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PREFACE.

THE exhaustive character of the late Professor

Maxwell's work on Electricity and Magnetism has

necessarily reduced all subsequent treatises on these

subjects to the rank of commentaries. Hardly any
advances have been made in the theory of these branches

of physics during the last thirteen years of which the

first suggestions may not be found in Maxwell's book.

But the very excellence of the work, regarded from

the highest physical point of view, is in some respects

a hindrance to its efficiency as a student's text-book.

Written as it is under the conviction of the para-

mount importance of the physical as contrasted with

the purely mathematical aspects of the subject, and

therefore with the determination not to be diverted

from the immediate contemplation of experimental

facts to the development of any theory however fas-

cinating, the style is suggestive rather than didactic,

and the mathematical treatment is occasionally some-

what unfinished and obscure. It is possible, therefore,

that the present work, of which the first volume is

now offered to students of the mathematical theory

of electricity, may be of service as an introduction

to, or commentary upon, Maxwell's book. Its aim

is to state the provisionally accepted two-fluid theory,

and to develop it into its mathematical consequences,
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regarding that theory simply as an hypothesis,

valuable so far as it gives formal expression and

unity to experimental facts, but not as embodying an

accepted physical truth.

The greater part of this volume is accordingly

occupied with the treatment of this two-fluid theory

as developed by Poisson, Green, and others, and as

Maxwell himself has dealt with it. The success of

this theory in formally explaining and co-ordinating

experimental results is only equalled by the artificial

and unreal character of the postulates upon which it

is based. The electrical fluids are physical impossi-

bilities, tolerable only as the basis of mathematical

calculations, and as supplying a language in which

the facts of experience have been expressed and

results calculated and anticipated. These results

being afterwards stated in more general terms may
serve to suggest a sounder hypothesis, such for

instance as we have offered to us in the displace-

ment theory of Maxwell.

In the arrangement of the treatise the first three

chapters are devoted to propositions of a purely

mathematical character, but of special and constantly

recurring application to electrical theory. By such

an arrangement it is hoped that the reader may be

able to proceed with the development of the theory

in due course with as little interruption as possible

from the intervention of purely mathematical processes.

Few, if any, of the results arrived at in these three

chapters contain anything new or original in them,

and the methods of proof have been selected with a
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view to brevity and clearness, and with no attempt
at any unnecessary modifications of demonstrations

already generally accepted.

All investigations appear to point irresistibly to a

state of polarisation of some kind or other, as the

accompaniment of electrical action, and accordingly the

physical properties of a field of polarised molecules

have been considered at considerable length, especially

in Chapter XI, in connection with the subject of

specific induction and Faraday's hypothesis of a com-

posite dielectric, and in Chapter XIV, with reference

to Maxwell's displacement theory. The value of the

last-mentioned hypothesis is now universally recog-

nised, and it is generally regarded as of more promise

than any other which has hitherto been suggested in

the way of placing electrical theory upon a sound

physical basis.
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CHAPTER I.

GREEN'S THEOREM.

ARTICLE 1.] LET 8 be any closed surface, u and w' any two

functions of a?, y, and #, which are continuous and single-valued

everywhere within 8. Then shall

du du' du du' du du'

= /YV
|^-

ds- /7YV

= ffw ?p4#_
f/Tw

in which the triple integrals are taken throughout tfye space

enclosed by S, and the double integrals over the surface, dv is

an element of the normal to the surface inside of S
9
but measured

outwards in direction, and V 2 stands for

(~dtf
+
"dy*

+
&?)'

For let a line parallel to x cut the surface in the points

vlt y, z and a?
2 , y, 2;. Then integrating by parts between

x = #! and a? = ir
2 , we have

/**a .<i
2

tfc , / ,du\ / ,du\ CX2 du du' _

/
w7

- -^ = (^
/

) -ft*'--) / 3-^-^.
JXl

da? \ dx 42
v dx

/^ A1
c?o; cte

Let ^^ be the base of a prism of which the line between xl

and #2 is one edge. Then

.

dx dx

Now if
1} %, % be the direction-cosines of the normal to 8

drawn outwards at the point #1} y, 0, and if d8l be the element of

area cut out at that point by the prism,

dydz =-~l
l
dSlt

VOL. I. B
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and using corresponding notation at the point #2 , y, z,

dydz l
2 dS2

.

Therefore

r*i

dydz I u
Jx-i

dx
*i
^

, du. . ~ , du Cxz du du

Therefore, noting that xl
and x2 are functions ofy and z, inte-

grating and transposing, we obtain

in which the triple integrals comprise the whole space within S,

and the surface integrals comprise the whole surface of S.

Similar equations, mutatis mutandis, hold for y and z.

Therefore

du' dudu dudu

~ U/
~I~^~~

u'

= I u -=dS 1 1 1 u^u dxdydz by symmetry.

We have supposed the line through y z to cut S in two points

only, #! , y, z and #2 , y, z. It may cut it in any even number

of points, but all the reasoning would apply to each pair so

long as a?x relates to the point of ingress, and #2 of egress. The

equation will therefore hold equally where lines can be drawn

cutting the surface in more than two points.

Further, the proof evidently holds for the space between two

surfaces, St and S2 ,
whereof S

2 completely encloses St .

On the Application of the Theorem to the Infinite External Space.

2.] Let us consider more closely the case of two surfaces, JS^

and S
2 ,

of which $2 completely encloses S^
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Applying the theorem to the space between them we have

^^ du^
dy dy dz dz

/7T5
JJJ \dx dx

in which the first of the double integrals relates to /S^, and the

second to S
2 , and the normals on S

1
are measured inwards as

regards the space enclosed by S1 .

Now let S2 be removed to an infinite distance. If in that
/"* /* 7

case the surface integral / / u
f

-^-
dS2t extended over the infinitely

distant surface S29 vanishes, the theorem is true for the infinite

space outside of S
1 ,

as well as for the finite space within it, the

normal being in this case measured inwards as regards S^.

In order that II u'
'

dS
2
should vanish, when extended over

the infinitely distant surface, it is sufficient and necessary

that uu' should be of less degree than 1. In the physical

theorems with which we are concerned, this will generally be

the case.

Generalisation of Green's Theorem.

3.] Let K be any continuous function of #, y, z. Then

rrC
JJJ

du du du du' du dul _

-j- + -r -r- + ~r j-[dxdydzdx dx dy dy dz dz 3

by the same process of partial integration as before. The con-

dition for application of the theorem to the external space will

in this case be that Kuuf must be of less degree than 1 .

It will sometimes be convenient to denote the expression

d * du d du d . du
2

\J*- = ) $- (xL -
) T- (A. ~z~

) by V K'U.
dx dx' dy ay dz dz

B 2



4 GENERALISATION OF GREEN S THEOREM. [4.

4.] We have assumed u and u' to be continuous functions of

x, y, and z. If at a certain surface within S, one of them,

suppose Uj is discontinuous but finite, and its differential co-

du du du .
, . _

efficients -=- > -=- > -7- > or one of them, are infinite, the theorem
da? dy d0

requires modification as follows :

It still remains true, u being always finite, that

d lv du\, . T.du\ .

T,du\ Cx* dudu'
u-r (K-=-)dne = (uK-=-) (uK ) / Kdx\dx^ dx' dx'

Xli
dx'Xl JXl

dx dx

and from this we may deduce Green's theorem in the form

du du

= ffuK ^-dS- fflu^u'dxdydz.

But we cannot assert the truth of the theorem in the al-

ternative form

. du du
K(- -

|- &c. ) dxdydz^dx dx ' y

\udxdydz.

If u become infinite at any point within $, we cannot include

in the integration the point at which the infinite value occurs.

But we may describe a surface S' completely enclosing, and very

near to, that point, and apply the theorem to the space between

S and /S", regarding u' and its differential coefficients as constant

throughout $'. For instance, let u become infinite at a point P
within S. Let S' be a small sphere described about P, and let

ft' -=-2 and Kp be the values of ft',
-=-

, and K in or on the
dv av

surface of S'. Then we obtain

(fudSf-

In this form the theorem can be made use of whenever the

two surface integrals relating to ', namely //^ J/S'and //
-g-dff,
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are finite or zero. For instance, if u = -, where r is the

distance of any point from P,

sr=0 and ^ = -

and the equation becomes

Correction for Cyclosis.

5.] We have assumed also that u and u' are single-valued

functions of #, y, z ; that is, that for any such function the line

integral / -~- dl) taken round any closed curve that can be

drawn within the space S to which Green's theorem is applied,

is zero. The functions with which we shall have to deal in this

treatise will generally satisfy this condition.

If however for any function u the condition dl = be

not satisfied for certain closed curves drawn within $, the state-

ment of Green's theorem requires modification in the manner

pointed out by Helmholz and Sir W. Thomson. The reader

will find the subject fully treated in Maxwell's Electricity and

Magnetism, Second Edition, Arts. 96 b 96 d.

It will be sufficient here to shew the modification required in

a simple case. Suppose, for instance, S con-

sist of an anchor-ring, Fig. I, and that for

any closed curve drawn within it, so as

to embrace the axis, as OPQO, I
-jj

dl= H,

but for closed curves not embracing the axis

/ dl = 0. Let us suppose u to be mea-
do

sured from a section $ of the ring. Let be a point in the
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section . Then, if we start from 0, with u for the value of

u, and proceed round the curve OPQO, u will, on arriving again

at 0, have assumed by continuous variation the value U
Q + H.

Let Sl
be any other section of the ring. Then $ and 8

divide the space within the ring into two parts, /S P/S
f

i
and

S
1 QS . No curve embracing the axis can be drawn wholly

within either S PSl or S
l QS . Therefore Green's theorem may

be applied to either space. Applying it to SQPSlt we have

(1)

in which the first double integral relates to the surface of the

ring, and the other two to the sections SQ and S
1 respectively.

Again, applying the theorem to <S
f

1 Q"S'o> and regarding the

normals to S and S
1
as measured in the same direction as in

the former case, that is inwards as regards the space now in

question, we have

du du
( -T- + &c.

) dxdydz

duf_

~d>>

(2)

If we now add the two equations (l) and (2) together, we

obtain for the whole space within the ring

.du du

fffz(-JJJ

~
r r fj f

Htnce HI I K^dSQ is the correction for cyclosis in this

case. Its value depends on the section of the ring arbitrarily

chosen as the starting-point from which u is measured.
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Deductions from Green's Theorem.

mi du'
e a constant. Then, since -= >

-

0$

severally zero, we obtain the result that for any function u,

A -i T j > i mi du' du' , du'
o.J Let u be a constant. Then, since -= > -y- > and -7- are

0$ ^ ^

the integrals being taken over any closed surface 8 and the

enclosed space.

7.] (a) There exists onefunction u of x, y, and z which has arbi-

trarily assigned values at each point on a closed surface 8, and

satisfies the condition V z

K u = at each point within S, K being

everywhere positive.

For evidently an infinite number of forms of the function

u exist satisfying the condition that u has the assigned
value at each point of S, irrespective of the value of V*Ku

within 8.

For any function u let the integral

throughout the space enclosed by 8 be denoted by Q^
This integral is necessarily positive, and cannot be zero for

any of the functions in question, unless the assigned values are

the same at every point of S
9
in which case a function having

that same constant value within S satisfies all the conditions

of the problem.

If the assigned values of u be not the same at each point of S,

then of all the functions which satisfy the surface conditions,

there must be some one, or more, for which QU) being necessarily

positive, is not greater than for any of the others. Let u be

such function.

Let u + u' be any other function which satisfies the surface con-

ditions, so that u
f

at each point of S. Then also u+ On'

satisfies the surface conditions, if be any numerical quantity

whatever, positive or negative.
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Then

du du du du' du

by Green's theorem,

= Qu+02
QU'-2

because u' = on 8.

Now Qu+eur is by hypothesis not less than QU} and therefore

0* Quf-20 fffu' V^ u dxdydz

cannot be negative for any value of 0, or any value of u'.

But unless V2^ be zero at each point within S, it is possible

to assign such values to #', consistently with its being zero on S,

as to make

/ uV 2

K u dxdydz

differ from zero. Therefore, it is possible to assign such a value

to as to make

0* Qu>- 2 \\\u' V\u dxdydz

negative.

It follows that V^ = at each point within 8, when u is a

function satisfying the surface conditions for which Qu is not

greater than for any other function satisfying these conditions.

COROLLARY. If u + u' be any other function satisfying the

surface condition, but such that VZ

K u' is not zero at all points

within S, evidently

(b) The theorem can also be applied to the infinite space out-

side of S with a certain modification, namely, There exists a

function u of #, y, and z which has arbitrarily assigned values at

each point on S, and satisfies the condition Vz

K u = at each point
outside of S, K being positive, and such that Ku2 is of lower degree

than 1.
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For of all the functions which satisfy the surface conditions on

S and the condition as to degree, there must be some one or

more for which the integral Qu extended through the infinite ex-

ternal space is not greater than for any of the others.

Let 11 be another function which is zero on S, and satisfies

the condition as to degree. Then Green's theorem may be

applied to the infinite external space with u arid n for functions.

And it can be proved by the same process as used above that,

unless V2

K u = at every point in the external space, some

value may be given to u' which will make Qu+u ' less than Qu .

Therefore when Qu has its least possible value for all functions

satisfying the conditions, VZ

K u must be zero at all points outside

8.] The theorems can be extended to the case where V*KU,

instead of being zero, has any given value p, a function of or, y> z,

at each point within the limits of the triple integral, i.e. within

or outside of S as the case may be.

For let V be a function of the required degree which satisfies

VK V = p at all points within the limits of the triple integral.

Such a function always exists independently of the surface con-

ditions *.

Then if <r be the assigned value of u on S, there exists, by
Art. 7, a function W, having at each point on S the value

cr 7, and such that V^ W= 0, at all points within the limits

of the triple integral. Let u = W+ 7.

Then u has at each point on S the value cr V-\- 7, that is,

the required value <r, and

= P

at each point within the limits of the triple integral.

9.] If the value of u be given at each point on S
9
and if the

value of V 2
j^, whether zero or any other assigned value, be

given at each point within S, u has a single and determinate

value at each point within 8.

///
is one such function.
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For, let u and u' be two functions both satisfying the con-

ditions.

Then u= u' and uu'= at each point on S
;
and

V^u-V^u''= 0, or V*K (u-u') = 0, .......... (1)

at each point within 8. Then

.. (2)

= by (1).

It follows that

du _ du du _ du' du _ du

dx dx dy dy dz dz

at each point within S, and therefore u and u', being equal on 8,

have identical values at each point within S.

It follows as a corollary that, as stated above, if u be constant

at each point on S
9
and if Vz

K u = everywhere within S, u has

the same constant value everywhere within 8. For the constant

satisfies both the surface and internal conditions, and there can

be no other function which does satisfy them.

The last theorem can be applied to the infinite space outside

of 8 as well as to the space within it, if we add the condition

that Kit? is of a less degree than 1, without which Green's

theorem could not be applied to deduce (2).

10.] There exists a function u of #, y^ and z which satisfies the

conditions following ; namely

(1) u has values constant lut arbitrary over each of a series

of closed surfaces 8lt 8
2 ,

... Sn , and given constant values over

each of a second series of closed surfaces $/, . . . Sm'.

(2) u is of lower degree than \.

and
//;

where ely e
2 , ... en are given constants, and the double integrals are

taken over Slt S2 , . . . 8n .
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(4) V 2 u = at every point not within any of the surfaces

For, consider a function u which satisfies (l) and (2), and also

satisfies

(a) u
1
e
1 + u

2 e<
2 + ...+un en = E, or Sue =. E,

where E is any arbitrary constant, and u^ . . . un are the constant

values assumed by u on S
1 ... Sn .

Evidently there exists an infinite variety of such functions.

For every such function %, the volume integral

extended throughout all space not within the surfaces, cannot be

zero, if E be not zero, and is positive.

There must therefore be some one or more of such functions

for which Qu is not greater than for any other.

Let u be such function.

Let u + u' be any other function satisfying (1), (2) ; and (a).

Then u' has constant values, %', u
2',

&c. on the surfaces Slt
S
2 . . . Sn which satisfy u^e^ + n

2
'e

2 + &c. = 0, is zero on each of

the surfaces S-^ ... Sm', and is of the required degree.

These are its only conditions. Also u' being of less degree
than i may be used with u in Green's theorem for external

space.

Let be any numerical quantity, positive or negative. Then

u+ 6u' also satisfies
(l), (2), and (a). Then

= Qu + 2
Qu>+ 2 + &c. dxdydz

uV2u dxdydz >

since u' is constant on each of the surfaces S
1

. . . Sn ,
and is zero

on each of the surfaces S^ ... Sm'.



12 DEDUCTIONS FROM GREEN'S THEOREM. [ll.

Now QU+0U > cannot be less than Qu ,
whatever u' may be, and

whatever may be.

But unless the factor of 20 in the last expression be zero,

there must be some value of 6 which makes QU+ 0U' less than Qu .

The quantity multiplied by 20 must therefore be zero for all

values of u
f

consistently with its conditions.

V 2 & must therefore be zero at all points within the triple

integral, and

for all values of %', #2', &c. consistent with

u
l
'e

1+u2
'e

2+ &c. = 0.

Therefore we must have

where p is some constant, the same for all the surfaces S-^ ... Sn .

If the function u be found for any value of E, then jx
is known

from (a),
and is proportional to E.

There must, therefore, be some value of E for which p is unity,

and the function u determined for that value of E satisfies (1),

(2), (3), and (4).

11.] The theorem can be extended to the case where V%,
instead of being zero at every point within the limits of the

triple integral, has any assigned value p, a function of x, y, z.

For let V be a function of the required degree which has

constant but arbitrary values on each of the surfaces S
1 . . . Sn ,

has

the given constant values on S^ ... m',
and satisfies V 2F= p at

all points external to both series of surfaces. The existence of

such a function is proved in Art. 8. 7 being so determined, let

Then, as we have proved, there exists a function W of the

required degree having, some constant values on S
1 . . . Sm ,

the

value zero on 8^ ... Sm', and satisfying

S
2
= e

2 -e.;, &c.,

and V 2 /F= at all points external to all the surfaces.
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Let u = W+ V.

Then u has some constant values on each of the surfaces

S
l
...Sni and the given constant values on each of the surfaces

K...8.'.

Also

Similarly,

&c. = &c.,

and V2w= V2 JF+V2 F=p
at all external points.

12.] If u be a function which satisfies the conditions (l), (2),

and (3) of Art. 10, and for which V 2 u has any assigned value, zero

or otherwise, at every point not within any of the surfaces, then

u has single and determinate value at each point in external

space.

For let u and u' be two functions, each of degree less than

J, satisfying the surface conditions, so that u and u' are both

constant on each surface, and

rr

JJ
J(

di*
3" or

and so on for each of the surfaces.

Also V 2 ^ and VV both have the same given value at each

point in the external space, and therefore V2
(^ #')

= at

every point in that space.

Then

-
fff(u- u') V

2

(u-u) dxdydz

, rrd(u-u)
. + ^-u,

)JJ -^-^dS.2

u-V*u'} dxdydz
jjj

= 0.
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du du' du du , du du
Therefore j- = T~ > T- = ;r~'

and :r = T~'
efo? cfo <fo/ ^ " ^

and since ?* = w' at an infinite distance, u = &' at every point not

within any of the surfaces.

13.] We proved in Art. 10 that if / / -7- dS be given for each of

the surfaces Slt S2 ... Sn , and u be constant on each surface, and

of degree lower than \, then the triple integral Qu has its

least value when V% = at each point in external space.
/ /

"j

We can now prove that given dS as before for each

surface and given V% = p at each point not within any of the

surfaces, and u of degree lower than J, Qu has its least value

when u is constant over each surface. For let u be the function

which satisfies the four conditions of Art. 1 0, u' any other function

of degree less than J which satisfies conditions (3) and (4) of

that Article, but is not constant on each of the surfaces 8
l

... Sn .

Then
u'= u+u' u,

and if Qu and QM/ denote the triple integral Q for u and u
f
re-

spectively, we have, as in the preceding articles,

in which the double integral is understood to relate to each of

the surfaces in succession. The second line is zero by the condi-

tions, and therefore if u' differ from u,

The theorems of the last three articles can also be extended to

the more general case in which the value of

d
{Ĵ du d fv du d , Tr du.

J-(A )+-r-(K -j-) + -T- (^ )> or V*Kudx^ dx' dy^ dy' dz^ dz'

instead of V2u are given within the limits of the triple integrals,
and
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where K is positive and constant for each surface, and Ku* of

lower degree than 1 .

For, we have only to replace V2u by the more general ex-

pression

d . Tr du . d . du. d . Tr. du^
(K ) + (K ) + (K ), or V*KU,dx^ dx' dy^ dy' dz^ dz'

and Qu by

and every step in the process applies as before.

14.] Again, if S be a closed surface, or series of closed surfaces

external to each other, and if o- be a function having arbitrarily

assigned values at each point on S, there always exists a function

u satisfying the condition

(1)
= a- at each point on St

(2) V 2u = at each point in external space,

(3) u is of lower degree than J.

For there must be an infinite variety of functions U which

satisfy the conditions (4) / / UcrdS = JE, where E is any arbi-

trary quantity differing from zero, and (5) U is of lower degree
than J.

For any such function the integral Qu must be greater than

zero. There must therefore be some one or more of such functions

for which this integral is not greater than for any other. Let u

be any such function. Let u + u' be any other function satisfying

(4) and (5), and for which therefore Tlu'trdS = 0.

Then it can be shewn by the same process as in Art. 10 that

-,- oc
o-, and V 2 u = at all points external to S, and that by

properly choosing E we may make -= = cr and V 2 ^ = as
CuV

before, and that QU+U' = Qu + Quf > This theorem also, as in the

preceding, may be extended to the case in which y2
u, instead of

being zero, has assigned values at all points in the external

space.
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Again, as there always exists a function u satisfying the

conditions, so it can be shewn that it has single and determinate

value at all external points.

For, if possible, let there be two functions u and u' of degree
7 sJ

f

less than i, both satisfying the conditions, so that -7- = -7dv dv

at each point on 8, and V2u = V2
*/, or V2

(u u) = at all

external points. Then

= 0,

and therefore -=- = -=, &c., and u = u', since both vanish at
da dx

an infinite distance.

15.] We can shew also by the same process that there exists a

function u satisfying the condition that y2 ^ = at all points

in the internal space, and = o- at all points on 8, provided
(JvV

adS = 0.

ff-
For if that condition were not satisfied, the condition

ua-dS=E might be satisfied by making u a constant, in

which case Qu would not have a minimum value greater than

zero, and the proof would fail. In fact, if V2 u everywhere

within 8, / / -r- dS ; and therefore -=- cannot be equal to <r

JJ dv dv
r r

at all points on 8 unless / / a dS = 0.

If V 2
w, instead of being zero, is to have the value p within

8, the problem maybe solved, provided // <rdS = fffpdxdydz,

as follows.

Let W be a function such that V 2 ZF= p at every point
within S, and therefore that

dW
Ji

dSt
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Then there exists a function V such that

dV dW= (T

dv dv

at each point on S, and V 2 V at each point within S. Let

u = V+ W. Then
du dV dW _
dv dv dv

at each point on S, and

V2w = V2F+V 2 JF p

at each point within $.

It can easily be shown also that if u and u' be two functions

both satisfying the conditions, =
^ , &c., at all points within

S, and therefore u can only differ from u by a constant.

16.] Let p, g, r be any functions of #, y and z, each of degree

less than f, satisfying the conditions

lp + mq+ nr = <r (1)

at every point on $, where a- is any arbitrary function, and

dp dq dr

dx dy dz

at all points without S.

Then we know that there exists a function u of degree less

than J satisfying the conditions

du du du du
_^

dv
~~

dx dy dz
~

at each point on S, and

d du d du d du^u = 1- -_
1 =0 (3)

dx dx dy dy dz dz

at all external points. Therefore the system

du _ du du

satisfies (1) and (2).

It can now be shewn that the integral

VOL. I.
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extended throughout the space external to S, has less value when

p = , &c., than when jp, q,
and r are any other functions

dx
of degree less than f satisfying (l) and

(2).
For if

du du du

be any other three functions of the required degree satisfying

(1) and (2), a, & and y must satisfy

la + mfi + ny = Q (4)

at each point on S, and

(5)
dz

at each point in external space.

Then

n *****

dx dy
'

By integrating the last term by parts, and attending to (4)

and (5), we prove it to be zero. Because na, ufi, and uy being

of less degree than 2, the double integrals \\uadydz &c.

vanish for an infinitely distant surface. Hence the integral

is less than

A corresponding proposition can be proved for the space
within S without restriction on the degree of p, q, r, and u.

17.] The propositions of Arts. 1 4 and 1 5 can be extended to the

case in which K-=- is written for at the surface, and Via
dv dv
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for V 2 u at points in space ;
and Art. 1 6 may be similarly extended

to prove that

1

K
has a minimum value when

du du du

dx* dy* dz

K being in each case a given positive function of a?, y, and 0, and

such that Kp &c. are of lower degree than f.

c 2



CHAPTEK II.

SPHERICAL HARMONICS.

ARTICLE 18.] Definition. If u be a homogeneous function

of the ft
tb

degree in as, y, and 2, satisfying the condition V 2 u = o,

where V 2
represents the operation

then u is said to be a spherical harmonicfunction of the ft
th

degree
in #, ^, and z.

If % be any function of x, y, z satisfying the condition

V2u = o, then every partial differential coefficient of u, as

> will also satisfy the condition

y..
^+^ -Q

dx*dydz
v
~

For since the order of partial differentiation is indifferent, it

follows that
*** dM^

= 0.

19.] Let any point be taken as origin of rectangular co-

ordinates, and let the coordinates of

H P be x, y, z. Let $ (#, y, z) be any
function of #, y, z. Let OH be any
axis drawn from and designated

by Ji, and let Q be any point in this

axis, and let OQ = p.

Ije^ f> *7j C be the coordinates of P
referred to Q as origin, with axes

parallel to the axes through 0. Then the limiting value of

the ratio
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as p is indefinitely diminished, is denoted by

IJ#fe*;4
It is clear that

d d(j>

^<MW), or w
is itself generally a function of x,y9 z\ and therefore if another

axis OH', denoted by h', be drawn from 0, we may find by a

similar process
d

and so on for any number of axes.

If u be any function of #, y, z satisfying the condition

V 2 u = 0, and if h^ ^
2 ,

... ^ denote any number of axes drawn

from the origin, and the expression

A.A, JL.
dl\ dh

2

'"
dh

{

be found according to the preceding definition, then

W-
^\'''~dhi

>
U

For let 119 mlt % be the direction cosines of the axis hv Then

by definition

du , du du du
i

~ n
\ ~J~dx l

dy
1 dz

But by hypothesis
V2 u = 0.

Therefore

vi*!, v 2-, v2-
dx dy dz

are severally equal to zero. Therefore

and therefore by successive steps

v*^_* J* o.
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20.] If

- is a spherical harmonic function of degree 1 .

d ,l
For (

*1 (I) -_.! + !*
1 5

Similarly (-)
= -

-^
+
-^-

d* 1 1 ^ 3z2

and *-"*
whence

* ^ d! 1_ 3 3(s+
J
+ 2 '

"
3 "*

_ __ __"
"*"

"__ __W ^ J

cte
2 ' r

"
r3

"

r5
"

r3
""

r3

21.] Whatever be the directions of the i-axes klt ^
2 ,

... /^, the

function

JL d
\
M

~dh^""dh^ \ r

where M is any constant, is a spherical harmonic function of

degree (i+ 1).

For it is evidently a homogeneous function of that degree,

and since

it follows that

If we write this function in the form
1

1 -^ > Yi
is a function

of M, the direction cosines of the axes fil} &
2 ,

t .*hit
and those

of r. To fix the ideas we may conceive a sphere from the centre

of which are drawn in arbitrarily given directions the ^-axes

OHi, Off
2 , ...OHi cutting the sphere mffl9 H2 , ... H^ Then

if OQ be any radius, at every point P on OQ or OQ produced

1^.
has a definite numerical value, being a function of the di-

rection cosines of Offly ... OH^ and of OQ, and independent of r

or OP. If h
lt

/
2 , ... hi be the fixed axes of any harmonic, P any
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variable point, Yi
at P is spoken of as the harmonic at P with

axes
h-fr

^
2 5 %i-

Since each axis requires for the determination of its direction

two independent quantities, Y
i

will be a function of the two

variable magnitudes determining the direction of r and the 2i

arbitrary constant magnitudes determining the directions of

the 2-axes. Y
t may also be expressed in terms of the ^-cosines

fjiiy H2 ,
... fa of the angles made by r with the 2-axes and the

- cosines of the angles made by the axes with each other,
2

and an expression for Y
i

in this form may be found without

much difficulty.

22.] If T
t
be a spherical harmonic function of degree (i+ I),

and if r = \/ 2 +^2 + ^2
, then r2i+l V

i will be a spherical har-

monic function of degree i.

For by differentiation

=
(2 *+ 1) r

2'-1 x V
i+ r"+1

Similar expressions hold for

Adding these expressions, and remembering that

we obtain

V 2

(r**
1V

t)
= (2i+ 1) (2 1 + 2) r2 *'-1 V

i

j

4
-t- \
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5+^-5 =-+>".
and V2 V

i
= 0.

Therefore

= 0,

and r*i+ ^

Fi is a homogeneous function of
as, y, z of degree i:

and is therefore a spherical harmonic function of degree i.

Y.
We have seen that -~j , as above defined, is a spherical har-

monic function of degree (i + 1).

It follows then that

or ri Y.

is a spherical harmonic function of degree i.

23.] Every possible spherical harmonic function of integral

positive degree, i, can be expressed in the form riY
i
if suitable

directions be given to the axes fil9 ^
2 ,

... &
t determining Yt

.

For if Hi be a homogeneous function of the i ih degree it

contains - -

arbitrary constants. Therefore V 2
/^ being

2

of the degree i 2 contains -*

arbitrary constants.

In order that V 2^ may be zero for all values of #, y, and z,

the coefficient of each term in V 2^ must be separately zero.

This involves -- relations between the constants in H^

leaving
^-^-'- --L- *- or 2i+l of them independent.

2 2

Therefore every possible harmonic function of degree i is to be

found by attributing proper values to these 2i-f 1 constants.

But the directions of the ^-axes ^ ,
^2 ,

... ^ involve 2 i arbitrary

constants, making with the constant M, 2 i -f 1 in all. It is

therefore always possible to choose the e-axes ^ ,
h2 ,

. . . li
i
and

the constant M, so as to make

.... d d d M .

r TnT'Twr -:/* '
or r Y

dh^ dfi
2 dhi r
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equal to any given spherical harmonic function of degree i.

Therefore r
iY

i
is a perfectly general form of the spherical har-

monic function of positive integral degree i.

Again, every possible spherical harmonic function of negative

Y
integral degree (i+l) can be expressed in the form -j~

For if V
i

be any spherical harmonic function of degree

(i+l), it follows from Art. 22 that r2i+l 7i is a spherical

harmonic function of degree i. Hence, i being integral, it

follows by the former part of this proposition that r2i+l 7i can

always be expressed in the form riY
i by suitably choosing the

axes of Yit and therefore that V
i may be expressed in the form

,

Therefore riY
i
and -~^ are the most general forms of the

spherical harmonic functions of the integral degrees i and

(i + 1
) respectively.

Y
i

is defined as the surface spherical harmonic of the order i,

'Y-

where i is always positive and integral; riY
i
and -^ are called

the solid harmonics of the order i.

24.] If J^ and Yj be any two surface spherical harmonics

with the same origin 0, and referred to the same or different

axes, and of orders i and j respectively, and if / / Y
i
Y
j
dS be

found over the surface of any sphere with centre 0, then

YjdS= 0, unless i = j.

Let H. and Hj be the solid spherical harmonics of degrees

i and j respectively corresponding to the surface harmonics Y
i

and J,, so that

H
t
= r*Y

it ffj
= rJYj.

Make U and U' equal to ff
t
and Hj respectively in the equation

of Green's theorem taken for the space bounded by the aforesaid

spherical surface, then
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rrH ^' d̂ d_Ei dffjd

JJJ ( dx dx dy dy dz d

because V2^ andV 2
ffj are each zero at every point within the

sphere ;

and similarly,

r being the radius of the sphere ;

that is

or
(i j )

therefore either

i=j, or

25.] Definition. The points in which the axes h^ h^...hi

drawn from any origin meet the spherical surface of radius unity

round as centre are called the poles of the axes h^ ^
2 ,

... hit

When all these poles coincide, the corresponding spherical har-

monics are called zonal spherical harmonics solid and superficial

respectively, referred to the common axis, and the surface sphe-

rical harmonic of order i is in this case written Qt >

If ju be the cosine of the angle between r and the common
axis in the case of the surface zonal harmonic Qt

of order i, then

Qi is the coefficient of e
i in the expansion of

in ascending powers of e.
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Let OA be the common axis, and let OP be r and the angle
POA be 0.

In OA take a point M at the

distance p from 0. Then if V
i be

the solid zonal harmonic of degree

(i + 1) corresponding to the sur-

face zonal harmonic Qi} it follows

from definition that
o

F-/*vJL Fie-3.
i ~dp PM

when p is made equal to zero after differentiation.

Let p = er and let cos =
ju.

Then F< = ()* =L== with e = 0.

< 1
But = and is constant

; therefore
ap r

? whene = 0.

But if - be expanded in ascending powers of e.

the coefficient of e
1 in the expansion is, by Maclaurin's theorem,

1 .d* 1
T (-J-) .

-
> when e=0.X *

Let it be denoted by At
.

Therefore V
i
= -^A4 .

But
T'-pMii

Therefore Qi
= A

t
.

Hence Q = ^ = 1 and
1
= ^1 = ju.

Also when ju
= 1

1

and therefore each coefficient Q is unity.
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It is evident from definition that the zonal surface harmonic

at P referred to OQ as axis is equal to the zonal surface

harmonic at Q referred to OP as

axis.

26.] Let a be the radius of a spherical

surface 8 described round as centre.

Let P be any point within or without

8. Let OP =/. And, E being any

point on the surface, let PE = D,
Fig- 4- /.EOP = 6. Then

1

7

i

a

Va?1+ 7^-

or -

1~ *

or
a a1

-;COS0

according as/ > or < a.

according as / > or < a.

Therefore, if/ > a,

But

2f
* _"
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Therefore

and similarly iff < a,

27.] With the same notation as before we can prove that

/ / ~ =
j

when P is without
,f % 3

and / / = when P is within S,
\j J J

the integrations being taken over the surface S.

Let EOP = 0, and let $ be the angle between the plane of

EOP and a fixed plane through OP
; then

d(r = a2

Also D2 = 2-2a/cos^+/
2

;

/*
r^o- _ 27ra CdD

'

JJ &~
:

~TJ ~D*'

the limits on the right-hand side being

f a and f+a when P is external,

and af and +/ when P is internal ;

TAZo- 2wa f 1 1
) ,

'

77 s5
=:

T" i/r -7?^ I
when p 1S externa1 '

1
when P is internal ;

or

in the respective cases.

Hence

and f[
a

-^[-i~-if-
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for external and internal positions of P respectively, and for both

cases

ltf=aj
I ^ da- = 4^a.

28.] In the last case let F(E) be any function of the position

ofE on the surface which does not vanish at the point in which

OP cuts the surface, nor become infinite at any other point on

the surface, let Q be the surface zonal harmonic at E of order i,

the common axis being OP, then, if P be made to approach the

surface, ultimately shall

For with the notation of the last Article let

=//
then when P approaches the surface and / is indefinitely nearly

equal to a, every element of the integral vanishes except when

D is indefinitely small. In this case P is ultimately on the

surface, and the integral has the same value as if F(E) were

equal to F(P), its value at the point of S with which P ulti-

mately coincides, or

u = (P)- da- = F(P) -dff when/= a ultimately.

Therefore

= >naF(P) by the last Article.

Suppose that/ is originally greater than #, then

da;&
i i

and
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And, by Art. 25,

i=f{&+<?.f+<?,+*}
Performing the differentiations and substituting, we get

29.] If Y
{
be any surface spherical harmonic of the order i,

and if Q i
be the zonal surface harmonic of the same order and

origin referred to any axis OP, and if da- be an element of a

spherical surface of radius a described round the origin as

centre, then

where (7^ is the value of Y
t
at P the pole of Q{ ,

the integra-

tions being over the spherical surface dS.

Substitute Y
i
for F{E) in the last proposition.

Then F(P) is the value of Y
i
at P

;

7
> (at P) =

And, by Art. 24, each double integral vanishes except

or

if (7^) denote the value of Y
i at P.

By putting Yt
= Qi we obtain

since, by Art. 25, 4
= 1 at the pole,
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30.] If F(E) be a spherical surface harmonic, i.e. F(N) = Y^

then, whether P be on the surface or outside of it,

F.or

by Arts. 24 and 26,

where (1^) denotes the value of Y
i
at the common axis of the zonal

harmonics, that is, along OP.

Therefore
rr-pinZ a f+i

;?> m-

31.] Considered as a function of
//,

derived by the expansion of

- . the zonal harmonic Q* is called the Legendre's
2

coefficient of order i, and is frequently written P
{ .

We can prove the following properties of the coefficients P.

(a) As proved above, if p = 1,

l-e

Hence, if p = 1, Pt
= 1 for all values of i

;
if

IJL
= 1,

1 1

Hence, if ^ = 1, Pi
= + or 1 according as i is even or odd.

If u < 1 == is always finite, and is finite if e = 1 .

'

Hence the series P1 + P2 +... is a convergent series.

(V) It is evident from the formation of P^ as the coefficient of

ei in the expansion of

that P
t must contain /u% ju*~

2
, jut*"

4
, &c., but can contain no

higher powers of
jut
than //, and no powers of which the index

differs from i by an odd number. Hence if i be even, Pi
has the
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same value for -f /x as for p, and if i be odd the same value

with opposite sign.

Hence also // can be expressed in terms of Pit Pf_ 2 ,
&c

(c) f
1

p
i
P

j
d

fJ
. = ifi=j,

J i

=
:
- if i = ?.

2t+l
For since ^ = cos 0,

dfji
= sm0d0.

Also P
i
and P^ are both functions of p, and therefore of 0.

Hence

PP< Pj dp = Fpi Pj sm0d0
J-i Jo

over the surface of a sphere of radius a
;
= by Art. 24, unless

|a/
And if i = /,

ri

(d) / PipSdp = tf i >j, or if J i is odd.
J-i

For expanding ^ in terms of the P's, the integral is resolved

into a number of integrals of the form / P
{ Pj dp, in each of

^-i
which i =/, and is therefore zero.

(e) To find the value of / /x'P^, where K is any positive
^o

number integral or fractional *.

Let P
i
= a

Then

K ., .,
, if i be even.
'

r- , if i be odd.
'

* See Todhunter's Functions of Laplace, Lam^, and Bessel, Art. 34, 35.

VOL. I. D
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Let i be even. Then if K has any of the values i 2, J 4, &c.,

or zero, the left-hand member

ri I ri

/ pftpf*fft = i/ ^
Jo *J-i

= 0,

and therefore K = 0.

It follows that

^T = A.K.K 2K 4...K i+ 2.

Also A is the coefficient of the highest power of K
;
therefore

P
i (fji)

when
fj.
= 1

= 1.

Hence, if i be even,

K.K 2 ... K i

Similarly, if i be odd,

/ ^
K P

i
du,=

Jo

If K be either an integer or a fraction whose denominator

when reduced to its lowest terms is odd, then

-l JO

if ju*Pi
does not change sign with /u,

= 0,

if /x"P<
does change sign with /x.

Hence any function, f(^)^ which can be expanded in a

series of positive powers of
ju,,

whether integral or fractional, can

be expanded in a series of the form

For we have

1

2

2i+T- *

or
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which determines A
{ ,

if /(/n) is known in terms of positive

powers of
JJL.

It is perhaps necessary to show that the series

converges, if /(ju) can be expanded in a converging series of

ascending powers of ju.

For let cK fji

K be any term in the expansion of f(^). Then the

term in A
i
derived from this term in ^ is

and the corresponding term in Ai+2 is

2

from which it is easily seen from the expressions for /
.

^-i
above obtained that, if i be large enough, Ai+2 < A

{
.

Now the series P
l + P2 ~f P3 . . . converges.

Hence A
Q +A1

P
1 -{- A2P2 -f &c. converges.

32.] We have hitherto regarded the coefficients Q or P as

functions of /x derived from the expansion of

Vl
We may however take for initial radius any line OC not

coinciding with the common axis, and the direction of the

common axis OH of the zonal harmonics may be defined with

reference to this line by the usual angular coordinates, namely,
6' = Z.HOC, and $' the angle between the plane HOC and a

fixed plane through OC. In this case the angular coordinates

defining the direction of OP or r will be and 0, and the

cosine of the angle HOP will be

cos 6 cos tf + sin sin 0' cos (0
-

<f>').

Now Q t is, as we have seen, a function of cos HOP, and is

therefore a function of

cos cos 6'+ sin sin 0' cos
(< <//).

It is evidently symmetrical with regard to and 0'. So that

the value of Q {
at P, when O// is the common axis, is the same

D 2
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as the value of Q t
at H, when OP is the common axis, see Art. 25.

In this form Q t
is called a Laplace's coefficient.

33.] Of the differential equation which a spherical surface

harmonic satisfies.

By definition any spherical harmonic u satisfies the equation

If we change the variables to the usual spherical coordinates

r, 6, </>,
where

x = r sin 6 cos
(f> t y = r sin 6 sin

<f>,
z r cos Q,

the equation becomes

d zu 2 du 1 d z u I d zu cot# du _ .

~d^
+ rd^ + ^d +

r2 sin2 6 dfi
4 ^~ 5^

~

7
Let u = -r^j Then u is a spherical harmonic function of

degree ~(i-t- 1), and satisfies the above differential equation.

Now Y
i
= ri+l u, where T

i
is independent of r, therefore ri+l u

is independent of r, whence

and t (+ l)^'"
1 ^+ 2 (i+ 1) r + ri+1 = 0,

dr dr*

d*u 2 du ii
and - + =

Hence the difierential equation becomes

1 d 2u

Let us now change the variable from to cos#, and let

cos 9 = y. Then

d . . du

Substituting in the differential equation, we obtain
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or restoring -^ for &,

This is true for any spherical surface harmonic Y^ and therefore

for the zonal harmonic Qt
as a particular case.

In the case of the zonal harmonic, if the common axis be taken

for the initial line from which is measured, Qi *S
J
as above

mentioned, written P
if
and P

i is independent of
</>.

Hence P
t

satisfies the equation

34.] If we differentiate equation (4) of last Article k times,

we obtain the equation

From (4) and (5) above it appears that Pi and -~* respectively

satisfy the differential equations

We may also prove that P
t
and ^ are the only solutions of

(6) both finite and integral in p.

For if in the former of equations (6) we write P^ for y, we

obtain a differential equation in u which gives on integration

where A and A are arbitrary constants and the integral com-

mences from some fixed limit ;

If A' = 0, y = APt ,
an integral finite solution in
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If ^'=^0, the expression fory contains the term

., T d^A P- I 3

and therefore can be neither finite nor integral.

Hence Pt
or A P. is the only finite integral solution in /u of

the former of equations (6). And in the same way it may be

d k P- .

proved that
*

is the only finite integral solution in
p. of the

(I
JU.

second of equations (6).

35.] By means of equation (5) of the last Article we may
generalise the proposition of Art. 24 by proving that

T-l) ... (i-k+l) when i =j.

For if we multiply the left-hand side of (5) of Art. 34 by

(1 /m
2
)*,

it may be written

and changing Jc into k 1 this becomes

But integrating by parts, we get

since the integrated terms vanish
; and therefore

/
+ !^ 1

<1
-

and therefore by successive reductions,

-i
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and therefore by Art. 31,

/+!

/-7& ~p Jlc ~p

( 1 M ) r^ ' d ju
~~

if i ~T^* j

36.] To expand Q* in a series of cosines of multiples of

(*-*')
Since Q f

is the coefficient of e
i in the expansion of

{
1 2e (cos cos 0' + sin sin 0' cos (0 <')) + e

2

}"*,

it follows that the term in Qf
which involves cos

((/> <') must

contain (sin 0)
fc as a factor, or in other words, that the required

expansion of Q t
must be of the form

g + ql
cos

(<#> </>') + &c. + qk cos k ($ <f>') + &c.,

where qk = (sin 0)
kf(cos 0),

and the function denoted by f is

rational and integral.

If we perform the requisite differentiations on Qiy substitute

in (6) of last Article and equate to zero the coefficients of

cos
(</> $'), we obtain the equation

where y = cos 0.

And since / is a finite integral function of y, it follows from

Art. 34 that

where Ak is independent of y or of 0.

Now Qf is a symmetrical function of and r

,
if therefore we

denote cos 6' by y' it will follow that A
k
must be of the form

where P
i

is the same function of y that P
i
is of y, and therefore

that

ft = a P, P /+ a
x
sin sin 0'^ .^- cos (0

-
<J>') + &c.

^/tp d kP/

-h a^ sin 0^" sin
/*

-j-^
---

-=-7^-
cos k

(< ^>') + &c.
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For most of the applications of Q the actual values of the

numerical coefficients a , al5 a2 are not required, they may
however be determined without much difficulty as follows.

37.] To prove that

2

For
it k p'

- sin 0* sin 0'* cos

Square both sides and integrate with respect to $ from to

27T, remembering that the integrals of all terms containing

products of cosines of unequal multiples of
<f> <$>'

are zero, and

that the integrals of all quantities of the form (cosm($
are equal to TT and the integral ofafPfPj* is 27ra2 P

i

2P/2
;

Again, integrate both sides with regard to y from 1 to + 1,

remembering that

and we get

{
2
<p-/_;^+&

,

sin^f + &c. ; (a)

But if 0=0' and
<t>
=

<|>', Q(
= 1

;

For in this case ^ becomes

The two expressions on the right-hand sides of (a) and
(/3)

cannot be equal for all values of 0' unless the corresponding
terms are separately equal ;
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'*
-

/;
rfkp

38:] If YI be any surface spherical harmonic of the i
tb

order,

then Y
{

is a rational and integral function of cos 0, sin d,

cos (b, and sin <b, for

. ...

\i_
dh. dh^ dht

Also if I, m, n be direction cosines of the axis /i,

d _ d d d
-rr =l-j- +m +^3-;ah ax ay dz

'
d d d l ? fl\P fm \<r fm'~'''-

where I? means the product of p, Ts, and so of m" and nT
,
and

where p + o- + T = ^.

But
p

"
(-)

= 2 ,* , where
a p

cty dz r' r2"

also x r cos cos ^>, i/
= r sin sin

</>,
= r cos

;

A sin
A
cos 0^ cos d)

v
sin rf)

71
^

therefore J^ is of the form stated above.

39.1 Y, is of the form
d kP

2* a cos ^() + 3 sin A;() sin 7i: -

where a, and ^,. are numerical constants.
K ' tC

It is clear that we may assume the coefficients of cosk<p and

sin/t(/) in Y
i
to be A

k
and B

k ,
where J

ft
and ^A

are functions of

6 to be determined.

Also we may assume Ak
= a

A
sin k

v, where a
k

is constant and

v to be determined.
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But Y. and therefore the coefficient of the cosine and sine of

every multiple of $ satisfies the second of equations (6) of Art. 34
;

Now vsinflfc is to be a rational and integral function of y and

\/l y
2

,
which clearly cannot be attained so long as the second

term in v remains;

= a, sin ^ r

dy
k

Similarly

where a
k and p, are numerical constants ;

.'. Y. = 2 ac

the constants a^ and (3k depending upon the directions of the

a'-axes.

It has already been proved, Art. 24, that

ri rzn

/ / YiYj
J i ./

unless i =/, aad we may now see that the same result follows

from the general form of the function Y
{
or Y

jt

For Y
t
= S^c

and Yj = 2 (a/ cos k $ + ft
7
sin k

<j>)
sin 0*

If now we multiply Y
i by J} and integrate with regard to

< from to 2 TT, all the terms will vanish except those in which

the multiples of < are the same, and the result therefore will be

of the form
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If we again integrate with regard to y from 1 to +1, the

result will be of the form

and by Art. 24 each of these terms is zero unless i =/.*
It does not follow that

/i

rz*

/ Y.Yj
i Jo

is always finite, inasmuch as the values of the ^'s may be such

that although each term in the integral is finite, their sum may
be equal to zero. The values of the A 9

a depend upon the

inclinations of the two sets of 2-axes of the Y
i
and J/, and

when these axes are so related that

/i

PS*

\ Y.Yf
-i Jo

is zero, the two spherical harmonics are said to be conjugate.

For example, take two spherical harmonics of the first order

Y
l and F/. If & and $' be the polar coordinates determining

the axis of Y
lt and 0" and <" those for the axis of 7/, then

Y
l may be easily seen to be

cos 6 cos'tf + sin sin 0' cos ($ $'),

and similarly 7/ is cos cos 0" -f sin sin 0" cos (<$><$>"})

and

[
2

"Y
1 TfdydQ = ^ (cos 6' cos 0"+ sin tf sin 6" cos

<f>'
cos <f>"

-l JO
+ sin 0' sin 0" sin <' sin

c/>")

if ^, ?#, # be direction cosines of the axis of Y, l'
t
m'y n' those

of Y'.

* In a similar manner the proposition of Art. 26

II-"
may be deduced from the form of Yi proved in this article.
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If therefore these axes are at right angles to one another,

/--i

or two spherical harmonics of the first order are conjugate when

their axes are perpendicular to each other.

For the second and higher orders there is no such simple

geometrical relation.



CHAPTEE III.

POTENTIAL.

ARTICLE 40.] IF the forces acting on a material system he

such that the work done by them upon the system in its motion

from an initial to a final position is, whatever those positions

may be, a function of the coordinates defining those positions

only, and independent of the course taken between them, the

system is said to be Conservative. The w6rk done by the forces

on the system ill its motion from any position S'to any given j?

position which may be chosen as a position of reference, is

defined to be the potential energy
r

,
or shortly the potential, of

the system in the position S in relation to the forces in question.

If we denote by U the potential, and by T the kinetic, energy
of the system, then, as shown in treatises on dynamics, T+ U
is constant throughout any motion of the system under the

influence of the forces in question. If q be any one of the

generalised coordinates defining the position of the system, it

follows from definition that -7- <>q is the work done by the
dq

forces on the system as q becomes q + <), and therefore the force

tending to increase the coordinate q is
j-

If the system be a material particle of unit mass, situated at

the point P, we may without inaccuracy speak of the potential

as the potential of theforces at P.

41.] We are in this chapter concerned only with forces of

attraction and repulsion to or from fixed centres, the force

varying inversely as the square of the distance from the centre.

Now if the central force be any continuous function of the

distance, whether varying according to the law of the inverse

square or any other law, a potential exists.
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For let there be at a particle of matter of mass m which

repels any other particle of mass m' with the force mm'f(r\ where

f (r) represents any continuous function of r, the distance between'

m and m' ; then it can be shown that if be fixed, the work

done by the force upon m' as m moves from a point at the

distance r from 0, to another at the distance r
2 from 0, is a

function of r^ and r
2 ,

the initial and final values of r, and of these

quantities only, and is independent of the form of the curve de-

scribed by m' between these initial and final positions, and of the

directions from in which the distances ^ and r2 are measured.

For at any instant during the motion let m be at P, and let

Q be a point in the course indefinitely

near to P. Let PQ = ds, the angle

OPQ = 4>, OP = r, OQ = r + dr.

In the limit, if Q be taken near

enough to P, the force of repulsion may
be considered constant, as m' moves

from P to Q, and equal to mm'f(r)._
Therefore the work done by the force in moving the repelled

particle from P to Q is mm'f(r) eoaQds, or mm'f(r)dr, and is

independent of
c/>

if dr be given.

Therefore the whole work done by the force in the motion

from distance r to distance r from is

Fig. 5-

mm' f(r\dr,

and depends upon r
x
and r2 ,

and these quantities only.

We have for simplicity considered m fixed at 0, but the proof

evidently holds if both m and m' be moveable, and move from a

distance r^ to a distance r2 apart under the influence of the

mutual repulsive force mm'f(r). If the mutual force had been

attractive instead of repulsive, in other respects following the

same law, the expression for the work done would be the same

as that for the repulsive force, but with reversed sign. If in

any case on effecting the integrations the expression for the

work done prove to be negative, this result must be interpreted
as expressing the fact that positive work is done against, and

not by, the force in the motion considered.
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In either case, whether the force be repulsive or attractive,

the work done is proved to be a function of r- and r2 only, and

independent of the course taken between the initial and final

positions of m.

We have thus shown that if f(r) be any continuous function of

the distance between the two particles m and m', a potential exists.

At present, as above stated, we are concerned only with the

case in which f(r) =-g In that case the work done by the

mutual force between m and m', as their distance varies from r

(*'2

1

^dr, that is

'-#mm

and if the force be attractive

,(1 1
}mm <
J--

42.] We shall now consider two kinds of matter, such that

two particles, both of the same kind, repel one another with a

mutual force varying directly as the masses of the particles, and

inversely as the square of the distance between them, and two

particles of different kinds attract one another according to the

same law.

Then the work done by the mutual force between two par-

ticles m and m\ as they move from a distance r to a distance r
2

apart, is, if the masses be of the same kind, and therefore the

force repulsive, .
^ ^

.

mm' < ;

and if they be of different kinds, and the force attractive,

/u nmm < >

t*i r*>

If now we agree to regard all particles of one kind of matter as

positive, and all particles of the other kind as negative, we can

combine both results under one formula

mm i"^r
in which m or m' may have either sign, expressing the work
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done by the mutual force between m and m' in the motion from

distance r to r
2 apart.

Finally, we will take for the position of reference to which

potential is measured, the position in which the two particles

are at an infinite distance apart, that is, in which r2 is infinite-

Then we shall arrive at the following definition.

The potential of two material particles m and m\ distant r from

each other, is the work done by the force of mutual repulsion as

/
rzl

~2 dr,
r

when r2 is infinite, that is -
j and is positive or negative

according as m and m' are of the same or different kinds of matter.

In physics a body which is within the range of the action of

another body is said to be in the field of that other body, and

when it is so distant from that other body as to be sensibly out

of the range of its action it is said to be out of the field.

The following definition is therefore equivalent to the one above

adopted. The potential of two material particles distant r apart

is the work done by their mutual repulsion as they move from the

distance r apart to such a distance as to be out of the field of one

another's action^ attraction being included as negative repulsion.
4MU

Taking m 1, we define -- to be the potential of m at a

point distant r from m.

43.] The potential at any point of any mass occupying a finite

portion of space is evidently the sum of the potentials at

that point of all the particles of which the mass is composed.

If m be any particle of this mass, and r the distance of m from P,

the potential of the mass at P is 2
,
where the summation

T

extends throughout the mass, or if p be the density of the mass

at #, y, z, the potential is

rrr

Let this potential be denoted by F.

44.] The repulsion at P of a mass at resolved in any
direction is the rate of diminution of the potential of the mass
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per unit of length in that direction. This is a particular case

of the general theorem proved above, that the force tending to

clV
increase any coordinate a is

dq
If V be the potential of the particle m, and ds the given

direction,

_dV_ __dV dr

ds
~

dr ds

m dr m

= the repulsion resolved in ds.

And this proposition being true of every particle of which the

mass is composed is evidently true of the whole mass.

Hence, if V be the potential at P of any mass M, the re-

pulsion of the mass in the direction indicated by ds is =-
ds

45.] If 8 be any closed surface, dS an element of its area, N the

repulsive force at dS resolved along the normal to dS measured

outwards arising from a particle of matter of mass m placed at the

point 0, then if the integration extend over the whole surface

ffNdS = 47rm, ifm be within S;
and ffNdS = 0, ifm be without S.

Let a line drawn from in any direction cut the surface S at

the point P distant r from 0, and let this line make the angle $
with the surface 8 at P.

Let a small cone with solid angle da> be described about OP
as axis, cutting off from 8 in the neighbourhood of P the ele-

mentary surface dS.

The area of dS is equal to
,

also the repulsion at P
m Bm *

from is
,
and the resolved part N of this repulsion in

the direction of the normal to S at P drawn outwards from S is

in . in
+ sm

(f>
or sm

c/>,

according as OP is passing out of S from within, or into 8 from

without
;

NdS = +mco>, or mdco

in the two cases respectively.
VOL. I. E
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But if be within S, the line drawn from it in any direction

as above must emerge from S one time more than it enters

it, and therefore the sum of all the values of NdS for this line

Taking the corresponding sum for all lines drawn from we

get the integral yy^V^-tf, and therefore

since the sum of the solid angles about is 4 TT.

If be without S the line drawn from it in any direction

must meet S in an even number of points, and therefore the

sum of all the values of NdS for every such line must be zero
;

therefore in this case

This proposition is true for any particle within or without S

respectively.

Therefore it follows that if any quantity of matter of mass

M be distributed in any manner within a closed surface S, and

if N be the repulsive force of that matter at any point on S

resolved in the direction of the normal at that point drawn

outwards, then

And, similarly, that ifM be without 8, then

and writing -j- for N, by Art. 44 we have

in the two cases respectively.

46.] It follows from Art. 45, that if p, the density of matter,

be finite in any portion of space, the first differential coefficients

of V cannot be discontinuous in that portion of space.

For consider a cylinder whose axis is parallel to x and of

length I. Let the proposition be applied to this cylinder. If I be

very small compared with the dimensions of the base, we may
neglect that portion of the surface integral which relates to the

curved surface, and the proposition becomes

Jj ~fa
dydz = -
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in which the surface integral is taken over the ends of the

cylinder, and the triple integral throughout the interior space.

dV
Also in the surface integral -7 is the rate of increase of V with

the normal measured outwards from the enclosed space, in the

case of both ends of the cylinder. If it be measured in the same

direction in space for both ends, the surface integral may be

written

Now if p be finite, the triple integral ultimately vanishes when I,

and therefore the enclosed space, become infinitely small; and

therefore the left-hand member also vanishes, and (-j-) cannot
777 JTT

V
#'l

differ by any finite quantity from (-7-) ,
or -= cannot be dis-

^#'2 dx

continuous. Therefore also V cannot be discontinuous.

Equations of Poisson and Laplace.

47.] In the equation of Green's theorem let Fbe the potential

of any distribution of matter of which the density p is every-

where finite, and therefore such that -7 ? -7 j and -7- are con-
dx ay dz

tinuous, let 8 be any closed surface, and let u'= unity. Since

du
f

du' , du'
-7 , -7 > and -= are zero, the equation becomes
dx dy dz

dV
But 7 is the repulsive force of the matter referred to

dv

resolved in the normal to 8 outwards from the surface element

dS. And therefore by Art. 45

-dS~\ **?***,.

Therefore also

=
j

E 2
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Since this equation holde for every possible closed surface, it

follows that v 2

F+47ip =
at every point. This is called Poisson's equation.

At a point in free space p = 0, and the equation becomes

V2F=0.

This is called Laplace's equation.

It follows as a corollary from Poisson's equation that if V be

the potential of any material system at #, y, z,

where r2 =
(
x-x'y+ (y-yj + (z-zj* ;

and the integral is throughout all space.

48.] Laplace's equation can be deduced by direct differentiation

of - For if the density of matter at #', /, / is p, the potential

at #, y, z is

= r/r
JJJ y(^Z

= rrr
(z-zj

Now if 0, or x, y, z, be any point not within the mass, the

limits of the integration are not altered by any infinitely small

change of position of 0. Hence we may place the symbol V 2

under the integral sign, and obtain

VT= /YT/>V2 i
dx'dy'dz' = 0.

But if be within the mass, we cannot, in forming the triple

integral for F, include in integration the point at which the

element function - becomes infinite. It is necessary in this

* It may be proved by Green's theorem to be identically true for all functions

( F) vanishing at infinity that

the integration being extended over all space, and r being the distance from the

point at which V is estimated to the element dxdydz; and this proposition may,
of course, be made the foundation of an independent proof of Poisson's equation

0.
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case to take for the limits of integration some surface inclosing

and infinitely near to it, and to form 7^ as the sum of two separate

integrals, one on each side of that surface. Hence any infinitely

small change of position of involves in this case a change in

the limits of integration, and we are not at liberty in forming V^V
to insert V2 under the sign of integration. This is the reason

why Laplace's equation fails at a point occupied by matter.

49.] Definition. We have hitherto supposed the matter with

which we have been concerned to be distributed in such a

manner that the density p is finite, or in other words that the

mass vanishes with the volume of the space in which it is

contained. According to this conception the mass of a small

volume dv of density p, is pdv, i. e. p is the limiting ratio of the

mass to the containing volume when that volume is indefinitely

diminished. At all parts of space for which this condition is

satisfied we have obtained the equation

if V be the potential of any distribution at the point at which

the density is p.

It may, however, happen that p becomes indefinitely great at

certain points. The distribution may be such that although the

volume becomes infinitely small the mass comprised in it may
remain finite.

Suppose such a state of things to hold at all the points on a

certain surface $, so that the mass of matter comprised between any

portion of this surface, an adjacent surface S' infinitely near to it,

and a cylindrical surface whose generating lines are the normals

to S along its bounding curve, remains finite however close S' is

taken to S, then if the mass vanishes with the area of S, inclosed

by this bounding curve, we call the distribution superficial in

distinction from the volume distribution hitherto considered.

In this conception of superficial distribution we disregard the

distance between S and S' altogether, and we say that the mass

corresponding to an element of surface dS is crdS, where a- is the

superficial density, o- being in other words defined as the limiting

ratio of the mass corresponding to, or as we say on, the surface

dS to the area of dS, when dS is indefinitely small.
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Still further there may be points for which not only p, but n-

also, is infinite, and such that if a line I be drawn through

these points, the mass of the superficially distributed matter

comprised between this line /, an adjacent indefinitely near and

parallel line I', and perpendiculars to I at its extremities remains

finite, however near I' be taken to I. In such cases the distri-

bution is said to be linear
',
and neglecting as before the distance

between I and ^, we say that the quantity of matter corresponding

to, or on the element ds of I is \ds, where A. is the linear density

at ds.

50.] On the modification of Poisson's equation at points of

superficial distribution of matter.

Let dS be an element of the surface,, and let us form on dS
a cylindrical surface like that mentioned in the definition of the

last article.

Let p be the uniform density of matter within that cylindrical

surface. If dS
1
denote any element of that surface, including

its bases, we have by Art. 45

In the limit, when the bases of that cylinder become infinitely

near each other, the right-hand member of this equation becomes

47T// vdS. And if dv, dv' be elements of the normal on

either side of 8
t
measured in each case from $, the left-hand

member becomes CCdV dV

"//*>//''
dV dV

or + - + 4770- = 0*.
dv dv

* The cases of finite and infinite p have been considered separately, with the
view to their physical interpretations. There is no exception in any case to the

equation v2F + 47rp = 0, because, v2F becomes infinite whenever -, &c. are
dx

discontinuous, i.e. when p is infinite.
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51.] The mean value over the surface of any sphere of the

potential due to any matter entirely without the sphere is equal to

the potential at the centre.

For let a be the radius of the sphere, r the distance of any

point in space from the centre, a2 do) an element of the surface.

Then denoting by V the mean value of V over the sphere, we

have

= /y
47T</ t/

JL^~
4-7T

dv i rr^F, i rrdv
m

i rrdv, i rrd= -- da> = --
5 / / -j-

47rJJ dr ivtpJJ dr

n n JTT

but -=-a2 d<o = Q by Art. 45.

Hence
-j-

= or V is independent of the radius of the

sphere, and therefore equal to the potential at the centre.

Corollary. The potential of any matter uniformly distributed

over the surface of a sphere, at any point outside of the sphere, is

the same as if such matter were collected at the centre. Hence

also the potential of a uniform solid sphere at any point outside

of it is the same as if its mass were collected at the centre.

51
a.~\

The mean value over the surface of any sphere of the

potential, due to any matter entirely within the sphere, is the same

as if such matter were collected at the centre.

For using the same notation as before, and denoting by M the

algebraic sum of the matter in question, we have in this case

df i rrdv , i rrdv
- = / / -T-du =-; / / -j-

dr 47TJJ dr IncPJ J dr

, . .

by Art. 45,

M M
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and V = t no constant being required, since V vanishes when

r is infinite.

52.] The mean potential over the surface of an infinite cylinder

due to a uniform distribution of matter along an infinite straight

line parallel to the axis and outside of the cylinder is equal to

the potential on the axis.

For let a be the radius of the cylinder, I its length, the

angle between a radius of the cylinder and a fixed plane through
the axis, r the distance of any point from the axis. Let V be

the potential, V its mean value. Evidently T
7

,
if r be given, is

a function of only.

Then we have

F =

dV__
dr

"
2irla

= 0, by Art. 45 ;

because that part of the normal attraction which relates to the

ends of the cylinder may be neglected.

It follows that 7 is independent of r, and is therefore equal to

the potential on the axis.

It follows also that the potential at any point outside of a

cylinder of a uniform distribution of matter over the surface of

the cylinder, or throughout its interior, is the same as if all

the matter were uniformly distributed along the axis, and there-

fore that the potential of such a uniform distribution at any
/QO J

point outside of it and distant r from the axis is /

where p . Adx is the quantity of matter corresponding to a length
dx of the cylinder.

That is, pA . (C 2 log r), where C is constant.

53.] The potential of any distribution of matter can never

be a maximum or minimum at any point in a region not occu-

pied by any portion of that matter. For suppose the potential

to be a maximum at any point 0, and describe a small



53-] THEOREMS CONCERNING THE POTENTIAL. 57

dV
sphere about as centre. Then , the rate of increase of V per

dv
unit of length of the normal to the sphere measured outwards,

must, if the sphere be small enough, be negative at every point of

the surface. Therefore

-T- dS is negative ;

therefore p dxdydz is positive ;

or there must be positive matter within the sphere, and as this

is true for any sphere, however small, described about as

centre, there must be positive matter at 0. Similarly, if Fbe
minimum at 0, there must be negative matter at 0. V can

therefore never have a maximum value except at a point situated

in positive matter, and never have a minimum value except at a

point situated in negative matter.

53 a.] If V be constant throughout any finite region free from

attracting matter, it has the same constant value at every point
of space which can be reached from that region without passing

through attracting matter.

For let the whole of space in which V is constant which can

be so reached from the given region be comprised within the

closed surface S.

Then on S, V either increases or diminishes continuously out-

wards. Let a small closed surface tf be described lying partly within

S, and partly outside of it, and in the parts where V increases out-

wards from S. The normal integral -7- dS' applied to such

surface is not zero, and therefore the interior space must be

occupied by matter. But there is no matter in the portion of

the small closed surface within S, therefore there must be

matter in the closed surface immediately outside of S.

53
$.]

If two systems of matter have the same potential

throughout any finite portion of space bounded by a surface S,

they have the same potential at all points in space which can be

reached from that portion without passing through any matter

of either system.



58 THEOREMS CONCEENING THE POTENTIAL. [54.

For let V and V be the potentials of the two systems, so that

V=V throughout the space enclosed by 8. If possible let V be

greater than V in some region contiguous to 8. Then we may
describe a closed surface S', partly within and partly without S,

dV
such that on the part without 8, -=- is everywhere greater than

dT*
^j- It follows that for such surface
dv

But unless there be attracting matter belonging to either system
within 8' both these quantities are zero, and they cannot there-

fore be unequal.

54.] The propositions of the last article can also be extended

to the case where V is given equal to 7'
t
not throughout any

finite portion of space, but only at all points in a finite straight

line, provided that both V and V be symmetrical about that

line as axis.

For we must suppose that there exists some space about the

given line which contains no matter of either system. We
may describe wholly within that space about the given line as

axis a right cylinder of very small section. For that cylinder

both
II ~r

dS and ~T- dS must be zero, and therefore by

the symmetry about the axis V cannot differ from V at any

point upon, or within, the cylinder. And V being proved equal

to V at all points within the cylinder, the case is reduced to

that of Art. 533.

55.] Let 7, instead of denoting a potential, be any spherical

solid harmonic, and let 8 be any closed surface not enclosing the

origin. Then by Art. 6

the integrals being taken over and throughout 8 respectively.

Writing 4 irp for V2
7, we obtain the result of Art. 4 5 as a

particular case of the general theorem. Hence the propositions

of Arts. 53 and 54 may be extended to the case in which For 7',
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instead of being a potential, is any spherical solid harmonic. If,

for instance, the potential of a given mass be proved equal to a

certain spherical solid harmonic U at all points within a certain

region, as the finite space S, or the given length of the axis of a

symmetrical system, it can be shewn that the potential is equal
to U at all points which can be reached from the given region of

equality without passing through any matter of the system.

Further, U, instead of being a single spherical solid harmonic,

may be an infinite series of such harmonics, and the proposition

will still be true for all space which can be reached from the

given region of equality without passing through any matter of

the system, or through any point where the series U ceases to be

convergent.

56.] If the potential due to any distribution of matter on a

closed surface S be constant at all points on S, the superficial

1 dV
density, o-, is equal to at each point on S, the normal

47T dv

being measured from 8 on the outside of it.

For since the potential V is constant at each point on S, and

satisfies V2F = at all points within S, it has by Art. 7 the

same constant value at all points within S. Hence in Poisson's

d V
superficial equation =-; = 0, and therefore

d> v

dV I dV
-, + 4 TT o- = 0, or or =
dv 477 dv

But whether the potential be constant or not, the algebraic

sum of the distribution over S is

dS, by Art. 45.
dv

57.] It is always possible to form one, and only one, distribution

of matter over a closed surface 8, the potential of which shall have

any arbitrarily given value at each point of that surface.

For, as we have proved in Art. 7, there exists one determinate

function u which has the given value at each point of S, and

satisfies V 2&=0 at each point in the infinite external space, and

vanishes at an infinite distance.

And there exists one determinate function u' which has the
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given value at each point of S
t
and satisfies V 2 #'= at each

point within S.

Then a distribution over S, whose density is

1 ( du du' )

47T ( dv dv' \

the normals being measured from S, dv on the inside, and dv

on the outside of the surface, is the required distribution.

For let a small sphere S' be described about any external

point, Q, as centre. Let V - where r is the distance of any

point from Q.

Then, applying Green's theorem to the space outside of S
and S', we have with the given meaning of dv,

ds + V *r

Now V% = and V2 V = at all points within the limits of

the triple integral, and

if u denote the value of u at O. Also \\V -^-dS vanishes.
JJ dv

Therefore the equation becomes

Again, applying Green's theorem to the space within S, we

have with the given meaning of dv

ff

or since both V2F= and V 2 u'
'

everywhere within S,

Now --- =
-j-y

if Q be not actually on S, however near to
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S it may be, and u = u on S. Hence, subtracting A from Bt

we have

But if P be any point on S, V at P = -

du

Therefore ._

Now the right-hand member is the potential at Q of the

supposed distribution whose density is

J_5^ **M/
]

4:17 \dv dv 3

It follows that this potential is equal to UQ at every point

outside of S, however near to S ;
and therefore, since the potential

is a continuous function, has the value of
,
or the given value,

at each point on S.

Similarly, if Q be an internal, instead of an external, point, we

can prove that the distribution over /S whose -density is

_l_(du_
<&/)

~4*t<fr
+
57)

has u' for potential at Q.
' And the functions u and u being both determinate, their

differential coefficients -=- and -7-7- are determinate and of singledv dv
value.

58.] If $! . . . Sn be any closed surfaces, there exists one and only

one distribution of matter over them whose potential u satisfies

the following conditions, viz.

u = Cl} constant, but arbitrary at all points on Slf

u = C2 , constant, but arbitrary at all points on S
2 ;

&c., &c. And
"du

//

//;

dS* = e, over ,

dv

dS<> = e2 over $,
dv

and so on, and u vanishes at an infinite distance.
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For we have proved in Art. 10 that there exists one deter-

minate function u satisfying the above conditions. It follows

that -=- has a single and determinate value at each point of each

of the surfaces. Then if we take for density of the distribution at

each point
- -

-j- ,
we can prove exactly as before that the

4 7T UV

potential of the distribution so formed at any point external to

the surface is u, and therefore satisfies all the conditions.

59.] The proposition of Art. 57 may be extended to an unclosed

surface thus. Let S be an unclosed surface, S' a similar and equal

surface so placed as that each point on
'
shall be very near to

the corresponding point on 8. If we now connect the boundaries

of S and S' by a diaphragm we obtain a closed surface. Let a

distribution be formed on this closed surface having potential V
on S, and at each point on S' the same potential as at the corre-

sponding point on S. Let <r and or' be the densities of this

distribution on S and S
f

respectively. Then ultimately, if S' be

made to coincide with S, we obtain cr-ft/ as the density of a

distribution on S which has potential V at each point on S.

60.] If two systems of matter, both within a closed surface S,

have the same potential at each point on S, then

(a) they have the same potential throughout all external space.

For let T
9
7' be the potentials of the two systems respectively.

Then 7 - V on S,

V2 V = and V2V = at all points in the external space,

V and V are both of lower degree than \.

Hence, by Art. 9, V cannot differ from V at any point in the

external space.

(6) The algebraic sum of the matter of either system is equal

to that of the other. For the algebraic sum of the matter

within S whose potential is V is

-;r //47TJJ dv

the normal being measured outwards on the outside of S, by
Art. 45. Now, since 7-=. V at all points external to S,

dV_dT
dv dv
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and therefore

(c) The two systems have the same centre of inertia. For

taking for the plane of y, z any arbitrary plane, and applying
Green's theorem to the space within any closed surface $
enclosing S, we have

and since on S' V= V, and -=- = -5dv dv

= fff

And therefore if m, m' be the quantities of matter of the two

systems respectively within the element of volume dxdydz,

mxdxdydz = / / / m'xdxdydz,

which, as the direction of a? is arbitrary, proves the proposition.

(d) The two systems have the same principal axes. For

and therefore

/ / / xymdxdydz = / / / xym'dxdydz;

and if the axis of z be a principal axis of one system, it is a

principal axis of the other system.

(e) If A, B, C be the principal moments of inertia of one

system, those of the other are A' = A K,
' = It K,

C' =. C-K. For

-ffflVdxdydz,
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and therefore

ffftfmdxdydz
- fffxz

m'dxdydz + 2 fff(V-V'}dxdydz.

Similarly

\ll ifmdxdydz = j
y

z
m'dxdydz + 2 jjhv-V^dxdydz.

Therefore C' = (7-4 fff(V~ V'}dxdydz = C-K.

Similarly, B' = B-K,
A' -A-K.

Definition. A body which has the same potential at all points

outside of itself, as if its mass were collected at a point within

it, is a centrobaric body, and its centre.

It follows from
(c)

that if a body be centrobaric, its centre is

its centre of inertia.

61.] It follows from Art. 59 that a distribution of matter

always exists over a surface S which has any given constant

potential at each point of S; and therefore that any given

quantity of matter can be distributed over S in such a way as to

have constant potential at each point of S. Such a distribution

is defined to be an equipotential distribution.

Definition. If M be the algebraic sum of a distribution of

matter over a closed surface whose potential has the constant

value V at each point of that surface, -^
is the capacity of the

surface.

The capacity of a sphere is equal to its radius. For the sphere

being charged to potential F, the potential, being
1 constant over

the surface, must have the same constant value V at the centre.

But if M be the algebraic sum of the distribution, the potential

at the centre is > where a is the radius.
a

We have then = F, or - = a.
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If $ be an equipotential surface to a system of matter wholly
within it, and V be the potential of the system on S, the capacityM
of 8 is -= j where Jf is the algebraic sum of the matter of the

enclosed system. For, by Art. 60, M is also the algebraic sum of

a distribution over S which has potential V at every point on it.

62.] If V be the potential of any distribution of matter over

a closed surface S, and if <r be the density of a distribution of

matter over S which has the same potential at each point on S

as that of unit of matter placed at any point 0, then
jrf'tr'dS

is

the potential at of the first distribution.

For let or be the density of the first distribution, 7' the

potential of the </ distribution, r the distance of any point from

0. Then on 8,

1 (dV dV)- +

_
dv

= the potential at of the first distribution.

63.] If S be a closed equipotential surface in any material

system, and if p, p
f
denote densities of the matter of the system

inside and outside of S respectively, and if R le the force due

to the whole system at any point on S in the direction of the

normal measured outwards, then the potential at any external

point due to the internal portion is equal to that of a dis-
T>

tribution of matter over S whose density is
,
and the poten-

tial at any internal point due to the external portion differs

VOL. I. F
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7?

from that of a distribution over S whose density is ---
, by

the potential of the surface. For if we take for origin any point

outside of 8
9
and if V be the potential of the entire system, we

have by applying Green's theorem to the space inside of S, with

u = V> and u' = -
>

where V
t
is the constant value of V on S,

= 0, since T--&8-**99Jby Art. 45,

and V 2 - is zero at all points within S.

The equation therefore becomes

But =-8, and

which proves the first part of the proposition.

Secondly, if we take for origin a point inside of S, and

apply Green's theorem to the external space, with V and - for

u and u', we obtain

snce
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in this case, and as before V 2 - = 0. Also in this case, the nor-

mal is measured inwards from S, and therefore

dV
-r=R, also V2

F=-47rp'.dv

Hence the potential at any internal point of the distribution
T>

4
over ^ differs by a constant quantity from that of the

external portion M', and therefore the force due to the distribu-

-JP

tion -- over 8 is equal to that due to the external portion
4lT

Hence it follows that the force at any external point due to the
-n

internal portion is equal to that due to the distribution -
4?r

over 8, and the force at any internal point due to the external
73

portion is equal to that of the distribution --
64.] To express the potential at any point P of any distribution

of matter in a series of spherical solid harmonics.

Take as origin any point 0. Let OP = f.

Let M be any point in the distribution.

Let the coordinates of M referred to OP as axis, be r, 0, <,

where is the angle POM. Let \L
= cos 0. Then sin Odd = dp,

and an element of volume in the neighbourhood of M is

r^dyidfydr. If p be the density of the given distribution in

this element of volume, its potential at P is

pr*dfJLd(bdr _ ,, _ C 1
,

.. r r*
)

-yrjjp
- = pr*dnd<f>dr .

j-
+ Q^ + Qz + ...

J
if r </,

or

The potential at P of the whole distribution is then

/i
rzir rf rz yi rzv r>

i

/ / p-j-dudtidr + I I I prdftdtydr
iJo jo / J-iJo Jj

ri rzir rs ^ ri r^ r<

+ I I QiP-^du.d<hdr+ ill
J-iJo Jo / J-l.'o Jf

+ &c.,
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and since Q depends on p only, this may be put in the form

/I

f /"27r // ^2 r>2ir /*
du } / d<f> / drp + d<j) drp

-i (Jo Jo J Jo Jf

/i
f rzir rf r* r2ir /

d/iCil/ d<j> drp~ +/ 3*/
.1 (Jo Jo /2 Jo //

+ &C.,

in which the quantities within brackets are known if the given

distribution is known.

If we denote these quantities by A , A^ A
2 , &c., we have

7= rdp{A +Q1
A

1 + Q,A 9 +...} 9

J-i

in which the A's are generally functions of //.

65.] To find the density of a distribution of matter over a

spherical surface, whose potential at any point on that surface

shall be equal and opposite to that of a mass e, placed at an

external point.

Let be the centre of the sphere, a its radius, C the point

outside of it, OC=f.
Let a- be the required density.

It is evident that the density of this distribution on the

sphere must be symmetrical about OC, and must therefore be

expressible in a series of zonal harmonics with OC as axis. Let

this be

Let E be any point on the surface, W any other point.

Let us denote by Qf the zonal harmonic of order i referred to

OE as axis. Then

-

And the potential at E due to the distribution is

VE =H A
" SSQ<> Qt

'
ds+ AiffQi Qi

' ds+ &c '

because every term of the form / IQi Qj'dS, where i =j, is zero;

that is,

being the value of Q+ at E.
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But by hypothesis the potential at E of the distribution is to

be the same as that of the mass e at C with reversed sign;

that is,

We have therefore

and equating coefficients of Q{ ,

2t+l

and <T = 2 A
t Qt

_?, where = CJE" (by Art. 26).
-L/

66.] If the density of any distribution of matter over a

spherical surface be equal to fj, where 7
i

is a spherical surface

harmonic of order i, the potential at any point within or without

the sphere due to this distribution is proportional to the corre-

sponding spherical solid harmonic.

For let be the centre of the sphere, a its radius, P any ex-

ternal or internal point, OP = r, and M a point on the surface.

Then at P

2 T Qj dS, if P be internal,

= /T 7. 2 Q. dS, if P be external.

But
II

Y
i QjdS = 0, unless i = j,

and therefore

V = -^ /TV, ft ^, if P be internal,

= -r Y
i Qi ds>

if P be external.
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But
Jf

where Y
{
is the value of Yt

at the point where OP, produced if

necessary, cuts the sphere.
_ ~Y

And therefore r
i
Y

i ,
or <+

*

t , according as P is internal or

external, is the spherical solid harmonic at P corresponding to

7
i

. If we denote this by Hit we have

in the two cases respectively. The following proposition may
easily be deduced from this, but we prefer to prove it independ-

ently thus.

67.] If the potential of any material system wholly within a

spherical surface S be given at each point of that surface in

a series of spherical surface harmonics, then the potential of

the same system at any point on the outside of the surface

is found by substituting for each surface harmonic the corre-

sponding solid harmonic.

For let the given potential be 2 A
i Y^ and let p be the density

of the superficial distribution on S whose potential at every point

of S is equal to 2A
i Y^

Let P be any point distant / from the centre on the outside

of4.

Then the potential at P of the given system is equal to that

of the surface distribution.

But, as shewn in Art. 62, if p' be the density of a distribution

over S whose potential at any point of S is equal to that of unit

of matter situated at P, then

is the potential at P of the superficial distribution whose potential
is 2AiI i9 and therefore of the given system.
Now

-
P -
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where a is the radius of the sphere. Therefore

where J^ is the value of J^ at P.

The potential of the given system is also equal to 2
( )

A
i
Y

t

J
for a certain distance within the given spherical surface S.

a \
i+1

For V and 2( )
A

i
Y

i both satisfy Laplace's equation

throughout all external space, and are identical at all points out-

side of S. They must therefore be identical throughout all space

which can be reached from S without passing through attracting

matter so long as 2
( )

A
i
J

i is a convergent series.

68.] To express in zonal solid harmonics the potential of any
material system symmetrical about an axis.

Let us take for origin any point on the axis. Let / be the

distance from of any point in space.

Then we can first shew that the potential at any point P on

the axis, if more distant from the origin than any point in the

system, can be expressed in the form 2B
i -r-y > and if less

distant from the origin than any part of the system can be

expressed in the form C'+S-^r*, where the functions B and A
are determinate if the given system is known, and are inde-

pendent of r.

For let be the origin, P the point on the axis, M any point

in space at which there is matter belonging to the system of

density p,

Then since the system is symmetrical about the axis, we may
take for an element of its volume the space between the two

cones whose vertices are at and semivertical angles cos"1
ju and

cos" 1

(p + dp) and whose distance from is between a and a + da.
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If p be the density of matter within this element its potential

at Pis

2ira*pdtJ.da. ,

that is,

2ira*pdu,da.-\ 1 + &- + } if r > a,
r ( r )

or 2 if a?p dfJi da .
- < 1 + Ql

- + . .. > if r < a.

Then if 1} a2 be the greatest and least distances from of

any matter between the two cones, the potential of all the

matter between them is

I* ftp ./"*>. \j+Q^

in which the first integral will be omitted when r < 2 , and the

second will be omitted if r > a .

Finally, the potential at P of the whole system is found by

integrating the above expression according to ^ from p I to

fji
= 1, remembering that a^ and

2
and p are generally func-

tions of /u.

Let a\ and a\ denote the greatest and least values of r for

any point in the system. Then the result, if the integrations

can be effected, must appear in the form

sn-Lif OP><,
and C+2A t

r* if OP<<;
and

if r > a\ < a\.

We can now find the potential of the system at any point R
not in the axis and distant r from 0, by multiplying each term

by the corresponding zonal harmonic referred to OP as axis.

For instance, suppose r > a\.

Let V be the potential and let
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Then since on the axis Q t
= 1, and

V and V are identical throughout a finite length of the axis.

Now both V and V satisfy Laplace's equation at all points

not occupied by matter belonging to the system. And therefore

since they are identical throughout some finite length on the

axis, and are symmetrical about the axis, they must by Arts. 53

and 54 be identical at all points in space which can be reached from

that part of the axis without passing either through the system, or

through any part of space where 2 B
ri i _ l̂

does not converge.

Similarly, the potential at any point R' in space distant r from

0, where r < a2', is C+ 2^ f Q^*, provided It' can be reached from

the part of the axis whose distance from is less than a with-

out passing, either through the system, or through any part of

space where "SA
t Q^ does not converge.



CHAPTEE IV. ,
i

DESCRIPTION OF PHENOMENA.

Electrification ly Friction,

ARTICLE 69.] EXPERIMENT I*. Let a piece of glass and a piece

of resin be rubbed together and then separated ; they will attract

each other.

If a second piece of glass and a second piece of resin be

similarly treated and suspended in the neighbourhood of the

former pieces of glass and resin, it may be observed that

(1) The two pieces of glass repel each other.

(2) Each piece of glass attracts each piece of resin.

(3) The two pieces of resin repel each other.

These phenomena of attraction and repulsion are called elec-

trical phenomena, and the bodies which exhibit them are said to

be electrified or to be charged with electricity.

The electrical properties of the two pieces of glass are similar

to each other but opposite to those of the two pieces of resin,

the glass attracts what the resin repels, and repels what the resin

attracts.

Bodies may be electrified in many other ways as well as by
friction.

If a body electrified in any manner whatever behaves as the

glass does in the experiment above described, that is, if it repels

the glass and attracts the resin, it is said to be vitreously elec-

trified, and if it attracts the glass and repels the resin, it is said

to be resinously electrified. All electrified bodies are found to be

either vitreously or resinously electrified.

When the electrified state is produced by the friction of dis-

similar bodies, as above described, it is found that so long as the

* The description of these experiments is taken almost verbatim from Maxwell's

Electricity.
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rubbed surfaces of the two excited bodies are in contact the

combined mass does not exhibit electrical properties, but behaves

towards other bodies in its neighbourhood precisely as if no

friction had taken place.

The exactly opposite properties of bodies vitreously and resin-

ously electrified respectively, and the fact that they neutralise

each other, has given rise to the terms 'positive' and 'negative*

electrification, the term positive being by a perfectly arbitrary,

but now universal convention among men of science, applied

to the vitreous, and the term negative to the resinous electri-

fication.

Electric actions similar to those above described may be ob-

served between a body electrified in any manner and another

body not previously electrified when brought into the neigh-

bourhood of the electrified body, but in all such cases it will

be found that the body so acted upon itself exhibits evidence of

the electrification. This electrification is said to be produced by

induction, a process which will be illustrated in the second ex-

periment.

No force, either of attraction or repulsion, can be observed

between an electrified body and a body manifesting no signs

of electrification.

Electrification by Induction.

70.] EXPEBIMENT II. Let a hollow vessel of metal, furnished

with a close-fitting metal lid, be suspended by white silk threads,

and let a similar thread be attached to the lid, so that the vessel

may be opened or closed without touching it
; suppose also that

the vessel and lid are perfectly free from electrification.

Let the pieces of glass and resin of Experiment I be suspended

in the same manner as the vessel and lid, and be electrified as

before.

If then the electrified piece of glass be hung up within the sus-

pended vessel by its thread, without touching the vessel, and the

lid closed, the outside of the vessel will be found to be vitreously

electrified, and it may be shown that the electrification outside

of the vessel, as indicated by the attractive or repulsive forces on
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electrified bodies in its neighbourhood, is exactly the same in

whatever part of the interior the glass be suspended.

If the glass be now taken out of the vessel without touching

it, the electrification of the glass will be found to be the same as

before it was put in, and that of the vessel will have disappeared.

This electrification of the vessel, which depends on the glass

being within it, and which vanishes when the glass is removed,

is called Electrification by Induction.

If the piece of electrified resin of Experiment I were sub-

stituted for the glass within the vessel, exactly opposite effects

would be produced. If both the pieces of glass and resin,

after the friction of Experiment I, were suspended within the

vessel, whether in contact with each other or not, no electrical

effects whatever would be manifested.

Similar effects would be produced if the glass were suspended

near the vessel on the outside, but in that case we should find an

electrification vitreous in one part of the outside of the vessel

and resinous in another part. Whereas, as has been just now

mentioned, when the glass is inside the vessel the whole of the

outside is vitreously electrified. In this case, as in the case

of internal suspension, the electrification disappears on removal

of the exciting body.

Experiment proves that throughout the inside of the closed

vessel there is an electrification of the opposite kind to that

of the outside, that is, when the electrified piece of glass is

suspended within the vessel, and the latter is therefore vitre-

ously electrified on the outside, as just now explained, the in-

side will be resinously electrified, and vice versa when the resin

is substituted for the glass.

Experiment proves also that the electrification on the outside

is equal in quantity to that of the glass, and the electrification

on the inside equal and opposite to that of the glass.

Electrification by Conduction.

71.] EXPERIMENT III. The metal vessel being electrified by
induction, as in the last experiment, let a second metallic body
be suspended by white silk threads near it, and let a metal wire
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similarly suspended be brought so as to touch simultaneously
the electrified vessel and the second body.
The second body will now be found to be vitreously electrified

and the vitreous electrification of the vessel will have diminished.

The electrical condition has been transferred from the vessel

to the second body by means of the wire. The wire is called

a conductor of electricity, and the second body is said to be

electrified by conduction.

Conductors and Insulators.

If a glass rod, a stick of resin or gutta-percha, or a white silk

thread had been used instead of the metal wire, no transfer of

electricity would have taken place. Hence these latter substances

are called non-conductors of electricity. A non-conducting sup-

port or handle employed in electrical apparatus is called an

Insulator, and the body thus supported is said to be insulated.

Thus the lid and vessel of Experiment II are insulated.

The metals are good conductors ; air, glass, resins, gutta-

percha, vulcanite, paraffin, &c., are good insulators
;
but all sub-

stances resist the passage of electricity, and all substances allow

it to pass although in exceedingly different degrees. For the

present we shall, in speaking of conductors or non-conductors,

imagine that the bodies spoken of possess these properties in

perfection, a conception exactly similar to that of perfectly fluid

or perfectly rigid bodies, although such conceptions cannot be

realised in nature.

In Experiment II an electrified body produced electrifica-

tion in the metal vessel while separated from it by air, a non-

conducting medium. Such a medium, considered as transmitting

these electrical effects without conduction, is called a Dielectric

medium, and the action which takes place through it is called, as

has been said, Induction.

72.] EXPEEIMENT IV. In Experiment III the electrified vessel

produced electrification in the second metallic body through the

medium of the wire. Let us suppose the wire removed and the

electrified piece of glass taken out of the vessel without touching

it and removed to a sufficient distance. The second body will
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still exhibit vitreous electrification, but the vessel when the glass

is removed will have resinous electrification. If we now bring

the wire into contact with both bodies, conduction will take

place along the wire, and all electrification will disappear from

both bodies, from which we infer that the electrification of the

two bodies was equal and opposite.

73.] EXPERIMENT V. In Experiment II it was shown that if

a piece of glass, electrified by rubbing it with resin, is hung up
in an insulated metal vessel, the electrification observed outside

does not depend upon the position of the glass. If we now

introduce the piece of resin with which the glass was rubbed

into the same vessel without touching it or the vessel, it will

be found, as stated in Art. 70, that there is no electrification on

the outside of the vessel. From this we conclude that the

electrification of the resin is exactly equal and opposite to that

of the glass. By putting in any number of electrified bodies,

some vitreous and others resinous, and taking account of the

amount of electrification of each, we shall find that the whole

electrification of the outside of the vessel is that due to the

algebraic sum of the electrifications of all the inserted bodies,

the signs being used in accordance with the convention already

described. We have thus a practical method of adding the

electrical effects of several bodies without altering the elec-

trification of any of them.

74.] EXPERIMENT VI. Let a second insulated metallic vessel B
be provided, and let the electrified piece of glass of Experiment I

be placed in the first vessel A, and the electrified piece of resin in

the second vessel B. Let the two vessels be then put in com-

munication by the metal wire, as in Experiment III. All signs

of electrification will disappear.

Next, let the wire be removed, and let the pieces of glass and

resin be taken out of the vessels without touching them. It will

be found that A is electrified resinously and B vitreously.

If now the glass and the vessel A be introduced together (the

glass being no longer within A) into a larger insulated vessel <?, it

will be found that there is no electrification on the outside of C.

This shows that the electrification of A is exactly equal and
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opposite to that of the piece of glass, and similarly that of B
may be shown to be equal and opposite to that of the piece of

resin.

Thus the vessel A has been charged with a quantity of elec-

tricity exactly equal and opposite to that of the electrified piece
of glass without altering the electrification of the latter, and we

may in this way charge any number of vessels with exactly

equal quantities of electricity of either kind which we may take

as provisional units.

75.] EXPERIMENT VII. Let the vessel B, charged with a quan-

tity of positive electricity, which we shall call for the present

unity, be introduced into the larger insulated vessel C without

touching it. It will produce a positive electrification on the

outside of C. Now let B be made to touch the inside of C. No

change of the external electrification of C will be observed. If B
be now taken out of C without again touching it and removed

to a sufficient distance, it will be found that B is completely dis-

charged, and that C has become charged with a unit of positive

electricity.

We have thus a method of transferring the charge of B to C.

Let B be now recharged with a unit of electricity, introduced

into C already charged, made to touch the inside of C and

removed. It will be found that B is again completely discharged,

so that the charge of C is doubled.

If this process be repeated it will be found that however

highly C is previously charged, and in whatever way B is

charged when it is first inclosed in (7, then made to touch C,

and finally removed without touching C, the charge of B is

completely transferred to C, and B is entirely free from elec-

trification.

This experiment indicates a method of charging a body with

any number of units of electricity. The experiment is also an

illustration of a general fact of great importance, namely, that no

charge whatever can be maintained in the interior of any con-

ducting mass.

76.] In what has hitherto been said it has been assumed that

we possess the means of testing the nature and measuring the
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amount of electrification on any body, or on any part of a body.

This we can do with great accuracy by the aid of instruments

called electroscopes or electrometers} whose modes of action will be

more easily understood when the theory of the subject has been

somewhat developed ; and which are fully described in practical

treatises on electricity ;
for our present purpose it will suffice to

describe one of these instruments in its simplest form, called the

gold-leaf electroscope.

A strip of gold-leaf hangs between two bodies A and B,

charged one positively and the other negatively.

If the gold-leaf be placed in conducting contact with the body
whose electrification is to be investigated, it will itself become a

part of that body for all electrical purposes, and it will incline

towards A or according as its electrification, and therefore the

electrification of the body under investigation, is negative or

positive.

77.] From the foregoing experiments we conclude that

(1) The total electrification of a body or system of bodies

remains always the same except in so far as it receives electrifi-

cation from, or gives electrification to, other bodies.

In all electrical experiments the electrification of bodies is

found to change, but it is always found that this change is due

to want of perfect insulation, and that with improved insula-

tion the change diminishes. We may therefore assert that the

electrification of a body placed in a perfectly insulating medium

would remain perfectly constant.

(2) When one body electrifies another by conduction the total

electrification of the two bodies remains the same, that is, the

one loses as much positive, or gains as much negative electrifica-

tion, as the other gains of positive or loses of negative electrifi-

cation.

For if the two bodies are enclosed in the same hollow con-

ducting vessel no change of the total electrification is observed

on their being connected by a wire.

(3) When electrification is produced by friction or by any
other known method, equal quantities of positive and negative

electrification are produced.
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For the electrification of the whole system may be tested in

the hollow vessel, or the process of electrification may be carried

on within the vessel itself, and however intense the electrifica-

tion of the parts of the system may be, the electrification of the

whole is invariably zero.

The electrification of a body is therefore a physical quantity

capable of measurement, and two or more electrifications may be

combined experimentally with a result of the same kind as when
two quantities are added algebraically.

78.] EXPERIMENT VIII. Let there be a needle suspended

horizontally by a fine vertical wire or fibre, so as to be capable of

vibrating horizontally about the vertical wire as an axis, and lefc

a small pith ball A be attached to one end of the needle. Then

the needle will rest in a certain position ;
in which position,

supposing there are no forces at work in the neighbourhood of

the apparatus except the force of gravity, the suspending wire

or fibre will be perfectly free from any twist or torsion. Let

another pith ball B be situated at a certain point in the circum-

ference of the horizontal circle described by A.

Now let the pith balls A and B be each charged with one

unit of positive electrification. A repulsive action will arise

between A and B so that A will after certain oscillations come

to rest at a certain increased distance from B, thus producing a

twist in the suspending wire. The opposite untwisting ten-

dency of the wire thus called into play depends upon the

torsional rigidity of the wire and the angle through which

the needle has been deflected, and can be estimated in any

given apparatus with great accuracy. Hence the repulsive force

between A and B, assumed to act in the line joining them, can

also be determined with corresponding accuracy: let it be

called/
1

.

Suppose now that the same experiment is made with another

apparatus equal to the former in all respects, but with a sus-

pending wire of different torsional rigidity ;
and suppose that in

this case the position taken up by A with respect to B is

observed to be exactly the same as in the former case when the

number of units of positive electrification ofA is e, and of B is e'.

VOL. I. G
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It will be found that the repulsive force between A and B is in

this case ee'f.

Precisely the same positions would be taken up in the two

cases respectively, ifA and B had been each negatively electrified,

and to the same degree as before. By suitable adjustments of

the two cases with opposite electrifications upon A and B each of

the same number of units as before, it may be proved that, if

the distances between A and B in their positions of equilibrium

are the same as before, the forces between them are attractive

and equal to/"and ee'f in the two cases respectively.

Hence we infer that the force between two electrified particles

at any given distance apart is in all respects represented by the

product of the two electrifications upon them, regard being paid

to the signs of the electrifications, and the force being considered

repulsive when the above-mentioned product is positive.

79.] EXPERIMENT IX. In the experiment of the last Article

let the electrifications of A and B in the second apparatus as

well as in the first apparatus be each one unit of positive electri-

fication. It will be found that in the positions of equilibrium

the distances between A and B are not the same in one apparatus

as they are in the other. If, however, the forces between A and

B in these positions be estimated as before, and if the distances

between A and B in the two cases be r and r', it will be found

that there are repulsive forces between them which are to each

other in the ratio of / 2 to r2
,
or inversely as the squares of the

distances between them in the two cases.

Combining the results of this and the preceding experiment
we arrive at the following general law of action between two

electrified particles, viz. that if the number of units of electrifi-

cation of the particles be e and e' respectively, and the distance

between them be r, then there is a force F such that

F ee
''

-f**?*
where/* is the repulsive force between two particles each charged
with unit of electrification, and at the distance unity apart, regard

being paid to the signs of e and /, and F being considered positive

when the force is repulsive, i.e. when e and / have the same signs.
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In conducting Experiments VIII and IX care must be

taken that the dimensions of A and B are small as compared
with the distance between them, so that they may be regarded
as material points. They must also be suspended in air and at

a considerable distance from any other bodies on which they

might induce electrification (Art. 70), inasmuch as this induced

electrification would also act upon A and B and produce a

problem of great intricacy.

Electrical Theory.

80.] The most important researches into the laws of electrical

phenomena up to the present time have been based upon what

is known as the two fluid theory. It is conceived that all bodies

in nature, whether electrified or not, are charged with, or per-

vaded by, two fluids to which the names of positive and nega-

tive, or vitreous and resinous, electricity are assigned. It is

further supposed either that these fluids exist in all bodies in

such quantities that no process yet discovered has ever de-

prived any body, however minute, of all the electricity of either

kind, or that the changes in the proportion in which these fluids

are combined, required to produce electrical phenomena, are

indefinitely small. It is further supposed that in unelectrified

bodies these fluids exist in exactly equal quantities, but that it

is possible by friction, as in Experiment I, or by othef means, to

cause one body to give up to another part of its positive or

negative electricity, thus causing in either body an excess of one

or other kind of electricity.

When the quantity of either fluid is in excess in any body,

that body is said to be positively or negatively electrified

according to the sign of the predominant fluid, and the amount

of electrification is measured by the quantity by which this

predominant fluid exceeds the other. The fluid of either kind

in any electrified body in excess of that of the opposite kind is

called the Free Electricity of the body, and the remaining fluids

of the body, consisting of equal amounts of fluids of opposite

kinds, together constitute what is called the Latent, Combined or

Fixed Electricity of the body.

G 2,
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In the simplest form of the theory, although not essential to

it, every process of electrification is supposed to consist of a

transference of a certain quantity of one of the fluids from any

body as A to another as B, together with the transference of

an equal amount of the opposite fluid from B to A, so that the

total amount of electricity free and latent (without regard to

sign) in every body and every particle of every body cannot be

changed by any process whatever.

It is further supposed that these fluids are not acted upon by

gravitation or any of the forces of ordinary mechanics, nor, so far

as our present knowledge goes, by ordinary molecular or chemical

forces
;
but they are supposed to exercise forces upon themselves

and each other which are conceived to be proportional to the

quantities of the mutually acting fluids, thus giving rise to the

conception of electrical mass. And it is further supposed that the

forces between two particles of fluid of the same kind is repulsive,

and proportional to the product of their masses directly, and to

the square of the distance between them inversely, that between

two particles of fluid of opposite kinds being attractive, but in

other respects following the same law. According to this

hypothesis the latent or fixed electricity in any body, con-

sisting of equal quantities of opposite kinds, exerts zero force

on all electricity. The forces of attraction and repulsion

above mentioned manifest themselves only between the free

electricities.

If all bodies be divided for the time into two classes, perfect

conductors and perfect insulators, it is conceived that either kind

of electricity may pass with absolute and perfect freedom from

point to point of the former, while the latter offer a complete
and absolute bar to any such transference.

On the hypothesis thus described we are able to explain many
electrical phenomena. It is of course merely an hypothesis, and

of value as supplying formally an explanation of facts ;
in this

respect being exactly on a par with the conception of the lumi-

niferous ether in the undulatory theory of light. The general
mathematical treatment of this hypothesis is principally due to

Poisson and Green.
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There is another hypothesis, known as the one-fluid theory,

which is equally successful as a basis of investigation, but it has

not been adopted and developed to the same extent as the two-

fluid theory.

We shall confine our investigation to the two-fluid theory in

the form which is above enunciated.

81.] It is evident without any further explanation that the

two-fluid theory explains the qualitative results of Experiment I

given above
;
and we proceed now to shew that it also explains

the quantitative results of Experiments VIII and IX.

For, suppose two bodies A and B, either conductors or non-

conductors, to contain m and m' units of mass of positive elec-

tricity respectively, and n and n' units of negative electricity.

Suppose that they are situated in an insulating medium, as

air, and that their dimensions are very small as compared with

the distance between them which we shall call r.

Then, according to the two-fluid theory, the m positive units

of A exert upon the m' positive units of B a repulsive force

which may be represented by ^ ,
and the n and n' units exert

a repulsive force upon each other, represented on the same scale

by -3- ,
so that on the whole there is a repulsive force between

the electrical fluids in A and B represented by ^

'

In the same way there is an attractive force between the two

mn' + m'n
electricities represented by ^

Altogether therefore there is a repulsive force between the

. _ mm'+ nn' mn' m'n
electricities on A and B represented by 2

>

^ 4. -u (mn)(m'n'}that is, by '-\

But m n is the number of units of positive electrification on

A, and m'n' is the same for B, so that with the notation used

above the force between the electricities in A and B is re-

ee'

presented by -o-, and is repulsive when ee is positive.
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The unit of electricity in this measurement is such that the

repulsive force between two units of positive electricity at the

distance unity apart is unit force.

It appears therefore that the two-fluid theory involves the

existence of a force between the electric fluids in two charged
bodies in all respects following the law which has been experi-

mentally proved to be obeyed by the mechanical forces between

the bodies themselves. But the bodies are either non-conductors

or else conductors in an insulating medium, and on either

hypothesis the fluids cannot move without the containing bodies

accompanying them. Whatever force therefore is proved to

exist between the fluids becomes phenomenally a corresponding

force between the bodies. We thus see that the results of Ex-

periments I, III, and IV, and of Experiments VIII and IX
are explained qualitatively and quantitatively by the two-fluid

hypothesis.

The application of the theory to the Induction Experiments II,

V, VI, and VII, is not so obvious, and can only be demonstrated

after some further development.



CHAPTER V.

ELECTRICAL THEORY.

ARTICLE 82.] WE proceed now to develop the two-fluid theory
as before enunciated, regarding for the present all substances as

divided into two classes, namely, (i) perfect insulators, called

generally dielectrics, throughout which there is an absolute bar

to the motion of the fluids from one particle to another, and (2)

perfect conductors, throughout which the fluids are free to move
with no resistance whatever from one particle to another. And it

is assumed for the present that the repulsion between two masses,

ee'
e and /, of electricity placed at distance r apart is ^ . The

phenomena with which we have at present to deal are those

of repulsion and attraction between particles at a distance ac-

cording to the above law. The investigations of Chap. Ill are

therefore applicable.

It will be understood that we do not assert the actual exist-

ence of the fluids, or that direct action at a distance actually

takes place. It is proposed merely to show how the phenomena
of Electrostatics may be explained on this hypothesis. In like

manner the conception of space as divided into perfect con-

ductors and perfect insulators, will have to be materially modified

hereafter.

83.] It follows from the above definition of a conductor, that

when the electricities are in equilibrium, the resultant force is zero

at each point within the conductor. For if there be any force,

it must tend to move one kind of electricity at the point in one

direction, and the other in the opposite direction, and therefore

to separate them. And since the substance of the conductor

opposes no resistance to their motion, such separation will in

fact take place until equilibrium is attained ;
that is, until the
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mutual attraction of the separated electricities, tending to re-

unite them, becomes equal and opposite to the force which tends

to separate them, and so the resultant force becomes zero.

Now it follows from the reasoning- of Chap. Ill that in a field

of electric fluid distribution a potential function V exists such that

dV dV dV
, ? are the component iorces parallel to the axes

dm dy dz

of a?, y, and z at any point. And since the resultant force is

zero, each of these components is zero at every point within the

conductor, and therefore V has some constant value throughout

the substance of the conductor. This is true whatever the law

of force, provided there be a potential.

84.] It follows further from the law of the inverse square, that

there can be no free electricity within the substance of the con-

ductor. For whatever closed surface be described wholly within

it, the normal force N at every point of that surface is zero.

Therefore / / Nds = over the surface. That is, by Art. 45, the

algebraic sum of all the free electricity within the surface is zero,

and this being true for every closed surface that can be described

within the substance of the conductor, it follows that there

can be no free electricity, of either volume or superficial density,

within the substance of the conductor.

It follows that, in order to insure the constancy of V through-
out the conductor, it is sufficient to make it constant at all

points on the surface. For we have seen that if V be constant

at all points on a closed surface, within which is no attracting

matter, it has the same constant value throughout the interior.

85.] Whatever free electricity is formed by the separation of

the two kinds of electricity within the conductor, since it cannot

exist within the substance of the conductor, and cannot penetrate

the surrounding dielectric, must be found upon the surface in

the form of a superficial distribution.

And such superficial distribution must be in the aggregate
zero for the whole surface

;
because since the two kinds of

electricity are supposed to exist in equal quantities at all points,

for every quantity of positive electricity resulting from their
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separation, there must be an equal quantity of negative elec-

tricity, and each must be found somewhere on the surface.

But it is possible to place upon the conductor from external

sources a quantity of electricity of either sign. This also, for

the same reason, can only exist in the form of a superficial

distribution.

It follows then that if a conductor be in equilibrium its

electrification is wholly on the surface, and the algebraic sum of

all the superficial distribution upon it is equal to that of the

electricity placed upon it from external sources.

86.] Definition. The algebraic sum of all the electricity on

the surface of a conductor is called the charge on the conductor.

If o- be the density of the superficial distribution at any point,

dV
-j

the rate of increase of V per unit of length of the normal

measured outwards in direction, immediately outside of the dis-

tribution, -^7 the same thing measured inwards in direction,
d v

immediately inside of the distribution, Poisson's equation gives

dV dV---h ,
= 47TO-.

dv dv

But --
j,} being the force within the substance of the con-
dv

ductor, is in this case zero. We have therefore at every point

of the surface

dv

and the charge upon the conductor or

87.] We have seen that when an electrical system is in equi-

librium, the potential must have a constant value throughout each

conductor. Conversely, if the potential have a constant value

throughout each conductor, the electricity on fixed conductors is

in equilibrium. For the potential being constant throughout the

conductor, there can be no tangential or other force to move the

superficial distribution along the surface or through the substance
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of the conductor. And since by the hypothesis concerning- the

nature of the dielectric medium there can be no motion of elec-

tricity in the medium, all the electricity in the field must be at

rest. The constancy of the potential throughout each conductor

is thus the sufficient and necessary condition of equilibrium.

Hence can be established the following principle.

The Principle of Superposition.

88.] If or be the density of the superficial distribution on a con-

ductor when in equilibrium in presence of any electrified system

E, which may include a charge on the conductor itself, and if </

be the density on the conductor when in equilibrium in presence

of the system E', then ifE and W both be present, the conductor

will be in equilibrium when the density is <r + </.

For if every conductor of the system had placed upon it for

an instant the distribution whose density is cr-j-o-', we know

that the potential at any point is the sum of the two potentials,

one due to the system E and density <r, the other due to the

system E' and density <r '. But both of these potentials are

constant for each conductor. Therefore their sum is constant,

and therefore the supposed instantaneous distribution is in equi-

librium and is permanent.
It follows that if all the volume, or superficial or linear

densities of electricity, in a system in equilibrium be increased

in any given ratio, the system will remain in equilibrium, and

the potential at any point will be increased in the same ratio as

the densities.

89.] Let us consider the simple case of a single conductor, and a

point outside of it having a fixed charge of positive electricity m.

There will form on the surface of the conductor an induced

distribution of electricity whose algebraic sum is zero, and of

which the negative part is on the side of the conductor nearest

to 0, and the positive part on the opposite side. The tendency
of the charge at is to make the potential higher on the side of

the conductor nearest to than on the other side. The surface

distribution has the opposite tendency. And the surface dis-

tribution must be such that these two tendencies shall exactly
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neutralize one another, and the potential be the same at all

points of the conductor.

The actual solution of this problem consists in the determina-

tion of a function T
9
the potential of the system, to satisfy the

conditions

(1) F is constant over C;

(2) :r-dS= 0, taken over the surface of G ;

(3) V 2F= at all points in space external to (7, except where

the given external electricity is situated, and there V 2F= 4-Trw.

We have seen in Art. 10 that one determinate function V,

always exists satisfying these conditions. If it were determined,

dV
F, and therefore -=

,
would be known at each point on or out-

1 dV
side of C, and a distribution over C whose density is ^~

47T dv
satisfies all the conditions.

If the external charge were at another point 0' instead of 0,

the superficial distribution would assume a different form. If

there be a charge both at and at (/, then, by the principle of

superposition above proved, the density of the distribution at

any point on the conductor in this case is the sum of the

densities due to the charges at and at 0' separately, and so on

for any electrified system outside the conductor. In like manner

if there be a charge on the conductor itself, that charge will so

distribute itself as to give constant potential at all points on the

conductor, and the density of this equipotential distribution

together with that due to any external electrification will be the

actual superficial density.

90.] The case in which an electrified system is placed inside of

a closed conducting shell is of special importance. It will be

found that in this case we have two systems, separated by the

shell, each of which would be in equilibrium separately if the

other were removed.

For let C be any such shell, and let there be any electrified

system within it, and any other electrified system outside of it.

The general reasoning shows as before that the electrification of
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the conductor is wholly on the surface, that is to say, in this

case, partly on the inner and partly on the outer surface of the

shell. "We can then prove that the algebraic sum of the distri-

bution on the inner surface, together with that of the enclosed

system, is always zero. For let a closed surface S be described

wholly within the substance of the conductor, and entirely

dividing the inner from the outer surface. The potential V is

constant at all points within the substance of the shell, and

dV
therefore

-j
is zero, at every point of S, and

//;dv
rr,

But

where m is the algebraic sum of all the free electricity within S.

It follows that m is zero. But the only free electricity within 8

is the distribution on the inner surface of the conductor C, and

that of the enclosed system. If therefore the algebraic sum of

the electricity of the enclosed system be e, that of the distribu-

tion on the inner surface is e.

It follows, that unless there be a charge on the conductor, the

algebraic sum of the induced distribution on the outer surface is

+ ,
since the whole surface distribution on the conductor is zero.

We can next prove the following proposition.

91.] If a hollow conducting shell be in electrical equilibrium

under the influence of any enclosed electrified system, and of any
external electrified system, then the potential V of the enclosed

system and of the induced distribution on the inner surface will

be zero at all points on or outside of the inner surface
;
and

the potential V of the external electrification and of the induced

distribution on the outer surface will be constant at all points on

or inside of the outer surface of the shell.

For let S be any closed surface within the substance of the

shell entirely dividing the inner from the outer surface.

Then 8 is an equipotential surface, and separates the enclosed

system with the induced distribution on the inner surface of the

shell from the external system, and the induced distribution on
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the outer surface. Therefore (by Art. 63) the enclosed system and

the induced distribution on the inner surface have, at all points
outside of S, the same potential as a distribution over S whose

T>

density is ) where R is the normal force on S due to the
4-7T

whole electrification
;
that is zero potential, because R = on >$'.

Hence the enclosed system and the distribution on the inner

surface have together zero potential at all points outside of S.

Similarly the external system and induced distribution on the

outer surface have together constant potential V at all points

inside of S
',
and since S may be made to coincide with either the

inner or the outer surface of the shell, this proves the proposition.

It follows that if the enclosed system, together with the

distribution on the inner surface, were both removed, or allowed

to communicate and neutralise each other, the distribution on

the outer surface would remain in equilibrium. Its density is

therefore independent of the position of the enclosed distribution

within the shell. It follows further that any charge placed on

the conductor will assume a position of equilibrium on the outer

surface without causing any electrification on the inner surface.

Again, if the external electrification and the distribution on

the outer surface were removed, that on the inner surface and

the enclosed system would remain in equilibrium.

The agreement with experiment of the above proposition,

that a charge of electricity upon a hollow conducting shell

causes no electrification on its inner surface or on a conductor

placed within it, has been employed, as we shall hereafter see, to

establish the most conclusive proof of the law of the inverse

square in electric action.

92.] In Chap. IV it was shown that the qualitative results of

Experiment I, and the qualitative and quantitative results of

Experiments I, III, IV, VIII and IX, were completely explained

by the two-fluid theory of electricity. We are now in a position

to do the same with reference to the results of Experiments

II, V, VI, and VII.

For it has been proved (Art. 84), that there can be no free

electricity within the substance of conducting bodies, but that
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in the case of such bodies the charges, if any, are entirely super-

ficial.

It has been also proved (in Arts. 90, 91) that in the case of

the electrical equilibrium of a hollow conducting shell in the

presence of any given electrical distributions, whether internal

or external,

(1) There is a superficial electrical distribution on the inner

surface of the shell equal in amount, but of opposite algebraic

sign to, the algebraic sum of the given internal system.

(2) That the given internal system, with the last-mentioned

superficial electrification of the inner surface, constitute a system

producing electrical equilibrium throughout the surface of the

shell and the whole of external space ;
and that the given external

system, with any superficial electrification on the outer surface of

the shell, constitute a system producing electrical equilibrium

throughout the shell and the whole of the internal space.

It follows therefore that in the case of the closed insulated

metal vessel of Experiment II, containing an electrified piece of

glass as therein described,

(1) There will be a superficial electrification on the inner

surface, the total amount of which will be resinous, and equal to

the vitreous electricity of the glass, but the intensity of which at

different points will depend upon the position of the glass.

(2) That inasmuch as the vessel is insulated, and the total charge

zero, and as all the electrification must be superficial, there will

be a superficial distribution on the external surface equal in amount

to, and of the same sign as, the vitreous electricity of the glass.

Since however the external and internal distributions are in

equilibrium separately by Art. 91, it follows that ttte intensity

of the external superficial electrification at any point, unlike that

of the corresponding internal electrification, will be entirely

independent of the position of the glass, and will be determined

by the given distributions in the field external to the vessel and

the shape of the vessel.

93.] In Experiment VI the external electrifications of the

vessels A and B are equal and opposite before the introduction

of the wire. When the two vessels are connected by the wire,
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the two equal and opposite distributions coalesce, producing evi-

dently by that means external equilibrium. The effect on either

vessel is the same as if, there being- no introduction of the wire,

it received an independent charge equal in amount to, and of the

same sign as, that of the glass or resin in the other vessel, and

therefore equal and opposite to that of the resin or glass within

itself.
'

These charges remain when the wire, and afterwards the

glass and resin, are removed, as the experiment shows.

94.] The result of Experiment VII also follows at once from

the same reasoning. For the external superficial charge on C is the

same in whatever part of its interior IB be situated, and is equal

to that of B in magnitude and of the same sign. If therefore B
be made to touch C, the external electrification of the latter will

not be affected, but inasmuch as C and B after contact may be

regarded as constituting one conducting body, the vessel C with

B in contact constitutes a metallic shell with a given internal

distribution zero. Hence the internal superficial electrification

must be zero, and there is no free electricity within the compound
conductor C and B, and therefore the whole of B is discharged.

95.] We have hitherto considered cases of equilibrium in

which certain conductors have given charges. It is sometimes

required to determine the density of the induced distribution on

a conductor or system of conductors placed in a known field of

force
; as, for instance, when the force before the introduction of

the conductors is uniform throughout the field, such as may be

conceived to be due to an infinite quantity of electricity placed

at an infinite distance from the conductors.

Another class of problems is found when the potentials of

certain conductors are given.

When two conductors of known shapes are joined together by

any conducting connection, the conductors with their connection

of course form one compound conductor, and must be treated as

such. In the particular case however of the connection be-

tween them being a very thin wire, the total amount of elec-

tricity on the surface of the wire must be very small, and

generally is inappreciable in its effect upon the field.

As far therefore as the electricity on the connection is con-
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cerned, such conductors may be regarded as two separate and

independent conductors of known form.
;
the existence however

of the connection will ensure that they are of the same potential.

If in the case last mentioned, of two conducting- bodies joined

by a thin wire, one of them be removed to a great distance from

the field, the charge upon the one so removed will at length

cease to exercise any appreciable effect, and may be neglected.

If, at the same time, the potential of this removed conductor

be maintained at any given value, we may by this contrivance

regard the remaining conductor as an insulated conductor at

a given potential. In order to effect this object the charge upon
the conductor must be capable of variation. In fact, the distant

conductor, or some other body connected with it, must be a

reservoir containing infinite quantities of either kind of elec-

tricity, and so large that the withdrawal of electricity necessary

to maintain the given conductor at the required potential has

no appreciable effect upon it.

A very common case of such an arrangement occurs when one

or more of the conductors of the field are connected by a thin

wire with the earth, for this latter is an infinite conductor always
at the same potential*, which is taken as zero, the potentials of

all bodies being measured by their excess or defect above or

below that of the earth. A conductor connected with the earth

is said to be uninsulated.

98.] It follows from what has gone before that the most

general problem of electrical equilibrium, in such a dielectric

medium as we have described, is reduced to that of given
electrical distributions in the presence of given insulated con-

ductors with given charges, or at given potentials, in a dielectric

medium of infinite extent.

The solution of any such problem, that is, the determination

of the electric density and potential at any point, involves the

determination of a function F, the potential of the system, to

satisfy the following conditions :

* The earth for any distances within the limits of any experiment is at the same
potential. But there may be differences in the potential of the earth between
distant points, as England and America.
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(1) V has some (not given) constant values over each of

the surfaces S ... Sn bounding the conductors on which the

charges are given.

(
2
)

-
J/Jj

dsi taken over S
t
= \ ;

&c.;

i

(3) F" has given constant value over each of the surfaces

$/. . . S'm bounding the conductors on which the potentials are

given.

(4) V2 F-f 4?rp = at any point where there is fixed elec-

tricity of density p. and of course, if such fixed electricity be

what is called superficial, this may be put in the form

dV dV_ + __ +4^=:0.

(5) Y vanishes at an infinite distance.

It was proved in Art. 1 that one such function always exists,

and if it be T
t
a distribution of electricity over the surfaces of

density

JL^E
4-7T dv

satisfies all the conditions of the problem. Then the equation

dV
+47TO-=

dv

determines the density of electricity at any point of the surface

of any conductor, and the problem is completely solved.

97.] It was stated in Art. 91 that the fact of a charge of

electricity on a hollow conducting shell causing no electrification

on a conductor placed within it furnishes the most conclusive

proof of the law of the inverse square in electric action.

By hypothesis there is internal equilibrium when a distribution

itself in equilibrium is placed on the outer surface of the shell.

Let the outer surface be a sphere. Then by symmetry this

distribution must be uniform. Let us take a- for the superficial

VOL. i. H
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density at any point, and since there must be a potential function,

let it be ^
T
' at the distance r from a particle of unit elec-

r

tricity.

Let P be any point within the shell at the distance p from the

centre 0. Let the radius of the shell be a, and let be the

angle between OP and the line drawn from to any point Q on

the surface of the shell. Let dS be an elementary area of that

surface in the neighbourhood of Q, and let V be the potential of

the whole charge at P. Then

r^f/V/W

= 2wf*
Joo

Also r2 = a2 2 ap cos +>2
,

rdr = apsm6d9;
ra+p

=2TT<r- f(r)dr.
pJa-p

But, by hypothesis, V is to be constant for all values of p.

Therefore, multiplying by p and differentiating,

F= 2'ncra\f(a+p)+f(a-p)}'>

.'. 0=f(a+p)-f(a-p)',

and the force = -- - = -

dr r2

Hence the inverse square must be the law of force necessary

to satisfy the experimental data.

98.] It may be of interest to enquire within what degrees of

accuracy the experiments which have been made may be depended

upon.
Let there be an insulated conducting spherical shell within

and concentric with the given spherical shell, and of radius I.

If the law of force were that mentioned, the charge on the
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smaller sphere would be accurately zero, even with the two

spheres in conducting communication
; and, conversely, if the

charge were accurately zero, the law of force must be that of

the inverse square.

If, however, the law of force differed slightly from that of the

inverse square, there might be a small charge on the inner shell,

and we propose to investigate the amount of this charge with

any assumed small deviation from the above-mentioned law.

Let the metallic communication between the surface of the

inner sphere and the external surface of the outer sphere be made

by a very thin wire, then the electricity on this wire may be

neglected, and therefore, by symmetry, the charges on the two

spheres must be uniformly distributed. And if the shells be

very thin, we may, whatever be the law of force, regard the

charges as superficial.

Let E be that on the outer sphere, and W that on the inner.

Lety(r) = C+m$(r) where m is small; i.e. let the law of

force be

where m is small compared with C.

At any point P the potential from the two charges will be

~ I f(r)dr +- f(r)dr,J

and this must be the same at the two ends of the wire.

Therefore

That is,

But
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Therefore, substituting
1 and neglecting the products of the small

magnitudes E' and m, we get

a+b

For example, suppose the law of force to be
-g+^,

where q is

small. Then

and / = rr7-H^ logr-

Therefore C = > m = $ (r)
= log r.

Substituting in the expression for E', and remembering that

/ logrdr = rlogr r,

we get

This is the theoretical basis of the experiment by which

Cavendish demonstrated the law of the inverse square.

The experiment is given in great detail in the second edition

of Maxwell's Electricity and Magnetism, pp. 76-82 ;
and it

appears, from what is there stated, that we may regard it as

absolutely demonstrated that the arithmetical value of q cannot

Lines of Force.

99.] The state of the electric field under any given distribution

of charges and arrangement of conductors is completely known
when the value of the potential at each point of the field has

been determined. It is obvious however that the direct subject of

experimental investigation in any case must be the magnitude
and direction of the force at any point of the field, and hence has

* See Senate House Questions, 1877.
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arisen the conception of lines, tubes
>
andfluxes of force, originally

suggested by Faraday and developed by subsequent writers.

Line of Force. Suppose a sphere of indefinitely small radius

to be charged with unit mass of positive electricity and placed
with its centre at any given point P in an electric field, and

suppose the electrical distribution of the rest of the field to be

unaffected by the presence of this charged sphere, and suppose
further the inertia of the sphere to be always neglected, then

the centre of the small sphere would move through the field under

the action of the electric forces of the field in a definite line,

generally curved, this line is defined as the line of force in the

field through P.
tf */

When the electricity of the field consists of an electrified mass

of very small volume, inclosing a point and therefore all

sensibly situated at the point 0, the lines of force are clearly

straight lines radiatingfrom if the charge at be positive, and

terminating in if the charge at be negative.

If the point moved off to an infinite distance, and the charge

at were infinitely increased, the field would become what is

called a uniform field, and the lines of force would be parallel

straight lines.

So also if the distribution consisted of an infinite plane with a

charge of uniform density over its surface, the lines of force would

be parallel straight lines normal to the plane and proceeding

from or towards that plane, according as the density thereon was

positive or negative.

If the distribution were that of uniform density on the surface

of an infinite circular cylinder, the lines of force would be in

parallel planes perpendicular to the axis of the cylinder, radiating

from or converging to the point in which that axis met each of

these planes according as the electrification of the cylinder was

positive or negative.

For less simple cases of distribution the lines of force are not

capable of any such immediate determination ; they are generally

curved lines, their direction at every point coinciding with the

normal to the equipotential surface through that point and pro-

ceeding towards the region of lower potential. It follows that
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no line of force can be drawn between points at the same poten-

tial, and that all lines of force in the immediate neighbourhood

of an electrical particle, i. e. a very small volume with a charge of

infinite density, must radiate from or to the point with which that

volume sensibly coincides, according as the density of the charge

is positive or negative, because the potential in the immediate

neighbourhood of such point is positive or negative infinity in the

respective cases.

100.] Tubes of Force. A region of space in the field

bounded laterally by lines of force, as above

described, is called a tube of force. See

Fig. 6.

When the transverse section of the region

is indefinitely small it is called an elementary

tube offorce.

Flux of Force. Suppose any transverse

section dS made through any point P in

the surface of an elementary tube of force, as in the figure, the

angle between the normal to dS and the bounding lines of force

being i. If the intensity of the force at dS be

F9
and the area of the orthogonal section of

the tube at the point P be a, the force resolved

perpendicular to dS will be .Fcos i, and if this

be denoted by Fn ,
the product Fn dS will be

equal to FdScosi, or Fa, and will be the same

Fig. 7.
for every transverse section of the tube in the

neighbourhood of dS.

This product, from its analogy to the flux of a fluid flowing

through a small tube with velocity M=F, is called the flux offorce
across dS; the limiting value of the ratio of the flax offeree across

any elementary area to the area is the intensity of the force in

the field at that elementary area and perpendicular to it.

When the distribution arises from a so-called charged particle,

the tubes of force are conical surfaces with their vertex at the

particle; when in a uniform field they are surfaces limited laterally

by parallel straight lines, and so forth.

101.] Let a charge of electricity of either kind, and with mass
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numerically equal to m, be situated at a given point 0. Let a

sphere of any radius be described about as centre. Then the

fluxes of force across all equal elementary areas of the sphere's

surface will be equal to one another, and will take place from

within outwards, or from without inwards, according as the

electricity at is positive or negative, the total flux over the

whole sphere being 4 irm.

Faraday regarded the charge at as a source from which, or a

sink towards which, lines of force proceed symmetrically in all

directions, and he further regarded the density of these lines of

force, or the number contained in each unit of solid angle at 0, as

proportional to m. The number of lines of force therefore, which,

in this view, traverse any surface, corresponds to the flux of force

across that surface, and the force in any given direction at a point

P in the field is the limiting value of the ratio which the number

of lines traversing a small plane at P perpendicular to the given

direction bears to the area of that plane when the latter is

indefinitely diminished.

If the point were eccentric, the equality of flux over all equal

elementary areas would no longer be maintained, but the flux

over the whole surface would, as we know from Art. 45, or as

would result at once from the equality of flux over every

transverse section at any point of an elementary tube of force,

proved in Art. 100, still remain equal to lirm. We know also

from Art. 45, or we might prove at once from Art. 100, that the

total flux across a closed surface of any form surrounding

would be 4 urn.

If there were any number of sources or sinks within the closed

surface, the traversing flux across the whole surface from each

such source or sink would be 4irm, where m is the numerical value

of the charge at such source or sink, and the flux is outwards or

inwards according to the sign.

The total flux in this case across the inclosing surface would

be 4-7T (2jt?
<**> Zn), where Sjt? and 2n are the sums of the charges

of the sources and sinks respectively, and would be outwards or

inwards according as 2/? was greater or less than 2#.

If there were any number of sources or sinks in the field
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external to the aforesaid surface, their existence would not affect

the value of the total flux across the whole surface.

102.] Suppose that a tube of force, elementary or otherwise, in

any electric field, is limited by transverse surfaces S and S'} and

that it contains electrical distributions, such that the difference

of the sums of the masses of the positive and negative charges is

m, then the flux offeree across the whole surface of the tube thus

closed from within outwards will exceed that from without in-

wards by the quantity Ivm if the preponderating included

electricity be positive, and the former flux will fall short of the

latter by 4?m if the preponderating electricity be negative.

But the flux of force across that portion

of the tube's surface which contains the

lines of force is zero. If therefore the

direction of the lines of force be from S

to f (see Fig. 8), the flux of force across

S' will exceed or fall short of that across

S by the quantity 4irm, according to the

sign of the preponderating included electricity.

If F and F' be the forces normal to S and & at any points in

them respectively, and if m be now taken to represent the alge-

braical sum of the included electricity, these statements are

expressed by the equation

/ / FdS = 4:7rm.

The portions of any surfaces in an electric field intercepted by
the same tube of force are called corresponding surfaces, and there-

fore in proceeding along any tube of force, finite or elementary,
the fluxes across corresponding surfaces are continually increased

by the quantity 4 irm, where m is the algebraic sum of the elec-

tricities included in the tube in its passage from any one surface

to any other, such increase being a numerical decrease when m is

negative. And if there is no such included electricity, or if its

algebraic sum is zero, then the fluxes across the corresponding
surfaces are all equal to one another.

103.] Suppose that there is in the field a surface 8 charged
with electricity, the density at any point P being a.
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Let dS be an element of 8 about the point P, and conceive a

small cylinder to be drawn with its

generating
1 lines passing through the

contour of dS and perpendicular to

that element.

The total flux across this cylinder

must be equal to the included elec- Fig. 9.

tricity, i.e. to adS.

Also, if the length of the cylinder's axis be indefinitely dimin-

ished, the flux across the curved surface will become infinitely

less than either of the fluxes across the bounding planes, and

these fluxes therefore must ultimately differ from one another by
4770-^$, so that if N and N' be the forces in the field normal to

dS and on opposite sides of it, we have

N'dS-NdS=4.Tt<rdS
t

or N'-N = 47r<r.

Hence the force normal to an electrified surface changes

suddenly in value by the quantity 4 TTO- in passing from one side

of the surface to the other
;
and we may also prove that the

normal force upon the electrified element of the surface itself is the

arithmetic mean of the normal forces which would act on that

element if placed first on one side and then on the other of the

surface. For, considering the elementary cylinder above men-

tioned, it is clear that the force arising from all the electricity in

the field, besides that on the element dS, must be continuous

throughout the cylinder, inasmuch as all the electricity from

which it arises is without the cylinder, and therefore the normal

force throughout the cylinder arising from that external electricity

will be ultimately the same as it is at the surface. But the

normal force arising from the charge on the included element

vdS on points at any equal small distances from the surface and

on opposite sides must be equal and opposite, and therefore the

sum of the total normal forces on either side of the surface must

be equal to twice the normal force of the external electricity

throughout the cylinder ;
or the normal force of the external elec-

tricity at the surface must be the arithmetic mean of the total

normal forces on opposite sides of the surface ;
and therefore the

normal force on the elementary charge <rdS is the arithmetic
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mean of what the normal forces on the same charge would be if

placed on each of the two sides of the surface respectively, for the

charge ad/S can exert no force upon itself.

It is clear also that the charge crdScan exert no tangential force

in one direction rather than another, and therefore the force

resolved tangentially must be the same on either side of the

surface. If therefore F and F' be the forces on opposite sides of

the surface, and if i and i' be the angles between the lines of force

and the surface normal, we have

F' cos i
f F cos e + 4 7T0-,

F' sin i' = F sine;

and therefore tan i = tan i' (1 + .) ;..

or the lines of force on traversing a surface with superficial elec-

tric density a are deflected towards or

from the normal according as o- is posi-

tive or negative ;
see Fig. 10.

It appears also from the foregoing
that the force exerted by an element

dS of a surface of superficial density a-

at points very close to dS is a normal

force 27TO-, and repulsive or attractive

according as a is + or .

j^ig. I0- 104.] We may now trace the possible

course of an elementary tube of force

through an electric field in equilibrium.

The axis of such a tube in passing through any point Pmust

proceed from P towards regions of continually diminishing po-
tential.

It may then pass on to an infinite distance if it encounters no

free electricity.

Or it may traverse a charged surface, in which case, if the

transit be oblique, it will be bent through a finite angle at the

surface in the manner above explained.
If this charged surface be that of a conductor, the line, or rather

elementary tube, of force will proceed no further, but it will be, so
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to speak, quenched in the sink afforded by the negative density

of the surface at the point or element in which it meets it.

Or it may traverse a region of finite volume density, in which

case it suffers no abrupt refraction, and if the density of the region

be positive the tube emerges therefrom with augmented flux, if

the density be negative the tube may be, as in the case of the

conductor, quenched in the sink thus afforded and proceed no

further.

If the tube, elementary or finite, has emerged from a positively

charged conducting surface and is quenched, as above described,

in another conducting surface without traversing any region of

electric charge, then the positive charge on that portion of the

surface of emersion contained within the tube must be equal in

magnitude to the negative charge on the corresponding surface of

the surface of reception; or, in the language of Faraday, the

number of lines of force emanating from the source is equal to

those quenched in the sink.

In other words, the number of lines of force emanating from

or converging to an elementary area of any conducting surface is

a measure of the positive or negative density of the electrification

of that surface.



CHAPTEE VI.

APPLICATION TO PARTICULAR CASES.

ARTICLE 105.] IT is proved above that whatever be the given

charges or potentials on a system of conductors, combined with any
fixed distribution of electricity in space, there exists always one,

and only one, mode of distribution upon the conductors consistent

with equilibrium.

But the actual solution of the problem, the determination,

that is, of the actual density of electricity at a point of any

given conductor, is one of great difficulty, and has only been

achieved in a few simple and comparatively easy cases.

Case of an infinite conducting plane and an electrified point. Let

there be an infinite conducting plane, and a unit of positive

electricity fixed at a point above it. It is required to find

the density at any point in the plane in order that the potential

of the plane may be everywhere zero.

The potential of the required distribution on the plane must

be equal and opposite to that of the unit at at all points on the

plane, and therefore also at all points in space on the opposite side

of the plane to 0, by Art. 60.

If a unit of negative electricity were placed at 0', the optical

image of 0, formed with respect to the plane as a mirror, its

potential at any point of the plane would be equal and opposite

to that of the unit at 0, and therefore equal to that of the

required distribution. It would therefore also be equal to that

of the required distribution at all points in space on the same

side of the plane as 0.

Let V be the potential of the required distribution, and of the

unit at 0. Then, by Poisson's equation, the density of the dis-

tribution at any point P in the plane is

1 ,dV
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where dv is an element of the normal to the plane measured

from the plane on the same side of the plane as 0, and dv

the same thing on the same side as (/.

Now the value of V at any point P on the same side of the

plane as is

JL_
1

OP O'P*

and on the opposite side of the plane V is constant because it is

constant over the plane, and there is no electrification on that

side of the plane.
JTT

Therefore -=-,-,
0.

dv

Also on the plane -7-= = - -

and
dV d=

--
di> OP 1

I d I
therefore ,=___._;
and if k be the distance of from the plane, r the distance of a

point P in the plane from the intersection of 0(7 with the plane,

J_~
2irdh

1 h

27T OP3
'

which determines the density at any point in the plane.

106.] In certain very simple cases the value of Fmay be deter-

mined by the integration of Laplace's equation. For instance

Two infinite conducting planes at given potentials. Let the

planes be parallel to the plane of xy. Then, since the density is

uniform throughout each plane, T is in this case a function of

d2V
z only, and Laplace's equation becomes -^

= 0, from which V

can be found with two arbitrary constants, and the constants are

to be determined by the given conditions on the planes.
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(1) Two infinite coaxal cylinders.

In like manner, if we have two infinite coaxal conducting

cylinders at given potentials, the density is uniform throughout

the surface of each cylinder, and V is a function of r, the distance

from the axis. Laplace's equation is in this case

IdV _
~dr*+~r~dr"

which admits of integration.

(2) Two concentric spheres.

Again, if there be two concentric conducting spheres at given

potentials, the density is uniform throughout the surface of each

sphere, and V is a function of r, the distance from the centre.

Laplace's equation becomes in this case

dW 2^T_
dr*

+
r dr

=

which admits of integration.

In this problem, as in the last, the two arbitrary constants

which enter into V in solving the differential equation must be

determined with reference to the given conditions on the cylinders

or spheres.

107.] Case of an insulated Conducting Sphere in a Field of

Uniform Force.

Let us take the direction of the force for axis of #. Let X be

the force, a the radius of the sphere, V the potential. Then V
must satisfy the conditions,

(1) F is constant and = C on the surface of the sphere ;

(2) V2F= at all points outside of it j

(3) ^r== Xx+ C at a sufficiently great distance from the sphere ;

(4) The total electrification on the sphere is zero.

The function

where / is the distance of any point from the centre, satisfies all

these conditions.
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/ t
The density on the sphere is - ^-, that is,

4?r dr
'

4-na
It is easily seen that

108.] Case of an uninsulated Conducting Sphere and another Sphere
outside of it uniformly filled with electricity of density p.

This is the same problem as that treated in Chap. Ill, Art. 65.

We give another method of solution.

Let C be the centre,

a the radius, of the

conductingsphere ; and

let be the centre, b

the radius, of the other

sphere.

Let OC=f. Let

V be the potential of Fig. n.

the whole system.

It is required to find the density of the induced distribution

on the conducting sphere which gives zero potential on that

sphere, and the general value of V in this case.

7 has to satisfy the conditions,

(1) 7 at all points on the conducting sphere ;

(2) V2 7= at all points external to both spheres ;

(3) V2 F+ 4-7T/)
= within the non-conducting sphere.

az
Take a point E in CO such that EC =

-^
t/

Let OP = r, EP = /, where P is any point.

Let VQ be the potential of the charged sphere at P. Then if

e - 3
p, or the total charge of electricity in the charged

3

sphere, the function

satisfies all the conditions, and must therefore be the required

potential.
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For outside of the ch

above equation becomes

M

For outside of the charged sphere F = -
,
and therefore the

r*j _-(.

Now by a known property of the sphere, if the point P be

on its surface,
EP _ r' _ a

OP~ r ""/"

Therefore for a point on the conducting sphere F= 0. -

Also for a point outside of both spheres

V 2 - = and V2 4 =
;

therefore V2F= 0.

For a point inside of the charged sphere

V2
F+4irp = V 2

-^ + 47r/3 = 0.

The density at any point on the conducting sphere is

In dv ( r fr'

Also rz =f* + v*-2fvcos0,

where the angle PCO = 6, and v denotes the distance of a point

from C\ also

and in the expression for cr, v is to be made equal to a after

differentiation. We have therefore

dr afcoa0___ ==- ,

dv r

a?

_
dv

a -- cos 6
e (afcosO a f

but

-^{ f /
"

a

Q
-P&

j2
Therefore <r = - - ^ _

, as already found.
47T ar3 J
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From the form of the potential function

F=f-
r fr'

it follows that the potential of the induced electricity on the

conducting- sphere in the presence of the charge e at the external

ae
point is the same as that of the charge at the point E.

The point E is called the electrical image of in the con-

ducting sphere.

109.] Case of an infinitely long Conducting Cylinder , and a

uniform distribution of Electricity throughout the substance of

another infinitely long cylinder outside of theformer one, and whose

axis is parallel to that of theformer one.

In this problem V has to satisfy the following conditions, viz.

(1) V = on the surface of the conducting cylinder ;

(2) V2F = outside of both cylinders ;

(3) V2
F+4-n-p = inside of the charged cylinder, p being the

density of the distribution within it.

Let a plane perpendicular to the axis cut the axis of the

conducting cylinder in C, that of the charged cylinder in 0.

(See Fig. 1 of last example.)
Let OC =/.

a2

In OC take a point E such that fiC=~-

Let r be the distance of any point P from the axis of the

cylinder through 0, / its distance from a line parallel to the

axis through E. Then =
^

for every point in the section

made by the plane with the conducting cylinder.

Let R be the quantity of electricity contained in unit length

of the charged cylinder. Then the potential of the charged

cylinder at any point outside of it is

ro =C-2Elogr.
It will be found that

ar

VOL, I. I
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satisfies all the conditions, and is therefore the potential. For

in this case r is independent of z, and therefore

d
Now

d2
.

Similarly _logr=s -j^:^,
whence V2

log r = 0.

On the conducting cylinder r = /; and therefore
a

Outside of both cylinders

V2F = 0, and V2

log
^L = o

,
therefore V2V= ;

ar

and within the charged cylinder

V2
F+47r^ = V'F + 47r/> = 0.

The density at any point on the conducting, cylinder is found

from R c d d I

<r = + < -j- log r log r >,
27T ( dv dv )

where r2 =/2+ v2-2fv cos (9,

and i; is to be made equal to a after differentiation. The

result is /2_ a2

"~

110.] Ow Electric Images. We have seen in Art. 108 that if

a sphere be at zero potential under the influence of a charged

point outside of it, the induced distribution has at all external

points the same potential as that due to a certain charge placed at

a point within the sphere, and the last-mentioned charged point

is defined to be the image of the influencing point in the sphere.

An infinite plane is for this purpose a particular case of the sphere.
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Every electrical system outside of a sphere, inasmuch as it may
be regarded as consisting of a number of charged points, is re-

presented by a series of images in the sphere, and these together

may be said to form the image of the external system. In like

manner, if the sphere be at zero potential under the influence of

a charged point within it, the induced distribution has the same

potential at all internal points as that due to a certain charge at

a certain point without the sphere. The external point is called

the image of the internal point. Every electrified system within

the sphere has its image outside of the sphere.

It can easily be shewn that no closed surface except a sphere

or infinite plane generally gives rise to an image.
For let 8 be any uninsulated closed surface, and let E be an

external point at which a charge e is placed. If the induced

distribution on S have at all points on S the same potential as

that of a charge / at a point .Fwithin S
9
that is, if F be an image

of E within S, we must have

EP _e
FP ~?'

P being any point on 8. Thus the locus of P is a sphere, that

is, S is a sphere.

111.] By the method of electric images many problems re-

lating to the distribution of electricity on spherical or plane

surfaces can be solved.

The case of two spheres cutting each other orthogonally (Max-
well's Electricity and Magnetism, p. 168).

Let Clt
C
2 be the centres, al} a

2 the

radii of the spheres.

Let AB represent the circle of inter-

section, E the point in which the line

C
L
C
2 intersects the plane of that circle.

Then C^AC^ C^BC^ are right angles,

and

f = a
1

> + a .

Also = )
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or E is the image of C2
in the sphere C

1 ,
and the image of

(7j
in

the sphere C2 .

If therefore we place at Cl
a quantity of electricity a^ ,

at (?2 a

quantity a2 ,
and at E a quantity

the potential at any point on either sphere will be unity, because

if the point be, for instance, on the sphere <?2 ,
the two charges,

^ at Ci and - at E,
Va*+a*

have together zero potential at each point on that sphere, while

the charge a2 at C2
has potential unity.

112.] Now let us consider the conductor FAGB, formed by
the two external segments of the spheres. The aggregate of a

distribution upon its surface, which gives unit potential at all

points on it, is equal to

This then is the capacity of the conductor.'

Again, since the potential of that distribution is the same at

all external points as that of the three charges at Clt Cz , and E,

its density is

_

4-7T dv

"-d+
But if P be on the sphere C2 ,

1 * a^ 1
Art 108^

and therefore the density is

By symmetry the density at a point on the sphere Cl is

(, .' )
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Instead of the figure formed by the two external segments, we

may take the lens formed by the two internal segments, or the

meniscus formed by one internal and one external segment, and

calculate the superficial density in the same way. We shall

consider this problem further when we come to the Theory of

Inversion.

113.] Another interesting example is afforded by the follow-

ing question :

An uninsulated conductor ADEFB consists of an infinite plane
with a hemispherical projection DEF, the

centre C of the hemisphere being in the

plane AB. A mass of electricity m is

situated at the point m, in the radius CE

produced, where CE is perpendicular to

the plane. Then ifthe points% and m{ be

taken on opposite sides of C such that

,,__
CE*

MI " "

^Cm
'

and ifm be takenonmC produced such that

Cm'= Cm, the effect of the induced charge

on the conductor under the influence of the

mass m at m may be represented by the

joint effect of the masses m
1
at m1 , -f% g ,

at MI and m at m'\ where mL
=

-^,m^. Fig. 13.

For let P be any point on the same side of the conductor as

and let the distances of P from m, ml , mf, and m be r, r
,

and / respectively.
._ Wt Wlj. Tfli-t 771

r ~^ +
<~~7"

Then at all points on the hemispherical surface we have

m, m
x j m m

i

r r / .* rt
' '

and therefore V= over that surface.

* Or in other words, the induced charge on the composite conductor is equivalent
to the image mi of the charge m at the electrical image of m in the hemisphere

together with the image of m and TOJ in the plane.
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Similarly at all points of the plane's surface

r = / and ^ = r^,

and therefore T = over that surface.

AgaiD ,
vi = vS = v =v=0

at all points on the same side of the plane as m, where there is

no electricity, or where p the electrical density is zero, and at m

where p is the density within the small volume of m at m.

Therefore at all points on the aforesaid side of the plane

Therefore the function V taken as above satisfies the super-

ficial and solid conditions of the potential of m at m, and the

induced charge on the conductor, and must therefore be the

potential of m and that induced charge.

In other words, the induced charge produces at all points on

the side of m the same effect as the charges m
1) ml

and m at

the points m1 , mf and m' respectively.

From the equation

4.7TO-+ - =0,dv

we easily find that the superficial density a- of the induced charge
is everywhere negative, except at the circle of intersection of the

hemisphere and plane, where it is zero, and that at any point P
on the hemisphere <r is proportional to

1 1

m'P3

and at any point P on the plane outside of the hemisphere o- is

proportional to

Cm3 CE3

^P3 m^
114.] On Systems of Successive Images.

If we have given any two conducting spheres, including in

that designation an infinite plane, at zero potential under the

influence of an electrified point, the electrical distribution on
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either sphere will be found to be equivalent in its effects to two
infinite series of images, the magnitudes or values of which

converge. Hence the density of the actual distribution on

either sphere generally admits of being calculated approximately.
For instance, let us consider a sphere and infinite plane not

intersecting, and an influencing point in the perpendicular from

the centre of the sphere on the plane, between the centre and

the plane.

Let A be the centre of the sphere, c its radius, E the influ-

encing point at which the

charge e is placed, B and

H the points in which

AEAf
cuts the sphere and

plane respectively.

HA'= Vtf-c\
The charge at E pro- Fig. i4 .

duces on the sphere a cer-

tain distribution, which we may call the primary distribution on

the sphere, the effect of which at all points outside of the sphere

is the same as that of a charge -^e placed at a pointjbe-

tween A and E> whose distance from A is -7^, and its distance

from H is Ji
-j^

That produces on the plane a distribution

whose density we may denote by ^ ;
and the effect of this distri-

bution over the plane at all points on the left side of the plane
rt

is the same as that of its image, namely, a charge r-=; e placed

at a point distant k ^ to the right of the plane.

Let i" = *~A;
From this distribution, or its equivalent image, we derive in the

same way a second distribution on the sphere equivalent to a

charge
c c

~~AE'
'



120 SUCCESSIVE IMAGES.

c2

at a point distant -7
- from A, and from this again a second

n-\- X-^

distribution of density p2 on the plane.

We shall then have a series of images to the right of the

plane, whose distances from IT are #15 #2 , &c. And
c
2

and generally n?w+1
= h -t &c.

n-rxn

It is easily seen that #n+1 > #n ,
and every a? is less than

_ C2> ipne successive images continually approach A'.

The charges at these images are successively

c c c c c c
__ _

AE ) AE \+*C AE
and the ratio between two successive charges continually

approaches -T-J>
A.A.

Again, the charge at E induces on the plane a primary dis-

tribution which is equivalent to the image of E in the plane.

This original image is at a point distant from H
9 os\ HE, and

the distances from H of the derived images are

&c., &c.

which continually approach HA'. The charges at these images
are successively

e at the first image,

=- e at the second image,h+ x^
and so on.

Hence the density of the induced distribution at any point M
on the plane, where HM= r

t
is
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\

+ &C.

Each series converges rapidly, and the terms soon cease to

differ sensibly from those of a geometric series whose common
/>

ratio is
-,

Hence the actual density at M can be calculated
A.A.

to any required degree of accuracy.
The integral charge on the plane is the sum of both series of

images irrespective of their position. That is

AE

-e\l +

115.] Another very interesting case is that of two concentric

spheres and an electrified point placed between them, treated in

Maxwell's Electricity.

In that case the distances of the images from the common centre

are in geometrical progres-

sion. Also the charges are

in geometrical progression,

and their sum can be accu-

rately determined.

Let be the common

centre, a the radius of the

inner sphere, b the radius

Fig. 15-.

of the outer sphere, E the

point where the charge e

is placed, OE = k\ all the images are in the line OE produced.

We have then 62

an image at Plt where OP1
= T

an image at Qlt where OQj_ = -^p
= -TT '

an image at Pz , where OPZ
= -^TJ

an image at Qt ,
where 002

= -^ = Tj-A.
UJTn
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We see then that the distances from of the successive images

derived from the primary distribution on the outer sphere are

and the charges at those images are
o

a a*

b
e' v e' &c -

Again, if we start with the primary distribution on the inner

sphere, represented by -7 e a^ Qi, we obtain a second series of
fa

images whose distances from are

a
in
b*h

and whose values are

a3

Hence the total charge on the inner sphere, or the sum of the

images within it, is

f
a ab v

VT
~ ~"

zTTi ~\ )
e
>

or

b a h(b a)

h b a

h b-a '

and that on the outer sphere is

hb a ha
e.

h ba h ba
116.] Another class of cases is that in which the number of

images is finite.

For instance, let us consider

Y two infinite conducting planes at

right angles to each other, in

presence of an electrified point.

Let the projections of the

X' ^ X planes on the plane of the paper'

be XEX\ YET, and let Ol be

an electrified point.

The image of O
l
in XEXf

is Q.
Y' The image of (7

X
in YEY' is

2 .

Fig. 16. The image of
2 in XEX' is C2 .

The image of <72 in YEY' is .

o,
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The two planes are at zero potential under the influence of

+ e at O
l
and 2 ,

and e at Q and C2 . If we now substitute

for
<?!

and 2 the distributions on XEXf
which have the same

effect with them on the lower side of the plane XEX', and for

C2 the distribution representing it in YEY', the potential will

still be zero on the plane YEY' and on the part EX of the

plane XEX'.

117.] In like manner instead of two planes intersecting at

right angles, we may have n planes intersecting at angles
-

f

(Maxwell's Electricity, p. 165). Taking an electrified

point Ol3 and forming successive images in the

planes, we shall have a series of positive points

Olt 2 ,
... On ,

and a series of negative points C1 ,

C
2 ,... Cn placed symmetrically round E, the projection

of the common section on the plane of the paper.

The potential is zero on every plane.

If YEYf
and SES' be the two planes between

which the point O
l lies, we may substitute for all

the points on the left of YEY' their corresponding

distribution on YEY', and for all the remaining Fig. 17.

points except itself their corresponding distri-

bution on SES'. Then the potential on the portion Y'ES of

the system is unaffected, and remains zero.



CHAPTEE VII.

THE THEORY OF INVERSION AS APPLIED TO

ELECTRICAL PROBLEMS.

ARTICLE 118.] THE solution of some electrical problems

involving spherical surfaces, or portions of spherical surfaces

inoluding planes, can be effected by the method of inversion.

This application of inversion is due originally to Sir W.
Thomson.

Taking for origin any point 0, and for coordinates the usual

spherical coordinates r, d, <, let us suppose we have found the

solution of a given electrical problem, that is, we have found

the single function, P, of r, 0, $, which is constant within each

conductor of the system, and satisfies the characteristic equations

at all external points, and vanishes at an infinite distance, and

hence we have found the density at every point on any conductor.

"We will then invert the geometrical system as follows : For

any point P of the system distant r from we will take a point

K2

P' in the line OP, and distant / from 0, where / =
,
and

T

K is a constant line called the

radius of inversion, and is called

the centre of inversion._ (

If P and Q be any two points
Q

.
in the original system, P

f
and

Q
f
the points corresponding to

them in the inverted system, the triangles POQ, Q'QF are

similar, and therefore

1 OP.OQ 1_ __2L __

P'Q'~ K2 PQ
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Again, if Q be very near P, and if OP = r,

Therefore any linear element of length dv in the original
K2

system acquires the length dv in the inverted system. It

follows that any element of area dA in the original system be-

K4

comes
-j-

dA in the inverted system ; and the element of volume

dv in the original system becomes $ dv in the inverted system.

119.] Every sphere in the original system becomes another

sphere in the inverted system.

For let the point E be taken in the line joining with

the centre C of the sphere, such that

a2

where a is the radius. Let OC =f. Then, if Q be a point on

the sphere,
-~~ is constant, and =

Therefore if E' and Q,' be the points in the inverted system

corresponding to E and Q,

according as the centre of inversion is without or within the

original sphere, and in either case is constant. Therefore Ef
is

the centre of a new sphere.

If the centre of inversion be without the sphere, and if

**=f-a\
the sphere is unchanged in position. For in that case,

That is, the centre of the new sphere coincides with <?, the point

which was the centre of the original sphere, and the radius of

.. , K2a
the new sphere, -^ =- ,

= a.



126 INVERSION GENERAL THEORY. [l2O.

Again, a plane in the original system whose perpendicular

distance from the centre of inversion is p }
becomes a sphere of

diameter passing through the centre of inversion, and whose

centre is in p.

Again, a sphere of radius a in the original system passing

through the centre of inversion becomes when inverted an infinite

plane at right angles to the diameter through the centre of in-

K2

version, and distant from that centre. Again, since two inter-

secting spheres becomes spheres when inverted, their common
section becomes a circle* Hence every circle on the original

sphere becomes a circle on the inverted sphere.

Again, since the triangles POQ, Q'OP' are similar, if be the

angle made by the radius r with any elementary line at its

extremity, the corresponding angle in the new system is TT 0.

Every point which in the original system is within any closed

surface S, not enclosing the centre of inversion, will in the in-

verted system be within the corresponding closed surface S'.

And every point without S will in the inverted system be

without S'. But if S enclose the centre, all points within S

correspond to points without /S", and vice versa.

Evidently every conductor in the given electrical system will

be represented in the inverted system by a certain closed surface.

120.] We will now construct upon the inverted system a new

electrical system as follows, viz.

If pr
2

sin0d0d<l>dr

be the quantity of electricity in the space-element

of the original system, we will place in the corresponding space

element of the inverted system the quantity

r

Since as we have seen the element of volume dv in the original

K
6

system becomes dv in the inverted system, it follows that
r

r5 K 5

the volume density in the new system is r p = . o.J J
K6 r 5
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In like manner if <rdA be the quantity of electricity on the

surface element dA of the original system, we will place on the

corresponding element dA- of the inverted system the quantity

/c

r

This gives a surface density g-
a- in the new system.

We have thus constructed a new electrical system, in which

every conductor S> of the original system is represented geo-

metrically by a surface S' in the new system, and every quantity
of electricity in the original system is represented by a corre-

sponding quantity in the new system.

121.] We now proceed to find the relation between the potential

at any point Q of the original system and that at the corresponding

point Q'j due to the electricity which we have supposed placed

on the inverted system.
Let s denote an element of volume at P in the original system,

ps the quantity of electricity in it. Then the potential at Q of

s\ a

the element is v =

In the inverted system, ps at P becomes
-^p P s

its potential at Q' is-

K
v =

but
1 _ OP. OQ 1

P'Q'
= ~^" PQ 5

, OQ ps OQwhence v = ^- -77=K fty K

As this is independent of the position of P and P', it holds

true for the whole potential of the original system at Q, and

of the inverted system at Q'. That is, if 7 and V denote the

potentials at Q and Q',

122.] It follows that if Tbe zero for any conductor whose bound-

ing surface is S in the original system, 7' is zero throughout the
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corresponding surface S' in the inverted system. Therefore if

the space S' be occupied by a conductor, the assumed distribution

of electricity throughout the inverted system will, as regards

such conductor, be in equilibrium with zero potential. And
if any electrical system consists of conductors all at zero poten-

tial in presence of fixed charges of electricity, the inverted system
will also be in equilibrium with all its conductors at zero po-

tential.

Again, let the original system be one in which the potential

of a distribution over a closed surface S is equal at each point on

S to that of any electrification enclosed within S. Then if

we invert with respect to an external point, and S becomes S',

the potential of the corresponding surface distribution over S'

will be equal at each point of S' to that of the corresponding

enclosed electrification. If, for instance, the distribution on S

have the same potential in all external space as if it were col-

lected at a point C within S, that is, if the original system be a

centrobaric shell, the surface distribution over S' will have the

same potential in all space outside of &, as if it were collected at

(f, the point corresponding to C
;
that is, the new system will be

a centrobaric shell too.

If in any system V be not zero for the conductor S, V is not

generally constant over ', and the inverted system will not be

in equilibrium with & for a conductor. But, as we have seen,

F' F=

If therefore we place at the centre of inversion a charge * F,

the potential of this charge, together with that of the inverted

system, will be zero at each point on &.

If therefore we have given a conductor S, and know the

density at every point on its surface of an equipotential dis-

tribution giving potential F, we can, by inverting the conductor

so electrified with any point for centre and K for radius of

inversion, find the density of the distribution over S' required to

give zero potential in presence of a charge K V at ; namely, if

a be the density at any point P on the original conductor, the



>
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density at the corresponding point J? of the distribution giving

zero potential is ^ <r, where /= OP'.

123.] Example. A conducting sphere of radius a, uniformly
coated with electricity of density o-, has constant potential
47r#<r at each point of the surface. Let us invert it with

respect to a point 0, distant f from the centre, with K for radius

of inversion. The sphere becomes another sphere of radius

K2 K2

-^ 2
a

>
if C> t>e external, or

^ -^-
a if be internal. And

f a a /
according to the general result above proved, the distribution on

the new sphere will be such as together with a charge K V> or

liTKaa, at will give zero potential at each point of the

inverted sphere. But if dA be an elementary area of the original

sphere distant r from 0, adA is the charge upon it in the

original system. The charge upon the corresponding area in

the new sphere will be adA9 and dA becomes -^dA. There-

fore the density at the corresponding point of the new sphere is

r 3
K3

adA or -^- o-dA, that is, it varies inversely as the cube of
K* 7*

the distance from 0.

Again, being without the original sphere, let /c
2 =f2 a2

,

then the sphere does not change its position. Let the charge

at 0, or 4 TT K a a = e, or

o- = - .- .

47TKa

Then the density for zero potential is

7T
6 ^2 __ ft

'*

or

as we have already found by different methods.

124.] Again, if at the centre of the original sphere there be

placed a quantity of electricity 477&2
<r, and on the surface the

uniform distribution of density a-, the potential at any point on

the surface or in external space is zero.

VOL. i. K
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If we invert the system with respect to an external point

distant/" from the centre, with \/f
2 a2 for radius of inversion,

the sphere is unaltered in position, but the original centre C

upon which the charge 47r#2
o- was placed becomes a point C",

a?
distant from the centre in the line OC, and the charge

4tna?(T becomes K
-. 47r<Z' a- at 6

,

and the distribution on the inverted sphere whose density is

^3

-7-3
a gives,, in conjunction with that charge at (?, zero potential

at each point on the inverted sphere and in external space,

without there being any charge at 0. That which was a centro-

baric shell with centre of gravity C has become a centrobaric

shell with centre of gravity C'

.

125.] Again, we can sometimes make use of the converse pro-

position to that of Art. 122.

If, namely, we have given any system in which all the con-

ductors are at zero potential under certain electrifications, and if

part of the given electrification consist of an electrified point

at which a given charge is placed, we can, by inverting the

system with for centre* obtain a new electrified system in

which the conductors have unit potential.

For let K be the charge at 0. Let us take for centre of

inversion a point distant x from 0, and K for radius of inversion.

Then all the conductors when inverted remain at zero poten-

K2

tial, and the charge K at becomes a charge
- - at a
os

K2

point distant from the centre of inversion. Now let x be
x

indefinitely diminished.

If all the conductors, when inverted, are of finite magnitude,
K2 K2

the infinite charge at distance will, when x is indefinitelyX iC

diminished, that is, when is taken for centre of inversion,

have potential 1 at each point on the conductors. The re-

maining electrification of the inverted system will therefore

have potential -f 1 throughout the conductors.
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126.] As an example of this process, let us take two infinite

planes XEX', YEY' at right

angles to each other, and four 9

points 19 C19 2 , C2 ,
as in the

figure, forming a rectangle whose

diameters intersect in E. *

O
l
and

2 having charges, each X*-

K, and Cl9 C
2 having charges,

each + K, the potential is zero at

each point on either plane.

Let y be the distance irre-

spective of sign of any one of
pig. I9>

the four points from the plane

XEX', x the distance of any one of them from the plane YEY'.

If we invert the system with O
x
for centre and K for radius,

the two infinite planes become two orthogonally intersecting

spheres. The common section of the planes becomes the circle

of intersection of the spheres and passes through Olt The

plane XEX' becomes a sphere whose centre is /, the point

K
2

corresponding to C and whose radius is a
2
= -

%/

Similarly the plane YEY becomes a sphere whose centre is

K
2

C2
' and whose radius is a =

The portion XEY' of the two infinite planes becomes on inver-

sion the figure formed of the two outer segments of the spheres.

Similarly X'EY becomes the lens formed of the two inner seg-

ments, and XEY, or X'EY', becomes a meniscus formed of the

outer segment of one and the inner segment of the other sphere.

(See Fig. 19.)

K2 K
2

The charge at <7/ is or a^ ,
and the charge at C{ is or

/

a
2 ,
and the charge at 2

is

that is,
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.Fig. 20.

We obtain therefore the system already treated in Art. 112.

Further, if before inversion we substitute

x for the charges at C^ and
2
their equiva-

lent distributions on the plane XEX',
and for C2

its equivalent distributions on

YEY', these densities on XEX' and YEY'
will in the inverted system give unit po-

tential on XEY'',
and are the same which we

found by a different method in Art. 112.

127.] Again, instead of two infinite planes, let there be 2n

infinite planes, having a common section E and making with

each other the angle
-
n

Let there be n negative points : ... On each having charge

K, and n positive points C ... Cn each having charge -+-K, all

at the same distance from E and placed alternately, so that

each negative point is the image of the next positive point

in the plane between them. Then all the planes are at zero

potential.

Let YEY' and SES' be two adjacent planes. Let the n points

on the left of YEY' be replaced by the corresponding distri-

butions on YEY, and the n\ points on the right of YEY', that

Fig. 21. Fig. 22.

is, all the points on that side except 1 ,
be replaced by their

corresponding distribution on SES'. Then the portions STEY
are at zero potential.

When we invert the system with respect to Olt KEY' becomes
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the figure formed by the outer segments of two spheres inter-

secting at the angle n

The density at P', any point on the outer segment of the

OP3 C P3

sphere corresponding to YEY', is -^-30-, that is, ^- o-,
where

> K

or is the density at P, the corresponding point to Pf

, of the

distribution on YEY', which can be determined without much

difficulty.

128.] Returning to the conductor XET'O of Art. 126, with its

surface distribution above determined in Art. 112, let us invert

the system, taking for centre of inversion a point on the internal

segment of the sphere Cr
The sphere C2 becomes then another sphere, and the sphere

C-L
an infinite plane cutting the inverted sphere C2 orthogonally,

that is, a diametral plane, and the external segment OXE be-

comes the portion of that infinite plane which lies within the

new sphere C2
. So that the figure XEY'O becomes on inversion

the closed surface formed by a hemisphere and its diametral

plane. Let P be a point on the outer segment of the sphere C19

P' the point on the diametral plane which corresponds to P.

And o- being the density above found for P, namely

the density at P7

required to give zero potential under the

influence of a charge unity at a point within the hemisphere is

2

(T.

OP*3

129.] The construction for finding o- in terms of known

quantities on the hemisphere will be as follows.

Let C be the centre of the hemisphere, a its radius, the

point where the unit charge is placed. Then by inverting the

system with respect to 0, we shall reconstruct the original figure

of two orthogonally intersecting spheres, which by its inversion

gave rise to the existing system of the hemisphere and plane.

Let <?2
be the image of referred to the existing sphere.
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Then the point corresponding to C2 becomes on inversion the

centre of one of the two original spheres. Inasmuch as the

absolute value of K affects only the scale,

v^ ^---^ and not the proportions, of the inverted

figure, we may take OC
2
= K.

Then C
2
becomes the actual centre of

the new sphere. Its radius is

PC,*

The radius of the other orthogonally inter-

secting sphere, that namely into which the

infinite plane is converted, is

Let P' be a point on the diametral plane, and on inversion let

become P on the sphere. Then

OP*

Then C,P
2 =^ C,P'\

Thus all the quantities in the expression for <r, namely

4'7ra1

are known in terms of given dimensions in the hemisphere, and

therefore the density at P is known.

In like manner we might find the density of the same dis-

tribution at a point on the hemispherical surface.

130.] By inversion of the system of sphere and infinite plane,

or two concentric spheres, Arts. 114, 115, with the point at which

the charge is placed for centre of inversion, we obtain two spheres

external to each other at unit potential, and the density at any

point on either sphere required to produce this result can be

calculated approximately. The subject is fully treated in Max-
well's Electricity, Chap. XL

131.] We shall here give only one more example of the method

taken from Sir W. Thomson's papers.
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It is proved in treatises on attraction that an ellipsoidal

shell between two similar, concentric, and similarly situated

ellipsoids has constant potential at all points on its surface, and

that if its equation be
** *
a2 +

b
2 + "?

-

the external equipotential surfaces are the confocal ellipsoids

whose equation is

The thickness of such a shell when the ellipsoids nearly coin-

cide is proportional to p, the perpendicular from the centre on

the tangent plane at the point considered. It follows that the

density of electricity on the surface of a conducting ellipsoid

which gives constant potential at all points on that surface, in

the absence of any other electrification, is proportional to p.

If the axes a and b of the ellipsoid are equal, and if c be

diminished without limit, the ellipsoid becomes ultimately a flat

circular disc. And therefore the density of the equipotential

distribution of electricity at any point on the surface of such a

disc is proportional to the limiting value of p for that point.

Now generally
1 a? y

2
z*

7
== 7 "h

64
"h 7

tf + *
1 zz

r
and the limiting value ofp is therefore proportional to

1

Let C be the centre of the disc, P any point on it. Let

(7

Then the density at P is

A.

-/a8

where X is a constant.
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To determine A, we note that the potential at the centre is

r \dr
2lT = ^ = 7T

2
A,

Jo W-r2

and if the potential be unity X = . The density of the distri-

bution which gives unit potential is therefore

1

and the whole charge on the disc is in this case

2a

Therefore - - is the capacity of the disc. (a)

132.] The potential of the disc so charged at any point M in

its axis of figure, for which CM= ^, is

2irrdr __ 2 _x
a

~~ "~
*

an

M

if /3 be the angle CMA, where A is

a point in the circumference of the

disc.

Again, the equipotential surfaces

to the disc are the confocal ellip-
C

Fig. 24.

soids whose equation is

and since the potential of the disc at the point in the axis of z

distant h from the origin is

TT k

it follows that the potential of the disc at the point #, y, z is

2, a- tan-1 -
,

ir h

where h is the positive root of
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To find the potential at any point P in the plane of the disc

distant r from the centre we make z = 0, and therefore the

potential at P is 9
-tan-1 --^,. (c)
JT vV a2

133.] Let us now invert the disc with respect to a point in

the axis with K for radius of inversion. The infinite plane now
becomes a sphere passing through 0, and the disc a spherical

bowl, whose rim is a circle at right angles to the axis. The

colatitude of that rim measured from the point where the axis

cuts the bowl is the vertical angle of the cone at 0. Let it be a.

The density on the bowl, according to the method of inversion,

is that which would be assumed by the bowl as a conductor in

presence of a charge K at 0. And we

can find the potential at any point M in

the axis due to a spherical bowl under

influence of a charge at the extremity

of the diameter thus :

For simplicity let K, the radius of

inversion, = OA, the distance from to

the rim of the bowl. Then the rim of

the bowl coincides with the circumference

of the disc which the bowl was before

inversion. Find M', the point in the

uninverted system corresponding to If, that is, let

OM- OM' = OA2
.

2 8
The potential at M' due to the disc was - -

, where 2/8 is the

angle of the cone subtended by the disc at M'. And the

potential at M is OA 23

Now the triangles AOM and M'OA are similar. Therefore

ft
= 0AM, if OM< the diameter, or it 0AM if OM > the

diameter, and the potential atM due to the disc under the influence

of a charge OA at is QA 2 /Q

_r, (d)
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Again, the potential of the bowl so influenced at any point P
on the remaining segment of the sphere whose colatitude is 9 is

OA
F, where 7 is the potential of the uninverted disc at the

point in its plane which on inversion becomes P. And

IT
2

.
NA7= -tan l

2~ tan
2

134.] We have thus dealt with the case of a conducting
circular disc, which may be regarded as part of an infinite plane

of which the infinite external part is non-conducting.
We will now take the converse problem, namely, that of a

circular non-conducting disc of radius a, the infinite external

portion of the plane of the disc being a conductor. Let it be

required to find the density at a point on the conducting plane

when that plane is at zero potential under the influence of a

charge at a point in the non-conducting disc. In order to solve

this problem we will invert the conducting disc when at unit

potential as before determined, with respect to a point in itself

distant/from Cihe centre, and with Va 2 f2 for radius of in-

version. The disc then becomes the infinite external plane, and

the infinite plane becomes a disc, the boundary between the two

after inversion being a circle of radius

a, and whose centre Cf is distant f
from on the opposite side to C.

Let P be a point in the plane

outside of the new circle, Pf
the

point within the original conducting

Fig. 26. disc which on inversion becomes P.

Then the density at P, when the infinite plane is at zero

potential under the influence of a charge K at 0, is

K* !

Let C'P - r, LPG'O = 0.
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Then a^
and the density at P is

a2-/2
1 1~ r '

The density at P due to a uniform ring of electricity of density
1 in the plane of the disc distant from C', /.../-f df is

2 >/^7* t _f.df (*" d0

V*

'

yV-a2 Vo r2 +/
2

-2r/cos0

_ 2 >/a2-/2
/rff

The aggregate of the distribution over the plane due to any

electricity m in the disc distant/"from the centre is

m . T 00 2-nrdr
: - m. (h)

135.] If the whole non-conducting disc be covered with

electricity of density 1, the density at P in the surrounding

plane when at zero potential under that influence is

2

TT vV-a;

2 C a
or

w (./r2_ a2 2

Now let the entire plane, including the non-conducting disc,

be covered with a uniform stratum of density + 1 . There will

then be zero density on the non-conducting disc, which may
therefore be regarded as a circular aperture, and the conducting

plane will have constant potential, and the density at any point

upon it distant r from the centre of the disc is

This differs from the constant density + 1 by
2 f a a

j-tan ~^^rit

If therefore we have an infinite conducting plane with a circular

aperture, the total^charge that must be placed upon the plane in
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order to bring it to the same potential as a complete plane would

have when coated with density -f 1, is

/ ardr C> a
4

/-, ^~ 4
/

^tan-1 == = ^a2
, (t)

j a yrz a2 ^/a Vr2 a2

or the same quantity which would be removed from the infinite

plane so coated in the act of making the aperture.

136.] We will now proceed to Sir W. Thomson's problem, to

find the density of electricity on a spherical bowl, or portion of a

sphere cut off by a circle, when at unit potential under the

influence of its own charge
alone. In order most easily

to effect this, let us recur

to the non-conducting disc

and infinite external con-

ducting plane, and instead

of the density of electricity

on the disc being uniform,

let the density at P be
3

> where Q is a point in the axis

of the disc distant Ji from the centre, and P any point within

the disc distant f from the centre. Then

1

The density at any point in the conducting plane, when at zero

potential under the influence of this distribution, is

2 W
TI Vr2

, 1/1
Let / = h cot > a = K cot r = Ti cot

2 2
.

_-" -7T (3
(
1

77 _^
"2* 2~2' 2~2

are the angles subtended at Q by/, #, and r respectively. The

integral then becomes

cot cosec
2 -A/ cot2

cot
2

9
~ c t

2

^)
cosec3 -
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This may be put in the form

2 T sin a A/COS /3 cos a

sm *"" cos cos a

2

Let v cos (3 cos a = x,

cos /3 cos a = xz
,

sin ada =
Then when a =?r, a; = \/cos /3 + 1, and when a =

(3, x = 0.

Then [da.
sm A/COS ^- cos ^ _ g

f^+1 ^
J/3 cos 6 cos a Jo cos0 cosft + x*

. _

^ 7S ?'
cos ^ cos ^3 J

Hence the density is

2 .
3

( / cos/3+1 / cos +1 )sm8

-JA / tan"1 A / > (j)

137.] Let us now again invert the system, taking Q for centre

of inversion, and k for radius. The infinite plane becomes a

sphere whose diameter is Q(7, or h. The infinite conducting

plane outside of the disc becomes a spherical bowl, cut off by a

circle at right angles to QC, and whose colatitude measured from

the pole Q is /3. (See Fig. 27.)

The density on the remaining segment of the sphere, which

before inversion was 7,2

</*+*)

on the disc, is constant, and equal to -7 The potential of the

bowl remains zero : and the density upon it at colatitude 6 is

,
where p is the density at the corresponding point of the

Sin
|

plane. Hence the density at colatitude on a spherical bowl,

which makes the potential zero in presence of a uniform charge

of density -7 on the remaining portion of the sphere, is

cos/3+1 _! cos/3+1
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138.] Let us now place round the sphere a concentric and

nearly equal sphere with a uniform density of electricity +-7

upon it. When the two spheres ultimately coincide, the potential

at any point on the bowl, which was zero, is now 2ir. The

density upon it is a-+ j ,
and the density on the remaining seg-

w

ment of the sphere is T + -7 > or zero.
h, fi

Therefore <r+-f is the density at colatitude of the distribu-

tion on a spherical bowl which gives potential 2 77 in the absence

of any other electrification, and therefore --
\-
--

r is the
27T

density which gives unit potential under the like circumstances.

139.] The capacity of the bowl is therefore

^W re 2 ( / COS/3+T k^ / cos/3+1 )

~4jo 7rA(
/

Y' cos cos
/\/ cos cos /3)

T
r>p

+ - \ sin0d50

h=
(/3+ sin/3).

27T

The capacity of the bowl formed by the other segment of the

sphere is h

Hence we see that if a sphere be divided by a plane into any
two parts, the sum of the capacities of the two parts exceeds the

capacity of the sphere by the capacity of a circular disc coin-

ciding with the intercepted plane.

If the bowl be hemispherical the capacity is
| > a being

the radius, or the arithmetic mean between the capacities of the

sphere and disc of the same radius.

140.] Recurring to Art. 138, let us next place at the centre

of the sphere of which the bowl forms part, a charge . This
2

will reduce the potential of the bowl to zero.
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We may now again invert the system so formed, taking for

centre of inversion any point whether in the spherical surface

or not, distant / from the centre. In that case, if be not on

the surface, the sphere becomes a new sphere, and the bowl

becomes a new bowl. In the particular case of being on the

original spherical surface the new sphere is an infinite plane, and

the new bowl a circular disc upon it.

The centre of the original sphere becomes (7, the image of in

the new sphere; and the charge at the centre becomes a

f J)

charge
- at the image.

K 2i

If r be the distance from of a point P on the new bowl, o-

the density of the equipotential distribution, as found above, at

K 3

the corresponding point of the original bowl, then 5-
a- is the

density at P of the distribution on the new bowl which gives
/ 7

zero potential in presence of - at (7.
K

We can therefore give the following rule for finding the

density at any point on a spherical bowl under the influence of

an electrified point not on the surface of the sphere. First,

find (7, the image of in the sphere. Secondly, suppose the

system inverted with respect to (7, and a new bowl so formed, and

let /3 be the colatitude of the rim of the supposed new bowl, and

let be the colatitude of P', the point on the supposed bowl

corresponding to P on the given bowl. Then we know cr, the

density at P' of the equipotential distribution on the supposed

bowl, as a function of (5 and 6. And if r be the distance of P

from (7, the density at P is proportional to

141.] On the effect of malting a small hole in a spherical or

infinite plane conductor.

The above results enable us to estimate some of the effects of

making a small circular aperture in a conductor otherwise

spherical.
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For instance, let /3
= TT y, where y is a very small angle.

The spherical bowl becomes then a spherical conductor of radius

> with a small aperture whose radius is - y.

Its capacity is

h . n . , . . Ti h y sin y
-(/3+ sm/3), that is --.-.ZZ;

The capacity of the complete sphere is -
. We see then that

2t

the effect of making an aperture, whose radius subtends at the

centre the small angle y, is to diminish the capacity by
h y sin y
2

'

~^~
If A be the area of the aperture, we may write, neglecting

higher powers than y
3

,

h y sin y A% 2'- = x-' where A = '

Again, the conductor being charged to unit potential, the

density at a point whose colatitude is (less than
/3)

is

COS
/
3 _ t

COS0-COS/3

Now - =- is the uniform density which would give unit
271%

potential on the complete sphere. The term

J_ 5 / cos/3+1 ^ / cos/3+1 )

-7r
2A(

/V cos^-cos^
"

"V cos ^- cos /3)

expresses the density due to the existence of the aperture.

The total quantity of the distribution due to the aperture on a

ring between the parallels of and -f d& is

g sm0d0
2

"
( / cos/3+1 _a

/ cos /3+1 JIV cos 6- cos ft V cos0-cos/3f

Now unless be very nearly equal to TT, not only does

cos/3+1
cos cos /3
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itself become very small, but also it tends to vanish in a ratio of

equality with /

tan"1 A / cos ^ + 1

V cos cos/3

Hence if O
l
be a value of which is, and 2 a value which is

not, nearly equal to (3, it is easily seen that the quantity of the

distribution due to the aperture on the ring between
1
and

2
is very small compared with that on the ring between /3 and

1
. The distribution due to the aperture has therefore the same

effect as if it were all collected on the aperture.

For instance

C* C / cos/3 + 1 / cos +1
J.W COS0-COB/3

-tan V coBtf-eoB
****

and is independent of 0.

The system is therefore equivalent to a complete sphere

charged to unit potential, that is, having a uniform density

on its surface, together with the additional charge
2 7f n

h y siny

2 TT

on the aperture. This quantity
h y siny . A%

-2 *
' or ~ x

i?'

shall be called the abnormal charge, since it constitutes the

difference between the capacities of the perfect and the im-

perfect sphere.

Let P be any external point distant r from the centre of the

sphere, and / from the centre of the aperture. Then the po-

tential at P of the charged sphere is

h h y siny 1

or is the potential of the perfect sphere, together with that of

the abnormal charge
Ti y siny

~2 7T~~

placed on the aperture.

VOL. i. ^
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142.] Let us now invert the charged conductor, taking for

centre of inversion a point 0.

On the imperfect sphere when charged to unit potential, such

point not being very near the aperture. The sphere becomes then

an infinite plane with a circular aperture, at zero potential under

the influence of unit charge at 0. And the potential at any

point P on the opposite side of the plane to 0, instead of being

zero, is that due to a small positive charge upon the aperture.

These results, which are accurately true in the limit as the

aperture vanishes, are approximately true for a sphere whenever

the aperture subtends a very small angle at the influencing

point.

To find the effect of a large aperture it would be necessary to

find the potential at any point due to a spherical bowl charged
to unit potential, when /3 is not nearly equal to TT. This might
be done approximately by the method of Art. 61, or otherwise.



CHAPTEE VIII.

CONJUGATE FUNCTIONS AND ELECTRICAL SYSTEMS

IN TWO DIMENSIONS.

ARTICLE 143.] Let there be an infinite cylinder whose axis is

parallel to the axis of 2, and whose section is the element of

area das dy, cutting the plane of xy in the point #, y.

Let this cylinder be charged with electricity of uniform density

p, so that p is independent of z, but is a function of as and y. In

like manner we may conceive an infinite cylindrical surface whose

axis is parallel to that of z, having a- for surface density of

electricity, constant along any infinite line parallel to the axis,

so that <r is independent of z, and a function of x and y only.

If an electrical system be made up of such cylinders, the po-

tential, V, is evidently independent of z, and a function of x and

y only. Poisson's equation then becomes at a point in the plane

of x, y

and at a curve in the plane of xy coated with electricity we have

as usual
dV dV

and dv
}
the element of the normal to the surface, is in the plane

We may treat such a system as in two dimensions only. In

the present chapter the charge at a point P in the plane of xy

will be understood to mean a uniform distribution of electricity

along an infinite line or cylinder of small section through P

parallel to the axis of z. And in like manner, the density at a

point on a line in the plane of xy means the density per unit

area of a cylindrical surface parallel to the axis of z drawn

through an element of the line at the point in question.

L 2
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In like manner, a conductor the equation to whose surface is

f(x, y) = means an infinite cylindrical conductor whose axis is

parallel to the axis of 2, and whose section with the plane of

xy is /(#, y) = 0.

If P and Q, be points in the plane of #, y, the potential at Q
due to a uniform distribution of electricity of density p along an

infinite line parallel to z drawn through P} is evidently of the form

p \C-2logPQ},
and does not vanish if Q be removed to an infinite distance.

But if there be another parallel line through R, a point in the

same plane of xy with P and Q, on which there is a distribution

of density />,
the potential at Q is

and vanishes if Q be removed to an infinite distance. It will be

understood in this chapter that the potential does so vanish, and

therefore that the algebraic sum of all the electricity in the

system of which we treat is zero.

144.] Let us suppose then that in such a system there are

certain conductors whose equations are

/i (*, y) = 0, f2 (x, y) = 0, &c.,

and given charges are placed upon them
;
and also certain fixed

charges on given points or lines of the system. Let us further

suppose that we have by any method obtained the solution of

this electrical problem : that is, we have found the single

function, V, of x and y, which is constant within all the con-

ductors, and satisfies Poisson's equations

at every point in free space, and

dV
t

dV
5
--H ~T~f

= 47TO-
dv dv

at every curve charged with electricity; and by consequence we
have determined the density at any point on any of the con-

ductors.

The solution so found contains implicitly the solution of a
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class of problems ;
all those namely that can be formed from

the given one by substituting f (oc,y) and *}(%, y] for x and y,

(x,y) and
77 (x,y}> or shortly and

77, being functions of x and

y having a certain property.

145.] For let f and
rj
be so chosen that

d drj
~T~
~

~T~ '

ax ay

__.
dy dx'

and
rj
are then defined to be CONJUGATE TO x AND y.

It follows immediately that

__

(Za? dx dy dy

By the ordinary formula for change of independent variables

we know that

dv d

dx__dy__ dx__dy_
d~ddrj dgdrj' drj

~~
d dr] dr] d

dx dy dy dx dy dx dy dx

-ir 7 /

dfdrj = (-^--r
1 -^^

dy dx

Also =, and ? = - in this case,

dy dx dx dy
dx

and ddr\ }j?dxdy.

Again, if F be any given function of x and y, we have by

ordinary differentiations,

d*V_d*V dj[~ ^dj[d^ 3W
(
*n**V_ ^!f,^^,

dtf~~~d'l(dx>
'

ddi}dxdx* dif'^dx' ^df dx* dr) dx*

d*V d*V.d* d*V ddri o*V fy.dV d^ dVd^n
dr

l

*' {
dy

) + df df
*

d^ df
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Therefore, remembering that

cZf ofy cZf <Zr/ _ o
dx dx dy dy

and that & + <|fy
= $)' + ?)'

= S,^dx' ^dy' ^dx' dy'

d 2 V cZ
2
F"

146.] Let us now take two planes, one in which the position

of any point, as P, is determined by the values of the rectangular

coordinates os and ^, and the other in which the position of a

point P7
is determined by the values of the rectangular con-

ductors of and y' ;
and when x' and y are connected with x and y

by the equations

where k is such a power of the unit of length as may be required

to make -7 and
j linear, let the point P' in the second plane be

called the corresponding point to P in the first plane.

Then to every curve in the first plane of the form / (#, y) =
there will be a corresponding curve /(, 17)

= in the second

plane, and if the former curve be closed, so also will be the

latter, and if any point P in the former plane be within or with-

out the closed curve f (x, y) = 0, the corresponding point P
7
in

the latter plane will also be within or without the closed curve

/(f,~o.
It follows from the equation

d_dri_ d_ drj __

dx' dx'
+

dij dy
~~

that the curves f = 0, 17
= b in the second plane intersect each.

other at right angles ;
these curves may be regarded as a species

of curvilinear coordinates, the case in which they are linear being
that in which the point P

7
is always so taken in the second plane

that its coordinates referred to axes inclined to those of so', y' are

1 The quantity fc will be omitted until we come to the application to special

cases, none of the general results obtained in the next few Articles being affected

by regarding Jc as unity.
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respectively equal to the coordinates of the corresponding point

P, viz. x and y in the first plane.

It follows also that any two curves, as

F(x, y) = 0, f(x, y) = 0,

in the original plane intersect each other at the same angle
as the corresponding curves

F(, rj)
= 0, /(, TJ)

=
in the new plane.

For the tangent of the angle which the tangent to F(x, y)=
at any point P makes with the axis of x is

d .

and this is equal to

from the relations between as and f, y and rj.

d_

But -$

is = -r> in the curve F(^ rj)
at the point P corresponding

to P in the second plane, i.e. it is the tangent of the angle

between the curve F(, 77)
= at P' and the curve

77
= const.

through P7

,
since the curves 77

= const.,, f = const., intersect

everywhere at right angles.

Also, if dA be any elementary area dxdy in the original plane,

we have
dA = dxdy = ddrj.

But from the last article

and therefore if dA' be the elementary area in the second plane

corresponding to dA in the first plane, we have

dA
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And in like manner the length of any elementary line in the

second plane corresponding to the element dv in the first plane

may be proved to be

147.] Suppose now that we have any given electrical system

of two dimensions in equilibrium in the original plane of oo, y^

with conductors whose bounding equations are given by closed

curves of the form / (x, y) 0, the algebraic sum of all the

electricity being zero. Construct in the new plane of #', y' a

system of corresponding curves /(, 77)
= 0, and for every linear

or superficial charge in the original plane of #,y, place the same

linear or superficial charge upon the corresponding lines and

areas in the new plane of of, y'\ then the electrical system so

formed in the plane of x', y' will be a system of two dimensions

in equilibrium with conductors bounded by the corresponding

closed curves to the original curves in the plane of os,y. And
the potential V at any point P in the old plane of as, y will be

equal to the potential V at the corresponding point P
f
in the

new plane of #', y'.

For since the total charges on corresponding superficial areas

are the same, but the areas themselves are in the ratio of \j? to 1
,

it follows that if p be the surface density at any point in the old

plane, and p' that at the corresponding point in the new plane,

then p
f =

/u
2

/o,
and similarly if a- and </ be corresponding linear

densities </ = per.

Again, let V be the same function of and r? that V is of x

andy. Then from the equations

it follows that since V is constant over the closed curves

f (#, y} = in the plane of at, y, V is constant over the corre-

sponding closed curves /(, 17)
= in the plane of gf

t if.

d zV d z V
dx* dy*

if p be the electrical density at P in the plane of #,
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Therefore + = - 4 MV = -4./,

where p' is the electrical density at P' in the plane of af, y'.

Again, if dv and dv be elements of the normal to a curve, as

/(#, y) = in the plane of #,y, and ^ and dn' be the elements

of the normal at the corresponding point to the corresponding
curve

c/(f, rj)
= in the plane of #',./, we have, since V =. V and

^ ^ 1
dv

~~
dn

~
/x'

by what is proved above,

dT_ dV dT_ dV_
dn -^ dv' dri

~ M dS
But if o- be the linear density at P on the curve/(#,y) = 0,

dV dV

dV' <LV
therefore --

\- -j-? = 4 77wr=
dn cZn

o-' being the linear density at the point P on the curve

/ ( , 17)
= in the plane of af, /.

148.] We see then that the function F'
9
formed as above

stated, is constant over each of the conductors f(^rf) = in the

new plane, and satisfies the characteristic equations at each point

of that plane. If therefore the function V be the potential at any

point of the #, y system, the function V = V will be the poten-

tial at the corresponding point P' in the a?', y' system when in

equilibrium, and we have only to eliminate and
17
and express

V in terms of a?', y' to obtain a complete solution of the problem

of an electrical system of two dimensions bounded by conductors

of the form/ ( 77)
= 0.

Of course the procedure might be reversed, and if we had

found V a function of #
x

, y with conductors bounded by curves

/ ( 17)
= 0, we have only to express V in terms of and

?;,

and take F", the same function of x and y that V is of f and
17,

to obtain the solution for conductors bounded by the curves

f(*,y) = -
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149.] Further, if and rj be conjugate to two other functions

a and ft, then also a and ft are conjugate to x and y, for

da da d da drj

dx d dx dr] dx

R 4.

da __ d{3 da
__ d/3 d _ dr\ dr\ _ d^

da dft dr] dp d dp
and therefore - = -f-.

i + -^.-^=-^- }

dx dr] dy dg dy dy

-,
. M ,

da dp
and similarly = f-

dy dx

If therefore we take a third plane of', y" and determine a

point P" on it such that a (#", if')
= f,

and p (of', y") = 17,
and

the points P, P' and P" be called corresponding points on

the three planes, the solution for a distribution of electricity for

conductors bounded by the curves

/(*, y) = 0, /( T?)
= 0, /(a, 0) = 0,

on any one of these planes respectively, leads at once to the

corresponding distribution on the two others, and similarly for

any number of planes and systems of conductors.

150.] Further, as is easily seen, if the problem were to deter-

mine, not the potential due to given charges, but the charge on

any conductor necessary to produce given potentials, the solutions

for the several members of the class would be connected by the

same law as in the case we have already considered. That is if o-

be the required density in the known problem, jxor is the density

in the new one.

151.] We proceed to illustrate the above process by an

example.

Let there be a conductor in the form of an infinite cylinder of

circular section and radius
, having its axis parallel to z

t
and

meeting the plane of a?, y in the point C. Let a charge e per

unit of length be uniformly distributed along an infinite straight

line passing through an external point and parallel to the

axis of the cylinder, then, as proved in Art. 109, the density at

any point of the cylinder of the charge necessary to reduce the
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potential of the cylinder to a constant value in presence of the

charge on the line is

,

p*

where/is the distance of the axis of the cylinder, p that of the

point in question, from 0. Also the algebraic sum of this

distribution over the whole circle is e.

We now proceed to transform this problem. Expressing the

conditions in polar coordinates log r and 6 with C for origin and

CO for fixed line, we have in the original system a conductor

whose equation is log r log ,
a constant, and a charge e at the

point whose coordinates are

logr = log/ and = Sin,

where i is any integer.

Now x and y are conjugate to log r and 0. Corresponding
therefore to log r = log a we shall have the infinite line

x K log a, where K is unit of length. And corresponding to the

charge e at the point

logr = log/, 0= 2iv,

we shall have a charge e at each of a series of points in the line

x /clog/ distant from each other + 2-rrK, whereof one is in

the axis of x. The density a- of a distribution of electricity

on the line x = K log a which will give constant potential on

that line in presence of the infinite series of charged points on

the line x = K log/ is found by substituting
- for in the ex-

pression for o- found above, and is therefore

1 e f-a*

It will be remembered that to obtain the actual physical

conditions we must understand by the infinite line x = K log a

an infinite conducting plane whose equation is x = K log a, and

by any one of the series of charged points a charge uniformly

distributed along an infinite line through the point parallel to

the axis of z.
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152.] The general problem, the solution of which is derivable

from the given problem by the substitution of x and y for log r

and 0, is found by choosing for origin, instead of C, the centre of

the circle, any point in the plane. Suppose we choose a point D
such that CD = c, and LGDO = a, DO =p. The equation to the

circle referred to polar coordinates log r and 6 with D for origin

and DC for fixed line is

log r = log \c cos B Va? c
2
sin2 0}.

We obtain then by the transformation the density of elec-

tricity on the curve

x = K log jc
cos^ + A/ a2 c

2
sin

in presence of a charge on a series of points situated in the line

x = K logp at equal distances 2 TT K apart, of which one is

distant K a from the axis of x.

This includes all the problems the solution of which can be

derived from that of the given one by the use of the particular

functions x and y as conjugate to log r and 0. But we may
obtain others by the use of different functions.

For instance, x2
y

2 and 2xy are conjugate to x and y, and

therefore to log r and 0. If therefore, taking C again for origin,

/jj2 __ njii
O

fYt'JJ

we write ~- for log r, and |-
for in the above problem, we

shall obtain the solution for the density on the hyperbola
a?
2

y
2 = K2 loga in presence of charges placed on the hyperbola

a?
2

y
2 = K2 log/ at the intersections of that hyperbola with the

hyperbolas xy = ir*
2

, sey
= 2 TTK*, &c.

It is of course understood that the hyperbolas represent infinite

cylindrical surfaces parallel to z whose intersections with the

plane of xy are the hyperbolas in question. And in like manner

the points represent infinite straight lines.

As in the former case, we can generalise this solution by

taking for origin any point in the plane of the circle.

153.] A particular case of transformation by conjugate func-

K2

tions is that of inversion in two dimensions. Evidently log

and are conjugate to log r and 0.
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It follows therefore, from the theory of conjugate functions,

that if we transform a system in equilibrium, and in which V
vanishes at an infinite distance, by substituting the coordinates

K 2

and 6 for r and 0, and placing on corresponding elements

the same charges, the transformed system will be in equilibrium.

154.] We will now prove the same result by a method analo-

gous to that of Chap. VII.

In the plane of as, y let us take for centre and K for radius of

inversion, and let P, Q be any two points in the plane. Then if

P Q' be corresponding points to P and Q, we have

In the present case the potential at P of a charge p at Q
means the potential at P of a uniform distribution of linear

density p along an infinite line drawn through Q parallel to the

axis of z. The potential is therefore

v = p\C-2logPQ\.
If in the inverted system there be the same quantity of matter

placed at Q', according to the method of transformation used

with conjugate functions, the potential at P' of the charge at Q'

is

K= v 2/o log OPOQ
and therefore, if F, V denote the potentials at P and P' of the

whole system,

V = 7-2
ffp log OP'dxdy + 2 ffp log OQdxdy

= 7+2 log OF/fp
dxdy + 2

ffp
l S OQdxdy.

Since we assume the potential to vanish at an infinite distance,

we must have in this system

Hence V = 7+ 2
Tjp log OQ dxdy,
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that is, V exceeds V by the potential at the origin of the

original system, that is, by a constant for all positions of P.

Therefore since 7 is constant over every conductor in the

original system, V is constant over every conductor in the new

system. The new system is therefore in equilibrium.

If the original system consist of a conductor S at zero

potential under the influence of an electrified point on the

opposite side of S to the origin, the potential at the origin is

zero, that is

and therefore V at every point of the new conductor.

For instance, if the original system be an infinite cylinder

uniformly coated with electricity of density or, and if there be

a distribution of density 2 TITO- along the axis, the potential

is zero, and we might by inverting the system with respect to

an external point obtain the result obtained synthetically in

Chap. VI, Art, 109.



CHAPTER IX.

ON SYSTEMS OF CONDUCTORS.

ARTICLE 155.] WE proceed to consider further the properties of

a system of insulated conductors external to one another, and each

charged in any manner. And we will suppose that there is no

electrification in the field except the charges on the conductors.

Let Clf C2 ... Cn be the conductors. First let a charge e
l be

placed on C19 the other conductors being uncharged,
Let the potentials of the several conductors be denoted by

V V T' 1 >
' 2 r*'

By the principle of superposition, if el were increased in any

ratio, Tlt V% . . . Vn would be increased in the same ratio. It

follows that we may express Flt F2 . . . Vn in terms of e1 in the

form
V

1
= An e

1 ,
r

a
= Aa elt &Q.;

where An , A12 ,
&c. are coefficients depending only on the forms

and positions of the conductors.

In like manner if C2 received a charge e2 ,
all the others being

uncharged, we should have

Y _ A t> V A t> 8ra
' i

<"*H e
2' r

2 22
e2> *XlUt

>

the coefficients being again dependent on the forms and position

of the conductors.

By the principle of superposition, if at the same time C
l

receive a charge elt and C2 a charge 2 ,
the others remaining

uncharged, we shall have

==
- e "*" ^ e

&c.= &c.,

'n ==
-"in e

i "t" -"
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And, generally, if the conductors all receive charges e
lt

e
z ... e

the potentials will be expressed by the linear equations

&c.=
.

The coefficients A are called the coefficients ofpotential.

156.] Evidently there exist algebraic values of V corresponding

to any assigned values of elf e
2 ... eni though we do not assert

that it is practically possible to charge the conductors without

limit.

By solving the above linear equations we should obtain a new

set expressing the charges in terms of the potentials, namely,

&C.= &C,
"

en=BlnVl + B,nV,+ ..+BnnVn -,

>

in which the coefficients B are functions depending only on the

forms and positions of the conductors.

Since the equations (B) must give possible and determinate

values of e for any assigned values of Vlt F"
2 ... Vn ,

it follows that

there must exist a set of charges corresponding algebraically to

any assigned set of values of the potentials.

The capacity of a conductor in presence of any other conductors

is the charge upon it required to raise it to unit potential, when

all the other conductors have potential zero. Thus, if F2 ... Vn
are all zero, we have from equation (B),

4-4*?,;
and if Fj = 1, e

l
= Bu ,

so that Bn is the capacity of <?,.

The coefficients j#n ,
.Z?22 , &c., with repeated suffixes, are called

coefficients of capacity. The coefficients B12 , -Z?
21 , &c., with dis-

tinct suffixes, are called coefficients of induction.

Properties of the Coefficients of Potential.

157.] An = An .

For let F!, V^ ... Tn be the potentials of the conductors,
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when C
l
has the charge e and all the others are uncharged,

V the general value of the potential in this case. Then V^ A^e.
Let U19 U2 ,

... Un be the potentials of the conductors, when
(?
2
has the charge e, and all the others are uncharged, U the

general value of the potential in this case. Then U
l
= A

2l e.

By Green's theorem applied to the infinite space external to

all the conductors, in which V 2 V and V 2U are everywhere zero,

we have

#*
7

dS U M~dS
cr

in which // dS
l denotes integration over C19 and so on for the

other conductors.
rr/JV

But / / dS

is the charge on the conductor C in the system whose potential

is T. Hence

and all the other integrals in the first member vanish. Similarly

dv

and all the other integrals in the second member vanish. The

equation therefore becomes

or Ae* = A

or J = A
lz 21

lz .

In other words, the potential of C
l ,

due to unit charge on <?2 in

presence of any conductors, is equal to the potential of <?
2 ,

due

to unit charge on C
t
under the same circumstances.

158.] The coefficients of potential are all positive, and no one

with distinct suffixes, as Jlr ,
is greater than the coefficient with

either suffix repeated, as An or Arr .

For, as proved in Art. 53, the potential can never be a maxi-

mum or minimum at any point unoccupied by free electricity.

If therefore there be any positive potentials, the highest positive

VOL. i. M
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potential must be on some conductor
;

and if there be any

negative, the lowest negative must be on some conductor. If

the potentials be all greater or all less than zero, then zero, the

potential at an infinite distance, is the least, or the greatest,

potential as the case may be.

If any conductor has zero charge, the density of the dis-

tribution upon it must be positive on some parts of its surface,

negative on other parts. Where the density is positive the lines

of force proceed from the surface, and there must be some

neighbouring part of space in which the potential is less than

that of the conductor. Where the density is negative, there

must be some neighbouring part where it is greater than that of

the conductor.

Therefore, neither the greatest nor the least potential in the

field can be the potential of a conductor with zero charge,

neither can it be in free space.

Such greatest or least value must be that of a conductor

having an actual charge, and the density on such conductor

must be of the same sign throughout its surface, and must be

positive for the highest positive potential, negative for the

lowest negative potential. Therefore, if all the conductors

C2 ...C'n be uncharged, and C-^ have positive charge el9 F
lt i.e.

the potential of C\, must be the greatest potential in the field,

and zero must be the least, namely the potential at an infinite

distance. We have then from equations A

Vi = A n e
i> F = 4M i. &c.;

in which 7
1 is positive, and 7

2 . . . Vn lie between 7
l
and zero,

and are therefore all positive. Hence also. Au is greater than

A
12 ... or Aln ,

and each of these latter is positive.

159.] Properties of the Coefficients of Capacity and Induction,

For let V denote the general value of the potential, when C^ is

charged and has potential K, and all the other conductors are

uninsulated. And let U denote the general value of the potential

when C2 is charged and has potential K, and all the other
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conductors are uninsulated. The equation of Art. 157 then

becomes

or
21

. =
12 ,

or Bn = B
lt

.

In other words, the charge on C if uninsulated when C
2
is raised

to unit potential is equal to the charge on C2 if uninsulated

when CL is raised to unit potential, all the other conductors being
in either case uninsulated.

160.] Each of the coefficients of capacity is positive.

For as we have seen it is possible so to charge the conductors

as to make 72 ...7n each zero. Then V
l
must be either the

greatest or least potential in the field, viz. the greatest if e
l

be positive, the least if
e-^

be negative.

Therefore, we have in this case

% = J&u F,p

and since e^ and F
1 are of the same sign, _Z?n is positive.

161.] Each of the coefficients of induction is negative.

If F
2 ...7n are all zero and e

l
not zero, the density on each of

the conductors C2 . . . Cn must be of the same sign throughout its

surface, viz. opposite to that of e1 ;
for let e

1 be positive, then if

the density at any point on any other conductor were positive,

there would be a less potential than zero, that is, less than that

of any of the conductors, at some point in free space.

But the charge on C2 is in this case

*
2
= A2 ^>

and since V^ is positive and e% negative, I>12 is negative.

162.] The sum of the coefficient of capacity and all the co-

efficients of induction relating to the same conductor is positive.

For let the conductors be so charged as to be all at the same

potential V. Then

Now if V be positive, e1 must be positive, for if it were

negative, there would be a greater potential than V somewhere

in free space.

Therefore Bn + B^ + . . . -f Bnl is positive.

M 2
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163.] If two conductors (715 <?
2 , originally separate, be connected

together by a very thin wire so as to form one new conductor,

the capacity of the new conductor is less than the sum of the

capacities of the two original conductors. For let e
1
be the

charge on C^ when it is at unit, and all the others at zero

potential, that is, el is the capacity of C . Let /
2 be the charge

on C2
in this case.

Similarly, when C2
is at unit, and all the others at zero

potential, let e\ and e2 be the charges on C?
t
and C2 respectively.

Then e\ and e'
2
are negative, ^ and e

2 positive.

If C^ have the charge e
l + e\ ,

and G the charge e2 -f e'2 ,
and

every other conductor have the sum of its charges in the two

cases, Ci and C2 will both be at unit, and all the other conductors

at zero potential, and if the connexion between C
t
and C2

be

now made, no alteration takes place in the distribution of

electricity.

The charge upon the new conductor, that is, its capacity, is

t -f a + e^ + e?'2 ,
which is less than e

l + e
2 .

164.] Any conductor of given bounding surface may be either

solid or a hollow shell, and all the coefficients of potential,

capacity, or induction, whether relating to that, or any other con-

ductor, are the same in either case, and are not affected by the

introduction of any conductors whatever inside a hollow con-

ductor.

For let Cr be a hollow conductor. Then, as proved in Art. 9 1
,

if there be any electrification whatever the algebraic sum of

which is zero within Crt that electrification together with the

induced distribution on the inner face of Cr have zero potential

at each point in the substance of, or external to, Cr9 and may
be removed without affecting the distribution on the outer face

of Cr or anywhere external to it. It follows that the potential

of any other conductor due to a distribution on the outer surface

of C
r
is unaffected by the presence or absence of such electrifica-

tion within Cr ,
and depends only on the forms and positions of

the surfaces bounding Cr and the other conductors. Therefore

the coefficients A, and therefore also the coefficients J3, depend

only on these forms and positions.
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165.] On the Comparison of similar Electrified Systems.

Let there be given two electrical systems similar in all

respects but of different linear dimensions.

Let the linear dimensions be denoted by A, so that A has

different values in the two systems respectively. If the quantity
of electricity per unit of volume be the same in both systems,

the potential will vary as X2
. For it is of the form / / /

,

and in this case p is independent of A, and dan dy dz and r each

proportional to A. Evidently the force at corresponding points,

being the variation of V per unit of length, varies in this case

as A.

If, on the other hand, the quantity of electricity in homologous

portions of space, instead of in unit of volume, be given constant,

p will vary as
^ ,

and Fas -
, and the force as

^

If the system consist entirely of conductors, and the super-

ficial density, that is the quantity of electricity per unit of

surface, be constant, V will vary as A, and the force will be

invariable.

If, on the other hand, the quantity of electricity on homolo-

gous portions of surface be invariable, V will vary as -, and the

i
A

force as
A

It follows from these considerations that, as between similar

systems of conductors of different linear dimensions, the co-

efficients A vary inversely, and the coefficients B directly, as

the linear dimensions.



CHAPTEE X.

ENERGY.

On the Intrinsic Energy of an Electrical System.

ARTICLE 166.] If V be the potential of any electrified system, the

work done in constructing the system against the repulsion of its own

parts is

taken throughout the system, where e dxdydz is the quantity offree

electricity that exists within the volume element dxdydz.
For we may suppose the charges in all the volume elements

to be originally zero, and to be gradually increased, always

preserving the same proportion to one another, till they attain

their values in the actual system. The potentials at any instant

during this process will be proportional to the charges at that

instant. Further, we may suppose the process to take place

uniformly throughout any time r. Then if t be the time that

has elapsed since the beginning of the process, the charge in any
element of volume may be represented by A t, and the potential

by ptt
where A and p are constants for the same element. The

final values of e and Fwill be Ar and /ur. The charges which

will be added in the small interval of time dt, or t -\-dt- 1, will

be \dt, and the work done in bringing these charges to the then

existing potentials, represented by //,, will be

fji\tdt dxdydz.

The whole work done from beginning to end of the process is

['/[fa
i dt dxdydz = Ifff^

T* dxdydz = i /TTve dxdydz.

This quantity is called the intrinsic energy of the system. We
shall generally denote it by E.
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If the system consist only of conductors on which the charges
are elt e., &c

,
we have E = \*2.Ve, 2 denoting summation for

all the conductors.

In like manner if there be two distinct electrical systems and

the charges and potentials in one be denoted by e and T
9
and

in the other by e' and F', the work done in constructing the first

against the repulsion of the second, supposed existing independ-

ently, is 1 1 lY'edxdydz, and this must be equal to the work

done in constructing the second against the repulsion of the

first, that is

fffvedxdydz = fff V'edxdydz,

or for a system of conductors

sFy=sr,
167.] To prove that

the integral being taken throughout all space.

Let us consider an infinitely distant closed surface 8 enclosing

the whole electric field. Applying Green's theorem to the space

within S, we have

-//
'-

in which the first double integral relates to the infinitely distant

surface S, and the second to the surfaces $', if any, within S on

which there is superficial electrification.

and the two remaining terms on the right-hand side of the

equation are together equal to

/// 1-n.Vedxdydz.

Hence
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It was proved in Art. 13 that if V be one of the class of

functions which satisfy the following conditions, viz.

(0 / / T- dS* taken over the surface = e,
,

JJ dv

dS taken over the surface S
2
= e

2 ,

&c. = &c.,

(2) V 2 V has given value at every point outside of all the surfaces,

(3) V vanishes at an infinite distance,

then the integral

throughout all space outside of all the surfaces has its least value when

V is constant over each surface.

We now see the physical meaning of the theorem as applied to

an electrified system. For V being the potential, / / -r-dS,

taken over any surface, is the charge upon that surface, whether

the charge be so distributed over it as to make V constant

or not.

Now in whatever way the charges be distributed over the

surfaces, consistently with the whole charge on each surface

being given,
- / / / Vedxdydz is the energy of the system.

the first integral on the right-hand side relating to the space

outside, and the second to the space inside of the surfaces.

And the proposition shows that the first integral, or Q

has its least possible value when the charges are so distributed

as to make V constant over each surface. And in that case V is

constant throughout the space inside of the surfaces, and therefore

the second integral is zero.
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It follows that the distribution actually assumed on each

surface when the electricity is free to distribute itself, that is,

when the surface is a conductor, is the one which makes the

intrinsic energy the least possible, given the charges on the

conductors respectively.

168.] The potential of any conductor, as Cr ,
due to a quantity

of electricity <? in the volume element dxdydz} is evidently of the

form A
rs e> where Ars is a coefficient depending, like the coefficients

A already investigated, on the forms and positions of the con-

ductors and the position of the element in question, and the suffix

s relates to that element, and r to the conductor.

Similarly the potential at the element due to a charge e on

Cr will be Asr e, where Asr depends only on the form and position

of the conductors and the position of the element.

Also the equality of Ars
and Asr follows from that of 2 Ve'

and S V'e above proved.

Thus the systems of equations (A) and (B) of Arts. 155, 156

can be extended to any electrified system, whether consisting

exclusively of conductors of finite size or not.

Evidently if in the equation E J 2 Ve we express every V
in terms of the charges by means of equations (A), E will be a

quadratic function of the charges with coefficients depending on

the forms and positions of the conductors. In this form we

shall write it E
e

.

Similarly if we express every e in terms of the potentials by
means of equations (B), E will be a quadratic function of the

potentials. In this form we shall write it Ey.

It follows from the equality of AJ2 and Azl , &c., that

**- r
d_l-y &c

d^
' ' K"

de,

~

or generally, = = V.
(JL&

For as from E = \ 2 Ve we have

dE dE dE dV dE dV,~
)

~ +() ~' &

and - = \V --
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t 171 -I -I -I

therefore -^
= -V, + -A^e^ -A 12 e

2 + ...&c.

dE
Similarly = e^ &c.

169.] 0# /$<? Mechanical Action between Electrified Bodies.

We have seen that the intrinsic energy of any electrified

system is of the form 4 Ve> where e is any quantity of elec-

tricity forming part of the system, V the potential at the point

where that quantity is situated.

If q be any generalised coordinate defining the position of the

system, the force tending to produce in the system the displace-

ment dq is

dE Id--
7

or -
(2 Ve).

dq 2 dq
x

Now if the charges e are invariable in magnitude, the po-

tentials V are functions of the coordinates
q,

and therefore the

force is

in which every Fis a function of q in respect of the coefficients A.

If, on the other hand, the potentials be maintained constant

notwithstanding displacement, by proper variation of the charges.

the force is

in which every e is a function of q as it is involved in the

coefficients B. It remains to find the relation between the forces

in these two cases.

170.] If q be any one of the generalised coordinates defining the

position of the conductors, and if R denote the force tending to in-

crease q when the charges are invariable, and R/
be that force when

all the potentials are maintained constant, then R + R' = 0.

For J

let e, V) and q all vary.
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Then we have

dE dE
H

de dq dV dq

But *jl.= 7,
de

and
dV

hence 2-r ?8i

and 2 =^- 61

therefore ?gg+ 8? = 0.

ofy efy
7 ^T

7

Now ~ is the rate of variation ofE with q when the charges

are constant, and is therefore the force tending to diminish q

imder those circumstances; that is, it is R.

o- i i
dE v ,

bimilarly =R,
dq

hence 72 + ^=0.

171.] If any group of conductors previously insulated from one

another become connected by very thin wires, so as to form one

conductor, the energy of the system is thereby diminished ;
and

the energy lost by it is equal to that of an electrical system
in which the superficial density at any point is the difference

of the densities at the same point before and after the con-

nection is made : that is, is equal to the energy of the system
which must be added to the original in order to produce the new

system.

For let V denote the potential of the system after the con-

nection is made, V+V the original potential. Then V and T'

are both constant throughout each conductor of the system.

The charge on any conductor which retains its insulation, or

/ / -=- dS. remains unaltered.
4*w dv
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Any group of conductors which become connected form one

combined conducting- surface on which the aggregate charge, or

--
1 1 -j- dS, is unaltered.

4t-nJJ dv

V is then a function which satisfies the conditions (i) V
2 V =

at all points outside of all the connected conductors,

has given values over each of them, (3) V is(3) -j-

constant over each of them, while F+ V satisfies conditions (i)

and
(2), but is not constant over each of the connected con-

ductors. Therefore, by Art. 1 3,

Qv+v = Qr + Qv,
where

throughout all space outside of the surfaces, and Q v+ v> and Q y
have corresponding values.

Now -- Qy+v' is the original energy,
-- Q v is the energy

8 77 O7T

after the connection is made, and Qp is the energy of the
O7T

system in which the potential is the difference of the two

potentials, and therefore, by the principle of superposition, in

which the density at any point is the difference between the

densities before and after the connection is made.

172.] If any portion of space S, previously not a conductor,

become a conductor, or which is the same thing, if a conductor

be brought from outside of the field and made to occupy the space

S within the field, the energy of the system is thereby diminished
;

and the energy lost by it is equal to that of the system in which

the superficial density at any point on any conductor or on the

surface of S is the .difference of the densities at the same point

before and after S became a conductor ;
that is to the energy of

the system of densities which must be combined with the original

to produce the new system.

For let V be the potential of the system when the space S is a

conductor, V-\- V the potential when S is non-conducting space.
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Then V is constant throughout S and throughout each conductor,

V+ V is constant over each other conductor but not over S.

Let Qy be the energy of the system in the former case,
Sir

Q v+ v > the energy in the latter case.
8 7T

It can then be shewn, as in the last case, that

throughout all space outside of the original conductors whether

within or without S. But the integral of the second term is the

energy of the system in which the potential is T'
t
that is of

the system which must be combined with the original to produce
the new system.

It follows that a conductor without charge is always attracted

by any electrical system if at a sufficient distance from it.

Hence also any number of .uncharged conductors in a field

of constant force generally attract each other.

173.] It follows as a corollary to the two last propositions

that if a conductor increase in size, the energy of the system
is thereby diminished.

For if C be a conductor, 8 an adjoining space, if S became

a conductor insulated from (7, the energy would be diminished,

and if the new conductor were then connected with C so as

to form one conductor with it, the energy would be further

diminished. Hence the resultant force on an element of surface

of a conductor is, if the charges be constant, in the direction of

the normal outwards.

174.] If S be a surface completely enclosing a conductor (?,

then if 8 were itself a conductor, its capacity would be greater

than that of C.

For let the conductor C be charged to potential unity, all the

other conductors being at zero potential. LetM be its capacity,

that is, the charge upon it under these circumstances.

Since unity is in this case the highest potential in the field,

the potential on S is less than unity at every point. Let it be
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denoted by V. If <r be the density of a distribution over S which

has at every point on S the potential T,

/VVdS = M by Art. 60,

and

since 7 < 1, therefore
J
fFcrdS < M.

Next let the same quantity of electricity M be so distributed

over S as to have constant potential V in presence of the other

uninsulated conductors. Let </ be its density in that case.

Then /YVvdS' <
ffr*48 ty Art. 1 67,

also /T V'</dS = V
ff</dJ3

= V'M.

Therefore, a fortiori, V'M < M or V < 1, and therefore a larger

charge would be necessary to bring S to unit potential.

Earnshaivs Theorem.

175.] If an electrified system A be in mechanical equilibrium

in presence of another electrified system J3, and be capable of

movement without touching the latter, the equilibrium cannot

be stable.

For let us suppose first that all the electricity in B is fixed

in space, and all the electricity in A fixed in the system, so that

the system A is capable of movement as a rig-id body. And let

us further suppose first that it is capable of motion of translation

only.

In this case the position of A is completely determined by the

position in space of any single point in it, and is therefore a

function of the coordinates of referred to any system of axes

fixed in space.

Let the position of equilibrium be when coincides with a

certain point C in space.

Let V be the potential of the system S. Let pdxdydz be the
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quantity of electricity of the system A in the volume element

dxdydz. Then

V dxdydz

throughout A is the intrinsic energy of the mutual action of the

two systems, that is, that part of the whole energy which varies

with the position of 0.

Let

dv

d*E

dx*

and as similar equations hold for y and z,

pV*Vdxd,ydz.= 1 /YY

Now so long as no part of A coincides with any part of
,

= 0, and therefore V 2E = 0.

Again, since A is capable of motion of translation without any

part of it coinciding with any part of B, it must be possible to

describe a small closed surface 8 about C, the position of equi-

librium, such that, if be anywhere within S, V Z V
'

0, and

V 2E = 0.

But E is a function of #, y, z, the coordinates of 0. Therefore,

by Green's theorem applied to the surface S and the function E,

= 0.

Either therefore E must be constant for all positions of in

the neighbourhood of C which are consistent with A not touch-

ing B, in which case the equilibrium is neutral
;
or there must

be some part of the surface S such that, if be on that portion,

E is less than when is at C, that is less than in the position

of equilibrium. Therefore any small displacement of A in this

direction will bring it into a field of force tending to move it

still further in the same direction, and the equilibrium is there-

fore unstable.
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If the system has any more degrees of freedom, as for instance

freedom to rotate about an axis, or for the electricity on A or B
to change its position, instead of being- fixed as we assumed it to

be, a fortiori the energy will be capable of becoming less in the

displaced position, and therefore the equilibrium is unstable.

176.] On a system of insulated conductors fixed in a field of

uniform force and without charge.

Let us first suppose the uniform force is unit force parallel to

the axis of x. Then we may always choose the origin of

coordinates, so that the potential of the force at any point may
be denoted by x.

The induced distributions on the conductors must be such

that the potential due to them at any point in any conductor

shall be <7-f #, where C is constant over each conductor but has

generally a different value for different conductors.

Let the density of this induced distribution at any point be

<$>x (os, y, z),
or shortly (f)x . Then X(f>x is the density of the

induced distribution which would be formed if the force were

X. And the potential due to the distribution X$x is therefore

CX+xX.

Definition. The function \\x $xdS taken over the surface of

every conductor of the system is the electric polarisation of the

system in direction x due to a unit force in direction x acting at

every point of the system. It is evidently independent of the

position of the origin. For

dS = "

since 1 1$*$$ is the algebraic sum of the induced distribution

and is therefore zero.

In like manner we may define

to be the electric polarisation of the system in the directions of

y and z respectively due to unit force in direction x.

In like manner if there be forces T and Z parallel to the other
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coordinate axes, they will produce in the system induced dis-

tributions whose densities are Yfa and Z<pz respectively, and the

functions

will denote the polarisation in the directions y, x, and z respect-

ively due to unit force in direction y. Similarly, llzfadS,&e.

denote polarisation due to unit force in direction z. And each

of the quantities y(f)x dS, &c. is independent of the position of

the origin if the direction of the axes be given.

If
*l> C denote the total polarisation parallel to #, y, z

respectively, due to the three forces, we shall have

y fa dS+Yy $y dS+zy j. dS,

dS+
Y^fz <j>v dS+zffz <f>z dS.

177.] We can now prove that

For the potential of the system of densities denoted by <f>x is, as

we have seen, C+ a?, C being, as before mentioned, a constant

for each conductor, but having generally different values for dif-

ferent conductors. Therefore

is the work done in constructing the distribution whose density

is <py (which we may call the system c^), against the repulsion

of the system fa previously existing. But since for each con-

ductor the algebraic sum of the induced distribution fa is zero,

and C is constant,

jfcfa
dS = 0,

VOL. I. N
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and #(f)v
dS expresses the amount of work above mentioned.

In like manner y<j>x dS is the work done in constructing the

system (j>x against the repulsion of the system <$)y previously

existing. But by the conservation of energy these two quan-

tities of work must be equal. Therefore

Similarly, ffx <fc dS =ff* **

178.] If the direction cosines of any line referred to any

system of rectangle axes be a, (3, y, the polarisation parallel

to this line expressed in terms of these coordinates becomes

that is,

that is, af+ jSq+ yf The polarisations , rj, fare in fact vector

quantities, and admit of composition and resolution.

Evidently, if a, fij y be proportional to
, r?, and

then f = ap, t]
= pp, =yp,

and the polarisation in any direction a', /3', y', is

that is (a

and is therefore zero for any direction at right angles to the

direction of the resultant of
, 77, f

179.] Let it now be required to find a direction relative to

the system such that if the resultant force be in that direction,

the resultant polarisation shall be in the same direction.



I 79.] IN A FIELD OF UNIFORM FORCE. 179

In that case f, 77, must be proportional to X, Y, Z. That is,

(= *X,

where e is a quantity to be determined.

Hence we have

. x+
(ffy<i>y

ds-

These equations are of the same form as those employed in

Thomson and Tait's Natural Philosophy ,
2nd Edition, p. 127, for

determining the principal axes of a strain. As there shown, the

system leads to a cubic equation in
,
of which, when

the three roots are always real. The equation is the same as

that treated of in Todhunter's Theory of Equations, 2nd Edition,

p. 108. As shown by Thomson and Tait, each of the three

values of e corresponds to a fixed line in the system, and the

three lines corresponding to the three roots are mutually at right

angles.

There exist, therefore, for every system of conductors three

directions at right angles to each other, and fixed with reference

to the system, such that a uniform force in any one of these

directions produces no polarisation in either of the others. We
might define these directions as the principal axes of polarisation

of the system of conductors in question. If we take these three

lines for axes we shall have evidently

by dS = 0, / / y fa dS 0, &c.

Let us denote
/ /. //

x
(j)x dS by Qx ,

I I y $v
dS by Qy ,

and f/ *$ ^ by ft ;

*/ / / */
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then the polarisation in any line whose direction cosines referred

to these axes are a, p, y, due to unit force in that line is

180.] Of the energy of the polarisation of a system of conductors

placed in a field of uniform force.

Let the system be referred to its principal axes. Let X, Y, Z
be the forces parallel to these axes respectively. Let X$x be the

density at any point on any conductor which would be produced

by X alone acting, Y$y
and Z(f>z the same for Y and Z. Then

X(j>x+ Y(j>y -\-Z(f)z is the density when all three forces act.

The potential of the three forces is

-(Xx+Yy + Zz).

The work done in constructing the system against the external

forces is then

taken over the surface of every conductor. The work done

against the mutual forces of the system itself is

Yy+ Zz)

The whole work is therefore

taken over the surface of every conductor, and the work done

against the mutual forces of the separated electricities is the

same expression with the positive sign.

But the axes being principal axes,

ffx^y dS = 0, Pix <k dS = 0, &c.

Therefore the energy is

7 2

or

181.] If the conductors be free to move in any manner, either

by translation or rotation, they will endeavour to place them-
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selves in such positions as that the above expression within

brackets shall be maximum, given the resultant external force.

If the system consists of a single rigid conductor Qx , Qy and

Qz will not be altered by any motion of the conductor. If

placed in a field of uniform force and free to move about an axis,

its position of stable equilibrium will be that in which the axis

of greatest polarisation coincides with the direction of the force.

If the system consist of many conductors, and they be not so

distant that their mutual influence may be neglected, they will

still tend either by rotation or translation to assume a position

in which the axis of greatest polarisation shall coincide with

the direction of the force; but Qx , Qy , and Q a will in this case

generally vary with change of position of the conductors.

182.] We have hitherto treated (j)x , cf)y ,
&c. as the densities of

the distribution produced on a conductor in a field of uniform

force. If we extend our definition, and define // xfydS to be

the polarisation in direction x of an uncharged conductor placed

in any electric field, $ being the density of the induced dis-

tribution, we can prove the following proposition :

The electric polarisation of any spherical conductor due to

any distribution of electricity entirely without it is equal in mag-

nitude to the resultant force at the centre of the sphere due to that

distribution multiplied by the cube of the radius, and is in the same

direction with that resultant.

For let X be the ^-component of force at the centre of the

sphere due to the external system. Then X is the ^-com-

ponent of force at the centre due to the induced electrification.

But the last-named component is

if or be the density of the induced distribution.

Hence
JJx(rdS=r*X.

Similarly jjy
<rdS=r3

Y,
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if Y and Z be the components of force parallel to y and z, and

this establishes the proposition.

If v be the volume of the sphere,



CHAPTER XL

SPECIFIC INDUCTIVE CAPACITY.

ARTICLE 183.] HITHERTO, in accordance with the plan laid down
in Chapter IV, and with the view of giving the two-fluid theory
as complete a development as possible in its most abstract form,

all space has been regarded as made up, so far as electrical pro-

perties are concerned, of two kinds
; conducting space, through

which the fluids pass from point to point under the influence of

any electromotive force however small, and non-conducting or

insulating space, through which no force however large can

cause such passage of the fluids to take place.

Conducting spaces are necessarily occupied by actual sub-

stances, prominent among which are all metals. Non-conducting

spaces may be occupied by actual substances, called non-con-

ductors, insulators, or dielectrics (the last term having reference

to their transmission of electric action as distinguished from the

passage of the electric fluids), such as dry air and other gases,

wood, shell lac, sulphur, &c., or these spaces may be vacuum.

A perfect vacuum was at one time regarded as a perfect

insulator.

184.] Faraday was the first to point out, as the result of ex-

periments performed by him, that there is a considerable diversity

of constitution in dielectric media, in reference to their electric

properties ; that, in fact, while different substances possess the

common property of refusing passage to the electric fluids, they

are nevertheless endowed with very different electrical properties

in certain other respects. If, for instance, there be, as in Fara-

day's experiments, two concentric conducting spherical surfaces,

and the space between them be filled with any dielectric substance,

the potential of the inner sphere due to any charge e on itself
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(which according to the simple theory hitherto investigated

should be -
> where r is the radius) will be found to depend on

/

the nature of the dielectric medium in the space between the

spheres. And therefore the charge on the sphere necessary to

produce a given potential, or the capacity of the sphere, is

greater for some of such substances than for others. The

dielectric, in Faraday's language, has inductive capacity. It is

less for air and the permanent gases than for any solid dielectrics,

and rather less for vacuum than for air.

185.1 In order to explain this phenomenon, Faraday adopts the

hypothesis that any dielectric medium consists of a great number

of very small conducting bodies interspersed in, and separated

by, a completely insulating medium impervious to the passage

of electricity. In his own words,
' If the space round a charged

'

globe were filled with a mixture of an insulating dielectric, as

'
oil of turpentine or air, and small globular conductors, as shot,

* the latter being at a little distance from each other, so as to be
'

insulated, then these in their condition and action exactly
' resemble what I consider to be the condition and action of the
'

particles of the insulating dielectric itself. If the globe were
'

charged, these little conductors would all be polar ; if the globe
1 were discharged, they would all return to their normal state, to
' be polarised again upon the recharging of the globe/
The properties of such a medium closely resemble, as far as

their mechanical action is concerned, those of a magnetic mass,

as conceived by Poisson, each of Faraday's
' shot

'

being in fact

when polarised equivalent to a little magnet, except that in

dealing with magnetic masses the polarisation is usually under-

stood to be in parallelepipeds instead of in spherical particles,

and Poisson's investigations are therefore applicable. (See
Memoires de PInstUut for 1823 and 1824.)
The mathematical theory has also been treated by Mossotti

with especial reference to Faraday's theory, but by a different

method from that here employed.

186.] In accordance with this hypothesis of Faraday's, we will

consider the dielectric as consisting of a great number of very
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small conducting- bodies, not necessarily spherical, and separated

by a perfectly insulating medium. A first object is to find the

form assumed by Poisson's equation when the conductors become

infinitely small.

In this medium take any parallelepiped whose edges, h, k, I,

are parallel to the coordinate axes. Let these edges be very
small compared with the general dimensions of the electric field,

but yet infinitely great compared with the dimensions of any
of the little conductors in question. The face Tel of the parallelo-

piped will intersect a great number of these little conductors.

If the medium be subjected to any electromotive forces, there

will be on each conductor an induced distribution of electricity

whose superficial density we shall denote by $. Then for each

conductor / /
</>
ds = 0.

Let X be the average value over the face kl of the force

parallel to #, and therefore normal to kl, due to the whole electric

field, including the induced distributions on all the conductors

whether intersected by kl or not. We will first assume that the

corresponding forces Y, Z are zero.

In this case the average value per unit area of kl of the

algebraic sum of the induced distribution on the intersected

conductors which lies to the right, or positive, side of kl is, by
the principle of superposition, proportional to X. Let it be

QX, Q being the value which it would have if X were the unit

of force.

If the forces Y and Z are not zero, then the quantity of the

induced distribution on any individual conductor lying to the

right of kl will generally depend on Y and Z as well as on X.

But if the conductors be in all manner of orientation indiffer-

ently, the quantity of free electricity to the right of kl, due to

Y and Z, will disappear on taking the average ;
because for any

conductor, if the total density of the induced distribution arising

from Y or Z for any position of the conductor be calculated, then

on turning the conductor through two right angles about an

axis parallel to #, the corresponding density in the new position

will be equal to that in the former position, but of opposite sign.
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We shall for the present confine ourselves to the case in which

the conductors are orientated indifferently in all directions, and

we shall define a medium in which this is the case to be an

isotropic medium, and any other to be a heterotropic medium.

It is evident that in an isotropic medium the quantity of the

induced electricity in the conductors intersected by the faces hk

or h I of the parallelopiped which lies to the positive side of those

faces respectively, due to unit force in direction y or z, is the

same as the corresponding quantity for the face kl. That is, it

is Q.

187.] The total electricity included within the parallelopiped

will consist of (l) p 7ikl, the quantity of the given electrical distri-

bution, which is supposed to exist independently of the condition

of the medium within h Jc I, whether it be vacuum or dielectric
;

(2) the sum of the induced superficial distribution on those parts

of the conductors intersected by the faces of the parallelopiped

which lie within its volume. The part of (2) arising from the

two Jcl faces will be

UQX and -klQX - Tiki (QX)dx

respectively, and their sum is therefore

In like manner the part of (2) arising from the faces hk, Jil of

the parallelopiped are

and -Kkl-

respectively.

We obtain therefore for the whole electricity within the

parallelopiped, which we will call E,

Now let N be the normal force at any point on the surface of

the parallelopiped measured outwards. Then on the two kl

faces the average value of N is

-X and +X +hd̂x
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respectively. Therefore for these two faces

dX
Nds = +~ hkl

dx

Similarly, for the other two faces we shall have
'

rl Y
Nds = +~ hkl,

dy

/YV<fo =

and

Therefore for the whole surface of the parallelepiped

But

Therefore hkl(- + -
^ dx dy

But from (1)

= hkl

Hence we obtain

or, if we write

1 + 477(5 = ^,

and if T
7

"

be the mean potential, so that

dV dV dV
JL = -= > I = -r Zi = -

>

cfo
v dx '

dy^ dy
' dz ^ dz '

This is the form assumed by Poisson's equation in such an

isotropic medium as now under consideration. K evidently

depends on the form, number, and position of the conductors,

that is, on the nature of the substance. It is called the dielectric

constant.

188.] Again, if p +p' be the whole free electricity in the element
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of volume dxdydz, including both that of the general electric field

and that of the induced distributions, evidently

Hence we have

d , dV * dV
d_

"fa

dV
dz

and phkl is the sum of those portions of the induced distri-

butions on the conductors intersected by the faces of the

parallelepiped which lie within its volume.

189.] If over any surfaces there be superficial electricity of the

given electric distribution, the equation

dx ^ dx '

dy
^

dy
' dz x dz

becomes, as in the cases previously investigated,

dv (2)

,dV
or ( dv

where the suffixes relate to the media on either side of the surface

of separation.

Let (1) and (2) denote two media bounded by a plane surface

AS, such that K, Q, and X have the suffixes

1 and 2 in these media respectively. Let Clt

C.2 be two parallel planes on either side of

AB. Then, by the preceding, the superficial

induced electrification in the space between

C1 and AB, and C2 and AB, per unit area of

the planes, is + Qi-^i an(^ ~~
Qz^-z respectively,

and the total induced electrification in the space

between C^ and C2 is Q1
X

1 Q2
X

2 per unit area

oiAB.
If the two planes Ci and C2 be made to approach each other

till they become infinitely near, this gives a superficial electrifi-

B

Fig. 28.
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cation </ over AJ3, the surface of separation of the media (l) and

(2), arising from induction on the conductors, such that

dv

if the normals be reckoned inwards from the surface in case of

each medium.

Also if the electricity per unit volume arising- from such

induction be called />', we have seen that

Therefore our equations may be written

= 0,

// and a' are called by Maxwell the apparent electricities solid

and superficial respectively, and Faraday's hypothesis of the

dielectric medium supplies us therefore with a physical meaning
for these quantities.

It follows from the equation (2) that at the surface of

separation of any two isotropic media, in which the constant K
has the values K-l and K2 respectively, if there be no real electri-

fication on that surface, that is, if o- = 0, the normal forces on

either side of the surface are to each other in a constant ratio.,

namely

190.] Now let be the superficial electrifi^llia
at any point

of the surface of any one of the small conductors in jbhe neigh-

bourhood of any point P, (x, y, z) in the dielectric, and let

"sffxQdS, or the sum of the integrals 1 1 to$US taken over the

surfaces of all these conductors within uni4
o volume, be denoted

by o-x , assuming that the distribution of electricity on each
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conductor and the distribution of the conductors themselves is

constant throughout that volume and the same as it is at P
;

thus a-x is a physical property of the dielectric at P analogous to

the pressure p referred to unit of surface at any points in a fluid

mass, and other similar quantities. Let a be the average
distance between two planes parallel to y, z, touching any small

conductor, i. e. the average breadth of a conductor parallel to #,

and let n be the average number of such small conductors in

unit of volume. It follows that the number of conductors in an

elementary parallelepiped dxdydz is n dxdydz^ and the number

intersecting the dydz face must be dx or n a dydz.
a

Now if x
l be the x coordinate of the left-hand plane parallel

to yz touching any conductor, the average amount of the elec-

tricity lying to the right of any other plane parallel to yz inter-

secting the same conductor must be // - tydS, the integration

. * rr
being over the surface of the conductor, i.e. it is - / / x

(/> dS,
a 1 1

rr
since N)dS = 0.

Therefore the amount of electricity on the small conductors

intersected by the left-hand dydz face of the parallelepiped dxdydz
and lying to the right of that face must be

nadydz I -
j or n / I axfrdS. dydz.

But nilxfydS is the quantity above designated by ax .

Therefore jrm is the amount of electricity per unit surface

on the rin| hand of a plane at P parallel to yz situated

on small conductors intersected by that plane ;
it is the same

quantity as is denoted by QX in Art. 186; similarly for a-y

and 0-3.

The quantities IT^, cr
y3

<r
z are components of a vector or, the

value of any one of* them when the corresponding axis is taken in

the direction of o-. (See Chap. X, Art. 178).

From Arts. 186 aiuj 188 it follows that //, the density at any
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point P of induced electricity belonging to the conducting

surfaces, is

dx dy dz

and that if o-x ,
cr
y)

v
z be discontinuous over any surface S through

P whose normal has direction cosines I, m, n, then there will be

a superficial electrification arising from the induced electricity

on the small conductors over the surface S, the density .of which

at Pis
I
(a-x
- a-'x) + m(o-y- a'

y) + n(<rz
-

*',),

where crx and a'x are the values of crx and v'x on opposite sides of

8 at P.

If V be the potential at any point of the field arising from

the induced charges on the small conductors and from these

alone, then from Art. 189 V must satisfy the equations

dV
_dv d

And since the solution of these equations is determinate and

unique, we must have

r = rrrp'dxdydz +
rr</ds

}

where the integration extends over the whole field, a result in

fact which is at once obvious from the physical meanings of p

and (/.

191.] "We know that the average force in direction x over

any finite plane parallel to yz due to an electrical distribution

whose algebraic sum is m placed on the positive side of the

plane, and at a distance from it very small compared with the

dimensions of the plane, is 2irm.

If therefore any such plane be situated in the medium under

consideration, the average force upon it arising from intersected

conductors will be -2770-3 from those on the right-hand side,

and again 2770-3. from those on the left-hand side, or 4770-,,.

on the whole
;
and if we limit ourselves to the consideration of

the little conductors situated between two planes very close to

and parallel to the supposed plane on opposite sides of it, the
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average force will be 4770-3. parallel to x, since the value of m
for non-intersected conductors is zero *.

It follows therefore that if in the dielectric medium we take

any two planes very close together, and each perpendicular to v,

the resultant of <rx ,
cr
v ,

<r
z ,

at any point lying between them, the

force at that point arising from the induced charges on the

* The proposition in the text is an important one and may be proved rigorously
as follows :

Let there be an infinite number of polarised molecules between two infinite

planes parallel to yz, and not intersected by the planes. Let the equations of the

planes be x = a t
and x = a2 . Let V^ and V2 be the values of the potential from

the polarised molecules upon the respective planes; and let dyl dzl , dy2 dzz denote
elements of their surfaces, and dv^ and dv2 elements of their normals measured
outwards from the space between the planes.

Applying Green's theorem to the space between the planes, using x and 7 for

functions, we have

CCdv . CTdVj J rrr
ai I I dy^dZi + ctt I I -j- dyzdzy Illy.
JJ d">

"

JJ dv> JJJ
rrr rr ,dv dv.

the last term / / / xv*V dxdydz including / /
# (;r- + T~)d>3 for surfaces of

JJJ ^ JJ <".

superficial density or discontinuous , &c.

Since the distribution within the planes is algebraically zero, / / ^~dyidzl
and

/ I fl~ dytdzz are separately zero. Also ^- and are I and + i respectively,

/ / -=
dt/i

d + i resp

and / / / x v2 V dxdydz - 4tr I I I xtydxdydz if
<f>

be the density at any point

anes.

I irtdy9.dsg- / /Fi^efoj = 4w / / / x<f>dxdydz.

the mean force in direction of x, and C the area of either plane,

-
ll'

where H is the volume between the planes.

Therefore r--
a

These conclusions are equally true when the planes are of any magnitude,

provided the distance between them is infinitely small compared with their linear

dimensions, in which case /JJ
y becomes the same quantity as that

n
above denoted by ax and the proposition is proved.
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small conductors situated between these planes and not inter-

sected by them will be in the direction of <r and equal to 47r<r,

and the forces from these small conductors thus included between

the planes parallel to x, y, and z will be 47:0-3., 4 irtTyt 47rcr2

respectively, the same as the force would have been from the

included conductors if the parallel planes including the point

had been perpendicular to #, y, or z respectively.

If instead of taking a region between two parallel planes

whose distance is very small compared with their linear dimen-

sions we had considered a space inclosed within any small sphere

in the medium, then we might prove that the force at the centre

of the sphere arising from all the small conductors entirely

included within it has for its components -- (rx ,

-- cr
v ,

A
33

and -
cra respectively.

3

If instead of a medium of small conductors with electricity on

their surfaces distributed according to the law of induced elec-

tricity under the action of a constant force with components

X, J", Z we were considering a medium composed of small dis-

crete molecules, each separately containing an electrical distri-

bution according to any law, subject only to the condition that

the algebraic sum of the distribution in or upon every such

molecule is zero, and if we denoted by </> the electrical density at

any point in any molecule, and by o-x) v
y ,

and o-z the sums

for unit of volume in the neighbourhood of any point P, (#, ^, z)

in the medium, the triple integrals scfydv &c. being replaced

by iJx<f)clS, &c., where < is superficial, we should still have

0-3.,
<T
y ,

cr
z the components of a vector; inasmuch as by changing

to any other rectangular axes f, 17, such that the direction-

cosines of are l> m, n, we get

= S / / / ((lx+ my + nz) (f)dv

VOL. I.
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and the results arrived at in the preceding articles as to the

density, solid p or superficial </, of the electricity at any point,

and the value of the potential F', would hold good of this

medium.

192.] Comparing two electrified systems in all respects

similar, except that in the one the dielectric constant has the

uniform value j5Tl5 and in the other the uniform value K2 ,
we

see from the form of Poisson's equation above obtained, that, if

V has at each point in either system the same value as at the

corresponding point in the other system, all the volume and

superficial densities must as between the two systems vary

directly as K, the dielectric constant. Conversely, if the den-

sities be the same at all corresponding points, the potential at

corresponding points will vary inversely as K.

The effect of substituting a uniform dielectric medium with

dielectric constant K, for air, in which the constant is unity, in

any electrified system, is therefore the same as if all the charges

on the conductors were reduced in the ratio 1 :K, or as if the

repulsion between the masses e and e' at distance r were
/ /

instead of ^ It follows that the charges necessary to

produce given potentials, that is the capacity of the system, must

in similar systems vary directly as K. For this reason K is called

the specific inductive capacity >
or briefly the inductive capacity of

the medium.

The phenomenon observed by Faraday, using two concentric

conducting spheres separated by a homogeneous isotropic

medium, is a particular case of the general result of this

article.

193.] The conception and treatment of lines, tubes, and fluxes

of force developed in Arts. 96-103 of Chap. V are equally

applicable to an isotropic dielectric with any value of K, either

uniform or variable, and might, indeed, have been applied to

establish the equations above obtained in such a medium. If we

integrate each term of the equation above proved, viz.

dz
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over a space inclosed within any closed surface S, we get

and if I, m, n be the direction cosines of the normal to any
element dS of the surface, this becomes

or / 1 KFndS'= 4 Tim;

where Fn is the normal force measured outwards at each point of

S, and m is the algebraic sum of the included electricities.

If, therefore, as in Art. 102, any tube of force be limited by the

transverse surfaces S and $', and if F and F' be the normal forces

at points on S and S' respectively, and if K and K' be the in-

ductive capacities at those points, then the equation becomes

^K'F'dS'-

or as it may be written

/7Vd,S"- ff'f& = 4w
jm-

an equation expressing the same physical property as that of

Art. 102, inasmuch as

is the addition to the electricity included in the limited tube of

force arising from the polarisation of the small conductors in the

dielectric medium.

In a medium with a continuously varying specific inductive

capacity and finite volume densities, the force F obviously varies

continuously both in direction and magnitude.

If however there be an abrupt transition from one dielectric

medium to another at any surface S, then, whether there be an

actual charge on S or not, there is, as we have seen, a charge over

S arising from the polarisation of the small conductors, called

O 3
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generally the apparent electrification, although both from theory

and experiment it is proved to have an existence as real as what

is called by distinction the actual charge ;
if a' be the density of

this charge we have seen that

where Fl
and F2

are the forces normal to 8 at the point in the

two media respectively, each supposed to act from medium KL

towards medium K2 . If therefore there be no actual electri-

fication on S
9
we have

or - = 0,

as above shewn.

And if i and i' be the inclination of the lines of force to the

normal to S before and after the transit over $,

tan i = ( 1 + ~f,
-

.) tan i'
'

as above proved.

All the properties of tubes of force, elementary or otherwise,

proved in Chap. V, for a dielectric of uniform K hold good in

the case of a medium with varying K, if we substitute for F (the

force at any point) the quantity KF. This quantity KF is some-

times called the induction.

Should there be an actual charge a over 8, then the ordinary

equations wonld give

(/ being determined as before.

194.] As an illustration of the application of the preceding

results, let us consider the state of the electric field when two

media of different but uniform inductive capacities are separated

by an infinite plane surface, and an electric charge is situated at

a given point in one of them.

Suppose the plane of the paper to be perpendicular to the

plane of separation; let YEY' (see Fig. 29) be the line of inter-
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section of these planes, and let the charge m be situated at the

point m in the medium whose inductive

capacity is kl3 that of the other medium

being 2 .

Let mEm' be drawn perpendicular to the

bounding plane, and let m' be so taken that

m'E = mE =
, suppose.

Let the distances of any point P from
,

m and m' be called r and / respectively.

If V and V be the potentials on the left

and right of the plane YEY' respectively,

then V and V must satisfy the following

conditions, ^ and / 2 being uniform in each
Fi

medium :

(1) V = V on the plane and each vanishes at infinity,

(3) VF+ =

Now r = / over the plane and the differential coefficients

of the functions - and along the normal to the plane are pro-

portional to
-3
and -^ respectively.

It follows therefore that the conditions (l) and (4) may be

satisfied by assuming

A B _, C D
V ~ + and V'= +

r r r r

and properly determining A, B, C, and D.

Since p is zero to the left of YEY' except in the neighbourhood

of m, the condition (2) requires that A should be equal to

-j-
> and since p is zero everywhere to the right of YEY', the
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condition (3) requires that D should be zero, and therefore

)

r

m
(1) gives T-

(4) gives

whence we get
2m

_

-^
/ 2m

and the problem is completely determined.

If o-' be the superficial electrification of polarisation, or so

called apparent electrification, over the plane, then

m
f^i-

1 /. ^i-^xo *-! 7 CT

-

^) 27T7-
3

If k^ = 1 and >^
2
= oo

,
we have

agreeing, as they should do, with the results obtained for an

infinite conducting plane in presence of a charged point, in

Art. 105.

195.] As an instance of a similar treatment let us consider

the case of a sphere composed of a dielectric medium of specific

inductive capacity ky brought into a field of uniform force F in

air.

Before the introduction of the sphere the force throughout
the field was F in a given fixed direction, which we will take for

the direction of the axis of x.
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If the origin be measured from any point, as for instance the

point with which the centre of the dielectric sphere is made to

coincide, then, before the introduction of the latter, the potential

of the field was Fx+C.
Let a be the radius of the sphere, and let V and V be the

potentials outside and inside of the sphere, then the conditions to

be satisfied are :

(1) V = V at the sphere's surface, and V becomes Fx + C at

infinity ;

(2) V2 V = V2 V = everywhere ;

(3) k-j + =0 at the surface.
dv

l
dv

Now we know from Art. 107 that a potential To? either of the

forms Aas
t
or -y gives a normal force at any point on the

sphere's surface proportional to a?, and satisfies the condition

Bx
V 2 V 0, provided that in the case of the form being

chosen, the point is not infinitely near to the centre.

If therefore we make V of the form

and make V of the form Bx+C, we shall have condition (2)

satisfied identically, and shall be able to satisfy conditions (1)

and (3) by properly determining A and B.

(1) gives 7'= Bx+C = 7 = Ax+C at the surface, or B = A.

.Bx ZFx 2 Ax w 3^T

(3)gives _*_ =_ +_-, or = ,!=__

And therefore the potential V throughout the region external to

the sphere is given by the equation

and the potential V within the sphere is given by the equation

3Fx
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The density </ of so-called apparent electrification at the surface

is given by the equation

, 3F k-lx
that is. <r = - = -

4ir k+2a
n

Tjl

If k become infinitely great, </ becomes > as already
4TT a

determined for a conducting sphere in a uniform field.

The potentials Fand V obtained above are obviously those out-

side and inside of the surface due to the superficial electrification

BF k-l x

ITT
"

k+2
'

~a

together with the potential of the field Fx+C. If we subtract

this latter from V and V respectively, it appears that the

potentials of </ within and without the surface respectively are

kl kl a?x
Fx and F ^ respectively.

k+2 k+ 2 1
s

That is to say, a superficial electrification px over a sphere's

surface produces potentials

4 7f . 4 TT a*x
-pa*, and - p ,

within and without the sphere respectively, and therefore gives

a uniform field of force within the sphere.

1950.] We proceed next to consider the more general case of a

medium not necessarily isotropic.

In that case the quantity of electricity of the induced dis-

tributions on the little conductors intersected by the kl face of

the parallelepiped above mentioned, which lies to the right of

that face, depends generally on the forces T and Z> as well as X.

By the principle of superposition it must consist of three portions

proportional to X, Yy
and Z respectively. Let it be denoted by

In like manner the quantity of electricity of the induced

distributions on the conductors intersected by the hi and hk
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faces of the parallelepiped, which lies on the positive side of these

faces respectively, may be denoted by

= 2
j j

where <rx = 2 xdS <r = 2 d8 <r = 2

$ being the electric density at any point of a small conductor,

the double integration extending over the surface of each con-

ductor and the summation 2 extending over the conductors in

unit volume, as described above, Art. 190. We shall generally
omit 2 for the sake of brevity in cases where there is not likely

to be any doubt as to the meaning.

196.] Again, the induced electrification $ at any point on any
conductor consists, by the principle of superposition, of three

portions proportional to X, J, and Z respectively.

We will denote by X$x the density of the electrification due to

the force X, Y$ y that due to Y
t
and Z$ z that due to Z, so that

the whole density at any point on the surface of any conductor

be

We have then ^ =^x+ QxyY+ Qx&

the integrals being over all conductors in unit volume.

It follows that

Similarly we shall obtain,

Ql,v Y+Qy,

>x dS+ry^ dS+zy <!>. dS,
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and therefore

ff

&c. = &c.

The properties of the coefficients Qxx , Qxv , &c. or

x<f>9d8, &c. were investigated in Chap. X; and as there

proved, Qxv
= Qyx ,

&c.

If I, m, n be the direction-cosines to the normal to any plane

drawn in the medium, the quantity of electricity on the little

conductors intersected by unit area of that plane which lies

on the positive side of it is l<rx+ m<y
y -\-n(rz by Art. 191.

If the medium be isotropic, as above defined, the forces Y and

Z will not affect the quantity of electricity to the right of the

plane kl. In fact, in an isotropic medium

ffx (f>y dS = 0, Uy <i>z dS = 0, and ifz
<f>x dS = 0.

And x ifc dS=y <\>v
dS = z $z dS.

In that case

and JT

= 1 + 4-7T

197.] If the medium be not isotropic, the integrals / / x $y dS,

&c. are not generally zero for all directions of the coordinate axes.

But it was shewn in Art. 179 that for any system of conductors

in a field of constant force there exist three directions at right

angles to each other, such that if these be taken for axes, each

of the integrals \\x
(j> y dS, &c. is zero.
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We may therefore describe a small sphere about any point in

our medium, and find three perpendicular directions such that, if

these be taken for axes, each of these integrals vanishes, if taken

throughout the sphere. And we may call these three directions

the principal axes of electric polarisation at the point in question.

With these directions for axes we have

(T =

<* =

But it will not be generally true that

<rxj (T
y ,

and o-g being in this case proportional to X, Y, and Z

respectively, we will write

and X'=
r=
Zf

' =
And we may write

Kv
=

These ratios Kx ,
K

y ,
Kz have a determinate value at every

point in a heterotropic medium, but may vary from point to

point. Also the directions of the principal axes may vary from

point to point.

If Kx ,
Ky >

and K& be constant, and the directions of the

principal axes also constant/ the medium, whether isotropic or

not, is said to be homogeneous. If otherwise, heterogeneous. An

isotropic medium is therefore homogeneous if K be constant.
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If Kx) Ky)
Kz vary continuously, the same reasoning by which

in an isotropic medium we obtained the equation

d
, T,dV. d

, T7dV. d /r̂ dV.
(K--) + --(K-r ) + (K) + 4irp =dx v dx '

dy
v

dy
' dz v dz '

leads, in case of a heterotropic medium if the coordinate axes be

the principal axes, to

d . dV. d
,

_ <ZFX
d . ^ dV^

(Kx ) + (Ky ) 4- -j- (Ks ) + 4 w/> = 0.
cfcc

v
(fcc

'

<fa/

v y
dy

' dz v
<fo

'

Also if j5T
la; ,
Z

1J/5
JTlg and K2x ,

K2y , K2z be the constants for

two heterotropic media separated by a plane whose direction

cosines are I, m, n, we have at the surface of separation

corresponding to equation (2) of Art. 189.

Let X' be the average force which would exist on the plane

kl if all the intersected conductors were removed. Then., it

follows from Art. 191, that X' is connected with X by the

equations
X =
= X-\- TtQxX if the axes be the principal axes,

= KXX,
so that

X'-K
~X~ KX >

or Kx is the ratio between the average force which would exist

on the plane Icl if all the intersected conductors were removed

and the average force which does exist over that plane in the

medium.

198.] As shown in Art. 180, the energy of the medium per
unit of volume is

-\
and the little conductors, if each free to rotate on any axis, will so

use their freedom as to make the expression within brackets the
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greatest possible, by placing themselves in suitable positions ;

that is, they will endeavour so to place themselves as that the

axis of greatest polarisation shall coincide with the resultant

force ; so that, for instance, if

the conductors will so place themselves as that the principal

axis x shall coincide with the direction of the force.

If they be perfectly free to move, this object will be effected

for any direction of the resultant force
;
and as in that case there

will be no polarisation in any direction at right angles to the

force, the expressions

are zero. Such a medium will then have all the properties of an

isotropic medium.

But unless the conductors be perfectly free to move, or are

spheres, the medium will in general be heterotropic.

199.] It appears from the preceding that the numerical value

of the dielectric constant K in any isotropic medium must depend

upon the form and density of distribution of the small conductors

within the medium.

Suppose now that these are spherical, and that A is the fraction

of any volume within the medium which is occupied by the

whole of the small conductors within that volume.

Suppose also that the average force within the medium in the

neighbourhood of any point is X, parallel to the axis of x.

Since the force within each conductor is zero, it follows that

the average force in non-conducting space in the neighbourhood
X

of the point in question must be -
.

1 A

Now the electrical distribution on the surface of each sphere

must be such that the force arising from it within the sphere,

together with that from all the other electricity in the field, shall

be zero throughout that sphere.

If the spherical distribution were very rare it is clear that the

force arising from all the electrical distributions except that in
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any one sphere must be sensibly constant throughout that

sphere. In other words, the sphere is situated in a field of

jr

constant force --
parallel to the axis of x.

J.
' A.

Therefore the polarisation of any particular sphere must be

--
> where v is the volume of the sphere; see Art. 182.

4-77 1 A

Hence the polarisation per unit of volume, which we denoted

3A X
above by QX, is

--
1 and therefore

q \

1 A

or, as A. is supposed very small, K 1 + 3A. This amounts in

fact to regarding each sphere as polarised independently of the

rest. If A be not very small, so that we have to consider the

mutual influences of the spheres, the reasoning is precarious and

cannot be insisted upon.

200.] We may also construct a composite medium, portions of

which shall consist of a dielectric whose constant is Kl9 and other

portions consist of a dielectric whose constant is K2
. If such

a medium be uniform throughout any space, that is, if the

distribution inter se of the two dielectrics be the same for unit

of volume in any part of the space in question, the problem

presents itself for consideration, what is the average force in

such a composite medium due to the induced distributions within

it
; or, as we may otherwise express it, what must be the value

of K, in order that a uniform medium with K for dielectric

constant may have the same effect as the composite medium.

The solution of such a problem depends on the manner in which

the two dielectrics are distributed inter se. If, for instance, the

medium K2
is in separate masses bounded by closed surfaces

dispersed through the medium Kly the solution of the problem
will depend on the shape as well as the number and magnitude
of the separate masses.

"We might endeavour to determine the density of an induced

distribution on those surfaces which, if they were filled with the

dielectric Klt would cause the normal forces on opposite sides of
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rr

the surfaces to bear to each other the ratio -=? If by that, or

by any other method, we could find the value of / /
x<f> ds for the

composite medium, the value ofK is at once known to be

rr

JJ
The problem is substantially the same as that of the deter-

mination of the dielectric constant in a single medium. If, for

instance, the dielectric K2
be contained in spheres, and they be

so distant from each other that their mutual influence may be

neglected, and the whole system be regarded as placed in a field

of uniform force X, it will be found that the density of the

induced distribution upon them which causes the normal forces

within and without the spheres to have the required ratio is

3X
proportional to cos 0, X being the external force, and 0, as

before, the angle between the radius of any point on a sphere

and the direction of #.

Let the density be
3X

a = n x cos 0,
47T

where n is a ratio to be determined. This distribution gives a

force nX within any sphere. Consequently the normal force

within any sphere is

(l-n)XcoaO.

The normal force outside of a sphere is

We have then by the condition respecting the forces

KI (1 + 2 n) = A*
2 (1 n),

and

from which K

or, X being very small,



CHAPTER XII.

THE ELECTRIC CURRENT.

ARTICLE 201.] HITHERTO we have been engaged in the de-

velopment of the so-called two-fluid theory of electricity in its

application to Electrostatics, or the conditions, on that theory,

of the permanence of any electric distribution, one essential

condition being that the potential shall have the same value

at every point in a conductor. The results arrived at are so

far in agreement with experiment as to justify the acceptance

of this theory as a formal explanation of electrical phenomena.
We now proceed to consider how far the theory can be adapted

to the explanation of observed phenomena in another class of

cases, those namely in which different regions of the same con-

ducting substance are maintained by any means at unequal

potentials.

Suppose, for example, that two balls of any given metal

and at the same temperature, originally at different potentials,

are held in insulating supports, and connected together by a wire

of the same metal
;
then it is found that after an interval of

time inappreciably small, the potentials are reduced to an equality

at all points of the conductor thus formed of the balls and wire,

and that the total charge on the ball of higher potential has been

diminished, and that on the ball of lower potential has been in-

creased. With the conception and language of the two-fluid

theory there has been in this short interval a flow of positive

electricity in the one direction along the wire, or of negative

electricity in the opposite direction, or both such flows have

taken place simultaneously.

If a magnetic needle be suspended near to the wire, a slight

transitory deflection of this needle may be observed during the

process of equalisation of potentials, and it might be possible
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with a sufficient length of wire and apparatus of sufficient

delicacy to detect a slight rise of temperature in the wire.

202.] Methods exist whereby the inequality of potentials in

different parts of a conductor may be restored as fast as it is

destroyed, and in such cases certain properties are manifested in

the conductor and its neighbourhood so long as this inequality

is maintained.

For instance, if the conductor be very small in two of its

dimensions in comparison with the third, in ordinary language
a wire, the deflection of the needle is no longer transitory but

persistent, so long as the inequality of potentials is maintained,

the amount of such deflection depending upon the amount of

the inequality, and the dimensions and constitution ef the wire ;

heat also continues to be generated in the wire at a rate depend-

ing upon the same circumstances.

Also if the wire be severed at any point, and the severed ends

connected with a composite conducting liquid, thus forming a

heterogeneous conductor of wire and liquid, chemical decomposi-

tion of the liquid will ensue at a rate dependent on the difference

of potentials, and the nature of the wire and liquid.

According to the two-fluid theory, there must be under the

given circumstances a permanent flow of one or both electricities

between the unequal potential regions, of a like nature to the

transitory flow spoken of above, and the wire is, in the language

of that theory, spoken of as the seat of an electric current. Of

course the existence of such a current is as purely hypothetical

as that of the electric fluids themselves. A transference of some

kind there must be, for it is indicated by the respective gain

and loss of electrification in the two connected conductors, but

whether that transference be a material transfer as implied

by the two-fluid theory, or a formal transfer like a wave, or

the transmission of force as in the case of a tension or thrust,

we are not in a position to determine. The current, as it is

designated, must be regarded as a phenomenon by itself, called

into existence under certain conditions, and subject to laws to be

investigated by independent observation.

203.] The question indeed might arise, how far are we

VOL. i. P
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warranted in regarding current phenomena as indicating the

absence of electrical equilibrium ?

When parts of a conductor are maintained at permanently

unequal but constant potentials, a certain state of the field

ensues, which is also permanent, and it might be said that

we have in such a case a system in equilibrium although not

satisfying the conditions required by the two-fluid theory. To

this it can only be replied, that in the case of electrostatical

equilibrium we have a system permanent of itself
; whereas in a

constant current the permanence always necessitates an expendi-

ture of energy from some external source. The former case

resembles the mechanical equilibrium of a heavy body on a hori-

zontal plane. The permanence of the latter case resembles that

of a heavy body dragged uniformly up an inclined plane, and

requiring at each point of its course the expenditure of external

work.

Laws of the Steady Current in a Single Metal at Uniform

Temperature.

204.] (l) The intensity of the current is the same at every point.

We have mentioned certain physical manifestations accom-

panying the current, viz. thermal, chemical, and magnetic.
These are capable of measurement

;
and it is reasonable to re-

gard these measurable effects as exhibited in the neighbourhood
of different portions of the current as giving a measure of the

intensity of the current in those portions. It is found experi-

mentally that in the case of a steady current these effects are

the same throughout. Wherever the magnetic needle is sus-

pended assuming its distance from the wire and other circum-

stances to be the same the same deflection results. If the

wire be of equal section in every part, then equal portions are

heated at the same rate, and in whatever portion of the wire

the liquid conductor above described is introduced, chemical

action also takes place at the same rate.

This law is evidently consistent with the two-fluid theory,

according to which we regard the current as a flow of either

fluid across any transverse section of the conducting wire.



205-] THE ELECTRIC CURRENT. 211

(2) Ohm's Law.

This law, which is universally accepted, asserts that

If a uniform current be maintained in a homogeneous wire

whose surface is completely enveloped by insulating matter, the

intensity of the current in the wire is directly proportional to the

electromotiveforce (i.
e. the difference ofpotentials at its extremities),

and inversely proportional to the resistance of the wire; the

T?

mathematical expression of the law being 7 = -

s
where I is the

JK

current intensity',
E is the electromotiveforce, and R the resistance.

The quantity here called the resistance depends upon the

length and transverse section of the wire and upon the material

of which it is composed. For wires of the same substance it

is proportional to the length directly and the transverse section

inversely, and Ohm's law asserts that if through a wire W the

electromotive force E produces a current I, and through another

wire W the electromotive force E' produces a current /', then

E E'
the fractions -=- and -~r will always bear the same ratio to one

another so long as the same wires ^Tand W are employed. If

R be the resistance, -^-
is called the conductivity, and if this

J\i

be denoted by K, then Ohm's law may be expressed in the form

205.] If the insulation of the wire is perfect, so that no trans-

ference of electricity can take place across its surface, the direction

of transference at each point must, in the permanent state, be

parallel to the axis of the wire at that point, but this direction

must be also perpendicular to the equipotential surface through

that point
1

. The wire is in fact a tube of force, and if it be of

uniform section the resistance through each element of length ds

is proportional to ds, and therefore we have i <x
,

or
j^

s

1 This coincidence of direction of the electromotive force at any point and of the

current through that point does not hold good in the case of anisotropic substances.

At present and hereafter, in the absence of special notice to the contrary, it must

be understood that we are confining ourselves to the consideration of isotropic

substances.

P 2
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constant at each point. Hence, by Art. 102, there can he no free

electricity at any point within the substance of the wire.

This condition is satisfied according to the most generally

accepted theory by regarding the electric current as consisting

of equal quantities of positive and negative electricity flowing in

opposite directions.

In this case the potential F, at any point distant s from a

fixed point in the wire's axis, must be given by the equation

V = Rs+C, where R is the constant resistance per unit length ;

and if the axis be a straight line parallel tc x we have F=Rx + C,

i.e. the potential is that of a field of uniform force.

If the wire be not of uniform section, then the resistance

along a portion of length ds along the axis is, by Ohm's law,

proportional to ds directly, and to dS the transverse section

inversely ;
hence we have ice

-jdS,
or dS is constant through-

out, proving (by Art. 102) that there is still no fr^e electricity

within the substance of the wire.

206.] The statement of Ohm's law may be generalised as

follows for all forms of homogeneous isotropic conductors with all

their dimensions finite. For, from what has been said above, it

follows that the current flows from one elementary region to

another of such conductors along elementary tubes of force. If

we regard such tubes as wires in which the current obeys Ohm's

law, this leads us to the equation for the intensity of the current

over the elementary area dS of the equipotential surface through

any point
dV 70 dV _ .

i oc -r- dS. or -=- as is constant.
ds ds

An equation which, as before stated, proves that there is no free

electricity within the substance of any conductor through which

a permanent current is passing. If the conductivity be variable

and be denoted by K, this becomes

207.] It may here be interesting to prove the following pro-

position, as an illustration of the resistance of a conductor,
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namely If one electrode of a conductor be in communication

with the earth, and the other with a conducting sphere charged

originally with any amount of electricity, then the resistance of

the conductor is the reciprocal of the velocity with which the radius

of the sphere must diminish, in order that the potential of the

sphere may remain constant, notwithstanding the loss of elec-

tricity through the conductor *.

Let the initial radius of the sphere be #, and the mass of

its initial charge be M ; then the original potential V will

i,
M

be
a

If dM and da be the simultaneous small decrements of M
and a in the small time dt, then, since by hypothesis V is con-

stant, we must have
M _dM~
a
~

da

But if R be the Resistance of the conductor, we have

.K

Multiplying these equations together we get

\_ dt_"
Bda

da_ 1~-'

208.] On the Value of the Resistance in particular Cases.

(a) A series of wires of the same material but different trans-

verse sections joined together in series end to end.

&c.

A l
A 2 A 3 At

Fig. 30.

Let the wires, n in number, be A^A^ A
2
A3 ,

AZ A^ &c. Let

the resistances in these wires be RL, H2 ,
R3 ,

&c. Let the poten-

tials at the points Alt A2 ,
AB9 &c. be 7lf 72 ,

7
3 ,

&o. And let

1 The proposition is taken from Mascart and Joubert's Electricity and
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the intensity of the current, which must be the same in each

wire, be i.

Then, by the continuity of the current and Ohm's law, we have

F F F F FF FF_ vl~ '
2 _ ' 2~ '

3 fc _ ' n~ r n+i _ _ v I
~

n+1

R, R, Rn ~R,+ Rz
.

If therefore R be the resistance in this case,

(/5)
The resistance in the case of a multiple arc conductor.

The conductor is called a multiple arc when it is formed, as in

the figure, of a number of separate wires branching off from A,

Fig. 31.

the extremity of one wire a A, and converging to the extremity
of another wire Bb at B. Let F

,
Fb be the potentials at A

and B respectively.

In this case the electromotive force in each separate transit

from A to B is the same, viz. Fa Fb . If R^ R2 , &c. be the

resistances of the wires, %, i
2 ,

&c. the currents flowing through

them, and i the current in A a, we have

,
= i

2
R

2
= &c. = in Rn = Fa- F6 ,

if j5 be the resistance sought, and therefore

JL JL J_ _L
R RI R

2
Rn

The current flowing in any particular wire, as for instance iv
, . iE

is equal to ^-H\

If we denote the conductivities by K: ... K2 ... n̂ , we have

It follows from (a) that the resistance in a wire of given
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uniform section varies directly as the length of the wire, and it

follows from
((3)

that the resistance in a conductor consisting of

any number (n) of similar and equal wires placed side by side is

- th of the resistance of any one of the wires taken singly,%

hence the resistance of a wire of given substance and given

length varies inversely as the area of the transverse section,

or generally the resistance in a wire of given material varies as

the length directly and the transverse section inversely, as

already stated.

209.] If we have a homogeneous wire of which the area of a

transverse section at distance s from one end is /(<?), the resistance

per unit of length at the same point is .
,
and the resistance

/W
rs $s

of the portion s of the wire is / . Hence, if F be the*
J Q /W

potential at the end in question, the potential Fa at distance s,

when a current i flows from that end, is found from

Currents of much greater complexity may occur in practice

and are of great importance. We shall later on investigate a

more general case of a system of wires traversed by electric

currents.

210.] When the conductor is not a wire, or collection of wires,

but a continuous conducting substance, we have seen that

Ohm's law may be expressed by the equation

**??ds

where * is the intensity of current which traverses an equi-

potential elementary area dS in the neighbourhood of any point

at which the potential is F", ds is an element of the line of force

through the point, and K is a constant at all points in the sub-

stance depending on the nature of its material.

When any given regions of such a conductor are kept at

uniform given unequal potentials, a permanent current state
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is soon established ; the given equipotential regions are in such

a case generally termed electrodes, and sometimes sources or sinks

of electricity, according to the direction of the current flow from

or towards them.

When these electrodes are two in number, one source and one

sink, we may, as in the case of a wire or wires, determine a value

of the ratio of electromotive force to current intensity which

will remain constant so long as the substance and position of

the electrodes is constant, and this ratio is spoken of as the

resistance of the system ;
the electromotive force is the differ-

ence of the constant potentials of the source and sink, and the

current intensity is measured by the rate of transference from

source to sink per unit of time.

211.] As a particular example let us take an infinitely extended

and very thin conducting plate, bounded by parallel planes

and pierced by two cylinders P and Q which are maintained at

given constant potentials.

If the mean plane of the plate be that of x, y> and V be the

potential at any point, the conditions that there shall be no

free electricity within the plate, and that the equipotential

surfaces are all normal to the plate, lead to the equations

V2 F=0, ^=0.dz

Hence the problem may be treated as one in two dimensions

only, and the electrodes may be regarded as circles with radii

equal to those of the cylinders ;
let these radii be a and l> and

let the constant potentials be V9 and V
q respectively.

The equation in F, or

-
dx*

r
df

~

may be satisfied by assuming

F=Cr+4 1 logr, + 4 2 logr2 + &c., or C+2A logr,

where the quantities rl9 r2 ,
&c. are the distances of the point

x, y from any assumed fixed points, and these points must be so

taken that V is equal to Vp and Vq respectively at the circum-

ferences of the circular electrodes.



211.] THE ELECTRIC CURRENT. 217

Let O
p
and O

q
be two points within the circles P and Q such

that each is the image of the other in its own circle, and let the

potential V at any point be taken equal to C A log
-

> where
r2

r^ and r
2 are the distances of the point from O

p
and O

q
re-

spectively, then all the required conditions will be fulfilled,

provided C and A be taken to satisfy the conditions

f
Vp = CA log at the circumference of P,r

z

V
q
= C A log at the circumference of Q,r

2

inasmuch as is constant over each of these circumferences.
**2

Since V is constant whenever is so, it follows that the
r
2

equipotential curves are circles each one of which is conjugate

to the centres of P and Q. The orthogonal trajectories of

such circles, or the lines of current flow, are circular arcs each

passing through these centres, and, if and be found at the
da do

circumferences of these circles respectively, we can find the whole

V V
current in unit time in terms of Vp V

q
in the form of ^= -

;

the quantity R is then called the resistance of the system, its

reciprocal being the conductivity.

In the particular case of the radii a and 6 being equal, and

each very small compared with ./, the distance between the

centres, we find from the above equations

V V
A = \

~ "

Let i be the current in unit time over the arc ds of the

circumference of the P electrode, then, since r2 is sensibly con-

stant and the direction v of the line of flow is along the radius

ofP,
T,dV . T^dV , AK

i -K î-ds=K-T~ds - --ds,
dv dr a
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where K is the conductivity of a unit length of a prism of the

conductor of unit breadth. Therefore the total current in unit
v

time over the P circumference is 2-nai, or 2irKA.

It is clear that K is proportional to the thickness 8 of the

plate, and if for it we write Kb, the current per unit time will be

where K is now the conductivity through a cube of the substance

whose edge is the unit of length.
V V

Writing for A the value already found - ~
,
we get the

2 log-
i-

current per unit time equal to
3 a

and the resistance of the system is log

On Systems of Linear Conductors.

212.] A conductor, two of whose dimensions are very small

compared with the third, as for instance a wire, is called a linear

conductor.

We have had occasion to consider certain properties of linear

conductors. Firstly, we have seen that if such a conductor be

divided into several parts through which a current flows con-

secutively, as A, C, &c., the resistance of the whole is the

sum of the separate resistances of the several parts. Hence, in

case of a homogeneous conductor at uniform temperature, if the

potentials at the ends are known we can determine the potential

at any intermediate point when a current is flowing.

For instance, let APB be a wire the potentials of whose

extremities are Va and 7b . Let P be an intermediate point, and

let the resistance of the portion AP be r
ap ,

and that of PB be

r
pb . Then if i be the current,
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Hence

which determines F
p

.

Similarly, if i be given, but the potentials are not given, we
can determine the differences of potential Fa Fp and Va Vb .

Again, in case of two or more wires connected in multiple arc,

we have shown that if Vm Vb be the potentials of the extremities

the currents in the several wires are respectively Kl(Va Vb] J

K
z(Va F&), &c., where Kv K^ &c. are the conductivities of the

wires. And we can therefore determine all the currents if Va

and Tb are given, or the difference of potentials Fa Fb ,
if the

sum of the currents is given.

It is assumed that the wires are all of the same metal, and at

uniform temperature.

213.] The points ofjunction of the wires are called the electrodes.

In the above simple case we have only two electrodes. But we

may conceive a system of wires meeting in more than one point.

For instance, to take a case a little more complicated, let there

be two wires APB, AQB, and the

two intermediate points P and Q ^B

connected by a third wire.

If the potentials at A and B are

given, we may determine those at

P and Q, as follows.

Let K
ap,
Kpb,

K
pq be the conductivities of the three wires AP,

PB, PQ. Then, since the sum of the currents flowing from P
must be zero, we have

(r(I-7,) = o.

Similarly,

*.. (F.- F.J + Z,, (F- F.)+*M (F,- F.)
= 0,

from which, the conductivities K being known, the two unknown

potentials, V
p
and F

q , can be determined; and thence the cur-

rents are known.

If instead of the potentials, the current C, entering the system

at A and leaving it at B, be given, we have three linear equations
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to determine the differences of potential Va f^i, ^o~ ^p

Va-Vq , namely,

C = Kap (Va
- Vp) +Kaq (Va

- Vq\

The points P and Q will generally be at different potentials,

and a current will pass along PQ or QP.

214.] The case in which P and Q happen to be at the same

potential is of special importance. In that case no current passes

in PQ, and the potentials at every point in either wire are the

same as if there were no metallic connexion between P and Q.

Tkali"

(V VA
( ' K^

A current will pass in one or other direction along PQ,
unless P and Q are at the same potential, that is, unless

This principle is made use of in instruments for measuring
resistance. Suppose, for instance, AX is a wire whose resistance

rax is required. Let BX be a con-

ductor whose resistance rxb is known.

Place AX and XB so as to form one

conductor AXB. Let AEB be a uni-

form wire, E a point in it.

If E and X be joined by a wire, a
JB current will pass along it in one or

other direction, unless the potential

at X is the same as at E.

We increase or diminish the distance of E from A until a

needle suspended near EX shows no deflection when an electric

current is made to pass from A to B. Then we know that the

potential at X is the same as that at E; and therefore

AE
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which determines rax . This is the principle of the instrument

known as Wheatstone's Bridge.

215.] In a more general case, there may be n points, or elec-

trodes, connected each to each by wires of known conductivities.

Let Vl . . . Vn be the potentials at the several electrodes,

(?p c
2 ,

... cn the currents which enter the system from without at

these electrodes respectively, taken as negative when a positive

current leaves the system. Then the current in AB is

and we have for the electrodes P and Q
op
= K p (V,- Va) + K,f (Vp- Fi) + &c.)

,
= *(?,- r.)+r. (v,- r)+&4

'

and so on for each electrode.

Now since no electricity can be generated or destroyed within

the system, the sum of the currents entering the system at all

the electrodes must be zero. That is,

e
1 + c

2 +...+on = 0.

Therefore only ft 1 of the c's are independent.

Also, since we are only concerned with the differences of the

potentials, there are n i independent quantities of the form_
_

In all we have n 1 independent linear equations of the form

A subsisting between the 2n2 independent quantities.

If therefore any n 1 of the quantities be given, the equations

suffice to determine the others. For example, if the entering

currents c be given at any n 1 of the electrodes, we can deter-

mine all the differences of potential. And if all the differences

of potential are given we can determine the currents.

If we differentiate the equation A for any electrode, as P, we

obtain

Similarly, differentiating the equation for A we obtain

Since Kap
= Kpa ,

it follows that the potential at P due to the

introduction of unit current at A is equal to the potential at A

due to the introduction of unit current at P, and so on.
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On the Generation of Heat ly Electric Currents.

216.] Suppose a uniform current of intensity / to be existing

in a linear conductor AB of resistance R, with terminal

potentials VA and VB .

There is a transference, per unit time, of electricity / from the

extremity A to the extremity of B.

Now if e
lt 2 ,

&c. be the charges upon a system of conductors

AH A
2) &c., and if T

l}
V
z, &c. be the corresponding potentials and

W the electric energy of the system, we have proved that

de
'

In the case now under consideration, the charge at the

extremity A of the conductor, where the potential is TA) is

diminished by Idt in the time dt, and that at the extremity J9,

where the potential is FB) is correspondingly increased by the

same quantity. Hence, since VA is greater than VB ,
there is by

the process a diminution of the electric energy of the system in

time dt equal to

(VA-VB)Idt.
But by Ohm's law, we have

R
Therefore the diminution of electric energy, owing to the

existence of the current, in the time dt is

= RPdt.K
This is the work done ly the electrical forces in the field in

time dt in the passage of the current 7 through the conductor,

and this work done, or electric energy lost,, must reappear in

heat evolved in the conductor AB in the same time.

If therefore / represent the Joule heat- equivalent, the heat

evolved per unit time will be

RI*
~J"

Joule was the first to prove by direct experiment that the rate

of evolution of heat in any wire through which a current passes
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is proportional to the square of the intensity of the current,

and we now see that this result follows directly from Ohm's law

and the principle of the conservation of energy.

217.] If the current, C, having been generated in a system,
be allowed to decay by the resistance R, the value of the current

at time t after the commencement is C*~Rt . Hence the total

quantity of heat generated when the current has ceased is

&C* *+**& = 1C*.
*/o

For this reason \C Z is sometimes called the energy of the

current.

It is supposed here that the current during this process is

uninfluenced by any other current, or by any magnetic field, as

we shall see later that electric currents in the same field exert

mutual action on each other.

On the Generation of Heat in a System of Linear Conductors.

218.] In the simple case of a number of wires in multiple

arc, we have seen that R^C^ = -S
2
<?
2
= &c., where Clt 2,

&c. are

the currents, and R
lt R^ &c. the resistances in the respective

wires.

If the total current C
l + C2 -f &c., or 2 C

y
be given, this is the

distribution of the current among the several wires which makes

the heat generated per unit of time a minimum. For *2,RZ C is

the heat generated, and the condition that this should be mini-

mum given 2 C is that R C = R
2 C2

= &c.

The same property can be proved (Maxwell's Electricity and

Magnetism, 283) for the more general system, provided there be

no internal electromotive forces.

For let Cay Cb) &c. be the given currents entering a system of

linear conductors at the electrodes A, H, &c. Let C
ps

be the

current in any wire PS determined according to Ohm's law by
the process above described, so that

cps
= (vp-r,)Kpi ,

or Vp-V, = R
pt Cpt

.

Let us next suppose the same total current constrained to flow

through the system according to any other mode of distribution,
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without however altering the sum of the currents flowing from

or to any electrode. Let,* for instance, the current in PS be

C
p8+Xps

instead of C
ps

.

Then the heat generated in the distribution according to

Ohm's law is 2.RC2
.

And the heat generated in the constrained distribution is

or

But for each electrode A> JB, &c. the sum of the entering

currents is unaltered.

Hence, for any electrode as A,

or 2Xa = 0.

Hence 2^RCX=Q.

Therefore the heat generated per unit of time in the con-

strained system is 2KC 2 +2RX2
, and exceeds that generated in

the original system by the essentially positive quantity 2EX2
.

Electromotive Force of Contact.

219.] Up to this point we have introduced the restriction that

the conductors with which we are concerned shall be of the same

substanee throughout. The reason of this restriction, which in

strictness is equally required in electrostatic investigations, will

now be considered.

Volta believed that when two different metals were placed

in contact, the potential of one of them was always higher than

that of the other, and this without any disturbance of electric

equilibrium. In fact, that instead of the condition of electric

equilibrium being V = Constant throughout all continuous con-

ducting space, the condition should really be, when such conduct-

ing space is composed of substances of different materials,

V C19 V =. C
2 ,
V =. (?3 , &c., in the regions occupied by these

substances respectively; the values of the constants C
lt
C
2 ,

(?3,
&c.

being dependent upon the nature of the substances, and the

electric distribution in the field
; subject only to this restriction,

that in every case of electrostatic equilibrium of a compound
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conductor the difference Cr C
g of the constant potentials of any

two given substances should always be the same at the same

temperature.

220.] For instance, if a zinc wire and a copper wire were held

by insulating- supports, and brought into contact at one end of each,

the potential of each wire would be the same throughout, but

that of the zinc would exceed that of the copper by a quantity

always the same for the same temperature. If platinum were

substituted for copper a similar result would be observed, but the

difference of potentials (the temperature being the same as before)

would be less. If platinum, and copper were similarly connected,

the platinum would stand at the higher potential, and the con-

stancy of temperature being still maintained, it would be found

that the excess of potential of zinc over copper in the first case,

supposed above, was equal to the sum of the excesses of the

potentials of zinc over platinum and platinum over copper in the

two last cases. This difference of potentials is generally called

the electromotive contact forces of the two metals, and is for

metals A and B denoted by A/B.
It is considered as positive if the metal of higher contact

potential is placed before the line and negative if the reverse, so

that A/B+ B/A = 0, and if there were three metals J, B> and C
whose electromotive contact forces at any temperature were

A/B for A and B and B/C for B and <?, then the electromotive

contact force for A and C at the same temperature would be

A/B -f B/C ;
or in other words, for the same temperature we have

the equations

and A/B+ B/C+C/A=0.
If the metal A in contact with B at any temperature stand at

a higher potential than B, it is said to be electropositive with

regard to j5, and B to be electronegative with regard to A.

221.] Volta with his followers regarded all metals as having

certain specific affinities for the positive fluid, so that in cases of

contact the electropositive metal of the pair becomes charged

positively with reference to the other metal. A similar effect is

on this view supposed to attend the contact of all conducting

VOL. I. Q
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bodies, whether metallic 01*non-metallic, solid or liquid, in the absence

of chemical action. In the case of composite liquid conductors

chemical decomposition ensues on contact, and the electromotive

contact force is on such decomposition diminished, or reduced to

zero ; the contact difference of potentials being, on this view,

dependent upon the absence of chemical action.

According to the views entertained by other physicists, the

difference of potential at contact is dependent upon the medium

in which the touching bodies are situated, and is in all cases the

remit of chemical action in that medium. The latter hypothesis

is to a certain extent at least borne out by experiment*, and the

subject cannot be regarded as being yet thoroughly decided.

Meanwhile we may, without waiting for a solution of the diffi-

culty, develop the laws of this electromotive force of contact, so

far as they have been experimentally determined.

222.] Ohm's law as originally enunciated contemplates a wire of

homogeneous substance throughout. The laws of current intensity

and of evolution of heat in the case of wires in series require

modification when these wires are not of the same materials :

va vb

V~ A ~m~ B ~F2

Fig- 34-

For example, let there be two wires of metals A and B touch-

ing at m. Let the potentials of A at the free end and at m be

V
v
and Va9 and let those of B at the corresponding points be

?
2 and Vb . Let Ra and Rb be the resistances of the A and B wires

respectively, and let i be the current intensity. Then by Ohm's

law

Ra Rb Ra+Rb R

if F! be greater than T29 and if R be total resistance as

* See a Paper by Exner, Phil. Mag. vol. x. p. 280, and works there cited.

A third view, suggested by Professor Oliver J. Lodge, is that each metal in the

absence of contact with another metal is at lower potential than the surrounding
air by an amount depending on the heat developed in its oxidation, that on contact
the potentials of the two metals become equal, the more oxidisable metal re-

ceiving a positive and the other a negative charge.
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previously defined, the term B/A being, as above explained,

positive or negative according as B is electropositive or electro-

negative with regard to A.

If there had been any number of wires of metals Alt A2 , A3 ,

&c., the equation would have been

R
So that Ohm's law might still be enunciated for such an arrange-

ment, provided the external electromotive force Y
l 7J were

increased by the electromotive contact forces at the respective

junctions, regard being paid to the signs of these forces, and the

resistance being the sum of the resistances in the respective

wires.

223.] In the multiple arc arrangement with initial and final

wires of metals A and
_Z?,

and connecting wires of metals m-^ ,
m

2 ,

&c., if i be the current intensity in A or B, and ir that in the

wire mr , with resistance Er) V^ and 7J the potentials of A and B,

and 7r and Vf of mr , at the junctions, we have

V VV r V r

Rr Rr

>Rr

and therefore

So that in this case also the same expression results as in the

homogeneous multiple arc already investigated, provided the

external electromotive force be increased by B/A.

224.] The expression for the energy dissipated in the case of

wires in series also requires to be modified when the wires are

not of the same metal throughout.

If as in the last article there be two wires of metals A and B,

and the notation of that article be retained, we have

The total loss of electric energy per unit time as the current

passes from the free extremity of A to that of B = (J^ V^)i.

Q2
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Therefore the whole heat generated must be

J

But by the equation above obtained

Therefore the heat generated is

that is to say, if B/A be positive the heat generated in the com-

pound wire of resistance R by the passage of the current of

Hi 2

intensity i is less than =-
,
or what it would have been had the

J

wire been homogeneous, by the quantity
'

'

,
and is greater

than j- by T
'- if A/E be positive : that is to say, when

/ /

a current in passing through a circuit of heterogeneous metal

wires traverses a junction from an electronegative to an electro-

positive metal there is absorption of heat at the junction, and on

the contrary, there is evolution of heat in the passage from an

electropositive to an electronegative metal.

225.] This absorption and evolution of heat at metal junctions

was first observed by Peltier, and the phenomenon is called after his

name
;

it is physically analogous to the absorption and evolution

of heat accompanying chemical dissociation and combination

respectively, the electricity at the junction being raised to a

higher, or sinking to a lower potential in the respective cases,

just as the chemical potential of the dissociated or combined

elements is raised or depressed. The actual amount of heating
or cooling as experimentally observed is always less than the

theory requires, and in some cases is of the opposite sign ;

indicating, apparently, that the whole electromotive contact

force of Volta is not to be sought in the mere metallic contact,

but in the action of the surrounding medium.



CHAPTER XIII.

OF VOLTAIC AND THERMOELECTRIC CURRENTS.

ARTICLE 226.] IF any number of wires of different metals

3fl9 M2 , 1/3, Ml are joined together in series, and are kept at the

M! Mz M3 Ml

Fig. 35-

same temperature throughout, the wire of metal M
l beginning

and ending the series, it follows from the laws of contact action

above stated that each wire is at the same potential throughout
its length, and that the beginning and ending Ml

wires are also

at the same potentials, inasmuch as the sum of the electromotive

contact forces M^M^ -fM2/M3+M3/Ml
is zero

;
hence if a circuit

be formed by joining the free ends of the M
l
wires no current

will ensue. If however we substitute for the M^ wire a composite

liquid conductor L, and thus complete the circuit, the electro-

motive contact forces L/MZ and L/M% are modified, the liquid L

being at the same time decomposed.

According to the extreme views of the Volta contact theory,

the last-mentioned electromotive forces disappear with the de-

composition, the liquid L and the metals Mz and M2
at their

points of immersion in that liquid are reduced to the same

potential, the electromotive contact forces Jf2/M"3,
&c. of the

metallic junctions are no longer compensated by the forces L/M2

and L/MZt and a current ensues through the wires and liquid.

Suppose, for instance, the liquid be dilute sulphuric acid and

the metals be plates of zinc and copper partially immersed and

having their unimmersed ends attached to platinum wires, so long

as these platinum wires are not united to each other, the zinc,

the copper, and the liquid stand, according to this theory, at the

same potential (V suppose), but the platinum wires attached to

the zinc and copper plates are at the potentials VZ/P and
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V+P/C respectively. If now the platinum wires be united,

electric equilibrium can no longer be maintained, inasmuch as

the two portions of the same platinum wire are now at poten-

tials differing from each other by Z/P + P/C or Z/C. Hence a

flow of electricity must take place through the platinum wire

from the copper to the zinc plate, raising the potential of the

zinc and depressing that of the copper.

The inequality of the potentials thus produced in these im-

mersed plates is again destroyed by the action of the liquid,

which is at the same time decomposed, oxide of zinc being

formed at the zinc plate, which is dissolved as soon as formed,

and hydrogen being given off at the copper plate, and thus a

permanent current ensues in the closed circuit of copper, plati-

num, zinc, liquid, copper, and in the direction indicated by the

order of these words. Such an arrangement is called a Voltaic

current, the vessel containing the liquid and plates is called a

Voltaic cell, the decomposable liquid is called an electrolyte^ and

its decomposition on the passage of the current is called electro-

lysis. The intermediate platinum wire is in no respect essential

to the process, which would have equally taken place if the

copper and zinc plates had been in immediate external contact

with each other.

227.] According to the theory of the Voltaic circuit, above

explained in outline, the potential rises discontinuously at the

metallic junction or junctions outside the cell, and falls continu-

ously throughout the rest of the circuit ; the whole electromotive

force of the current is sought for in the contact force at the

junctions, the function of the chemical action in the cell being
limited to the continued equalisation of potentials within the

cell as fast as the equality is destroyed by the electric flow.

According to the chemical theory of the circuit, which is now

more generally accepted, a discontinuous change of potential

takes place at the junctions between the metals and the liquid,

those being the points at which, as we shall see presently,

energy for the maintenance of the current is in fact evolved or

absorbed. The true theory of the cell is not finally settled,

only it is known that the chemical decomposition is an essential
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part of the phenomenon. It is possible however to develop certain

fundamental laws of the action, which are essentially the same

whatever be the metals constituting the plates, and whatever be

the liquid in the cell, provided it be capable of electrolysis.

228.] The plates by which the current enters and leaves the cell

are called electrodes, that by which it enters is called the anode,

and that by which it leaves is called the cathode, the two elements

into which the electrolyte is decomposed are called the ions, the

element appearing at the anode is called the anion, and that

appearing at the cathode is called the cation.

Let the metal electrodes be called P and N respectively, and

the two constituents, or ions, into which the liquid is resolved

be called TT and v respectively. On the passage of the current

the ion TT will appear at the electrode N
t
and the ion v at the

electrode P. Then it is found that

(1) The ratio of the masses in which the two constituents TT

and v appear at the electrodes is that of their combining weights.

(2) The absolute mass of each ion so deposited per unit of

time is proportional to the strength of the current, or in other

words, for each unit of positive electricity transmitted a certain

mass of each ion is deposited at the corresponding electrode.

This is called the electrochemical equivalent of that ion.

(3) So long as the electrolyte is the same, the ions into which

it is decomposed are the same, whatever the metals constituting

the electrodes ; and the same ions appear at the anode and

cathode respectively. One or both of the ions may be com-

pounds, and the same constituent which in one electrolyte becomes

an anion, may in another electrolyte become a cation.

(4) The source whence the energy, requisite for the maintenance

of the current, is derived, is the arrangement of the elements of

the electrolyte and the immersed plates in a combination of

lower chemical potential energy than that which existed anterior

to the current.

229.] The action of the typical cell described above of zinc

and copper plates in diluted sulphuric acid may be supposed to

be as follows. The chemical arrangement before the circuit was

completed was Zn H^SOl . . . H2 SO^ . Cu ;
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and during the existence of the current it is

ZnSOv ... ff^Cu.

The zinc first combines with the oxygen of the water (ff2 0),

and the zinc oxide is then replaced by the zinc sulphate

Zn S0, which being soluble leaves the zinc plate free for further

action. The potential chemical energy of Zn S0
4

is less than

that of 7/2 0, or, as more practically expressed, the heat evolved

by the combinations Zn and Zn 0, S03
is greater than that

required for the decomposition of H2 0, the difference furnishing

the current energy.

230.] A feeble current might have been obtained with water

only in the cell, the chemical arrangements before and after

the completion of the circuit being

and ZnO.^H^Cu
respectively.

But in this case, since the oxide Zn is insoluble in water,

the zinc plate would soon, by its oxidation, become unfit for

action, and the current would cease. We may however use this

ideal case as an example.

In this case the ions TI and v are and H
2 respectively. Taking

unity as the combining number for hydrogen, that of oxygen
is 8, and that of zinc is 32-53. Therefore one gramme of zinc

takes in combination with oxygen the place of - - grammes
32-53

g
of hydrogen, each combining with- , or -246 gramme of

o &'5 o

oxygen. The heat evolved by the combination of one gramme
of zinc with the oxygen is 1310 units *. The heat which would

be evolved on the combination of
-7^-^ gramme of hydrogenO '53

with the oxygen, and which is therefore absorbed on their dis-

sociation, is 1060 units. Therefore for every gramme of zinc

* The object in this and the two following articles being illustration only, the
absolute numerical values are of less importance. The system of units and the
numerical values are those employed in Hospitaller's Formulaire pratique de

VElectricien, English Edition, p. 214.
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oxidised the excess of heat evolved over that absorbed is

(1310 1060) units; that is, 250 units.

Again, for every unit of current 00034 gramme of zinc is

oxidised. In other words, -00034 is the electrochemical equiva-
lent of zinc. Therefore for every unit of current the excess of

heat evolved over that absorbed is -00034x250. And this is

equivalent to an amount of mechanical work

34 x 250
X

100000
'

where / is Joule's factor.

Now if F be the electromotive force of the cell, i the current,

the amount of heat evolved is Fi. And therefore the amount

of heat evolved by unit current is F. That is,

34x250
'

100000
"

231.] It is usual, as above said, to employ instead of water

dilute sulphuric acid, the formula for which is H2
OS03 . In

this case we may suppose that the H2 is decomposed, and in

the first place oxide of zinc, ZnO, is formed, and the hydrogen
H

2
is set free. Then the Zn combines with the fiO

Si forming
Zn. 4 . The heat evolved by this last-mentioned combination

must be added to the 250 units above mentioned.

One gramme of zinc combines with -246 of a gramme of

oxygen H2 being decomposed with the evolution of 250 units

of heat. And 1-246 grammes of oxide of zinc combine with S03

with the evolution of 360 units. Adding together 360 and 250,

we obtain 610 units as the total heat evolved.

232.] In the cell known as Darnell's cell the electrodes are

zinc and copper, but there are two liquid electrolytes, one of

them saturated solution of sulphate of copper in contact with

the copper, and the other dilute sulphuric acid in contact with

the zinc, the mixing of the liquids being prevented by a porous

diaphragm which does not interfere with the electrolytic con-

duction, that is to say, the liberated ions pass through the

diaphragm but the liquids do not. The following may be sup-

posed to be the action of such a cell.
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The electrolysis of the II
2
S0 in contact with the zinc gives

rise to a chemical action identical with that of the last case, but

the hydrogen H2 does not as in that case remain free. It passes

through the diaphragm and displaces an equivalent of copper in

the sulphate of copper Cu <S04 , giving as a result H2 S04 ,
and

depositing the copper on the copper plate.

In estimating the electromotive force of this battery the disso-

ciation and combination of the water H2 counteract each other,

and the resulting force is the difference between the heat of

combination of zinc with S0 and that of copper with the same

element.

The heat of combination fin $04 we have already found to be

1670 units, being the sum of Zn.O (1310 units) and ZO.SO^
(360 units), and the heat of combination CuSO is 881 units.

The difference, i. e. the thermal measure of the chemical action,

is 789 units. The product of this 789 by TTnnnr the electro-

chemical equivalent of zinc, gives the thermal measure of the

chemical action for each unit of electricity transmitted, and this

result again, multiplied by Joule's factor, gives the electromotive

force of a Daniell's cell in the ordinary mechanical units.

233.] The electromotive force of a cell in which unit work

in centimetre-gramme-second measure is done for each unit of

electricity transmitted is taken for the unit of electromotive force.

It is called a Volt. A Daniell's cell gives in practice about 1-079

Volts. The unit resistance is an Ohm, and may be defined to be

48-5 metres of copper wire of one millimetre thickness. The

unit current is called an Ampere, and is the current generated by
an electromotive force of one Volt in a conductor whose resistance

is one Ohm.

234.] The electromotive force of a cell may be expressed in

general terms as follows. See Fleeming Jenkin's Electricity.

Let the effect of the unit current be to decompose a constituent

into grammes of one ion TT, and e' grammes of the other ion v.

Then e and
'

are the electrochemical equivalents of the two

substances of IT and v.

Let 6 be the quantity of heat absorbed in the combination of

unit mass of TT with the corresponding mass of v, and let 0' be
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the heat absorbed in the same combination for unit mass of v.

Then e = 0' e' is the heat evolved in the circuit for every unit

of current.

And in mechanical units J#e is the electromotive force of the

cell. If the chemical action be more complex, as in the case of

the DanielPs cell, it still remains true that the heat evolved is

proportional to e or e', and is to be found as the algebraic sum
of the heat evolved and absorbed by all the chemical changes
from which the ions result.

235.] By increasing the dimensions of the cell we do not in-

crease the electromotive force of the circuit, but we diminish the

resistance within the cell, and we therefore increase the intensity of

the current, especially in cases where the external portion of the

circuit is of a small resistance, and where therefore the resistance

of the cell becomes appreciable ;
and the same result follows when

several cells act together, the zinc plates being severally con-

nected, and likewise the copper plates, for this arrangement is

in its electrical effects the same as if all the zinc and all the

copper plates were severally combined into one zinc and one

copper plate with areas respectively equal to the aggregate areas

of the zinc and copper plates in the separate cells.

If however the zinc of one cell be united with the copper of

the next, and so on in order, the cells are said to be in series, the

electromotive force is the sum of the separate electromotive forces

of the separate cells, and the arrangement is called a voltaic or

galvanic battery.

If the discontinuous rise of potential in case of a circuit

formed of a single cell be E, then in case of a circuit formed of

two or more cells in series it will be repeated as many times as

there are cells. According to the Volta theory, this rise of

potential takes place at the junction between the copper of the

first cell and the zinc of the second, and so on.

According to the chemical theory the change takes place in

each cell between the metals and the liquid according to either

view the electromotive force of n cells in series is n times that

of a single cell.

236.
]

If we have a number of cells of different kinds connected
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in series, the electromotive force of the series will be the algebraic

sum of the electromotive forces of the separate cells.

We might for instance place a single Daniell's cell between

two more powerful batteries, connecting the zinc plate of the

single cell with the terminal zinc plate of one battery, and the

copper plate of the single cell with the terminal copper plate of

another battery. Then in calculating the electromotive force of

the system, we must take that of the single cell as negative.

In that case the current is forced through the single cell

against its own electromotive force.

237.] A cell in which no chemical actions can take place on the

passage of the current, evolving more heat than is absorbed, cannot

maintain a current. But it may be possible by connecting its poles

with another battery to force a current through it
;
and this current

may have the effect of decomposing the liquid of the first cell,

work being done in it by the external battery against the chemical

forces of the cell itself. Such a cell is called an electrolytic cell.

238.] Cases exist in which the ions formed in an electrolytic cell

do not escape, but enter into new combinations within the cell.

Such new combinations, since work has been done against the

chemical forces in forming them, are of higher chemical potential

than the original combinations which they replace.

They may be capable of decomposition and restoration to their

original condition under the influence of a reverse electric current,

in which case heat will be evolved, and the cell in its new state

will be a Voltaic cell capable of maintaining a current. Such a

cell is called a secondary cell, or an accumulator, because the

work done in producing the first chemical changes, or as it is

called charging the cell, is stored up in it, and may be made

available, as required, to maintain an electric current.

Such is in its essential features the theory of the Plante battery
and other allied forms, in which, when charged, one plate is of

lead and the other consists of peroxide of lead, and the liquid

used is generally dilute sulphuric acid. The cell when so charged
maintains a current from lead to peroxide through the liquid,

and from peroxide to lead outside, the chemical change being the

conversion of the peroxide into protoxide of lead. Then by forcing
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a current through the cell in the reverse direction the protoxide
is again converted into peroxide.

239.] Clausius has suggested a theory of electrolysis, supposing
that the molecules of all bodies are in a state of constant agitation ;

that in solid bodies each molecule never passes beyond a certain

distance from its mean position ;
but that in fluids a molecule,

after moving a certain distance from its original position, is just
as likely to move further from it as to move back again. Hence
the molecules of a fluid apparently at rest are continually

changing their positions, and passing irregularly from one part
of the fluid to another. In a compound fluid he supposes that

not only the compound molecules move about in this way, but

that in the collisions that occur between the compound molecules,

the molecules, or rather submolecules of which they are composed,
are often separated and change partners, so that the same

individual submolecule is at one time associated with one sub-

molecule of the opposite kind, and at another time with another.

This process Clausius supposes to go on in the liquid at all times,

but when an electromotive force acts on the liquid the motions of

the submolecules, which before were indifferently in all directions,

are now influenced by the electromotive force, so that the

positively charged submolecules have a greater tendency towards

the cathode than towards the anode, and the negatively charged
submolecules have a greater tendency to move in the opposite

direction. Hence the submolecules of the cation will during

their intervals of freedom struggle towards the cathode, but will

be continually checked in their course by pairing for a time

with submolecules of the anion, which are also struggling through

the crowd but in the opposite direction.

240.] Whether this view of the process of electrolysis be or be

not accepted as corresponding to a physical reality, it gives us

a clear picture of the process, and is in accordance with the prin-

cipal known facts. By means of certain assumptions more or

less plausible we may extend the hypothesis to the explanation of

the process of electrical conduction, at any rate through a liquid,

as to do this it is only necessary to suppose that each submolecule

when acting as an ion is charged with a definite amount of elec-
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tricity, in accordance with the statement made above that the

amount of electricity transferred during electrolysis is the same

for the same number of liberated ions, the charge of the cation

being positive and that of the anion negative, by which conception

the conduction current becomes assimilated to a convection current,

or, perhaps more correctly, to the transfer of motion along a row

of equal and perfectly elastic balls in contact. Many difficulties

present themselves in the way of this hypothesis, as for instance the

fact that certain ions are anions in some electrolytes and cations

in others. We do not stop to consider these difficulties in detail,

because the whole hypothesis, while useful in furnishing a mental

picture of these processes, is not essential to the enunciation

and mathematical development of the laws by which they are

regulated.

241.] In practice, Voltaic cells, especially single fluid cells, are

liable to certain defects, the chief of these being irregularity of

electromotive force arising from the accumulation ofthe ions at the

electrodes, thereby causing what is termed electrolytic polarisation,

or an electromotive force opposed to the current. That such an

accumulation of the ions would engender this opposing force is

obvious, at any rate on the hypothesis of Clausius, because, having

parted with their electric charges at their respective electrodes,

there is no longer any action tending to keep them in this

position, and they necessarily tend to recombine. This op-

posing or negative electromotive force is not so obvious in its

effects in a Voltaic cell, because in such a cell there is at all

times a preponderating positive force, but it may be clearly

exhibited in an electrolytic or resisting cell. If the electrodes of

such a cell be platinum plates and the contained liquid be water,

then so long as the current is maintained oxygen is given off at

the anode and hydrogen at the cathode. If the current be

suspended and the platinum plates externally connected by a wire,

a current will pass through this wire in the reverse direction,

that is to say from the anode to the cathode, and the liberated

gases in the cell will recombine.

The special defect arising from polarisation is the irregularity

of current which it produces. If the current be suspended for
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any experimental purpose and then again renewed, it will start

with greater intensity than is ultimately maintained.

Of Thermoelectric Circuits.

242.] If a circuit be formed of wires of two or more metals

at the same temperature, the contact differences of potential are

consistent with each wire being at uniform potential throughout
its length, and therefore produce no current.

But the contact difference of potential is a function of the

temperature at the point of contact. If therefore the junctions
be at unequal temperatures, it is not generally possible that each

wire should have constant potential throughout its length. We
therefore expect that a current will ensue.

243.] It has been shown by Magnus that in an unequally
heated complete circuit of a single metal no current is produced

by the inequality of temperature.

On the other hand, Sir W. Thomson has shown that generally

there is an electromotive force from the hot to the cold parts of

the same metal, or from cold to hot, according to the metal and

the temperature, but that in a complete circuit the total electro-

motive force is zero. As in order to prevent a current from

flowing from copper to zinc in contact, it is necessary that the

potential of the zinc should exceed that of the copper by the

quantity Z/C ;
so in order to prevent a current from flowing from

an element of the zinc at temperature t+ dt to an adjoining

element at temperature t, it is necessary that the potential of the

second element should exceed that of the first by a certain

quantity adt, or, if the potential be constant, there is an electro-

motive force vdt. This quantity a is for any given metal a

function of the temperature, and may be positive or negative,

but has generally different values for different metals. It was

originally called by Thomson the specific heat of electricity for the

metal in question. According to this law, if Va and Vb be the

potentials at the ends of a wire unequally heated, the electro-

motive force in it is /*<*

Va-Vb + <rdt.

Jb

Since o- is for any given metal a function of the temperature



240 THERMOELECTRIC FORCES. [244.

alone, it is evident that for any closed circuit of one metal,

however the temperature vary, a-dt = 0, or there is no electro-

motive force, which agrees with the law of Magnus. This

difference of potential, due to difference of temperature, is fre-

quently called ' the Thomson effect,' and a- the coefficient of the

Thomson effect.

Professor Tait has shown experimentally that throughout

ordinary temperatures, and probably at all temperatures, o- is

proportional to the absolute temperature. It is positive for

some metals, negative for others, and is nearly zero for lead.

It follows from the above statements that in a circuit of two

metals with unequally heated junctions we have to consider two

causes, each of which may produce a current, viz. the unequal

contact differences of potential -at the junctions, and the electro-

motive force due to variations of temperature in the same metal.

244.] It is found that in general an electric current flows

round the circuit, accompanied with equalisation of the unequal

temperatures unless these be artificially maintained. If JR be

the resistance of the circuit, i the current, the electromotive force

is Ri. Such a circuit is called a thermoelectric circuit, or thermo-

electric couple. The electromotive force is found to obey the

following experimental laws.

I. If the temperatures of the junctions be t
p and t

qt
and if

A p
/.q
B be the electromotive force when A and B are the two

metals, and B p
/q C when B and C are the two metals, then

This was proved by Becquerel.

II. If a thermoelectric couple be formed with given metals A
and B, and if its electromotive force with junction temperatures

p and (f be A p
/q>B, and with junction temperatures q' and q be

A q
'/q B, then the electromotive force of the couple when the

junction temperatures are p and q will be

that is, A*/tB =
This also is due to Becquerel.
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III. The direction of the current, that is whether it be from
A to J3, or from B to A, at the hot junction depends on the mean

temperature of the junctions.

When the mean temperature of the junctions for a given pair
of metals is below a certain temperature T, dependent upon these

metals, the current sets in one direction through the hot junc-

tion, and when the mean temperature is above T the current sets

in the opposite direction, or the electromotive force is reversed.

This was discovered by Seebeck.

The temperature T is called the neutral temperature for the

pair of metals employed. In an iron and copper couple this

neutral temperature is, according to Sir W. Thomson, about

280 C. When the mean temperature of the junctions is below

this, the current sets from copper to iron through the hot

junction, and when it is above this the current sets from iron to

copper through that junction.

IV. For any constant temperature of the cold junction, the

electromotive force is the same when that of the hot junction
is T+x, as when it is T x, and is a maximum when it is T.

This was established by Gaugain, and results from Tait's ex-

periments. It may be expressed thus : The electromotive force

of the couple between temperatures t and t is proportional to

245.] The following is a mathematical explanation of these

phenomena :

If the difference of temperature between the two junctions be

very small, as dt, the electromotive force of the couple must be

proportional to it, and for the metals A and B may be denoted

by (t>ab dt, where
<j>ab is for the given metals a function of the

mean temperature of the junctions, and is taken as positive when

the current sets from A to B at the hot junction. It is called

the thermoelectric power of the two metals at temperature t.

It follows from II. that if the temperatures of the junctions

be tQ and tlt where t^ 1 is finite, the electromotive force is

$ab dt}
which for the given metals is a function of tQ and rf

x
.

Again, if we take any particular metal for a standard, and

VOL. I. R
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denote it by the suffix o, it follows from I. that the electromotive

force for the couple in which the metals are A and Z?, and the

temperatures of the junctions t and
1}

is

r-
Jt't

If the reference to the standard be understood, we may call

<j)a the thermoelectric power of the metal A. And in that case

the thermoelectric power of the couple formed of the metals

A and with junctions at temperatures tQ and tf
x
is

ri

*^
^0

It is usual to take lead as the standard metal.

The functions $a and
<f) b may be positive or negative, and for

the same metal may be positive at some temperatures and nega-
tive at others.

It is deduced from the experiments of Professor Tait that for

each metal -j~
has a constant value independent of the tem-

perature; that is, <pa = at /3, where t is the absolute temper-

ature, and a, ft are constants for the same metal.

Hence if t and tfx be the lower and upper temperatures of a

circuit of metals A and A,

Also if T be the neutral temperature at which <baa>= 0,

and is proportional to

as stated in IV.

246.] Adopting a method originally suggested by Thomson,
we may represent the thermoelectric powers of different metals

at different temperatures by a diagram. Let the abscissa
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represent absolute temperature, and for any given metal let the

ordinate represent its thermoelectric power, that is, the thermo-

electric power of a couple composed of that metal and lead, with

the temperatures of the junctions infinitely near that denoted by
the abscissa.

It follows then from the constancy of ,
- that the locus of d>

at

is a right line inclined to the axis of x at the angle tan"1

-^- 5

and that for any given abscissa, as that corresponding to 50 C.,

the difference between the ordinates of any two metals represents

the thermoelectric power of a circuit of the two metals at that

temperature. In the annexed diagram we see that for temper-
atures below 50 C. lead is

, , jj , ZERO CENT 50C
positive to iron and negative

to copper ;
from 50 to 284 C.

copper is positive to iron and

negative to lead
;
from 284 to

330 iron is positive to copper
and negative to lead; above

330 lead is positive to copper

and negative to iron. Gene-

rally, if for any two metals

NM be the difference of the ordinates at temperature t, and

M'N' at temperature t', and if E be the neutral point, the ther-

moelectric power of the couples

with the junctions at t and t' is

graphically represented by the

area MEN-M'EN', whether

M'N' be at temperature below

or above E.

So long as the lower temperature represented by MN is un-

altered, the difference between MEN and M'EN' has its greatest

value when the higher temperature is at E, the neutral point.

It becomes zero when the mean temperature of the junctions

is the neutral temperature.

Further, if M'N' and M"N" be taken at equal distances from

E 2

Fig. 36.

Fig. 37-
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E on either side of it, MEN-M'EN'= MEN-M"EN". These

results agree with IV.

247.] Next, let us consider a circuit of three metals AB, BC,
and CA, the junction A being at temperature tly B at temperature
t
2 ,

and C at temperature 3 .

We may imagine three lead wires AD^B, BD2 C, and CDZ
A

connecting the junctions, and forming
three distinct circuits.

The electromotive force of the circuit

ABC is the sum of the electromotive

forces of the three circuits AB^A,
BCD2B, CAD

3 C, together with that

Fi 8
of the circuit composed of the three

lead wires AD
l BJ)2 CD^ A.

But, by the law of Magnus, the electromotive force of the

latter circuit is zero.

Hence the electromotive force of the circuit ABC is

r^ rt3 /*!
<i>adt+ <f>b dt + <t>c

dt.

h Jtz Jts

In like manner we can express the electromotive force due to

any circuit of different metals with unequally heated junctions.

248.] We may suppose further a circuit composed of alternate

wires of two metals only, A and B, and each alternate junction

at the lower temperature t
lt

and every other junction at the

higher temperature t2.

If there be n pairs, the total electromotive force of such a

circuit is, by the last article,

The pairs are said to be joined in series. By this means the

electromotive force of a thermoelectric couple can be multiplied

at pleasure. Such an arrangement is called a thermoelectric pile.

Of the energy of the current in a Thermoelectric Circuit.

249.] Energy, as alove shown, is necessary to maintain the

current. In the case of thermoelectric circuits, now considered,
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no energy is supplied from without, nor are there, so far as we

know, any chemical actions between the metals, or between them
and the surrounding medium, from which the requisite energy
can be obtained.

We infer that the energy required for maintenance of the

current is supplied by the conversion of part of the heat of the

metals into another form of energy, namely, that of the electric

current. This might conceivably be employed to do external

work. But if not, it will be reconverted into heat by the

resistance of the circuit.

As in the working of a heat engine, the entropy of the system
must be diminished by the process, that is, there must be

equalisation of temperature.

It is found that at the neutral temperature for any two metals

a current passing the junction has no heating or cooling effect.

The Peltier effect changes sign at that point.

But' if a couple be formed with the hot junction at the

neutral temperature, the cold junction is nevertheless heated,

although the heat cannot be derived from the cooling of the hot

junction.

It is evident, therefore, that the current itself must have a

heating or cooling effect. For instance, in an iron and copper

circuit, with the hot junctions at the neutral temperature, either

a current in iron from hot to cold must cool the iron, or a current

in copper from cold to hot must cool the copper, or both these

effects take place. And it may be inferred that the heat so

gained or lost is compensated by a change in the potential of

the current. It was this consideration that led Sir W. Thomson

to the discovery of the electromotive force in unequally heated

portions of the same metal.

250.] The method adopted by some writers (Mascart and

Joubert, Legons sur VElectricite et le Magnetisme ; Briot, Theorie

Mecanique de la Ckaleur] is as follows. It is assumed that the

heat generated, as unit current passes from potential Va to potential

7b ,
is always 7a Fb ,

whether the fall of potential be gradual as

in a single metal, or abrupt as at the junction of two metals.

That being the case, the electromotive force of a couple formed
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of metals A and B whose hot and cold junctions are at ^ and t
Q

respectively, must be

H,-HQ + f\cra
-<r

b)dt,
J

to

where Hl
andH are the Volta contact differences of potential at

the junctions.

When t
l

1 becomes infinitely small, this becomes

dH
that IS, (pab -jT- + "a "b

Further, if the current be infinitely small, we may regard such

a circuit as a reversible Carnot cycle. Then, if 6 Q be the heat

absorbed at temperature t, taken as negative when heat is

evolved,

/T dt =

for the entire cycle.

When ^ ^o becomes infinitely small, this becomes

And the contact difference between two metals is zero at their

neutral temperature.

251.] We are now in a position to treat a more general case

of a system of linear conductors than that considered in Art. 215,

in which the wires were supposed to be all of the same metal

and at the same temperature. In that case, the potential of all

the wires which meet in any electrode as P is the same at the

common extremity P, and may be designated, in the case of each

wire, by the common symbol Vp . When the wires are not of

the same metal, we may suppose that instead of being in

immediate contact with each other at the electrode P, each is
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in contact with a small wire or disk of some standard metal at

that point. If Vp were the potential of this connecting metal

at P, then the potential of any other wire as PA of metal (),

suppose, at the extremity P would be ^ + x(^P)>
where x(a^p)

represents the contact electromotive force from the metal (a) to

the standard metal at temperature t
p -, similarly if F

q
were the

potential of the connecting metal at the electrode Q, where the

temperature is t
q ,

the potential at the extremity Q of the wire

PQ would be Pg + x(^)' ^n estimating the currents therefore

in terms of the potentials we may regard the potentials of the

common extremities of all wires at any electrode as equal

provided we increase the electromotive force in any wire as PA
by the quantity

xK)-xK)-
The Thomson effect treated of in Art. 243 will produce a

ftp
similar increase of electromotive force of the form

/ vdt,
Jtq

which may be expressed in the form

If therefore Epq be the electromotive force arising from a

battery, if any, in the course of the wire PQ, the expression for

the current in that wire will be

and similarly for each of the remaining wires.

Of course the wire PQ may itself be composed of dissimilar

metals, or may consist of two wires communicating with the

liquids of an interposed battery, in which cases the requisite

corrections are obvious.



CHAPTEE XIV.

POLARISATION OF THE DIELECTRIC.

ARTICLE 252]. IN the preceding chapters we have endeavoured

to explain electrostatical phenomena by the method of Poisson

and Green as the result of direct attraction and repulsion at a

distance, according to the law of the inverse square between the

positive and negative electricities, or electric fluids. As explained

at the outset, in Chaps. IV and V, we do not assert the actual

existence of these fluids. We assert merely that the electro-

statical relations between conductors are as they would be if the

two fluids existed, and conductors and dielectrics had the properties

attributed to them in those Chapters.

Faraday and Maxwell made an important step in advance.

They assume all non-conducting space to be pervaded by a

medium, and refer the force observed to exist at any point in

the electric field, not to the direct action of distant bodies, but

to the state of the medium itself at the point considered.

Faraday was led by his experimental researches to believe in

the existence of certain stresses in the dielectric medium in

presence of electrified bodies. Maxwell shews that if the

dielectric medium consist of molecules with equal and opposite

charges of electricity on their opposite sides, or, as we expressed

it in Chapters X and XI, polarised, these stresses would in fact

exist. See Maxwell's Electricity, Second Edition, Chap. V.

There would be at every point in the medium a tension along
the lines of force, combined with a pressure at right-angles to

them, and by such tensions and pressures all the observed

phenomena may be accounted for without assuming the direct

action of distant bodies on one another. It is true, as Maxwell

says, that some action must be supposed between neighbouring

molecules, and that we are no more able to account for that

than for action between distant bodies. And if only electro-
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statical phenomena were concerned, it would be perhaps of little

importance whether we attributed them to direct action of distant

bodies or to a medium, so long at least as the electric fluids and

the medium were equally hypothetical, and had no other duties

to perform than to account for the phenomena in question.

The advantage of Maxwell's hypothesis is that it connects the

phenomena of electricity and magnetism with those of light and

radiant heat, both being referred to the vibrations of the same

medium. There is, in fact, in the phenomena of light, inde-

pendent evidence of the existence of Maxwell's medium, whereas

there is no independent evidence of the existence of the two

fluids. The medium therefore has better title to be regarded
as a vera causa than the two fluids have.

No treatment of the subject can, in the present state of know-

ledge, be more complete than Maxwell's own in Chapters II and

V of his work, and it is necessary to study those chapters in order

properly to understand his views. The whole subject of statical

electricity has also been treated very fully from Maxwell's point

of view in the article
'

Electricity
'

in the Encyclopaedia Britan-

nica, Ninth Edition, by Professor Chrystal. It may, however,

be of some advantage to obtain the same results from a slightly

different starting-point.

253.] In Chap. XI we had occasion to treat of a particular case

ofa polarised medium, a medium, namely, in which are interspersed

little conductors polarised under the influence of given forces.

If the induced distribution on the surface of any conductor be

denoted by $, the quantity xtydS, taken over all the con-

ductors in unit of volume, was defined to be the polarisation in

direction x per unit of volume.

We will now adopt a rather more general definition of polari-

sation. Let us conceive a region containing an infinite number

of molecules, conductors or not, each containing within it, or on

its surface, a quantity of positive, and an equal quantity of nega-

tive, electricity. Let P be a point in that region, and about P
let there be taken a unit of volume, containing a very great

number of the molecules in question. Let us further suppose
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that throughout this unit of volume the distribution of the

molecules in space, as well as the distribution of electricity in

individual molecules, may be regarded as constant, and the same

as in the immediate neighbourhood of P. Let $ dx dy dz be the

quantity of electricity of the molecular distributions within the

element of volume dxdydz. Then \\\$dxdydz throughout

the unit of volume is zero; and we will define / / / x$ dxdydz

taken throughout the unit of volume to be the polarisation in

direction x at P.

Let
I] Ixfydxdydz = ax \

and let v
y ,

as have corresponding

meanings for the axis ofy and z.

If a plane of unit area be drawn through P parallel to the

plane of yz> it will intersect certain of the molecules. And the

reasoning of Chap. XI (Art. 190) shews, that the quantity of

electricity belonging to these intersected molecules which lies on

the positive side of that unit of area is a-x. Similarly if the

plane were parallel to az, or xy, the quantity of electricity of the

intersected molecules on the positive side of the unit of area

would be (T
y
or tr

a in the respective cases.

If the direction-cosines of the normal to the plane were
, m, n,

the quantity of electricity of the intersected molecules lying on

the positive side of the unit of area would be lo-x+ mo-
y + n(r

ls
.

For, by definition, the polarisation in the direction denoted by

I, m, n is

or = / / / (lx+ my+ nz) <f>
dx dy dz,

that is,

= I x<f> dxdydz+m III y<j> dxdydz+ n z$ dxdydz ',

that is, a- =

Hence a-xt a-y} and o-z are components of a vector.

If the distribution be continuous, so that o-x , a-vy and vz do not

change abruptly at the point considered, the same reasoning
as employed in Chap. XI shews that the amount of the distri-
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bution within the elementary parallelepiped dxdydz is

where
^
dax

9 ~~

{ dx

Should the values of o-x ,
o-
y ,

and vz change abruptly at the

point in question, there will be over the unit of area a super-
ficial or quasi-superficial distribution a-x a'x ,

where <rx and <r'x

are the values of <rx on opposite sides of the plane, with similar

expressions for the planes parallel to those of xz and xy.

Also, as we have seen in Art. 190, the potential T, of such a

polarised distribution at any point x, y^ z, is determined by the

equation rr<rdS C T Tp doc'dy dz'

where r is the distance of the point x, y, z from the superficial

element dS, or the solid element clx'dy'dz', as the case may be.

Hence it appears that such a system of polarised molecules as

we are supposing gives rise to localised distributions with solid

and superficial densities of determinate values throughout given

regions and having the same potential at every point of the field

as would result from such localised distributions.

Conversely, if we had an electric field with given localised

charges, we might substitute for it a system of polarised mole-

cules in an infinite variety of ways, the physical properties of

which, so far as we are concerned with them, would be in all

respects identical with those of the given localised charges.

For if p and o- were the densities, solid or superficial, at any

point in the supposed system of given charges, and if the polar-

isation and arrangement of the molecules were such that (o^, o-
y ,

and 0-3 being as above defined),

d(Tx d<ry d(rz _ \

at each point of the field, then we should have the same density

at each point as is given by the localised charges, and the

potential V at each point would also be the same as in the case

of the localised charges, being determined by the equation

F== /T + /YT
JJ r JJJ
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As the values of arx9 o^, az are subjected to only one equation of

condition (A) these quantities may clearly be chosen in an infinite

variety of ways.

Among all the possible values of a-x ,
<r
y , and tr, we shall con-

sider only

JL 21 JL ^1 JL IT *
* ~ 4w

"

dx (Ty
~~

47T
'

dy*
s
~

4^r
'

dz
'

These relations will satisfy (A) identically, since by Chap. Ill

-',-., AV dV dV
for all points where -7- > -=- > -7- vary continuously.d# ^ ds
And also

ZK-o-'sHw^-o-'^ + ^s-cr's)
1 .dV dV .dV dV dV dV'

=r (T

over surfaces of discontinuous values of these coefficients.

It appears then that such a system of polarised molecules

not only produces at all points in space the same potential

as the system of volume and superficial distributions for which

it was substituted, but also causes the distributions them-

selves to reappear. It can be shewn also that the energy is

the same in the two cases. For the polarised medium is in

a state of constraint, because the separated electricities are not

allowed to coalesce and neutralise each other. Work has been

done upon it in producing- this state. In ordinary experiments
the constrained state of the dielectric is produced by the intro-

duction of charged bodies, and the work is the work done in

* With the distribution of polarisation assumed in the text, if a small cylindrical

region be described in the medium whose generating lines are parallel to the
force at the point and infinitely smaller than the linear dimensions of the bounding
planes, the force at any point within the cylinder is that arising entirely from the

polarisation of the molecules completely included within the cylinder, and the
total force from all the rest of the molecules is zero. If the polarisation were

magnetic, this result would be expressed by saying that the law of magnetisation
is such that the magnetic induction at every point is zero.
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charging' them, but according
1 to this theory the energy resides,

not in the charged bodies, but in the dielectric.

The energy in unit volume of the polarised system is R2
,

see Chap. V, that is,

+hW h

The energy of the entire system estimated in the same way is

throughout the whole of dielectric space.

But this is also the expression for the energy of the originally

given system according to the ordinary theory, as shewn in Chap.
X. The two systems are therefore for all purposes equivalent.

We may conceive that the molecules of all dielectrics are

capable of assuming such polarisation as required for this hypo-
thesis. If, as we have hitherto supposed, vacuum be a perfect

dielectric, it becomes necessary for the hypothesis to conceive it

as permeated by a non-material ether, the molecules of which

are capable of such electric polarisation. And if the existence

of such an ether be assumed, it may be that in case of other

dielectrics, the electric polarisation resides in the ether rather

than in the molecules of the substance.

We may further suppose that the essential property of con-

ductors, as distinguished from dielectric media or insulators, is

that their molecules are incapable of sustaining electric polarisa-

tions, or that the substances of conductors are impermeable by
the supposed ether, and therefore that no electric force and no

free electricity can exist within them.

We might thus construct a theory of electrostatics founded

on the polarisation of the dielectric, just as the ordinary theory

is founded on the property of conductors.

In the ordinary theory the electromotive force at any point is

the space differential of a function 7, which is constant through-

out any conductor, and satisfies the condition V2 F+4irp= at

all points where there is free electricity of density p. Assuming
that no case of electrostatic equilibrium has yet been discovered,

which can be proved to be inconsistent with the ordinary theory,
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it follows that the supposed dielectric polarisation must, when

there is equilibrium, be the space differential of a function F,

which is constant over and within every closed surface bounding
the dielectric, and satisfies V 2 T+ 4 itp = at all points in the

dielectric.

The Stresses in the Dielectric.

254.] Ifany closed surface 8 separate one portion^ ofan electri-

fied system from the other portion U2 , as, for instance, if the whole

of j^i be inside, and the whole of E2 outside of S, then this hypo-
thesis suggests an explanation of the phenomena without assuming

any direct action between E2 and E. For if the polarisation

be given in magnitude and direction at each point in S, -=- is
dv

given at each point on S.
' Then we know that if the form and

charge of every conductor within S be given, and if all fixed

electrification within S be given, V has single and determinate

value at all points within S.

It follows that all electrical phenomena within S, which in the

ordinary theory are due to the action of H2 , are on the polarisa-

tion hypothesis deducible from the given polarisation, that is the

dV
given value of -=- > at each point on 8.

We might then always substitute for the external system E2

a certain polarisation on 8, without affecting the equilibrium of

U
lm

An example of this substitution has already been given

(Art. 58) for the case where S is an equipotential surface. For
T>

then a distribution over S whose density is -- exerts the same
47T

force as the external system at any point within S.

If S be not equipotential we obtain a corresponding result as

follows * :

Let Y
l
be the potential of the external, T2 that of the internal

system, and V V^+ T2 the whole potential.

The whole force in direction x exerted by the external on the

internal system is

throughout the space within 8.

* This investigation is taken from Maxwell's Treatise, Second Edition, Chap. V.
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But

and within S V2 F2
= V2

F.

Hence tlie whole force is

The object is to express this in the form of a surface integral

over S.

If we can find three functions X, J", Z, such that

dx dx dy da

then evidently, by Green's theorem,

- V

over the surface S. This is the required surface integral.

Let us assume

dVdV

dVdV
dx dy

Then

**

satisfy the condition.

The quantities pxx , pyy ,
&c. are the six components of the

stress on the surface S due to the polarisation of the dielectric.

If S be an equipotential surface, we have

dV p . dV dV
Rl = _ Rm

,

- = Rn,dx dy dz
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where E is the normal force, and therefore

a
-

The ^-component of stress is then

that is R2
1. Similarly the y- and ^-components are

O7T

That is, the stress is normal to 8
t
and is equal to that of the

-n

force R acting on the surface electrified to a density J

If S be at right angles to an equipotential surface, we find the

stress in any element of it thus, in this case,

,dV dV dV
/ +m +n = ............... (1)dx dy dz

Now 8 IT {lpxx H- mpxy + npxa }

dVdV dVdV
3- +2w T--J- .. (2)

o?c dy dx dz

dV
Multiplying (l) by 2 and subtracting from (2), we obtain

Sir {tyxx+ mp.xy + npx!} } =-lR*.

Hence the components of tension perunit area are

If therefore these stresses exist at every point of the surface /S,

no matter how they arise, they produce on the interior system

EI exactly the same effect as, according to the theory of action at
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a distance, would be produced by the attraction and repulsions

due to the external system Ez
.

255.] According to the theory of dielectric polarisation as

explained in Art. 253, the so-called charge on a conductor is to

be regarded as the terminal polarisation of the dielectric ;
as

belonging in fact not to the molecules of the conductor, but to

the adjacent molecules of the dielectric. (Maxwell's Electricity^

Art. 111.)

So long as we are dealing with a system at rest and in statical

equilibrium, it is indifferent for all purposes of calculation

whether we regard the charge as belonging to the dielectric or

to the conductor.

It is however possible to induce in any conductor or other

solid body the state which in the ordinary theory is called a

charge of electricity; and it is possible to move the body in

this state from place to place through air without destroying

its charge. It should seem therefore that although the electric

force at any point in air may be due to the polarised state

of the medium at the point, and not to direct action of the

charged body, and although the polarised particles be always
those of the dielectric, yet the ultimate cause of the phenomena

may be in the body and not in the dielectric. And this

appears to be Faraday's view, where he says (1298), 'Induction

appears to consist in a certain polarised state of the particles

into which they are thrown by the
'

electrified body sustaining the

action?

Certain experiments have been appealed to as shewing that

the electrification, whatever it be, is in the dielectric and not

in the conductor. If, for instance, a plate of glass be placed

between and touching two oppositely charged metallic plates,

and these be then removed, it will be found that they exhibit

scarcely any trace of electrification. If they be replaced and

connected by a wire, a current passes of the same or nearly the

same strength as if no removal had taken place. See Jamin,

Cours de Physique, Leon 36.

A similar result was obtained by Franklin with a Leyden jar,

the metallic coatings of which were moveable.

VOL. i. s
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256.] Up to this point we have not dispensed with the two-

fluid theory and the law of the inverse square in electric action,

because it is only by the use of that theory that we have proved

the properties of our medium. All that we have done is to

introduce a somewhat different conception of an electric field,

and the distributions of which it is composed.
If any advance is to be made, it must be in the steps of

Faraday and Maxwell as follows :

We observe that in the polarised medium the relation between

the force at any point and the polarisation at the point is given

by the equations JT = 4770-,,., &c.

These equations are of the same form as those which express

the relation between the force existing at any point in an elastic

body in equilibrium and the molecular displacement at the

point.

In treating of elastic bodies we regard these relations as ulti-

mate facts based on experiment. We might then regard the

corresponding equations for the dielectric as ultimate facts,

without resorting to the two fluid theory for their explanation.

We might regard the dielectric as an elastic medium capable of

being thrown into a state of strain, and presenting when in

that state the phenomena which we call electric force and electric

distribution.

257.] According to the theory in this form, no action is

exerted by the electricity in any part of the dielectric on that

in any other part, unless the two are contiguous. We might
thus dispense with the notion of action at a distance, on

which the ordinary theory is founded. Another characteristic

of the ordinary theory is the instantaneous nature of the

actions with which it deals. For, according to that theory,
if any change take place in electrical distributions in any one

part of space, the corresponding change takes place at the

same instant in every other part however distant. The sub-

stitution of the medium for the direct action between distant

bodies, suggests that these corresponding electrical changes may
not take place at the same instant, but that electrical influence

may be propagated from molecule to molecule through the
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medium with a certain velocity. And herein lies the strength
of the theory. For, as Maxwell discovered, if electrical effects

are propagated with finite velocity through an insulating

medium, such velocity is the same as that of light, or so nearly
the same as to leave no room for doubt that the two classes of

phenomena are physically connected.

Again, an elastic medium, if thrown by any forces into a

state of strain, does not on removal of those forces immediately
recover its original condition. There is a time of relaxation.

Certain phenomena, such as the residual charge of a Leyden jar

(see Maxwell's Electricity, Chap. X), lend countenance to the

supposition that a dielectric medium influenced by electric forces

does not immediately, on the removal of those forces, recover its

original condition.

258.] We proceed to consider the meaning of the term electric

displacement as used by Maxwell, for which purpose we must

revert to the conception of the two-fluid theory.

If through any point in the medium of polarised particles

a plane be drawn perpendicular to the v direction of the re-

sultant force R at that point, the density or, per unit area of

that plane, of the electricity on the particles intersected by that

plane and on the positive side of it according to It's direction is,

as we have seen, determined by the equation

In Maxwell's view, any field of electromotive force in the dielec-

tric is accompanied by a strained state of the particles of the

dielectric or of the pervading ether, a displacement or transfer
T)

of positive electricity equal to - -
per unit area of surface of the

particles taking place from each particle to the adjacent particle

on the positive side, along with an equal displacement of negative

electricity to the adjacent particle on the negative side. The

+ or - electricities do not coalesce or neutralise each other

within each particle, but a polarised state is set up throughout
the field, each particle being in a strained state owing to the
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separations of the electricities within it, the result being graphic-

ally represented thus,

Fig- 39-

the shaded sides of the particles A, J5, C, &c. indicating positive,

and the unshaded sides negative, electrification. According to

this view the displacement is the process hy which the polarised

state of the particles has been brought about. We shall gene-

rally denote the polarisation by cr, and the displacement by/.
It is easily seen that in a dielectric medium/ = cr.

259.] Ifthe field were one of uniform force parallel to a line from

left to right across the plane of the

paper, the total displacement or

transfer of electricity across all

planes perpendicular to that line

would be the same and equal to

G>

-
per unit of area.

Fig. 40.

If the field were such as corre-

sponds to what is called an elec-

trified point 0, i.e. a charge within

a very small volume about 0, the

particles would be polarised as in

the figure, the displacement (sup-

posing no other charge in the field) taking place concentrically

from within outwards, and the quantities o-x , ay ,
and a-z being

so determined that

d<rx da-,. dcrz
-j + ^ + * =
dx dy dz

at all points without the small region, and that

dav dcr,
"

dzdx dy

within that region where p is determined to give the requisite

charge at 0.
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The law of resultant polarisation exterior to may in this

ease be determined, and the consequent law of force, if it be

assumed that the resultant polarisation a is symmetrical about

the point with which sensibly coincides.

For if this be assumed we must have a- = $ (r) and in the

direction of r the distance of each point from 0.

Therefore <rx = <f> (r)
-

, ory
= $ (r)

^
, <ra

=
(f> (r)

-

. d(Tx d(Ty do-,,
Therefore since -^- + -=-^- + -=*- = 0,

ax ay az

or <Kr) = ;jr

260.] If in any polarised field we describe a closed surface S
9

and find the integral If- - over that surface where is

the angle between R and the normal to 8 at each point, we
know that the result is M9 where M is the total quantity of the

electricity situated within S; that is to say, the whole quantity
of the electricity lying without the surface S on all the

molecules intersected by S would be -M, and the whole quan-

tity of the electricity displaced across S
9
to the adjacent external

particles, would be +M9 in other words the total quantity of

electricity within any closed surface whatever is unalterable.

The electricity behaves in all respects like an incompressible

fluid pervading all space, and the introduction of any quantity

into any closed region is accompanied by an efflux of a corre-

sponding quantity from that region.

We have so far supposed the whole region to be dielectric or

non-conducting, but the introduction of conducting substances

does not affect the result. The special property of conductors is

that their molecules are incapable of polarisation, or that the

substances of conductors are impermeable by the other whose

molecules may be thus polarised.
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Suppose now that our closed surface S was intersected by a

conductor C, and let us

Q replace S by another

closed surface made up
of the portion, of S

external to (?, and

41.
another surface S'QS'

very nearly coinciding

with that of the conductor and external to it, the dotted line

indicating the continuation of S within C.

The integral / / - - taken over this new closed surface

will, as before, be equal to all the original mass of the included

electricity, since the charge on the conductor must be zero on

the whole ; and since there is no polarisation within C we have as

before the total quantity of electricity transferred across the

original S by displacement equal to the mass within it, the only

difference being that instead of such transference being through-
out molecular, as it is in the dielectric, it is a transference in

mass across the conductor.

This transference by displacement differs from that by con-

duction, inasmuch as when the force ceases the state of strain

and the displacement cease also, and all things return to their

original condition, there being no permanent transfer.

261.] Recurring again to the simple illustration of the field of

uniform parallel force, suppose the force, remaining uniform, to

vary from time to time, then the state of the molecules A, , C,

&c. in Fig. 1 also varies, the shading becoming darker as the

force increases, and lighter as it diminishes.

If the displacement at any instant were /, it is clear that

this variation of the force and consequently off would produce
a transference of electricity across any plane perpendicular to

the force in all respects analogous to a current of intensity
-~-

dt

along the lines of force.

For example, suppose the field to be that ofthe dielectric between

the plane armatures of a condenser, and suppose these armatures
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to be connected by a wire. Then a discharge would take place

through the wire from left to right ;
the effect of this discharge

would be to diminish the displacement within the dielectric

from left to right, or to produce a counteracting displacement
from right to left, inasmuch as the positive charge of the left-

hand and the negative charge of the right-hand armature

would diminish at the rate u per unit time, if u were the current

through the wire.

Therefore we should have -~
-f u equal to zero, or a closed

Cvt

current would flow through the whole apparatus of dielectric,

armatures, and wire. And this is what is supposed to take place

in every case of transference by conduction.

262.] Hitherto, throughout this chapter, we have treated our

dielectric as being what may be called a pure dielectric with

specific inductive capacity unity. In the case of impure di-

electrics like those treated of in Chap. XI, we may either, as in

what has preceded, retain the conceptions of the two fluids with

distant action, or adopt Maxwell's more simple conception of a

displacement connected with the force by a law regarded
as an ultimate fact (Art. 256).

On the former hypothesis we may, as is done in

Chap. XI, assume the intermixture of small conductors.

In the figure annexed let the plane of the paper be

supposed parallel to the axis of as, and let the line AB
be the intersection with that plane of a plane drawn

through any point P in the medium perpendicular to

that axis, and let the dotted line be the intersection

with the same plane of the paper of a surface as nearly

as possible coincident with the aforesaid plane perpen-
^

dicular to a?, but so drawn as not to intersect any small riS- 42 -

conductors, this surface will not differ sensibly from the plane.

If a-x be the density per unit area of this surface of the elec-

tricity upon the polarised dielectric molecules intersected by
it and lying to the right or positive side of the surface, and

if or
y
and o-a be corresponding quantities for planes through P

parallel to xz and xy respectively, it follows from what has
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been already proved that the density />
of actual charge in the

medium at P is determined by the equation

d(Tx d(T
y

d(rz _

dx dy dz

But if K be the specific inductive capacity, we know from

Chap. XI that

whence we may, as in the preceding case, choose as our solution

for o-x , ay) and a-,,, and their resultant o-, the equations

K dV K dV K dV K
vx = -y- j <ry

= -
-7- j

"

z
= T- ' T~ and a- = . .

4?7 dx 4-77 ay 477 dz 477

The polarisation o-, as before, measures the displacement at any

point, and it follows from Art. 193, Chap. XI, that the total dis-

placement over any closed surface is equal to the total quantity

of electricity within the surface, as in the case of pure dielectric

media.

According to Maxwell's point of view, we should ignore

the analysis of the action on the inverse square hypothesis

altogether, and regard the equation

ff =_^. B or f=.R
477* 477*

where / is the displacement, as an ultimate fact expressing the

relation between force and displacement in any isotropic medium,
with the requisite modifications for heterotropic media, in which

X -\r V ~V Z r?=
-45;*

*= ~^- Y
' "* = ~^- Z'

when the axes are principal axes; and since Kx ,
K

y ,
Kz are

generally not equal, the resultant displacement f will not in

this case be necessarily coincident with the resultant force R.
T7-

The equation f =. .72, if K be capable of assuming all

values between 1 and + co, expresses the relation between force

and displacement in all bodies, the lower limit (l) corresponding
to air or rather to vacuum, and the higher limit (-f oo) to

conductors.
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263.] In ideally perfect insulators, there is, as we have said,

nopermanent transfer arising from displacement ;
the force ceasing,

the polarisation and displacement also cease, and any passage of

electricity across a plane is succeeded on the cessation of the

force by an equal rebound or retransfer of electricity across the

same plane backwards. Such perfect insulators do not exist in

nature. Kecurring, for instance, to our uniform force illus-

tration, when this force or the corresponding polarisation of the

A, B, C, &c. particles reaches a certain intensity, the particles

become incapable of retaining their state of strain, and the +
and electricities in each particle intermix. Across any plane

perpendicular to R there is transfer of positive electricity from

left to right, and of negative from right to left
;
in fact a tem-

porary current, and each particle returns to its unstrained state.

If however R were maintained constant, there must be a renewed

displacement to the same extent as before, so that we have what

is equivalent to a permanent transfer of electricity, a current

from left to right, the intensity of the current u being the rate

at which the electricity is transferred in each particle across

any transverse section, and which is connected with the force 1\

TJ

by the equation u = if r be the resistance within each particle.

If the force R remained constant the polarisation a- or the

corresponding and equal displacement f must be renewed as

fast as it is destroyed, so as always to satisfy the equation
-n

o- =
;
in other words, there must be a continually recurring

displacement or transfer from particle to particle equal per unit

of time to the quantity u *.

Again, suppose that the diminution of polarisation or transfer

current u was absolutely impossible, i.e. that the insulation was

perfect but that the force varied, producing therefore a variable

* The actual historical displacement or transfer at any time must be distin-

guished from the instantaneous displacement or polarisation; this latter is the

transfer or displacement which the state' of the field requires in accordance with

the above theory, and is what would take place if there were no conduction
;
the

former, in case of conduction, is the sum of the continually renewed instantaneous

displacements, required for the polarisation of the field which have taken place up
to the instant considered.

VOL. I. T
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polarisation cr or displacement f. The result is equivalent to

a transfer of positive electricity from left to right at the rate per

unit of time of -~-
at

If both the conduction current u and the variable force, and

consequently variablef coexisted, the resultant effect would be

equivalent to the current of intensity u + -~
dt

264.] We have already considered the case of a condenser with

plane armatures connected by a wire, and have seen that the

discharge current u in the wire is accompanied by an equal and

opposite current -j- in the dielectric, but in point of fact the
u/t

process which, in this case, takes place almost instantaneously is

in effect, though much more slowly, always going on throughout
the dielectric. For no substance is absolutely and completely

non-conducting, the molecular constraint is continually giving

way, there is a continual passage of electricity from the positive

to the negative armature causing a diminution of force and

polarisation throughout the medium. If u be the conduction

current, r the resistance, X the force, andf the displacement at

any instant, we have, as shewn in Art. 261,

X K
where u = , and /= > R.

T 4-7T

Therefore

= /.

and X = X e Kr
,

f and X being the initial values of/and X.

These equations express the law of decay of the efficiency of

condensers.

265.] According to Maxwell's doctrine, as we have already

said, all electric currents flow in closed circuits.
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Let us recur to the case of the charged particle of Art. 259,

which we have hitherto regarded as at rest within the medium,
and suppose the charge to be unity.

If it move from one position to another we have in effect a

current of electricity from to (7. But from another point of

view the effect is the same as if the particle in the first position

were annihilated, and another

similar particle placed in the

second position; that is, as if

a particle with unit positive

charge were placed in the second

position, and a particle with unit

negative charge superadded to

the positively charged particle

in the first position.

If denote the first, 0' the

second position, P any point in

space, the displacement at P
due to the placing of a negative particle or annihilation of

a positive particle at is a displacement
- in direction

PO. The displacement at P due to the positive particle at 0' is

a displacement
47T

If Of

be infinitely near to 0, and 0(7 = a, we can find the

equation to the resultant as follows :

Let ZPOO'= 0. Let OQ = 3 a cos 0. Then if

PO = r, P0'= r-a cos 0, and P(> = r-3a cos 0,

PQ r 3acos0 r 2acos0
and ^e =

r-acosd r r2 PO2

Therefore the resultant is parallel to O'Q. Its equation is

therefore

dy SacosOsinO y a-~ = .> and - = tan 0.
ax a 3 a cos2 x

Therefore ^ =
dx



268 ELECTRIC DISPLACEMENT.

The solution of which is

where c is a variable parameter.

This is the equation of a system of closed curves having 00"

for a common tangent.

It thus appears that if any quantity of positive electricity

flows from to (/ (for our moving particle is equivalent for the

purpose to a flow of positive electricity), we have a flow or

current of electricity at every point in space, in direction form-

ing closed curves with the line 0(7. From which it would seem,

as we have already said, that there is no real change of position

of all the positive electricity in space. Or, in other words,

either kind of electricity behaves like an incompressible fluid,

and the quantity of it within any finite space cannot be increased

or diminished.

If, for instance, the charge on the moving particle be unity,

and it move from to 0', that is a distance a in unit of time,

the current in 00' is a. If also P be a point in the plane bisect-

ing 0(7 at right-angles, and r be measured from 0, the displace-

ment current from right to left through a ring of the plane
between the distances r and r+ dr from is

The whole displacement current from right to left through, the

plane is therefore

- a.

and is therefore equal to the current from left to right in 0(7.

Hence, according to Maxwell's view, all electric currents in

nature flow in closed circuits. This theory will be found to lead

to important consequences when we come to deal with the

mutual action of electric currents.

THE END,
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Vols. Ill and IV (1401-1582). 1882. 8vo. 2/ io*.
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Saxon Chronicles (Two of the] parallel, with Supplementary
Extracts from the Others. Edited, with Introduction, Notes, and a Glos-

sarial Index, by J. Earle, M.A. 1865. 8vo. i6s.

Sturlunga Saga> including the Islendinga Saga of Lawman
Sturla Thordsson and other works. Edited by Dr. Gudbrand Vigfiisson.

In 2 vols. 1878. 8vo. 2/. 2s.

York Plays. The Plays performed by the Crafts or Mysteries
of York on the day of Corpus Christi in the I4th, i,5th, and i6th centuries.

Now first printed from the unique manuscript in the Library of Lord Ashburn-

ham. Edited with Introduction and Glossary by Lucy Toulmin Smith. 8vo.

2is. Just Published.

Statutes madefor the University of Oxford, andfor the Colleges
and Hails therein, by the University of Oxford Commissioners. 1882. 8vo.

I2s. 6d.

Statnta Universitatis Oxoniensis. 1885. 8vo. $s.

The Examination Statutes for the Degrees of B.A., B. Miis.^
B.C.L.i and B.M. Revised to Trinity Term, 1885. 8vo. sewed, is.

The Student's Handbook to the University and Colleges of
Oxford. Extra fcap. Svo. 2S. 6d.

The Oxford University Calendar for tJie year 1885. Crown
8vo. 4s. 6d.

The present Edition includes all Class Lists and other University distinctions for

the five years ending with 1884.

Also, supplementary to the above, price 5s. (pp. 606),

The Honours Register of the University of Oxford. A complete
Record of University Honours, Officers, Distinctions, and Class Lists ; of the

Heads of Colleges, &c., &c., from the Thirteenth Century to 1883.

MATHEMATICS, PHYSICAL SCIENCE, &c.

Adand(H. W., M.D., F.R.S.}. Synopsis of the Pathological
Series in the OxfordMuseum. 1867. Svo. 2s. 6d.

Astronomical Observations made at the University Observ-
atory, Oxford, under the direction of C. Pritchard, M.A. No. I. 1878.
Royal Svo. paper covers, 3^. 6d.

De Bary (Dr. A.] Comparative Anatomy of the Vegetative
Organs of the Phanerogams and Ferns. Translated and Annotated by F. O.

Bower, M.A., F.L.S., and D. H. Scott, M.A., Ph.D., F.L.S. With two
hundred and forty-one woodcuts and an Index. Royal 8vo., half morocco,
I/. 2S. d.
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Miiller (y.). On certain Variations in the Vocal Organs of
the Passeres that have hitherto escaped notice. Translated by F. J. Bell, B.A.,
and edited, -with an Appendix, by A. H. Garrod, M.A., F.R.S. With Plates.

1878. 410. paper covers, ^s. 6d.

Phillips (John, M.A., F.RS.). Geology of Oxford and the

Valley of the Thames. 1871. 8vo. 2is.- Vesuvius. 1869. Crown 8vo. los. 6d.

Price (Bartholomew, M.A., F.R.S.). Treatise on Infinitesimal
Calculus.

Vol. I. Differential Calculus. Second Edition. 8vo. 14^. 6d.

Vol. II. Integral Calculus, Calculus of Variations, and Differential Equations.
Second Edition, 1865. 8vo. i8j.

Vol. III. Statics, including Attractions ; Dynamics of a Material Particle.

Second Edition, 1868. 8vo. i6s.

Vol. IV. Dynamics of Material Systems ; together with a chapter on Theo-
retical Dynamics, by W. F. Donkin, M.A., F.R.S. 1862. 8vo. i6j.

Rigaud's Correspondence of Scientific Men of the 17 th Century,
with Table of Contents by A. de Morgan, and Index by the Rev. J. Rigaud,
M.A. 2 vols. 1841-1862. 8vo. i8j. 6d.

Rolleston (George, M.D., F.R.S.). Scientific Papers and Ad-
dresses. Arranged and Edited by William Turner, M.B., F.R.S. With a

Biographical Sketch by Edward Tylor, F.R.S. With Portrait, Plates, and
Woodcuts. 2 vols. 8vo. i/. 4^.

Sachs" Text-Book of Botany', Morphological and Physiological.
A New Edition. Translated by S. H. Vines, M.A. 1882. Royal 8vo., half

morocco, \l. us. 6d.

Westwood (J. O., M.A., F.R.S.). Thesaurus Entomologicus
Hopeianus, or a Description of the rarest Insects in the Collection given to

the University by the Rev. William Hope. With 40 Plates. 1874. Small

folio, half morocco, 7/. IQS.

of tfjt lEast.

TRANSLATED BY VARIOUS ORIENTAL SCHOLARS, AND EDITED BY

F. MAX MULLER.

[Demy 8vo. cloth.]

Vol. I. The Upanishads. Translated by F. Max Miiller.
Part I. The A7zandogya-upanishad, The Talavakara-upanishad, The Aitareya-

arawyaka, The Kaushitaki-brahmawa-upanishad, and The Va^asaneyi-sawhita-

upanishad. ioj. 6d.

Vol. II. The Sacred Laws of the Aryas, as taught in the
Schools ofApastamba, Gautama, VasishMa, and Baudh^yana. Translated by
Prof. Georg Biihler. Part I. Apastamba and Gautama, icj. 6d.
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Vol. III. The Sacred Books of China. The Texts of Con-
fucianism. Translated by James Legge. Part I. The Shu King, The Reli-

gious portions of the Shih King, and The Hsiao King. 1 2s. 6d.

Vol. IV. The Zend-Avesta. Translated by James Darme-
steter. Part I. The Vendidad. ics. 6d.

Vol. V. The Pahlavi Texts. Translated by E. W. West.
Part I. The Bundahu, Bahman Yajt, and Shayast la-shayast. 12s. 6d.

Vols. VI and IX. The Qur'an. Parts I and II. Translated
by E. H. Palmer. 2is.

Vol. VII. The Institutes of Vishnu. Translated by Julius
Jolly, los. 6d.

Vol. VIII. The Bhagavadgita, with The Sanatsu^-atiya, and
The Anugita. Translated by Kashinath Trimbak Telang. los. 6d.

Vol. X. The Dhammapada, translated from Pali by F. Max
Muller; and The Sutta-Nipata, translated from Pali by V. Fausboll; being
Canonical Books of the Buddhists. los. 6d.

Vol. XI. Buddhist Suttas. Translated from Pali by T. W.
Rhys Davids. I. The Mahaparinibbana Suttanta; 2. The Dhamma-^akka-

ppavattana Sutta ; 3. The Tevi^a Suttanta ; 4. The Akahkheyya Sutta
;

5. TheAetokhila Sutta; 6. The Maha-sudassana Suttanta ; 7. TheSabbasava
Sutta. los. 6d.

Vol. XII. The 5atapatha-Brahma#a, according to the Text
of the Madhyandina School. Translated by Julius Eggeling. Part I.

Books I and II. I2s. 6d.

Vol. XIII. Vinaya Texts. Translated from the Pali by
T. W. Rhys Davids and Hermann Oldenberg. Part I. The Patimokkha.
The Mahavagga, I-IV. ics. 6d.

Vol. XIV. The Sacred Laws of the Aryas, as taught in the
Schools of Apastamba, Gautama, VasishMa and Baudhayana. Translated

by Georg Biihler. Part II. VasishMa and Baudhayana. los. 6d.

Vol. XV. The Upanishads. Translated by F. Max Muller.
Part II. The KaMa-upanishad, The Muw^/aka-upanishad, The Taittiriyaka-
upanishad, The Brzhadarawyaka-upanishad, The 6Vetajvatara-upanishad, The
Praj;?a-upanishad, and The Maitrayawa-Brahmawa-upanishad. loj. 6d.

Vol. XVI. The Sacred Books of China. The Texts of Con-
fucianism. Translated by James Legge. Part II. The Yi King. ios. 6d.

Vol. XVII. Vinaya Texts. Translated from the Pali by
T. W. Rhys Davids and Hermann Oldenberg. Part II. The Mahavagga,
V-X. The A"ullavagga, I III. ioj, 6d.
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Vol. XVIII. Pahlavi Texts. Translated by E. W. West.
Part II. The Da</istan-i Dinik and The Epistles of Mamu^ihar. I is. 6d.

Vol. XIX. The Fo-sho-hing-tsan-king. A Life of Buddha
by Axvaghosha Bodhisattva, translated from Sanskrit into Chinese by Dhar-

maraksha, A.D. 420, and from Chinese into English by Samuel Beal. los. 6d.

Vol. XX. Vinaya Texts. Translated from the Pali by T. W.
Rhys Davids and Hermann Oldenberg. Part III. The A'ullavagga, IV-XII.

Vol. XXI. The Saddharma-pu;/^arika ; or, the Lotus of the
True Law. Translated by H. Kern. 12s. 6d.

Vol. XXII. aina-Sutras. Translated from Prakrit by Her-
mann Jacobi. Part I. The AHranga-Siitra. The Kalpa-Sutra. los. 6d.

Vol. XXIII. The Zend-Avesta. Translated by James Dar-
mesteter. Part II. The Sirozahs, Ya^ts, and NyayLr. IQS. 6d.

Vol. XXIV. Pahlavi Texts. Translated by E. W. West.
Part III. Dina-i Mainog-i Khirad, 6ikand-gumanik, and Sad-Dar. IQS. 6d.

Second Series.

The following Volumes are in the Press:

Vol. XXV. Manu. Translated by Georg Buhler.

Vol. XXVI. The Satapatha-Br4hmaa. Translated by
Julius Eggeling. Part II.

\/Vols. XXVII and XXVIII. The Sacred Books of China.
The Texts of Confucianism. Translated by James Legge. Parts III and IV.
The Li A3, or Collection of Treatises on the Rules of Propriety, or Ceremonial

Usages.

Vols. XXIX and XXX. The G^'hya-sutras, Rules of Vedie
Domestic Ceremonies. Translated by Hermann Oldenberg. Parts I and II.

Vol. XXXI. The Zend-Avesta. Part III. The Yazna,
Visparad, Afrigan, and Gahs. Translated by the Rev. L. H. Mills.

Vol. XXXII. Vedic Hymns. Translated by F. Max Muller.
Parti.

*** The Second Series will consist of Twenty-Four Volumes
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I. ENGLISH.

A First Reading Book. By Marie Eichens of Berlin
;
and

edited by Anne J. Clough. Extra fcap. 8vo. stiff covers, \d.

Oxford Reading Book, Part I. For Little Children. Extra
fcap. Svo. stiff covers, 6d.

Oxford Reading Book, Part II. For Junior Classes. Extra
fcap. Svo. stiff covers, 6d.

An Elementary English Grammar and Exercise Book. By
O. W. Tancock, M.A. Second Edition. Extra fcap. Svo. is. 6d.

An English Grammar and Reading Book, for Lower Forms
in Classical Schools. By O. W. Tancock, M.A. Fourth Edition. Extra

fcap. Svo. 2s - 6d.

Typical Selections from the best English Writers, with Intro-

ductory Notices. Second Edition. In Two Volumes. Extra leap. Svo.

3-r. 6d. each.

Vol. I. Latimer to Berkeley. Vol. II. Pope to Macaulay.

Shairp (J. C., LL.D.). Aspects of Poetry ; being Lectures
delivered at Oxford. Crown Svo. los. 6d.

A Book for the Beginner in Anglo-Saxon. By John Earle,,
M.A. Third Edition. Extra fcap. Svo. 2s. 6d.

An Anglo-Saxon Reader. In Prose and Verse. With Gram-
matical Introduction, Notes, and Glossary. By Henry Sweet, M.A. Fourth

Edition, Revised and Enlarged. Extra fcap. Svo. 8s. 6d.

An Anglo-Saxon Primer, with Grammar, Notes, and Glossary.
By the same Author. Second Edition. Extra fcap. Svo. 2s. 6d.

Old English Reading Primers ; edited by Henry Sweet, M.A.
I. Selected Homilies of ^Elfric. Extra fcap. Svo., stiff covers, is. 6d.

II. Extracts from Alfred's Orosius. Extra fcap. Svo., stiff covers, i s. 6d.

First Middle English Primer, with Grammar and Glossary.
By the same Author. Extra fcap. Svo. 2s.

The Philology of the English Tongue. By J. Earle, M.A.
Third Edition. Extra fcap. Svo. 7-r. 6d.

A Handbook of Phonetics, including a Popular Exposition of
the Principles of Spelling Reform. By H. Sweet, M.A. Extra fcap. Svo.

4^-.
6</.

Elementarbuch des Gesprochenen Englisch. Grammatik,
Texte und Glossar. Von Henry Sweet. Extra fcap. Svo., stiff covers, 2s. 6d.
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The Ormulum; with the Notes and Glossary of Dr. R. M.
White. Edited by R. Holt, M.A. 1878. 2 vols. Extra fcap. 8vo. 2u.

English Plant Names from the Tenth to the Fifteenth
Century. By J. Earle, M.A. Small fcap. 8vo. 55.

Specimens of Early English. A New and Revised Edition.
With Introduction, Notes, and Glossarial Index. By R. Morris, LL.D., and
W. W. Skeat, M.A.

Part I. From Old English Homilies to King Horn (A. D. 1150 to A.D. 1300).
Second Edition. Extra fcap. 8vo. gs.

Part II. From Robert of Gloucester to Gower (A.D. 1298 to A.D. 1393).
Second Edition. Extra fcap. 8vo. 'js. 6d.

Specimens of English Literature^ from the '

Ploughmans
Crede' to the '

Shepheardes Calender' (A.D. 1394 to A.D. 1579). With Intro-

duction, Notes, and Glossarial Index. By W. W. Skeat, M.A. Extra fcap.
8vo. J. 0>d.

The Vision of William concerning Piers the Plowman, by
William Langland. Edited, with Notes, by W. W. Skeat, M.A. Third
Edition. Extra fcap. 8vo. 4*. 6d.

Chaucer. I. The Prologue to the Canterbury Tales; the

Knightes Tale
;
The Nonne Prestes Tale. Edited by R. Morris, Editor of

Specimens of Early English, &c., &c. Fifty-first Thousand. Extra fcap. 8vo.

2s. 6d.

II. The Prioresses Tale; Sir Thopas ; The Monkes
Tale ; The Clerkes Tale ; The Squieres Tale, &c. Edited by W. W. Skeat,
M.A. Second Edition. Extra fcap. 8vo. 4-r. 6</.

III. The Tale of the Man of Lawe ; The Pardoneres
Tale

;
The Second Nonnes Tale ; The Chanouns Yemannes Tale. By the

same Editor. Second Edition. Extra fcap. 8vo. 4*. 6d.

Gamelyn, The Tale of. Edited with Notes, Glossary, &c., by
W. W. Skeat, M.A. Extra fcap. 8vo. Stiff covers, i s. 6d.

Spenser's Faery Qiteene. Books I and II. Designed chiefly
for the use of Schools. With Introduction, Notes, and Glossary. By G. W.
Kitchin, D.D.

Book I. Tenth Edition. Extra fcap. 8vo. 2s. 6d.

Book II. Sixth Edition. Extra fcap. 8vo. 2s. 6d.

Hooker. Ecclesiastical Polity, Book I. Edited by R. W.
Church, M.A. Second Edition. Extra fcap. 8vo. 2s.

Marlowe and Greene. Marlowe*s Tragical History of Dr.
Fatistus, and Greenes Honourable History ofFriar Bacon and Friar Biingay.
Edited by A. W. Ward, M.A. 1878. Extra fcap. 8vo. 5*. 6d.

Marlowe. Edward IT. With Introduction, Notes, &c. By
O. W. Tancock, M.A. Extra fcap. 8vo. 3-r.
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Shakespeare. Select Plays. Edited by W. G. Clark, M.A.,
and W. Aldis Wright, M.A. Extra fcap. 8vo. stiff covers.

The Merchant of Venice, is. Macbeth, u. 64.

Richard the Second, is. 64. Hamlet. 2j.

Edited by W. Aldis Wright, M.A.

The Tempest, is. 64. A Midsummer Night's Dream.
As You Like It. is. 64. u. 64.

Julius Caesar, is. Coriolanus. 2s. 64.

Richard the Third, sis. 64. Henry the Fifth. 2s.

King Lear. is. 64. Twelfth Night, is. 6d.

King John. Just Ready.

Shakespeare as a Dramatic Artist ; a popular Illustration of
the Principles of Scientific Criticism. By Richard G. Moulton, M.A. Crown
8vo. 5J.

Bacon. I. Advancement of Learning. Edited by W. Aldis

Wright, M.A. Second Edition. Extra fcap. 8vo. 4*. 64.

II. The Essays. With Introduction and Notes. By
S. H. Reynolds, M.A., late Fellow of Brasenose College. In Preparation.

Milton. I. Areopagitica. With Introduction and Notes. By
John W. Hales, M.A. Third Edition. Extra fcap. 8vo. 3*.

II. Poems. Edited by R. C. Browne, M.A. 2 vols.

Fifth Edition. Extra fcap. 8vo. 6s. 64. Sold separately, Vol. 1. 4^. ; Vol. II. 3-r.

In paper covers :

Lycidas, id. L'Allegro, $4. II Penseroso, $4. Comus, 64.

Samson Agonistes, 64.

III. Samson Agonistes. Edited with Introduction and
Notes by John Churton Collins. Extra fcap. 8vo. stiff covers, is.

Bunyan. I. The Pilgrim's Progress^ Grace Abounding^ Rela-
tion of the Imprisonment of Mr.John Bunyan. Edited, with Biographical
Introduction and Notes, by E. Venables, M.A. 1879. Extra fcap. 8vo. 5-r.

II. Holy War, frc. Edited by E. Venables, M.A.
In the Press.

Dryden. Select Poems. Stanzas on the Death of Oliver
Cromwell ;

Astrgea Redux ;
Annus Mirabilis ; Absalom and Achitophel ;

Religio Laici ; The Hind and the Panther. Edited by W. D. Christie, M.A.
Second Edition. Extra fcap. 8vo. 3^. 64.

Locke's Conduct of the Understanding. Edited, with Intro-

duction, Notes, &c., by T. Fowler, M.A. Second Edition. Extra fcap. 8vo. 2s.
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Addison. Selections from Papers in the Spectator. With
Notes. By T. Arnold, M.A. Extra fcap. 8vo. 4$-. 6d.

Steele. Selections from the Tatler^ Spectator^ and Guardian.
Edited by Austin Dobson. Extra fcap. 8vo. 4^. 6d. In white Parchment, 7^. 6d.

Pope. With Introduction and Notes. By Mark Pattison, B.D.

I. Essay on Man. Extra fcap. 8vo. is. 6d.

II. Satires and Epistles. Extra fcap. 8vo. is.

Parnell. The Hermit. Paper covers, id.

Johnson. I. Rasselas ; Lives of Dryden and Pope. Edited
by Alfred Milnes, M.A. (London). Extra fcap. 8vo. 4^. 6d.

Lives of Pope and Dryden. Stiff covers, 2s. 6d.

II. Vanity of Human Wishes. With Notes, by E. J.

Payne, M.A. Paper covers, ^d.

Gray. Selected Poems. Edited by Edmund Gosse, Clark
Lecturer in English Literature at the University of Cambridge. Extra fcap.
8vo. Stiff covers, is. 6d. In white Parchment, $s.

- Elegy and Ode on Eton College. Paper covers, id.

Goldsmith. The Deserted Village. Paper covers, 2d.

Cowper. Edited, with Life, Introductions, and Notes, by
H. T. Griffith, B.A.

- I. The Didactic Poems of 1782, with Selections from the
Minor Pieces, A.D. 1779-1783. Extra fcap. 8vo. 3^.

II. The Task, with Tirocinium, and Selections from the
Minor Poems, A.D. 1784-1799. Second Edition. Extra fcap. 8vo. 3-y.

Burke. Select Works. Edited, with Introduction and Notes,
by E. J. Payne, M.A.

I. Thoughts on the Present Discontents ; the two Speeches
on America. Second Edition. Extra fcap. 8vo. 4^. 6d.

II. Reflections on the French Revolution. Second Edition.
Extra fcap. 8vo. S.T.

III. Four Letters on the Proposals for Peace with the

Regicide Directory of France. Second Edition. Extra fcap. 8vo. $s.

Keats. Hyperion, Book I. With Notes by W. T. Arnold, B.A.
Paper covers, ^d.

Byron. Childe Harold. Edited, with Introduction and Notes,
by H. F. Tozer, M.A. Extra fcap. 8vo. Cloth, 3^. 6d. In white Parchment,

5-r. Just Published.

Scott. Lay of the Last Minstrel. Introduction and Canto I,
with Preface and Notes by W. Minto, M.A. Paper covers, 6d.

[9] c
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II. LATIN.

Rudimenta Latina. Comprising Accidence, and Exercises of
a very Elementary Character, for the use of Beginners. By John Barrow

Allen, M.A. Extra fcap. 8vo. is.

An Elementary Latin Grammar. By the same Author.
Forty-second Thousand. Extra fcap. 8vo. 2S. 6d.

A First Latin Exercise Book. By the same Author. Fourth
Edition. Extra fcap. 8vo. 2s. 6d.

A Second Latin Exercise Book. By the same Author. Extra
fcap. 8vo. 3^. 6d.

Reddenda Minora, or Easy Passages, Latin and Greek, for
Unseen Translation. For the use of Lower Forms. Composed and selected

by C. S. Jerram, M.A. Extra fcap. 8vo. is. 6d.

Anglice Reddenda, or Easy Extracts, Latin and Greek, for
Unseen Translation. By C. S. Jerram, M.A. Third Edition, Revised and

Enlarged. Extra fcap. 8vo. 2s. 6d.

Passagesfor Translation into Latin. For the use of Passmen
and others. Selected by J. Y. Sargent, M.A. Fifth Edition. Extra fcap.
8vo. 2s. 6d.

Exercises in Latin Prose Composition; with Introduction,
Notes, and Passages of Graduated Difficulty for Translation into Latin. By
G. G. Ramsay, M.A., LL.D. Second Edition. Extra fcap. 8vo. +s. 6d.

Hints and Helps for Latin Elegiacs. By H. Lee-Warner, M.A.,
late Fellow of St. John's College, Cambridge, Assistant Master at Rugby
School. Extra fcap. 8vo. 3-$-. 6d. Just Published.

First Latin Reader. By T. J. Nunns, M.A. Third Edition.
Extra fcap. 8vo. 2s.

Caesar. The Commentaries (for Schools). With Notes and
Maps. By Charles E. Moberly, M.A.

Part I. The Gallic War. Second Edition. Extra fcap. 8vo. 4*. 6d.

Part II. The Civil War. Extra fcap. 8vo. 35. 6d.

The Civil War. Book I. Second Edition. Extra fcap. 8vo. ^s.

Cicero. Selection of interesting and descriptive passages. With
Notes. By Henry Walford, M.A. In three Parts. Extra fcap. 8vo. 4*. 6d.

Each Part separately, limp, is. 6d.

Part I. Anecdotes from Grecian and Roman History. Third Edition.

Part II. Omens and Dreams : Beauties of Nature. Third Edition.

Part III. Rome's Rule of her Provinces. Third Edition.

Cicero. Selected Letters (for Schools). With Notes. By the
late C. E. Prichard, M.A., and E. R. Bernard, M.A. Second Edition.

Extra fcap. 8vo. 3-r.
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Cicero. Select Orations (for Schools). In Verrem I. De
Imperio Gn. Pompeii. Pro Archia. Philippica IX. With Introduction and
Notes by J. R. King, M.A. Second Edition. Extra fcap. 8vo. is. 6d.

Cornelius Nepos. With Notes. By Oscar Browning, M.A.
Second Edition. Extra fcap. 8vo. 2s. 6d.

Livy. Selections (for Schools). With Notes and Maps. By
H. Lee-Warner, M.A. Extra fcap. 8vo. In Parts, limp, each is. 6d.

Part I. The Caudine Disaster.

Part II. Hannibal's Campaign in Italy.

Part III. The Macedonian War.

Livy. Books V VII. With Introduction and Notes. By
A. R. Cluer, B.A. Extra fcap. 8vo. y. 6d.

Ovid. Selections for the use of Schools. With Introductions
and Notes, and an Appendix on the Roman Calendar. By W. Ramsay, M.A.
Edited by G. G. Ramsay, M.A. Second Edition. Extra fcap. 8vo. 5-r. 6</.

Ovid. Tristia. Book I. The Text revised, with an Intro-
duction and Notes. By S. G. Owen, B.A. Extra fcap. 8vo. $s. 6d.

Pliny. Selected Letters (for Schools). With Notes. By the
late C. E. Prichard, M.A., and E. R. Bernard, M.A. Second Edition. Extra

fcap. 8vo. 3-r.

Tacitus. The Annals. Books I-IV. Edited, with Introduc-
tion and Notes for the use of Schools and Junior Students, by H. Furneaux,
M.A. Extra fcap. 8vo.

tjs.

Terence. Andria. With Notes and Introductions. By C.
E. Freeman, M.A., and A. Sloman, M.A. Extra fcap. 8vo. 3-f.

Catulli Veronensis Liber. Iterum recognovit, apparatum cri-

ticum prolegomena appendices addidit, Robinson Ellis, A.M. 1878. Demy
8vo. IDS.

A Commentary on Catullus. By Robinson Ellis, M.A.
1876. Demy 8vo. i6s.

Veronensis Carmina Selecta, secundum recognitionem
Robinson Ellis, A.M. Extra fcap. 8vo. 3.?. 6d.

Cicero de Oratore. With Introduction and Notes. By A. S.

Wilkins, M.A.

Book I. 1879. 8vo. 6s. Book II. 1881. 8vo. 5*.

-
Philippic Orations. With Notes. By J. R. King, M.A.

Second Edition. 1879. 8vo. los. 6d.

C 2
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Cicero. Select Letters. With English Introductions, Notes, and
Appendices. By Albert Watson, M.A. Third Edition. 1881. DemySvo. i8s.

- Select Letters. Text. By the same Editor. Second
Edition. Extra fcap. 8vo. 4*.

pro Cluentio. With Introduction and Notes. By W.
Ramsay, M.A. Edited by G. G. Ramsay, M.A. Second Edition. Extra fcap.
8vo. 3-r. 6d.

Horace. With a Commentary. Volume I. The Odes, Carmen
Seculare, and Epodes. By Edward C. Wickham, M.A. Second Edition.

1877. Demy 8vo. \2s.

- A reprint of the above, in a size suitable for the use
of Schools. Extra fcap. 8vo. 5*. 6d.

Livy, Book I. With Introduction, Historical Examination,
and Notes. By J. R. Seeley, M.A. Second Edition. 1881. 8vo. 6s.

Ovid. P. Ovidii Nasonis Ibis. Ex Novis Codicibus edidit,
Scholia Vetera Commentarium cum Prolegomenis Appendice Indice addidit,
R. Ellis, A.M. 8vo. ioj. 6d.

Persius. The Satires. With a Translation and Commentary.
By John Conington, M.A. Edited by Henry Nettleship, M.A. Second
Edition. 1874. 8vo. 7*. 6d.

Plautus. The Trinummus. With Notes and Introductions.
Intended for the Higher Forms of Public Schools. By C. E. Freeman, M.A.,
and A. Sloman, M.A. Extra fcap. 8vo. 3^.

Sallust. With Introduction and Notes. By W. W. Capes,
M.A. Extra fcap. 8vo. 4^. 6d.

Tacitus. The Annals. Books I-VI. Edited, with Intro-
duction and Notes, by H. Furneaux, M.A. 8vo. i8j.

Virgil. With Introduction and Notes. By T. L. Papillon,
M.A. Two vols. Crown 8vo. IO.T. 6d.

Nettleship (H., M.A.}. Lectures and Essays on Subjects con-
nected with Latin Scholarship and Literature. Crown 8vo. 7-r. 6d.

The Roman Satura : its original form in connection with
its literary development. 8vo. sewed, is.

Ancient Lives of Vergil. With an Essay on the Poems
of Vergil, in connection with his Life and Times. 8vo. sewed, 2s.

Papillon (T. L., M.A.}. A Manual of Comparative Philology.
Third Edition, Revised and Corrected. 1882. Crown 8vo. 6s.

Pinder (North, M.A.}. Selections from the less known Latin
Poets. 1869. 8vo. 15*.
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Sellar ( W. Y., M.A.). Roman Poets of the Augustan Age.
VIRGIL. New Edition. 1883. Crown 8vo. 9.?.

Roman Poets of the Republic. New Edition, Revised
and Enlarged. 1881. 8vo. 14^.

Wordsworth (J., M.A.\ Fragments and Specimens of Early
Latin. With Introductions and Notes. 1874. 8vo. iSs.

III. GREEK.

A Greek Primer, for the use of beginners in that Language.
By the Right Rev. Charles Wordsworth, D.C.L. Seventh Edition. Extra fcap.
8vo. is. 6d.

Graecae Grammaticae Rudimenta in usum Scholarum. Auc-
tore Carolo Wordsworth, D.C.L. Nineteenth Edition, 1882. I2mo. 4*.

A Greek-English Lexicon, abridged from Liddell and Scott's

4to. edition, chiefly for the use of Schools. Twenty-first Edition. 1884.

Square I2mo. 7-r. 6d.

Greek Verbs, Irregular and Defective; their forms, meaning,
and quantity; embracing all the Tenses used by Greek writers, with references

to the passages in which they are found. By W. Veitch. Fourth Edition.

Crown 8vo. los. 6d.

The Elements of Greek Accentuation (for Schools) : abridged
from his larger work by H. W. Chandler, M.A. Extra feap. 8vo. is, 6d.

A SERIES OF GRADUATED GREEK READERS:

First Greek Reader. By W. G. Rushbrooke, M.L. Second
Edition. Extra fcap. 8vo. 2s. 6d.

Second Greek Reader. By A. M. Bell, M.A. Extra fcap.
8vo. 3-r. 6d.

Fourth Greek Reader ; being Specimens of Greek Dialects.
With Introductions and Notes. By W. W. Merry, M.A. Extra fcap. 8vo.

4S.6<t.

Fifth Greek Reader. Selections from Greek Epic and
Dramatic Poetry, with Introductions and Notes. By Evelyn Abbott, M.A.
Extra fcap. 8vo. 4*. 6d.

The Golden Treasury of Ancient Greek Poetry : being a Col-
lection of the finest passages in the Greek Classic Poets, with Introductory
Notices and Notes. By R. S. Wright. M.A. Extra fcap. 8vo. 8s. 6d.

A Golden Treasury of Greek Prose, being a Collection of the
finest passages in the principal Greek Prose Writers, with Introductory Notices

and Notes. By R. S. Wright, M.A., and J. E. L. Shadwjell, M.A. Extra fcap.
8vo. 4s. bd.
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Aeschylus. Prometheus Bound (for Schools). With Introduc-
tion and Notes, by A. O. Prickard, M.A. Second Edition. Extra fcap. 8vo. 2s.

Agamemnon. With Introduction and Notes, by Arthur
Sidgwick, M.A. Second Edition. Extra fcap. 8vo. 3*.

Choephoroi. With Introduction and Notes by the same
Editor. Extra fcap. 8vo. 3-r.

Aristophanes. In Single Plays. Edited, with English Notes,
Introductions, &c., by W. W. Merry, M.A. Extra fcap. 8vo.

I. The Clouds, Second Edition, 2s.

II. The Acharnians, zs. III. The Frogs, 2j.

Cebes. Tabula. With Introduction and Notes. By C. S.

Jerram, M.A. Extra fcap. 8vo. is. 6d.

Euripides. Alcestis (for Schools). By C. S. Jerram, M.A.
Extra fcap. 8vo. is. 6d.

Helena. Edited, with Introduction, Notes, and Critical

Appendix, for Upper and Middle Forms. By C. S. Jerram, M.A. Extra

fcap. 8vo. BJ-.

Iphigenia in Tauris. Edited, with Introduction, Notes,
and Critical Appendix, for Upper and Middle Forms. By C. S. Jerram, M.A.
Extra fcap. 8vo. cloth, 3^.

Herodotus, Selections from. Edited, with Introduction, Notes,
and a Map, by W. W. Merry, M.A. Extra fcap. 8vo. is. 6d.

Homer. Odyssey, Books I-XII (for Schools). By W. W.
Merry, M.A. Twenty-seventh Thousand. Extra fcap. 8vo. 4$. 6d,

Book II, separately, is. 6d.

Odyssey, Books XIII-XXIV (for Schools). By the
same Editor. Second Edition. Extra fcap. 8vo. 5-r.

Iliad, Book I (for Schools). By D. B. Monro, M.A.
Second Edition. Extra fcap. 8vo. 2s.

Iliad> Books I-XII (for Schools). With an Introduction,
a brief Homeric Grammar, and Notes. By D. B. Monro, M.A. Extra fcap.
8vo. 6*.

Iliad, Books VI and XXI. With Introduction and
Notes. By Herbert Hailstone, M.A. Extra fcap. 8vo. is. 6d. each.

Lucian. Vera Historia (for Schools). By C. S. Jerram,
M.A. Second Edition. Extra fcap. 8vo. is. 6d.

Plato. Selections from the Dialogues [including the whole of
the Apology and Crito'}. With Introduction and Notes by John Purves, M.A.,
and a Preface by the Rev. B. Jowett, M.A. Extra fcap. 8vo. 6s. 6d.
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Sophocles. In Single Plays, with English Notes, &c. By
Lewis Campbell, M.A., and Evelyn Abbott, M.A. Extra fcap. 8vo. limp.

Oedipus Tyrannus, Philoctetes. New and Revised Edition, 2j. each.

Oedipus Coloneus, Antigone, is. gd. each.

Ajax, Electra, Trachiniae, 2s. each.

Oedipus Rex: Dindorfs Text, with Notes by the
present Bishop of St. David's. Extra fcap. 8vo. limp, is. 6d.

Theocritus (for Schools). With Notes. By H. Kynaston,
D.D. (late Snow). Third Edition. Extra fcap. 8vo. $s- 6d.

Xenophon. Easy Selections, (for Junior Classes). With a
Vocabulary, Notes, and Map. By J. S. Phillpotts, B.C.L., and C, S. Jerram,
M.A. Third Edition. Extra fcap. 8vo. 3*. 6d.

Selections (for Schools). With Notes and Maps. By
J. S. Phillpotts, B.C.L. Fourth Edition. Extra fcap. 8vo. 3.5-. 6d.

Anabasis, Book I. Edited for the use of Junior Classes
and Private Students. With Introduction, Notes, and Index. By J. Mar-
shall, M.A., Rector of the Royal High School, Edinburgh. Extra fcap. 8vo.
2s. 6d. Just Published.

Anabasis, Book II. With Notes and Map. By C. S
Jerram, M.A. Extra fcap. 8vo. 2s.

:

Cyropaedia, Books IV and V. With Introduction and
Notes by C. Bigg, D.D. Extra fcap. 8vo. 2s. 6d.

A ristottis Politics. By W. L. Newman, M.A. \In preparation^

Aristotelian Studies. I. On the Structure of the Seventh
Book of the Nicomachean Ethics. By J. C. Wilson, M.A. 1879. Medium 8vo.

stiff, 5-r.

Demosthenes and Aeschines. The Orations of Demosthenes
and ^Eschines on the Crown. With Introductory Essays and Notes. By
G. A. Simcox, M.A., and W. H. Simcox, M.A. 1872. 8vo. i2s.

Geldart (E. M., B.A.}. The Modern Greek Language in its

relation to Ancient Greek. Extra fcap. Svo. 4^. 6d.

Hicks (E. L.,M.A.). A Manual of Greek Historical Inscrip-
tions. Demy Svo. IQS. 6d.

Homer. Odyssey, Books I-XII. Edited with English Notes,
Appendices, etc. By W. W. Merry, M.A., and the late James Riddell, M.A.

1876. Demy Svo. i6s.

A Grammar of the Homeric Dialect. By D. B. Monro,
M.A. Demy Svo. los. 6J.
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Sophocles. The Plays and Fragments. With English Notes
and Introductions, by Lewis Campbell, M.A. 2 vols.

Vol. I. Oedipus Tyrannus. Oedipus Coloneus. Antigone. Second
Edition. 1879. 8vo. i6s.

Vol. II. Ajax. Electra. Trachiniae. Philoctetes. Fragments. 1881.

8vo. i6s.

Sophocles. The Text of the Seven Plays. By the same
Editor. Extra fcap. 8vo. 4^. 6d.

IV. FRENCH AND ITALIAN.

Bracket's Etymological- Dictionary of the French Language,
with a Preface on the Principles of French Etymology. Translated into

English by G. W. Kitchin, D.D. Third Edition. Crown 8vo. 7$. 6d.

Historical Grammar of the French Language. Trans-
lated into English by G. W. Kitchin, D.D. Fourth Edition. Extra fcap.
8vo. 3-r. 6d.

Works by GEOKGE SAINTSBURY, M.A.

Primer of French Literature. Extra fcap. 8vo. is.

Short History of French Literature. Crown 8vo. ios.6d.

Specimens of French Literature^ from Villon to Hugo. Crown
8vo.

9-y.

Corneille's Horace. Edited, with Introduction and Notes, by
George Saintsbury, M.A. Extra fcap. 8vo. 2s. 6d.

MoliMs Les Prfcieuses Ridicules. Edited, with Introduction
and Notes, by Andrew Lang, M.A. Extra fcap. 8vo. if. 6d.

Beaumarchais* LeBarbier de Seville. Edited, with Introduction
and Notes, by Austin Dobson. Extra fcap. 8vo. 2s. d.

Voltaire's Merope. Edited, with Introduction and Notes, by
George Saintsbury. Extra fcap. 8vo. cloth, 2s. Just Published.

Mussels On ne badinepas avec VAmour, and Fantasio. Edited,
with Prolegomena, Notes, etc., by Walter Herries Pollock. Extra fcap.
8vo. 25.

Sainte-Beuve. Selectionsfrom the Causeries du Lundi. Edited
by George Saintsbury. Extra fcap. 8vo. 2s.

Quinet's Lettres a sa Mere. Selected and edited by George
Saintsbary. Extra fcap. 8vo. cloth, 2s.
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UEloquence de la Chaire et de la Tribune Franqaises. Edited
by Paul Blouet, B.A. (Univ. Gallic.). Vol. I. French Sacred Oratory
Extra fcap. 8vo. 2s. 6d.

Edited by GTJSTAVE MASSOW, B.A.

Comeil&s Cinna, and Moliere's Les Feinmes Savantes. With
Introduction and Notes. Extra fcap. 8vo. 2s. 6d.

Louis XIV and his Contemporaries ; as described in Extracts
from the best Memoirs of the Seventeenth Century. With English Notes,

Genealogical Tables, &c. Extra fcap. 8vo. 2S, 6d.

Maistre^ Xavier de. Voyage autour de ma Chambre. Ourika,
by Madame de Duras; La Dot de Suzette, by Fievee; Les Jumeaux de
1'Hotel Corneille,by Edmond About; Mesaventures d'un Ecolier, by Rodolphe
Topffer. Second Edition. Extra fcap. 8vo. 2s. 6d.

Moliere's Les Fourberies de Scapin. With Voltaire's Life of
Moliere. Extra fcap. 8vo. stiff covers, is. 6d.

Motive's Les Fourberies de Scapin, and Racine s Athalie.
With Voltaire's Life of Moliere. Extra feap. 8vo. 2s. 6d.

Racine's Andromaque, and Corneilles Le Menteur. With
Louis Racine's Life of his Father. Extra fcap. 8vo. 2s. 6d.

RegnarcTs Le Joueur, and Brueys and Palaprafs Le Grondeiir.
Extra fcap. 8vo. is. 6d.

Sevigne") Madame de^ and her chief Contemporaries, Selections

Jrom the Correspondence of. Intended more especially for Girls' Schools.

Extra fcap. 8vo. 3-r.

Dante. Selections from the Inferno. With Introduction and
Notes. By H. B. Cotterill, B.A. Extra fcap. 8vo. 4*. 6d.

Tasso. La Gerusalemme Liberata. Cantos i, ii. With In-
troduction and Notes. By the same Editor. Extra fcap. 8vo. 2j. 6d.

V. GERMAN.

Scherer (W.). A History of German Literature. Translated
from the Third German Edition by Mrs. F. Conybeare. Edited by F.^Max
Miiller. 2 vols. 8vo. 2 is. Just Published.

GERMAN COURSE. By HEBMANN LANGE.
The Germans at Home ; a Practical Introduction to German

Conversation, with an Appendix containing the Essentials of German Grammar.
Second Edition. 8vo. 2s. 6d.

The German Manual ; a German Grammar, Reading Book,
and a Handbook of German Conversation. 8vo. 7J. 6d.
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Grammar of the German Language. 8vo. $s. 6d.

This ' Grammar '

is a reprint of the Grammar contained in ' The German Manual,'

and, in this separate form, is intended for the use of Students who wish to make
themselves acquainted with German Grammar chiefly for the purpose of being
able to read German books.

German Composition ; A Theoretical and Practical Guide to

the Art of Translating English Prose into German. 8vo. 4^. 6d.

Lessing's Laokoon. With Introduction, English Notes, etc.

By A. Hamann, Phil. Doc., M.A. Extra fcap. 8vo. 4-r.
6d.

Schiller s Wilhelm Tell. Translated into English Verse by
E. Massie, M.A. Extra fcap. 8vo. 5-r.

Also, Edited by C. A. BUCHHEIM, Phil. Doc.

Goethe's Egmont. With a Life of Goethe, &c. Third Edition.
Extra fcap. 8vo. 3-r.

Iphigenie auf Tauris. A Drama. With a Critical In-
troduction and Notes. Second Edition. Extra fcap. 8vo. $s.

Heine's Prosa, being Selections from his Prose Works. With
English Notes, etc. Extra fcap. 8vo. 4^. 6d.

Lessing*s Minna von Barnhelm. A Comedy. With a Life
of Lessing, Critical Analysis, Complete Commentary, &c. Fourth Edition.
Extra fcap. 8vo. $s. 6d.

Nathan der Weise. With Introduction, Notes, etc.
Extra fcap. 8vo. 4-r. 6d.

Schiller's Historische Skizzen ; Egmonfs Leben und Tod, and
Belagerung von Antwerfen. Second Edition. Extra fcap. 8vo. 2s. 6d.

Wilhelm Tell. With a Life of Schiller; an his-
torical and critical Introduction, Arguments, and a complete Commentary,
and Map. Sixth Edition. Extra fcap. 8vo. 3.?. 6d.

Wilhelm Tell. School Edition. With Map. Extra fcap.
8vo. 2s.

Halm's Griseldis. In Preparation.

Modern German Reader. A Graduated Collection of Ex-
tracts in Prose and Poetry from Modern German writers :

Part I. With English Notes, a Grammatical Appendix, and a complete
Vocabulary. Fourth Edition. Extra fcap. 8vo. 2s. 6d.

Part II. With English Notes and an Index. Extra fcap. 8vo. 2s. 6d. Just
Published.

Part III in Preparation.
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VI. MATHEMATICS, PHYSICAL SCIENCE, &c.

By LEWIS HENSLEY, M.A.

Figures made Easy : a first Arithmetic Book. (Introductory
to ' The Scholar's Arithmetic.') Crown 8vo. 6d.

Answers to the Examples in Figures made Easy> together
with two thousand additional Examples formed from the Tables in the same,
with Answers. Crown 8vo. is.

The Scholar's Arithmetic: with Answers to the Examples.
Crown 8vo. 4-r. &d.

The Scholar's Algebra. An Introductory work on Algebra.
Crown 8vo. 4*. 6d.

Baynes (R.E., M.A.). Lessons on Thermodynamics. 1878.
Crown 8vo. 7-y. (id.

Chambers (G. F.> F.R.A.S.). A Handbook of Descriptive
Astronomy. Third Edition. 1877. Demy 8vo. 28j.

^Clarke (Col. A. R., C.B..R.E.). Geodesy. 1880. 8vo. its. 6d.

^Cremona (Luigi}. Elements of Projective Geometry. Trans-
lated by C. Leudesdorf, M.A.. 8vo. \is. 6d.

Donkin ( W. F., M.A., F.R.S^). Acoustics. Second Edition.
Crown 8vo. Js. 6d.

Galton (Douglas, C.B., F.R.S.}. The Construction of Healthy
Dwellings; namely Houses, Hospitals, Barracks, Asylums, &c. Demy 8vo.

los. 6d.

Hamilton (Sir R. G. C.\ and J. Ball Book-keeping. New
and enlarged Edition. Extra fcap. 8vo. limp cloth, 2s.

Harcourt (A. G. Vernon, M.A.), and H. G. Madan, M.A.
Exercises in Practical Chemistry. Vol. I. Elementary Exercises. Third
Edition. Crown 8vo. 9$.

Maclaren (Archibald). A System of Physical Education :

Theoretical and Practical. Extra fcap. 8vo. 7^. 6cf.

Madan (H. G., M.A.}. Tables of Qualitative Analysis.
Large 4to. paper, 4,$-.

6d.

^/Maxwell (7. Clerk, M.A., F.R.S.). A Treatise on Electricity
and Magnetism. Second Edition. 2 vols. Demy 8vo. i/. n.y. 6d.

-An Elementary Treatise on Electricity. Edited by
William Garnett, M.A. Demy 8vo. 7*. 6d.
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\fMinckin (G. M., M.A.). A Treatise on Statics. Third
Edition, Corrected and Enlarged. Vol. I. Equilibrium of Coplanar Forces.

8vo. 9-r. Just Published. Vol. II. In the Press.

Uniplanar Kinematics of Solids and Fluids. Crown 8vo.

Rolleston (G., M.D., F.R.S.). Forms of Animal Life. Illus-

trated by Descriptions and Drawings of Dissections. A New Edition in the

Press.

v Smyth. A Cycle of Celestial Objects. Observed, Reduced,
and Discussed by Admiral W. H. Smyth, R. N. Revised, condensed, and greatly

V enlarged by G. F. Chambers, F.R.A.S. 1881. 8vo. Price reduced to I2J.

Stewart (Balfour, LL.D., F.R.S.). A Treatise on Heat, with
numerous Woodcuts and Diagrams. Fourth Edition. 1881. Extra fcap. 8vo.

7-r. 6d.

Story-Maskelyne (M. H. N.> M.A.}. Crystallography. In the
Press.

Vernon-Harcourt (L. F., M.A.}. A Treatise on Rivers and
Canals, relating to the Control and Improvement of Rivers, and the Design,
Construction, and Development of Canals. 2 vols. (Vol. I, Text. Vol. II,

Plates.) 8vo. 2is.

Harbours and Docks ; their Physical Features, History,
Construction, Equipment, and Maintenance

;
with Statistics as to their Com-

mercial Development. 2 vols. 8vo. 25^.

Watson (H. W., M.A.}. A Treatise on the Kinetic Theory
of Gases. 1876. 8vo. $s.6d.

Watson (H. W., D. Sc., F.R.S.), and S. H. Burbury, M.A.
I. A Treatise on the Application of Generalised Coordinates to the Kinetics of

a Material System. 1879. 8vo. 6s.

II. The Mathematical Theory of Electricity and Magnetism. Vol. I. Electro-

statics. 8vo. ioj. 6d. Just Published.

Williamson (A. W., Phil. Doc., F.R.S.). Chemistry for
Students. A new Edition, with Solutions. 1873. Extra fcap. 8vo. 8s. 6d.

VII. HISTORY.
^/Bluntschli (J. K.). The Theory of the State. By ]. K.

Bluntschli, late Professor of Political Sciences in the University of Heidel-

berg. Authorised English Translation from the Sixth German Edition.

Demy 8vo. half-bound, 1 2s. 6d. Just Published.

Finlay (George, LL.D.). A History of Greece from its Con-
quest by the Romans to the present time, B.C. 146 to A.p. 1864. A new
Edition, revised throughout, and in part re-written, with considerable ad-

ditions, by the Author, and edited by H. F. Tozer, M.A. 1877. 7 vols. 8vo.



CLARENDON PRESS, OXFORD. 29

Forfescue (Sir John, Kt.}. The Governance of England:
otherwise called The Difference between an Absolute and a Limited Mon-
archy. A Revised Text. Edited, with Introduction, Notes, and Appendices,
by Charles Plummer, M.A. 8vo. half-bound, 12*. 6d. Just Published.

Freeman (E.A., D.C.L.}. A Short History of the Norman
Conquest of England. Second Edition. Extra fcap. Svo. 2s.6d.

A History of Greece. In preparation.

George (H. B.,M.A .). Genealogical Tables illustrative ofModern
History. Second Edition, Revised and Enlarged. Small 4to. 1 2s.

Hodgkin (T.). Italy and her Invaders. Illustrated with
Plates and Maps. Vols. I. and II., A.D. 376-476. Svo. \l. i2s.

Vols. III. and IV. The Ostrogothic Invasion, and The Imperial Restoration.
Svo. i/. i6s. Just PiMished.

Kitchin (G. W., D.D.}. A History of France. With numerous
Maps, Plans, and Tables. In Three Volumes. Second Edition. Crown Svo.
each ioj. 6d.

Vol. i. Down to the Year 1453.

Vol. 2. From 1453-1624. Vol. 3. From 1624-1793.

Payne (E. J., M.A.). A History of the United States of
America. In the Press.

Ranke (L. von). A History of England, principally in the
Seventeenth Century. Translated by Resident Members of the University of

Oxford, under the superintendence of G. W. Kitchin, D.D., and C. W. Boase,
M.A. 1875. 6 vols. Svo. 3/. 3-r.

Rawlinson (George\ M.A.). A Manual of Ancient History.
Second Edition. Demy Svo. 14^.

Select Charters and other Illustrations ofEnglish Constitutional

History, from the Earliest Times to the Reign of Edward I. Arranged and
edited by W. Stubbs, D.D. Fifth Edition. 1883. Crown Svo. Ss. 6d.

Stubbs ( W., D.D.}. The Constitutional History of England,
in its Origin and Development. Library Edition. 3. vols. demy Svo. 2/. 8s.

Also in 3 vols. crown Svo. price 12^. each.

Wellesley. A Selection from the Despatches, Treaties, and
other Papers of the Marquess Wellesley, K.G., during his Government
of India. Edited by S. J. Owen, M.A. 1877. Svo. i/. 4*.

Wellington. A Selection from the Despatches, Treaties, and
other Papers relating to India of Field-Marshal the Duke ofWellington, K.G.
Edited by S. J. Owen, M.A. 1880. Svo. 24*.

A History of British India. By S. J. Owen, M.A., Reader
in Indian History in the University of Oxford. In preparation.
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VIII. LAW.
Alberici Gentilis, I.C.D., I.C. Professoris Regii, De lure Belli

Libri Tres. Edidit Thomas Erskine Holland, I.C.D. 1877. Small 410.
half morocco, 2 is.

Anson (Sir William R., Bart., D.C.L.). Principles of the

English Law of Contract, and ofAgency in its Relation to Contract. Second
Edition. Demy 8vo. los. 6d.

Bentham (Jeremy]. An Introduction to the Principles of
Morals and Legislation. Crown 8vo. 6s. 6d.

Digby (Kenelm E., M.A.). An Introduction to the History of
the Law ofReal Property. Third Edition. Demy 8vo. TOJ. 6d.

Gaii Institutionum Juris Civilis Commentarii Quattuor ; or,
Elements of Roman Law by Gaius. With a Translation and Commentary
by Edward Poste, M.A. Second Edition. 1875. 8vo. iSs.

Hall (W. E., M.A. ).
International Law. Second Edition.

Demy 8vo. 2is.

Holland (T. E., D.C.L.). The Elements of Jurisprudence.
Second Edition. Demy 8vo. los. 6d.

The European Concert in the Eastern Question ,
a Col-

lection of Treaties and other Public Acts. Edited, with Introductions and

Notes, by Thomas Erskine Holland, D.C.L. 8vo. i2s. 6d.

Imperatoris lustiniani Institutionum Libri Quattuor ; with
Introductions, Commentary. Excursus and Translation. By ]. E. Moyle, B.C.L.,
M.A. 2 vols. Demy 8vo. 2is.

Justinian, The Institutes of, edited as a recension of the
Institutes of Gaius, by Thomas Erskine Holland, D.C.L. Second Edition,
1881. Extra fcap. 8vo. 5*.

Justinian, Select Titlesfrom the Digest of. By T. E. Holland,
D.C.L., and C. L. Shadwell, B.C.L. 8vo. 14^.

Also sold in Parts, in paper covers, as follows :

Part I. Introductory Titles, as. 6d. Part II. Family Law. is.

Part III. Property Law. 2s. 6d. Part IV. Law of Obligations (No. i). 35. 6rf.

Part IV. Law of Obligations (No. 2). 45. 6d.

Markby ( W., D.C.L.). Elements ofLaw considered with refer-
ence to Principles of General Jurisprudence. Third Edition. Demy 8vo. 1 2s.6d.

Twiss (Sir Travers, D.C.L.}. The Law of Nations considered
as Independent Political Communities.

Part I. On the Rights and Duties of Nations in time of Peace. A new Edition,
Revised and Enlarged. 1884. Demy 8vo. 15^.

Part II. On the Rights and Duties of Nations in Time of War. Second Edition

Revised. 1875. Demy 8vo. 2is.
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IX. MENTAL AND MORAL PHILOSOPHY, &c.

Bacoris Novum Organum. Edited, with English Notes, by
G. W. Kitchin, D.D. 1855. Svo. gs. 6d.

Translated by G. W. Kitchin, D.D. 1855. Svo. $s. 6d.
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Berkeley. The Works of George Berkeley, D.D., formerly

Bishop of Cloyne; including many of his writings hitherto unpublished.
With Prefaces, Annotations, and an Account of his Life and Philosophy,
by Alexander Campbell Fraser, M.A. 4 vols. 1871. Svo. 2/. iSs.

The Life, Letters, &c. i vol. i6s.

- Selections from. With an Introduction and Notes.
For the use of Students in the Universities. By Alexander Campbell Fraser,
LL.D. Second Edition. Crown Svo. 7-r. 6d.

^ Fowler
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The Elements of Deductive Logic, designed
mainly for the use of Junior Students in the Universities. Eighth Edition,
with a Collection of Examples. Extra fcap. Svo. 3^. 6d.

The Elements of Inductive Logic, designed mainly for
the use of Students in the Universities. Fourth Edition. Extra fcap. Svo. 6s.

Edited by T. POWLEK, M.A.

Bacon. Novum Organum. With Introduction, Notes, &c.
/ 1878. Svo. 14^.

V Locke's Conduct of the Understanding. Second Edition.
Extra fcap. Svo. zs.

V Green (T. H., M.A.). Prolegomena to Ethics. Edited by
A. C. Bradley, M.A. Demy Svo. 12s. 6d.

\/Hegel. The Logic of Hegel; translated from the Encyclo-
paedia of the Philosophical Sciences. With Prolegomena by William

Wallace, M.A. 1874. Svo. 14^.

V Lotze's Logic, in Three Books
;
of Thought, of Investigation,

and of Knowledge. English Translation; Edited by B. Bosanquet, M.A.,
Fellow of University College, Oxford. Svo. cloth, us. 6d.

\/ Metaphysic, in Three Books; Ontology, Cosmology,
and Psychology. English Translation

;
Edited by B. Bosanquet, M.A.

Svo. cloth, 1 2s. 6d.

Martineau (James, D.D.). Types of Ethical Theory. 2 vols.

Svo. 24^.

Rogers (J.E. Thorold, M.A .).
A ManualofPolitical Economy,

for the use of Schools. Third Edition. Extra fcap. Svo. 4^. 6</.

Smith's Wealth of Nations. A new Edition, with Notes, by
J. E. Thorold Rogers, M.A. 2 vols. 8vo. 1880. ais.
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X. ART, &c.

Hullah (John). The Cultivation of the Speaking Voice.

Second Edition. Extra fcap. 8vo. 2s. 6d.

Ouseley (Sir F. A. Gore, Bart.). A Treatise on Harmony.
Third Edition. 4to. los.

A Treatise on Counterpoint^ Canon, and Fugue, based

upon that of Cherubini. Second Edition. 4to. i6s.

A Treatise on Musical Form and General Composition.
4to. los.

Robinson (J. C., F.S.A.). A Critical Account of the Drawings
by Michel Angela and Raffaello in the University Galleries, Oxford. 1870.
Crown 8vo. 4?.

Ruskin (John, M.A.). A Course of Lectures on Art, delivered
before the University of Oxford in Hilary Term, 1870. 8vo. 6s.

Troutbeck (J., M.A.) andR. F. Dale, M.A. A Music Primer
(for Schools). Second Edition. Crown 8vo. is.

''

Art.
:tive by

A. Macdonald. Second Edition. 1875. 8vo. half morocco, iSs.

Vaux ( W. S. W., M.A., F.R.S.). Catalogue of the Castellani
Collection of Antiquities in the University Galleries, Oxford. Crown 8vo.

stiff cover, is.

Tyrwhitt (R. St. J., M.A.). A Handbook of Pictorial <

With coloured Illustrations, Photographs, and a chapter on Perspecth

The Oxford Biblefor Teachers, containing supplemen-
tary HELPS TO THE STUDY OF THE BIBLE, including Summaries
of the several Books, with copious Explanatory Notes and Tables
illustrative of Scripture History and the characteristics of Bible

Lands; with a complete Index of Subjects, a Concordance, a Diction-

ary of Proper Names, and a series of Maps. Prices in various sizes

and bindings from is. to 2/. $s.

Helps to the Study of the Bible, taken from the
OXFORD BIBLE FOR TEACHERS, comprising Summaries of the
several Books, with copious Explanatory Notes and Tables illus-
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with a complete Index of Subjects, a Concordance, a Dictionary
of Proper Names, and a series of Maps. Crown 8vo. cloth, y. 6d.

;

l6mo. cloth, is.
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