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In a recent note' the writer has pointed out the close analogy between
approximation in the sense of least squares by polynomials on the unit
circle C: z = 1 to an arbitrary function f(z) continuous on C, and inter-
polation by polynomials in the nth roots of unity to this same function.
We have the following two theorems:2

I. Let f(z) be analytic for z < R > 1, let P (z) denote the polynomial
of degree n of best approximation to f(z) on C in the sense of least squares
[that is, P"(z) is the sum of thefirst n + 1 terms of the Maclaurin development
of f(z)], and let pn(z) denote the polynomial of degree n determined by inter-
polation to f(z) in the (n + 1)st roots of unity. Then we have

lim pn(z) = f(z), for I z <R, uniformly for z _ R, < R. (1)
?n -X c

Moreover we have

lim [P.(z) - p.(z) ] = 0, for z < R2, uniformly for (2)

z < R2 < R2.

It will be noted that many results concerning the convergence of the
sequence Pn(Z) can be read off directly from (2)-Abel's theorem and its
modified converse, divergence of the sequence pn (Z) for R < z < R2 if
f(z) has a singularity for z = R, etc.
An illuminating special case of the following is due to Meray; the general

theorem is to be found in the reference:'
II. Let f(z) be continuous for z = 1 and let Pn(z) denote the polynomial

of degree n found by interpolation to f(z) in the (n + 1) st roots of unity.
Then we have

lim P. (z) = I ff(t)dt for z < 1, uniformly for I zI r< 1. (3)
Mna)z-co 27ri c t-z

The right-hand member of (3) is also the limit for z < 1 of the sequence
of polynomials Pn(z) of degree n found by best approximation to f(z) on C
in the sense of least squares. If, however, a sequence of polynomials
P'(z) of degree n is found say by best approximation to f(z) on C in the
sense of Tchebycheff, then the limit of Pn(z) for z < 1 is not in general
the right-hand member of (3).
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It is the object of the present note to point out the close analogy for
expansions in rational functions between interpolation in roots of unity and
approximation on C: I 2 I = 1 in the sense of least squares. We prove the
two following theorems, which correspond closely to I and II. These new
theorems bear the relation to the Laurent series that I and II bear to the
Taylor series.

III. Let C denote the unit circle, f(z) a function analytic for 1/R < z I <
R > 1:

f(z) = fi(z) + f2(z),z onC,
fl(z) = ao + alz + a2z2 + . . . (4)
f2(z) = a-1z-1 + a-2Z-2 +

and r2 (z) the function

r2n (z) = rn (z) + rn(z),
r,(z) = ao0 + al,,z + * + awn,n, (5)
rn(z) = a-1,z'1 + a-2nZ2 + ... + a-n,,zn,

which coincides withf(z) in 2n + 1 points equally spaced on C. Then we have

f(z) = lim r2 (z),for 1/R < z I < R, uniformly for l/RI z I < R1< R
n'- co

fi(z) = lim r1(z), for z < R, uniformly for I z < R1< R,
n +xc

f2(z) = lim 4(z), for z > 1/R, uniformly for z I > 1/R, > 1/R.
n- co

IV. Let C denote the unit circle and f(z) a function continuous on C.
Introduce the notation

f() 27ri JC t-z }

f2(z) = 2 J f(t)dt zIz > 1, (6)

If f(z) in (4) is the formal Laurent expansion of f(z) on C, then the repre-
sentations (4) and (6) of fi(z) for z I < 1 and of f2(z) for z I > 1 are known
to agree. If now r2,,(z) denotes the function as in (5) which coincides with
f(z) in the (2n + 1)st roots of unity, then we have

fi(z) = lim r,(z), for Iz 1< 1, uniformly for I z < r < 1,
'n -,c

f2(z) = lim r"(z), for |z > 1, uniformly for|jz _ R > 1.
n- m

In (6) the second integral is to be taken in the positive sense with respect
to the region z I > 1, that is, in the clockwise sense on C.
Let us give first a proof of IV, using direct methods; this proof is similar

to the proof of II (loc. cit.).
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Introduce the notation
CO = e2-ri/(2n+ 1)

Then, since r2,(z) is found by interpolation to f(z) in the 2n + 1 distinct
points k, the function zxr2ff(z) is a polynomial in z of degree 2n defined by
interpolation to the function znf(z) in the points ck, and is represented by.
Lagrange's interpolation formula. Lagrange's formula for the polynomial
Pm(Z) of degreem which takes on the values K1, K2, ..., Km+i in the m + 1
distinct points z1, Z2, ..., Zm+i S

1+1 Kk P(Z)
Pm (Z) =E / w

k= 1 P (Zk) Z - Zk

where p (z) = (z - z1) (z - Q)... (z - Zm+i); the polynomial Pm(z) is
uniquely determined by these requirements. Under the circumstances of
the present theorem we have

er
~2n+1

k k(k2n+1Z-n1)Z'r2n(z) = E f(k)kn (2 +) -1)

Z2n+ 1
- 1 2n+1 f((k)Ck(n+ l)2" (2n +1)z' k-i z

We find rn (z) by omitting here the negative powers of z. Clearly one has
2 1 = zn + ckzn-1 + 2kzn-2 + -- w2"kz-n
z"(z _ck)

from which the non-negative powers of z are

n+kZn-1 + + nk en+1 _k(n+l)
k_ Z -wkZ-CO

This yields
2n+1 f(COk)wk(n+1) (zn+1 _k(n+l)

r. (z) k=E (2n + 1) (z Cok)
The expression on the right suggests the computation of fi(z) directly by
means of the definite integral in (6), where the circumference C is divided
into 2n + 1 parts by the points COk:

fi(z) = lim 1 2E1 f(Wk) (Wk+ -_ k) jz|< 1; (8)
n-*co 27ri k=1 wc - Z

the limit on the right exists uniformly3 for all z < r < 1.
We find now

lim [fi(z)- r(z)]
n

2+1 [1 ckzn+l_1 ] k(C _ j)f(k)
n-*-> c k l2iri (2n+ 1) (co-1)J w -z

VOL. 19, 1933 205



MATHEMA TICS: J. L. WALSH

The quantity (2n + 1) (w - 1) approaches as its limit 21ri, for we have

2ir 2ir
X =cos + i sinf

2n + 1 2n + 1

2ir 27r

(2n + 1) (c-1) 2n + 1 2n + 1
2iri 2iri 2+ r

2n+1 2n+I

which approaches the limit unity. By the uniformity of the convergence
in (8) as applied to the right-hand member of (9) and also by the uniform
convergence to zero of zn+1 for z < r < 1, we have now the first of the
equations (7).
We omit the details of the proof of the second of equations (7), for they

are similar to the details already given.
It will be noted that in IV as in II the given function f(z) need not be

continuous on C provided it is integrable on C in the sense of Riemann.
Let us turn now to the proof of III. A proof can readily be given by the

direct study of the functions involved, as suggested by the proof of IV just
presented. A shorter proof of III is, however, the following.

If R2 < R is arbitrary, there exists M such that

f(z) - [a_z-' + a_n+lzn+l + *-- + ao + alz + ... + as]z

< M,zonC; (10)

the proof is immediate by the Cauchy inequality for the coefficients ak
as applied to fi(z) and f2(z). It will be noticed that the polynomial in z
and 1/z which appears in (10) is a trigonometric polynomial of order n.
From (10) follows now from a very general theorem due to Jackson4 the

inequality

f(Z) - r2(z) 2BM log n C,

where B is an absolute constant. The conclusion of III is an immediate
consequence of a theorem due to the present writer.5
One might suspect by analogy with I that in III the equation

lim [r,(z) - (ao + alz + * + anz )] = 0

could be established for certain values of z in modulus greater than R, at
least in casef(z) has no singularity for I z 2 R. That is not the case, how-
ever, for an arbitrary function f(z), as we proceed to show by an example.
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Choose f(z) = 1/(z - p), 0 < p < 1. We find in succession the equations
(which may be verified directly)

-zr2 (z) = - ()
z-p (~~~~pn+.1(.p),

(p2n+l 1)z _ pn(Z2n+l 1)

72(Z) = (p2n+I - 1) (z - p)Z,

r,'(z) = _ pn(z - pn)

We also find
ao+ alz + ...+ az =0,

rk(z) (ao+az+ ... + anz) - - ip(z-- 1) (Z -P)
this right-hand member approaches zero ( z I > 1) if and only if we have
z < 1/p.
The writer is not aware of any illustration other than r211(z) of a sequence

of functions found by interpolation in a multiply-connected region from an
arbitrary function analytic in that region, which represents in that multi-
ply-connected region the given analytic function.

1 Bull. Amer. Math. Soc., 38, 289-294 (1932).
2 I is due to Runge, Theorie und Praxis der Reihen, p. 137 (1904); Fejer, Gottinger

Nachrichten, 319-331 (1918); (see also KalrImr, Mathematikai is Physikai Lapok,
120-149 (1926)); and Walsh, Trans. Amer. Math. Soc., 34, 22-74 (1932).
3Runge, Acta Math., 6, 229-244 (1885); Montel, Series de polynomes, 51 (1910); or

Osgood, Funktionentheorie, 579-581 (1928).
4 The Theory of Approximation (1930), p. 121 Theorem I. To be sure, Jackson's

theorem is there stated merely for real functions but follows immediately in the more
general case.

6 Trans. Amer. Math. Soc., 30, 838-847 (1928). Theorem II. Compare also de la
Valle Poussin, Approximation des Fonctions, Ch. VIII (1919), who does not bring
out clearly however the convergence of the sequences r2n(z), r,'(z), r4(z) as expressed
in III.
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