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1. Scope of the investigation.-It is well known that aqueous solutions
of strong electrolytes do not conform to the requirements of the usual
mass law. Measurements of freezing-point and of electric conductivity
unite in showing a marked rise of the "ionization-constant" with increase
of concentration. The accumulation during recent years of a consider-
able body of accurate data renders a theoretical examination of these
relationships highly desirable.
The theory of chemical potentials, due to Willard Gibbs, offers a ready

tool for examining what the rigorous consequences of the dissociation
hypothesis must be. From this theory may be deduced, for example:

10. An expression for the heat of dilution as a function of temperature
and of concentration.

20. A rigorous equation for determining the freezing-point in terms of
the concentration-nothing being assumed as to the "ideal" character of
the solution.

3°. A generalization of the usual mass law.
These three equations will contain certain constants, dependent on the

thermic properties of the solution. Some of these constants can be calcu-
lated from specific hejLts, or from latent heats of melting or of evaporation.
Others, in the present state of our knowledge, must be determined em-
pirically. The constants in the three equations, in so far as they are
generalizations of the usual equations, are the same. Hence any results
obtained under one head can be checked by the others.

2. Heat developed by chemical or physical changes at constant tempera-
ture and pressure.-It is well known that when a system at constant tem-
perature and pressure undergoes any change, the heat Q emitted during
the change is connected with, the total free energy sp of the system by the
differential equation

dQ d(T-6- (1)
aT

This equation is quite general. It is not necessary that the change in
question be reversible. If the system consists of several phases it is not
necessary that the pressure be the same for all, provided it is constant for
each.-

3. The general coAdition of equilibrium.-It is also well known that for
a system of several phases whose composition is determined by masses
Mop Ml,m2, ... n, the existence of a state-of equilibrium implies the equa-
tion
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<dm. + a' dml + < dw2 + ... + f dmm = O .(2)

which is one of the requirements that the free energy be a minimum
The partial derivatives &/am., etc., were called by Gibbs the chemical
potentials of the respective masses. I shall denote these chemical poten-
tials by the symbols fo, fi, etc., that is

fo 3 )f, I =3f

so that the general condition of equilibrium may be written
fodmo + fidmi + f2dm2 + ... + f,dmn = Q (4)

Equation (4) may be said to be the kernel of the Gibbs theory.
4. Application to the melting-point curve of ice in contact uwth an aqueous

solution.-Let our chemical system now consist of mo mols of water in
which are dissolved ml, m2, .m..m mols of various solutes in contact with
a mass of ice m (without subscript). If any ice melts an equal amount of
water is formed, that is dmi = -ddm. The masses of the solutes are un-
changed, that is dmi = 0, dm2 = 0, etc. Hence, equation (4) becomes
for this case

fodmo -fdmo = 0
that is

fo - f =0. (5)
When ice is in equilibrium with an aqueous solution the chemical potential

of the ice is equal to the chemic'al potential of the solvent?
It is important to notice that fo is not the potential of the solvent in the

pure state, but its potential as it actually exists in the solution; it is a func-
tion of the concentrations of the various dissolved substances as well as
of temperature and pressure. On the other hand f, the chemical poten-
tial of the ice, is a function of temperature and pressure only. It is also
important to notice that one mol of ice or water here means merely one
formula-weight, and assurmes nothing as to actual molecular weight.
Thus the chemical potentials are the free energies per formula-weight
of their respective masses.

5. The latent heat of melting ice in contact with the solution.-When a
little water freezes out of the solution the heat emitted is determined by
equation (1). The only variables are mo and m. We may, therefore,
write

dQ = ±(Tb. - P)dmo + - (T:: - vp)dm (6)

by the ordinary formula for a total differential. But we also have. iden-
tically,

* a^0~T =Tina?Ts=agoand - -f = (" )
6mo aT 6T 6mo aT bm aT ax
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while dmo =-dm, so that (6) simplifies to

dQ= [T4 -f- T?A%+fodm (8)

We may perfectly well suppose the total amount of solution to be so great
that the freezing' out of 1 mol of ice does not affect its composition. The
expression in brackets is then a constant. Letting Q stand for the latent
heat per mol we may, therefore, write

Q -Ta:T - f - T.fo + fo (9)

6. The form of the melting-point equation.-If we adopt, as a temporary
notation,

y = fo - f (10)
equation (9) becomes

aT + Y Q (11)
whose integral is, pressure being regarded as constant,

Y = _ f2dT + F(c) + K (12)
T T

where F(c) is a function of the concentrations of the various solutes, but
not of the temperature, and K depends on neither concentrations nor tem-
perature. Since by (5) y = 0 when we have equilibrium, the equation
of the melting-point curve takes the form

Q-fdT+F(c)+K= 0 (13)

7. The chemical potential of the solvent.-To determine the form of the
function F(c) we now proceed to get an expression for the potential f0
of the water in the solution. The concentrations may be defined as

Ml m2 __
cl = -, C2 = -, ... C =m (14)

mO mO mO

Since the potential f0 is a continuous function of the concentration and
approaches (p. the potential of the pure solvent as the solution becomes
infinitely dilute, we may, as a general concept, think of f0 as expanded
in a power series in the concentrations, the first term being ,. It is very
well known, however, that, as a first approximation, the diminution of
potential when any solute is added to pure water is equal to RTc, that is,
as a first approximation

fo = po - RT(c, + c2+ ... +cn) (15)
which holds good at infinite dilution. As a second approximation we may
assume that each of the dissolved substances acts like a perfect gas, which
leads to the much more accurate equation2

f0o=po - RTn(l + cl + c2+... + c) (16)
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which holds good when the solution is "ideal." It is evident thlat (15)
is a limiting case of (16). If, as is the main object of the present paper,
we wish to investigate solutions which are not ideal, we may write the per-
fectly general equation

fO =< - RTln(l + 2c) + P(c,T) (17)
where lc means the sum of the concentrations of the various solutes,
and P(c,T) is a power series in concentrations and temperature. This
series will, for the most general expression, contain the squares, products,
and higher powers of the concentrations. It will not contain the first
power, for (15) must be t1le limiting form of the equation as the solution
becomes very dilute.

Instead of the power series P(c,T) explicit algebraic functions might be
introduced, based either on theoretical considerations or on empirical
data.3 The main point is that some form of function in concentration
and temperature must be added to the right side of (16) to obtain sufficient
generality. The object of this paper is to indicate how the entrance of
such a function affects the ordinary theories of freezing-point, heat of dilu-
tion, and ionization, and for this purpose the power series appears the most
convenient, and can be made as general as we please by taking terms
enough.

It is important to notice that equations (15), (16) and (17) all assume
that we know the molecular weights of the dissolved substances, that is,
2c depends on the actual number of dissolved molecules. This is fully
in accord with the usual theory of very dilute solutions. But, equally
important, nothing whatever is assumed as to possible hydration of these
molecules, nor as to molecular complexes occurring in the solvent. As
stated above, the number of mols m. of solvent means merely formula-
weight. It is precisely such matters as hydration, polymerization of
solute, and departure from gas laws which are to be taken care of by the
series P(c, T).

It will be most convenient to expand this series first in powers of the
absolute temperature T, thus

P(c,T) = P. + P1T + P2T2 + etc. (18)
It is doubtful whether we possess any data warranting the use of powers
of T higher than the square. That the square, at least, is necessary will
appear. The coefficients P., P, and P2 will be power series in the con-
centrations only,. it being assumed that the pressure is constant. (If we
vary the pressure the coefficients in these new series will vary with pres-
sure.) The expansion (18) is, however, general enough for our present
purpose. We shall, therefore, have the potential 10 of the solvent in the
form

10 = -oO-RTln(1 + 2c) + P0 + P1T + P2T2 (19)
where P., P1 and P2 are functions of the concentrations, which, if ex-
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panded in series, will all begin with terms of the second degree. In other
words, terms in the first powers of the concentrations occur nowhere ex-
cept in the logarithmic term; if it were otherwise, the solution would fail
to obey the perfectly well established laws for very dilute solutions.

8. Determination of the function F(c).-Returning now to equation (12),
writing y = f0 - f, and putting for f. its value we have

T((p + P0 - f) + Pi - Rln(l + Mc) + P2T= - f!2dT+F(c)+K (20)
T T

where the only terms on the left which are functions of the concentrations
alone are Pi - Rln(1 + 2c). Hence, by equating,

F(c) = P1 - Rln(l + Mc) (21)
and by using this result the equation of the melting-point curve (13)
becomes

-f2dT + Pi-Rln(l + Mc) + K =0 (22)

where, as already stated, P1 is a function of concentration (or of pressure
if that is not constant), but not of temperature.

9. Heat of dilution.-Before developing (22) further, it will be well to
consider in a brief way the heat of dilution emitted when 1 mol of water
is mixed with a large amount of solution under the same pressure. Take
the complete system as consisting of a mass of pure water M together
with the solution. The potential of pure water is sp.. By reasoning pre-
cisely as in Art. 5, and letting H stand for the heat emitted when 1 mol
of water is mixed with a large amount of solution,

H = TaT-o fo - T8bT + (oo (23)

Introducing the value of fo from (19) this becomes
H = P. - + P2T2 (24)

The absence of the term in the first power of T is noticeable.
If the heat of dilution at constant pressure be expanded in powers of T,

the first power is rigorously absent.
9. The equation of the melting-point curve.-Returning now to (22),

we may think of the heat of melting Q as composed of two parts, first the
heat of melting at that temperature in contact with pure water, second
the heat of dilution. The first we may call QO, the second is -H (since
Q was taken as heat emitted on freezing). Thus

Q = QO - H (25)
Without assuming the results of the last article, we may expand H

in powers of T,
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It is more convenient to expand Q. in powers of t, where t = 0 is the freez-
ing-point of pure solvent,

Qo = q + q't (27)
so that q is the latent heat of freezing per mol in contact with pure solvent,
while q', to a good approximation, is the difference of specific heats of
solvent in liquid and solid state. It is not likely that a term in t2 will be
needed with our present data, but can be introduced if wanted. It is
important to notice that q and q' are not functions of concentration, by
definition. Inserting values of H and Q. on the right side of the identity
(20) and performing the integration we have (putting t = T - T.),

1((po + PO - f) + P1 - Rln(1 + Mc) + P2T = q -q'T H
+

T T T
HlInT + H2T + P1- Rln(l + 2c) + K - q'lnT; (28)

Comparing like terms on the two sides of this identity, we see that on the
left the only term involving T-' and varying with concentration is PoIT
while on the right the only like term is - Ho /T, hence Ho = - P0.
Again, on the left there is no term in lnT varying with concentration,
hence H1 = 0. Terms in T give H2 = P2. Thus

H = -PO + P2T2
which checks with (24). Collecting results, and substituting in (22)
we have the equation of the melting-point curve as

q T + P +P2T-Rln(l + 2c) + K+P - q'lnT=0 (29)
T T

where the constant K is yet undetermined. When T = To the quanti-
ties PO, P1 and P2 are zero since the concentration is zero. This gives
for K

K- q + q' + q'lnT (30)
TO

whence the melting-point equation by a little arrangement is

RTln(l + 2;c) - P(c,T) = q[1 - T-] - q'(T - To) - q'TlnT (31)

10. Discussion of the melting point equation.-Equation (31) departs from
strict generality only in so far as we have failed to expand to higher powers
of T. In principle it is entirely rigorous, and whenever we have data to
warrant it we may expand as far as we please. It shows that a rigorous
theory differs from the ordinary theory only through the function P(c,T)
which, if expanded in powers of the concentrations, begins with terms
of the second degree, but which, if expanded in powers of T, contains a
term P1T playing no part in heat of dilution. To omit P(c,T) altogether
is, therefore, equivalent to something more than assuming heat of dilu-
tion to be zero.
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If P(c,T) be dropped, the equation becomes identical (except for slight
difference of notation) with the melting-point equation established in a
valuable paper by Washburn4 on the two hypotheses:

10. That the vapor of the solvent acts like a perfect gas.
20. That Raoult's law holds good for the lowering of vapor pressure.
Since our equation (31) has been obtained without any recourse to vapor

pressure, we may at once follow Washburn's reasoning in inverse order
and get a certain amount of new light on the two assumptions about vapor
pressure. For by differentiating (13) with respect to T we have

Q - dc
Q = F'(c)dT (32)

supposing there is only one dissolved substance. Using F'(c) from
(21) we have

Q (P R dc (33)

which aside from slight difference of notation, differs from Washburn's
differential equation in the presence of P'1, which we have seen to be a
function of c. Taking then the rigorous equation5

vT [8C T dT (34)

where p is the vapor pressure, and eliminating dc/dT

[F]O ( 1 R (35)
So far we have made no assumptions. If we assume pv = RT we have
by integrating

PO = p(1 + c)ePi (36)
a generalization of Raoult's law, to which it reduces if PI = 0. It is
noteworthy that P1 is the coefficient of precisely the term in the expansion
of P(c,T) which does not affect the heat of dilution. In other words the
departure of the vapor from Raoult's law is dependent on the function
P(c,T), which affects the freezing-point, minus all the terms which affect
the heat of dilution. Thus if heat of dilution and freezing-point are known
we can find the vapor pressure, a fact also pointed out by Washburn.
Equation (36) shows the precise relation of this fact to the melting-point
equation provided we assume pv = RT. In any case (35) shows that the
vapor pressure of a solution can be calculated if we know the coefficient
of T in the chemical potential of the solvent, and the equation of state
the vapor.

It will now be apparent that we can determine empirically the coeffi-
cients in the expansion of P(c, T) and hence have a complete knowledge of
the properties of the solution if we can get accurate determinations of
heat of dilution at various temperature and over a considerable range of
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concentrations, and also have accurate freezing-point determinations at
fairly high concentrations, so as to calculate the missing term P,. It is
doubtful if any such data of high accuracy now exist over a wide enough
range for even one substance. If, however, the accurate methods which
have been used6 to obtain freezing-point data for very dilute solutions can
be carried to higher concentrations, and if the accurate data on heat of
dilution7 which have been obtained at 250 can be carried over a moderate
temperature range, there seems to be no doubt we should have a theory
of solution that would be practically complete. A detailed examination
of existing data in the light of the foregoing theory is now under way,
but would too greatly lengthen the present paper. A single example must
here suffice. Taking cane sugar, and, as a first approximation, consider-
ing only terms in the square of the concentration, i.e., dropping the cube
and higher powers in the expansion of P(c,T) the coefficient C2 of this
term was calculated for values of N, the number of mols sugar per 1000
grams of water. The data8 of Morse and Fraser gave
N. 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2681
C2 0.110 0.122 0.098 0.119 0.119 0.118 0.121 0.133 0.115

while the data9 of Ewan gave
N..... 0.8714 1.2908 1.5347 1.6427 2.1108
C2 0.118 0.104 0.132 0.128 0.132

Raoult's data'0 gave:
N.. 5056 1.0107
C2. 0. 117 0.124

Other data quoted by Landolt and Bernstein gave
N.0.760 0.4236 0.2840

C2. 0.061 0.094 0.097
It is evident that the values of C2 from the data of these different ob-

servers do not agree well. Below about 0.3 normal the solution departs
so little from the "ideal" that the calculations become meaningless, de-
pending as they do on differences between ideal and observed numbers.

11. Application of the foregoing theory to electrolytes.-Let us now sup-
pose that the only dissolved substance is a single uni-univalent salt, as
KCI. Calling c the formal concentration per 1000 grams of water we shall
have

mO = 55.5, ml = M2 = cy, andm3 = c(1-'Y)
where -y is the fraction of salt which is ionized, ml and m2 the masses of
the ions in mols, and m3 the mols of un-ionized salt. At a given tempera-
ture P(c,T) becomes a function of c alone and we may write

P(c) = Ac2y2 + Bc2 y(1 - 'y) + Cc2(1 - Py)2 + (37)
where A, B, C, . are constants to be found. It is evident from the form
of these terms that they will be without influence in very dilute solution,
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hence ionization as calculated from freezing-point by the ordinary formula
should be exact.

12. Generalization of the mass law.-The case is quite otherwise, however,
when we consider equilibrium between the ions and un-ionized salt. For
if we let f, and f2 denote the chemical potentials of the ions, fs that of the
un-ionized salt, the general eondition (4) of equilibrium gives

fl +12 =13 (38)
as the equation which determines the ionization. Now by definition

f - ___,.I - _ f2 - f andf3 - _
amO ml 6mM4

and if T be regarded as constant we may expand P(c, T) in the form

P(C) = 2 [alum' + al2mlm2 + etc. ]+± [allum, + aln2m>m2 + etc. ], (39)
mO mO

while, from (17), fo can be written

Jo = 'po - RT n (min + Ml + 2 + M3) + RT In m. + P(c) (40)
Taking the derivative with respect to ml,

_ -- ~~RT +1afo = _ RT + 1, [2ailm, + a,wn2 + ai3m3]
m. +ml +M2 + m3+ mO
12

+ 3i [3allimm + 2a1,2mlm2 + 2anomlm3 + aMn2 + al2im3 + alonin]
mO

Now we have identically
0

-)bml 6modm 6mo

whence fi = J dmo + terms not involving mo. Therefore,
&;l

fi=s1+ RTln ml]
mO + ml + M2 + M3

-1 [2ajiml + a12M2 + al3M3]- [3a,,,M,2, etc.]
mO ~~~~~2m0

where e involves temperature (and pressure) only. The presence of the
term RT In ml is determined from our hypothesis that the solution acts
like a perfect gas to a first approximation.1' It is noteworthy that terms
in fo involving squares of concentrations lead, in fi, to terms of the first
degree. Expressions for f2 and f3 are similarly found. If we put

xl =
ml

mO + ml + M2 + M3

with similar notation for x2 and x3, and substitute in (38) the expressions
for f, f2 and 13 we shall have as the condition of equilibrium
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In X1X2]G(c) = k (41)
Xs

where G(c) is a function of concentration, which, if expanded in series,
begins with terms of the first degree in the masses of the dissolved sub-
stances. The coefficients in the expansion are functions of temperature
(and pressure), and k is also a function of temperature. If we omit
P(c,T) in f. we must also omit G(c) in this extended mass law (41). It
is noteworthy that in the logarithmic term we have rigorously xi, x2, x3,
not ml/mo, etc., although in solutions not very concentrated it does not
matter much.

13. Discussion of the generalised mass law.-It is shown in the fore-
going theory that if the function P(c,T) can be accurately determined we
can at once calculate the function G(c) and hence predict to what extent
ionization departs from the mass law. This could be done from accurate
measurement of heat of dilution, checked as to terms in T by freezing-
point dafa. Conversely, if ionization be known, we can find G(c) and
hence P(c) for that temperature. Many other relations can be brought
to bear particularly those connecting specific heats with change in equi-
librium under varying temperature.
Furthermore equation (41) can be employed to study the theoretical

form of the curve obtained by plotting the "constant" K against the
formal concentration c. By putting ml m2 = cy and ma = c(l - ry)
we may write (41) as

K y2C K el (42)
1 - 'Y

where g is a function of concentrations which may be expanded
g = acy + a'c(1 - -y) + etc. (43)

By differentiating with respect to c we have

dK = Koeg dg (44)
dc dc

while dg/dc found from (43) is

g9 = ay + a'(1 - y) + (a -a')cdzy (45)
dc dc

and the value of d-y/dc from (42) is

d,y [acy + a'c(1 - y) -1]y(1 -) (46)
dc c[2 - y + cy(1 -'y))(a'-a)]

Now as c approaches zero, y approaches unity. By inspection of (46)
we see that cdy/dc approaches zero, for the denominator approaches
unity on cancelling c. Hence from (45) we see that dg/dc approaches
the constant a. Hence by (44) we have

Vol. 6, 1920 195



MATHEMA TICS: F. L. HITCHCOCK

Lim dK = aKo (47)
dc

This means that we shall not naturally expect the electrolyte to obey
the mass law even in very dilute solution. For this would, in strict rigor,
mean that the graph of K against c should have a horizontal tangent as
c approaches zero. However, a curve differing little from the horizontal
would be hard to distinguish experimentally from the other.

In a highly interesting investigation Washburn has worked out this
curve for KCl at extreme dilutions,"2 assuming that the graph of K shows
no marked change in character as c approaches Wro. To compare his
results with the present theory I have assumed tlpt his value of A. is
correct and also his value 0.02 for Ko. Deterni?Aing the function g so
that the following data (from Washburn and from Adams) should be ex-
actly satisfied:

c. 0.0004 0.001 0.005
.0.98923 0.98163 0.958

the function g was found to satisfy
g logloe = 1075cy - 47234c(1- y) + 240064c29y2

Values of 'y calculated from this equation were then compared with
Washburn's results for round concentrations:

c. 0.00005 0.0001 0.0002 0.0003 0.0007
7 . 0.99796 0.99595 0.9931 0.9910 0.98507 (Calc.)
7 . 0.99753 0.99529 0.99256 0.99083 0.98511 (Washburn)

The curve forK plotted from the calculated values of 'y lies very slightly
higher than Washburn's curve at concentrations below 0.0004, but
approaches 0.02 as c approaches zero. It coincides almost exactly with
Washburn's curve above 0.0004 differing from his curve in having but
slight inflection. An inspection of his diagram makes it clear that a
curve meeting the vertical axis at a small angle with the horizontal, and
having but little inflection still fits his data very well, and, of course,
would fit entirely with his supposition that no marked change occurs in
the character of the curve at infinite dilution. It is highly probable, too,
that the empirical value of g given above is not the best that can be found.
Further investigation is now being conducted.

14. Summary.-The adoption of Gibbs' principle of chemical potentials
leads to an extention of the ordinary theories of melting-point, heat of
dilution, vapor pressure, and mass law. In all cases these extensions are
the result of the presence, in the expression for the chemical potenitial of
the solvent, of terms in the square and higher powers of the concentrations.
In many phenomena these terms are without measurable effect in dilute
solution. They lead in the case of the mass law to terms in the first
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power of the concentrations, hence are important even in very dilute solu-
tions.

1 Duhem, Mechanique Chimique, Livre VI, Chap. 111. The function T6so/lT -p
is identically equal to Gibbs' heat function U + pv.

2Ibid:
3Van Laar, Sechs Vortrage u. d. thermodynamische Potential, S. 84.
4 Technology Quart., Boston, 21, 1908 (372).
6 Ibid., p. 371.
s Adams, L. H., J. Amer. Chem. Soc., 37, 1915 (481).
7 MacInnes and Braham, Ibid., 39, 1917 (2110).
8 Amer. Chem. Jour., 34, 1905; 37, 38, 1907.
9 Zs. phys. Chem., 31, 1899; and 27, 1898.

10 Duhem, loc. cit.
11 These PROCzSDINGs, 3, 1917 (569); see also J. Amer. Chem. Soc., 40, 1918 (106-158).
12 These PRocEEDINGs, 3, 1917 (574) and J. Amer. Chem. Soc., 40, 1918 (145).

THE FORMATION OF THE CELL PLATE IN THE CAMBIUM OF
THE HIGHER PLANTS
By IRVING W. BAILZY

BussEY INSTITUTION FOR REsEARCH IN APPLZD BIOLOGY

Communicated by W. M. Wheeler, February 17, 1920

In a previous note' the writer called attention to a remarkable type of
cytokinesis that occurs in the cambium of Coniferae. The process of
cell plate formation is greatly extended, both as regards space and time
and is clearly dissociated, except in its initial stages, from the usual phe-
nomena of karyokinesis. Since this type of cell division promises to be
of considerable significance in the study of various cytological and physio-
logical problems2 it is desirable to determine whether it is an isolated phe-
nomenon, i.e., confined to the Coniferae, or one that is characteristic of
the cambia of all of the higher plants, angiosperms as well as gymnosperms.
During the last growing season, I secured specimens of the cambium

from an extensive series of angiosperms. Selections were made so as to
include representatives of all of the larger and more important orders of
the dicotyledons and of certain arborescent monocotyledons which have
"secondary" growth in thickness. Specimens were obtained from both
tropical and temperate environments.
Although the cambial initials in mature stems of angiosperms are on an

average considerably smaller than homologous elements of gymnosperms3
the salient features of cytokinesis are the same in both subphyla. In
the former, as in the latter group, each initial contains a single nucleus
which is centrally located and divides mitotically. The spindle becomes
extended laterally by the addition of peripheral "fibers"4 and gradually
assumes the form of a disk, figures A and B. As more fibers are succes-
sively added the original "connecting fibers" disappear from about the cell
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