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10.6.

REGULARITY OF A BOUNDARY POINT FOR ELLIPTIC EQUATIONS#*

"I learned from Kellogg that the
terest."

old problem of potential distri-
harmonic functions [1, 2]

bution was attracting renewed in-—

N. Wiener, "I am a Mathematician"
In recent years much attention has been given to a circle of questions grouped around

the classical criterion of Wiener concerning the regularity of a boundary point relative to
According to Wiener's theorem, the continuity at the point O,
0 € 392, of the solution of the Dirichlet problem for the Laplace equation in the n-dimen-
sional domain @, n > 2, under the condition that on 3Q there is given the function, contin-
uous at 0, is equivalent to the divergence of the series
Z 2(n~2)k
Kyi

cap (G0 Q).

gations and references can be found in [3])
rem.

A%y =

Here sziau xeR", R@,s|x4sp} , while cap C is the harmonic capacity of the compactum C.
This statement has been extended (sometimes only in the sufficiency part) to various
f, where £ € CH(Q).

classes of linear and quasilinear second~order equations (the description of these investi-

K(H-4)
L9
the point O.

K>
For n

are concerned, for them, up to recently, there have been no results similar to Wiener's theo-

In a recent paper of the author [4], one investigates the behavior near a boundary

m’Pz <C2—'< V(D) =,

As far as equations of higher order than two
point of the solutions of Dirichlet problems with zero boundary conditions for the equation
It is proved in [4] that for n = 5, 6, 7 the condition
bedding theorem, while in the case n
another form.

where cap; is the so-called biharmonic capacity, guarantees the continuity of the solution at
Conjecture 1.
tex.

(N
The condition n < 8 is not essential.

2, 3 the continuity of the solution follows from S. L. Sobolev's em~
for n

4, also examined in [4], the continuity condition has

The author knows only one argument in favor of this conjecture: For all n, for any
based, but it is necessary for this lemma.
an arbitrary domain:

spherical sector, the solution of the problem under consideration is continuous at the ver-—
the operator A? with the weight Ix|*™,

The restriction n < 8 occurs only in one of the lemmas on which the proofs in [4] are

The problem concerns the positivity property of

Gyl <cemla-yl'

This property of weight positivity allows us to give
Conjecture 2.

5, 6, 7 the following estimate for the Green function of the biharmonic operator in
where mﬂéel) , while c(n) is a constant depending only on n.

The estimate (2) holds also for n 2 8

o

b

According to [5, 6], a harmonic function, whose generalized boundary values satisfy a Hlder
condition at the point 0, satisfies itself the same condition at this point if
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grad,
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It is clear that similar problems can be posed also for more general equations but I

(2)
wish to draw the attention of the reader to an unsolved problem and to the Laplace operator.
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%b-__m N'T 2" cap (C Q) >0. (3)
=0 Ny

It would be interesting to prove or disprove the following assumption.

Conjecture 3. Condition (3) is necessary.

Finally, we turn to a nonlinear elliptic equation of the second order. As proved in
L p-2 3
[7], the point 0 is regular for the equation dio (1vul’ W) =uU, 1<p<n , if

1
n-pix =i
‘ [2 p-cap (CQ-K\ Q) =9, (4)

K>

where
p-cap (0) =i (1ulppn iu el (R™, unt on C].

Recently, this result has been carried over in [8] to the very general class of equations

ﬁﬂ K(m,u,vu@ =B(x,w,YW). Since for p = 2 condition (4) coincides with Wiener's criterion,
it is matural to formulate the following conjecture.

Conjecture 4. Condition (4) is necessary.

In [9] there are given examples which show that condition (4) is sharp in a certain
sense. Recent results on the continuity of nonlinear potentials [10, 11] also speak in
favor of Conjecture 4.
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