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HISTORICAL INTRODUCTION
BY ROBERT BRUCE LINDSAY

HE current reprinting of Lord Rayleigh’s “The Theory of

Sound,” first published in 1877, stimulates an inquiry into the
reason why such a treatise still retains a position of importance in
thé literature of its field, when most scientific treatises of sixty-five
years ago now possess for the most part historical interest only, and
have long since been superseded by twentieth century standard works.
It has seemed appropriate on this occasion to review briefly the his-
torical development of the subject of acoustics in which this situation
has occurred, and to pay some tribute to the character and contribu-
tions of the author of a book which continues to show such vitality.
It is hoped that the following introductory comments will enhance
the pleasure of those who continue to turn to Rayleigh’s treatise for
enlightenment and guidance in acoustics.

I. BIOGRAPHICAL SKETCH OF JOHN WILLIAM STRUTT,
THIRD BARON RAYLEIGH (1842.1919)

The author of “The Theory of Sound” occupies an unusual posi-
don in the history of British physics if only because, while there are
numerous examples of men raised to the peerage as a reward for
outstanding scientific work, it is rare to find a peer by inheritance
devoting himself to science. Lord Rayleigh was born John William
Strutt, the eldest son of the second Baron Rayleigh of Terling Place,
Witham in the county of Essex. His immediate ancestors were coun-
try gentlefolk with little or no interest in scientific pursuits, though
one of his grandmothers was descended from a brother of Robert
Boyle. In his boyhood Rayleigh exhibited no unusual precocity but
apparently displayed the average boy’s interest in the world about
him. His schooling was rather scattered, short stays at Eton and
Harrow being terminated by ill-health. He finally spent the four
years preceding college at a small boarding school kept by a Rev.
Mr. Warner in Iighstead, Torquay, where he showed no interest in
classies but began to develop decided competence in mathematics.

In 1861 at the age of nearly 20, young Rayleigh went up to
Cambridge and entered '}’;i)l&t)ﬁ ,(;c)}lfge. Here he became a pupil of
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vi HISTORICAL INTRODUCTION

E. J. Routh, the famous “coach” in applied mathematics. It was
under the guidance of Routh that he acquired the grasp of mathe-
matics which stood him in such good stead in his later research. The
system has often heen criticized, but it ground the methods of ad-
vanced mathematical analysis essential for the physical scientist so
thoroughly into the candidate that they became a natural part of his
very being. It was not rigorous mathematics in the pure sense, but it
was vigorous mathematics, which served to cultivate a keen appre-
ciation of the particular method best suited for the solution of any
particular problem. Rayleigh also stated in after life that he had
profited greatly from the Cambridge lectures of Sir George G. Stokes,
who though Lucasian professor of mathematics was greatly interested
in experimental physics and performed many experimental demon-
strations for his classes. In the Mathematical Tripos of 1805, Ray-
leigh came out as Senior Wrangler and also became first Smith’s
Prizeman. By this time he had clearly decided on a scientific career,
though the propriety of this was considered hy some members of his
family rather doubtful in view of the social obligations inherent in
his ultimate succession to his father's title and position. Rayleigh
seems to have felt that such obligations should not he allowed to
interfere with his scientific work. ‘In 1806 he was elected Fellow of
Trinity College, thus further emphasizing his scholarly leanings.
Curiously enough he replaced the usual grand tour of the continent
with a trip to the United States, then in the throes of reconstruction
after the Civil War.

In 1808 immediately after his return from America Rayleigh pur-
chased an outfit of experimental equipment. There was at that time
no university physical laboratory, though certain professors pos-
sessed apparatus for their own experimental purposes and for dem-
onstrations. Students received little or no direct encouragement to
embark on experimental investigations for themselves. This may
seem strange when one recalls that Cambridge had been for long the
home of Newton. Moreover, long before Rayleigh's undergraduate
days the immortal experiments of Young, Davy and Faraday, to men-
tion only a few, had already shed undying lustre on British science.
But this research had been carried on, by and large, outside the uni-
versities, which thus remained quite out of the current of real scien-
tific progress in physics well past the first half of the nineteenth
century. It was not until 1871 that Cambridge University established
a professorship of experimental physics; in 1873 the Cavendish
Laboratory was erected through the munificence of the Chancellor of
the University, the eighth Duke of Devonshire. James Clerk Maxwell
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was elected the first Cavendish professor and served from 1871 to his
untimely death in 1879. For the first time practical instruction from a
distinguished physicist was provided at Cambridge.

To return to Rayleigh: it is interesting to observe that his first
experimental investigations were on electricilty and concerned the
action of alternating currents on a galvanometer. The results were
presented in a paper (his first) to the Norwich meeting of the British
Association for the Advancement of Science in 1868. But he was soon
thereafter deeply immersed in other things, including color vision
and the pitch of resonators. The latter was his first work in acoustics
and was apparently stimulated by his reading Helmholtz’s famous
work “On the Sensations of Tone” (1863). There was much corre-
spondence about this and kindred matters with Maxwell, who was
always eager to help along a youthful colleague. Rayleigh's experi-
mental work was carried out at Terling in a rather crudely impro-
vised laboratory. Later when the estate became his home by inherit.
ance, more elaborate arrangements were made.

In 1871 Rayleigh married Evelyn Balfour, the sister of Arthur
James Balfour, who was destined to gain much celebrity as a scholar,
philosopher and statesman. He had become acquainted with Balfour
as a fellow student at Cambridge. Shortly after his marriage a serious:
attack of rheumatic fever threatened for a time to cut short his career
and left him much weakened in health. An excursion to Egypt was
undertaken as a recuperative measure, and it was on a house boal trip
up the Nile late in 1872 that the “Theory of Sound™ had ils genesis,
the first part having been written with no access to a large library.
The preparation of the treatise eventually extended over many years,
and the two well-known volumes did not make their appearance from
the press until 1877. In the meantime Rayleigh had succeeded to his
father’s title and had settled down at Terling. Changes were made to
ensble him to embark on more elaborate laboratory work, including
experiments in acoustics and optics. It was during the period from
1871 to 1879 that he gave much attention to the diffraction of light
and made copies of diffraction gratings. These investigations led to
the introduction of the present standard definition of resolving power,
a quantity of the utmost importance in specifying the performance of
any optical instrument.

The premature death of Clerk Maxwell in 1879 left the Cavendish
professorship vacant. Pressed by many scientific friends to stand for
the post, Rayleigh finally consented, being partly influenced in hix
decision by the loss of income from his estate due to the agricultural
depression of the late 70’s. It docs not appear that he ever contem-
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plated retaining the professorship for an indefinite period, and indeed
he ultimately limited his tenure to five years. The pedagogical duties
of the Cavendish professor were not onerous: he was required to be
in residence for eighteen weeks during the academic year and to
deliver at least forty lectures in the course of this period. Rayleigh,
however, had no desire to interpret the job as a sinecure. He em-
barked vigorously on a program of developing elementary laboratory
instruction in a really elaborate way. It is difficult to appreciate today
what a task such a program involved sixty years ago. Collegiate in-
struction in practical physics was almost a new thing, and there was
little to go on save the teacher’s imagination. Under Rayleigh’s direc-
tion his demonstrators Glazebrook and Shaw, both of whom later
became men of note, the former in applied physics and the latter in
meteorology, developed laboratory courses for large classes in heat,
electricity and magnetism, properties of matter, optics and acoustics.
This was pioneer work of high order and had a beneficial influence
on the teaching of physics throughout England and ultimately else-
where.

Rayleigh was impressed at this time with the desirability of co-
operative research on a problem of importance and selected for this
purpose the redetermination of the standard electrical units. In
particular he wished to undertake a new evaluation of the relation
between the ehm, the practical unit of electrical resistance, and the
electromagnetic unit of resistance. The first precision work on this
problem had been carried out in 1863-64 under the auspices of the
British Association with Maxwell in charge. Later work by others had
disclosed considerable discrepancies. Rayleigh and his collaborators
devoted three years of labor to a repetition of the original experi-
ments with greater attention to sources of error, It is a tribute to
Rayleigh’s great experimental care that his final results have not
been appreciably altered by more modern work. He appeared to
possesg the uncanny power to make the simplest of equipment pro-
duce the utmost in precision.

In December 1884 Rayleigh returned to Terling, which he made
his scientific headquarters for the remainder of his life. It was close
enough to London to permit frequent visits to the metropolis for the
performance of official duties in connection with government or the
various professional societies in which he played a prominent role.
But he clearly enjoyed having his laboratory in his own home. Prob-
ably many contemporaries in the peerage, as well as the tenants on
the estate, thought him a trifle queer, but he went his way with typical
British imperturbability. The laboratory could hardly be considered
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elaborate even when judged by contemporary standards. Rayleigh had
a hatred of superfluous elegance and always stressed the desirability
of simplicity in all research apparatus. Some of this feeling was un-
doubtedly inspired by his constitutional aversion to unnecessary ex-
penditure; there was also a profound philosophical implication in
the method which may be of value to the present day investigator,
even when surrounded by highly intricate and sophisticated appa-
ratus.

The life of a scientist working at his desk or in his laboratory has
little to offer in the way of the dramatic, at least to the man in the
street. It is inevitable that mankind in the large should find more
emotional satisfaction in the contemplation of man’s relations with
his fellow creatures than in his relations with the physical environ-
ment. For the most part, too, scientific investigations involve a train
of reasoning unfamiliar and intricate to the general run of people.
Occasionally, however, a scientific discovery will be made which
involves a relatively simple and clear cut situation, while at the same
time it solves a puzzle originally as baffling as any detective story
mystery. This was the case with the most dramatic popular episode
in Rayleigh’s career, namely the discovery of the rare gas argon in
the atmosphere. '

Already in his address to the Mathematics and Physics Section of
the British Association at the Southampton meeting in 1882, Rayleigh
had called attention to the desirability of a more precise determina-
tion of the densities of the so-called permanent gases, oxygen, hydro-
gen and nitrogen. The importance of this lay in its bearing on the
problem of the atomic weights of the elements and hence the whole
foundation of chemistry. This job Rayleigh now set for himself and
devoted to it a good part of his own time and that of a skilled assist-
ant for the better part of ten years, culminating in the famous joint
announcement with Sir William Ramsay of the isolation of argon in
1895. The story is too well known for detailed repetition here. It
furnishes a classic example of the importance of following up a
small experimental discrepancy lying outside the limil of reasonable
experimental error, in this case the difference between the density of
nitrogen prepared from nitrogen compounds and nitrogen obtained
by removing the oxygen of the air. It seems easy to say now that the
larger value of the latter points directly to the existence in the air of
a small amount of a gas heavier than nitrogen. But in 1895 this was
not so simple and neither was the task of isolating the new gas. It is
not too much to say that the subsequent discovery of all the other
rare gases of the atmosphere was directly due to Rayleigh’s patient,
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ingenious and methodical investigation.

From 1887 to 1905, Lord Rayleigh served as Professor of Natural
Philosophy at the Royal Institution of Great Britain as successor to
John Tyndall, who in turn had succeeded Faraday. Unlike his pre-
decessors Rayleigh spent comparatively little time in the laboratory
of the Institution, confining his activity to the annual course of public
lectures. These continued the tradition established by Faraday and
Tyndall in covering the whole gamut of topics of physical interest
with a profusion of experimental demonstrations. Sir Arthur Schuster
says of Rayleigh in this connection: “Though not by nature a ready
speaker, his lectures were effective.”” At any rate the auditor could
always be confident that the speaker thoroughly understood what he
was talking about.

In 1896 Rayleigh was appointed Scientific Adviser to Trinity
House, a very ancient organization, dating back to Henry VIII, and
having as its duties the erection and maintenance of such coastal
installations as lighthouses, buoys and the like. For the next fifteen
years he served faithfully and made numerous inspection trips. Some
of his later work in optics and acoustics was suggested by problems
arising in connection with the tests of lights and fog-signals, In spite
of his devotion to his laboratory research, Rayleigh gave willingly of
his time and energy to the deliberations of scientific committees of
government and the various societies to which he belonged. Thus he
was one of the leaders of the movement which led to the establish-
ment of the National Physical Laboratory (the British counterpart of
the National Bureau of Standards in Washington), and presided over
the Executive Committee of the Laboratory until shortly before his
death. He also served as President of the Advisory committee on
Aeronautics from its inception in 1909 (at the instance of Prime
Minister Asquith) until the time of his death. The activities of this
committee were particularly important during the first world war
from 1914-1918.

Among Lord Rayleigh’s other public positions there ix space only
to mention his presidency of the Royal Society from 1905-1908 and
his service as Chancellor of Cambridge University from 1908 until
his death. Honors came to him in heaping measure, notable among
them the Order of Merit, of which he was one of the first recipients
in 1902, and the Nobel Prize in Physics in 1904.

Unlike most scientific men, Rayleigh was able to continue his
work until his death, though he survived to the ripe old age of 70.
He died on June 30, 1919, with three papers still unpublished. It is
interesting that the last of these was one on acoustics: he never got
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over his interest in sound.

The opinion of his contemporaries and successors places Rayleigh
in that great group of nineteenth century physicists that have made
British science famous all over the world, the group whose other
members were Kelvin, Maxwell and Stokes. His position in the his-
tory of science is a great one. It is good to recall that he was above
all a modest man and it is impossible to accept as otherwise than
sincere the remarks he made when he received the Order of Merit:
“the only merit of which he personally was conscious was that of
having pleased himself by his studies, and any results that may have
been due to his researches were owing to the fact that it had been a
pleasure to him to become a physicist.”

II. HISTORICAL DEVELOPMENT OF ACOUSTICS TO THE
TIME OF RAYLEIGH

Introduction. Sound plays in our daily lives a part scarcely less
important than motion and light, and the sense of hearing though by
no means esteemed so precious as the sénse of sight and the ability
to locomote is yet so prized that the production of efficient hearing
. aids for the deaf is fast becoming a major industry. Life is full of
sounds and we want to hear the pleasant and vital ones, while shun-
ning the unpleasant and dangerous variety. All told we are becoming
steadily more sound conscious, as the relatively enormous growth of
the telephone, radio, phonographic recording and talking motion
picture industries sufficiently attests.

In view of its importance, it might he supposed that the science
of sound, technically known as acoustics, would loom as a substantial
item in the history of the development of physical ideas. Strangely
enough, in the standard histories this is by no means the case: the
history of acoustics has been largely a neglected subject. A possible
reason for this has been advanced by Whewell in his “History of the
Inductive Sciences.” The basic theory of the origin, propagation and
reception of sound was proposed at a very early stage in the develop-
ment of human thought in substantially the form which we accept
today: the ancient Greeks, according to the most reasonable interpre-
tation of the records, evidently were aware that sound somehow arises
from the motion of the parts of bodies, that it is transmitted by the
air through some undefined motion of the latter and in this way
ultimately striking the ear produces the sensation of hearing. Vague
as these ideas were they were yet clarity itself compared with the
ancient views on the motion of solid bodies as well as on light and
heat. The latter branches of physics had to go through a long course
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of development in which theory succeeded .heory until the present
stage was reached. As Whewell emphasizes, in acoustics the basic
theory was laid down early and all that was needed was its implemen-
tation by the necessary analysis and its application to new problems
as they arose. On the theoretical side the history of acoustics thus
tends to be merged in the larger development of mechanics as a
whole. ‘

It has seemed eminently worth while, however, in connection with
a re-issue of the greatest single work ever publishéd in acoustics to
take advantage of the occasion to review the history of those parts of
mechanics and other branches of physics which have had a definite
bearing on acoustical theory. In a small measure this may serve to
supplement D. C. Miller’s interesting “Anecdotal History of the
Science of Sound” (1935), which is devoted mainly to a resumé of
the experimental phenomena.

The problems of acoustics as already indicated are most conven-
iently divided into three main groups, viz: 1) the production of
sound, 2) the propagation of sound, and 3) the reception of sound.
We shall find it advantageous to organize the following historical
outline accordingly.

The Production of Sound. The fact that when a solid body is
struck a sound is produced must have heen observed from the very
earliest times. The additional fact that under certain circumstances
the sounds produced are particularly agreeable to the ear furnished
the basis for the creation of music, which also originated long before
the beginning of recorded history. But music was an art for centuries
before its nature hegan to be examined in a scientific manner. It is
usually assumed that the first Greek philosopher to study the origin
of musical sounds was Pythagoras in the 6th century B.C. He is sup-
posed to have discovered that of two stretched strings fastened at the
ends the higher note is emitted by the shorter one, and that indeed if
one has twice the length of the other, the shorter will emit a note an
octave ahove the other. By this time the notion of pitch had, of course,
heen developed, but its association with the frequency of the vibra-
tions of the sounding body was probably not understood, and it does
not appear that this concept emerged until the time of Galileo Galilei
(1561-1042), the founder of modern physics. At the very end of the
“First Day” of Galileo’s “Discourses Concerning Two New Sciences,”
first published in 1638, the reader will find a remarkable discussion
of the vibrations of bodies. Beginning with the well known observa-
tions on the isochronism of the simple pendulum and the dependence
of the frequency of vibration on the length of the suspension, Galileo
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goes on to describe the phenomenon of sympathetic vibrations or
resonance by which the vibrations of one body can produce similar
vibrations in another distant body. He reviews the common notions
about the relation of the pitch of a vibrating string to its length and
then expresses the opinion that the physical meaning of the relation
is to be found in the number of vibrations per unit time. He says he
was led to this point of view by an experiment in which he scraped a
brass plate with an iron chisel and found that when a pure note of
definite pitch was emitted the chisel cut the plate in a number of fine
lines. When the pitch. was high the lines were close together, while
when the pitch was lower they were farther apart. Galileo was ac-
tually able to tune two spinet strings with two of these scraping
tones; when the musical interval between the string notes was judged
by the ear to be a fifth, the number of lines produced in the corre-
sponding scrapings in the same total time interval bore precisely the
ratio 3:2. The presumption is that if the octave had been tuned the
ratio would have been 2:1, etc. It seems plain from a careful reading
of Galileo’s writings that he had a clear understanding of the de-
pendence of the frequency of a stretched string on the.length, tension
and density. There was, of course, no question then of a dynamical
discussion of the actual motion of the string: the theory of mechanics
had not advanced far enough for that. But Galileo did make an inter-
esting comparison between the vibrations of strings and pendulums in
the endeavor to understand the reason why sounds of certain frequen-
cies, i.e., those whose frequencies are in the ratio of two small inte-
gers, appear to the ear to combine pleasantly whereas others not pos-
sessing this property sound discordant. He observed that a set of
pendulums of different lengths, set oscillating about a common axis
and viewed in the original plane of their equilibrium positions present
to the eye a pleasing pattern if the frequencies are simply commensur-
able, whereas they form a complicated jumble otherwise. This is a
kinematic obscrvation of great ingenuity and illustrates the fondness
of the great Italian genius for analogy in physical description.
Credit is usually given to the Franciscan friar, Marin Mersenne
(1588-1648) for the first correct published account of the vibrations
of strings. This occurred in his “Harmonicorum Libex” published in
Paris in 1636, two years before the appearance of Galileo’s famous
treatise on mechanics. However, it is now clear that Galileo’s actual
discovery antedated that of Mersenne. The latter did add one very
important point: he actually measured the frequency of vibration of
a long string and from this inferred the frequency of a shorter one
of the same density and tension which gave a musical note. This was
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apparently the first direct determination of the frequency of a musical
sound.

Though later experimenters like Robert Hooke (1635-1703) tried
to connect frequency of vibration with pitch by allowing a cog wheel
to run against a piece of cardboard, the most thorough-going pioneer
studies of this matter were made by Joseph Sauveur (1653-1716),
who incidentally first suggested the name acoustics for the science of
sound. He employed an ingenious use of the heats between the
sounds from two organ pipes which were adjudged by the ear to he a
semi tone apart, i.e., having frequencies in the ratio 15/16. By ex-
periment he found that when sounded together the pipes gave 6 beats
a second. By treating this number as the difference between the fre-
quencies of the pipes the conclusion was that these latter numbers
were 90 and 96 respectively. Sauveur also worked with strings and
calculated (1700) hy a somewhat dubious method the frequency of a
given stretched string from the measured sag of the central point. It
was reserved to the English methematician Brook Taylor (10685-
1731), the celebrated author of Taylor’s Theorem on infinite series,
to he the first to work out a strictly dynamical solution of the prob-
lem of the vibrating string. This was published in 1713 and was
based on an assumed curve for the shape of the string of such a
character that every point would reach the rectilinear position in the
same time. From the equation of this curve and the Newtonian equa-
tion of motion he was able to derive a formula for the frequency of
vibration agreeing with the experimental law of Galileo and Mer-
senne. Though only a special case, Taylor’s treatment paved the way
for the more elaborate mathematical techniques of Daniel Bernoulli
(1700-1782), D’Alembert (1717.1783) and Euler (1707-1783), in-
volving the introduction of partial derivatives and the representation
of the equation of molion in the modern fashion.

In the meantime it had already heen ohserved, notably by Wallis
(1616-1703) in England as well as by Sauveur in France, that a
stretched string can vibrate in parts with certain points, which Sau-
veur called nodes, at which no motion ever takes place, whereas very
violent motion takes place at intermediate points called loops. It was
soon recognized that such vibrations correspond to higher frequencies
than that associated with the simple vibration of the string as a whole
without nodes, and indeed that the frequencies are integral multiples
of the frequency of the simple vibration. The corresponding emitted
sounds were called by Sauveur the harmonic tones, while the sound
associated with the simple vibration was named the fundamental. The
notation thus introduced (about 1700) has survived to the present
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day. Sauveur noted the additional important fact that a vibrating
string could produce the sounds corresponding to several of its har-
monics at the same time. The dynamical explanation of this vibra-
tion was provided by Daniel Bernoulli in a celebrated memoir
published by the Berlin Academy in 1755. Here he showed that it is
possible for a string to vibrate in such a way that a multitude of sim-
ple harmonic oscillations are present at the same time and that each
contributes independently to the resultant vibration, the displacement
at any point of the string at any instant being the algebraic sum of
the displacements for each simple harmonic node. This is the famous
principle of the coexistence of small oscillations, also referred to as
the superposition principle. It has proved of the utmost importance
in the development of the theory of oscillations, though curiously
enough its validity was at first strenuously doubted by D’Alembert
and Kuler, who saw at once that it led to the possibility of expressing
any arbitrary function, e.g., the intial shape of a vibrating string, in
terms of an infinite series of sines and cosines. The state of mathe-
matics in the middle of the 18th century hardly permitted so bold a
result. However, in 1822 Fourier (1768-1830) in his “Analytical
Theory of Heat” did not hesitate to develop his celebrated theorem on
this type of expansion with consequences of the greatest value for
the advancement of acoustics,

The problem of the vibrating string was fully solved in elegant
analylical fashion by J. l. Lagrange (1736-1813) in an extensive
memoir of the Turin Academy in 1759. Here he supposed the string
made up of a finite number of equally spaced identical mass particles
and studied the motion of this system, establishing the existence of a
number of independent frequencies equal to the number of particles.
When he passed to the limit and allowed the number of particles to
become infinitely great and the mass of each correspondingly small,
these frequencies were found to be precisely the harmonic frequencies
of the stretched string. The method of Lagrange was adopted by
Rayleigh in his “Theory of Sound” and is indeed standard practise
to-day, though most clementary hooks now develop the differential
equation of motion of the string treated as a continuous medium by
the method first set forth by I)’Alembert in a memoir of the Berlin
Academy of 1750. This differential equation we now call the wave
equation, though the savants of the middle 18th century did not stress
this interpretation.

In the memoir of Lagrange just referred to there is also a treatment
of the sounds produced by organ pipes and musical wind instruments
in general. The basic experimental facts were already known and
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Lagrange was able to predict theoretically the approximate harmonic
frequencies of closed and open pipes. The boundary conditions gave
some trouble, as indeed they do to this day; in any case the problem
impinges rather closely on the propagation of sound and as such is
better treated in the next section.

The extension of the methods described in the preceding para-
graphs to the vibrations of extended solid bodies like bars and plates
naturally demanded a knowledge of the relation between the de-
formability of a solid body and the deforming force. Fortunately
this problem had already been solved by Hooke, who in 1660
discovered and in 1676 announced in the form of the anagram
CEIIINOSSSTTUYV the law “ut tensio sic vis” connecting
the stress and strain for bodies undergoing elastic deformation. This
law of course forms the basis for the whole mathematical theory of
elasticity including elastic vibrations giving rise to sound. Its
application to the vibrations of bars supported and clamped in vari-
ous ways appears to have been made first by Euler in 1744 and
Daniel Bernoulli in 1751, though it must be emphasized that dates
of publication of memoirs do not always reflect accurately the time
of discovery. The method used involved the variation of the expres-
sion for the work done in bending the bar. It is essentially that
employed by Rayleigh in his treatise and leads of course to the well
known equation of the fourth order in the space derivatives.

The corresponding analytical solution of the vibrations of a solid
elastic plate came much later, though much experimental information
was obtained in the latter part of the 18th century by the German
E. F. F. Chladni (1756-1824), one of the greatest experimental
acousticians. In 1787 he published his celebrated treatise “Ent-
deckungen iiber die Theorie des Klanges” in which he described his
method of using sand sprinkled on vibrating plates to show the
nodal lines. His figures were very beautiful and in a general way
could be accounted for by considerations similar to those relating to
vibrating strings. The exact forms, however, defied analysis for many
years, even after the publication of Chladni’s classic work “Die
Akustik™ in 1802. Napoleon provided for the Institute of France a
prize of 3000 francs to be awarded for a satisfactory mathematical
theory of the vibrations of plates. The prize was awarded in 1815 to
Mlle. Sophie Germain, who gave the correct fourth order differential
equation. Her choice of boundary conditions proved, however, to be
incorrect. It was not until 1850 that Kirchhoff (1824-1887) gave a
more accurate theory. The problem still provides considerable
interest for workers even at the present time, both along theoretical
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and experimental lines.

In the meantime the analogous problem of the vibrations of a
flexible membrane, important for the understanding of the sounds
emitted by drum heads, was solved first by S. D. Poisson (1781-1840),
though he did not complete the case of the circular membrane. This
was done by Clebsch (1833-1872) in 1862. It is significant that most
of the theoretical work on vibration problems during the 19th century
was done by persons who called themselves mathematicians. This
was natural though perhaps somewhat unfortunate, since the choice
of conditions did not always reflect actual experimentally attainable
situations. Rayleigh’s own work did much to rectify this condition,
and nowadays the experimental and theoretical acousticians work
hand in hand. The importance of this is evident in the design of such
modern instruments as loud speakers and quartz crystal vibrators.

A more complete description of the historical development of sound
producers would, of course, necessarily pay much attention to musi-
cal instruments. Unfortunately this development lay rather aside
from the scientific progress in acoustics, a situation which has per-
sisted in large measure even to recent times. There are signs, however,
that the designers of new musical instruments are paying more
attention to acoustical principles than previously was the case, and
that the theory of acoustics will have a greater influence on music
in the future than it has had in the past.

We have now brought our brief sketch of the production of sound
up to the time of Rayleigh. We shall therefore proceed with the
equally important problem of the propagation of sound.

The Propagation of Sound. From the earliest recorded observa-
tions there has been rather general agreement that sound is conveyed
from one point in space to another through some activity of the air.
Aristotle, indeed, emphasizes that there is actual motion of the air
involved, but as was often the case with his notions on physics his
expressions are rather vague. Since in the transmission of sound the
air certainly does not appear to move, it is not surprising that other
philosophers denied Aristotle’s view. Thus even during the Galilean
period the French philosopher Gassendi (1592-1655), in his revival
of the atomic theory, attributed the propagation of sound to the
emission of a stream of fine, invisible particles from the sounding
body which, after moving through the air, are able to affect the ear.
Otto von Guericke (1602-1680) expressed great doubt that sound is
conveyed by a motion of the air, observing that sound is transmitted
better when the air is still than when there is a wind. Moreover he
had tried around the middle of the 17th century the experiment of
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ringing a bell in a jar which was evacuated hy means of his air
pump, and claimed that he could still hear the sound. As a matter of
fact, the first to try the bell-in-vacuum experiment was apparently the
Jesuit Athanasius Kircher (1602-1080). He described it in his book
“Musurgia Universalis”, published in 1650, and concluded that air
is not necessary for the transmission of sound. Undoubtedly there was
not sufficient care to avoid transmission through the walls of the
vessel. In 1600 Robert Boyle (1627-1691) in England repeated the
experiment with a much improved air pump and more careful
arrangements, and finally observed the now well known decrease in
the intensity of the sound as the air is pumped out. He definitely
concluded that the air is a medium for acoustic transmission, though
presumably not the only one.

If air is the principal medium for the transmission of sound, the
next question is: how rapidly does the propagation take place? As
early as 1035 Gassendi while in Paris made measurements of the
velocity of sound in air, using fire arms and assuming the passage of
light as effectively infinite. His value was 1473 Paris feet per second.
(The Paris foot is equivalent approximately to 3248 em.) Later by
more careful measurements Mersenne showed this figure to be too
high, obtaining 1380 Paris feet per second or about 450 meters/sec.
Gassendi did note one matter of importance, namely that the velocity
is independent of the piteh of the sound, thus discrediting the view
of Aristotle, who had taught that high notes are transmitted faster
than low notes. On the other hand Gassendi made the mistake of
believing that the wind has no effect on the measured velocity of
sound. In 1056 the Italian Borelli (1008-1079) and his colleague
Viviani (1622-1703) made a more careful measurement and obtained
1077 Paris feet per second or 350 meters/sec. It is clear that all these
values suffer from the lack of reference to the temperature, humidity
and wind velocity conditions. It was not until 1740 that the lalian
Branconi showed definitely by some experiments performed at
Bologna that the velocity of sound in air increases with the tempera-
ture. Probably the first open air measurement of the velocity of
sound that can be reckoned at all precise in the modern sense was
carried out under the direction of the Academy of Sciences of Paris
in 1738, using cannon fire. When reduced to 0°C the result was 332
meters/sec. Careful repetitions during the rest of the [8th century
and the first half of the 19th century gave results differing by only a
few meters per second from this value. The best modern value is
331.36 4+ 0.08 meters per second in still air under standard condi-
tions of temperature and pressure (0°C and 76 cm of Hg. pressure),
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This value is taken from D. C. Miller’s “Sound Waves: Their Shape
and Speed” (1937).

In 1808 the French physicist J. B. Biot (1774-1862) made the
first experiments on the velocity of sound in solid media, using for
this purpose an iron water pipe in Paris nearly 1000 meters long.
By comparing the times of arrival of sound through the metal and
the air respectively it was established that the velocity of the com-
pressional wave in the solid metal is many times greater than that
through the air. As a matter of fact Chladni, whose work on the
vibrations of solids has been mentioned earlier in this sketch, had
already measured the velocity of elastic waves in rods in connection
with his study of the vibration of solids, with results in general agree-
ment with those of Biot.

J. D. Colladon and the mathematician J. C. F. Sturm (1803-1855)
in the year 1820 investigated the transmission of sound through water
in Lake Geneva, in Swilzerland, using a sound and flash arrangement.
The velocity was found to be 1435 meters/sec. at 8°C.

To return to the propagation of sound through air, though it had
very early been compared with the motion of ripples on the surface
of water, the first theoretical attempt to theorize seriously ahout a
wave theory of sound was made by Isaac Newton (1642-1727), who
in the second book of his Principia (1687) (Propositions 47, 48 and -
49) compares the propagation of sound to pulses produced when a
vibrating body moves the adjacent portions of the surrounding
medium and these in turn move those next adjacent to themselves
and so on. Newton here made some rather specific and arbitrary
assumptions, among them the hypothesis that when a pulse is propa-
gated through a fluid the particles of the fluid always move in simple
harmonic motion, or, as he puts it “are always accelerated or
retarded according to the law of the oscillating pendulum”. He
indeed affects to prove this as a theorem, but inspection fails to
reveal any demonstration save that if it is true for one particle it
will be true for all. He then assumes that the elastic medium under
consideration is subject to the pressure produced by a homogeneous
medium of height & and density equal to the density of the medium
under consideration. Newton further imagines a pendulum whose
length between the point of suspension and center of oscillation is
h. It is then proved that in one period of the pendulum the pulse
will travel a distance of Zxh. But since the period of the pendulum is

20\ h/g. it follows that the velocity of the pulse is V gh, and since

for & homogencous fluid of density p the pressure p produced at the
bottom of a column of height /i is p == phg, it follows that the pulse
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velocity is Y p/p.

This demonstration was severely criticized by Lagrange in his
Turin memoir of 1759 (already mentioned) as well as in the later
one of 1760, and indeed one must admit the conditions laid down by
Newton are highly specialized: an elastic wave need not be harmonic,
nor should the velocity depend on this assumption. Lagrange gave a
more rigorous general derivation, the outcome of which, however,
must have surprised him, for it led to precisely Newton’s result.
When the relevant data for air at 60°F are substituted into Newton’s
formula, the velocity proves to be about 945 feet/second. At the
time of his deduction this was not in bad order of magnitude agree-
ment with the observed velocity of sound in air under the conditions
cited. However, the more accurate measurements consistently turned
out higher, and Newton was himself dissatisfied; hence, in the second
edition of the Principia (1713) he revised his theory to try to bring
it into better agrecment with the best experimental value of the time,
viz., 1142 feet/second. His explanation was so obviously ad hoc that
it should have failed to carry conviction. However, no further serious
question about the matter appears to have been raised until 1810
when Laplace suggested that in the previous determinations an error
had been made in using the isothermal volume elasticity of the air,
i.e. the pressure itself, thereby assuming that the elastic motions of
the air particles take place at constant temperature. In view of the
rapidity of the motions, however, it seemed to him more reasonable to
suppose that the compressions and rarefactions follow the adiabatic
law in which the changes in temperature lead to a higher value of the
elasticity, namely, the product of the pressure by the ratio y of the
two specific heats of the air. At the time of Laplace’s first investiga-
tion rather crude experiments had indeed indicated the existence of
two specific heats of a gas, but the values were not known with much
precision. Laplace used some data of the experimentalists, LaRoche
and Berard, giving y = 1.5 and leading to a value of the velocity of
sound at 6°C equal to 345.9 meters/sec. The hest experimental value
obtained up to that time by members of the Academy was 337.18
meters/sec. for this temperature. Laplace did not consider this
discrepancy scrious. He returned to the problem later and included
a chapter on the velocity of sound in air in his famous “Méchanique
Céleste” (1825). By that time Clément and Désormes had performed,
their well-known experiment on the determination of y (1819) and
had obtained the value of 1.35 leading to 332.9 meters/sec. for the
velocity. Some years later the more accurate value of y == 1.41 led to
complete agreement with the measured velocity. The theory of
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Laplace is so well established that it is now common practice to deter-
mine y for various gases by precision measurements of the velocity
of sound.

As has already been remarked the first treatment of the partial
differential equation of wave motion came with D’Alembert in 1750
in connection with the vibration of strings. The rest of the 18th cen-
lury saw numerous attempts to theorize about waves in continuous
media, such as waves on the surface of water and the like. These had
value in connection with acoustics only to the extent that they
rendered the use of the wave equation familiar to workers in sound.
By the end of the 18th century the general treatment of the solution
of the wave equation for sound in tubes, for example, subject to the
boundary conditions at the ends, had been pretty well established, and
the predicted harmonic frequencies checked with experiment with
reasonable accuracy. Of course there were discrepancies leading to
end corrections and so forth, which were never fully cleared up until
the time of Rayleigh. It was not until 1868 that A. Kundt (1839-
1894) developed his simple but effective method of dust figures for
studying experimentally the propagation of sound in tubes and in
particular measuring sound velocity from standing wave patterns.

In the meantime the more difficult problem of the propagation of
a compressional wave in a three dimensional fluid medium had been
attacked by Poisson in a celebrated memoir of 1820. The method was
essentially that adopted by Rayleigh in Chap. XIV of “Theory of
Sound”. Three years before in a similar memoir, 100 pages long,
Poisson had given the most elaborate theory up to that time of the
propagation of sound in tubes, including the theory of stationary air
waves for tubes of finite length, both open and closed. He even con-
sidered the possibility of an end correction in the case of an open
tube to take care of the fact that the condensation cannot be con-
sidered precisely zero at the open end. It remained, however, for
Hermann von Helmholtz (1821-1894) in 1860 to give a more
thorough treatment of this question. The special case of an abrupt
change in cross-section was also studied by Poisson along with the
reflection and transmission of sound at normal incidence on the
boundary of two different {luids. Much modern work of practical
significance was anticipated in this great study of Poisson.

The more difficult problem of the reflection and refraction of a
plane sound wave incident obliquely on the boundary of two different
fluids was solved by the self-taught Nottingham genius George Green
(1793-1841) in 1838. This served to emphasize both the similarities
and differences hetween the reflection and refraction of sound and
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light. It should be recalled that sound waves in fluids, being strictly
compressional, are longitudinal, whereas light waves are transverse.
Hence light waves can be polarized, and sound waves in fluids can
not. Of course elastic waves in an extended solid can be both longi-
tudinal and transverse, more accurately irrotational and solenoidal.
This was realized by Poisson in his study of isotropic elastic media
of 1829. The direct significance of this for acoustics is, of course, not
great, but it had an important bearing on the elastic solid theory of
light, which was actively pursued during the middle decades of the
19th century. The connection with modern geophysics (seismological
waves) is obvious.

The Reception of Sound. In the historical development of acous-
tics up to very recent times the only sound recciver of interest has
been the human ear and the reception of sound has been largely the
study of the acoustical behavior of this organ. In this connection it
is interesting to observe that no completely acceptable theory of
audition has ever been proposed, and how we hear still remains a
puzzling problem in modern psychophysics.

After the relation between pitch and frequency had been estab-
lished it became an interesting task to determine the frequency limits
of andibility. I'. Savart (1791.1841) using fans and toothed wheels
(1830) placed the minimum audible frequency at 8 vibrations per
second and the upper limit at 24,000 vibrations per second. The later
investigators Seebeck (1770-1831), Biot (1774-1862), K. R. Koenig
(1832-1901) and Hermann von Helmholtz obtained valuex for the
lower limit ranging from 10 to 32 vibrations per second. In such
matters there are bound to he individual differences. These play an
even greater role in the upper limit of audibility, which not only can
vary many thousand vibrations per second from person to person, but
for each individual usually decreases with age. The most elaborate
studies on audibility during the 19th century were made by Koenig,
who devoted a lifetime to the production of precision sources of
sound of controlled frequency, such as tuning forks, rods, strings and
pipes. The electrically driven fork also originated with him.

The closely related problem of the minimum sound amplitude or
intensity necessary for audibility was apparently first studied by
Toepler (1836-1912) and Boltzmann (1844-1900) in 1870, The more
recent work dates from Rayleigh.

In 1843, Georg S. Ohm, the author of the famous law of electric
currents, put forward a law of audition according to which all musi-
cal tones arise from simple harmonic vibrations of definite frequency,
and the particular quality of actual musical sounds is due to combi-
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nations of simple tones of commensurable frequencies. He held,
moreover, that the ear is able to analyze any complex note into the
set of simple tones in terms of which it may be expanded mathe-
matically by means of Fourier's theorem. This law has stimulated a
host of researches in physiological acoustics. The greatest of these in
the pre-Rayleigh period were undoubtedly those of Helmholtz, whose
treatise “Die Lehre von den Tonempfindungen als Physiologische
Grundlage fiir die Theorie der Musik”, published in 1802, ranks as
one of the great masterpieces of acoustics. Here he gave the first
elaborate theory of the mechanism of the ear, the so-called resonance
theory, and was able to justify theoretically the law of Ohm. In the
course of his investigations he invented the resonator, now so well
known by his name and employed in modern acoustics for many
applications. Helmholtz developed the theory of summation and
difference tones and in general laid the ground work for all subse-
quent research in the field of audition. One of the greatest physicists
of the 19th century, he touched no field that he did not enrich with
his experimental and theoretical genius,

Since the receplion of sound by the ear in enclosed spaces like
rooms and auditoriums is a common experience, it is proper that
some altention should"be paid here to what has come to be called
architectural acousties. The first diseussion of the problem of improv-
ing hearing in rooms was limited to purely geometrical considera-
tions, such as the installation of sounding hoards and other reflectors.
A Boston physician, J. B. Upham. in 1853 wrote several papers
indicating a much clearer grasp of the more important malter
involved, namely the reverberation or multiple rellection of the
sound from all the surfaces ol the room. He also showed how the
reverberation time could be reduced by the installation of fabric
curtains and upholstered furnishings. In 1850 Joseph Henry, the
celebrated American physicist, who became the first secretary of the
Smithsonian Institution, made a study of auditorium acoustics which
reflects a thorough understanding of all the factors involved, though
his suggestions were all of a qualitative character, In spite of this the
subject was completely neglected by architeets, and attempts were
often made to correct gross acoustical defects by such inadequate,
if not absurd, devices as stringing wires, ete. The real quantitative
foundation of architectural acoustics dates from W, C. Sabine (1808-
1919) in 1900,

Special devices for the amplification of sound received by the ear
go back a long way, Horns for the production of sounds are of great
antiquity. It is uncertain just when the suggestion arose that they
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might be used to improve the reception of sound. At all events the
Jesuit Athanasius Kircher, already mentioned in this sketch, in 1650
designed a parabolic horn as a hearing aid as well as a speaking
trumpet, and evidently realized the importance of the flare in the
amplification. Robert Hooke suggested the possibility of a device to
magnify the sounds of the body, but it seems to have heen reserved
for the French physician René Laénnec (1781-1826) actually to
invent and employ the stethoscope for clinical purposes (1819). Sir
Charles Wheatstone (1802-1875) in 1827 developed a similar instru-
ment which he termed a microphone, a name now applied to an
exclusively electrical device for the reception of sound. Koenig also
invented a new type of stethoscope. The theoretical and experimental
improvement of instruments like horns and other sound receivers of
similar type has been and still is an important feature of modern
acoustics.

All through the historical development of physics there has been
a tendency to reduce the observation of physical phenomena and
particularly experimental measurements to something which can be
seen. Practically all physical instruments involve this principle and
employ a pointer or a spot of light moving on a scale. It was there-
fore inevitable that attempts would be made to study sound phe-
nomena visually, and this of course was especially necessary for the
investigation of sounds whose frequencies lie outside the range of
audibility of the ear. One of the first moves in this direction was the
observation by John LeConte (1818-1891) that musical sounds can
produce jumping in a gas flame if the pressure is properly adjusted
(1858). The sensitive flame, as it later came to be called, was
developed to a high pitch of excellence by John Tyndall (1820
1893), who used it for the detection of high frequency sounds and
the study of the reflection, refraction and diffraction of sound waves.
It still provides a very effective lecture demonstration but for practi-
cal purposes has been superseded in recent times by various types of
electrical microphones.

In the endeavor to make visible the form of a sound wave Koenig
about 1860 invented the manometric flame device which consists of
a box through which gas flows to a burner. One side of the box is a
Hexible membrane. When sound waves impinge on the membrane the
changes in pressure produce corresponding fluctuations in the flame
which can be made visible by reflecting the light of the flame from a
rapidly rotating mirror. Another attempt to visualize sound waves
was made by Leon Scott in 1857 in his “phonautograph” in which a
flexible diaphragm at the throat of a receiving horn was attached to
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a stylus which in turn touched a smoked rotating drum surface and
traced out a curve corresponding to the incident sound. This was the
precursor of the phonograph. An equally ambitious attempt to record
sound was made by Eli Whitney Blake (1836-1895), the first Hazard
Professor of Physics in Brown University, who in 1878 made a micro-
phone by attaching a small metallic mirror to a vibrating disc at the
back of a telephone mouthpiece. By reflecting a beam of light from
the mirror Blake succeeded in photographing the sounds of human
speech. Such studies were much advanced by D. C. Miller, (1866-
1941) who invented a similar instrument in the “phonodeik” and
made very elaborate photographs of sound wave forms.

IIT. RAYLEIGH’S CONTRIBUTIONS TO ACOUSTICS AND
THEIR SIGNIFICANCE FOR MODERN DEVELOPMENTS

The results of Rayleigh’s work in acoustics are embodied in his
treatise “The Theory of Sound” and in 128 published articles, the
first of which appeared in 1870 (his fourth paper) and the last in
1919—this was his last published paper and appeared in print after
his death. Except for the years 1895, 1896 and 1906, there was not a
year from 1870 to 1919 in which an article having a definite connec-
tion with acoustics did not appear. This record of devotion to a single
department of thought is undoubtedly unique in the annals of science
and becomes all the more remarkable when we recall that this activity
was accompanied by unchecked attention to a host of other problems
extending over the whole field of physics, leading to a total of nearly
150 publications.

Lord Rayleigh appeared on the acoustical scene when the time
was precisely ripe for a synthesis of experimental phenomena and
rather highly developed theory, much of which was, however, too
idealized for practical application. On the other hand much of the
experimental work had been discussed in rather empirical fashion
with little attempt at a dynamical explanation. Rayleigh’s interest
in acoustics appears lo have been started through the advice of
Professor W. I, Donkin, Savilian Professor of Astronomy at Oxford,
that he ought to learn to read German. Rayleigh followed the sugges-
tion and the first scientific work he read was Helmhollz’s treatise
“Lehre von der Tonempfindung”. Certain references here to the
properties of acoustic resonators attracted his attention and led to
his first elaborate research, reported on in a long paper on the theory
of resonance in the Philosophical Transactions of the Royal Society
in 1870. This article furnishes a clear indication of the method of
thinking about problems that remained characteristic of all Ray-
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leigh’s later work. He endeavored to develop the mathematical theory
of the subject in a form related as closely as possible to experimen-
tally realizable situations, and then followed up the results by the
attempl at direct experimental verification. There was no pretense of
an over-elaborate method of mcasurement, but the precision was
fully sufficient in view of the inevitable limitations of the theory of
aerial vibrations. In this paper Rayleigh first introduced the useful
coneept of the acoustic conductivity of an orifice. It has remained a
standard acoustical quantity ever since, even if rather difficult to
to estimale theoretically for all sorts of openings.

[t was evidently not long after the publication of his rescarches on
resonance that Rayleigh conceived the desirability of writing a
treatise on acoustics. His reasons for the step are amply set forth in
the preface to the first edition of “The Theory of Sound™ and need
no repetition here. In preparation for his task he studied in detail the
general theory of vibrations of a dynamical system aboul a state of
equilibrivm and uncovered a number of general resulls of great inter-
est. These were presented in the Proceedings of the London Mathe-
matical Society in 1873 and include such theorems as that the
inerease in the mass of any part of a vibrating system can never lead
to a deercase in any period of the motion, Here he also introduced
his famouns dissipation function for a system subjeet to damping
forces proportional to the component velocities and finally proved a
very general reciprocily theorem of which the one generally known
by the name of Helmholtz is a special case, This theorem hax been of
the greatest importance in comparing the efficiency of acoustical
devices as emitters and receivers of radiation energy. As before, a
characteristic feature of these articles is the skillful combination of
theory and observation or experiment. Rarely does one find a mass of
analysix without illustrations from experience, and Rayleigh was
always very keen (o follow up supposed experimental exceptions to
theoretically deduced laws. Usually his uncanny insight into the
important things led him to the correct explanation of apparent
difficulties,

In 1877, the year of the publication of “The Theory of Sound™,
Rayleigh inaugurated the custom of publishing collections of miscel-
Nlaneous acoustical phenomena which he had himself observed. These
were continued at intervals for the rest of his life, being published
for the most part in the Philosophical Magazine. Among the earlier
subjects investigated were the perception of the direction of a sound
source, the diffracting effect of the head on spoken and received
sound, the end correction of an organ pipe, sensitive flames, Aeolian
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tones, acoustical shadows, etc.

“The Theory of Sound” was published in June, 1877. Though, as
his son remarks “the sale was not wholly unprofitable™, it was hardly
a best seller. Those interested in the general field realized its impor-
tance, but the possible fundamental significance of the work for
future applications of sound to a host of practical problems could
scarcely be properly estimated at that time. Helmholtz, it is true.
reviewed the volumes in Nature and compared the treatment to the
famous unfinished “Treatise on Natural Philosophy™ of Thomson and
Tait. He pressed, indeed. for a third volume on physiological acous-
lics and the maintenance of acoustic vibrations. Rather wisely, it
seems, Rayleigh refrained from this and contented himself with
enriching the literature of acoustics for the following forty years
with a succession of allractive papers on a wide variety of topics,
many if not most of which were a direct outgrowth of the treatment
inaugurated in his treatise,

While it would be gratuitous in the extreme to present a detailed
analysis of the contents of “The Theory of Sound™ to the reader who
has the hook before him, it is difficult 1o refrain from emphasizing
briefly some of the features which have made the treatise such a mine
of information for all workers in acoustics from Rayleigh’s day to
the present time,

Though written in the rather informal style which characterized
practically all of Rayleigh’s published work, the book reflects clearly
a great deal of careful planning with respect to its logical structure.
The author was evidently impressed by the importance of the subdivi-
sion of the subject into the two principal sections: the production and
propagation of sound. Hence the whole of the first half (the first
volume in the original edition), with the exception of an introductory
chapter, is devoted to the vibrations of dynamical systems, naturally
with special emphasis on those giving rise to acoustically interesting
radiation. In contrast to the usual continental European method of
writing a treatise, Rayleigh’s treatment opens with the simplest pos-
sible case, namely the oscillations of a system of one degree of
freedom, and each element of the theory is accompanied by a definite
experimental illustration,

The simple case is followed hy two chapters on the general theory
of vibrations of a system of n degrees of freedom, largely a develop-
ment of his 1873 paper mentioned just above. It was here he empha-
sized the value of the method of obtaining an approximation to the
lowest frequency of vibration of a complicated system in which the
direct solution of the differential equations is impracticable. This
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procedure, which makes use of the expressions for the maximum
potential and kinetic cnergies, was later generalized by Ritz and is
now usually known as the Rayleigh-Ritz method. It has proved of
value in handling not only all sorts of involved vibration problems
but also problems in quantum mechanics. Applications to acoustics
occur frequently throughout “The Theory of Sound”, particularly
with reference to non-uniform strings, bars, membranes and plates.
Throughout his treatise Rayleigh displays great fondness for the
“use of energy considerations and uses the energy method (virtual
work) freely for setting up the differential equations of motion of
different types of vibraling systems. It is scarcely an exaggeration to
say thal there is no vibrating system likely to be encountered in
practice which cannot be tackled successfully by the methods set
forth in the first ten chapters of Rayleigh’s treatise. Even the worker
in the field of non-linear systems, a department of increasing prac-
tical importance in modern vibration theory, will find useful basic
hints in Rayleigh. The reader should, indeed, be cautioned not to
consider “The Theory of Sound™ as a mere reference hook. One who
goes 10 it in this frame of mind is apt to be disappointed. It is a
rather closely knit work in which the author, having developed cer-
tain methods, feels free to refer the reader to them again and again,
Hence reading Rayleigh is a real process of discovery, not always
easy butl constantly challenging and illuminating, One rather trivial
mathematical detail may properly be mentioned at this point. Ray-
leigh’s mathematical notation is standard in nearly all respects from
the standpoint of present-day fashions, but he never uses the round §
to denote the distinction between partial and ordinary derivatives.
Presumably he felt that the reader with a suitable grasp of the physi-
cal medning of the mathematical processes would have no dificulty
in distinguishing the one type of derivalive from the other.

The last thirteen chapters of “The Theory of Sound™ are devoted
primarily to acoustic radiation through fluid media. This is by far
the more dificult part of the subject matter of acousties and has
remained so to the present time. Since there is no such thing as a
perfect fluid the exact hydrodynamical equations describing with
precision the motion of a compressional disturbance in a fluid
medium like air or water must necessarily be extremely complicated.
It has therefore proved desirable to approximate, and it is just here
that the judgment of the physicist plays a significant role. Rayleigh
possessed the power of assessing a problem from the point of view
of the hest possible approximation to lead to a physically useful
result. This is particularly well illustrated by his studies of the
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diffraction and scattering of sound by obstacles, which is by no means
so easy lo study theoretically as in the analogous case of optics,
largely because of the approximate character of the equations and
the relatively large wave length of audible sound. Another illustra-
tion is the acoustic radiation into a surrounding fluid medium from
a vibrating sphere or plate. The whole modern study of high fre-
quency acoustic heams is based on this work. Still another example
is provided by the effect of viscosity and heat conduction on the
propagation of sound, Here the fundamental theory had already been
worked out by other men like Stokes and Kirchhoff, but Rayleigh
seemed able 1o seize on the useful applications to the transmission of
sound through narrow tubes and the interstices of fabrics. He was
aware that these eflfects are inadequate o account for the actually
observed absorption of sound in three dimensional fluid media like
the atmosphere or the sea. Progress in the solution of this problem
at the present time is actually being made along the lines of a hint
thrown out by Rayleigh in a paper on the cooling of air by radiation
and conduction published in 1899,

A second revised and enlarged edition of “The Theory of Sound”
was brought out by the author between the years 1894 and 1896,
embodying the results of his investigations in the seventeen years
which had elapsed since the first appearance of the book. No further
revisions or reprintings were made until after Rayleigh’s death. This
would seem to reflect a rather stagnant state of acouslics during the
first two decades of the twentieth century. Compared with the activity
of university physical laboratories in other fields this must be con-
sidered the truth: academically, acoustics became, by and large, an
uninteresting subject. In the meantime, however, the development of
certain technological fields such as telephony, both with and without
wires, as well as acoustic signalling under water and architectural
acoustics, made it imperative for engineers to gain a better under-
standing of the theory of acousties. The large industrial concerns
hegan 1o make usc of the subject in their research and development
laboratories, and the whole field received a stimulus such as it prob-
ably never could have gained from the side of academic workers. We
may say that acoustics was rediscovered and along with it Rayleigh’s
book. Reprintings were called for in rapid succession in 1926 and
1929 at about the time of the founding of the Acoustical Society of
America (1928). Al the same time numerous books began lo appear
whose main purpose was largely to interpret Rayleigh's work to the
new workers in the subject, and to apply the methods of his treatise
to a multitude of new and practical problems.
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It would he absurd to maintain that the whole of acoustics is to
be found within the covers of “The Theory of Sound™. Rayleigh him-
self in some 00 papers published between 1900 and his death
advanced the subject mightily and called attention to many problems
which have turned out to he of great significance in recent applica-
tions, Among these foreshadowings of the future must be reckoned
his use of electric circuit analogies in connection with the forced
vibrations of acoustical resonators and other systems. This procedure
has developed to such an extent that the modern acoustical engineer,
using electrical equipment for most of his practical work, invariably
insists on expressing all acoustical systems in terms of their electrical
analogues. Other striking anticipations by Rayleigh of modern acous-
tical considerations concern the use of conical horns for the produc-
tion and reception of sound in signalling, the acoustic shadow of a
sphere (of particular significance in the diffraction effeet of a
microphone), the pressure of acoustic radiation (used in the measure-
ment of sound intensity, especially in supersonics), the binaural
effect in sound pereeption, the possible regime of sound waves of
finite amplitude (explosion waves and those associated with gun fire)
and the selective transmission of waves through stratified media
(acoustical filtration). The list could easily bhe extended, but this
will suffice to suggest to the contemporary worker in acoustics his debt
to Rayleigh's foresight.

No one can foresee the future of the science of acoustics as, on the
one hand, it reaches out into new realms of application in the engi-
neering fields of the recording and reproduction of sound, the crealion
of more comfortable environments for the hearing of sound and the
development of adequate hearing aids for the deaf. and, on the other
hand, joins forces with pure physics and chemistry in the endeavor to
learn more about the solid, liquid and gaseous states of malter, par-
ticularly through the agency of supersonies. It is safe to prediet, how-
ever, that for a long time to come Lord Rayleigh’s “The Theory of
Sound” will be a rade mecum for both the pure and applied acous-
tician,
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PREFACE.

N the work, of which the present volume is an instalment,

my endeavour has been to lay before the reader a connected
exposition of the theory of sound, which should include the
more important of the advances made in modern times by Mathe-
maticians and Physicists. The importance of the object which
I have had in view will not, I think, be disputed by those com-
petent to judge. At the present time many of the most valuable
contributions to science are to be found only in scattered
periodicals and transactions of societies, published in various
parts of the world and in several languages, and are often
practically inaccessible to those who do not happen to live in
the neighbourhood of large public libraries. In such a state of
things the mechanical impediments to study entail an amount
of unremunerative labour and consequent hindrance to the
advancement of science which it would be difficult to over-
estimate.

Since the well-known Article on Sound in the Encyclopedia
Metropolitana, by Sir John Herschel (1845), no complete work
has been published in which the subject is treated mathemati-
call. By the premature death of Prof. Donkin the scientific
world was deprived of one whose mathematical attainments in
combination with a practical knowledge of music qualified him
in a special manner to write on Sound. The first part of his
Acoustics (1870), though little more than a fragment, is sufficient
to shew that my labours would have been unnecessary had Prof.
Don}:in lived to complete his work.
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In the choice of topics to be dealt with in a work on Sound,
I have for the most part followed the example of my predecessors.
To a great extent the theory of Sound, as commonly understood,
covers the same ground as the theory of Vibrations in general;
but, unless some limitation were admitted, the consideration of
such subjects as the Tides, not to speak of Optics, would have
to be included. As a general rule we shall confine ourselves to
those classes of vibrations for which our ears afford a ready
made and wonderfully sensitive instrument of investigation.
Without ears we should hardly care much more about vibrations
than without eyes we should care about light.

The present volume includes chapters on the vibrations of
systems in gemeral, in which, I hope, will be recognised some
novelty of treatment and results, followed by a more detailed
consideration of special systems, such as stretched strings, bars,
membranes, and plates. The second volume, of which a con-
siderable portion is already written, will commence with adrial
vibrations.

My best thanks are due to Mr H. M. Taylor of Trinity College,
Cambridge, who has been good enough to read the proofs. By
his kind assistance several errors and obscurities have been
eliminated, and the volume generally has been rendered less im-
perfect than it would otherwise have been.

Any corrections, or suggestions for improvements, with which
my readers may favour me will be highly appreciated.

Terving Praoz, WrrHan,
April, 1877.

N this second edition all corrections of importance are noted,

and new matter appears either as fresh soctions, e.g. § 82q,
or enclosed in square brackets [ ]. Two new chapters X 4, X8
are interpolated, devoted to Curved Plates or Shells, and to
Electrical Vibrations. Much of the additional matter relates to
the more difficult parts of the subject and will be passed over
by the reader on a first perusal.
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In the mathematical invescigations I have usually employed
such methods as present themselves naturally to a physicist.
The pure mathematician will complain, and (it must be confessed)
sometimes. with justice, of deficient rigour. But to this question
there are two sides. For, however important it may be to
maintain a uniformly high standard in pure mathematics, the
physicist may occasionally do well to rest content with argu-
ments which are fairly satisfactory and conclusive from his point
of view. To his mind, exercised in a different order of ideas,
the more severe procedure of the pure mathematician may appear
not more but less demonstrative. And further, in many cases
of difficulty to insist upon the highest standard would mean
the exclusion of the subject altogether in view of the space
that would be required.

In the first edition much stress was laid upon the establish-
ment of general theorems by means of Lagrange’s method, and
I am more than ever impressed with the advantages of this
procedure. It not unfrequently happens that a theorem can be
thus demonstrated in all its generality with less mathematical
apparatus than is required for dealing with particular cases by
special methods.

During the revision of the proof-sheets I have again had the
very great advantage of the cooperation of Mr H. M. Taylor,
until he was unfortunately compelled to desist. To him and
to several other friends my thanks are due for valuable sug-
gestions.

July, 1894.



EDITORIAL NOTE FOR THE 1929 RE-ISSUE

In this re-issue, a few pencilled corrections and references
in the Author’s own copy have been made use of. Otherwise no
change has been made.

EDITORIAL NOTE FOR THE PRESENT 1945 RE-ISSUE

In this re-issue, a Historical Introduction by Robert Bruce
Lindsay had been added, and hoth volumes are hound as one.
The text remains the same as the 1929 re-issue.



CONTENTS.

CHAPTER 1.

PAGE
§§ 1—27 INTRODUCTION . . . . 1

Sound due to Vibrations. Finite velocity of Propagation. Velocity inde-
pendent of Pitch. Regnault’s experiments. Sound propagated in water.
Wheatstone's experiment. Enfeeblement of Sound by distance. Notes
and Noises. Musical notes due to periodic vibrations. Siren of Cagniard
de la Tour. Pitch dependent upon Period. Relationship between
musical notes, The same ratio of periods corresponds to the same
interval in all parts of the scale. Harmonic scales. Diatonic scales.
Absolute Pitch. Necessity of Temperament. Equal Temperament.
Table of Frequencies. Analysis of Notes, Notes and Tones. Quality
dependent upon harmonic overtones. Kesolution of Notes by ear un-
certain. Simple tones correspond to simple pendulous vibrations.

CHAPTER IIL

§§ 28—42¢ HARMONIC MOTIONS . . . . 19

Composition of harmonic motions of like period. Harmonic Curve. Com-
position of two vibrations of nearly equal period. Beats. Fourier's
Theorem. [Beats of approximate consonances.] Vibrations in perpen.
dicular directions. Lissajous’ Cylinder. Lissajous’ Figures. Black-
burn’s pendulum. Kaleidophone. Optical methods of composition
and snalysis. The vibration microscope. Intermittent Illumination.
[Resultant of & large number of vibrations whose phases are accidentally
distributed.]



xxxviil CONTENTS.

CHAPTER IIIL

PAGE
§§ 43—68d  SYSTEMS HAVING ONE DEGREE OF FREEDOM 43

Independence of amplitude and period. Frictional force proportional to
velocity. Forced vibrations. Principle of Superposition. Beats due
to superposition of forced and free vibrations. Various degrees ol
damping, String with Load. Method of Dimensions. Ideal Tuniug-
fork. Forks give nearly pure tones. Forks as standards of piteh.
[Dependence upon temperature. Slow versus quick beats.] Scheibler's
methods of tuning. Scheibler's Tonometers. Compound Pendulum.
Forks driven by electro-magnetism, [Phonic wheel.] Fork Interrupter.
Resonance. [Intermittent vibrations.] General solution for one degree
of freedom. [Instability.] Terms of the second order give rise to
derived tones, [Maintenance. Methods of determining absolute pitch.]

CHAPTER 1IV.
§§ 69—95 VIBRATING SYSTEMS IN GENERAL 91

Generalized co-ordinates. Expression for potential energy. Statical theo-
rems. Initial motions. Expression for kinetic emergy. Reciprocal
theorem, Thomson’s [Kelvin's] theorem. Lagrange’s equations. The
digsipation function. Coexistence of small motions. Free vibrations
without friction. Normal co-ordinates. The free periods fulfil a
stationary condition. An accession of inertin increases the free periods.
A relaxation of spring inoreases the free periods. The greatest free
period is an absolute maximum. Hypothetical types of vibration.
Example from string. Approximately simple systems. 8tring of
variable density. Normal functions. Conjugate property. [Introduc-
tion of one constraint. Several constraints,] Determination of ocon-
stants to suit arbitrary initial conditions. Stokes’ theorem.

CHAPTER V.
§§ 96—117 VIBRATING SYSTEMS IN GENERAL. 130

Cases in which the three functions T, F, V" are simultaneously reducible to
sums of squares. Generalization of Young's theorem on the nodal
points of strings. Equilibrium theory. Systems started from rest as
deflected by a force applied at one point. Systems started from the
equilibrium configuration by an impulse applied at one point. Systems
started from rest as defleated by a force uniformly distributed. Influ-
enoe of small frictional forces on the vibrations of a system. Solution
of the general equations for free vibrations. [Routh’s theorems. In-
stability.] Impressed Forces. Principle of the persistence of periods,
Inexorable motions. Reciprocal Theorem, Application to free vibrations.
Statement of reciprocal theorem for harmonic forces. Applications,
Extension to cases in which the constitution of the system is a function
of the period. [Reaction at driving point.] Equations for two degrees
of freedom. Roots of determinantal equation. Intermittent vibrations,
March of periods as inertia is gradually inoressed. Resction of a
dependent system.



CONTENTS. XXX1v

CHAPTER VL

PAGE
§§ 118—148 ¢ TRANSVERSE VIBRATIONS OF STRINGS 170

Law of extension of a string. Transverse vibrations. Solution of the pro-
blem for a string whose mass is concentrated in equidistant points.
Derivation of solution for continuous string. Partial differential equa-
tion. Expressions for 7" and T.  Most general form of simple harmonic
motion. Strings with fixed extremities. General motion of a string
periodic. Mersenne’s Laws. Sonometer. Normal modes of vibration.
Determination of constants to suit arbitrary initial circumstances. Case
of plucked string. Expressions for I and ¥ in terms of normal co-ordi-
nates. Normal equations of motion. String excited by plucking.
Young’s theorem. String excited by an impulse. Problem of piano-
forte string. Friction proportional to velocity. Comparison with equi-
librium theory. Periodie force applied at one point. Modifications due
to yielding of the extremities. Proof of Fourier’s theorem. Effects
of a finite load. Correction for rigidity. Problem of violin string.
Strings stretched on curved surfaces. Solution for the case of the
sphere. Correction for irregularities of density. [Arbitrary displace-
ment of every period.] Theorems of Sturm and Liouville for a string
of varigble density. [Density proportional to z-2. Nodes of forced vibra-
tions.] Propagation of waves along an unlimited string. Positive and
negative waves. Stationary Vibrations. Reflection at a fixed point.
Deduction of solution for finite string. Graphical method. Progressive
wave with friction. [Reflection at a junction of two strings. Gradual
transition. Effect of imperfect flexibility.]

CHAPTER VIIL

§§149—159 LONGITUDINAL AND TORSIONAL VIBRATIONS
OF BARS . . . . . 242

Classification of the vibrations of Bars. Differential equation for longi-
tudinal vibrations. Numerical values of the constants for steel. Solu-
tion for a bar free at both ends. Deduction of solution for a bar with
one end free, and one fixed. Both ends fixed. Influence of small load.
Solution of problem for bar with large load attached. [Reflection ata
junction.] Correction for lateral motion. Savart’s ‘“‘son rauque.”
Differential equation for torsional vibrations, Comparison of velocities
of longitudinal and torsional waves.

CHAPTER VIIL

§§160—192a  LATERAL VIBRATIONS OF BARS . . 265

Potential energy of bending. Expression for kinetic energy. Derivation
of differential equation. Terminal conditions., General solution for
a harmonic vibration. Conjugate property of the normal functions.
Values of integrated squares. Expression of V in terms of normal



xl CONTENTS.

PAGE
co-ordinates. Normal equations of motion. Determination of constants

to suit initial conditions. Case of rod started by a blow. Rod started
from rest as deflected by a lateral force. In certain cases the series of
normal functions ceases to converge. Form of the normal functions for
a free-free bar. Laws of dependence of frequency on length and thick-
ness. [Numerical formule for tuning-forks.] Case when both ends are
clamped. Normal functions for a clamped-free bar. Calculation of
periods. Comparisons of pitch. Discussion of the gravest mode of
vibration of a free-free bar. Three nodes. Four nodes. Gravest mode
for clamped-free bar. Position of nodes. Supported bar. Calculation
of period for clamped-free bar from hypothetical type. Solution of
problem for a bar with a loaded end. Effect of additions to a bar.
Influence of irregularities of deusity. Correction for rotatory inertia.
Roots of functions derived linearly from normal functions. Xormation
of equation of motion when there is permanent tension. Special ver-
minal conditions. Resultant of two trains of waves of nearly equal
period. Fourier's solution of problem for infinite bar, [Circular Ring.]

CHAPTER IX.
§§ 193—213 a VIBRATIONS OF MEMBRANES . . . 306

Tension of a membrane. Equation of motion. Fixed rectangular bound-
ary. Expression for ¥ and T in terms of normal co-ordinates. Normal
equations of vibration. Examples of impressed forces. Irequency for
an elongated rectangle depends muainly on the shorter side. Cases in
which different modes of vibration have the same period. Derived
modes thence arising. Effect of slight irregularities. An irregularity
may remove indeterminatencss of normal modes. Solutions applicable
to a triangle. Expression of the general differential equation by polax
co-ordinates. Of the two functions, which occur in the solution, one is
excluded by the condition at the pole. Ex)ressions for Bessol’s fune-
tions. Formulwe relating thereto. Table of the firat two funections.
Fixed ¢ircular boundary. Conjugate property of the nomnal funections
without restriotion of boundary. Values of integrated squares. Ex-
pressions for T and ¥ in terms of nermal functions. Normal equations
of vibration for eircular membrane. Specinl case of free vibrations.
Vibrations due to a harmonic force uniformly distributed, [Foree
applied locally at the centre.] Pitches of the various simple tones.
Table of the roots of Bessol's functions. Nodal Figures. Civeular
membrane with one radius fixed. Bessel’s funetions of fractional order.
Lffect of small load. Vibrations of a mcmbrane whose boundary is
spproximately circulox. In many cases the pitch of & membrane may
be caleulated from the area alone. Of all membranes of equal avon that
of cireular forwn has the gravest piteh. Pitch of o manbrane whose
boundaxy is an ellipse of small eccentricity. Method of obtaining limits
in cases that cannot be dealt with rigorously. Comparison of fre-
quencies in various cases of membranes of equal aren. History of the
problem, Bourget’s experimental investigations. [Kettle-drums. Nodal
ourves of forced vibrations.]



CONTENTS. * xli

CHAPTER X.

PAGE
§§ 214—235a VIBRATIONS OF PLATES . . . 852

Potential Energy of Bending. Transformation of 6V. Superficial differ-
ential equation. Boundary conditions. Conjugate property of normal
functions. Transformation to polar co-ordinates. Form of general
solution continuous through pole. Equations determining the periods
for a free circular plate. Kirchhoff’s calculations. Comparison with
observation. Radii of nodal circles. Generalization of solution. Ir-
vegularities give rise to beats. [Oscillation of nodes.] Case of clamped,
or supported, edge. [Telephone plate.] Disturbance of Chladni's
figures. [Movements of sand.] History of problem. Mathieu’s criti-
cisms. Rectangular plate with supported edge. Rectangular plate with
free edge. Boundary conditions. One special case (u=0) is amenable
to mathematical treatment. Investigation of nodal figures. Wheat-
stone’s application of the method of superposition. Comparison of
Wheatstone’s figures with those really applicable to a plate in the case
w=0. Gravest mode of a square plate. Calculation of period on hypo-
thetical type. Nodal figures inferred from considerations of symmetry.
Hexagon. Comparison between circle and square. Law connecting
piteh and thickness. In the case of a clamped edge any contraction of
the boundary raises the pitch. No gravest form for a free plate of
given arca. In similar plates the period is as the linear dimension.
Wheatstone's experiments on wooden plates. Keenig's experiments.
Vibrations of cylinder, or ring. Motion taugential as well as normal.
Relation between tangential and normal motions. Expressious for
kinetic and potential energies. Equations of vibration. Frequencies
of tones, Comparison with Chladni. [Fenkner’s observations.] Tan-
gential friction excites tangential motion. Experimental verification.
Beats due to irregularities. [Examples of elass bells. Church bells.]

CHAPTER Xa.
§2350—235%  CURVED PLATES OR SHELLS . .. 895

|Extensional Vibrations. Frequency independent of thickness. Inexten-
sional or flexural vibrations. Frequemcy proportional to thickness.
(temeral conditions of inextension. Surface of second degree. Applica-
tion to sphere. Principal extensions of cylindrical surface. Putential
energy. Frequencics of extensional vibratious. DPlane plate. Other
particular cases of cylinder. Potential energy of bending. Sphere.
Plane plate. Potential energy for cylindrical shell. Statieal problems.
Krequency of flexural vibrations of cylindrical shell. Bxtensional
vibrations of spherical shell. Flexwral vibrations of spherical shell.
Normal modes. Potential energy. Kinetic energy. Frequencies in case
of hemisphere. Saucer of 120". Ieferences.]



xlii

CONTENTS.

CHAPTER XB.

§235:—235y ELECTRICAL VIBRATIONS

[Calculation of periods. Forced vibrations. Insertion of a leyden equivalent

to a negative inductance. Initial currents in a secondary circuit. In-
versely as the number of windings. Reaction of secondary cirouit.
Train of circuits. Initial currents alternately opposite in sign. Per-
sistences. Resistance and inductance of two oconductors in parallel.
Extreme values of frequency. Contiguous wires. Several conductors in
parallel. Induction balance. Theory for simple harmonic currents. Two
conditions necessary for balance. Wheatstone’s bridge. Generalized
resistance. Current in bridge. Approximate balance. Hughes’ ar-
rangement. Interrupters. Inductometers. Symmetrical arrangement.
Electromagnetic screoning. Cylindrical conducting core. Time-con-
stant of free currents. Induced electrical vibrations. Resction upon
primary circuit. Induced ourrents in a wire. Maxwell’s formulse.
Impedance. Kelvin’s theory of oables. Heaviside's generalization.
Attenustion and distortion of signals. Bell’'s telepbone. Push and
pull theory. Experiment upon bipolar telephone. Minimum. current
audible Mierophone.]

PAGE

433



CHAPTER L

INTRODUCTION.

1. THE sensation of sound is a thing sus generis, not com-
parable with any of our other sensations. No one can express
the relation between a sound and a colour or a smell. Directly
or indirectly, all questions connected with this subject must
come for decision to the ear, as the organ of hearing; and
from it there can be no appeal. But we are not therefore to
infer that all acoustical investigations are conducted with the
unassisted ear. When once we have discovered the physical
phenomena which constitute the foundation of sound, our ex-
plorations are in great measure transferred to another field lying
within the dominion of the principles of Mechanics. Important
laws are in this way arrived at, to which the sensations of the ear
cannot but conform.

2. Very cursory observation often suffices to shew that
sounding bodies are in a state of vibration, and that the phe-
nomensa of sound and vibration are closely connected. When a
vibrating bell or string is touched by the finger, the sound ceases
at the same moment that the vibration is damped. But, in order
to affect the sense of hearing, it is not enough to have a vibrating
instrument ; there must also be an uninterrupted communication
between the instrument and the ear. A bell rung n vacuo, with
proper precautions to prevent the communication of motion,
remains inaudible. In the air of the atmosphere, however,
gounds have s universal vehicle, capable of conveying them
without break from the most variously constituted sources to
the recesses of the ear.

3. The passage of sound is not instantaneous. When a gun
is fired at a distance, a very perceptible interval separates the
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report from the flash. This represents the time occupied by
sound in travelling from the gun to the observer, the retardation
of the flash due to the finite velocity of light being altogether
negligible. The first accurate experiments were made by some
members of the French Academy, in 1738. Cannons were fired,
and the retardation of the reports at different distances observed.
The principal precaution necessary is to reverse alternately the
direction along which the sound travels, in order to eliminate the
influence of the motion of the air in mass. Down the wind, for
instance, sound travels relatively to the earth faster than its
proper rate, for the velocity of the wind is added to that proper
to the propagation of sound in still air. For still dry air at a
temperature of 0°C., the French observers found a velocity of 337
metres per second. Observations of the same character were
made by Arago and others in 1822 ; by the Dutch physicists Moll,
van Beek and Kuytenbrouwer at Amsterdam; by Bravais and
Martins between the top of the Faulhorn and a station below;
and by others. The general result has been to give a somewhat
lower valuc for the velocity of sound—about 332 metres per
second. The effect of alteration of temperature and pressure on
the propagation of sound will be best considered in connection with
the mechanical theory.

4. It is a direct consequence of observation, that within wide
limits, the velocity of sound is independent, or at least very nearly
independent, of its intensity, and also of its pitch. Were this
otherwise, a quick piece of music would be heard at a little
distance hopelessly confused and discordant. But when the dis-
turbances are very violent and abrupt, so that the alterations of
density concerned are comparable with the whole density of the
air, the simplicity of this law may be departed from.

5. An claborate series of experiments on the propagation of
sound in long tubes (water-pipes) has been made by Regnault’.
He adopted an automatic arrangement similar in principle to that
used for measuring the speed of projectiles. At the moment when
a pistol is fired at one end of the tube a wire conveying an electric
current is ruptured by the shock. This causes the withdrawal of a
tracing point which was previously marking a line on a revolving
drum. At the further end of the pipe is a stretched membrane so
arranged that when on the arrival of the sound it yields to the

Y Mémoires de U Académie de France, t. xxxviy,
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impulse, the circuit, which was ruptured during the passage of the
sound, is recompleted. At the same moment the tracing point
falls back on the drum. The blank space left unmarked corre-
sponds to the time occupied by the sound in making the jourey,
and, when the motion of the drum is known, gives the means of
determining it. The length of the journey between the first wire
and the membrane is found by direct measurement. In these
experiments the velocity of sound appeared to be not quite inde-
pendent of the diameter of the pipe, which varied from 0™108
to 1™100. The discrepancy is perhaps due to friction, whose
influence would be greater in smaller pipes.

6. Although, in practice, air is usually the vehicle of sound,
other gases, liquids and solids are equally capable of conveying
it. In most cases, however, the means of making a direct measure-
ment of the velocity of sound are wanting, and we are not yet in
a position to consider the indirect methods. But in the case of
water the same difficulty does not occur. In the year 1826,
Colladon and Sturm investigated the propagation of sound in the
Lake of Geneva. The striking of a bell at one station was
simultaneous with a flash of gunpowder. The observer at a
second station measured the interval between the flash and the
arrival of the sound, applying his ear to a tube carried beneath
the surface. At a temperature of 8°C., the velocity of sound in
water was thus found to be 1435 metres per second.

7. The conveyance of sound by solids may be illustrated by a
pretty experiment due to Wheatstone. One end of a metallic wire
is connected with the sound-board of a pianoforte, and the other
taken through the partitions or floors into another part of the
building, where naturally nothing would be audible. If a reso-
nance-board (such as a violin) be now placed in contact with the
wire, a tune played on the piano is easily heard, and the sound
geems to emanate from the resonance-board. [Mechanical tele-
phones upou this principle have been introduced into practical
use for the conveyance of speech.]

8. In an open space the intensity of sound falls off with great
rapidity as the distance from the source increascs. The same
amount of motion has to do duty over surfaces ever increasing as
the squares of the distance. Anything that confines the sound
will tend to diminish the falling off of intensity. Thus over the
flat surface of still water, a sound carries turther than over broken
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ground ; the corner between a smooth pavement and a vertical
wall is still better; but the most effective of all is a tube-like
enclosure, which prevents spreading altogether. The use of
speaking tubes to facilitate communication between the different
parts of a building is well known. If it were not for certain effects
(frictional and other) due to the sides of the tube, sound might
be thus conveyed with little loss to very great distances.

9. Before proceeding further we must consider a distinction,
which is of great importance, though not free from difficulty.
Sounds may be classed as musical and unmusical; the former
for convenience may be called notes and the latter noises. The
extreme cases will raise no dispute; every one recoguises the
difference between the note of a pianoforte and the creaking of a
shoe. But it is not so easy to draw the line of separation. In the
first place few notes are free from all unmusical accompaniment.
With organ pipes especially, the hissing of the wind as it escapes
at the mouth may be heard beside the proper note of the pipe.
And, secondly, many noises so far partake of a musical character
as to have a definite pitch. This is more easily recognised in a
scquence, giving, for example, the common chord, than by continued
attention to an individual instance. The experiment may be made
by drawing corks from bottles, previously tuned by pouring water
into them, or by throwing down on a table sticks of wood of suitable
dimensions. But, although noises are sometimes not entirely
unmusical, and notes are usually not quite free from noise, there is
no difficulty in recognising which of the two is the simpler pheno-
menon. There is a- certain smoothness and continuity about the
musical note. Moreover by sounding together a variety of notes—
for example, by striking simultaneously a number of consecutive
keys on a pianoforte—we obtain an approximation to a noisc;
while no combination of noises could ever blend into a musical
note.

10. We are thus led to give our attention, in the first instance,
mainly to musical sounds. These arrange themselves naturally
in a certain order according to pitch—a quality which all can
appreciate to some extent. Trained ears can recognise an enormous
number of gradations—more than a thousand, probably, within
the compass of the human voice. These gradations of pitch are
not, like the degrees of a thermometric scale, without special
mutual relations. Taking any given note as a starting point,
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musicians can single out certain others, which bear a definite
relation to the first, and are known as its octave, fifth, &c. The
corresponding differences of pitch are called intervals, and are
spoken of as always the same for the same relationship. Thus,
wherever they may occur in the scale, a note and its octave are
separated by the interval of the octave. It will be our object later
to explain, so far as it can be done, the origin and nature of the
consonant intervals, but we must now turn to consider the physical
aspect of the question. -

Since sounds are produced by vibrations, it is natural to
suppose that the simpler sounds, viz. musical notes, correspond to
periodic vibrations, that is to say, vibrations which after a certain
intefval of time, called the period, repeat themselves with perfect
regularity. And this, with a limitation presently to be noticed,
18 true.

11. Many contrivances may be proposed to illustrate the
generation of a musical note. One of the simplest is a revolving
wheel whose milled edge is pressed against a card. Each
projection as it strikes the card gives a slight tap, whose regular
recurrence, as the wheel turns, produces a note of definite pitch,
rising wn the scale, as the welocity of rotation wncreases. But the
most appropriate instrument for the fundamental experiments on
notes is undoubtedly the Siren, invented by Cagniard de la Tour.
It consists essentially of a stiff disc, capable of revolving about its
centre, and pierced with one or more sets of holes, arranged at
equal intervals round the circumference of circles concentric with
the disc. A windpipe in connection with bellows is presented
perpendicularly to the disc, its open end being opposite to one of
the circles, which contains a set of holes. When the bellows are
worked, the stream of air escapes freely, if a hole is opposite to the
end of the pipe; but otherwise it is obstructed. As the disc turns,
a succession of puffs of air escape through it, until, when the
velocity is sufficient, they blend into a note, whose pitch rises
continually with the rapidity of the puffs. We shall have occasion
later to describe more elaborate forms of the Siren, but for our
immediate purpose the present simple arrangement will suffice.

12. One of the most important facts in the whole science is
exemplified by the Siren—namely, that the pitch of a note depends
upon the period of its vibration. The size and shape of the holes,
the force of the wind, and other clements of the problem may be
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varied; but if the number of puffs in a given time, such as one
second, remains unchanged, so also does the pitch. We may even
dispense with wind altogether, and produce a note by allowing
the corner of a card to tap against the edges of the holes, as they
revolve; the pitch will still be the same. Observation of other
sources of sound, such as vibrating solids, leads to the same con-
clusion, though the difficulties are often such as to render
necessary rather refined cxperimental methods.

But in saying that pitch depends: upon period, there
lurks an ambiguity, which deserves attentive consideration,
as it will lead us to a point of great importance. If a
variable quantity be periodic in any time T, it is also periodic
in the times 27, 37, &c. Conversely, a recurrence within a ‘given
period 7, does not exclude a more rapid recurrence within
periods which are the aliquot parts of = It would appear
accordingly that a vibration really recurring in the time #v (for
example) may be regarded as having the period 7, and therefore
by the law just laid down as producing a note of the pitch defined
by 7. The force of this consideration cannot be entirely evaded by
defining as the period the least time required to bring about a
repetition. In the first place, the necessity of such a restriction
is in itgelf almost sufficient to shew that we have not got to the
root of the matter; for although a right to the period = may be
denied to a vibration repeating itself rigorously within a time 4,
yet it must be allowed to a vibration that may differ indefinitely
little therefrom. In the Siren experiment, suppose that in one
of the circles of holes containing an even number, every alternate
hole is displaced along the arc of the circle by the same amount.
The displacement may be made so small that no change can be
detected in the resulting note; but the periodic time on which
the pitch depends has been doubled.  And secondly it is evident
from the nature of periodicity, that the superposition on a vibra-
tion of period =, of others having periods 3=, 4r...&c., does not
disturk the period 7, while yet it cannot be supposed that the
addition of the new elements has left the quality of the sound un-
changed. Moreover, since the pitch is not affected by their
presence, how do we know that elements of the shorter periods
were not there from the beginning?

13. These considerations lead us to expect remarkable rela-
tionis between the notes whose periods are as the reciprocals of the
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natural numbers, Nothing can be easier than to investigate the
question by means of the Siren. Imagine two circles of holes, the
inner containing any convenient number, and the outer twice as
many. Then at whatever speed the disc may turn, the period of
the vibration engendered by blowing the first set will necessarily
be the double of that belonging to the second. On making the
experiment the two notes are found to stand to each other in
the relation of octaves; and we conclude that tn passing from any
note to its octave, the frequency of vibration is doubled. A similar
method of experimenting shews, that to the ratio of periods 3 : 1
corresponds the interval known to musicians as the twelfth, made
up of an octave and a fifth; to the ratio of 4 :1, the double
octave ; .and to the ratio 5 : 1, the interval made up of two octaves
and a major third. In order to obtain the intervals of the fifth
and third themselves, the ratios must be made 3:2 and 5:4
respectively.

14. From these experiments it appears that if two notes
stand to one another in a fixed relation, then, no matter at what
part of the scale they may be situated, their periods are in a
certain constant ratio characteristic of the relation. The same
may be said of their frequencies’, or the number of vibrations
which they execute in a given time. The ratio 2:1 is thus
characteristic of the octave interval. If we wish to combine
two intervals,—for instance, starting from a given note, to take
a step of an octave and then another of a fifth in the same
direction, the corresponding ratios must be compounded :

2,.8.8

172 1°
The twelfth part of an octave is represented by the ratio V.1,
for this is the step which repeated twelve times leads to an
octave above the starting point. If we wish to have a measure
of intervals in the proper sense, we must take not the character-
istic ratio itself, but the logarithm of that ratio. Then, and then
only, will the measure of a compound interval be the sum of the
mesasures of the components.

1 A single word to denote the number of vibrations executed in the unit of time
is indispensable : I know no better than ‘ frequency,’ which was used in this sense
by Young. The same word is employed by Prof. Everett in his excellent edition
of Deschanel’s Natural Philosophy.
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15. From the intervals of the octave, fifth, and third con-
sidered above, others known to musicians may be derived. The
difference of an octave and a fifth is called a fourth, and has the
ratio 2—:—%=%. This process of subtracting an interval from
the octave is called wnverting it. By inverting the major third
we obtain the minor sixth. Again, by subtraction of a major
third from a fifth we obtain the minor third; and from this by
inversion the major sixth. The following table exhibits side by
side the names of the intervals and the corresponding ratios of
frequencies:

Octave ....ocovveviiininnennns 2:1
Fifth ..o 3:2
Fourth .........coovvvviinnn, L
Major Third ............. veeee 5t 4
Minor Sixth .....ovvienvnnens 8:5
Minor Third ........ovvvveeees 6:5
Major Sixth .....covvveeennee. 5:3

These are all the consonant intervals comprised within the
limits of the octave. It will be remarked that the corresponding
ratios are all expressed by means of small whole numbers, and
that this is more particularly the case for the more consonant
intervals.

The notes whose frequencies are multiples of that of a given
one, are called its harmonics, and the whole series constitutes
a harmonic scale. As is well known to violinists, they may all
be obtained from the same string by touching it lightly with the
finger at certain points, while the bow is drawn.

The establishment of the connection between musical intervals
and definite ratios of frequency—a fundamental point in Acoustics
—iy due to Mersenne (1636). It was indeed known to the
Greeks in what ratios the lengths of strings must be changed
in order to obtain the octave and fifth; but Mersenne demon-
strated the law connecting the length of a string with the period
of its vibration, and made the first determination of the actual
rate of vibration of a known musical note.

16. On any note taken as a key-note, or tonic, a diatonic
scale may be founded, whose derivation we now proceed to ex-
plain. If the key-note, whatever may be its absolute pitch, be
called Do, the fifth above or dominant is Sol, and the fifth below
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or subdominant is Fa. The common chord on any note is pro-
duced by combining it with its major third, and fifth, giving the
ratios of frequency 1 :Z—:g or 4:5:6. Now if we take the
common chord on the tonic, on the dominant, and on the sub-
dominant, and transpose them when necessary into the octave
lying immediately above the tonic, we obtain notes whose fre-
quencies arranged in order of magnitude are:

Do Re Mi Fa Sol La Si Do
L9 5 4 3 s 15
El 8 3 4 3 3 b 2 ) 3 b 8 b .

Here the common chord on Do is Do—Mi—Sol, with the

ratios 1 :g:—g—; the chord on Sol is Sol—Si—Re, with the ratios

3 15 9 5 3
é.-§-22><§=122:-2—
still with the same ratios. The scale js completed by repeating
these notes above and below at intervals of octaves.

If we take as our Do, or key-note, the lower ¢ of a tenor voice,
the diatonic scale will be

¢ d e f g a b c’

Usage differs slightly as to the mode of distinguishing the
different octaves; in what follows I adopt the notation of Helm.-
holtz. The octave below the one just referred to is written with
capital letters—C, D, &c.; the next below that with a suffix—
C, D, &c.; and the one beyond that with a double suffix—C,, &e.
On the other side accents denote elevation by an octave—c, ¢”,
&c. The notes of the four strings of a violin are written in this
notation, g—d'—a’—e”. The middle ¢ of the pianoforte is c.

[In French notation ¢’ is denoted by ut,.]

; and the chord on Fa is Fa—La—Do,

17. With respect to an absolute standard of pitch there has
been no uniform practice. At the Stuttgard conference in 1834,
¢’ =264 complete vibrations per second was recommended. This
corresponds to a'=440. The French pitch makes a’=435. In
Handel’s time the pitch was much lower. If ¢’ were taken at 256
or 2, all the ¢’s would have frequencies represented by powers
of 2. This pitch is usually adopted by physicists and acoustical
instrument makers, and has the advantage of simplicity.

The determination ab initio of the frequency of a given note is
an operation requiring some care. The simplest method in prin-
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ciple is by means of the Siren, which is driven at such a rate as to
give a note in unison with the given one. The number of turns
effected by the disc in one second is given by a counting apparatus,
which can be thrown in and out of gear at the beginning and end
of a measured interval of time. This multiplied by the number of
effective holes gives the required frequency. The consideration of
other methods admitting of greater accuracy must be deferred.

18. So long as we keep to the diatonic scale of ¢, the notes
above written are all that are required in a musical composition.
But it is frequently desired to change the key-note. Under these
circumstances a singer with a good natural ear, accustomed to
perform without accompaniment, takes an entirely fresh departure,
constructing a new diatouic scale on the new key-note. In this
way, after a few changes of key, the original scale will be quite
departed from, and an immense variety of notes be used. On an
instrument with fixed notes like the piano and organ such a
multiplication is impractieable, and some compromise is necessary
in order to allow the same note to perform different functions.
This is not the place to discuss the question at any length; we
will therefore take as an illustration the simplest, as well as the
commonest case—modulation into the key of the dominant.

By definition, the diatonic scale of ¢ consists of the common
chords founded on ¢, g and f. In like manner the scale of g con-
sists of the chords founded on g, d and ¢. The chords of ¢ and g
are then common to the two scales; but the third and fifth of d

introduce new notes. The third of d written ff has a frequency
9 5

g X ;"‘?;“Z’ and is far removed from any note in the scale of c.
3.2
2 16’
In ordinary keyed instruments the

But the fifth of d, with a frequency g X differs but little

5
':'?; .
interval between the two, represented by z%%, and called a comma,

from a, whose frequency is

is peglected, and the two notes by a suitable compromise or
temperament are identified.

19. Various systems of temperament have been used; the
simplest and that now most generally used, or at least aimed at,
is the equal temperament. On referring to the table of frequencies
for the diatonic scale, it will be seen that the intervals from Do to
Re, from Re to Mi, from Fa to Sol, from Sol to La, and from La
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to Si, are nearly the same, being represented by-g— or 19—0; while the

intervals from Mi to Fa and from Si to Do, represented by %g— , are

about half as much. The equal temperament treats these ap-
proximate relations as exact, dividing the octave into twelve equal
parts called mean semitones. From these twelve notes the diatonic
scale belonging to any key may be selected according to the
following rule. Taking the key-note as the first, fill up the series
with, the third, fifth, sixth, eighth, tenth, twelfth and thirteenth
notes, counting upwards. In this way all difficulties of modulation
are avoided, as the twelve notes serve as well for one key as for
another. But this advantage is obtained at a sacrifice of true
intonation. The equal temperament third, being the third part of
an octave, is represented by the ratio v/2: 1, or approximately
12599, while the true third is 1'25. The tempered third is thus
higher than the true by the interval 126 : 125. The ratio of the
tempered fifth may be obtained from the consideration that seven
semitones make a fifth, while twelve go to an octave. The ratio is

therefore 277 ; 1, which =1'4983. The tempered fifth is thus too
low in the ratio 14983 : 1'5, or approximately 881 : 882. This
error is insignificant; and even the error of the third is not of
much consequence in quick music on instruments like the piano-
forte. But when the notes are held, as in the harmonium and
organ, the consonance of chords is materially impaired.

20. The following Table, giving the twelve notes of the chro-
matic scale according to the system of equal temperament, will be
convenient for reference’. The standard employed is a’=440; in

C“ C‘ 0 ¢ C' C” cIII C"”

C 16:35 | 3270 | 6541 | 1308 | 2617 | 523'3 | 10466 | 20932
C# | 1732 | 3465 | 6930 | 1386 | 2772 | 5444 | 11088 | 22177
D 11835 | 3671 | 7342 | 1468 | 293'7 | 5874 | 11748 | 23496
Dy | 1944 | 3889 [ 7779 | 1556 | 3112 | 622-3 | 1244'6 | 24893
E | 2060 | 4120 | 8241 | 1648 | 329'7 | 6593 | 13186 | 26373
F 12182 | 4365 | 8731 | 174'6 | 3492 | 6985 | 1397'0 | 27940
Fy | 2312 | 4625 | 9250 | 1850 | 370:0 | 7400 | 1480-0 | 2960-1
G | 2450 | 4900 | 9800 | 1960 | 3920 | 784°0 | 15680 | 31360
Git | 2595 [ 5191 | 1038 | 207'6 | 4153 | 8306 | 16612 | 33225
A | 2750 | 55:00 | 1100 | 2200 | 4400 | 8800 | 17600 | 35200
Al | 20°13 | 5827 | 1166 | 2331 | 4662 | 9323 | 1864'6 | 37292
B | 3086 | 6173 | 1235 | 2469 | 493-9 | 9877 | 1975'5 | 39510

! Zamminer, Die Musik und die musikalischen Instrumente. Giesgen, 1855.
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order to adapt the Table to any other absolute pitch, it is only
necessary to multiply throughout by the proper constant.

The ratios of the intervals of the equal temperament scale are
given below (Zamminer) :—

Note. Frequency. Note. Frequency.
¢ = 100000 B 21T =1-41421
o 277 = 105946 g 277 =1-49831
4 2T7=112246 g 277 = 158740
d# 2T¥ = 118921 o 277168179
o 9T7 125992 e 217 = 178180
£ 277133484 b otE - 1-88775
¢’ =2:000

21. Returning now for a moment to the physical aspect of the
question, we will assume, what we shall afterwards prove to be
true within wide limits,—that, when two or more sources of sound
agitate the air simultaneously, the resulting disturbance at any
point in the external air, or in the ear-passage, is the simple sum
(in the extended geometrical sense) of what would be caused by
each source acting separately. Let us consider the disturbance
due to a simultaneous sounding of a note and any or all of its
harmonics. By definition, the complex whole forms a note having
the same period (and therefore pitch) as its gravest element. We
have at present no criterion by which the two can be distinguished,
or the presence of the higher harmonics recognised. And yet —in
the case, at any rate, where the component sounds have an inde-
pendent origin—it is usually not difficult to detect them by the
ear, 80 a8 to effect an analysis of the mixture. This is as much as
to say that a strictly periodic vibration may give rise to a sensa-
tion which is not simple, but susceptible of further analysis. In
point of fact, it has long been known to musicians that under
certain circumstances the harmonics of a note may be heard along
with it, even when the note is due to a single source, such as a
vibrating string; but the significance of the fact was not under-
stood. Since attention has been drawn to the subject, it has been
proved (mainly by the labours of Ohm and Helmholtz) that almost
all musical notes are highly compound, consisting in fact of the
notes of a harmonic scale, from which in particular cases one or
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more members may be missing. The reason of the uncertainty
and difficulty of the analysis will be touched upon presently.

22. That kind of note which the ear cannot further resolve is
called by Helmholtz in German a ‘ton.’ Tyndall and other recent
writers on Acoustics have adopted ‘ tone’ as an English equivalent,
—a practice which will be followed in the present work. The
thing is so important, that a convenient word is almost a matter
of necessity. Notes then are in general made up of tones, the
pitch of the note being that of the gravest tone which it contains.

23. In strictness the quality of pitch must be attached in the
first instance to simple tones only ; otherwise the difficulty of dis-
continuity before referred to presents itself. The slightest change
in the nature of a note may lower its pitch by a whole octave, as
was exemplified in the case of the Siren. We should now rather
say that the effect of the slight displacement of the alternate
holes in that experiment was to introduce a new feeble tone an
octave lower than any previously present. This is sufficient to
alter the period of the whole, but the great mass of the sound
remains very nearly as before.

In most musical notes, however, the fundamental or gravest
tone is present in sufficient intensity to impress its character on
the whole. The effect of the harmonic overtones is then to modify
the quality or character' of the note, independently of pitch.
That such a distinction exists is well known The notes of a violin,
tuning fork, or of the human voice with its different vowel sounds,
&c., may all have the same pitch and yet differ independently of
loudness ; and though a part of this difference is due to accom-
panying noises, which are extraneous to their nature as notes, still
there is a part which is not thus to be accounted for. Musical
notes may thus be classified as variable in three ways: First, pitch.
This we have alrcady sufficiently considered. Secondly, character,
depending on the proportions in which the harmonic overtones are
combined with the fundamental : and thirdly, loudness. This has
to be taken last, because the ear is not capable of comparing
(with any precision) the loudness of two notes which differ much
in pitch or character. We shall indeed in a future chapter give a
mechanical measure of the intensity of sound, including in one
system all gradations of pitch; but this is nothing to the point.

1 (German, ‘Klangfarbe’—French, ‘timbre.”’ The word ‘character’ is used in
this sense by Everett.
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We are here concerned with the intensity of the sensation of
sound, not with a measure of its physical cause. The difference of
loudness is, however, at once recognised as one of more or less; so
that we have hardly any choice but to regard it as dependent
ceeterts paribus on the magnitude of the vibrations concerned.

24. We have seen that a musical note, as such, is due to a
vibration which is necessarily periodic; but the converse, it is
evident, cannot be true without limitation. A periodic repetition
of a noise at intervals of a second—for instance, the ticking of a
clock—would not result in a musical note, be the repetition ever
so perfect. In such a case we may say that the fundamcutal tone
lies outside the limits of hearing, and although some of the
harmonic overtones would fall within them, these would not give
rise to a musical note or ¢ven to a chord, but to a uoisy mass of
sound like that produced by striking simultancously the twelve
notes of the chromatic scale. The experiment may be made with
the Siren by distributing the holes quite irvegularly round the
circumference of a circle, and tuwrning the dise with o moderate
velocity. By the construction of the instrument, everything
recurs after cach complete revolution.

28. The prineipal remaining difficulty in the theory of notes
and tones, is to explain why notes are sometimes analysed by the
ear into tones, and sometimes not. [f a note is really complex,
why is not the fact immediately and certainly perceived, and the
«components disentangled ?  The feebleness of the harmonie over-
tones is not the reason, for, s we shall see at a lnter stage of our
inquiry, they are often of surprising loudness, and play a prominent,
part in music. On the other hand, if a note is sometimes perceived
as a whole, why does not this happen always? These questions
have been carefully considered by Helmholtz!, with o tolerably
satisfactory result. The diffieulty, such as it is, is not peculiar to
Acoustics, but may be paralleled in the cognate seience of Physio-
logical Optics.

The knowledge of external things which we derive from the
indieations of our senses, is for the most part. the result of inference,
When an object is before us, certain nerves in our rotinge are
excited, and certain sensations are produced, which we are
accustorued to associate with the object, and we forthwith infer its
presence. In the case of an unknown object the process is mueh

Y Torempfindungen, 8rd edition, p. 08,
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the same. We interpret the sensations to which we are subject so
as to form a pretty good idea of their exciting cause. From the
slightly different perspective views received by the two eyes we
infer, often by a highly elaborate process, the actual relief and
distance of the object, to which we might otherwise have had uo
clue. These inferences are made with extreme rapidity and quite
unconsciously. The whole life of each one of us is a continued
lesson in interpreting the signs presented to us, and in drawing
conclusions as to the actualities outside. Only so far as we succeed
in doing this, are our sensations of any use to us in the ordinay
affairs of life. This being so, it is no wonder that the study of our
sensations themselves falls into the background, and that subjective
phenomena, as they are called, become exceedingly difficult of
observation. As an instance of this, 1t is sufficient to mention the
‘blind spot’ on the retina, which might a priort have been
expected to manifest itself as a conspicuous phenomenon, though
as a fact probably not one person in a hundred million would find
it out for themselves. The application of these remarks to the
question in hand is tolerably obvious. In the daily use of our ears
our object is to disentangle from the whole mass of sound that
may reach us, the parts coming from sources which may interest
us at the moment. When we listen to the conversation of a friend,
we fix our attention on the sound proceeding from him and
endeavour to grasp that as a whole, while we ignore, as far as
possible, any other sounds, regarding them as an interruption.
There are usually sufficient indications to assist us in making this
partial analysis. When a mau speaks, the whole sound of his
voice rises and falls together, and we have no difficulty in recog-
nising its unity. It would be no advantage, but on the contrary
a great source of confusion, if we were to carry the analysis further,
and resolve the whole mass of sound present into its component
tones. Although, as regards sensation, a resolution into tones
might be cxpected, the necessities of our position and the practice
of our lives lead us to stop the analysis at the point, beyond
which it would cease to be of service in deciphering our seusa-
tions, considered as signs of external objects!.

But it may sometimes happen that however much we may
wish to form a judgment, the materials for doing so are absolutely

! Most probably the power of attending to the important and ignoring the
unimportant part of our sensations is to a great extent inherited—to how great an
extent we shall perhaps never know.
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wanting. When a note and its octave are sounding close together
and with perfect uniformity, there is nothing in our sensations to
enable us to distinguish, whether the notes have a double or a
single origin. In the mixture stop of the organ, the pressing down
of each key admits the wind to a group of pipes, giving a note and
its first three or four harmonics. The pipes of each group always
sound together, and the result is usually perceived as a single
note, although it does not proceed from a single source.

26. The resolution of a note into its component tones is a
matter of very different difficulty with different individuals. A
considerable effort of attention is required, particularly at first;
and, until a habit has been formed, some external aid in the shape
of a suggestion of what is to be listened for, is very desirable.

The difficulty is altogether very similar to that of learning to
draw. From the machinery of vision it might have been expected
that nothing would be easicr than to make, on a planc surface, a
representation of surrounding solid objects; but experience shews
that much practice is generally required.

We shall return to the question of the analysis of notes at a
later stage, after we have treated of the vibrations of strings, with
the aid of which it is best clucidated; but a very instructive
experiment, due originally to Ohm and improved by Helmholtz,
may be given here. Helmholtz! took two bottles of the shape
represented in the figure, one about twice as large as the other.
These were blown by streams of air directed
across the mouth and issuing from gutta-percha
tubes, whose ends had been softened and pressed
flat, so as to reduce the bore to the form of a
narrow slit, the tubes being in connection with
the same bellows. By pouring in water when
the note is too low and by partially obstructing
the mouth when the note is too high, the bottles
may be made to give notes with the exact
interval of an octave, such as b and b, The
larger bottle, blown alone, gives a somewhat muffled sound similar
in character to the vowel U; but, when both bottles are blown,
the character of the resulting svund is sharper, resembling rather
the vowel O. For a short time after the notes had been heard
separately Helmholtz was able to distinguish them in the mixture ;

FlG. /.

1 Tonempfindungen, p. 109.
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but as the memory of their separate impressions faded, the higher
note seemed by degrees to amalgamate with the lower, which at
the same time became louder and acquired a sharper character.
This blending of the two notes may take place even when the high
note is the louder.

27. Seeing now that notes are usually compound, and that
only a particular sort called tones are incapable of further analysis,
we are led to inquire what is the physical characteristic of tones,
to which they owe their peculiarity? What sort of periodic vibra-
tion is it, which produces a simple tone? According to what
mathematical function of the time does the pressure vary in
the passage of the ear? No question in Acoustics can be more
important.

The simplest periodic functions with which mathematicians
are acquainted are the circular functions, expressed by a sine or
cosine ; indeed there are no others at all approaching them in
simplicity. They may be of any period, and admitting of no
other variation (except magnitude), seem well adapted to produce
simple tomes. Moreover it has been proved by Fourier, that the
most general single-valued periodic function can be resolved into
a series of circular functions, having periods which are submultiples
of that of the given function. Again, it is a consequence of the
general theory of vibration that the particular type, now suggested
as corresponding to a simple tone, is the only one capable of
preserving its integrity among the vicissitudes which it may
have to undergo. Any other kind is liable to a sort of physical
analysis, one part being differently affected from another. If the
analysis within the ear proceeded on a different principle from that
effected according to the laws of dead matter outside the ear,
the consequence would be that a sound originally simple might
become compound on its way to the observer. There is no reasou
to suppose that anything of this sort actually happens. When it
is added that according to all the ideas we can form on the subject,
the analysis within the ear must take place by means of a physical
machinery, subject to the same laws as prevail outside, it will be
seen that a strong case has been made out for regarding tones as
due to vibrations expressed by circular functions. We are not
however left entirely to the guidance of general considerations like
these. In the chapter on the vibration of strings, we shall see
that in many cases theory informs us beforehand of the nature of
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the vibration executed by a string, and in particular whether any
specified simple vibration is a component or not. Here we have
a decisive test. It is found by experiment that, whenever according
to theory any simple vibration is present, the corresponding tone
can be heard, but, whenever the simple vibration is absent, then
the tone cannot be heard. We are therefore justified in asserting
that, simple tones and vibrations of a circular type are indissolubly
connected. This law was discovered by Ohm.



CHAPTER 1II.
HARMONIC MOTIONS.

28. THE vibrations expressed by a circular function of the
time and variously designated as simple, pendulous, or harmonic,
are so important in Acoustics that we cannot do better than devote
a chapter to their consideration, before entering on the dynamical
part of our subject. The quantity, whose variation constitutes
the ‘ vibration,” may be the displacement of a particle measured
i a given direction, the pressure at a fixed point in a fluid
medium, and so on. In any case denoting it by u, we have

u=a,cos<—2%r-t—e>.... ................. (1),

in which @« denotes the amplitude, or extreme value of u; T is
the periodic time, or period, after the lapse of which the values
of w recur; and ¢ determines the phase of the vibration at the
moment from which ¢ is measured,

Any number of harmonic vibrations of the same period affect-
ing a variable quantity, compound into another of the same type,
whose elements are determined as follows :

2art
U= 2a co8 (——-—— - e)
T
2art . Dt S
= C08— 2 Cos € +8in — X Sine
T T

2t
=7C08 ( P H) ................................ (2),

if r={(Zacose)l+ (Tasinel)t ... (3),
and tan 0 =Za sine+ 3@ CoS €.. ..o.. iiiiiiein ceeninn. (4).
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For example, let there be two components,
27Tt ) ’ 2'ﬂ't A
=acos(———- +a cos(——-——e),
T T

then r={0?+a?+ 200 cos (e— €M coooiiiiiiiiiins (5),
asin e+ a'sin €
e PP PR (6).
acosSe+ @ Cos €

Particular cases may be noted. If the phases of the two com-
ponents agree,

tan 0 =

u=(a+a’)cos ('—?gf-—e).
If the phases differ by half a period,
u=(a—a’)cos (?-?-—e) ,

so that if @' = @, » vanishes. In this case the vibrations are often
said to interfere, but the expression is rather misleading. Two
sounds may very properly be said to interfere, when they together
cause silence; but the mere superposition of two vibrations
(whether rest is the consequence, or not) cannot properly be so
called. At least if this be interference, it is difficult to say what
non-interference can be. It will appear in the course of this
work that when vibrations exceed a certain intensity they no
longer compound by mere addition; this mutual action might
more properly be called interference, but it is a phenomenon
of a totally different nature from that with which we are now
dealing.

Again, if the phases differ by a quarter or by three-quarters of
a period, cos (e —¢’) =0, and

7= {a® + ot

Harmonic vibrations of given period may be represented
by lines drawn from a pole, the lengths of the lines being pro-
portional to the amplitudes, and the inclinations to the phases
of the vibrations. The resultant of any number of harmonic
vibrations is then represented by the geometrical resultant of
the corresponding lines. For example, if they are disposed
symmetrically round the pole, the resultant of the lines, or
vibrations, is zero.

29. If we measure off along an axis of » distances pro-
portional to the time, and take w for an ordinate, we obtain the
harmonic curve, or curve of sines,
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U =a cos (2’”&;—' )
X <)

where A, called the wave-length, is written in place of 7, both
quantities denoting the range of the independent variable corre-
sponding to a complete recurrence of the function. The harmonic
curve is thus the locus of a point subject at once to a uniform
motion, and to a harmonic vibration in a perpendicular direc-
tion. In the next chapter we shall see that the vibration of a
tuning fork is simple harmonic; so that if an excited tuning
fork be moved with uniform velocity parallel to the line of its
handle, a tracing point attached to the end of one of its prongs
describes a harmonic curve, which may be obtained in a permanent
form by allowing the tracing point to bear gently on a piece of
smoked paper. In Fig. 2 the continuous lines are two harmonic
curves of the same wave-length and amplitude, but of different

phases; the dotted curve represents half their resultant, being
the locus of points midway between those in which the two
curves are met by any ordinate.

30. If two harmonic vibrations of different periods coexist,
2mt , 2wt
% = @ CO8 (-—-——e) +a cos(——,——e .
T T

The resultant cannot here be represented as a simple harmonic

motion with other elements. If rand 7* be incommensurable, the -
value of uw never recurs; but, if = and =’ be in the ratio of two

whole numbers, u recurs after the lapse of a time equal to the

least common multiple of 7 and 7'; but the vibration is not

simple harmonic. For example, when a note and its fifth are

sounding together, the vibration recurs after a time equal to

twice the period of the graver.
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One case of the composition of harmonic vibrations of different
periods is worth special discussion, namely, when the difference
of the periods is small. If we fix our attention on the course
of things during an interval of time including merely a few
periods, we see that the two vibrations are nearly the same as
if their periods were absolutely equal, in which case they would,
as we know, be equivalent to another simple harmonic vibration
of the same period. For a few periods then the resultant
motion is approximately simple harmonic, but the same har-
monic will not continue to represent it for long. The vibration
having the shorter period continually gains on its fellow, thereby
altering the difference of phase on which the elements of the
resultant depend. For simplicity of statement let us suppose
that the two compouents have cqual amplitudes, frequencies
represented by o and n, where o —n is small, and that when
ficst observed their phases agree. At this moment their effects
conspire, and the resultaut has an amplitude double of that of
the components. But after a time 1 +2(m—n) the vibration
m will have gained half a period relatively to the other; and
the two, being now in complete disagreement, neutralize each
other. After a further interval of time cqual to that above
named, m will have gained altogether a whole vibration, and
complete accordance is once more re-established. The resultant
motion is therefore approximately simple harmonie, with an
amplitude not constant, but varying from zero to twice that of
the components, the frequency of these alterations being m —un.
If two tuning forks with frequencies 500 and 501 be equally
excited, there is every second a rise and fall of sound corre-
sponding to the coincidence or opposition of their vibrations.
This phenomenon is called beats.  We do not here fully discuss
the question how the ear behaves in the presence of vibrations
having nearly equal frequencies, but it is obvious that if the motion
in the neighbourhood of the ear almost ceose for a considerable
fraction of a sccond, the sound must appear to fall.  For reasons
that will afterwards appear, beats are best heard when the in-
terfering sounds are simple tones. Consceutive notes of the
stopped diapason of the organ shew the phenomenon very
well, at least in the lower parts of the scale. A permanent inter-
ference of two notes may be obtained by mounting two stopped
organ pipes of similar construction and identical pitch side by
side on the same wind chest. The vibrations of the two pipes
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adjust themselves to complete opposition, so that at a. little
distance nothing can be heard, except the hissing of the wind
If by a rigid wall between the two pipes one sound could be
cut off, the other would be instantly restored. Or the balance,
on which silence depends, may be upset by connecting the ear
with a tube, whose other end lies close to the mouth of one of the
pipes.

By means of beats two notes may be tuned to unison with
great exactness. The object is to make the beats as slow as
possible, since the number of beats in a second is equal to the
difference of the frequencies of the notes. Under favourable
circumstances beats so slow as one in 30 seconds may be recog-
nised, and would indicate that the higher note gains only two
vibrations a minute on the lower. Or it might be desired merely
to ascertain the difference of the frequencies of two notes nearly
in unison, in which case nothing more is necessary than to count
the number of beats. It will be remembered that the difference
of frequencies does not determine the interval between the two
notes; that depends on the ratio of frequencies. Thus the
rapidity of the beats given by two notes nearly in unison is
doubled, when both are taken an exact octave higher.

Analytically

w=a cos (2mmt — €) + a’ cos (2mrnt — €),
where m — n is small.

Now cos (27nt — ¢’) may be written

cos {27mt — 2m (m —n)t — €},
and we have
u=rcos(2rmt—0).........oiinanin. (1),

where 7t = a? + a? + 2aa’ cos {2 (m —n)t+ € —€}...... (2),

a sin € +a’ sin {27 (m — n) t + €'}
a cos € +a’ cos {27 (m —n) ¢ + €'}

tan @ =

The resultant vibration may thus be considered as harmonic
with elements » and 6, which are not constant but slowly varying
functions of the time, having the frequency m —n. The ampli-
tude r is at its maximum when

cos 2r(m—m)t+¢e —e =+1,
and at its minimum when
cos (2m(m—n)t+ e —ef=—1,
the corresponding values being a + o’ and a — a’ respectively.
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31. Another case of great importance is the composition of
vibrations corresponding to a tone and its harmonics. It is known
that the most general single-valued finite periodic function can
be expressed by a series of simple harmonies—

- 2mnt
U= Qo+ 2y Gy COS ( Zn - en> ............... (1),

a theorem usually quoted as Fourier's. Analytical proofs will be
found in Todhunter’s Integral Calculus and Thomson and Tait’s
Natural Philosophy ; and a line of argument almost if not quite
amounting to a demonstration will be given later in this work.
A few remarks are all that will be required here.

Fourier’s theorem is not obvious. A vague notion is not un-
common that the infinitude of arbitrary constants in the series
of necessity endows it with the capacity of representing an arbi-
trary periodic function. That this is an error will be apparent,
when it is observed that the same argument would apply equally,
if one term of the series were omitted; in which case the ex-
pansion would not in general be possible.

Another point worth notice is that simple harmonics are not
the only functions, in a series of which it is possible to expand
one arbitrarily given. Instead of the simple elementary term

(2vr'nt >
COB | mommmmm e en y
T

we might take

cos 2mnt +l . ernt__ >
(‘—T—"— en) 200 (“"““““T ﬁn )

formed by adding a similar one in the same phase of half the
amplitude and period. It is evident that these terms would
gerve as well as the others; for

cos(m-—- )- cos Zornt )+1oos drt )
T - ( T e ( T n

¥oi

1 4rn 1 8mrnt
__5{ B(W—¢n>+§608(—'-;ﬂ~*ln>}
1 1 187rnt }
+E {008 (*—-—'—-'- eﬂ) +§COS (—“;‘" - ¢n>
Y ad nfin.,

so that each term in Fourier's series, and therefore the sum of
the series, can be expressed by means of the double elementary
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terms now suggested. This is mentioned here, because students,
not being acquainted with other expansions, may imagine that
gimple harmonic functions are by nature the only ones qualified
to be the elements in the development of a periodic function.
The reason of the preeminent importance of Fourier’s series in
Acoustics is the mechanical one referred to in the preceding
chapter, and to be explained more fully hereafter, namely, that,
in general, simple harmonic vibrations are the only kind that are

propagated through a vibrating system without suffering decom-
position.

82. As in other cases of a similar character, e.g. Taylor's
theorem, if the possibility of the expansion be known, the co-
efficients may be determined by a comparative'ly simple process.
We may write (1) of § 31

w=A,+Z; Ay, cos 2—n;7£§+E::;B,.sing-/’:_—@......(l).

Multiplying by cos (2n7t/7) or sin (2nwrt/r), and integrating
over a complete period from ¢=0 to £¢= 7, we find

A,,=gffucosz—@jdt
T 0 T

g rr g [ T (2).
B,,=—f u 8in —— di
TJo T
An immediate integration gives
4,=1 [T —— 3),
TJo

indicating that 4, is the mean value of v throughout the period.
The degree of convergency in the expansion of u depends in
general on the continuity of the function and its derivatives.
The series formed by successive differentiations of (1) converge
less and less rapidly, but still remain convergent, and arithmetical
representatives of the differential coefficients of u, so long as
these latter are everywhere finite. Thus (Thomson and Tait,
§ 77), if all the derivatives up to the m™ inclusive be free
from infinite values, the series for u is more convergent than
one with
, £ L1
7 9m’ gm> 4m’

for coefficients.
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32a. The general explanation of the beats heard when two
pure tones nearly in unison are sounded simultaneously has been
discussed in § 30. But the occurrence of beats is not confined to
the case of approximate unison, at least when we have to deal
with compound notes. Suppose for example that the interval
is an octave. The gravér note then usually includes a tone
coincident in pitch with the fundamental tone of the higher note.
If the interval be disturbed, the previously coincident tones
separate from one another, and give rise to beats of the same
frequency as if they existed alone. There is usually no difSculty
in observing these beats; but if one or both of the component
tones concerned be very faint, the aid of a resonator may be
invoked.

In general we may consider that each consonant interval is
characterized by the coincidence of certain component tones, and
if the interval be disturbed the previously coincident tones
give rise to beats. Of course it may happen in any particular
case that the tones which would coincide in pitch are absent from
one or other of the notes. The disturbance of the interval
would then, according to the above theory, not be attended
by beats. In practice faint beats are usually heard; but the
discussion of this phenomenon, as to which authoritics are not
entirely agreed, must be postponed,

83. Another class of compounded vibrations, interesting from
the facility with which they lend themselves to optical observa-
tion, occur when two harmounic vibrations affecting the same par-
ticle are oxecuted in perpendicular directions, more especially
when the periods are not only commensurable, but in the ratio
of two small whole numbers. The motion is then completely
periodic, with a period not many times greater than those of the
corponents, and the curve described is re-entrant. If u and v
be the co-ordinates, we may take

u=qcos (2mnt —e), v=0bcos2mn't........... .(1).

First let us suppose that the periods are equal, so that ' =n;
the elimination of ¢ gives for the equation of the curve described,
u v 2uw .
&;+~b-;~—a-b~cos«a——sm‘-'e==0 ................. (2),
repregenting in general an ellipse, whose position and dimensions
depend upon the amplitudes of the original vibrations and upon



33.] IN PERPENDICULAR DIRECTIONS. 27

the difference of their phases. If the phases differ by a quarter
period, cos e =0, and the equation becomes
u? 2
pe + 2—’2 =1
In this case the axes of the ellipse coincide with those of
co-ordinates. If further the two components have equal ampli-
tudes, the locus degenerates into the circle
u+ v =qa?
which is described with uniform velocity. This shews how a
uniform circular motion may be analysed into two rectilinear
harmonic motions, whose directions are perpendicular.
If the phases of the components agree, e =0, and the ellipse
degenerates into the coincident straight lines

430

or if the difference of phase amount to half a period, into

Eogi-o

When the unison of the two vibrations is exact, the elliptic
path remains perfectly steady, but in practice it will almost
always happen that there is a slight difference between the
periods. The consequence is that though a fixed ellipse represents
the curve described with sufficient accuracy for a few periods,
the ellipse itself gradually changes in correspondence with the
alteration in the magnitude of e. It becomes therefore a matter
of interest to consider the system of ellipses represented by (2),
supposing @ and b constants, but e variable.

Since the extreme values of u and v are + a, + b respectively,
the ellipse is in all cases inscribed in the rectangle whose sides
are 2a, 2b. Starting with the phases in agreement, or ¢ =0, we

have the ellipse coincident with the diagonal S——%=0. As

¢ increases from 0 to 3, the ellipse opens out until its equation
becomes

A

pe + R 1.

From this point it closes up again, ultimately coinciding with

v
b
3 to .  After this, as e ranges from o to 2, the ellipse retraces

the other diagonal g + 7 = 0, corresponding to the increase of ¢ from
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its course until it again coincides with the first diagonal. The
sequence of changes is exhibited in Fig. 3.

F/16.3.

1
\ i
. L/
SN s

The ellipse, having already four given tangents, is completely
determined by its point of contact P (Fig. 4) with the line v=5.
F16. 4

In order to commect this with e, it is sufficient to observe that
when v="5, cos 2mrnt=1; and therefore u=acose. Now if the
elliptic paths be the result of the superposition of two harmonic
vibrations of nearly coincident pitch, e varies uniformly with the
time, so that P itself executes a harmonic vibration along 4.4’
with a frequency equal to the difference of the two given fre-
quencies,

34. Lissajous® has shewn that this system of ellipses may be

regarded as the different aspects of one and the same ellipse
described on the surface of a transparent cylinder. In Fig. 3

Lo

F/6.8
1 Annales de Chimie (8) xx, 147, 1857,
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AA'B'B represents the cylinder, of which 4B’ is a plane section.
Seen from an infinite distance in the direction of the common
tangent at 4 to the plane sections, the cylinder is projected into a
rectangle, and the ellipse into 1ts diagonal. Suppose now that the
cylinder turns upon its axis, carrying the plane section with it.
Its own projection remains a constant rectangle in which the pro-

F/G. 6

jection of the ellipse is inscribed. Fig. 6 represents the posi-
tion of the cylinder after a votation through a right angle. It
appears therefore that by turning the cylinder round we obtain in
succession all the ellipses corresponding to the paths described by
a point subject to two harmonic vibrations of equal period and fixed
amplitudes. Moreover if the cylinder be turned continuously
with uniform velocity, which insures a harmonic motion for P,
we obtain a complete representation of the varying orbit de-
" scribed by the point when the periods of the two components
differ slightly, each complete revolution answering to a gain or
loss of a single vibration'. The revolutions of the cylinder are
thus synchronous with the beats which would result from the
composition of the two vibrations, if they were to act in the same
direction.

35. Vibrations of the kind here considered are very easily
rcalized experimentally. A heavy pendulum-bob, hung from a
fixed point by a long wire or string, describes ellipses under the
action of gravity, which may in particular cases, according to the
circumstances of projection, pass into straight lines or circles.
But in order to see the orbits to the best advantage, it is necessary
that they should be described so quickly that the impression
on the retina made by the moving point at any part of its course
has not time to fade materially, before the point comes round again
to renew its action. This condition is fulfilled by the vibration of
a silvered bead (giving by reflection a luminous point), which is

1 By g vibration will always be meant in this work a complete cycle of changes.
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attached to a straight metallic wire (such as a knitting-needle),
firmly clamped in a vice at the lower end. When the system is set
into vibration, the luminous point describes ellipses, which appear
as fine lines of light. These ellipses would gradually contract in
dimensions under the influence of friction until they subsided
into a stationary bright point, without undergoing any other
change, were it not that in all probability, owing to some want
of symmetry, the wire has slightly differing periods according to
the plane in which the vibration is executed. Under these cir-
cumstances the orbit is seen to undergo the cycle of changes
already explained.

36. So far we have supposed the periods of the component
vibrations to be equal, or nearly equal ; the next case in order of
simplicity is when one is the double of the other. We have

w=gq cos (dnmwt —e), v==bcos22nmt.
The locus resulting from the elimination of ¢ may be written

u v . o
a:cose(Zb-n—-l)+2smeB,\/l—Z-,‘ ............ 1),

which for all values of e represents a curve inseribed in the rect-
angle 2a, 2b. If e =0, or m, we have

5113
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representing parabolas. Fig. 7 shews the various curves for the
intervals of the octave, twelfth, and fifth.

To all these systems Lissajous’ method of representation by
the transparent cylinder is applicable, and when the relative
phase is altered, whether from the different circumstances of
projection in different cases, or continuously owing to a slight
deviation from exactness in the ratio of the periods, the cylinder
will appear to turn, so as to present to the eye different aspects of
the same line traced on its surface.

87. There is no difficulty in arranging a vibrating system so
that the motion of a point shall consist of two harmonic vibrations
in perpendicular planes, with their periods in any assigned ratio.
The simplest is that known as Blackburn’s pendulum. A wire
ACB is fastened at 4 and B, two fixed points at the same level.
The bob P is attached to its middle point by another wire CP.
For vibrations in the plane of the diagram, the point of suspension
is practically C, provided that the wires are sufficiently stretched ;
but for a motion perpendicular to this plane, the bob turns about
D, carrying the wire ACB with it. The periods of vibration in

Or

the principal planes are in the ratio of the square roots of CP and
DP. Thus if DC = 3CP, the bob describes the figures of the
octave. To obtain the sequence of curves corresponding to
approximate unison, ACB must be so nearly tight, that CD is
relatively small.
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38. Another contrivance called the kaleidophone was origin-
ally invented by Wheatstone. A straight thin bar of steel carrying
a bead at its upper end is fastened in a vice, as explained in a
previous paragraph. If the section of the bar is square, or circular,
the period of vibration is independent of the plane in which it is
performed. But let us suppose that the section is a rectangle
with unequal sides. The stiffness of the bar—the force with
which it resists bending—is then greater in the plane of greater
thickness, and the vibrations in this plane have the shorter period.
By a suitable adjustment of the thicknesses, the two periods of
vibration may be brought into any required ratio, and the cor-
responding curve exhibited.

The defect in this arrangement is that the same bar will give
only one set of figures. In order to overcome this objection
the following modification has been devised. A slip of steel is
taken whose rectangular section is very elongated, so that as
regards bending in one plane the stiffness is so great as to amount
practically to rigidity. The bar is divided into two parts, and the
broken ends reunited, the two pieces being turned on one another
through a right angle, so that the plane, which contains the small
thickness of one, contains the great thickness of the other.  When
the compound rod is clamped in a vice at a point below the junc-
tion, the period of the vibration in one direction, depending almost
entirely on the length of the upper piece, is nearly constant; but
that in the second direction may be controlled by varying the
point at which the lower piece is clamped.

89. In this arrangement the luminous point itself executes
the vibrations which are to be observed; but in Lissajous’ form of
the experiment, the point of light remains really fixed, while its
wmage i3 thrown into apparent motion by means of successive
reflection from two vibrating mirrors. A small hole in an opaque
screen placed close to the flame of a lamp gives a point of light,
which is observed after reflection in the mirrors by means of a
small telescope. The mirrors, usually of polished steel, are attached
to the prongs of stout tuning forks, and the whole is 8o disposed
that when the forks are thrown into vibration the luminous point
appears to describe harmonic motions in perpendicular directions,
owing to the angular motions of the reflecting surfuces. The
amplitudes and periods of these harmonic motions depend upon
those of the corresponding forks, and may be made such as to give
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with enhanced brilliancy any of the figures possible with the
kaleidophone. By a similar arrangement it is possible to project
the figures on a screen. 1In either case they gradually contract as
the vibrations of the forks die away.

40. The principles of this chapter have received an important
application in the investigation of rectilinear periodic motions.
When a point, for instance a particle of a sounding string, is
vibrating with such a period as to give a note within the limits of
hearing, its motion is much too rapid to be followed by the eye;
so that, if it be required to know the character of the vibration,
some indirect method must be adopted. The simplest, theo-
retically, is to compound the vibration under examination with a
uniform motion of translation in a perpendicular direction, as when
a tuning-fork draws a harmonic curve on smoked paper. Instead
of moving the vibrating body itself, we may make use of a revolv-
ing mirror, which provides us with an tmage in motion. In this
way we obtain a representation of the function characteristic of
the vibration, with the abscissa proportional to time.

But it often happens that the application of this method would
be difficult or inconvenient. In such cases we may substitute for
the uniformn motion a harmonic vibration of suitable period in the
same direction. To fix our ideas, let us suppose that the point,
whose motion we wish to investigate, vibrates vertically with a
period 7, and let us examine the result of combining with this a
horizontal harmonic motion, whose period is some multiple of ,
say, nt. Take a rectangular piece of paper, and with axes parallel
to its edges draw the curve representing the vertical motion (by
setting off abscissee proportional to the time) on such a scale that
the paper just contains n repetitions or waves, and then bend the
paper round so as to form a cylinder, with a re-entrant curve run-
ning round it. A point describing this curve in such a manner
that it revolves uniformly about the axis of the cylinder will
appear from a distance to combine the given vertical motion of
period T, with a horizontal harmonic motion of period nr. Con-
verscly therefore, in order to obtain the representative curve of
the vertical vibratious, the cylinder coutaining the apparent path
wust be imagined to be divided along a generating line, and
developed into a plane.  There is less difficulty in conceiving the
eylinder and the situation of the curve upon it, when the adjust-
ment of the periods is not quite exact, for then the cylinder
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appears to turn, and the contrary motions serve to distinguish
those parts of the curve which lie on its nearer and further face.

41. The auxiliary harmonic motion is generally obtained
optically, by means of an instrument called a vibration-microscope
invented by Lissajous. One prong of a large tuning-fork carries
a lens, whose axis is perpendicular to the direction of vibration;
and which may be used either by itself, or as the object-glass of
a compound microscope formed by the addition of an eye-piece
independently supported. In either case a stationary point is
thrown into apparent harmonic motion along a line parallel to
that of the fork’s vibration.

The vibration-microscope may be applied to test the rigour
and universality of the law counecting pitch and period. Thus
it will be found that any point of a vibrating body which gives
a pure musical note will appear to describe a re-entrant curve,
when examined with a vibration-microscope whose note is in
strict unison with its own. By the same means the ratios of
frequencies characteristic of the consonant intervals may be
verified; though for this latter purpose a more thoroughly
acoustical method, to be described in a future chapter, may be
preferred.

42. Another method of examining the motion of a vibrating
body depends upon the use of intermittent illumination®.  Suppose,
for example, that by means of suitable apparatus a series of
electric sparks are obtained at regular intervals r. A vibrating
body, whose period is also 7, examined by the light of the sparks
must appear at rest, because it can be seen only in one position.
If, however, the period of the vibration differ from = ever so
little, the illuminated position varies, and the body will appear
to vibrate slowly with a frequency which is the difference of that
of the spark and that of the body. The type of vibration can
then be observed with facility.

The series of sparks can be obtained from an induetion-coil,
whose primary circuit is periodically broken by a vibrating fork,
or by some other interrupter of sufficient regularity. But a better
result is afforded by sunlight rendered intermittent with the aid of
a fork, whoge prongs carry two small plates of metal, parallel to
the plane of vibration and close together. In cach plate is a slit

1 Plateau, Bull, de Udcad. roy. de Belgique, t. 111, p. 864, 1836,
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parallel to the prongs of the fork, and so placed as to afford a
free passage through the plates when the fork is at rest, or passing
through the middle point of its vibrations. On the opening so
formed, a beam of sunlight is concentrated by means of a burning-
glass, and the object under examination is placed in the cone of
rays diverging on the further side’. When the fork is made to
vibrate by an electro-magnetic arrangement, the illumination is cut
off except when the fork is passing through its position of equi-
librium, or nearly so.” The flashes of light obtained by this method
are not so instantaneous as electric sparks (especially when a
jar is connected with the secondary wire of the coil), but in my
experience the regularity is more perfect. Care should be taken
to cut off extraneous light as far as possible, and the effect is then
very striking.

A similar result may be arrived at by looking at the vibrating
body through a series of holes arranged in a circle on a revolving
disc. Several series of holes may be provided on the same
disc, but the observation is mnot satisfactory without some pro-
vision for securing uniform rotation.

Except with respect to the sharpness of definition, the result is
the same when the period of the light is any multiple of that of
the vibrating body. This point must be attended to when the
revolving wheel is used to determine an unknown frequency.

When the frequency of intermittence is an exact multiple of
that of the vibration, the object is seen without apparent motion,
but generally in more than one position. This condition of things
is sometimes advantageous.

Similar effects arise when the frequencies of the vibrations
and of the flashes are in the ratio of two small whole numbers.
If, for example, the number of vibrations in a given time be half
as great again as the number of flashes, the body will appear
stationary, and in general double.

42a. We have seen (§28) that the resultant of two isoperiodic
vibrations of equal amplitude is wholly dependent upon their phase
relation, and it is of interest to inquire what we are to expect
from the composition of a large number (n) of equal vibrations
of amplitude unity, of the same period, and of phases accidentally
determined. The intensity of the resultant, represented by the
square of the amplitude § 245, will of course depend upon the

1 Tépler, Phll. Mag. Jan. 1867.
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precise manner in which the phases are distributed, and may vary
from n* to zero. But is there a definite intensity which becomes
more and more probable when 7 is increased without limit ?

The nature of the question here raised is well illustrated by
the special case in which the possible phases are restricted to two
opposite phases. We may then conveniently discard the idea of
phase, and regard the amplitudes as at random positive or negative.
If all the signs be the same, the intensity is n*; if, on the other
hand, there be as many positive as negative, the result is zero.
But although the intensity may range from 0 to %, the smaller
values are more probable than the greater.

The simplest part of the problem relates to what is called in
the theory of probabilities the “expectation” of intensity, that
1s, the mean intensity to be expected after a great number of
trials, in each of which the phases are taken at random. The
chance that all the vibrations are positive is (3)*, and thus the
expectation of intensity corresponding to this contingency is
(3. n% In like manner the expectation corresponding to the
number of positive vibrations being (n— 1) is

®)"n (n — 20,

and so on. The whole expectation of intensity is thus

20D gy

n (n

-2};1{1.7»2-{»71(7& 2y +
n(n })(n 2)

(71*6)’-@-...} ...... (1).

Now the sum of the (n + 1) terms of this series is simply n, as
may be proved by comparison of coefficients of #* in the equivalent
forms

(%4 e ®)= 2" (1 + da*+ ... )"

= ¢ g NN 4 n(f -1 ginazy

The expectation of intensity is therefore n, and this whether n be
great or small.,

The same conclusion holds good when the phases are unre-
stricted. From (3) § 28, if q,=d¢y=... =1,

"= (Co8 e + 08 6+ ...)" +(sin ¢ + 8in e+ ... )
=n+ 2% co8 (63— €) vurvunns e trarerearnan. veeenn(2),

where under the sign of summation are to be included the cosines
of the 4n(n~1) differences of phase. When the phases are
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accidental, the sum is as likely to be positive .as negative, and
thus the mean value of r? is n.

The reader must be on his guard here against a fallacy which
has misled some eminent authors. We have not proved that when
n is large there is any tendency for a single combination to give
an intensity equal to n, but the quite different proposition that in
a large number of trials, in each of which the phases are dis-
tributed at random, the mean intensity will tend more and more
to the value n. 1t is true that even in a single combination there
1s no reason why any of the cosines in (2) should be positive
rather than negative. From this we may infer that when n is
increased the sum of the terms tends to vanish in comparison with
the number of terms; but, the number of the terms being of the
order n% we can infer nothing as to the value of the sum of the
series in comparison with n.

So far there is no difficulty; but a complete investigation of
this subject involves an estimate of the relative probabilities of
resultants lying within assigned limits of magnitude. For example,
we ought to be able to say what is the probability that the
intensity due to a large number (n) of equal components is less
than 4n. This problem may conveniently be considered here, though
it is naturally beyond the reach of elementary methods. We will
commence by taking it under the restriction that the phases are
of two opposite kinds only.

Adopting the statistical method of statement, let us suppose
that there are an immense number &V of independent combinations,
each consisting of n unit vibrations, positive or negative, and com-
bined accidentally. When N is sufficiently large, the statistics
become regular; and the number of combinations in whica the
resultant amplitude is found equal to z may be denoted by
N . f(n, ), where fis a definite function of n and 2. Now suppose
that each of the N combinations receives another random contri-
bution of + I, and inquire how many of them will subsequently
possess a resultant x. It is clear that those only can do so which
originally had amplitudes z —1, or #+1. Half of the former,
and half of the latter number will acquire the amplitude z, so
that the number required is

LN f(n, 2= 1) + 3N f(n, 2+ 1),
But this must be identical with the number corresponding to
n + 1 and z, so that

fn+l, my=4f(mz—=1)+4f(n, 2+ 1) ......... (3).
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This equation of differences holds good for all integral values
of z and for all positive integral values of n. If f(n, ) be given
for one value of n, the equation suffices to determine f (n, z) for
all higher integral values of mn. For the present purpose the
initial value of n is zero. In that case we know that f (%) =0 for
all values of « other than zero, and that when # =0, (0, 0)=1.

The problem proposed in the above form is perfectly definite;
but for our immediate object it suffices to limit ourselves to the
supposition that n is great, regarding f(n, #) as a continuous
function of continuous variables n and z, much as in the analogous
problem of §§ 120, 121, 122,

Writing (3) in the form

f('n+ 1, x) "'f("ﬁ ‘77) = ‘;‘f('n: ‘- 1)+ %f(n: z+ 1)"f(n: x)(&),
we see that the left-hand member may then be identified with

df/dn, and the right-hand member with }d*f/da’, so that under
these circumstances the ditferential equation to which (8) reduces

is of the well-known form
]
y_19 ®).

The analogy with the conduction of heat is indeed very close;
and the methods developed by Fourier for the solution of problems
in the latter subject are at once applicable. The special condition
here is that initially, that is when n =0, f must vanish for all
values of # other than zero. As may be verified by differentiation,
the special solution of (5) is then

S(n, )= —JA; €M e (6),

in which 4 is an arbitrary constant to be determined from the
consideration that the whole number of combinations is V. Thus,
if dz be large in comparison with unity, the number of combina-
tions which have amplitudes between # and « +dx is

AN . i
—7;{ e~o'm da 3
4 00
while AN [ i 4o = I,
V) e
so that in virtue of the known equality
00
f e de = /7,

A NCrml.
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The final result for the number of combinations which have
amplitudes between z and z + dz is accordingly
N —x32m
m e AL eeevrerrirennnnnnen (7)
The mean intensity is expressed by
1 [+

—_— —a?/ =
DI ae M gy =n,

as before.

We will now pass on to the more important problem in which
the phases of the n unit vibrations are distributed at random over
the entire period. In each combination the resultant amplitude
is denoted by r and the phase (referred to a given epoch) by 6;
and rectangular coordinates are taken so that

z=rcosf, y=rsinb.
Thus any point (z, y) in the plane of reference represents a
vibration of amplitude r and phase 6, and the whole system of
N vibrations is represented by a distribution of points, whose
density it is our object to determine. Since no particular phase
can be singled out for distinction, we know beforehand that the
density of distribution will be independent of 6.
Of the infinite number N of points we suppose that
Nf(n, z, y) dedy
are to be found within the infinitesimal area dzdy, and we will
inquire as before how this number would be changed by the
addition to the n component vibrations of one more unit vibration
of accidenta! phase. Any vibration which after the addition is
represented by the point z, ¥ must before have corresponded to
the point
o =x—cos¢p, Yy =y—sing,
where ¢ represents the phase of the additional unit vibration.
And, if for the moment ¢ be regarded as given, to the area dzdy
corresponds an equal area dz'dy. Again, all values of ¢ being
equally probable, the factor necessary under this head is de/2r.
Accordingly the whole number to be found in dady after the
superposition of the additional unit is

Ndwdy f " F(n, o, y) A2
0
and this is to be equated to
Ndzdy f(n+ 1, z, ¥);

80 that f(n+1, 2 y)= f: i fn, &, y)de/2m ......... (8).
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The value of f(n, &, y') is obtained by introduction of the
values of &/, ¥" and expansion :

f&, y)=f(= y)—dfcosﬁ—éfsiu@—kliicosﬁﬁ

dx dy 2 da?
af ) 1df .,
+deycosﬁsm9+§a—y-—ism a+...,

so that

. 1df 1
fof(n,x,y)dqb/zw=f(n,$,y)+m;cf;+m§-/’-:+ ......

Also, n being very great,
F+1,a,y) —f, 5 y)= dffdn;

and (8) reduces to

ar _1 (&
a—’-; = -:; (a‘:{;& + a}/‘gi ........................ (9),

the usual equation for the conduction of heat in two dimensions.

In addition to (9), f has to satisfy the special condition of
evanescence when n = 0 for all points other than the origin. The
appropriate solution is necessarily symmetrical round the origin,
and takes the form

Fn, @ y)=Anem @AM (10),

as may be verified by differentiation. The constant 4 is to be
determined by the condition that the whole number is N.  Thus

N=DNAn" U e~ drdy=NA ‘Zvrn“‘fo e-rihrdr =mAN;
J 0

and the number of vibrations within the arca dzdy becomes

N
L et dy e (11).
mn *

If we wish to find the number of vibrations which have
amplitudes between » and r-+dr, we must introduce  polar
coordinates and integrate with respect to 6. The required number

is thus
INRTE TPl va e (12).

The result may also be expressed by saying that the probability
of a resultant amplitude between » and r+dr when a large
number n of unit vibrations are compounded at random is

D=1 T4 pdr L (13).

v PRil. Mag. Aug. 1880,



42 o] PHASES AT RANDOM. 41

The mean intensity is given by

2n— [ e~ Inp3dy =n,
Jo
as was to be expected.
The probability of a resultant amplitude less than r is

271“[ e Mpdr =1 —¢ M il (14),
0

or, which is the same thing, the probability of a resultant ampli-
tude greater than r is

The following table gives the probabilities of intensities less
than the fractions of » named in the first column. For example,
the probability of intensity less than n is -6321.

05 ‘0488 -80 ‘ 5506
10 0952 1-00 6321
20 ‘1813 1-50 7768
40 -3296 2-00 -8647
‘60 4512 3-00 9502

It will be seen that, however great m» may be, there is a
reasonable chance of considerable relative fluctuations of intensity
in different combinations.

If the amplitude of each component be a, instead of unity, as
we have hitherto supposed for brevity, the probability of a resultant
amplitude between r and » + dr is

7—1-2;5 el pdr (16).

The result is thus a function of n and « only through na?, and
would be unchanged if for example the amplitude became }a and
the number 4n.  From this it follows that the law is not altered,
even if the components have different amplitudes, provided always
that the whole number of each kind is very great; so that if there
be n components of amplitude «, n’ of amplitude B, and so on, the
probability of a resultant between 7 and r +dr is

2R g, an
n+n+.. T )

That this is the case may perhaps be made more clear by the
consideration of a particular case. Let us suppose in the first
place that n +4n’ unit vibrations are compounded at random.
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The appropriate law is given at once by (13) on substitution of
n+ 4n’ for m, that is

2 (n 440y e~ ) pldp e (18).

Now the combination of n-+4n' unit vibrations may be re-
garded as arrived at by combining a random combination of n -
unit vibrations with a second random combination of 4n’ units,
and the second random combination is the same as if due to a
random combination of n vibrations each of amplitude 2. Thus
(18) applies equally well to a random combination of (n+n')
vibrations, n of which arc of amplitude unity and »’ of ampli-
tude 2.

Although the result has no application to the theory of vibra-
tions, it may be worth notice that a similar method applies to the
composition tn three dimensions of unit vectors, whose directions
are accidental. The equation analogous to (8) gives in place of

9
df _1(dif  dif | f,lif)
dn—6<dx’ dy* ' d2*)’

The appropriate solution, analogous to (13), is

6 N
8 \/(791&") e Anpddr e, (18),

expressing the probability of a resultant amplitude lying between
r and 7+ dr.

Here again the mean value of 7% to be expected in a great
number of independent combinations, is n.



CHAPTER IIL

SYSTEMS HAVING ONE DEGREE OF FREEDOM.

43. THE material systems, with whose vibrations Acoustics is
concerned, are usually of considerable complication, and are sus-
ceptible of very various modes of vibration, any or all of which
may coexist at any particular moment. Indeed in some of the
most important musical instruments, as strings and organ-pipes,
the number of independent modes is theoretically infinite, and
the consideration of several of them is essential to the most prac-
tical questions relating to the nature of the consonant chords.
Cases, however, often present themselves, in which one mode is
of paramount importance; and even if this were not so, it would
still be proper to commence the consideration of the general
problem with the simplest case—that of one degree of freedom.
It need not be supposed that the mode treated of is the only one
possible, because so long as vibrations of other modes do not occur
their possibility under other circumstances is of no moment.

44. The condition of a system possessing one degree of free-
dom is defined by the value of a single co-ordinate u, whose origin
may be taken to correspond to the position of equilibrium. The
kinetic and potential energies of the system for any given position
are proportional respectively to @* and w*:—

Te=fmit, V=Fuseeeriorrrerennenns (1)

where m and u are in general functions of w. Buu if we limit
ourselves to the consideration of positions wn the wmmediate neigh-
bourhood of that corresponding to equilibrium, u is a small quantity,
and m and u are sensibly constant. On this understanding we
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now proceed. If there be no forces, either resulting from internal
friction or viscosity, or impressed on the system from without, the
whole energy remains constant. Thus

T + V = constant.

Substituting for 7' and V their values, and differentiating with
respect to the time, we obtain the equation of motion

MU+l =0 i (2)
of which the complete integral is
U= COS (ML — @) cevrinrrninannrnnrennnns 3),

where n* = + m, representing a harmontc vibration. It will be
seen that the period alone is determined by the nature of the
system itself; the amplitude and phase depend on collateral cir-
cumstances. If the differential equation were exact, that is to
say, if 1" were strictly proportional to u2 and V to ?, then, without
any restriction, the vibrations of the system about ity configuration
of equilibrium would be aceurately harmonic.  But in the majority
of cases the proportionality is only approximate, depending on an
assumption that the displacement w is always small—how small
depends on the nature of the particular system and the degree of
approximation required; and then of course we must be careful
not to push the application of the integral beyond its proper
limits.

But, although not to be stated without a limitation, the prin-
ciple that the vibrations of a system about a configuration of
equilibrium have a period depending on the structure of the
system and not on the particular circumstances of the vibration,
is of supreme importance, whether regarded from the theorctical
or the practical side. If the piteh and the loudness of the note
given by a musical instrument were not within wide limits in-
dependent, the art of the performer on many instruments, such
as the violin and pianoforte, would be revolutionized.

The periodic time

8o that an inerease in m, or a decrease in g, protracts the duration
of a vibration. By a generalization of the language employed in
.. the case of a material particle urged towards a position of equili-
brinm by a spring, m may be called the inertin of the system, and



44.] DISSIPATIVE FORCES. 45

p the force of the equivalent spring. Thus an augmentation of
mass, or a relaxation of spring, increases the periodic time. By
means of this principle we may sometimes obtain limits for
the value of a period, which cannot, or cannot easily, be calculated
exactly.

45. The absence of all forces of a frictional character is an
ideal case, never realized but only approximated to in practice.
The original energy of a vibration is always dissipated sooner or
later by conversion into heat. But there is another source of loss,
which though not, properly speaking, dissipative, yet produces
results of much the same nature. Consider the case of a tuning-
fork vibrating in vecuo The internal friction will in time stop
the motion, and the original cnergy will be transformed into
heat. But now suppose that the fork is transferred to an open
space. In strictness the fork and the air surrounding it consti-
tute a single system, whose parts cannot be treated separately.
In attempting, however, the exact solution of so complicated a
problem, we should generally be stopped by mathematical diffi-
culties, and in any case an approximate solution would be de-
sirable. The effect of the air during a few periods is quite insig-
nificant, and becomes important only by accumiulation. We ave
thus led to consider its effect as a disturbance of the motion which
would take place in vacuo. The disturbing force is periodic (to
the same approximation that the vibrations are so), and may be
divided into two parts, one proportional to the acceleration, and
the other to the velocity. The former produces the same effect as
an alteration in the mass of the fork, and we have nothing more
to do with it at present. The latter is a force arithmetically pro-
portional to the velocity, and always acts in opposition to the
motion, and thercfore produces effects of the same character as
those due to friction. In many similar cases the loss of motion
by communication may be treated under the same head as that
due to dissipation proper, and is represented in the differential
equation with a degree of approximation sufficient for acoustical
purposes by a term proportional to the velocity. Thus

G Kl AT = 0 e 1)

is the equation of vibration for a system with one degree of
freedom subject to frictional forces. The solution 1s

u=Ae i cos (Vnr =4k t—a) i (2).
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If the friction be so great that }«* >n? the solution changes its
form, and no longer corresponds to an oscillatory motion ; but in
all acoustical applications « is a small quantity. Under these
circumstances (2) may be regarded as expressing a harmonic
vibration, whose amplitude is not constant, but diminishes in
geometrical progression, when considered after equal intervals of
time. The difference of the logarithms of successive extreme
excursions is nearly constant, and is called the Logarithmic Decre-
ment. It is expressed by 4«, if T be the periodic time.

The frequency, depending on n* — }«?% involves only the second
power of x; so that to the first order of approximation the friction
has no effect on the period,—a principle of very general application.

The vibration here considered is called the free vibration. It
is that executed by the system, when disturbed from equilibrium,
and then left to itself.

46. We must now twrn our attention to another problem, not
Jess important,—the bebaviour of the system, when subjected to an
external force varying as a harmonic function of the time. In
order to save repetition, we may take at once the more general
case, including friction. 1f there be no friction, we have only to
put in our results = 0. The differential equation is

U+ wl+nfu= Ecospl.cccoerrennirnnn. (1).
Assume U=QCOS (Pb~€) currrarerinnnnann R (2),
and substitute :

a (n* —p*) cos (pt — €) — kpa sin (pt — €)
= F cose cos (pt—e)— Esinesin(pt—e);

whence, on equating coefficients of cos (pt — e), sin (pt — ¢),

a(n?—p*)=Ecose (3)
o pe=Bine T i .
80 that the solution may be written
U aEsm £ cos (pt—e)..... eerereranaaee (4),
where tane = ﬁ% ........................... (5).

This is called a forced vibration; it is the response of the system
to a force imposed upon it from without, and is maintained by the
continued operation of that force. The amplitude is proportional
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to Z—the magnitude of the force, and the period is the same
as that of the force.

Let us now suppose £ given, and trace the effect on a given
system of a variation in the period of the force. The effects
produced in different cases are not strictly similar; because the
frequency of the vibrations produced is always the same as that of
the force, and therefore variable in the comparison which we are
about to institute. We may, however, compare the energy of the
system i different cases at the moment of passing through the
position of equilibrium. It is necessary thus to specify the moment
at which the energy is to be computed in each case, because the
total energy is not invariable throughout the vibration. During
one part of the period the system receives energy from the
impressed force, and during the remainder of the period yields it
back again.

From (4), if =0,

energy oc u? oc sin’e,

and 1s therefore a maximum, when sin e= 1, or, from (5),p=n. If
the maximum kinetic energy be denoted by 7, we have

The kinetic energy of the motion is therefore the greatest possible,
when the period of the force is that in which the system would
vibrate freely under the influence of its own elasticity (or other
internal forces), without friction. The vibration is then by (4)
and (5),

E .

U =-— SN Nt ;

n
and, if x be small, its amplitude is very great. Its phase is a
quarter of a period behind that of the force.

The case, where p=mn, may also be treated independently.

Since the period of the actual vibration is the same as that

natural to the system.
% +nu=<0,

so that the differential equation (1) reduces to
ku = E cos pt,
whence by integration
U= %’fcosptdt =£—Csinpt,

as before.
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If p be less than n, the retardation of phase relatively to the
force lies between zero and a quarter period, and when p is greater
than n, between a quarter period and a half period.

In the case of a system devoid of friction, the solution is

E
w—-a,—:—}-{ COSpt... .................. (7)

When p is smaller than », the phase of the vibration agrees with
that of the force, but when p is the greater, the sign of. the vibra-
tion is changed. The change of phase from complete agreement
to complete disagreement, which is gradual when friction acts,
here takes place abruptly as p passes through the value a. At the
same time the expression for the amplitude becomes infinite.  Of
course this only means that, in the case of equal periods, friction
must be taken into account, however small it may be, and however
insignificant its result when p and n are not approximately equal.
The limitation as to the magnitude of the vibration, to which we
are all along subject, must also be borne in mind.

That the excursion should be at its maximum in one direction
while the genecrating force is at its maximum in the opposite
direction, as happens, for example, in the canal theory of the tides,
is sometimes considered a paradox. Any difficulty that may be
felt will be removed by considering the extreme case, in which the
“spring ” vanishes, 8o that the natural period is infinitely long.  In
fact we need only consider the force acting on the bob of w com-
mon pendulum swinging freely, in which case the excursion on one
side is greatest when the action of gravity is at its maxinmun
in the opposite direction.  When on the other hand the inertin of
the system is very small, we have the other extreme case in which
the so-called equilibrium theory becomes applicable, the foree and
excursion being in the same phase,

When the period of the foree is longer than the natural period,
the effeet of an increasing frietion is to introduce a retardation
in the phase of the displacement varying from zero up to a quarter
period.  If, however, the period of the natural vibration be the
longer, the original retardation of half a period is diminished by
something short of a quarter period; or the effect of friction is to
accelerate the phase of the displacement estimated from that corre-
sponding to the absence of frietion. In either case the influence
of friction is to cause an approximation to the state of things that
would prevail if friction were paramount.
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If a force of nearly equal period with the free vibrations
vary slowly to a maximum and then slowly decrease, the dis-
placement does not reach its maximum until after the force has
begun to diminish. Under the operation of the force at its
maximum, the vibration continues to increase until a certain limit
1s approached, and this increase continues for a time even although
the force, having passed its maximum, begins to diminish. On
this principle the retardation of spring tides behind the days of
“new and full moon has been explained’.

47. From the linearity of the equations it follows that the
motion resulting from the simultaneous action of any number of
forces is the simple sum of the motions due to the forces taken
separately. Each force causes the vibration proper to itself,
without regard to the presence or absence of any others. The
peculiarities of a force are thus in a manner transmitted into the
motion of the system. For example, if the force be periodic in
time 7, so will be the resulting vibration. Each harmonic element
of the force will call forth a corresponding harmonic vibration
in the system. But since the retardation of phase ¢, and the ratio
of amplitudes a : E, is not the same for the different components,
the resulting vibration, though periodic in the same time, is dif-
ferent in character from the force. It may happen, for instance,
that one of the components is isuchronous, or nearly so, with the
free vibration, in which case it will manifest itself in the motion
out of all proportion to its original importance. As another
example we may consider the case of a system acted on by two
forces of nearly equal period. The resulting vibration, being
compounded of two nearly in unison, is intermittent, according to
the principles explained in the last chapter.

To the motions, which are the immediate effects of the im-
pressed forces, must always be added the term expressing free
vibrations, if it be desired to obtain the most general solution.
Thus in the case of one impressed force,

Esine
pK
where 4 and « are arbitrary.

U= cos (pt — €) + Ae™¥ cos Wni—}at . t—a} .. ... 1),

48. The distinction between forced and free vibrations is very
.important, and must be clearly understood. The period of the

1 Airy's Tides and Waves, Art. 328.
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former is determined solely by the force which is supposed to act
on the system from without; while that of the latter depends only
on the constitution of the system itself. Another point of differ-
ence is that so long as the external influence continues to operate,
a forced vibration is permanent, being represented strictly by a
harmonic function; but a free vibration gradually dies away, be-
coming negligible after a time. Suppose, for example, that the
system is at rest when the force £ cos pt begins to operate. Such
finite values must be given to the constants 4 and « in (1) of § 47,
that both u and « are initially zero. At first then there is a
free vibration not less important than its rival, but after a time
friction reduces it to insignificance, and the forced vibration is left
in complete posgession of the field. This condition of things will
continue so long as the force operates. When the force is removed,
there is, of course, no discontinuity in the values of w or %, but
the forced vibration is at once converted into a free vibration,
and the period of the force is exchanged for that natural to the
system.

During the coexistence of the two vibrations in the earlier part
of the motion, the curious phenomenon of beats may occur, in
case the two periods differ but slightly. For, n and p being nearly
equal, and « small, the initial conditions are approximately satis-
fied by

U = g c0s ( pt — €) — a e~ cos {\/m?‘ .t—e}.

There is thus a rise and fall in the motion, 8o long as 6~#* remains
sensible. This intermittence is very conspicuous in the earlier
stages of the motion of forks driven by electro-magnetism (§ 63),
[and may be utilized when it is desired to adjust » and p to
equality. The initial beats are to be made slower and slower,
until they cease to be perceptible. The vibration then swells
continuously to a maximum.]

49. Vibrating systems of one degree of freedom may vary in
two ways according to the values of the constants n and «. The
distinction of pitch is sufficiently intelligible ; but it is worth while
to examine more closely the consequences of a greater or less
degree of damping. The most obvious ia the more or less rapid
extinction of & free vibration. The effect in this direction may be
measured, by the number of vibrations which must elapse before
the amplitude is reduced in a given ratio. Initially the amplitude.
may be taken as unity ; after a time t, letit be §. Thus 6 = eI,
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If t =2r, we have £ =— %_log 6. In a system subject to only a

moderate degree of damping, we may take approximately,

T=27r +n;
n
so that r=— K-‘n—_log O (1).

This gives the number of vibrations which are performed, before
the amplitude fails to 6.

The influence of damping is also powerfully felt in a forced
vibration, when there is a near approach to isochronism. In the
case of an exact equality between p and n, it is the damping alone
which prevents the motion becoming infinite. We might easily
anticipate that when the damping is small, a comparatively slight
deviation from perfect isochronism would cause a large falling off
in the magnitude of the vibration, but that with a larger damping
the same precision of adjustment would not be required. From
the equations

T=T°Sin’e, tane=—’—x£—2,
n—=p
‘n’-—p’_ TO—T .
we get - T (2);

8o that if x be small, p must be very nearly equal to n, in order to:
produce a motion not greatly less than the maximum.

The two principal effects of damping may be compared by
eliminating « between (1) and (2). The result is

log 8 p o 7

—%—=w(§—§) sy ST ),
where the sign of the square root must be so chosen as to make
the right-hand side negative.

If, when a system vibrates freely, the amplitude be reduced in
the ratio 6 after « vibrations; then, when it is acted on by a force
(p), the energy of the resulting motion will be less than in the
case of perfect isochronism in the ratio 7': T,. It is a matter of
indifference whether the forced or the free vibration be the higher;
all depends on the interval.

In most cases of interest the interval is small; and then, putting
p =n+ 8n, the formula may be written,

log@  2mdn \/_7_
- D )

&z n
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The following table calculated from these formula has been
given by Helmholtz!:

- R
e emuponding o 8 seackion | My S e vation 1
i : duced to one-tenth.
T:T,=1:10. 6= g
1 tone. 38-00
 tone. 19-00
% tone. 9-50
# tone. 6-33
‘Whole tone. 475
% tone. 3-80
£ tone = minor third. 317
I tone. . 271
Two whole tones = major third. 2:37

Formula (4) shews that, when 8n is small, it varies coteris

. 1
paribus as Z

50. From observations of forced vibrations duc to known
forces, the natural period and damping of & system may be deter-
mined. The formule are

Esine
r cos (pt —e),

K
where tan e = —-;119—'
n —

P
On the equilibrium theory we should have

£
U=—5C08 pt.

The ratio of the actual amplitude to this is
Esine £ _mn'sine

: pe M pe
If the equilibrium theory be known, the comparison of ampli-

-
tudes tells us the value of ~ ;Lne , B8y

! Tonempfindungen, 8rd edition, p. 221.
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and e is also known, whence

fn’*’=p"—:-<1—coje), and = -L22€ wn(D)

G—COSG".".”

51. As has been already stated, the distinction of forced and
free vibrations is important; but it may be remarked that most of
the forced vibrations which we shall have to consider as affecting
a system, take their origin ultimately in the motion of a second
system, which influences the first, and is influenced by it. A
vibration may thus have to be reckoned as forced in its relation
to a system whose limits are fixed arbitrarily, even when that
system has a share in determining the period of the force which
acts upon it. On a wider view of the matter embracing both the
systems, the vibration in question will be recognized as free. An
example may make this clearer. A tuning-fork vibrating in air
is part of a compound system including the air and itself, and
in respect of this compound system the vibration is free. But
although the fork is influenced by the reaction of the air, yet the
amount of such influence is small. For practical purposes it is
convenient to consider the motion of the fork as given, and that of
the air as forced. No error will be committed if the actual motion
of the fork (as influenced by its surroundings) be taken as the
basis of calculation. But the peculiar advantage of this mode of
conception is manifested in the case of an approximate solution
being required. It may then suffice to substitute for the actual
motion, what would be the motion of the fork in the absence of
air, and afterwards introduce a correction, if necessary.

52. Illustrations of the principles of this chapter may be
drawn from all parts of Acoustics. We will give here a few
applications which deserve an early place on account of their
simplicity or importance.

A string or wire ACB is stretched between two fixed points
A and B, and at its centre carries a mass M, which is supposed to
be so considerable as to render the mass of the string itself negli-
gible. When M is pulled aside from its position of equilibrium,
and then let go, it executes along the line CM vibrations, which
are the subject of inquiry. AC=CB=a. CM =z The tension
of the string in the position of equilibrium depends on the amount
of the stretching to which it has been subjected. In any other
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position the tension is greater; but we limit ourselves to the case
of vibrations so small that the additional stretching is a negligible
fraction of the whole. On this condition the tension may be
treated as constant. We denote it by T.

Fl1e.8.

Thus, kinetic energy = $ Ma?,

and
2

potential energy = 2T {(Va® +4* — a} = T% approximately.

The equation of motion (which may be derived also inde-
pendently) is therefore

Mi + 2T§=o ............ e, ),

from which we infer that the mass M cxecutes harmonic vibra-
tions, whose period

The amplitude and phase depend of course on the initial eir-
cumstances, being arbitrary so far as the differential equation is
concerned.

Equation (2) expresses the manner in which = varies with each
of the independent quantities T, M, a: results which may all be
obtained by consideration of the dimensions (in the technical sense)
of the quantities involved. The argument from dimensions is 8o
often of importance in Acoustics that it may be well to consider
this first instance at length.

In the first place we must assure ourselves that of all the
quentities on which T may depend, the only ones involving a
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reference to the three fundamental units—of length, time, and

mass—are a, M, and T. Let the solution of the problem be
written

S C VA% ) YOUU (3).

This equation must retain its form unchanged, whatever may
be the fundamental units by means of which the four quantities
are numerically expressed, as is evident, when it is considered
that in deriving it no assumptions would be made as to the mag-
nitudes of those units. Now of all the quantities on which f
depends, T is the only one involving time; and since its dimen-
sions are (Mass) (Length) (Time)~?, it follows that when a and M
are constant, Toc T'—*; otherwise a change in the unit of time
would necessarily disturb the equation (3). This being admitted,
it is easy to see that in order that (3) may be independent of the
unit of length, we must have 70 T'—*. a%, when M is constant ; and
finally, in order to secure independence of the unit of mass,

’ Toc T3 Mb. ab.
To determine these indices we might proceed thus :—assume
Toc T2 MY, 0%,

then by considering the dimensions in time, spacé, and mass, we
obtain respectively

l1=—2z, O=z+4+2 O=2+y,
whence as above z=—% y=% z=4

There must be no mistake as to what this argument does and
does not prove. We have assumed that there is a definite
periodic time depending on no other quantities, having dimen-
sions in space, time, and mass, than those above mentioned. For
example, we have not proved that = is independent of the ampli-
tude of vibration. That, so far as it is true at all, is a consequence
of the linearity of the approximate differential equation.

From the necessity of a complete enumeration of all the
quantities on which the required result may depend, the method
of dimensions is somewhat dangerous ; but when used with proper
care it is unquestionably of great power and value.

53. The solution of the present problem might be made the
foundation of a method for the absolute measurement of pitch.
The principal impediment to accuracy woyld probably be the
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difficulty of making M sufficiently large in relation to the mass of
the wire, without at the same time lowering the note too much in
the musical scale.

M
A {) B
-
Fla.lo, m'

The wire may be stretched by a weight M’ attached to its
further end beyond a bridge or pulley at B. The periodic time
would be calculated from

_a M

The ratio of M’: M is given by the balance. If @ be measured
in feet, and g = 322, the periodic time is expressed in seconds.

54. In an ordinary musical string the weight, instead of being
concentrated in the centre, is uniformly distributed over its length.
Nevertheless the present problem gives some idea of the nature of
the gravest vibration of vuch a string. Let us compare the two
cases more closely, supposing the amplitudes of vibration the same
at the middle point,

/\
A c B
Fra. 1h

When the uniform string is straight, at the moment of passing
through the position of eguilibrium, its different parts are ani-
mated with a variable velocity, increasing from either end towards
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the centre. If we attribute to the whole mass the velocity of the
centre, it is evident that the kinetic energy will be considerably
over-estimated. Again, at the moment of maximum excursion,
the uniform string is more stretched than its substitute, which
follows the straight courses 4M, MB, and accordingly the poten-
tial energy is diminished by the substitution. The concentration
of the mass at the middle point at once increases the kinetic
energy when z =0, and decreases the potential energy when & =0,
and therefore, according to the principle explained in § 44, prolongs
the periodic time. For a string then the period is less than that
calculated from the formula of the last section, on the supposition
that M denotes the mass of the string. It will afterwards appear
that in order to obtain a correct result we should have to take
instead of M only (4/m*)M. Of the factor 4/=* by far the more

important part, viz. §, is due to the difference of the kinetic
energies.

56. As another example of a system possessing practically but
one degree of freedom, let us consider the vibration of a spring, one
end of which is clamped in a vice or otherwise held fast, while the
other carries a heavy mass. '

In strictness, this systemn like the last has

an infinite number of independent modes of vi- Q
bration; but, when the mass of the spring is
relatively small, that vibration which is nearly
independent of its inevtia becomes so much the *F/¢ /2.
most important that the others may be ignored.

Pushing this idea to its limit, we may regard the

spring merely as the origin of a force urging the
attached mass towards the position of equilibrium,

and, if a certain point be not exceeded, in simple ~ <U 1
proportion to the displacement. The result is a <
harmonic vibration, with a period dependent on 2
the stiffness of the spring and the mass of the
load.

56. In consequence of the oscillation of the centre of inertia,
there is a constant tendency towards the communication of motion
to the supports, to resist which adequately the latter must be
very firm and massive. In order to obviate this inconvenience,
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two precisely similar springs and loads may be mounted on
the same framework in a symmetrical manner.
If the two loads perform vibrations of equal Q ﬁ)
amplitude in such a manner that the motions

are always opposite, or, as it may otherwise be
expressed, with a phase-difference of half a
period, the centre of inertia of the whole system
remains at rest, and there is no tendency to set
the framework into vibration. We shall see in a
future chapter that this peculiar relation of phases
will quickly establish itself, whatever may be the 1 "
original disturbance. In fact, any part of the
motion which does not conform to the condition
of leaving the centre of inertia unmoved is soon
extinguished by damping, unless indeed the \/\/\
supports of the system are more than usually

firm.

E&/0/5

67. Asin our first example we found a rough illustration of
the fundamental vibration of a musical string, so here with the
spring and attached load we may compare a uniform slip, or bar,
of elastic material, one end of which is securely fastened, such for
instance as the tongue of a reed instrument. It is true of course
that the mass is not concentrated at one end, but distributed
over the whole length; yet on account of the smallness of the
motion near the point of support, the inertia of that part of
the bar is of but little account. We infer that the fundamental
vibration of a uniform rod cannot be very different in character
from that which we have been considering. Of course for pur-
poses requiring precise calculation, the two systems are sufficiently
distinct ; but where the object is to form clear ideas, precision may
often be advantageously exchanged for simplicity.

In the same spirit we may regard the combination of two
springs and loads shewn in Fig. 13 as a representation of a
tuning-fork. The instrument, which has been much improved
of late years, is indispensable to the acoustical investigator. On
a large scale and for rough purposes it may be made by welding
a cross piece on the middle of a bar of steel, so as to form a T, and
then bending the bar into the shape of a horse-shoe. On the
handle a screw should be cut. But for the better class of tuning-
forks it is preferable to shape the whole out of one piece of steel.
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A division running from one end down the middle of a bar is first
made, the two parts opened out to form the prongs of the fork,
and the whole worked by the hammer and file into the required
shape. The two prongs must be exactly symmetrical with respect
to a plane passing through the axis of the handle, in order that
during the vibration the centre of inertia may remain unmoved,
—-unmoved, that is, in the direction in which the prongs
vibrate.

The tuning is effected thus. To make the note higher, the
equivalent inertia of the system must be reduced. This is done
by filing away the ends of the prongs, either diminishing their
thickness, or actually shortening them. On the other hand, to
lower the pitch, the substance of the prongs near the bend may
be reduced, the effect of which is to diminish the force of the
spring, leaving the inertia practically unchanged; or the inertia
may be increased (a method which would be preferable for
temporary purposes) by loading the ends of the prongs with
wax, or other material. Large forks are sometimes provided with
moveable weights, which slide along the prongs, and can be fixed
in any position by screws. As these approach the ends (where the
velocity is greatest) the equivalent inertia of the system increases.
In this way a considerable range of pitch may be obtained from
one fork. The number of vibrations per second for any position
of the weights may be marked on the prongs.

The relation between the pitch and the size of tuning-forks is
remarkably simple. In a future chapter it will be proved that,
provided the material remains the same and the shape constant,
the period of vibration varies directly as the linear dimension.
Thus, if the linear dimensions of a tuning-fork be doubled, its
note falls an octave.

58. The note of a tuning-fork is a nearly pure tone. Imme-
diately after a fork is struck, high tones may indced be heard,
corresponding to modes of vibration, whose nature will be subse-
quently considered; but these rapidly die away, and even while
they exist, they do not blend with the proper tone of the fork,
partly on account of their very high pitch, and partly because
they do not belong to its harmonic scale. In the forks examined
by Helmholtz the first of these overtones had a frequency from 58
to 6'6 times that of the proper tone.

Tuning-forks are now generally supplied with resonance cases,
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whose effect is greatly to augment the volume and purity of the
sound, according to principles to be hereafter developed. In
order to excite them, a violin or cello bow, well supplied with
rosin, is drawn across the prongs in the direction of vibration.
The sound so produced will last a minute or more.

59. As standards of pitch tuning-forks are invaluable. The
pitch of organ-pipes rapidly varies with the temperature and with
the pressure of the wind; that of strings with the tension, which
can never be retained constant for long; but a tuning-fork kept
clean and not subjected to violent changes of temperature or
magnetization, preserves its pitch with great fidelity.

[But it must not be supposed that the vibrations of a fork are
altogether independent of temperature.  According to the obser-
vations of McLeod and Clarke! the frequency falls by "00011 of its
value for each degree Cent. of elevation.]

By means of beats a standard tuning-fork may be copied with
very great precision. The number of beats heard in a second is
the difference of the frequencies of the two tones which produce
them ; so that if the beats can be made so slow as to occupy half

“a minute each, the frequencies differ by ounly 1-30th of a vibra-
tion. Still greater precision might be obtained by Lissajous’
optical method.

Very slow beats being difficult of observation, in consequence
of the uncertainty whether a falling off in the sound is due to
interference or to the gradual dying away of the vibrations,
Scheibler adopted a somewhat modified plan. He took a fork
slightly different in piteh from the standard--whether higher or
lower is not material, but we will say, lower,—and counted the
number of beats, when they were sounded together.  About four
beats a second is the most suitable, and these may be counted for
perhaps a minute.  The fork to be adjusted is then made slightly
higher than the auxiliary fork, and tuned to give with it precisely
the same nwuinber of beats, as did the standard. In this way a
copy as exact as possible iy sceured. To facilitate the counting
of the beats Scheibler employed pendulums, whose periods of,
vibration could be adjusted.

[The question between slow and quick beats depends upon the
circumstances of the case. It seems to be sometimes supposed
that quick beats have the advantage as admitting of greater

L Phil, T'rans. 1880, p. 12.
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relative accuracy of counting. But a little consideration shews
that in a comparison of frequencies we are concerned not with the
relative, but with the absolute accuracy of the counting. If we
miscount the beats in a minute by one, it makes just the same
error in the result, whether the whole number of beats be 60 or
240.

When the sounds are pure tones and are well maintained, it is
advisable to use beats much slower than four per second. By
choosing a suitable position it is often possible to make the
intensities at the ear equal; and then the phase of silence,
corresponding to antagonism of equal and opposite vibrations, is
extremely well marked. Taking advantage of this we may deter-
mine slow beats with very great accuracy by observing the time
which elapses between recurrences of silence. In favourable cases
the whole number of beats in the period of observation may be
fixed to within one-tenth or one-twentieth of a single beat, a
degree of accuracy which is out of the question when the beats
are quick. In this way beats of periods exceeding 30 seconds may
be utilised with excellent effect .]

60. The method of beats was also employed by Scheibler to
determine the absolute pitch of his standards. Two forks were
tuned to an octave, and a number of others prepared to bridge
over the interval by steps so small that each fork gave with its
immediate neighbours in the series a number of beats that could
be easily counted. The difference of frequency corresponding to
each step was observed with all possible accuracy. Their sum,
being the difference of frequencies for the interval of the octave,
was equal to the frequency of that fork which formed the starting
point at the bottom of the series. The pitch of the other forks
could be deduced.

If consecutive forks give four beats per second, 65 in all will
be required to bridge over the interval from ¢’ (256) to ¢” (512),
On this account the method is laborious; but it is probably the
most accurate for the original determination of pitch, as it is
liable to no errors but such as care and repetition will eliminate.
It. may be observed that the essential thing is the measurement
of the difference of frequencies for two notes, whose ratio of
frequencies is independently known. If we could be sure of its
accuracy, the interval of the fifth, fourth, or even major third, might

1 Acoustical Observations, Phil. Muag. May, 1882, p. 342.
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be substituted for the octave, with the advantage of reducing the
number of the necessary interpolations. It is probable that with
the aid of optical methods this course might be successfully
adopted, as the corresponding Lissajous’ figures are easily recog-
nised, and their steadiness is a very severe test of the accuracy
with which the ratio is attained.

[It is essential to the success of this method that the pitch of
each of the nuwmerous sounds employed should be definite, and in
particular that the vibrations of any fork should take place at the
same rate whether that fork be sounding in conjunction with its
neighbour above or with its neighbour below. There is no reason
to doubt that this condition is sufficiently satisfied in the case of
independent tuning-forks; but an attempt to replace forks by a
get of reeds, mounted side by side on a common wind-chest, has
led to error, owing to a disturbance of pitch by mutual inter-
action .

The frequency of large tuning-forks may be determined by
allowing them to trace a harmonic curve on smoked paper, which
may conveniently be mounted on the circumference of a revolving
drum. The number of waves executed in a second of time gives
the frequency.

In many cases the use of intermittent illumination described
in § 42 gives a convenient method of determining an unknown
frequency.

61. A series of forks ranging at small intervals over an octave
is very useful for the determination of the frequency of any
musical note, and is called Scheibler's Tonometer. It may also
be used for tuning a note to any desired pitch. In either case
the frequency of the note is determined by the number of beats
which it gives with the forks, which lie nearest to it (on each
side) in pitch.

For tuning pianofortes or organs, a set of twelve forks may be
used giving the notes of the chromatic scale on the equal tempe-
rament, or any desired system. The corresponding notes are
adjusted to unison, and the others tuned by octaves. It is better,
however, to prepare the forks so as to give four vibrations per
second less than is above proposed. Each note is then tuned a
little higher than the corresponding fork, until they give when
sounded together exactly four beats in the second. It will be

* Nature, xvix, pp. 12, 26 ; 1877,
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observed that the addition (or subtraction) of a constant number
to the frequencies is not the same thing as a mere displacement
of the scale in absolute pitch.

In the ordinary practice of tuners a’is taken from a fork, and
the other notes determined by estimation of fifths. It will be
remembered that twelve true fifths are slightly in excess of seven
octaves, so that on the equal temperament system each fifth is a
little flat. The tuner proceeds upwards from a’ by successive
fifths, coming down an octave after about every alternate step, in
order to remain in nearly the same part of the scale. Twelve
fifths should bring him back to a. If this be not the case, the
work must be readjusted, until all the twelve fifths are too flat by,
a8 nearly as can be judged, the same small amount. The in-
evitable error is then impartially distributed, and rendered as little
gensible as possible. The octaves, of course, are all tuned true.

The following numbers indicate the order in which the notes may
be taken :

ufb ¢ cBd dge f/ft g gt aag b ¢ Spd dEe’
1351681911 314 6 17 9 1 124 15 7 18 10 2
In practice the equal temperament is only approximately
attained; but this is perhaps not of much consequence, considering
that the system aimed at is itself by no means perfection.

Violing and other instruments of that class are tuned by true
fifths from a’.

62. In illustration of forced vibration let us consider the case
of a pendulum whose point of support is subject to a small hori-
zontal harmonic motion. @ is the bob attached by a fine wire to
a moveable point P. OP =ua,. o P
PQ =1, and z is the horizontal
co-ordinate of Q. Since the
vibrations are supposed small,
the vertical motion may be
neglected, and the tension of
the wire equated to the weight
of Q. Hence for the horizontal

Q

motion a'tf+/c:i:+‘% (x — x,) = 0. FIC 4,

Now &, oc cos pt; so that putting g + 1 =n3, our equation takes
the form already treated of, viz.

& + & +nx = E cos pt.
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If p be equal to n, the motion is limited only by the friction,
The assumed horizontal harmonic motion for P may be realized by
means of a second pendulum of massive construction, which carries
P with it in its motion. An efficient arrangement is shewn in
the figure. 4, B are iron rings screwed into a beam, or other firm

Fl1a/s,

support; C, D similar rings attached to a stout bar, which carries
equal heavy weights &, F, attached near its ends, and is supported
in a horizontal position at right angles to the beam by a wire
passing through the four rings in the manner shewn. When the
pendulum is made to vibrate, a point in the rod midway between
C and D executes a harmonic motion in a direction parallel to
CD, and may be made the point of attachment of another pen-
dulum PQ. If the weights £ and F be very great in relation
to @, the upper pendulum swings very nearly in its own proper
period, and induces in @ a forced vibration of the same period.
When the length P@ is so adjusted that the natural periods of the
two pendulums are nearly the same, @ will be thrown into violent
motion, even though the vibration of P be of but inconsiderable
amplitude. In this casge the difference of phase is about a quarter
of a period, by which amount the upper pendulum is in advance.
If the two periods be very different, the vibrations either agree
or are completely opposed in phase, according to equations (4)
and (5) of § 46.
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63. A very good example of a forced vibration is afforded by
a fork under the influence of an intermittent electric current,

F/QG./6.
c ——/L =

whose period is nearly equal to its own. ACB is the fork; E a
small electro-magnet, formed by winding insulated wire on an iron
core of the shape shewn in E (similar to that known as ‘Siemens’
armature’), and supported between the prongs of the fork. When
an intermittent current is sent through the wire, a periodic force
acts upon the fork. This force is not expressibie by a simple
circular function ; but may be expanded by Fourier’s theorem in a
series of such functions, having periods =, 7, 3 7, &c. If any of
these, of not too small amplitude, be nearly isochronous with the
fork, the latter will be caused to vibrate; otherwise the effect is
insignificant. In what follows we will suppose that it is the
complete period T which nearly agrees with that of the fork, and
consequently regard the series expressing the periodic force as
reduced to its first term.

In order to obtain the maximum vibration, the fork must be
carefully tuned by a small sliding piece or by wax, until its natural
period (without friction) is equal to that of the force. This is best
done by actual trial. When the desired equality is approached,
and the fork is allowed to start from rest, the force and com-
plementary free vibration are of nearly equal amplitudes and
frequencies, and therefore (§ 48) in the beginning of the motion
produce beuts, whose slowness is a measure of the accuracy of
the adjustment. It is not until after the free vibration has had
time to subside, that the motion assumes its permanent character.
The vibrations of a tuning-fork properly constructed and mounted
are subject to very little damping; consequently a very slight
deviation from perfect isochronism occasions a marked falling off
in the intensity of the resonance.

The amplitude of the forced vibration can be observed with
sufficient accuracy by the ear or eye; but the experimental
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verification of the relations pointed out by theory between its
phase and that of the force which causes it, requires a modified
arrangemeut-.

Two similar electro-magnets acting on similar forks, and in-
cluded in the same circuit are excited by the same intermittent
current. Under these circumstances it is clear that the systems
will be thrown into similar vibrations, because they are acted on
by equal forces. This similarity of vibrations refers both to phase
and amplitude. Let us suppose now that the vibrations are
effected in perpendicular dirvections, and by means of one of
Lissajous’ methods are optically compounded. The resulting figure
is necessarily a straight line.  Starting fromn the case in which the
amplitudes are a maximum, viz. when the natural periods of both
forks arc the same as that of the force, let one of them be put a
little out of tunc. It must be remembered that whatever their
natural periods may be, the two forks vibrate in perfect unison
with the force, and therefore with one another. The principal
effect of the difference of the natural periods is to destroy the
synchronism of phase. The straight line, which previously re-
presented the compound vibration, becomes an ellipse, and this
remaing perfectly steady, so long as the forks are not touched.
Originally the forks are both a quarter period behind the force.
When the piteh of one is slightly lowered, it falls still more behind
the foree, and at the same time its amplitude diminishes. Let the
difference of phase between the two forks be ¢, and the ratio of
amplitudes of vibration a:a, Then by (6) of § 46

a4 =y oS €.

The following table shews the simultancous values of a: a,

and €.
/

a €
10 0
‘9 25° 50’
‘8 360 52
7 45° 34
6 537
"5 60°
4 660 25
3 72032
-2 78027
‘1 840 15"

U Tonempfindungen, 8rd editt - v, 190
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It appears that a considerable alteration of phase in either
direction may be obtained without very materially reducing the
amplitude. When one fork is vibrating at its maximum, the
other may be made to differ from it on either side by as much as
60" in phase, without losing more than half its amplitude, or by
as much as 45°, without losing more than half its energy. By
allowing one fork to vibrate 45° in advance, and the other 43°
in arrear of the phase corresponding to the case of maximum
resonance, we obtain a phase difference of 90 in conjunction with
an equality of amplitudes. Lissajous’ figure then becomes a circle.

[An intermittent electric current may also be applied to
regulate the speed of a revolving body. The phonic wheel, in-
vented independently by M. La Cour and by the author of this
work?, is of great service in acoustical investigations. It may take
various forms; but the essential feature is the approximate
closing of the magnetic circuit of an electro-magnet, fed with an
intermittent current, by one or more soft iron armatures carried
by the wheel and disposed symmetrically round the circumference.
If in the revolution of the wheel the closest passage of the
armature synchronises with the middle of the time of excitation,
the electro-magnetic forces operating upon the armature during
its advance and its retreat balance one another. Ifhowever the
wheel be a little in arrear, the forces promoting advance gain an
advantage over those hindering the retreat of the armature, and
thus upon the whole the magnetic forces encourage the rotation.
In like manner if the phase of the wheel be in advance of that
first specified, forces are called into play which retard the motion.
By a self-acting adjustment the rotation settles down into such
a phase that the driving forces exactly balance the resistances.
When the wheel runs lightly, and the electric appliances are
moderately powerful, independent driving may not be needed. In
this case of course the phase of closest passage must follow that
which marks the middle of the time of magnetisation. If, as is
sometimes advisable, there be an independent driving power, the
phase of closest passage may either precede or follow that of
magnetisation.

In some cases the oscillations of the motion about the phase
into which it should settle down are very persistent and interfere
with the applications of the instrument. A remedy may be
found in a ring containing water or mercury, revolving concen-

1 Nature, May 23, 1878.
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trically. When the rotation is uniform, the fluid revolves like a
solid body and then exercises no influence. But when from any
cause the speed changes, the fluid persists for a time in the former
motion, and thus brings into play forces tending to damp out
oscillations.]

64. The intermittent cwrent is best obtained by a fork-
interrupter invented by Helmholtz. This may consist of a fork
and electro-magnet mounted as before.  The wires of the magnet
are connected, one with one pole of the battery, and the other with
a mercury cup. The other pole of the battery is connected with
a sccond mercury cup. A U-shaped rider of insulated wire is
carried by the lower prong just over the cups, at such a height
that during the vibration the circuit is alternately made and
broken by the passage of one end into and out of the mercury.
The other end may be kept permanently immersed. By means
of the periodie force thus obtained, the effeet of friction is com-
pensated, and the vibrations of the fork permanently maintained.
In order to set another fork into forced vibration, its associated
clectro-magnet may be included, either in the same driving-cireuit,
or in & second, whose periodic interruption is effected by another
rider dipping into mercury cups?.

The modus operandi of this kind of self-acting instrument is
often imperfectly apprehended. If the force acting on the fork
depended only on its position—on whether the cireuit were open
or closed—the work done in passing through any position would
be undone on the return, so that after a complete period there
would be nothing outstanding by which the effect of the frictional
forces could be compensated. Any explanation which does not
take account of the retardation of the current is wholly beside the
mark. The causes of retardation are two: irregular contact, and
self-induction.  When the point of the rider first touches the
mercury, the eleetric contact is imperfect, probably on account of

VI have arranged scvernl interrupters on the above plan, all the component
parts being of home manufacture. The forka were made by the village blacksmith,
The eups consisted of iron thimbles, soldered on one end of copper slips, the
further end being acrewed down on the base board of the instrument. Some
means of adjusting the level of the mercury surface is necessary. In Helmholts’
interrupter & horse-shoe electro-magnet embracing the fork is adopted, but I am
inclined to prefer the present arrangement, at any rate if the pitch be low. In
some cases a4 greater motive power s obtained by a horse-shoe magnet acting on a
woft iron armature carried horizontally by the upper prong and perpendicular to it.
I have usually found a single Smvoe cell sufticient battery power.
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adhering air. On the other hand, in leaving the mercury the
contact is prolonged by the adhesion of the liquid in the eup to
the amalgamated wire. On both accounts the current is retarded
behind what would correspond to the mere position of the fork.
But, even if the resistance of the circuit depended only on the
position of the fork, the current would still be retarded by its self-
induction. However perfect the contact may be, a finite current
cannot be generated until after the lapse of a finite time, any
more than in ordinary mechanics a finite velocity can be suddenly
impressed on an inert body. From whatever causes arising?, the
effect of the retardation is that more work is gained by the fork
during the retreat of the iider from the mercury, than is lost
during its entrance, and thus a balance remains to be set off
against friction.

If the magnetic force depended only on the position of the fork,
the phase of its first harmonic component might be considered to
be 180° in advance of that of the fork’s own vibration. The re-
tardation spoken of reduces this advance. If the phase-difference
be reduced to 90°, the force acts in the most favourable manner,
and the greatest possible vibration is produced.

It is important to notice that (except in the case just referred
to) the actual pitch of the interrupter differs to some extent from
that natural to the fork according to the law expressed in (5) of
§ 46, e being in the present case a prescribed phase-difference
depending on the nature of the contacts and the magnitude of the
self-induction. If the intermittent current be employed to drive
a second fork, the maximum vibration is obtained, when the
frequency of the fork coincides, not with the natural, but with the
modified frequency of the interrupter.

The deviation of a tuning-fork interrupter from its natural
pitch is practically very small; but the fact that such a deviation
is possible, is at first sight rather surprising. The explanation (in
the case of a small retardation of current) is, that during that half
of the motion in which the prongs are the most separated, the
electro-magnet acts in aid of the proper recovering power due to
rigidity, and so naturally raises the pitch. Whatever the relation
of phases may be, the force of the magnet may be divided into

1 Any desired retardation might be obtained, in default of other means, by
attaching the rider, not to the prong itself, but to the further end of a light
straight spring carried by the prong and set into forced vibration by the motion of
its point of attachment.
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two parts respectively proportional to the velocity and displacement
(or acceleration). To the first exclusively is due the sustaining
power of the force, and to the second the alteration of pitch.

65. The general phenomenon of resonance, though it cannot
be exhaustively considered under the head of one degree of
freedom, is in the main referable to the same general principles.
When a forced vibration is excited in one part of a system, all
the other parts are also influenced, a vibration of the same period
being excited, whose amplitude depends on the constitution of the
system considered as a whole. But it not unfrequently happens
that interest centres on the vibration of an outlying part whose
connection with the rest of the system is but loose. In such a case
the part in question, provided a certain limit of amplitude be
not exceeded, is very much in the position of a system possessing
one degree of freedom and acted on by a force, which may be
regarded as given, independently of the natural period. The
vibration is accordingly governed by the laws we have already
investigated. In the case of approximate equality of periods to
which the name of resonance is generally restricted, the ampli-
tude may be very considerable, even though in other cases it
might be so small as to be of little account; and the precision
required in the adjustment of the periods in order to bring out
the effect, depends on the degree of damping to which the system
is subjected.

Among bodies which resound without an extreme precision of
tuning, may be mentioned stretched membranes, and strings asso-
ciated with sounding-boards, as in the pianoforte and the violin.
When the proper note is sounded in their neighbourhood, these
bodies are caused to vibrate in a very perceptible manner. The
experiment may be made by singing into a pianoforte the note
given by any of its strings, having first raised the corresponding
damper. Or if one of the strings belonging to any note be plucked
(like a harp string) with the finger, its fellows will be set into
vibration, as may immediately be proved by stopping the first.

The phenomenon of resonance is, however, most striking in
cases where a very accurate equality of periods is necessary in
order to elicit the full effect. Of this class tuning-forks, mounted
on resonance boxes, are a conspicuous example. When the unison
is perfect the vibration of one fork will be tuken up by another
across the width of a room, but the slightest deviation of pitch
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is sufficient to render the phenomenon almost insensible. Forks
of 256 vibrations per second are commonly used for the purpose,
and it is found that a deviation from unison giving only one beat
in a second makes all the difference. When the forks are well
tuned and close together, the vibration may be transferred back-
wards and forwards between them several times, by damping them
alternately, with a touch of the finger.

Illustrations of the powerful effects of isochronisin must be
within the experience of every one. They are often of importance
in very different fields from any with which acoustics is concerned.
For example, few things are more dangerous to a ship than to lie
in the trough of the sea under the influence of waves whose period
is nearly that of its own natural rolling.

66a. It has already (§ 30) been explained how the super-
position of two vibrations of equal amplitude and of nearly equal
frequency gives rise to a resultant in which the sound rises and
falls in beats. If we represent the two components by cos 2mwnyt,
cos 27rn,l, the resultant is

2cosm(ny—my)t.cosm (g + M)t .uiniiiiinnnnns );

and it may be regarded as a vibration of frequency % (n, +n,), and
of amplitude 2cosw (n,—mn,)t. In passing through zero the
amplitude changes sign, which is equivalent to a change of phase
of 180° if the amplitude be regarded as always positive. This
change of phase is readily detected by measurement in drawings
traced by machines for compounding vibrations, and it is a feature
of great importance. If a force of this character act upon a system
whose natural frequency is % (», + n,), the effect produced is com-
paratively small. If the system start from rest, the successive
impulses cooperate at first, but after a time the later impulses
begin to destroy the effect of former ones. The greatest response
would be given to forces of frequency n, and n,, and not to a force
of frequency % (n, + n,).

If, as in some experiments of Prof. A. M. Mayer?, an otherwise
steady sound is rendered intermittent by the periodic interposition
of an obstacle, a very different result is arrived at. In this case
the phase is resumed after each silence without reversal. If a
force of this character act upon an isochronous system, the effect
is indeed less than if there were no intermittence; but as all the

L Phil, Mag. May, 1875.
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impulses operate in the same sense without any antagonism, the
response is powerful. One kind of intermittent vibration or force
is represented by
2 (1 + cos 27rmt) cos 27 Nt. . eeuiniiiinannnns (2),

in which n is the frequency of the vibration, and m the frequency
of intermittence!., The amplitude is here always positive, and
varies between the values 0 and 4. By ordinary trigonometrical
transformation (2) may be put in the form

2 cos 2mnt + cos 27 (n + m) ¢ + cos 2m (n— m) t...... 3);

which shews that the intermittent vibration in question is equiva-
lent to three simple vibrations of frequencies n, n+m, n—m.
This is the explanation of the secondary sounds observed by
Mayer.

The form (2)is of course only a particular case. Another in
which the intensity of the intermittent sound rises more suddenly
to its maximum is given by

4 cos* et o8 2Nt . .eiviiiiiiiiiiis e (4),
which may be transtormed into
§ cos 29rnt + co8 27 (n +m) t + cos 2w (n —m) ¢
+ % cos 2 (n + 2m) t + } cos 2w (n— 2m)¢......... (5).

There are here four secondary sounds, the frequencies of the
two new ones differing twice as much as before from that of the
primary sound.

The theory of intermittent vibrations is well illustrated by
electrically driven forks. A fork interrupter of frequency 128
gave a periodic current, by the passage of which through an
electro-magnet a second fork of like pitch could be excited. The
action of this current on the second fork could be rendered inter-
mittent by short-circuiting the electro-magnet. This was effected
by another interrupter of frequency 4, worked by an independent
current from a Smee cell. To excite the main current a Grove
cell was employed. When the contact of the second interrupter
wag permanently broken, so that the main current passed con-
tinuously through the electro-magnet, the fork was, of course,
most powerfully affected when tuned to 128. Scarcely any
response wag observable when the pitch was changed to 124 or
132, But if the second interrupter were allowed to operate, so as

! Crum Brown and Tait. Edin. Proc. June, 1878, Acoustical Observations 11.
Phil. Mag. April, 1880.
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to render the periodic current through the electro-magnet inter-
mittent, then the fork would respond powerfully when tuned to
124 or 132 as well as when tuned to 128, but not when tuned to
intermediate pitches, such as 126 or 130.

The operation of the intermittence in producing a sensitive-
ness which would not otherwise exist, is easily understood. When
a fork of frequency 124 starts from rest under the influence of a
force of frequency 128, the impulses cooperate at first, but after §
of a second the new impulses begin to oppose the earlier ones.
After } of a second, another series of impulses begins whose effect
agrees with that of the first, and so on. Thus if all these impulses
are allowed to act, the resultant effect is trifling; but if every
alternate series is stopped off, a large vibration accumulates.

Fig. 16 a.

AT

The most general expression for a vibration of frequency =,
whose amplitude and phase are slowly variable with a frequency
m, 18

A, + 4, cos 2rmt + A, cos 4mrmt + A, cos 6mrmt + ...
{ + B, sin 27rmt + B, sin 4mrmt + B, sin 67mt + } 008 2rrnt
C, + C, cos 27mt + C, cos 4mmt + O cos 6mmit +...) .

{ + D,sin 27rmt + D, sin 47mt + D, sih 67rmt + } s 27:;)

and this applies both to the case of beats (e.g. if 4, only be finite)
and to such intermittence as is produced by the interposition of
an obstacle. The vibration in gquestion is accordingly in all cases
equivalent to a combination of simple vibrations of frequencies

n, n+m, n—m, n+2m, n—2m, &c.

It may be well here to emphasise that a simple vibration
implies infinite continuance, and does not admit of variations of
phase or amplitude. To suppose, as is sometimes done in optical
speculations, that a train of simple waves may begin at a given
epoch, continue for a certain time involving it may be a large
number of periods, and ultimately cease, is a contradiction in terms.
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66. The solution of the equation for free vibration, viz.
4ol +nU=0. it (1).

may be put into another form by expressing the arbitrary con-
stants of integration 4 and a in terms of the initial values of u
and %, which we may denote by u, and &, We obtain at once

U = e~ Ixt {120 + Uy (cos Wt 4= 2 - 8ln 1 t)} ...... (2),

where n = Vni~ Lt

snnt

If there be no friction, « = 0, and then
. sm nt

) =

FUCOSMEeerineinniineeninnns (8).

These results may be employed to obtain the solution of the

complete equation
Bat4+nu=U....cooovivininiininnnn, (4),
where U is an explicit function of the time; for from (2) we see
that the effect at time ¢ of a velocity du communicated at time
t' s
sinn’ (¢ —t")
"

The effect of U is to generate in time dt' a velocity Udt’, whose

result at time ¢ will therefore be

u = due i1

U= %, Udt e~tt—tgin v’ (£ — '),
and thus the solution of (4) will be
= ;Ll-f = gin 0 =) Udt ouuennenn. .. (3).
If there be no friction, we have simply
uml{smn(t——t’) Udt' .ooooivivvnnnnn. (6),

U being the force at time ¢

The lower limit of the integrals is so far arbitrary, but it will
generally be convenient to make it zero.

On this supposition » and % as given by (6) vanish, when
¢t=0, and the complete solution is
sin n

U = g—ixt {ao -;-u,‘,(cosm’t+2 ,smnt)}

+ 7%, J oa‘*"“ iginn' (¢ —-¢t) Udt ..... (1),
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or if there be no friction

. sin nt
U =1,
n

T
+ u, cos nt + %fc sinn(t—=tYUdt ......... (8).

When ¢ is sufficiently great, the complementary terms tend to
vanish on account of the factor =4, and may then be omitted.

66a. In §66 we have limited the discussion to the case of
greatest acoustical importance, that is, we have supposed that »’
is real, as happens when n? is positive, and « not too great. But
a more general treatment of the problem of free vibrations is not
without interest. Whatever may be the values of »n* and «, the
solution of (1) § 66 may be expressed

u=Adert+Be . . ieeiiiiiiiiiannnnnn. 1),
where u,, u, are the roots of
Prap+rt =0ttt (2).

The case already discussed is that in which the values of u are
imaginary. The motion is then oscillatory, with amplitude which
decreases if x be positive, but increases if x be negative.

But if n% though positive, be less than 42 or if n? be negative,
n' becomes imaginary, that is u becomes real. The motion
expressed by (1) is then non-oscillatory, and it depends upon the
sign of u whether it increases or diminishes with the time. From
the solution of (2), viz.

p=—3n £ V(=40 3),

it is evident that if n* be positive (and less than }«*) the two
values of u are of the same sign, and that the sign is the opposite
of that of x. Hence if x be positive, both terms in (1) diminish
with the time, so that the system, however disturbed, subsides
again into a state of rest. If, on the contrary, « be negative, the
motion increases without limit.

We have still to consider the case of n? negative. The real
values of u are then of opposite signs. It is possible so to start
the system from a displaced position that it shall approach asymp-
totically the condition of rest in the configuration of equilibrium;
but unless a special relation between displacement and velocity is
satisfied, the motion tends to increase without limit. Under these
circumstances the equilibrium must be regarded as unstable. In
this sense stability requires that #* and « be both positive.

A word may not be out of place as to the effect of an im-
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pressed force upon a statically unstable system. If in §46 we
suppose =0, the solution (7) does not change its form merely
because n* becomes negative. The fact that a system is suscep-
tible of purely periodic motion under the operation of an external
periodic force is therefore no evidence of stability.

67. For most acoustical purposes it is suflicient to consider
the vibrations of the systems, with which we may have to deal,
as infinitely small, or rather as similar to infinitely small vibra-
tions. This restriction is the foundation of the important laws
of isochronism for free vibrations, and of persistence of period
for forced vibrations. There are, however, phenomena of a sub-
ordinate but not insignificant character, which depend essentially
on the square and higher powers of the motion. We will therefore
devote the remainder of this chapter to the discussion of the
motion of a system of one degree of freedom, the motion not being
so small that the squares and highér powers can be altogether
neglected.

The approximate expressions for the kinetic and potential
energies will be of the form

T=3%(my+mu)i?, V== (p+ m)n
If the sum of T and V be differentiated with respect to the
time, we find as the equation of motion
mglh + pott + muti 4+ Fmu? + duyu? = Impressed Forcee,

which may be treated by the method of successive approximatiow.
For the sake of simplicity we will take the case where m; =0,
a supposition in no way affecting the cssence of the question.
The wnertte of the system is thus constant, while the force of
restitution is a composite function of the displacement, partly pro-
portional to the displacement itself and partly proportional to
its square—accordingly unsymmetrical with respect to the position
of equilibrium. Thus for free vibrations our equation is of the
form

U+ U4+ o =0 iiniiiiiiinniiennnn, (1),
with the approximate solution
U= COSNE ceveeirrneinennnnearinnn, (2),

where 4—the amplitude—is to be treated as a small quantity.
Substituting the value of u expressed by (2) in the last
term, we find

3 Aa
= —aly (1 +cos 2nt),
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whence for a second approximation to the value of u
2 2
u=Acosnt—;~i7;1—2—+%cos2nt ............... 3);
shewing that the proper tone (n) of the system 13 accompanied
by its octave (2n), whose relative importance increases with the
amplitude of vibration. A trained ear can generally perceive the
octave in the sound of a tuning-fork caused to vibrate strongly by
means of a bow, and with the aid of appliances, to be explained
later, the existence of the octave may be made manifest to any
one. By following the same method the approximation can
be carried further; but we pass on now to the case of a system
in which the recovering power is symmetrical with respect to
the position of equilibrium. The equation of motion is then
approximately
U+nu+Bud=0...ccoceeniiiinnnnn. (4),
which may be understood to refer to the vibrations of a heavy
pendulum, or of a load carried at the end of a straight spring.
If we take as a first approximation u = 4 cos nt, corresponding
to 8 =0, and substitute in the term multiplied by B, we get

U+ nty=— ——;—4—3 cos 3nt ——3'[3;4‘3
Corresponding to the last term of this equation, we should
obtain in the solution a term of the form ¢ sinnt, becoming
greater without limit with ¢ This, as in a parallel case in the
Lunar Theory, indicates that our assumed first approximation
is not really an approximation at all, or at least does not continue
to be such. If, however, we take as our starting point u = 4 cos mi,
with a suitable value for m, we shall find that the solution may
be completed with the aid of periodic terms only. In fact it is
evident beforehand that all we are entitled to assume is that the
motion is approximately simple harmonic, with a period ap-
promimately the same, as if 8=0. A very slight examination
is sufficient to shew that the term varying as «, not only may,
but must affect ‘the period. At the same time it is evident
that a solution, in which the period is assumed wrongly, no
matter by how little, must at length cease to represent the motion
with any approach to accuracy.
We take then for the approximate equation
3p4s

3
i+ nfu = — 5 cos mt — -éi— cos3mt ..oounnnn (5),

cos nt.




78 ONE DEGREE OF FREEDOM. [67.

of which the solution will be
BA? cos3mi

u=Acosmt+T 977!-2-:-712 .................. (6),

provided that m be taken so as to satisfy

3
4 (—mﬂ+n’>=-‘3—%‘1“:
2
or m2=n®+ 3[5:’:4 P (.

The term in A thus produces two effects. It alters the pitch
of the fundamental vibration, and it introduces the twelfth as
a neccessary accompaniment. The alteration of pitch is in most
cases exceedingly small—depending on the square of the amplitude,
but it is not altogether insensible. Tuning-forks generally rise
a little, though very little, in pitch as the vibration dies away.
It may be remarked that the same slight dependence of pitch
on amplitude occurs when the force of restitution is of the
form n* + au?, as may be seen by continuing the approximation

to the solution of (1) one step further than (3). The result in that
case is

The difference m? — n? is of the same order in 4 in both cases ;
but in one respect there is a distinction worth noting, namely,
that in (8) m* is always less than n* while in (7) it depends on
the sign of B whether its effect is to raise or lower the pitch.
However, in most cases of the unsymmetrical class the change
of pitch would depend partly on a term of the form au® and
partly on another of the form Bu? and then

. o Datdr 3BA? .
M=t +T ............... 9).

[In all cases where the period depends upon amplitude, it is
necessarily an even function thereof, a change of sign in the ampli-
tude being merely equivalent to an alteration in phase of 180°.]

68. We now pass to the consideration of the vibrations
forced on an unsymmetrical system by two harmonic forces

E cos pt, Fcos (gt —e).

1 [A correction is here introduced, the necessity for which was pointed out to me
by Dr Burton.]
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The equation of motion is
%+ nu=—au*+ Ecos pt + F cos (gt —e) ...... ).

To find a first approximation we neglect the term containing
a. Thus \
U=ecosPt+fcos(qt—€)..coerernnn... (2),
\
o zE’ . f= F
n __p! ;nZ —_— qi
Substituting this in the term multiplied by a, we get
U+ n*u = E cos pt + F cos (gt — €)

_a[e ;ﬁ‘*'%cos2pt+§cos2(qt—€)+€fcos (p-9t+¢

where

+ ef cos {(p + q)t—-e}]

whence as a second approximation for u

2 2
u = ¢ ¢os pt + f cos (qt—e)—a—(;n—':f—) — 2—(7,;?_24})5) cos 2pt
af’ ae
~ =1 cos 2 (¢t — €) — eyl (pf_ q)zcos {(p—q)t+el

_ aef

n*= (p+q)

The additional terms represent vibrations having frequencies

which are severally the doubles and the sum and difference of

those of the primaries. Of the two latter the amplitudes are

proportional to the product of the original amplitudes, shewing

that the derived tones increase in relative importance with
the intensity of their parent tones.

cos {(P+q)t— €}eereeninniinnnn (4).

.

68a. If an isolated vibrating system be subject to internal
dissipative influences, the vibrations cannot be permanent, since
they are dependent. upon an initial store of energy which suffers
gradual exhaustion. In order that the motion may be maintained,
the vibrating body must be in connection with a source of energy.
We have already considered cases of this kind under the head of
forced vibrations, where the system is subject to forces whose
amplitude and phase are prescribed, independently of the be-
haviour of the system. Such forces may have their origin in
revolving mechanism (such as electric alternators) governed so as
to move at a uniform speed. But more frequently the forces
under consideration depend upon the vibrations of other systems,
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and then the question as to how the vibrations are to be main-.
tained represents itself. A good example is afforded by the case
already discussed (§§ 63, 65) of a furk maintained in vibration
electrically by means of currents governed by a fork interrupter.
It has been pointed out that the performance of the latter
depends upon the magnetic forces operative upon it differing in
phase from the vibrations of the fork itself. With the interrupter
may be classed for the present purpose almost all acoustical and
musical instruments capable of providing a sustained sound. It
may suffice to mention vibrations maintained by wind (organ-
pipes, harmonium reeds, @olian harps, &c.), by heat (singing
flames, Rijke’s tubes, &c.), by friction (violin strings, finger-
glasses), and the slower vibrations of clock pendulums and watch
balance-wheels.

In considering whether proposed forces are of the right kind
for the maintenance or encouragement of a vibration, it is often
convenient to regard them as reduced to impulses. Suppose, to
take a simple case, that a small horizontal positive impulse acts
upon the bob of a vibrating pendulum. The effect depends, of
course, upon the phase of the vibration at the instant of the
impulse. If the bob be moving positively at the instant in
question the vibration is encouraged,and this effect is a maximum
when the positive iotion is greatest, that is, when the impulse
occurs at the moment of positive movement through the position
of equilibrium. This is the condition of things aimed at in
designing a clock escapement, for the effect of the force is then a
maximum in encouraging the vibration, and a minimum (zero to
the first order of approximation) in disturbing the period. Of
course, if the impulse be half a period earlier or later than is
above supposed, the effect is to discourage the vibration, again
without altering the period. In like manner we see that if the
impulse occur at a moment of maximum elongation the effect is
concentrated upon the period, the vibration being neither en-
couraged nor discouraged.

In most cases the force acting upon a vibrating system in
virtue of its connection with a source of energy may be regarded
as harmonic. It may then be divided into two parts, one pro-
portional to the displacement u (or to the acceleration i), the
second proportional to the velocity u. The inclusion of such
forces does not alter the form of the equation of vibration

Utk + 22U =0.oerrerieninnininnnn.. 1.
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By the first part (proportional to u) the pitch is modified, and by
the second the coefficient of decay. If the altered « be still
positive, vibrations gradually die down; but if the effect of the
included forces be to render « negative, vibrations tend on the
contrary to increase. The only case in which according to (1) a
steady vibration is possible, is when the complete value of « is
zero. If this condition be satisfied, a vibration of any amplitude
is permanently maintained.

When « is negative, so that small vibrations tend to increase,
a point is of course soon reached beyond which the approximate
equations cease to be applicable. We may form an idea of the
state of things which then arises by adding to equation (1) a
term proportional to a higher power of the velocity. Let us take

Ut e+ u+nu=0.....ccccouvuunn... (2),

in which « and « are supposed to be small quantities. The
approximate solution of (2) is

/ 3
u =4 sin nt + x;é‘l COS3Nt.riviviinnnnnnnnn. (3),
in which 4 18 given by
K+ 3t A2 =0 .cociiiiiiiiiiin, (4).

From (4) we see that no steady vibration is possible unless x and
«" have opposite signs. If x and «’ be both positive, the vibration
in all cases dies down; while if « and «' be both negative, the
vibration (according to (2)) increases without limit. If « be
negative and «’ positive, the vibration becomes steady and
assumes the amplitude determined by (4). A smaller vibration
increases up to this point, and a larger vibration falls down to it.
It on the other hand « be positive, while «’ is negative, the steady
vibration abstractedly possible is unstable, a departure in either
direction from the amplitude given by (4) tending always to
increase 1.

68b. We will now consider briefly another and a very curious
kind of maintenance, of which the peculiarity is that the maintain-
ing influence operates with a frequency which is the double of
that of the vibration maintained. Probably the best known
example is that form of Melde’s experiment, in which a fine string
is maintained in transverse vibration by connecting one of its
extremities with the vibrating prong of a massive tuning-fork,

! On Maintained Vibrations, Phil. Mag., April, 1883
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the direction of motion of the point of attachment being parallel to
the length of the string. The effect of the motion is to render
the tension of the string periodically variable; and at first sight
there is nothing to cause the string to depart from its equilibrium
condition of straightmess. It is known, however, that under these
circumstances the equilibrium may become unstable, and that the
string may settle down into a state of permanent and vigorous
vibration, whose period is the double of that of the fork.

As a simpler example, with but one degree of freedom, we
may take a pendulum, formed of a bar of soft iron and vibrating
upon knife-edges. Underneath is placed symmetrically a vertical
bar electro-magnet, through which is caused to pass an electric
current rendered intermittent by an interrupter whose frequency
is twice that of the pendulum. The magnetic force does not tend
to displace the pendulum from its equilibrium position, but
produces the same sort of effect as if gravity were subject to a
periodic variation of intensity.

A similar result is obtained by causing the point of support
of the pendulum to vibrate in a vertical path. If we denote this
motion by # = 8 sin 2pt, the effect is as if gravity were variable by
the term 4p*3 sin 2pt.

Of the same nature are the crispations observed by Faraday®
and others upon the surface of water which oscillates vertically.
Faraday arrived experimentally at the conclusion that there were
two complete vibrations of the support for each complete vibra-
tion of the liquid.

In the following investigation®, relative to the case of one
degree of freedom, we shall start with the assumption that a
steady vibration is in progress, and inquire under what conditions
the assumed state of things is possible.

If the force of restitution, or “spring,” of a body susceptible
of vibration be subject to an imposed periodic variation, the
differential equation takes the form

Wb+ Kkt + (03 — 2a8in 2pt) u =0 ....ccoeenenn. (1),

in which ¥ and a are supposed to be small. A similar equation
would apply approximately to the case of a periodic variation in
the effective mass of the body. The motion expressed by the
solution of (1) can be regular only when it keeps perfect time

L Phil. Trans. 1881, p. 299.
* Phil. Mag., April, 1888.
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with the imposed variations. It will appear that the necessary
conditions cannot be satisfied rigorously by any simple harmonic
vibration, but we may assume

u= A4, sin pt + B, cos pt
+ A, sin 3pt + By cos 3pt + Ay sin 5pt +......... (2),

mn which it is not necessary to provide for sines and cosines of even
multiples of pt. If the assumption be justifiable, the solution in
(2) must be convergent. Substituting in the differential equation,
and equating to zero the coefficients of sin pt, cos pt, &c. we find

A, (n* — p*) — kpB, — aB, + aB;=0,

B, (n*—p*) + kpd,—ad,—ad;=0;

A, (n* — 9p*) — 3kpB; — aB, + aB; =0,
By (n*—9p*) + 3kpAd; +ad, —ad,;=0;
Ay (n* = 25p*) — 54pBy— aB; + aB, =0,
By(n*— 25p*) + 5kpds+ ad; —ad,=0;

.............................................

These equations shew that 4,, B; are of the order a relatively
to A,, B,; that 4,, B, are of order a relatively to A, B, and
so on. If we omit A4, B, in the first pair of equations, we find
as a first approximation,

Ay(n*—p)—(xp +a) B, =0,
4, (kp—a)+(n*—p*) B,=0;

, B, _nm—p'_a—xp_+(a—«p)
whenee | L e wop e adap) 3),
and (=P P =@ — KD tervriirirrniininnn, (4).

Thus, if a be given, the value of p necessary for a regular

motion is definite ; and p having this value, the regular motion is
u= Psin(pt+e),

in which e, being equal to tan™ (B,/4,), is also definite. On the
other hand, as is evident at once from the linearity of the original
equation, there is nothing to limit the amplitude of vibration.

These characteristics are preserved however far it may be
necessary to pursue the approximation. If Asmyy, Bims, may be
neglected, the first m pairs of equations determine the ratios of all
the coefficients, leaving the absolute magnitude open; and they
provide further an equation connecting p and a, by which the
pitch is determined.
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For the second approximation the second pair of equations

give

_ CtBl — aAl
A““n"——Qp?’ B, Tt —9p
whence
. oP
u=Psin(pt +¢€) + G cos (3pt + €) vunnnnnn (5),
and from the first pair
SR O
tan e = {n —_ —_ 772'—_ 9})5} - (d + /Cp) ................. (6>'

while p 1s determined by
{n? —pt— n’f9ﬁj§ == AP (M.

Returning to the first approximation, we see from (4) that the
solution is possible only under the condition that a be not less
than «p. If a=«p, then p =n; that is, the imposed variation
in the “spring” must be exactly twice as quick as the natural
vibration of the body would be in the absence of friction. From
(3) it appears that in this case ¢=0, which indicates that the
spring is a minimum one-eighth of a period after the body has
passed its position of equilibrium, and a maximum one-eighth of a
period before such passage. Under these circumstances the
greatest possible amount of energy is communicated to the
system ; and in the case contemplated it is just sufficient to
balance the loss by dissipation, the adjustment being evidently
independent of the amplitude.

If a < «p sufficient energy cannot pass to maintain the motion,
whatever may be the phase-relation; but if a > «p, the balance
between energy supplied and energy dissipated may be attained
by such an alteration of phase as shall diminish the former
quantity to the required amount. The alteration of phase may
for this purpose be indifferently in either direction ; but if ¢ be
positive, we must have

p:z =n? — '\/(C("! - Icsp:) ;
while if ¢ be negative
PP =1+ (e — ).

If a be very much greater than «p, e = t }m. which indicates
that when the system passes through its position of equilibrium
the spring is at its maximum or at its minimum.

The inference from the equation that the adjustment of pitch
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must be absolutely rigorous for steady vibration will be subject to
some modification in practice; otherwise the experiment could
not succeed. In most cases n® is to a certain extent a function of
amplitude; so that if n* have very nearly the required value,
complete coincidence is attainable by the assumption of an
amplitude of large and determinate amount without other
alterations in the conditions of the system.

The reader who wishes to pursue this subject is referred to a
paper by the Author *“ On the Maintenance of Vibrations by Forces
of Double Frequency, and on the Propagation of Waves through a
Medium endowed with a Periodic Structure,”? in which the analysis
of Mr Hill* is applied to the present problem.

68c. The determination of absolute pitch by means of the
siren has already been alluded to (§ 17). In all probability first-
rate results might be got by this method if proper provision, with
the aid of a phonic wheel for example, were made for uniform
speed. In recent years several experimenters have obtained excel-
lent results by various methods; but a brief notice of these is all
that our limits will allow.

One of the most direct determinations is that of Koenig? to
whom the scientific world has long ‘been indebted for the construc-
tion of much excellent apparatus. This depends upon a special
instrument, consisting of a fork of 64 complete vibrations per
second, the motion being maintained by a clock movement acting
upon an escapement. A dial is provided marking ordinary time,
and serves to record the number of vibrations executed. The
performance of the fork is tested by a comparison between the
instrument and any chronometer known to be keeping good time.
The standard fork of 256 complete vibrations was compared with
that of the instrument by observing the Lissajous’s figure appro-
priate to the double octave.

M. Koenig has also investigated the influence of resonators
upon the pitch of forks. Thus without a resonator a fork of 256
complete vibrations sounded in a satisfactory manner for about 90
seconds. A resonator of adjustable pitch was then brought into
proximity, and the pitch, originally much graver than that of the

Y Phil. Mayg., August, 1887,

2 On the Part of the Motion of the Lunar Perigree which 15 a Function of the
Mean Motions of the Sun and Moon, Acta Mathematica 8; 1, 1886. Mr Hill's

work was first published in 1877.
3 Wied. Ann. 1z. p. 394, 1880.
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fork, was gradually raised. Even when the resonator was still a
minor third below the fork, there was observed a slight diminution
in the duration of the vibratory movement, and at the same time
an augmentation in the frequency of about "005. As the natural
note of the resonator approached nearer to that of the fork, this
diminution in the time and this increase in frequency became
more pronounced up to the immediate neighbourhood of unison;
but at the moment when unison was established, the alteration of
pitch suddenly disappeared, and the frequency became exaetly the
same as in the absence of the resonator. At the same time the
sound was powerfully reinforced; but this exaggerated intensity
fell off rapidly and the vibration died away after 8 or 10 seconds.
The pitch of the resonator being again raised a little, the sound of
the fork began to change in the opposite direction, being now as
much too grave as before the unison was reached it had been too
acute. The displacement then fell away by degrees, as the pitch
of the resonator was further raised, and the duration of the
vibrations gradually recovered its original value of about 90
seconds. The maximum disturbance in the frequency observed
by Koenig was ‘035 complete vibrations. For the explanation
of these effects see § 117.

The temperature coefficient found by Koenig is ‘000112, so that
the pitch of a 256 fork falls ‘0286 for each degree Cent. by which
the temperature rises.

In determinations of absolute pitch® by the Author of this work
an electrically maintained interrupter fork, whose frequency may
for example be 32, was employed to drive a dependent fork of
pitch 128. When the apparatus is in good order, there is a fixed
relation between the two frequencies, the one being precisely
four times the other. The higher is of course readily compared
by beats, or by optical methods, with a standard of 128, whose
accuracy is to be tested. It remains to determine the frequency
of the interrupter fork itself.

For this purpose the interrupter is compared with the pendulum
of a standard clock whose rate is known. The comparison may be
direct, or the intervention of a phonic wheel (§ 63) may be invoked.
In either case the pendulum of the clock is provided with a silvered
bead upon which is concentrated the light from a lamp. Im-
mediately in front of the pendulum is placed a screen perforated
by a somewhat narrow vertical slit. The bright point of light

! Nature, xvir. p. 13, 1877 ; Phil. Trans. 1883, Part . p. 316.
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reflected by the bead is seen intermittently, either by looking over
the prong of the interrupter or through a hole in the disc of the
phonic wheel. In the first case there are 32 views per second, but
in the latter this number is reduced by the intervention of the
wheel. In the experiments referred to the wheel was so
arranged that one revolution corresponded to four complete vibra-
tions of the interrupter, and there were thus 8 views of the pen-
dulum per second, instead of 32. Any deviation of the period of
the pendulum from a precise multiple of the period of intermittence
shews itself as a cycle of changes in the appearance of the flash
of light, and an observation of the duration of this cycle gives the
data for a precise comparison of frequencies.

The calculation of the results is very simple. Supposing in
the first instance that the clock is correct, let ¢ be the number of
cycles per second (perhaps g;) between the wheel aud the clock.
Since the period of a cycle is the time required for the wheel to
gain, or lose, one revolution upon the clock, the frequency of revo-
lution is 8 + a. The frequency of the auxiliary fork is precisely 16
times as great, i.e. 128 +16a. If b be the number of beats per
second between the auxiliary fork and the standard, the frequency
of the latter is

128 + 16a + b.

An error in the mean rate of the clock is readily allowed tor,
but care is required to ascertain that the actual rate at the time
of observation does not differ appreciably from the mean rate.
To be quite safe it would be necessary to repeat the deter-
minations at intervals over the whole time required to rate the
clock by observation of the stars. In this case it would probably
be convenient to attach a counting apparatus to the“phonic wheel.

In the method of M’Leod and Clarke! time, given by a clock,
is recorded automatically upon the revolving drum of a chrono-
graph, which is maintained by a suitable governor in uniform
rotation. The circumference of the drum is marked with a grating
of equidistant lines parallel to the axis, and the comparison between
the drum and the standard fork is effected by observation of the
wavy pattern seen when the revolving grating is looked at past
the edges of the vibrating prongs. These observers made a special
investigation as to the effect of bowing a fork upon previously
existing vibrations. Their conclusion is that in the case of un
loaded forks no sensible change of phase occurs.

1 Phil, Trans. 1880, Part I. p. 1.
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In the chronographic method of Prof. A. M. Mayer! the fork
under investigation is armed with a triangular fragment of thin
sheet metal, one milligram in weight, and actually traces its
vibrations as a curve of sines upon smoked paper. The time is
recorded by small electric discharges from an induction apparatus,
under the control of a clock, and delivered from the same tracing.
point.  Although the disturbance due to the tracing point appears
to be very small, it is doubtful whether this method could compete
in respect of accuracy with those above described where the com-
parison with the standard is optical or acoustical. On the other
Land, it has the advantage of not requiring a uniform rotation of
the drum, and the apparatus lends itself with facility to the deter-
mination of small intervals of time after the manner originally
proposed by T. Young?

68d. The methods hitherto described for the determination of
absolute pitch, with the exception of that of Scheibler, may be
regarded as rather mechanical in their character, and they depend
for the most part upon somewhat special apparatus. It is possible,
however, to determine pitch with fair accuracy with no other
appliances than a common harmonium and a watch, and as the
process is instructive in respect of the theory of overtones, a short
account will here be given of it?

The fundamental principle is that the absolute frequencies of
two musical notes can be deduced from the interval between
them, i.e. the ratio of their frequencies, and the number of beats
which they occasion in a given time when sounded together.
For example, if # and y denote the frequencies of two notes whose
interval is an equal temperament major third, we know that
y=125992 x. At the same time the number of beats heard in a
second depending upon the deviation of the third from true
intonation, is 4y — 52. In the case of the notes of a harmonium,
which are rich in overtones, these beats are readily counted, and
thus two equations are obtained from which the values of # and y
are at once found.

Of course in practice the truth of an equal temperament third
could not be taken for granted, but the difficulty thence arising
would be easily met by including in the counting all the three

! National Academy of Sciences, Washington, Memoirs, Vol, 1ir. p. 48, 1884.
3 Lectures, Vol. 1. p. 191.
3 Nature, Jan. 23, 1879.
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major thirds which together make up an octave. Suppose, for
example, that the frequencies of ¢, e, g4, ¢’ are respectively z, v, z,
2z, and that the beats per second between z and y are a, between
y and z are b, and between z and 2z are ¢. Then
4y —dzx=aqa, 4z-—5y=>b, 8x—-5z=c,

from which z=1%(25a + 200 + 16¢),

¥ =%(32a + 25b + 20¢),

z =% (40a + 32b + 25c¢).

In the above statements the octave c¢—c¢' is for simplicity
supposed to be true. The actual error could readily be allowed
for if required ; but in practice it is not necessary to use ¢’ at all,
inasmuch as the third set of beats can be counted equally well
between g% and c.

The principal objection to the method in the above form is
that it presupposes the absolute constancy of the notes, for
example, that y is the same whether it is being sounded in
conjunction with # or in conjunction with z. This condition is
very imperfectly satisfied by the notes of a harmonium.

In order to apply the fundamental principle with success, it is
necessary to be able to check the accuracy of the interval which is
supposed to be known, at the same time that the beéats are being
counted. If the interval be a major tone (9 : 8), its exactness is
proved by the absence of beats between the ninth component of
the lower and the eighth of the higher note, and a counting
of the beats between the tenth component of the lower and the
ninth of the higher note completes the necessary data for de-
termining the absolute pitch.

The equal temperament whole tone (1'12246) is intermediate
between the minor tone (1:11111) and the major tone (112500),
but lies much nearer to the latter. Regarded as a disturbed
major tone, it gives slow beats, and regarded as a disturbed
minor tone it gives quick ones. Both sets of beats can be heard
at the same time, and when counted (by two observers) give the
means of calculating the absolute pitch of both notes. If z and y
be the frequencies of the two notes, @ and b the frequencies of the
slow and quick beats respectively,

9z —8y=a, 9y—10z=)b,
whence z=9a +8b, y=10a+ 9b.
The application of this method in no way assumes the truth of
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the equal temperament wholé tone, and in fact it is advantageous
to flatten the interval somewhat, so as to make it lie more nearly
midway between the major and the minor tone. In this way the
rapidity of the quicker beats is diminished, which facilitates the
counting.

The course of an experiment is then as follows. The notes ¢
and D are sounded together, and at a given signal the observers
begin counting the beats situated at about d” and e” on the scale.
After the expiration of a measured interval of time a second signal
is given, and the number of both sets of beats is recorded.

For further details of the method reference must be made to
the original memoir, but one example of the results may be given
here. The period being 10 minutes, the number of beats recorded
were 2392 and 2341, giving @ = 67°09 as the pitch of C.



CHAPTER 1IV.

VIBRATING SYSTEMS IN GENERAL.

69. WE have now examined in some detail the oscillations
of a system possessed of one degree of freedom, and the results,
at which we have arrived, have a very wide application. But
material systems enjoy in general more than one degree of
freedom. In order to define their configuration at any moment
several independent variable quantities must be specified, which,
by a generalization of language originally employed for a point,
are called the co-ordinates of the system, the number of indepen-
dent co-ordinates being the index of freedom. Strictly speaking,
the displacements possible to a natural system are infinitely
various, and cannot be represented as made up of a finite number
of displacements of specified type. To the elementary parts of
a solid body any arbitrary displacements may be given, subject
to conditions of continuity. It is only by a process of abstraction
of the kind so constantly practised in Natural Philosophy, that
solids are treated as rigid, fluids as incompressible, and other sim-
plifications introduced so that the position of a system comes to
depend on a finite number of co-ordinates. It is not, however,
our intention to exclude the consideration of systems possessing
infinitely various frecdom; on the contrary, some of the most
interesting applications of the results of this chapter will lie in
that direction. But such systems are most conveniently conceived
as limits of others, wnose freedom is of a more restricted kind.
We shall accordingly commence with a system, whose position
is specified by a finite number of independent co-ordinates v,

Vo, ¥y, &c.

70. The main problem of Acoustics consists in the investi-
gation of the vibrations of a system about a position of stable
equilibrium, but it will be convenient to commence with the
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statical part of the subject. By the Principle of Virtual Velocities,
if we reckon the co-ordinates 4r,, Yr,, &c. from the configuration
of equilibrium, the potential energy of any other configuration
will be a homogeneous quadratic function of the co-ordinates,
provided that the displacement be sufficiently small. This quan-
tity is called V, and represents ‘the work that may be gained in
passing from the actual to the equilibrium configuration. We may

write
V= 1}011'\;’&2 + %0214’22 + oo+ O+ 023‘\#2"’3 + ... (1)
Since by supposition the equilibrium is thoroughly stable, the
quantities ¢y, ¢, 1y, &c. must be such that V is positive for all
real values of the co-ordinates.

71. If the system be displaced from the zero configuration
by the action of given forces, the new configuration may be
found from the Principle of Virtual Velocities. If the work done
by the given forces on the hypothetical displacement &vr, &y,
&c. be

Wb+ Wb+ ceveeveeinneciiiian (1),
this expression must be equivalent to 8V, so that since 8y, Sy,
&c. are independent, the new position of equilibrium is deter-

mined by
av av

= \pl 3 = \I’z, & ...................
v, v, c (2)
or by (1) of § 70,
CII\P1'+ Cm‘;’a + C]:;‘\!f‘s + ...... - \I’I
cﬂl'\!’x + Cl_»z\!’g + Cga\}fs L ST = ‘I’z ............. (3),

where there is no distinction in value between c,, and cg,.
* From these equations the co-ordinates may be determined in
terms of the forces. If V be the determinant

V=1 ¢y, ¢, Cisy «-»

S Cmy e | (4),

Ca, Cs2y Cgg, «.»

..................

v
Vg, = ,+d \I'+ .....
dn
_av dV ............... (5)
\v) %-(E\Ifﬁ%;\lf,-y .....
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These equations determine 4, v, &c. uniquely, since V does
not vanish, as appears from the consideration that the equations
dV[dyr, = 0, &c. could otherwise be satisfied by finite values of the
co-ordinates, provided ounly that the ratios were suitable, which is
contrary to the hypothesis that the system is thoroughly stable in
the zero configuration.

2. If Ay, ... W, and ¥/, ... ¥/, ... be two sets of dis-
placements and corresponding forces, we have the following re-
ciprocal relation,

W + W + .=+ W 4 (1),

as may be seen by substituting the values of the forces, when each
side of (1) takes the form,

cll“l’l‘l’l, + oy’ + oonn
et G (\P‘z\P‘l, + ‘1’2"1’1) +Cs (‘I"'x\l"‘z/ + \Psl\Pz) + e

Suppose in (1) that all the forces vanish except ¥, and ¥

then
Vb =Wy e, e ).

If the forces ¥, and ¥, be of the same kind, we may suppose
them equal, and we then recognise that a force of any type acting
alone produces a displacement of a second type equal to the
displacement of the first type due to the action of an equal force
of the second type. For example, if 4 and B be two points
of a rod supported horizontally in any manner, the vertical de-
flection at A, when a weight W is attached at B, is the same as
the deflection at B, when W is applied at 4.

73. Since V is a homogeneous quadratic function of the co-
ordinates,

av av
2V—W\P‘1+E'\Pz+ ..................... (1),
or, if ¥,, ¥,, &c. be the forces necessary to maintain the dis-
placement represented by i, ¥, &,
2V =W + Vg + ceevniiinnnieiins (2).

If ¥+ Ay, ¥+ Ay, &c. represent another displacement.
for which the necessary forces are ¥, + AW, ¥, + AY,, &c., the

1 On this subjeoct, see Phil. Mag., Dec., 1874, and March, 1875.
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corresponding potential energy is given by
QV+AV)= (T, +AY) Y+ AY) + ...
=2V + VA4 + Vol + ...
+ AV AN+ AV A+

+ AV A+ AV A+,
so that we may write

2AV =S V. Ay + 3 AV ¢ + S AV. A ... (3),

where AV is the difference of the potential energies in the two
cases, and we must particularly notice that by the reciprocal
relation, § 72 (1),

SUAY =S AV i oo, (4).

From (3) and (4) we may deduce two important theorems,
relating to the value of V for a system subjected to given dis-
placements, and to given forces respectively.

74. The first theorem is to the effect that, if given displace-
ments (not sufficient by themselves to determine the configuration)
be produced in a system by forces of corresponding types, the re-
sulting value of V for the system so displaced, and in equilibrium,
is as small as it can be under the given displacement conditions;
and that the value of V for any other configuration exceeds this
by the potential energy of the configuration which is the difference
of the two. The only difficulty in the above statement consists
in understanding what is meant by * forces of corresponding types.
Suppose, for example, that the system is a stretched string, of
which a given point P is to be subject to an obligatory displace-
ment; the force of corresponding type is here a force applied
at the point P itself. And generally, the forces, by which the
proposed displacement is to be made, must be such as would do
no work on the system, provided only that that displacement were
not made.

By a suitable choice of co-ordinates, the given displacement
conditions may be expressed by ascribing given values to the first
r co-ordinates ¥, Y, ... ¥, and the conditions as to the forces
will then be represented by making the forces of the remaining
types W1, Wrps, &c. vanish,  If 4+ Ayr refer to any other con-
figuration of the system, and ¥ + AW be the corresponding forces,
we are to suppose that Avr,, Ay, &c. as far as Ay, all vanish.
Thus for the first » sutfixes Ayr vanishes, and for the remaining
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suffixes ¥ vanishes. Accordingly % W.Avyr 1s zero, and therefore
S AV .4 is also zero. Hence® ..

1

AV =S AV A e, I,

which proves that if the given displacements be made in any
other than the prescribed way, the potential energy is increased
by the energy of the difference of the configurations.

By means of this theorem we may trace the effect on V of any
relaxation in the stiffness of a system, subject to given displacement
conditions. For, if after the alteration in stiffness the original equi-
librium configuration be considered, the value of ¥ corresponding
thereto is by supposition less than before; and, as we have just
seen, there will be a still further diminution in the value of V'
when the system passes to equilibrium under the altered con-
ditions. Hence we conclude that a diminution in V as a function
of the co-ordinates entails also a diminution in the actual value of
V when a system is subjected to given displacements. It will
be understood that jn particular cases the diminution spoken of
may vanish?,

For example, if a point P of a bar clamped at both ends be
displaced laterally to a given small amount by a force there ap-
plied, the potential energy of the deformatidn will be diminished
by any relaxation (however local) in the stiffness of the bar.

78. The second theorem relates to a system displaced by given
forces, and asserts that in this case the value of V in equilibrium
is greater than it would be in any other configuration in which
the system could be maintained at rest under the given forces, by
the operation of mere constraints. We will shew that the removal
of constraints increases the value of V.

The co-ordinates may be so chosen that the conditions of con-
straint are expressed by

V=0, Y2=0,..c.o. ¥, =0u0ctrrrrrernnene. 1).
We have then to prove that when ¥,.,, ¥,,,, &c. are given, the
value of V is least when the conditions (1) hold. The second
configuration being denoted as before by .+ Ay, &c., we see
that for suffixes up to r inclusive y~ vanishes, and for higher
suffixes AY vanishes. Hence

3¢ AV =3 Ay. ¥ =0,

1 See a paper on General Theorems relating to Equilibrium and Initial and
Steadv Motions. Phil. Mag., Mareh. 1875.
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and therefore
2QAV =3 AV. AV .iiiiiiiiiiiniiiinene, (2),

shewing that the increase in ¥ due to the removal of the con-
straints is equal to the potential energy of the difference of the two
configurations.

76. We now pass to the investigation of the initial motion of
a system which starts from rest under the operation of given
impulses. The motion thus acquired is independent of any
potential energy which the system may possess when actually
displaced, since by the nature of impulses we have to do only
with the initial configuration itself. The initial motion is also
independent of any forces of a finite kind, whether impressed on
the system from without, or of the nature of viscosity.

If P, Q, R be the component impulses, parallel to the axes, on
a particle m whose rectangular co-ordinates are z, y, z, we have by
D’Alembert’s Principle

Sm (#8x + 8y +70z) =2 (Pdx+ Qdy + R&2)...... (1),

where &, 9, 7 denote the velocities acquired by the particle in virtue
of the impulses, and 8, 8y, 8z correspond to any arbitrary dis-
placement of the system which does not violate the connection of
its parts. It is required to transform (1) into an equation expressed
by the independent generalized co-ordinates.

For the first side,

2m(ab8x+98y+z’8z)=8\[r12m( Fo +Jd‘l’ +z;l\;)

+d\}r22m< e +ydd\;/-,+z {;>+ ......
dy dz
—81p12m<wd\lr +yd\‘;/r a—i>+ ......

=& }Em——\?’- (B+P+)+.. ...

= S«h d‘f’l + S\h d‘lf

where T, the kinetic energy of the system is supposed to be
expressed as a function of ¥, ¥, &c.
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On the second side,

E(P8w+Q'8y+R8z)=B\[rIEm(Pj—$ +Q£%+R iz—>+ ......
1 1

dyn,
=§ 5\#1 + EQB\,lr, .......................... (3),
. dz
if Zm( d% Q d%>=.5,&c.
The transformed equation is thererore
( d\lrl El> ‘41'1 (E\F, - fg) 8\#2 =0 L (4‘),

where 84, 8yr, &c. are now completely independent. Hence to

determine the motion we have

e O

d\h Y dy

where &, £,, &c. may be considered as the generalized components
of impulse.

=E,&C i (5),

77. Since T is a homogeneous yuadratic function of the gene-
ralized co-ordinates, we may take

T= 1}0,,1\}}1’ + b2+ .o + am\{}]\'h + am\fr,\fra +oens (1),
whence

dT . . .
= d\h = apyn + Vs + s + ...

. A [ N {2),
Ez='§'l% =ayy; + Gog\rg + Ay + ..o

where there is no distinction in value between «, and d,,.
Again, by the nature of T,

2T = d‘l'1+\hd‘l’a

The theory of initial motion is closely analogous to that of the
displacement of a system from a configuration of stable equilibrium
by steadily applied forces. In the present theory the initial kinetic
energy T bears to the velocities and impulses the same relations
as in the former V bears to the displacements and forces respect-
ively. In one respect the theory of initial motions is the more
complete, inasmuch as T is exactly, while V is in general only
approximately, a homogeneous quadratic function of the variables.

...... =Eyn +Ee+ ... (8).
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If Yry, ¥, ..oy &, ., ... denote one set of velocities and impulses
for a system started from rest, and \[‘rl', ¥, ..., &, &, ... a second
set, we may prove, as in § 72, the following reciprocal relation :

ENrn+ ENn o =B+ B e (40

This theorem admits of interesting application to fluid motion.
It is known, and will be proved later in the course of this work,
that the motion of a frictionless incompressible liquid, which
starts from rest, is of such a kind that its component velocities
at any point are the corresponding differential coefficients of a
certain function, called the velocity-potential. Let the fluid be
set in motion by a prescribed arbitrary deformation of the surface
S of a closed space described within it. The resulting motion is deter-
mined by the normal velocities of the elements of S, which, being
shared by the fluid in contact with them, are denoted by du/dn, if u
be the velocity.potential, which interpreted physically denotes the
impulsive pressure, if the density be taken as unity. Hence by the
theorem, if v be the velocity—potential of a second motion, corres.
ponding to another set of arbitrary surface velocities dv/dn,

fu%d8=ffv%—:ds .................... 5),

—an equation immediately following from Green’s theorem, if
besides S there be only fixed solids immersed in the fluid. The
present method enables us to attribute to it a much higher gene-
rality. For example, the immersed solids, instead of being fixed,
may be free, altogether or in part, to take the motion imposed
upon them by the fluid pressures.

78. A particular case of the general theorem is worthy of
special notice. In the first motion let

-\I}1=A" ‘¢‘2=O’ S3=E4=E,, ...... =0;
and in the second,
YW=0, =4, &= E/=E ... = 0.
Then =i 1)

In words, if, by means of a suitable impulse of the correspond-
ing type, a given arbitrary velocity of one co-ordinate be impressed
on a system, the impulse corresponding to a second co-ordinate
necessary in order to prevent it from changing, is the same as
would be required for the first co-ordinate, if the given velocity
were impressed on the second.

! Thomson and Tait, § 313 (f).
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As a simple example, take the case of two spheres 4 and B
immersed in a liquid, whose centres are free to move along certain
lines. If 4 be set in motion with a given velocity, B will
naturally begin to move also. The theorem asserts that the
impulse required to prevent the motion of B, is the same as if
the functions of A and B were exchanged: and this even though
there be other rigid bodies, C, D, &c., in the fluid, either fixed, or
free in whole or in part.

The case of electric currents mutually influencing each other by
induction is precisely similar. Let there be two circuits 4 and B,
in the neighbourhood of which there may be any number of other
wire circuits or solid conductors. If a unit current be suddenly
developed in the circuit 4, the electromotive impulse induced in
B is the same as there would have been in 4, had the current been
forcibly developed in B.

79. The motion of asystem, on which given arbitrary velocities
are impressed by means of the necessary impulses of the corre-
sponding types, possesses a remarkable property discovered by
Thomson. The conditions are that ¥, vr, v, ...y, are given,
while &,41, &40, ... vanish.  Let 4y, n,,... &, &, &ec. correspond to
the actual motion; and

Vit A, Yt B, i+ BF, L +AL,...
to another motion satisfying the same velocity conditions. For
each suffix either Ayr or £ vanishes. Now for the kinetic energy
of the supposed motion,

2(T+AT)=(&+ AE) (Yo + D) + ...
= 2T + E Ay + E AV + ...
+ AL A+ AL A+ o+ AEAY + AEA + ...
But by the reciprocal relation (4) of § 77

EIA‘\PI + ... =A51.1P‘1+...,
of which the former by hypothesis is zero; so that

20T = AE AV + AEAY, + oo ),
shewing that the energy of the supposed motion exceeds that of
the actual motion by the energy of that motion which would have
to be compounded with the latter to produce the former. The
motion actually induced in the system has thus less energy than
any other satisfying the same velocity conditions. In a subsequent
chapter we shall make use of this property to find a superior limit
to the energy of a system set in motion with prescribed velocities.
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If any diminution be made in the inertia of any of the parts
of a system, the motion corresponding to prescribed velocity
conditions will in general undergo a change. The value of 7 will
necessarily be less than before ; for there would be a decrease even
if the motion remained unchanged, and therefore a fortior: when
the motion is such as to make 7' an absolute minimum. Con-
versely any increase in the inertia increases the initial value of 7'

This theorem is analogous to that of § 74. The analogue for
initial motions of the theorem of § 75, relating to the potential
energy of a system displaced by given forces, is that of Bertrand,
and may be thus stated :—If a system start from rest under the
operation of given impulses, the kinetic energy of the actual motion
exceeds that of any other motion which the system might have
been guided to take with the assistance of mere constraints, by the
kinetic energy of the difference of the motions?.

[The theorems of Kelvin and Bertrand represent different
aspects of the same truth. Let us suppose that the prescribed
nnpulse is entirely of the first type &. Then 7' =4}£4, whether
the motion be free or be subjected to any constraint. Further,
under any given circumstances as to constraint, ¥, is proportional
to &, and the ratio & : vy may be regarded as the moment of
inertia; so that . .

T'=3E = gmy = 352 /m.

Kelvin's theorem asserts that the introduction of a constraint
can v increase the value of 7'when \irl is given. Hence whether
yr be given or not, the constraint can only increase the ratio of
2T to n? or of & to x[}l. Both theorems are included in the
statement that the moment of inertia is increased by the intro-
duction of a constraint.]

80. We will not dwell at any greater length on the mechanics
of a system subject to impulses, but pass on to investigate
Lagrange’s equations for continuous motion. We shall suppose
that the connections binding together the parts of the system
are not explicit functions of the time; such cases of forced
motion as we shall have to consider will be specially shewn to
be within the scope of the investigation.

By D’Alembert’s Principle in combination with that of Virtual
Velocities,

2m (#8z + Oy + 282) = (X 8z + Yoy + Z82)...... (1),
! Thomson and Tait, § 311. Phil. Mag. March, 1875.
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where 8z, 8y, 6z denote a displacement of the system of the most
general kind possible without violating the connections of its
parts. Since the displacements of the individual particles of
the system are mutually related, 8z, ... are not independent. The
object now is to transform to other variables +, ¥, ..., which
shall be independent. We have

Bdx = T (xSw) 3642,
so that
2m (#8x + Oy + 28z) = Em (#8z + 9oy + 282) — 8T.

But (§ 76) we have already found that
aT

Em(2dx+ Ydy + £82) = 8 X 4+ e,
yoy )= ‘# Vit oo 7 Y
hil 8 =— 8 3 ey
while ' d\h Yy + d% 1p-1
if T be expressed as a quadratic function of v, ¥, ..., Whose
coefficients are in general functions of 4y, \kg, .. Also
= 1 8 3
dat (d\p 3"") dt (d«p) Nt \p ¥
inasmuch as gt N = dt \h
Accordingly

dit(ji) d«h} s

+ {% (ﬁ ) - oT«Fz} St oo (2.

Thus, if the transformation of the second side ot (1) be
3 (X 82+ Yoy +2Z82)=VW0¢ + Vudra + . oeennnn (3),
we have equations of motion of the form
d @dT\ dT
= ( EJ’»> Ak RN (4).
Since W8y denotes the work done on the system during a
displacement 8y, ¥ may be regarded as the generalized com-

ponent of force.
In the case of a conservative system it is convenient to
separate from ¥ those parts which depend only on the configura-

2m (% 8x + §8y + 28z) ={
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tion of the system. Thus, if V denote the potential energy, we
may write
d (dT) daT + 97 av_
dt\dy/  dy dy
where ¥ is now limited to the forces acting on the system which
are not already taken account of in the term dV/dv.

81. There is also another group of forces whose existence
it is often advantageous to recognize specially, namely those
arising from friction or viscosity. If we suppose that each
particle of the system is retarded by forces proportional to its
component velocities, the effect will be shewn in the fundamental
equation (1) § 80 by the addition to the left-hand member of
the terms

3, (ko 8% + 1Y 8y + £,282),
where x,, Ky, x, are coefficients independent of the velocities,
but possibly dependent on the configuration of the system. The
transformation to the independent co-ordinates v, ¥, &c. is
effected in a similar manner to that of
S (z8z + §8y +282)
considered above (§ 80), and gives

dr dF
Iir: S\h-*-d_\fr,&h-l- ..................... (1),

where F =13 (k8 + nyy® + K,3°)
=3y + $buyr? + .o b + bards + . (2).

F, it will be observed, is like T a homogeneous quadratic
function of the velocities, positive for all real values of the
variables. It represents half the rate at which energy is dissipated.

The above investigation refers to retarding forces proportional
to the absolute velocities; but it is equally important to consider
such as depend on the relatwe velocities of the parts of the
system, and fortunately this can be done without any increase
of complication. For example, if a force act on the particle =,
proportional to (#, — 4,), there will be at the same moment an
equal and opposite force acting on the particle #,, The additional
terms in the fundamental equation will be of the form

Kz (F — &) 82, + K65 (83— &,) Oz,

which may be written

Ky (& — &) (2, — 2,) = 8"’1 1!' ——(wey (8 — &)} + ...,



81.] THE DISSIPATION FUNCTION. 103

and so on for any number of pairs of mutually influencing
particles. The only effect is the addition of new terms to F,
which still appears in the form (2). We shall see presently that
the existence of the function F, which may be called the Dis-
sipation Function, implies certain relations among the coefficients
of the generalized equations of vibration, which carry with them
important consequences?

The equations of motion may now be written in the form

LE)-E ey
t\dy)  dy  dy dy

82. We may now introduce the condition that the motion
takes place in the immediate neighbourhood of a configuration
of thoroughly stable equilibrium ; 7' and F are then homogeneous
quadratic functions of the velocities with coefficients which are
to be treated as constant, and ¥V is a similar ‘function of the
co-ordinates themselves, provided that (as we suppose to be
the case) the origin of each co-ordinate is taken to correspond
with the configuration of equilibrium. Moreover all three
functions are essentially positive. Since terms of the form d7)/dvyr
are of the second order of small quantities, the equations of motion
become linear, assuming the form
fl-(£>+‘—’l-€+°—lz=\1r .................. ),
di\dyr/  dyr  dyr
where under ¥ are to be included all forces acting on the system
not already provided for by the differential coefficients of F and V.

The three quadratic functions will be expressed as follows :—

T =}any? + 3@l + .. + @i + - 1
F =30y + 3o + oo+ bgfrfia + oo - e (2),
V=% + dcapd+ ... + Cfrna + ...

where the coefficients a, b, ¢ are constants,

From equation (1) we may of course fall back on previous
results by supposing F and V, or F and T, to vahish.

A third set of theorems of interest in the application to Elec-

1 The differences referred to in the text may of course pass into differential
coefficients in the case of a body continuously deformed.

2 The Dissipation Function appears for the first time, so far as I am aware, in
a paper on General Theorems relating to Vibrations, published in the Proceedings
of the Mathematical Society for June, 1873.
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tricity may be obtained by omitting 7" and ¥, while F' is retained,
but it is unnecessary to pursue the subject here.

If we substitute the values of 7, F' and V, and write D for dfdt,
we obtain a system of equations which may be put into the form

enVy + e+ e+ ... = ¥, 1

eny + exVro+ ey + ... =,
331‘}"1 + esg\b'z + 833\!’3 + .= \I,;

where e,, denotes the quadratic operator
Crs = OrgD? + 03D 4+ Crg evnevnininiinnannnnn. (4).
It must be particularly remarked that since
Qs = Aap, Org=0bgr, Crs=Csr,
1t follows that Crg == Car eereenereerenenraeesiseinnrens (5).

[The theory of motional forces, i.e. forces proportional to the
velocities, has been further developed in the second edition of
Thomson and Tait’s Natural Philosophy (1879). In the most
general case the equations may be written

d (dT dv . . .

pr (:i:}_r:) + E—\l-f:-i- buvr + (bt Bua) Yo + (bis+ Bis) s +...=, ©
d/dTl av . . , ’
G5t g+ ln = Bt ba+ (b= B Yot =,
where brs =gy Brs=1Fr «eeeeerreneeieeeinen. (7).

Of these the terms with the coefficients b can be derived from
the dissipation function

F=3byyr + 3boarfr + ... + bgfriVra+ ...

The terms in B on the other hand do not represent dissipation,
and are called the gyrostatic terms.

If we multiply the first of equations (6) by vy, the second by
r,, &c., and then add, we obtain

d(T+ V)
dt

In this the first term represents the rate at which energy is
being stored in the system; 2F is the rate of dissipation ; and the
two together account for the work done upon the system by the
external forces.]

+2F =V + Vg + oo (8).
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83. Before proceeding further, we may draw an important
inference from the linearity of our equations. If corresponding
respectively to the two sets of forces Wy, ¥o,..., v/, ¥, ... two
motions denoted by v, ¥, ..., Yo, ¥, ... be possible, then must
also be possible the motion ¥ + ¥, Yo+, ... In conjunction
with the forces ¥, +%¥/, ¥,+¥,,.... Or, as a partiéular case,
when there are no impressed forces, the superposition of any two
natural vibrations constitutes also a natural vibration. This is the
celebrated principle of the Coexistence of Small Motions, first
clearly enunciated by Daniel Bernoulli. It will be undersfood
that its truth depends in general on the justice of the assumption
that the motion is so small that its square may be neglected.

[Again, if a system be under the influence of constant forces
W,, &c., which displace it into a new position of equilibrium, the
vibrations which may occur about the new position are the same
as those which might before have occurred about the old position.]

84. To investigate the free vibrations, we must put ¥,, ¥,,...
equal to zero ; and we will commence with a system on which no
frictional forces act, for which therefore the coefficients e, &c. are
even functions of the symbol D. We have

311‘;’1 + 912"}"2 +...=0
321‘!"1 + 6‘2‘2‘1"2 +. = Q [ crecereerenenrsieneaans (1)

........................

From these equations, of which there are as many (m) as the
system possesses degrees of liberty, let all but one of the variables
be eliminated. The result, which is of the same form whichever
be the co-ordinate retained, may be written

Tgrm 0 o @),

where V denotes the determinant

€y, €1, eu:---l

€y, €n;, €, .-

€31, €31, €33y c:-

and is (if there be no friction) an even function of D of degree 2m.
Let + 2y, +Ag ..., £ Am be the roots of V=0 considered as an
equation in D. Then by the theory of differential equations the
most general value of ¥ is

V=AMt 4 A'e M+ Bt Ble b+ (4),
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where the 2m quantities 4, 4’, B, B, &c. are arbitrary constants.
This form holds good for each of the co-ordinates, but the constants
in the different expressions are not independent. In fact if a
particular solution be

‘\b‘l = Ale)‘:t, 1”2 = Aze}“t; &C':

the ratios A, : A, : 4,... are completely determined by the
equations
endi+end; + e ds+ ..., =0
' 321A1+623Ag+623A3+ ...... =O ............ (5),

....................................

where in each of the coefficients such as e,;, A, is substituted for D.
Equations (5) are necessarily compatible, by the condition that A,
is a root of V=0. The ratios 4,":4, :4, ... corresponding to
the root —A, are the same as the ratios A,:4,:4;..., but for
the other pairs of roots A,, — \,, &c. there are distinct systems of
ratios.

85. The nature of the system with which we are dealing
imposes an important restriction on the possible values of A. If A,
were real, either 2, or — A, would be real and positive, and we
should obtain a particular solution for which the co-ordinates, and
with them the kinetic energy denoted by

M {dandlP+ ... apd A+ ..} e

increase without limit. Such a motion is obviously impossible for
a conservative system, whose whole energy can never differ from
the sum of the potential and kinetic energies with which it was
animated at starting. This conclusion is not evaded by taking A,
negative ; because we are as much at liberty to trace the motion
backwards as forwards. It is as certain that the motion never was
infinite, as that it never will be. The same argument excludes the
possibility of a complex value of A.

We infer that all the values of A are purely imaginary, cor-
responding to real negative values of A% Analytically, the fact
that the roots of V=0, considered as an equation in D2 are
all real and negative, must be a consequence of the relations
subsisting between the coefficients a,,, ays, ..., ¢4, €y, ... in virtue of
the fact that for all real values of the variables T and V are
positive. The case of two degrees of liberty will be afterwards
worked out in full.
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86. The form of the solution may now be advantageously

changed by writing in, for X, &ec. (where =+ —1), and takmg
new arbitrary constants. Thus

= 4, cos (mt — a) + B, cos (ngt — B) + O, cos (ngt — ) + ...

¥y =4, cos (mt — a) + B, cos (nt — B) + C,cos (ngt —y) + ... (L),
Y= A;c08 (mt — a)+ B;cos (nyt — B) + C;cos (ngt — o) + ..

where 7%, n?, &c. are the m roots of the equation of m®™ degree
in n? found by writing — n? for D* in V=0. For each value of
the ratios 4,:4,: 4;... are determinate and real.

This is the complete solution of the problem of the free
vibrations of a conservative system. We see that the whole
motion may be resolved into 7 normal harmonic vibrations of
(in general) different periods, each of which is entirely indepen-
dent of the others. If the motion, depending on the original
disturbance, be such as to reduce itself to one of these (n,)
we have

Y =4, cos (mt—a), Y,=A4,cos(nt—a) &e....... (2),

where the ratios 4,: 4,: 4,...depend on the constitution of the
system, and only the absolute amplitude and phase are arbitrary.
The several co-ordinates are always in similar (or opposite) phases
of vibration, and the whole system is to be found in the configura-
tion of equilibrium at the same moment.

We perceive here the mechanical foundation of the supremacy
of harmonic vibrations. If the motion be sufficiently small, the
differential equations become linear with constant coefficients;
while circular (and exponential) functions are the only ones which
retain their type on differentiation.

87. The m periods of vibration, determined by the equation
V =0, are quantities intrinsic to the system, and must come out
the same whatever co-ordinates may be chosen to define the con-
figuration. But there is one system of co-ordinates, which is
especially suitable, that namely in which the normal types of
vibration are defined by the vanishing of all the co-ordinates but
one. In the first type the original co-ordinates v ,v, &c. have
given ratios; let the quantity fixing the absolute values be ¢,, 8o
that in this type each co-ordinate is a known multiple of ¢,. So
in the second type each co-ordinate may be regarded as a known
maultiple of a second quantity ¢,, and so on. By a suitable deter-
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mination of the m quantities ¢, ¢, &c., any configuration of the
system may be represented as compounded of the m configurations
of these types, and thus the quantities ¢ themselves may be looked
upon as co-ordinates defining the configuration of the system.
They are called the normal co-ordinates®.

When expressed in terms of the normal co-ordinates, 7'and V
are reduced to sums of squares; for it is easily seen that if the
products also appeared, the resulting equations of vibration would
not be satisfied by putting any m — 1 of the co-ordinates equal to
zero, while the remaining one was finite.

We might have commenced with this transformation, assuming
from Algebra that any two homogeneous quadratic functions can
be reduced by linear transformations to sums of squares.z2 Thus

T= ‘%‘044312 + %a,(ﬁ,’ + ... Ir
V=3¢ + 300"+ ... )
where the coefficients (in which the double suffixes are no longer
required) are necessarily positive if the equilibrium be stable.
Lagrange’s equations now become

ad + 091 =0, ad+capo=0, &c.oeeenn 2),
of which the solution is
¢, =4 cos (nt —a), ¢y =DBcos(nt—pB), &c. ...... (3).
where 4, B..., a, B... are arbitrary constants, and
nl=c,+a, NEP=Cp+ay &Co.oiiiiiil (4).
[The vibrations expressed by the various normal co-ordinates
are completely independent of one another, and the energy of the

whole motion is the simple sum of the parts corresponding to the
several normal vibrations taken separately. In fact by (1)

T+ V=3%cAl+3cA2+.coceiiiniinnnn. (5).

By the nature of the case the coefficients @ are necessarily
positive. But if the equilibrium be unstable, some of the
coefficients ¢ may be negative. Corresponding to any negative
¢, n becomes imaginary and the circular functions of the time are
replaced by exponentials.

In any motion proportional to eV the disturbance is equally
multiplied in equal times, and the degree of instability may be
considered to be measured by A. If there be more than one

1 Thomson and Tait’s Natural Philgsophy, first edition 1867, § 387.
2 See Routh’s Rigid Dynamics, p. 4vo.



87.] PERIODS OF FREE VIBRATIONS. 109

unstable mode, the relative importance is largely determined bv
the corresponding values of . Thus, if
Y = AeMt + BeM,
in which A; > A, then whatever may be the finite ratio of 4 : B,
the first term ultimately acquires the preponderance, inasmuch as
AeMt : BeM = (A[B) et

In general, unstable equilibrium when disturbed infinitesimally
will be departed from according to that mode which is most
unstable, viz. for which M\ is greatest. In a later chapter we shall
meet with interesting applications of this principle.

The reduction to-normal co-ordinates allows us readily to trace
what occurs when two of the values of n? become equal. It is
evident that there is no change of form. The spherical pendulum
may be referred to as a simple example of equal roots. It is
remarkable that both Lagrange and Laplace fell into the error of
supposing that equality among roots necessarily implies terms
containing ¢ as a factor’. The analytical theory of the general
case (where the co-ordinates are not normal) has been discussed by

Somof* and by Routh?.]

88. The interpretation of the equations of motion leads to a
theorem of considerable importance, which may be thus stated<.
The period of a conservative system vibrating in a constrained type
about a position of stable equilibrium is stationary in value when
the type is normal. .We might prove this from the original
equations of vibration, but it will be more convenient to employ
the normal co-ordinates. The constraint, which may be supposed
to be of such a character as to leave only one degree of freedom, is
represented by taking the quantities ¢ in given ratios.

If we put

d=d,0, ¢ =4.0,&c. ..cooonniiiiil. (1),
6 is a variable quantity, and 4,, 4,, &c. are given for a given con-
straint.

The expressions for 7' and ¥ become

T={}ad? +ads+......} &2
V={(3cdi+3c. A2+ ...... } 62,
1 Thomson and Tait, 2nd edition, § 343 m.
2 St Petersb. dcad. Sci. Mém. 1. 1859.
8 Stability of Motion (Adams Prize Essay for 1877). See also Routh’s Rigid

Dynamics, 5th edition, 1892.
4 Proceedings of the Mathematical Society, June, 1873.

'
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whence, if @ varies as cos pt,

_ AR+ A+ ...+ ot
T A Fa AR+ ...+ and oy

This gives the period of the vibration of the constrained type ;
and it is evident that the period is stationary, when all but one of
the coefficients A4,, 4,,... vanish, that is to say, when the type
coincides with one of those natural to the system, and no constraint
is needed.

[In the foregoing statement the equilibrium is supposed to be
thoroughly stable, so that all the quantities ¢ are positive. But
the theorem applies equally even though any or all of the ¢’s be
negative. Only if p* itself be negative, the period becomes
imaginary. In this case the stationary character attaches to the
coefficients of ¢ in the exponential terms, quantities which measure
the degree of instability.

Corresponding theorems, of importance in other branches of
science, may be stated for systems such that only 7' and F, or only
V and F, are sensible?,

The stationary property of the roots of Lagrange’s determinant
(8) § 84, suggests a general method of approximating to their
values. Beginning with assumed rough approximations to the
ratios 4,: 4,:4,...... we may calculate a first approximation to
p? from

2

? = ) oud,’ +3cnds’+ ...+ cudid, +... )
%%Ala*‘*}"’mﬁz"-?'--.+a,,A1A,‘+__. ...... .

With this value of p* we may recalculate the ratios 4,: 4, ... from
any (m—1) of equations (5) § 84, then again by application of (8)
determine an improved value of ? and so on.]

By means of the same theorem we may prove that an increase
m the mass of any part of a vibrating system is attended by a
prolongation of all the natural periods, or &t any rate that no
period can be diminished. Suppose the increment of mass to be
infinitesimal. After the alteration, the types of free vibration will
in general be changed; but, by a suitable constraint, the system
may be made to retain any one of the former types. If this be
done, it is certain that any vibration which involves a motion of
the part whose mass has been increased will have its period
prolonged. Only as a particular case (as, for example, when a
load is placed at the node of a vibrating string) can the period

4 Brit. Ass. Rep. for 1885, p. 911.
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remain unchanged. The theorem now allows us to assert that
the removal of the constraint, and the consequent change of type,
can only affect the period by a quantity of the second order; and
that therefore in the limit the free period cannot be less than
before the change. By integration we infer that a finite increase
of mass must prolong the period of every vibration which involves
a motion of the part affected, and that in no case can the period
be diminished ; but in order to see the correspondence of the two
sets of periods, it may be necessary to suppose the alterations
made by steps. Couversely, the effect of a removal of part of
the mass of a vibrating system must be to shorten the periods
of all the free vibrations.

In like manner we may prove that if the system undergo such
a change that the potential energy of a given configuration is
diminished, while the kinetic energy of a given motion is unaltered,
the periods of the free vibrations are all increased, and conversely.
This proposition may sometimes be used for tracing the effects of
a constraint; for if we suppose that the potential energy of
any configuration violating the condition of constraint gradually
increases, we shall approach a state of things in which the
condition is observed with any desired degree of completeness.
During each step of the process every free vibration becomes
(in general) more rapid, and a number of the free periods (equal
to the degrees of liberty lost) become infinitely small. The
same practical result may be reached without altering the po-
tential energy by supposing the kinetic energy of any motion
violating the condition to increase without limit. In this case
one or more periods become infinitely large, but the finite
periods are ultimately the same as those arrived at when the
potential energy is increased, although in one case the periods
have been throughout increasing, and in the other diminishing.
This example shews the necessity of making the alterations by
steps; otherwise we should not understand the correspondence
of the two sets of periods. Further illustrations will be given
under the head of two degrees of freedom.

By means of the principle that the value of the free periods
is stationary, we may easily calculate corrections due to any
deviation in the systemn from theoretical simplicity. If we take
as a hypothetical type of vibration that proper to the simple
system, the period so found will differ from the truth by quan-
tities depending on the squares of the irregularities. Several
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examples of such calculations will be given in the course of
this work.

89. Another point of importance relating to the period of a
system vibrating in an arbitrary type remains to be noticed.
It appears from (2) § 88, that the period of the vibration cor-
responding to any hypothetical type is included between the
greatest and least of those natural to the system. In the case
of systems like strings and plates which are treated as capable
of continuous deformation, there is no least natural period;
but we may still assert that the period caleulated from any hypo-
thetical type cannot exceed that belonging to the gravest normal
type. When therefore the object is to estimate the longest
proper period of a system by means of calculations founded
on an assumed type, we know a prior: that the result will come
out too small.

In the choice of a hypothetical type judgment must be
used, the object being to approach the truth as nearly as can
be done without too great a sacrifice of simplicity. Thus the
type for a string heavily weighted at one point might suitably
be taken from the extreme case of an infinite load, when the
two parts of the string would be straight. As an example of
a calculation of this kind, of which the result is known, we
will take the case of a uniform string of length /, stretched
with tension 7, and inquire what the period would be on
certain suppositions as to the type of vibration.

Taking the origin of # at the middle of the string, let the
curve of vibration on the positive side be

y = cos pt {1 - <%@>n} .................. ),

and on the negative side the image of this in the axis of g,
n being not less than unity. This form satisfies the condition
that y vanishes when z =+ §/. We have now to form the ex-
pressions for I" and V, and it will be sufficient to consider the
positive half of the string only. Thus, p being the longitudinal
density,

LI 2] p? sin? pt
7 [*pipdam LV D
i |, efde T+ (@n L1y’

¥ ody\? n2T, cos? pt
d = rvf -—2 - ! P—
an V=41, 0(@) 4o = =i T
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_2(m+1)(2n+1) i 2
R pp( ).

Hence PP

If n=1, the string vibrates as if the mass were concentrated
in its middle point, and
127,
=5

If n = 2, the form is parabolic, and

2

2 —

The true value of p? for the gravest type is %1;1, so that

the assumption of a parabolic form gives a period which is too
small in the ratio 7 :4/10 or ‘9936 :1. The minimum of P,
as given by (2), occurs when n=14(y/6 +1)=172474, and gives

- 0 TI
pr=9 8990P—Z2.

The period is now too small in the ratio
m : V98990 =-99851 : 1.

It will be seen that there is considerable latitude in the
choice of a type, even the violent supposition that the string
vibrates as two straight pieces giving a period less than ten
per cent. in error. And whatever type we choose to take, the
period calculated from it cannot be greater than the truth.

[In the above applications it is assumed that there are no
unstable modes. When unstable modes exist, the statement is
that a constrained mode if stable possesses a frequency of vibra-
tion less than that of the highest normal mode, and if unstable
has a degree of instability less than that of the most unstable
normal mode.]

90. The rigorous determination of the periods and types of
vibration of a given system is usually a matter of great difficulty,
arising from the fact that the functions necessary to express the
modes of vibration of most continuous bodies are not as yet recog-
nised in analysis. It is therefore often necessary to fall back on
wethods of approximation, referring the proposed system to some
other of a character more amenable to analysis, and calculating
corrections depending on the supposition that the difference be-
tween the two systems is small. The problem of approximately
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simple systems 1s thus one of great importance, more especially
as it is impossible in practice actually to realise the simple forms
about which we can most easily reason.

Let us suppose then that the vibrations of a simple system are
thoroughly known, and that it is required to investigate those
of a system derived from it by introducing small variations in
the mechanical functions. If ¢, ¢b,, &c. be the normal co-ordi-
nates of the original system,

T=%ad*+}ad2+...,
V="%c2+edl+...,
and for the varied system, referred to the same co-ordinates.
which are now only approximately normal,
T+8T =% (t+8a) it + ... + Styurh, + } )
V48V =4 (ci8cu) b+ oo + Sy +... ) ’
in which 8ay, 8ay,, 8¢y, 8¢, &e. are to be regarded as small
quantities. In certain cases new co-ordinates may appear, but
if so their coefficients must be small. From (1) we obtain for the
Lagrangian equations of motion,
(@ + By D* + ¢, + 8en) by + (81, D* + 8cy,) b,
+ (8 D% + 8¢, g + ... = 0

(Bao D +80u) § + (@ + 8anD* 0+ Sc) [ (2)
+ (0 DP + 8cy) s+ ... =0

In the original system the fundamental types of vibration
are those which correspond to the variation of but a single co-
ordinate at a time. Let us fix our attention on one of them,
involving say a variation of ¢,, while all the remaining co-
ordinates vanish. The change in the system will in general
entall an alteration in the fundamental or normal types; but
under the circumstances contemplated the alteration is small.
The new normal type is expressed by the synchronous variation
of the other co-ordinates in addition to ¢,; but the ratio of any
other ¢, to ¢, is small. When these ratios are known, the normal
mode of the altered system will be determined.

Since the whole motion is simple harmonic, we may suppose
that each co-ordinate varies as cos P, and substitute in the
differential equations —p,* for I*, In the g equation ¢, occurs
with the finite coefficient

= 0y P — Oty )2 + €, + 8Cy.
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The coefficient of ¢, is
— 8a Pr 4 OCrs.

The other terms are to be neglected in a first approximation,
since both the co-ordinate (relatively to ¢,) and its coefficient are
small quantities. Hence

Scre —DPr 28tyg
¢ : b= A (3).
Now — aspg + ¢, =0,
and thus s 1 = P8y =8y (4),

s (P~ pr*)
the required result.

If the kinetic energy alone undergo variation,

$e : Py = -—L—S—a-]‘s’ ..................... (3).

The corrected value of the perlod is determined by the rth
equation of (2), not hitherto used. We may write it,

L {_ prnar "‘Pra Sam + ¢+ Scrr} += ¢3 ("‘ Pr2 8’11'3 + 86”) =0.
Substituting for ¢, : ¢, from (4), we get

sz Ot 00 5 (80n — prtban)t
pT a, -+ San, 2 asar ( Paz _prz) ............... (6).

The first term gives the value of p,? calculated without allow-
ance for the change of type, and is sufficient, as we have already
proved, when the square of the alteration in the system may
be neglected. The terms included under the symbol 2, in
which the summation extends to all values of s other than 7,
give the correction due to the change of type and are of the
second order. Since «, and «, are positive, the sign of any term
depends upon that of p?—p,2 If pt>p? that is, if the mode
s be more acute than the mode 7, the correction is negative,
and makes the calculated note graver than before; but if the
mode s be the graver, the correction raises the note. If r refer
to the gravest mode of the system, the whole correction is
negative; and if » refer to the acutest mode, the whole correction
is positive, as we have already seen by another method.

91. As an example of the use' of these formule, we may
take the case of a stretched string, whose longitudinal density p
is not quite constant. If x be measured from one end, and y
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be the transverse displacement, the configuration at any time ¢
will be expressed by

y=¢1sin3%'-”+¢>2sin 2mw St g s 13%T—m~+ .......... 1),

! being the length of the string. ¢, ¢,,... are the normal
co-ordinates for p = constant, and though here p is not strictly
constant, the configuration of the system may still be expressed
by means of the same quantities. Since the potential energy
of any configuration is the same as if p = constant, 8V =0. For
the kinetic energy we have

? . . ’ 2
T+3T=%f p(¢1sin%§+¢,singz;—x+...) dz
O I’

. l . 7 .
=3¢ [ psine T darids | psin’g%"xd“

+ ¢ f psin =2 % sin 2—l—— de + .

If p were constant, the products of the velocities would
disappear, since ¢, ¢,, &c. are, on that supposition, the normal
co-ordinates. As it is, the integral coefficients, though not actually
evanescent, are small quantities. Let p=p,+ 8p; then in our
previous notation

a,=%1p,, 0= / Sp sin? 277 dw Oy = f 8p sin 7;« sin sl}wd:o
Thus the type of V1brat10n 1s expressed by
2
¢‘r"2'3"'-'1‘)‘“ lpof 3p sin 7{ sin SPZ? dz;
or, since : ps D8
l28p L . STE
D= -__—7:2 o Toe sin 2 sin ——l-—da, ......... (2).

Let us apply this result to calculate the displacement of the
nodal point of the second mode (r=2), which would be in the
middle, if the string were uniform. In the neighbourhood of
this point, if #=4Il+ 8z, the approximate value of ¥ is

2
Y= ¢lsm +¢zsm + ¢s8in 3275+
+8x{%r¢lcosg+2~Z—r¢,cosg-2?—-+...}

=¢— P+ s — ... +77r8w{—-2¢>,+2¢‘+ o)
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Hence when y =0,

5x=2—#%{¢1_¢3+¢5—...} ............... 3)

approximately, wherc

a4 28 . 27z . swx
¢a : ¢g—-m OTPO— sin TSIH—Z—d(L‘ ......... (4!).

To shew the application of these formule, we may suppose
the irregularity to consist in a small load of mass poh situated
at « =1, though the result might be obtained much more easily
directly. We have

2\ 2 2 2 2
= {pﬁ‘ﬂ‘mﬂm }
from which the value of 8z may be calculated by approximation.
The real value of 8z is, however, very simple. The series within
brackets may be written

1 1
—-{1 +————7+§+——&0-},

which is equal to

The value of the definite integral is

. T
'n-:—4ssmzl,

and thus = —_ VY2 __2C

as may also be readily proved by equating the periods of vibra-
tion of the two parts of the string, that of the loaded part being
calculated approximately on the assumption of unchanged type.
As an example of the formula (6) § 90 for the period, we
may take the case of a string carrying a small load p,\ at its
middle point. We have
. .. rm . 8T
ar=%lpy, 8ay=p) sm’%r , 8., =psin -5 sin 3,
and thus, if P, be the value corresponding to X = 0, we get when
r is even, p, = P,, and when r is odd,
_ (1 g A }f}
pi=Ps (1+ 27/ *FRE
1 Todhunter’s Int. Calc. § 255.
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where the summation is to be extended to all the odd values
of s other than ». If r=1,

;4 L 4 N

P ‘Pﬂl‘T' TTEEST
. 1 1
Now 22 Zs__l—zs—:{-_T,

in which the values of s are 3, 5, 7, 9.... Accordingly

1 1
*5o171
and pi=D "'{1 - _27)»_*_ 3}% +errens SL .............. (6),

giving the pitch of the gravest tone accurately as far as the
square of the ratio A : I

In the general case the valuc of p,? correct as far as the first
order in 8p, will be

P:-z = P { 8

Sty j__JpaJl__f(;_mr ———olm} (7).

92. The theory of vibrations throws great light on expansions
of arbitrary functions in series of other functions of specified
types. The best known example of such expansions is that
generally called after Fourier, in which an arbitrary periodic
function is rcsolved into a series of harmonics, whose periods
are submultiples of that of the given function. It is well known
that the difficulty of the question is confined to the proof of the
possibility of the expansion ; if this be assumed, the determination
of the coefficients is easy enough. What I wish now to draw
attention to is, that in this, and an immense variety of similar
cases, the possibility of the expansion may be inferred from
physical considerations.

To fix our ideas, let us cousider the small vibrations of a
uniform string stretched between fixed points. We know from
the general theory that the whole motion, whatever it may
be, can be analysed into a series of component motions, each
represented by a harmonic function of the time, and capable
of existing by itself. If we can discover these normal types,
we shall be in a position to represent the most general vibration
possible by combining them, assigning to each an arbitrary
amplitude and phase.
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Assuming that a motion is harmonic with respect to time,
we get to determine the type an equation of the form

a’y

da BV
whence it appears that the normal funections are
3z

-5 &e.

J—-sm y=sin y=sin

%
l ’ /A

We infer that the most general position which the string can
assume is capable of representation by a series of the form

A4,sin =2 ] T+ 4, 1ng—lo 3%—'1‘
which is a particular case of Fourier’s theorem. There would
be no difficulty in proving the theorem in its most general form.

So far the string has been supposed uniform. But we have
only to introduce a variable density, or even a single load at
any pomt of the string, in order to alter completely the ex-
pansion whose possibility may be inferred from the dynamical
theory. It is unnecessary to dwell here on this subject, as
we shall have further examples in the chapters on the vibrations
of particular systems, such as bars, membranes, and confined
masses of air.

+ A, sin

92a. In§ 88 we have a formula for the frequency of vibration
applicable when by the imposition of given constraints the original
systew is left with only one degree of freedom. It is of interest
to trace also the effect of less complete constraints, such as may
be expressed by linear relations among the normal co-ordinates of
number less by at least two than that of the (original) degrees of
freedom. Thus we may suppose that

ﬁ¢1 +‘f2¢1+f:«;¢3+ =01
gldh + 924)2 + 93¢‘s + =0
k1§b1 + h~z¢2+ h3¢‘.:+ ...=0
If the number of equations (r) fall short of the number of the
degrees of freedom by unity, the ratios ¢y:¢,:¢ps... are fally
determined, and the case is that of but one outstanding degree of
freedom discussed in § 88.
This problem may be treated in more than one way, but the
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most instructive procedure is to trace the effect of additions to 7'
and V. We will suppose that equations (1) § 87 are altered to

T=}a,2 + 30 + ... + 30 (fipr +Ffapat oo P enrnnnne (2),
V=130 + 30’ + .o + 3y (fipy + fepa + oo P et +(3),

and that F, not previously existent, is now
F=3B(fis+fabrt ee Feeverrerirenuenenns (4).

The connection with the proposed problem will be understood
by supposing for instance that a=0, 8=0, while y=o. By (3)
the potential energy of any displacement violating the condition

Sip+fapet .. =0 e (5)

is then infinite, and this is tantamount to the imposition of the
constraint represented by (5).
Lagrange’s equations with A written for .D now become

(@) +6) ¢+ (N + BN+ y) (i +foda ko) =0)
(@22 + 62) s + 1o (A + B 9) (fihy + fada + ... ) =0 (8
If we multiply the first of these by fi/(m\? + ¢,), the second by
Jo/(@A?*+ ¢;), and so on, and add the results together, the factor
(fihr +fogps + ... ) will divide out, and the determinant takes the

form
iy J7 1 _
e Tamire T + Ty
If any one of the quantities a, B, v become infinite while the
others remain finite, the effect is equivalent to the imposition of the
constraint (5), and the result may be written

SN+ 6) = Ourerrr e (8).

When multiplied out this equation is of degree (m —1) in A% one
degree of freedom having been lost.

If we put 8 =0, (7) is an equation of the mth degree in A% and
the coefficients a, y enter in the same way as do a,, ¢;; a,, ¢,; &e.

In order to refer more directly to the case of vibrations about
stable equilibrium, we will write p* for — A% The values of p?
belonging to the uvaltered system, viz. n? ng,..., are given as
before by

¢ —am?=0; Ca— agn?=0, &C.p vevvvvervinnnnnnn. 9);

and we will also write .

! Routh’s Rigid Dynamics, 5th edition, 1892, § 67.



92 a. | ONE CONSTRAINT. 121

where »? relates to the supposed additions to 7' and V considered
as belonging to an independent vibrator. Let the order of magni-
tude of these quantities be

We shall see that there is a root of (7) between each consecutive
pair of the quantities (11).
Our equation may be written

S22 (y — ap?) (C2 — ap®) (¢ — agp?)......
+/2 (v — ap®) (61 — ayp®) (Cs — @sp?)......
TR L LT LT PPN
+ (61— @p®) (Ca — @P?).-cn.n.nn =0 .iiiiiiinennns (12).

When p? coincides with any of the quantities (11), all but one
of the terms in (12) vanish, and the sign of the expression is the
same as that of the term which remains over. When p?<n? all
the terms are positive, so that there is no root less than %
When p? = n,?% the expression (12) reduces to the positive quantity

J2(y —an?) (¢, — am?) (¢ — agnd)......
When p? rises to ns?, (12) becomes
S (y — an?) (¢, — ayny?) (s — asgngd)...... ;

and this is negative, since the factor (¢, — ayn,?) is now negative.
Hence there is a root of (12) between »,2 and n2. When p?=ng
the expression is again positive, and thus there is a root between
n? and nd This argument may be continued, and it proves that
there is a root of (12) between any consecutive two of the (m +1)
quantities (11). The m roots of (12) are now accounted for, and
there is none greater than n,’. If we compare the values of the
roots before and after the change, we see that the effect is to
cause a movement which is in every case towards »*.* Considered
absolutely the movement is in one direction for those roots that
are greater than »* and in the opposite direction for those that
are less than 1% Accordingly the interval from n,* to n,.4,% in
which »? lies, contains after the change two roots, one on either
side of »2

If 1 be less than any of the quantities 7% as happens when
=0, one root lies between »* and n;%, one between 7;? and n% and
so on. Thus every root is depressed. On the other hand if
12 > nyl, every root is increased. This happens if a=0. (§ 88.)

1 It will be understood that in particular cases the movement may vanish.
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The results now arrived at are of course independent of the
special machinery of normal co-ordinates used in the investigation.
If te any part of a system (2 n?...... ) be attached a vibrator
(+°) having a single degree of freedom, the effect is to displace all
the quantities n,% ... in the direction of »°> Let us now suppose
that a second change is made in the vibrator whereby a becomes
a+d, and vy becomes ¢+ Every root of the determinantal
equation moves towards »?, where ' —a»?=0. If we suppose
that »"2 =12, the movements are in all cases in the same directions
as before. Going back now to the original system, and supposing
that o, y grow from zero to ‘their actual values in such a manner
that »* remains constant, we see that during this process the roots
move without regression in the direction of closer agreement
with 22

As a and y become infinite, one root of (12) moves to coinci-
(lence with 2% while the remaining (m — 1) roots, corresponding to
the constrained system, are given by

SFe—ap) =0 .o (18),

and are independent of the value of 12

Particular cases are obtained by supposing either »*=0, or
v*=0. Whether the constraint is effected by making infinite
the kinetic energy of any motion, or the potential energy of
any displacement, which violates it, makes no difference to the
vibrations which remain. In the first case one vibration becomes
infinitely slow, and in the second case one becomes infinitely quick.
However the constraint be arrived at, the (m—1) frequencies of
vibration of the constrained system separate' the m frequencies
of the original system.

Any number of examples of this theorem may be invented
without difficulty. Consider the case of a uniform stretched
string, held at both ends and vibrating transversely. This is the
original system. Now introduce a constraint by holding at rest a
point which divides the length in the proportion (say) of 8 : 2.
The two parts vibrate independently, and the frequencies for each
part form an arithmetical progression. If the frequencies proper
to the undivided string be 1, 2, 8, 4....... ; those for the parts are

r

! But in particular cases the * separation” may vanish. The theorem in the
text was proved for two degrees of freedom in the first edition of this work. In
its generality it appears to be dne to Routh.
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£(1,2,8,...) and §(1,2,8,...). The beginning of each series 1s
shewn in the accompanying scheme ;

1I2 3|4u 5 6|7 8 9 10 11 12

{1§ , 33 l‘5J 63 | 8]§ I‘IOJ 11;

21 5 73 10
and it will be seen that between any consecutive numbers in
- the first row there is a number to be found either in the second
or in the third row. In the case of 5 and 10 we have an extreme
condition of things; but the slightest displacement of the point
at which the constraint is applied will displace one of the fives,
tens &c. to the left and the other to the right.

The coincidences may be avoided by dividing the string
incommensurably. Thus, if £ be an incommensurable number
less than unity, one of the series of quantities m/z, m/(1 — ), where
m is a whole number, can be found which shall lie between any
given consecutive integers, and but one such quantity can be found.

Again, let us suppose that a system is referred to co-ordinates
which are not normal (§ 84), and let the constraint represented by
Y =0 be imposed. The determinant of the altered system is
formed from that of the original system by erasing the first row
and the first column. It may be called V,, and from this again
may be formed in like manner a new determinant V,, and so on.
These determinants form a series of functions of p?, regularly
decreasing in degree; and we conclude that the roots of each
separate the roots of that immediately preceding?®.

It may be remarked that while for the sake of simplicity of
statement we have supposed that the equilibrium of the original
system was thoroughly stable, as also that of the vibration brought
into connection therewith, these restrictions may easily be
dispensed with. In any case the series of positive and negative
quantities, n? n? ...... and »*% may be arranged in algebraic order,
and the effect of the vibrator is to cause a movement of every
value of p? in the direction of »*

In order to extend the above theory we will now suppose that
the addition to T is

Yo (fihs + fopo+ - ) + 30ty (91 + Gapa+ .0
+ Fon (atpy + hathy+ )4 e (14)

1 Routh’s Rigid Dynamics, 5th edition, Part 1. § 58.
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and the addition to V'
v (fipr + o+ P+ 37, (hr + gubo + P e (15).

If we set
af)\.ﬂ -+ V= F’, C(g),2 + Yo = G’, ................. (16),

and so on, Lagrange’s equations become
(@A +¢) by + F A (fiy + fapo +..0)
+ @g (1 + oo+ ...) + H'hy (s + hotpy + ...) + ... = 0...(17)
(@X + ) o+ F Lo (fi + fapat200)
+ @9 (911 + Gotps + -..) + H'hg (g + hopo + ...) +... =0...(18),

and so on, the number of equations being equal to the number
(m) of co-ordinates ¢,, ¢, .... The number of additions (r), corre-
sponding to the letters £, g, &, ..., is supposed to be less than .

From the above m equations let » new ones be formed, as
follows. For the first multiply (17) by fi/(eM*+¢,), (18) by
fo/(@X* +¢;), and so on, and add the results together. For the
second proceed in the same manner, using the multipliers
SN+ ), gof(ar*+c,), &c. In like manner for the third
equation use A instead of g, and so on. In this way we obtain »
équations which may be written

F' (fir+foho+...) (1/F' + Fp+ 2+ Fe 4.}
+ @ (1by + oo+ -..) {FiGy+ FyGy + ...}
+ H (hapy + hogpy + .. ) (FLHy + P Hy + .} + =0...(19),
F' (fir+ futps + .. ) (G Fy + G Fy + . ..}
+ G (i + 9aps+..) {1/G + G2+ G2+ ...}
FH (b + hopy+ ..) {GH + G H, + .. + .. = 0...(20),
and so on, where for brevity
F32 = f2l(a+0¢), F=f2l(ar*+c,), &e,
G =g /(aN + ¢), GF = g2 f(aN* + ), &e. } ceeen(21).
F.Gy =f9./(aN +¢y), &e.
The determinantal equation, of the rth order, is thus
1/F + 3P, 2FG, SFH, ...
2FG, 1/G" + 267, 2GH,

SFH,  SGH, YE+3m,.. |~ )

...................................................
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If, for example, there be two additions to 7' and V of the kind
prescribed, the equation is

1 EF? 2
7@7+ Na +2—ﬁ€— + 2 26— ZFGR=0 ......... (23),
and herein
FP+F2+ )G+ G2+ ..) = (G + F.G +...)

=32 (F\G—F,G ) e, (24).

Equation (23) is in general of the mth degree in A%, and
determines the frequencies of vibration. In the extreme case
where F’ and G’ are made infinite, the system is subject to the

two constraints
i+ feps+ ...=0 }
................... 2!

91¢1+gz¢2+ .-.=0 ( 5)’
and the equation® giving the (m — 2) outstanding roots is

(fug: —fogs) (/95— fsgn) -+ =0
(a'lxz + Cl) (azxz + cz) (alxz + 01) ( askﬁ ¥ 03) ......

In general if the system be subject to the » constraints (1), the
determinantal equation is
XFF, XFG, ZFH,...
2FG, GG, 2GH,... |_
XFH, 2GH, ZHH,...
If r be less than m, this determinant can be resolved? into a
sum of squares of determinants of the same order (r). Thus if there
be three constraints, the first of these squares is

. F, F, F
G Gy G| e, (28),
H, H, H,

and the others are to be found by including every combination of
the m suffizes taken three together. To fall back upon the original
notation we have merely in (28) to replace the capital letters
F.@G... by £, g,-..,and to introduce the denominator

(@2 + ¢)) (@2 + C,) (asA? + C5).
The determinantal equation for a system originally of m degrees
of freedom and subjected to » constraints is thus found. Its form

1 This result is due to Routh, loc. cit. § 67.
3 Salmon, Lessons on Higher Algebra, § 24.
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is largely determined by the consideration that it must remain un-
affected by interchanges either of the letters or of the suffixes.
That it would become nugatory if two of the conditions of con-
straint coincided, could also have been foreseen. If r=m—1,
the system is reduced to one degree of freedom, and the equation
is

o fs Soeen | fi s farr |2
g2 95 Ja--- 2 g Gs Gs--- 2 —

MmN +¢) + aA+¢)+...=0...... (29),
mmmu( ' mmm“( *

in agreement with § (88).

There are theories, parallel to the foregoing, for systems in
which 7 and F, or V and F, are alone sensible. In these cases, if
the functions be intrinsically positive, the normal motions are
proportional to exponential functions of the time such as et/
The quantities 7, 7,,... are called the time-constants, or persis-
tences, of the motions, being the times occupied by the motions in
subsiding in the ratio of e:1. The new persistences, after the
introduction of a constraint, will separate the original values.

The best illustrations of this theory are electrical, where the
motions are not restricted to be small. Suppose (to take an
electro-magnetic example) that in one branch of a net-work of
conductors there is introduced a coil of persistence (when closed
upon itself) equal to 7/, the original persistences being m, 7,....
Then the new persistences lie in all cases nearer to 7', and they
separate the quantities 7, 7, 7.... If 7" be made infinite as by
increasing the self-induction of the additional coil without limit,
or be made to vanish as by breaking the contact in the brapch,
the result is a constraint, and the new values of the persistences
separate the former ones.

93. The determination of the coefficients to suit arbitrary
initial conditions may always be readjly effected by the funda-
mental property of the normal functions, and it may be convenient
to sketch the process here for systems like strings, bars, mem-
branes, plates, &c. in which there is only one dependent variable
¢ to be considered. If u, u,...be the normal functions, and
¢1, ¢, ... the corresponding co-ordinates,

=iy + oty + Psus + e, 1).
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The equations of free motion are

$r+n2h =0, ¢4n2h,=0, & .eroeeenenn (2),

of which the solutions are

¢, = A4, sin nt + B, cos njt
¢2 = A2 sin tnzt + 'B2 cos :nzt ............... (3).

The initial values of £ and ¢ are therefore

b= B, + B, + Baus+ ... }
& =md g +n A, + ngAgus + ...

and the problem is to determine A,, 4,,... B;, B,... so as to
correspond with arbitrary values of ¢, and §,.
If p dz be the mass of the element d«, we have from (1)

T=4 [piedo
=4 ¢y ' putde+ ' J‘P uPdz + ...+ i, J puadr + ...

But the expression for T in terms of ¢,, ¢, &c. cannot contain
the products of the normal generalized velocities, and therefore
every integral of the form

Hence to determine B, we have only to multiple the first
of equations (4) by pu, and integrate over the system. We thus
obtain

B, f O (X L a—— (6).

Similady, .4, f R f DU e e, (7).

The process is just the same whether the element dz be a line
area, or volume.

The conjugate property, expressed by (5), depends wpon the
fact that the functions w are normal. As soon as this is known
by the solution of a differential equation or otherwise, we may
infer the conjugate property without further proof, but the pro-
perty itself is most intimately connected with the fundamental
variational equation of motion § 94.
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94 If V be the potential energy of deformation, ¢ the
displeycement, and p the density of the (line, area, or volume)
element dz, the equation of virtual velocities gives immediately

8 + [pEB4do = 0. .

In this equation 8V is a symmetrical function of ¢ and 8¢,
as may be readily proved from the expression for ¥ in terms
of generalized co-ordinates. In fact if

V= %011‘1’1”‘ ot 012‘[’1‘[’2 +..
OV = cu¥ri&yn + Culrdyr + ..
+ C1a (YO +Yredyn) + ...
Suppose now that ¢ refers to the motion corresponding to

a normal function u,, so that £+ n,%¢ =0, while 8¢ is identified
with another normal function u,; then

SV=n2 / P UUsQz.

Again, if we suppose, as we are equally entitled to do, that ¢
varies as u, and &£ as u,, we get for the same quantity 8V,

8V = nﬁfp wud ;

and therefore (n,2 — ng?) f PUAUAL=0..covuvrnrnninnnn... (2),

from which the conjugate property follows, if the motions re-
presented respectively by w, and u, have different periods.

A good example of the connection of the two methods of
treatment will be found in the chapter on the transverse vibrations
of bars.

95. Professor Stokes! has drawn attention to a very general
law connecting those parts of the free motion which depend
on the initial displacements of a system not subject to frictional
forces, with those which depend on the initial velocities. If
a velocity of any type be communicated to a system at rest,
and then after a small interval of time the opposite velocity
be communicated, the effect in the limit will be to start the
system without velocity, but with a displacement of the corre-
sponding type. We may readily prove from this that in order

! Dynamical Theory of Diffraction, Cambridge Trans. Vol. 1x. p. 1, 1856.
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to deduce the motion aepending on initial displacements from
that depending on the initial velocities, it is only necessary to
differentiate with respect to the time, and to replace the arbitrary
constants (or functions) which express the initial velocities by
those which express the corresponding initial displacements.

Thus, if ¢ be any normal co-ordinate satisfying the equation

$ + n2¢ =0,
the solution in terms of the initial values of ¢ and ¢ is

b = ¢, cos nt+%¢o SIO N errernnnnnerinnrenns (1),

of which the first term may be obtained from the second by
Stokes’ rule.



CHAPTER V.

VIBRATING SYSTEMS IN GENERAL
CONTINUED.

96. WHEN dissipative forces act upon a system, the character
of the motion is in general more complicated. If two only of the
functions 7, F, and V be finite, we may by a suitable linear trans-
formation rid ourselves of the products of the co-ordinates, and
obtain the normal types of motion. In the preceding chapter we
have considered the case of #=0. The same theory with obvious
modifications will apply when T'=0, or V'=0, but these cases
though of importance in other parts of Physics, such as Heat and
Electricity, scarcely belong to our present subject.

The presence of friction will not interfere with the reduction of
T and V to sums of squares; but the transformation proper for
them will not in general suit also the requirements of F. The
general equation can then only be reduced to the form

a1¢;1 + bu 4’1 + 612 ¢2+ ces + Cl¢1 = (I)l: &e.ooannnen (1),

and not to the simpler form applicable to a system of one degree
of freedom, viz.
a1¢1 + bl(ﬁl + cl¢1 = q)l» &C. .................. (2).

We may, however, choose which pair of functions we shall
reduce, though in Acoustics the choice would almost always fall
on 7 and V.

97. There is, however, a not unimportant class of cases in
which the reduction of all three functions may be effected; and
the theory then assumes an exceptional simplicity. Under this head
the most important are probably those when F' is of the same form
as Tor V. The first case occurs frequently, in books at any rate,
when the motion of each part of ‘the system is resisted by a re-
tarding force, proportional both to the mass and velocity of the
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part. The same exceptional reduction is possible when F is a
linear function of T and V, or when T is itself of the same form as
V. In any of these cases, the equations of motion are of the same
form as for a system of one degree of freedom, and the theory
possesses certain peculiarities which make it worthy of separate
consideration.

The equations of motion are obtained at once from 7, F
and V:i—

axd’l‘f’bld}'l'*'cld’l:q)“ }(1),

aza;z -+ b~‘_>¢59 + c;¢_} = @2, &C.
in which the co-ordinates are separated.

For the free vibrations we have only to put ®, =0, &c., and
the solution is of the form

ot [ g, SO (cos e+ o5 ,)1
p=¢e {% o+ ¢, (cosn't+ g, Snm t o (2),
where k=bla, m*=cja, n'=4(n*—1}«),

and ¢, and ¢, are the initial values of ¢ and ¢.

The whole motion may therefore be analysed into component
motions, each of which corresponds to the variation of but one
normal co-ordinate at a time. And the vibration in each of these
modes is altogether similar to that of a system with only one
degree of liberty. After a certain time, greater or less according
to the amount of dissipation, the free vibrations become insignifi-
cant, and the system returns sensibly to rest.

[If F be of the same form as T, all the values of « are equal,
viz. all vibrations die out at the same rate.]

Simultancously with the free vibrations, but in perfect inde-
pendence of them, there may exist forced vibrations depending on
the quantitics ®. Precisely as in the case of one degree of free-
dom, the solution of

ap+bp+ch =D vieriiiirninreannn (3)
may be written
1

t
b= f O (= ) QA e (4),

<

where as above
e=bla, mn*=cla, n =y(n—}«).
To obtain the complete expression for ¢ we must add to the
right-hand member of (4), which makes the initial values of ¢
and ¢ vanish, the terms given in (2) which represent the residue
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at time # of the initial values ¢, and ¢,. If there be no friction,
the value of ¢ in (4) reduces to

p=r [ simn(— ) DA e 5).
0

98. The complete independence of the normal co-ordinates
leads to an interesting theorem concerning the relation of the
subsequent motion to the initial disturbance. For if the forces
which aet upon the system be of such a character that they do no
work on the displacement indicated by &¢,, then &, =0. No such
forces, however long continued, can produce any effect on the
motion ¢,. If it exist, they cannot destroy it; if it do not exist,
they cannot generate 1t. The most important application of the
theorem is when the forces applied to the system act at a node of
the normal component ¢, that is, at a point which the component
vibration in question does not tend to set in motion. Two extreme
cases of such forces may be specially noted, (1) when the force is
an impulse, starting the system from rest, (2) when it has acted so
long that the system is again at rest under its influence in a dis-
turbed position. So soon as the force ceases, natural vibrations
set in, and in the absence of friction would continue for an in-
definite time. We infer that whatever in other respects their
character may be, they contain no component of the type ¢,. This
conclusion 1s limited to cases where T, F, V" admit of simultaneous
reduction, including of course the case of no friction.

99. The formule quoted in § 97 are applicable to any kind of
force, but it will often happen that we have to deal only with the
effects of impressed forces of the harmonic type, and we may then
advantageously employ the more special formulee applicable to such
forces. In using normal co-ordinates, we have first to calculate the
forces &@,, ®,, &c. corresponding to each period, and thence deduce
the values of the co-ordinates themselves. If among the natural
periods (calculated without allowance for friction) there be any
nearly agreeing in magnitude with the period of an impressed
force, the corresponding component vibrations will be abnormally
large, unless indeed the force itself be greatly attenuated in the
preliminary resolution. Suppose, for example, that a transverse
force of harmonic type and given period acts at a single point of
a stretched string. All the normal modes of vibration will, in
general, be excited, not however in their own proper periods, but
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in the period of the impressed force ; but any normal component,
which has a node at the point of application, will not be excited.
The magnitude of each component thus depends on two things:
(1) on the situation of its nodes with respect to the point at which
the force is applied, and (2) on the degree of agreement between
its own proper period and that of the force. It is important to
remember that in response to a simple harmonic force, the system
will vibrate in general in all its modes, although in particular
cases it may sometimes be sufficient to attend to only one of them
as being of paramount importance.

100. When the periods of the forces operating are very long
relatively to the free periods of the system, an equilibrium theory
is sometimes adequate, but in such a case the solution could
generally be found more easily without the use of the normal
co-ordinates. Bernoulli’s theory of the Tides is of this class, and
proceeds on the assumption that the free periods of the masses of
water found on the globe are small relatively to the periods of the
operative forces, in which case the inertia of the water might be
left out of account. As a matter of fact this supposition is only
very roughly and partially applicable, and we are consequently
still in the dark on many important points relating to the tides.
The principal forces have a semi-diurnal period, which is not suffi-
ciently long in relation to the natural periods concerned, to allow
of the inertia of the water being neglected. But if the rotation of -
the earth had been much slower, the equilibrium theory of the
tides might have been adequate.

A corrected equilibrium theory is sometimes useful, when the
period of the impressed force is sufficiently long in comparison
with most of the natural periods of a system, but not so in the
case of one or two of them. It will be sufficient to take the case
where there is no friction. In the equation

ap+cp=D, or ¢+ nip=>a,

suppose that the impressed force varies as cos pt. Then

The equilibrium theory neglects p* in comparison with n?
and takes
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Suppose now that this course is justifiable, except in respect
of the single normal co-ordinate ¢,. We have then only to add
to the result of the equilibrium theory, the difference between
the true and the there assumed value of ¢,, viz.

_ D, D, _ P D,

¢1—a1 (n* — p% a':;l, - 77'1.—2—:}) .

The other extreme case ought also to be noticed. If the

forced vibrations be extremely rapid, they may become nearly

independent of the potential energy of the system. Instead

of neglecting p? in comparison with n? we have then to neglect
n? in comparison with p? which gives

b=—Dap’....oiiiiiiiiiinann, (4).

If there be one or two co-ordinates to which this treatment
is not applicable, we may supplement the result, calculated on
the hypothesis that V is altogether negligible, with corrections
for these particular co-ordinates.

101. Before passing on to the general theory of the vibrations
of systems subject to dissipation, it may be well to point out
some peculiarities of the free vibrations of continuous systems,
started by a force applied at a single point. On the suppositions
and notations of § 93, the configuration at any time is deter-
mined by

=ty + Pty + Psthstenreneinninnnnnnnnn. (1),
where the normal co-ordinates satisfy equations of the form
U+ G =D 2).

Suppose now that the system is held at rest by a force applied
at the point Q. The value of P, is determined by the considera-
tion that ®,8¢, represents the work done upon the system by the
impressed forces during a hypothetical displacement 8¢ =8¢, Uy,
that is

5, f Zu, du;

thus <D,.=qu,.dw=u,.(Q) [Zd.z;
so that initially by (2)
e =1y (Q) f ZAT oo, (3).



101.] SPECIAL INITIAL CONDITIONS. 135

If the system be let go from this configuration av ¢=0, we
have at any subsequent time £,

ur(Q) dex u (@) de:v

=008 Tyl —————— = COS N —————ereueens (%),
Cr
n,? {p u2de
and at the point P
w0, (P) 4y (Q) f Zds
£= 3OS Ny ————F e (5).
n,? J’ pulde

At particular points u.(P) and u,(Q) vanish, but on the
whole

uy (P) ur (Q) +J-p ulda

neither converges, nor diverges, with 7. The series for ¢ therefore
converges with n,~%

Again, suppose that the system is started by an impulse
from the configuration of equilibrium. In this case initially

= [®dt =, (@) [Zda,

whence at time ¢

=32y Q). ledw= sinnt. u(Q) 7.3, ......(6).

| A n, | puida
This gives
w4 (P) 1, (Q) f Zda
n, f putde

shewing that in this case the series converges with =7, that
is more slowly than in the previous case.

¢=Zsinn,d"

In both cases it may be observed that the value of { is
symmetrical with respect to P and @, proving that the displace-
ment at time ¢ for the point P when the force or impulse is ap.
plied at @, is the same as it would.be at Q if the force or impulse
had been applied at P. This is an example of a very general
reciprocal theorem, which we shall consider at length presently.
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As a third case we may suppose the body to start from rest
as deformed by a force wniformly distributed, over its length,
area, or volume. We readily find ‘

u,(P).z.f Az
n,? f putds

The series for ¢ will be more convergent than when the force
1s concentrated in a single point.

In exactly the same way we may treat the case of a con-
tinuous body whose motion is subject to dissipation, provided
that the three functions 7, F, V be simultaneously reducible,
but it is not necessary to write down the formulz.

=3 cosn,t

102. If the three mechanical functions T F and V of any
system be not simultaneously reducible, the natural vibrations
(as has already been observed) are more complicated in their
character. When, however, the dissipation is small, the method
of reduction is still useful; and this class of cases besides being
of some importance in itself will form a good introduction to
the more general theory. We suppose then that 7 and V are
expressed as sums of squares

T=%a1(ﬁ12+%a'2(£22+"'} (1)
Vo bbb od ot .., [ ,
while F still appears in the more general form
F=§budt+ 3 butps? + ... + buhia+ veovenn (2).
The equations of motion are accordingly

al‘:t;1 + bnd}l +b 29?: + blad}s +.o+ad =0
CaPs + by + boohy + Dby + oo F Copy =0 }ueennn (8),
in which the coefficients by, by, &ec. are to be treated as small.
If there were no friction, the above system of equations would
be satisfied by supposing one co-ordinate ¢- to vary suitably,
while the other co-ordinates vanish. In the actual case there
will be & corresponding solution in which the value of any other
co-ordinate ¢, will be small relatively to ¢,.
Hence, if we omit terms of the second order, the 7t equation
becomes,
a.d, + byrpr + Crpr=0........ rrerienenees 4),
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from which we infer that ¢, varies approximately as if there
were no change due to friction in the type of vibration. If ¢,
vary as e??, we obtain to determine p,

PR+ b +Cr=0 ceeeiiiirneiinneenn (5).

The roots of this equation are complex, but the real part
is small in comparison with the imaginary part. [The character
of the motion represented by (5) has already been discussed
(§ 45). The rate at which the vibrations die down is proportional
to b,,, and the period, if the term be still admitted, is approxi-
mately the same as if there were no dissipation.]

From the s™ equation, if we introduce the supposition that
all the co-ordinates vary as e?, we get

(prgas + ca) ¢3 + bn_pr¢r =0,

terms of the second order being omitted; whence

. - brspr _ brspr
¢s : P PRt g (pa—pd) (6).

This equation determines approximately the altered type
of vibration. Since the chief part of p, is imaginary, we see
- that the co-ordinates ¢, are approximately in the same phase,
but that that phase differs by a quarter period from the phase
of ¢ Hence when the function F does not reduce to a sum
of squares, the character of the elementary modes of vibration
1s less simple than otherwise, and the various parts of the system
are no longer simultaneously in the same phase.

We proved above that, when the friction is small, the value
of p, may be calculated approximately without allowance for
the change of type; but by means of (6) we may obtain a still
closer approximation, in which the squares of the small quantities
are retained. The r™ equation (3) gives

PAb
s (ps’ —pr')
The leading part of the terms included under = being real,

the correction has no effect on the real part of p, on which
the rate of decay depends.

P+ crt+ brrpr +32

102a. Following the electrical analogy we may conveniently
describe the forces expressed by F as forces of resistance. In
§ 102 we have seen that if the resistances be small, the periods
are independent of them. We may therefore extend to this case
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the application of the theorems with regard to the effect upon
the periods of additions to T and V, which have been already
proved when there are no resistances.

By (5) § 102, if the forces of resistance be increased, the rates
of subsidence of all the normal motions are in general increased
with them; but in particular cases it may happen that there
is no change in a rate of subsidence.

It is natural to inquire whether this conclusion is limited to
small resistances, for at first sight it would appear likely to hold
good generally. An argument sufficient to decide this question
may be founded upon a particular case. Consider a system formed
by attaching two loads at any points of a stretched string vibrating
transversely. If the mass of the string itself be neglected, there
are two degrees of freedom and two periods of vibration corre-
sponding to two normal modes. In each of these modes both loads
in general vibrate. Now suppose that a force of resistance is
introduced retarding the motion of one of the loads, and that this
force gradually increases. At first the effect is to cause both kinds
of vibration to die out and that at an increasing rate. but after-
wards the law changes. For when the resistance becomes infinite,
1t is equivalent to a constraint, holding at rest the load upon which
it acts. The remaining vibration is then unaffected by resistance,
and maintaius itself indefinitely. Thus the rate of subsidence of
one of the normal modes has decreased to evanescence in spite of a
continual increase in the forces of resistance F. This case is of
course sufficient to disprove the suggested general theorem.

103. We now return to the consideration of the general
equations of § 84.

If 4, %, &c. be the co-ordinates and ¥,, ¥,, &c. the forces,

we have
ey + ey + ... =, }
eV + eV + ... = ¥, &c.
where s =D+ 0D+ Cryevvnnnenrnnni (2).
For the free vibrations W,, &e. vanish. If V be the de-
terminant

€n, 6p,...
€1y Camserr | veriieiiiiiiaeaeanns (3)

V=
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the result of eliminating from (1) all the co-ordinates but one, is

V=0, (4).
Since V now contains odd powers of D, the 2m roots of the
equation V=0 no longer occur in equal positive and negative
pairs, but contain a real as well as an imaginary part. The
complete integral may however still be written

Jr=Ademt + A'ert + Berst + Blemt 4 ... ....... (5),
where the pairs of conjugate roots are u,, p,'; p, u'; &c. Corre-
sponding to each root, there is a particular solution such as

Yy =A.emt, Y= A,emt, Y, = Aemt, &e,
in which the ratios 4, : 4, : A4,... are determined by the equa-
tions of motion, and only the absolute value remains arbitrary.
In the present case however (where V contains odd powers of D)
these ratios are not in general real, and therefore the variations
of the co-ordinates y, ¥r,, &c. are not synchronous in phase. If
we put py=a +18, p' =a, —18;, &ec., we see that none of the
quantities a can be positive, since in that case the energy of
the motion would increase with the time, as we know it cannot

do.

103a. The general argument (§§ 85, 103) from considerations
of energy as to the nature of the roots of the determinantal
equation (Thomson and Tait’s Natural Philosophy, 1st edition 1867)
has been put into a more mathematical form by Routh® His
investigation relates to the most general form of the equation in
which the relations § 82

Apg = Uy, by = by, Crg == Cap vevrnvaneennens (1),
are not assumed. But for the sake of brevity and as sufficient
for almost all acoustical problems, these relations will here be
supposed to hold.

We shall have occasion to consider two solutions corresponding
to two roots w, v of the equation. For the first we have

vy = Mett, = Mert, ¥y =Me, &Gc................ (2),
and for the second
V= Moo, Y= Noe, o= Ny, &oeenneneninns (3).
In either of these solutions, for example (2), the ratios
M, :My: My ......

1 Rigid Dynamics, 5th edition, Ch. vi1,
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are determinate when u has been chosen. They are real when
@ is real; and when w is complex (a +483), they take the form
P +4Q.

If now we substitute the values of 4 from (2) in the equations
of motion, we get

(@up® + bup + 01) My + (@rou® + bupe + Cro) Myt ... =0
(o + bige + €10) My + (a0p® + bt + C0) My + ... = (4)

..................................................................

The first result is obtained by multiplying these equations in
order by M,, M,, &c. and adding. It may be written

A +Bu+0=0, cccvvniiinininnnenn. (5),
where
.A = -%G,HMZ -+ ‘%anMgﬂ -+ a12M1M2 ST (6),
B = Yoo M2 + 3ol + oMMy e (7),
0 = %chlz + %chf + CIQMJ_J;I; + ............ (8)-

The functions 4, B, C, are, it will be seen, the same as we have
already denoted by T, F, and V respectively; but the varied
notation may be useful as reminding us that there is as yet no
limitation upon the nature of these quadratic functions.

The following inferences from (5) are drawn by Routh :—

() If A, B, C either be zerq, or be one-signed functions of
the same sign, the fundamental determinant cannot have a real
positive root. For if u were real, the coefficients M, M,,......
would be real. We should thus have the sum of three positive
quantities equal to zero.

(B) If there be no forces of resistance, i.e. if the term B be
absent, and if A and C be one-signed and have the same sign,
the fundamental determinant cannot have a real root, positive or
negative.

(v) If 4, B, C be one-signed functions, but if the sign of
B be opposite to that of 4 and C, the fundamental determinant
cannot have a real negative root.

The second equation is obtained as before from (4), except that
now the multipliers are &V,, IV,,... appropriate to the root ». The
result may be written '

A v) @+ B v)p+0(uv)=0 ceeneannn. (9),
where

24 (u, v) = ay, M\ N, + a,M,N, + ......
+ ay (MNo 4+ MND) + v, (10),
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with similar suppositions for B (u,v) and C(u,v). A (u,v) is
thus a symmetrical function of the M’s and N’s, so that
A@r)=4A ¥ u) coeereiiiiininians (11).

It will be observed that according to this notation A (u, u) is
the same as 4 1n (6).

In like manner

A v)*+B(uv)v+C0(uv)=0.cc.cn.n.ne. (12),
shewing that w, » are both roots of the quadratic, whose co-
efficients are 4 (u, v), B (4, v), C (4, v). Accordinglv
B (p, v) W___C(#,V)

() R R

We will now suppose that u, » are two conjugate complex
roots, so that

wtv=—

w=u+10, v=a—10,
where a, 8 are real. Under these circumstances if M;, M,, ... be
P, +1Q,, P,+1Q,,..., then N, N,,... will be P, —1@Q,, P, —2Q,,
...... , the P’s and ’s being real. Thus by (10)
24 (,“a V) =y <P12 + Qlﬂ) + Qo (Pf + Q) + ...
+ 20, (PP, + Q@)+ ... -
=24 (P)+24(Q) .evrveeeeriiiniiiiainans (14).
In (14) A(P), A(Q) are functions, such as (6), of real variables.
From (13) we now find

B(P)+B(Q)
20 = — m .................. 15),
a2+,32=g(P)+ C@

AP)+4Q

From these Routh deduces the following conclusions :—

(8) If A4 and B be one-signed and have the same sign
(whether C' be a one-signed function or not), then the real part a
of every imaginary root must be negative and not zero. But if B
be absent, then the real part of every imaginary root is zero.

(¢) If A and C be one-signed and have opposite signs, then
whatever may be the character of B, there can be no imaginary
roots.

It may be remarked that if B do not occur, and if w? and »*
be different roots of the determinant, it follows frow (9), (12) that

A () =0, v)=0.iiieiiiiienn, @an.
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When the number of degrees of freedom is finite, the funda-
mental determinant may be expanded in powers of pu, giving
an equation f(u) =0 of degree 2m. The condition of stability
is that all the real roots and the real parts of all the complex
roots should be negative. If, as usual, complex quantities « + sy
be represented by points whose co-ordinates are «, y, the condition
is that all points representing roots should lie to the left of the
axis of 3. The application of Cauchy’s rule relative to the
number of roots within any contour, by taking as the contour the
infinite semi-circle on the positive side of the axis of ¥, is very
fully discussed by Routh?, who has thrown the results into forms
convenient for practical application to particular cases.

1030. The theorems of § 103 o de not exhaust all that general
mechanical principles would lead us to expect as to the character
of the roots of the fundamental determinant, and it may be well
to pursue the question a little further. We will suppose through-
out that 4 is one-signed and positive.

If B and C be both one-signed and positive, we see that the
equilibrium is thoroughly stable ; for from (a) it follows that there
can be no positive root, and from (8) that no complex root can have
its real part positive.

In like manner the equations of § 103 o suffice for the case
where C is one-signed and positive, B one-signed and negative.
By (5) every real root is positive, and by (15) the real part
of every complex root. Hence the equilibrium is unstable in
every mode.

When C is one-signed and negative, all the roots are real (¢);
but (5) does not tell us whether they are positive or negative.
When B =0, we know (§ 87) that the roots occur in pairs of equal
numerical value and of opposite sign. In this case therefore
there are m positive and m negative roots. We will prove that
this state of things cannot be disturbed by B. For if the determi-
nant be expanded, the coefficient of u*" is the discriminant of 4,
and the coefficient of wis the discriminant of C. By supposition
neither of these quantities is zero, and thus no root of the equation
can be other than finite. Hence as B increases from zero to its
actual magnitude as a function of the variables, no root of the
equation can change sign, and accordingly there remain m

! Adams Prize Essay 1877; Rigid Dynamics § 290.
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positive and m negative roots. It should be noticed that in this
argument there is no restriction upon the character of B.

In the case of a real root the values of M, M,, ... are real, and
thus the motion is such as might take place under a constraint
reducing the system to one degree of freedom. But if this con-
straint were actually imposed, there would be two corresponding
values of u, being the values given by (5). In general only one of
these is applicable to the question in hand. Otherwise it would
be possible to define m kinds of coustraint, one or other of which
would be consistent with any of the 2m roots. But this could
only happen when the three functions 4, B, C are simultaneously
reducible to sums of squares (§ 97).

When B =0, there are m modes of motion, and two roots for
each mode. In the present application to the case where C is
one-signed and negative, each of the m modes for B=0 gives
one positive and one negative root. The positive root denotes
instability, and although the negative root gives a motion which
diminishes without limit, the character of instability is considered
to attach to the mode as a whole, and all the m modes are said
to be unstable. But when B is finite, there are in general 2m
distinct modes with one root corresponding to each. Of the
2m modes m are unstable, but the remaining m modes must be
reckoned as stable. On the whole, however, the equilibrium is
unstable, so that the influence of B, even when positive, is in-
sufficient to obviate the instability due to the character of C.

We must not prolong much further our discussion of unstable
systems, but there is one theorem respecting real roots too
fundamental to be passed over. It may be regarded as an ex-
tension of that of § 88,

The value of u corresponding to a given constraint M, : M, : ...
is one of the roots of (5): and it follows from (4) that the value of
w is stationary when the imposed constraint coincides with one of
the modes of free motion. The effect of small changes in 4, B, C
may thus be calculated from (5) without allowance for the
accompanying change of type.

Let C, being negative for the mode unaer consideration,
undergo numerical increase, while A and B remain unchanged as
functions of the co-ordinates. The latter condition requires that
the roots of (5), one of which is positive and one negative, should
move either both towards zero or both away from zero; and the
first condition excludes the former alternative. Whether it be
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the positive or the negative root of (5) which is the root of the
determinant, we infer that the change in question causes the
latter to move away from zero.

In like manner if 4 increase, while B and C remain unchanged,
the movement of the root, whether positive or negative, is
necessarily towards zero.

Again, if A and C be given, while B increases algebraically
as a function of the variables, the movement of the root of the
determinant muist be in the negative direction.

An algebraic increase in B thus increases the stability, or
decreases the instability, in every mode. A numerical increase
in C or decrease in 4 on the other hand promotes the stability
of the stable modes and the instability of the unstable modes.

We can do little more than allude to the theorem relating to
the effect of a single constraint upon a system for which C is
one-signed and negative. Whatever be the nature of B, the
(m—1) positive roots of the determinant, appropriate to the
system after the constraint has been applied, will separate the m
positive roots of the original determinant, and a like proposition
will hold for the negative roots. Upon this we may found a
generalization of the foregoing conclusions analogous to that
of § 92a. Consider an independent vibrator of one degree of
freedom for which C is positive, and let the roots of the frequency
equation be »,, v,, one negative and one positive. If we regard
this as forming part of the system, we have in all (2m + 2) roots.
The effect of a constraint by which the two parts of the system
are connected will be to reduce the (2m +2) back to 2m. Of
these the m positive will separate the (m + 1) quantities formed
* of the m positive roots of the original equation together with (the
positive) v,, and a similar proposition will hold for the negative
roots. The effect of the vibrator upon the original system is thus
to cause a movement of the positive roots towards w,, and a
movement of the negative roots towards »,. This conclusion
covers all the previous statements as to the effect of changes in
A, B, C upon the values of the roots.

Enough has now been said on the subject of the free vibra-
tions of a system in general. Any further illustration that it
may require will be afforded by the discussion of the case of two
degrees of freedom, § 112, and by the vibrations of strings and other
special bodies with which we shall soon be occupied. We resume
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the equations (1) § 103, with the view of investigating further the
nature of forced vibrations.

104 In order to eliminate from the equations all the co-
ordinates but one (y), operate on them in succession with the
minor determinants

av 4V dv

de,’ 83_21, d_e;’
and add the results together; and in like manner for the other
co-ordinates. We thus obtain as the equivalent of the original
system of equations

v v
V= 4 AR
21

&e.,

en de deg,
v dv  dv
V=gt Bt Yok b 1),

av av av
V‘\Ps—d—el;\lfl-l-&;\lfg-l-z{é;\y;,-}-...

in which the differentiations of V are to be made without re-
cognition of the equality subsisting between e, and e,,.

The forces V¥,, ¥,, &c. are any whatever, subject, of course,
to the condition of not producing so great a displacement or
motion that the squares of the -small quantities become sensible.
If, as is often the case, the forces operating be made up of two
parts, one constant with respect to time, and the other periodic,
it is convenient to separate in imagination the two classes of
effects produced. The effect due to the constant forces is exactly
the same as if they acted alone, and is found by the solution
of a statical problem. It will therefore generally be sufficient
to suppose the forces periodic, the effects of any constant forces,
such as gravity, being merely to alter the configuration about
which the vibrations proper are executed. We may thus without
any real loss of generality confine ourselves to periodic, and
therefore by Fourier’s theorem to harmonic forces.

We might therefore assume as expressions for ¥, &c. circular
functions of the time; but, as we shall have frequent occasion
to recognise in the course of this work, it is usually more con-
venient to employ an imaginary exponential function, such as
E ¢, where E is a constant which may be complex. When the
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corresponding symbolical solution 1is obtained, its real and
imaginary parts may be separated, and belong respectively to
the real and imaginary parts of the data. In this way the
analysis gains considerably in brevity, inasmuch as differentiations
and alterations of phase are expressed by merely modifying the
complex coefficient without changing the form of the function.
We therefore write

V= Ee?, V,=E.e?, &c.
. . dv . .
The minor determinants of the type 7. are rational integral
rs

functions of the symbol D, and operate on ¥,, &e. according to
the law '

S (D) et = f(ip)e®t.....cocouuiinninil, (2).
Our equations therefore assume the form
V= 4,6, V=A%, &ec................ (3).

where 4,, 4,, &c. are certain complex constants. And the sym-
bolical solutions are
Y= A4,V-1ei#t, &e,
eivt
1 W:
where V (ip) denotes the result of substituting ¢p for D in V.

or by (2), V=4 & v, (4),

Consider first the case of a system exempt from friction.

V and its differential coefficients are then even functions of
D, so that V (ip) is real. Throwing away the imaginary part
of the solution, writing R,e® for A4,, &c., we have

R, .
Y, = Tp) cos(pt+6), &c ...cuv....... (3).

If we suppose that the forces W,, &c. (in the case of more
than one generalized component) have all the same phase, they
may be expressed by

E cos(pt+a), E,cos(pt+a), &ec.;

and then, as is easily seen, the co-ordinates themselves agree
in phase with the foreces:

vy = V%}?} COS(PE+a) ovvivrnvanannnnns (6).

The amplitudes of the vibrations depend among other things
ou the magnitude of V (ip). Now, if the period of the forces
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be the same as one of those belonging to the free vibrations,
V (ip) =0, and the amplitude becomes infinite. This is, of
course, just the case in which it is essential to introduce the
consideration of friction, from which no natural system is really
exempt.

If there be friction, V (ip) is complex ; but it may be divided
into two parts—one real and the other purely imaginary, of which
the latter depends entirely on the friction. Thus, if we put

VEp)=V.ep)+p Va(@p)eeeiiinnnininnn M),
V., V, are even functions of ip, and therefore real. If as before
A, =R, e, our solution takes the form

‘1,‘ Il1 etf glypuot

1= T N R S 3
(Vi) [+ pV. (ip) I}
or, on throwing away the imaginary part,

= ,.I_%I_C_‘?fi!’__ti gl_i‘_'ﬁ (8)
(V@) +p V. @) ’
—_PY:(1p)
where tany=— Sy 9).

We have said that V,(ip) depends entirely on the friction; but
it is not true, on the other hand, that V,(ip) is exactly the same,
as if there had been no friction. However, this is approximately
the case, if the friction be small; because any part of V (ip), which
depends on the first power of the coefficients of friction, is neces-
sarily imaginary. Whenever there is a coincidence between the
period of the force and that of one of the free vibrations, V, (ip)

vanishes, and we have tany=— o, and therefore
R, sin (pt + 6,) .
= s 10),
k& pVa(ip) (10)

indicating a vibration of large amplitude, only limited by the
friction.

On the hypothesis of small friction, 6 is in general small, and
50 also is v, except in case of approximate equality of periods.
With certain exceptions, therefore, the motion has nearly the
same (or opposite) phase with the force that excites it.

When a force expressed by a harmonic term acts on a system,
the resulting motion is everywhere harmonic, and retains the
original period, provided always that the squares of the displace-
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ments and velocities may be neglected. This important principle
was enunciated by Laplace and applied by him to the theory of
the tides. Its great generality was also recognised by Sir John
Herschel, to whom we owe a formal demonstration of its truth®.
If the force be not a harmonic function of the time, the types
of vibration in different parts of the system are in general different
from each other and from that of the force. The harmonic
functions are thus the only ones which preserve their type un-
changed, which, as was remarked in the Introduction, is a strong
reason for anticipating that they correspond to simple tones.

105. We now turn to a somewhat different kind of forced
vibration, where, instead of given forces as hitherto, given inexora-
ble motions are preseribed.

If we suppose that the co-ordinates yr, v, ... ¥, are given
functions of the time, while the forces of the remaining types
Y,.1, ¥,ps, ... ¥, vanish, the equations of motion divide them-

selves into two groups, viz.
en "I"x + em‘l"z +...+ enn‘l’m =V,
eal\[’1+322‘i"2+---+3m\l’m=wz (1)

eny+ en‘P'z +. ot eemYrm= v,
and '
e1‘+1, 1 ‘1’1 + er+1,= \!’2 +..0+ er+1, m ‘\pm = O

e Yit+eme Yot ... demm Yo = 0

In each of the m — r equations of the latter group, the first »
terms are known explicit functions of the time, and have the same
effect as known forces acting on the system. The equations of
this group are therefore sufficient to determine the unknown
quantities; after which, if required, the forces necessary to main-
tain the prescxibed motion may be determined from the first
group. It is obvious that there is no essential difference between
the two classes of problems of forced vibrations.

106. The motion of a system devoid of friction and executing
simple harmonic vibrations in consequence of prescribed variations
of some of the co-ordinates, possesses a peculiarity parallel to those
considered in § 74, 79. Let

Y =A4,cos pt, ,=4,cospt, &c,
1 Encyc. Metrop. art. 323. Also Outlines of Astronomy, § 650.
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in which the quantities 4,...4, are regarded as given, while the
remaining ones are arbitrary. We have from the expressions for
Tand V,§ 82,
2T+ V)=%(cn+pran) 42 +... +(Co+pPay) A4+ ...

+{F(u—p an) A2+ ...+ (co— pPar,) A, 4, + ...} cos 2pt,
from which we see that the equations of motion express the con-
dition that £, the variable part of I'+ V, which is proportional to

en—pran) AP+ ...+ (Co~ Play) Ay du+ ... ... (1),
shall be stationary in value, for all variations of the quantities
Arir... 4. Let p”be the value of p?natural to the system when
vibrating under the restraint defined by the ratios

A, A, A, Ayt A
then
pi={kendr+ ... Fendido+ . )+ Fan A2+t apd A, + b

so that

E=(p*—p) fandi+... +ap,did,+ ..} o (2).

From this we see that if p* be certainly less than p’2; that is,
if the prescribed period be greater than any of those natural to
the system under the partial constraint represented by
4, : 4,...4,,

then Z is necessarily positive, and the stationary value—there can
be but one—is an absolute minimum. For a similar reason, if the
prescribed period be less than any of those natural to the partially
constrained system, £ is an absolute maximum algebraically, but
arithmetically an absolute minimum. But when p* lies within the
range of possible values of p%, E may be positive or negative, and
the actual value is not the greatest or least possible. Whenever
a natural vibration is consistent with the imposed conditions, that
will be the vibration assumed. The variable part of 7+ V is then
zero.

For convenience of treatment we have considered apart the
two great classes of forced vibrations and free vibrations; but there
is, of course, nothing to prevent their coexistence. After the lapse
of a sufficient interval of time, the free vibrations always dis-
appear, however small the friction may be. The case of abso-
lutely no friction is purely ideal.

There is one caution, however, which may not be superfluous
in respect to the case where given motions are forced on the
system. Suppose, as before, that the co-ordinates yr,, Yr,,...\r, are
given. Then the free vibrations, whose existence or non-existence
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is a matter of indifference so far as the forced motion is concerned,
must be understood to be such as the system is capable of, when
the co-ordinates vr,...y, are not allowed to vary from zero. In
order to prevent their varying, forces of the corresponding types
must be introduced ; so that from one point of view the motion in
question may be regarded as forced. But the applied forces are
merely of the nature of a constraint; and their effect is the same
as a limitation on the freedom of the motion.

1086 a. The principles of the last sections shew that if
Y1, Yu...¥ be given harmonic functions of the time A, cos pt,
4, cos pt,..., the forces of the other types vanishing, then the
motion is determinate, unless p is so chosen as to coincide with
one of the values proper to the system when 4, Vr...4, are
maintained at zero. As an example, consider the case of a
membrane capable of vibrating transversely. If the displacement
¥ at every point of the contour be given (proportional to cos pt),
then in general the value in the interior is determinate; but an
exception occurs if p have one of the values proper to the
membrane when vibrating with the contour held at rest. This
problem is considered by M. Duhem' on the basis of a special
analytical investigation by Schwartz. It will be seen that it may
be regarded as a particular case of a vastly more general theorem.

A like result may be stated for an elastic solid of which the
surface motion (proportional to cos pt) is given at every point. Of
course, the motion at the boundary need not be more than partially
given. Thus for a mass of air we may suppose given the motion
normal to a closed surface. The internal motion is then deter-
minate, unless the frequency chosen is one of those proper to the
mass, when the surface is made unyielding.

107. Very remarkable reciprocal relations exist between the
forces ind motions of different types, which may be regarded as
extensions of the corresponding theorems for systems in which
only ¥ or T has to be considered (§ 72 and §§ 77,78). If we sup-
pose that all the component forces, except two—W¥, and ¥, —are

zero, we obtain from § 104,

dv dav
V\# den A +de=, bt )

gAY ‘
V‘\P Eieu d&_._. ¥ /(’

} Cours de Physique Mathématique, Tome Second. p. 190. Paris 1891.
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We now consider two cases of motion for the same system ; first

when ¥, vanishes, and secondly (with dashed letters) when ¥’
vanishes. If ¥,=0,

‘\P‘z =V (-ie-ln‘;’l ........................ (2)
Similarly, if ¥, =0, )
’ dv ’
\;’1 =V~ -d_ejqfr" ........................ (3)

In these equations V and its differential coefficients are rational
integral functions of the symbol D; and since in every case
€4 =€y, V is a symmetrical determinant, and therefore

av  dv
d_e,; = %m. ........................... (4).

Hence we see that if a force ¥, act on the system, the co-
ordinate v, is related to it in the same way as the co-ordinate 4,

is related to the force ¥, when this latter force is supposed to act
alone.

In addition to the motion here contemplated, there may be
free vibrations dependent on a disturbance already existing at the
moment subsequent to which all new sources of disturbance are
included in ¥; but these vibrations are themselves the effect of
forces which acted previously. However small the dissipation
may be, there must be an interval of time after which free vibra-
tions die out, and beyond which it is unnecessary to go in taking
account of the forces which have acted on a system. If therefore
we include under ¥ forces of sufficient remoteness, there are no
independent vibrations to be considered, and in this way the
theorem may be extended to cases which would not at first sight
appear to come within its scope. Suppose, for example, that the
system is at rest in its position of equilibrium, and then begins to
be acted on by a force of the first type, gradually increasing in
magnitude from zero to a finite value W, at which point it ceases
to increase. If now at a given epoch of time the force be sud-
denly destroyed and remain zero ever afterwards, free vibrations of
the system will set in, and continue until destroyed by friction.
At any time ¢ subsequent to the given epoch, the co-ordinate v,
has a value dependent upon ¢ proportional to ¥,. The theorem
allows us to assert that this value y, bears the same relation to ¥,
as Y would at the same moment have borne to ¥, if the original
cause of the vibrations had been a force of the second type in-
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creasing gradually from zero to W, and then suddenly vanishing
at the given epoch of time. We have already had an example of
this in § 101, and a like result obtains when the cause of the
original disturbance is an impulse, or, as in the problem of the
planoforte-string, a variable force of finite though short duration.
In these applications of our theorem we obtain results relating to
free vibrations, considered as the residual effect of forces whose
actual operation may have been long before.

108. In an important class of cases the forces ¥; and W, are
harmonic, and of the same period. We may represent them by
A, A/e where A, and 4, may be assumed to be real, if the
forces be in the same phase at the moments compared. The
results may then be written

V() .
Yo=4, d———-‘—IOg (p) e
€12
gy =4, 2108V (P dv (P) gip

€

where 1p is written for D. Thus,

Since the ratio 4, : 4, is by hypothesis real, the same is
true of the ratio v’ : 4; which signifies that the motions
represented by those symbols are in the same phase. Passing
to real quantities we may state the theorem thus:—

If a force W,=A, cospt, acting on the system give rise to
the motion r,=6A, cos(pt—e); then will a force W,’= A, cospt
produce the motion r' = 0 A, cos (pt — €).

If there be no friction, € will be zero.

If 4,=A4,, then Yo' =+,. But it must be remembered that
the forces ¥, and W, are not necessarily comparable, any more
than the co-ordinates of corresponding types, one of which for
example may represent a linear and another an angular dis-
placement.

The reciprocal theorem may be stated in several ways, but
before proceeding to these we will give another investigation,
not requiring a knowledge of determinants.

If ¥, %,,... ¥, ¥u,... and W, W, ,... 4/, ¥,... be two sets
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of forces and corresponding displacements, the equations of
motion, § 103, give
\1’1‘!'1’ + \1’2‘1’21 +...0= ‘1’1, (311'\1"1 + 512‘1"2 + s+ . ..)
+ ¥ (e + ey F€xYrs +..) + -
Now, if all the forces vary as ¢#t, the effect of g symbolic
operator sueh as e, on any of the quantities 4 is merely to
multiply that quantity by the constant found by substituting

ip for D in e,. Supposing this substitution made, and having
regard to the relations e, =e,, we may write

Yy + W, + ..o =endndn + enradn + ...

Fen (Y Yot YY) F o v (3).
Hence by the symmetry
Vo + Py + o =V e e (4),

which is the expression of the reciprocal relation.

109. In the applications that we are about to make it
will be supposed throughout that the forces of all types but
two (which we may as well take as the first and second) are
zero. Thus

Vo + Vo =W + WPy e, (1).

The consequences of this equation may be exhibited in three

different ways. In the first we suppose that

¥,=0, ¥/'=0,
whence Yot W=y s WY (2),

shewing, as before, that the relation of Y, to ¥, in the first
case when ¥,=0 is the same as the relation of 4" to ¥, in
the second case, when W, =0, the identity of relationship ex-
tending to phase as well as amplitude.

A few examples may promote the comprehension of a law,
whose extreme generality is not unlikely to convey an impression
of vagueness.

If P and Q be two points of a horizontal bar supported in
any manner (e.g. with one end clamped and the other free), a
given harmonic transverse force applied at P will give at any
moment the same vertical deflection at @ as would have been
found at P, had the force acted at Q.

If we take angular instead of linear displacements, the
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theorem will run:—A given harmonic couple at P will give the
same rotatton at @ as the couple at  would give at P.

Or if one displacement be linear and the other angular, the
result may be stated thus: Suppose for the first case that a
harmonic couple acts at P, and for the second that a vertical
force of the same period and phase acts at @, then the linear
displacement at @ in the first case has at every moment the
same phase as the rotatory displacement at P in the second,
and the amplitudes of the two displacements are so related that
the maximum couple at P would do the same work in acting
over the maximum rotation at P due to the force at @, as the
maximum force at @ would do in acting through the maximum
displacement at ¢ due to the couple at P. In this case the
statement is more complicated, as the forces, being of different
kinds, cannot be taken equal.

If we suppose the period of the forces to be excessively long,
the momentary position of the system tends to coincide with
that in which it would be maintained at rest by the then acting
forces, and the equilibrium theory becomes applicable. Our
theorem then reduces to the statical one proved in § 72.

As a second example, suppose that in a space occupied by
air, and either wholly, or partly, confined by solid boundaries,
there are two spheres A and B, whose centres have one degree
of freedom. Then a periodic force acting on 4 will produce
the same motion in B, as if the parts were interchanged; and
this, whatever membranes, strings, forks on resonance cases, or
other bodies capable of being set into vibration, may be present in
their neighbourhood.

Or, if 4 and B denote two points of a solid elastic body
of any shape, a force parallel to 0X, acting at A, will produce
the same motion of the point B parallel to OY as an equal force

parallel to OY acting at B would produce in the point A4,
parallel to OX.

Or again, let 4 and B be two points of a space occupied by
air, between which are situated obstacles of any kind. Then a
sound originating at A is perceived at B with the same intensity
as that with which an equal sound originating at B would be per-
ceived at 4.1 The ohstacle, for instance, might consist of a rigid

1 Helmholté, Crelle, Bd. Lvix., 1869. The sounds must be such as in the absence
of obstacles would diffuse themselves equally in all directions.
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wall pierced with one or more holes. This example corresponds
to the optical law that if by any combination of reflecting or
refracting surfaces one point can be seen from a second, the second
can also be seen from the first. In Acoustics the sound shadows
are usually only partial in consequence of the not insignificant
value of the wave-length in comparison with the dimensions of
ordinary obstacles: and the reciprocal relation is of considerable
interest.

A further example may be taken from electricity. Let there
be two circuits of insulated wire 4 and B, and in their neigh-
bourhood any combination of wire-circuits or solid conductors
in communication with condensers. A periodic electro-motive
force in the circuit 4 will give rise to the same current in B
as would be ‘excited in 4 if the electro-motive force operated
in B.

Our last example will be taken from the theory of conduction
and radiation of heat, Newton’s law of cooling being assumed
as a basis. The temperature at any point 4 of a conducting and
radiating system due to a steady (or harmonic) source of heat
at B is the same as the temperature at B due to an equal source
at 4. Moreover, if at any time the source at B be removed, the
whole subsequent course of temperature at 4 will be the same as
it would be at B if the parts of B and 4 were interchanged.

110. The second way of stating the reciprocal theorem is
arrived at by taking in (1) of § 109,

‘Pl = 01 \P‘:Z’ = O ;
whence Wy =W i, (1),
or T, =W 2 Y e, (2),

shewing that the relation of ¥, to 4, in the first case, when ¥, =0,
is the same as the relation of ¥, to ¥~ in the second case, when
¥ =0.

Thus in the example of the rod, if the point P be held at
rest while a given vibration is imposed upon @ (by a force there
applied), the reaction at P is the same both in amplitude and
phase as it would be at @ if that point were held at rest and
the given vibration were imposed upon P.

So if A and B be two electric circuits in the neighbourhood
of any number of others, C, D, ... whether closed or terminating
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in condensers, and a given periodic current be excited in 4 by
the necessary electro-motive force, the induced electro-motive
force in B is the same as it would be in A, if the parts of 4
and B were interchanged.

The third form of statement is obtained by putting in (1)
of § 109,

‘Pl = 0, ‘1"2, = 0 s
whence Wi+ W =0 e (3),
or Yyt =—T s W (4),

proving that the ratio of 4 to ¥, in the first case, when W, acts
alone, is the negative of the ratio of ¥, to ¥," in the second case,
when the forces are so related as to keep " equal to zero.

Thus if the point P of the rod be held at rest while a periodic
force acts at @, the reaction at P bears the same numerical ratio
to the force at @ as the displacement at @ would bear to the
displacement at P, if the rod were caused to vibrate by a force
applied at P.

111. The reciprocal theorem has been proved for all systems
in which the frictional forces can be represented by the function F,
but it is susceptible of a further and an important generalization.
We have indeed proved the existence of the function F for
a large class of cases where the motion is resisted by forces
proportional to the absolute or relative velocities, but there are
other sources of dissipation not to be brought under this head,
whose effects it is equally important to include; for example, the
dissipation due to the conduction or radiation of heat. Now
although it be true that the forces in these cases are not for all
possible motions in a constant ratio to the velocities or displace-
ments, yet in any actual case of periodic motion () they are
necessarily periodic, and therefore, whatever their phase, ex-
pressible by a sum of two terms, one proportional to the dis-
placement (absolute or relative) and the other proportional to the
velocity of the part of the system affected. If the coefficients
be the same, not necessarily for all motions whatever, but for all
motions of the period T, the function F exists in the only sense
required for our present purpose. In fact since it is exclusively
with motions of period T that the theorem is concerned, it is
plainly a matter of indifference whether the functions T, F, V'
are dependent upon 7 or not. Thus extended, the theorem is
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perhaps sufficiently general to cover the whole field of dissipative
forces. '

It is important to remember that the Principle of Reciprocity
is limited to systems which vibrate about a configuration of equi-
librium, and is therefore not to be applied without reservation to
such a problem as that presented by the transmission of sonorous
waves through the atmosphere when disturbed by wind. The
vibrations must also be of such a character that the square of the
motion can be neglected throughout; otherwise our demonstra-
tion would not hold good. Other apparent exceptions depend on
a misunderstanding of the principle itself. Care must be taken
to observe a proper correspondence between the forces and dis-
placements, the rule being that the action of the force over the
displacement is to represent work done. Thus couples correspond
to rotations, pressures to increments of volume, and so on.

111a. The substance of the preceding sections is taken from
a paper by the Author’, in which the action of dissipative forces
appears first to have been included. Reciprocal theorems of a
special character, and with exclusion of dissipation, had been
previously given by other writers. One, due to von Helmholtz,
has already been quoted. Reference may also be made to the
reciprocal theorem of Betti? relating to a uniform isotropic elastic
solid, upon which bodily and surface forces act. Lamb?® has shewn
that these results and more recent ones of von Helmholtz* may
be deduced from a very general equation established by Lagrange
in the Mécanique Analytique.

1115 In many cases of practical interest the external force,

in response to which a system vibrates harmonically, is applied at a
single point. This may be called the driving-point, and it becomes
important to estimate the reaction of the system upon it. When
T and F only are sensible, or F and ¥V only, certain general
conclusions may be stated, of which a specimen will here be given.
For further details reference must be made to a paper by the
Author”.

1 « Some General Theorems relating to Vibrations,” Proc. Math. Soc., 1873.

2 Il Nuovo Cimento, 1872.

3 Proc. Math. Soc., Vol. xix., p. 144, Jan. 1888.

+ Crelle, t. 100, pp. 137, 213. 1886.

8 ¢ The Reaction upon the Driving-point of a System executing Forced Harmonic
Oscillations of various Periods,” Phil. Mag., May, 1886.
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Consider a system, devoid of potential energy, in which the
co-ordinate v, is made to vary by the operation of the harmonic
force W¥,, proportional to e?’. The other co-ordinates may be chosen
arbitrarily, and it will be very convenient to choose them so that
no product of them enters into the expressions for 'and F. They
would be in fact the normal co-ordinates of the system on the
supposition that 4, is constrained (by a suitable force of its own
type) to remain zero. The expressions for T and F thus take the
following forms :—

T= %au\["lz + %aw‘i’f + %asa\j"ag +

+ 0412‘;0‘1\’.’2 + aln‘f’x\;’s + a«u‘\il‘ﬂiﬂ I, (1).
F= ’}bn‘iﬁz + 3Dyt + $bssifrs +
=+ bm‘i’l‘l"z + bls‘iﬁ‘;"s + bu‘\ifﬂjﬁ Foier reeeenees ( 2).

The equations for a force ¥,, proportional to ™!, are accordingly
(1P + b)) Y1 + (P F bio) Yo+ (P + bis) s + ... =T,
(1pus + bia) Y + (1Pass + b) ¥ = O,
(ipass + bi) ¥ + (ipas; + by) ‘i’s =0,

By means of the second and following equations v, ... are
expressed in terms of v, Introducing these values into the first

equation, we get
i == _ (2pays + byp)? _ (tpas + bys) _
\I’)/'\ill—@pajl‘i’bu leam“l'bn ‘b:pass-i-bgs tee eesnaenan (3).
The ratio W,/4j, is a complex quantity, of which the real part
corresponds to the work done by the force in a complete period
and dissipated in the system. By an extension of electrical
language we may call it the resistance of the system and denote it
by the letter R’. The other part of the ratio is imaginary. If we
denote it by ipLjn or L'y~ L’ will be the moment of inertia, or
self-induction of electrical theory. We write therefore

W, = (R +pL) Yy oo, (4);

and the values of R’ and L’ are to he deduced by separation of the
real and the imaginary parts of the right-hand member of (3). In
this way we get

b2 (aqz 22 anbn)
R = 2 + azbw————m(b e ().

This is the value of the resistance as determined by the
constitution of the system, and by the frequency of the imposed
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vibration. Each component of the latter series (which alone
involves p) is of the form ap?/(B + yp?), where a, B3, v are all positive,
and (as may be seen most easily by considering its reciprocal)
increases continually as p* increases from zero to infinity. We
conclude that as the frequency of vibration increases, the value of
R’ increases continuously with it. At the lower limit the motion
is determined sensibly by the quantities b (the resistances) only, and
the corresponding resultant resistance R’ is an absolute minimum,

whose value is
b = 2 (02 ba) cviriiiiiiiiinn, (6).

At the upper limit the motion is determined by the inertia of
the component parts without regard to resistances, and the value
of R is

b* (@rsbos — Agsbro)?
H—EE +% by ay* ’

or by + b3 (bm Z—l;f: — 2b,, %—:) .................. (7).

When p is either very large or very small, all the co-ordinates
are in the same phase, and (6), (7) may be identified with
2F /. )

’_ a4, (Q12bsy — Abyy)’

Also L'=a;,-2 T X a—-———————*——ﬁ Gt pad (8).

In the latter series every term is positive, and continually
diminishes as p* increases. Hence every increase of frequency is
attended by a diminution of the moment of inertia, which tends
ultimately to the minimum corresponding to the disappearance of
the dissipative terms.

If p be either very large or very small, (8) identifies itself
with 27/yn2

As a simple example take the problem of the reaction upon
the primary circuit of the electric currents generated in a neigh-
bouring secondary circuit. In this case the co-ordinates (or rather
their rates of increase) are naturally taken to be the currents
themselves, so that v~ is the primary, and 4 the secondary
current. 1n usual electrical notation we represent the coefficients
of self-induction by L, N, and of mutual induction by M, so that

T = $Ly + My, + 387,
and the resistances by B and S. Thus
an=L, an=M, an=N;
bu=R, b,=0, bu=8;
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and (5) and (8) become at once

, p! 2

R'=R+ Sz-——M sz ..................... 9),
o[ PN

L Fpm e (10).

These formula were given originally by Maxwell, who remarked
that the reaction of the currents in the secondary has the effect
of increasing the effective resistance and diminishing the effective
self-induction of the primary cirenit.

If the rate of alternation be very slow, the secondary circuit is
without influence. If, on the other hand, the rate be very rapid,

R’= R+ M3S/N?, L'=L— M?N.

112. In Chapter I1I. we considered the vibrations of a system
with one degree of freedum. The remainder of the present Chapter
will be devoted to some details of the case where the degrees of
freedom are two. ‘

If 2 and y denote the two co-ordinates, the expressions for 7'
and V are of the form
27T = Li#* + 2Mzy + N
2V =44+ 2Bzy + Cy*
so that, in the absence of friction, the equations of motion are
Li+ My+ Az+ By=X
Mi+ Nj+Bz+Cy=Y
When there are no impressed forces, we have for the natural
vibrations
(LD* +A)yz+(MD*+ B)yy=0
(MD*+ Byz +(ND*+ C)y=0
D being the symbol of differentiation with respect to time.
If a solution of (3) be a=le", y=meM, A* is one of the
roots of

(LN + A) (NN +C)— (MN 4+ B): =0 ......... (4),
or
M(LN —M*)4+2(LC+ NA—2MB)+ AC - B*=0...... (5).

The constants L, M, N; A, B, C, are not entirely arbitrary.
Since T and V are essentially positive, the following inequalities
must be satisfied :—

LN>M3, AC>B..ccuienivenannn.. (6).

Moreover, L, N, A, C must themselves be positive.
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We proceed to examine the effect of these restrictions on the
roots of (5).

In the first place the three coefficients in the equation are
positive. For the first and third, this is obvious from (6). The
coefficient of A?

=(/LC—JNAy +2/LNAC - 2MB,

in which, as is seen from (6), JLNAC is necessarily greater thau
MB. We conclude that the values of A2 if real, are both
negative,

It remains to prove that the roots are in fact real. The
condition to be satisfied is that the following quantity be not
negative :—

(LC+NA —-2MBy — 4 (LN — M?)(AC — B®).
After reduction this may be brought into the form
4(JLN.B-.JAC. M)
+(WLC - JNAyP{(JIC - JNAy +4(/LNAC - MB)},

which shews that the condition is satisfied, since ,/LNAC — MB
is positive. This is the analytical proof that the values of A? are
both real and negative; a fact that might have been anticipated
without any analysis from the physical constitution of the system,
whose vibrations they serve to express.

The two values of A2 are different, unless both

JIN.B—JAC.M=0 ;
JIC- JN4 =0
which require that

The common spherical pendulum 1s an example of this case.

By means of a suitable force ¥ the co-ordinate y may be
prevented from varying. The system then loses one degree of
freedom, and the period corresponding to the remaining one is in
general different from either of those possible before the introduec-
tion of ¥. Suppose that the types of the motions obtained by
thus preventing in turn the variation of y and # are respectively
et ¢«t, Then u,?% w? are the roots of the equation

(In: +4) (NA2 +C) =0,
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being that obtained from (4) by suppressing M and B. Hence
(4) may itself be put into the form
LN (M —=pu )M —p) =N+ By ............ (8),
which shews at once that neither of the roots of A? can be
intermediate in value between w,® and w2 A little further
examination will prove that one of the roots is greater than both
the quantities % w;, and the other less than both. For if we put
SO = LN (M = ) (8 = ) — (M2 + BY,

we see that when A?is very small, f is positive (4C — B%); when
A? decreases (algebraically) to w? f changes sign and becomes
negative. Between 0 and u,* there is therefore a root; and also
by similar reasoning between u,? and —e . We conclude that the
tones obtained by subjecting the system to the two kinds of con-
straint in question are both intermediate in pitch between the
tones given by the natural vibrations of the system. In particular
cases % uy’ may be equal, and then
_JINw@tB - JAC+B
CJINIM  JLNIM

This proposition may be generalized. Any kind of constraint
which leaves the system still in possession of one degree of free-

dom may be regarded as the imposition of a forced relation
between the co-ordinates, such as

x2

Now if az+ By, and any other homogeneous linear func-
tion of # and y, be taken as new variables, the same argument
proves that the single period possible to the system after the
introduction of the constraint, is intermediate in value between
those two in which the natural vibrations were previously per-
formed. Conversely, the two periods which become possible
when a constraint is removed, lie ane on each side of the original
period.

If the values of A* be equal, which can only happen when
L:M:N=4:B:C,
the introduction of a constraint has no effect on the period ; for

instance, the limitation of a spherical pendulum to one vertical
plane.

113. As a simple example of a system with two degrees of
freedom, we may take a stretched string of length , itself without
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inertia, but carrying two equal masses m at distances a and b from
one end (Fig. 17). Tension =1T.

Fig. 17.

If x and y denote the displacements,
2T = m (&* + 7*),
L Cag Gl ) s
2V_Tlig+ - +l—b}’

Since 7 and V are not of the same form, it follows that the
two periods of vibration are in every case unequal.

If the loads be symmetrically attached, the character of the
two component vibrations is evident. In the first, which will have
the longer period, the two weights move together, so that = and y
remain equal throughout the vibration. In the second .» and y arc
numerically equal, but opposed in sign. The middle point of the
string then remains at rest, and the two masses are always to
be found on a straight line passing through it. In the first case
z—y=0, and in the second 24 y=0; so that x+—y and z+y
are the new variables which must be assumed in order to reduce
the functions 7' and V simultaneously to a sum of squares.

For example, if the masses be so attached as to divide the
string into three equal parts,

2T =3 {(&+9¢+@—9))

27 =30 (ot g5+ 3~ )}

from which we obtain as the complete solution,

m+y=Acos(&/:}l—%.t+a>

a:——y=Bcos< @.H—f)’)

im

where, as usual, the constants 4, «, B, 8 are to be determined by
the initial circumstances.

114. When the two natural periods of a system are nearly
equal, the phenomenon of intermittent vibration sometimes pre-
sents itself in a very curious manner. In order to iliustrate this,
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we may recur to the string loaded, we will now suppose, with two
equal masses at distances from its ends equal to one-fourth of the
length. If the middle point of the string were absolutely fixed,
the two similar systems on either side of it would be completely
independent, or, if the whole be considered as one system, the two
periods of vibration would be equal. We now suppose that
instead of being absolutely fixed, the middle point is attached to
springs, or other machinery, destitute of inertia, so that it is
capable of yielding slightly. The reservation as to inertia is to
avoid the introduction of a third degree of freedom.

From the symmetry 1t is evident that the fundamental vibra-
tions of the system are those represented by z+y and z—y.
Their periods are slightly different, because, on account of the
yielding of the centre, the potential energy of a displacement
when «z and y are equal, is less than that of a displacement
when « and y are opposite; whereas the kinetic energies are
the same for the two kinds of vibration. In the solution

z+y=A4 cos(nt+ o) )
w—y= Beos(ng+8) |1 ,
we are vherefore to regard n, and n, as nearly, but not quite, equal.
Now let us suppose that initially # and # vanish. The conditions
are
Acosa+ BeosB=0

mdsina+nBsinB=0

which give approximately
A+B=0, a=g.

Thus z=Asin 2Ty sin(wt+a>
2 2 9
......... (2).

3/=Acosn’;n‘t cos(n‘;n“t+ )

The value of the co-ordinate z is here approximately ex-
pressed by a harmonic term, whose amplitude, being proportional
to sind (ny—m)¢, is a slowly varying harmonic function of the
time. The vibrations of the co-ordinates are therefore intermittent,
and so adjusted that each amplitude vanishes at the moment that
the other is at its maximum.

This phenomenon may be prettily shewn by a tuning fork of
very low pitch, heavily weighted at the ends, and firmly held by
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screwing the stalk into a massive support. When the fork vibrates
in the normal manner, the rigidity, or want of rigidity, of the
stalk does not come into play; but if the displacements of the two
prongs be in the same direction, the slight yielding of the stalk
entails a small change of period. If the fork be excited by striking
one prong, the vibrations are intermittent, and appear to transfer
themselves backwards and forwards between the prongs. Unless,
however, the support be very firm, the abnormal vibration, which
involves a motion of the centre of inertia, is soon dissipated ; and
then, of course, the vibration appears to become steady. If the
fork be merely held in the hand, the phenomenon of intermittence
cannot be obtained at all.

115. The stretched string with two attached masses may be
used to illustrate some general principles. For example, the period
of the vibration which remains possible when one mass is held
at rest, is intermediate between the two free periods. Any in-
crease in either load depresses the pitch of both the natural
vibrations, and conversely. If the new load be situated at a point
of the string not coinciding with the places where the other loads
are attached, nor with the node of one of the two previously
possible free vibrations (the other has no node), the effect is still
to prolong both the periods already present. With regard to the
third finite period, which becomes possible for the first time after
the addition of the new load, it must be regarded as derived from
one of infinitely small magnitude, of which an indefinite number
may be supposed to form part of the system. It is instructive
to trace the effect of the introduction of a new load and its gradual
increase from zero to infinity, but for this purpose it will be
simpler to take the case where there is but one other. At the
commencement there is one finite period 7, and another of in-
finitesimal magnitude 7,. As the load increases T, becomes finite,
and both 7, and 7, continually increase. Let us now consider
what happens when the load becomes very great. One of the
periods is necessarily large and capable of growing beyond all
limit. The other must approach a fixed finite limit. The first
belongs to a motion in which the larger mass vibrates nearly as
if the other were absent; the second is the period of the vibration
of the smaller mass, taking place much as if the larger were fixed.
Now since 7, and 7, can never be equal, 7, must be always the
greater; and we infer, that as the load becomes continually larger,



166 VIBRATING SYSTEMS IN GENERAL. [115,

it is 7, that increases indefinitely, and =, that approaches a finite
limit.
We now pass to the consideration of forced vibrations.

116. The general equations for a system of two degrees of
freedom including friction are
(LD*+aD + A)z+(MD*+BD+B)y=X
(MD*+BD+ B)z+ (ND*+yD+ Q) y= Y}
In what follows we shall suppose that ¥ =0, and that X =¥,
The solution for y 1is
v (B —p*H +iBp) e o)
YT @ pL+iop) (C—pN+iyp)—(B—pM+ifpy
If the connection between x and y be of a loose character, the
constants I, B, B are small, so that the term (B — p*M +178p)
in the denominator may in general be neglected. When this
1s permissible, the co-ordinate y is the same as if # had been pre-
vented from varying, and a force ¥ had been introduced whose
magnitude is independent of IV, v, and C. But if, in consequence
of an approximate isochronism between the force and one of the
motions which become possible when z or y is constrained to be
zero, either A —p?L +iap or C—p*N +iyp be small, then the
term in the denominator containing the coefficients of mutual
influence must be retained, being no longer relatively unimportant ;
and the solution is accordingly of a more complicated character.

Symmetry shews that if we had assumed X =0, ¥ = ¢!, we
should have found the same value for £ as now obtains for y. This
is the Reciprocal Theorem of § 108 applied to a system capable
of two independent motions. The string and two loads may again
be referred to as an example.

117. So far for an imposed force. We shall next suppose
that it is a motion of one co-ordinate (z = €'?*) that is prescribed,
while Y'=0; and for greater simplicity we shall confine ourselves
to the case where 8=0. The value of y is
_ (B= MpY e W

e .

Let us now inquire into the reaction of this motion on z.
We have

, _ (:Q__ Mp"’)’ eipt
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If the real and imaginary parts of the coefficient of e be re-
spectively A’ and 7a’p, we may put

(MD*+Byy=A'z+ac occcovvannn.... (8),
i (B=Mp*» (C—Np?
and A'= O—NpF s ypt e 4),
s (B—Mp%y
a — (FW ------------------------ (5).

It appears that the effect of the reaction of y (over and above
what would be caused by holding y = 0) is represented by changing
A into A+ 4’, and a into a+a’, where A’ and o have the above
values, and is therefore equivalent to the effect of an alteration in
the coefficients of spring and friction. These alterations, however,
are not constants, but functions of the period of the motion con-
templated, whose character we now proceed to consider.

Let n be the value of p corresponding to the natural frictionless
period of y (2 being maintained at zero); so that C—n2N=0.
Then

N (p*—n?)

N (p* — ¥ + vy (6).

o = (B — Mp*y e

A= (B — Mp*y

v

(pZ — 712)2 4 722)2

In most cases with which we are practically concerned ry is
small, and interest centres mainly o values of p not much differ-
ing from n. We shall accordingly leave out of account the
variations of the positive factor (B — Mp?), and in the small term
v’p*, substitute for p its approximate value n. When p is not
nearly equal to n, the term in question is of no importance.

As might be anticipated from the general principle of work,
o' is always positive. Its maximum value occurs .when p=mn
nearly, and is then proportional to 1 [yn?, which varies inversely
with . This might not have been expected on a superficial view
of the matter, for it seems rather a paradox that, the greater the
friction, the less should be its result. But it must be remembered
that « is only the cogfficient of friction, and that when vy is small
the maximum motion is so much increased that the whole work
spent against friction is greater than if y were more considerable.

But the point of most interest is the dependence of 4’ on p.
-If p be less than n, 4’ is negative. As p passes through the value
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n, A’ vanishes, and changes sign. When 4’ is negative, the in-
fluence of y is to diminish the recovering power of the vibration z,
and we see that this happens when the forced vibration is slower
than that natural to y. The tendency of the vibration y is thus
to retard the vibration z, if the latter be already the slower, but
to accelerate it, if it be already the more rapid, only vanishing in
the critical case of perfect isochronism. The attempt to make z
vibrate at the rate determined by 7 is beset with a peculiar
difficulty, analogous to that met with in balancing a heavy
body with the centre of gravity above the support. On which-
ever side a slight departure from precision of adjustment may
occur the influence of the dependent vibration is always to increase
the error. Examples of the instability of pitch accompanying a
strong resonance will come across us hereafter; but undoubtedly
the most interesting application of the results of this section is to
the explanation of the anomalous refraction, by substances possess-
ing a very marked selective absorption, of the two kinds of light
situated (in a normal spectrum) immediately on either side of the
absorption band’. It was observed by Christiansen and Kundst,
the discoverers of this remarkable phenomenon, that media of the
kind in question (for example, fuchsine in alcoholic solution) refract
- the ray immediately below the absorption-band abnormally n
excess, and that above it in defect. If we suppose, as on other
grounds it would be natural to do, that the intense absorption is
the result of an agreement between the vibrations of the kind of
light affected, and some vibration proper to the molecules of the
absorbing agent, our theory would indicate that for light of some-
what greater period the effect must be the same as a relaxation of
the natural elasticity of the ether, manifesting itself by a slower
propagation and increased refraction. On the other side of the
absorption-band its influence must be in the opposite direc-
tion,

In order to trace the law of connection between 4’ and p, take
for brevity, yn=a, N (p*—n?)=z, so that
&£

7
A ch"+a"

When the sign of « is changed, 4’ is reversed with it, but pre-
serves its numerical value. When #=0, or + o, A’ vanishes.

! Phil. Mag., May, 1872. Also Sellmeier, Pogg. Ann. t. cxliii. p. 272, 1871,
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Fig. 18.
v
0 x

Hence the origin is on the representative curve (Fig. 18), and the
axis of z is an asymptote. The maximum and minimum values of
A’ occur when z is respectively equal to + @, or —a; and then
x 1
Fra tog
The corresponding values of p are given by

Hence, the smaller the value of a or vy, the greater will be the
maximum alteration of 4, and the corresponding value of p will
approach nearer and nearer to n. It may be well to repeat, that in
the optical application a diminished y is attended by an increased
maximum absorption. When the adjustment of periods is such as
to favour 4’ as much as possible, the corresponding value of o' is
one half of its maximum.



CHAPTER VI.

TRANSVERSE VIBRATIONS OF STRINGS.

118. AMONG vibrating bodies there are none that occupy a
more prominent position than Stretched Strings. From the
earliest times they have been employed for musical purposes,
and in the present day they still form the essential parts of such
important instruments as the pianoforte and the violin. To the
mathematician they must always possess a peculiar interest as the
battle-field on which were fought out the controversies of D’Alem-
bert, Euler, Bernoulli and Lagrange, relating to the nature of the
solutions of partial differential equations. To the student of
Acoustics they are doubly important. In consequence of the com-
parative simplicity of their theory, they are the ground on which
difficult or doubtful questions, such as those relating to the nature
of simple tones, can be most advantageously faced; while in the
form of a Monochord or Sonometer, they afford the most generally
available means for the comparison of pitch.

The ‘string’ of Acoustics is a perfectly uniform and flexible
filament of solid matter stretched between two fixed points—in
fact an ideal body, never actually realized in practice, though
closely approximated to by most of the strings employed in music.
We shall afterwards see how to take account of any small devia-
tions from complete flexibility and uniformity.

The vibrations of a string may be divided into two distinct
classes, which are practically independent of one another, if the
amplitudes do not exceed certain limits. In the first class the
displacements and motions of the particles are longitudinal, so
that the string always retains its straightness. The potential
energy of a displacement depends, not on the whole tension, but
on the changes of tension which occur in the various parts of the
string, due to the increased or diminished extension. In order to
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calculate it we must know the relation between the extension of
a string and the stretching force. The approximate law (given by
Hooke) may be expressed by saying that the extension varies
as the tension, so that if I and I’ denote the natural and the
stretched lengths of a string, and T the tension,

where E is a constant, depending on the material and the section,
which may be interpreted to mean the tension that would be
necessary to stretch the string to twice its natural length, if the
law applied to so great extensions, which, in general, it is far
from doing.

119. The vibrations of the second kind are transverse; that is
to say, the particles of the string move sensibly in planes perpen-
dicular to the line of the string. In this case the potential energy
of a displacement depends upon the general tension, and the
small variations of tension accompanying the additional stretching
due to the displacement may be left out of account. It is here
assumed that the stretching due to the motion may be neglected
in comparison with that to which the string is already subject in
its position of equilibrium. Once assured of the fulfilment of this
condition, we do not, in the investigation of transverse vibrations,
require to know anything further of the law of extension.

The most general vibration of the transverse, or lateral, kind
may be resolved, as we shall presently prove, into two sets of
component normal vibrations, executed in perpendicular planes.
Since it is only in the initial circumstances that there can be any
distinction, pertinent to the question, between one plane and
another, it is sufficient for most purposes to regard the motion as
entirely confined to a single plane passing through the line of the
string.

In treating of the theory of strings it is usual to commence
with two particular solutions of the partial differential equation,
representing the transmission of waves in the positive and nega-
tive directions, and to combine these in such a manner as to suit
the case of a finite string, whose ends are maintained at rest;
neither of the solutions taken by itself being consistent with the
existence of nodes, or places of permanent rest. This aspect of the
question is very important, and we shall fully consider it; but it
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seems scarcely desirable to found the solution in the first instance
on a property so peculiar to a uniform string as the undisturbed
transmission of waves. We will proceed by the more general
method of assuming (in conformity with what was proved in the
last chapter) that the motion may be resolved into normal com-
ponents of the harmonic type, and determining their periods and
character by the special conditions of the system.

Towards carrying out this design the first step would naturally
be the investigation of the partial differential equation, to which
the motion of a continuous string is subject. But in order to
throw light on a point, which it is most important to understand
clearly,—the connection between finite and infinite freedom, and
the passage corresponding thereto between arbitrary constants
and arbitrary functions, we will commence by following a some-
what different course.

120. In Chapter IIL it was pointed out that the fundamental
vibration of a string would not be entirely altered in character,
if the mass were concentrated at the middle point. Following
out this idea, we see that if the whole string were divided into a
number of small parts and the mass of each concentrated at its
centre, we might by sufficiently multiplying the number of parts
arrive at a system, still of finite freedom, but capable of represent-
ing the continuous string with any desired accuracy, so far at
least as the lower component vibrations are concerned. If the
analytical solution for any number of divisions can be obtained,
its limit will give the result corresponding to a uniform string.
This is the method followed by Lagrange.

Let [ be the length, pl the whole mass of the string, so that
p denotes the mass per unit length, 7} the tension.

Fig. 19.

The length of the string is divided into m + 1 equal parts (a),
so that



120.] MASS CONCENTRATED IN POINTS. 173

At the m points of division equal masses (u) are supposed con-
centrated, which are the representatives of the mass of the por-
tions (@) of the string, which they severally bisect. The mass of
each terminal portion of length 4a is supposed to be concentrated
at the final points. On this understanding, we have

(Mm+1)p=pl ceerrieniiiiaeen, (2).

We proceed to investigate the vibrations of a string, itself
devoid of inertia, but loaded at each of m points equidistant
(a) from themselves and from the ends, with a mass a.

If e, Y e Vmye denote the lateral displacements of the
loaded points, including the initial and final points, we have the
following expressions for 7' and V,

T=% pldl e+ oo+ P mer +Pmref coeeeeeeriennnnne (3)

V= % (=) + (Y=Y + - + (Pinte— Pmia)}e - (%),

with the conditions that 4, and 4r,., vanish. These give by
Lagrange’s Method the m equations of motion,

By, +AYy +ByYys =0
B'\P‘z + .A'\Il‘g + .B'\P'4 = 0
By +AY By =0 i (5),

...................................

B‘,’m + A‘P‘m+1 + B‘!’m+2 =0

where A=pD*+ g;? ,

Supposing now that the vibration under consideration is one
of normal type, we assume that ¥, ¥, &e. are all proportional to
cos (nt — €), where n remains to be determined. A and B may
then be regarded as constants, with a substitution of — n2 for D2

If for the sake of brevity we put

C=a+B=-2+800 ),
1

the determinantal equation, which gives the values of n?, assumes
the form
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C, 1, 0, 0, 0...... m rows

1, ¢, 1, 0, O......

0,1, C, 1, O0......

0,0 1, C 1...... =0uiiireennnnnn. (8).
0,0 0 1, C......

From this equation the values of the roots might be found.
It may be proved that, if C'=2cos 0, the determinant is equivalent
to sin (m + 1) 6 +sin 6; but we shall attain our object with greater
ease directly from (5) by acting on a hint derived from the known
results relating to a continuous string, and assuming for trial a
particular type of vibration. Thus let a solution be

Y, =P sin(r—1)B cos(nt—e€) ............ 9),

a form which secures that +»=0. In order that +r,., may
vanish,

where s is an integer. Substituting the assumed values of Y in
the equations (5), we find that they are satisfied, provided that

2BcosB+A=0 ..oooiiiriniiiinnn. (11);
so that the value of n in terms of B is
BT
n=2sin TN g e (12).
A normal vibration is thus represented by
_p o (r=1smw
Y, = P,sin 1 o (Mgl — €g)ernrnnnnnnn. (13),
T, .  sw
where Ng = 2 ,\//—“—1 s1n m ............... (14.‘),

and P,, ¢, denote arbitrary constants independent of the general
constitution of the system. The m admissible values of n are
found from (14) by ascribing to s in succession the values 1, 2,
3...m, and are all different. If we take s=m+1, 4 vanishes,
so that this does not correspond to a possible vibration. Greater
values of s give only the same periods over again. If m+1 be
even, one of the values of n—that, namely, corresponding to
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s =1} (m+1),—is the same as would be found in the case of only
a single load (m=1). The interpretation is obvious. In the kind
of vibration considered every alternate particle remains at rest, so
that the intermediate ones really move as though they were

attached to the centres of strings of length 2a, fastened at
the ends.

The most general solution is found by putting together all the
possible particular solutions of normal type

g=m . (r=1)sw
Y, = Zs=l P, sin Sl o (Mgl — €5)ervvnren (15),
and, by ascribing suitable values to the arbitrary constants, can
be identified with the vibration resulting from arbitrary initial |
circumstances.

Let « denote the distance of the particle » from the end of the
string, so that (r—1)a=2; then by substituting for » and a
from (1) and (2), our solution may be written,

A (2) = P sins"% COS (Mgt — €) +vrververens (16),
_2(m+1) T, . s
Mg =—"—7 51n2(m+1).._ ......... an

Tn order to pass to the case of a continuous string, we have
only to put m infinite. The first equation retains its form, and
specifies the displacement at any point z. The limiting form of
the second is simply

n= “'%’ Lo, (18),

whence for the periodic time,

2721 [p ~
'T—-;z——-? Tl ..................... (19)

The periods of the component tones are thus aliquot parts of
that of the gravest of the series, found by putting s=1. The
whole motion is in all cases periodic; and the period is 20 /(p/T).
This statement, however, must not be understood as excluding
a shorter period; for in particular cases any number of the
lower components may be absent. All that is asserted is that the
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above-mentioned interval of time is suffictent to bring about a com-
plete recurrence. We defer for the present any further discussion
of the important formula (19), but it is interesting to observe the
approach to a limit in (17), as m is made successively greater and
greater. For this purpose it will be sufficient to take the gravest
tone for which s=1, and accordingly to trace the variation of
2(m+1) sin T
T 2(m+1)

The following are a series of simultaneous values of the func-
tion and variable :—

m 1231491939

2(m+1) . T
T Sln2(m+l)

9003 {-9549|-9745|-9836]-9959 (-9990 |-9997

It will be seen that for very moderate values of m the limit is
closely approached. Since m is the number of (moveable) loads,
the case m =1 corresponds to the problem investigated in Chapter
1L, but in comparing the resalts we must remember that we there
supposed the whole mass of the string to be concentrated at the
centre. In the present. case the load at the centre is only half as
great; the remainder being supposed concentrated at the ends,
where it is without effect.

From the fact that our solution is general, it follows that any
initial form of the string can be represented by

¥ (@)= (Peosepsins™C ... (20).

And, since any form possible for the string at all may be
regarded as initial, we infer that any finite single valued function
of x, which vanishes at #=0 and z=1, can be expanded within
those limits in a series of sines of =/l and its multiples,~—which
is a case of Fourier'’s theorem. We shall presently shew how the
more general form can be deduced.

121. We might now determine the constants for a continuous
string by integration as in § 93, but it is instructive to solve the
problem first in the general case (m finite), and afterwards to
proceed to the limit. The initial conditions are
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\,!r(a)-_—Alsinzlg' +A2sin21;5‘ +...+Amsinm?—?—,

Yr(2a) = A, sin ZWT(L +A2sin47~? +...+4,sn 2mflg,

..................................................................

Y (ma) =Aléin7n7rTﬁl + A4,sin 2mzr—lg’+... + Ay sin mmz; :
where, for brevity, A,=P;cose¢;, and ¥ (a), ¥(2a) ...... r {ma)

are the initial displacements of the m particles.

To determine any constant A,, multiply the first equation by
sin (smwa/l), the second by sin(2smwafl), &c., and add the results.
Then, by Trigonometry, the coefficients of all the constants, except
A,, vanish, while that of A,=%4(m+1)*. Hence

2 r=m T

=3 ET=/1 Y (ra) sin rs T (1).

8

We need not stay here to write down the values of B; (equal
to Pgsine,) as depending on the initial velocities. When a becomes
infinitely small, ra under the sign of summation ranges by infi-
a

nitesimal steps from zero to I. At the same time 1 ==,
m+1 1

so that writing ra =z, a =dz, we have ultimately

]
A,=2 f ¥ () sin (s—’-’fj ;S @),
Lo L,
expressing 4, in terms of the initial displacements.

122. We will now investigate independently the partial differ-
ential equation governing the transverse motion of a perfectly
flexible string, on the suppositions (1) that the magnitude of the
tension may be considered constant, (2) that the square of the
inclination of any part of the string to its initial direction may be
neglected. As before, p denotes the linear density at any point,
and T, is the constant tension. Let rectangular co-ordinates be
taken parallel, and perpendicular to the string, so that z gives the
equilibrium and z, y, z the displaced position of any particle at
time £. The forces acting on the element dz are the tensions at

U Todhunter’s Int. Culc., p. 267.
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its two ends, and any impressed forces Yp dz, Zp dz. By D’Alem-
bert’s Principle these form an equilibrating system with the
reactions against acceleration, — pd?y/df’, —pd:z[dt’. At the
point # the components of tension are

dy dz

% 3 Tl % )

if the squares of dy/dz, dz/dz be neglected; so that the forces
acting on the element dz arising out of the tension are

5 (@) Tz

Hence for the equations of motion,
dy _Tidy
an = '; P +¥
dz _Lde |
det  p da?
from which it appears that the dependent variables y and z are
altogether independent of one another.

T

J ..................... ),

The student should compare these equations with the corre-
sponding equations of finite differences in § 120. The latter may
be written

@ T i
b ¥ (@)= @—a)+ ¥ (@+a)- 2y (2)}.
Now in the limit, when a becomes infinitely small,
Y (@—a)+¥ (z+a) =29 (2) =" (2) @,
while 4 =pa ; and the equation assumes ultimately the form
d: T, a
EEE‘I’(’")“‘F 7a ¥ @),
agreeing with (1).
In like manner the limiting forms of (3) and (4) of § 120 are

which may also be proved directly.
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The first is obvious from the definition of 7. o prove the
second, it is sufficient to notice that the potential energy in auy
configuration is the work required to produce the necessary

stretching against the tension 7). Reckoning from the configura-
tion of equilibrium, we have

V=T1f<j—i—]) dx;

and, so far as the third power of (c%

3 l 2
m1=t ()

123. In most of the applications that we shall have to make,
the density p is counstant, there are no impressed forces, and the
motion may be supposed to take place in one plane. We may
then conveniently write

T,
— = 1),
: &
and the differential equation is expressed by
diy  dy
TOaff = G roooeee s (2).

If we now assume that y varies as cosmaf, our egquation
becomes

gi%+ My =0 ... . (3),

of which the most general solution is
y = (A4 sin mz + C cos mz) cos mat ............ 4,

This, however