
its bases, we have by Art. 45

ff;l_.rdslz—tlwfffpdwdydz.

In the limit, when the bases of that cylinder become infinitely
near each other, the right-hand member of this equation becomes

—47|[|odS. And if dv, d” be elements of the normal on

either side of &, measured in each case from §, the left-hand
member becomes ff(dV dV)dS

ff(dV ;ll]:)dS— 4#//adS;

dV clV

*
clv +4mr_0

or

* The cases of finite and infinite p have been considered sepa.rately, with the
view to their physical interpretations. There is no exception in any case to the
equation v*V +4mp = 0, because, 2V becomes infinite whenever %—5, &c. are
discontinuous, i.e. when p is infinite,
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51.] The mean value over the surface of amy sphere of the
potential due to any matter entirely without the sphere is equal to
the potential at the centre.

For let @ be the radius of the sphere, » the distance of any
point in space from the centre, a?dw an element of the surface.
Then denoting by 7 the mean value of 7 over the sphere, we

have
7=— [[vara
= de,
; dV 2
‘q dr 47rf “ix aff 4
but f %fazdw—o by Art. 45.

Hence %r—V— = 0 or 7 is independent of the radius of the

sphere, and therefore equal to the potential at the centre.

Corollary. The potential of any matter uniformly distributed
over the surface of a sphere, at any point outside of the sphere, is
the same as if such matter were collected at the centre. Hence
also the potential of a uniform solid sphere at any point outside
of it is the same as if its mass were collected at the centre.

51 a.] The mean value over the surface of any sphere of the
potential, due to any matter entirely within the sphere, is the same
as if such matter were collected at the centre.

For using the same notation as before, and denoting by 3 the
algebraic sum of the matter in question, we have in this case

1 i
47TagffVa2dw = —ffVolm
av s )
dr — f dr 47ra"‘f_/ o

V=

e b 4’”'[, by Art. 45,
47a*
¥y M

——— e T - —

e rt
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and 7 = %I, no constant being required, since 7 vanishes when

7 is infinite.

52.] The mean potential over the surface of an infinite cylinder
due to a uniform distribution of matter along an infinite straight
line parallel to the axis and outside of the cylinder is equal to
the potential on the axis.

For let @ be the radius of the cylinder, 7 its length, 6 the
angle between a radius of the cylinder and a fixed plane through
the axis, » the distance of any point from the axis. Let 7 be
the potential, 7 its mean value. Evidently 7, if » be given, is
a function of 6 only.

Then we have " fladHV

27nla
av
av  ; fladﬂd
dr = 2xla
=0, by Art. 45;

because that part of the normal attraction which relates to the
ends of the cylinder may be neglected.

Tt follows that 7 is independent of 7, and is therefore equal to
the potential on the axis.

1t follows also that the potential at any point outside of a
cylinder of a uniform distribution of matter over the surface of
the cylinder, or throughout its interior, is the same as if all
the matter were uniformly distributed along the axis, and there-
fore that the potential of such a uniform distribution at any

point outside of it and distant » from the axis is / ——f—)_A:—dw,

-0 & 2?41
where p. ddx is the quantity of matter corresponding to a length
dz of the cylinder.

That is, p4 .(C—2log r), where C is constant.

53.] The potential of any distribution of matter can never
be a maximum or minimum at any point in a region not occu-
pied by any portion of that matter. For suppose the potential
to be a maximum at any point O, and describe a small
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sphere about O as centre. Then Z—Z/ » the rate of increase of 7 per

unit of length of the normal to the sphere measured outwards,
must, if the sphere be small enough, be negative at every point of
the surface. Therefore

I e !
_//Zl—v d S is negative ;
therefore f / f pdxdydz is positive ;

or there must be positive matter within the sphere, and as this
is true for any sphere, however small, described about O as
centre, there must be positive matter at 0. Similarly, if 7 be
minimum at O, there must be negative matter at 0. 7 can
therefore never have a maximum value except at a point situated
in positive matter, and never have a minimum value except at a
point situated in negative matter.

53 a.] If 7 be constant throughout any finite region free from
attracting matter, it has the same constant value at every point
of space which can be reached from that region without passing
through attracting matter.

For let the whole of space in which 7 is constant which can
be so reached from the given region be comprised within the
closed surface 8.

Then on 8, 7 either increases or diminishes continuously out-
wards. Let a small closed surface 8" be described lying partly within
8, and partly outside of it, and in the parts where 7" increases out-

wards from §. The normal integral f / —— d§ applied to such

surface is not zero, and therefore the interior space must be
occupied by matter. But there is no matter in the portion of
the small closed surface within §, therefore there must be
matter in the closed surface immediately outside of 8.

53 6.] If two systems of matter have the same potential
throughout any finite portion of space bounded by a surface S,
they have the same potential at all points in space which can be
reached from that portion without passing through any matter
of either system.



58 THEOREMS CONCERNING THE POTENTIAL.  [54.

For let 7 and 7 be the potentials of the two systems, so that
V="" throughout the space enclosed by 8. If possible let 7 be
greater than 7’ in some region contiguous to 8. Then we may
describe a closed surface &, partly within and partly without S,

such that on the part without §, ‘g is everywhere greater than

[EK . It follows that for such surface

dv
aV . av’ ..
f(—iv—dS;é /dv as’.

But unless there be attracting matter belonging to either system
within §” both these quantities are zero, and they cannot there-
fore be unequal.

54.] The propositions of the last article can also be extended
to the case where 7 is given equal to 77, not throughout any
finite portion of space, but only at all points in a finite straight
line, provided that both 7 and 7’ be symmetrical about that
line as axis.

For we must suppose that there exists some space about the
given line which contains no matter of either system. We
may describe wholly within that space about the given line as
axis a right cylinder of very small section. For that cylinder

both / f [—;—Z dS and f f % dS must be zero, and therefore by

the symmetry about the axis 7 cannot differ from 77 at any
point upon, or within, the cylinder. And 7 being proved equal
to 77 at all points within the cylinder, the case is reduced to
that of Art. 53 4.

55.] Let 7, instead of denoting a potential, be any spherical
solid harmonic, and let § be any closed surface not enclosing the
origin. Then by Art. 6

v
ff% as =fffV"’dedydz,

the integrals being taken over and throughout § respectively.
Writing 4wp for —V27, we obtain the result of Art. 45 as a
particular case of the general theorem. Hence the propositions
of Arts. 53 and 54 may be extended to the case in which 7 or 77,
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instead of being a potential, is any spherical solid harmonic. 1If,
for instance, the potential of a given mass be proved equal to a
certain spherical solid harmonic U at all points within a certain
region, as the finite space §, or the given length of the axis of a
symmetrical system, it can be shewn that the potential is equal
to U at all points which can be reached from the given region of
equality without passing through any matter of the system,

Further, U, instead of being a single spherical solid harmonie,
may be an infinite series of such harmonics, and the proposition
will still be true for all space which can be reached from the
given region of equality without passing through any matter of
the system, or through any point where the series U ceases to be
convergent.

56.] If the potential due to any distribution of matter on a
closed surface § be constant at all points on S, the superficial
density, o, is equal to — %r Z—f at each point on §, the normal
being measured from § on the outside of it.

For since the potential 7 is constant at each point on &, and
satisfies V27 = 0 at all points within §, it has by Art. 7 the
same constant value at all points within 8. Hence in Poisson’s

— = 0, and therefore

dv

- Ak el M e 4mdy

But whether the potential be constant or not, the algebraic

sum of the distribution over § is

1 av

57.] It is always possible to form one, and only one, distribution
of matter over a closed surface S, the potential of whick shall kave
any arbitrarily given value at eackh point of that surface.

For, as we have proved in Art. 7, there exists one determinate
function # which has the given value at each point of S, and
satisfies V22 =0 at each point in the infinite external space, and
vanishes at an infinite distance.

And there exists one determinate function " which has the

superficial equation
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given value at each point of §, and satisfies V2#'= 0 at each
point within 8.
Then a distribution over §, whose density is

1 {du_}_du
dv " av§’

the normals being measured from 8, dv' on the inside, and dv
on the outside of the surface, is the required distribution.
For let a small sphere § be described about any external

point, @, as centre. Let 7 = ; where 7 is the distance of any

point from @.
Then, applying Green’s theorem to the space outside of §
and §’, we have with the given meaning of dv,

ff dVdSJfff = dS’+fffu_v2dedydz
_ffV o dS+ffV~—dS’+fffvv2udxdydz.

Now V2 =0 and V27 = 0 at all pomts within the limits of
the triple integral, and

ffu—— a8’ = u°f ——ds = —47ru0,

if u, denote the value of » at Q. Also / V dS’ vanishes.

Therefore the equation becomes

fu—dS 4ﬂuQ=ffV—dS oo Y

Again, applying Green’s theorem to the space within 8, we
have with the given meaning of d»’

,av
/f va
/f V v dedydz,

or since both V27 =0 and V24" = 0 everywhere within &,

_ff —~dS_ ffvd_@i'ds....... A

Now — -:ZZ—IZ = Zr/: if @ be not actually on §, however near to
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8 it may be, and # =2" on §. Hence, subtracting 4 from B,

we have
47ruQ=-—ffV{€l—qf+d—u,}dS.

But if P be any point on &, VatP_PQ

+
Therefore uQ_—47rffdy dv

Now the right-hand member is the potential at @ of the
supposed distribution whose density is

1 (du =~ du’
TRy
It follows that this potential is equal to #y at every point
outside of §, however near to §; and therefore, since the potential
is a continuous function, has the value of %, or the given value,
at each point on 8.

Similarly, if @ be an internal, instead of an external, point, we
can prove that the distribution over § whose-density is

1 (du du
4.7r{dv A dv’}

has « for potential at Q.
And the functions » and «' being both determinate, their

-

differential coefﬁcxents g S an d Z - are determinate and of single
value.

58.] If §,...8, be any closed surfaces, there exists one and only
one distribution of matter over them whose potential » satisfies
the following conditions, viz.

u = C,, constant, but arbitrary at all points on &,
u = C,, constant, but arbitrary at all points on §, ;

&ec., &e. And
ffg% S, = ¢, over S,,

ff% aS, = e, over §,,

and so on, and # vanishes at an infinite distance.
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For we have proved in Art. 10 that there exists one deter-
minate function # satisfying the above conditions. It follows

du
that %

of the surfaces. Then if we take for density of the distribution at

has a single and determinate value at each point of each

each point — % % , we can prove exactly as before that the

potential of the distribution so formed at any point external to
the surface is #, and therefore satisfies all the conditions.

59.] The proposition of Art. 57 may be extended to an unclosed
surface thus. Let § be an unclosed surface, 8 a similar and equal
surface so placed as that each point on & shall be very near to
the corresponding point on 8. If we now connect the boundaries
of § and & by a diaphragm we obtain a closed surface. Leta
distribution be formed on this closed surface having potential 7
on 8, and at each point on & the same potential as at the corre-
sponding point on §. Let o and o’ be the densities of this
distribution on § and § respectively. Then ultimately, if §” be
made to coincide with §, we obtain ¢+ ¢’ as the density of a
distribution on § which has potential 7 at each point on §.

60.] If two systems of matter, both within a closed surface S,
have the same potential at each point on §, then

(@) they have the same potential throughout all external space.
For let 7, 7" be the potentials of the two systems respectively.
Then 7 = 7” on &,

V2V =0 and V27’ = 0 at all points in the external space,
7 and 7 are both of lower degree than —3.

Hence, by Art. 9, 7 cannot differ from 7” at any point in the
external space.

(6) The algebraic sum of the matter of either system is equal
to that of the other. For the algebraic sum of the matter
within § whose potential is 7 is

1 [rdv
'Z?lﬂﬁ%&

the normal being measured outwards on the outside of §, by
Art. 45. Now, since 7=7" at all points external to &,

: av _av’

dr ~ dv

tl
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and therefore

1 rrarv 1 rrav
L /dvdS _Ef . as.

(¢) The two systems have the same centre of inertia. For
taking for the plane of y, 2 any arbitrary plane, and applying
Green’s theorem to the space within any closed surface &
enclosing §, we have

ffxmdS’—ffwa"’dedydz—f/V-——dS’
ff i ds’— ffme”V’dwdydz— / V'——dS’

and sinceon §* V="V, a d

. fff 2 V2V dadydz —fff V2V’ dwdydz.

And therefore if m, m’ be the quantities of matter of the two
systems respectively within the element of volume dzdydz,

f f f mxdedydz = f f f 'z dadydz,

which, as the direction of # is arbitrary, proves the proposition.
(d) The two systems have the same principal axes. For

f xy TdSl_fffwyvzydxdydz=ffV d(my)dS’

and therefore

f//wymdxdydz =fffxym’dxdydz;

and if the axis of z be a principal axis of one system, it is a
principal axis of the other system.

(¢) If 4, B, C be the principal moments of inertia of one
system, those of the other are 4'=4 — K, B = B— K,
@—-C— K., For

s = a(@) .o
ffw’—(ﬁ—dS —fffw’V“dedydz—ffV S
—fff2Vdmdydz,
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ffxz s dS’—fffw2V2V’dwdydz =ffV'(£@dS’
dv dv
—ffsz’dxdydz,
and therefore

fffwzmdwdydz =fffw2m’dxdydz + 2fff(V—-V’)dwdydz.

Similarly

[ o= [ [or-rss

Thevefore ' (7 C'id f f (V= V')dadyde=C—K.

Similarly, B = B—K,
4’ =4—K.

Definition. A body which has the same potential at all points
outside of itself, as if its mass were collected at a point O within
it, is a centrobaric body, and O its centre.

It follows from (¢) that if a body be centrobaric, its centre is
its centre of inertia.

61.] It follows from Art. 59 that a distribution of matter
always exists over a surface § which has any given constant
potential at each point of §; and therefore that any given
quantity of matter can be distributed over § in such a way as to
have constant potential at each point of §. Such a distribution
is defined. to be an equipotential distribution.

Definition. If M be the algebraic sum of a distribution of
matter over a closed surface whose potential has the constant

value 7 at each point of that surface, _1;7{ is the capacity of the

surface.

The capacity of a sphere is equal to its radius. For the sphere
being charged to potential 7, the potential, being constant over
the surface, must have the same constant value 7 at the centre.
But if M be the algebraic sum of the distribution, the potential

at the centre is ]-;7[, where o is the radius.

We have then {laﬁ =V, or J—”— = a.

7
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If § be an equipotential surface to a system of matter wholly
within it, and 7 be the potential of the system on 8, the capacity

of § is % > where M is the algebraic sum of the matter of the
enclosed system. For, by Art. 60, M is also the algebraic sum of
a distribution over § which has potential 7 at every point on it.
62.] If 7 be the potential of any distribution of matter over
a closed surface 8, and if ¢ be the density of a distribution of

matter over § which has the same potential at each point on §
as that of unit of matter placed at any point O, then f Va'dl is

the potential at O of the first distribution.
For let o be the density of the first distribution, 7’ the
potential of the o distribution, » the distance of any point from

0. Then on §,
1

V'=—9
r
G B d P ay
- "‘"E{H*’W}’
i o AP L
oA {_ W}'

i f f Vo'dS = Mf f { ‘”" ‘fl:,'} as
=_4_ﬂffv'(ﬂ+g;,)ds
=ff;ds

= the potential at O of the first distribution.

63.] IF 8 be a closed equipotential surface in any material
system, and if p, p’ denote densities of the matter of the system
wnside and outside of S respectively, and if R be the force due
to the whole system at amy point on S in the direction of the
normal measured outwards, then the potential at any external
point due to the internal portion is equal to that of a dis-

. S\ 5B
tribution of matter over 8 whose density is e and the poten-

tial at any internal point due to the external portion differs
VOL. 1. F
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Jrom that of a distribution over 8 whose density is -—%, by

the potential of the surface. For if we take for origin any point
outside of §, and if 7 be the potential of the entire system, we
have by applying Green’s theorem to the space inside of S, with

u:V,andu_i,

ff: gdS fff V2V dadydz
=ffV—‘-ds—f/vazldMydz
=7, [[ & Las—[[[ 7. L dsagas

where 7, is the constant value of 7 on 8,

e d
=0, sxnceffE;dS._O,_by Art. 45,

and V2; is zero at all points within §.

The equation therefore becomes

147 :
ffr W as= fff V¥ dwdyds.

But —R, and V2V =—4mp.

p
Hence ff;EdS_fff7.dxdydz,

which proves the first part of the proposition.
Secondly, if we take for origin a point inside of S, and

apply Green’s theorem to the external space, with 7 and 2 for
r

% and #, we obtain

ff:jfds—fff V* ¥ dadyds
..fo dS—fffVV2 Fraey

= 4wV, smcef ————dS_ 4x
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in this case, and as before VZ; = 0. Also in this case, the nor-
mal is measured inwards from §, and therefore
?_ R, also V*V=—4mp"

Hence the potential at any internal point of the distribution
- % over § differs by a constant quantity from that of the
external portion 3/”, and therefore the force due to the distribu-
tion — % over § is equal to that due to the external portion,
Hence it follows that the force at any external point due to the
internal portion is equal to that due to the distribution %
over §, and the force at any internal point due to the external

portion is equal to that of the distribution — %

64.] To express the potential at any point 7 of any distribution
of matter in a series of spherical solid harmonies.

Take as origin any point 0. Let OP = f.

Let M be any point in the distribution.

Let the coordinates of M referred to OP as axis, be 7, 6, ¢,
where 0 is the angle POM. Let u = — cosf. Then sin0d60 = dy,
and an element of volume in the neighbourhood of M is
rPdudpdr. If p be the density of the given distribution in
this element of volume, its potential at P is

Pdpdpd 1 : -
P._*_“__;M"’ r:pﬁdﬂd¢d¢.{}-+91}% +Qz;—s+---}lfr<f’

or przdpdd)dr.{%+Q1—‘;+...}ifr S

The potential at P of the whole distribution is then

f/z" dyd¢dr+ff fprdp.dd)dr
+f_lﬁ2"f0 le;;dpdcpmf_lﬂ [ Qupfdudddr

+ &e.,
F 2
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and since @ depends on p only, this may be put in the form

Jooni oo L e vk S
+f_1dMQl{£ dd)ﬁd”ﬁ""fo d¢ff drpf}

+ &ec.,
in which the quantities within brackets are known if the given
distribution is known.
If we denote these quantities by 4,, 4,, 4,, &c., we have

1
v =/ ld,u {4, 4+, 4, +Q, 4,4+ ...},

in which the 4’s are generally functions of u.

65.] To find the density of a distribution of matter over a
spherical surface, whose potential at any point on that surface
shall be equal and opposite to that of a mass e, placed at an
external point.

Let O be the centre of the sphere, @ its radius, C the point
outside of it, OC = f.

Let o be the required density.

It is evident that the density of this distribution on the
sphere must be symmetrical about OC, and must therefore be
expressible in a series of zonal harmonics with OC as axis. Let
this be

c=A4,Q,+4,Q,+...+4,0Q,+&ec.
Let Z be any point on the surface, £ any other point.
Let us denote by @, the zonal harmonic of order s referred to

OF as axis. Then

1 1 ’ ’
T =g e+ + ]

And the potential at Z due to the distribution is

VE_-{ fooQo ds.|-,ﬁ1ffqgl()1 ds+&c}

because every term of the form / / Q; @, 4S, where 7 £ 7, is zero;

that is,

Mesdma o=
= iy el
Q; being the value of Q; at E.
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But by hypothesis the potential at E of the distribution is to
be the same as that of the mass ¢ at C with reversed sign;
that is,

e
0w
=-23%%
We have therefore
1 4ma®  ~ e . af —
e Zaigihl="F 327

and e =234,0;

66.] If the density of any distribution of matter over a
spherical surface be equal to ¥, where ¥, is a spherical surface
harmonic of order 7, the potential at any point within or without
the sphere due to this distribution is proportional to the corre-
sponding spherical solid harmonie.

For let O be the centre of the sphere, ¢ its radius, P any ex-
ternal or internal point, OP = r, and M a point on the surface.
Then at P

YS'
V= f f 548
J
= f f ¥, i ;dS, if P e intornal,
J
= f f Y, 3 55, dS, if P be external.

But ff Y,Q;dS =0, unless ¢ = j,
and therefore .
13
V=1x f Y,Q,dS, if P be internal,

= r—ﬁT f Y, Q,dS, if P be external.
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4ma? 7
But f Y08 = 57— 7,
where 7, is the value of ¥; at the point where OP, produced if
necessary, cuts the sphere.

= iz : g
And therefore 7, Y;, or —*—, according as P is internal or
54 yitl

external, is the spherical solid harmonic at P corresponding to
Y,. If we denote this by /;, we have
47 H; V= 47

et ) i+2
= 9i+1 a1’ 7 2¢41 - o

in the two cases respectively. The followmg proposition may
easily be deduced from this, but we prefer to prove it independ-
ently thus.

67.] If the potential of any material system wholly within a
spherical surface § be given at each point of that surface in
a series of spherical surface harmonics, then the potential of
the same system at any point on the outside of the surface
is found by substituting for each surface harmonic the corre-
sponding solid harmonic.

For let the given potential be = 4;Y;, and let p be the density
of the superficial distribution on § whose potential at every point
of §is equal to =4, 7.

Let P be any point distant f from the centre on the outside
of 8.

Then the potential at P of the given system is equal to that
of the surface distribution.

But, as shewn in Art. 62, if p” be the density of a distribution
over § whose potential at any point of § is equal to that of unit
of matter situated at P, then

ffp'zA,. Y,ds

is the potential at 2 of the superficial distribution whose potential
is 4, ¥;, and therefore of the given system.

Now
f“ £
o= 4 g D¥ 2
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where @ is the radius of the sphere. Therefore
> fi—a?
i+l
=S AT,
&) 4T,
where 7, is the value of 7, at P,
i*1
The potential of the given system is also equal to 3 (%) + 4,7,
for a certain distance within the given spherical surface S,
i+l
For 7 and 3 ( %) 4;Y; both satisfy Laplace’s equation

throughont all external space, and are identical at all points out-
side of §. They must therefore be identical throughout all space
which can be reached from § without passing through attracting

$+1
matter so long as = (‘%) 4; 7Y, is a convergent series,

68.] To express in zonal solid harmonics the potential of any
material system symmetrical about an axis.

Let us take for origin any point O on the axis. Let 7 be the
distance from O of any point in space.

Then we can first shew that the potential at any point P on
the axis, if more distant from the origin than any point in the

X 1 f
system, can be expressed in the form 3.B5; e ) and if less

distant from the origin than any part of the system can be
expressed in the form C4 34,7, where the functions B and 4
are determinate if the given system is known, and are inde-
pendent of 7.

For let O be the origin, P the point on the axis, # any point
in space at which there is matter belonging to the system of
density p,

cos YOP = p, MO == a.

Then since the system is symmetrical about the axis, we may
take for an element of its volume the space between the two
cones whose vertices are at O and semivertical angles cos™! u and
cos~! (u + dp) and whose distance from O is between ¢ and a +da.
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If p be the density of matter within this element its potential
at P is

2wapduda. __,

MP
that 1s,
27Tazpdpda.l{1+01;+ } it r >a
or 2matpduda. —{1+er } if r < a.

Then if a;, a, be the greatest and least distances from O of
any matter between the two cones, the potential of all the
matter between them is

2qrdp../;2a"p ; {; + 91—:? +... }da
o5 27rd/xfal atp {—1- - Q;-T?+... }da,
in which the first integral will be omitted when » < a,, and the
second will be omltted if r > a;.

Finally, the potential at P of the whole system is found by
integrating the above expression according to p from u =1 to
p = —1, remembering that @, and «, and p are generally fune-
tions of u.

Let o’ and o/, denote the greatest and least values of 7 for
any point in the system. Then the result, if the integrations
can be effected, must appear in the form

2B;i— percy if OP > a/,
and C+24,+ if OP < az’;
and C+Z4,7+2B, i
if Sy R

We can now find the potential of the system at any point B
not in the axis and distant » from O, by multiplying each term
by the corresponding zonal harmonic referred to OP as axis,

For instance, suppose » > o}

Let 7 be the potential and let

Va="SiB. 9

+ ,rz+l
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Then since on the axis @, =1, and

V=238

i 1+1

7 and 77 are identical throughout a finite length of the axis.
Now both 7 and 7" satisfy Laplace’s equation at all points
not occupied by matter belonging to the system. And therefore
since they are identical throughout some finite length on the
axis, and are symmetrical about the axis, they must by Arts. 53
and 54 be identical at all points in space which can be reached from
that part of the axis without passing either through the system, or

through any part of space where = B; Q’ does not converge.

Similarly, the potential at any point R’ in space distant » from
0, where r < a),is C+ 34, Q,7*, provided R’ can be reached from
the part of the axis whose distance from O is less than a,” with-
out passing, either through the system, or through any part of
space where = 4; @, does not converge.



CHAPTER IV.
DESCRIPTION OF PHENOMENA.

Electrification by Friction.

ArTicrE 69.] ExeperiMent I*. Let a piece of glass and a piece
of resin be rubbed together and then separated ; they will attract
each other.

If a second piece of glass and a second piece of resin be
similarly treated and suspended in the neighbourhood of the
former pieces of glass and resin, it may be observed that—

(1) The two pieces of glass repel each other.
(2) Each piece of glass attracts each piece of resin.
(3) The two pieces of resin repel each other.

These phenomena of attraction and repulsion are called elec-
trical phenomena, and the bodies which exhibit them are said to
be electrified or to be charged with electricity.

The electrical properties of the two pieces of glass are similar
to each other but opposite to those of the two pieces of resin,
the glass attracts what the resin repels, and repels what the resin
attracts.

Bodies may be electrified in many other ways as well as by
friction.

If a body electrified in any manner whatever behaves as the
glass does in the experiment above described, that is, if it repels
the glass and attracts the resin, it is said to be witreously elec-
trified, and if it attracts the glass and repels the resin, it is said
to be resinously electrified. All electrified bodies are found to be
either vitreously or resinously electrified.

When the electrified state is produced by the friction of dis-
similar bodies, as above described, it is found that so long as the

* The description of these experiments is taken almost verbatim from Maxwell’s
Llectricity.
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rubbed surfaces of the two excited bodies are in contact the
combined mass does not exhibit electrical properties, but behaves
towards other bodies in its neighbourhood precisely as if no
friction had taken place.

The exactly opposite properties of bodies vitreously and resin-
ously electrified respectively, and the fact that they neutralise
each other, has given rise to the terms ¢ positive’ and ©negative’
electrification, the term positive being by a perfectly arbitrary,
but now universal convention among men of science, applied
to the vitreous, and the term negative to the resinous electri-
fication.

Electric actions similar to those above described may be ob-
served between a body electrified in any manner and another
body not previously electrified when brought into the neigh-
bourhood of the electrified body, but in all such cases it will
be found that the body so acted upon itself exhibits evidence of
the electrification. This electrification is said to be produced by
induction, a process which will be 111ustrated in the second ex-
periment.

No foree, either of attraction or repulsmn, can be observed
between an electrified body and a body manifesting no signs
of electrification.,

Electrification by Induction.

70.] ExeermMext II. Let a hollow vessel of metal, furnished
with a close-fitting metal lid, be suspended by white silk threads,
and let a similar thread be attached to the lid, so that the vessel
may be opened or closed without touching it; suppose also that
the vessel and lid are perfectly free from electrification.

Let the pieces of glass and resin of Experiment I be suspended
in the same manner as the vessel and lid, and be electrified as
before.

If then the electrified piece of glass be hung up within the sus-
pended vessel by its thread, without touching the vessel, and the
lid closed, the outside of the vessel will be found to be vitreously
electrified, and it may be shown that the electrification outside
of the vessel, as indicated by the attractive or repulsive forces on
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electrified bodies in its neighbourhood, is exactly the same in
whatever part of the interior the glass be suspended.

If the glass be now taken out of the vessel without touching
it, the electrification of the glass will be found to be the same as
before it was put in, and that of the vessel will have disappeared.

This electrification of the vessel, which depends on the glass
being within it, and which vanishes when the glass is removed,
is called Electrification by Induction.

If the piece of electrified resin of Experiment I were sub-
stituted for the glass within the vessel, exactly opposite effects
would be produced. If both the pieces of glass and resin,
after the friction of Experiment I, were suspended within the
vessel, whether in contact with each other or not, no electrical
effects whatever would be manifested.

Similar effects would be produced if the glass were suspended
near the vessel on the outside, but in that case we should find an
electrification vitreous in one part of the outside of the vessel
and resinous in another part. Whereas, as has been just now
mentioned, when the glass is inside the vessel the whole of the
outside is vitreously electrified. In this case, as in the case
of internal suspension, the electrification disappears on removal
of the exciting body.

Experiment proves that throughout the inside of the closed
vessel there is an electrification of the opposite kind to that
of the outside, that is, when the electrified piece of glass is
suspended within the vessel, and the latter is therefore vitre-
ously electrified on the outside, as just now explained, the in-
side will be resinously electrified, and vice versi when the resin
is substituted for the glass.

Experiment proves also that the electrification on the outside
is equal in quantity to that of the glass, and the electrification
on the inside equal and opposite to that of the glass.

Electrification by Conduction.

71.] ExeeriMeNt ITI. The metal vessel being electrified by
induction, as in the last experiment, let a second metallic body
be suspended by white silk threads near it, and let a metal wire
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similarly suspended be brought so as to touch simultaneously
the electrified vessel and the second body.

The second body will now be found to be vitreously electrified
and the vitreous electrification of the vessel will have diminisked.

The electrical condition has been transferred from the vessel
to the second body by means of the wire. The wire is called
a conductor of electricity, and the second body is said to be
electrified by conduction.

Conductors and Insulators.

If a glass rod, a stick of resin or gutta-percha, or a white silk
thread had been used instead of the metal wire, no transfer of
electricity would have taken place. Hence these latter substances
are called non-conductors of electricity. A non-conducting sup-
port or handle employed in electrical apparatus is called an
Insulator, and the body thus supported is said to be insulated.
Thus the lid and vessel of Experiment II are insulated.

The metals are good conductors; air, glass, resins, gutta-
percha, vulcanite, paraffin, &ec., are good insulators ; but all sub-
stances resist the passage of electricity, and all substances allow
it to pass although in exceedingly different degrees. TFor the
present we shall, in speaking of conductors or non-conductors,
imagine that the ‘bodies spoken of possess these properties in
perfection, a conception exactly similar to that of perfectly fluid
or perfectly rigid bodies, although such conceptions cannot be
realised in nature.

In Experiment II an electrified body produced electrifica-
tion in the metal vessel while separated from it by air, a non-
conducting medium. Such a medium, considered as transmitting
these electrical effects without conduction, is called a Dielectrie
medium, and the action which takes place through it is called, as
has been said, Induction.

72.] Experivent IV. In Experiment ITI the electrified vessel
produced electrification in the second metallic body through the
medium of the wire. Let us suppose the wire removed and the
electrified piece of glass taken out of the vessel without touching
it and removed to a sufficient distance. The second body will
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still exhibit vitreous electrification, but the vessel when the glass
is removed will have resinous electrification. If we now bring
the wire into contact with both bodies, conduction will take
place along the wire, and all electrification will disappear from
both bodies, from which we infer that the electrification of the
two bodies was equal and opposite.

73.] ExeeriveNt V. In Experiment IT it was shown that if
a piece of glass, electrified by rubbing it with resin, is hung up
in an insulated metal vessel, the electrification observed outside
does not depend upon the position of the glass. If we now
introduce the piece of resin with which the glass was rubbed
into the same vessel without touching it or the vessel, it will
be found, as stated in Art. 70, that there is no electrifieation on
the outside of the vessel. From this we conclude that the
electrification of the resin is exactly equal and opposite to that
of the glass. By putting in any number of electrified bodies,
some vitreous and others resinous, and taking account of the
amount of electrification of each, we shall find that the whole
electrification of the outside of the vessel is that due to the
algebraic sum of the electrifications of all the inserted bodies,
the signs being used in accordance with the eonvention already
described. We have thus a practical method of adding the
electrical effects of several bodies without altering the elee-
trification of any of them.

74.] ExperiveNT VI. Let a second insulated metallic vessel B
be provided, and let the electrified piece of glass of Experiment I
be placed in the first vessel 4, and the electrified piece of resin in
the second vessel B. Let the two vessels be then put in com-
munication by the metal wire, as in Experiment III. All signs
of electrification will disappear.

Next, let the wire be removed, and let the pieces of glass and
resin be taken out of the vessels without touching them. It will
be found that A is electrified resinously and B vitreously.

If now the glass and the vessel 4 be introduced together (the
glass being no longer within 4)into a larger insulated vessel C, it
will be found that there is no electrification on the outside of C.

This shows that the electrification of 4 is exactly equal and
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opposite to that of the piece of glass, and similarly that of B
may be shown to be equal and opposite to that of the piece of
resin.

Thus the vessel 4 has been charged with a quantity of elec-
tricity exactly equal and opposite to that of the electrified piece
of glass without altering the electrification of the latter, and we
may in this way charge any number of vessels with exactly
equal quantities of electricity of either kind which we may take
as provisional units.

75.] ExpermMENT VII. Let the vessel B, charged with a quan-
tity of positive electricity, which we shall call for the present
unity, be introduced into the larger insulated vessel C without
touching it. It will produce a positive electrification on the
outside of C. Now let B be made to touch the inside of €. No
change of the external electrification of C will be observed. If B
be now taken out of C without again touching it and removed
to a sufficient distance, it will be found that B is completely dis-
charged, and that C has become charged with a unit of positive
electricity. ’

We have thus a method of transferring the charge of B to C.

Let B be now recharged with a unit of electricity, introduced
into C already charged, made to touch the inside of C and
removed. It will be found that B is again completely discharged,
so that the charge of C is doubled.

If this process be repeated it will be found that however
highly C is previously charged, and in whatever way B is
charged when it is first inclosed in C, then made to touch C,
and finally removed without touching C, the charge of B is
completely transferred to C, and B is entirely free from elec-
trification.

This experiment indicates a method of charging a body with
any number of units of electricity. - The experiment is also an

“ illustration of a general fact of great importance, namely, that no
charge whatever can be maintained in the interior of any con-
ducting mass.

76.] In what has hitherto been said it has been assumed that
we possess the means of testing the nature and measuring the
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amount of electrification on any body, or on any part of a body.
This we can do with great accuracy by the aid of instruments
called electroscopes or electrometers, whose modes of action will be
more easily understood when the theory of the subject has been
somewhat developed ; and which are fully deseribed in practical
treatises on electricity ; for our present purpose it will suffice to
describe one of these instruments in its simplest form, called the
gold-leaf electroscope.

A strip of gold-leaf hangs between two bodies 4 and B,
charged one positively and the other negatively.

If the gold-leaf be placed in conducting contact with the body
whose electrification is to be investigated, it will itself become a
part of that body for all electrical purposes, and it will incline
towards 4 or B according as its electrification, and therefore the
electrification of the body under investigation, is negative or
positive. '

77.] From the foregoing experiments we conclude that

(1) The total electrification of a body or system of bodies
remains always the same except in so far as it receives electrifi-
cation from, or gives electrification to, other bodies.

In all electrical experiments the electrification of bodies is
found to change, but it is always found that this change is due
to want of perfect insulation, and that with improved insula-
tion the change diminishes, We may therefore assert that the
electrification of a body placed in a perfectly insulating medium
would remain perfectly constant.

(2) When one body electrifies another by conduction the total
electrification of the two bodies remains the same, that is, the
one loses as much positive, or gains as much negative electrifica-
tion, as the other gains of positive or loses of negative eleetrifi-
cation.

For if the two bodies are enclosed in the same hollow con-
ducting vessel no change of the total electrification is observed
on their being connected by a wire.

(3) When electrification is produced by friction or by any
other known method, equal quantities of positive and negative
electrification are produced.
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For the electrification of the whole system may be tested in
the hollow vessel, or the process of electrification may be earried
on within the vessel itself, and however intense the electrifica~
tion of the parts of the system may be, the electrification of the
whole is invariably zero.

The electrification of a body is therefore a physical quantity
capable of measurement, and two or more electrifications may be
combined experimentally with a result of the same kmd as when
two quantities are added algebraically.

78.] ExperimeNt VIIL. Let there be a needle suspended
horizontally by a fine vertical wire or fibre, so as to be capable of
vibrating horizontally about the vertical wire as an axis, and let
a small pith ball 4 be attached to one end of the needle. Then
the needle will rest in a certain position ; in which position,
supposing there are no forces at work in the neighbourhood of
the apparatus except the force of gravity, the suspending wire
or fibre will be perfectly free from any twist or torsion. Let
another pith ball B be situated at a certain point in the circum-
ference of the horizontal circle described by 4.

Now let the pith balls 4 and B be each charged with one
unit of positive electrification. A repulsive action will arise
between 4 and B so that 4 will after certain oscillations come
to rest at a certain increased distance from B, thus producing a
twist in the suspending wire. The opposite untwisting ten-
dency of the wire thus called into play depends upon the
torsional rigidity of the wire and the angle through which
the needle has been deflected, and can be estimated in any
given apparatus with great accuracy. Hence the repulsive force
between A4 and B, assumed to act in the line joining them, can
also be determined with corresponding accuracy: let it be
called /.

Suppose now that the same experiment is made with another
apparatus equal to the former in all respects, but with a sus-
pending wire of different torsional rigidity ; and suppose that in
this case the position taken up by A4 with respect to B is
observed to be exactly the same as in the former case when the
number of units of positive electrification of 4 is ¢, and of B is¢'.

VOL. I. G
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Tt will be found that the repulsive force between 4 and B is in
this case e¢’f.

Precisely the same positions would be taken up in the two
cases respectively, if 4 and B had been each negatively electrified,
and to the same degree as before. By suitable adjustments of
the two cases with opposite electrifications upon 4 and B each of
the same number of units as before, it may be proved that, if
the distances between 4 and B in their positions of equilibrium
are the same as before, the forces between them are attractive
and equal to #and e¢’f in the two cases respectively.

Hence we infer that the force between two electrified particles
at any given distance apart is in all respects represented by the
product of the two electrifications upon them, regard being paid
to the signs of the electrifications, and the force being considered
repulsive when the above-mentioned product is positive.

79.] ExeerimeENt IX. In the experiment of the last Article
let the electrifications of 4 and B in the second apparatus as
well as in the first apparatus be each one unit of positive electri-
fication, It will be found that in the positions of equilibrium
the distances between 4 and B are not the same in one apparatus
as they are in the other. If, however, the forces between 4 and
B in these positions be estimated as before, and if the distances
between 4 and B in the two cases be 7 and 7/, 1t will be found
that there are repulsive forces between them which are to each
other in the ratio of +’2 to 72, or inversely as the squares of the
distances between them in the two cases.

Combining the results of this and the preceding experiment
we arrive at the following general law of action between two
electrified particles, viz. that if the number of units of electrifi-
cation of the particles be ¢ and ¢’ respectively, and the distance
between them be 7, then there is a force # such that

ed’
F=Ff’

where f'is the repulsive force between two-particles each charged
with unit of electrification, and at the distance unity apart, regard
being paid to the signs of ¢ and ¢/, and F being considered positive
when the force is repulsive, i.e. when ¢ and ¢" have the same signs.
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In conducting Experiments VIII and IX care must be
taken that the dimensions of 4 and B are small as compared
with the distance between them, so that they may be regarded
as material points. They must also be suspended in air and at
a considerable distance from any other bodies on which they
might induce electrification (Art. 70), inasmuch as this induced
electrification would also act upon 4 and B and produce a
problem of great intricacy.

Electrical Theory.

80.] The most important researches into the laws of electrical
phenomena up to the present time have been based upon what
is known as the two fluid theory. 1t is conceived that all bodies
in nature, whether electrified or not, are charged with, or per-
vaded by, two fluids to which the names of positive and nega-
tive, or vitreous and resinous, electricity are assigned. It is
further supposed either that these fluids exist in all bodies in
such quantities that no process yet discovered has ever de-
prived any body, however minute, of all the electricity of either
kind, or that the changes in the proportion in which these fluids
are combined, required to produce electrical phenomena, are
indefinitely small. It is further supposed that in unelectrified
bodies these fluids exist in exactly equal quantities, but that it
is possible by friction, as in Experiment I, or by othet means, to
. cause one body to give up to another part of its positive or
negative electricity, thus causing in either body an excess of one
or other kind of electricity.

When the quantity of either fluid is in excess in any body,
that body is said to be positively or negatively electrified
according to the sign of the predominant fluid, and the amount
of electrification is measured by the quantity by which this
predominant fluid exceeds the other. The fluid of either kind
in any electrified body in excess of that of the opposite kind is
called the Free Electricity of the body, and the remaining fluids
of the body, consisting of equal amounts of fluids of opposite
kinds, together constitute what is called the Lalent, Combined or
Fized Electricity of the body.

G 2
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In the simplest form of the theory, although not essential to
it, every process of electrification is supposed to consist of a
transference of a certain quantity of one of the fluids from any
body as 4 to another as B, together with the transference of
an equal amount of the opposite fluid from B to 4, so that the
total amount of electricity free and latent (without regard to
sign) in every body and every particle of every body cannot be
changed by any process whatever.

It is further supposed that these fluids are not acted upon by
gravitation or any of the forces of ordinary mechanics, nor, so far
as our present knowledge goes, by ordinary molecular or chemieal
forces ; but they are supposed to exercise forces upon themselves
and each other which are conceived to be proportional to the
quantities of the mutually acting fluids, thus giving rise to the
conception of electrical mass. And it is further supposed that the
forces between two particles of fluid of the same kind is repulsive,
and proportional to the product of their masses directly, and to
the square of the distance between them inversely, that between
two particles of fluid of opposite kinds being attractive, but in
other respects following the same law. According to this
hypothesis the latent or fixed electricity in any body, con-
sisting of equal quantities of opposite kinds, exerts zero force
on- all electricity. The forces of attraction and repulsion
above mentioned manifest themselves only between the free
electricities.

If all bodies be divided for the time into two classes, perfect
conductors and perfect insulators, it is conceived that either kind
of electricity may pass with absolute and perfect freedom from
point to point of the former, while the latter offer a complete
and absolute bar to any such transference

On the hypothesis thus described we are able to explain many
electrical phenomena. It is of course merely an hypothesis, and
of value as supplying formally an explanation of facts; in this
respect being exactly on a par with the conception of the lumi-
niferous ether in the undulatory theory of light. The general
mathematical treatment of this hypothesis is principally due to
Poisson and Green.
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There is another hypothesis, known as the one-fluid theory,
which is equally successful as a basis of investigation, but it has
not been adopted and developed to the same extent as the two-
fluid theory.

We shall confine our investigation to the two-fluid theory in
the form which is above enunciated.

81.] It is evident without any further explanation that the
two-fluid theory explains the qualitative results of Experiment I
given above; and we proceed now to shew that it also explains
the quantitative results of Experiments VIII and IX.

For, suppose two bodies 4 and B, either conductors or non-
conductors, to contain » and »’ units of mass of positive elec-
tricity respectively, and #» and #” units of negative electricity.

Suppose that they are situated in an insulating medium, as
air, and that their dimensions are very small as compared with
the distance between them which we shall call 7.

Then, according to the two-fluid theory, the m positive units
of 4 exert upon the ' positive units of B a repulsive force
mm’

72
a repulsive force upon each other, represented on the same scale
by 71:;—, so that on the whole there is a repulsive force between
the electrical fluids in 4 and B represented by Qﬂ;?—m—) .

which may be represeﬁted by , and the # and 7 units exert

In the same way there is an attractive force between the two

electricities represented by Zn—n—:;—@
Altogether therefore there is a repulsive force between the
min + wn’ —mn’ —m'n
72 4

electricities on 4 and B represented by
. m—n) (m —n’
that is, by (——)7'—(2—-————)— .

But z—n is the number of units of positive electrification on
4, and m’—#' is the same for B, so that with the notation used
above the force between the electricities in 4 and B is re-

presented by %, and is repulsive when e¢’ is positive.
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The unit of electricity in this measurement is such that the
repulsive force between two units of positive electricity at the
distance unity apart is unit force.

It appears therefore that the two-fluid theory involves the
existence of a force between the electric fluids in two charged
bodies in all respects following the law which has heen experi-
mentally proved to be obeyed by the mechanical forces between
the bodies themselves. But the bodies are either non-conductors
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