
MATHEMATICS: G. T. WHYBURN

g = B -a + 2k2 [- YI2z + 5yz + Yy + AZ]

[ y2
-

Z2]k t + A)+ 2k2 A ,'2Z+ Byz + Cy + Dz]

Although a, b, c, f, g, h are not force components it may be interesting to
compare the above expressions with the forces obtained from an entirely
different point of view in the preceding paper. There is a certain analogy
but it is not clear how the two kinds of expressions might be identified.
The comparison suggests, however, that we might have to consider a, b,
c, f,g , h as variable with t - x and that the expressions (6) would be asymp-
totically approached by them as t - x approaches zero.
We may note that there is a certain anisotropy which might suggest an

interpretation in connection with polarization; but this polarization be-
longs to the field of stresses rather than to the field of forces and it is of the
elliptic type.

1 Presented before the Chicago meeting of the American Mathematical Society,
Christmas, 1926; Bull. Amer. Math. Soc., 33, 157 (1927).

2 These PRocUDINGs, 14, June, 1928, pp. 484-88.
Ibid., 10, 294-8 (July, 1924). Also Trans. Amer. Math. Soc., 27, 106-36 (1925).
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A point set K is said to be accessible from a point set R provided that if
A and B are any two points of K and R, respectively, then there exists a
simple continuous arc AB from A to B such that A B- B is a subset of R.
Schoenflies2 has shown that if K is a closed and bounded point set which
separates the plane into just two domains D1 and D2 and is accessible from
each of these domains, then K is a simple closed curve. In this paper a
closely related theorem will be established, i.e., it will be shown that if K
is any closed and bounded point set in a plane S such that there exist in
S-K, two mutually exclusive connected point sets R1 and R2 such that K
is accessible from each of these sets, then either K is a simple closed curve
or there exists a simple continuous arc which contains K. With the aid of
this proposition it will be shown that if K is any irreducible cuttings of a
plane bounded continuous curveM between two points A and B ofM such
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that K is accessible from each of the components4 Ra and Rb of M-K
containing A and B, respectively, then either K is a simple closed curve or
there exists a simple continuous arc which contains K but which contains
no other point of M. A number of other theorems will be given which
either lead up to these results or follow readily from them.
A subset K of a connected point set M is said to be a cutting3 of M or

is said to cut M provided the set of points M-K is not connected; a
cutting K ofM is said to be an irreducible cutting3 ofM provided no proper
subset of K is a cutting of M. A subset K of a connected setM is said to
be a cutting ofM between the points A and B of M,3 or to cut M between
A and B, provided that M-K is the sum of two mutually separated point
sets Ma and Mb containing A and B, respectively; K is said to be an ir-
reducible cutting ofM between A and B3 provided that K cuts M between
A and B but no proper subset of K cutsM between A and B.
The points, or point sets, A and B of a connected point setM are said to

be separated in M by a subset N of M provided M-N is the sum of two
mutually separated point sets containing A and B, respectively. Where-
ever it is simply stated that "A and B are separated by a point set N,"
it is understood that A and B are separated in the plane by the set N.
If R is an open subset of a continuum M, then by the M-boundary of R
is meant the set of all those points of M-R which are limit points of R.
IfM and N are point sets, the notationMN will be used to denote the set
of points common to M and N.
TH1OoRuM 1. If, in a plane S, R1, R2 and 13 are mutually exclusive con-

nected point sets, then S- (R1 + R2 + R3) contains not more than two points,
each of which is accessible from each of these sets.

Proof.-Suppose, on the contrary, that there exist three points X, Y,
and Z in S-(R1 + R2 + l?3) each of which is accessible from each of the
sets R1, R2 and R3. Then it readily follows that there exist points A and
B in R1 and R2, respectively, and arcs AXB, A YB andAZB from A to B,
no two of which have in common any point except A and B and such that
the set of points AX + A Y + AZ-(X + Y + Z) belongs to R1 and the
set BX + BY + BZ-(X + Y + Z) belongs to R2. Of the three arcs
AXB, A YB and AZB, one must lie except for the points A and B within
the simple closed curve formed by the sum of the other two. The various
cases are alike, so let us suppose AZB -(A + B) lies within the curve
AXBYA. Let D1 denote the exterior of this curve, and let D2 and D3
be the interiors of the simple closed curves AXBZA and A YBZA, respec-
tively. Since R3 is connected, it is clear that it must lie wholly in one of the
domains D1, D2, D3. But this is impossible, for Z is not a limit point of
D1, Y is not a limit point of D2, and X is not a limit point of D3, and by
hypothesis each of the points X, Y and Z must be a limit point of R3.
Thus the supposition that theorem 1 is not true leads to a contradiction.
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The hypothesis of theorem 1 can be weakened somewhat, since in the
proof we use only the fact that all of the points X, Y and Z are accessible
from R1 and R2 and are limit points of R3.
THsoRv,M 2. If R1, R2 and R3 are mutually exclusive arcwise connected

subsets of a continuous curve M every subcontinuum of which is a continuous
curve, then not more than two points of M- (R1 + R2 + R3) can be limit
points of each of the sets R1, R2 and R3.

Proof.-Suppose, on the contrary, that there exist three points of M-
(R1 + R2 + R3) each of which is a limit point of each of the sets R1, R2
and R3. But by a theorem of the author's5 every limit point of Ri (i =
1, 2, 3) is accessible from R,., and by theorem 1, not more than two points
of M- (R1- + R2 + R3) can be accessible from each of the sets R1, R2,
and R3. This contradiction proves theorem 2.
COROLLARY. If R1, R2 and R3 are mutually exclusive connected open sub-

sets of a continuous curve M every subcontinuum of which is a continuous
curve having M-boundaries B1, B2 and B3, respectively, then B1 B2- B3 con-
tains not more than two points.
THBORnM 3. If every point of the closed and bounded point set-K in a plane

S is accessible from each of, two mutually exclusive connected subsets R1 and
R2 of S-K, then either K is a simple dosed curve or there exists a simple
continuous arc which contains K.
Proof.-Suppose K is not a simple closed curve. Let t denote any com-

ponent of K which contains more than one point. Then t is not a simple
closed curve. For suppose it is. Let I and E, respectively, denote the in-
terior and exterior of t. Then neither I nor E can contain both of the
sets R1 and R2. For suppose E contains both R1 and R2; then every point
of t is accessible from each of the three mutually exclusive connected sub-
sets R1, R2, and I of S- t; but this contradicts theorem 1. A like con-
tradiction is obtained if we suppose I contains both R1 and R2.' Hence it
follows that R1 lies wholly in one of the sets I and E, and R2 lies wholly in
the other. And since every point of K is a limit point of each of the sets
R1 and R2, thenK must be a subset of t, and hence must be identical with t.
But t is, by supposition, a simple closed curve, and by our original hypothe-
sis K is not a simple closed curve. Thus the supposition that t is a simple
closed curve leads to a contradiction.

Since t is not a simple closed curve, then6 it contains two points X and
Y such that t- (X + Y) is connected. Let Z be any other point of t.
Then since, by hypothesis, every point of K is accessible from each of the
sets R1 and R2, it readily follows that there exist points A and B of R1 and
R2, respectively, and simple continuous arcsAXB, A YB andAZB such that,
the point set AX + A Y + AZ - (X + Y + Z) is a subset ofR1and the
set BX + BY + BZ - (X + Y + Z) is a subset of R2. The set of points
t - (X + Y), since it is connected, must lie wholly either within or without
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the simple closed curve AXB YA. The two cases are practically alike,
so let us suppose t - (X + Y) lies in the interior I of the curve AXB YA.
Then the arc AZB divides I into two domains D1 and D2 whose boundaries
contain X and Y, respectively, and each of which, it is easily seen, must
contain points of t - (X + Y). Then if SI denotes the set of points D1*t +
X and 52 the set D2't + Y, it is easily seen that Si and S2 are mutually
separated sets and that Si + S2 = t - Z. Hence t is disconnected by the
omission of any one of its points except X and Y, and therefore6 t is a
simple continuous arc from X to Y.

I shall now show that Z is not a limit, point of K - t. Suppose the con-
trary is true. Now the segment t - (X + Y) lies either within or without
the curve AXBYA. Suppose it lies in the interior I of AXBYA. The arc
t divides I into two domains G1 and G2 whose boundaries contain A and B,
respectively. Then either G1 or G2 must contain a point P of K. But if
P lies in G1 it is not accessible from R2, and if P lies in G2 it is not accessible
from R1; and by hypothesis every point of K is accessible from each of the
sets R1 and R2. Thus, in this case, the supposition that any point Z of
t except X and Y is a limit point of K leads to a contradiction. A similar
contradiction is obtained if it is supposed that t - (X + Y) lies without the
simple closed curve AXBYA. Thus it follows that every component of
K is either a point or a simple continuous arc t such that no point of t,
save possibly its end-points, is a limit point ofK - t. Therefore, by a theo-
rem due to R. L. Moore and J. R. Kline,7 there exists a simple continuous
arc which contains K.

Since every simple continuous arc in the plane is a subset of some simple
closed curve, we have the following immediate corollary.
COROLLARY. Under the hypothesis of theorem 3, there exists a simple closed

curve which contains K.
Deflnitions.-A continuous curve M is said to be cyclicly connected8

provided every two points ofM lie together on some simple closed curve in
M. If the cyclicly connected continuous curve C is a subset of a continuous
curve M, then C is called a maximal cyclic curve of M if and only if C is
not a proper subset of any other cyclicly connected continuous curve which
is a subset of M.
THZOREM 4. Let K be an irreducible cutting of a bounded continuous

curve M between two points A and B of M, let Ra and Rb denote the com-
ponents of M-K containing A and B, respectively, let N be the boundary of
any complementary domain D of M, and suppose that K contains more than
one point. Then (1) K lies wholly in some maximal cyclic curve C of M,
(2) KN is either vacuous or it lies on some simple closed curve in N; (3) if
every point of K-N is accessible from each of the sets R. and Rb, then K-N
contains not more than two points; and (4) ifK is a subset of N, then K con-
sists of exactly two points.
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Proof.-(1) If X and Y are any two points of K, then since Ra + X
+ Y and Rb + X + Y are connected' subsets of M having in common
just the points X and Y, it is clear that X and Y are not separated in M
by any single point of M. But if two points of a continuous curve M
do not lie together in the same maximal cyclic curve of M, there exists8
a point ofM which separates these two points in M. Thus it follows that
there exists a maximal cyclic curve C ofM which contains every point of K.

(2) Suppose K-N is not vacuous. By (1) K is a subset of some maxi-
mal cyclic curve C of M. Let G denote the complementary domain of C
which contains D. By a theorem of the author's8 the boundary J of G
is a simple closed curve. Since K is a subset of C, it is clear that J must
contain K-N and must itself be a subset of N.

(3) Every point of K-N is accessible from D. Hence every point of
K*N is accessible from each of the three mutually exclusive connected
sets Ra, Rb and D, no one of which contains a point of KN. Therefore,
by theorem 1, K-N contains not more than two points.

It is to be noted that, in consideration of the proof of theorem 1 and the
fact that every point of K is a limit point of each of the sets Ra and Rb,
the conclusion of (3) holds if it is assumed merely that there exists one of
the sets R. and Rb such that every point of KN is accessible from this set.

(4) If K is a subset of N, then by (2), K lies on some simple closed curve
in N. Hence K has no continuum of condensation, and by a theorem of
R. L. Wilder's,10 every point of K is accessible from each of the sets R.
and Rb. Therefore, -by (3), K contains not more than two points; and since
by hypothesis K contains more than one point, it follows that K consists
of exactly two points. This completes the proof of theorem 4.
THZ¢ORZM 5. Let the sets M, K, A, B, Ra, and Rb be defined exactly as in

the statement of theorem 4. Suppose every point of K is accessible from
each of the sets Ra and Rb. Then either K is a simple closed curve or there
exists a simple continuous arc t which contains K but which contains no point
ofM not belonging to K, i.e., t-M-K.

Proof.-(1) Let us suppose that K is not a simple closed curve and that
it contains more than one point, since the case where K contains only one
point is trivial. Then by theorem 3 there exists some simple continuous
arc which contains K. Hence, every component of K is either a point or
an arc, and no component ofK separates the plane. Furthermore, the com-
ponents of K form an upper semi-continuous11 collection of continua.
Ther fore, as established by R. L. Moore," if G denotes the collection whose
elements are the components of K and all the points in the plane not be-
longing to K, then the sum of all the elements of G constitutes a space
S' which is homeomorphic with the ordinary Euclidean point plane.
Then since K is a closed totally disconnected set of elements of G,

and since, by hypothesis, M - K is not connected, it follows by a theorem of
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R. G. Lubben's'2 that there exists a simple closed curve J of elements of
G which contains K but contains no point of M - K, and which encloses
one of the sets R, and Rb, say Ra, but does not enclose the other.
Now let H denote the point set consisting of all points X such that

X belongs to some element of J. It is clear that H is a continuum. It
must be a continuous curve. For if not, then"3 it contains a countable
infinity of mutually exclusive continua T, H1, H2, H3, . . ., all of diameter >
some positive number given in advance, and such that T is the sequential
limiting set of the sequence of continua H1, H2, .... Now since K is
closed, H-K is the sum of a countable number of mutually exclusive
segments Si, S2, ... of J. Since no one of these segments contains a point
of K, then for each i, the elements of Si are all points, and hence Si is a
point set. Furthermore Si belongs to some complementary domain Di
of M, and since, by theorem 4, part (3), the boundary Ni of Di contains
not more than two points of K, it follows that there exist two points Ai
and Bi ofK on Ni such that Si + Ai + Bi is closed and, in fact, is a simple
continuous arc from Ai to Bi. Therefore, the sets S1, S2, ... are ordinary
arc segments. It readily follows that every point of T must belong to K,
and since every component of K is either a point or an arc, T must be an
arc. And since, by theorem 3, no interior point of T can be a limit point
of K- T, it follows that there exist a subarc T* of T and an infinite se-
quence H1*, H2*, . . . of continua all of diameter > some positive number
d given in advance, and such that, for every integer i > 0, H* is a subset
of Hi and contains no point whatever of K.- Hence; for each i, the con-
tinuum H* must belong to one of the segments Si, S2, .... Since the
segments Si, 52, ... are ordinary arc segments, and since each of the
continua H*, H2*, ... is of diameter > d, then no one of the segments
[Si] can contain an infinite number of the continua [Hi']. It follows that
infinitely many of the segments [Si] must be of diameter > d. But each
of these segments lies in some complementary domain of M, no two of
them can lie together in a single complementary domain of M, and only
a finite number of the complementary domains of M are of diameter > d.
Hence, not more than a finite number of the segments [Si] can be of di-
ameter > d. Thus the supposition that H is not a continuous curve leads
to a contradiction.
Now let I and E, respectively, denote the interior and exterior of J.

Since neither I nor E contains a point of K, then the elements of I and of
E are all points, and hence I and E are ordinary domains. And since I
contains R, and E contains Rb, it follows9 that the point set H is the com-
mon boundary of the two domains I and E. But it was shown above that
H is a continuous curve. Hence, by a theorem of R. L. Moore's,14 H is
a simple closed curve. Now let A1 and B1 denote the end-points of Si,
and let t denote that arc of H from A1 to B1 which does not contain Si.
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Then the arc t contains K but contains no point ofM-K. This completes
the proof of the theorem.
Note.-The above proof for theorem 5 is by no means an elementary one.

The following proof, obtained by Mrs. G. T. Whyburn, is of interest
both because of its more elementary character and because of the interest-
ing way in which it utilizes theorem 3.

Proof.-(2) Let us suppose K is not a simple closed curve, and that it
contains more than one point. By theorem 4, part (3), the boundary of
no complementary domain of M contains more than two points of K.
Let Di, D2, . . . be those complementary domains ofM such that, for each
integer i > 0, the boundary of Di contains two distinct points Ai and Bi
of K. For each i > 0, the domain Di contains a segment Si of an arc
whose end-points are Ai and Bi.

Let N denote the set of points R. + Rb + K. Clearly9 N is a con-
tinuum. And since, by theorem 3, every component of K is either a
point or an arc t no interior point of which is a limit point ofK - t, it is
readily shown that N must be a continuous curve. Now let I,, 12, 13, . . .

be thecomplementary domains of N such that, for each integer i > 0, the
boundary of Ii contains two distinct points Xi and Yi of K. Then there
must exist at least one of the segments [SJ] having Xi and Yi as its end-
points. For by theorem 4, part (2), Xi and Y, lie together on some simple
closed curve Jf in the boundary Ni of Ii. And of the two arcs t, and 12
of J, from Xi to Yi, one of them must lie, save for the points Xi and Yi,
wholly in Ra and the other, save for its end-points, wholly in Rb; for if,
on the contrary, one of the sets Ra and Rb, say Ra, contains points P, and
P2 belonging to t1 and t2, respectively, then t, - (Xi + Yi) and t2- (Xi + Yi)
must each belong to R,. Hence Rb must lie wholly either within or
without Ji, say without Ji; then Ii must lie within Ji and if P,P2 denotes
an arc'4 in Ra from P1 to P2, then P,P2 separates the exterior of Ji, and
hence not both of the points Xi and Yi can be accessible from Rb, contrary
to hypothesis. Thus it follows that t, - (X + Y) belongs to one of the sets
R, and Rb, say to Ra, and t2- (Xi + Yi) belongs to Rb. Then there must
exist a complementary domain of M whose boundary contains both
Xi and Yi; for if not then M would contain'5 .a simple closed curve C
which separates Xi from Yi, and clearly this is not possible, for C would
contain an arc joining a point P of t1 and a point Q of t2 and lying otherwise
wholly in Ii, which is absurd since P belongs to Ra and Q to Rb. Hence
there exists a complementary domain D of M whose boundary contains
both Xi and Yi; accordingly there exists at least one of the segments
[S] whose end-points are Xi and Yi. For each positive integer i, let us
select just one segment S* of the collection [Si] whose end-points are Xi
and Yi. Let E denote the sum of all such segments [Si*] thus selected,
and let T denote the point set K + E.
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Since K is closed and bounded, and since not more than a finite number
of the segments [Si I are of diameter > any preassigned positive number,
it readily follows that T is closed and bounded. And since T contains
an arc segment S" which joins every two points Xi and Yi of K which lie
together on the boundary of a complementary domain of N and which lies
wholly in some complementary domain of M, it follows with the help of
theorems by C. M. Cleveland", and R. L. Moore"6 that T is connected.
Hence, T is a bounded continuum.
Now there does not exist a complementary domain D of the continuum

N + T which has a boundary point P1 in Ra and also a boundary point
P2 in Rb. For suppose there does exist such a domain D. Then D lies
wholly in some complementary domain G of N. (1) In case D is identical
with G, then G can contain no point of E, and therefore the boundary U
of G can contain not more than one point P of K. Now P must separate
P1 and P2 in U; this being so, it readily follows that P also separates P1
and P2 in M. But since K, by hypothesis, is an irreducible cutting of M
between A and B, then K must be an irreducible cutting ofM between P1
and P2. HenceK must consist of a single point P. But we have supposed
that K contains more than one point. Hence, in this case, the supposition
that the domain D exists leads to a contradiction. (2) In case D is not
identical with G, then G must contain one segment S* of the collection
[Si*], and therefore the boundary F of G must contain the end-points
X* and Y* of S* which belong to K. Then since the sum of the points
X* and Y* separates P1 and P2 in U, it readily follows that the segment
S* separates G into two domains the boundary of one of which contains
P1 but not P2 and the boundary of the other contains P2 but not P1. But
the boundary of D contains both P1 and P2. Hence, in any case, the
supposition that the domain D exists leads to a contradiction.

Let Ga denote the sum of all those complementary domains of N + T
whose boundary contains a point of R., and Gb the sum of all those whose
boundary contains a point of Rb. Then from what we have just shown it
follows that R. + Ga and Rb + Gb are mutually exclusive connected point
sets. Now if X is any point of T which belongs to K, then X is accessible
from each of the sets Ra + G. and Rb + Gb, for by hypothesis it is acces-
sible from Ra and also from Rb and clearly some point of Ra (Rb) is acces-
sible from each component of Ga (Gb). And if P is any point of T not be-
longing to K, then P belongs to some segment S* of [Si*]. The segment
S* separates some complementary domain G of N into two domains G,
and G2 one of which, it is clear from the second paragraph of this proof,
must belong to G, and the other to Gb. Hence, P is accessible from each
of the sets Ra + Ga and Rb + Gb. Therefore, since T is connected, it
follows by theorem 3 that T must be either an arc or a simple closed curve.
If T is a simple closed curve, then since K is not a simple closed curve,
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there exists a component S of T-K. And T-S is, then, a simple con-
tinuous arc which contains K but no point of M-K. This completes the
proof.

In proof (1) of theorem 5 we have established the following theorem.
THnORsM 6. Under the hypothesis of theorem 5, there exists a simple

closed curve J which contains K but no point of M-K and which separates
Ra and Rb.
THEOREM 7. If, in addition to the hypothesis in theorem 5, it is assumed

that the boundaries of no two of the complementary domains ofM have a com-
mon point, then there exists a simple closed curve which contains K and is
a subset ofM.
Theorem 7 is readily established with the aid of theorem 6.
THEOREM 8.-Let the sets M, A, B, K, R. and Rb be defined exactly as

in the statement of theorem 4. Then if every component T of K is a con-
tinuous curve and there exist two non-cut points of T each of which is acces-
sible from both of the sets R. and Rb, there exists a simple closed curve which
contains K but no point ofM-K and which separates R. and Rb.

Proof.-It follows by a theorem of W. L. Ayres'7 that either K is itself
a simple closed curve or each component T of K is either a point or an arc.
If K is itself a simple closed curve, our theorem is an immediate conse-
quence of theorem 1. So let us suppose K is not a simple closed curve.
Then if T is any component of K which consists of more than one point,
T must be an arc whose end-points are accessible from each of the sets
Ra and Rb. Then by almost identically the same argument as used in the
third paragraph of the proof of theorem 3 it is shown that no interior
point of T is a limit point of K- T. Hence it follows that K can have no
continuum of condensation; and since K is the M-boundary of each of the
sets Ra and Rb, then by a theorem of R. L. Wilder's10 every point of K must
be accessible from each of the sets R. and Rb. Therefore, by theorem 6,
there exists a simple closed curve which contains K but no point ofM-K
and which separates Ra and Rb.

In conclusion I will point out that ifM is a continuous curve every sub-
continuum of which is a continuous curve, then" the accessibility hypothe-
ses in theorems 4, 5, 6 and 8 are always satisfied.

* The Editor regrets to state that this article was lost in transmission from author to
editorial office-which accounts for the delay in publication.-E. B. W.

1 Presented to the American Mathematical Society, December 28, 1927.
2 Schoenflies, A., Gottingen Nachrichten, 1902, p. 185. Cf. also, Moore, R. L., Traxs.

Amer. Math. Soc., 1'7, 158, 159 (1916); Swingle, P. M., Bul. Amer. Math. Soc., 32,
110-11 (1926) (abstract), and a remark by C. Kuratowski in Fund. Math., 6, 143 (1924).

Cf. Whyburn, G. T., BuUl. Amer. Math. Soc., 33, 408 (1927) (abstract). Paper to
appear in full in Fund. Math., 13.

4A component of a point set K is a maximal connected subset of K; cf. Hausdorff,
Mengenlehre, 1927.

VoL. 14, 1928 65



MATHEMA TICS: J. M. THOMAS

6 Cf. Whyburn, G. T., "Concerning the Complementary Domains of Continua,"
forthcoming in the Annals of Mathematics, theorem 15. For the theorem for the case
where the sets RI, R2 and Rs are open subsets of M, see Whyburn, G. T., these PRO-
CEEDINGS, 13, 650-657 (1927), theorem 3.

6 Moore, R. L., Trans. Amer. Math. Soc., 21, 333-347 (1920).
7 Moore, R. L., and Kline, J. R., Annals of Mathematics, 20, 182-223 (1919).
8 Cf. Whyburn, G. T., these PROCEEDINGS, 13, 31-38 (1927) and Bull. Amer. Math.

Soc., 33, 305-308 (1927).
9 This follows from the fact that K is the M-boundary of each of the sets R, and Rb.

Cf. the abstract of my paper "On Irreducible Cuttings of Continua," presented to the
American Mathematical Society, December 28, 1927.

10 Wilder, R. L., Fund. Math., 7, 340-377 (1925), theorem 1.
11 Moore, R. L., Trans. Amer. Math. Soc., 27,416-428 (1925).
12 Lubben, R. G., Bull. Amer. Math. Soc., 32, 114 (1926) (abstract).
13 Moore, R. L., Bull. Amer. Math. Soc., 29, 291-297 (1923).
14 Moore, R. L., Math. Zeit., 15, 254-260 (1922).
15 Cleveland, C. M., these PRocEzRDiNis, 13,275-276 (1927).
16 Moore, R. L., Ibid., 13, 711-716 (1927), theorem 2.
17 Ayres, W. L., Bull. Amer. Math. Soc., 33, 565-571 (1927), theorems 4 and 5. For

an additional hypothesis needed in these theorems, see a note in the Bulktin of the Ameri-
can Mathematical Society, 34, 107-108 by W. L. Ayres. It is of interest to note that
while, as shown by theorem 8 of the present paper, Ayres' condition (4) in his note makes
the point set K such that it is a subset of a simple closed curve, his condition (4') does
not do this. His condition (4) implies (4') but (4') does not imply (4).

INCOMPLETE SYSTEMS OF PARTIAL DIFFERENTIAL
EQUATIONS'

BY JOSZPH MILLIR THOMAS
DXPARTMNTr OF MATHMATrICS, UNIVERSITY OF NEUNNSYIVANIA

Communicated July 5, 1928

The theory of a system of total differential equations

_a = aa a = 1,2,..., r; i= 1, 2,...,n (1)
aJxi

which are completely integrable, that is, for which the conditions

baai+ rbaa = + jJaaja2)aXjX = 1 aU+ au, api ='1 f(2)

are satisfied identically in u and x, is known to correspond exactly to the
theory of a jacobian system of simultaneous linear homogeneous equations,2
but the usual treatment of the incompletely integrable case for the two
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