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HISTORICAL INTRODUCTION
BY ROBERT BRUCE LINDSAY

THE
current reprinting of Lord Rayleigh's "The Theory of

Sound," first published in 1877, stimulates an inquiry into the

reason why such a treatise still retains a position of importance in

the literature of its field, when most scientific treatises of sixty-five

years ago now possess for the most part historical interest only, and

have long since been superseded by twentieth century standard works.

It has seemed appropriate on this occasion to review briefly the his

torical development of the subject of acoustics in which this situation

has occurred, and to pay some tribute to the character and contribu

tions of the author of a book which continues to show such vitality.

It is hoped that the following introductory comments will enhance

the pleasure of those who continue to turn to Rayleigh's treatise for

enlightenment and guidance in acoustics.

I. BIOGRAPHICAL SKETCH OF JOHN WILLIAM STRUTT,
THIRD BARON RAYLE1GH (1842-1919)

The author of "The Theory of Sound" occupies an unusual posi-

cion in the history of British physics if only because, while there are

numerous examples of men raised to the peerage as a reward for

outstanding scientific work, it is rare to find a peer by inheritance

devoting himself to science. Lord Hayleigh was born John William

Strutt, the eldest son of the second Baron Rayleigh of Terling Place,

Witham in the county of Essex, His immediate ancestors were coun

try gentlefolk with little or no interest in scientific pursuits, though

one of his grandmothers was descended from a brother of Robert

Boyle. In his boyhood Rayleigh exhibited no unusual precocity but

apparently displayed the average boy's interest in the world about

him, His schooling was rather scattered, short stays at Eton and

Harrow being terminated by ill-health. He finally spent the four

years preceding college at a small boarding school kept by a Rev.

Mr, Warner in Highstead, Torquay, where he showed no interest in

classics but began to develop decided competence in mathematics.

In 1861 at the age of nearly 20, young Rayleigh went up to

Cambridge and enttured
TrJjijty UpLlfge, Here he became a pupil of
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E. J. Routh, the famous "coach" in applied mathematics. It was

under the guidance of Houth that he acquired the grasp of mathe

matics which .stood him in such good stead in his later research. The

system has often heen criticized, hut it ground the methods of ad

vanced mathematical analysis essential for the physical scientist so

thoroughly into the candidate that they became a natural part of his

very being. It was not rigorous mathematics in the pure sense, but it

was vigorous mathematics, which served to cultivate a keen appre
ciation of the particular method best suited for the solution of any

particular problem. Hayleigh also slated in after life that he had

profited greatly from the Cambridge lectures of Sir George G. Stokes,

who though Lucasian professor of mathematics was greatly interested

in experimental physics and performed many experimental demon

strations for his classes. In the Mathematical Tripos of 1865, Hay

leigh came out as Senior Wrangler and also became first Smith's

Prizeman. By this time he had clearly decided on a scientific career,

though the propriety of this was considered by some members of his

family rather doubtful in view of the social obligations inherent in

his ultimate succession to his father's title and position. Kayleigh
seems to have felt that such obligations should not be allowed to

interfere with his scientific work, *In 1866 he was elected Fellow of

Trinity Collage, thus further emphasizing his scholarly leanings*

Curiously enough he replaced the usual grand tour of the continent

with a trip to the United States, then in the throes of reconstruction

after the Civil War.

In 1868 immediately after his return from America Hayleigh pur-

chased an outfit of experimental equipment. There was at that time

no university physical laboratory, though certain professors pos
sessed apparatus for their own experimental purposes and for dem
onstrations. Students received little or no direct encouragement to

embark on experimental investigations for themselves, This may
seem strange when one recalls that Cambridge had been for long the

home of Newton, Moreover, long before Kayleigh'n undergraduate

clays the immortal experiments of Young, Davy and Faraday, to men
tion only a few, had already shed undying lustre on British science*

But this research had been carried on, by and large, outside the uni

versities, which thus remained quite out of the current of real scien

tific progress in physics well past the first half of the nineteenth

century. It was not until 1871 that Cambridge University established

a professorship of experimental physics; in 1873 the Cavendish

Laboratory was erected through the munificence of the Chancellor of

the University, the eighth Duke of Devonshire. James Clerk Maxwell
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was elected the first Cavendish professor and served from 1871 to his

untimely death in 1879. For the first time practical instruction from a

distinguished physicist was provided at Cambridge.
To return to Rayleigh: it is interesting to observe that his first

experimental investigations were on electricity and concerned the

action of alternating currents on a galvanometer. The results were

presented in a paper (his first) to the Norwich meeting of the British

Association for the Advancement of Science in 1868. But he was soon

thereafter deeply immersed in other things, including color vision

and the pitch of resonators. The latter was his first work in acoustics

and was apparently stimulated by his reading Helmholtz's famous

work "On the Sensations of Tone" (1863). There was much corre

spondence about this and kindred matters with Maxwell, who was

always eager to help along a youthful colleague. Rayleigh's experi

mental work was carried out at Terling in a rather crudely impro
vised laboratory. Later when the estate became his home by inherit

ance, more elaborate arrangements were made.

In 1871 Rayleigh married Evelyn Halfour, the sister of Arthur

James Balfour, who was destined to gain much celebrity as a scholar,

philosopher and statesman. He had become acquainted with Balfour

as a fellow student at Cambridge. Shortly after his marriage a serious*

attack of rheumatic fever threatened for a time to cut short his career

and left him much weakened in health. An excursion to Egypt was

undertaken as a recuperative measure, and it was on a house boat trip

up the Nile late in 1872 that the "Theory of Sound" had its genesis,

the first part having been written with no access to a large library,

The preparation of the treatise eventually extended over many years,

and the two well-known volumes did not make their appearance from

the press until 1877. In the meantime Rayleigh had succeeded to his

father's title and had settled down at Terling. Changes were made to

enable him to embark on more elaborate laboratory work, including

experiments in acoustics and optics. It was during the period from

1871 to 1879 that he gave much attention to the diffraction of light

and made copies of diffraction gratings. These investigations led to

the introduction of the present standard definition of resolving power,

a quantity of the utmost importance in specifying the performance of

any optical instrument.

The premature death of Clerk Maxwell in 1879 left the Cavendish

professorship vacant. Pressed by many scientific friends to stand for

the post, Rayleigh finally consented, being partly influenced in his

decision by the loss of income from his estate due to the agricultural

depression of the late 7()'s, It does not appear that he ever eontem-
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plated retaining the professorship for an indefinite period, and indeed

he ultimately limited his tenure to five years. The pedagogical duties

of the Cavendish professor were not onerous: he was required to be

in residence for eighteen weeks during the academic year and to

deliver at least forty lectures in the course of this period. Rayleigh,

however, had no desire to interpret the job as a sinecure. He em
barked vigorously on a program of developing elementary laboratory

instruction in a really elaborate way. It is difficult to appreciate today
what a task such a program involved sixty years ago. Collegiate in

struction in practical physics was almost a new thing, and there was

little to go on save the teacher's imagination. Under Kayleigh's direc

tion his demonstrators Glazebrook and Shaw, both of whom later

became men of note, the former in applied physics and the latter in

meteorology, developed laboratory courses for large classes in heat,

electricity and magnetism, properties of matter, optics and acoustics.

This was pioneer work of high order and had a beneficial influence

on the teaching of physics throughout England and ultimately else

where.

Rayleigh was impressed at this time with the desirability of co

operative research on a problem of importance and selected for this

purpose the redetermination of the standard electrical units. In

particular he wished to undertake a new evaluation of the relation

between the ohm, the practical unit of electrical resistance, and the

electromagnetic unit of resistance. The first precision work on this

problem had been carried out in 1863-64 under the auspices of the

British Association wilh Maxwell in charge. Later work by others had

disclosed considerable discrepancies, Hayleigh and his collaborators

devoted three years of labor to a repetition of the original experi

ments wilh greater attention to sources of error. It is a tribute to

Rayleigh's great experimental care that his final results have not

been appreciably altered by more modern work, He appeared to

possess? the uncanny power to make the simplest of equipment pro
duce the utmoBt in precision,

In December 1884 Hayleigh returned to Terling, which he made

his scientific headquarter for the remainder of his lift*, It was cloae

enough to London to permit frequent visits to the metropolis for the

performance of official duties in connection with government or the

various professional societies in which he played a prominent role.

But he clearly enjoyed having his laboratory in bin own home* Prob

ably many contemporaries in the peerage, as well as the tenants on

the estate, thought him a trifle queer, but he went his way with typical

British imperturbability* The laboratory could hardly be considered
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elaborate even when judged by contemporary standards. Rayleigh had
a hatred of superfluous elegance and always stressed the desirability
of simplicity in all research apparatus. Some of this feeling was un

doubtedly inspired by his constitutional aversion to unnecessary ex

penditure; there was also a profound philosophical implication in

the method which may be of value to the present day investigator,
even when surrounded by highly intricate and sophisticated appa
ratus.

The life of a scientist working at his desk or in his laboratory has

little to offer in the way of the dramatic, at least to the man in the

street. It is inevitable that mankind in the large should find more
emotional satisfaction in the contemplation of man's relations with

his fellow creatures than in his relations with the physical environ

ment. For the most part, too, scientific investigations involve a train

of reasoning unfamiliar and intricate to the general run of people.

Occasionally, however, a scientific discovery will be made which

involves a relatively simple and clear cut situation, while at the same

time it solves a puzzle originally as baffling as any detective story

mystery. This was the case with the most dramatic popular episode
in Rayleigh's career, namely the discovery of the rare gas argon in

the atmosphere.

Already in his address to the Mathematics and Physics Section of

the British Association at the Southampton meeting in 1882, Rayleigh
had called attention to the desirability of a more precise determina

tion of the densities of the so-called permanent gases, oxygen, hydro

gen and nitrogen, The importance of this lay in its bearing on the

problem of the atomic weights of the elements and hence the whole

foundation of chemistry. This job Rayleigh now set for himself and

devoted to it a good part of his own time and that of a skilled assist

ant for the better part of ten years, culminating in the famous joint

announcement with Sir William Ramsay of the isolation of argon in

1895. The story is too well known for detailed repetition here. It

furnishes a classic example of the importance of following up a

small experimental discrepancy lying outside the limit of reasonable

experimental error, in this case the difference between the density of

nitrogen prepared from nitrogen compounds and nitrogen obtained

by removing the oxygen of the air. It seems easy to say now that the

larger value of the latter points directly to the existence in the air of

a small amount of a gas heavier than nitrogen. But in 1895 this was

not so simple and neither was the task of isolating the new gas. It is

not too much to say that the subsequent discovery of all the other

rare gases of the atmosphere was directly due to Rayleigh's patient,
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ingenious and methodical investigation.

From 1887 to 1905, Lord Rayleigh served as Professor of Natural

Philosophy at the Royal Institution of Great Britain as successor to

John Tyndall, who in turn had succeeded Faraday. Unlike his pre
decessors Rayleigh spent comparatively little time in the laboratory
of the Institution, confining his activity to the annual course of public

lectures. These continued the tradition established by Faraday and

Tyndall in covering the whole gamut of topics of physical interest

with a profusion of experimental demonstrations. Sir Arthur Schuster

says of Rayleigh in this connection: "Though not by nature a ready

speaker, his lectures were effective," At any rate the auditor could

always be confident that the speaker thoroughly understood what he

was talking about.

In 1896 Rayleigh was appointed Scientific Adviser to Trinity

House, a very ancient organization, dating back to Henry VIII, and

having as its duties the erection and maintenance of such coastal

installations as lighthouses, buoys and the like. For the next fifteen

years he served faithfully and made numerous inspection trips. Some
of his later work in optics and acoustics was suggested by problems

arising in connection with the tests of lights and fog-signals, In spite

of his devotion to his laboratory research, Rayleigh gave willingly of

his time and energy to the deliberations of scientific committees of

government and the various societies to which he belonged. Thus he

was one of the leaders of the movement which led to the establish

ment of the National Physical Laboratory (the British counterpart of

the National Bureau of Standards in Washington), atid presided over

the Executive Committee of the Laboratory until shortly before his

death, He also served as President of the Advisory committee on

Aeronautics from its inception in 1909 (at the instance of Prime

Minister Asquith) until the time of his death. The activities of this

committee were particularly important during the first world war

from 1914-1918.

Among Lord Rayleigh'* other public positions there is space only

to mention his presidency of the Royal Society from 1905-1908 and

his service as Chancellor of Cambridge University from 1908 until

his death. Honors came to him in heaping measure, notable among
them the Order of Merit, 0f which he was one of the first recipients

in 1902, and the Nobel Prize in Physics in 1904.

Unlike most scientific men, Rayleigh was able to continue hi$

work until his death, though he survived to the ripe old age of 76*

He died on June 30, 1919, with three papers still unpublished* It is

interesting that the last of these was one on acoustics; he never ot
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over his interest in sound.

The opinion of his contemporaries and successors places Rayleigh
in that great group of nineteenth century physicists that have made

British science famous all over the world, the group whose other

members were Kelvin, Maxwell and Stokes. His position in the his

tory of science is a great one. It is good to recall that he was above

all a modest man and it is impossible to accept as otherwise than

sincere the remarks he made when he received the Order of Merit:

"the only merit of which he personally was conscious was that of

having pleased himself by his studies, and any results that may have

been due to his researches were owing to the fact that it had been a

pleasure to him to become a physicist."

II. HISTORICAL DEVELOPMENT OF ACOUSTICS TO THE
TIME OF RAYLEIGH

Introduction. Sound plays in our daily lives a part scarcely less

important than motion and light, and the sense of hearing though by

no means esteemed so precious as the sfense of sight and the ability

to locomote is yet so prized that the production of efficient hearing

aids for the deaf is fast becoming a major industry. Life is full of

sounds and we want to hear the pleasant and vital ones; while shun

ning the unpleasant and dangerous variety. All told we are becoming

steadily more sound conscious, as the relatively enormous growth of

the telephone, radio, phonographic recording and talking motion

picture industries sufficiently attests.

Jn view of its importance, it might be supposed that the science

of sound, technically known as acoustics, would loom as a substantial

item in the history of the development of physical ideas. Strangely

enough, in the standard histories this is by no means the case: the

history of acoustics has been largely a neglected subject. A possible

reaBon for this has been advanced by Whewell in his ""History of the

Inductive Sciences," The basic theory of the origin, propagation and

reception of sound was proposed at a very early stage in the develop-

mcnt of human thought in substantially the form which we accept

loday: the ancient Greeks, according to the most reasonable interpre

tation of the records, evidently were aware that sound somehow arises

from the motion of the parts of bodies, that it is transmitted by the

air through some undefined motion of the latter and in this way

ultimately striking the ear produces the sensation of hearing. Vague

m these ideas were they were yet clarity itself compared with the

ancient views on the motion of solid bodies as well as on light and

heat. Hie latter branches of physics had to go through a long course
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of development in which theory succeeded vheory until the present

stage was reached. As Whewell emphasizes, in acoustics the basic

theory was :

laid down early and all that was needed was its implemen
tation by the necessary analysis and its application to new problems
as they arose. On the theoretical side the history of acoustics thus

tends to be merged in the larger development of mechanics as a

whole.

It has seemed eminently worth while, however, in connection with

a re-issue of the greatest single work ever published in acoustics to

take advantage of the occasion to review the history of those parts of

mechanics and other branches of physics which have had a definite

bearing on acoustical theory. In a small measure this may serve to

supplement I), 0. Miller's interesting "Anecdotal History of the

Science of Sound" (1935), which is devoted mainly to a resume of

the experimental phenomena.
The problems of acoustics as already indicated are most conven

iently divided into three main groups, vhi I) the production of

sound, 2) the propagation of sound, and 3) the reception of sound.

We shall find it advantageous to organize the following historical

outline accordingly.

The Production of Hound. The fact that when a solid body is

struck a sound is produced must have been observed from the very

earliest times* The additional fact that under certain circumstances

the sounds produced are particularly agreeable to the ear furnished

the basis for the creation of music, which al$o originated long before

the beginning of recorded history. But music was an art for centuries

before its nature* began to be examined in a scientific manner* It is

usually assumed that the first Greek philosopher to study the origin

of musical sounds wan Pythagoras in the 6th century B.C. He is sup

posed to have discovered that of two stretched strings fastened at the

ends the higher note is emitted by the shorter one, and that indeed if

one han twice the length of the other, the shorter will emit a note an

octave above the other. By thin time the notion of pitch had, of course,

been developed, but UK association with the frequency of the vibra

tions of the sounding body wan probably not understood, and it does

not appear that thin concept emerged until the time of Galileo Galilei

(1561"! 642), the founder of modern physics. At the very end of the

"First Day'
1

of Galileo's "Discourses Concerning Two New Sciences,"

first published in 1 638, the reader will find a remarkable discussion

of the vibrations of bodies. Beginning with the well known observa

tions on the isoehronbm of the simple pendulum and the dependence
of the frequency of vibration on the length of the suspension, Galileo
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goes on to describe the phenomenon of sympathetic vibrations or

resonance by which the vibrations of one body can produce similar

vibrations in another distant body. He reviews the common notions

about the relation of the pitch of a vibrating string to its length and

then expresses the opinion that the physical meaning of the relation

is to be found in the number of vibrations per unit time. He says he

was led to this point of view by an experiment in which he scraped a

brass plate with an iron chisel and found that when a pure note of

definite pitch was emitted the chisel cut the plate in a number of fine

lines. When the pitch, was high the lines were close together, while

when the pitch was lower they were farther apart. Galileo was ac

tually able to tune two spinet strings with two of these scraping

tones; when the musical interval between the string notes was judged

by the ear to be a fifth, the number of lines produced in the corre

sponding scrapings in the same total time interval bore precisely the

ratio 3:2. The presumption is that if the octave had been tuned the

ratio would have been 2:1, etc. It seems plain from a careful reading

of Galileo's writings that he had a clear understanding of the de

pendence of the frequency of a stretched string on theJength, tension

and density. There was, of course, no question then of a dynamical

discussion of the actual motion of the string: the theory of mechanics

had not advanced far enough for that. But Galileo did make an inter

esting comparison between the vibrations of strings and pendulums in

the endeavor to understand the reason why sounds of certain frequen

cies, i.e., those whose frequencies are in the ratio of two small inte

gers, appear to the ear to combine pleasantly whereas others not pos

sessing this property sound discordant. He observed that a set of

pendulums of different lengths, set oscillating about a common axis

and viewed in the original plane of their equilibrium positions present

to the eye a pleasing pattern if the frequencies are simply commensur

able, whereas they form a complicated jumble otherwise. This is a

kinematic observation of great ingenuity and illustrates the fondness

of the great Italian genius for analogy in physical description.

Credit is usually given to the Franciscan friar, Mann Mersenne

( 1588-1648) for the first correct published account of the vibrations

of strings. This occurred in his "Harmomcorum Liber" published in

Paris in 1636, two years before the appearance of Galileo's famous

treatise on mechanics. However, it is now clear that Galileo's actual

discovery antedated that of Mersenne. The latter did add one very

important point: he actually measured the frequency of vibration of

a long string and from this inferred the frequency of a shorter one

of the same density and tension which gave a musical note. This was
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apparently the first direct determination of the frequency of a musical

sound.

Though later experimenters like Robert Hooke ( 1635-1703) tried

to connect frequency of vibration with pitch by allowing a cog wheel

to run against a piece of cardboard, the most thorough-going pioneer

studies of this matter were made by Joseph Sauveur (1653-1716),

who incidentally first suggested the name acoustics for the science of

sound. He employed an ingenious use of the beats between the

sounds from two organ pipes which were adjudged by the ear to be a

semi tone apart, i.e., having frequencies in the ratio 15/16. By ex

periment he found that when sounded together the pipes gave 6 beats

a second. By treating this number as the difference between the fre

quencies of the pipes the conclusion was that these latter numbers

were 90 and 96 respectively. Sauveur also worked with strings and

calculated (1700) by a somewhat dubious method the frequency of a

given stretched string from the measured sag of the central point. It

was reserved to the English mathematician Brook Taylor (1685-

1731 ), the celebrated author of Taylor's Theorem on infinite series,

to be the first to work out a strictly dynamical solution of the prob

lem of the vibrating string. This was published in 1713 and was

based on an assumed curve for the shape of the string of such a

character that every point would reach the rectilinear position in the

same time. From the equation of this curve and the Newtonian equa
tion of motion he was able to derive a formula for the frequency of

vibration agreeing with the experimental law of Galileo and Mer

serme. Though only a special case, Taylor's treatment paved the way
for the more elaborate mathematical technique* of Daniel Bernoulli

(1700.1782), D'Alembert (1717-1783) and Euler (1707-1783), in-

volving the introduction of partial derivatives and the representation

of the equation of motion in the modern fashion.

In the meantime it had already been observed, notably by Wallis

(1616-1703) in England as well as by Sauveur in France, that a

stretched string can vibrate in parts with certain points, which Sau

veur called node** at which no motion ever takes place, whereas very

violent iiotion takes place at intermediate points called loops* It wa

soon recognized that such vibrations correspond to higher frequencies

than that associated with the simple vibration of the string an a whole

without nodes, and indeed that the frequencies are integral multiple!*

of the frequency of the simple vibration, The corresponding emitted

sounds were called by Sauveur the harmonic tones, while the sound

associated with the simple vibration was named the fundamental. The

notation thus introduced (about 1700) has survived to the present
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day. Sauveur noted the additional important fact that a vibrating

string could produce the sounds corresponding to several ot its har

monics at the same time. The dynamical explanation of this vibra

tion was provided by Daniel Bernoulli in a celebrated memoir

published by the Berlin Academy in 1755. Here he showed that it is

possible for a string to vibrate in such a way that a multitude of sim

ple harmonic oscillations are present at the same time and that each

contributes independently to the resultant vibration, the displacement
at any point of the string at any instant being the algebraic sum of

the displacements for each simple harmonic node. This is the famous

principle of the coexistence of small oscillations, also referred to as

the superposition principle. It has proved of the utmost importance
in the development of the theory of oscillations, though curiously

enough its validity was at first strenuously doubted by D'Alembert

and Kuler, who saw at once that it led to the possibility of expressing

any arbitrary function, e.g., the intial shape of a vibrating string, in

terms of an infinite series of sines and cosines. The state of mathe

matics in the middle of the 18th century hardly permitted so bold a

result. However, in 1822 Fourier (1768-1830) in his ""Analytical

Theory of Heat" did not hesitate to develop his celebrated -theorem on

this type of expansion with consequences of the greatest value for

the advancement of acoustics.

The problem of the vibrating string was fully solved in elegant

analytical fashion by J. L. Lagrange (1736-1813) in an extensive

memoir of the Turin Academy in 1759. Here he supposed the string

made up of a finite number of equally spaced identical mass particles

and studied the motion of this system, establishing the existence of a

number of independent frequencies equal to the number of particles.

When he passed to the limit and allowed the number of particles to

become infinitely great and the mass of each correspondingly small,

these* frequencies were found to be precisely the harmonic frequencies

of the ftlretehed string, The method of Lagrange was adopted by

Hayleigh in his "Theory of Sound" and is indeed standard practise

to-day, though most elementary books now develop the differential

equation of motion of the string treated as a continuous medium by

the method first net forth by D'Alemhert in a memoir of the Berlin

Academy of 1750. This differential equation we now call the wave

equation, though the savants of the middle 18th century did not stress

thin interpretation.

In the memoir of Lagrange just referred to there is also a treatment

of the sounds produced by organ pipes and musical wind instruments

in general The baie experimental facts were already known and
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Lagrange was able to predict theoretically the approximate harmonic

frequencies of closed and open pipes. The boundary conditions gave
some trouble, as indeed they do to this day ; in any case the problem

impinges rather closely on the propagation of sound and as such is

better treated in the next section.

The extension of the methods described in the preceding para

graphs to the vibrations of extended solid bodies like bars and plates

naturally demanded a knowledge of the relation between the de-

formability of a solid body and the deforming force. Fortunately

this problem had already been solved by Hooke, who in 1660

discovered and in 1676 announced in the form of the anagram
CEI 1 1 NOSSSTTU V the law "ut tensio sic vis" connecting

the stress and strain for bodies undergoing elastic deformation, This

law of course forms the basis for the whole mathematical theory of

elasticity including elastic vibrations giving rise to sound. Its

application to the vibrations of bars supported and clamped in vari

ous ways appears to have been made first by Euler in 1744 and

Daniel Bernoulli in 1751, though it must be emphasized that dates

of publication of memoirs do not always reflect accurately the time

of discovery. The method used involved the variation of the expres*

sion for the work done in bending the bar. It is essentially that

employed by Rayleigh in his treatise and leads of course to the well

known equation of the fourth order in the space derivatives.

The corresponding analytical solution of the vibrations of a solid

elastic plate came much later, though much experimental information

was obtained in the latter part of the 18th century by the German

E. F. F, Chladni (1756-1824), one of the greatest experimental

acousticians. In 1787 he published his celebrated treatise **Ent-

deckungen uber die Theorie des Klanges" in which he described his

method of using sand sprinkled on vibrating plates to show the

nodal lines. His figures were very beautiful and in a general way
could be accounted for by considerations similar to those relating to

vibrating strings. The exact forms, however, defied analysis for many

years, even after the publication of Chladni's classic work "Die

Akustik" in 1802. Napoleon provided for the Institute of France a

prize of 3000 francs to be awarded for a satisfactory mathematical

theory of the vibrations of plates. The prize was awarded in 1815 to

Mile, Sophie Germain, who gave the correct fourth order differential

equation, Her choice of boundary conditions proved, however, to be

incorrect It was not until 1850 that Kirchhoff (18244887) gave a

more accurate theory. The problem still provides considerable

interest for workers even at the present time, both along theoretical
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and experimental lines.

In the meantime the analogous problem of the vibrations of a

flexible membrane., important for the understanding of the sounds

emitted by drum heads, was solved first by S. D. Poisson (1781-1840),

though he did not complete the case of the circular membrane. This

was done by Clebsch (1833-1872) in 1862. It is significant that most

of the theoretical work on vibration problems during the 19th century
was done by persons who called themselves mathematicians. This

was natural though perhaps somewhat unfortunate, since the choice

of conditions did not always reflect actual experimentally attainable

situations. Rayleigh's own work did much to rectify this condition,

and nowadays the experimental and theoretical acousticians work

hand in hand. The importance of this is evident in the design of such

modern instruments as loud speakers and quartz crystal vibrators.

A more complete description of the historical development of sound

producers would, of course, necessarily pay much attention to musi

cal instruments. Unfortunately this development lay rather aside

from the scientific progress in acoustics, a situation which has per

sisted in large measure even to recent times. There are signs, however,

that the designers of new musical instruments are paying more

attention to acoustical principles than previously was the case, and

that the theory of acoustics will have a greater influence on music

in the future than it has had in the past.

We have now brought our brief sketch of the production of sound

up to the time of Rayleigh. We shall therefore proceed with the

equally important problem of the propagation of sound.

The Propagation of Sound. From the earliest recorded observa

tions there has been rather general agreement that sound is conveyed

From one point in space to another through some activity of the air.

Aristotle, indeed, emphasizes that there is actual motion of the air

involved, but as was often the case with his notions on physics his

expressions are rather vague. Since in the transmission of sound the

air certainly does not appear to move, it is not surprising that other

philosopher* denied Aristotle's view. Thus even during the Galilean

period the French philosopher Gaasendi (1592-1655), in his revival

of the atomic theory, attributed the propagation of sound to the

emission of a stream of fine, invisible particles from the sounding

body which, after moving through the air, are able to affect the ear.

Otto von Guericke (1602-1686) expressed great doubt that sound is

conveyed by a motion of the air, observing that sound is transmitted

better when the air in still than when there is a wind. Moreover he

had tried around the middle of the 17th century the experiment of
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ringing a bell in a jar which was evacuated by means of his air

pump, and claimed that he could still hear the sound. As a matter of

fact, the first to try the bell-in-vacuum experiment was apparently the

Jesuit Alhanasius Kircher (1602-1680). He described it in his book

"Musurgia Universalis", published in 1650, and concluded that air

is not necessary for the transmission of sound. Undoubtedly there was

not sufficient care to avoid transmission through the walls of the

vessel. In 1660 Robert Boyle (1627-1691) in Kngland repeated the

experiment with a much improved air pump and more careful

arrangements, and finally observed the now well known deerease in

the intensity of the sound as the air is pumped out. He definitely

concluded that the air is a medium for acoustic transmission, though

presumably not the only one,

If air is the principal medium for the transmission of sound, the

next question is: how rapidly does the propagation take place? As

early as 1635 Gassendi while in Paris made measurements of the

velocity of sound in air, using fire arms and assuming the passage of

light as effectively infinite. His value was 1473 Paris feet per second,

(The Paris foot is equivalent approximately to 32,48 cm.) Later by
more careful measurements Mersenne showed this figure to be too

high, obtaining 1380 Paris feet per second or about 450 meters/sec,

Gassendi did note one matter of importance, namely that the velocity
in independent of the pitch of the sound, thus discrediting the view

of Aristotle, who had taught that high notes are transmitted faster

than low notes, On the other hand Gassendi made the mistake of

believing that the wind has no effect on the measured velocity of

sound* In 1656 the Italian Borelli (1608-1679) and his colleague
Viviarii ( 1622-1703) made a more careful measurement and obtained

1077 Paris feet per second or 350 meters/sec. It in clear that all these

values suffer from the lack of reference to the temperature, humidity
and wind velocity conditions, It was not until 1740 that the Italian

Branconi showed definitely by some experiments performed at

Bologna that the velocity of sound in air increases with the tempera
ture. Probably the first open air measurement of the velocity of

sound that can be reckoned at all precise in the modern sense was

carried out under the direction of the Academy of Sciences of Paris

in 1738, using cannon fire. When reduced to 0C the result was 332

meters/sec. Careful repetitions during the rest of the 18th century
and the first half of the I9lh century gave results differing by only a

few meters per second from this value. The best modern value is

331,36 + 0.08 meters per second in still air under standard condi

tions of temperature and pressure (i)C and 76 cm of Hg, pressure),
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This value is taken from D. C. Miller's "Sound Waves: Their Shape
and Speed" (1937).

In 1808 the French physicist J. B. Biot (1774-1862) made the

first experiments on the velocity of sound in solid media, using for

this purpose an iron water pipe in Paris nearly 1000 meters long.

By comparing the times of arrival of sound through the metal and

the air respectively it was established that the velocity of the com-

pressional wave in the solid metal is many times greater than that

through the air. As a matter of fact Chladni, whose work on the

vibrations of solids has been mentioned earlier in this sketch, had

already measured the velocity of elastic waves in rods in connection

with his study of the vibration of solids, with results in general agree
ment with those of Biot.

J. D. Colladon and the mathematician J. C. F. Sturm ( 1803-1855)

in the year 1826 investigated the transmission of sound through water

in Lake Geneva, in Switzerland, using a sound and flash arrangement.

The velocity was found to be 1435 meters/sec, at 8C.
To return to the propagation of sound through air, though it had

very early been compared with the motion of ripples on the surface

of water, the first theoretical attempt to theorize seriously about a

wtnw theory of sound was made by Isaac Newton (1642-1727), who

in the second book of his Principia ( 1687) (Propositions 47, 48 and

49) compares the propagation of sound to pulses produced when a

vibrating body moves the adjacent portions of the surrounding

medium and these in turn move those next adjacent to themselves

and so on. Newton here made some rather specific and arbitrary

assumptions, among ihem the hypothesis that when a pulse is propa

gated through a (had the particles of the fluid always move in simple

harmonic motion, or, as he puts it "are always accelerated or

retarded according to the law of the oscillating pendulum". He

indeed affects to prove this as a theorem, but inspection fails to

reveal any demonstration save that if it is true for one particle it

will he true for all. He then assumes that the elastic medium under

consideration is subject to the pressure produced by a homogeneous

medium of height h and density equal to the density of the medium

under consideration. Newton further imagines a pendulum whose

length between the point of suspension and center of oscillation is

h. It is then proved that in one period of the pendulum the pulse

will travel a distance of 2vh. But since the period of the pendulum is

2v^fJ!7$. U follows that the velocity of the pulse is YtfTi, and since

for a homogeneous fluid of density p the pressure p produced at the

bottom of a column of height h is
/;
~ p%, it follows that the pulse



XX HISTORICAL INTRODUCTION

velocity is "\ /?//.

This demonstration was severely criticized by Lagrange in his

Turin memoir of 1759 (already mentioned) as well as in the later

one of 1760, and indeed one must admit the conditions laid down hy
Newton are highly specialized: an elastic wave need not be harmonic,

nor should the velocity depend on this assumption. Lagrange gave a

more rigorous general derivation, the outcome of which, however,

must have surprised him, for it led to precisely Newton's result.

When the relevant data for air at 60 F are substituted into Newton's

formula, the velocity proves to be about 945 feet/second. At the

time of his deduction this was not in bad order of magnitude agree

ment with the observed velocity of sound in air under the conditions

cited. However, the more accurate measurements consistently turned

out higher, and Newton was himself dissatisfied; hence, in the second

edition of the Prineipia (1713) he revised his theory to try to bring

it into better agreement with the best experimental value of the time,

viz., 1142 feet/second. His explanation was so obviously ad hoc that

it should have failed to carry conviction. However, no further serious

question about the matter appears to have been raised until 1816

when Laplace suggested that in the previous determinations an error

had been made in using the isothermal volume elasticity of the air,

i.e. the pressure itself, thereby assuming that the elastic motions of

the air particles take place at constant temperature* In view of the

rapidity of the motions, however, it seemed to him more reasonable to

suppose that the compressions* and rarefactions follow the adiabatic

law in which the changes in temperature lead to a higher value of the

elasticity, namely, the product of the pressure by the ratio y of the

two specific heats of the air. At the time of Laplace's first investiga

tion rather crude experiments had indeed indicated the existence of

two specific heats of a gas, but the values were not known with much

precision. Laplace used some data of the experimentalists, LaHoche

and Berard, giving y
= 1.5 and leading to a value of the velocity of

sound at 6C equal to 345.9 meters/sec. The bent experimental value

obtained up to that time by members of the Academy was 337.18

meters/sec, for this temperature* Laplace did not consider this

discrepancy serious. He returned to the problem later and included

a chapter on the velocity of sound in air in bin famous "Mechanique
Celeste" (1825). By that time Clement and Desormes had performed,

their well-known experiment on the determination of y (1819) and

had obtained the value of 1.35 leading to 332.9 meters/sec, for the

velocity. Some years later the more accurate value of y
= 1.41 led to

complete agreement with the measured velocity. The theory of
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Laplace is so well established that it is now common practice to deter
mine y for various gases by precision measurements of the velocity
of sound.

As has already been remarked the first treatment of the partial
differential equation of wave motion came with D'Alembert in 1750
in connection with the vibration of strings. The rest of the 18th cen

tury saw numerous attempts to theorize about waves in continuous

media, such as waves on the surface of water and the like. These had
value in connection with acoustics only to the extent that they
rendered the use of the wave equation familiar to workers in sound.

By the end of the 18th century the general treatment of the solution

of the wave equation for sound in tubes, for example, subject to the

boundary conditions at the ends, had been pretty well established, and
the predicted harmonic frequencies checked with experiment with

reasonable accuracy. Of course there were discrepancies leading to

end corrections and so forth, which were never fully cleared up until

the time of Rayleigh. It was not until 1868 that A. Kundt (1839-

1894) developed his simple but effective method of dust figures for

studying experimentally the propagation of sound in tubes and in

particular measuring sound velocity from standing wave patterns.
In the meantime the more difficult problem of the propagation of

a congressional wave in a three dimensional fluid medium had been

attacked by Poisson in a celebrated memoir of 1820. The method was

essentially that adopted by Rayleigh in Chap. XIV of "Theory of

Sound". Three years before in a similar memoir, 100 pages long,
Poi.sson had given the most elaborate theory up to that time of the

propagation of sound in tubes, including the theory of stationary air

waves for tubes of finite length, both open and closed. He even con

sidered the possibility of an end correction in the case of an open
tube lo take care of the fact that the condensation cannot be con

sidered precisely zero at the open end. It remained, however, for

Hermann von Helmholta (1821-1894) in I860 to give a more

thorough treatment of this question. The special case of an abrupt

change in cross-section was also studied by Poisson along with the

reflection and transmission of sound at normal incidence on the

boundary of two different fluids, Much modern work of practical

significance was anticipated in this great study of Poisson.

The more difficult problem of the reflection and refraction of a

plane sound wave incident obliquely on the boundary of two different

fluids wan solved by the self-taught Nottingham genius George Green

( 1793*1841 ) in 1838, Thin served to emphasize both the similarities

and differences between the reflection and refraction of sound and
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H^ht.
It should he recalled that sound waves in fluids, being strictly

compressional, are longitudinal, whereas light waves are transverse.

Hence light waves can he polarized, and sound waves in fluids can

not. Of course elastic waves in an extended solid can he both longi

tudinal and transverse, more accurately irrotational and solenoidal.

This was realised by Poisson in his study of isotropic elastic media

of 1829. The direct significance of this for acoustics is, of course, not

great, but it had an important hearing on the elastic solid theory of

light, which was actively pursued during the middle decades of the

19th century. The connection with modern geophysics (seismological

waves) is obvious.

The Reception of Sound. In the historical development of acous

tics up to very recent times the only sound receiver of interest has

been the human ear and the reception of sound has been largely the

study of the acoustical behavior of this organ. In this connection it

is interesting to observe that no completely acceptable theory of

audition has ever been proposed, and how we hear still remains a

puzzling problem in modern psychophysics.
After the relation between pitch and frequency had been estab

lished it became an interesting task to determine the frequency limits

of audibility. F. Savart (1791-1841) using fans and toothed wheels

(1830) placed the minimum audible frequency at 8 vibrations per

second and the upper limit at 24,000 vibrations per second, The later

investigators Seebeck (1770*1831), Biot (1774-1862), K, H. Koenig

(1832-1901) and Hermann von Helmholtx obtained valuer for the

lower limit ranging from 16 to 32 vibrationa per second. In such

matters there are bound to be individual differences, These play an

even greater role in the upper limit of audibility, which not only can

vary many thousand vibrations per second from person to person, but

for each individual usually decreases with age. The most elaborate

studies on audibility during the 19th century were made by Koenig,
who devoted a lifetime to the production of precision sources of

sound of controlled frequency, such as tuning forks, rods, strings and

pipes. The electrically driven fork also originated with him.

The closely related problem of the minimum sound amplitude or

intensity necessary for audibility was apparently first studied by

Toepler (1836-1912) and BolUmarw ( 1844-1900) in 1870. The more

recent work dates from Kayleigh.

In 1843, Georg 8, Ohm, the author of the famous law of electric

currents, put forward a law of audition according to which all musi

cal tones arise from simple harmonic vibrations of definite frequency,
and the particular quality of actual musical sounda is due to combi-
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nations of simple tones of commensurable frequencies. He held,

moreover, that the ear is able to analyze any complex note into the

set of simple tones in terms of which it may be expanded mathe

matically by means of Fourier's theorem. This law has stimulated a

host of researches in physiological acoustics. The greatest of these in

the pre-Rayleigh period were undoubtedly those of Helmholtz, whose
treatise "Die Lehre von den Tonempfmdungen als Physiologische

Grundlage fiir die Theorie der Musik", published in 1862, ranks as

one of the great masterpieces of acoustics. Here he gave the first

elaborate theory of the mechanism of the ear, the so-called resonance

theory, and was able to justify theoretically the law of Ohm. In the

course of his investigations he invented the resonator, now so well

known by his name and employed in modern acoustics for many
applications. Helmholtz developed the theory of summation and

difference tones and in general laid the ground work for all subse

quent research in the field of audition. One of the greatest physicists
of the 10th century, he touched no field that he did not enrich with

his experimental and theoretical genius.

Since the reception of sound by the ear in enclosed spaces like

rooms and auditoriums is a common experience, it is proper that

some attention should 'be paid here to what has come to be called

architectural acoustics. The first discussion of the problem of improv

ing hearing in rooms was limited to purely geometrical considera

tions, such as the installation of sounding boards and other reflectors.

A Boston physician, J. B. Upham, in 1853 wrote several papers

indicating a much clearer grasp of the more important matter

involved, namely the reverberation or multiple reflection of the

sound from all the surfaces of the room. He also showed how the

reverberation time could be reduced by the installation of fabric

curtains and upholstered furnishings. In 1856 Joseph Henry, the

celebrated American physicist, who became the first secretary of the

Smithsonian Institution, made a study of auditorium acoustics which

reflects a thorough understanding of all the factors involved, though

his suggestions were all of a qualitative character, In spite of this the

subject wan completely neglected by architects, and attempts were

often made to correct gross acoustical defects by such inadequate,

if not absurd, devices as stringing wires, etc. The real quantitative

foundation of architectural acoustics dates from W C. Sabine (1868-

1919) in 1900.

Special devices for the amplification of sound received by the ear

go back a long way, Horns for the production of sounds are of great

antiquity. It is uncertain just when the suggestion arose that they
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might be used to improve the reception of sound. At all events the

Jesuit Athanasius Kircher, already mentioned in this sketch, in 1650

designed a parabolic horn as a hearing aid as well as a speaking

trumpet, and evidently realized the importance of the flare in the

amplification. Kobert Hooke suggested the possibility of a device to

magnify the sounds of the body, but it seems to have been reserved

for the French physician Rene Laennec (1781-1826) actually to

invent and employ the stethoscope for clinical purposes (1819). Sir

Charles Wheatstone (1802-1875) in 1827 developed a similar instru

ment which he termed a microphone, a name now applied to an

exclusively electrical device for the reception of sound, Koenig also

invented a new type of stethoscope. The theoretical and experimental

improvement of instruments like horns and other sound receivers of

similar type has been and still is an important feature of modern

acoustics.

All through the historical development of physics there has been

a tendency to reduce the observation of physical phenomena and

particularly experimental measurements to something which can be

seen. Practically all physical instruments involve this principle and

employ a pointer or a spot of light moving on a scale. It was there

fore inevitable that attempts would be made to study sound phe

nomena visually, and this of course was especially necessary for the

investigation of sounds whose frequencies lie outside the range of

audibility of the ear. One of the first moves in this direction was the

observation by John LeContc (1818-1891) that musical sounds can

produce jumping in a gas flame if the pressure is properly adjusted

(1858). The sensitive flame, as it later came lo be called, was

developed to a high pitch of excellence by John Tyndall (1820*

1893), who used it for the detection of high frequency sounds and

the study of the reflection, refraction and diffraction of sound waves.

It still provides a very effective lecture demonstration but for practi

cal purposes has been superseded in recent times by various types of

electrical microphones.

In the endeavor to make visible the form of a sound wave Koenig

about I860 invented the manometric flame device which consists of

a box through which gas flows to a burner, One wide of the box m a

flexible membrane, When sound waves impinge on the membrane the

changes in pressure produce corresponding fluctuations in the flame

which can be made visible by reflecting the light of the flame from a

rapidly rotating mirror* Another attempt to visualise Bound waves

was made by Leon Scott in 1857 in his
* 4

phonautograph
n

in which a

flexible diaphragm at the throat of a receiving horn was attached to
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a stylus which in turn touched a smoked rotating drum surface and

traced out a curve corresponding to the incident sound. This was the

precursor of the phonograph. An equally ambitious attempt to record

sound was made by Eli Whitney Blake (1836-1895), the first Hazard

Professor of Physics in Brown University, who in 1878 made a micro

phone by attaching a small metallic mirror to a vibrating disc at the

back of a telephone mouthpiece. By reflecting a beam of light from

the mirroi; Blake succeeded in photographing the sounds of human

speech. Such studies were much advanced by D. C. Miller, (1866-

1941 ) who invented a similar instrument in the "phonodeik" and

made very elaborate photographs of sound wave forms.

III. RAYLEIGH'S CONTRIBUTIONS TO ACOUSTICS AND
THEIR SIGNIFICANCE FOR MODERN DEVELOPMENTS

The results of Rayleigh's work in acoustics are embodied in his

treatise "The Theory of Sound" and in 128 published articles, the

first of which appeared in 1870 (his fourth paper) and the last in

1919 this was his last published paper and appeared in print after

his death. Except for the years 1895, 1896 and 1906, there was not a

year from 1870 to 1919 in which an article having a definite connec

tion with acoustics did not appear. This record of devotion to a single

department of thought is undoubtedly unique in the annals of science

and becomes all the more remarkable when we recall that this activity

was accompanied by unchecked attention to a host of other problems

extending over the whole field of physics, leading to a total of nearly

450 publications.

Lord Kayleigh appeared on the acoustical scene when the time

was precisely ripe for a synthesis of experimental phenomena and

rather highly developed theory, much of which was, however, too

idealised for practical application. On the other hand much of the

experimental work had been discussed in rather empirical fashion

with little attempt at a dynamical explanation, Rayleigh's interest

in acoustics appears to have been started through the
t
advice of

Professor W. V. Donkin, Savilian Professor of Astronomy at Oxford,

that he ought to learn to read German. Raylcigh followed the sugges

tion and the first scientific work he read was Helmholu's treatise

"Lehre von der Tonempfindung", Certain references here to the

properties of acoustic resonators attracted his attention and led to

hm first elaborate research, reported on in a long paper on the theory

of resonance in the l>hilo#ophiwl Transactions of the Royal Society

in 1870. This article furnishes a clear indication of the method of

thinking about problems that remained characteristic of all Ray-
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Jeigh's later work. He endeavored to develop the mathematical theory
of the subject in a, form related as closely as possible to experimen

tally realizable situations, and then followed up the results by the

attempt at direct experimental verification. There was no pretense of

an over-elaborate method of measurement, but the precision was

fully sufficient in view of the inevitable limitations of the theory of

aerial vibrations. In this paper Kayleigh first introduced tin* useful

concept of the acoustic conductivity of an orifice. It has remained a

standard acoustical quantity ever since, even if rather difficult to

to estimate theoretically for all sorts of openings.
It was evidently not long after the publication of his researches on

resonance that Rayleigh conceived the desirability of writing a

treatise on acoustics. His reasons for the step are amply set forth in

the preface to the first edition of "The Theory of Sound"
1

and need

no repetition here. In preparation for his task he studied in detail the

general theory of vibrations of a dynamical system about a state of

equilibrium and uncovered a number of general results of great inter

est. These were presented in the Proceedings oj the London Mathe

matical Society in 187H and include such theorems as that the

increase in the mass of any part of a vibrating system can never lead

to a decrease in any period of the motion. Here he also introduced

his famous dissipation function for a system subject to damping
forces proportional to the component velocities and finally proved a

very general reciprocity theorem of which the one generally known

by the name of Helmholtz is a special case, This theorem has been of

the greatest importance in comparing the efficiency of acoustical

devices as emitters and receivers of radiation energy. As before, a

characteristic feature of these articles is the skillful combination of

theory and observation or experiment, Rarely does one find a mass of

analysis without illustrations from experience, and Hayleigh was

always very keen to follow up supposed experimental exceptions to

theoretically deduced laws. Usually his uncanny insight into the

important things led him to the correct explanation of apparent

difficulties.

In 1877, the year of the publication of ""The Theory of Sound
1

",

Rayleigh inaugurated the custom of publishing collections of miscel

laneous acoustical phenomena which he had himself observed, These

were continued at intervals for the rest of his life, being published

for the most part in the Philosophical Magazine, Among the earlier

BubjeetH investigated were the perception of the direction of a sound

source, the diffracting effect of the head on spoken and received

sound, the end correction of an organ pipe, sensitive flames, Aeolian
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tones, acoustical shadows, etc.

'The Theory of Sound" was published in June, 1877. Though, as
his son remarks "the sale was not wholly unprofitable", it was hardly
a best seller. Those interested in the general field realized its impor
tance, but the possible fundamental significance of the work for
future applications of sound to a host of practical problems could

scarcely be properly estimated at that time. Helmholtz, it is true,

reviewed the volumes in Nature and compared the treatment to the

famous unfinished "Treatise on Natural Philosophy" of Thomson and
Tail. Ho pressed, indeed, for a third volume on physiological acous
tics and the maintenance of acoustic vibrations. Rather wisely, it

seems, Kayleigh refrained from this and contented himself with

enriching the literature of acoustics for the following forty years
with a succession of attractive papers on a wide variety of topics,

many if not most of which were a direct outgrowth of the treatment

inaugurated in his treatise.

While it would be gratuitous in the extreme to present a detailed

analysis of the contents of "The Theory of Sound" to the reader who
has the book before him, it is difficult to refrain from emphasizing

briefly some of the features which have made the treatise such a mine
of Information for all workers in acoustics from Kayleigh's clay to

the present time,

Though written in the rather informal style which characterized

practically all of Kayloiglfs published work, the book reflects clearly

a groat deal of careful planning with respect to its logical structure.

The author was evidently impressed by the importance of the subdivi

sion of the subject into the two principal sections: the production and

propagation of sound. Hence the whole of the first half (the first

volume in the original edition), with the exception of an introductory

chapter, is devoted to the vibrations of dynamical systems, naturally

with special emphasis on those giving rise to acoustically interesting

radiation, hi contrast to the usual continental Kuropean method of

writitig a treatise, Hayleigh's treatment opens with the simplest pos

sible case, namely the oscillations of a system of one degree of

freedom, and each element of the theory is accompanied by a definite

experimental illustration,

The simple case is followed by two chapters on the general theory

of vibrations of a system of n degrees of freedom, largely a develop

ment of his 1873 paper mentioned just above. It was here he empha
sised the value of the method of obtaining an approximation to the

lowest frequency of vibration of a complicated system in which the

direct solution of the differential equations is impracticable. This
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procedure, which makes use of the expressions for the maximum

potential and kinetic energies, was later generalized by Hitz and is

now usually known as the Rayleigh-Hitz method. It has proved of

value in handling not only all sorts of involved vibration problems
but also problems in quantum mechanics. Applications to acoustics

occur frequently throughout "The Theory of Sound", particularly
with reference to non-uniform strings, bars, membranes and plates.

Throughout his treatise Uaylcigh displays great fondness for the

use of energy considerations and uses the energy method (virtual

work) freely for setting up the differential equations of motion of

different types of vibrating systems. It is scarcely an exaggeration to

say that there is no vibrating system likely to be encountered in

practice which cannot be tackled successfully by the methods set

forth in the first ten chapters of Hayleigh's treatise. Kven the worker

in the field of non-linear systems, a department of increasing prac
tical importance in modern vibration theory, will find useful basic

hints in Hayleigh. The reader should, indeed, be cautioned not to

consider "The Theory of Sound" as a mere reference book. One who

goes to it in this frame of mind is apt to be disappointed. It is a

rather closely knit work in which the author, having developed cer

tain methods, feels free to refer tin* reader to them again and again,

Hence reading Hayleigh is a real process of discovery, not always

easy hut constantly challenging and illuminating. One rather trivial

mathematical detail may properly be mentioned at this point, Bay-

leigh's mathematical notation is standard in nearly all respects from

the standpoint of present-day fashions, but he never uses the round d

to denote the distinction between partial and ordinary derivatives,

Presumably he fell that the reader with a suitable grasp of the physi

cal meaning of the mathematical processes would have no difficulty

in distinguishing the one type of derivative from the other.

The last thirteen chapters of "The Theory of Sound" are devoted

primarily to acoustic radiation through fluid media. This is by far

the more difficult part of the subject matter of acoustics and 1ms

remained so to the present time. Since there is no such thing as a

perfect fluid the exact hydrodynamical equations describing with

precision the motion of a compressions! disturbance in a fluid

medium like air or water must necessarily be extremely complicated,

It has therefore proved desirable to approximate, and it is just here

that the judgment of the physicist plays a significant role, Hayleigh

possessed the power of assessing a problem from the point of view

of the best possible approximation to lead to a physically useful

result. This is particularly well illustrated by his studies of the
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diffraction and scattering of sound by obstacles, which is by no means
so easy to study theoretically as in the analogous case of optics,

largely because of the approximate character of the equations and

the relatively large wave length of audible sound. Another illustra

tion is the acoustic radiation into a surrounding fluid medium from

a vibrating sphere or plate. The whole modern study of high fre

quency acoustic beams is based on this work. Still another example
is provided by the effect of viscosity and heat conduction on the

propagation of sound. Here the fundamental theory had already been

worked out by other men like Stokes and Kirchhoff
?
but Rayleigh

seemed able to seize on the useful applications to the transmission of

sound through narrow tubes and the interstices of fabrics. He was

aware that these effects are inadequate to account for the actually

observed absorption of sound in three dimensional fluid media like

the atmosphere or the sea. Progress in the solution of this problem
at the present time is actually being made along the lines of a hint

thrown out by Hayleigh in a paper on the cooling of air by radiation

and conduction published in 1899.

A second revised and enlarged edition of "The Theory of Sound"

was brought out by the author between the years 1894 and 1896,

embodying the results of his investigations in the seventeen years

which had elapsed since the first appearance of the book. No further

revisions or reprintings were made until after Rayleigh's death. This

would seem to reflect a rather stagnant stale of acoustics during the

first two decades of the twentieth century. Compared with the activity

of university physical laboratories in other fields this must be con

sidered the truth: academically, acoustics became, by and large, an

umnterestirfg subject. In the meantime, however, the development of

certain technological fields such as telephony, both with and without

wires, as well as acoustic signalling under water and architectural

acoustics, made il imperative for engineers to gain a better under

standing of the theory of acoustics. The large industrial concerns

began to make use of the subject in their research and development

laboratories, and the whole field received a stimulus such as it prob

ably never could have gained from the side of academic workers. We

may say that acoustics was rediscovered and along with it Kayleigh's

book. Keprintings were called for in rapid succession in 1926 and

1929 at about the time of the founding of the Acoustical Society of

America (1928), At the same time numerous books began to appear

whose main purpose was largely to interpret Kayleighus work to the

new workers in the subject, and to apply the methods of his treatise

to a multitude of new and practical problems.
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It would he absurd to maintain that the whole of acoustics is to

he found within the covers of "The Theory of Sound"
1

. Rayleigh him

self in some 60 papers puhlished between 1900 and his death

advanced the subject mightily and called attention to many problems
which have turned out to be of great significance in recent applica

tions. Among these foreshadowings of the future must be reckoned

his use of electric circuit analogies in connection with the forced

vibrations of acoustical resonators and other systems. This procedure
has developed to such an extent that the modern acoustical engineer,

using electrical equipment for most of his practical work, invariably

insists on expressing all acoustical systems in terms of their electrical

analogues. Other striking anticipations by Hayh igh of modern acous

tical considerations concern the use of conical horns for the produc
tion and reception of sound in signalling, the acoustic shadow of a

sphere (of particular significance in the diffraction effect of a

microphone), the pressure of acoustic radiation (used in the measure

ment of sound intensity, especially in supersonics), the binaural

effect in sound perception, the possible regime of sound waves of

finite amplitude (explosion waves and those associated with gun fire)

and the selective transmission of waves through stratified media

(acoustical filtration). The list could easily be extended, but this

will suffice to suggest to the contemporary worker in acoustics Ins debt

to Rayleigh's foresight.

No one can foresee the future of the science of acoustics as, on the

one hand, it reaches out into new realms of application in the engi

neering fields of the recording and reproduction of sound, the creation

of more comfortable environments for the hearing of sound and the

development of adequate hearing aids for the deaf, and, on the other

hand, joins forces with pure physics and chemistry in the endeavor to

learn more about the solid* liquid and gaseous stales of matter, par

ticularly through the agency of supersonics. It is safe* to predict, how

ever, that for a long time* to come Lord Rayleigh's "The Theory of

Sound
n

will be a rade mecum for both the pure and applied acous

tician.
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PREFACE.

IN
the work, of which the present volume is an instalment,

my endeavour has been to lay before the reader a connected

exposition of the theory of sound, which should include the

more important of the advances made in modern times by Mathe

maticians and Physicists. The importance of the object which

I have had in view will not, I think, be disputed by those com

petent to judge. At the present time many of the most valuable

contributions to science are to be found only in scattered

periodicals and transactions of societies, published in various

parts of the world and in several languages, and are often

practically inaccessible to those who do not happen to live in

the neighbourhood of large public libraries. In such a state of

things the mechanical impediments to study entail an amount

of unremunerative labour and consequent hindrance to the

advancement of science which it would be difficult to over

estimate.

Since the well-known Article on Sound in the Encyclopaedia

Met/ropolitanat by Sir John Herschel (1845), no complete work

has been published in which the subject is treated mathemati

cally. By the premature death of Prof. Donkin the scientific

world was deprived of one whose mathematical attainments in

combination with a practical knowledge of music qualified him

in a special manner to write on Sound. The first part of his

Acoustics (1870), though little more than a fragment, is sufficient

to shew that my labours would have been unnecessary had Prof.

Donkin lived to complete his work.
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In the choice of topics to be dealt with in a work on Sound,
I have for the most part followed the example of my predecessors,

To a great extent the theory of Sound, as commonly understood,

covers the same ground as the theory of Vibrations in general ;

but, unless some limitation were admitted, the consideration of

such subjects as the Tides, not to speak of Optics, would have

to be included. As a general rule we shall confine ourselves to

those classes of vibrations for which our ears afford a ready
made and wonderfully sensitive instrument of investigation,

Without ears we should hardly care much more about vibrations

than without eyes we should care about light.

The present volume includes chapters on the vibrations of

systems in general, in which, I hope, will be recognised some

novelty of treatment and results, followed by a more detailed

consideration of special systems, such as stretched strings, bars,

membranes, and plates. The second volume, of which a con

siderable portion is already written, will commence with aSrial

vibrations.

My best thanks are due to Mr H. M. Taylor of Trinity College,

Cambridge, who has been good enough to read the proofs. By
his kind assistance several errors and obscurities have been

eliminated, and the volume generally has been rendered less im

perfect than it would otherwise have been*

Any corrections, or suggestions for improvements, with which

my readers may favour me will be highly appreciated*

1877.

IN
this second edition all corrections of importance are noted,

sad new matter appears either as fresh sections, ag, 32 a,

or enclosed in square brackets [ ], Two new chapters X A, X B

are interpolated, devoted to Curved Plates or Shells, an4 to

SltiGtrical Vibrations. Much of the additional matter relates to

the more difficult parts of the subject and will be passed over

by the reader on a first perusal
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In the mathematical investigations I have usually employed
such methods as present themselves naturally to a physicist.

The pure mathematician will complain, and (it must be confessed)

sometimes, with justice, of deficient rigour. But to this question

there are two sides. For, however important it may be to

maintain a uniformly high standard in pure mathematics, the

physicist may occasionally do well to rest content with argu
ments which are fairly satisfactory and conclusive from his point

of view. To his mind, exercised in a different order of ideas,

the more severe procedure of the pure mathematician may appear
not more but less demonstrative. And further, in many cases

of difficulty to insist upon the highest standard would mean

the exclusion of the subject altogether in view of the space

that would be required.

In the first edition much stress was laid upon the establish

ment of general theorems by means of Lagrange's method, and

I am more than ever impressed with the advantages of this

procedure. It not uufrequently happens that a theorem can be

thus demonstrated in all its generality with less mathematical

apparatus than is required for dealing with particular cases by

special methods.

During the revision of the proof-sheets I have again had the

very great advantage of the cooperation of Mr H. M. Taylor,

until he was unfortunately compelled to desist. To him and

to several other friends my thanks are due for valuable sug

gestions.

July, 1894.



EDITORIAL NOTE FOR THE 1929 RE-ISSUE

In this re-issue, a few pencilled corrections and references

in the Author's own copy have heen made use of, Otherwise no

change has heen made,

EDITORIAL NOTE FOR THE PRESENT 1945 RE-ISSUE

In this re-issue, a Historical Introduction by Rohert Bruce

Lindsay had heen added, and hoth volumes are hound as one.

The text remains the same as the 1929 re-issue*
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CHAPTER L

INTRODUCTION.

1. THE sensation of sound is a thing sui generis, not com

parable with any of our other sensations. No one can express

the relation between a sound and a colour or a smell. Directly

or indirectly, all questions connected with this subject must

come for decision to the ear, as the organ of hearing; and

from it there can be no appeal. But we are not therefore to

infer that all acoustical investigations are conducted with the

unassisted ear. When once we have discovered the physical

phenomena which constitute the foundation of sound, our ex

plorations are in great measure transferred to another field lying

within the dominion of the principles of Mechanics, Important
laws are in this way arrived at, to which the sensations of the ear

cannot but conform.

2. Very cursory observation often suffices to shew that

sounding bodies are in a state of vibration, and that the phe
nomena of sound and vibration are closely connected. When a

vibrating bell or string is touched by the finger, the sound ceases

at the same moment that the vibration is damped. But, in order

to affect the sense of hearing, it is not enough to have a vibrating

instrument
;
there must also be an uninterrupted communication

between the instrument and the ear. A bell rung in vacuo, with

proper precautions to prevent the communication of motion,

remains inaudible. In the air of the atmosphere, however,

sounds have a universal vehicle, capable of conveying them

without break from the most variously constituted sources to

the recesses of the ear.

3. The passage of sound is not instantaneous. When a gun

is fired at a distance, a very perceptible interval separates the
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report from the flash. This represents the time occupied by
sound in travelling from the gun to the observer, the retardation

of the flash due to the finite velocity of light being altogether

negligible. The first accurate experiments were made by some

members of the French Academy, in 1738. Cannons were fired,

and the retardation of the reports at different distances observed.

The principal precaution necessary is to reverse alternately the

direction along which the sound travels, in order to eliminate the

influence of the motion of the air in mass. Down the wind, for

instance, sound travels relatively to the earth faster than its

proper rate, for the velocity of the wind is added to that proper
to the propagation of sound in still air. For still dry air at a

temperature of 0C., the French observers found a velocity of 337

metres per second. Observations of the same character were

made by Arago and others in 1822
; by the Dutch physicists Moll,

van Beek and Kuytenbrouwer at Amsterdam; by Bravais and

Martins between the top of the Faulhorn and a station below;

and by others. The general result has been to give a somewhat

lower value for the velocity of sound about 382 metres per
second. The effect of alteration of temperature and pressure on

the propagation of sound will be best considered in connection with

the mechanical theory.

4, It is a direct consequence of observation, that within wide

limits, the velocity of sound is independent, or at least very nearly

independent, of its intensity, and also of its pitch* Were this

otherwise, a quick piece of music would be heard at a little

distance hopelessly confused and discordant. But when I/he dis

turbances are very violent and abrupt, so that the alterations of

density concerned are comparable with the whole density of the

air, the simplicity of this law may be departed from.

& An elaborate series of experiments on the propagation of

Hound in long tubes (water-pipes) has been made by Regnault
1

*

He adopted an automatic arrangement similar in principle to that

used for measuring the speed of projectiles, At the moment when
a pistol is fired at one end of the tube a wire conveying au electric

current is ruptured by the shock* This causes the withdrawal of a

tracing point which was previously marking a line on a revolving
drum, At the further end of the pipe is a stretched membrane HO

arranged that when on the arrival of the sound it yields to the

1 Mtmoires de VAcadtmie <te .France, t. xxxvn.
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impulse, the circuit, which was ruptured during the passage of the

sound, is recomputed. At the same moment the tracing point
falls back on the drum. The blank space left unmarked corre

sponds to the time occupied by the sound in making the joui^ey,
and, when the motion of the drum is known, gives the means of

determining it. The length of the journey between the first wire

and the membrane is found by direct measurement. In these

experiments the velocity of sound appeared to be not quite inde

pendent of the diameter of the pipe, which varied from Oni
l(KS

to l
m<
100. The discrepancy is perhaps due to friction, whose

influence would be greater in smaller pipes.

6. Although, in practice, air is usually the vehicle of sound,
other gases, liquids and solids are equally capable of conveying
it. In most cases, however, the means of making a direct measure
ment of the velocity of sound are wanting, and we are not yet in

a position to consider the indirect methods. But in the case of

water the same difficulty does not occur. In the year 1826,
Colladon and Sturm investigated the propagation of sound in the

Lake of Geneva. The striking of a bell at one station was
simultaneous with a flah of gunpowder. The observer at a

second station measured the interval between the flash and the

arrival of the sound, applying his ear to a tube carried beneath

the surface. At a temperature of 8C., the velocity of sound in

water was thus found to be 1435 metres per second.

7. The conveyance of sound by solids may be illustrated by a

pretty experiment due to Wheatstone. One end of a metallic wire

is connected with the sound-board of a pianoforte, and the other

taken through the partitions or floors into another part of the

building, where naturally nothing would be audible. If a reso

nance-board (such as a violin) be now placed in contact with the

wire, a tune played on the piano is easily heard, and the sound

seems to emanate from the resonance-board. [Mechanical tele

phones upon this principle have been introduced into practical

use for the conveyance of speech,]

8. In an open space the intensity of sound falls off with great

rapidity a& the distance from the source increases. The same

amount of motion has to do duty over surfaces ever increasing as

the squares of the distance. Anything that confines the sound

will tend to dimmish the falling off of intensity. Thus over the

flat surface of still water, a sound carries further than over broken
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ground ;
the corner between a smooth pavement and a vertical

wall is still better; but the most effective of all is a tube-like

enclosure, which prevents spreading altogether. The use of

speaking tubes to facilitate communication between the different

parts of a building is well known. If it were not for certain effects

(frictional and other) due to the sides of the tube, sound might
be thus conveyed with little loss to very great distances.

9. Before proceeding further we must consider a distinction,

which is of great importance, though not free from difficulty.

Sounds may be classed as musical and unmusical; the former

for convenience may be called notes and the latter noises. The

extreme cases will raise no dispute ; every one recognises the

difference between the note of a pianoforte and the creaking of a

shoe. But it is not so easy to draw the line of separation. In the

first place few notes are free from all unmusical accompaniment.
With organ pipeB especially, the hissing of the wind as it escapes

at the mouth may be heard beside the proper note of the pipe.

And, secondly, many noises so far partake of a musical character

as to have a definite pitch. This is more easily recognised in a

sequence, giving, for example, the common chord, ihan by continued

attention to an individual instance, The experiment may be made

by drawing corks from bottles, previously tuned by pouring water

into them, or by throwing down on a table sticks of wood of suitable

dimensions. But, although noises are sometimes not entirely

unmusical, and notes are usually not quite free from noise, there is

no difficulty in recognising which of the two is the simpler pheno
menon. There is a- certain smoothness and continuity about the

musical note. Moreover by sounding together a variety of notes-

far example, by striking simultaneously a number of consecutive

keys on a pianoforte we obtain an approximation to a noine;

while no combination of noises could ever blend into a musical

note,

10, We are thus led to give our attention, in the first instance,

mainly to musical sounds. These arrange themselves naturally

in a certain order according to pitch a quality which all can

appreciate to some extent. Trained ears can recognise an enormous

number of gradations more than a thousand, probably, within

the compass of the human voice. These gradations of pitch are

not, like the degrees of a thermometrie scale, without special

mutual relations. Taking any given note as a starting point,
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musicians can single out certain others, which bear a definite

relation to the first, and are known as its octave, fifth, &c. The

corresponding differences of pitch are called intervals, and are

spoken of as always the same for the same relationship. Thus,
wherever they may occur in the scale, a note and its octave are

separated by the interval of the octave. It will be our object later

to explain, so far as it can be done, the origin and nature of the

consonant intervals, but we must now turn to consider the physical

aspect of the question.
'

Since sounds are produced by vibrations, it is natural to

suppose that the simpler sounds, viz. musical notes, correspond to

periodic vibrations, that is to say, vibrations which after a certain

interval of time, called the period, repeat themselves with perfect

regularity. And this, with a limitation presently to be noticed,

is true.

11. Many contrivances may be proposed to illustrate the

generation of a musical note. One of the simplest is a revolving

wheel whose milled edge is pressed against a card. Each

projection as it strikes the card gives a slight tap, whose regular

recurrence, as the wheel turns, produces a note of definite pitch,

rising in the scale, as the velocity of rotation increases. But the

most appropriate instrument for the fundamental experiments on

notes is undoubtedly the Siren, invented by Cagniard de la Tour.

It consists essentially of a stiff disc, capable of revolving about its

centre, and pierced with one or more sets of holes, arranged at

equal intervals round the circumference of circles concentric with

the disc. A windpipe in connection with bellows is presented

perpendicularly -to the disc, its open end being opposite to one of

the circles, which contains a set of holes. When the bellows are

worked, the stream of air escapes freely, if a hole is opposite to the

end of the pipe; but otherwise it is obstructed. As the disc turns,

a succession of puffs of air escape through it, until, when the

velocity is sufficient, they blend into a note, whose pitch rises

continually with the rapidity of the puffs. We shall have occasion

later to describe more elaborate forms of the Siren, but for our

immediate purpose the present simple arrangement will suffice.

12. One of the most important facts in the whole science is

exemplified by the Siren namely, that the pitch of a note depends

upon the period of it vibration- The size and shape of the holes,

the force of the wind, and other elements of the problem may be
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varied; but if the number of puffs in a given time, such as one

second, remains unchanged, so also does the pitch. We may even

dispense with wind altogether, and produce a note by allowing
the corner of a card to tap against the edges of the holes, as they
revolve

;
the pitch will still be the same. Observation of other

sources of sound, such as vibrating solids, leads to the same con

clusion, though the difficulties are often such as to render

necessary rather refined experimental methods.

But in saying that pitch depends- upon period, there

lurks an ambiguity, which deserves attentive consideration*

as it will lead us to a point of great importance. If a

variable quantity be periodic in any time r, it is also periodic

in the times 2r, 3r, &c. Conversely, a recurrence within a 'given

period T, does not exclude a more rapid recurrence within

periods which are the aliquot parts of r. It would appear

accordingly that a vibration really recurring in the time \T (for

example) may be regarded as having the period r, and therefore

by the law just laid down as producing a note of the pitch defined

by T, The force of this consideration cannot be entirely evaded by

defining as the period the least time required to bring about a

repetition. In the first place, the necessity of such a restriction

is in itself almost sufficient to shew that wo have not got to the

root of the matter
;
for although a right to the period r may be

denied to a vibration repeating itself rigorously within a time ^r,

yet it must be allowed to a vibration that may differ indefinitely
little therefrom. In the Siren experiment, suppose that in one

of the circles of holes containing an even number, every alternate

hole is displaced along the arc of the circle by the same amount,

The displacement may be made so small that no change can bo

detected in the resulting note; but the periodic time on which
the pitch depends has been doubled. And secondly it in evident

from the nature of periodicity, that the superposition on a vibra

tion of period r, of others having periods Jr, ^r..&c,, doow not

disturb the period r, whilo yet it cannot be supposed that the

addition of the new elements han left the quality of the Bound un

changed Moreover, since the pitch in not affected by their

presence, how do we know that elements of the shorter periods
were not there from the beginning?

13, These considerations lead us to expect remarkable rela

tions between the notes whose periods are as the reciprocals of the
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natural numbers. Nothing can be easier than to investigate the

question by means of the Siren, Imagine two circles of holes, the

inner containing any convenient number, and the outer twice as

many. Then at whatever speed the disc may turn, the period of

the vibration engendered by blowing the first set will necessarily

be the double of that belonging to the second. On making the

experiment the two notes are found to stand to each other in

the relation of octaves; and we conclude that in passing from any

note to its octave, the frequency of vibration is doubled. A -similar

method of experimenting shews, that to the ratio of periods 3 : 1

corresponds the interval known to musicians as the twelfth, made

up of an octave and a fifth; to the ratio of 4 : 1, the double

octave
;
.and to the ratio 5:1, the interval made up of two octaves

and a major third. In order to obtain the intervals of the fifth

and third themselves, the ratios must be made 3 : 2 and 5 : 4

respectively.

14. From these experiments it appears that if two notes

stand to one another in a fixed relation, then, no matter at what

part of the scale they may be situated, their periods are in a

certain constant ratio characteristic of the relation. The same

may be said of their frequencies
1

,
or the number of vibrations

which they execute in a given time. The ratio 2 : 1 is thus

characteristic of the octave interval. If we wish to combine

two intervals, for instance, starting from a given note, to take

a step of an octave and then another of a fifth in the same

direction, the corresponding ratios must be compounded :

2 3_3
T
X
2~1'

The twelfth part of an octave is represented by the ratio v/2 : 1,

for this IB the step which repeated twelve times leads to an

octave above the starting point. If we wish to have a measure

of intervals in the proper sense, we must take not the character

istic ratio itself, but the logarithm of that ratio. Then, and then

only, will the measure of a compound interval be the $wn of the

measures of the components.

1 A single word to denote the number of vibrations executed in the unit of time

IB indispensable : I know no better than 'frequency,' which was used in this sense

by Youiig. The same word is employed by Prof. Everett in hia excellent edition

of Dtjschanel's Natural Philosophy.
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15. From the intervals of the octave, fifth, and third con

sidered above, others known to musicians may be derived. The
difference of an octave and a fifth is called a fourth, and has the

3 4
ratio 2 -f-

^
=

-^
. This process of subtracting an interval from

the octave is called inverting it. By inverting the major third

we obtain the minor sixth. Again, by subtraction of a major
third from a fifth \ve obtain the minor third

;
aud from this by

inversion the major sixth. The following table exhibits side by
side the names of the intervals and the corresponding ratios of

frequencies ;

Octave 2 : 1

Fifth 3; 2

Fourth 4 : 3

Major Third 5:4
Minor Sixth 8 : 5

Minor Third 6 ; 5

Major Sixth 5 : 3

These are all the consonant intervals comprised within the
limits of the octave. It will be remarked that the corresponding
ratios are all expressed by means of small whole numbers, aud
that this is more particularly the case for the more consonant
intervals.

The notes whose frequencies are multiples of that of a given
one, are called its harmonics, and the whole series constitutes
a harmonic scale. As is well known to violinists, they may all

be obtained from the same string by touching it lightly with the

finger at certain points, while the bow is drawn.

The establishment of the connection between musical intervals

and definite ratios of frequency a fundamental point in Acountics
is due to Merscnne (1636). It was indeed known to the

Greeks in what ration the lengths of strings must be changed
in order to obtain the octave and fifth; but Mersenne demon
strated the law connecting the length of a string with the period
of it vibration, and made the first determination of the actual

rate of vibration of a known musical note.

16, On any note taken as a key-note, or tonic
t
a diatonic

scale may be founded, whose derivation we now proceed to ex

plain. If the key-note, whatever may be its absolute pitch, be
called Do, the fifth above or dominant is Sol, and the fifth below
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or subdominant is Fa. The common chord on any note is pro

duced by combining it with its major third, and fifth, giving the
e o

ratios of frequency 1 :
-

: -= or 4:5:6. Now if we take the
4 Z

common chord on the tonic, on the dominant, and on the sub-

dominant, and transpose them when necessary into the octave

lying immediately above the tonic, we obtain notes whose fre

quencies arranged in order of magnitude are :

Do Re Mi Fa Sol La Si Do
9 5 4 3 5 15 .

8' 4' 3' 2' 3' 8
'

Here the common chord on Do is Do Mi Sol, with the

ff f\

ratios 1 : -j :
-

;
the chord on Sol is Sol Si Re, with the ratios

*X *4

J : ^ : 2 x | = 1 : : t; and the chord on Fa is Fa La Do,
<w o o TP 2i

still with the same ratios. The scale js completed by repeating

these notes above and below at intervals of octaves.

If we take as our Do, or key-note, the lower c of a tenor voice,

the diatonic scale will be

c d e f g a b c'.

Usage differs slightly as to the mode of distinguishing the

different octaves
;
in what follows I adopt the notation of Helm-

holtz. The octave below the one just referred to is written with

capital letters C, D, &c,
;
the next below that with a suffix

C
x , D,, &c.

;
and the one beyond that with a double suffix C

//?
&c.

On the other side accents denote elevation by an octave c', c",

&c. The notes of the four strings of a violin are written in this

notation, g d' a'e". The middle c of the pianoforte is c'.

[In French notation c' is denoted by ut
s .]

17. With respect to an absolute standard of pitch there has

been no uniform practice. At the Stuttgard conference in 1834,

c'=264 complete vibrations per second was recommended. This

corresponds to a' = 440. The French pitch makes a' = 435. In

Handel's time the pitch was much lower. If c' were taken at 256

or 2
8

,
all the e's would have frequencies represented by powers

of 2, This pitch is usually adopted by physicists and acoustical

instrument makers, and has the advantage of simplicity.

The determination ah initio of the frequency of a given note is

an operation requiring some care. The simplest method in prin-
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ciple IP by means of the Siren, which is driven at such a rate as to

give a note in unison with the given one. The number of turns

effected by the disc in one second is given by a counting apparatus,
which can be thrown in and out of gear at the beginning and end

of a measured interval of time. This multiplied by the number of

effective holes gives the required frequency. The consideration of

other methods admitting of greater accuracy must be deferred.

18. So long as we keep to the diatonic scale of c, the notes

above written are all that are required in a musical composition.
But it is frequently desired to change the key-note. Under these

circumstances a singer with a good natural ear, accustomed to

perform without accompaniment, takes an entirely fresh departure,

constructing a new diatonic scale on the new key-note. In this

way, after a few changes of key, the original scale will be quite

departed from, and an immense variety of notes be used. On an

instrument with fixed notes like the piano and organ such a

multiplication is impracticable, and some compromise is necessary
in order to allow the same note to perform different functions.

This is not the place to discuss the question at any length ;
we

will therefore take as an illustration the simplest* as well as the

commonest case modulation into the key of the dominant,

By definition, the diatonic scale of c consists of the common
chords founded on c, g and f. In like manner the scale of g con

sists of the chords founded on g, d and c. The chords of c and g
are then common to the two scales

;
but the third and fifth of d

introduce new notes. The third of d written f# has a frequency

g
x j

~
, and is far removed from any note in the scale of c.

S 27
But the fifth of d, with a frequency a x

*

6 ? ,
differs but little

o / 10

from a, whose frequency is = . In ordinary keyed instruments the

81
interval between the two, represented by OT ,

and called a comnut,ou
is neglected, and the two notes by a suitable compromise or

temperament are identified,

19. Various systems of temperament have been uaed; the

simplest and that now mot generally used, or at least aimed at,

is the equal temperament On referring to the table of frequenciea
for the diatonic scale, it will be seen that the intervals from Do to

Re, from Re to Mi, from Fa to Sol, from Sol to La, and from La
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to Si, are nearly the same, being represented by ^ or
-^- ;

while the
8

16
,
areintervals from Mi to Fa and from Si to Do, represented by v -

,

15
about half as much. The equal temperament treats these ap
proximate relations as exact, dividing the octave into twelve equal

parts called mean semitones. From these twelve notes the diatonic

scale belonging to any key may be selected according to the

following rule. Taking the key-note as the first, fill up the series

with, the third, fifth, sixth, eighth, tenth, twelfth and thirteenth

notes, counting upwards. In this way all difficulties of modulation

are avoided, as the twelve notes serve as well for one key as for

another. But this advantage is obtained at a sacrifice of true

intonation. The equal temperament third, being the third part of

an octave, is represented by the ratio ^2 : 1, or approximately
1-2599, while the true third is T25. The tempered third is thus

higher than the true by the interval 126 : 125. The ratio of the

tempered fifth may be obtained from the consideration that seven

semitones make a fifth, while twelve go to an octave. The ratio is

7

therefore 2T* ; 1, which = 1'4983. The tempered fifth is thus too

low in the ratio 1'4983 : T5, or approximately 881 : 882. This

error is insignificant ;
and even the error of the third is not of

much consequence in quick music on instruments like the piano
forte. But when the notes are held, as in the harmonium and

organ, the consonance of chords is materially impaired.

20. The following Table, giving the twelve notes of the chro

matic scale according to the system of equal temperament, will be

convenient for reference
1
. The standard employed is a' = 440; in

1 Zamminer, Die Muyik und die musikaUscJien Instrumentf. Giessen, 1855.
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order to adapt the Table to any other absolute pitch, it is only

necessary to multiply throughout by the proper constant.

The ratios of the intervals of the equal temperament scale are

given below (Zamminer) :

Note. Frequency.

f# 2^ = 1-41421

^=1-49831

= 1-58740

= 1-68179

= 1-78180

= 1-88775

c' rr 2-000

21, Returning now for a moment to the physical aspect of the

question, we will assume, what we shall afterwards prove to be

true within wide limits, that, when two or more sources of sound

agitate the air simultaneously, the resulting disturbance at any

point in the external air, or in the ear-passage, is the simple sum

(in the extended geometrical sense) of what would be caused by

each source acting separately. Let us consider the disturbance

due to a simultaneous sounding of a note and any or all of its

harmonics. By definition, the complex whole forma a note having

the same period (and therefore pitch) as its gravest element. We
have at present no criterion by which the two can be distinguished,

or the presence of the higher harmonics recognised. And yet in

the case, at any rate, where the component sounds have an inde

pendent origin it is xisually not difficult to detect them by the

ear, so as to effect an analysis of the mixture. This is an much JIB

to say that a strictly periodic vibration may give rise to a sensa

tion which is not simple, but susceptible of further analysis. In

point of fact, it has long been known to musicians that under

certain circumstances the harmonics of a note may be heard along

with it, even when the note is due to a single source, such as a

vibrating string ; but the significance of the fact was not under

stood, Since attention has been drawn to the subject, it has been

proved (mainly by the labours of Ohm and Helmholte) that almost

all musical notes are highly compound, consisting in fact of the

notes of a hamonio scale, from which in particular cases one or
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more members may be missing. The reason of the uncertainty
and difficulty of the analysis will be touched upon presently.

22. That kind of note which the ear cannot further resolve is

called by Helmholtz in German a '

ton.' Tyndall and other recent

writers on Acoustics have adopted 'tone' as an English equivalent,
a practice which will be followed in the present work. The

thing is so important, that a convenient word is almost a matter

of necessity. Notes then are in general made up of tones, the

pitch of the note being that of the gravest tone which it contains.

23. In strictness the quality of pitch must be attached in the

first instance to simple tones only ;
otherwise the difficulty of dis

continuity before referred to presents itself. The slightest change
in the nature of a note may lower its pitch by a whole octave, as

was exemplified in the case of the Siren. We should now rather

say that the effect of the slight displacement of the alternate

holes in that experiment was to introduce a new feeble tone an

octave lower than any previously present. This is sufficient to

alter the period of the whole, but the great mass of the sound

remains very nearly as before.

In most musical notes, however, the fundamental or gravest
tone is present in sufficient intensity to impress its character on

the whole. The effect of the harmonic overtones is then to modify
the quality or character 1 of the note, independently of pitch.

That such a distinction exists is well known The notes of a violin,

tuning fork, or of the human voice with its different vowel sounds,

&c., may all have the same pitch and yet differ independently of

loudness
;
and though a part of this difference is due to accom

panying noises, which are extraneous to their nature as notes, still

there is a part which is not thus to be accounted for. Musical

notes may thus be classified as variable in three ways: First, pitch.

This we have already sufficiently considered. Secondly, character,

depending on the proportions in which the harmonic overtones are

combined with the fundamental : and thirdly, loudness. This has

to be taken last, because the ear is not capable of comparing

(with any precision) the loudness of two notes which differ much
in pitch or character* We shall indeed in a future chapter give a

mechanical measure of the intensity of sound, including in one

system all gradations of pitch ;
but this is nothing to the point.

1 German, *

Klangfarbe
'

French, 'timbre.' The word 'character' is used in

this sense by Everett.
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We are here concerned with the intensity of the sensation of

sound, not with a measure of its physical cause. The difference of

loudness is, however, at once recognised as one of more or less
;
so

that we have hardly any choice but to regard it as dependent
cc&teris paribus on the magnitude of the vibrations concerned.

24. We have seen that a musical note, as such, is due to a

vibration which is necessarily periodic ;
but the converse, it is

evident, cannot be true without limitation. A periodic repetition
of a noise at intervals of a second for instance, the ticking of a

clock would not result in a musical note, be the repetition ever

so perfect. In such a case we may say that the fundamental tone

lies outside the limits of hearing, and although some of the

harmonic overtones would fall within them, these would not give
rise to a musical note or even to a chord, but to a noisy maws of

sound like that produced by striking simultaneously the twelve

notes of the chromatic scale, The experiment may be made with
the Siren by distributing the holes quite irregularly round the

circumference of a circle, and turning the disc with a moderate

velocity. By the, construction of the instrument, everything
recurs after each complete revolution.

25. The principal remaining difficulty in the theory of notes

and tones, is to explain why notes are sometimes analysed by the

ear into tones, and sometimes not. If a note in really complex,
why is riot the fact immediately and certainly perceived, and the

components disentangled ? The feebleness of the harmonic over

tones is not the reason, for, JIB we shall see at a later stage of our

inquiry, they are often of surprising loudness, and play a prominent
part in music. On the other hand, if a note is sometimes perceived
an a whole, why does not this happen always ? These questions
have been carefully considered by Helmholtz 1

, with a tolerably

satisfactory result, The difficulty, such an it is, is not peculiar to

Acoustics, but may be paralleled in the cognate science of Physio
logical Optics,

The knowledge of external things which we derive from the
indications of our senses, is for the most part the result of inference.

When an object is before us, certain nerves in our retina art*

excited, and certain sensations are produced, which we are

accustomed to associate with the, objeet, and we forthwith infer its

presence, In the case of an unknown object the process in much
1

Tt>ntmj>/ln<l unite n, 8r<t oUHitw, p. OH,
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the same. We interpret the sensations to which we are subject so

as to form a pretty good idea of their exciting cause. From the

slightly different perspective views received by the twp eyes we

infer, often by a highly elaborate process, the actual relief and

distance of the object, to which we might otherwise have had no

clue. These inferences are made with extreme rapidity and quite

unconsciously. The whole life of each one of us is a continued

lesson in interpreting the signs presented to us, and in drawing
conclusions as to the actualities outside. Only so far as we succeed

in doing this, are our sensations of any use to us in the ordinal y
affairs of life. This being so, it is no wonder that the study of our

sensations themselves falls into the background, and that subjective

phenomena, as they are called, become exceedingly difficult of

observation. As an instance of this, it is sufficient to mention the
*

blind spot
'

on the retina, which might a priori have been

expected to manifest itself as a conspicuous phenomenon, though
as a fact probably not one person in a hundred million would find

it out for themselves. The application of these remarks to the

question in hand is tolerably obvious. In the daily use of our ears

our object is to disentangle from the whole mass of sound that

may reach us, the parts coming from sources which may interest

us at the moment. When we listen to the conversation of a friend,

we fix our attention on the sound proceeding from him and

endeavour to grasp that as a whole, while we ignore, as far as

possible, any other sounds, regarding them as an interruption.

There are usually sufficient indications to assist us in making this

partial analysis. When a man speaks, the whole sound of his

voice rises and falls together, and we have no difficulty in recog

nising its unity. It would be no advantage, but on the contrary

a great source of confusion, if we were to carry the analysis further,

and resolve the whole mass of sound present into its component
tones. Although, as regards sensation, a resolution into tones

might be expected, the necessities of our position and the practice

of our lives lead us to stop the analysis at the point, beyond
which it would cease to be of service in deciphering our sensa

tions, considered as signs of external objects
1
.

But it may sometimes happen that however much we may
wish to form a judgment, the materials for doing so are absolutely

1 Most probably the power of attending to the important and ignoring the

unimportant part of our sensations is to a great extent inherited to how great an

extent we shall perhaps never know.
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wanting. When a no be and its octave are sounding close together
and with perfect uniformity, there is nothing in oxir sensations to

enable us to distinguish, whether the notes have a double or a

single origin. In the mixture stop of the oi'gan, the pressing down
of each key admits the wind to a group of pipes, giving a note and

its first three or four harmonics. The pipes of each group always
sound together, and the result is usually perceived as a single

note, although it does not proceed from a single source.

26. The resolution of a note into its component tones is a

matter of very different difficulty with different individuals. A
considerable effort of attention is required, particularly at first;

and, until a habit has been formed, some external aid in the shape
of a suggestion of what is to be listened for, is very desirable.

The difficulty is altogether very similar to that of learning to

draw. From the machinery of vision it might have been expected
that nothing would be easier than to make, on a piano surface, a

representation of surrounding solid objects ;
but experience shews

that much practice is generally required.

We shall return to the question of the analysis of notes at a

later stage, after we have treated of the vibrations of wtrings, with

the aid of which it is best elucidated
;
but a very instructive

experiment, due originally to Ohm and improved by Helmholtz,

may be given here, Helmholtz 1 took two bottles of the shape

represented in the figure, one about twice as large as the other.

These were blown by streams of air directed

across the mouth and issuing from gutta-percha

tubes, whose ends had been softened and pressed

flat, so as to reduce the bore to the form of a

narrow slit, the tubes being in connection with

the same bellows. By pouring in water when
the note is too low and by partially obstructing
the mouth when the note in too high, the bottler

may be made to give notes with the exact

interval of an octave, such as b and b'. The

larger bottle, blown alone, givea a somewhat muffled sound similar

in character to the vowel XT
; but, when both bottler are blown,

the character of the resulting sound is sharper, resembling rather

the vowel 0* For a short time after the notes had been heard

separately Helmholtz was able to distinguish them in the mixture *

r

tt, p. 109*
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but as the memory of their separate impressions faded, the higher
note seemed by degrees to amalgamate with the lower, which at

the same time became louder and acquired a sharper character.

This blending of the two notes may take place even when the high
note is the louder.

27. Seeing now that notes are usually compound, and that

only a particular sort called tones are incapable of further analysis,
we are led to inquire what is the physical characteristic of tones,

to which they owe their peculiarity? What sort of periodic vibra

tion is it, which produces a simple tone ? According to what
mathematical function of the time does the pressure vary in

the passage of the ear ? No question in Acoustics can be more

important.

The simplest periodic functions with which mathematicians

are acquainted are the circular functions, expressed by a sine or

cosine; indeed there are no others at all approaching them in

simplicity. They may be of any period, and admitting of no

other variation (except magnitude), seem well adapted to produce

simple tones. Moreover it has been proved by Fourier, that the

most general single-valued periodic function can be resolved into

a series of circular functions, having periods which are submultiples
of that of the given function. Again, it is a consequence of the

general theory of vibration that the particular type, now suggested
as corresponding to a simple tone, is the only one capable of

preserving its integrity among the vicissitudes which it may
have to undergo. Any other kind is liable to a sort of physical

analysis, one part being differently affected from another, If the

analysis within the ear proceeded on a different principle from that

effected according to the laws of dead matter outside the ear,

the consequence would be that a sound originally simple might
become compound on its way to the observer There is no reason

to suppose that anything of this sort actually happens. When it

is added that according to all the ideas we can form ou the subject,

the analysis within the ear must take place by means of a physical

machinery, subject to the same laws as prevail outside, it will be

seen that a strong case has been made out for regarding tones as

due to vibrations expressed by circular functions. We are not

however left entirely to the guidance of general considerations like

these* In the chapter on the vibration of strings, we shall see

that in many cases theory informs us beforehand of the nature of
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the vibration executed by a string, and in particular whether any

specified simple vibration is a component or not. Here we have

a decisive test. It is found by experiment that, whenever according
to theory any simple vibration is present, the corresponding tone

can be heard, but, whenever the simple vibration is absent, then

the tone cannot be heard. We are therefore justified in asserting

that simple tones and vibrations of a circular type are indissolubly

connected. This law was discovered by Ohm,



CHAPTER II.

HARMONIC MOTIONS.

28. THE vibrations expressed by a circular function of the

time and variously designated as simple, pendulous, or harmonic,
are so important in Acoustics that we cannot do better than devote

a chapter to their consideration, before entering on the dynamical

part of our subject. The quantity, whose variation constitutes

the
'

vibration,' may be the displacement of a particle measured
in a given direction, the pressure at a fixed point in a fluid

medium, and so on. In any case denoting it by u, we have

(1),V 7>

in which a denotes the amplitude, or extreme value of u
;
T is

the periodic time, or period, after the lapse of which the values

of u recur
;
and determines the phase of the vibration at the

moment from which t is measured*

Any number of harmonic vibrations of the same period affect

ing a variable quantity, compound into another of the same type,
whose elements are determined as follows :

u = 2a cos

^ . * .

cos z,a cos -f sm z,a sin e
r r

/27TC a\

-0)
................................ (2),

if r * {(2a cos 6>
u + (Sa sin

<?)

2

)* ..................... (3),

and tan 6 = 2a sin e ~ Set cos ........... . .............. (4).
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For example, let there be two components,

/2>rrt \ , fZirt A
u = a cos -- e + a cos -- e

;

\ T / V T /

then r = {a
2 -ha/2

+2aa'cos(e-e')}* ..................... (5),

a sin 4- a' sin e

a cos e -h a cos

Particular cases may be noted. If the phases of the two com

ponents agree,

/ ^ fiirt \

u=c(a-l-a)co8 (

---
J

.

If the phases differ by half a period, .

/ ^ fZ^t \u = (a a ) cos (
-- el ,

so that if a! *
a, u vanishes. In this case the vibrations ^re often

said to interfere, but the expression is rather misleading. Two

sounds may very properly be said to interfere, when they together

cause silence; but the mere superposition of two vibrations

(whether rest is the consequence, or not) cannot properly be so

called, At least if this be interference, it is difficult to say what

non-interference can be. It will appear in the course of this

work that when vibrations exceed a certain intensity they no

longer compound by mere addition
;

this mutual action might
more properly be called interference, but it is a phenomenon
of a totally different nature from that with which we are now

dealing,

Again, if the phases differ by a quarter or by three-quarters of

a period, cos (e e') 0, and

Harmonic vibrations of given period may be represented

by lines drawn from a pole, the lengths of the lines being pro

portional to the amplitudes, and the inclinations to the phases
of the vibrations. The resultant of any number of harmonic

vibrations is then represented by the geometrical resultant of

the corresponding lines. For example, if they are disposed

symmetrically round the pole, the resultant of the lines, or

vibrations, is zero.

29. If we measure off along an axis of % distances pro

portional to the time, and take u for an ordinate, we obtain the

harmonic curve, or curve of sines,
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u = a cos
\

6

where X, called the wave-length, is written in place of T, both

quantities denoting the range of the independent variable corre

sponding to a complete recurrence of the function. The harmonic

curve is thus the locus of a point subject at once to a uniform

motion, and to a harmonic vibration in a perpendicular direc

tion. In the next chapter we shall see that the vibration of a

tuning fork is simple harmonic; so that if an excited tuning
fork be moved with uniform velocity parallel to the line of its

handle, a tracing point attached to the end of one of its prongs
describes a harmonic curve, which may be obtained in a permanent
form by allowing the tracing point to bear gently on a piece of

smoked paper. In Fig. 2 the continuous lines are two harmonic

curves of the same wave-length and amplitude, but of different

phases; the dotted curve represents half their resultant, being
the locus of points midway between those in which the two

curves are met by any ordinate.

30. If two harmonic vibrations of different periods coexist,

u , ,

a cos e -f a cos
\ T J \

ZTTt ,\
? e 1 .

T /

The resultant cannot here be represented as a simple harmonic

motion with other elements. If T and T' be incommensurable, the

value of u never recurs
; but, if r and T' be in the ratio of two

whole numbers, u recurs after the lapse of a time equal to the

least common multiple of T and T'; but the vibration is not

simple harmonic. For example, when a note and its fifth are

sounding together, the vibration recurs after a time equal to

twice the period of the graver,
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One case of the composition of harmonic vibrations of different

periods is worth special discussion, namely, when the difference

of the periods is small. If we fix our attention on the course

of things during an interval of time including merely a few

periods, we see that the two vibrations are nearly the same as

if their periods were absolutely equal, in which case they would,

as we know, be equivalent to another Simple harmonic vibration

of the same period. For a few periods then the resultant

motion is approximately simple harmonic, but the same har-

laonic will not continue to represent it for long. The vibration

having the shorter period continually gains on its fellow, thereby

altering the difference of phase on which the elements of the

resultant depend. For simplicity of statement let us suppose
that the two components have equal amplitudes, frequencies

represented by in and n, where w, n is small, and that when
first observed their phases agree. At this moment their effects

conspire, and the resultant has an amplitude double of that of

the components. But after a time 1~2('/H n) the vibration

w will have gained half a period relatively to the other; and
the two, being now in complete disagreement, neutralize each

other. After a further interval of time equal to that above

named, m will have gained altogether a whole vibration, and

complete accordance is once more re-established. The resultant

motion is therefore approximately simple harmonic, with an

amplitude not constant, but varying from zero to twice that of

the components, the frequency of them* alterations being w~ w.

If two tuning forks with frequencies 500 and 501 be equally
excited, there is every second a mo and fall of Hound corre

sponding to the coincidence or opposition of their vibrations.

This phenomenon in called beatw. We do not here fully discuss

the question how the ear behaves in the presence of vibrations

having nearly equal frequencies, but it in obvious that if the motion
in the neighbourhood of the ear almost cease for a considerable

fraction of a second, the sound must appear to fall. For reasons

that will afterwards appear, beats are bast heard when the in

terfering Bounds are simple tones. Consecutive notes of the

stopped diapason of the organ shew the phenomenon very
well, at least in the lower parts of the scale, A permanent inter

ference of two notes may Jbe obtained by mounting two stopped
organ pipes of similar construction and identical pitch side by
side on the same wind chest. The vibrations of the two pipes
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adjust themselves to complete opposition, so that at a. little

distance nothing can be heard, except the hissing of the wind
If by a rigid wall between the two pipes one sound could be
cut off, the other would be instantly restored. Or the balance,
on which silence depends, may be upset by connecting the ear

with a tube, whose other end lies close to the mouth of one of the

pipes.

By means of beats two notes may be tuned to unison with

great exactness. The object is to make the beats as slow as

possible, since the number of beats in a second is equal to the

difference of the frequencies of the notes. Under favourable

circumstances beats so slow as one in 30 seconds may be recog

nised, and would indicate that the higher note gains only two

vibrations a minute on the lower. Or it might be desired merely
to ascertain the difference of the frequencies of two notes nearly
in unison, in which case nothing more is necessary than to count

the number of beats. It will be remembered that the difference

of frequencies does not determine the interval between the two

notes; that depends on the ratio of frequencies. Thus the

rapidity of the beats given by two notes nearly in unison is

doubled, when both are taken an exact octave higher.

Analytically

u = a cos (%7rmt e) 4- of cos (ZTrnt e'),

where m n is small.

Now cos (%7rnt e') may be written

cos {%7rmt 27r (m n) t e'},

and we have
u = r cos (%ir<mt 0) (

1
),

where r2 a2 + a'
2 + 2aa' cos {2?r (m - n) t + e - e} (2),

a sin e -f a' sin {27r (m n) t + e'}
, ,

"""

a cos e + a! cos |2w(m n)< 4-e'}

The resultant vibration may thus be considered as harmonic

with elements r and 6, which are not constant but slowly varying

functions of the time, having the frequency m - n. The ampli

tude r is at its maximum when

cos {27T (m n) t + cf - e}
= 4- 1,

and at its minimum when

cos {27T (m - n) t + e' e} 1,

the corresponding values being a + o! and a a respectively.
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31. Another case of great importance is the composition of

vibrations corresponding to a tone and its harmonics. It is known

that the most general single-valued finite periodic function can

be expressed by a series of simple harmonics

n~ /1N
n^ an cos -- ej ............... (1),

\ T /

a theorem usually quoted as Fourier's. Analytical proofs will be

found in Todhunter's Integral Calculus and Thomson and Tait's

Natural Philosophy ; and a line of argument almost if not quite

amounting to a demonstration will be given later in this work.

A few remarks are all that will bo required here.

Fourier's theorem is not obvious, A vague notion is not un

common that the infinitude of arbitrary constants in the series

of necessity endows it with the capacity of representing an arbi

trary periodic function. That this is an error will be apparent,

when it is observed that the same argument would apply equally,

if one term of the series were omitted
;

in which case the ex

pansion would not in general be possible.

Another point worth notice is that simple harmonics are not

the only functions, in a series of which it is possible to expand
one arbitrarily given. Instead of the simple elementary term

(Zwnt
I

we might take

\
ev I ,

cos

formed by adding a similar one in the same phase of half the

amplitude and period. It is evident that these terms would

serve as well as the others; for

C08 _ ^ n m coa _ _
n +

^
cos _.

n

,...,ad infin*,

so that each term in Fourier's series, and therefore the sum of

the series, can be expresaed by means of the double elementary
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terms now suggested. This is mentioned here, because students,

not being acquainted with other expansions, may imagine tihat

simple harmonic functions are by nature the only ones qualified

to be the elements in the development of a periodic function.

The reason of the preeminent importance of Fourier's series in

Acoustics is the mechanical one referred to in the preceding

chapter, and to be explained more fully hereafter, namely, that,

in general, simple harmonic vibrations are the only kind that are

propagated through a vibrating system without suffering decom

position.

32. As in other cases of a similar character, e.g. Taylor's

theorem, if the possibility of the expansion be known, the co

efficients may be determined by a comparatively simple process.

We may write (1) of 31

~ . Znrrt ^ .A an- ...... (1).

Multiplying by cos (Znart/r) or sin (2n7rtf/r), and integrating

over a complete period from t = to t = T, we find

A 2 [* Zmrt ,.\
-4 n = - UCOB- at]Tj T

L .................. (2),

D 2 f . ZHTTt ,.
IBn = -

|
u sin- at

T J T /

An immediate integration gives

(3),

indicating that A is the mean value of ^/ throughout the period.

The degree of convergency in the expansion of u depends in

general on the continuity of the function and its derivatives.

The series formed by successive differentiations of (1) converge

less and less rapidly, but still remain convergent, and arithmetical

representatives of the differential coefficients of u> so long as

these latter are everywhere finite. Thus (Thomson and Tait,

77), if all the derivatives up to the m* inclusive be free

from infinite values, the series for u is more convergent than

one with

L 1 &c
OT> m> '

for coefficients.
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32 a. The general explanation of the beats heard when two

pure tones nearly in unison are sounded simultaneously has been

discussed in 30, But the occurrence of beats is not confined to

the case of approximate unison, at least when we have to deal

with compound notes. Suppose for example that the interval

is an octave. The graver note then usually includes a tone

coincident in pitch with the fundamental tone of the higher note.

If the interval be disturbed, the previously coincident tones

separate from one another, and give rise to beats of the same

frequency as if they existed alone. There is usually no difficulty

in observing these beats; but if one or both of the component
tones concerned be very faint, the aid of a resonator may be

invoked.

In general we may consider that each consonant interval is

characterized by the coincidence of certain component tones, and

if the interval be disturbed the previously coincident tones

give rise to beats. Of course it may happen in any particular

case that the tones which would coincide in pitch are absent from

one or other of the notes. The disturbance of the interval

would then, according to the above theory, not be attended

by beats* In practice faint beats are usually heard
;
but the

discussion of this phenomenon, as to which authorities arc not

entirely agreed, must be postponed*

33. Another class of compounded vibrations, interesting from

the facility with which they lend tfaemselveR to optical observa

tion, occur when two harmonic vibrations affecting the same par
ticle arc executed in perpendicular directions, more especially
when the periods are not only commensurable, but in the ratio

of two small whole numbers. The motion is then completely

periodic, with a period not many times greater than thone of the

components, and the curve described is re-entrant, If u and v

be the co-ordinates, we may take

u ** a cos (%<trnt
-

e)> t> m b cos 2im' , (I),

First let us suppose that the periods are equal, HO that n' * n
;

the elimination of t gives for the equation of the curve described,

u*
t

t;* Zuv /v /v
j + p-^cose-ain'.-O (2),

representing in general an ellipse, whose position and dimensions

depend upon the amplitudes of the original vibration and upon



33.] IN PERPENDICULAR DIRECTIONS. 27

the difference of their phases. If the phases differ by a quarter

period, cos e = 0, and the equation becomes

In this case the axes of the ellipse coincide with those of

co-ordinates. If further the two components have equal ampli

tudes, the locus degenerates into the circle

tt'+tpssa*,

which is described with uniform velocity. This shews how a

uniform circular motion may be analysed into two rectilinear

harmonic motions, whose directions are perpendicular.

If the phases of the components agree, e = 0, and the ellipse

degenerates into the coincident straight lines

b

or if the difference of phase amount to half a period, into

When the unison of the two vibrations is exact, the elliptic

path remains perfectly steady, but in practice it will almost

always happen bhat there is a slight difference between the

periods. The consequence is that though a fixed ellipse represents

the curve described with sufficient accuracy for a few periods,

the ellipse itself gradually changes in correspondence with the

alteration in the magnitude of e. It becomes therefore a matter

of interest to consider the system of ellipses represented by (2),

supposing a and b constants, but e variable.

Since the extreme values of u and v are a, b respectively,

the ellipse is in all cases inscribed in the rectangle whose sides

are 2a, 26. Starting with the phases in agreement, or e = 0, we
U V

have the ellipse coincident with the diagonal r == 0. As

e increases from to JTT, the ellipse opens out until its equation

becomes

From this point it closes up again, ultimately coinciding with

the other diagonal
- 4- y = 0, corresponding to the increase of e from
& o

JTT to 7i% After this, as e ranges from TT to ZTT, the ellipse retraces
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its course until it again coincides with the first diagonal. The

sequence of changes is exhibited in Fig. 3,

F/G.3.

The ellipse, having already four given tangents, is completely
determined by its point of contact P (Fig. 4) with the line v * 6.

/*"/ G.

In order to connect this with e it is sufficient to observe that

when t; = 6, cos 2-Trntf 1
;
and therefore u * a cos t. Now if the

elliptic paths be the result of the superposition of two harmonic

vibrations of nearly coincident pitch, e varies uniformly with the

time, so that P itself executes a harmonic vibration along AA*
with a frequency equal to the difference of the two given fre

quencies.

34 Lissajous
1 has shewn that this system of ellipses may be

regarded as the different aspects of one and the same ellipse

described on the surface of a transparent cylinder. In Fig, 5

. 5

Annato <fe Chimie (0) M. 147, 1857.
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AA'B'B represents the cylinder, of which AB' is a plane section.

Seen from an infinite distance in the direction of the common

tangent at A to the plane sections, the cylinder is projected into a

rectangle, and the ellipse into its diagonal. Suppose now that the

cylinder turns upon its axis, carrying the plane section with it.

Its own projection remains a constant rectangle in which the pro-

F/G. 6

jection of the ellipse is inscribed. Fig. 6 represents the posi

tion of the cylinder after a rotation through a right angle. It

appears therefore that by turning the cylinder round we obtain in

succession all the ellipses corresponding to the paths described by
a point subject to two harmonic vibrations of equal period and fixed

amplitudes. Moreover if the cylinder be turned continuously

with uniform velocity, which insures a harmonic motion for P,

we obtain a complete representation of the varying orbit de

scribed by the point when the periods of the two components

differ slightly, each complete revolution answering to a gain or

loss of a single vibration 1
. The revolutions of the cylinder are

thus synchronous with the beats which would result from the

composition of the two vibrations, if they were to act in the same

direction,

35. Vibrations of the kind here considered are very easily

realized experimentally. A heavy pendulum-bob, hung from a

fixed point by a long wire or string, describes ellipses under the

action of gravity, which may in particular cases, according to the

circumstances of projection, pass into straight lines or circles.

But in order to see the orbits to the best advantage, it is necessary

that they should be described so quickly that the impression

on the retina made by the moving point at any part of its course

has not time to fade materially, before the point comes round again

to renew its action. This condition is fulfilled by the vibration of

a silvered bead (giving by reflection a luminous point), which is

1 By ft vibration will always be meant in thia work a complete cycle of changes.
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attached to a straight metallic wire (such as a knitting-needle) ,

firmly clamped in a vice at the lower end. When the system is set

into vibration, the luminous point describes ellipses, which appear
as fine lines of light. These ellipses would gradually contract in

dimensions under the influence of friction until they subsided

into a stationary bright point, without undergoing any other

change, were it not that in all probability, owing to some want

of symmetry, the wire has slightly differing periods according to

the plane in which the vibration is executed. Under these cir

cumstances the orbit is seen to undergo the cycle of changes

already explained.

36. So far we have supposed the periods of the component
vibrations to be equal, or nearly equal ;

the next case in order of

simplicity is when one is the double of the other. We have

u 5= a cos (krnrt e), v 6 cos Znvrt,

The locus resulting from the elimination of t may be written

- =sa COS

which for all values of e represents a curve inscribed in the rect

angle 2a, 26, If tf 0, or ir, we have

FfG.7
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representing parabolas. Fig. 7 shews the various curves for the

intervals of the octave, twelfth, and fifth.

To all these systems Lissajous' method of representation by
the transparent cylinder is applicable, and when the relative

phase is altered, whether from the different circumstances of

projection in different cases, or continuously owing to a slight
deviation from exactness in the ratio of the periods, the cylinder
will appear to turn, so as to present to the eye different aspects of

the same line traced on its surface.

37. There is no difficulty in arranging a vibrating system so

that the motion of a point shall consist of two harmonic vibrations

in perpendicular planes, with their periods in any assigned ratio.

The simplest is that known as Blackburn's pendulum. A wire

ACS is fastened at A and B, two fixed points at the same level.

The bob P is attached to its middle point by another wire CP.

For vibrations in the plane of the diagram, the point of suspension
is practically (7, provided that the wires are sufficiently stretched

;

but for a motion perpendicular to this plane, the bob turns about

D, carrying the wire AGB with it. The periods of vibration in

the principal planes are in the ratio of the square roots of GP and

DP. Thus if DC = 3<7P, the bob describes the figures of the

octave. To obtain the sequence of curves corresponding to

approximate unison, AGB must be so nearly tight, that CD is

relatively small.
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38. Another contrivance called the kaleidophone was origin

ally invented by Wheatstone. A straight thin bar of steel carrying
a bead at its upper end is fastened in a vice, as explained in a

previous paragraph. If the section of the bar is square, or circular,

the period of vibration is independent of the plane in which it is

performed. But let us suppose that the section is a rectangle
with unequal sides. The stiffness of the bar the force with

which it resists bending is then greater in the plane of greater

thickness, and the vibrations in this plane have the shorter period.

By a suitable adjustment of the thicknesses, the two periods of

vibration may be brought into any required ratio, and the cor

responding curve exhibited.

The defect in this arrangement is that the same bar will give

only one set of figures. In order to overcome this objection
the following modification has been devised. A slip of steel is

taken whose rectangular section is very elongated, so that as

regards bending in one plane the stiffness is so great as to amount

practically to rigidity. The bar is divided into two parts, and the

broken ends reunited, the two pieces being turned on one another

through a right angle, so that the plane, which contains the small

thickness of one, contains the great thickness of the other. When
the compound rod is clamped in a vice at a point below the June-

tion, the period of the vibration in one direction, depending almost

entirely on the length of the upper piece, is nearly constant
;
but

that in the second direction may be controlled by varying the

point at which the lower piece is clamped.

39. In this arrangement the luminous point itself executes

the vibrations which are to be observed; but in Lissajous' form of

the experiment, the point of light remains really fixed* while its

image is thrown into apparent motion by meann of successive

reflection from two vibrating mirrors. A small hole in an opaque
screen placed close to the flame of a lamp givea a point of light,

which is observed after reflection in the mirrors by means of a

small telescope. The mirrors, usually of polished steel, are attached

to the prongs of stout tuning forks, and the whole is BO disposed
that when the forks are thrown into vibration the luminous point

appears to describe harmonic motions in perpendicular directions,

owing to the angular motions of the reflecting surfaces, The

amplitudes and periods of these harmonic motions depend upon
those of the corresponding forks, and may be made such as to give
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with enhanced brilliancy any of the figures possible with the

kaleidophone. By a similar arrangement it is possible to project
the figures on a screen. In either case they gradually contract as

the vibrations of the forks die away.

40. The principles of this chapter have received an important
application in the investigation of rectilinear periodic motions.

When a point, for instance a particle of a sounding string, is

vibrating with such a period as to give a note within the limits of

hearing, its motion is much too rapid to be followed by the eye ;

so that, if it be required to know the character of the vibration,
some indirect method must be adopted. The simplest, theo

retically, is to compound the vibration under examination with a

uniform motion of translation in a perpendicular direction, as when
a tuning-fork draws a harmonic curve on smoked paper. Instead

of moving the vibrating body itself, we may make use of a revolv

ing mirror, which provides us with an image in motion. In this

way we obtain a representation of the function characteristic of

the vibration, with the abscissa proportional to time.

But it often happens that the application of this method would

be difficult or inconvenient. In such cases we may substitute for

the uniform motion a harmonic vibration of suitable period in the

same direction. To fix our ideas, let us suppose that the point,
whose motion we wish to investigate, vibrates vertically with a

period T, and let us examine the result of combining with this a

horizontal harmonic motion, whose period is some multiple of r,

say, nr. Take a rectangular piece of paper, and with axes parallel

to its edges draw the curve representing the vertical motion (by

setting off abscissae proportional to the time) on such a scale that

the paper just contains n repetitions or waves, and then bend the

paper round so as to form a cylinder, with a re-entrant curve run

ning round it. A point describing this curve in such a manner
that it revolves uniformly about the axis of the cylinder will

appear from a distance to combine the given vertical motion of

period r, with a horizontal harmonic motion of period nr. Con

versely therefore, in order to obtain the representative curve of

the vertical vibrations, the cylinder containing the apparent path
must be imagined to be divided along a generating line, arid

developed into a plane. There is less difficulty in conceiving the

cylinder and the situation of the curve upon it, when the adjust
ment of the periods is not quite exact, for then the cylinder
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appears to turn, and the contrary motions serve to distinguish
those parts of the curve which lie on its nearer and further face.

41. The auxiliary harmonic motion is generally obtained

optically, by means of an instniment called a vibration-microscope

invented by Lissajous. One prong of a large tuning-fork carries

a lens, whose axis is perpendicular to the direction of vibration
;

and which may be used either by itself, or as the object-glass of

a compound microscope formed by the addition of an eye-piece

independently supported. In either case a stationary point is

thrown into apparent harmonic motion along a line parallel to

that of the fork's vibration.

The vibration-microscope may be applied to test the rigour

and universality of the law connecting pitch and period. Thus

it will be found that any point of a vibrating body which gives

a pure musical note will appear to describe a re-entrant curve,

when examined with a vibration-microscope whose note is in

strict unison with its own. By the same moans the ratios of

frequencies characteristic of the consonant intervals may bo

verified; though for this latter purpose a more thoroughly
acoustical method, to bo described in a future chapter, may be

preferred,

42. Another method of examining the motion of a vibrating

body depends upon the use of intermittent illumination*. Suppose,
for example, that by means of suitable apparatus a Beriea of

electric sparks are obtained at regular interval T, A vibrating

body, whose period is also T, examined by the light of the aparks

must appear $.t rest, because it can be seen only in one position.

If, however, the period of the vibration differ from r ever so

little, the illuminated position varies, and the body will appear
to vibrate slowly with a frequency which ia the difference of that

of the spark and that of the body. The type of vibration can

then be observed with facility.

The series of sparks can be obtained from an induction-coil,

whose primary circuit is periodically broken by a vibrating fork,

or by some other interrupter of sufficient regularity, But a better

result is afforded by sunlight rendered intermittent with the aid of

a fork, whose prongs carry two small platen of metal, parallel to

the plane of vibration and clone together, In each plate in a lit

*
Plateau, 8uU. de I'Aoad* ray. tk JM/ytyw*, t, in, p. 884, 1886,
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parallel to the prongs of the fork, and so placed as to afford a

free passage through the plates when the fork is at rest, or passing

through the middle point of its vibrations. On the opening so

formed, a beam of sunlight is concentrated by means of a burning-

glass, and the object under examination is placed in the cone of

rays diverging on the further side
1
. When the fork is made to

vibrate by an electro-magnetic arrangement, the illumination is cut

off except when the fork is passing through its position of equi

librium, or nearly so. The flashes of light obtained by this method

are not so instantaneous as electric sparks (especially when a

jar is connected with the secondaiy wire of the coil), but in my
experience the regularity is more perfect. Care should be taken

to cut off extraneous light as far as possible, and the effect is then

very striking.

A similar result may be arrived at by looking at the vibrating

body through a series of holes arranged in a circle on a revolving

disc. Several series of holes may be provided on the same

disc, but the observation is not satisfactory without some pro

vision for securing uniform rotation.

Except with respect to the sharpness of definition, the result is

the same when the period of the light is any multiple of that of

the vibrating body. This point must be attended to when the

revolving wheel is used to determine an unknown frequency.

When the frequency of intermittence is an exact multiple of

that of the vibration, the object is seen without apparent motion,

but generally in more than one position. This condition of things

is sometimes advantageous.

Similar effects arise when the frequencies of the vibrations

and of the flashes are in the ratio of two small whole numbers.

If, for example, the number of vibrations in a given time be half

as great again as the number of flashes, the body will appear

stationary, and in general double.

42 a. We have seen ( 28) that the resultant of two isoperiodic

vibrations of equal amplitude is wholly dependent upon their phase

relation, and it is of interest to inquire 'what we are to expect

from the composition of a large number (n) of equal vibrations

of amplitude unity, of the same period, and of phases accidentally

determined. The intensity of the resultant, represented by the

square of the amplitude 245, will of course depend upon the

i
T&pler, PhlL Mag. Jan. 1867.
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precise manner in which the phases are distributed, and may vary
from n2 to zero. But is there a definite intensity which becomes
more and more probable when n is increased without limit ?

The nature of the question here raised is well illustrated by
the special case in which the possible phases are restricted to two

opposite phases. We may then conveniently discard the idea of

phase, and regard the amplitudes as at random positive or negative.
If all the signs be the same, the intensity is n2

; if, on the other

hand, there be as many positive as negative, the result is zero.

But although the intensity may range from to n fi

, the smaller

values are more probable than the greater.
The simplest part of the problem relates to what is called in

the theory of probabilities the "expectation" of intensity, that

ia, the mean intensity to be expected after a great number of

trials, in each of which the phases are taken at random. The
chance that all the vibrations are positive is (J)

n
,
and thus the

expectation of intensity corresponding to thin contingency is

(i)^.n
2

. In like manner the expectation corresponding to the

rmrnber of positive vibrations being (n 1) is

(i)n (n
~

2),

and so on. The whole expectation of intensity is thus

1.2.3 v ' ^'

Now the stun of the (n 4- 1) terms of thin series is simply n, as

may be proved by comparison of coefficients of * in the equivalent
forms

(4* + #-*)* 2" (1 + *,t?
a
4- . ..)

n

The expectation of intensity is therefore n, and this whether n be

great or small

The same conclusion holds good when the phaaes are unre

stricted. From (3) 28, if <*!,. 1,

ra m (cos e, + cos s + ,.,)* -f (sin ^ + sin <ra + .,)*

where under tho sign of summation are to be included the amines
of the Jw(/i 1) differences of phase. When the phaaes are
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accidental, the sum is as likely to be positive .as negative, and

thus the mean value of r2
is n.

The reader must be on his guard here against a fallacy which

has misled some eminent authors. We have not proved that when
n is large there is any tendency for a single combination to give
an intensity equal to n, but the quite different proposition that in

a large number of trials, in each of which the phases are dis

tributed at random, the mean intensity will tend more and more

to the value n. It is true that even in a single combination there

is no reason why any of the cosines in (2) should be positive

rather than negative. From this we may infer that when n is

increased the sum of the terms tends to vanish in comparison with

the number of terms
; but, the number of the terms being of the

order n2
,
we can infer nothing as to the value of the sum of the

series in comparison with n.

So far there is no difficulty ;
but a complete investigation of

this subject involves an estimate of the relative probabilities of

resultants lying within assigned limits of magnitude. For example,
we ought to be able to say what is the probability that the

intensity due to a large number (n) of equal components is less

than
-J-n.

This problem may conveniently be considered here, though
it is naturally beyond the reach of elementary methods. We will

commence by taking it under the restriction that the phases are

of two opposite kinds only.

Adopting the statistical method of statement, let us suppose
that there are an immense numberN of independent combinations,

each consisting of n unit vibrations, positive or negative, and com

bined accidentally. When N is sufficiently large, the statistics

become regular ;
and the number of combinations in whica the

resultant amplitude is found equal to x may be denoted by
N . f(n, x), where / is a definite function of n and x. Now suppose

that each of the N combinations receives another random contri

bution of 1, and inquire how many of them will subsequently

possess a resultant x. It is clear that those only can do so which

originally had amplitudes #-1, or #+ 1. Half of the former,

and half of the latter number will acquire the amplitude x, so

that the number required is

But this mudt be identical with the number corresponding to

71 4- 1 and #, so that

......... (3),
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This equation of differences holds good for all integral values

of x and for all positive integral values of n. If / (n, x) be given

for one value of n, the equation suffices to determine / (n, x) for

all higher integral values of n. For the present purpose the

initial value of n is zero. In that case we know that /(#) = for

all values of x other than zero, and that when x = 0,/(0, 0)
= 1.

The problem proposed in the above form is perfectly definite
;

but for our immediate object it suffices to limit ourselves to the

supposition that n is great, regarding f(n, x) as a continuous

function of continuous variables n and #, much as in the analogous

problem of 120, 121, 122.

Writing (3) in the form

f(n + 1, x) ~/(n, x) * i/(n, x - 1) + %f(n, x+l) -/(n, x). . .(4),

we see that the left-hand member may then be identified with

df/dn, and the right-hand member with ^f/d^, so that under

these circumstances the ditferential equation to which (3) reduces

is of the well-known form

The analogy with the conduction of heat is indeed very close
;

and the methods developed by Fourier for the solution of problems

in the latter subject are at once applicable. The special condition

here is that initially, that is when n 0, / must vanish for all

values of x other than zero. As may be verified by differentiation,

the special solution of (5) is then

/<,*). r** ..................... (6 ),

in which A is an arbitrary constant to be determined from the

consideration that the whole number of combinations is N. Thus,

if da be large in comparison with unity, the number of combina

tions which have amplitudes between and #? + d% is

yn
A A

while
v̂n

so that in virtue of the known equality

I

J

A . Vi^? - 1.
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The final result for the number of combinations which have

amplitudes between x and x -f da is accordingly

- 2n
cfa ..................... (7).V J/ x

(27T7l)

The wecw intensity is expressed by
1 /"+*

^-- a^-*2/^ cfo = 71,

V(27T7i)J_ 00

as before.

We will now pass on to the more important problem in which

the phases of the n unit vibrations are distributed at random over

the entire period. In each combination the resultant amplitude
is denoted by r and the phase (referred to a given epoch) by 6

;

and rectangular coordinates are taken so that

x = r cos 0, y = r sin 0.

Thus any point (so, y) in the plane of reference represents a

vibration of amplitude r and phase 6, and the whole system of

JH vibrations is represented by a distribution of points, whose

density it is our object to determine. Since no particular phase
can be singled out for distinction, we know beforehand that the

density of distribution will be independent of 6.

Of the infinite number N of points we suppose that

Nf(n, x, y) dxdy
are to be found within the infinitesimal area dxdy, and we will

inquire as before how this number would be changed by the

addition to the n component vibrations of one more unit vibration

of accidentai phase. Any vibration which after the addition is

represented by the point x, y must before have corresponded to

the point
%' -r % ~ cos fa y'

-a y sin
<f>,

where
<f> represents the phase of the additional unit vibration.

And, if for the moment
<f>

be regarded as given, to the area dxdy

corresponds an equal area dx'dy'. Again, all values of
<j> being

equally probable, the factor necessary under this head is d$l%ir.

Accordingly the whole number to be found in dxdy after the

superposition of the additional unit is

and this is to be equated to

Ndxdyf(n + 1, x> y) ;

so that /(w + 1, #, y) |/(n, of. y
f

)d<bfi>jr ......... (8).
Jo
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The value of /(n, x, y') is obtained by introduction of the

values of d, y'
and expansion :

so that

Also, ?i being very great,

/(n + 1, x, y) -/(, *, y)
- 4/7*1

'>

and (8) reduces to

the usual equation for the conduction of heat in two dimensions.

In addition to (9), /has to satisfy tho special conditioner
evanescence when n - for all points other than the origin. The

appropriate solution is necessarily symmetrical round the origin,

and takes the form

as may be verified by differentiation. The constant A is to be

determined by the condition that the whole number is N. Thus

N**NAn-1 n e-vt+v
t n

dxdy*>NA2Trn-
l

j

and the number of vibrations within th area dxdy becomes

TTH

If we wish to find the number of vibration* which have

amplitudes between r and r + dr, we must introduce polar

coordinates and integrate with respect to 0. Tho required number

IB tinus />* s\\i

The result may also be expressed by saying that the probability

of a resultant amplitude between r and r + dr when a large

number n of unit vibrations are compounded at random M

(13).

Phil. Mug. Au. 1880.
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The mean intensity is given by

41

Too

1

Jo
as was to be expected.

The probability of a resultant amplitude less than r is

(14),

or, which is the same thing, the probability of a resultant ampli
tude greater than r is

e-r'/n (15).

The following table gives the probabilities of intensities less

than the fractions of n named in the first column. For example,

the probability of intensity less than n is *6321.

It will be seen that, however great n may be, there is a

reasonable chance of considerable relative fluctuations of intensity

in different combinations.

If the amplitude of each component be a, instead of unity, as

we have hitherto supposed for brevity, the probability of a resultant

amplitude between r and r + dr is

_2_
na2<

.(16).

The result is thus a function of n and a only through ntf, and

would be unchanged if for example the amplitude became a and

the number 4n From this it follows that the law is not altered,

even if the components have different amplitudes, provided always

that the whole number of each kind is very great; so that if there

be n components of amplitude a, ri of amplitude /3, and so on, the

probability of a resultant between r and r + dr is

2
4- n'f&

*- rdr .(17).

That this is the case may perhaps be made more clear by the

consideration of a particular case. Let us suppose in the first

place that n+4n' unit vibrations are compounded at random.
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The appropriate law is given at once by (13) on substitution of

n + 4fn for n, that is

2 (n + kri)~
l e^V<n+4n') rdr .................. (18).

Now the combination of n-f 4n' unit vibrations may be re

garded as arrived at by combining a random combination of n

unit vibrations with a second random combination of 4n
f

units,

and the second randotn combination is the same as if due to a

random combination of nf

vibrations each of amplitude 2. Thus

(18) applies equally well to a random combination of (n + ri)

vibrations, n of which arc of amplitude unity and n' of ampli
tude 2.

Although the result has no application to the theory of vibra

tions, it may be worth notice that a similar method applies to the

composition in three dimensions of unit vectors, whose directions

are accidental. The equation analogous to (8) gives in place of

~
3n~8

The appropriate solution, analogous to (18), is

expressing the probability of a resultant amplitude lying between

r and r + dr.

Here again the mean value of r3
, to be expected in a great

number of independent combinations, is n,



CHAPTEB III

SYSTEMS HAVING ONE DEGREE OF FREEDOM.

43, THE material systems, with whose vibrations Acoustics is

concerned, are usually of considerable complication, and are sus

ceptible of very various modes of vibration, any or all of which

may coexist at any particular moment. Indeed in some of the

most important musical instruments, as strings and organ-pipes,

the number of independent modes is theoretically infinite, and

the consideration of several of them is essential to the most prac

tical questions relating to the nature of the consonant chords.

Cases, however, often present themselves, in which one mode is

of paramount importance ;
and even if this were not so, it would

still be proper to commence the consideration of the general

problem with the simplest case that of one degree of freedom.

It need not be supposed that the mode treated of is the only one

possible, because so long as vibrations of other modes do not occur

their possibility under other circumstances is of no moment.

4A. The condition of a system possessing one degree of free

dom is defined by the value of a single co-ordinate u, whose origin

may be taken to correspond to the position of equilibrium. The

kinetic and potential energies of the system for any given position

are proportional respectively to ua and u* :
-

where m &ad ^ are in general functions of w, BUT, if we limit

ourselves to the consideration of positions in the immediate neigh

bourhood of that corresponding to equilibrium, u is a small quantity,

and m and p are sensibly constant. On this understanding we
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now proceed. If there be no forces, either resulting from internal

friction or viscosity, or impressed on the system from without, the

whole energy remains constant. Thus

T+ F= constant.

Substituting for T and V their values, and differentiating with

respect to the time, we obtain the equation of motion

mu -f pu = (2)

of which the complete integral is

u = a cos (nt a) (3),

where n2

=/i~r7tt, representing a harmonic vibration. It will be

seen that the period alone is determined by the nature of the

system itself; the amplitude and phase depend on collateral cir

cumstances. If the differential equation were exact, that is to

say, if T were strictly proportional to u2
,
and V to u a

, then, without

any restriction, the vibrations of the system about its configuration
ot equilibrium would be accurately harmonic. But in the majority

of cases the proportionality is only approximate, depending on an

assumption that the displacement u is always small how small

depends on the nature of the particular system and the degree of

approximation required ;
and then of course we must be careful

not to push the application of the integral beyond its proper
limits,

But, although not to be stated without a limitation, the prin

ciple that the vibrations of a system about a configuration of

equilibrium have a period depending on the structure of the

system and not on the particular circumstances* of the vibration,

in of supreme importance, whether regarded from the theoretical

or the practical aide. If the pitch and the kmdnesn of the note

given by a musical instrument were not within wide limits in

dependent, the art of the performer ou many instruments, such

as the violin and pianoforte, would be revolutionized.

The periodic time

2<7r /m fAT
n -2^/- (4),

so that atx increase in in, or a decrease in M, protracts the duration

of a vibration. By a generalization of the language employed in

the case of a material particle urged towards a position of equili

brium by a spring, m may be called the inertia of the system, and
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fjL
the force of the equivalent spring. Thus an augmentation of

mass, or a relaxation of spring, increases the periodic time. By
means of this principle we may sometimes obtain limits for

the value of a period, which cannot, or cannot easily, be calculated

exactly.

45. The absence of all forces of a frictional character is an

ideal case, never realized but only approximated to in practice.

The original energy of a vibration is always dissipated sooner or

later by conversion into heat. But there is another source of loss,

which though not, properly speaking, dissipative, yet produces
results of much the same nature. Consider the case of a tuning-

fork vibrating in vacua The internal friction will in time stop

the motion, and the original energy will be transformed into

heat. But now suppose that the fork is transferred to an open

space. In strictness the fork and the air surrounding it consti

tute a single system, whose parts cannot be treated separately.

In attempting, however, the exact solution of so complicated a

problem, we should generally be stopped by mathematical diffi

culties, and in any case an approximate solution would be de

sirable. The effect of the air during a few periods is quite insig

nificant, and becomes important only by accumulation. We are

thus led to consider its effect as a disturbance of the motion which

would take place in vacua. The disturbing force is periodic (to

the same approximation that the vibrations are so), and may be

divided into two parts, one proportional to the acceleration, and

the other to the velocity. The former produces the same effect as

an alteration in the mass of the fork, and we have nothing more

to do with it at present. The latter is a force arithmetically pro

portional to the velocity, and always acts in opposition to the

motion, and therefore produces effects of the same character as

those due to friction. In many similar cases the loss of motion

by communication may be treated under the same head as that

due to dissipation proper, and is represented in the differential

equation with a degree of approximation sufficient for acoustical

purposes by a term proportional to the velocity. Thus

ii + KU + ti*u (1)

is the equation of vibration for a system with one degree of

freedom subject to frictional forces. The solution is

n*-i*.a-ot} - (2).
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If the friction be so great that l/c>>n*, the solution changes its

form, and no longer corresponds to an oscillatory motion
;
but in

all acoustical applications tc is a small quantity. Under these

circumstances (2) may be regarded as expressing a harmonic

vibration, whose amplitude is not constant, but diminishes in

geometrical progression, when considered after equal intervals of

time. The difference of the logarithms of successive extreme

excursions is nearly constant, and is called the Logarithmic Decre

ment. It is expressed by JOT, if r be the periodic time.

The frequency, depending on na -
\K\ involves only the second

power of K] so that to the first order of approximation the friction

has no effect on the period,* principle of very general application.

The vibration here considered is called the free vibration. It

is that executed by the system, when disturbed from equilibrium,

and then left to itself.

46. We must now turn our attention to another problem, not

less important, the behaviour of the system, when subjected to an

external force varying as a harmonic function of the time. In

order to save repetition, we may take at once the more general

cas^ including friction. If there be no friction, we have only to

put in our results /c 0. The differential equation is

u+ tfu4-ft
aw jco$-p#.. ............... (1)*

Assume u^acoB(pt-^e) ... .......... *.,.*>.,... (2),

and substitute :

a (n*
- ps

)
cos ( pt e)

-
tcpa sin (pt

-
)

ECOB e cos (pt c)
- -$sin e sin (pt <?) ;

whence, on equating coefficients of cos (pt e), sin (pt <r),

a (n
9
~jp)~J cose

so that the solution may be written

/ , \ /x\
u __ cos (pt )..... .......... .. f# *(4),

where i^p-^y ........ , ............. ,..,(5).

This is called &forced vibration; it is the response of the system

to a force imposed upon it from without, and is maintained by the

continued operation of that force* The amplitude is proportional
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to E the magnitude of the force, and the period is the same
as that of the force.

Let us now suppose E given, and trace the effect on a given

system of a variation in the period of the force. The effects

produced in different cases are not strictly similar; because the

frequency of the vibrations produced is always the same as that of

the force, and therefore variable in the comparison which we are

about to institute. We may, however, compare the energy of the

system in? different cases at the moment of passing through the

position of equilibrium. It is necessary thus to specify the moment
at which the energy is to be computed in each case, because the

total energy is not invariable throughout the vibration. During
one part of the period the system receives energy from the

impressed force, and during the remainder of the period yields it

back again.

From (4), if u = 0,

energy oc u* x sin2
6,

and is therefore a maximum, when sin e = 1, or, from (5) 7p = n. If

the maximum kinetic energy be denoted by T0) we have

2
7 ro sin

a
.... ....................... (6).

The kinetic energy of the motion is therefore the greatest possible,

when the period of the force is that in which the system would

vibrate freely under the influence of its own elasticity (or other

internal forces), without friction. The vibration is then by (4)

and (5),

E '

*u = sm nt :

nfc

and, if re be small, its amplitude is very great. Its phase is a

quarter of a period behind that of the force.

The case, where jp
= w, may also be treated independently.

Since the period of the actual vibration is the same as that

natural to the system.
u + n*u ** 0,

so that the differential equation (1) reduces to

whence by integration

TF r ffl

u = I cos ptdt~ sin pt,
KJ

*
PK

r

as before.
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If p be less thau n, the retardation of phase relatively to the

force lies between zero and a quarter period, and when p is greater

than ?i, between a quarter period and a half period.

In the case of a system devoid of friction, the solution is

IP

When p is smaller than ?i, the phase of the vibration agrees with

that of the force, but when p is the greater, the sign of* the vibra

tion is changed. The change of phase from complete agreement
to complete disagreement, which is gradual when friction acts,

here takes place abruptly as p passes through the value n. At the

same time the expression for the amplitude becomes infinite. Of
course thin only means that, in the case of equal periods, friction

Mtust be taken into account, however small it may be, and however

insignificant its result when p and n are not approximately equal.

The limitation as to the magnitude of the vibration, to which we

are all along subject, must also be borne in mind,

That the excursion should be at its maximum in one direction

while the generating force in at its maximum in the opposite*

direction, as happens, for example, in the canal theory of the tides,

is sometimes considered a paradox. Any difficulty that may be

felt will be removed by considering the extreme cane, in which the

"spring" vanishes, HO that the natural period is infinitely long, lu

fact we need only consider the force acting on the bob of a com
mon pendulum swinging freely, in which case the excursion on one

side is greatest when the action of gravity in at its maximum
in the opposite direction, When on the other hand the inertia of

the system is very small, we have the other extreme case in which

the so-called equilibrium theory becomes applicable, the force and

excursion being in the aame phase.

When the period of the force is longer than the natural period,

the effect of an increasing friction is to introduce a retardation

in the phase of the displacement varying from zero up to a quarter

period. If, however, the period of the natural vibration be the

longer, the original retardation of half a period is diminished by

something short of a quarter period; or the effect of friction in to

accelerate the phase of the displacement estimated from that corre

sponding to the absence of friction. In either case the influence

of friction is to cause an approximation to the state of things that

would prevail if friction were paramount.
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If a force of nearly equal period with the free vibrations

vary slowly to a maximum and then slowly decrease, the dis

placement does not reach its maximum until after the force has

begun to diminish. Under the operation of the force at its

maximum, the vibration continues to increase until a certain limit

is approached, and this increase continues for a time even although
the force, having passed its maximum, begins to diminish. On
this principle the retardation of spring tides behind the days of

new and full moon has been explained
1

.

47. From the linearity of the equations it follows that the

motion resulting from the simultaneous action of any number of

forces is the simple sum of the motions due to the forces taken

separately. Each force causes the vibration yfroper to itself,

without regard to the presence or absence of any others. The

peculiarities of a force are thus in a manner transmitted into the

motion of the system. For example, if the force be periodic in

time r, so will be the resulting vibration. Each harmonic element

of the force will call forth a corresponding harmonic vibration

in the system. But since the retardation of phase e, and the ratio

of amplitudes a : E, is not the same for the different components,

the resulting vibration, though periodic in the same time, is dif

ferent in character from the force. It may happen, for instance,

that one of the components is isochronous, or nearly so, with the

free vibration, in which case it \vill manifest itself in the motion

out of all proportion to its original importance. As another

example we may consider the case of a system acted on by two

forces of nearly equal period. The resulting vibration, being

compounded of two nearly in unison, is intermittent, according to

the principles explained in the last chapter.

To the motions, which are the immediate effects of the im

pressed forces, must always be added the term expressing free

vibrations, if it be desired to obtain the most general solution.

Thus in the case of one impressed force,

(1),

ptc

where A and a are arbitrary.

48. The distinction between forced and/ree vibrations is very

, important, and must be clearly understood. The period of the

1
Airy's Tides and Waves, Art. 328.
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former is determined solely by the force which is supposed to act

on the system from without
;
while that of the latter depends only

oft the constitution of the system itself. Another point of differ

ence is that so long as the external influence continues to operate,

a forced vibration is permanent, being represented strictly by a

harmonic function
;
but a free vibration gradually dies away, be

coming negligible after a time. Suppose, for example, that the

system is at rest when the force E cos pt begins to operate. Such

finite values must be given to the constants A and a in (1) of 47,

that both u and u are initially zero. At first then there is a

free vibration not less important than its rival, but after a time

friction reduces it to insignificance, and the forced vibration is left

in complete possession of the field. This condition of things will

continue so long as the force operates. When the force is removed,

there is, of course, no discontinuity in the values of u or u
t but

the forced vibration is at once converted into a free vibration,

and the period of the force is exchanged for that natural to the

system.

During the coexistence of the two vibrations in the earlier part
of the motion, the curious phenomenon of boats may occur, in

case the two periods differ but slightly. For, n arid p being nearly

equal, and /c small, the initial conditions are approximately satis

fied by _
u a cos ( pt e) ae""***

4 cos {*Jn* |/c
fl

.<--$}.

There is thus a rise and fall in the motion, so long as ""*** remains

sensible. This intermittence la very conspicuous in the earlier

stages of the motion of forks driven by electro-magnetism ( 68),

[and may be utilized when it is desired to adjust n and p to

equality. The initial beats are to be made slower and slower,

until they cease to be perceptible. The vibration then swells

continuously to a maximum.]

49. Vibrating systems of one degree of freedom may vary in

two ways according to the values of the constants n and /c The
distinction of pitch is sufficiently intelligible ;

but it is worth while

to examine more closely the consequences of a greater or less

degree of damping. The most obvious ia the more or less rapid
extinction of a free vibration. The effect in this direction may be

measured, by the number of vibrations which must elapse before

the amplitude is reduced in a given ratio* Initially the amplitude,

may be taken as unity ; after a time t> let it be 6, Thus <rK
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2
If t XT, we have x - log 6. In a system subject to only a

/cTT

moderate degree of damping, we may take approximately,

T = 2?r -r n ;

so that #= log# (1).

This gives the number of vibrations which are performed, before

the amplitude falls to 6.

The influence of damping is also powerfully felt in a forced

vibration, when there is a near approach to isochronism. In the

case of an exact equality between p and n, it is the damping alone

which prevents the motion becoming infinite. We might easily

anticipate that when the damping is small, a comparatively slight

deviation from perfect isochronism would cause a large falling off

in the magnitude of the vibration, but that with a larger damping
the same precision of adjustment would not be required. From
the equations

(2);

so that if K be small, p must be very nearly equal to n> in order to<

produce a motion not greatly less than the maximum.

The two principal effects of damping may be compared by

eliminating tc between (1) and (2). The result is

logtf n\ I T=

where the sign of the square root must be so chosen as to make

the right-hand side negative.

If, when a system vibrates freely, the amplitude be reduced in

the ratio 6 after # vibrations; then, when it is acted on by a force

(p), the energy of the resulting motion will be less than in the

case of perfect isochronism in the ratio T : T*. It is a matter of

indifference whether the forced or the free vibration be the higher;

all depends on the interval.

In most cases of interest the interval is small; and then, putting

p a= n 4- n, the formula may be written,

log Z-rrSn I~Y
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The following table calculated from these formulae has been

given by Helmholtz 1
:

Formula (4) shews that, when Sn is small, it varies cwteris

paribus as ~.
vv

50, From observations of forced vibrations due to known

forces, the natural period and damping of a system may be deter

mined. The formulae are

, , N
cos ( pt e)

where

PK

tan e SB .

.

On the equilibrium theory we should have

E
u v*

-5 cos pt

The ratio of the actual amplitude to this is

E sin e E n* sin e

PK na

PM

If the equilibrium theory be known, the comparison of ampli

tudes tells us the value of

* sn
, say

PK

Tonempjlndunffen^ 3rd edition, p. 221.
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and e is also known, whence

a ^ . fi cose\ j psine ,_,,n* = p* + [I and K = -^-
(1).

V a J a - cos e
v '

51. As has been already stated, the distinction of forced and
free vibrations is important ;

but it may be remarked that most of

the forced vibrations which we shall have to consider as affecting
a system, take their origin ultimately in the motion of a second

system, which influences the first, and is influenced by it. A
vibration may thus have to be reckoned as forced in its relation

to a system whose limits are fixed arbitrarily, even when that

system has a share in determining the period of the force which
acts upon it. On a wider view of the matter embracing both the

systems, the vibration in question will be recognized as free. An
example may make this clearer. A tuning-fork vibrating in air

is part of a compound system including the air and itself, and
in respect of this compound system the vibration is free. But

although the fork is influenced by the reaction of the air, yet the

amount of such influence is small. For practical purposes it is

convenient to consider the motion of the fork as given, and that of

the air as forced. No error will be committed if the actual motion
of the fork (as influenced by its surroundings) be taken as the

basis of calculation. But the peculiar advantage of this mode of

conception is manifested in the case of an approximate solution

being required. It may then suffice to substitute for the actual

motion, what would be the motion of the fork in the absence of

air, and afterwards introduce a correction, if necessary.

52, Illustrations of the principles of this chapter may be

drawn from all parts of Acoustics. We will give here a few

applications which deserve an early place on account of their

simplicity or importance.

A string or wire ACB is stretched between two fixed points

A and B, and at its centre carries a mass M, which is supposed to

"be so considerable as to render the mass of the string itself negli

gible. When M is pulled aside from its position of equilibrium,

and then let go, it executes along the line CM vibrations, which

are the subject of inquiry, AC =* CB a. CM = x. The tension

of the string in the position of equilibrium depends on the amount

of the stretching to which it has been subjected. In any other
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position the tension is greater ;
but we limit ourselves to the case

of vibrations so small that the additional stretching is a negligible

fraction of the whole. On this condition the tension may be

treated as constant. We denote it by T.

and
Thus, kinetic energy

potential energy ZT {Va
a
-h a* - a} T ~ approximately.

The equation of motion (which may be derived also inde

pendently) is therefore

m & A /i \

a

from which we infer that the mass M executes harmonic vibra

tions, whose period

The amplitude and phase depend of course on the initial cir

cumstances, being arbitrary so far as the differential equation is

concerned.

Equation (2) expresses the manner in which r varies with each

of the independent quantities T, M> a : results which may all be

obtained by consideration of the dimensions (in the technical sense)

of the quantities involved The argument from dimensions is so

often of importance in Acoustics that it may be well to consider

this first instance at length.

In the first place we must assure ourselves that of all the

quantities on which T may depend, the only ones involving a
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reference to the three fundamental units of length, time, and

mass are a, M, and T. Let the solution of the problem be

written

r=f(a,M,T) ........................... (3).

This equation must retain its form unchanged, whatever may
be the fundamental units by means of which the four quantities

are numerically expressed, as is evident, when it is considered

that in deriving it no assumptions would be made as to the mag
nitudes of those units. Now of all the quantities on which /
depends, T is the only one involving time; and since its dimen

sions are (Mass) (Length) (Time)""
2

,
it follows that when a and M

are constant, roc T~~*\ otherwise a change in the unit of time

would necessarily disturb the equation (3). This being admitted,

it is easy to see that in order that (3) may be independent of the

unit of length, we must have r oo T"~* . a*, whenM is constant
;
and

finally, in order to secure independence of the unit of mass,

To determine these indices we might proceed thus : assume

roc T*.My.az
\

then by considering the dimensions in time, space, and mass, we

obtain respectively

whence as above x
, y = -,

z -.

There must be no mistake as to what this argument does and

does not prove. We have assumed that there is a definite

periodic time depending on no other quantities, having dimen

sions in space, time, and mass, than those above mentioned. For

example, we have not proved that r is independent of the ampli

tude of vibration. That, so far as it is true at all, is a consequence

of the linearity of the approximate differential equation.

From the necessity of a complete enumeration of all the

quantities on which the required result may depend, the method

of dimensions is somewhat dangerous ;
but when used with proper

care it is unquestionably of great power and value.

63. The solution of the present problem might be made the

foundation of a method for the absolute measurement of pitch.

The principal impediment to accuracy would probably be the
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difficulty of making M sufficiently large in relation to the mass of

the wire, without at the same time lowering the note too much in

the musical scale.

FIG, IQ, M

The wire may be stretched by a weight Af attached to its

further end beyond a bridge or pulley at J5. The periodic time

would be calculated from

_ = 27r
1 aM_

The ratio of M' : M is given by the balance. If a be measured

in feet, and g = 32'2, the periodic time is expressed in seconds.

54. In an ordinary musical string the weight, instead of being
concentrated in the centre, is uniformly distributed over its length.

Nevertheless the present problem gives some idea of the nature of

the gravest vibration of Mich a string. Let us compare the two

cases more closely, supposing the amplitudes of vibration the same

at the middle point.

no. n*

When the uniform string is straight, at the moment of paswiug

through the position of equilibrium, its different parts are ani

mated with a variably velocity, increasing from either end towards
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the centre. If we attribute to the whole mass the velocity of the

centre, it is evident that the kinetic energy will be considerably
over-estimated. Again, at the moment of maximum excursion,
the uniform string is more stretched than its substitute, which
follows the straight courses AM, MB, and accordingly the poten
tial energy is diminished by the substitution. The concentration
of the mass at the middle point at once increases the kinetic

energy when x = 0, and decreases the potential energy when x = 0,

and therefore, according to the principle explained in 44, prolongs
the periodic time. For a string then the period is less than that

calculated from the formula of the last section, on the supposition
that M denotes the mass of the string. It will afterwards appear
that in order to obtain a correct result we should have to take

instead of M only (4/7^) A/. Of the factor 4/7r
2

by far the more

important part, viz. J, is due to the difference of the kinetic

energies.

55. As another example of a system possessing practically but

one degree of freedom, let us consider the vibration of a spring, one

end of which is clamped in a vice or otherwise held fast, while the

other carries a heavy mass.

In strictness, this system like the last has

an infinite number of independent modes of vi- C
j

bration
; but, when the mass of the spring is

^""^

relatively small, that vibration which is nearly

independent of its inertia becomes so much the
* FIG is,

most important that the others may be ignored.

Pushing this idea to its limit, we may regard the

spring merely as the origin of a force urging the

attached mass towards the position of equilibrium,

and, if a certain point be not exceeded, in simple

proportion to the displacement. The result is a

harmonic vibration, with a period dependent on

the stiffness of the spring and the mass of the

load,

56, In consequence of the oscillation of the centre of inertia,

there is a constant tendency towards the communication of motion

to the supports, to resist which adequately the latter must be

very firm and massive. In order to obviate this inconvenience,
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two precisely similar springs and loads may be mounted on

the same framework in a symmetrical manner.

O

O
53

If the two loads perform vibrations of equal

amplitude in such a manner that the motions

are always opposite, or, as it may otherwise be

expressed, with a phase-difference of half a

period, the centre of inertia of the whole system
remains at rest, and there is no tendency to set

the framework into vibration. We shall see in a

future chapter that this peculiar relation of phases
will quickly establish itself, whatever may be the

original disturbance. In fact, any part of the

motion which does not conform to the condition

of leaving the centre of inertia unmoved is soon

extinguished by damping, unless indeed the

supports of the system are more than usually
firm.

57. As in our first example we found a rough illustration of

the fundamental vibration of a musical string, so hero with the

spring and attached load we may compare a uniform slip, or bar,

of elastic material, one end of which is securely fastened, such for

instance as the tongue of a reed instrument. It is true of course

that the mass is not concentrated at one end, but distributed

over the whole length ; yet on account of the smallness of the

motion near the point of support, the inertia of that part of

the bar is of but little account. We infer that the fundamental

vibration of a uniform rod cannot be very different in character

from that which we have been considering. Of course for pur

poses requiring precise calculation, the two systems are sufficiently

distinct
;
but where the object is to form clear ideas, precision may

often be advantageously exchanged for simplicity,

I;i the same spirit we may regard the combination of two

springs and loads shewn in Fig. IS as a representation of a

tuning-fork. The instrument, which has been much improved
of late years, is indispensable to the acoustical investigator. On
a large scale and for rough purposes it may be made by welding
a cross piece on the middle of a bar of steel, so as to form a T, and

then bending the bar into the shape of a horse-shoe. On the

handle a screw should be cut But for the better class of tuning-
forks it is preferable to shape the whole out of one piece of steel
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A division running from one end down the middle of a bar is first

made, the two parts opened out to form the prongs of the fork,

and the whole worked by the hammer and file into the required

shape. The two prongs must be exactly symmetrical with respect

to a plane passing through the axis of the handle, in order that

during the vibration the centre of inertia may remain unmoved,

-unmoved, that is, in the direction in which the prongs

vibrate.

The tuning is effected thus. To make the note higher, the

equivalent inertia of the system must be reduced. This is done

by filing away the ends of the prongs, either diminishing their

thickness, or actually shortening them. On the other hand, to

lower the pitch, the substance of the prongs near the bend may
b$ reduced, the effect of which is to diminish the force of the

spring, leaving the inertia practically unchanged ;
or the inertia

may be increased (a method which would be preferable for

temporary purposes) by loading the ends of the prongs with

wax, or other material. Large forks are sometimes provided with

moveable weights, which slide along the prongs, and can be fixed

in any position by screws. As these approach the ends (where the

velocity is greatest) the equivalent inertia of the system increases.

In this way a considerable range of pitch may be Obtained from

one fork. The number of vibrations per second for any position

of the weights may be marked on the prongs.

The relation between the pitch and the size of tuning-forks is

remarkably simple. In a future chapter it will be proved that,

provided the material remains the same and the shape constant,

the period of vibration varies directly as the linear dimension.

Thus, if the linear dimensions of a tuning-fork be doubled, its

note falls an octave.

58. The note of a tuning-fork is a nearly pure tone. Imme

diately after a fork is struck, high tones may indeed be heard,

corresponding to modes of vibration, whose nature will be subse

quently considered
;
but these rapidly die away, and even while

they exist, they do not blend with the proper tone of the fork,

partly on account of their very high pitch, and partly because

they do not belong to its harmonic scale. In the forks examined

by Helmholtz the first of these overtones had a frequency from 5-8

to 6'6 times that of the proper tone.

Tuning-forks are now generally supplied with resonance cases,
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whose effect is greatly to augment the volume and purity of the

sound, according to principles to be hereafter developed. In

order to excite them, a violin or cello bow, well supplied with

rosin, is drawn across the prongs in the direction of vibration.

The sound so produced will last a minute or more.

59. As standards of pitch tuning-forks are invaluable. The

pitch of organ-pipes rapidly varies with the temperature and with

the pressure of the wind
;
that of strings with the tension, which

can never be retained constant for long; but a tuning-fork kept
clean and not subjected to violent changes of temperature or

magnetization, preserves its pitch with groat fidelity.

[But it must not be supposed that the vibrations of a fork are

altogether independent of temperature. According to the obser

vations of McLeod and Clarke 1 the frequency falls by "00011 of its

value for each degree Cent, of elevation.]

By means of beats a standard tuning-fork may be copied with

very great precision. The number of beats heard in a second is

the difference of the frequencies of the two tones which produce
them

;
so that if the beats can be made so slow as to occupy half

a minute each, the frequencies differ by only l-30th of a vibra

tion. Still greater precision might be obtained by Lissajous'

optical method.

Very alow beats being difficult of observation, in consequence
of the uncertainty whether a falling off in the Bound is due to

interference or to the gradual dying away of the vibrations,

Seheibler adopted a somewhat* modified plan. He took a fork

slightly different in pitch from the standard whether higher or

lower is not material, but we will say, lower, and counted the

number of beats, when they were sounded together. About four

beats a second i the most writable, and these may be counted for

perhaps a minute. The fork to be adjusted i then made slightly

higher than the auxiliary fork, arid tuned to give with it precisely
the name number of beats, an did the standard In this way a

copy as exact as possible is secured, To facilitate the counting
of the beats Scheibler employed pendulums, whose periods of,

vibration could be adjusted.

[The question between slow and quick beats depends upon the

circumstances of the case. It seems to be sometimes supposed
that quick beats have the advantage as admitting of greater

* Phil Trans, 1880, p. 12.
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relative accuracy of counting. But a little consideration shews

that in a comparison of frequencies we are concerned not with the

relative, but with the absolute accuracy of the counting. If we
miscount the beats in a minute by one, it makes just the same

error in the result, whether the whole number of beats be 60 or

240.

When the sounds are pure tones and are well maintained, it is

advisable to use beats much slower than four per second. By
choosing a suitable position it is often possible to make the

intensities at the ear equal ;
and then the phase of silence,

corresponding to antagonism of equal and opposite vibrations, is

extremely well marked. Taking advantage of this we may deter

mine slow beats with very great accuracy by observing the time

which elapses between recurrences of silence. In favourable cases

the whole number of beats in the period of observation may be

fixed to within one-tenth or one-twentieth of a single beat, a

degree of accuracy which is out of the question when the beats

are quick. In this way beats of periods exceeding 30 seconds may
be utilised with excellent effect \]

60. The method of beats was also employed by Scheibler to

determine the absolute pitch of his standards. Two forks were

tuned to an octave, and a number of others prepared to bridge

over the interval by steps so small that each fork gave with its

immediate neighbours in the series a number of beats that could

be easily counted. The difference of frequency corresponding to

each step was observed with all possible accuracy. Their sum,

being the difference of frequencies for the interval of the octave,

was equal to the frequency of that fork which formed the starting

point at the bottom of the series. The pitch of the other forks

could bo deduced.

If consecutive forks give four beats per second, 65 in all will

be required to bridge over the interval from c' (256) to c" (512),

On this account the method is laborious
;
but it is probably the

most accurate for the original determination of pitch, as it is

liable to no errors but such as care and repetition will eliminate.

It, may be observed that the essential thing is the measurement

of the difference of frequencies for two notes, whose ratio of

frequencies is independently known. If we could be sure of its

accuracy, the interval of the fifth, fourth, or even major third, might

1 Acoustical Observations, Phil. Mag. May, 1882, p. 342.
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be substituted for the octave, with the advantage of reducing the

number of the necessary interpolations. It is probable that with

the aid of optical methods this course might be successfully

adopted, as the corresponding Lissajous' figures are easily recog

nised, and their steadiness is a very severe test of the accuracy

with which the ratio is attained.

[It is essential to the success of this method that the pitch of

each of the numerous sounds employed should be definite, and in

particular that the vibrations of any fork should take place at the

same rate whether that fork be sounding in conjunction with its

neighbour above or with its neighbour below. There is no reason

to doubt that this condition is sufficiently satisfied in the case of

independent tuning-forks; but an attempt to replace forks by a

set of reeds, mounted side by side on a common wind-chest, has

led to error, owing to a disturbance of pitch by mutual inter

action \]

The frequency of large tuning-forks may be determined by

allowing them to trace a harmonic curve on smoked paper, which

may conveniently be mounted on the circumference of a revolving

drum. The number of waves executed in a second of time gives

the frequency.

In many cases the use of intermittent illumination described

in 42 gives a convenient method of determining an unknown

frequency.

61. A series of forks ranging at small intervals over an octave

is very useful for the determination of the frequency of any
musical rxote, and is called Scheibler's Tonometer* It may also

be used for tuning a note to any desired pitch. In either case

the frequency of the note is determined by the number of beats

which it gives with the forks, which lie nearest to it (on each

side) in pitch.

For tuning pianofortes or organs, a set of twelve forks may be

used giving the notes of the chromatic scale on the equal tempe
rament, or any desired system. The corresponding notes are

adjusted to unison, and the others tuned by octaves. It is better,

however, to prepare the forks so as to give four vibrations per
second less than is above proposed. Each note is then tuned a

little higher than the corresponding fork, until they give when
sounded together exactly four beats in the second* It will be

xvn, pp. 12, 26 ; 1877.
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observed that the addition (or subtraction) of a constant number
to the frequencies is not the same thing as a mere displacement
of the scale in absolute pitch.

In the ordinary practice of tuners of is taken from a fork, and

the other notes determined by estimation of fifths. It will be

remembered that twelve true fifths are slightly in excess of seven

octaves, so that on the equal temperament system each fifth is a

little flat. The tuner proceeds upwards from a! by successive

fifths, coming down an octave after about every alternate step, in

order to remain in nearly the same part of the scale. Twelve

fifths should bring him back to a. If this be not the case, the

work must be readjusted, until all the twelve fifths are too flat by,

as nearly as can be judged, the same small amount. The in

evitable error is then impartially distributed, and rendered as little

sensible as possible. The octaves, of Course, are all tuned true.

The following numbers indicate the order in which the notes may
be taken :

u# b c c'# d' <f( e' /'/'J g' g'$ a
1

a'$ V c" c"j d" d"% e"

13 5 16 8 19 11 3 14 6 17 9 1 12 4 15 7 18 10 2

In practice the equal temperament is only approximately

attained; but this is perhaps not of much consequence, considering

that the system aimed at is itself by no means perfection.

Violins and other instruments of that class are tuned by true

fifths from a'.

62. In illustration of forced vibration let us consider the case

of a pendulum whose point of support is subject to a small hori

zontal harmonic motion. Q is the bob attached by a fine wire to

a moveable point P. OP = av P p

PQ w I, and x is the horizontal

co-ordinate of Q. Since the

vibrations are supposed small,

the vertical motion may be

neglected, and the tension of

the wire equated to the weight
of Q. Hence for the horizontal

motion # + tcA -f ? (x # )
== 0. FIG 14*

Now $<> oc cos pt ;
so that putting g + l**n\ our equation takes

the form Already treated of, viz.

x + tew -f n*x E cos pt.
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If p be equal to ??, the motion is limited only by the friction,

The assumed horizontal harmonic motion for P may be realized by
means of a second pendulum of massive construction, which carries

P with it in its motion. An efficient arrangement is shewn in

the figure. A, B are iron rings screwed into a beam, or other firm

support ; C, D similar rings attached to a stout bar, which carries

equal heavy weightn E> F, attached near its ends, and is supported
in a horizontal position at right angles to the beam by a wire

passing through the four rings in the manner shewn. When the

pendulum is made to vibrate, a point in the rod midway between

C and D executes a harmonic motion in a direction parallel to

CD, and may be made the point of attachment of another pen
dulum PQ> If the weights J? and F be very great in relation

to Q, the upper pendulum swings very nearly in its own proper

period, and induces in Q a forced vibration of the same period,

When the length PQ la so adjusted that the natural periods of the

two pendulums are nearly the same, Q will be thrown into violent

motion, even though the vibration of P be of but inconsiderable

amplitude. In this case the difference of phase is about a quarter

of a period, by which amount the upper pendulum is in advance,

If the two periods be very different, the vibrations either agree
or are completely opposed in phase, according to equations (4)

and (5) of | 46,
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63. A very good example of a forced vibration is afforded by
a fork under the influence of an intermittent electric current,

-
Fl G. J6.

C

whose period is nearly equal to its own. AGE is the fork; E a

small electro-magnet, formed by winding insulated wire on an iron

core of the shape shewn in E (similar to that known as
' Siemens

'

armature'), and supported between the prongs of the fork. When
an intermittent current is sent through the wire, a periodic force

acts upon the fork. This force is not expressible by a simple

circular function
;
but may be expanded by Fourier's theorem in a

series of such functions, having periods T, -J- r, r, &c. If any of

these, of not too small amplitude, b& nearly isochronous with the

fork, the latter will be caused to vibrate
;
otherwise the effect is

insignificant. In what follows we will suppose that it is the

complete period r which nearly agrees with that of the fork, and

consequently regard the series expressing the periodic force as

reduced to its first term.

In order to obtain the maximum vibration, the fork must be

carefully tuned by a small sliding piece or by wax, until its natural

period (without friction) is equal to that of the force. This is best

done by actual trial. When the desired equality is approached,

and the fork is allowed to start from rest, the force and com

plementary free vibration are of nearly equal amplitudes and

frequencies, and therefore ( 48) in the beginning of the motion

produce 6ea&, whose slowness is a measure of the accuracy of

the adjustment. It is not until after the free vibration has had

time to subside, that the motion assumes its permanent character.

The vibrations of a tuning-fork properly constructed and mounted

are subject to very little damping; consequently a very slight

deviation from perfect isochronism occasions a marked falling off

in the intensity of the resonance.

The amplitude of the forced vibration can be observed with

.sufficient accuracy by the ear or eye; but the experimental
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verification of the relations pointed out by theory between its

phase and that of the force which causes it, requires a modified

arrangement.
Two similar electro-magnets acting on similar forks, and in-

eluded in the same circuit are excited by the same intermittent

current. Under these circumstances it is clear that the systems
will be thrown into similar vibrations, becaus.e they are acted on

by equal forces. This similarity of vibrations refers both to phase
and amplitude, Let us suppose now that the vibrations are

effected in perpendicular directions, and by means of one of

Lissaj ous' methods are optically compounded. The resulting figure

is necessarily a straight line. Starting from the case iu which the

amplitudes are a maximum, viz. when the natural periods of both

forks are the same as that of the force, let one of them be put a

little out of time. It must be remembered that whatever their

natural periods may be, the two forks vibrate in perfect unison

with the force, and therefore with one another. The principal

effect of the difference of the natural periods is to destroy the

synchronism of phase. The straight lino, which previously re

presented the compound vibration, becomes an ellipse, and this

remains perfectly steady, so long as the forks are not touched.

Originally the forks are both a quarter period behind the force.

When the pitch of one is slightly lowered, it falls still more behind

the force, and at the same time its amplitude diminishes. Let the

difference of phase between the two forks be <?', and the ratio of

amplitudes of vibration a : a^ Then by (6) of 46

cos

and

The following table shews the simultaneous values of a : aa

, $rd edit' u. 190
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It appears that a considerable alteration of phase in either

direction may be obtained without very materially reducing the

amplitude. When one fork is vibrating at its maximum, the
other may be made to differ from it on either side by as much as

60(r in phase, without losing more than half its amplitude, or by
as much as 45, without losing more than half its energy. By
allowing one fork to vibrate 45 in advance, and the other 45.

in arrear of the phase corresponding to the case of maximum
resonance, we obtain a phase difference of 90 in conjunction with
an equality of amplitudes. Lissajous' figure then becomes a circle.

[An intermittent electric current may also be applied to

regulate the speed of a revolving body. The phonic wheel, in

vented independently by M. La Cour and by the author of this

work 1
,
is of great service in acoustical investigations. It may take

various forms; but the essential feature is the approximate

closing of the magnetic circuit of an electro-magnet, fed with an

intermittent current, by one or more soft iron armatures carried

by the wheel and disposed symmetrically round the circumference.

If in the revolution of the wheel the closest passage of the

armature synchronises with the middle of the time of excitation,

the electro-magnetic forces operating upon the armature during
its advance and its retreat balance one another. If however the

wheel be a little in arrear, the forces promoting advance gain an.

advantage over those hindering the retreat of the armature, and

thus upon the whole the magnetic forces encourage the rotation.

In like manner if the phase of the wheel be in advance of that

first specified, forces are called into play which retard the motion.

By a self-acting adjustment the rotation settles down into such

a phase that the driving forces exactly balance the resistances.

When the wheel runs lightly, and the electric appliances are

moderately powerful, independent driving may not be needed. In

this case of course the phase of closest passage must follow that

which marks the middle of the time of magnetisation. If, as is

sometimes advisable, there be an independent driving power, the

phase of closest passage may either precede or folidw that of

magnetisation.
In some cases the oscillations of the motion about the phase

into which it should settle down are very persistent and interfere

with the applications of the instrument. A remedy may be

found in a ring containing water or mercury, revolving concen-

1 Nature, May 23, 1878.



68 ONE DEGREE OF FREEDOM. [63.

trically. When the rotation Is uniform, the fluid revolves like a

solid body and then exercises no influence. But when from any
cause the speed changes, the fluid persists for a time in the former

motion, and thus brings into play forces tending to damp out

oscillations,]

64. The intermittent current is best obtained by a fork-

interrupter invented by Helrnholtz. This may consist of a fork

and electro-magnet mounted as before. The wires of the magnet
are connected, one with one polo of the battery, and the other with

a mercury cup. The other pole of the battery is connected with

a second mercury cup. A 0-shaped rider of insulated wire is

carried by the lower prong just over the cups, at such a height

that during the vibration the circuit is alternately made and

broken by the passage of one end into and out of the mercury.

The other end may be kept permanently immersed. By means

of the periodic force thus obtained, the effect of friction is com

pensated, and the vibrations of the fork permanently maintained.

In order to aet another fork into forced vibration, its associated

electro-magnet may bo included, either in the same driving-circuit,

or in a second, whose periodic interruption is effected by another

rider dipping into mercury cups
1

.

The modm operandi of this kind of self-acting instrument is

often imperfectly apprehended. If the force acting on the fork

depended only on its position -on whether the circuit were open
or closed the work clone in passing through any position would

be undone on the return, so that -after a complete period there

would be nothing outstanding by which the effect of the Motional

forces could ba compensated. Any explanation which does not

take account of the retardation of the current IB wholly beside the

mark, The causes of retardation are two : irregular contact, and

self-induction. When the point of the rider firnt touches the

mercury, the electric contact is imperfect, probably on account of

1 I have arrangod ae!vtiral mterruptar on tha above plan, all the component

partu being of home manufacture. The forki war madtn by Urn village blacksmith,

Tha cups eonsifltKd of iron thimblen, aoldered on one and of copper Blips, the

further end being screwed down on the bau board of tha inntrumant. Bom

maana of adjusting the levol of the wareury surface is nectary. In Helifaholtz*

interrupter a hortMi-Hhco tfketro-magnet embracing th& fork JH adopted, but 1 am

inclined to prefer th present arrangement, at any rat< if th& pitch be low, In

some casts a greater motive power is obtained by a home-ahon magnet acting on a

soft iron armature carried horizontally by the upptr prong and perpendicular to it,

I havt usually found a single Hme^ cell sufficient buttery
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adhering air. On the other hand, in leaving the mercury the

contact is prolonged by the adhesion of the liquid in the eup to

the amalgamated wire. On both accounts the current is retarded

behind what would correspond to the mere position of the fork.

But, even if the resistance of the circuit depended only on the

position of the fork, the current would still be retarded by its self-

induction. However perfect the contact may be, a finite current

cannot be generated until after the lapse of a finite time, any
more than in ordinary mechanics a finite velocity can be suddenly

impressed on an inert body. From whatever causes arising
1
, the

effect of the retardation is that more work is gained by the fork

during the retreat of tlje lider from the mercury, than is lost

during its entrance, and thus a balance remains to be set off

against friction.

If the magnetic force depended only on the position of the fork,

the phase of its first harmonic component might be considered to

be 180 in advance of that of the fork's own vibration. The re

tardation spoken of reduces this advance. If the phase-difference

be reduced to 90, the force acts in the most favourable manner,

and the greatest possible vibration is produced.

It is important to notice that (except in the case just referred

to) the actual pitch of the interrupter differs to some extent from

that natural to the fork according to the law expressed in (5) of

46, e being in the present case a prescribed phase-difference

depending on the nature of the contacts and the magnitude of the

self-induction. If the intermittent current be employed to drive

a second fork, the maximum vibration is obtained, when the

frequency of the fork coincides, not with the natural, but with the

modified frequency of the interrupter.

The deviation of a tuning-fork interrupter from its natural

pitch is practically very small
;
but the fact that such a deviation

is possible, is at first sight rather surprising. The explanation (in

the case of a small retardation of current) is, that during that half

of the motion in which the prongs are the most separated, the

electro-magnet acts in aid of the proper recovering power due to

rigidity, and so naturally raises the pitch. Whatever the relation

of phases may be, the force of the magnet may be divided into

1 Any desired retardation might be obtained, in default of other means, by

attaching the rider, not to the prong itself, but to the further end of a light

straight spring carried by the prong and set into forced vibration by the motion of

its point of attachment.
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two parts respectively proportional to the velocity and displacement

(or acceleration). To the first exclusively is due the sustaining

power of the force, and to the second the alteration of pitch.

65. The general phenomenon of resonance, though it cannot

be exhaustively considered under the head of one degree of

freedom, is in the main referable to the same general principles.

When a forced vibration is excited in one part of a system, all

the other parts are also influenced, a vibration of the same period

being excited, whose amplitude depends on the constitution of the

system considered as a whole. But it not unfrequently happens
that interest centres on the vibration of an outlying part whose

connection with the rest of the system is but loose. In such a case

the part in question, provided a certain limit of amplitude be

not exceeded, is very much in the position of a system possessing
one degree of freedom and acted on by a force, which may be

regarded as given, independently of the natural period. The

vibration is accordingly governed by the laws we have already

investigated. In the case of approximate equality of periods to

which the name of resonance is generally restricted, the ampli
tude may be very considerable, even though in other cases it

might be so small as to be of little account; and the precision

required in the adjustment of the periods in order to bring out

the effect, depends on the degree of damping to which the system
is subjected.

Among bodies which resound without an extreme precision of

tuning, may be mentioned stretched membranes, and strings asso

ciated with sounding-boards, as in the pianoforte and the violin.

When the proper note is sounded in their neighbourhood, these

bodies are caused to vibrate in a very perceptible manner, The

experiment may be made by singing into a pianoforte the note

given by any of its strings, having first raised the corresponding

damper. Or if one of the strings belonging to any note be plucked

(like a harp string) with the finger, its fellows will be set into

vibration, as may immediately be proved by stopping the first*

The phenomenon of resonance is, however, most striking in

cases where a very accurate equality of periods is necessary iu

order to elicit the full effect. Of this class tuning-forks, mounted

on resonance boxes, are a conspicuous example. When the unison

is perfect the vibration of one fork will be tuken up by another

across the width of a room, but the slightest deviation of pitch
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is sufficient to render the phenomenon almost insensible. Forks

of 256 vibrations per second are commonly used for the purpose,
and it is found that a deviation from unison giving only one beat

in a second makes all the difference. When the forks are well

timed and close together, the vibration may be transferred back

wards and forwards between them several times, by damping them

alternately, with a touch of the finger.

Illustrations of the powerful effects of isochronism must be

within the experience of every one. They are often of importance
in very different fields from any with which acoustics is concerned.

For example, few things are more dangerous to a ship than to lie

in the trough of the sea under the influence of waves whose period
is nearly that of its own natural rolling.

65 a. It has already ( 30) been explained how the super

position of two vibrations of equal amplitude and of nearly equal

frequency gives rise to a resultant in which the sound rises and

falls in beats. If we represent the two components by cos Zirn^

cos 27rna , the resultant is

2 COS7T (H! tt2) t . COS 7T (n^ -f ?12) t (1) J

and it may be regarded as a vibration of frequency \ (rax 4- n4),
and

of amplitude 2 cos TT (n x nt) t In passing through zero the

amplitude changes sign, which is equivalent to a change of phase
of 180, if the amplitude be regarded as always positive. This

change of phase is readily detected by measurement in drawings

traced by machines for compounding vibrations, and it is a feature

of great importance. If a force of this character act upon a system

whose natural frequency is
-J- (X 4- na), the effect produced is com

paratively small. If the system start from rest, the successive

impulses cooperate at first, but after a time the later impulses

begin to destroy the effect of former ones. The greatest response

would be given to forces of frequency n-^ and ?? 2 ,
and not to a force

of frequency -J- (fy -f n 2).

If, as in some experiments of Prof. A. M. Mayer *, an otherwise

steady sound is rendered intermittent by the periodic interposition

of an obstacle, a very different result is arrived at. In this case

the phase is resumed after each silence without reversal. If a

force of this character act upon an isochronous system, the effect

is indeed less than if there were no intermittence
;
but as all the

*
JP/ii7. Mag. May, 1875.
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impulses operate in the same sense without any antagonism, the

response is powerful. One kind of intermittent vibration or force

is represented by
2 (14- cos %7rmt) cos 2mt (2),

in which n is the frequency of the vibration, and m the frequency

of intermittence l
. The amplitude is here always positive, and

varies between the values and 4. By ordinary trigonometrical

transformation (2) may be put in the form

2 cos %Trnt -f cos 2?r (n 4- w) 1 4- cos 2?r (n m) t (3) ;

which shews that the intermittent vibration in question is equiva
lent to three simple vibrations of frequencies n, ?^-fw, n m.

This is the explanation of the secondary sounds observed by

Mayer.
The form (2) is of course only a particular case. Another in

which the intensity of the intermittent sound rises more suddenly
to its maximum is given by

4 cos4 7rw cos %7rnt (4),

which may be transformed into

| cos Zirnt + cos 2?r (n -f m) 1 4- cos 2?r (n in) t

4- i cos 2?r (n 4 2m) 1 4- J cos 2?r (n
- 2m) t (5).

There are here four secondary sounds, the frequencies of the

two new ones differing twice as much as before from that of the

primary sound.

The theory of intermittent vibrations is well illustrated by

electrically driven forks. A fork interrupter of frequency 128

gave a periodic current, by the passage of which through an

electro-magnet a second fork of like pitch could be excited. The
action of this current on the second fork could be rendered inter

mittent by short-circuiting the electro-magnet. This was effected

by another interrupter of frequency 4, worked by an independent
current from a Smee cell. To excite the main current a Grove

cell was employed* When the contact of the second interrupter
was permanently broken, so that the main current passed con

tinuously through the electro-magnet, the fork was, of course,

most powerfully affected when tuned to 128, Scarcely any

response waa observable when the pitch was changed to 124 or

132. But if the second interrupter were allowed to operate, so as

1 Crum Brown and Tait Edln. Proc. June, 1878, Acoustical Observations n.

Phil Mag* April, 1880.
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to render the periodic current through the electro-magnet inter

mittent, then the fork would respond powerfully when tuned to

124 or 132 as well as when tuned to 128, but not when tuned to

intermediate pitches, such as 126 or 130.

The operation of the intermittence in producing a sensitive

ness which would not otherwise exist, is easily understood. When
a fork of frequency 124 starts from rest under the influence of a

force of frequency 128, the impulses cooperate at first, but after

of a second the new impulses begin to oppose the earlier ones.

After J of a second, another series of impulses begins whose effect

agrees with that of the first, and so on. Thus if all these impulses
are allowed to act, the resultant effect is trifling; but if every
alternate series is stopped off, a large vibration accumulates.

Fig. 16 a.

cos %-irnt

sn

The most general expression for a vibration of frequency n,

whose amplitude and phase are slowly variable with a frequency

m, is

4 At cos %7rmt 4 A 2 cos 4t7rmt 4 -4 a cos brrmt 4 . . .
)

4- J?i sin 27r7tt# 4 jB2 sin 4?rm^ 4 B$ sin

f
(7 4- OJL cos 27rw 4 C2 cos 4frmt 4- C?3 cos <

1 4- DiSin Svrrn^ 4 D* sin 47rm^ 4jD3 siii Qvrmt 4 . . .
j

(6);

and this applies both to the case of beats (e.g. if A l only be finite)

and to such intermittence as is produced by the interposition of

an obstacle. The vibration in question is accordingly in all cases

equivalent to a combination of simple vibrations of frequencies

n, w4w, Ti T/i, n 4 2m., ?* 2m, &c.

It may be well here to emphasise that a simple vibration

implies infinite continuance, and does not admit of variations of

phase or amplitude. To suppose, as is sometimes done in optical

speculations, that a train of simple waves may begin at a given

epoch, continue for a certain time involving it may be a large

number of periods, and ultimately cease, is a contradiction in terms.
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66. The solution of the equation for free vibration, viz.

ii + rcu + nzu~() ........................ (1).

may be put into another form by expressing the arbitrary con

stants of integration A and a in terms of the initial values of u

and u, which we may denote by UQ and w . We obtain at once

tt
5^ 4 i

(cos
*'* +^ sin

/iV)
I ...... (2),

where ri = V/z,
2 -

\K\

If there be no friction, * = 0, and then

These results may be employed to obtain the solution of the

complete equation
tt%= U ........ . ................. .4,

where U is an explicit function of the time
;
for from (2) we see

that the effect at time t of a velocity Szi communicated at time

i'is

The effect of U is to generate in time dt' a velocity Udt
f

, whose

result at time t will therefore be

and thus the solution of (4) will be

u^j
t

^H^^') Binn
/

(*--

If there be no friction, we have simply

.(6),

J7 being the force at time if.

The lower limit of the integrals is so far arbitrary, but it will

generally be convenient to make it zero,

On this supposition u and u as given by (6) vanish, when
t * 0, and the complete solution is

. Bmn't ( fl K . , \'i

(cos n^ -f
^->

sin n i )>

I,
IV^<*^ sin ^ (*

-
1') Udt' ...... (7),

7t J
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or if there be no friction

tt = i ^^+MT,cosft + -
I smn(t-t') Udt' .. ....... (8).

11 ftjQ

When t is sufficiently great, the complementary terms tend to

vanish on account of the factor e~^, and may then be omitted.

66 a. In 66 we have limited the discussion to the case of

greatest acoustical importance, that is, we have supposed that n'

is real, as happens when n2
is positive, and K not too great. But

a more general treatment of the problem of free vibrations is not

without interest. Whatever may be the values of ?i
2 and K, the

solution of (1) 66 may be expressed

u^Ae^ + Be** ........................ (1),

where /JLI) /^ are the roots of

fj? + /cfju + n,
2 = ........................... (2).

The case already discussed is that in which the values of p are

imaginary. The motion is then oscillatory, with amplitude which

decreases if tc be positive, but increases if K be negative.

But if n2
, though positive, be less than J/c

2
,
or if n* be negative,

n' becomes imaginary, that is ^ becomes real. The motion

expressed by (1) is then non-oscillatory, and it depends upon the

sign of
fj,
whether it increases or diminishes with the time. From

the solution of (2), viz.

it is evident that if n2 be positive (and less than J/c
3
)
the two

values of /* are of the same sign, and that the sign is the opposite

of that of tc. Hence if K be positive, both terms in (1) diminish

with the time, so that the system, however disturbed, subsides

again into a state of rest. If, on the contrary, K be negative, the

motion increases without limit.

We have still to consider the case of n2

negative. The real

values of p, are then of opposite signs. It is possible so to start

the system from a displaced position that it shall approach asymp

totically the condition of rest in the configuration of equilibrium ;

but unless a special relation between displacement and velocity is

satisfied, the motion tends to increase without limit. Under these

circumstances the equilibrium must be regarded as unstable. In

this sense stability requites that n2 and tc be both positive.

A word may not be out of place as to the effect of an im-
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pressed force upon a statically unstable system. If in 46 we

suppose /c = 0, the solution (7) does not change its form merely

because ri
2 becomes negative. The fact that a system is suscep

tible of purely periodic inotion under the operation of an external

periodic force is therefore no evidence of stability.

67. For most acoustical purposes it is sufticient to consider

the vibrations of the systems, with which we may have to deal,

as infinitely small, or rather as similar to infinitely small vibra

tions. This restriction is the foundation of the important laws

of isochronism for free vibrations, and of persistence of period

for forced vibrations. There are, however, phenomena of a sub

ordinate but not insignificant character, which depend essentially

on the square and higher powers of the motion. We will therefore

devote the remainder of this chapter to the discussion of the

motion of a system of one degree of freedom, the motion not being

so small that the squares and higher powers can be altogether

neglected.

The approximate expressions for the kinetic and potential

energies will be of the form

T=Hmo 4- Wi^) #, V=
-J- (/*o 4- f*ft) u\

If the sum of T and V be differentiated with respect to the

time, we find as the equation of motion

W0# 4- wit 4- tniuu 4- kmfi
2
+ faiU*

=
Impressed Force,

which may be treated by the method of successive approximation.

For the sake of simplicity we will take the case where mi = 0,

a supposition in uo way affecting the essence of the question.

The inertia of the system is thus constant, while the force of

restitution is a composite function of the displacement, partly pro

portional to the displacement itself and partly proportional to

its square accordingly uusymmetrical with respect to the position

of equilibrium. Thus for free vibrations our equation is of the

form

4- nau 4- M* (1),

with the approximate solution

u = k cosntf ,.,. . (2),

where A the amplitude is to be treated as a small quantity.

Substituting the value of u expressed by (2) in the last

term, we find

-4 a

u + n*u. a (1 4- cos 2n<),
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whence for a second approximation to the value of u

-w = A cos nt ^^ 4- -j cos 2nt (3) ;

shewing that the proper tone (n) of the system is accompanied

by its octave (%n), whose relative importance increases with the

amplitude of vibration. A trained ear can generally perceive the

octave in the sound of a tuning-fork caused to vibrate strongly by
means of a bow, and with the aid of appliances, to be explained

later, the existence of the octave may be made manifest to any
one. By following the same method the approximation can

be carried further; but we pass on now to the case of a system

in which the recovering power is symmetrical with respect to

the position of equilibrium. The equation of motion is then

approximately1 * "
_i_ 2 i_ /p a c\ ( d>\

which may be understood to refer to the vibrations of a heavy

pendulum, or of a load carried at the end of a straight spring.

If we take as a first approximation u = A cos nt
} corresponding

to = 0, and substitute in the term multiplied by 0, we get

,
fl /3A* , S/3A*

u + n*u - cos 3nt cos nt.
4* 4

Corresponding to the last term of this equation, we should

obtain in the solution a term of the form sinn, becoming

greater without limit with t. This, as in a parallel case in the

Lunar Theory, indicates that our assumed first approximation

is not really an approximation at all, or at least does not continue

to be such. If, however, we take as our starting point u = A cos mt,

with a suitable value for m, we shall find that the solution may
be completed with the aid of periodic terms only. In fact it is

evident beforehand that all we are entitled to assume is that the

motion is approximately simple harmonic, with a period ap

proximately the same, as if /3
= 0. A very slight examination

is sufficient to shew that the term varying as u\ not only may,

but must affect
"

the period. At the same time it is evident

that a solution, in which the period is assumed wrongly, no

matter by how little, must at kngth cease to represent the motion

with any approach to accuracy.

We take then for the approximate equation
1 @A*
cos mi -r cosSwtf (5),
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of which the solution will be

. @A* cos 3m/ /CN
ti = Acosm* + -r jjp^ .................. (6),

provided that m be taken so as to satisfy

or (7).

The term in ft thus produces two effects. It alters the pitch

of the fundamental vibration, and it introduces the twelfth as

a necessary accompaniment. The alteration of pitch is in most

cases exceedingly small depending on the square of the amplitude,

but it is not altogether insensible. Tuning-forks generally rise

a little, though very little, in pitch as the vibration dies away.

It may be remarked that the same slight dependence of pitch

on amplitude occurs when the force of restitution is of the

form n*u -\-au*> as may be seen by continuing the approximation

to the solution of (1) one step further than (3). The result in that

case is

The difference w* n2 is of the same order in A in both cases
;

but in one respect there is a distinction worth noting, namely,

that in (8) mfi

is always less than ns
,
while in (7) it depends on

the sign of ft whether its effect is to raise or lower the pitch.

However, in most cases of the unsymmetrical class the change
of pitch would depend partly on a term of the form a*<* and

partly on another of the form fta* 9
and then

[In all cases where the period depends upon amplitude, it is

necessarily an even function thereof, a change of sign in the ampli
tude being merely equivalent to an alteration in phase of ISO*

3

.]

68. We now pass to the consideration of the vibrations

forced on an unsymmetrical system by two harmonic forces

Eco&pt, Fcos(qt~~e),

1
[A correction is here introduced, the necessity for which was pointed out to me

by Dr Burton.]
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The equation of motion is

u + nzu - a^2 + Ecospt + J7

cos (gtf
-

e) ...... (1).

To find a first approximation we neglect the term containing
a. Thus

where

Substituting this in the term multiplied by a, we get

u + n2
. = J? cos pt +F cos

(gtf e)

_ a K^ +
|

2

cos 2/rf -fY cos 2 (?*
" e) + e/cos f(P

-

+ e/
1

cos {(j) + ?)* }

whence as a second approximation for u

ft
I g2 _j_ ^2\ ^g2

u - e cosp* +/cos (qt
-

)
-- -' -

2 _ cos 2pt

The additional terms represent vibrations having frequencies

which are severally the doubles and the sum and difference of

those of the primaries. Of the two latter the amplitudes are

proportional to the product of the original amplitudes, shewing
that the derived tones increase in relative importance with

the intensity of their parent tones,

68 a. If an isolated vibrating system be subject to internal

dissipative influences, the vibrations cannot be permanent, since

they are dependedt upon an, initial store of energy which suffers

gradual exhaustion. In order that the motion may be maintained,

the vibrating body must be in connection
,
with a source of energy.

We have already considered cases of this kind under the head of

forced vibrations, where the system is subject to forces whose

amplitude and phase are prescribed, independently of the be

haviour of the system. Such forces may have their origin in

revolving mechanism (such as electric alternators) governed so as

to move at a uniform speed. But more frequently the forces

under consideration depend upon the vibrations of other systems,
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and then the question as to how the vibrations are to be main

tained represents itself. A good example is afforded by the case

already discussed ( 63, 65) of a furk maintained in vibration

electrically by means of currents governed by a fork interrupter.

It has been pointed out that the performance of the latter

depends upon the magnetic forces operative upon it differing in

phase from the vibrations of the fork itself. With the interrupter

may be classed for the present purpose almost all acoustical and

musical instruments capable of providing a sustained sound. It

may suffice to mention vibrations maintained by wind (organ-

pipes, harmonium reeds, asolian harps, &c.), by heat (singing

flames, Rijke's tubes, &c.), by friction (violin strings, finger-

glasses), and the slower vibrations of clock pendulums and watch

balance-wheels.

In considering whether proposed forces are of the right kind

for the maintenance or encouragement of a vibration, it is often

-convenient to regard them as reduced to impulses. Suppose, to

take a simple case, that a small horizontal positive impulse acts

upon the bob of a vibrating pendulum. The effect depends, of

course, upon the phase of the vibration at the instant of the

impulse. If the bob be moving positively at the instant in

question the vibration is encouraged, and this effect is a maximum
when the positive motion is greatest, that is, when the impulse
occurs at the moment of positive movement through the position
of equilibrium. This is the condition of things aimed at in

designing a clock escapement, for the effect of the force is then a

maximum in encouraging the vibration, and a minimum (zero to

the first order of approximation) in disturbing the period. Of

course, if the impulse be half a period earlier or later than is

above supposed, the effect is to discourage the vibration, again
without altering the period. In like manner we see that if the

impulse occur at a moment of maximum elongation the effect is

concentrated upon the period, the vibration being neither en

couraged nor discouraged.
In most cases the force acting upon a vibrating system in

virtue of its connection with a source of energy may be regarded
as harmonic. It may then be divided into two parts, one pro

portional to the displacement u (or to the acceleration u), the

second proportional to the velocity u. The inclusion of such

forces does not alter the form of the equation of vibration

Q
(1).
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By the first part (proportional to w) the pitch is modified, and by
the second the coefficient of decay. If the altered K be still

positive, vibrations gradually die down
;
but if the effect of the

included forces be to render tc negative, vibrations tend on the

contrary to increase. The only case in which according to (1) a

steady vibration is possible, is when the complete value of tc is

zero. If this condition be satisfied, a vibration of any amplitude
is permanently maintained.

When K is negative, so that small vibrations tend to increase,

a point is of course soon reached beyond which the approximate

equations cease to be applicable. We may form an idea of the

state of things which then arises by adding to equation (1) a

term proportional to a higher power of the velocity. Let us take

ii-f KU + KU* + n*u = (2),

in which K and K are supposed to be small quantities. The

approximate solution of (2) is

tc'nA?
u = Asinnt+ Q0 cos Snt (3),6L

in which A is given by
* + 3*'n

sJ. a =
(4).

From (4) we see that no steady vibration is possible unless K and
K have opposite signs. If K and K be both positive, the vibration

in all cases dies down
;
while if tc and K be both negative, the

vibration (according to (2)) increases without limit. If tc be

negative and tc
f

positive, the vibration becomes steady and

assumes the amplitude determined by (4). A smaller vibration

increases up to this point, and a larger vibration falls down to it.

If on the other hand tc be positive, while tc is negative, the steady
vibration abstractedly possible is unstable, a departure in either

direction from the amplitude given by (4) tending always to

increase *,

686. We will now consider briefly another and a very curious

kind of maintenance, of which the peculiarity is that the maintain

ing influence operates with a frequency which is the double of

that of the vibration maintained. Probably the best known

example is that form of Melde's experiment, in which a fine string
is maintained in transverse vibration by connecting one of its

extremities with the vibrating prong of a massive tuning-fork,

1 On Maintained Vibrations, Phil. il/a#., April, 1883
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the direction of motion of the point of attachment being parallel to

the length of the string. The effect of the motion is to render

the tension of the string periodically variable; an'd at first sight

there is nothing to cause the string to depart from its equilibrium

condition of straightness.
It is known, however, that under these

circumstances the equilibrium may become unstable, and that the

string may settle down into a state of permanent and vigorous

vibration, whose period is the double of that of the fork.

As a simpler example, with but one degree of freedom, we

may take a pendulum, formed of a bar of soft iron and vibrating

upon knife-edges. Underneath is placed symmetrically a vertical

bar electro-magnet, through which is caused to pass an electric

current rendered intermittent by an interrupter whose frequency

is twice that of the pendulum. The magnetic force does not tend

to displace the pendulum from its equilibrium position, but

produces the same sort of effect as if gravity were subject to a

periodic variation of intensity.

A similar result is obtained by causing the point of support

of the pendulum to vibrate in a vertical path. If we denote this

motion by T?
= sin 2pi, the effect is as if gravity were variable by

the term 4p
a sin Zpt.

Of the same nature are the crispations observed by Faraday
1

and others upon the surface of water which oscillates vertically.

Faraday arrived experimentally at the conclusion that there were

two complete vibrations of the support for each complete vibra

tion of the liquid.

In the following investigation
2

,
relative to the case of one

degree of freedom, we shall start with the assumption that a

steady vibration is in progress, and inquire under what conditions

the assumed state of things is possible.

If the force of restitution, or
"
spring," of a body susceptible

of vibration be subject to an imposed periodic variation, the

differential equation takes the form

ii -f tit, + (n
2 - 2a sin Zpt) u**Q (1),

in which tc and a are supposed to be small. A similar equation

would apply approximately to the case of a periodic variation in

the effective mass of the body. The motion expressed by the

solution of (1) can be regular only when it keeps perfect time

Phil. Trans. 1881, p. 299.

Phil. Mag., April, 1888.
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with the imposed variations. It will appear that the necessary
conditions cannot be satisfied rigorously by any simple harmonic

vibration, but we may assume

u = A l sinpt 4- Bl cospt

+ AS sin Spt+3 cos 3pt + A s sin bpt + (2),

in which it is not necessary to provide for sines and cosines of even

multiples of pt. If the assumption be justifiable, the solution in

(2) must be convergent. Substituting in the differential equation,

and equating to zero the coefficients of sin pt, cos pt, &c. we find

= 0,

=
;

A, (n
2 -

9^
2
)
- 3pft - J?x + CLB5

= 0,

a^ 5
=

;

aJ57 = 0,

(n
2 -

25p
2

) + 5/cj?^ 6 + aAs - a-47
=

;

These equations shew that A*, B3 are of the order a relatively

to Ai f BI] that A 5y Bs are of order a relatively to -4 3 , 2?3 ,
and

so on. If we omit A^ t
B3 in the first pair of equations, we find

as a first approximation,

,

whence

and

Thus, if a be given, the value of p necessary for a regular

motion is definite
;
and p having this value, the regular motion is

u = P sin (pt + e),

in which e, being equal to tan^1

(Ei/A^, is also definite. On the

other hand, as is evident at once from the linearity of the original

equation, there is nothing to linoit the amplitude of vibration.

These characteristics are preserved however far it may be

necessary to pursue the approximation, If A^m+l) Bm+l may be

neglected, the first m pairs of equations determine the ratios of all

the coefficients, leaving the absolute magnitude open; and they

provide further an equation connecting p and a, by which the

pitch is determined.
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For the second approximation the second pair of equations

give

A = agl
B. = -

"Al
1/5

n2

9/>
2 '

ft
2

9/?
a

'

whence
aP

u = P sin (pt 4- e) 4- -

2
cos (Spt + e) (5),

and from the first pair

f ,
. a2

1

x , r .

4- o n J M * n* . - - > / ^Y I if ft \ (n\ud II t ^
i

""~
/^

"^
i)

''

f\ a i ' \^" i^ r J * '

\ /

while
ja is determined by

Returning to the first approximation, we see from (4) that the

solution is possible only under the condition that a be not less

than tcp.
If a = tcp, then p = n

i
that is, the imposed variation

in the "spring" must be exactly twice as quick as the natural

vibration of the body would be in the absence of friction. From

(3) it appears that in this case <
= 0, which indicates that the

pring is a minimum one-eighth of a period after the body has

passed its position of equilibrium, and a maximum one-eighth of a

period before such passage. Under these circumstances the

greatest possible amount of energy is communicated to the

system ;
and in the case contemplated it is just sufficient to

balance the loss by dissipation, the adjustment being evidently

independent of the amplitude.
If a < fcp sufficient energy cannot pass to maintain the motion,

whatever may be the phase-relation ;
but if a > tcp, the balance

between energy supplied and energy dissipated may be attained

by such an alteration of phase as shall diminish the former

quantity to the required amount. The alteration of phase may
for this purpose be indifferently in either direction ; but if be

positive, we must have

p*na

-V(aa

-*p*);
while if e be negative

If a be very much greater than *p, e = JTT. which indicates

that when the system passes through its position of equilibrium
the spring is at its maximum or at its minimum.

The inference from the equation that the adjustment of pitch
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must be absolutely rigorous for steady vibration will be subject to

some modification in practice ;
otherwise the experiment could

not succeed. In most cases ?i
2
is to a certain extent a function of

amplitude ;
so that if n'

2 have very nearly the required value,

complete coincidence is attainable by the assumption of an

amplitude of large and determinate amount without other

alterations in the conditions of the system.
The reader who wishes to pursue this subject is referred to a

paper by the Author " On the Maintenance of Vibrations by Forces

of Double Frequency, and on the Propagation of Waves through a

Medium endowed with a Periodic Structure/'
1 in which the analysis

of Mr Hill- is applied to the present problem.

68 c. The determination of absolute pitch by means of the

siren has already been alluded to (
1 7). In all probability first-

rate results, might be got by this method if proper provision, with

the aid of a phonic wheel for example, were made for uniform

speed. In recent years several experimenters have obtained excel

lent results by various methods
;
but a brief notice of these is all

that our limits will allow.

One of the most direct determinations is that of Koenig
3

,
to

whom the scientific world has long "been indebted for the construc

tion of much excellent apparatus-. This depends upon a special

instrument, consisting of a fork of 64 complete vibrations per

second, the motion being maintained by a clock movement acting

upon an escapement. A dial is provided marking ordinary time,

and serves to record the number of vibrations executed. The

performance of the fork is tested by a comparison between the

instrument and any chronometer known to be keeping good time.

The standard fork of 256 complete vibrations was compared with

that of the instrument by observing the Lissajous's figure appro

priate to the double octave.

M. Koenig has also investigated the influence of resonators

upon the pitch of forks. Thus without a resonator a fork of 256

complete vibrations sounded in a satisfactory manner for about 90

seconds. A resonator of adjustable pitch was then brought into

proximity, and the pitch, originally much graver than that of the

> Phil. Afo.r/., August, 1887.

2 On the Part of the Motion of the Lunar Perigree \vhich u a Function of the

Mean Motions of the Sun and Moon, Acta Mathematica 8 ; 1, 1886. Mr Hill's

work was first published in 1877.

3 Wiecl Ann. nc. p. 394, 1880.



86 ONE DEGREE OF FREEDOM. [68 .

fork, was gradually raised. Even when the resonator was still a

minor third below the fork, there was observed a slight diminution

in the duration of the vibratory movement, and at the same time

an augmentation in the frequency of about '005. As the natural

note of the resonator approached nearer to that of the fork, this

diminution in the time and this increase in frequency became

more pronounced up to the immediate neighbourhood of unison
;

but at the moment when unison was established, the alteration of

pitch suddenly disappeared, and the frequency became exactly the

same as in the absence of the resonator. At the same time the

sound was powerfully reinforced; but this exaggerated intensity

fell off rapidly and the vibration died away after 8 or 10 seconds.

The pitch of the resonator being again raised a little, the sound of

the fork began to change in the opposite direction, being now as

much too grave as before the unison was reached it had been too

acute. The displacement then fell away by degrees, as the pitch

of the resonator was further raised, and the duration of the

vibrations gradually recovered its original value of about 90

seconds. The maximum disturbance in the frequency observed

by Koenig was '035 complete vibrations. For the explanation
of these effects see 117.

The temperature coefficient found by Koenig is '000112, so that

the pitch of a 256 fork falls '0286 for each degree Cent, by which

the temperature rises.

In determinations of absolute pitch
1

by the Author of this work

an electrically maintained interrupter fork, whose frequency may
for example be 32, was employed to drive a dependent fork of

pitch 128. When the apparatus is in good order, there is a fixed

relation between the two frequencies, the one being precisely
four times the other. The higher is of course readily compared

by beats, or by optical methods, with a standard of 128, whose

accuracy is to be tested. It remains to determine the frequency
of the interrupter fork itself.

For this purpose the interrupter is compared with the pendulum
of a standard clock whose rate is known. The comparison may be

direct, or the intervention of a phonic wheel ( 63) may be invoked.

In either case the pendulum of the clock is provided with a silvered

bead upon which is concentrated the light from a lamp. Im

mediately in front of the pendulum is placed a screen perforated

by a somewhat narrow vertical slit. The bright point of light
1
Nature, xvn. p. 12, 1877; Phil. Trant. 1883, Part I. p. 316.
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reflected by the bead is seen intermittently, either by looking over

the prong of the interrupter or through a hole in the disc of tlie

phonic wheel, In the first case there are 32 views per second, but

in the latter this number is reduced by the intervention of the

wheel. In the experiments referred to the wheel was so

arranged that one revolution corresponded to four complete vibra

tions of the interrupter, and there were thus 8 views of the pen
dulum per second, instead of 32, Any deviation of the period of

the pendulum from a precise multiple of the period of intermittence

shews itself as a cycle of changes in the appearance of the flash

of light, and an observation of the duration of this cycle gives the

data for a precise comparison of frequencies.

The calculation of the results is very simple. Supposing in

the first instance that the clock is correct, let a be the number of

cycles per second (perhaps ^) between the wheel aud the clock.

Since the period of a cycle is the time required for the wheel to

gain, or lose, one revolution upon the clock, the frequency of revo

lution is 8 a. The frequency of the auxiliary fork is precisely 16

times as great, i.e. 128 16a. If 6 be the number of beats per

second between the auxiliary fork and the standard, the frequency

of the latter is

12816a6.
An error in the mean rate of the clock is readily allowed tor ,

but care is required to ascertain that the actual rate at the time

of observation does not differ appreciably from the mean rate.

To be quite safe it would be necessary to repeat the deter

minations at intervals over the whole time required to rate the

clock by observation of the stars. In this case it would probabl)

be convenient to attach a counting apparatus to the 'phonic wheel.

In the method of M'Leod and Clarke 1

time, given by a clock,

is recorded automatically upon the revolving drum of a chrono

graph, which is maintained by a suitable governor in uniform

rotation. The circumference of the drum is marked \\itli a grating

of equidistant lines parallel to the axis, and the comparison between

the drum and the standard fork is effected by observation of the

wavy pattern seen when the revolving grating is looked at past

the edges of the vibrating prongs. These observers made a special

investigation as to the effect of bowing a fork upon previously

existing vibrations. Their conclusion is that in the ease of un

loaded forks no sensible change of phase occurs.

* PJiiL Trans. 1830, Part I. p. 1.
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In the chronographic method of Prof. A. M. Mayer
1 the fork

tinder investigation is armed with a triangular fragment of thin

sheet metal, one milligram in weight, and actually traces its

Vibrations as a curve of sines upon smoked paper. The time is

recorded by small electric discharges from an induction apparatus,

under the control of a clock, and delivered from the same tracing,

point Although the disturbance due to the tracin.g point appears

to be very small, it is doubtful whether this method could compete
in respect of accuracy with those above described where the com

parison with the standard is optical or acoustical. On the other

hand, it has the advantage of not requiring a uniform rotation of

the drum, and the apparatus lends itself with facility to the deter

mination of small intervals of time after the manner originally

proposed by T. Young
2

.

68d. The methods hitherto described for the determination of

absolute pitch, with the exception of that of Scheibler, may be

regarded as rather mechanical in their character, and they depend
for the most part upon somewhat special apparatus. It is possible,

however, to determine pitch with fair accuracy with no other

appliances than a common harmonium and a watch, and as the

process is instructive in respect of the theory of overtones, a short

account will here be given of it
3

.

The fundamental principle is that the absolute frequencies of

two mysical notes can be deduced from the interval between

them, i.e. the ratio of their frequencies, and the number of beats

which they occasion in a given time when sounded together.

For example, if x and y denote the frequencies of two notes whose

interval is an equal temperament major third, we know that

y = T25992 x. At the same time the number of beats heard in a

second depending upon the deviation of the third from true

intonation, is 4y 5#. In the case of the notes of a harmonium,
which are rich in overtones, these beats are readily counted, and

thus two equations are obtained from which the values of co and y
are at once found.

Of course in practice the truth of an equal temperament third

could not be taken for granted, but the difficulty thence arising
would be easily met by including in the counting all the three

1 National Academy of Sciences, Washington, Memoirs, Vol. ni. p. 43, 1884.
9 Lectures y Vol. i. p. 191.
*
Nature, Jan. 23, 1879.
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major thirds which together make up an octave. Suppose, for

example, that the frequencies of c, e, g$, c are respectively #, y, z,

2#, and that the beats per second between x and y are a, between

y and z are 6, and between z and 2# are c. Then

4y 5# = a, 4z 5y = 6, 8# 5s = c,

from which a = (25a -f 206 4- 16c),

y = J (32a + 256 + 20c) ;

<? = J (40a + 326 + 25c).

In the above statements the octave c c' is for simplicity

supposed to be true. The actual error could readily be allowed

for if required ;
but in practice it is not necessary to use c at all,

inasmuch as the third set of beats can be counted equally well

between gf and c.

The principal objection to the method in the above form is

that it presupposes the absolute constancy of the notes, for

example, that y is the same whether it is being sounded in

conjunction with x or in conjunction with z. This condition is

very imperfectly satisfied by the notes of a harmonium.

In order to apply the "fundamental principle with success, it is

necessary to be able to check the accuracy of the interval which is

supposed to be known, at the same time that the b^ats are being
counted. If the interval be a major tone (9 : 8), its exactness is

proved by the absence of beats between the ninth component of

the lower and the eighth of the higher note, and a counting
of the beats between the tenth component of the lower and the

ninth of the higher note completes the necessary data for de

termining the absolute pitch.

The equal temperament whole tone (1-12246) is intermediate

between the minor tone (111111) and the major tone (1*12500),

but lies much nearer to the latter. Regarded as a disturbed

major tone, it gives slow beats, and regarded as a disturbed

minor tone it gives quick ones. Both sets of beats can be heard

at the same time, and when counted (by two observers) give the

means of calculating the absolute pitch of both notes. If x and y

be the frequencies of the two notes, a and 6 the frequencies of the

slow and quick beats respectively)

9# - 8y = a, 9y
- 10# = 6,

whence x ~ 9a + 86, y = lOa + 96.

The application of this method in no way assumes the truth of
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the equal temperament wnoid tone, and in fact it is advantageous
to flatten the interval somewhat, so as to make it lie more nearly

midway between the major and the minor tone. In this way the

rapidity of the quicker beats is diminished, which facilitates the

counting.

The course of an experiment is then as follows. The notes C

and D are sounded together, and at a given signal the observers

begin counting the beats situated at about d" and e" on the scale.

After the expiration of a measured interval of time a second signal

is given, and the number of both sets of beats is recorded.

For further details of the method reference must be made to

the original memoir, but one example of the results may be given

here. The period being 10 minutes, the number of beats recorded

were 2392 and 2341, giving x = 67'09 as the pitch of C.



CHAPTER IV.

VIBKATING SYSTEMS IN GENERAL.

69. WE have now examined in some detail the oscillations

of a system possessed of one degree of freedom, and the results,

at which we have arrived, have a very wide application. But
material systems enjoy in general more than one degree of

freedom. In order to define their configuration at any moment
several independent variable quantities must be specified, which,

by a generalization of language originally employed for a point,

are called the co-ordinates of the system, the number of indepen
dent co-ordinates being the index of freedom. Strictly speaking,
the displacements possible to a natural system are infinitely

various, and cannot be represented as made up of a finite number

of displacements of specified type. To the elementary parts of

a solid body any arbitrary displacements may be given, subject

to conditions of continuity. It is only by a process of abstraction

of the kind so constantly practised in Natural Philosophy, that

solids are treated as rigid, fluids as incompressible, and other sim

plifications introduced so that the position of a system comes to

depend on a finite number of co-ordinates. It is not, however,

our intention to exclude the consideration of systems possessing

infinitely various freedom
;
on the contrary, some of the most

interesting applications of the results of this chapter will lie in

that direction. But such systems are most conveniently conceived

as limits of others, wnose freedom is of a more restricted kind.

We shall accordingly commence with a system, whose position

is specified by a finite number of independent co-ordinates ^j,

^2, ^3> &C.

70. The main problem of Acoustics consists in the investi

gation of the vibrations of a system about a position of stable

equilibrium, but it will be convenient to commence with the
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statical part of the subject. By the Principle of Virtual Velocities,

if we reckon the co-ordinates ^rls ^2 ,
Ac. from the configuration

of equilibrium, the potential energy of any other configuration

will be a homogeneous quadratic function of the co-ordinates,

provided that the displacement be sufficiently small. This quan

tity is called 75 and represents 'the work that may be gained in

passing from the actual to the equilibrium configuration. We may
write

V = i^ii^i
2 + iCsB-^a

9 + . . . + C12-f^2 + Co3i/r2>|r3 4. ...... (1).

Since by supposition the equilibrium is thoroughly stable, the

quantities cn , c^, c12 , &c. must be such that V is positive for all

real values of the co-ordinates.

71. If the system be displaced from the zero configuration

by the action of given forces, the new configuration may be

found from the Principle of Virtual Velocities. If the work done

by the given forces on the hypothetical displacement S-\frlf &\/r2 ,

&c. be

^+,8^ + ........................ (1),

this expression must be equivalent to SV, so that since Sfa, \/r2 ,

&c. are independent, the new position of equilibrium is deter

mined by

or by (1) of 70,

_y &c2 '

where there is no distinction in value between crs and c8r .

From these equations the co-ordinates may be determined in

terms of the forces. If V be the determinant

V =

31 ) C32 , ^33 J

the solution of (3) may be written
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These equations determine ^l} ^, &c. uniquely, since V does

not vanish, as appears from the consideration that the equations

dV/d^ = 0, &c. could otherwise be satisfied by finite values of the

co-ordinates, provided only that the ratios were suitable, which is

contrary to the hypothesis that the system is thoroughly stable in

the zero configuration.

72. If ^i, ... 1, ... and ^ ... /, ... be two sets of dis

placements and corresponding forces, we have the following re

ciprocal relation,

as may be seen by substituting the values of the forces, when each

side of (1) takes the form,

+ Clt

Suppose in (1) that all the forces vanish except "^ and /;

then W = *i'ti .......... - ............. (2).

If the forces ^ and "S?/ be of the same kind, we may supposse

them equal, and we then recognise that a force of any type acting

alone produces a displacement of a second type equal to the

displacement of the first type due to the action of an equal force

of the second type. For example, if A and B be two points

of a rod supported horizontally in any manner, the vertical de

flection at A, when a weight W is attached at J5, is the same as

the deflection at B, when W is applied at A 1
.

73, Since V is a homogeneous quadratic function of the co

ordinates,

or, if yi9 ^2 ,
&c. be the forces necessary to maintain the dis

placement represented by -v^, ^2 , &c.,

2F=*l^1 + .^. + ..................... (2).

If i/^ + A^, ^ + A^,, &c. represent another displacement

for which the necessary forces are ^4- A x ,
^2 + A^,, &c., the

i On this subject, see Phil. Mag., Deo., 1874, and March, 1875.
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Corresponding potential energy is given by

so that we may write

2AF=2^.A^ + SA.^ + 2A^.AA/r ......... (8),

where AFis the difference of the potential energies in the two

cases, and we must particularly notice that by the reciprocal

relation, 72 (1),

2.A^ = 2A.^ .................... (4).

From (3) and (4) we may deduce two important theorems,

relating to the value of F for a system subjected to given dis

placements, and to given forces respectively.

74. The first theorem is to the effect that, if given displace

ments (not sufficient by themselves to determine the configuration)

be produced in a system by forces of corresponding types, the re

sulting value of F for the system so displaced, and in equilibrium,

is as small as it can be under the given displacement conditions
;

and that the value of F for any other configuration exceeds this

by the potential energy of the configuration which is the difference

of the two. The only difficulty in the above statement consists

in understanding what is meant by
'

forces of corresponding types/

Suppose, for example, that the system is a stretched string, of

which a given point P is to be subject to an obligatory displace

ment; the force of corresponding type is here a force applied

at the point P itself. And generally, the forces, by which the

proposed displacement is to be made, must be such as would do

no work on the system, provided only that that displacement were

not made.

By a suitable choice of co-ordinates, the given displacement

conditions may be expressed by ascribing given values to the first

r co-ordinates ^ ^r3 ,
... ^., and the conditions as to the forces

will then be represented by making the forces of the remaining

types Wr+i, V+2 , &c. vanish. If ^ + A^ refer to any other con

figuration of the system, and W 4- AM/" be the corresponding forces,

we are to suppose that A^, A^2 ,
&c. as far as A-^v all vanish.

Thus for the first r suffixes A-^r vanishes, and for the remaining
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suffixes *P vanishes. Accordingly S^.AA/T is zero, and therefore

is also zero. Hence

..'. ................... (I),

which proves that if the given displacements be made in any
other than the prescribed way, the potential energy is increased

by the energy of the difference of the configurations.

By means of this theorem we may trace the effect on F of any
relaxation in the stiffness of a system, subject to given displacement

conditions. For, if after the alteration in stiffness the original equi

librium configuration be considered, the value of V corresponding

thereto is by supposition less than before
; and, as we have just

seeja, there will be a still further diminution in the value of V
when the system passes to equilibrium under the altered con

ditions. Hence we conclude that a diminution in F as a function

of the co-ordinates entails also a diminution in the actual value of

F when a system is subjected to given displacements. It will

be understood that ^n particular cases the diminution spoken of

may vanish 1
.

For example, if a point P of a bar clamped at both ends be

displaced laterally to a given small amount by a force there ap

plied, the potential energy of the deformation will be diminished

by any relaxation (however local) in the stiffness of the bar.

75. The second theorem relates to a system displaced by given

forces, and asserts that in this case the value of F in equilibrium

is greater than it would be in any other configuration in which

the system could be maintained at rest under the given forces, by
the operation of mere constraints. We will shew that the removal

of constraints increases the value of F.

The co-ordinates may be so chosen that the conditions of con

straint are expressed by

^ = 0, ^j==0 ,
..,.,. f, = .................. (1).

We have then to prove that when r+1 , .,.+3,
&c. are given, the

value of F is least when the conditions (1) hold. The second

configuration being denoted as before by ^ + At/^ &c., we see

that for suffixes up to r inclusive ^r vanishes, and for higher

suffixes A^ vanishes. Hence

1 See a paper on General Theorems relating to Equilibrium and Initial and

8t*Adv Motions. Phil. Maff., March. 1875.
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and therefore

2AF=2A^.Ai/r (2),

shewing that the increase in V due to the removal of the con

straints is equal to the potential energy of the difference of the two

configurations.

76. We now pass to the investigation of the initial motion of

a system which starts from rest under the operation of given

impulses. The motion thus acquired is independent of any

potential energy which the system may possess when actually

displaced, since by the nature of impulses we have to do only

with the initial configuration itself. The initial motion is also

independent of any forces of a finite kind, whether impressed on

the system from without, or of the nature of viscosity.

If P, Q, R be the component impulses, parallel to the axes, on

a particle m whose rectangular co-ordinates are x, y, z, we have by
D'Alembert's Principle

2m(dite + ySy+ste) = 2(PSa; + Qfy + ItS*) (1),

where #, y, z denote the velocities acquired by the particle in virtue

of the impulses, and &zr, 8y, Sz correspond to any arbitrary dis

placement of the system which does not violate the connection of

its parts. It is required to transform (1) into an equation expressed

by the independent generalized co-ordinates.

For the first side,

dx
,

. dy . dz

where T, the kinetic energy of the system is supposed to be

exprswed as a function of ^ly i^, &c.
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On the second side,

-
(3),

The transformed equation is therefore

+ - =
(4),

where S^, S-^2 ,
&c. are now completely independent. Hence to

determine the motion we have

dT dT

where fj, f2 ,
&c. may be considered as the generalized components

of impulse,

77. Since T is a homogeneoxis quadratic function of the gene

ralized co-ordinates, we may take

T = Hiti2 + i<^2
a + ...... +MY& + ow^3 + ...... (1),

whence

dT
j 4. a122 -f

7/77

4-

(2),

where there is no distinction in value between ar8 and atf

Again, by the nature of T,

The theory of initial motion is closely analogous to that of the

displacement of a system from a configuration of stable equilibrium

by steadily applied forces. In the present theory the initial kinetic

energy T bears to the velocities and impulses the same relations

as in the former V bears to the displacements and forces respect

ively. In one respect the theory of initial motions is the more

complete, inasmuch as T is exactly, while V is in general only

approximately, a homogeneous quadratic function of the variables.
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If ^i> ^2, - -
> fi, fs i denote one set of velocities and impulses

for a system started from rest, and ^r/, ^/, ..., /, &', ... a second

set, we may prove, as in 72, the following reciprocal relation :

&h+&'fa+...=&+i'+&'fa + (4)'.

This theorem admits of interesting application to fluid motion.
It is known, and will be proved later in the course of this work,
that the motion of a frictionless incompressible liquid, which
starts from rest, is of such a kind that its component velocities

at any point are the corresponding differential coefficients of a
certain function, called the velocity-potential. Let the fluid be
set in motion by a prescribed arbitrary deformation of the surface

5 of a closed space described within it. The resulting motion is deter

mined by the normal velocities of the elements of S, which, being
shared by the fluid in contact with them, are denoted by dufdn, if u
be the velocity-potential, which interpreted physically denotes the

impulsive pressure, if the density be taken as unity. Hence by the

theorem, if v be the velocity-potential of a second motion, corres

ponding to another set of arbitrary surface velocities dv/dn

//*-// (.

an equation immediately following from Green's theorem, if

besides S there be only fixed solids immersed in the fluid. The
present method enables us to attribute to it a much higher gene
rality. For example, the immersed solids, instead of being fixed,

may be free, altogether or in part, to take the motion imposed
upon them by the fluid pressures.

78. A particular case of the general theorem is worthy of

special notice. In the first motion let

fa=A 9 ^2
= 0, &= = & = 0;

and in the second,

^'=o, ^'-^, ?;-?; = / = 0.

Th*n fc-fr (1)

In words, if, by means of a suitable impulse of the correspond
ing type, a given arbitrary velocity of one co-ordinate be impressed
on a system, the impulse corresponding to a second co-ordinate

necessary in order to prevent it from changing, is the same as
would be required for the first co-ordinate, if the given velocity
were impressed on che second.

1 Thomson asd Tait, 313 (/).
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As a simple example, take the case of two spheres A and B
immersed in a liquid, whose centres are free to move along certain

lines. If A be set in motion with a given velocity, B will

naturally begin to move also. The theorem asserts that the

impulse required to prevent the motion of B, is the same as if

the functions of A and B were exchanged : and this even though
there be other rigid bodies, C, D, &c., in the fluid, either fixed, or

free in whole or in part.

The case of electric currents mutually influencing each other by
induction is precisely similar. Let there be two circuits A and j?,

in the neighbourhood of which there may be any number of other

wire circuits or solid conductors. If a unit current be suddenly

developed in the circuit A, the electromotive impulse induced in

5 is the same as there would have been in A, had the current been

forcibly developed in J5.

79. The motion of a system, on which given arbitrary velocities

are impressed by means of the necessary impulses- of the corre

sponding types, possesses a remarkable property discovered by
Thomson. The conditions are that -tylt -^2 , i^3 , ...-^> are given,
while fr+i, r+2 ,

... vanish. Let fa, fa>->t;i> >, &c. correspond to

the actual motion
;
and

to another motion satisfying the same velocity conditions. For

each suffix either A-^ or f vanishes. Now for the kinetic energy
of the supposed motion >

But by the reciprocal relation (4) of 77

&A^ + ...=A&.'fl + ...,

of which the former by hypothesis is zero
;
so that

shewing that the energy of the supposed motion exceeds that of

the actual motion by the energy of that motion which would have

to be compounded with the latter to produce the former. The
motion actually induced in the system has bhus less energy than

any other satisfying the same velocity conditions. In a subsequent

chapter we shall make use of this property to find a superior limit

to the energy of a system set in motion with prescribed velocities,
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If any diminution be made in the inertia of any of the parts
of a system, the motion corresponding to prescribed velocity
conditions will in general undergo a change. The value of T will

necessarily be less than before
;

for there would be a decrease even

if the motion remained unchanged, and therefore a fortiori when
the motion is such as to make T an absolute minimum. Con

versely any increase in the inertia increases the initial value of T.

This theorem is analogous to that of 74. The analogue for

initial motions of the theorem of 75, relating to the potential

energy of a system displaced by given forces, is that of Bertrand,
and may be thus stated : If a system start from rest under the

operation of given impulses, the kinetic energy of the actual motion
exceeds that of any other motion which the system might have
been guided to take with the assistance of mere constraints, by the

kinetic energy of the difference of the motions 1
.

[The theorems of Kelvin and Bertrand represent different

aspects of the same truth. Let us suppose that the prescribed

impulse is entirely of the first type . Then T^k&^h* whether
the motion be free or be subjected to any constraint. Further,
under any given circumstances as to constraint, ^ is proportional
to fi, and the ratio : ^ may be regarded as the moment of

inertia
;
so that

Kelvin's theorem asserts that the introduction of a constraint

can v increase the value of T when ^ is given. Hence whether

^TJ be given or not, the constraint can only increase the ratio of

2T to ^j
2 or of to AJV Both theorems are included in the

statement that the moment of inertia is increased by the intro

duction of a constraint.]

80. We will not dwell at any greater length on the mechanics
of a system subject to impulses, but pass on to investigate

Lagrange's equations for continuous motion. We shall suppose
that the connections binding together the parts of the system
are not explicit functions of the time; such cases of forced

motion as we shall have to consider will be specially shewn to

be within the scope of the
investigation.

ByD'Alernbert's Principle in combination with that of Virtual

Velocities,

...... (1),
1 Thomson and Tait, 311. Phil. Mag. March, 1875.
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where Bx, Sy, Sz denote a displacement of the system of the most

general kind possible without violating the connections of its

parts. Since the displacements of the individual particles of

the system are mutually related, Bx, ... are not independent. The

object now is to transform to other variables fa, fa,... t
which

shall be independent. We have

d

so that

^ . d2m (xBx + yBy + 2&z)=j-. 2m (xSx + yBy + zBz) BT,

But ( 76) we have already found that

while BT

if T be expressed as a quadratic function of ^lf -^3 , ..,, whose

coefficients are in general functions of ^i, fa,.... Also

d dT -

inasmuch as -T: S^ = 8 -77
a*

r ar

Accordingly

Thus, if the transformation of the second side of (1) be

'2(XSa;+YSy + Z&z')
=V1Wl + Vtty3 + ......... (3),

we have equations of motion of the form

*l = V ....14)

Since Wfy denotes the work done on the system during a

displacement ty, V may be regarded as the generalized com

ponent of force.

In the case of a conservative system it is convenient to

separate from "*" those parts which depend only on the configura-
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tion of the system. Thus, if F denote the potential energy, we

may write

(5),

where ^ is now limited to the forces acting on the system which

are not already taken account of in the term

81. There is also another group of forces whose existence

it is often advantageous to recognize specially, namely those

arising from friction or viscosity. If we suppose that each

particle of the system is retarded by forces proportional to its

component velocities, the effect will be shewn in the fundamental

equation (1) 80 by the addition to the left-hand member of

the terms

where KX ,
/cy ,

KZ are coefficients independent of the velocities,

but possibly dependent on the configuration of the system. The

transformation to the independent co-ordinates -^j, ^ra ,
&c. is

effected in a similar manner to that of

considered above ( 80), and gives

where F
= 16u^' +i^1 + ...+fcM^i4-64i^ + ...... (2).

F, it will be observed, is like T a homogeneous quadratic

function of the velocities, positive for all real values of the

variables. It represents half the rate at which energy is dissipated.

The above investigation refers to retarding forces proportional

to the absolute velocities
;
but it is equally important to consider

such as depend on the relative velocities of the parts of the

system, and fortunately this can be done without any increase

of complication. For example, if a force act on the particle xl

proportional to (&i ia), there will be at the same moment an

equal and opposite force acting on the particle #2 . The additional

terms in the fundamental equation will be of the form

Kb <a?i
- #3) S^ + K9 (i,

- o

which may be written
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and so on for any number of pairs of mutually influencing

particles. The only effect is the addition of new terms to F,
which still appears in the form (2)

1
. We shall see presently that

the existence of the function F, which may be called the Dis

sipation Function, implies certain relations among the coefficients

of the generalized equations of vibration, which carry with them

important consequences
3

.

The equations of motion may now be written in the form

__ = ^ ...............

dt\d^r> d^ d^jr d^
^

82. We may now introduce the condition that the motion

takes place in the immediate neighbourhood of a configuration

of thoroughly stable equilibrium ;
T and F are then homogeneous

quadratic functions of the velocities with coefficients which are

to be treated as constant, and F is a similar "function of the

co-ordinates themselves, provided that (as we suppose to be

the case) the origin of each co-ordinate is taken to correspond

with the configuration of equilibrium. Moreover all three

functions are essentially positive. Since terms of the form dT/d\jr

are of the second order of small quantities, the equations of motion

become linear, assuming the form

d_(dT\
dF dV_^ m* ..................

where under ^ are to be included all forces acting on the system

not already provided for by the differential coefficients of F and V.

The three quadratic functions will be expressed as follows :

T = %atfW +%a^ + - . . + a12^a +...*\

F==kbllW + %hxW + ... + Mv^ + ... [ ........ (2),

V= %CnW + ic' 4- ... -4- Cu^i + J

where the coefficients a, b, c are constants.

From equation (1) we may of course fall back on previous

results by supposing F and F, or F and T, to vanish.

A third set of theorems of interest in the application to Elec-

1 The differences referred to in the text may of course pass into differential

coefficients in the case of a body continuously deformed.

a The Dissipation Function appears for the first time, so far as I am aware, in

a paper on General Theorems relating to Vibrations, published in the Proceedings

of the Mathematical Society for June, 1873,
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tricity may be obtained by omitting T and T7
,
while F is retained,

but it is unnecessary to pursue the subject here.

If we substitute the values of T, F and T, and write D for d/dt,

we obtain a system of equations which may be put into the form

(3).
0*1^1 + 022^2 +" #23^3 + = Mi

6*1^1 + #32^2 + 033^3 + ^

where erf denotes the quadratic operator

rt 7)2 ^ 7> T) I f\ (A, \
&]-g UfgJL/ T^ \srgJLs T^ ^)"8 \ jc /.

It must be particularly remarked that since

ib follows that er8 = e^ (5).

[The theory of motional forces, i.e. forces proportional to the

velocities, has been further developed in the second edition of

Thomson and Tait's Natural Philosophy (1879). In the most

general case the equations may be written

where br8 = btr , ftn =ff9r ..................... (7).

Of these the terms with the coefficients b can be derived from

the dissipation function

a + iMv +..* +

The terms in /9 on the other hand do not represent dissipation,

and are called the gyrostatic terms.

If we multiply the first of equations (6) by fa, the second by

fa, &c., and then add, we obtain

In this the first term represents the rate at which energy is

being stored in the system ; .2Fis the rate of dissipation ;
and the

two together account for the work done upon the system by the

external forces.]
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83. Before proceeding further, we may draw an important

inference from the linearity of our equations. If corresponding

respectively to the two sets of forces ^, s> ..., /, /,... two

motions denoted by ^x , ^2 , ..., ^/, ^/, ... be possible, then must

also be possible the motion fa + fa', fa + fa',... in conjunction

with the forces ^a + f/, ^2 4-^/, .... Or, as a particular case,

when there are no impressed forces, the superposition of any two

natural vibrations constitutes also a natural vibration. This is the

celebrated principle of the Coexistence of Small Motions, first

clearly enunciated by Daniel Bernoulli. It will be underwood

that its truth depends in general on the justice of the assumption

that the motion is so small that its square may be neglected.

[Again, if a system be under the influence of constant forces

*!, &c., which displace it into a new position of equilibrium, the

vibrations which may occur about the new position are the same

as those which might before have occurred about the old position.]

84. To investigate the free vibrations, we must put x ,
^2 ,

. ..

equal to zero
;
and we will commence with a system on which no

frictional forces act, for which therefore the coefficients er,, &c. are

even functions of the symbol D. We have

From these equations, of which there are as many (m) as the

system possesses degrees of liberty, let all but one of the variables

be eliminated. The result, which is of the same form whichever

be the co-ordinate retained, may be written

............................. (2),

where V denotes the determinant

(3),

031 ,

and is (if there be no friction) an even function of D of degree 2W.

Let X,, X3) ..., \m be the roots of V=0 considered as an

equation in D. Then by the theory of differential equations the

most general value of -^ is
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where the 2m quantities A, A', B, B'
t
&c. are arbitrary constants.

This form holds good for each of the co-ordinates, but the constants

in the different expressions are not independent. In fact if a

particular solution be

T/Tj
= A^\ ^2

=A^t &C.,

the ratios A l : A z : A 3 ... are completely determined by the

equations

2 -f e13A 3 4- =0
==0

where in each of the coefficients such as erg) Xa is substituted for D.

Equations (5) are necessarily compatible, by the condition that Xx

is a root of V=0. The ratios AJ :AJ :A 3

'
... corresponding to

the root \ are the same as the ratios AI : A^ : A a ..,, but for

the other pairs of roots X^ -
X^, &c. "there are distinct systems of

ratios.

85. The nature of the system with which we are dealing

imposes an important restriction on the possible values of X. If \
were real, either \ or Xa would be real and positive, and we
should obtain a particular solution for which the co-ordinates, and

with them the kinetic energy denoted by

V{HA2 + - <WM 3 + ...} **M,

increase without limit. Such a motion is obviously impossible for

a conservative system, whose whole energy can never differ from

the sum of the potential and kinetic energies with which it was
animated at starting. This conclusion is not evaded by taking \
negative ;

because we are as much at liberty to trace the motion
backwards as forwards. It is as certain that the motion never was
infinite, as that it never will be. The same argument excludes the

possibility of a complex value of X.

We infer that all the values of X are purely imaginary, cor

responding to real negative values of X3
. Analytically, the fact

that the roots of V = 0, considered as an equation in D2
, are

all real and negative, must be a consequence of the relations

subsisting between the coefficients all ,
a13 , ..., e^, cls , ... in virtue of

the fact that for all real values of the variables T and F are

positive. The case of two degrees of liberty will be afterwards

worked out iu full.
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86. The form of the solution may now be advantageously

changed by writing zX for \, &c. (where i = V 1), and taking

new arbitrary constants. Thus

^ =A l cos (nj a) + B1 cos (n2t /9) + Gl cos (nj, y) -f . . .

-
a) + J?3 cos (wsi /3) 4- 3 cos (w^

-
y) -f ...

a) + 53 cos(n2 -/3)4- <73 cos (nstf
-

7) 4- ...

where n-f, nf, &c. are the m roots of the equation of m^ degree
in n2 found by writing n* for J)2 in V = 0. For each value of n

the ratios A 1 :A S :A3 ... are determinate and real.

This is the complete solution of the problem of the free

vibrations of a conservative system. We see that the whole

motioli may be resolved into m normal harmonic vibrations of

(in general) different periods, each of which is entirely indepen
dent of the others. If the motion, depending on the original

disturbance, be such as to reduce itself to one of these (n^

we have

tyi A l cos (n^ a), ^, = A^ cos (nf - a), &c....... (2),

where the ratios A
l

: A^:A Z ... depend on the constitution of the

system, and only the absolute amplitude and phase are arbitrary.

The several co-ordinates are always in similar (or opposite) phases
of vibration, and the whole system is to be found in the configura

tion of equilibrium at the same moment.

We perceive here the mechanical foundation of the supremacy
of harmonic vibrations. If the motion be sufficiently small, the

differential equations become linear with constant coefficients
;

while circular (and exponential) functions are the only ones which

retain their type on differentiation.

87. The m periods of vibration, determined by the equation

V=0, are quantities intrinsic to the system, and must come out

the same whatever co-ordinates may be chosen to define the con

figuration. But there is one system of co-ordinates, which is

especially suitable, that namely in which the normal types of

vibration are defined by the vanishing of all the co-ordinates but

one. In the first type the original co-ordinates ^i,^a> &c. hav^

given ratios
;
let the quantity fixing the absolute values be

<f>lf
so

that in this type each co-ordinate is a known multiple of < r So

in the second type each co-ordinate may be regarded as a known

multiple of a second quantity < 2 ,
and so on. By a suitable deter-
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mination of the m quantities < l? < 2} &c., any configuration of the

system may be represented as compounded of the m configurations

of these types, and thus the quantities <f>
themselves may be looked

upon as co-ordinates denning the configuration of the system.

They are called the normal co-ordinates 1
.

When expressed in terms of the normal co-ordinates, T and V
are reduced to sums of squares ;

for it is easily seen that if the

products also appeared, the resulting equations of vibration would

not be satisfied by putting any m 1 of the co-ordinates equal to

zero, while the remaining one was finite.

We might have commenced with this transformation, assuming
from Algebra that any two homogeneous quadratic functions can

be reduced by linear transformations to sums of squares.
2 Thus

where the coefficients (in which the double suffixes are no longer

required) are necessarily positive if the equilibrium be stable.

Lagrange's equations now become

a>i<f>i + cA - a*4>* + C20s .= 0, &c............. (2),

of which the solution is

fc == A cos (nf
-

a), <f>3
= B cos (n,t

-
), &c....... (3),

where A, ..., a, /?.... are arbitrary constants, and

[The vibrations expressed by the various normal co-ordinates

are completely independent of one another, and the energy of the

whole motion is the simple sum of the parts corresponding to the

several normal vibrations taken separately. In fact by (1)

T+V=faAi* + faA ** + .................. (5).

By the nature of the case the coefficients a are necessarily

positive. But if the equilibrium be unstable, some of the

coefficients c may be negative. Corresponding to any negative

c, n becomes imaginary and the circular functions of the time are

replaced by exponentials.

In any motion proportional to eKt the disturbance is equally

multiplied in equal times, and the degree of instability may be

considered to be measured by \. If there be more than one

1 Thomson and Tait's Natural Philosophy, first edition 1867, 337.

2 See Routh's Riffid Dynamics, p. 40r>.
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unstable mode, the relative importance is largely determined bv

the corresponding values of X. Thus, if

in which Xx > Xa, then whatever may be the finite ratio of A : B,

the first term ultimately acquires the preponderance, inasmuch as

Ae^ : Bd* = (A/B) e^-w.

In general, unstable equilibrium when disturbed infinitesimally

will be departed from according to that mode which is most

unstable, viz. for which \ is greatest. In a later chapter we shall

meet with interesting applications of this principle.

The reduction to -normal co-ordinates allows us readily to trace

what occurs when two of the values of /i
2 become equal. It is

evident that there is no change of form. The spherical pendulum

may be referred to as a simple example of equal roots. It is

remarkable that both Lagrange and Laplace fell into the error of

supposing that equality among roots necessarily implies terms

containing t as a factor 1
. The analytical theory of the general

case (where the co-ordinates are not normal) has been discussed by
Somof and by Routh 3

.]

88. The interpretation of the equations of motion leads to a

theorem of considerable importance, which may be thus stated 4
.

The period of a conservative system vibrating in a constrained type

about a position of stable equilibrium is stationary in value when

the type is normal. -We might prove this from the original

equations of vibration, but it will be more convenient to employ
the normal co-ordinates. The constraint, which may be supposed

to be of such a character as to leave only one degree of freedom, is

represented by taking the quantities <f>
in given ratios.

If we put
^ = 4x0, <k

= ^ 20,&c................... (1),

d is a variable quantity, and A l} A^ &c. are given for a given con

straint.

The expressions for T and V become

i Thomson and Tait, 2nd edition, "343 m.

* St Petersb. Acad. Sci. Mtm. i. 1859.

3
Stability of Motion (Adams Prize Essay for 1877). See also Bouth's Rigid

Dynamics, 5th edition, 1892.

4
Proceedings of the Mathematical Society, June, 1873.
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whence, if 9 varies as cos pt,

- frA2 + c<4 2
2 + . -H-Cm^m*

This gives the period of the vibration of the constrained type ;

and it is evident that the period is stationary, when all but one of

the coefficients -4^ J. a ,
... vanish, that is to say, when the type

coincides with one of those natural to the system, and no constraint

is needed.

[In the foregoing statement the equilibrium is supposed to be

thoroughly stable, so that all the quantities c are positive. But

the theorem applies equally even though any or all of the c's be

negative. Only if jp
2 itself be negative, the period becomes

imaginary. In this case the stationary character attaches to the,

coefficients of t in the exponential terms, quantities which measure

the degree of instability.

Corresponding theorems, of importance in other branches of

science, may be stated for systems such that only T and F, or only
F and F, are sensible 1

.

The stationary property of the roots of Lag-range's determinant

(3) 84, suggests a general method of approximating to their

values. Beginning with assumed rough approximations to the

ratios A l :A 9 :A s ...... we may calculate a first approximation to

p* from

2 ^ fr dA* + j QsA2 + ... + c^AA + ... ..
P

ion^2 + iaM^+... + a1^ 1^ + ..,
...... w *

With this value of p* we may recalculate the ratios A\ : A* ... from

any (m 1) of equations (5) 84,. then again by application of (3)
determine an improved value of jp

2
, and SQ on.]

By means of the same theorem we may prove that an increase

in the mass of any part of a vibrating system is attended by a

prolongation of all the natural periods, or 3at any rate that no

period can be diminished. Suppose the increment of mass to be

infinitesimal, After the alteration, the types of free vibration will

in general be changed ; but, by a suitable constraint, the system
may be made to retain any one of the former types. If this be

done, it is certain that any vibration which involves a motion of

the part whose mass has been increased will have its period

prolonged. Only as a particular case (as, for example, when a

load is placed at the node of a vibrating string) can the period

J Brit. Ass. Rep. for 1885, p. 911.
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remain unchanged. The theorem now allows us to assert that
the removal of the constraint, and the consequent change of type,
can only affect the period by a quantity of the second order; and
that therefore in the limit the free period cannot be less than
before the change. By integration we infer that a finite increase
of mass must prolong the period of every vibration which involves
a motion of the part affected, and that in no case can the period
be diminished

;
but in order to see the correspondence of the two

sets of periods, it may be necessary to suppose the alterations

made by steps. Conversely, the effect of a removal of part of
the mass of a vibrating system must be to shorten the periods
of all the free vibrations.

In like manner we may prove that if the system undergo such
a change that the potential energy of a given configuration is

diminished, while the kinetic energy of a given motion is unaltered,
the periods of the free vibrations are all increased, and conversely.
This proposition may sometimes be used for tracing the effects of

a constraint; for if we suppose that the potential energy of

any configuration violating the condition of constraint gradually
increases, we shall approach a state of things in which the
condition is observed with any desired degree of completeness.

During each step of the process every free vibration becomes

(in general) more rapid, and a number of the free periods (equal
to the degrees of liberty lost) become infinitely small. The
same practical result may be reached without altering the po
tential energy by supposing the kinetic energy of any motion

violating the condition to increase without limit. In this case

one or more periods become infinitely large, but the finite

periods are ultimately the same as those arrived at when the

potential energy is increased, although in one case the periods
have been throughout increasing, and in the other diminishing.
This example shews the necessity of making the alterations by
steps; otherwise we should not understand the correspondence
of the two sets of periods. Further illustrations will be given
under the head of two degrees of freedom.

By means of the principle that the value of the free periods
is stationary, we may easily calculate corrections due to any
deviation in the system from theoretical simplicity. If we take

as a hypothetical type of vibration that proper to the simple

system, the period so found will differ from the truth by quan
tities depending on the squares of the irregularities. Several
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examples of such calculations will be given in the course of

this work.

89. Another point of importance relating to the period of a

system vibrating in an arbitrary type remains to be noticed.

It appears from (2) 88, that the period of the vibration cor

responding to any hypothetical type is included between the

greatest and least of those natural to the system. In the case

of systems like strings and plates which are treated as capable

of continuous deformation, there is no least natural period ;

but we may still assert that the period calculated from any hypo
thetical type cannot exceed that belonging to the gravest normal

type. When therefore the object is to estimate the longest

proper period of a system by means of calculations founded

on an assumed type, we know a priori that the result will come

out too small.

In the choice of a hypothetical type judgment must be

used, the object being to approach the truth as nearly as can

be done without too great a sacrifice of simplicity. Thus the

type for a string heavily weighted at one point might suitably

be taken from the extreme case of an infinite load, when the

two parts of the string would be straight. As an example ol

a calculation of this kind, of which the result is known, w.e

will take the case of a uniform string of length I, stretched

with tension Tl9 and inquire what the period would be on

certain suppositions as to the type of vibration.

Taking the origin of x at the middle of the string, let the

curve of vibration on the positive side be

(1),

and on the negative side the image of this in the axis of y,

n being not less than unity. This form satisfies the condition

that y vanishes when x = %l. We have now to form the ex

pressions for T and V, and it will be sufficient to consider the

positive half of the string only. Thus, p being the longitudinal

density,

and .

(2/- I
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Hence ^M=I>.|......................... (2,

If n= 1, the string vibrates as if the mass were concentrated

in its middle point, and

,
12 T,

rp =s L_

P&
'

If 71 = 2, the form is parabolic, and

7TjThe true value of p
z for the gravest type is ~

,
so that

the assumption of a parabolic form gives a period which is too

small in the ratio TT : \/10 or '9936 : 1. The minimum of jo
2

,

as given by (2), occurs when n = (V6 -f 1) = 1-72474, and gives

jt)

2 =
9-8990^.

pi

The period is now too small in the ratio

TT : v/9
78990 = -99851 : 1.

It will be seen that there is considerable latitude in the

choice of a type, even the violent supposition that the string

vibrates as two straight pieces giving a period less than ten

per cent, in error. And whatever type we choose to take, the

period calculated from it cannot be greater than the truth.

[In the above applications it is assumed that there are no

unstable modes, When unstable modes exist, the statement is

that a constrained mode if stable possesses a frequency of vibra

tion less than that of the highest normal mode, and if unstable

has a degree of instability less than that of the most unstable

normal mode,]

90. The rigorous determination of the periods and types of

vibration of a given system is usually a matter of great difficulty,

arising from the fact that the functions necessary to express the

modes of vibration of most continuous bodies are not as yet recog
nised in analysis. It is therefore often necessary to fall back on

methods of approximation, referring the proposed system to some

other of a character more amenable to analysis, and calculating

corrections depending on the supposition that the difference be

tween the two systems is small. The problem of approximately
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simple systems is thus one of great importance, more especially
as it is impossible in practice actually to realise the simple forms
about which we can most easily reason.

Let us suppose then that the vibrations of a simple system are

thoroughly known, and that it is required to investigate those
of a system derived from it by introducing small variations in

the mechanical functions. If fa, 2 ,
&c . be the normal co-ordi

nates of the original system,

and for the varied system, referred to the same co-ordinates,
which are now only approximately normal,

...\
..... ( } '

in which &rn ,
3a]2 ,

Scu , Sc, 2 , &c. are to be regarded as small

quantities. In certain cases new co-ordinates may appear, but
if so their coefficients must be small. From (1) we obtain for the

Lagrangian equations of motion,

(&! + SauD* + G! -f 8cn ) fa + (&

(2).(Sa21D2 + &21 ) <, + (a, + SaxJD* -f c2 4- Sc22 ) 2

In the original system the fundamental types of vibration
are those which correspond to the variation of but a single co
ordinate at a time. Let us fix our attention on one of them,
involving say a variation of fa } while all the remaining co-
ordinates vanish. The change in the system will in general
entail an alteration in the fundamental or normal types; but
under the circumstances contemplated the alteration is small.
The new normal type is expressed by the synchronous variation
of the other co-ordinates in addition to fa. ;

but the ratio of any
other fa to

fa. is small. When these ratios are known, the normal
mode of the altered system will be determined.

Since the whole motion is simple harmonic, we may suppose
that each co-ordinate varies as cos prt, and substitute in the
differential equations -j>, for D*. In the *

th

equation fa occurs
with the finite coefficient
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The coefficient of
<f>r is

- Bar8pr
2
-f Scr*.

The other terms are to be neglected in a first approximation,
since both the co-ordinate (relatively to

<f>r) and its coefficient are

small quantities. Hence

Now - a9p* + cg = 0,

and.hu, * '

*"&-:-55
the required result.

If the kinetic energy alone undergo variation,

The corrected value of the period is determined by the rth

equation of (2), not hitherto used. We may write it,

<f)r {

- pr*0r - jpr
s Sarr + C7

. + &W} + </>* (-py
2

&l* + &) = 0.

Substituting for < :
(^>r from (4), we get

a,.

The first term gives the value of pr
* calculated without allow

ance for the change of type, atid is sufficient, as we have already

proved, when the square of the alteration in the system may
be neglected. The terms included under the symbol 2, in

which the summation extends to all values of s other than r,

give the correction due to the change of type and are of the

second order. Since as and ar are positive, the sign of any term

depends upon that of pf pr*. If p>p*, that is, if the mode

s be more acute than the mode r, the correction is negative,

and makes the calculated note graver than before
;
but if the

mode s be the graver, the correction raises the note, If r refer

to the gravest mode of the system, the whole correction is

negative ;
and if r refer to the acutest mode, the whole correction

is positive, as we have already seen by another method.

91. As an example of the use* of these formulae, we may
take the case of a stretched string, whose longitudinal density p

is not quite constant. If x be measured from one end, and y
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be the transverse displacement, the configuration at any time t

will be expressed by

f .......... (1),

being the length of the string. </>!,
< 2 ,

* are the normal

co-ordinates for p = constant, and though here p is not strictly

constant, the configuration of the system may still be expressed

by means of the same quantities. Since the potential energy
of any configuration is the same as if p = constant, 8V= 0. For

the kinetic energy we have

[
I

J

. TTX
psiti -v-

o ^

If p were constant, the products of the velocities would

disappear, since
<f>lt <j>z ,

&c. are, on that supposition, the normal

co-ordinates. As it is, the integral coefficients, though not actually

evanescent, are small quantities. Let p = p + p; then in our

previous notation

17 5- f
l

5- a
r7rx j s f

'

ar
= ^p , oan.= / opsiri'

5

-^- ax, oars = I

Jo ^ Jo

Thus the type of vibration is -expressed by

or, snce

jsin /- sin ax.
o ^ &

. . ^ .

<bs > <Pr~ r-; . T op sinr 3 - 2 r

......... '

Let us apply this result to calculate the displacement of the

nodal point of the second mode (r
=

2), which would be in the

middle, if the string were uniform. In the neighbourhood of

this point, if # = J-f-&r, the approximate value of y is

,
. TT . STT . 3?r

TT 2?r
+ - T +

~}



91.] EXAMPLES. 117

Hence when y = 0,

& *

approximately, where

, 4

To shew the application of these formulae, we may suppose
the irregularity to consist in a small load of mass p \ situated
at x %1, though the result might be obtained much more easily

directly. We have

from which the value of Sx may be calculated by approximation.
The real value of &z? is, however, very simple. The series within

brackets may be written

which is equal to

i , \d-
ol + #

The value of the definite integral is

4 ' ^-i
TT -T- 4 sm j ,

andthus &^=^^ ^ = __^
7TA/2 4 2'

as may also be readily proved by equating the periods of vibra

tion of the two parts of the string, that of the loaded part being
calculated approximately on the assumption of unchanged type.

As an example of the formula (6) 90 for the period, we

may take the case of a string carrying a small load pQ\ at its

middle point. We have

IT c% .v TTT s ^ . TTT . STT
<*>r
= i^Po > <>a>rr -M sin2

y ,
6ar8 = />

X sin - sm

and thus, if Pr be the value corresponding to X = 0, we get when
r is even, pr = Pr , and when r is odd,

f 1 4T*
3 X2

)

^a=PMiT2VJ~ :s^^Fj (5)>

1 Todhunter's Int. Calc. 2S5.
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where the summation is to be extended to all the odd values

of $ other than r. If r 1,

Now 22 U =2 * -2--

in which the values of s are 3, 5, 7, 9..., Accordingly

2
1 -i

s'-l~4'

r 9"\ ^2 l

and pl
. = pl.i_ + + ...... .............. (6),

giving the pitch of the gravest tone accurately as far as the

square of the ratio \ : L

In the general case the value of pr
2
,
correct as far as the first

order in Sp, will be

92. The theory of vibrations throws great light on expansions
of arbitrary functions in series of other functions of specified

types. The best known example of such expansions is that

generally called after Fourier, in which an arbitrary periodic
function is resolved into a series of harmonics, whose periods
are subrnultiples of that of the given function. It is well known
that the difficulty of the question is confined to the proof of the

possibility of the expansion ; if this be assumed, the determination

of the coefficients is easy enough. What I wish now to draw

attention to is, that in this, and an immense variety of similar

cases, the possibility of the expansion may be inferred from

physical considerations.

To fix our ideas, let us consider the small vibrations of a

uniform string stretched between fixed points. We know from
the general theory that the whole motion, whatever it may
be, can be analysed into a series of component motions, each

represented by a harmonic function of the time, and capable
of existing by itself. If we can discover these normal types,
we shall be in a position to represent the most general vibration

possible by combining them, assigning to each an arbitrary-

amplitude and phase.
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Assuming that a motion is harmonic with respect to time,

we get to determine the type an equation of the form

whence it appears that the normal functions are

. irx .= sm-, y=sm

We infer that the most general position which the string can

assume is capable of representation by a series of the form

which is a particular case of Fourier's theorem. There would

be no difficulty in proving the theorem in its most general form.

So far the string has been supposed uniform. But we have

only to introduce a variable density, or even a single load at

any point of the string, in order to alter completely the ex

pansion whose possibility may be inferred from the dynamical

theory. It is unnecessary to dwell here on this subject, as

we shall have further examples in the chapters on the vibrations

of particular systems, such as bars, membranes, and confined

masses of air.

92 a. In 88 we have a formula for the frequency of vibration

applicable when by the imposition of given constraints the original

system is left with only one degree of freedom. It is of interest

to trace also the effect of less complete constraints, such as may
be expressed by linear relations among the normal co-ordinates of

number less by at least two than that of the (original) degrees of

freedom. Thus we may suppose that

(1).

=0

If the number of equations (r) fall short of the number of the

degrees of freedom by unity, the ratios <x:< 3 :
<f>$

... are fully

determined, and the case is that of but one outstanding degree of

freedom discussed in 88.

This problem may be treated in more than one way, but the
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most instructive procedure is to trace the effect of additions to T
and V. We will suppose that equations (1) 87 are altered to

-)* ......... (2),

and that F, not previously existent, is now

The connection with the proposed problem will be understood

by supposing for instance that a = 0, y3
= 0, while 7 = oo . By (3)

the potential energy of any displacement violating the condition

/ifc +/** + -<> ........................()
is then infinite, and this is tantamount to the imposition of the

constraint represented by (5).

Lagrange's equations with X written for D now become

If we multiply the first of these by/J/(a1\a
-h Cj), the second by

+ #2), and so on, and add the results together, the factor

- ) will divide out, and the determinant takes the

form

If any one of the quantities a, & 7 become infinite while the

others remain finite, the effect is equivalent to the imposition of the

constraint (5), and the result may be written

When multiplied out this equation is of degree (m 1) in X2
, one

degree of freedom having been lost.

If we put /3
=

0, (7) is an equation of the rath degree in X2
,
and

the coefficients ot, 7 enter in the same way as do ax , c^; aa ,
ca ;

&c.

In order to refer more directly to the case of vibrations about

stable equilibrium, we will write p
a for X2

. The values of jp
4

belonging to the unaltered system, viz. nf, nj,..., ar@ given as

before by

Ci-o^j'^0,- Ca-o^^O^&c., .................. (9);

and we will also write

7-ctt^O .......................... (10),

1 Kouth's Rigid Dynamics, 5th edition, 1892, 67.
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where z/
2 relates to the supposed additions to T and V considered

as belonging to an independent vibrator. Let the order of magni
tude of these quantities be

V,^2
2

,
.........V, v\nr^\ .........n^ ............ (11).

We shall see that there is a root of (7) between each consecutive

pair of the quantities (11).

Our equation may be written

/i
2

(7
- *

2
(7
-

a2p
2
) .........

= ............... (12).

When p
2 coincides with any of the quantities (11), all but one

of the terms in (12) vanish, and the sign of the expression is the

same as that of the term which remains over. When p* < ??!
2

,
all

the terms are positive, so that there is no root less than n^.

When jp
2 =

Tij
2
, the expression (12) reduces to the positive quantity

/!
2

(7
- anj

2
) (c2

- a^2
) (cs

-
a#if) ......

When p* rises to n2
2
, (12) becomes

/2
2

(7
- <m2

2

) (cx
- a^ 2

2
) (c3

- a8n2
2

) ...... ;

and this is negative, since the factor (cx a^2

) is BOW negative.

Hence there is a root of (12) between nf and nf. When jp
2 = 7?.3

2

,

the expression is again positive, and thus there is a root between

nf and n/. This argument may be continued, and it proves that

there is a root of (12) between any consecutive two of the (m + 1)

quantities (11). The m roots of (12) are now accounted for, and

there is none greater than nma
. If we compare the values of the

roots before and after the change, we see that the effect is to

cause a movement which is in every case towards z>
2

.
x Considered

absolutely the movement is in one direction for those roots that

are greater than i/
a and in the opposite direction for those that

are less than v\ Accordingly the interval from nrz to nr+1
2
, in

which v* lies, contains after the change two roots, one on either

side of v\

If v* be less than any of the quantities n\ as happens when

7 = 0, one root lies between v2 and n^, one between %2 and nj, and

so on* Thus every root is depressed. On the other hand if

v2 > nm*, every root is increased. This happens if a= 0. ( 88.)

1 It will be understood that in particular cases the movement may vanish.
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The results now arrived at are of course independent of the

special machinery of normal co-ordinates used in the investigation.

If to any part of a system (n^, ?^
2
...... ) be attached a vibrator

(z/
2
) having a single degree of freedom, the effect is to displace qjl

the quantities nf, ... in the direction of z/
2
. Let us now suppose

that a second change is made in the vibrator whereby a becomes

a -ha', and j becomes 7+ 7'. Every root of the determinantal

equation moves towards z/'
2
, where y' V2 = 0. If we suppose

that z/
2 =

z>
2
, the movements are in all cases in the same directions

as before. Going back now to the original system, and supposing
that a, 7 grow from zero to 'their actual values in such a manner
that z>

2 remains constant, we see that during this process the roots

move without regression in the direction of closer agreement
with z>

2
.

As a and 7 become infinite, one root of (12) moves to coinci

dence with iP, while the remaining (m 1) roots, corresponding to

the constrained system, are given by

(13),

and are independent of the value of z/
2
.

Particular cases are obtained by supposing either z/
2 = 0, or

j/s oo Whether the constraint is effected by making infinite

the kinetic energy of any motion, or the potential energy of

any displacement, which violates it, makes no difference to the

vibrations which remain. In the first case one vibration becomes

infinitely slow, and in the second case one becomes infinitely quick.
However the constraint be arrived at, the (m 1) frequencies of

vibration of the constrained system separate
1

the m frequencies
of the original system.

Any number of examples of this theorem may be invented

without difficulty. Consider the case of a uniform stretched

string, held at both ends and vibrating transversely. This is the

original system. Now introduce a constraint by holding at rest a

point which divides the length in the proportion (say) of 3 : 2.

The two parts vibrate independently, and the frequencies for each

part form an arithmetical progression. If the frequencies proper
to the undivided string be 1, 2, 3, 4 * .....

;
those for the parts are

1 But in particular cases the "
separation" may vanish. The theorem in the

text was proved for two degrees of freedom in the first edition of this work. In
its generality it appears to be due to Bouth.
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f (1, 2, 3, ,..) and (1, 2, 3, ...). The beginning of each series is

shewn in the accompanying scheme
;

4

24 5 J

and it will be seen that between any consecutive numbers in

the first row there is a number to be found either in the second

or in the third row. In the case of 5 and 10 we have an extreme

condition of things ;
but the slightest displacement of the point

at which the constraint is applied will displace one of the fives,

tens &c. to the left and the other to the right.
The coincidences may be avoided by dividing the string

incommensurably. Thus, if x be an incommensurable number
less than unity, one of the series of quantities ra/#, m/(l x\ where

in, is a whole number, can be found which shall lie between any

given consecutive integers, and but one such quantity can be found.

Again, let us suppose that a system is referred to co-ordinates

which are not normal ( 84), and let the constraint represented by

^ = be imposed. The determinant of the altered system is

formed from that of the original system by erasing the first row

and the first column. It may be called Vl9 and from this again

may be formed in like manner a new determinant Va , and so on.

These determinants form a series of functions of p* } regularly

decreasing in degree ;
and we conclude that the roots of each

.separate the roots of that immediately preceding
1

.

It may be remarked that while for the sake of simplicity of

statement we hav.e supposed that the equilibrium of the original

system was thoroughly stable, as also that of the vibration brought
into connection therewith, these restrictions may easily be

dispensed with. In any case the series of positive and negative

quantities, nf, na
a

,
and i/

a
, may be arranged in algebraic order,

and the effect of the vibrator is to cause a movement of every

value ofjp
2 in the direction of v*.

In order to extend the above theory we will now suppose that

the addition to T is

1 Routh's liigid Dynamic*, 5th edition, Part n. 58.
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and the addition to V

47y (/i& +/& + O
2 + \*1g (ffifa +^A + . . -)

2 +

If we set

[92 a.

(16),

and so on, Lagrange's equations become

and so on, the number of equations being equal to the number

(m) of co-ordinates
cj>1} fa .... The number of additions (r), corre

sponding to the letters/, g, h, ..., is supposed to be less than ra.

From the above m equations let r new ones be formed, as

follows. For the first multiply (17) by //(c^X
2
-f d), (18) by

/2/(a2X
2 + c2), and so on, and add the results together. For the

second proceed in the same manner, using the multipliers

^/(OiX
2
4- GI), ffzffaW + c2),

&c. In like manner for the third

equation use A instead of g, and so on. In this way we obtain r

equations which may be written

and so on, where for brevity

=0..,(20),

&c./

&c. L...*.(21).

The determinantal equation, of the rth order, is thus

:0 (22).
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If, for example, there be two additions to T and V of the kind

prescribed, the equation is

1 2J?72 2(?2

and herein

(FS + FJ+...)

Equation (23) is in general of the mth degree in X2
,
and

determines the frequencies of vibration. In the extreme case

where F' and G/

are made infinite, the system is subject r,o the

two constraints

and the equation
l

giving the (m 2) outstanding roots is

(/iffi* /affix - CAffs ~~faffi) _ fj (9f\\- -
-j-

___
_|_ ...... \J ^AV/.

In general if the system be subject to the T constraints (1), the

determinantal equation is

2JFF, 2FG, 2FH,...

ZFG, 2ff, SffJI,... ^Q (27).

2FH, 2GH, 2Sff,...

If r be leas than m, this determinant can be resolved 2 into a

sum of squares of determinants of the same order (r). Thus if there

be three constraints, the first of these squares is

?! G, G3 (28),

and the others are to be found by including every combination of

the m suffixes taken three together. To fall back upon the original

notation we have merely in (28) to replace the capital letters

Ft (T,... by/, #,..., and to introduce the denominator

(a>i\
2

-t- GI) (oaX
2
4- ca) (a3X2

4- cs).

The determinantal equation for a system originally of m degrees

of freedom and subjected to r constraints is thus found. Its form

i This result is due to Bouth, loc. tit. 67.

8 Salmon, Lessons on Higher Algebra, 24.
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is largely determined by the consideration that it must remain un

affected by interchanges either of the letters or of the suffixes.

That it would become nugatory if two of the conditions of con

straint coincided, could also have been foreseen. If r = m 1,

the system is reduced to one degree of freedom, and the equation
is

93 ffi 3*

hi h3

...^0 (29),

in agreement with (88).

There are theories, parallel to the foregoing, for systems in

which T and F> or V and F> are alone sensible. In these cases, if

the functions be intrinsically positive, the normal motions are

proportional to exponential functions of the time such as e~tlr
.

The quantities rlf T S ,... are called the time-constants, or persis

tences, of the motions, being the times occupied by the motions in

subsiding in the ratio of e : 1. The new persistences, after the

introduction of a constraint, will separate the original values.

The best illustrations of this theory are electrical, where the

motions are not restricted to be small. Suppose (to take an

electro-magnetic example) that in one branch of a net-work of

conductors there is introduced a coil of persistence (when closed

upon itself) equal to T', the original persistences being r1} r2 ,....

Then the new persistences lie in all cases nearer to T', and they

separate the quantities T', rlf r2 .... If T' be made infinite as by

increasing the self-induction of the additional coil without limit,

or be made to vanish as by breaking the contact in the brajich,

the result is a constraint, and the new values of the persistences

separate the former ones.

93. The determination of the coefficients to suifr arbitrary
initial conditions may always be readily effected by the funda

mental property of the normal functions, and it maybe convenient

to sketch the process here for systems like strings, bars, mem
branes, plates, &c. in which there is only one dependent variable

f to be considered. If t^,^... be the normal functions, and

$i> #2 the corresgonding co-ordinates,

8ws +...
1

(1).
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The equations of free motion are

fc + H^-O, <k + n2
2
4>2
= 0, &c (2),

of which the solutions are

</>!
=A l sin njt 4- Sl cos n{t

The initial values of and are therefore

and the problem is to determine A l9 A t> ... Blt -B2 ... so as to

correspond with arbitrary values of f and

If p da? be the mass of the element d%, we have from (1)

a
I

But the expression for T in terms of
<pl3 (j>2 ,

&c. cannot contain

the products of the normal generalized velocities, and therefore

every integral of the form

'0 (5).

Hence to determine Br we have only to multiple the first

of equations (4) by pur and integrate over the system. We thus

obtain
r f

(6).

Similarly, nrA f Ip u r*dx a= \p u&da (7).

The process is just the same whether the element dx be a line

area, or volume.

The conjugate "property, expressed by (5), depends upon the

fact that the functions u. are normal As soon as this is known

by the solution of a differential equation or otherwise, we may
infer the conjugate property without further proof, but the pro

perty itself is most intimately connected with the fundamental

variational equation of motion 94.
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94. If 7 be the potential energy of deformation, f the

displacement,
and p the density of the (line, area, or volume)

element dx, the equation of virtual velocities gives immediately

(I).

In this equation S7 is a symmetrical function of f and 8

as may be readily proved from the expression for V in terms
of generalized co-ordinates. In fact if

g7

Suppose now that f refers to the motion corresponding to

a normal function ury so that + Vf=0, while 8f is identified

with another normal function u8 ;
then

K= nr
3

1 puru8dx.

Again, if we suppose, as we are equally entitled to do, that f
varies as us and as ur , we get for the same quantity 87,

g7=n/ \puruBdx\

ind therefore (?v
2 -

n/) I p urusdx = ..................... (2),

from which the conjugate property follows, if the motions re

presented respectively by ur and us have different periods.

A good example of the connection of the two methods of

treatment will be found in the chapter on the transverse vibrations

of bars.

95. Professor Stokes 1 has drawn attention to a very general
law connecting those parts of the free motion which depend
on the initial displacements of a system not subject to frictional

forces, with those which depend on the initial velocities. If

a velocity of any type be communicated to a system at rest,

and then after a small interval of time the opposite velocity
be communicated, the effect in the limit will be to start the

system without velocity, but with a displacement of the corre

sponding type. We may readily prove from this that in order

1
Dynamical Theonj of Diffraction, Cambridge Trans. Vol. ix. p. 1, 1856.
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to deduce the motion depending on initial displacements from

that depending on the initial velocities, it is only necessary to

differentiate with respect to the time, and to replace the arbitrary

constants (or functions) which express the initial velocities by
those which express the corresponding initial displacements.

Thus, if
(f>
be any normal co-or<iinate satisfying the equation

the solution in terms of the initial values of < and
cj>

is

<f>
= < cos nt + -

(>o sin nt..................... (1),

of which the first term may be obtained from the second by

Stokes' rule.



CHAPTER V.

VIBKATING SYSTEMS IlS
r GENERAL

CONTINUED.

96. WHEX dissipative forces act upon a system, the character

of the motion is in general more complicated. If two only of the

functions T, F, and Fbe finite, we may by a suitable linear trans

formation rid ourselves of the products of the co-ordinates, and
obtain the normal types of motion. In the preceding chapter we
have considered the case of F = 0. The same theory with obvious

modifications will apply when T 0, or F=0, but these cases

though of importance in other parts of Physics, such as Heat and

Electricity, scarcely belong to our present subject.

The presence of friction will not interfere with the reduction of

T and V to sums of squares ;
but the transformation proper for

them will not in general suit also the requirements of F. The

general equation can then only be reduced to the form

ai^i + kn^i + fci* <&> + ... +cI 1
= <3>1 , &c (1),

and not to the simpler form applicable to a system of one degree
of freedom, viz.

i0i + Mi + 0& =
i> &c (2).

We may, however, choose which pair of functions we shall

reduce, though in Acoustics the choice would almost always fall

on T and V.

97. There is, however, a not unimportant class of cases in

which the reduction of all three functions may be effected; and
the theory then assumes an exceptional simplicity. Under this hsad
the most important are probably those when F is of the same form
as T or V. The first case occurs frequently, in books at any rate,

when the motion of each part of 'the system is resisted by a re

tarding force, proportional both to the mass and velocity of the
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part. The same exceptional reduction is possible when F is a

linear function of T and F, or when T is itself of the same form as

F. In any of these cases, the equations of motion are of the same

form as for a system of one degree of freedom, and the theory

possesses certain peculiarities which make it worthy of separate
consideration.

The equations of motion are obtained at once from T
y
F

F:

/
1
v

&c.J
................. ^

in which the co-ordinates are separated.

For the free vibrations we have only to put ^ = 0, &c., and

the solution is of the form

+ sin n't ...... (2),
ZiTL J j

where K = b/a, tf = c/a, ri = \/(n
2

J A:-),

and < and 4>
are the initial values of

<f>
and 4>.

The whole motion may therefore be analysed into component

motions, each of which corresponds to the variation of but one

normal co-ordinate at a time. And the vibration in each of these

modes is altogether similar to that of a system with only one

degree of liberty. After a certain time, greater or less according

to the amount of dissipation, the free vibrations become insignifi

cant, and the system returns sensibly to rest.

[If F be of the same form as T, all the values of tc are equal,

viz. all vibrations die out at the same rate.]

Simultaneously with the free vibrations, but in perfect inde

pendence of them, there may exist forced vibrations depending on

the quantities <. Precisely as in the case of one degree of free

dom, the solution of

a$ + 6^+o^ = * ........................ (3)

may be written

^-l f*6-W-Osinw
7(*-O*^ ....... .....(4),n J o

where as above

K = 6/a, ?i* = c/a, n' = VO2 -
i *

2
)-

To obtain the complete expression for
<f>
we must add to the

right-hand member of (4), which makes the initial values of
</>

and
<j> vanish, the terms given in (2) which represent the residue
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at time i of the initial values fa and
<j>Q

. If there be no friction,

the value of < in (4) reduces to

(5).

98. The complete independence of the normal co-ordinates

leads to an interesting theorem concerning the relation of the

subsequent motion to the initial disturbance. For if the forces

which act upon the system be of such a character that they do no

work on the displacement indicated by Sfa, then <t>!
= 0. No such

forces, however long continued, can produce any effect on the

motion fa. If it exist, they cannot destroy it
;
if it do not exist,

they cannot generate it. The most important application of the

theorem is when the forces applied to the system act at a node of

the normal component fa, that is, at a point which the component
vibration in question does not tend to set in motion. Two extreme

cases of such forces may be specially noted, (1) when the force is

an impulse, starting the system from rest, (2) when it has acted so

long that the system is again at rest under its influence in a dis

turbed position. So soon as the force ceases, natural vibrations

set in, and in the absence of friction would continue for an in

definite time. We infer that whatever in other respects their

character may be, they contain no component of the type fa. This

conclusion is limited to cases where T, F, V admit of simultaneous

reduction, including of course the case of no friction.

99. The formulae quoted in 97 are applicable to any kind of

force, but it will often happen that we have to deal only with the

effects of impressed forces of the harmonic type, and we may then

advantageously employ the more special formulae applicable to such

forces. In using normal co-ordinates, we have first to calculate the

forces <!>!, <l>2 ,
&c. corresponding to each period, and thence deduce

the values of the co-ordinates themselves. If among the natural

periods (calculated without allowance for friction) there be any

nearly agreieing in magnitude with the period of an impressed

force, the corresponding component vibrations will be abnormally

large, unless indeed the force itself be greatly attenuated m the

preliminary resolution. Suppose, for example, that a transverse

force of harmonic type and given period acts at a single point of

a stretched string. All the normal modes of vibration will, in

general, be excited, not however in their own proper periods, but
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in the period of the impressed force
;
but any normal component,

which has a node at the point of application, will not be excited.

The magnitude of each component thus depends on two things :

(1) on the situation of its nodes with respect to the point at which

the force is applied, and (2) on the degree of agreement between
its own proper period and that of the force. It is important to

remember that in response to a simple harmonic force, the system
will vibrate in general in all its modes, although in particular
cases it may sometimes be sufficient to attend to only one of them
as being of paramount importance.

100. When the periods of the forces operating are very long

relatively to the free periods of the system, an equilibrium theory
is sometimes adequate, but in such a case the solution could

generally be found more easily without the use of the normal

co-ordinates. Bernoulli's theory of the Tides is of this class, and

proceeds on the assumption that the free periods of the masses of

water found on the globe are small relatively to the periods of the

operative forces, in which case the inertia of the water might be

left out of account. A.S a matter of fact this supposition is only

very roughly and partially applicable, and we are consequently
still in the dark on many important points relating to the tides.

The principal forces have a semi-diurnal period, which is not suffi

ciently long in relation to the natural periods concerned, to allow

of the inertia of the water being neglected. But if the rotation of

the earth had been much slower, the equilibrium theory of the

tides might have been adequate.

A corrected equilibrium theory is sometimes useful, when the

period of the impressed force is sufficiently long in comparison
with most of the natural periods of a system, but not so in the

case of one or two of them. It will be sufficient to tak& the case

where there is no friction. In the equation

c<f>
=

<I>, or
<j>
+ n*<j>

=
<E>/a,

suppose that the impressed force varies as cos pt. Then

< = 4>~a(n
a -p2

)
..................... (1).

The equilibrium theory neglects p* in comparison with w 2
,

and takes

< = $ -:- an* ........................... (2).
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Suppose now that this course is justifiable, except in respect
of the single normal co-ordinate fa. We have then only to add
to the result of the equilibrium theory, the difference between
the true and the there assumed value of fa, viz.

= _
ri

fli (X
2

-1>
2

) OiKf n? -p*' a
............w *

The other extreme case ought also to be noticed. If the

forced vibrations be extremely rapid, they may become nearly

independent of the potential energy of the system. Instead
of neglecting p* in comparison with n2

, we have then to neglect
??

2 in comparison with p*, which gives

If there be one or two co-ordinates to which this treatment
is not applicable, we may supplement the result, calculated on
the hypothesis that V is altogether negligible, with corrections

for these particular co-ordinates.

101. Before passing on to the general theory of the vibrations

of systems subject to dissipation, it may be well to point out

some peculiarities of the free vibrations of continuous systems,
started by a force applied at a single point. On the suppositions
and notations of 93, the configuration at any time is deter

mined by

where the normal co-ordinates satisfy equations of the form

a,4>r + Cr<j>r
=

r........................ (2).

Suppose now that the system is held at rest by a force applied
at the point Q. The value of <E>r is determined by the considera
tion that <&TS<t>r represents the work done upon the system by the

impressed forces during a hypothetical displacement &^Sfaur ,

that is

>
r =J2ur dx = tir(Q)

so that initially by (2)

(3).
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If the system be let go from this configuration a^ = D, we

have at any subsequent time t,

= cos nrt
- = cos n rt

-
-.
-......... (*),

T nr*\pu*dx

and at the point P

ur (P}ur (Q)\Zdx

At particular points uf (P) and u r (Q) vanish, but on the

whole

neither converges, nor diverges, with r. The series for therefore

converges with n r~\

Again, suppose that the system is started by an impulse

from the configuration of equilibrium. la this case initially

t = M, (Q)

whence at time t

d. ...... (6).

This gives

=

nr \pufdx

shewing that in this case the series converges with ,.-', that

is more slowly than in the previous case.

In both cases it may be observed that the value of is

symmetrical with respect to P and Q, proving that the displace-

ment at time * for the point P when the force or impulse is ap

plied at Q, is the same as it would.be at Q if the force or impulse

had been applied at P. This is an example of a very general

reciprocal theorem, which we shall consider at length presently.



136 VIBRATING SYSTEMS IN GENERAL. [101.

As a third case we may suppose the body to start from rest

as deformed by a force uniformly distributed, over its length,
area, or volume. We readily find

(8).
- -

nr
*

Ipufdx

The series for will be more convergent than when the force
is concentrated in a single point.

In exactly the same way we may treat the case of a con
tinuous body whose motion is subject to dissipation, provided
that the three functions T

} F, V be simultaneously reducible,
but it is not necessary to write down the formulae.

102. If the three mechanical functions T, F and F of any
system be not simultaneously reducible, the natural vibrations

(as has already been observed) are more complicated in their
character. When, however, the dissipation is small, the method
of reduction is still useful

; and this class of cases besides being
of some importance in itself will form a good introduction to
the more general theory. We suppose then that T and V are

expressed as sums of squares

while F still appears in the more general form

F=bT>*fa+$l*fa + -+bvd>4* + ............ (2).

The equations of motion are accordingly

(3),

in which the coefficients 6U ,
6U ,

&c. are to be treated as small
If there were no friction, the above system of equations would
be satisfied by supposing one co-ordinate

<f>r
to vary suitably,

wfule the other co-ordinates vanish. In the actual case there
will be a corresponding solution in which the value of any other
co-ordinate

<f>8 will be small relatively to <,..

Hence, if we omit terms of the second order, the rth

equation
becomes,

ar#r+Mr+<V0r = ..................... (4),
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from which we infer that
<f>r varies approximately as if there

were no change due to friction in the type of vibration, If
<j>r

vary as eprt, we obtain to determine pr

0>rpr* + bn-pr + Cf = ..................... (5).

The roots of this equation are complex, but the real part
is small in. comparison with the imaginary part. [The character

of the motion represented by (5) has already been discussed

( 45). The rate at which the vibrations die down is proportional
to brr ,

and the period, if the term be still admitted, is approxi

mately the same as if there were no dissipation.]

From the 5
th

equation, if we introduce the supposition that

all the co-ordinates vary as e&*9 we get

(Pt?a8 + c,) <f>8 + br8pr<f>r
=

0,

terms of the second order being omitted
;
whence

This equation determines approximately the altered type
of vibration. Since the chief part of pr is imaginary, we see

that the co-ordinates
<f>8 are approximately in the same phase,

but that that phase differs by a quarter period from the phase

of (f>r. Hence when the function F does not reduce to a sum
of squares, the character of the elementary modes of vibration

is less simple than otherwise, and the various parts of the system
are no longer simultaneously in the same phase.

We proved above that, when the friction is small, the value

of pr may be calculated approximately without allowance for

the change of type ;
but by means of (6) we may obtain a still

closer approximation, in which the squares of the small quantities
are retained. The rfch

equation (3) gives

(7).

The leading part of the terms included under 2 being real,

the correction has no effect on the real part of pr on which

the rate of decay depends.

102 a. Following the electrical analogy we may conveniently
describe the forces expressed by F as forces of resistance. In

102 we have seen that if the resistances be small, the periods
are independent of them. We may therefore extend to this case
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the application of the theorems with regard to the effect upon
the periods of additions to T and F, which have been already

proved when there are no resistances.

By (5) 102, if the forces of resistance be increased, the rates

of subsidence of all the normal motions are in general increased

with them : but in particular cases it may happen that there

is no change in a rate of subsidence.

It is natural to inquire whether this conclusion is limited to

small resistances, for at first sight it would appear likely to hold

good generally. An argument sufficient to decide this question

may be founded upon a particular case. Consider a system formed

by attaching two loads at any points of a stretched string vibrating

transversely. If the mass of the string itself be neglected, there

are two degrees of freedom and two periods of vibration corre

sponding to two normal modes. In each of these modes both loads

in general vibrate. Now suppose that a force of resistance is

introduced retarding the motion of one of the loads, and that this

force gradually increases. At first the effect is to cause both kinds

of vibration to die out and that at an increasing rate, but after

wards the law changes. For when the resistance becomes infinite,

it is equivalent to a constraint, holding at rest the load upon which
it acts. The remaining vibration is then unaffected by resistance,
and maintains itself indefinitely. Thus the rate of subsidence of

one of the normal modes has decreased to evanescence in spite of a

continual increase in the forces of resistance F. This case is of

course sufficient to disprove the suggested general theorem.

103. We now return to the consideration of the general
equations of 84.

If fa, ^ra , &c, be the co-ordinates and ^ a , &c. the forces,
we have

( )}

where 6n = a rsD* + br,D + cn ........................ (2).

For the free vibrations &c. vanish. If V be the de
terminant

.(3)
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the result of eliminating from (1) all the co-ordinates but one, is

V^ = .............................. (4).

Since V now contains odd powers of D
t
the 2m roots of the

equation V = no longer occur in equal positive and negative

pairs, but contain a real as well as an imaginary part. The

complete integral may however still be written

^ = -40^4- AW* +&* + '&*'* + .... ........ (5),

where the pairs of conjugate roots are ^, /-t/; p.29 p^ ;
&c. Corre

sponding to each root, there is a particular solution such as

^ =4^, fa = A 2eJ, ifr^As&J, &c.,

in which the ratios A l : A% : A 3 ... are determined by the equa
tions of motion, and only the absolute value remains arbitrary.

In the present case however (where V contains odd powers of D)
these ratios are not in general real, and therefore the variations

of the co-ordinates ^lt -*Jr2 >
&c - ar^ not sj^nchronous in phase. If

we put p*i
=

<*-L + iftly ^i'
=

i fySi, &c., we see that none of the

quantities a can be positive, since in that case the energy of

the motion would increase with the time, as we know it cannot

do.

103 a. The general argument ( 85, 103) from considerations

of energy as to the nature of the roots of the determinantal

equation (Thomson and Tait's Natural Philosophy, 1st edition 186*7)

has been put into a more mathematical form by South 1
. His

investigation relates to the most general form of the equation in

which the relations 82

ra
= ^r, br8 =bsr ,

Crs =*CBr ............... (1),

are not assumed. But for the sake of brevity and as sufficient

for almost all acoustical problems, these relations will here be

supposed to hold.

We shall have occasion to consider two solutions corresponding

to two roots
/-t,

v of the equation. For the first we have

^ =!?><, ^a
= Jfae^, ^3

= .A/X, &c................ (2),

and for the second

^ = ^^, *>,
= #,**, f3

= aY3^&c................ (3).

In either of these solutions, for example (2), the ratios

Rigid Dynamic*, 5th edition, Oh. vn.
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are determinate when
//,

has been chosen. They are real when

fjL
is real

;
and when /* is complex (a i/3), they take the form

PiQ.
If now we substitute the values of ifr

from (2) in the equations

of motion, we get

C M* + ...... =0

=0

The first result is obtained by multiplying these equations in

order by Ml) Jkfs ,
&c. and adding. It may be written

where

A=^Mi* +^Mf + alstMlMt + ............ (6),

B = faMf + \lntff + MWf.+ ..' ....... (7),

= K#i' + i^aJf,' + C12if^/2 + ............ (8).

The functions A, JS, (7, are, it will be seen, the same as we have

already denoted by T, F, and V respectively; but the varied

notation may be useful as reminding us that there is as yet no

limitation upon the nature of these quadratic functions.

The following inferences from (5) are drawn by Routh :

(a) If A, By
either be zerq, or be one-signed functions of

the same sign, the fundamental determinant cannot have a real

positive root. For if
/u, were real, the coefficients Ml3 M2 , ......

would be real. We should thus have the sum of three positive

quantities equal to zero.

(/3) If there be no forces of resistance, i.e. if the term B be

absent, and if A and G be one-signed and have the same sign,
the fundamental determinant cannot have a real root, positive or

negative.

(7) If A
} B, be one-signed functions, but if the sign of

JB be opposite to that of A and (7, the fundamental determinant

cannot have a real negative root.

The second equation is obtained as before from (4), except that

now the multipliers are Nl9 JV",,... appropriate to the root */. The
result may be written

^Q ............... (9),
where

2A
(/i, v)

= duMl
N

l +

............... (10),
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with similar suppositions for B(p>v) and C(p, t v). Afav) is

thus a symmetrical function of the M's and TV's, so that

A(p,v)=A(v,ti ..................... (11).

It will be observed that according to this notation A (p, &) is

the same as A in (6).

In like manner

A(iJ,,v)* + B(p 9 v)v+C(ji,,v)**Q ............... (12),

shewing that p, v are both roots of the quadratic, whose co

efficients are A (p, v\ B (/*, z/),
C (p, v). Accordingly

B + ,__&JO ^=.. ...' ......... (13).' ^ ^ f

We will now suppose that
/A,

v are two conjugate complex
roots, so that

/JL
= H- i/3, v a - i/3,

where a, /3 are real. Under these circumstances if Ml3 M2) ... be

Pi + *ft, P* + ^Q.,..., then N,,N,,... will be Pl -iQl ,
P2 -iQ2 ,

......
,
the P's and Q's being real. Thus by (10)

2-40^)=^ (P!+ Q^ + CfeW+Q,') + ......

(14).

In (14) A(P), A(Q) are functions, such as (6), of real variables.

From (13) we now find

<>*>

From these Routh deduces the following conclusions :

(S) If A and J? be one-signed and have the same sign

(whether be a one-signed function or not), then the real part a

of every imaginary root must be negative and not zero. But if B
be absent, then the real part of every imaginary root is zero.

(e) If A and C be one-signed and have opposite signs, then

whatever may be the character of B> there can be no imaginary

roots.

It may be remarked that if B do not occur, and if ^ and i>
2

be different roots of the determinant, it follows from (9), (12) that

)
= Q .....................(IV).
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When the number of degrees of freedom is finite, the funda

mental determinant may be expanded in powers of p, giving
an equation / (/*,)

= of degree 2m. The condition of
stability

is that all the real roots and the real parts of all the complex
roots should be negative. If, as usual, complex quantities x -f iy
be represented by points whose co-ordinates are #, yy the condition

is that all points representing roots should lie to the left of the

axis of y. The application of Cauchy's rule relative to the

number of roots within any contour, by taking as the contour the

infinite semi-circle on the positive side of the axis of y, is very

fully discussed by Routh 1

, who has thrown the results into forms

convenient for practical application to particular cases.

103 b. The theorems of 103 a do not exhaust all that general
mechanical principles would lead us to expect as to the character

of the roots of the fundamental determinant, and it may be well

to pursue the question a little further. We will suppose through
out that A is one-signed and positive.

If B and C be both one-signed and positive, we see that the

equilibrium is thoroughly stable
;

for from (a) it follows that there

can be no positive root, and from (S) that no complex root can have

its real part positive.

In like manner the equations of 103 a suffice for the case

where C is one-signed and positive, B one-signed and negative.

By (5) every real root is positive, and by (15) the real part
of every complex root. Hence the equilibrium is unstable in

every mode.

When C is one-signed and negative, all the roots are real (e);

but (5) does not tell us whether they are positive or negative.
When B = 0, we know ( 87) that the roots occur in pairs of equal
numerical value and of opposite sign. In this case therefore

there are m positive and m negative roots. We will prove that

this state of things cannot be disturbed by B. For if the determi

nant be expanded, the coefficient of /i
2m is the discrimmaut of A,

and the coefficient of /* is the discriminant of 0. By supposition
neither of these quantities is zero, and thus no roofc of the equation
can be other than finite. Hence as increases from zero to its

actual magnitude as a function of the variables, no root of the

equation can change sign, and accordingly there remain in

1 Adams Prize Essay 1877 ; Rigid Dynamics 200.
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positive and m negative roots. It should be noticed that in this

argument there is no restriction upon the character of B.

In the case of a real root the values ofMl} M.2) ... are real, and

thus the motion is such as might take place under a constraint

reducing the system to one degree of freedom. But if this con

straint were actually imposed, there would be two corresponding
values of

JJL, being the values given by (5). In general only one of

these is applicable to the question in hand. Otherwise it would

be possible to define 772, kinds of constraint, one or other of which

would be consistent with any of the 2m roots. But this could

only happen when the three functions A, B, C are simultaneously

reducible to sums of 'squares ( 97).

When B = 0, there are in modes of motion, and two roots for

each mode. In the present application to the case where C is

one-signed and negative, each of the m modes for B = gives

one positive and one negative root. The positive root denotes

instability, and although the negative root gives a motion which

diminishes without limit, the character of instability is considered

to attach to the mode as a whole, and all the m modes are said

to be unstable. But when B is finite, there are in general 2m
distinct modes with one root corresponding to each. Of the

2-m modes m are unstable, but the remaining m modes must be

reckoned as stable. On the. whole, however, the equilibrium is

unstable, so that the influence of J?, even when positive, is in

sufficient to obviate the instability due to the character of G.

We must not prolong much further our discussion of unstable

systems, but there is one theorem respecting real roots too-

fundamental to be passed over. It may be regarded as an ex

tension of that of 88.

The value of p corresponding to a given constraint M^ : M+: ...

is one of the roots of (5) : and it follows from (4) that the value of

p is stationary when the imposed constraint coincides with one of

the modes of free motion, The effect of small changes in A, B, G

may thus be calculated from (5) without allowance for the

accompanying change of type.

Let C, being negative for the mode under consideration,

undergo numerical increase, while A and B remain unchanged as

functions of the co-ordinates. The latter condition requires that

the roots of (5), one of which is positive and one negative, should

move either both towards zero or both away from zero
;
and the

first condition excludes the former alternative. Whether it be
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the positive or the negative root of (5) which is the root of the

determinant, we infer that the change in question causes the

latter to move away from zero.

In like manner if A increase, while B and G remain unchanged,
the movement of the root, whether positive or negative, is

necessarily towards zero.

Again, if A and be given, while B increases algebraically

as a function of the variables, the movement of the roof of the

determinant must be in the negative direction.

An algebraic increase in B thus increases the stability, or

decreases the instability, in every mode. A numerical increase

in C or decrease in A on the other hand promotes the stability

of the stable modes and the instability of the unstable modes.

We can do little more than allude to the theorem relating to

the effect of a single constraint upon a system for which C is

one-signed and negative. Whatever be the nature of B, the

(m-1) positive roots of the determinant, appropriate to the

system after the constraint has been applied, will separate the m
positive roots of the original determinant, and a like proposition
will hold for the negative roots. Upon this we may found a

generalization of the foregoing conclusions analogous to that

of 92 a. Consider an independent vibrator of one degree of

freedom for which C is positive, and let the roots of the frequency

equation be pl} v2t one negative and one positive. If we regard
this as forming part of the system, we have in all (2m -t- 2) roots.

The effect of a constraint by which the two parts of the system
are connected will be to reduce the (2m -|- 2) back to 2m. Of
these the m positive will separate the (m 4- 1) quantities formed
of the m positive roots of the original equation together with (the

positive) z>2 and a similar proposition will hold for the negative
roots. The effect of the vibrator upon the original system is thus

to cause a movement of the positive roots towards i/2 , and a

movement of the negative roots towards va . This conclusion

covers all the previous statements as to the effect of changes in

A
9 B, C upon the values of the roots.

Enough has now been eaid on the subject of the free vibra

tions of a system in general Any further illustration that it

may require will be afforded by the discussion of the case of two

degrees of freedom, 112, and by the vibrations of strings and other

special bodies with which we shall soon be occupied. We resume
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the equations (1) 103, with the view of investigating further the

nature offorced vibrations.

104. In order to eliminate from the equations all the co

ordinates but one (^i), operate on them in succession with the

minor determinants

and add the results together; and in like manner for the other

co-ordinates. We thus obtain as the equivalent of the original

system of equations

**-*.+*.+*.+

(i),

in which the differentiations of V are to be made without re

cognition of the equality subsisting between er9 and e9y .

The forces tyl} ^a , &c. are any whatever, subject, of course,

to the condition of not producing so great a displacement or

motion that the squares of the -small quantities become sensible.

If, as is often the case, the forces operating be made up of two

parts, one
1

constant with respect to time, and the other periodic,

it is convenient to separate in imagination the two classes of

effects produced. The effect due to the constant forces is exactly

the same as if they acted alone, and is found by the solution

of a statical problem. It will therefore generally be sufficient

to suppose the forces periodic, the effects of any constant forces,

such as gravity, being merely to alter the configuration about

which the vibrations proper are executed. We may thus without

any real loss of generality confine ourselves to periodic, and

therefore by Fourier's theorem to harmonic forces.

We might therefore assume as expressions for Wl} &c. circular

functions of the time
;

but, as we shall have frequent occasion

to recognise in the course of this work, it is usually more con

venient to employ an imaginary exponential function, such as

*
t
where E is a constant which may be complex. When the
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corresponding symbolical solution is obtained, its real and

imaginary parts may be separated, and belong respectively to

the real and imaginary parts of the data. In this way the

analysis gains considerably in brevity, inasmuch as differentiations

and alterations of phase are expressed by merely modifying the

complex coefficient without changing the form of the function.

We therefore write

!#!***, ^^jfoe'-P*, &c.

The minor determinants of the type -T~- are rational integral

functions of the symbol D, and operate on ^ &c. according to

the law

(2).

Our equations therefore assume the form

V^rr^e^, V-^2 <4 a e**', &c................ (3),

wnere A l9 A z , &c. are certain complex constants, And the sym
bolical solutions are

^ = 4^-1^ &c.,

or

where V (ip) denotes the result of substituting ip for D in V.

Consider first the case of a system exempt from friction.

V and its differential coefficients are then even functions of

D, so that V (ip) is real. Throwing away the imaginary part
nf the solution, writing R^ for A 1} &c., we have

D
^ =

V(^)
COS(^ +^ &c................ ( 5 >-

If we suppose that the forces Wl9 &c. (in the case of more
than one generalized component) have all the same phase, they
may be expressed by

a), EZ cos (pt 4- a), &c.
;

and then, as is easily seen, the co-ordinates themselves agree
in phase with the forces:

The amplitudes of the vibrations depend among other things
on the magnitude of V

(ip). Now, if the period of the forces
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be the same as one of those belonging to the free vibrations,

V (ip)
= 0, and the amplitude becomes infinite. This is, of

course, just the case in which it is essential to introduce the

consideration of friction, from which no natural system is really

-exempt.

If there be friction, V (ip) is complex ;
but it may be divided

into two parts one real and the other purely imaginary, of which

the latter depends entirely on the friction. Thus, if we put

V(ip)^V l (ip) + ipV,(ip) .................. (7),

V
: ,
V2 are even functions of ip, and therefore real. If as before

AI = Rie
i&

i,
our solution takes the form

{

or, on throwing away the imaginary part,

.vhere tan 7 ..................... (9).

We have said that V2 (ip) depends entirely on the friction
;
but

it is nob true, on the other hand, that V 1 (ip) is exactly the same,

as if there had been no friction. However, this is approximately

the case, if the friction be small : because any part of V (ip), which

depends on the first power of the coefficients of friction, is neces

sarily imaginary. Whenever there is a coincidence between the

period of the force and that of one of the free vibrations, V l (ip)

vanishes, and we have tan 7 = - oo
,
and therefore

indicating a vibration of large amplitude, only limited by the

friction.

On the hypothesis of small friction, 6 is in general small, and

so also is 7, except in case of approximate equality of periods.

With certain exceptions, therefore, the motion has nearly the

same (or opposite) phase with the force that excites it,

When a force expressed by a harmonic term acts on a system,

the resulting motion is everywhere harmonic, and retains the

original period, provided always that the squares of the displace-
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ments and velocities may be neglected. This important principle

was enunciated by Laplace and applied by him to the theory of

the tides. Its great generality was also recognised by Sir John

Herschel, to whom we owe a formal demonstration of its truth 1
.

If the force be not a harmonic function of the time, the types

of vibration in different parts of the system are in general different

from each other and from that of the force. The harmonic

functions are thus the only ones which preserve their type un

changed, which, as was remarked in the Introduction, is a strong

reason for anticipating that they correspond to simple tones.

105. We now turn to a somewhat different kind of forced

vibration, where, instead of given forces as hitherto, given inexora

ble motions are prescribed.

If we suppose that the co-ordinates fa, fa y ...
-*//>

are given

functions of the time, while the forces of the remaining types

">+!, NPV+2 >
... ^m. vanish, the equations of motion divide them

selves into two groups, viz.

21 ^i + e>xfa + + &im^V/i
= ^2 /T v

(*)>

and

0r+i, i "^1 + fir+i.a fa + - + 0r+i,in ^m =
'

.(2).

fav =

In each of the m r equations of the latter group, the first r

terms are known explicit functions of the time, and have the same

effect as known forces acting on the system. The equations of

this group are therefore sufficient to determine the unknown

quantities ;
after which, if required, the forces necessary to main

tain the prescribed motion may be determined from the first

group. It is obvious that there is no essential difference between

the two classes of problems of forced vibrations.

106. The motion of a system devoid of friction and executing

simple harmonic vibrations in consequence of prescribed variations

of some of the co-ordinates, possesses a peculiarity parallel to those

considered in 74, 79. Let

fa A! cos pt, fa A* cos pt, &c.,

1
Encyc. Metrop. art. 323. Also Outlinet of Astronomy, 650.
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in which the quantities A Iu ..A r are regarded as given, while the

remaining ones are arbitrary. We have from the expressions for

T and F, 82,

^M 2 +...} cos 2pt,

from which we see that the equations of motion express the con
dition that E, the variable part of T + V, which is proportional to

i(Cu-jp
8all)Aa

+...+(c 12 -^aoia)A^ a+ ......... (1),

shall be stationary in value, for all variations of the quantities
A r+i ... Am . Let p'

z be the value ofp* natural to the system when

vibrating under the restraint defined by the ratios

A! : A 2 ...Ar : Ar+I : ..._4m ;

then

so that

# = (/2 -^{Ki^i2 + ".+^^* + ...} ......... (2).

From this we see that if p* be certainly less than p'* ^ -that is,

if the prescribed period be greater than any of those natural to

the system under the partial constraint represented by

"i -"-a Art

then E is necessarily positive, and the stationary value there can
be but one is an absolute minimum. For a similar reason, if the

prescribed period be less than any of those natural to the partially
constrained system, E is an absolute maximum algebraically, but

arithmetically an absolute minimum. But when p* lies within the

range of possible values of p'
2
,
E may be positive or negative, and

the actual value is not the greatest or least possible. Whenever
a natural vibration is consistent with the imposed conditions, that

will be the vibration assumed. The variable part of T+ V is then
zero.

For convenience of treatment we have considered apart the

two great classes of forced vibrations and free vibrations; but there

is, of course, nothing to prevent their coexistence. After the lapse
of a sufficient interval of time, the free vibrations always dis

appear, however small the friction may be. The case of abso

lutely no friction is purely ideal.

There is one caution, however, which may not be superfluous
in respect to the case where given motions are forced on the

system. Suppose, as before, that the co-ordinates ^, ^a) ...-^r are

given. Then the free vibrations, whose existence or non-existence
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is a matter of indifference so far as the forced motion is concerned,
must be understood to be such as the system is capable of, when
the co-ordinates ^...^ are not allowed to vary from zero. In
order to prevent their varying, forces of the corresponding types
must be introduced

;
so that from one point of view the motion in

question may be regarded as forced. But the applied forces are

merely of the nature of a constraint
;
and their effect is the same

as a limitation on the freedom of the motion.

106 a. The principles of the last sections shew that if

yu ^r2 ...^v be given harmonic functions of the time A l co&pt,
-4 2 cos p,..., the forces of the other types vanishing, then the

motion is determinate, unless p is so chosen as to coincide with

one of the values proper to' the system when fa, ^V'V are

maintained at zero. As an example, consider the case of a

membrane capable of vibrating transversely. If the displacement

ty at every point of the contour be given (proportional to cos pt),
then in general the value in the interior is determinate

;
but an

exception
occurs if p have one of the values proper to the

membrane when vibrating with the contour held at rest This

problem is considered by M. Duhem 1 on the basis of a special

analytical investigation by Schwartz. It will be seen that it may
be regarded as a particular case of a vastly more general theorem.

A like result may be stated for an elastic solid of which the

surface motion (proportional to cos pt) is given at every point. Of
course, the motion at the boundary need not be more than partially

given. Thus for a mass of air we may suppose given the motion
normal to a closed surface. The internal motion is then deter

minate, unless the frequency chosen is one of those proper to the

mass, when the surface is made unyielding.

107. Very remarkable reciprocal relations exist between the

forces xnd motions of different types, which may be regarded as

extensions of the corresponding theorems for systems in which

only V or T has to be considered ( 72 and 77, 78). If we sup
pose that all the component forces, except two NP\ and "#\ are

zero, we obtain from 104,

1 Cot/rs de Physique Mathtmatique, Tome Second, p. 190. Paris 1R9T.
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We now consider two cases of mption for the same system } first

when ^2 vanishes, and secondly (with dashed letters) when /
vanishes. If ^ = 0,

Similarly, if ^/ = 0,

In these equations V and its differential coefficients are rational

integral functions of the symbol D; and since in every case

0* = GST, V is a symmetrical determinant, and therefore

Hence we see that if a force ^ act on the system, the co

ordinate
i/r2 is related to it in the same way as the co-ordinate ^/

is related to the force s', when this latter force is supposed to act

alone.

In addition to the motion here contemplated, there may be
free vibrations dependent on a disturbance already existing at the
moment subsequent to which all new sources of disturbance are

included in
; but these vibrations are themselves the effect of

forces which acted previously. However small the dissipation

may be, there must be an interval of time after which free vibra

tions die out, and beyond which it is unnecessary to go in taking
account of the forces which have acted on a system. If therefore

we include under ^ forces of sufficient remoteness, there are no

independent vibrations to be considered, and in this way the

theorem may be extended to cases which would not at first sight

appear to come within its scope. Suppose, for example, that the

system is at rest in its position of equilibrium, and then begins to

be acted on by a force of the first type, gradually increasing in

magnitude from zero to a finite value M^, at which point it ceases

to increase. If now at a given epoch of time the force be sud

denly destroyed and remain zero ever afterwards, free vibrations of

the system will set in, and continue until destroyed by friction.

At any time t subsequent to the given epoch, the co-ordinate ^
has a value dependent upon t proportional to ^V The theorem
allows us to assert that this value

i/r2 bears the same relation to ^
as

A/T/ would at the same moment have borne to ^2', if the original
cause of the vibrations had been a force of the second type in-



152 VIBRATING SYSTEMS IN GENERAL. [107.

creasing gradually from zero to a', and then suddenly vanishing

at the given epoch of time. We have already had an example of

this in 101, and a like result obtains when the cause of the

original disturbance is an impulse, or, as in the problem of the

pianoforte-string, a variable force of finite though short duration.

In these applications of our theorem we obtain results relating to

free vibrations, considered as the residual effect of forces whose

actual operation may have been long before.

108. In an important class of cases the forces ^ and MA/ are

harmonic, and of the same period. We may represent them by

A^v*, Azeipt
>
where A l and AJ may be assumed to be real, if the

forces be in the same phase at the moments compared. The

results may then be written

where ip is written for D. Thus,

A^=AM ........................ (2).

Since the ratio A^ : A z

'

is by hypothesis real, the same is

true of the ratio ^/ : ^2 ;
which signifies that the motions

represented by those symbols are in the same phase. Passing
to real quantities we may state the theorem thus :

If a force M^ = Aj cos pt, acting on the system give rise to

the motion i/r2
= 6A l cos (pt e) ; then will a force MY = A a

'

cos pt

produce the motion ^ = Aa

'

cos (pt e).

If there be no friction, will be zero.

If Ai^Ai, then fa' = fa. But it must be remembered that

the forces M^ and MY are not necessarily comparable, any more

than the co-ordinates of corresponding types, one of which for

example may represent a linear and another an angular dis

placement.

The reciprocal theorem may be stated in several ways, but

before proceeding to these we will give another investigation,
not requiring a knowledge of determinants.

If !,... Vi, ^*,... and /, /,... TT/, *- be two sets
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of forces and corresponding displacements, the equations of

motion, 103, give

+ . ..)+

Now, if all the forces vary as e^, the effect of ^ symbolic

operator such as ers on any of the quantities ty is merely to

multiply that quantity by the constant found by substituting

ip for D in er8 . Supposing this substitution made, and having

regard to the relations er8 = e^, we may write

Hence by the symmetry

which is the expression of the reciprocal relation.

109. In the applications that we are about to make it

will be supposed throughout that the forces of all types but

two (which we may as well take as the first and second) are

zero. Thus

^' +^2

' = ^i>i +^h ............... 0)-

The consequences of this equation may be exhibited in three

different ways. In the first we suppose that

whence fa : V^fa' : / .................... (2),

shewing, as before, that the relation of fa to ^ in the first

case when ^2
= is the same as the relation of ^\ to / in

the second case, when ^ = 0, the identity of relationship ex

tending to phase as well as amplitude.

A few examples may promote the comprehension of a law,

whose extreme generality is not unlikely to convey an impression

of vagueness.

If P and Q be two points of a horizontal bar supported in

any manner (e.g.
with one end clamped and the other free), a

given harmonic transverse force applied at P will give at any

moment the same vertical deflection at Q as would have been

found at P, had the force acted at Q.

If we take angular instead of linear displacements, the
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theorem will run: A given harmonic couple at P will give the

same rotation at Q as the couple at Q would give at P.

Or if one displacement be linear and the other angular, the

result may be stated thus: Suppose for the first case that a

harmonic couple acts at P, and for the second that a vertical

force of the same period and phase acts at Q, then the linear

displacement at Q in the first case has at every moment the

same phase as the rotatory displacement at P in the second,

and the amplitudes of the two displacements are so related that

the maximum couple at P would do the same work in acting
over the maximum rotation at P due to the force at Q, as the

maximum force at Q would do in acting through the maximum

displacement at Q due to the couple at P. In this case the

statement is more complicated, as the forces, being of different

kinds, cannot be taken equal.

If we suppose the period of the forces to be excessively long,

the momentary position of the system tends to coincide with

that in which it would be maintained at rest by the then acting

forces, and the equilibrium theory becomes applicable. Our
theorem then reduces to the statical one proved in 72.

As a second example, suppose that in a space occupied by
air, and either wholly, or partly, confined by solid boundaries,

there are two spheres A and B, whose centres have one degree
of freedom. Then a periodic force acting on A will produce
the same motion in J5, as if the parts were interchanged; and

this, whatever membranes, strings, forks on resonance cases, or

other bodies capable of being set into vibration, may be present in

their neighbourhood.

Or, if A and B denote two points of a solid elastic body
of any shape, a force parallel to OX, acting at A, will produce
the same motion of the point B parallel to OF as an equal force

parallel to OF acting at J5 would produce in the point A,

parallel to OX.

Or again, let A and B be two points of a space occupied by
air, between which are situated obstacles of any kind. Then a

sound originating at A is perceived at B with the same intensity
as that with which an equal sound originating at B would be per
ceived at A. 1 The obstacle, for instance, might consist of a rigid

1
Helmholtz, Crelle, Bd. LVII., 1869. The sounds must be such as in the absence

of obstacles would diffuse themselves equally in all directions.
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wall pierced with one or more holes. This example corresponds

to the optical law that if by any combination of reflecting or

refracting surfaces one point can be seen from a second, the second

can also be seen from the first. In Acoustics the sound shadows

are usually only partial in consequence of the not insignificant

value of the wave-length in comparison with the dimensions of

ordinary obstacles : and the reciprocal relation is of considerable

interest.

A further example may be taken from electricity. Let there

be two circuits of insulated wire A and J3, and in their neigh
bourhood any combination of wire-circuits or solid conductors

in communication with condensers. A periodic electro-motive

force in the circuit A will give rise to the same current in B
as would be excited in A if the electro-motive force operated
in B.

Our last example will be taken from the theory of conduction

and radiation of heat, Newton's law of cooling being assumed

as a basis. The temperature at any point A of a conducting and

radiating system due to a steady (or harmonic) source of heat

at is the same as the temperatiire at B due to an equal source

at A. Moreover, if at any time the source at B be removed, the

whole subsequent course of temperature at A will be the same as

it would be at B if the parts of B and A were interchanged.

110. The second way of stating the reciprocal theorem is

arrived at by taking in (1) of 109,

whence

or ^ : fa-VJ : fa' ..................... (2),

shewing that the relation of^ to fa in the first case, when fa = 0,

is the same as the relation of "$%' to fa' in the second case, when

t,'
= o.

Thus in the example of the rod, if the point P be held at

rest while a given vibration is imposed upon Q (by a force there

applied), the reaction at P is the same both in amplitude and

phase as it would be at Q if that point were held at rest and

the given vibration were imposed upon P.

So if A and B be two electric circuits in the neighbourhood
of any number of others, C, D, . . , whether closed or terminating
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in condensers, and a given periodic current be excited in A by
the necessary electro-motive force, the induced electro-motive

force in B is the same as it would be in A, if the parts of A
and -B were interchanged.

The third form of statement is obtained by putting in (1)

of S 109,
xp1== o, t'=<>;

whence ^/^i +^>2
=

(3),

or ti = f*
=-' '

*i' (4X

proving that the ratio of ^ to ^2 in the first case, when "#"* acts

alone, is the negative of the ratio of 2

'

to / in the second case,

when the forces are so related as to keep ^r/ equal to zero.

Thus if the point P of the rod be held at rest while a periodic

force acts at Q, the reaction at P bears the same numerical ratio

to the force at Q as the displacement at Q would bear to the

displacement at P, if the rod were caused to vibrate by a force

applied at P.

111. The reciprocal theorem has been proved for all systems

in which the frictional forces can be represented by the function F,

but it is susceptible of a further and an important generalization.

We have indeed proved the existence of the function F for

a large class of cases where the motion is resisted by forces

proportional to the. absolute or relative velocities, but there are

other sources of dissipation not to be brought under this head,

whose effects it is equally important to include
;
for example, the

dissipation due to the conduction or radiation of heat. Now

although it be true that the forces in these cases are not for all

possible motions in a constant ratio to the velocities or displace

ments, yet in any actual case of periodic motion (r) they are

necessarily periodic, and therefore, whatever their phase, ex

pressible by a sum of two terms, one proportional to the dis

placement (absolute or relative) and the other proportional to the

velocity of the part of the system affected. If the coefficients

be the same, not necessarily for all motions whatever, but for all

motions of the period r, the function F exists in the only sense

required for our present purpose. In fact since it is exclusively

with motions of period r that the theorem is concerned, it is

plainly a matter of indifference whether the functions T, F, V
are dependent upon r or not. Thus extended, the theorem is
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perhaps sufficiently general to cover the whole field of dissipative
forces.

It is important to remember that the Principle of Reciprocity
is limited to systems which vibrate about a configuration of equi

librium, and is therefore not to be applied without reservation to

such a problem as that presented by the transmission of sonorous

waves through the atmosphere when disturbed by wind. The
vibrations must also be of such a character that the square of the

motion can be neglected throughout ;
otherwise our demonstra

tion would not hold good. Other apparent exceptions depend on

a misunderstanding of the principle itself. Care must be taken

to observe a proper correspondence between the forces and dis

placements, the rule being that the action of the force over the

displacement is to represent work done. Thus couples correspond

to rotations, pressures to increments of volume, and so on.

Ill a. The substance of the preceding sections is taken from

a paper by the Author 1

,
in which the action of dissipative forces

appears first to have been included. Reciprocal theorems of a

special character, and with exclusion of dissipation, had been

previously given by other writers. One, due to von Helmholtz,

has already been quoted. Reference may also be made to the

reciprocal theorem of Betti 2
, relating to a uniform isotropic elastic

solid, upon which bodily and surface forces act. Lamb 3 has shewn

that these results and more recent ones of von Helmholtz 4
may

be deduced from a very general equation established by Lagrange
in the Mdcanique Analytique.

Ill b. In many cases of practical interest the external force,

in response to which a system vibrates harmonically, is applied at a

single point. This may be called the driving-point, and it becomes

important to estimate the reaction of the system upon it. When
T and F only are sensible, or F and F only, certain general

conclusions may be stated, of which a specimen will here be given.

For further details reference must be made to a paper by the

Axithor 5
.

1 " Some General Theorems relating to Yibrations," Proc. Math. Soc., 1873.

2 II Nuovo Cimento, 1872.

3 Proc. Math. Soc., Vol. xix., p. 144, Jan. 1888.

*
Crelle, t. 100, pp. 137, 213. 1886.

5 " The Beaction upon the Driving-point of a System executing Forced Harmonic

Oscillations of various Periods." Phil. Mag. } May, 1886.
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Consider a system, devoid of potential energy, in which the

co-ordinate ^ is made to vary by the operation of the harmonic

force M^, proportional to e^. The other co-ordinates may be chosen

arbitrarily, and it will be very convenient to choose them so that

no product of them enters into the expressions for Tand F. They
would be in fact the normal co-ordinates of the system on the

supposition that ^ is constrained (by a suitable force of its own

type) to remain zero. The expressions for T and F thus take the

following forms :

+ Uisfafa + ^H^ll + .............. (1).

JP- 4W + &*fa* + iM^2 + -
+ bl2fafa 4-M^a + &i4?M"4 + ............ (2).

The equations for a force YI, proportional to e*pt
,
are accordingly

-f 6n)^ 4- (ipcr* + 6) ta + (ipojs + bls)^3 + . . . =^ ,

5,a) ^! + (ipa* + 6^) ^2
= 0,

6,,)^ + (ipa& 4- 633) ^3
= 0,

By means of the second and following equations ^2> -^3 ... are

expressed in terms of fa. Introducing these values into the first

equation, we get

(3).7

The ratio ^/^ is a complex quantity, of which the real part

corresponds to the work done by the force in a complete period
and dissipated in the system. By an extension of electrical

language we may call it the resistance of the system and denote it

by the letter Rf

. The other part of the ratio is imaginarj^. If we
denote it by ipL'fa, or X'^i, L' will be the moment of inertia, or

self-induction of electrical theory. We write therefore

V^W + ipWfa ..................... (4);

and the values ofK and L' are to he deduced by separation of the

real and the imaginary parts of the right-hand member of (3). In

this way we get

This is the value of the resistance as determined by the

constitution of the system, and by the frequency of the imposed
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vibration. Each component of the latter series (which alone

involves p) is of the form op
2

/03 + 7jp
2
),
where a, & 7 are all positive,

and (as may be seen most easily by considering its reciprocal)

increases continually as
j>

2 increases from zero to infinity. We
conclude that as the frequency of vibration increases, the value of

R' increases continuously with it. At the lower limit the motion

is determined sensibly by the quantities 6 (the resistances) only, and

the corresponding resultant resistance R is an absolute minimum,

whose value is

6n-S(V/U ..................... (6)-

At the upper limit the motion is determined by the inertia of

the component parts without regard to resistances, and the value

ofR'ia

When p is either very large or very small, all the co-ordinates

are in the same phase, and (6), (7) may be identified with

A! T' ^ ig
tAlso L =an -2 +

a22

In the latter series every term is positive,
and continually

diminishes as
_p

2 increases. Hence every increase of frequency is

attended by a diminution of the moment of inertia, which tends

ultimately to the minimum corresponding to the disappearance of

the dissipative terms.

If p be either very large or very small, (8) identifies itself

with 237^.
As a simple example take the problem of the reaction upon

the primary circuit of the electric currents generated in a neigh

bouring secondary circuit. In this case the co-ordinates (or rather

their rates of increase) are naturally taken to be the currents

themselves, so that ^ is the primary, and ^ the secondary

current. In usual electrical notation we represent the coefficients

of self-induction by L, N, and of mutual induction by M, so that

T - iW + M^r, +WW>
and the resistances by R and 8. Thus

an = , #12
= M, Og = N ;
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and (5) and (8) become at once

These formulse were given originally by Maxwell, who remarked
that the reaction of the currents in the secondary has the effect

of increasing the effective resistance and diminishing the effective

self-induction of the primary circuit.

If the rate of alternation be very slow, the secondary circuit is

without influence. If, on th$ other hand, the rate be very rapid,

R f =R + M*SN\ L' = -

112. In Chapter in. we considered the vibrations of a system
with one degree of freedom. The remainder of the present Chapter
will be devoted to some details of the case where the degrees of

freedom are two.

If a and y denote the two co-ordinates, the expressions for T
and F are of the form

y*\

J

...............

so that, in the absence of friction, the equations of motion are

When there are no impressed forces, we have for the natural

vibrations

D being the symbol of differentiation with respect to time.

If a solution of (3) be x-le^*, y = me^ t
XB

is one of the

roots of

or

\'(LN-M*) + \*(LC +NA-2MB) + Aa-B* = ...... (5).

The constants L, M, N\ A, B, 0, are not entirely arbitrary.
Since T and V are essentially positive, the following inequalities
must be satisfied :

LN>M\ AC>& ..................... (6).

Moreover, i, JV, A, G must themselves be positive.
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We proceed to examine the effect of these restrictions on the

roots of (5).

In the first place the three coefficients in the equation are

positive. For the first and third, this is obvious from (6). The
coefficient of X2

+ ZjLNAC - 2MB,

in which, as is seen from (6), JLNAC is necessarily greater than

MB. We conclude that the values of X2
,

if real, are both

negative.

It remains to prove that the roots are in fact real. The

condition to be satisfied is that the following quantity be not

negative :

After reduction this may be brought into the form

*(JLN. B-J~AC. MY
~- JNAY {(JLC - JWA )

2 + 4 (JLNAG -
MB)},

which shews that the condition is satisfied, since JLNAC
is positive. This is the analytical proof that the values of X2 are

both real and negative ;
a fact that might have been anticipated

without any analysis from the physical constitution of the system.

whose vibrations they serve to express.

The two values of X2 are different, unless both

which require that

L : M : N=A : B : C .................. (7).

The common spherical pendulum is an example of this case.

By means of a suitable force T the co-ordinate y may be

prevented from varying. The system then loses one degree of

freedom, and the period corresponding to the remaining one is in

general different from either of those possible before the introduc

tion of F. Suppose that the types of the motions obtained by

thus preventing in turn the variation of y and x are respectively

e^t &J. Then /v
2

, ^2
2 are the roots of the equation
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being that obtained from (4) by suppressing M and B. Hence

(4) may itself be put into the form

LN(\*-tf)(\*-fa*) = (M\* + BY ............ (8),

which shews at once that neither of the roots of X2 can be

intermediate in value between tf and ^2
2
. A little further

examination will prove that one of the roots is greater than both

the quantities /V, fa\ and the other less than both. For if we put

/(X) =LN (V - tf) (X
2 -

rf)
-
(3/X

2 + B}\

we see that when X2
is very small, / is positive (ACBF)\ when

X2 decreases (algebraically) to pf, f changes sign and becomes

negative. Between and fa* there is therefore a root
;
and also

by similar reasoning between ^ and oo . We conclude that the

tones obtained by subjecting the system to the two kinds of con

straint in question are both intermediate in pitch between the

tones given by the natural vibrations of the system. In particular

cases fa*, fa* may be equal, and then

^
M JLN+M

............... ^ ; *

This proposition may be generalized. Any kind of constraint

which leaves the system still in possession of one degree of free

dom may be regarded as the imposition of a forced relation

between the co-ordinates, such as

cw + /3y
= ...........................(10).

Now if ax 4- /3y, and any other homogeneous linear func

tion of x and y, be taken as new variables, the same argument
proves that the single period possible to the system after the

introduction of the constraint, is intermediate in value between
those two in which the natural vibrations were previously per
formed. Conversely, the two periods which become possible
when a constraint is removed, lie one on each side of the original

period.

If the values of X2 be equal, which can only happen when

L : M : 1T=* A : B : C>

the introduction of a constraint has. no effect on the period ;
for

instance, the limitation of a spherical pendulum to one vertical

plane.

113. As a simple example of a system with two degrees of

freedom, we may take a stretched string of length I, itself without
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inertia, but carrying two equal masses vi at distances a and 6 from

one end (Fig. 17). Tension = T,.

Fig. 17.

If x and y denote the displacements,

Since T and V are not of the same form, it follows that the

two periods of vibration are in every case unequal.

If the loads be symmetrically attached, the character of the

two component vibrations is evident. In the first, which will have

the longer period, the two weights move together, so that x and y

remaiu equal throughout the vibration. In the second ./ and y arc

numerically equal, but opposed in sign. The middle point of the

string then remains at rest, and the two masses are always to

be found on a straight line passing through it. In the first case

# y = 0, and in the second # + y = 0; so that x y and x-\-y

are the new variables which must be assumed in order to reduce

the functions T and V simultaneously to a sum of squares.

For example, if the masses be so attached as to divide the

string into three equal parts,

(1),

from which we obtain as the complete solution,

(2),

where, as usual, the constants A, a, B, /3 are to be determined by

the initial circumstances.

114. When the two natural periods of a system are nearly

equal, the phenomenon of intermittent vibration sometimes pre

sents itself in a very curious manner. In order to illustrate this,
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we may recur to the string loaded, we will now .suppose, with two

equal masses at distances from its ends equal to one-fourth of the

length. If the middle point of the string were absolutely fixed,

the two similar systems on either side of it would be completely

independent, or, if the whole be considered as one system, the two

periods of vibration would be equal. We now suppose that

instead of being absolutely fixed, the middle point is attached to

springs, or other machinery, destitute of inertia, so that it is

capable of yielding slightly. The reservation as to inertia is to

avoid the introduction of a third degree of freedom.

From the symmetry it is evident that the fundamental vibra

tions of the system are those represented by x + y and #-- y.

Their periods are slightly different, because, on account of the

yielding of the centre, the potential energy of a displacement
when x and y are equal, is less than that of a displacement
when x and y are opposite; whereas the kinetic energies are

the same for the two kinds of vibration. In the solution

J

.....................
'

we are tnerefore to regard % and n^ as nearly, but not quite, equal.

Now let us suppose that initially x and x vanish. The conditions

are

A cos a + B cos $ =
n^A sin a 4- n^B sin /3

=

which give approximately

Thus x^Asmt sin

cos

The value of the co-ordinate x is here approximately ex

pressed by a harmonic term, whose amplitude, being proportional
to sin J (w a

-
HJ) t, is a slowly varying harmonic function of the

time. The vibrations of the co-ordinates are therefore intermittent,

and so adjusted that each amplitude vanishes at the moment that

the other is at its maximum.

This phenomenon may be prettily shewn by a tuning fork of

very low pitch, heavily weighted at the ends, and firmly held by
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screwing the stalk into a massive support. When the fork vibrates

in the normal manner, the rigidity, or want of rigidity, of the

stalk does not come into play ; but if the displacements of the two

prongs be in the same direction, the slight yielding of the stalk

entails a small change of period. If the fork be excited by striking
one prong, the vibrations are intermittent, and appear to transfer

themselves backwards and forwards between the prongs. Unless,

however, the support be very firm, the abnormal vibration, which

involves a motion of the centre of inertia, is soon dissipated ;
and

then, of course, the vibration appears to become steady. If the

fork be merely held in the hand, the phenomenon of intermittence

cannot be obtained at all.

115. The stretched string with two attached masses may be

used to illustrate some general principles. For example, the period
of the vibration which remains possible when one mass is held

at rest, is intermediate between the two free periods. Any in

crease in either load depresses the pitch of both the natural

vibrations, and conversely. If the new load be situated at a point
of the string not coinciding with the places where the other loads

are attached, nor with the node of one of the two previously

possible free vibrations (the other has no node), the effect is still

to prolong both the periods already present. With regard to the

third finite period, which becomes possible for the first time after

the addition of the new load, it must be regarded as derived from

one of infinitely small magnitude, of which an indefinite number

may be supposed to form part of the system. It is instructive

to trace the effect of the introduction of a new load and its gradual
increase from zero to infinity, but for this purpose it will be

simpler to take the case where there is but one other. At the

commencement there is one finite period TX ,
and another of in

finitesimal magnitude r3 . As the load increases ra becomes finite,

and both TJ. and r2 continually increase. Let us now consider

what happens when the load becomes very great. One of the

periods is necessarily large and capable of growing beyond all

limit. The other must approach a fixed finite limit. The first

belongs to a motion in which the larger maps vibrates nearly as

if the other were absent
;
the second is the period of the vibration

of the smaller mass, taking place much as if the larger were fixed.

Now since T
X and ra can never be equal, TX must be always the

greater; and we infer, that as the load becomes continually larger,
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it is Tj that increases indefinitely, and r2 that approaches a finite

limit.

We now pass to the consideration of forced vibrations.

116. The general equations for a system of two degrees of

freedom including friction are

In what follows we shall suppose that Y = Q, and that

The solution for y is

(A -

If the connection between x and y be of a loose character, the

constants If, /3, B are small, so that the term (Bp*M + ifipf
in the denominator may in general be neglected. When this

is permissible, the co-ordinate y is the same as if x had been pre
vented from varying, and a force F had been introduced whose

magnitude is independent of JV, 7, and 0. But if, in consequence
of an approximate isochronism between the force and one of the

motions which become possible when x or y is constrained to be

zero, either A p*L + iap or Cp*N+ iyp be small, then the

term in the denominator containing the coefficients of mutual

influence must be retained, being no longer relatively unimportant ;

and the solution is accordingly of a more complicated character.

Symmetry shews that if we had assumed X =
0, Y~eipt

} we
should have found the same value for x as now obtains for y. This

is the Reciprocal Theorem of 108 applied to a system capable
of two independent motions. The string and two loads may again
be referred to as an example.

117. So far for an imposed force. We shall next suppose
that it is a motion of one co-ordinate (x = eipt) that is prescribed,
while F=0; and for greater simplicity we shall confine ourselves

to the case where B = 0. The value of y is

C-Np' + iyp
..................... -

Let us now inquire into the reaction of this motion on x.

We have



117.] REACTION OF A DEPENDENT SYSTEM. 167

If the real and imaginary parts of the coefficient of eipt be re

spectively A' and ia'p, we may put

a!x ................. ,(3),

and 1'- (Band A ---

It appears that the effect of the reaction of y (over and above
what would be caused by holding y = 0) is represented by changing
A into A -f A', and a into a-t-a', where A' and a' have the above

values, and is therefore equivalent to the effect of an alteration in

the coefficients of spring and friction. These alterations, however,
are not constants, but functions of the period of the motion con

templated, whose character we now proceed to consider.

Let n be the value ofp corresponding to the natural frictionless

period of y (x being maintained at zero); so that C
Then

In most cases with which we are practically concerned 7 is

small, and interest centres mainly on values of p not much differ

ing from n. We shall accordingly leave out of account the

variations of the positive factoi (B Mp^f, and in the small term

7
2

p
2
, substitute for p its approximate value n. When p is not

nearly equal to n, the term in question is of no importance.

As might be anticipated from the general principle of work,

a! is always positive. Its maximum value occurs .when p-n
nearly, and is then proportional to I fan*, which varies inversely

with 7. This might not have been expected on a superficial view

of the matter, for it seems rather a paradox that, the greater the

friction, the less should be its result. But it must be remembered

that 7 is only the coefficient of friction, and that when 7 is small

the maximum motion is so much increased that the whole work

spent against friction is greater than if 7 were more considerable.

But the point of most interest is the dependence of A' on p.

If p be less than n
tA is negative. As p passes through the value
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7i, A' vanishes, and changes sign. When A' is negative, the in

fluence of y is to diminish the recovering power of the vibration #,

and we see that this happens when the forced vibration is slower

than that natural to y. The tendency of the vibration y is thus

to retard the vibration #, if the latter be already the slower, but

to accelerate it, if it be already the more rapid, only vanishing in

the critical case of perfect isochronism. The attempt to make x

vibrate at the rate determined by n is beset with a peculiar

difficulty, analogous to that met with in balancing a heavy

body with the centre of gravity above the support. On which

ever side a slight departure from precision of adjustment may
occur the influence of the dependent vibration is always to increase

the error. Examples of the instability of pitch accompanying a

strong resonance will come across us hereafter; but undoubtedly
the most interesting application of the results of this section is to

the explanation of the anomalous refraction, by substances possess

ing a very marked selective absorption, of the two kinds of light
situated (in a normal spectrum) immediately on either side of the

absorption band 1
. It was observed by Christiansen and Kundt,

the discoverers of this remarkable phenomenon, that media of the

kind in question (for exam pie, fuchsine in alcoholic solution) refract

the ray immediately below the absorption-band abnormally in

excess, and that above it in defect. If we suppose, as on other

grounds it would be natural to do, that the intense absorption is

the result of an agreement between the vibrations of the kind of

light affected, and some vibration proper to the molecules of the

absorbing agent, our theory would indicate that for light of some
what greater period the effect must be the same as a relaxation of

the natural elasticity of the ether, manifesting itself by a slower

propagation and increased refraction. On the other side of the

absorption-band its influence must be in the opposite direc

tion,

In order to trace the law of connection between A' and p, take
for brevity, 7 n = a, N(pz ~ nz

)
= x, so that

A'

When the sign of x is changed, A' is reversed with it, but pre
serves its numerical value. When x = 0, or 00, A' vanishes.

1 Phil Mag,, May, 1872. Also Sellmeier, Fogg. Ann. t. cxliii. p. 272, 1871.



117.] REACTION OF A DEPENDENT SYSTEM.

Fig. 18.

If

169

Hence the origin is on the representative curve (Fig. 18), and the

axis of x is an asymptote. The maximum and minimum values of

A 1
occur when x is respectively equal to 4- a, or a

;
and then

x J_
o& 4- a2

~~
~*
2a

"

The corresponding values of p are given by

Hence, the smaller the value of a or 7, the greater will "be the

maximum alteration of A, and the corresponding value of p will

approach nearer and nearer to n. It may be well to repeat, that in

the optical application a diminished 7 is attended by an increased

maximum absorption. When the adjustment of periods is such as

to favour A' as much as possible, the corresponding value of a is

one half of its maximum.



CHAPTER VI.

TRANSVERSE VIBRATIONS OE STRINGS.

118. AMONG vibrating bodies there are none that occupy a

more prominent position than Stretched Strings. From the

earliest times they have been employed for musical purposes,

and in the present day they still form the essential parts of such

important instruments as the pianoforte and the violin. To the

mathematician they must always possess a peculiar interest as the

battle-field on which were fought out the controversies of D'Alem-

be'rt, Euler, Bernoulli and Lagrange, relating to the nature of the

solutions of partial differential equations. To the student of

Acoustics they are doubly important. In consequence of the com

parative simplicity of their theory, they are the ground on which

difficult or doubtful questions, such as those relating to the nature

of simple tones, can be most advantageously faced
;
while in the

form of a Monochord or Sonometer, they afford the most generally
available means for the comparison of pitch.

The '

string
'

of Acoustics is a perfectly uniform and flexible

filament of solid matter stretched between two fixed points in

fact an ideal body, never actually realized in practice, though

closely approximated to by most of the strings employed in music.

We shall afterwards see how to take account of any small devia

tions from complete flexibility and uniformity.

The vibrations of a string may be divided into two distinct

classes, which are practically independent of one another, if the

amplitudes do not exceed certain limits. In the first class the

displacements and motions of the particles are longitudinal, so

that the string always retains its straightness. The potential

energy of a displacement depends, not on the whole tension, but

on the changes of tension which occur in the various parts of the

string, due to the increased or diminished extension. In order to
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calculate it we must know the relation between the extension of

a string and the stretching force. The approximate law (given by

Hooke) may be expressed by saying that the extension varies

as the tension, so that if I and V denote the natural and the

stretched lengths of a string, and T the tension,

-s <

where E is a constant, depending on the material and the section,

which may be interpreted to mean the tension that would be

necessary to stretch the string to twice its natural length, if the

law applied to so great extensions, which, in general, it is far

from doing.

119. The vibrations of the second kind are transverse ; that is

to say, the particles of the string move sensibly in planes perpen
dicular to the line of the string. In this case the potential energy
of a displacement depends upon the general tension, and the

small variations of tension accompanying the additional stretching

due to the displacement may be left out of account. It is here

assumed that the stretching due to the motion may be neglected

in comparison with that to which the string is already subject in

its position of equilibrium. Once assured of the fulfilment of this

condition, we do not, in the investigation of transverse vibrations,

require to know anything further of the law of extension.

The most general vibration of the transverse, or lateral, kind

may be resolved, as we shall presently prove, into two sets of

component normal vibrations, executed in perpendicular planes.

Since it is only in the initial circumstances that there can be any

distinction, pertinent to the question, between one plane and

another, it is sufficient for most purposes to regard the motion as

entirely confined to a single plane passing through the line of the

string.

In treating of the theory of strings it is usual to commence

with two particular solutions of the partial differential equation,

representing the transmission of waves in the positive and nega

tive directions, and to combine these in such a manner as to suit

the case of a finite string, whose ends are maintained at rest
;

neither of the solutions taken by itself being consistent with the

existence of nodes, or places of permanent rest. This aspect of the

question is very important, and we shall fully consider it
;
but it
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seems scarcely desirable to found the solution in the first instance

on a property so peculiar to a uniform string .as the undisturbed

transmission of waves. We will proceed by the more general

method of assuming (in conformity with what was proved in the

last chapter) that the motion may be resolved into normal com

ponents of the harmonic type, and determining their periods and

character by the special conditions of the system.

Towards carrying out this design the first step would naturally

be the investigation of the partial differential equation, to which

the motion of a continuous string is subject. But in order to

throw light on a point, which it is most important to understand

clearly, the connection between finite and infinite freedom, and

the passage corresponding thereto between arbitrary constants

and arbitrary functions, we will commence by following a some

what different course.

120. In Chapter ill. it was pointed out that the fundamental

vibration of a string would not be entirely altered in character,

if'the mass were concentrated at the middle point. Following
out this idea, we see that if the whole string were divided into a

number of small parts and the mass of each concentrated at its

centre, we might by sufficiently multiplying the number of parts

arrive at a system, still of finite freedom, but capable of represent

ing the continuous string with any desired accuracy, so far at

least as the lower component vibrations are concerned. If the

analytical solution for any number of divisions can be obtained,

its limit will give the result corresponding to a uniform string.

This is the method followed by Lagrange.

Let I be the length, pi the whole mass of the string, so that

p denotes the mass per unit length, T the tension.

Pig. 19.

The length of the string is divided into m + 1 equal parts (a),

so that

=*Z (1),
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At the m points of division equal masses (/t) are supposed con

centrated, which are the representatives of the mass of the por

tions (a) of the string, which they severally bisect. The mass of

each terminal portion of length \a is supposed to be concentrated

at the final points. On this understanding, we have

= P Z ........................ (2).

We proceed to investigate the vibrations of a string, itself

devoid of inertia, but loaded at each of m points equidistant

(a) from themselves and from the ends, with a mass p,.

If ^i, ^2 ...... ^m+2 denote the lateral displacements of the

loaded points, including the initial and final points, we have the

following expressions for T and F,

with the conditions that fa and
-/rm+2 vanish. These give by

Lagrange's Method the m equations of motion,

&h
Btys +Afa H- Biff^

=

Bfa + Afa +Bfa =0 (5),

-a
=

_ ZJLi TJ TI //\

where A =
/i,D

2
4- - ,

x> = v^;.

Supposing now that the vibration under consideration is one

of normal type, we assume that fa, fa, &c. are all proportional to

cos (nt
-

e), where n remains to be determined. A and B may

then be regarded as constants, with a 'substitution of - ri* for D2
.

If for the sake of brevity we put

C=^5 = -2 +^ (7),

the determinantal equation, which gives the values of n\ assumes

the form



174 TRANSVERSE VIBRATIONS OF STRINGS. [120.

0, I, 0, 0,

1, C, 1, 0,

0, 1, C, 1,

0, 0, 1, C, 1

0, 0, 0, 1, C

m rows

.(8).

From this equation the values of the roots might be found.

It may be proved that, if (7= 2 cos 6, the determinant is equivalent

to sin (m + 1) 6 -*- sin 6
;
but we shall attain our object with greater

ease directly from (5) by acting on a hint derived from the known

results relating to a continuous string, and assuming for trial a

particular type of vibration. Thus let a solution be

^r
= P sin(r-l)/3 cos(?z-e) (9),

a form which secures that ^ = 0. In order that -^m+2 may
vanish,

(m + 1) /3
= s TT (10),

where s is an integer. Substituting the assumed values of ^ in

the equations (5), we find that they are satisfied, provided that

2.Bcos/3 + A = (11) ;

so that the value of n in terms of /? is

^ (12).

A normal vibration is thus represented by

iK = Ps sin
~ cos (na t ea) (13),

in + 1

where nt
= 2 A / sin

-=--,
-r (14),V pa & (wi + 1)

and P8> s denote arbitrary constants independent of the general

constitution of the system. The m admissible values of n are

found from (14) by ascribing to s in succession the values 1, 2,

3...m, and are all different. If we take s =m + l, tyr vanishes,

so that this does not correspond to a possible vibration. Greater

values of s give only the same periods over again. If m + 1 be

even, one of the values of n that, namely, corresponding to
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s = (m-f 1), is the same as would be found in the case of only

a single load (m = 1). The interpretation is obvious. In the kind

of vibration considered every alternate particle remains at rest, so

that the intermediate ones really move as though they were

attached to the centres of strings of length 2a, fastened at

the ends.

The most general solution is found by putting together all the

possible particular solutions of normal type

and, by ascribing suitable values to the arbitrary constants, can

be identified with the vibration resulting from arbitrary initial

circumstances.

Let x denote the distance of the particle r from the end of the

string, so that (r-l)a = #; then by substituting for ^ and a

from (1) and (2), our solution may be written,

cos(n8t- 8) ............ (16),

snSm

lu order to pass to the case of a continuous string, we have

only to put m infinite. The first equation retains its form, and

specifies
the displacement at any point a. The limiting form of

the second is simply ' M
w = TA/7

whence for the periodic time,

The periods of the component tones are thus aliquot parts of

that of the gravest of the series, found by putting 5 = 1. The

whole motion is in all cases periodic; and the period is 21
VO/^O-

This statement, however, must not be understood as excluding

a shorter period; for in particular cases any number of the

lower components may be absent. All that is asserted is that the
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above-mentioned interval of time is sufficient to bring about a com

plete recurrence. We defer for the present any further discussion

of the important formula (19), but it is interesting to observe the

approach to a limit in (17), as m is made successively greater and

greater. For this purpose it will be sufficient to take the gravest
tone for which s = 1, and accordingly to trace the variation of

2 (m + 1)

7T
sin

7T

2 (m + 1)

'

The following are a series of simultaneous values of the func

tion and variable :

It will be seen that for very moderate values of m the limit is

closely approached. Since m is the number of (moveable) loads,

the case m= 1 corresponds to the problem investigated in Chapter

in., but in comparing the res alts we must remember that we there

supposed the whole mass of the string to be concentrated at the

centre. In the present case the load at the centre is only half as

great; the remainder being supposed concentrated at the ends,

where it is without effect.

From the fact that our solution is general, it follows that any
initial form of the string can be represented by

* =QO _. fTTT

(*)
= 2 (Jocose). sin tZp=sl I

(20).

And, since any form possible for the string at all may be

regarded as initial, we infer that any finite single valued function

of x
t
which vanishes at sc = and x = I, can be expanded within

those limits in a series of sines of Trxjl and its multiples, which

is a case of Fourier's theorem. We shall presently shew how the

more general form can be deduced.

121. We might now determine the constants for a continuous

string by integration as in 93, but it is instructive to solve the

problem first in the general case (m finite), and afterwards to

proceed to the limit. The initial conditions are
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A ' 7ra A ' n 7^ ~~
= Jd 1 sm-T- -f-d a sm2-T- -f...

I* L

A
'

'
A ' ^ A '= -4i sm m -=- 4- J. 3 sin 2m -=-+...+ -4m sinLu

where, for brevity, A 8 PS CQS 8) and ^(a)
are the initial displacements of the m particles.

To determine any constant A 3 , multiply the first equation by
sin (s7ra/l) >

the second by sin (%S7ra/l), &c., and add the results.

Then, by Trigonometry, the coefficients of all the constants, except

A s , vanish, while that of A s
= J (m -f I)

1
. Hence

2 r=m 'TTQj

We need not stay here to write down the values of B8 (equal

to Ps sin 8) as depending on the initial velocities. When a becomes

infinitely small, ra under the sign of summation ranges by infi

nitesimal steps from zero to L At the same time-- == T ,r m + 1 6

.so that writing ra = x, a = dx, we have ultimately

(2),
\ * /

-expressing A s in terms of the initial displacements.

122. We will now investigate independently the partial differ

ential equation governing the transverse motion of a perfectly

flexible string, on the suppositions (1) that the magnitude of the

tension may be considered constant, (2) that the square of the

inclination of any part of the string to its initial direction may be

neglected. As before, p denotes the linear density at any point,

,and TI is the constant tension. Let rectangular co-ordinates be

taken parallel, and perpendicular to the string, so that x gives the

equilibrium and x, y, z the displaced position of any particle at

time t. The forces acting on the element dx are the tensions at

1 Todhtmter's Int. Culc., p. 267.
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its two ends, and any impressed forces Tp dx, Zpdx. By D'Alem-

bert's Principle these form an equilibrating system with the

reactions against acceleration, pd
2
y/dtf, pd*2/dt

z
. At the

point x the components of tension are

~, dy m dz
rti y fj>

w

if the squares of dy/dx, dzjdx be neglected ;
so that the forces

acting on the element dx arising out of the tension are

T ^
(dy \ ri T (

Hence for the equations of motion,

dt*

from which it appears that the dependent variables y and z are

altogether independent of one another.

The student should compare these equations with the corre

sponding equations of finite differences in 120. The latter may
be written

d2 T

Now in the limit, when a becomes infinitely small,

-f (x
-

a) +^ (x + a)
-

2-v/r (x) = ^" (x) a
2
,

while fi
= pa ;

and the equation assumes ultimately the form

TI d*

i f \

agreeing with (1).

In like manner the limiting forms of (3) and (4) of 120 are

which may also be proved directly.
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The first is obvious from the definition of T. To prove the

second, it is sufficient to notice that the potential energy in any
configuration is the work required to produce the necessary

stretching against the tension T
l . Beckoning from the configura

tion of equilibrium, we have

*-*>!&->)*

and, so far as the third power of -~L
.

ds , , fdy\-

123. In most of the applications that we shall have to make,
the density p is constant, there are no impressed forces, and the

motion may be supposed to take place in one plane. We mav
then conveniently write

the differential equation is expressed by

<*
a

.y y

If we now assume that
;</

varies as cos wnt % our equation

becomes

of which the most general solution is

y = (A sin 777,0? + C cos mx) cos mat ...... . ..... (4),

This, however, is not the most general harmonic motion of

the period in question. In order to obtain the latter, \ve must

assume

y y-L
cos mat -f j/2

sin mat .................. (5) f

where yl9 y are functions of a?, not necessarily the sanu\ On

substitution in (2) it appears that yl and y2 are subject to et^uatious

of the form (3), so that finally

y = (A sin mx 4- cos mx) cos mat ) ,

fi

.

+ (5 sin tncc 4- D cos mx) sin mat ]

an expression containing four arbitrary constants. For any con

tinuous length of string satisfying without interruption the differ-
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ential equation, this is the most general solution possible, under

the condition that the motion at every point shall be simple

harmonic. But whenever the string forms part of a system

vibrating freely and without dissipation, we know from former

chapters that all parts are simultaneously in the same phase,

which requires that

A : B = C : D ........................ (7);

and then the most general vibration of simple harmonic type is

y = (a sin inx 4- ft cos mx] cos (mat e) .......... (8).

124. The most simple as well as the most important problem
connected with our present subject is the investigation of the free

vibrations of a finite string of length I held fast at both its ends.

If we take the origin of x at one end, the terminal conditions are

that when # = 0, and when x=-l, y vanishes for all values of t.

The first requires that in (6) of 123

C = 0, D = ........................ (1);
and the second that

sinmZ = ........................... (2),

or that ml =
STT, where s is an integer. We learn that the only

harmonic vibrations possible are such as make

-T ............................ <3)-

and then
. STTX f . sired n , S7rat\

y = sm (

Acos-j +5 sin y~ ) .......... (4).

Now we know a priori that whatever the motion may be, it

can be represented as a sum of simple harmonic vibrations, and
we therefore conclude that the most general solution for a string,
fixed at and I, is

oo /

....... (5).

The slowest vibration is that corresponding to 5 = 1. Its

period (TZ) is given by

of

The other components have periods which are aliquot parts
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so that, as lias been already stated, the whole motion is under all

circumstances periodic in the time TJ. The sound emitted con

stitutes in general a musical note, according to our definition of

that term, whose pitch is fixed by TJ, the period of its gravest

component. It may happen, however, in special cases that the

gravest vibration is absent, and yet that the whole motion is not

periodic in any shorter time. This condition of things occurs, if

AS + Bi
2

vanish, while, for example, A?+B? and A/ + B-? are

finite. In such cases the sound could hardly be called a note;

but it usually happens in practice that, when the gravest tone is

absent, some other takes its place in the character of fundamental,

and the sound still constitutes a note in the ordinary sense,

though, of course, of elevated pitch. A simple case is when all

the odd components beginning with the hrst are missing. The

whole motion is then periodic in the time ^TI} and if the second

component be present, the sound presents nothing unusual.

The pitch of the note yielded by a string (6), and the character

of the fundamental vibration, were first investigated on mechanical

principles by Brook Taylor in 1715
;
but it is to Daniel Bernoulli

(1755) that we owe the general solution contained in (5). He

obtained it, as we have done, by the synthesis of particular

solutions, permissible in accordance with his Principle of the

Coexistence of Small Motions. In his time the generality of the

result so arrived at was open to question ;
in fact, it was the

opinion of Euler, and also, strangely enough, of Lagrange
1
,
that

the series of sines in (5) was not capable of representing an

arbitrary function
;
and Bernoulli's argument on the other side,

drawn from the infinite number of the disposable constants,

was certainly in-adequate
2

.

Most of the laws embodied in Taylor's formula (6) had been

discovered experimentally long before (1636) by Mersenne. They

may be stated thus :

1 See Biemann's Partielle Dijferential Gleichungeu, 78.

2 Dr Young, in his memoir of 1800, seems to have understood this matter quite

correctly. He says,
" At the same time, as M. Bernoulli has justly observed, since

every figure may be infinitely approximated, by considering its ordinates as

composed of the ordinates of an infinite number of trochoids of different magni

tudes, it may be demonstrated that all tfrese constituent curves would revert to

their initial state, in the same time that a similar chord bent into a trochoidal

curve would perform a single vibration ; and this is in some respects a convenient

and compendious method of considering the problem."
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(1) For a given string and a given tension, the time varies as

the length.

This is the fundamental principle of the monochord, and

appears to have been understood by the ancients 1
.

(2) When the length of the string is given, the time varies

inversely as the square root of the tension.

(3) Strings of the same length and tension vibrate in times,

which are proportional to the square roots of the linear density.

These important results may all be obtained by the method of

dimensions, if it be assumed that r depends only on I, p, and T^

For, if the units x>f length, time and mass be denoted re

spectively by [], [T], [Jfl, the dimensions of these symbols are

given by

and thus (see 52) the only combination of them capable of re

presenting a time is Tr*.p*.'l. The only thing left undetermined

is the numerical factor.

125. Mersenne's laws are exemplified in all stringed instru

ments. In playing the violin different notes are obtained from

the same string by shortening its efficient length. In tuning
the violin or the pianoforte, an adjustment of pitch is effected

with a constant length by varying the tension; but it must be

remembered that p is not quite invariable.

To secure a prescribed pitch with a string of given material, it is

requisite that one relation only be satisfied between the length, the

thickness, and the tension; but in practice there is usually no great

latitude. The length is often limited by considerations of con

venience, and its curtailment cannot always be compensated by
an increase of thickness, because, if the tension be not increased

proportionally to the section, there is a loss of flexibility,

while if the tension be so increased, nothing is effected towards

lowering the pitch. The difficulty is avoided in the lower strings

of the pianoforte and violin by the addition of a coil of fine wire,

whose effect is to impart inertia without too much impairing

flexibility.

1 Aristotle " knew that a pipe or a chord of double length produced a sound of

>vhich the vibrations occupied a double time
;
and that the properties of concords

depended on the proportions of the times occupied by the vibrations of tho

separate sounds.
3 '

Young's Lectures on Natural Philosophy, Vol. I. p. 404.
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For quantitative investigations into the laws of strings, the

sonometer is employed. By means of a weight hanging over a

pulley, a catgut, or a metallic wire, is stretched across two bridges

mounted on a resonance case. A moveable bridge, whose position

is estimated by a scale running parallel to the wire, gives the

means of shortening the efficient portion of the wire to any
desired extent. The vibrations may be excited by plucking, as

in the harp, or with a bow (well supplied with rosin), as in the

violin.

If the moveable bridge be placed half-way between the fixed

ones, the note is raised an octave
;
when the string is reduced to

one-third the note obtained is the twelfth.

By means of the law of lengths, Mersenne determined for the

first time the frequencies of known musical notes. He adjusted the

length of a string until its note was one of assured position in the

musical scale, and then prolonged it under the same tension until

the vibrations were slow enough to be counted.

For experimental purposes it is convenient to have two, or

more, strings mounted side by side, and to vary in turn their

lengths, their masses, and the tensions to which they are subjected.

Thus in order that two strings of equal length may yield the

interval of the octave, their tensions must be in the ratio of 1 : 4,

if the masses be the same
; or, if the tensions be the same the

masses must be in the reciprocal ratio.

The sonometer is very useful for the numerical determination

of pitch. By varying the tension, the string is tuned to unison

with a fork, or other standard of known frequency, and then by

adjustment of the moveable bridge, the length of the string is

determined, which vibrates in unison with any note proposed for

measurement. The law of lengths then gives the means of

effecting the desired comparison of frequencies.

Another application by Scheibler to the determination of

absolute pitch is important. The principle is the same as that

explained in Chapter III., and the method depends on deducing
the absolute pitch of two notes from a knowledge of both the

ratio and the difference of their frequencies, The lengths of the

sonometer string when in unison with a fork, and when giving with

it four beats per second, are carefully measured. The ratio of the
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lengths is the inverse ratio of the frequencies, and the difference

of the frequencies is four. From these data the absolute pitch of

the fork can be calculated.

The pitch of a string may be calculated also by Taylor's
formula from the mechanical elements of the system, but

great precautions are necessary to secure accuracy. The tension

is produced by a weight, whose mass (expressed with the same
unit as p) may be called P; so that T^^gP, where # = 32*2,

if the units of length and time be the foot and the second. In

order to secure that the whole tension acts on the vibrating

segment, no bridge must be interposed, a condition only to be

satisfied by suspending the string vertically. After the weight is

attached, a portion of the string is isolated by clamping it firmly
at two points, and the length is measured. The mass of the unit

of length p refers to the stretched state of the string, and may be
found indirectly by observing the elongation due to a tension

of the same order of magnitude as Tlt and calculating what
would be produced by Tl according to Hooke's law, and by
weighing a known length of the string in its normal state.

After the clamps have been secured great care is required to

avoid fluctuations of temperature, which would seriously influence

the tension. In this way Seebeck obtained very accurate results.

126. When a string vibrates in its gravest normal mode, the

excursion is at any moment proportional to sin (TT#/), increasing

numerically from either end towards the centre
;
no intermediate

point of the string remains permanently at rest. Bub it is other

wise in the case of the higher normal components. Thus, if the

vibration be of the mode expressed by

. TTX . sirat n . $7rat\
y = sin -7- A 8 cos r- + Bs sin =-

,

6 \ i. 6 /

the excursion is proportional to sin (sirx/l), which vanishes at s - I

points, dividing the string into s equal parts. These points of no
motion are called nodes, and may evidently be touched or held

fast without in any way disturbing the vibration. The produc
tion of

'

harmonics
'

by lightly touching the string at the points of

aliquot division is a well-known resource of the violinist. All

component modes are excluded which have not a node at the

point touched
;
so that, as regards pitch, the effect is the same as

if the string were securely fastened there.
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127. The constants, which occur in the general value of y,

124, depend on the special circumstances of the vibration, and

may be expressed in terms of the initial values of y and y.

Putting t 0, we find

^S= A . STTX . TTCt ^S= . S7TX /_ N

2/0
= 2^! Asm; y = 2^ sBs sin ...... (1).

Multiplying by sin
j- ,

and integrating from to Z, we obtain

A 2 f
l srrx , _. 2 f

z
. . $TT# .

/rfcNA = T 2/o
sin -j- cfo

; *
=- 1

2/
sm p-cfo ...... (2).

y J v TTOSJ o 6

These results exemplify Stokes' law, 95
;
for that part of y, which

depends on the initial velocities, is

*=oo 2 .

and from this the part depending on initial displacements may
be inferred, by differentiating with respect to the time, and

substituting y for y .

When the condition of the string at some one moment is

thoroughly known, these formulae allow us to calculate the

motion for all subsequent time. For example, let the string be

initially at rest, and so displaced that it forms two sides of a

triangle. Then jB8 = ;
and

I

(3),
7r*s*b(l~b) I

on integration.

We see that A 8 vanishes, if sin (sTrbJl)
= 0, that is, if there be

a node of the component in question situated at P. A more

comprehensive view of the subject will be afforded by another

mode of solution to be given presently.
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128. In the expression for y the coefficients of sin (STTX/I) are

the normal co-ordinates of Chapters IV. and v. We will denote

them therefore by <f>8>
so that the configuration and motion of the

system at any instant are defined by the values of ^ and
<j>s

according to the equations

, . TTX
, ,

. 2-Tnc
,

. . STTX \

y = <f> I
sin

-j- + <f> 2
sm -y- -f . . . +

<f> 8
sm -y- + . . .

1 ' '

...... (1).
: . 7TX

;
. S-TTtf

;
. STTX

y = </> 1 sm-y -f
</> 2 sm-y~ +- + ^sin-j-+ ...

We proceed to form the expressions for T and V, and thence

to deduce the normal equations of vibration.

For the kinetic energy,

OTr/y\25

-^ da
w J

the product of every pair of terms vanishing by the general

property of normal co-ordinates. Hence

In like manner,

(3)-

These expressions do not presuppose any particular motior, either

natural, or otherwise
;
but we may apply them to calculate the

whole energy of a string vibrating naturally, as follows : If M
be the whole mass of the string (pl\ and its equivalent (a

2

p) be

substituted for Tlt we find for the sum of the energies,

or, in terms of A 8 and Bg of 126,
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If the motion be not confined to the plane of xy, we have

merely to add the energy of the vibrations in the perpendicular

plane.

Lagrange's method gives immediately the equation of motion

which has been already considered in 66. If < and
<j>

be the

initial values of < and
<j>,

the general solution is

sinntf

Y> G>o
"~ 4" Po COS Tit

n

where n is written for

By definition <E>, is such that <J>* 8$8 represents the work done

by the impressed forces on the displacement B<f>s > Hence, if the

force acting at time t on an element of the string pdcc be p Ydx,

f
J Q

(8).

In these equations <f>8 is a linear quantity, as we see from (1); and

<E>g is therefore a force of the ordinary kind.

129. In the applications that we have to make, the only

impressed force will be supposed to act in the immediate neigh
bourhood of one point # = 6, and may usually be reckoned as

a whole, so that

(1).

If the point of application of the force coincide with a node of

the mode (5), <&,
= 0, and we learn that the force is altogether

without influence on the component in question. This principle

is of great importance ;
it shews, for example, that if a string be

at rest in its position of equilibrium, no force applied at its centre,

whether in the form of plucking, striking, or bowing, can generate

any of the even normal components
1

. If after the operation of

the force, its point of application be damped, as by touching it

1 The observation that a harmonic is not generated, when one of its nodal

points is plucked, is due to Young.
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with the finger, all motion must forthwith cease
;
for those com

ponents which have not a node at the point in question are

stopped by the damping, and those which have, are absent from

the beginning
1
. More generally, by damping any point of a

sounding string, we stop all the component vibrations which have

not, and leave entirely unaffected those which have a node at the

point touched.

The case of a string pulled aside at one point and afterwards

let go from rest may be regarded as included in the- preceding
statements. The complete solution may be obtained thus. Let

the motion commence at the time = 0; from which moment
$>8
= 0. The value of

<f>8
at time t is

cos nt + -
(4>8)o sinnt (2),n

where (05) , (</>)
denote the initial values of the quantities

affected with the suffix s. Now in the problem in hand
(</>g)

=
0,

and (<p8) is determined by

(3),

if Y' denote the force with which the string is held aside at the

point 6. Hence at time t

*
=
l^

and by (1) of 128

p
-> -*- .......... ,

where n =
S7ra/l.

The symmetry of the expression (5) in % and b is an example
of the principle of 107.

The problem of determining the subsequent motion of a string
set into vibration by an impulse acting at the point 6, may be

treated in a similar manner. Integrating (6) of 128 over the

duration of the impulse, we find ultimately, with the same nota

tion as before,

f ;
, 2 . STrl

(^) =
^sm

7lt

1 A like result ensues when the point which is damped is at the same distance

from one end of the string as the point of excitation is from the other end.
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if lY'dt be denoted by P^ At the same time
(<j>8) Q

= 0, so that by

(2) at time t

2Fa _, . STrb . STTX &mnt
2~ smTsm

The series of component vibrations is less convergent for a struck

than for a plucked string, as the preceding expressions shew.

The reason is that in the latter case the initial value of y is

continuous, and only dyjdx discontinuous, while in the former it

is y itself that makes a sudden spring. See 32, 101.

The problem of a string set in motion by an impulse may also

be solved by the general formulae (7) and (8) of 128. The force

finds the string at rest at t = 0, and acts for an infinitely short

time from =0 to t = T'. Thus (<^) and (^) vanish, and (7)

of 128 reduces to

2 f
T

'

<f> =- sin nt <&8 dt',
Ipn J o

while by (8) of 128

T
T'^ 7./ S7r& r\rtjj.f - svrb
<&8 dt' = sm -y- Ydt = sin -=- Fa ,

Jo ^ J o ^

Hence, as before,
2 Tr . sirb .

Hitherto we have supposed the disturbing force to be concen

trated at a single point. If it be distributed over a distance f$

on either side of 6, we have only to integrate the expressions (6)

and (7) with respect to 6, substituting, for example, in (7) in place

of FL sin ($7rb/l),

rb+& S7rfc

I F/ sin^ eft.

J &H3 *

If F/ be constant between the limits, this reduces to

Tr , . . /Q v

FI - sin -V- sin -
1 ................... (8).

S7T I I

The principal effect of the distribution of the force is to render

the series for y more convergent.

130. The problem which will next engage our attention is

that of the pianoforte wire. The cause of the vibration is here

the blow of a hammer, which is projected against the string, and
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after the impact rebounds. But we should not be justified in

assuming, as in the last section, that the mutual action occupies

so short a time that its duration may be neglected. Measured by
the standards of ordinary life the duration of the contact is indeed

very small, but here the proper comparison is with the natural

periods of the string. Now the hammers used to strike the wires

of a pianoforte are covered with several layers of cloth for the

express purpose of making them more yielding, with the effect of

prolonging the contact. The rigorous treatment of the problem

would be difficult, and the solution, when obtained, probably too

complicated to be of use
;
but by introducing a certain simplifica

tion Helmholtz has obtained a solution representing all the

essential features of the case. He remarks that since the actual

yielding of the string must be slight in comparison with that of

the covering of the hammer, the law of the force called into play

during the contact must be nearly the same as if the string were

absolutely fixed, in which case the force would vary very nearly as

a circular function. We shall therefore suppose that at the time

t = 0, when there are neither velocities nor displacements, a force

Fsin.pt begins to act on the string at x = b, and continues through

half a period of the circular function, that is, until t = vr/p, after

which the string is once more free. The magnitude of p will

depend on the mass and elasticity of the hammer, but not to any

great extent on the velocity with which it strikes the string.

The required solution is at once obtained by substituting for

<E>, in the general formula (7) of 128 its value given by

(1),

the range of the integration being from to tr/p. We find

(t>ir/p)

<,=- sin^- aian(t--t')siDLptfdt'
Inp I Jo

4P coSr
$7rb

-7- . sin n (t :==-= ;
-
v . Ji1 QJUU j . OIJ.A /t t/ fT~ \ \^Jy

lpn(p* nz

) I \ 2pJ
x

and the final solution for y becomes, if we substitute tor n and p

their values,

_ RITl -----

2t>
"

I . STTX . svra/^ TT\ /ON
?r% , o ,x

s^ -7- sin -T" f - 5^: -(3 )'

their values,

cos ^r-f . sin
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We see that all components vanish which have a node at the

point of excitement, but this conclusion does not depend on any
particular law of force. The interest of the present solution lies

in the information that may be elicited from it as to the depend
ence of the resulting vibrations on the duration of contact. If

we denote the ratio of this quantity to the fundamental period of

the string by v, so that v = ira : 2pZ, the expression for the ampli
tude of the component s is

SFl v cos (STTV) . STrb . . .

We fall back on the case of an impulse by putting z; = 0,

and

p
When v is finite, those components disappear, whose periods

8X6 t> > ? f fche duration of contact ; and when s is very

great, the series converges with 5~8
. Some allowance must also

be made for the finite breadth of the hammer, the effect of which
will also be to favour the convergence of the series.

The laws of the vibration of strings may be verified, at least

in their main features, by optical methods of observation either

with the vibration-microscope, or by a tracing point recording the

character of the vibration on a revolving drum. This character

depends on two things, the mode of excitement, and the point
whose motion is selected for observation. Those components do

not appear which have nodes either at the point of excitement, or

at the point of observation. The former are not generated, and

the latter do not manifest themselves. Thus the simplest motion

is obtained by plucking the string at the centre, and observing
one of the points of trisection, or vice versa. In this case the

first harmonic which contaminates the purity of the principal

vibration is the fifth component, whose intensity is usually in

sufficient to produce much disturbance.

[The dynamical theory of the vibration of strings may be

employed to test the laws of hearing, and the necessary experi
ments are easily carried out upon a grand pianoforte. Having
freed a string, say c, from its damper by pressing the digital, pluck
it at one-third of its length. According to Young's theorem the

third component vibration is not excited then, and in corre-
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spondence with that fact the ear fails to detect the component g'.

A slight displacement of the point plucked brings g' in again;

and if a resonator (#') be used to assist the ear, it is only with

difficulty that the point can be hit with such precision as entirely

to extinguish the tone. Experiments of this kind shew that the

ear analyses the sound of a string into precisely the same con

stituents as are found by sympathetic resonance, that is, into

simple tones, according to Ohm's definition of this conception.

Such experiments are also well adapted to shew that it is not a

mere play of imagination when we hear overtones, as some people

believe it is on hearing them for the first time 1
.

If, after the string has been sounded loudly by striking. the

digital, it be touched with the finger at one. of the points of

trisection, all components are stopped except the 3rd, 6th, &c., so

that these are left isolated. The inexperienced observer is usually

surprised by the loudness of the residual sound, and begins to

appreciate the large part played by overtones.]

131. The case of a periodic force is included in the general
solution of 128, but we prefer to follow a somewhat different

method, in order to make an extension in another direction. We
have hitherto taken no account of dissipative forces, but we will

now suppose that the motion of each element of the string is

resisted by a force proportional to its velocity. The partial

differential equation becomes

by means of which the subject may be treated. But it is still

simpler to avail ourselves of the results of the last chapter,

remarking that in the present case the dissipation-function F is

of the same form as T. In fact

where
<f>ly

< 2v are the normal co-ordinates, by means of which

T and V are reduced to sums of squares. The equations of

motion are therefore simply

4>* + K<f>8 + tf(t>g
= 2-<b8 .................. (3),

1
Helmholtz, Ch. iv.

; Brandt, Pogg. Ann., Vol. cm. p. 324, 1861.
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of the same form as obtains for systems with but one degree of

freedom. It is only necessary to add to what was said in

Chapter ill., that since K is independent of 5, the natural vibra

tions subside in such a manner that the amplitudes maintain their

relative values.

If a periodic force Fcospt act at a single point, we have

~
cospt........................ (4),

i f A* i
. , A ,.

and 46 <p= j

- sin
-y-

cos (pt e) ............... (5),

where tan = ~- - ........ , ..................... (6).

If among the natural vibrations there be any one nearly

isochronous with cos pt, then a large vibration of that type will

be forced, unless indeed the point of excitement should happen to

fall near a node. In the case of exact coincidence, the component
vibration in question vanishes

;
for no force applied at a node can

generate it, under the present law of friction, which however, it

may be remarked, is very special in character. If there be no

friction, K = 0, and

which would make the vibration infinite, in the case of perfect

isochronism, unless sin (sTrb/l)
= 0.

The value of y is here-, as usual

132. The preceding solution is an example of the use of

normal co-ordinates in a problem of forced vibrations. It is of

course to free vibrations that they are more especially applicable,

and they may generally be used with advantage throughout,

whenever the system after the operation of various forces is

ultimately left to itself. Of this application we have already had

examples.

In the case of vibrations due to periodic forces, one advantage
of the use of normal co-ordinates is the facility of comparison with

the equilibrium theory, which it will be remembered is the theory
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of the motion on the supposition that the inertia of the system

may be left out of account. If the value of the normal co-ordinate

<f>8
on the equilibrium theory be A 8 cospt, then the actual value

will be given by the equation

so that, when the result of the equilibrium theory is known -and

can readily be expressed in terms of the normal co-ordinates, the

true solution with the effects of inertia included can at once be

written down.

In the present instance, if a force Fcospt of very long period

act at the point b of the string, the result of the equilibrium

theory, in accordance with which the string would at any moment

consist of two straight portions, will be

2F .

from which the actual result for all values ofp is derived by simply

writing (ri*
- p

z

)
in place of n\

The value of y in this and similar cases may however be

expressed in finite terms, and the difficulty of obtaining the

finite expression is usually no greater than that of finding the

form of the normal functions when the system is free. Thus in

the equation of motion

suppose that T varies as cos mat The forced vibration will then

satisfy

If Y~ 0, the investigation of the normal functions requires the

solution of

3+**-*
and a subsequent determination of m to suit the boundary con

ditions. In the problem of forced vibrations m is given, and we

have only to supplement any particular solution of (3) with the

complementary function containing two arbitrary constants. This

function, apart from the value of m and the ratio of the constants,
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is of the same form as the normal functions
;
and all that remains to

be effected is the determination of the two constants in accordance

with the prescribed boundary conditions which the complete
solution must satisfy. Similar considerations apply in the case

of any continuous system.

133. If a periodic force be applied at a single point, there are

two distinct problems to be considered; the first, when at the

point x = b, a given periodic force acts
;
the second, when it is the

actual motion of the point b that is obligatory. But it will be

convenient to treat them together.

The usual differential equation

dt* dt~ da?
........................

'

is satisfied over both the parts into which the string is divided at

6, but is violated in crossing from one to the other.

In order to allow for a change in the arbitrary constants, we
must therefore assume distinct expressions for y, and afterwards

introduce the two conditions which must be satisfied at the point
of junction. These are

(1) That there is no discontinuous change in the value of y ;

(2) That the resultant of the tensions acting at b balances the

impressed force.

Thus, if Fco&pt be the force, the second condition gives

(2),

where ^(dyjdx) denotes the alteration in the value of dy/dx
incurred in crossing the point x = b in the positive direction.

We shall, however, find it advantageous to replace cospt by
the complex exponential e^*, and finally discard the imaginary

part, when the symbolical solution is completed. On the assump
tion that y varies as efpt, the differential equation becomes

where X2
is the complex constant,

(4).



196 TRANSVERSE VIBRATIONS OF STRINGS. [133.

The most general solution of (3) consists of two terms, pro

portional respectively to sin X#, and cos \x
;
but the condition to

be satisfied at x= shews that the second does not occur here.

Hence if 7 eipt be the value of y at x = b,

is the solution applying to the first part of the string from x =
to x = 6. In like manner it is evident that for the second part we
shall have

If 7 be given, these equations constitute the symbolical solution

of the problem ;
but if it be the force that is given, we require

further to know the relation between it and 7.

Differentiation of (5) and (6) and substitution in the equation

analogous to (2) gives

F sinXfc am\(l b)- -
Thus

^ sinX^g sinX(i b) i t

y~~T^ X sin \l

from cc = to x ~ 6

__
J? sin \(l ^?) sin \b it

y~Tt X sin \J
e

from & = b to a? = I

These equations exemplify the general law of reciprocity

proved in the last chapter ; for it appears that the motion at x
due to the force at b is the same as would have been found at b,

had the force acted at x.

In discussing the solution we will take first the case in which
there is no friction. The coefficient re is then zero

;
while X is

real, and equal to p/a. The real part of the solution, correspond

ing to the force Fcospt, is found by simply putting cos pt for eipt

in (8), but it seems scarcely necessary to write the equations again
for the sake of so small a change. The same remark applies to

the forced motion given in terms of 7.

It appears that the motion becomes infinite in case the force

1 Donkin's Acoustics, p. 121.
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is isochronous with one of the natural vibrations of the entire

string, unless the point of application be a node
;
but in practice

it is not easy to arrange that a string shall be subject to a force

of given magnitude. Perhaps the best method would be to attach

a small mass of iron, attracted periodically by an electro-magnet,

whose coils are traversed by an intermittent current. But unless

some means of compensation were devised, the mass would have

to be very small in order to avoid its inertia introducing a new

complication.

A better approximation may be obtained to the imposition of

an obligatory motion. A massive fork of low pitch, excited by
a bow or sustained in permanent operation by electro-magnetism,

executes its vibrations in approximate independence of the re

actions of any light bodies which may be connected with it. In

order therefore to subject any point of a string to an obligatory

transverse motio^, it is only necessary to attach it to the extremity
ofone prong of such a fork, whose plane of vibration is perpendicular

to the length of the string. This method of exhibiting the forced

vibrations of a string appears to have been first used by Melde 1
.

Another arrangement, better adapted for aural observation,

has been employed by Helmholtz. The end of the stalk of a.

powerful tuning-fork, set into vibration with a bow, or otherwise,

is pressed against the string. It is advisable to file the surface,

which comes into contact with the string, into a suitable (saddle-

shaped) form, the better to prevent slipping and jarring.

Referring to (5) we see that, if sin \b vanished, the motion

(according to this equation) would become infinite, which may be

taken to prove that in the case contemplated, the motion would

really become great, so great that corrections, previously insigni

ficant, rise into importance* Now sin \b vanishes, when the force

is isochronous with one of the natural vibrations of the first part

of the string, supposed to be held fixed at and b.

When a fork is placed on the string of a monochord, or other

instrument properly provided with a sound-board, it is easy to

find by trial the places of maximum resonance. A very slight

displacement on either side entails a considerable falling off in the

volume of the sound. The points thus determined divide the

string into a number of equal parts, of such length that the

natural note of any one of them (when fixed at both ends) is

1
Pogg. Ann. cix. p. 193, 1859.
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the same as the note of the fork, as may readily be verified. The

important applications of resonance which Helmholtz has made to

purify a simple tone from extraneous accompaniment will occupy

our attention later.

134. Returning now to the general case where X is complex,

we have to extract the real parts from (5), (6), (8) of 133. For

this purpose the sines which occur as factors, must be reduced to

the form Re*. Thus let

sin\x=:Rx e
ie* .............................. (1),

with a like notation for the others. From (5) 133 we shall thus

obtain
p

y*=Vj^cos(pt
+ x

-~
b) ............. , ....... (2),

from x to x = 6,

and from (6) 133

R
y = 7 -sr^ cos (pt + *i-x

-
),

K>l-b

from x = b to oc = I,

corresponding to the obligatory motion y = 7 cos pt at b.

By a similar process from (8) 133, if

X = a-M/9........................... (3),

we should obtain

from oc = to oc = b

from x = 6 to co = t
/

corresponding to the impressed force Fcospt at 6. It remains to

obtain the forms of Rx ,
ext &c.

The values of a and -8 are determined by

,.-/3.-5, 2^ =-f.................. (5),

and sin X# = sinm cos iy9^ + cos o# sin iyS^J

$x + e-fa epx e -fix= sin ao? -^
--h t cos ax-^- ,



134.J FRICTION PROPORTIONAL TO VELOCITY. 199

so that
a5 > 2_ +cos>a f - -..(6),
/

while

This completes the solution.

If the friction be very small, the expressions may be simpli
fied. For instance in this case, to a sufficient approximation.

so that, corresponding to the obligatory motion at & y = 7 cos^tf, the

amplitude of the motion between x = and x l> is, approximately

( . M A:
2^2 p# "\

sin2-^- -f-r-^cos
2^-

2

. ,

(

Sm
a
+^ C S

which becomes great, but not infinite, when sin (pb/a)
= 0, or the

point of application is a node.

If the imposed force, or motion, be not expressed by a single

harmonic term, it must first be resolved into such. The preceding
solution may then be applied to each component separately, and

the results added together. The extension to the case of more than

one point of application of the impressed forces is also obvious.

To obtain the most general solution satisfying the conditions, the

expression for the natural vibrations must also be added
;
but

these become reduced to insignificance after the motion has been

in progress for a sufficient time.

The law of friction assumed in the preceding investigation is

the only one whose results can be easily followed deductively, and

it is sufficient to give a general idea of the effects of dissipative

forces on the motion of a string. But in other respects the con

clusions drawn from it possess a fictitious simplicity, depending on

the fact that F the dissipation-function is similar in form to Tt

which makes the normal co-ordinates independent of each other.

i Reference may be made to a paper by Morton & Vmycomb, Phil. Mag.
Nov. 1904. Editor.
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In almost any other case (for example, when but a single point of

the string is retarded by friction) there are no normal co-ordinates

properly so called. There exist indeed elementary types of vibra

tion into which the motion may be resolved, and which are

perfectly independent, but these are essentially different in cha

racter from those with which we have been concerned hitherto, for

the various parts of the system (as affected by one elementary

vibration) are not simultaneously in the same phase. Special cases

excepted, no linear transformation of the co-ordinates (with real

coefficients) can reduce T, F, and V together to a sum of

squares.

If we suppose that the string has no inertia, so that T=Q,
F &nd Fmay then be reduced to sums of squares. This problem
is of no acoustical importance, but it is interesting as being

mathematically analogous to that of the conduction and radiation

of heat in a bar whose ends are maintained at a constant tem

perature.

135. Thus far we have supposed that at two fixed points,
x= and x = Z, the string is held at rest. Since absolute fixity

cannot be attained in practice, it is not without interest to inquire
in what manner the vibrations of a string are liable to be modified

by a yielding of the points of attachment; and the problem
will furnish occasion for one or two remarks of importance.
For the sake of simplicity we shall suppose that the system is

symmetrical with reference to the centre of the string, and that

each extremity is attached to a mass M (treated as unextended in

space), and is urged by a spring (/*) towards the position of equi
librium. If no frictional forces act, the motion is necessarily
resolvable into normal vibrations. Assume

y = (a sin mx + /3 cos ma} cos (mat - e) (1).

The conditions at the ends are that

when x = 0, ^uy -rM j. j
-=

ot?

when a? = Z,

which give

mT,
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two equations, sufficient to determine m, and the ratio of ft to a.

Eliminating the latter ratio, we find

t-~- ........................ (4),

-ff i~ f p-'
if for brevity we write v tor- -

.

Equation (3) has an infinite number of roots, which may be

found by writing tan 6 for v, so that tan?/iZ = tan 20, and the result

of adding together all the corresponding particular solutions, each

with its two arbitrary constants a and e, is necessarily the most

general solution of which the problem is capable, and is therefore

adequate to represent the motion due to an arbitrary initial dis

tribution of displacement and velocity. We infer that any function

of x may be expanded between x = and x = I in a series of terms

<i (i/j
sinm& + cos m&) + < 2 0>a s*n m* + cos m&) + ...... (5),

mi, ma, fee. being the roots of (3) and z/j, i/a ,
&c. the corresponding

values of r. The quantities lf < 2 >
&c. are the normal co-ordinates

of the system.

From the symmetry of the system it follows that in each

normal vibration the value of y is numerically the same at points

equally distant from the middle of the string, for example, at the

two ends, where x = and x = l. Hence vs sinm8l + cosm8l
= 1

,

as may be proved also from (4).

The kinetic energy T of the whole motion is made up of the

energy of the string, and that of the masses If. Thus

T= 4 p I

J o

mx + cos ma)}* dx

Oi sin mj, + cosmxO + . ..}
2
.

But by the characteristic property of normal co-ordinates, terms

containing their products cannot be really present in the expres

sion for T, so that

p I (vr sin w,rX 4- cos m^x) (v8 sin m^x + cos m^c) dx
J o

r sinmrl 4- cosmrl) (v8 sin mj, + cos m8l)
= ...... (6),

if r and s be different.

This theorem suggests how to determine the arbitrary con-
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stants, so that the series (5) may represent an arbitrary function

y> Take the expression

p I y(va sin m^ + cos m^dx + My 4- Myi (v8 sinmsl + cos mj,). . .(7);
Jo

and substitute in it the series (5) expressing y. The result is a

series of terms of the type

n
p I <f>r (vr sin myX 4- cosm&) (vs sin m^ + cos m&) doc

J o

v (vr sinmrl + cos m^Z) (z>s
sin ra8Z 4- cos mZ),

all of which vanish by (6), except the one for which r = s. Hence

(f>8 is equal to the expression (7) divided by
rl

p \ (vs sinm& + cos rrigxf da +M+M(v8 sin m8l + cos ras )
2

. . . (8),
J o

and thus the coefficients of the series are determined. If M= 0,

even although p, be finite, the process is of course much simpler,

but the unrestricted problem is instructive. So much stress is

often laid on special proofs of Fourier's and Laplace's series, that

the student is apt to acquire too contracted a view of the nature

of those important results of analysis.

We shall now shew how Fourier's theorem in its general form

can be deduced from our present investigation. Let M =
;
then

if p = QO
,
the ends of the string are fast, and fche equation de

termining m becomes tan ml = 0, or ml = sir, as we know it must

be. In this case the series for y becomes

. /rt .

sm -y- + ......... (9),

which must be general enough to represent any arbitrary functions

of #, vanishing at and Z, between those limits. But now suppose
that p is zero, M still vanishing. The ends of the string may be

supposed capable of sliding on two smooth rails perpendicular to

its length, and the terminal condition is the vanishing of dyjdw.

The equation in m is the same as before ; and we learn that any
function y whose rates of variation vanish at x = and x = Z, can

be expanded in a series

T n ^_- v

yf J52 COS 4.JJ8
COS-y-

4" ...... (10).
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This series remains unaffected when the sign of 02 is changed,
and the first series merely changes sign without altering its

numerical magnitude. If therefore y' be an even function of #,

(10) represents it from - I to + I. And in the same way, if y be

an odd function of x, (9) represents it between the same limits.

Now, whatever function of x $ (x) may be, it can be divided

into two parts, one of which is even, and the other odd, thus :

so that, if
<f> (x) be such that

<f> (- Z)
= < (+ Z) and <' ( )

= <' (+ Z),

it can be represented between the limits Z by the mixed series

7TX * TTX . . ,--.-- 4-JBjCOS
-- + A^sm-- -f ^cos--H- ...... (11).

This series is periodic, with the period 2L If therefore
cf> (so)

possess the same property, no matter what in other respects its

character may be, the series is its complete equivalent. This is

Fourier's theorem 1
.

We now proceed to examine the effects of a slight yielding of

the supports, in the case of a string whose ends are approximately
fixed. The quantity v may be great, either through p or through
M. We shall confine ourselves to the two principal cases, (1)

when
yu,

is great and M vanishes, (2) when ^ vanishes and M is

great.

In the first case v = ^ ,

and the equation in m is approximately

,
2 ZTjm

tan ml = -- =-- .

v p

Assume ml = STT -f #, where x is small
; then

2Z\ . S7T . .
.

x = tan x ---, approximately,

and ml-*a-
977

\

l-==f
l

)
........................ (12).

1 The best '

system
'

for proving Fourier's theorem from dynamical considera

tions is an endless chain stretched round a smooth cylinder ( 139), or a thin

re-entrant column of air enclosed in a ring-shaped tube,
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To this order of approximation the tones do not cease to form

a harmonic scale, but the pitch of the whole is slightly lowered.

The effect of the yielding is in fact the same as that of an increase

2T
in the length of the string in the ratio 1 : 1 H ^ , as might

fJLb

have been anticipated.

The result is otherwise if p vanish, while M is great. Here

Mtfm

and tan ml = r

*

approximately.rr J

2T I

Hence ml = sir -f M a

1
.....................(13).

The effect is thus equivalent to a decrease in I in the ratio

1 . i'

and consequently there is a rise in pitch, the rise being the

greater the lower the component tone. It might be thought
that any kind of yielding would depress the pitch of the string,
but the preceding investigation shews that this is not the case.

Whether the pitch will be raised or lowered, depends on the

sign of v, and this again depends on whether the natural note of

the mass M urged by the spring //,
is lower or higher than that of

the component vibration in question.

136. The problem of an otherwise uniform string carrying
a finite load M at x = b can be solved by the formulae investigated
in 133. For, if the force F cos pt be due to the reaction against
acceleration of the mass M,

(1),

which combined with equation (7) of 133 gives, to determine the

possible values of X (or p : a),

aalfXsinX6 sinX (I -&)=?= 2\sinXZ (2).

The value of y for any normal vibration corresponding to X is

y = P sin \x sin X (I
-

6) cos (a\t
-

e) \

from x = to oc = 6 I

y = P sin X (I
-

x) sin X6 cos (aX -
e)

from a; = 6 to x = I

where P and are arbitrary constants.
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It does not require analysis to prove that any normal com

ponents which have a node at the point of attachment are un
affected by the presence of the load. For instance, if a string be

weighted at the centre, its component vibrations of even orders

remain unchanged, while all the odd components are depressed in

pitch. Advantage may sometimes be taken of this effect of a

load, when it is desired for any purpose to disturb the harmonic

relation of the component tones.

If M be very great, the gravest component is widely sepa
rated in pitch from all the others. We will take the case when
the load is at the centre, so that & = Z & = J. The equation in

\ then becomes
. \l
sm -=r . -j

where pi : M, denoting the ratio of the masses of the string and

the load, is a small quantity which may be called a*. The first

root corresponding to the tone of lowest pitch occurs when JXZ is

small, and such that

(XZ)
2

{1 4 (^ XZ)
2
}
= a2

nearly,

whence X = a (1 a2

),

and the periodic time is given by

/Ml

The second term constitutes a correction to the rough value

obtained in a previous chapter ( 52), by neglecting the inertia of

the string altogether. That it would be additive might have

been expected, and indeed the formula as it stands may be ob

tained from the consideration that in the actual vibration the two

parts of the string are nearly straight, and may be assumed to be

exactly so in computing the kinetic and potential energies, with

out entailing any appreciable error in the calculated period. On
this supposition the retention of the inertia of the string increases

the kinetic energy corresponding to a given velocity of the load in

the ratio of M : Jf-f $ pi, which leads to the above result, This

method has indeed the advantage in one respect, as it might be

applied when p is not uniform, or nearly uniform. All that is

necessary is that the load M should be sufficiently predominant.

There is no other root of (4), until sin-J-XZ
= 0, which gives
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the second component of the string, a vibration independent of

the load. The roots after T>he first occur in closely contiguous
pairs; for one set is given by ^\l = sir, and the other approxi

mately by -J-XZ
= -97T -f -An-, in which the second term is small.

STTM

The two types of vibration for s = 1 are shewn in the figure.

Fig 21.

The general formula (2) may also be applied to find the effect

of a small load on the pitch of the various components.

137. Actual strings and wires are not perfectly flexible.

They oppose a certain resistance to bending, which may be divided
into two parts, producing two distinct effects. The first is called

viscosity, and shews itself by damping the vibrations. This part
produces no sensible effect on the periods. The second is con
servative in its character, and contributes to the potential energy
of the system, with the effect of shortening the periods. A com
plete investigation cannot conveniently be given here, but the
case which is most interesting in its application to musical

instruments, admits of a sufficiently simple treatment.

When rigidity is taken into account, something more must be

specified with respect to the terminal conditions than that y
vanishes. Two cases may be particularly noted :

(i) When the ends are clamped, so that dyjdx = at the ends.
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(ii) When the terminal directions are perfectly free, in which

case d?y/da?
= Q.

It is the latter which we propose now to consider.

If there were no rigidity, the type of vihration would be

y oc sin-^ , satisfying the second condition.
i

The effect of the rigidity might be slightly to disturb the type;
but whether such a result occur or not, the period calculated

from the potential and kinetic energies on the supposition that

the type remains unaltered is necessarily correct as far as the first

order of small quantities ( 88).

Now the potential energy due to the stiffness is expressed by

87:

where B is a quantity depending on the nature of the material

and on the form of the section in a manner that we are not now

prepared to examine. The/orw of 8V is evident, because the force

required to bend any element ds is proportional to ds, and to the

amount of bending already effected, that is to*ds/p. The whole

work which must be done to produce a curvature IJp in ds is

therefore proportional to ds/p
2

',
while to the approximation to

which we work ds dx, and 1

mi_ * A
Thus, if y = 9 sin

j
,

T-tffr r

and the period of ^ is given by

if TO denote what the period would become if the string were

endowed with perfect flexibility. It appears that the effect of the

stiffness increases rapidly with the order of the component vibra

tions, which cease to belong to a harmonic scale. However, in the

strings employed in music, the tension is usually sufficient to

reduce the influence of rigidity to insignificance.

The method of this section cannot be applied without modifi

cation to the other case of terminal condition, namely, when the

ends are clamped. In their immediate neighbourhood the type of
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vibration must differ from that assumed by a perfectly flexible

string by a quantity, which is no longer small, and whose square
therefore cannot be neglected. We shall return to this subject,
when treating of the transverse vibrations of rods.

138. There is one problem relating to the vibrations of strings
which we have not yet considered, but which is of some practical

interest, namely, the character of the motion of a violin (or cello)

string under the action of the bow. In this problem the modus

operandi of the bow is not sufficiently understood to allow us to

follow exclusively the a priori method : the indications of theory
must be supplemented by special observation. By a dexterous

combination of evidence drawn from both sources Helmholtz has

succeeded in determining the principal features of the case, but
some of the details are still obscure.

Since the note of a good instrument, well handled, is musical,
we infer that the vibrations are strictly periodic, or at least that

strict periodicity is the ideal. Moreover and this is very import
ant the note elicited by the bow has nearly, or quite, the same

pitch as the natural note of the string. The vibrations, although
forced, are thus in some sense free. They are wholly dependent
for their maintenance on the energy drawn from the bow, and yet
the bow does not determine, or even sensibly modify, their periods.
We are reminded of the self-acting electrical interrupter, whose
motion is indeed forced in the technical sense, but has that kind

of freedom which consists in determining (wholly, or in part) under
what influences it shall come.

But it does not at once follow from the fact that the string
vibrates with its natural periods, that it conforms to its natural

types. If the coefficients of the Fourier expansion

, . 7TX

be taken as the independent co-ordinates by which the configura
tion of the system is at any moment defined, we know that when
there is no friction, or friction such that FvzT, the natural vibra

tions are expressed by making each co-ordinate a simple harmonic

(or quasi-harmonic) function of the time
; while, for all that has

hitherto appeared to the contrary, each co-ordinate in the present
case might be any function of the time periodic in time r. But a
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little examination will shew that the vibrations must be sensibly

natural in their types as well as in their periods.

The force exercised by the bow at its point of application may
be expressed by

F=2-4 r cos

so that the equation of motion for the co-ordinate
<f)8

is

. 2 .

. 2, r cos

b being the point of application. Each of the component parts of

<3>s will give a corresponding term of its own period in the solu

tion, but the one whose period is the same as the natural period
of

<f)e
will rise enormously in relative importance. Practically then,

if the damping be small, we need only retain that part of ^
/onW \

which depends on J. 8 cos (-- eg
j

,
that is to say, we may regard

the vibrations as natural in their types.

Another material fact, supported by evidence drawn both from

theory and aural observation, is this. All component vibrations

are absent which have a node at the point of excitation. "In

order, however, to extinguish these tones, it is necessary that the

coincidence of the point of application of the bow with the node

should be very exact. A very small deviation reproduces the

missing tones with considerable strength
1
/'

The remainder of the evidence on which Helmholtz'' theory

rests, was derived from direct observation with the vibration-

microscope. As explained in Chapter II., this instrument affords

a view of the curve representing the motion of the point under

observation, as it would be seen traced on the surface of a trans

parent cylinder. In order to deduce the representative curve in

its ordinary form, the imaginary cylinder must be conceived to

be unrolled, or developed, into a plane.

The simplest results are obtained when the bow is applied at a

node of one of the higher components, and the point observed is

one of the other nodes of the same system. If the bow work

fairly so as to draw out the fundamental tone clearly and strongly,

the representative curve is that shewn in figure 22
;
where the

1 Donkin'u Acoustics
t p. 131.
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abscissae correspond to the time (AJB being a complete period),
and the ordinates represent the displacement. The remarkable

Fig. 22.

fact is disclosed that the whole period r may be divided into two

parts T and r TO , during each of which the velocity of the
observed point is constant

;
but the velocities to and fro are in

general unequal.

We have now to represent this curve by a series of harmonic
terms. If the origin of time correspond to the point A, and
AD FG= y, Fourier's theorem gives

2?T
2 *- 1 . 57TT . 2S7T

v-^XF^^*** **

With respect to the value of TO ,
we know that all those com

ponents of y must vanish for which sin($7n<>/Z)==0 (# being the

point of observation), because under the circumstances of the case
the bow cannot generate them. There is therefore reason to

suppose that TO : r = # : I
;
and in fact observation proves that

AC : OB (in the figure) is equal to the ratio of the two parts into
which the string is divided by the point of observation.

Now the free vibrations of the string are represented in

general by
. ^ . 2s7rt)A K cos- 4-B8 sm I :

r r
)

and this at the point #= # must agree with (1). For convenience
of comparison, we may write

and it then appears that 8
= 0.
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We find also to determine Dg

whence

.
-T. 27T2 1 . S7T&Q

sin -v- . Ds
= -v /
-r - sin -7-^

TT-TO(T T ) s- I

unless sin (S7r% /l)
= 0.

In the case reserved, the comparison leaves D8 undetermined,

but we know on other grounds that DB then vanishes. However,

for the sake of simplicity, we shall suppose for the present that

D8 is always given by (2). If the point of application of the bow

do not coincide with a node of any of the lower components, the

error committed will be ot" no great consequence.

On this understanding the complete solution of the problem is

The amplitudes of the components are therefore proportional to s~~
2

.

In the case of a plucked string we found for the corresponding
function s~"

2 sin (sirb/l), which is somewhat similar. If the string

be plucked at the middle, the even components vanish, but the

odd ones follow the same law as obtains for a violin string. The

equation (3) indicates that the string is always in the form of two

straight lines meeting at an angle. In order more conveniently
to shew this, let us change the origin of the time, and the constant

multiplier so that

8P V 1 . STTX .

will be the equation expressing the form of the string at any time.

Now we know ( 127) that the equation of the pair of lines

proceeding from the fixed ends of the string, and meeting at a

point whose co-ordinates are ot, ft, is

281* ^ 1 . STTO. . STTX
/7 x 2* - sm =- sm .

Thus at the time
, (4) represents such a pair of lines, meeting at

the point whose co-ordinates are given by

~~7j ~~\
= X 4x ,

. STTCt .

sm -v = f sin
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These equations indicate that the projection on the axis of %
of the point of intersection moves uniformly backwards and
forwards between x = and x = l

t
and that the point of inter

section itself is situated on one or other of two parabolic arcs,

of which the equilibrium position of the string is a common
chord.

Since the motion of the string as thus defined by that of the

point of intersection of its two straight parts, has no especial
relation to # (the point of observation), it follows that, according
to these equations, the same kind of motion might be observed at

any other point. And this is approximately true. But the theo

retical result, it will be remembered, was only obtained by as

suming the presence in certain proportions of component vibrations

having nodes at CCQ , though in fact their absence is required by
mechanical laws. The presence or absence of these components is

a matter of indifference when a node is the point of observation,
but not in any other case. When the node is departed from, the

vibration curve shews a series of ripples, due to the absence of

the components in question. Some further details will be found

in Helmholtz and Donkin.

The sustaining power of the bow depends upon the fact that

solid friction is less at moderate than at small velocities, so that

when the part of the string acted upon is moving with the bow

(not improbably at the same velocity), the mutual action is greater
than when the string is moving in the opposite direction with

a greater relative velocity. The accelerating effect in the first

part of the motion is thus not entirely neutralised by the sub

sequent retardation, and an outstanding acceleration remains

capable of maintaining the vibration in spite of other losses of

energy. A curious effect of the same peculiarity of solid friction

has been observed by W. Froude, who found that the vibrations

of a pendulum swinging from a shaft might be maintained or

even increased by causing the shaft to rotate.

[Another case in which the vibrations of a string are main
tained is that of the Aeolian Harp. It has often been suggested
that the action of the wind is analogous to that of a bow

;
but the

analogy is disproved by the observation 1 that the vibrations are

executed in a plane transverse to the direction of the wind. The
true explanation involves hydrodynamical theory not yet de

veloped.]
i Phil Mag., March, 1879, p, 161.
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139. A string stretched on a smooth curved surface will in

equilibrium lie along a geodesic line, and, subject to certain con

ditions of stability, will vibrate about this configuration, if dis

placed. The simplest case that can be proposed is when the

surface is a cylinder of any form, and the equilibrium position

of the string is perpendicular to the generating lines. The student

will easily prove that the motion is independent of the curvature

of the cylinder, and that the vibrations are in all essential respects

the same as if the surface were developed into a plane. The case

of an endless string, forming a necklace round the cylinder, is

worthy of notice.

In order to illustrate the characteristic features of this class of

problems, we will take the comparatively simple example of a

string stretched on the surface of a smooth sphere, and lying,

when in equilibrium, along a great circle. The co-ordinates to

which it will be most convenient to refer the system are the

latitude measured from the great circle as equator, and the

longitude < measured along it. If the radius of the sphere be a,

we have

(1).

The extension of the string is denoted by

Now
ds2 = (acW)

2 + (acos
so that

ds
1 (/d0\* ,J* - Ifd0\* 6* .

,
}1 -U in + cos 0f 1 =

ft I TI IT > approximatelyrr J
ad<f> }\d<f)J

Thus

and

If the ends be fixed,

Cambridge Mathematical Tripos Examination, 1876.
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and the equation of virtual velocities is

a'p fe B6 d$ - aTl f 86 (^ + 0}d<f>
= 0,r

J o Jo \9 '

whence, since 80 is arbitrary,

This is the equation of motion.

If we assume 6 oc cospt, we get

of which the solution, subject to the condition that 6 vanishes

with 0, is

(5).

The remaining condition to be satisfied is that 6 vanishes when

a<}>
a*

Z, or < = a, if a = Z/a.

This gives

where m is an integer.

The normal functions are thus of the same form as for a

straight string, viz.

0s=4sin^2 cospi ................... (7),

but the series of periods is different. The effect of the curvature

is to make each tone graver than the corresponding tone of a

straight string. If a > TT, one at least of the values of p* is nega
tive, indicating that the corresponding modes are unstable. If

a. = TT, pl is zero, the string being of the same length in the dis

placed position, as when 6 = 0.

A similar method might be applied to calculate the motion of

a string stretched round the equator of any surface of revolu

tion 1
.

140. The approximate solution of the .problem for a vibrating

string of nearly but not quite uniform longitudinal density has been

fully considered in Chapter IV. 91, as a convenient example of

1
[For a more general treatment of this question see Miohell, Messenger of

Matliematics, vol. xix, p. 87, 1890.]
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the general theory of approximately simple systems. It will be

sufficient here to repeat the result. If the density be pQ -f Bp, the

period rr of the rth component vibration is given by

Tf the irregularity take the form of a small load of mass m
at the point x= 6, the formula may be written

These values of r2 are correct as far as the first power of the

small quantities Bp and m, and give the means of calculating a

correction for such slight departures from uniformity as must

always occur in practice.

As might be expected, the effect of a small load vanishes at

nodes, and rises to a maximum at the points midway between

consecutive nodes. When it is desired merely to make a rough
estimate of the effective density of a nearly uniform string, the

formula indicates that attention is to be given to the neighbour
hood of loops rather than to that of nodes.

[The effect of a small variation of density upon the period is

the same whether it occur at a distance x from one end of the

string, or at an equal distance from the other end. The mean

variation at points equidistant from the centre is all that we need

regard, and thus no generality will be lost if we suppose that the

density remains symmetricallydistributed with respect to the centre.

Thus we may write

T^lO + o,) ...........................(3)

2 ft
1 So /_ 2irra\ , , A ,

where Or y 1 - cos j- }dx .................. (4).
I J o PQ \ * /

In this equation Bp may be expanded from to ^l in the series

o . A ,
, /CN- = AO + At cos j- -f ... + A r coQ = + ............ (5),

PQ * l

So
-

where A

4 ft
1

Bp 2irrx , ..
Ar
= j -^cosj-dx .................. (7).

I J o Po v
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Accordingly,

(8).

This equation, as it stands, gives the changes in period in

terms of the changes of density supposed to be known. And

it shews conversely that a variation of density may always be

found which will give prescribed arbitrary displacements to all

the periods. This is a point of some interest.

In order to secure a reasonable continuity in the density, it is

necessary to suppose that alt az ... are so prescribed that &? assumes

ultimately a constant value when r is increased indefinitely. If

this condition be satisfied, we may take A Q
=

,, and then A r tends

to zero as r increases.

As a simple example, suppose that it be required so to vary

the density of a string that, while the pitch of the fundamental

tone is displaced, all other tones shall remain unaltered. The

conditions give

Accordingly
A = A 2

= A S
=

and A l
= - 2^.

Thus by (5)

Sp/p Q
= - 2! cos (Zt

141. The differential equation determining the motion of a

string, whose longitudinal density p is variable, is

from which, if we assume y oc cos pt, we obtain to determine the

normal functions

where i/
2

is written for p*/2\. This equation is of the second

order and linear, but has not hitherto been solved in finite terms.

Considered as defining the curve assumed by the string in the

normal mode under consideration, it determines the curvature at

any point, and accordingly embodies a rule by which the curve

can be constructed graphically. Thus in the application to a

string fixed at both ends, if we start from either end at an arbitrary
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inclination, and with zero curvature, we are always directed by the

equation with what curvature to proceed, and in this way we

may trace out the entire curve.

If the assumed value of v* be right, the curve will cross

the axis of as at the required distance, and the law of vibration

will be completely determined. If if* be not known, different

values may be tried until the curve ends rightly; a sufficient

approximation to the value of v1

may usually be arrived at by a

calculation founded on an assumed type ( 88, 90).

Whether the longitudinal density be uniform or not, the

periodic time of any simple vibration varies cc&teris paribus as the

square root of the density and inversely as the square root of the

tension under which the motion takes place.

The converse problem of determining the density, when the

period and the type of vibration are given, is always soluble. For

this purpose it is only necessary to substitute the given value of y,

and of its second differential coefficient in equation (2). Unless

the density be infinite, the extremities of a string are points of

zero curvature.

When a given string is shortened, every component tone is

raised in pitch. For the new state of things may be regarded as

derived from the old by introduction, at the proposed point of

fixture, of a spring (without inertia), whose stiffness is gradually

increased without limit. At each step of the process the potential

energy of a given deformation is augmented, and therefore ( 88)

the pitch of every tone is raised. In like manner an addition to

the length of a string depresses the pitch, even though the added

part be destitute of inertia.

142. Although a general integration of equation (2) of 141

is beyond our powers, we may apply to the problem some of the

many interesting properties of the solution of the linear equation

of the second order, which have been demonstrated by MM. Sturm

and Liouville 1
. It is impossible in this work to give anything

like a complete account of their investigations ;
but a sketch, in

which the leading features are included, may be found interesting,

and will throw light on some points connected with the general

1 The memoirs referred to in the text are contained in the first volume of

Liouville *s Journal (1836).
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theory of the vibrations of continuous bodies. I have not thought
it necessary to adhere very closely to the methods adopted in the

original memoirs.

At no point of the curve satisfying the equation

can both y and dyjdx vanish together. By successive differen

tiations of (1) it is easy to prove that, if y and dyjdx vanish

simultaneously, all the higher differential coefficients dz

y/dtf,

d*yjdx*-, &c. must also vanish at the same point, and therefore

by Taylor's theorem the curve must coincide with the axis of x.

Whatever value be ascribed to v*, the curve satisfying (1) is

sinuoiis, being concave throughout towards the axis of x, since

p is everywhere positive. If at the origin y vanish, and dy/dx
be positive, the ordinate will remain positive for all values of x
below a certain limit dependent on the value ascribed to v*.

If vz be very small, the curvature is slight, and the curve will

remain on the positive side of the axis for a great distance. We
have now to prove that as v* increases., all the values of x which

satisfy the equation y = gradually diminish in magnitude.

Let y' be the ordinate of a second curve satisfying the equa
tion

(2),

as well as the coudition that y' vanishes at the origin, and let us

suppose that i/
a
is somewhat greater than v\ Multiplying (2) by

y, and (1) by y't subtracting, and integrating with respect to x
between the limits and x, we obtain, since y and y' both vanish

with a?,

If we further suppose that x corresponds to a point at which

y vanishes, and that the difference between v* and v1
is very small,

we get ultimately

(4).

The right-hand member of (4?) being essentially positive, we
earn that y' and dyjdx are of the same sign, and therefore that,
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whether dy/dx be positive or negative, y
f

is already of the same

sign as that to which y is changing, or in other words, the value

of a for which y vanishes is less than that for which y vanishes.

If we fix our attention on the portion of the curve lying

between x= and x = Z, the ordinate continues positive through
out as the value of v2 increases, until a certain value is attained,

which we will call i^
3

. The function y is now identical in form

with the first normal function u^ of a string of density p fixed

at and I, and has no root except at those points. As v2

again

increases, the first root moves inwards from x = I until, when a

second special value i>2
2

is attained, the curve again crosses the

axis at the point x = I, and then represents the second normal

function u>. This function has thus one internal root, and one

only. In like manner corresponding to a higher value z/8
2 we

obtain the third normal function u2 with two internal roots, and

so on. The nth function un has thus exactly ?i 1 internal roots, and

since its first differential coefficient never vanishes simultaneously
with the function, it changes sign each time a root is passed.

From equation (3) it appears that if ur and u8 be two different

normal functions,

/Jo (5).

A. beautiful theorem has been discovered by Sturm relating
to the number of the roots of a function derived by addition

from a finite number of normal functions. If um be the component
of lowest order, and un the component of highest order, the function

/(0) = </m^ + 0i+i*Wi + +$nUn (6),

where t m , $m+1 , &c. are arbitrary coefficients, has at least m1
internal roots, and at most n l internal roots. The extremities

at # = and at x l correspond of course to roots in all cases.

The following demonstration bears some resemblance to that given

by Liouville, but is considerably simpler, and, I believe, not less

rigorous.

If we suppose that /(#) has exactly /u,
internal roots (any

number of which may be equal), the derived function/' (#) cannot

have less than /* + ! internal roots, since there must be at least

one root off (x) between each pair of consecutive roots of/(a?), and

the whole number of roots of f(x) concerned is ^+2. In like

manner, we see that there must be at least p, roots of /"(#),
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besides the extremities, which themselves necessarily correspond

to roots; so that in passing from /(#) to f (x) it is impossible

that any roots can be lost. Now

/" (x)
=

<f>mV + <m+.i tt'Wi + ...... + < nW
- -

P (^m
2
4>7n Mw + l>

2
m+i 0*1+1 UM+I + ...... + *n* <f>n ^n) - -(7),

as we see by (1); and therefore, since
/)

is always positive, we

infer that

Vrr? </>m TO + T?m+i <m-H in+i + ...... +V <n n ...... (8),

has at least ^ roots.

.Again, since (8) is an expression of the same form as /(#),

similar reasoning proves that

Vm <f>m Um + zA/i+i <f)m+ i Um+1 + ...... +Vn*$n Un

has at least p internal roots
;
and the process may be continued

to any extent. In this way we obtain a series of functions, all

with
jju

internal roots at least, which differ from the original

function /(a?) by the continually increasing relative importance of

the components of the higher orders. When the process has been

carried sufficiently far, we shall arrive at a function, whose form

differs as little as we please from that of the normal function of

highest order, viz. un ,
and which has therefore n 1 internal roots,

It follows that, since no roots can be lost in passing down the

series of functions, the number of internal roots of f(x) cannot

exceed n 1.

The other half of the theorem is proved in a similar manner

by continuing the series of functions backwards from /(#). In

this way we obtain

*

<f>m Urn + y~~
2m-t-i <m+i Wm+1 -f ...... + V^ <f)n Un

<f>m Urn + ^"Vi <f>m+i
Um+1 + ...... -f Vn

~+
<f>n Un

arriving at last at a function sensibly coincident in form with the

normal function of lowest order, viz. um , and having therefore

m 1 internal roots. Since no roots can be lost in passing up the

series from this function to /(#), it follows that f(x) cannot have

fewer internal roots than m- 1
;
but it must be understood that

any number of the m 1 roots may be equal.

We will now prove that f(x) cannot be identically zero, unless
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all the coefficients < vanish. Suppose that r is not zero.

Multiply (6) by pur) and integrate with respect to x between the
limits and I Then by (5)

ri

J o
(9);

from which, since the integral on the right-hand side is finite, we
see that /(a?) cannot vanish for all values of x included within the

range of integration.

Liouville has made use of Sturm's theorem to shew how a
series of normal functions may be compounded so as to have an

arbitrary sign at all points lying between # = and x = l. His
method is somewhat as follows.

The values of x for which the function is to change sign being
a, 6, c, ..., quantities which without loss of generality we may
suppose to be all different, let us consider the series of determi

nants,

MI (a), Wi(&), MI(?)

(tt), M (6),

Us (a), 1*3(6), , &c.

The first is a linear function of i^(x) and u^(x\ and by Sturm's
theorem has therefore one internal root at most, which root is

evidently a. Moreover the determinant is not identically zero,

since the coefficient of u^(x\ viz. u1 (a)) does not vanish, whatever
be the value of a. We have thus obtained a function, which

changes sign at an arbitrary point a, and there only internally.

The second determinant vanishes when oc = a, and when x = 6,

and, since it cannot have more than two internal roots, it changes
sign, when x passes through these values, and there only. The
coefficient of u3 (x) is the value assumed by the first determinant
when x = 6, and is therefore finite. Hence the second determinant
is not identically zero.

Similarly the third determinant in the series vanishes and

changes sign when x = a, when x - b
f
and when x = c, and at these

internal points only. The coefficient of u4 (#) is finite, being the

value of the second determinant when x = c.

It is evident that by continuing this process we can form

functions compounded of the normal functions, which shall vanish

and change sign for any arbitrary values of x, and not elsewhere
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internally ; or, in other words, we can form a function whose sign

is arbitrary over the whole range from x = to x *= I.

On this theorem Liouville founds his demonstration of the

possibility of representing an arbitrary function between # = and

x = I by a series of normal functions. If we assume the possibility

of the expansion and take

/(fl?)=^1 Mi(a?)H-^iM.(*) + ^.() + ............ (10),

the necessary values of ^, < 2 ,
&c. are determined by (9), and we

find

If the series on the right be denoted by F(x\ it remains to

establish the identity of/(a?) and F(x).

If the right-hand member of (11) be multiplied by pur (x) and

integrated with respect to x from x = to # = Z, we see that

rz rz

pur (x)F(x)dx=*\ pur (x)f(x)dx,
J /

or, as we may also write it,

.................. (12),
o

where ur (x) is any normal function. From (12) it follows that

i

A (a?) + 4A (a?) + -4 su3(#)+...} pdx = Q.. .(13),
o

where the coefficients A l} -4 2 ,
c, are arbitrary.

Now if F(x) -/(a?) be not identically zero, it will be possible

so to choose the constants A l9 A*, &c. that A l ul (x) + J. 2z^(^)4- ...

has throughout the same sign as F (x) f(x), in which case every

element of the integral would be positive, and equation (13) could

not be true. It follows that F(x)f(x) cannot differ from zero,

or that the series of normal functions forming the right-hand

member of (11) is identical with /(a?) for all values of x from x =

to x = L

The arguments and results of bhis section are of course ap

plicable to the particular case of a uniform string for which the

normal functions are circular.

[As a particular case of variable density the supposition that
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p
= o-xr2

is worthy of notice, 148 6. In the notation there

adopted
w^ + i^n^pV/^i .....................(14),

and the general solution is

y = Az*+im +Bx*-im.....................(15).

If the string be fixed at two points, whose abscissae #a , #2 are

as r to 1, the frequency equation is r21
" = 1, or

where s denotes an integer. The proper frequencies thus depend

only upon the ratio of the terminal abscissae. By supposing r

nearly equal to unity we may fall back upon the usual formula

( 124) applicable to a uniform string.

The general form of the normal function is

(17).]/J

142 a. The points where the string remains at rest, or nodes,

are of course determined by the roots of the ^normal functions,

when the vibrations are free. In this case the frequency is limited

to certain definite values
;
but when the vibrations are forced, they

may be of any frequency, and it becomes possible to trace the

motion of the nodal points as the frequency increases continuously.

For example, suppose that the imposed force acts at a single

point P of a string AB, whose density may be variable. So long

as the frequency is less than that of either of the two parts AP,
PB (supposed to be held at rest at both extremities) into which

the string is divided, there can be no (interior) node (Q). Other

wise, that part of the string AQ between the node Q and one

extremity (.A), which does not include P, would be vibrating

freely, and more slowly than is possible for the longer length APy

included between the point P and the same extremity. When the

frequency is raised, so as to coincide with the smaller of those

proper to AP, PB, say AP, a node enters at P and then advances

towards A. At each coincidence of the frequency with one of

those proper to the whole string AB, the vibration identifies itself

with the corresponding free vibration, and at each coincidence \vith

a frequency proper to AP
t
or BP> a new node appears at P, and
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advances in the first case towards A and in the second towards J3.

And throughout the whole sequence of events all the nodes move

outwards from P towards A or B,

Thus, if the string be uniform and be bisected at P, there is

no node until the pitch rises to the octave (c') of the note (c) of the

string. At this stage two nodes enter at P, and move outwards

symmetrically. When g is reached, the mode of vibration is that

of the free vibration of the same pitch, and the nodes are at the

two points of trisection. At c" these nodes have moved outwards

so far as to bisect J.P, J5P, and two new nodes enter at P.

143, When the vibrations of a string are not confined to one

plane, it is usually most convenient to resolve them into two sets

executed in perpendicular planes, which may be treated inde

pendently. There is, however, one case of this description worth

a passing notice, in which the motion is most easily conceived and

treated without resolution.

Suppose that

. S7TX
y = sin r cos

-a).
. STTX .

z = sin -j sm
I r

Then
. S7TX

I

and z : y = tan(2$7r/T) (3),

shewing that the whole string is at any moment in one plane,

which revolves uniformly, and that each particle describes a circle

with radius sin (strxfl). In fact, the whole system turns without

relative displacement about its position of equilibrium, completing
each revolution in the time r/s. The mechanics of this case is

quite as simple as when the motion is confined to one plane, the

resultant of the tensions acting at the extremities of any small

portion of the string's length being balanced by the centrifugal

force.

144, The general differential* equation for a uniform string,

viz.
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may be transformed by a change of variables into

^J-O ..............................(2),dudv ^ h

where u = x - at, v = x+ at The general solution of (2) is

y^/^ +^W^/^-^ + ^^ + a*) ......... (3)
1

3

/, F being two arbitrary functions.

Let us consider first the case in which F vanishes. When
t has any particular value, the equation

y=/(0-a*) ..............................(4),

expressing the relation between x and y, represents the form of the

string. A change in the value of t is merely equivalent to an

alteration in the origin of x, so that (4) indicates that a certain

form is propagated along the string with uniform velocity a in the

positive direction. Whatever the value of y may be at the point
x and at the time t, the same value of y will obtain at the point
x 4- a A at the time t -f At

The form thus perpetuated may be any whatever, so long as it

does not violate the restrictions on which (1) depends.

When the motion consists of the propagation of a wave in the

positive direction, a certain relation subsists between the inclina

tion and the velocity at any point. Differentiating (4) we find

i 2 ...........................p>-

Initially, dy/dt and dyjdx may both be given arbitrarily, but if

the above relation be not satisfied, the motion cannot be repre

sented by (4).

In a similar manner the equation

y = F(x + at) ........................ (6)

denotes the propagation of a wave in the negative direction, and

the relation between dy/dt and dy/dx corresponding to (5) is

dt dx
........................... "

In the general case the motion consists of the simultaneous

propagation of two waves with velocity a, the one in the positive.

1
[Equations (1) and (3) are due to D'Alembert (1750),]
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and the other in the negative direction; and these waves are

entirely independent of one another, In the first dy/dt--a dyjdx,

and in the second dy/dt^adyjdx. The initial values of dy/dt

and dy/da must be conceived to be divided into two parts, which

satisfy respectively the relations (5) and (7). The first constitutes

the wave which will advance in the positive direction without

change of form
;
the second, the negative wave. Thus, initially,

whence

dy

equations which determine the functions /' and F' for all values

of the argument from SB = uo to $ = GO
,

if the initial values of

dyjdoc and dy/dt be known.

If the disturbance be originally confined to a finite portion of

the string, the positive and negative waves separate after the

interval of time required for each to traverse half the disturbed

portion.

Fig. 23.-,
--1-,

-i
--i-

q 3 A P

Suppose, for example, that AB is the part initially disturbed.

A point P on the positive side remains at rest until the positive

wave has travelled from A to P, is disturbed during the passage

of the wave, and ever after remains at rest. The negative wave

never affects P at all. Similar statements apply, mutatis mutandis,

to a point Q on the negative side of AB. If the character of the,

original disturbance be such that ady/dx~dy/dt vanishes initially,

there is no positive wave, and the point P is never disturbed at

all ;
and if a dy/dx -f dy/dt vanish initially, there is no negative

wave. If dy/dt vanish initially, the positive and the negative

waves are similar and equal, and then neither can yanish. In

cases where either wave vanishes, its evanescence may be con

sidered to be due to the mutual destruction of two component
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waves, one depending on the initial displacements, and the other
on the initial velocities. On the one side these two waves con

spire, and on the other they destroy one another. This explains
the apparent paradox, that P can fail to be affected sooner or later

after AB has been disturbed.

The subsequent motion of a string that is initially displaced
without velocity, may be readily traced by graphical methods.
Since the positive and the negative waves are equal, it is only
necessary to divide the original disturbance into two equal parts,
to displace these, one to the right, and the other to the left,

through a space equal to at, and then to recompound them. We
shall presently apply this method to the case of a plucked string
of finite length.

145. Vibrations are called stationary, when the motion of each

particle of the system is proportional to some function of the time,

the same for all the particles. If we endeavour to satisfy

"by assuming y - XT, where X denotes a function of x only, and
T a function of t only, we find

1 &T ld*X
t

. ^ ^
TJwr^rz*-"" (aconstant)>

so that

T = A cos mat ~\- B siu mat
\

X=-C cosra# -f D sin mx }

............... ^

proving that the vibrations must be simple harmonic, though of

arbitrary period. The value of y may be written

y = P cos (mat e) cos (moo a)

=
-J-
P cos (mat + mx - e a) + P cos (mat m% -f a).. .(3),

shewing that the most general kind of stationary vibration may
be regarded as due to the superposition of equal progressive vibra

tions, whose directions of propagation are opposed. Conversely,
two stationary vibrations may combine into a progressive one.

The solution y =/ (x at) 4- F (x H- at) applies in the tirst

instance to an, infinite string, .but may be interpreted so as to

give the solution of the problem for a finite string in certain
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cases. Let us suppose, for example, that the string terminates

at x = 0, and is held fast there, while it extends to infinity in

the positive direction only. Now so long as the point x =

actually remains at rest, it is a matter of indifference whether

the string be prolonged on the negative side or not. We are

thus led to regard the given string as forming part of one doubly

infinite, and to seek whether and how the initial displacements

and velocities on the negative side can be taken, so that on

the whole there shall be no displacement at x = throughout the

subsequent motion. The initial values of y and y on the positive

side determine the corresponding parts of the positive and negative

waves, into which we know that the whole motion can be resolved.

The former has no influence at the point cc = 0. On the negative
side the positive and the negative waves are initially at our dis

posal, but with the latter we are not concerned. The problem is

to determine the positive wave on the negative side, so that in

conjunction with the given negative wave on the positive side

of the origin, it shall leave that point undisturbed.

Let OPQJiS... be the line (of any form) representing the

wave in OX, which advances in the negative direction. It is

Fig. 24.

Y

evident that the requirements of the case are met by taking on

the other side of what may be called the contrary wave, so that

is the geometrical centre, bisecting every chord (such as PPf

)

which passes- through it. Analytically, if y =/(#) is the equation
of OPQRS , -2/=/(-a) is the equation of OP'Q'RS'
When after a time t the curves are shifted to the left and to

the right respectively through a distance at, the co-ordinates

corresponding to sc = are necessarily equal and opposite, and

therefore when compounded give zero resultant displacement.

The efivct of the constraint at may therefore be represented
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by supposing that the negative wave moves through undisturbed,

but that a positive wave at the same time emerges from 0. This

reflected wave may at any time be found from its parent by the

following rule :

Let APQRS... be the position of the parent wave. Then the

reflected wave is the position which this would assume, if it were

Fig. 25.

turned through two right angles, first about OX as an axis of

rotation, and then through the same angle about OY. In other

words, the return wave is the image of APQRS formed by
successive optical reflection in OX and OF, regarded as plane
mirrors.

The same result may also be obtained by a more analytical

process. In the general solution

the functions /(#), F(z) are determined by the initial circumstances

for all positive values of z. The condition at # = requires that

for all positive values of
,
or

f(-z) = -F(z)

for positive values of z. The functions / and F are thus de

termined for all positive values of # and t.

There is now no difficulty in tracing the course of events when

two points of the string A and B are held fast. The initial dis

turbance in A divides itself into positive and negative waves,

which are reflected backwards and forwards between the fixed

points, changing their character from positive to negative, t. .

vice versd, at each reflection. After an. even number of reflec

tions in each case the original form and motion is completely
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recovered. The process is most easily followed in imagination
when the initial disturbance is confined to a small part of the

string, more particularly when its character is such as to give rise

to a wave propagated in one direction only. The pulse travels with

uniform velocity (a) to and fro along the length of the string, and
after it has returned a second time to its starting point the

original condition of things is exactly restored. The period of

the motion is thus the time required for the pulse to traverse

the length of the string twice, or

r = 2l/a (1).

The same law evidently holds good whatever may be the character

of the original disturbance, only in the general case it may
happen that the shortest period of recurrence is some aliquot part
of T.

146. The method of the last few sections may be advantage

ously applied to the case of a plucked string. Since the initial

velocity vanishes, half of the displacement belongs to the positive
and half to the negative wave. The manner in which the wave
must be completed so as to produce the same effect as the con

straint, is shewn in the figure, where the upper curve represents

Fig. 26.

the positive, and the lower the negative wave in their initial

positions. In order to find the configuration of the string at any
future time, the two curves must be superposed, after the upper
has been shifted to the right and the lower to the left through a

space equal to at.
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The resultant curve, like its components, is made up of straight

pieces. A succession of six at intervals of a twelfth of the period,

Fig. 27.

shewing the course of the vibration, is given in the figure (Fig. 27),
taken from Helmholtz. From the string goes back again to A
through the same stages

1
.

It will be observed that the inclination of the string at the

points of support alternates between two constant values.

147. If a small disturbance be made at the time t at the

point x of an infinite stretched string, the effect will not be felt

at until after the lapse of the time as/a, and will be in all

respects the same as if a like disturbance had been made at

the point # + A# at time t &a/a. Suppose that similar dis

turbances are communicated to the string at intervals of time

T at points whose distances from increase each time by aSr,
then it is evident that the result at will be the same as if the

disturbances were all made at the same point, provided that the

time-intervals be increased from T to T + ST. This remark con-

1 This method of treating the vibration of a plucked string is due to Young.
Phil. Traiu., 1800. The student is recommended to make himself familiar with it

by actually constructing the forms of Fig, 27.
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tains the theory of the alteration of pitch due to motion of the

source of disturbance ;
a subject which will come under our notice

again in connection with aerial vibrations.

148. When one point of an infinite string is subject to a forced

vibration, trains of waves proceed from it in both directions ac

cording to laws, which are readily investigated. We shall suppose

that the origin is the point of excitation, the string being there

subject to the forced motion y == Aeipt
;
and it will be sufficient to

consider the positive side. If the motion of each element ds be

resisted by the frictional force Kpyds, the differential equation is

or since y cc e^*,

(2),

if for brevity we write X2 for the coefficient of y.

The general solution is

y=[Cer** + Det**} ew ..................... (3),

Now since y is supposed to vanish at an infinite distance, D
must vanish, if the real part of X be taken positive. Let

X = a + i/3,

where a is positive.

Then the solution is

y = 4 e-<+*)+fre ........................ (4),

or, on throwing away the imaginary part,

y = 4flr* co$(pt-/3x) .................. (5),

corresponding to the forced motion at the origin

y = A cos pt ........................ (6).

An arbitrary constant may, of course, be added to t.

To determine a and /3, we have

*-*, w. ..................en,

If we suppose that K is small,

fj^pja, a = K/2a nearly,

and *j^Ae-*lu cos (pt-
?
x] .................. (8).

\ ct /
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This solution shews that there is propagated along the string

a wave, whose amplitude slowly diminishes on account of the

exponential factor. If fc = 0, this factor disappears, and we have

simply

y = Acos(iit-l} ....................... (9).17

\ a J

This result stands in contradiction to the general law that,

when there is no friction, the forced vibrations of a system (due
to a single simple harmonic force) must be synchronous in phase

throughout. According to (9), on the contrary, the phase varies

continuously in passing from one point to another along the string.

The fact is, that we are not at liberty to suppose /e = in (8),

inasmuch as that equation was obtained on the assumption that

the real part of X in (3) is positive, and not zero. However long
a finite string may be, the coefficient of friction may be taken so

bmall that the vibrations are not damped before reaching the

further end. After this point of smallness, reflected waves begin
to complicate the result, and when the friction is diminished

indefinitely, an infinite series of such must be taken into account,

and would give a resultant motion of the same phase throughout.

This problem may be solved for a string whose mass is supposed
to be concentrated at equidistant points, by the method of 120.

The co-ordinate ^ may be supposed to be given (=Helpt
), and

it will be found that the system of equations (5) of 120 may all

be satisfied by taking
^ =0-^ ........................ (10),

where 6 is a complex constant determined by a quadratic equa
tion. The result for a continuous string may be afterwards

deduced.

[In the notation of 120 the quadratic equation is

B = Q ................ . .......(11),

nm m
where d=-^p2 + 1

,
5---1

...............(12).a CL

The roots of (11) are

and are imaginary if 452 > A1
,
that is, if
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a condition always satisfied in passing to the limit where a and ^
are infinitely small. In any case when (14) is satisfied the

modulus of 9 is unity, so that (10) represents wave propagation.

If, however, (14) be not satisfied, the values of 6 are real. In

this case all the motions are in the same phase, and no wave
is propagated. The vibration impressed upon ^ is imitated upon
a reduced scale by i|ra , ^8 ...... ,

with amplitudes which form a

geometrical progression. In the first case the motion is pro

pagated to an infinite distance, but in the second it is
practically

confined to a limited region round the source.]

148 a. So long as the conditions of 144 are satisfied, a

positive, or a negative, wave is propagated undisturbed. If

however there be any want of uniformity, such (for example) as

that caused by a load attached at a particular point, reflection

will ensue when that point is reached. The most interesting

problem under this head is that of two strings of different

longitudinal densities, attached to one another, and vibrating

transversely under the common tension Tl * Or, if we regard the

string as single, the density may be supposed to vary dis-

continuously from one uniform value
(/o x) to another (pa ). If

eii ,
aa denote the corresponding velocities of propagation,

of** T,/PlJ af^TJfr ........................(1),

and /*~OiMVW/>i) ........................... (2).

The conditions to be satisfied at the junction of the two parts
are (i) the continuity of the displacement y, and (ii) the continuity
of dyldx. If the two parts met at a finite angle, an infinitely

small element at the junction would be subject to a finite force.

Let us suppose that a positive wave of harmonic type, travelling
in the first part (p^, impinges upon the second

(/>2).
In the latter

the motion will be adequately represented by a positive wave,
but in the former we must provide for a negative reflected wave.

Thus we may take for the two parts respectively

ye<fc <*-*) ....................................... (4),

where kv
=

STT/XJ ,
&2 2irf\t,

so that kiOt^kiflu ..............................(5).



148 a.] KEFLECTION AT A JUNCTION. 235

The conditions at the junction (#= 0) give

H+R-L (6),

kH-hK^kiL .. (7)

whence ^^^^^-^ (8).H A^ + As /A + l
V '

Since the ratio KjH is real, we may suppose that both

quantities are real; and if we throw away the imaginary parts

from (3) and (4) we get as the solution in terms of real quantities

y* IT cos ^(0^-0) + ^? cos ^(ojt 4#) (9);

y^(H+ E)w*kt(aJi--n) (10).

The ratio of amplitudes of the reflected and the incident

waves expressed by (8) is that first obtained by T. Young for

the corresponding problem in Optics.

148 b> The expression for the intensity of reflection established

ia 148 a depends upon the assumption that the transition from

the one density to the other is sudden, that is occupies a distance

which is small in comparison with a wave length. If the

transition be gradual, the reflection may be expected to fall off,

and in the limit to disappear altogether.

The problem of gradual transition includes, of course, that of

a variable medium, and would in general be encumbered with

great difficulties. There is, however, one case for which the

solution may be readily expressed, and this it is proposed to

consider in the present section. The longitudinal density is

supposed to vary as the inverse square of the abscissa. If y,

denoting the transverse displacement be proportional to **, the

equation which it must satisfy as a function of #, is ( 141),

jg
+ irtir'y-O ..(1),

where w2 is some positive constant, of the nature of an abstract

number.

The solution of (1) is y = Aa*+* + Ba*r+* (2),

where w2 = n2
J (3).

If m be real, that is, if n > ,
we may obtain, by supposing

A = 0, as a final solution in real quantities,

j/
= C!0*cos (pt m log x + e) (4),
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which represents a positive progressive wave, in many respects
similar to those propagated in uniform media.

Let us now suppose that, to the left of the point x = x1} the

variable medium is replaced by one of uniform constitution, such

that there is no discontinuity of density at the point of transition

and let us inquire what reflection a positive progressive wave in

the uniform medium will undergo on arrival at the variable

medium. It will be sufficient to consider the case where m is

real, that is, where the change.of density is but moderately rapid.

By supposition, there is no negative wave in the variable

medium, so that A = in (2). Thus

^ = a-im)Btc-i~iw -

dec
9

and, when x = xl9 ^-=-^ C5\
y (jisc #!

v '*

The general solution for the uniform medium, satisfying the

equation cffy/cte
2 + n*x{~*y

= 0, may be written

y = He~
m

+ Ke*
w

**
(6),

from which, when x = xlt

*y_ = _inH-JK
(7)

In equation (6), H represents the amplitude of the incident

positive wave, and K the amplitude of the reflected negative
wave. The condition to be satisfied at # = #! is expressed by

equating the values of ^- given by (5) and (7). Thus
y dec

which gives, in symbolical form, the ratio of the reflected to the
incident vibration.

Having regard to (3), we may write (8) in the form

H
so that the amplitude of the reflected wave is J(^-f ra)-

1 of

that of the incident* Thus, as was to be expected, when n and m
are great, i.e., when the density changes slowly in the variable
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medium, there is but little reflection. As regards phase, the

result embodied in (9) may be represented by supposing that the

reflection occurs at x = xlt and involves a change of phase amount

ing to a quarter period.

Passing on now to the more important problem, we will

suppose that the variable medium extends only so far as the point
x = #2 , beyond which the density retains uniformly its value at

that point. A positive wave travelling at first in a uniform

medium of density proportional to x{~~, passes at the point #=#,
into a variable medium of density proportional to #~2

, and again, at

the point oc = a?2 , into a uniform medium of density proportional to

#2

~2
. The velocities of propagation are inversely proportional to

the square roots of the densities, so that, if p. be the refractive

index between the extreme media,

The thickness (d) of the layer of transition is

d^x> x
l ....... : ................... (11).

The wave-lengths in the two media are given by

___ --
j
=

n n

,

so that _______ ............... (12).

For the first medium we take, as before,

y^He^^+Ke*"*^ .................. (6).

giving, when a) = xly

dy __
inH K__^ inff

f^~~ ~ ~~ ~~ ~ ................

TT _ TT

if, for brevity, we write for r---

For the variable medium,

y = Ax*+im + Ba~im ................ (2),

giving, when x xlt
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Hence the condition to be satislied at x = xl gives

whence 4B
The condition to be satislied at #- #a may be deduced from

by substituting #2 for xlt putting at the same time d = 1 in virtue

of the supposition that in the second medium there is no negative
wave. Hence, equating the two values of A : B, we get

as the equation from which the reflected wave in the first medium
is to be found. Having regard to (3), we get

so that
ff
-

2
-

(m+>t) +^ (m _ n)
............(16)-

This is the symbolical solution. To interpret it in real quantities,

we must distinguish the cases of m real and m imaginary. If the

transition be not too sudden, m is real, and (16) may be written

? - I 1 + cos (2m log /A) 4- i sin (2m log ^)
J? 2 m 4- n + (m n) cos (2m log fi) + i (m ri) sin (2m log /i)

Thus the expression for the ratio of the intensities of the reflected

and the incident waves is, after reduction,

sin* (m log A*)

4m'-2 + sin2

(m log /*}

If ??i be imaginary, we may write im m'; (16) then gives for

the ratio of intensities,

^ )}

or, if we introduce the notation of hyperbolic trigonometry 1 170,

sinh3

(m'logAt)
sinh2

(m' log /*) + 4m'2
.................. l ; '

For the critical value m =
0, we get, from (17) or (19),
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These expressions allow us to trace the effect of a more or

less gradual transition between media of given indices. If the

transition be absolutely abrupt, n = 0, by (12); so that m' = .

In this case, (18) gives us ( 148 a) Young's well-known formula

Since- increases continually from # = 0, the ratio (19)

increases continually from mf

Q to w/ =
, i.e., diminishes

continually from the case of sudden transition m' =
,
when its

value is (21), to the critical case m = 0, when its value is (20),

after which this form no longer holds good. When m = 0, n - ,

and, by (12), d - (X,
-
\)/ 4nr.

When n>%, (17) is the appropriate form, We see from it

that with increasing n the reflection diminishes, until it vanishes,

when mlog^ = ?r, i.e. when

With a still more gradual transition the reflection revives, reaches

a maximum, again vanishes when m log yu,
= 2?r

? and so on 1
.

148 c. In the problem of connected strings, vibrating under

the influence of tension alone, the velocity in each uniform part is

independent of wave length, and there is nothing corresponding to

optical dispersion. This state of things will be departed from if

we introduce the consideration of stiffness, and it may be of interest

to examine in a simple case how far the problem of reflection is

thereby modified. As in 148 a, we will suppose that at # =
the density changes discontinuously from p a to p2 , but that now
the vibrations of the second part occur under the influence of

sensible stiffness. The differential equation applicable in this

case is, 188,

or, if y vary as eint ,

so that, if y vary as eikx
,

(2).

1 Proc. Math. Soc., vol. xi. February, 1880 ; where will also be found a numeri
cal example illustrative of optical conditions.
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In consequence of the stiffness represented by /3
2 the

velocity
of propagation deviates from <z2j and must be found from (2). The
two values of k'

2

given by this equation are real, one being positive
and the other negative. The four admissible values of k may thus

be written + k.2} ih2) so that the complete solution of (1) will be

......... (3),

h3 ,
&2 being real and positive. The velocity of propagation is n/k2

In the application which we have to make the disturbance of

the imperfectly flexible second part is due to a positive wave

entering it from the first part. When x is great and positive, (3)
must reduce to its second term. Thus

and we are left with

y = Be-** + Ce-te ...................... (4).

This holds when x is positive. When x is negative, corresponding
to the perfectly flexible first part, we have

y = He-*& + Keik >* ..................... (5),

in which fa = n/a^ .............................. (6).

The "
refractive index

"
is given by

(7).

The conditions at the junction are first the continuity of y and

dyldx. Further, d*y/dx
z in (4) must vanish at this place, inasmuch

as curvature implies a couple ( 162), and this could not be

transmitted by the first part. Hence

K-B+C ........................... (8),

(9),

(10).

From these we deduce

H~K (LL) '
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and thence for the intensity of reflection, equal to Mod2
. (K/H),

If the second part, as well as the first, be perfectly flexible,

/?
= 0, h 2

= co
3
and we fall back on Youug's formula. In general,

the intensity of reflection is not accurately given by this formula,

even though we employ therein the value of the refractive index

appropriate to the waves actually under propagation.



CHAPTER VII.

LONGITUDINAL AND TORSIONAL VIBBATIONS OF BARS.

149. THE next system to the string in order of simplicity
is the bar, by which term is usually understood in Acoustics a

mass of matter of uniform substance and elongated cylindrical
form. At the ends the cylinder is cut off by planes perpendicular
to the generating lines. The centres of inertia of the transverse

sections lie on a straight line which is called the axis.

The vibrations of a bar are of three kinds longitudinal,

torsional, and lateral. Of these the last are the most important,
but at the same time the most difficult in theory. They are

considered by themselves in the next chapter, and will only be
referred to here so far as is necessary for comparison and contrast

with the other two kinds of vibrations.

Longitudinal vibrations are those in which the axis remains

unmoved, while the transverse sections vibrate to and fro in the

direction perpendicular to their planes. The moving power is

the resistance offered by the rod to extension or compression.

One peculiarity of this class of vibrations is at once evident.

Since the force necessary to produce a given extension in a bar
is proportional to the area of the section, while the mass to be
moved is also in the same proportion, it follows that for a bar of

given length and material the periodic times and the modes of

vibration are independent of the area and of the form of the
transverse section. A similar law obtains, as we shall presently
see, in the case of torsional vibrations.

It is otherwise when the vibrations are lateral. The periodic
times are indeed independent of the thickness of the bar in the
direction perpendicular to the plane of flexure, but the motive power
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in this case, viz. the resistance to bending, increases more rapidly

than the thickness in that plane, and therefore an increase in

thickness is accompanied by a rise of pitch.

In the case of longitudinal and lateral vibrations, the mechan

ical constants concerned are the density of the material and the

value of Young's modulus. For small extensions (or compressions)
Hooke's law, according to which the tension varies as the extension,

. , , i -r* ,1 , . actual length natural length
holds gooa. If the extension, viz. 2. _ -- 2

& natural length

be called e, we have T=qe} where q is Young's modulus, and T
is the tension per unit area necessary to produce the extension e.

Young's modulus may therefore be defined as the force which would

have to be applied to a bar of unit section, in order to double its

length, if Hooke's law continued to hold good for so great exten

sions
;
its dimensions are accordingly those of a force divided by an

area.

The torsional vibrations depend also on a second elastic con

stant /4, whose interpretation will be considered in the proper

place.

Although in theory the three classes of vibrations, depending

respectively on resistance to extension, to torsion, and to flexure

are quite distinct, and independent of one another so long as the

squares of the strains may be neglected, yet in actual experiments
with bars which are neither uniform in material nor accurately

cylindrical in figure it is often found impossible to excite longi

tudinal or torsional vibrations without the accompaniment of some

measure of lateral motion. In bars of ordinary dimensions the

gravest lateral motion is far graver than the gravest longitudinal

or torsional motion, and consequently it will generally happen that

the principal tone of either of the latter kinds agrees more or less

perfectly in pitch with some overtone of the former kind. Under

such circumstances the regular modes of vibrations become

unstable, and a small irregularity may produce a great effect. The

difficulty of exciting purely longitudinal vibrations in a bar is

similar to that of getting a string to vibrate in one plane.

With this explanation we may proceed to consider the three

classes of vibrations independently, commencing with longitudinal

vibrations, which will in fact raise no mathematical questions

beyond those already disposed of in the previous chapters.
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150. When a rod is stretched by a force parallel to its length,

the stretching is in general accompanied by lateral contraction in

such a manner that the augmentation of volume is less than if

the displacement of every particle were parallel to the axis. In the

case of a short rod and of a particle situated near the cylindrical

boundary, this lateral motion would be comparable in magnitude
with the longitudinal motion, and could not be overlooked without

risk of considerable error. But where a rod, whose length is great

in proportion to the linear dimensions of its section, is subject

to a stretching of one sign throughout, the longitudinal motion

accumulates, and thus in the case of ordinary rods vibrating

longitudinally in the graver modes, the inertia of the lateral

motion may be neglected. Moreover we shall see later how a

correction may be introduced, if necessary.

Let x be the distance of the layer of particles composing any
section from the equilibrium position of one end, when the rod

is unstretched, either by permanent tension or as the result of

vibrations, and let f be the displacement, so that the actual

position is given by x + %. The equilibrium and actual position
/7

of a neighbouring layer being x + &c, as + S# + + -p &e re

spectively, the elongation is d^/dco, and thus, if T be the tension

per unit area acting across the section,

Consider now the forces acting on the slice bounded by oc

and x 4- Bx. If the area of the section be o>, the tension at cc is

by (1) q&d%ldxt acting in the negative direction, and at x + $x

the tension is

acting in the positive direction; and thus the force on the slice

due to the action of the adjoining parts is on the whole

The mass of the element is po> Sx, if p be the original density,

therefore if X be the accelerating force acting on it, the

equation of equilibrium is
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In what follows we shall not require to consider the operation
of an impressed force. To find the equation of motion we have

only to replace X by the reaction against acceleration
,
and

thus if q : p = a2
, we have

This equation is of the same form as that applicable to the

transverse displacements of a stretched string, and indicates the

undisturbed propagation of waves of any type in the positive and

negative directions. The velocity a is relative to the imstretched

condition of the bar
;
the apparent velocity with which a disturb

ance is propagated in space will be greater in the ratio of the

stretched and unstretched lengths of any portion of the bar. The
distinction is material only in the case of permanent tension.

151. For the actual magnitude of the velocity of propagation,
we have

a2 =
q : p = qco : pco,

which is the ratio of the whole tension necessary (according to

Hooke's law) to double the length of the bar and the longitudinal

density. If the same bar were stretched with total tension T
9

and were flexible, the velocity of propagation of waves along it

would be *J(T : pco). In order then that the velocity might be

the same in the two cases, T must be gty, or, in other words, the

tension would have to be that theoretically necessary in order to

double the length. The tones of longitudinally vibrating rods

are thus very high in comparison with those obtainable from

strings of comparable length.

In the case of steel the value of q is about 22 x 108
grammes

weight per square centimetre. To express this in absolute units

of force on the c. G. s.
1

system, we must multiply by 980. In

the same system the density of steel (identical with its specific

gravity referred to water) is 7'8. Hence for steel

v 7*O

approximately, which shews that the velocity of sound in steel is

about 530,000 centimetres per second, or about 16 times greater

1
Centimetre, Gramme, Second. This system is recommended by a Committee

of the British Association. Brit. Ass. Report, 1873.



246 LONGITUDINAL VIBRATIONS OF BARS. [151.

than the velocity of sound in air. In glass the velocity is about

the same as in steel.

It ought to be mentioned that in strictness the value of q deter

mined by statical experiments is not that which ought to be used

here. As in the case of gases, which will be treated in a subsequent

chapter, the rapid alterations of state concerned in the propaga
tion of sound are attended with thermal effects, one result of

which is to increase the effective value of q beyond that obtained

from observations on extension conducted at a constant tempera
ture. But the data are not precise enough to make this correction

of any consequence in the case of solids.

152. The solution of the general equation for the longitudinal

vibrations of an unlimited bar, namely

=/(# - at) + F(x + at),

being the same as that applicable to a string, need not be further

considered here.

When both ends of a bar are free, there is of course no perma
nent tension, and at the ends themselves there is no temporary
tension. The condition for a free end is therefore

= ............................... a>.

To determine the normal modes of vibration, we must assume

that % varies as a harmonic function of the time cos nat. Then
as a function of x, % must satisfy

of which the complete integral L

f = A cos fix 4- B sin nx ..................... (3),

where A and B are independent of x.

Now since d^jdcc vanishes always when x = 0, we get B = 0; and

again since dfydcc vanishes when x = I the natural length of the

bar, sin nl = 0, which shews that n is of the form

^
/ A \n J .............................. W,

i being integral.
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Accordingly, the normal modes are given by equations of the

fornr.

^ A VJTX iirat
% = A cos^- cos j (5),

I I

in which of course an arbitrary constant may be added to t, if

desired.

The complete solution for a bar with both ends free is there

fore expressed by

fc __t 11TX
c ]V COS* i=0

iirx ( A i-Trat n . iirai}

-j-jAiCos ^
h^sm

j^\ (6),

where Ai and Bi are arbitrary constants, which may be determined
in the usual manner, when the initial values of f and are

given.

A zero value of i is admissible
;
it gives a term representing a

displacement f constant with respect both to space and time,
and amounting in fact only to an alteration of the origin.

The period of the gravest component in (6) corresponding to

i = 1, is 2l/a, which is the time occupied by a disturbance in

travelling twice the length of the rod. The other tones found

by ascribing integral values to i form a complete harmonic scale
;

so that according to this theory the note given by a rod in

longitudinal vibration would be in all cases musical.

In the gravest mode the centre of the rod, where x = %l, is a

place of no motion, or node; but the periodic elongation or com

pression dg/dx is there a maximum.

153. The case of a bar with one end free and the other fixed

may be deduced from the general solution for a bar with both

ends free, and of twice the length. For whatever may be the

initial state of the bar free at x and fixed at x = I, such dis

placements and velocities may always be ascribed to the sections

of a bar extending from to 2Z and free at both ends as shall

make the motions of the parts from to I identical in the two

cases. It is only necessary to suppose +-hat from I to 21 the dis

placements and velocities are initially equal and opposite to those

found in the portion from to I at an equal distance from the

centre x = Z. Under these circumstances the centre must by
the symmetry remain at rest throughout the motion, and then the
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portion from to I satisfies all the required conditions. We con

clude that the vibrations of a bar free at one end and fixed at the

other are identical with those of one half of a bar of twice the

length of which both ends are free, the latter vibrating only in the

uneven modes, obtained by making i in succession all odd integers.

The tones of the bar still belong to a harmonic scale, but the

even tones (octave, &c. of the fundamental) are wanting.

The period of the gravest tone is the time occupied by a pulse

in traveiling four times the length of the bar.

154. When both ends of a bar are fixed, the conditions to

be satisfied at the ends are that the value of f is to be invariable.

At x = 0, we may suppose that = 0. At x = I, g is a small

constant a, which is zero if there be no permanent tension. In

dependently of the vibrations we have evidently = x a ~ I, and

we should obtain our result most simply by assuming this term

at once. But it may be instructive to proceed by the general

method.

Assuming that as a function of the time varies as

A cos nat + B sin nat,

we see that as a function of x it must satisfy

of which the general solution is

=?C cos n# + Dsin nso .................. (1).

But since f vanishes with x for all values of t, G 0, and thus

we may write

= 2 sin nix {A cos nat + B sin nat}.

The condition at # = I now gives

2 sin nl [A cos nat + B sin nat}
= a,

from which it follows that for every finite admissible value of n

=
0, or n =

-j~,
I

But for the zero value of n, we get

A Q sin nl a,
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and the corresponding term in is

o. A . sn nx x= A sin nx = a ,-. = a r .

sin nl I

The complete value of f is accordingly

.. x 1=* . ITTX ( . iirat . i-rrat} /nx
| = aj +

Z
l==1

sin .' 4 lCos-y-
+ Bt sin k..(2).

The series of tones form a complete harmonic scale (from
which however any of the members may be missing in any
actual case of vibration), and the period of the gravest com

ponent is the time taken by a pulse to travel twice the length
of the rod, the same therefore as if both ends were free. It

must be observed that we have here to do with the unstretched

length of the rod, and that the period for a given natural length
is independent of the permanent tension.

The solution of the problem of the doubly fixed bar in the

case of no permanent tension might also be derived from that

of a doubly free bar by mere differentiation with respect to cc.

For in the latter problem dg/dx satisfies the necessary differential

equation, viz.

.

dt- \dx
~

dtf \dx

inasmuch as satisfies

and at both ends d%jdx vanishes. Accordingly d!?/dx in this

problem satisfies all the conditions prescribed for ( in the case

when both ends are fixed. The two series of tones are thus

identical,

155. The effect of a small load M attached to any point of

the rod is readily calculated approximately, as it is sufficient

to assume the type of vibration to be unaltered ( 88). We
will take the case of a rod fixed at # = 0, and free at x = I. The

kinetic -energy is proportional to

. -, i Tir

pa sin2 -- dx + %M sm

OCol /- 2M . n 17TX\
or to S- 1

1 + sma

-^-J
.
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Since the potential energy is unaltered, we see by the prin-'

ciples of Chapter iv., that the effect of the small load M at a
distance & from the fixed end is to increase the period of the

component tones in the ratio

_,
M . ATTX

1 :1 + .sm2

-^.
pcoL 21

The small quantity M : pal is the ratio of the load to the
whole mass of the rod.

If the load be attached at the free end, sin2

(t'7r#/2Z)
=

l, and
the effect is to depress the pitch of every tone by the -same small
interval. It will be remembered that i is here an uneven

integer.

If the point of attachment of M be a node of any component,
the pitch of that component remains unaltered by the addition.

156 Another problem worth notice occurs when the load at
the free end is great in comparison with the mass of the rod.
In this case we may assume as the type of vibration, a condition
of uniform extension along the length of the rod.

If f be the displacement of the load M, the kinetic energy is

lpl) ......... (1).

The tension corresponding to the displacement f is qco
and thus the potential energy of the displacement is

The equation of motion is

and if f oc cos pt

(3).

The correction due to the inertia of the rod is thus equivalent
to the addition to M of one-third of the mass of the rod.

156 a. So long as a rod or a wire is uniform, waves of longi
tudinal vibration are propagated along it without change of type,
but any interruption, or alteration of mechanical properties, "will

in general give rise to reflection. If two uniform wires be joined,
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the problem of determining the reflection at the junction may be

conducted as in 148 a. The conditions to be satisfied at the

junction are (i) the continuity of f, and (ii) the continuity of

qcodg/dx, measuring the tension. If plt pa ,
a)1? o>2 , Oj, a2 denote

the volume densities, the sections, and the velocities in the two

wires, the ratio of the reflected to the incident amplitude is

given by

H
The reflection vanishes, or the incident wave is propagated

through the junction without loss, if

2........................ (2).

This result illustrates the difficulty which is met with in obtaining

effective transmission of sound from air to metal, or from metal to

air, in the mechanical telephone. Thus the value of pa is about

100,000 times greater in the case of steel than in the case of air.

157. Our mathematical discussion of longitudinal vibrations

may close with an estimate of the error involved in neglecting

the inertia of the lateral motion of the parts of the rod not

situated on the axis. If the ratio of lateral contraction to longi

tudinal extension be denoted by //,,
the lateral displacement of a

particle distant r from the axis will be /ire in the case of equili

brium, where <? is the extension. Although in strictness this

relation will be modified by the inertia of the lateral motion, yet

for the present purpose it may be supposed to hold good, 88.

The constant p is a numerical quantity, lying between and \.

If
//,
were negative, a longitudinal tension would produce a lateral

swelling, and if
yu,

were greater than
-J-,

the lateral contraction

would be great enough to overbalance the elongation, and cause

a diminution of volume on the whole. The latter state of things

would be inconsistent with stability, and the former can scarcely

be possible in ordinary solids. At one time it was supposed

that
fjb

was necessarily equal to J, so that there was only one

independent elastic constant, but experiments have sinc^ shewn

that At is variable. For glass and brass Wertheim found experi

mentally fJL
=

-J-.

If 77 denote the lateral displacement of the particle distant r
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from the axis, and if the section be circular, the kinetic energy
due to the lateral motion is

Thus the whole kinetic energy is

o o

In the case of a bar free at both ends, we have

,.
ITTX d iir

and thus

The effect of the inertia of the lateral motion is therefore to

increase the period in the ratio

This correction will be nearly insensible for the graver modes of

bars of ordinary proportions of length to thickness.

[A more complete solution of the problem of the present
section has been given by Pochhammer 1

, who applies the general
equations for an elastic solid to the case of an infinitely extended

cylinder of circular section. The result for longitudinal vibrations,
so far as the term in r2

/Z
2
, is in agreement with that above deter

mined. A similar investigation has also been published by Chree 2
,

who has also treated the more general question
3 in which the

cylindrical section is not restricted to be circular.]

158. Experiments on longitudinal vibrations may be made
with rods of deal or of glass. The vibrations are excited by
friction 138, with a wet cloth in the case of glass ;

but for metal
or wooden rods it is necessary to use leather charged with powdered
rosin.

" The longitudinal vibrations of a pianoforte string may be
excited by gently rubbing it longitudinally with a piece of india

rubber, and those of a violin string by placing the bow obliquely
across the string, and moving it along the string longitudinally,

keeping the same point of the bow upon the string. The note is

unpleasantly shrill in both cases."

1
Crelle, Bd. 81, 1876. 2

Quart. Math. <7oum., Vol. 21, p. 287, 1886.
8
Ibid, Vol. 23, p. 317, 1889.
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" If the peg of the violin be turned so as to alter the pitch of

the lateral vibrations very considerably, it will be found that the

pitch of the longitudinal vibrations has altered very slightly. The
reason of this is that in the case of the lateral vibrations the

change of velocity of wave-transmission depends chiefly on the

change of tension, which is considerable. But in the case of the

longitudinal vibrations, the change of velocity of wave-transmis

sion depends upon the change of extension, which is comparatively

slight
1
."

In Savart's experiments on longitudinal vibrations, a peculiar

sound, called by him a "
son rauque," was occasionally observed,

whose pitch was an octave below that of the longitudinal vibra

tion. According to Terquem
8 the cause of this sound is a trans

verse vibration, whose appearance is due to an approximate

agreement between its own period and that of the sub-octave of

the longitudinal vibration 68 b. If this view be correct, the

phenomenon would be one of the second order, probably referable

to the fact that longitudinal compression of a bar tends to produce
curvature.

159. The second class of vibrations, called torsional, which

depend on the resistance opposed to twisting, is of very small

importance. A solid or hollow cylindrical rod of circular section

may be twisted by suitable forces, applied at the ends, in such a

manner that each transverse section remains in its own plane.

But if the section be not circular, the effect of a twist is of a

more complicated character, the twist being necessarily attended

by a warping of the layers of matter originally composing the

normal sections. Although the effects of the warping might pro

bably be determined in any particular case if it were worth

while, we shall confine ourselves here to the case of a circular

section, when there is no motion parallel to the axis of the rod.

The force with which twisting is resisted depends upon an

elastic constant different from q, called the rigidity. If we de

note it by n
t
the relation between q, n, and p may be written

1 Donkin's Acoustics, p. 154.

2 Ann. de Chimie, LVII. 129190.
3 Thomson and Tait, 683. This, it should be remarked, applies to isotropic

material only.
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shewing that n lies between ^q and Jg. In the case of
/-t
=

,

n = fg.

Let us now suppose that we have to do with a rod in the form

of a thin tube of radius r and thickness dr
t
and let 6 denote the

angular displacement of any section, distant oc from the origin.

The rate of twist at # is represented by d0/dx, and the shear of the

material composing the pipe by r dO/dx. The opposing force per

unit of area is nr dd/dx ;
and since the area is 2?rr dr, the moment

round the axis is

-y- .

ax

Thus the force of restitution acting on the slice dx has the

moment
7g/3

ZuTrr3 dr dx -j-j-,
dx*

Now the moment of inertia of the slice under consideration

is %Trrdr.dx.p.r*, and therefore the equation of motion assumes

the form

Since this is independent of r, the same equation applies to a

cylinder of finite thickness or to one solid throughout.

The velocity of wave propagation is ^(n{p)9
and the whole

theory is precisely similar to that of longitudinal vibrations, the

condition for a free end being d6[dx = 0, and for a fixed end = 0,

or, if a permanent twist be contemplated, 6 = constant.

The velocity of longitudinal vibrations is to that of torsional

vibrations in the ratio *Jq : *Jn or \/(2 + 2//,) : 1. The same ratio

applies to the frequencies of vibration for bars of equal length

vibrating in corresponding modes under corresponding terminal

conditions. If p = ,
the ratio of frequencies would be

V?: V^=-V8 : V3 = l'6a,

corresponding to an interval rather greater than a fifth.

In any case the ratio of frequencies must lie between

V2: 1-1 -414, and V3 : 1 - 1-732.

Longitudinal and torsional vibrations were first investigated by
Chladni.



CHAPTER VIII.

LATERAL VIBRATIONS OF BAKS.

160. IN the present chapter we shall consider the lateral

vibrations of thin elastic rods-, which in their natural condition are

straight. Next 5o those of strings, this class of vibrations is per

haps the most amenable to theoretical and experimental treatment.

There is difficulty sufficient to bring into prominence some im

portant points connected with the general theory, which the fami

liarity of the reader with circular functions may lead him to pass
over too lightly in the application to strings ;

while at the same
time the difficulties of analysis are not such as to engross attention

which should be devoted to general mathematical and physical

principles.

Daniel Bernoulli
l seems to have been the first who attacked

the problem. Euler, Riccati, Poisson, Cauchy, and more recently
Strehlke

2

, Lissajous
8

,
and A. Seebeck 4

are foremost among those

who have advanced our knowledge of it.

161. The problem divides itself into two parts, according to

the presence, or absence, of a permanent longitudinal tension.

The consideration of permanent tension entails additional compli

cation, and is of interest only in its application to stretched

strings, whose stiffness, though small, cannot be neglected al

together. Our attention will therefore be given principally to the

two extreme cases, (1) when there is no permanent tension,

(2) when the tension is the chraf agent in the vibration.

1 Comment. Acad. Petrop. t. xin. 2
Pogg. Ann. Bd. xxvir. p. 505, 1833.

* Ann. d. Chimie (3), xxx. 385, 1850.

4
Abhandlungen d. Math. Phys. Claste d. 1C. Sachs. Gesellschaft d. Wissen-

ichaften. Leipzig, 1852.
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With respect to the section of the rod, we shall suppose that

one principal axis lies in the plane of vibration, so that the bending

at every part takes place in a direction of maximum or minimum

(or stationary) flexural rigidity. For example, the surface of the

rod may be one of revolution, each section being circular, though

not necessarily of constant radius. Under these circumstances the

potential energy of the bending for each element of length is pro

portional to the square of the curvature multiplied by a quantity

depending on the material of the rod, and on the moment of

inertia of the transverse section about an axis through its centre of

inertia perpendicular to the plane of bending. If a> be the area

of the section, /ro> its moment of inertia, q Young's modulus, ds the

element of length, and dV the corresponding potential energy for

a curvature 1 ~- R of the axis of the rod,

dV= te*?a ........................ (1).

This result is readily obtained by considering the extension of

the various filaments of which the bar may be supposed to be

made up. Let 77 be the distance from the axis of the projection

on the plane of bending of a filament of section dco. Then the

length of the filament is altered by the bending in the ratio

R being the radius of curvature. Thus on the side of the axis for

which T] is positive, viz. on the outward side, a filament is extended,

while on the other side of the axis there is compression. The
force necessary to produce the extension q/R is q rj/R . da> by the

definition of Young's modulus; and thus the whole couple by
which the bending is resisted amounts to

if CD be the area of the section and tc its radius of gyration about

a line through the axis, and perpendicular to the plane of bending.
The angle of bending corresponding to a length of axis ds is ds+R,
and thus the work required to bend ds to curvature 1 -f- R is

i 2
ds

*9*&>
since the mean is half the final value of the couple.

[For a more complete discussion of the legitimacy of the
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foregoing method of calculation the reader must be referred to
works upon the Theory of

Elasticity. The question of lateral
vibrations has been specially treated by Pochhammer 1 on the
basis of the general equations.]

For a circular section * is one-half the radius.

That the potential energy of the bending would be proportional,
cceteris paribus, to the square of the curvature, is evident before
hand If we call the coefficient 5, we may take

or, in view of the approximate straightness,

IT i f-n/d*y\*Vss * B (Z ^
(2 )>

in which y is the lateral displacement of that point on the axis of
the rod whose abscissa, measured parallel to the undisturbed posi
tion, is x. In the case of a rod whose sections are similar and

similarly situated B is a constant, and may be removed from under
the integral sign.

The kinetic energy of the moving rod is derived partly from
the motion of translation, parallel to y, of the elements composing
it, and partly from the rotation of the same elements about axes

through their centres of inertia perpendicular to the plane of vibra

tion. The former part is expressed by

(3),

if p denote the volume-density. To express the latter part, we have

only to observe that the angular displacement of the element dx is

dyfdx, and therefore its angular velocity <Py/dt doc. The square of

this quantity must be multiplied by half the moment of inertia of

the element, that is, by %K?pco dx. We thus obtain

............ (4).

1
Crelle, Bd. 81, 1876.
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162. In order to form the equation of motion we may avail

ourselves of the principle of virtual velocities. If for simplicity we
confine ourselves to the case of uniform section, we have

where the terms free from the integral sign are to be taken between
the limits. This expression includes only the internal forces due
to the bending. In what follows we shall suppose that there are

no forces acting from without, or rather none that do work upon
the system. A force of constraint, such as that necessary to hold

any point of the bar at rest, need not be regarded, as it does no
work and therefore cannot appear in the equation of virtual velo

cities.

The virtual moment of the accelerations is

Thu the variational equation of motion is

in which the terms free from the integral sign are to be taken
between the limits. From this we derive as the equation to be
satisfied at all points of the length of the bar

while at each end

or, if we introduce the value of B viz. y/^w. and write
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and for each end

In these equations 6 expresses the velocity of transmission of

longitudinal waves.

The condition (5) to be satisfied at the ends assumes different

forms According to the circumstances of the case. It is possible to

conceive a constraint of such a nature that the ratio $ (dy/dx) : By
has a prescribed finite value. The second boundary condition is

then obtained from (5) by introduction of this ratio. But in all

the cases that we shall have to consider, there is either no constraint

or the constraint is such that either & (dy/dx) or Sy vanishes, and
then the boundary conditions take the form

We must now distinguish the special cases that may arise. If

an end be free, Sy and B(dy/dx) are both arbitrary, and the

conditions become

the first of which may be regarded as expressing that no couple
acts at the free end, and the s'econd that no force acts.

If the direction at the end be free, but the end itself be con

strained to remain at rest by the action of an applied force of the

necessary magnitude, in which case for want, of a better word the

rod is said to be supported, the conditions are

by which (5) is satisfied.

A third case arises when an extremity is constrained to main

tain its direction by an applied couple of the necessary magnitude,
but is free to take any position. We have then

!)=
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Fourthly, the extremity may be constrained both as to

position and direction, in which case the rod is said to be clamped.
The conditions are plainly

Of these four cases the first and the last are the more

important; the third we shall omit to consider, as there are

no experimental means by which the contemplated constraint

could be realized. Even with this simplification a considerable

variety of problems remain for discussion, as either end of the

bar may be free, clamped or supported, but the complication

thence arising is not so great as might have been expected.
We shall find that different cases may be treated together
and that the solution for one case may sometimes be derived

immediately from that of another.

In experimenting on the vibrations of bars, the condition

for a clamped end may be realized with the aid of a vice of

massive construction. In the case of a free end there is of course

no difficulty so far as the end itself is concerned
; but, when both

ends are free, a question arises as to how the weight of the bar

is to be supported. In order to interfere with the vibration

as little as possible, the supports must be confined to the neigh
bourhood of the nodal points. It is sometimes sufficient merely
to lay the bar on bridges, or to pass a loop of string round the bar
and draw it tight by screws attached to its ends. For more exact

purposes it would perhaps be preferable to carry the weight of

the bar on a pin traversing a hole drilled through the middle of

the thickness in the plane of vibration.

When an end is to be 'supported/ it may be pressed into

contact with a fixed plate whose plane is perpendicular to- the

length of the bar.

163. Before proceeding further we shall introduce a sup
position, which will greatly simplify the analysis, without seriously

interfering with the value of the solution. We shall assume that
the terms depending on the angular motion of the sections of
the bar may be neglected, which amounts to supposing the
inertia of each section concentrated at its centre. We shall

afterwards ( 186) investigate a correction for the rotatory in-
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ertia, and shall prove that under ordinary circumstances it is

small. The equation of motion now becomes

and the boundar conditions for a free end

= -
da?

'

da?
..................... '

The next step in conformity with the general plan will be

the assumption of the harmonic form of y. We may conveniently

take

(3),

where I is the length of the bar, and m is an abstract number,

whose value has to be determined. Substituting in (1), we

obtain

If u = eP*fl be a solution, we see that p is one of the fourth

roots of unity, viz. +1, -1, +i, ~i\ so that the complete

solution is

u^Acosnij+Bsmmj+Ce^ + De-/1
.........(4a)/

l l

containing four arbitrary constants.

[The simplest case occurs when the motion is strictly periodic

with respect to #, C and D vanishing. If X be the wave-length

and r the period of the vibration, we have

2?r m %TT
7
m2

1T-T' T = *& T'

so that T-^, ........................... (46).]
27T/CO

In the case of a finite rod we have still to satisfy the four

boundary conditions, two for each end. These determine the

ratios A : B : C : D, and furnish besides an equation which m
must satisfy. Thus a series of particular values of m are alone

admissible, and for each m the corresponding u is determined in

everything except a constant multiplier. We shall distinguish the

different functions u belonging to the same system by suffixes.
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The value of y at any time may be expanded in a series of

the functions u ( 92, 93). If
(f>1} <j>z , &c. be the normal co

ordinates, we have

(5),

(6).

arid T = %pa> I(fa u, + < 2w2 + . . O2 dss

We are fully justified in asserting at this stage that each

integrated product of the functions vanishes, and therefore the

process of the following section need not be regarded as more

than a verification. It is however required in order to determine

the value of the integrated squares.

164 Let um , Um,* denote two of the normal functions cor

responding respectively to in and in'. Then

m4
frurf m 4

T*- "a?
= T^' ...............w;

or, if dashes indicate differentiation with respect to (mxjl),

(m'<r/Z),

*"" = **, um,'"' = um, .................. (2).

If we subtract equations (1) after multiplying them by Um' 3

y^tl respectively, and then integrate over the length of the bar,

we have
d4 u

4
-

'm
da? da? dx dx* dx dx*

.....
'

the integrated terms being taken between the limits.

Now whether the end in question be clamped, supported, or

free 1

,
each term vanishes on account of one or other of its

1 The reader should observe that the cases here specified are particular, and
that the right-hand member of (3) vanishes, provided that

and

These conditions include, for instance, the case of a rod whose end is urged
towards its position of equilibrium by a force proportional to the displacement, as

by a spring without inertia.
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factors. We may therefore conclude that, if itmi unl
> refer to two

modes of vibration (corresponding of course to the same terminal

conditions) of which a rod is capable, then

m>dx= ........................ (4),

provided m and m' be different,

The attentive reader will perceive that in the process just

followed, we have in fact retraced the steps by which the funda

mental differential equation was itself proved in 162. It is the

original variational equation that has the most immediate con

nection with the conjugate property. If we denote y by u and Sy

by v,

(^tfv-r . -=

] da? da?

and the equation in question is

Suppose now that u relates to a normal component vibration,

so that u + fC-u = 0, where n is some constant
;
then

By similar reasoning, if v be a normal function, and u represent

any displacement possible to the system,

We conclude that if u and v be both normal functions, which

have diff&r&tit periods,

(6);

and this proof is evidently as direct and general as could be

desired.

The reader may investigate the formula corresponding to (6),

when the term representing the rotatory inertia is retained.

By means of (6) we may verify that the admissible values of n-

are real. For if -n
2 were complex, and u = a+i@ were a normal

function, then a-iy3, the conjugate of w, would be a normal

function also, corresponding to the conjugate of rc
2

,
and then the
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product of the two functions, being a sum of squares, would not

vanish, when integrated
1
.

If in (3) m and m be the same, the equation becomes iden

tically true, and we cannot at once infer the value of fum~d&.
We must take m' equal to m 4- &m> and trace the limiting form of

the equation as Sm tends to vanish. [It should be observed that

the function um sm is not a normal function of the system ; it is

supposed to be derived from um by variation of m in (4a) 163,

the coefficients A, 5, C, D being retained constant.] In this way
we find

4m3 r n , d d?u du d*u $u d du du d d2u
_______ if/ *drr jj_ _ _

[
__ ___ ___ ^___ ,^^__. _

I
4

J
m dm da? dm da? dx- dm dx dx dm d& '

the right-hand side being taken between the limits.

XT du m ,~ du x
,

.

Now -j-
=

-j-
u

, &c., -j
= T u, &c.,dx I dm I

and thus

4m3

2m?

^uu
_ tt')-_

in which u"" = w, so that

between the limits.

Now whether an end be clamped, supported, or free,

tm'" = 0, wV'-O,

and thus, if we take the origin of x at one end of the rod,

f
Jo

^ (8).

The form of our integral is independent of the terminal con
dition at o? = 0. If the end oc = l be free, u" and u"

f

vanish, and

accordingly
n

fidoc = I uz
(1) (9),

1 This method is, I believe, due to Poisson.
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that is to say, for a rod with one end free the mean value of u~ is

one-fourth of the terminal value, and that whether the other end
be clamped, supported, or free.

Again, if we suppose that the rod is clamped at a? = I, u and u'

vanish, and (8) gives
fz

I
j o

Since this must hold good whatever be the terminal condition at

the other end, we see that for a rod, one end of which is fixed and
the other free,

da? = iJtt(free end) ** lu"* (fixed end),

shewing that in this case u2 at the free end is the same as u"* at

the clamped end

The annexed table gives the values of four times the mean of u*

in the different cases.

clamped, free

free, free

clamped, clamped ...

supported, supported

supported, free

supported, clamped

u? (free end), or u"2

(clamped end)
u2

(free end)
u"2

(clamped end)
- 2wV" (supported end) = 2u 2

u2

(free end), or - 2u'u'" (supported end)
u"2

(clamped end), or 2u'u"
f

(supposed end)

By the introduction of these values the expression for T
assumes a simpler form. In the case, for example, of a clamped-
free or a free-free rod,

ttf (*) + ...} ............ (10),

where the end x = I is supposed to be free.

165. A similar method may be applied to investigate the

values of Ju'*dae, and fu"*da;. In the derivation of equation (7) of

the preceding section nothing was assumed beyond the truth of

the equation u"" ~u, and since this equation is equally true of any
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of the derived functions, we are at liberty to replace u by u or u".

Thus
ma? ~w# , mx ,,,9~r-u*-2--u u-u u -f---^ 2

taken between the limits, since the term uu" vanishes in all three

cases.

For a free-free rod

'*dx = 3 (uu'\
- 3 (uu\ + m (w

/J

)^

= 6(W> + m(^)z ........................ (1),

for, as we shall see, the values of u u' must be equal and opposite

at the two ends. Whether u be positive or negative at # = i,

u id is positive.

For a rod which is clamped at x and free at x = Z

^ fW# = 3 (
^ Jo

[We have already seen that w " = ^ ;
and it may be proved

from the formulae of 173 that

u"f

_ 'W
"

__
cos TW + coshm

iii Ui sin ??^ sinh m '

so that - . - . _ L]
(n u)i sin2m sinh2m

4w r^
Thus

"
u*da! = 2(uu')i + mui'* ................. (2),

Jo

a result that we shall have occasion to use later.

By applying the same equation to the evaluation of I u"*dx, we

find

^m f rt> 7 o ft t WW u ft IfW nt f ///
VIOL* _

-T- I w' 2dx = SM'^' -f -y- u
2 - 2

-j-
w'

x

w' - u
r

t4 + , w 2

since z^V and %ww vanish.
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Comparing this with (8) 164, we see that

whatever the terminal conditions may be.

The same result may be arrived at more directly by integrating
by parts the equation

166. We may now form the expression for F.in terms of the
normal co-ordinates.

#
,

2

2

(1).

If the functions u be those proper to a rod free at as = I, this expres
sion reduces to

(2).

In any case the equations of motion are of the form

pco
ju*dx fa + mSu^dx fa = <t>: ......... (3),

and, since 3>j S^ is by definition the work done by the impressed
forces during the displacement Sfa,

>!=/ Yuip&dx .................. (4),

if Yp&dx be the lateral force acting on the element of mass pwdsc.
If there be no impressed forces, the equation reduces to

- i
<f>. ;= ("5 >

4 T1
! V

VJ /j

as we know it ought to do.
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167. The significance of the reduction of the integrals

Ju?dx to dependence on the terminal values of the function and
its derivatives may be placed in a clearer light by the following
line of argument. To fix the ideas, consider the case of a

rod clamped at cc = 0, and free at xl, vibrating in the normal

mode expressed by u. If a small addition Al be made to the

rod at the free end, the form of u (considered as a function of

x) is changed, but. in accordance with the general principle
established in Chapter iv. ( 88), we may calculate the period
under the altered circumstances without allowance for the change
of type, if we are content to neglect the square of the change.
In consequence of the straightness of the rod at the place where
the addition is made, there is no alteration in the potential

energy, and therefore the alteration of period depends entirely
on the variation of T. This quantity is increased in the ratio

ri ri+*i

\
u?dx : I u*dx,

JO JQ

-

which is also the ratio in which the square of the period is

augmented. JSfow, as we shall see presently, the actual period
varies as I

s
, and therefore the change in the square of the period

is in the ratio

1:1+ 4AZ/Z.

A comparison of the two ratios shews that

I u^dx 4 : L

The above reasoning is not insisted upon as a demonstration,
but it serves at least to explain the reduction of which the in

tegral is susceptible. Other cases in which such integrals occur

may be treated in a similar manner, but it would often require
care to predict with certainty what amount of discontinuity in the
varied type might be admitted without passing out of the range
of the principle on which the argument depends. The reader

may, if he pleases, examine the case of a string in the middle
of which a small piece is interpolated.

168. In treating problems relating to vibrations the usual
course has been to determine in the first place the forms of the
normal functions, viz. the functions representing the normal
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type*, and afterwards to investigate the integral formulae by
means of which the particular solutions may be combined to
suit arbitrary initial circumstances. I have preferred to follow
a different order, the better to bring out the generality of the
method, which does not depend upon a knowledge of the normal
functions. In pursuance of the same plan, I shall now investigate
the connection of the arbitrary constants with the initial circum
stances, and solve one or two problems analogous to those treated
under the head of Strings.

The general value of y may be written

y = ^j
cos~ mft + , sin ~ m*t] i/

1

(1),
so that initially

y = A
l 'U1 + A 2 itz + ...... . ....................... (2),

xb
y =

-]*{*BiU>i+m*BtUt+ ...} v
............... (3).

If we multiply (2) by ur and integrate over the length of the

rod, we get

urdx = A r \ur*dx ..................... (4),

and similarly from (3)

ft [ r

-^jy^irdx
= mr*Br \ujdx ............... (5),

formulae which determine the arbitrary constants A ry Br .

It must be observed that we do not need to prove analytically
the possibility of the expansion expressed by (1). If all the

particular solutions are included, (1) necessarily represents the
most general vibration possible, and may therefore be adapted
to represent any admissible initial state.

Let us now suppose that the rod is originally at rest, in its

position of equilibrium, and is set in motion by a blow which

imparts velocity to a small portion of it. Initially, that is, at

the moment when the rod becomes free, y = 0, and y differs from
zero only in the neighbourhood of one point =

c).
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From (4) it appears that the coefficients A vanish, and from
(5) that

r
2dx = ~

b
ur (c) \yQdx.

Calling /y pa)c&, the whole momentum of the blow, Y, we
have

and for the final solution

I
2 7

In adapting this result to the case of a rod free at x = I, we
may replace

l^dx by iZK(Z)]'.

If the blow be applied at a node of one of the normal com
ponents, that component is missing in the resulting motion. The
present calculation is but a particular case of the investigation
of 101,

169. As another example we may take tne case of a bar,
which is initially at rest but deflected from its natural position
by a lateral force acting at = c. Under these circumstances
the coefficients B vanish, and the others are given by (4), 168.

Now
l

and on integrating by parts

dur

in which the terms free from the integra! sign are to be taken
between the limits; by the nature of the case y, satisfies the
same terminal conditions as does and thus all these terms
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vanish at both limits. If the external force
initially applied

to the element da be Ydx, the equation of equilibrium of the
bar gives

and accordingly

If we now suppose that the initial displacement is due to
a force applied in the immediate neighbourhood of the pointx = c, we have

and for the complete value of y at time t,

Kb
<> )f

^|J
CQS

In deriving the above expression we have not hitherto made
any special assumptions as to the conditions at the ends, but
if we now confine ourselves to the case of a bar which is clamped
at x = and free at x =

I, we may replace

fufdx by \l[ur (l)J.

If we suppose further that the force to which the initial deflection
is due acts at the end, so that c = I, we get

When = 0, this equation must represent the initial displace
ment. In cases of this kind a difficulty may present itself as
to how it is possible for the series, every term of which satisfies
the condition y"'

=
0, to represent an initial displacement in

which this condition is violated. The fact is, that after
triple

differentiation with respect to x, the series no longer converges
for a? = Z, and accordingly the value of y"' is not to be arrived
at by making the differentiations first and summing the terms
afterwards. The truth of this statement will be apparent if
we consider a point distant dl from the end, and replace

u'"(l-dl) by u'"(l)-u
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in which uir
(I) is equal to

For the solution of the present problem by normal co-ordinates

the reader is referred to 101.

170. The forms of the normal functions in the various par
ticular cases are to be obtained by determining the ratios of the

four constants in the general solution of

If for the sake of brevity x be written for (mx/l), the solution

may be put into the form

u = A (cos x 4- cosh #') -f- _B (cos x
f - cosh x )

-f C (sin x + sinh x) 4- D (sin x sinh x) ...... (1),

where cosh x and sinh x are the hyperbolic cosine and sine of x,

defined by the equations

cosh x = |(0* + e~x),
sinh x = ^(e* e~x) ............ (2).

I have followed the usual notation, though the introduction of

a special symbol might very well be dispensed with, since

cosh x = cos ix, sinh x = i sin ix ............ (3),

where i = V( 1); &nd then the connection between the formulae of

circular and hyperbolic trigonometry would be more apparent. The
rules for differentiation are expressed in the equations

-=- cosh x = sinh x, -7- sinh a? = cosh #
dx dx

d2
dr

-,-., cosh x = cosh x, -= ainh x = sinh x.
dx2 dx*

In differentiating (1) any number of times, the same four com

pound functions as there occur are continually reproduced. The

only one of them which does not vanish with x is cos x 4- cosh x ',

whose value is then 2.

Let us take first the case in which both ends are free. Since

d*u/dx~ and d*ujdx* vanish with x, it follows that B 0, D = 0., so

that

it = A (cos x' -f cosh x) + G (sin #' + sinh x) ......... (4),
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We have still to satisfy the necessary conditions when x = Z, or

x = m. These give

A (- cosm -{- cosh m) + C(- sin m + sinh m) = ]

4 ( sin TO + sinh 771)4- (- cos ra-f- cosh m) = J

...... ^ ^ J

equations whose compatibility requires that

(cosh m cos mf = sinh2 m sin 2
m,

or in virtue of the relation

cosh 2
7?i sinh 2m = 1 ..................... (6),

COSm COSh 771 = 1 ............ . ........ (7).

This is the equation whose roots are the admissible values of m.

If (7) be satisfied, the two ratios of A : C given in (5) are equal,

and either of them may be substituted in (4). The constant multi

plier being omitted, we have for the normal function

moc], . . , v ( mx , mo
24 = (sin m sinh m) \

cos -y- -j- cosh -y-(I I

, i \ ( inx . , mx] /ft v

(cos m cosh m) -tem , 4- sinh ~y-
> ......... (8),[I I
}

or, if we prefer it

, i \ f TTiiZ? , mx)
u = (cos 771 cosh m) Kcos^- -f cosh -j- V(6 I }

, -i N .
, /AN

-f (sm7?^,+smh77^)^sm -=-+sinh -y-> ......... (9);
I

^ ^
J

and the simple harmonic component of this type is expressed by

..................(10).

K
171. The frequency of the vibration is

H~/2
m2

>
^n which b is

a velocity depending only on the material of which the bar is

formed, and m is an abstract number. Hence for a given material

and mode of vibration the frequency varies directly as K the

radius of gyration of the section about an axis perpendicular to the

plane of bending and inversely as the square of the length. These

results might have been anticipated by the argument from dimen

sions, if it were considered that the frequency is necessarily

determined by the value of I, together with that of tcb the

only quantity depending on space, time and mass, which occurs in
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the differential equation. If everything concerning a bar be given,

except its absolute magnitude, the frequency varies inversely as

the linear dimension.

These laws find an important application in the case of tuning-

forks, whose prongs vibrate as rods, fixed at the ends where they

join the stalk, and free at the other ends. Thus the period of vibra

tion of forks of the same material and shape varies as the linear

dimension. The period will be approximately independent of the

thickness perpendicular to the plane of bending, but will vary

inversely with the thickness in the plane of bending. When the

thickness is given, the period is as the square of the length.

In order to lower the pitch of a fork we may, for temporary

purposes, load the ends of the prongs with soft wax, or file away
the metal near the base, thereby weakening the spring. To raise

the pitch, the ends of the prongs, which act by inertia, may be

filed.

The value of b attains its maximum in the case of steel, for

which it amounts to about 5237 metres per second. For brass

the velocity would be less in about the ratio 1*5 : 1, so that a

tuning-fork made of brass would be about a fifth lower in pitch
than if the material were steel.

[For the design of steel vibrators and for rough determinations

of frequency, especially when below the limit of hearing, the

theoretical formula is often convenient. If the section of the bar

be rectangular and of thickness t in the plane of vibration, &
2 =^2

;

and then with the above value of b, and the values of m given

later, we get as applicable to the gravest mode

(clamped-free) frequency = 84590 t/P,

(free-free) frequency = 538400 t/l\

I and t being expressed in centimetres.

The first of these may be used to calculate the pitch of steel

tuning-forks.

The lateral vibrations of a bar may be excited by a blow, as

when a tuning-fork is struck against a pad. This method is also

employed for the harmonicon, in which strips of metal or glass are

supported at the nodes, in such a manner that the free vibrations

are but little impeded. A frictional maintenance may be obtained
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with a bow, or by the action of the wetted fingers upon a slender

rod of glass suitably attached. The electro-magnetic maintenance

of forks has been already considered, 84. It may be applied with

equal facility to the case of metal bars, or even to that of

wooden planks carrying iron armatures, free at both ends and

supported at the nodes. The maintenance by a stream of wind

of the vibrations of harmonium and organ reeds may also be

referred to

The sound of a bar vibrating laterally may be reinforced by a

suitably tuned resonator, which may be placed under the middle

portion or under one end. On this principle dinner gongs have

been constructed, embracing one octave or more of the diatonic

scale.]

172. The solution for the case when both ends are clamped

may be immediately derived from the preceding by a double dif

ferentiation. Since y satisfies at both ends the terminal con

ditions

it is clear that y
1

satisfies

*"- -

which are the conditions for a clamped end. Moreover the general

differential equation is also satisfied by y". Thus we may take,

omitting a constant multiplier, as before,

u (sin m sinh m) {cos #' cosh #'}

(cos 77i cosh m) {sin sf sinh of] ............(1),

while m is given by the same equation as before, namely,

cosm coshm 1.% ...................... (2).

We conclude that the component tones have the same pitch in the

two cases.

In each case there are four systems of points determined by

the evanescence of y and its derivatives. Where y vanishes, there

is a node ;
where y' vanishes, a loop, or place of maximum displace

ment; where y" vanishes, a point of inflection; and where y'"

vanishes, a place ofmaximum curvature. Where there are in the first

case (free-free) points of inflection and of maximum curvature, there
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are in the second (clamped-clamped) nodes and loops respectively;

and vice versa, points of inflection and of maximum curvature for

a doubly-clamped rod correspond to nodes and loops of a rod whose

ends are free.

173. We will now consider the vibrations of a rod clamped at

#=0, and free at # = /. Reverting to the general integral (1)

170, we see that A and G vanish in virtue of the conditions at

x = 0, so that

u = B (cos #' - cosh x) + D (sin x
- sinh sc) ( 1 ).

The remaining conditions at x = I give

B ( cos m -I- cosh m) 4- D (sin m 4- sinh m) = |

B ( sin m 4- sinh m) 4- D (cos m 4- cosh iti)
=

J

*

whence, omitting the constant multiplier,

. , .
\

ivix , mx}
u (sin m 4- smh m) 4 cos ~, cosn - ,- /

f '77? T" 'f}"LX I-
(cos m 4- cosh m)

j

sin -
-, sinh - -.- \ (2),

or

u = (cos ?n 4- cosh m) jcos -. cosh
[

V V

. ( . mx . , mx} /0 .

+ (smm smh7?i)^sin -= smh .- > (o),
I

t t
J

where m must be a root of

cos m cosh m 4- 1 =0 (4).

The periods of the component tones in the present problem are

thus different from, though, as we shall see presently, nearly re

lated to, those of a rod both whose ends are clamped, or free.

If the value of u in (2) or (3) be differentiated twice, the re-

suit (u") satisfies of course the fundamental differential equation.
At # = 0, $u"/dx

z
, d*u"/da? vanish, but at x = l y!

f

and du"/dx
vanish. The function iC is therefore applicable to a rod clamped
at I and free at 0, proving that the points of inflection and of

maximum curvature in the original curve are at the same distances

from the clamped end, as the nodes and loops respectively are

from the free end.
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174. In default of tables of the hyperbolic cosine or its loga

rithm, the admissible values of m may be calculated as follows.

Taking first the equation

cos 77i cosh m l (1),

we see that m, when large, must approximate in value to

J(2i-fl)7r, i being an integer. If we assume

m = i(2i'+l)7r -(-!)' (2),

ft will be positive and comparatively small in magnitude.

Substituting in (1), we find

cot J/3
= em = e*(*+i>r g-c-D*

;

or, if e* (et+1)fl> be called a,

atani = ^-w (3),

an equation which may be solved by successive approximation after

expanding tan^/3 and ^-^ in ascending powers of the small

quantity ft. The result is

which is sufficiently accurate, even when i = 1.

By calculation

ft = -0179666 - -0003228 + "0000082 - '0000002 - -0176518.

/So, &, /34 , yS5 are found still more easily. After ft the first term of

the series gives ft correctly as far as six significant figures. The

table contains the value of ft, the angle whose circular measure is

ft, and the value of sin ^-ft which will be required further on.

Free-Free Bar.

This process is somewhat similar to that adopted by Strehlke.
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The values of m which satisfy (1) are

7na
= 47123890 + & = 47300408

2
= 7-8539816 - & = 7-8532046

ms
= 10*9955743 -h & = 10-9956078

m4
= 14-1371669 - & = 14-1371655

7nB = 17-2787596 + & - 17-2787596

after which wJ(2 + l)*r to seven decimal places.

We will now consider the roots of the equation

cosm coshw = 1 ..................... (5)
1

.

[Assuming
wi = H*-l) "-(- 1 )'* .................. (6),

we have ^ = cot^ = e^-1^
. ert-V'i ,

or atan;+1
= e-<-l)<a<-H ........................ (7),

having the value previously defined.

Thus, as in (4),

&i+1 being approximately eqiml to $$.

The values calculated fiom (8) are

a,2
= 10-1 x 182979 a4= 10~4 x '335527,

as
= 10-3 x 775804, a5

= 10~5 x -144989,

after which the difference between ai+l and & does not appear.]

The value of ai may be obtained by trial and error from the

equation

logjo cot idx
- '6821882 - '43429448 a

z
= 0,

and will be found to be

a, = -3043077.

Another method bv which mt may be obtained directly will be

given presently.

The values of m, which satisfy (5), are

w x
= 1-5707963 + a1= 1-875104

m.= 4-7123890-02= 4'69409^
m3
= 7-8539816 + a, = 7'854757

m4
= 10*9955743 - a4

= 10'995541

77i5
= 14-1371669 4- a5

= 14137168

ms
= 17*2787596 - oa

= 17'278759
,

1 The calculation of the roots of (5) given in the first edition was affected by an

error, which has heen pointed out by Greenhill (Hath. Mess., Dec. 1886).
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after which m =
-J- (2i 1) TT sensibly. The frequencies are propor

tional to m2
,
and are therefore for the higher tones nearly in the

ratio of the squares of the odd numbers. However, in the case of

overtones of very high order, the pitch may be slightly disturbed

by the rotatory inertia, whose effect is here neglected.

175. Since the component vibrations of a system, not subject

to dissipation, are necessarily of the harmonic type, all the values

of w2
,
which satisfy

cosra coshm= 1 (1),

must be real. We see lurther that, if m be a root, so are also

m, m V( 1), mV( 1). Hence, taking first the lower sign, we

have

771* lYt?

If we take the logarithms of both sides, expand, and equate co

efficients, we get

This is for a clamped-free rod.

From the known value of 2m~8
,
the value of 7?^ may be derived

with the aid of approximate values of m2 ,
?n3 ,

...... We find

2771-8 = -006547621,

and mr8 = '000004242

7nr
s -000000069

m4
-

-000000005,

whence mr8 = '006543305

giving mi = '1875104, as before.

In like manner, if both ends of the bar h'e clamped or free,

whence 2 ;
=

I-STTTP &c-> where of course the summation is exclu-
m4 12.o5

sive of the zero value of m.
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176. The frequencies of the series of tones are proportional to

m2
. The interval between any tone and the gravest of the series

may conveniently be expressed in octaves and fractions of an

octave. This is effected by dividing the difference of the logarithms
ofm2

by the logarithm of 2. The results are as follows :

1-4629 2*6478

2-4358 41332

3-1590 5-1036

3-7382, &c 5-8288, &c.

where the first column relates to the tones of a rod both whose

ends are clamped, or free
;
and the second column to the case of a

rod clamped at one end but free at the other. Thus from the

second column we find that the first overtone is 2*6478 octaves

higher than the gravest tone. The fractional part may be reduced

to mean semitones by multiplication by 12. The interval is then

two octaves + 7*7736 mean semitones. It will be seen that the

rise of pitch is much more rapid than in the case of strings.

If a rod be clamped at one end and free at the other, the pitch
of the gravest tone is 2 (log 4'7300 - log 1*8751)

-~
log 2 or 2*6698

octaves lower than if both ends were clamped, or both free.

177. In order to examine more closely the curve in which the

rod vibrates, we will transform the expression for u into a form

more convenient for numerical calculation, taking first the case

when both ends are free. Since m = J (2i + 1) TT ( 1)* fi,

cosm = sin ft, sin m = cos ITT x cos ft ;
and therefore, m being a

root of cos m cosh m = 1, cosh m = cosec ft.

Also

sinh2 m = cosh3m 1 = tan2m = cot2
ft,

or, since cot ft is positive,

sinh m = cot ft.

Thus

sin m sinh m _ 1 cos ITT sin $
cosm cosh m

~~

cos yS

_ (cos ^/3 cos ITT sin

(cos y9 cos ITT sin /3)(cos %ft + cos ITT sin

cos ^/3 cos ITT sin ^/3

cos ^-/3 cos iir + sin /3

'
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We may therefore take, omitting the constant multiplier,

x i / - i ^ f I*1 . , 7715?)
u = (cos $p cos wr H- sin yS) ssin

-y-
4- smh

-j-
V

, - . . . ~. f mx , TTWD)
(cos -kp cosw sin $#) ]cos -y- 4- cosh -r- h(t 6 j

-costir cos $Per*1 .................. (1)-

If we further throw out the factor V2, and put I = 1, we

may take

where

FI - cos ITT sin {mx JTT + J(
-

logjF2 == ^Ti^c log e -h log sin ^-yS log V2 >
............ (*)

log J^= TTZ^C log e + log cos log V2 J

from which u may be calculated for different values of i and #.

At the centre of the bar, # =
,
and F& ,

F$ are numerically

equal in virtue of em cot J /9. When i is even, these terms cancel.

For Fly we have J\ =( 1) sin^^Tr, which is equal to zero when

i is even, and to 1 when i is odd. When i is even, therefore,

the sum of the three terms vanishes, and there is accordingly a

node in the middle.

When as = 0, u reduces to - 2 (- 1)
{ sin {i TT - (- 1)* /S},

which

(since j8 is always small) shews that for no value of i is there a

node at the end. If a long bar of steel (held, for example, at the

centre) be gently tapped with a hammer while varying points of

its length are damped with the fingers, an unusual deadness in

the sound will be noticed, as the end is closely approached.

178. We will now take some particular cases.

Vibration with two nodes. i=I.

If i 1, the vibration is the gravest of which the rod is capable.

Our formulae become

F! = - sin {#(270 + 1 V 40" -94)
- 45 - 30' 20" -47}

log Fz
- 2*054231 a + 3'7952391

logF3
= - 2-054231 x + 1-8494681,

from which is calculated the following table, giving the values of

u for x equal to '00, "05, *10, &c.
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The values of u : u ('5) for the intermediate values of x (in the

last column) were found by interpolation formulae. If o, p, q, r, s, t

be six consecutive terms, that intermediate between q and r is-

q+jr , 2!lri
2 4s

2[q + r -
4

s)

Since the vibration curve is symmetrical with respect to the

middle of the rod, it is unnecessary to continue the table beyond

x _ .5. The curve itself is shewn in fig.
28.

Fig. 28.
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To find the position of the node, we have by interpolation

which is the fraction of the whole length by which the node is

distant from the nearer end.

Vibration with three nodes, i = 2.

Fl
= sin

{ (450'
- 2' 40" -27) x - 45 + 1' 20" 135}

log Ft= 3*410604 OB+ 44388816

log (-F9)
= - 3-410604 x + 1-8494850.

In this table, as in the preceding, the values of u were calcu

lated directly for # = '000, -050, *100 &c, and interpolated for the

intermediate values. For the position of the node the table gives

by ordinary interpolation #= 132. Calculating from the above

formulae, we find

u (-1321)
= -'000076,

M (1822) = + -000881,

whence x = 132108, agreeing with the result obtained by Strehlke.

The place of maximum excursion mav be found from the derived

function. We get

u' (-3083)
= + '0006077, u' (3084) = - -0002227,

whence u' (-308373) = 0.
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Hence u is a maximum, when x = -308373
;

it then attains

the value "6636, which, it should be observed, is much less than

the excursion at the end.

The curve is shewn in fig. 29.

Pig. 29.

Vibration with four nodes, i 3.

log F, = 4-775332 x + 5'0741527,

log JP,
= - 4-775332 as + 1*8494850.

From this u(0) = 1-41424, w() -T00579. The positions of

the nodes are readily found by trial and error. Thus

u (-3558) = - -000037 u (-3559) = + -001047,

whence u (-355803) = 0. The value of x for the node near the end
is -0944, (Seebeck).

The position of the loop is best found from the derived

function. It appears that u' = 0, when x = '2200, and then
24 = -9349. There is also a loop at the centre, where however
the excursion is not so great as at the two others.

Fig. 30.

We saw that at the centre of the bar F2 and F* are numerically
equal In the neighbourhood of the middle, F3 is evidently very
small, if i be moderately great, and thus the equation for the nodes
reduces approximately to

n being an integer. If we transform the origin to the centre of
the rod, and replace m by its approximate value J(2i + l)7r, we
find

x _ 2n i
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shewing that near the middle of the bar the nodes are uniformly

spaced, the interval between consecutive nodes being 2Z-(2i + l).

This theoretical result has been verified by the measurements of

Strehlke and Lissajous.

For methods of approximation applicable to the nodes nea^

the ends, when i is greater than 3, the reader is referred to the

memoir by Seebeck already mentioned 160, and to Donkin's

Acoustics (p. 194).

179. The calculations are very similar for the case of a bar

clamped at one end and free at the other. If u oc F
} and

+F9 , we have in general

Fl
= cos [mx + 1 TT + (- l)'a},

If i= 1, we obtain for the calculation of the gravest vibration-

curve

Fl
= cos -?7i# + 45 - 8 43' '0665 ,

7T
j

log (-F2)
= mx log e + T0300909.

log (- FJ = - mx log e + 1-8444383.

These give on calculation

-000000, F( -6)= -743452,

(2) = -102974, F( -8)
= 1169632,

F (-4)
= -370625, F (1-0)

= 1-612224,

from which fig. 31 was constructed.

Fig. 31.
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The distances of the nodes from the free end in the case of a

rod clamped at the other end are given by Seebeck and by Donkin

2nd tone -2261.

3rd tone -1821, '4999.

4th tone '0944, -3558, '6439.

^ 1-3222 4-9820 9*0007 4jy-3 4i- 10*9993 *<- 7*0175
Ati' 9 3 A?" 9 3 Ai . 9 *

4*-j* 9 ' 4V 9 * Z7 9 '

"p ~"~
t T!6 "" ^ "t ^^ ^i Jcv Af T!C ^ T6 " ^

"The last row in this table must be understood as meaning
A JM Q

fchat ~ x may be taken as the distance of the fh node from the
4& 2

free end, except for the first three and the last two nodes,"

When both ends are free, the distances of the nodes from the

nearer end are

lrt tone -2242.

2nd tone 1321 -5.

3rd tone '0944 '3558.

4-9820 9-0007
i
fch tone

1-3222

The points of inflection for a free-free rod (corresponding to

the nodes of a clamped-clamped rod) are also given by Seebeck
;

Except in the case of the extreme nodes (which have no

corresponding inflection-point), the nodes and inflection-points

always occur in close proximity.

180. The case where one end of a rod is free and the other

supported does not need an independent investigation, as it may be
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referred to that of a rod with both ends free vibrating in an even

mode, that is, with a node in the middle. For at the central node

y and y" vanish, which are precisely the conditions for a supported
end In like manner the vibrations of a clamped-supported rod

are the same as those of one-half of a rod both whose ends are

clamped, vibrating with a central node.

181. The last of the six combinations of terminal conditions

occurs when both ends are supported. Referring to (1) 170, we
see that the conditions at x= 0, give A = 0, B =

;
so that

u = (C H- D) sin x + (C- jD) sinh #'.

Since u and u" vanish when x' = m, C D = 0, and sinm = 0.

the solution is

where i is an integer. An arbitrary constant multiplier may of

course be prefixed, and a constant may be added to t.

It appears that the normal curves are tiie same as in the case

of a string stretched between two fixed points, but the sequence of

tone is altogether different, the frequency varying as the square
of i. The nodes and inflection-points coincide, and the loops

(which are also the points of maximum curvature) bisect the
distances between the nodes.

182. The theory of a vibrating rod may be applied to illustrate

the general principle that the natural periods of a system fulfil the

maximum-minimum condition, and that the greatest of the natural

periods exceeds any that can be obtained by a variation of

type. Suppose that the vibration curve of a clamped-free rod is

that in which the rod would dispose itself if deflected by a force

applied at its free extremity. The equation of the curve may be

taken to be

which satisfies d4

yjd^ ~ throughout, and makes y and y' vanish

at 0, and y" at L Thus, if the configuration of the rod at time t be

cozpt ..................... (1),

the potential energy is by (1) 161, 6 qtf <l* cos8
pt, while the
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kinetic energy is
-=^ pco I

7
p- sin2

pt ;
and thus p* = -

v -L JL 6

Now pl (the true value of v for the gravest tone) is equal to

so that

shewing that the real pitch of the gravest tone is rather (but

comparatively little) lower than that calculated from the hypo
thetical type. It is to be observed that the hypothetical type in

question violates the terminal condition y'"= 0. This circumstance,

however, does not interfere with the application of the principle,

for the assumed type may be any which would be admissible as an

initial configuration ;
but it tends to prevent a very close agree

ment of periods.

We may expect a better approximation, if we found our calcu

lation on the curve in which the rod would be deflected by a force

acting at some little distance from the free end, between which

and the point of action of the force (x= c) the rod would be

straight, and therefore without potential energy. Thus

potential energy = 6 qtf&c* co$?pt.

The kinetic energy can be readily found by integration from

the value of y.

From to o y~ 3c#2 + a?
;

and from c to I y = c
2

(c 3#),

as may be seen from the consideration that y and y' must not

suddenly change at x= c. The result is

1 33 1

kinetic energy = pa> p* sitfpt U^ c7 -f c4
( l
~

<>).(<>*
+ 3J2

) ,

whence

The maximum value of 1/J9
3 will occur when the point of

application of the force is in the neighbourhood of the node of the

second normal component vibration. If we take c = Z, we obtain

a result which is too high in the musical scale by the interval
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expressed by the ratio 1 : '9977, and is accordingly extremely near
the truth. This example may give an idea how nearly the period
of a vibrating system may be calculated by simple inJans without
the solution of differential or transcendental equations.

The type of vibration just considered would be that actually
assumed by a bar which is itself devoid of inertia, but carries a

loadM at its free end, provided that the rotatory inertia of M could

be neglected. We should have, in fact,

V= Gq^vl* cosj

pt, T= 2Ml*p* sin2

pt,

^ that f. ..................... (3 ).

Even if the inertia of the bar be not altogether negligible in

comparison with IT, we may still take the same type as the basi>

of an approximate calculation :

whence

(4),
p" aq/c-a) \ 140

that is, M is to be increased by about one quarter of the mass of

the rod. Since this result is accurate when M is infinite, and does

not differ much from the truth, even when MQ, it may be re

garded as generally applicable as an approximation. The error

will always be on the side of estimating the pitch too high.

183. But the neglect of the rotatory inertia of M could not

be justified under the ordinary conditions of experiment. It is as

easy to imagine, though not to construct, a case in which the inertia

of translation should be negligible in comparison with the inertia of

rotation, as the opposite extreme which has just been considered.

If both kinds of inertia in the mass M be included, even though
that of the bar be neglected altogether, the system possesses two

distinct and independent periods of vibration.

Let z and 6 denote the values of y and dyjdx at x = L Then

the equation of the curve of the bar is

.
,

a*,
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and

while for the kinetic energy

if K be the radius of gyration ofM about an axis perpendicular to

the plane of vibration.

The equations of motion are therefore

=
o]

I .......... /g\.

) =
oJ

whence, if z and 8 vary as cos pt, we find

3** 3' 9*

corresponding to the two periods, which are always different.

If we neglect the rotatory inertia by putting /e'' = 0, we fall

back on our previous result

The other value ofp* is then infinite. '

If K : I be merely small, so that its higher powers may be

neglected,

if on the other hand */2 be very great, so that rotation is

prevented,

the latter of which is very small. It appears that when rotation

is prevented, the pitch is an octave higher than if there were no

rotatory inertia at all. These conclusions might also be derived
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directly from the differential equations; for if #'=00, 6 = 0, and

then

but if AT' = O, =
3jz/2l, by the second of equations (S), and in

that case

,,..
,

.

Mz -f -2- ^r = 0.

184. If any addition to a bar be made at the end, the period

of vibration is prolonged. If the end in question be free, suppose
first that the piece added is without inertia. Since there would be

ao alteration in either the potential or kinetic energies, the pitch

would be unchanged ;
but in proportion as the additional part

acquires inertia, the pitch falls ( 88).

In the same way a small continuation of a bar beyond a

clamped end would be without effect, as it would acquire no

motion. No change will ensue if the new end be also clamped ;

but as the first clamping is relaxed, the pitch fells, in consequence
of the diminution in the potential energy of a given deformation.

The case of a
e

supported
'

end is not quite so simple. Let the

original end of the rod be A, and let the added piece which is at

first supposed to have no inertia, be AB. Initially the end A is

fixed, or held, if we like so to regard it, by a spring of infinite stiff

ness. Suppose that this spring, which has no inertia, is gradually

relaxed. During this process the motion of the new end B
diminishes, and at a certain point of relaxation, B comes to rest.

During this process the pitch falls. B, being now at rest, may be

supposed to become fixed, and the abolition of the spring at A
entails another fall of pitch, to be further increased as AB acquires

inertia.

185. The case of a rod which is not quite uniform may be

treated by the general method of 90. We have in the notation

there adopted

ar
= r

=
I
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whence, Pr being the uncorrected value of pry

[If the motion be strictly periodic with respect to a?, ur
"

is

proportional to ur ,
and both quantities vanish at a node. Ac

cordingly an irregularity situated at a node of this kind of motion
has no effect upon the period. A similar conclusion will hold good
approximately for the interior nodes of a bar vibrating with
numerous subdivisions, even though, as when the terminals are

clamped or free, the mode of motion be not strictly periodic with

respect to #.]

If the rod be clamped at and free at I,

Bof
4

f- 4 p&B //Q
, 4 fn-f

; -jj-t^da?-
G>Q l

4
( tuf j o JD O luf Jluf J

The same formula applies to a doubly free bar.

The effect of a small load dM is thus given by

where JW denotes the mass of the whole bar. If the load be at
the end, its effect is the same as a lengthening of the bar in the
ratio M : M+dM. (Compare 167.)

[In (2) dM is supposed to act by inertia only ;
but a similar

formula may conveniently be employed when an irregularity of
mass dM depends upon a variation of section, without a change
of mechanical properties. Since jB =

q/c*a>,

so that the effect of a local excrescence is given by

If the thickness in the plane of bending be constant, S*2 = 0,
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Further,
:o>

~ M '

and thus tflP* = l +4^^ r^ (4).

If, however, the thickness in the plane perpendicular to that of

bending be constant, and in the plane of bending variable (27),

then S (K*a>)/(*
2
w),= bf/yf= 3 87/70

= 3 S<B/<BO ;

and in place of (4)
dM

If a tuning-fork be filed (dM negative) near the stalk (clamped

end), the pitch is lowered
;
and if it be filed near the free end, the

pitch is raised. Since u"*^uf, the effects of a given stroke of

the file are equal and opposite in the circumstances of (4), but in

the circumstances of (5) the effect at the stalk is three times a*

great as at the free end.]

186. The same principle may be applied to estimate the

correction due to the rotatory inertia of a uniform rod. We have

only to find what addition to make to the kinetic energy, supposing

that the bar vibrates according to the same law as would obtain,

were there no rotatory inertia.

Let us take, for example, the case of a bar clamped at and

free at I, and assume that the vibration is of the type,

y 5= u cos pi,

where u is one of the functions investigated in 179. The kinetic

energy of the rotation is

by (2) 165.

To this must be added

2
'P

3 in2 vt { u? dx, or ^ f sin
2

pt u? :

2 r r
Jo 8

so that the kinetic energy is increased in the ratio
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The altered frequency bears to that calculated without allow

ance for rotatory inertia a ratio which is the square root of the

reciprocal of the preceding. Thus

By use of the relations cosh w = sec w, sinhm = cos ITT. tan m,
we may express u' : u when x = I in the form

u sinm cos a

u cos iir 4- cos ??& 1 cos iir sin a
'

if we substitute for m from

In the case of the gravest tone, a -3043, or, in degrees and

minutes, a = 17 26', whence

~ - -73413, 2^ -I- m~ = 2-4789.

Thus

i
*

72
* \ ** }t

which gives the correction for rotatory inertia in the case of the

gravest tone.

When the order of the tone is moderate, a is very small,
and then

u' :u*=I sensibly.

and p : P = l-^l4-^:j^. (3^

shewing that the correction increases in importance with the
order of the component.

In all ordinary bars * : I is very small, and the term depending
on its square may be neglected without sensible error.

187. When the rigidity and density of a bar are variable
from point to point along it, the normal functions cannot in

general be expressed analytically, but their nature may be investi

gated by the methods of Sturm and Liouville explained in 142.

If, as in 162, B denote the variable flexural rigidity at any
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point of the bar, and pa* dx the mass of the element, whose length

is da, we find as the general differential equation

the effects of rotatory inertia being omitted. If we assume that

y ex cos vt, we obtain as the equation to determine the form of the

normal functions

in which z/- is limited by the terminal conditions to be one of an

infinite series of definite quantities vf, v, zy
1

......

Let us suppose, for example, that the bar is clamped at both

ends, so that the terminal values of y and dyjdx vanish. The first

normal function, for which v2 has its lowest value zv, has no

internal root, so that the vibration-curve lies entirely on one side

of the equilibrium-position. The second normal function has one

internal root, the third function has two internal roots, and,

generally, the r*
h function has r 1 internal roots.

Any two different normal functions are conjugate, that is to

say, their product will vanish when multiplied by pa>dx, and

integrated over the length of the bar.

Let us examine the number of roots of a function /(#) of

the form

compounded of a finite number of normal functions, of which the

function of lowest order is u^oc) and that of highest order is

n (x). If the number of internal roots of/(#) be ju,, so that there

are p, + 4 roots in all, the derived function*/'(#) cannot have less

than /* -f 1 internal roots besides two roots at the extremities, and

the second derived function cannot have less than /* + 2 roots.

No roots can be lost when the latter function is multiplied by B,

and another double differentiation with respect to x will leave at

least /^ internal roots. Hence by (2) and (3) we conclude that

*>m
2
0mttm (X) + Um+i'^m+i Um+i (fl?)+ . . . -f Vn*<f>nUn (*?) (*)

has at least as many roots as f(x). Since (4) is a function of the

same form as /(#/, the same argument may be repeated, and a

series of functions obtained every member of which has at least
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as many roots as f(x) has. When the operation by which (4) was

derived from (3) has been repeated sufficiently often, a function is

arrived at whose form differs as little as we please from that of the

component normal function of highest order un (&)\ and we con

clude that /(#) cannot have more than n 1 internal roots. In

like manner we may prove that f(a) cannot have less than in 1

internal 'roots.

The application of this theorem to demonstrate the possibility

of expanding an arbitrary function in an infinite series of normal

functions would proceed exactly as in 142.

[An analytical investigation of certain cases where the section

of a rod is supposed to be variable, will be found in a memoir by
Kirchhoff 1

].

188. When the bar, whose lateral vibrations are to be con

sidered, is subject to longitudinal tension, the potential energy of

any configuration is composed of two parts, the first depending on

the stiffness by which the bending is directly opposed, and the

second on the reaction against the extension, which is a necessary

accompaniment of the bending, when the ends are nodes. The
second part is similar to the potential energy of a deflected string ;

the first is of the same nature as that with which we have been

occupied hitherto in this Chapter, though it is not entirely

independent of the permanent tension.

Consider the extension of a filament of the bar of section e?o>,

whose distance from the axis projected on the plane of vibration

is 7). Since the sections, which were normal to the axis originally,

remain normal during the bending, the length of the filament

bears to the corresponding element of the axis the ratio JR + rj : R,
R being the radius of curvature. Now the axis itself is extended

111 the ratio q : q -f Ty reckoning from the unstretched state, if

To) denote the whole tension to which the bar is subjected.
Hence the actual tension on the filament is {T+ rj(T+q)/R} cfo,

from which we find for the moment of the couple acting across the

section

Monatsber., 1879; Collected TrorAv>, p. 339. See also Todhunter and
Pearson's Htfttory of the Theory of Elasticity, Vol. n., Part ii., 1302.
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and for the whole potential energy due to stiffness

'** ..................... (1),

an expression differing from that previously used { 162) by the

substitution of (q -f T) for q.

Since q is the tension required to stretch a bar of unit area to

twice its natural length, it is evident that in most practical cases

T would be negligible in comparison with
q.

The expression (1) denotes the work that would be gained

during the straightening of the bar, if the length of each element

of the axis were preserved constant during the process. But

when a stretched bar or string is allowed to pass from a displaced

to the natural position, the length of the axis is decreased. The

amount of the decrease is ^(dy/dx^dx, and the corresponding

gain of work is

Thus

The variation of the first part due to a hypothetical displace

ment is given in 162. For the second part, we have

i* 7 7 * ^ j /\
AS (-/-} <&?=-/ f das** \-f-Sy\- V|fy^...... (3).

J \dafj J dx dx (d#
y\)dxt *

In all the cases that we have to consider, 8y vanishes at the

limits. The general differential equation is accordingly

or, if we put q + T= 62

p, T= a*p,

For a more detailed investigation of this equation the reader is

referred to the writings of Clebsch 1 and Donkin.

189. If the ends of the rod, or wire, be clamped, dy/dx
= 0, and

the terminal conditions are satisfied. If the nature of the support

be such that, while the extremity is constrained to be a node, there

1 TUeorie der ttlasticitat fester Korper. Leipzig, 1862.
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is no couple acting on the bar, d-y/dx? must vanish, that is to say,

the end must be straight. This supposition is usually taken to

represent the case of a string stretched over bridges, as in many
musical instruments

;
but it is evident that the part beyond the

bridge must partake of the vibration, and that therefore its length
cannot be altogether a matter of indifference.

If in the general differential equation we take y proportional

to cos nt, we get

which is evidently satisfied by

. TTX

y sin ^ =- cos nt ..................... (2),
L

if n be suitably determined. The same solution also makes

y and y" vanish at the extremities. By substitution we obtain

for n}

n

which determines the frequency.

If we suppose the wire infinitely thin, n2 = i
2
7r

2 a2 -=- Z
2
, the same

as was found in Chapter VL, by starting from the supposition of

perfect flexibility. If we treat K : I as & very small quantity, the

approximate value of n is

"~
I

For a wire of circular section of radius r, ** = J r2
, and if we

replace b and a by their values in terms of q, T> and p,

n

which gives the correction for rigidity
1
. Since the expression

within brackets involves i, it appears that the harmonic relation

of the component tones is disturbed by the stiffness.

190. The investigation of the correction for stiffness when the

ends of the wire are clamped is not so simple, in consequence of

the change of type which occurs near the ends. In order to pass
trom the case of the preceding section to that now under con-

1 Donkin's Acoustics, Art. 184.
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sideration an additional constraint must be introduced, with the

effect of still further raising the pitch. The following is, In the

main, the investigation of Seebeck and Donkin.

If the rotatory inertia be negVcted, the differential equation
becomes

where D stands for
^- . In the equation

one of the values of _D* must be positive, and the other negative.

We may therefore take

(2),

and for the complete integral of (1)

y=A cosh OLX +B sinh cue+ G cos fa -f D sin @x..... ; (3),

where a and /S are functions of n determined by (2).

The solution must now be made to satisfy the four boundary

conditions, which, as there are only three disposable ratios, lead

to an equation connecting a, yS, I. This may be put into the form

sinffl

1-coshaZ

The value of
a

, determined by (2), is -, so that

1 cosh aZ cos (31

From (2) we find also that

Thus far our equations are rigorous, or rather as rigorous as

the differential equation on which they are founded
;
but we shall

now introduce the supposition that the vibration considered is but
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slightly affected by the existence of rigidity. This being the case,

the approximate expression for y is

. ivrx fill- \

y = sm -y- cos (

-j~
at I ,

l> \ t /

and therefore

/3 = i7r/l3 n = i7ra/l (7),

nearly.

The introduction of these values into the second of equations

(6) proves that r^fr^/a
4 or b*/c

z

/a?l
z is a small quantity under the

circumstances contemplated, and therefore that a2
Z
2

is a large

quantity. Since coshccZ, sinhaZ are both large, equation (5) re

duces to

, ~
7

Znbie
tan 06= ,

Or

or, on substitution of the approximate value for ft derived irom

(6),

The approximate value of nl/a is iir. If we take nl/a = i?r 4- 6

we get

-,
a I

sothat n ii +2
)

............ . ........(8).

According to this equation the component tones are all raised

in pitch by the same small interval, and therefore the harmonic
relation is not disturbed by the rigidity. It would probably be

otherwise if terms involving K*: l
z were retained

;
it does not there

fore follow that the harmonic relation is better preserved in spite
of rigidity when the ends are clamped than when they are free,

but only that there is no additional disturbance in the former

case, though the absolute alteration of pitch is much greater. It

should be remarked that 6 : a or *J(q + T) : *JT, is a large quantity,
and that, if our result is to be correct, K : I must be small enough
to bear multiplication by b : a and yet remain small.

The theoretical result embodied in (8) has been compared with

experiment by Seebeck, who found a satisfactory agreement. The
constant of stiffness was deduced from observations of the rapidity
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of the viorations of a small piece of the wire, when one end was

clamped in a vice.

[As the result of a second approximation Seebeck gives
(loc. dt.)

191. It has been shewn in this chapter that the theory of bars,

even when simplified to the utmost by the omission of unimportant
quantities, is decidedly more complicated than that of perfectly
flexible strings. The reason of the extreme simplicity of the
vibrations of strings is to be found in the fact that waves of the
harmonic type are propagated with a velocity independent of the
wave length, so that an arbitrary wave is allowed to travel without

decomposition. But when we pass from strings to bars, the con
stant in the differential equation, viz. d2

y/cfc
2 + /c

2b2 d4

y/dx* = 0, is

no longer expressible as a velocity, and therefore the velocity of

transmission of a train of harmonic waves cannot depend on the

differential equation alone, but must vary with the wave length.
Indeed, if it be admitted that the train of harmonic waves can

be propagated at all, this consideration is sufficient by itself to

prove that the velocity must vary inversely as the wave length.
The same thing may be seen from the solution applicable to

waves propagated in one direction, viz. y = cos (Vt~ &\ which
X

satisfies the differential equation if

~
Let us suppose that there are two trains of waves of equal

amplitudes, but of different wave lergtns, travelling in the same
direction. Thus

It X\ _ ft <K

(---; -f cos2-

If r' r, X' X be small, we have a train of waves, whose

amplitude slowly varies from one point to another between the

values and 2, forming a series of groups separated from one

another by regions comparatively free from disturbance. In the

case of a string or of a column of air, X varies as r, and then the
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groups move forward with the same velocity as the component trains,

and there is no change of type. It is otherwise when, as in the case

of a bar vibrating transversely, the velocity of propagation is a

function of the wave length. The position at time t of the middle
of the group which was initially at the origin is given by

which shews that the velocity of the group is

If we suppose that the velocity V of a train of waves varies as
n

t we find

- (n

In the present case n = 1, and accordingly the velocity of the

groups is twice that of the component waves 1
.

192. On account of the dependence of the velocity of propaga
tion on the wave length, the condition of an infinite bar at any
time subsequent to an initial disturbance confined to a limited

portion, will have none of the simplicity which characterises the

corresponding problem for a string; but nevertheless Fourier's

investigation of this problem may properly find a place here.

It is required to determine a function of x and t, so as to

satisfy

and make initially y = < (#), y = ty (x).

A solution of (1) is

y = cosq*t cosy (a? -a)... (2),

where q and a are constants, from which we conclude that

M-oo r+oo

y I da F(ct) \ dq cos ft cos y (# a)
J 00 J 00

1 In the corresponding problem for waves on the surface of deep water, the

velocity of propagation varies directly as the square root of the wave length, so

that n= J. The velocity of a group of such waves is therefore one half of that of

the component trains. [See note on Progressive Waves, appended to this volume.]
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is also a solution, where I (a) is an arbitrary function of a. If

now we put t = 0,

f-r r-j-

2/o= daJF(a)|
J GO J

which shews that F(a) must be taken to be < (a), for then by
2?r

Fourier's double integral theorem y =
<f>(nc). Moreover, $ = 0;

hence

1 f
+o f-i-30

y = 9- **()/ dqcosq*t cosy (a? -a) ...... (3)
7TJ a- J _ae

satisfies the differential equation, and makes initially

y= <0), i/ = 0.

By Stokes' theorem ( 95), or independently, we may now

supply the remaining part of the solution, which has to satisfy the

differential equation while it makes initially y 0, y = ty (#) ; it is

i r+Q r
+o i=

^r d*^(*)\ dq-siuq*t cosy(^-a) ...... (4).
A7TJ -.go J _oo qJ.

The final result is obtained by adding the right-hand members
of (3) and (4).

"

In (3) the integration with respect to q may be effected by
means of the formula

I da cos qH cos qz = \ / sin (T-+TT) (5).
J-oo V t V4 4itJ

which may be proved as follows. If in the well-known integral

formula

we put x + 6 for #, we get

x= e
a***

a

Now suppose that a2 = i = ^lV
, where i = V ( 1), and retain

only the real part of the equation. Thus

r+oo

cos (tf
2 + 26a?) dx = V^ sin (I

2 + J TT),
w/ 00
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whence

/-fa:
cos a? cos 2bx dx = JTT sin (b

2 + |TT),

from which (5) follows by a simple change of variable. Thus

equation (3) may be written

,
(-y

[
+x

192 a. If the axis of the rod be curved instead of straight,

we obtain problems which may be regarded as extensions of

those of the present and of the last chapters. The most impor
tant case under this head is that of a circular ring, whose section

we will regard as also circular, and of radius (c) small in

comparison with the radius (a) of the circular axis.

The investigation of the flexural modes of vibration, executed

in the plane of the ring, is analogous to the case of a cylinder

(see 233), and was first effected by Hoppe
1
. If s be the number

of periods in the circumference, the coefficient p of the time in

the expression for the vibrations is given by .

where q is Young's modulus and p the density of the material.

This may be compared with equation (9) 233. To fall back

upon the case of a straight axis we have only to suppose
s and a to be infinite in such a manner that %7ra/s is equal to the

proposed linear period. The vibrations in question are then purely
transverse.

In the class of vibrations considered above the circular axis

remains unextended, and ( 232) the periods are comparatively

long. For the other class of vibrations in the plane of the ring,

Hoppe found

........................ (2).

1
Crelle, Ed. 63, p. 158, 1871.
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The frequencies are here independent of c, and the vibrations

are analogous to the longitudinal vibrations of straight rods.

If s = in (2), we have the solution for vibrations which are

purely radial.

For flexural vibrations perpendicular to the plane of the

ring, the result 1

corresponding to (1) is

the difference consisting only in the occurrence of Poisson's ratio

(^) in the denominator.

Our limits will not allow of our dwelling further upon the

problem of this section. A complete investigation will be found

in Love's Treatise on Elasticity, Chapter xvm. The effect of

a small curvature upon the lateral vibrations of a limited bar

has been especially considered by Lamb*.

1
Michell, Messenger of Mathematics, xix. f 1889.

2 Proc. Land. Math. Soc., xix., p. 365, 1888.



CHAPTER IX.

VIBRATIONS OF MEMBRANES.

193. THE theoretical membrane is a perfectly flexible and

infinitely thin lamina of solid matter, of uniform material and

thickness, which is stretched in all directions by a tension so great
as to remain sensibly unaltered during the vibrations and displace
ments contemplated. If an imaginary line be drawn across the

membrane in any direction, the mutual action between the two

portions separated by an element of the line is proportional to the

length of the element and perpendicular to its direction, If the

force in question be 3^ ds, I\ may be called the tension of the mem-

brane; it is a quantity of one dimension in mass and - 2 in time.

The principal problem in connection with this subject is the

investigation of the transverse vibrations of membranes of different

shapes, whose boundaries are fixed. Other questions indeed may
be proposed, but they are of comparatively little interest

; and,

moreover, the methods proper for solving them will be sufficiently
illustrated in other parts of this work. We may therefore proceed
at once to the consideration of a membrane stretched over the

area included within a fixed, closed, plane boundary.

194. Taking the plane of the boundary as that of xyy
let w

denote the small displacement therefrom of any point P of the

membrane. Round P take a small area S, and consider the forces

acting upon it parallel to z. The resolved part of the tension is

expressed by

where ds denotes an element of the boundary of S, and dn an
element of the normal to the curve drawn outwards. This is

balanced by the reaction against acceleration measured by
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p lieing a symbol of one dimension in mass and 2 in length

denoting the superficial density. Now by Green's theorem, if

V2w.S ultimately,

and thus the equation of motion is

d?w _ TI f&w drw\

dt*
"

p \dtf
*
df]

The condition to be satisfied at the boundary is of course w = 0.

The differential equation may also be investigated from the

expression for the potential energy, which is found by multiplying
the tension by the superficial stretching. The altered area is

and thus
'^

**//{()'+
from which SV is easily found by an integration by parts.

If we write T ~
p c2

,
then c is of the nature of a velocity, and

the differential equation is

195. We shall now suppose that the boundary of the mem
brane is the rectangle formed by the coordinate axes and the lines

x a
y y l. For every point within the area (3) 194 is satisfied,

and for every point on the boundary w = 0.

A particular integral is evidently

wry
a

where p2

and m and n are integers; and from this the general solution may
be derived. Thus

^ ^

z sin -- sin-y^i^nCOS^ + A^sin^} ...... (3).
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That this result is really general may be proved a posteriori,

by shewing that it may be adapted to express arbitrary initial

circumstances.

Whatever function of the co-ordinates w may be, it can be ex

pressed for all values of x between the limits and a by the series

Tr .

F2 sm ' + ...... ,

a

where the coefficients 7lt F2 , &c. are independent of x. Again
whatever function of y any one of the coefficients T may be, it can
be expanded between and b in the series

where Cl &c, are constants. From this we conclude that any
function of x and y can be expressed within the limits of the rect

angle by the double series

and therefore that the expression for w in (3) can be adapted to

arbitrary initial values of w and w. In fact

4 a
. W7r# . niry

-

4

. 7r# . niry , ,am -- sin -y2
-

cforefo/,
'7

The character of the normal functions of a given rectangle,

. mry
sin- sin ,-

,a 6
'

as depending on m and w, is easily understood. If m and n be both

unity, w retains the same sign over the whole of the rectangle,

vanishing at the edge only; but in any other case there are
nodal linos running parallel to the axes of coordinates. The
number of the nodal lines parallel to x is n - 1, their equations
being
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In the same way the equations of the nodal lines parallel to y
are

i

a 2a
(371 1) a

m *

in
} *" m

being m 1 in number. The nodal system divides the rectangle
into mn equal parts, in each of which the numerical value of w is

repeated

196. The expression for w in terms of the normal functions

is

c1^ j WK& nTTV . .

w = 22 <b*Ml sin sin ~- (1),
a b

where < mn &c. are the normal coordinates. We proceed to form

the expression for F in terms of
<f>mn . We have

// ??177"u? .

t
cos sin

& CL

TL TilTTSs ??'77'?/ 1

"

t j-
sin cos

j^-
r .

In integrating these expressions over the area of the rectangle

the products of the normal coordinates disappear, and we find

the summation being extended to all integral values of m and n.

The expression for the kinetic energy is proved in the same

way to be

(3),

from which we deduce as the normal equation of motion

In this equation

^ f
a

[
b

. mirx . mry 7 , , CN
<|>mn = 7sm- sm-jfclxdy....... .....(5),

Jo^o a

if Zdxdy denote the transverse force acting on the element dxdy.
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Let us suppose that the initial condition is one of rest under
the operation of a constant force Z, such as may be supposed to

arise from gaseous pressure. At the time = 0, the impressed
force is removed, and the membrane left to itself.

Initially the

equation of equilibrium is

whence
(< m ) is to be found. The position of the system at time t

is then given by
/

/7ft2 ^2 \

^nn = (^Tnn)o COS^ + ^ .

Mrt]
............ (7),

in conjunction with (1),

In order to express 4>wn ,
we have merely to substitute for Z its

value in (5), or in this case simply to remove Z from under the

integral sign. Thus

^ fz f
a
f
b

- mir . niry ,

Vmn-ZI I sin- sm j-Z-dxdy,
Jo Jo a b y

= Z
^ (1

- cos rriTr) (1
- cos mr).

We conclude that <&mn vanishes, unless m and n are both odd, and
that then

Accordingly, m and n being both odd,

cospt

where
(9).

This is an example of (8), 101.

If the membrane, previously at rest in its position of equili
brium, be set in motion by a blow applied at the point (a, ), the
solution is

4 . mira. . nir$ f f , , .

abp
Sm

"T"
Sm IT JJ

W d dy ' sm^ ' ' '

[As an example of forced vibrations, suppose that a harmonic
force acts at the centre. Unless m and n are both odd, <&mn = 0,
and in the case reserved

(11),
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where Z^ is the whole force acting at time t, and represents
From (4) and (9) we have

4^008^

and w is then given by (1).

In the case of a square membrane, p is a symmetrical function

ofm and n. When m and n are unequal, the terms occur in pairs,

such as

mirx . niru . nirx . miry]- sin ^ + sm- sin ^.a a a a )

a combination symmetrical as between x and y. The vibration is

of course similarly related as well to the four sides as to the four

corners of the square.

In the neighbourhood of the centre, where the force is applied,

the series loses its convergency, and the displacement w tends to

become (logarithmically) infinite.]

197, The frequency of the natural vibrations is found by

ascribing different integral values to 771 and n in the expression

For a given mode of vibration the pitch falls when either

side of the rectangle is increased. In the case of the gravest

mode, when m = l, n = l, additions to the shorter side are the

more effective; and when the form is very elongated, additions

to the longer side are almost without effect.

When a2 and 62 are incommensurable, no two pairs of values

of m and n can give the same frequency, and each fundamental

mode of vibration has its own characteristic period. But when

a2 and 62 are commensurable, two or more fundamental modes

may have the same periodic time, and may then coexist in any

proportions, while the motion still retains its simple harmonic

character. In such cases the specification of the period does

not completely determine the type. The full consideration of

the problem now presenting itself requires the aid of the theory

of numbers; but it will be sufficient for the purposes of this

work to consider a few of the simpler cases, which arise when

the membrane is square. The reader will find fuller information

in Riemann's lectures on partial differential equations.
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If 0=6,

27r~~2a* ^ '*

The lowest tone is found by putting m and n equal to unity,
which gives only one fundamental mode :

. TTX . Tryw = sin sm -cos pt (3)

Next suppose that one of the numbers m, n is equal to 2, and
the other to unity. In this way two distinct types of vibration
are obtained, whose periods are the same, If the two vibrations
be synchronous in phase, the whole motion is expressed by

%Trx . Try

a
so that, although every part vibrates synchronously with
harmonic motion, the type of vibration is to some extent arbitrary
Four particular cases may be especially noted. First, if D =

0,

sin ^ cos
a

which indicates a vibration with one node along the line # = |-a.

Similarly if C = 0, we have a node parallel to the other pair of

edges. Next, however, suppose that C and D are finite and
equal. Then w is proportional to

. . TTV . TTX .

sin- sin -^ + sin sin
a a a

which may be put into the form

. TTX . Try f TTX TTV\
2 sm sm -^ cos + cos--^ ] .

a a \ a a J

This expression vanishes, when

sin Trx/a
==

0, or sin iryja
=

or again, when

cos Trx/a + cos Try'/a
= 0.

The first two equations give the edges, which were originally
assumed to be nodal

;
while the third gives y -f x = a, representing

one diagonal of the square.

In the fourth case, when C=-D, we obtain for the nodal

lines, the edges of the square together with the diagonal y = #.

The figures represent the four cases.
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Fig. 32.

= 0. O-Z> = 0.

[Frequency (referred to gravest)
=

1'58.]

For other relative values of C and D the interior nodal line

is curved, but is always analytically expressed by

Ocos + Dcos^=0 .................. (6),a a v yj

and may be easily constructed with the help of a table of logarith
mic cosines.

The next case in order of pitch occurs when ra 2, n ~ 2.

The values of m and n being equal, no alteration is caused by
their interchange, while no other pair of values gives the same

frequency of vibration. The only type to be considered is

accordingly
. .

w sm- sin - cos .

a a r

whose nodes, determined by the equationJ n
Fig. 3S.

. THE . Try TTX TTV ^
sin sin - cos cos = 0,

a a a a

are (in addition to the edges) the straight lines

Fig. (33)

[Frequency = 2*00.]

The next case which we shall consider is obtained by ascribing
to m, n the values 3, 1, and 1, 3 successively. We have

f~ . STHC .Try ^ . THE . STTV)w =
{
C7 sin sm -f D sm sin -

\ cos pt.
[

a a a a )
*

The nodes are given by

- i +D 4cos- l = 0,
a a

( \ a/ V a/J
or, if we reject the first two factors, which correspond to the edges.

C(4cos
2 -ll+Df4cos2^-

1^ = ......... (7).^ Ja
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If (7= 0, we have y = 4a, y = 4a.

[197.

cos
iry

' COS -2
,

, ,

which represent the two diagonals.

Lastly, if <7=D, the equation of the node is

cos2 + cos2-^=
a a

or +cos^ =

(7=0.

Fig. 34.

> = 0. C+D-.

[Frequency =2*24.]
In case (4) when # = Ja, y= Ja, or fa; and similarly wheny-a, =ia?, or fa. Thus one half of each of the lines joinino-

the middle points of opposite edges is intercepted by the curve.

*

[The diameters of the nodal curve parallel to the sides of the
square are thus equal to Ja . Those measured along the diagonalsare sensibly smaller, equal to V2 . a, or '471 a.]

It should be noticed that in whatever ratio to one another
G and 2) may be taken, the nodal curve always passes throughthe four points of intersection of the nodal lines of the first two
cases, 00, D= 0. If the vibrations of these
cases be compounded with

corresponding phases,

it^is
evident that in the shaded compartments of

Fig. (35) the directions of displacement are the
same, and that therefore no part of the nodal curve
is to be found there

; whatever the ratio of ampli
tudes, the curve must be drawn through the un
shaded portions. When on the other hand the phases are opposed,
the nodal curve will pass exclusively through the shaded portions.

Fig. 35.
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When m = 3, n 3, the nodes are the straight lines parallel
to the edges shewn in Fig. (36).

The last case [Frequency * 2-56] which we
Fig> 36 '

shall consider is obtained by putting

m =
, 7t =

, or ra = 2, n = 3.

The nodal system is

[Frequency = 3*00.]

.

0,

or, if the factors corresponding to the edges be rejected,

4,00#-1-0 ...... (9).

If G or D vanish, we fall back on the nodal systems of the

component vibrations, consisting of .straight lines parallel to the

edges. If <7= Z), our equation may be written

cos-l=0 ......(10),a \ a a J
^ h

of which the first factor represents the diagonal y + a; = a, and

the second a hyperbolic curve.

If C= D9 we obtain the same figure relatively to the other

diagonal
1
.

198. The pitch of the natural modes of a square membrane,
which is nearly, but not quite uniform, may be investigated by
the general method of 90.

We will suppose in the first place that m and n are equal.

In this case, when the pitch of a uniform membrane is given,

the mode of its vibration is completely determined. If we now
conceive a variation of density to ensue, the natural type of

vibration is in general modified, but the period may be calculated

approximately without allowance for the change of type,

We have

a2
, /Ys o mrx . miry , , )

4-
+

JJ
8p sm2 - sm2

^- dxdy}- ,

1 Lam6, Lemons sur Vttasticitt, p. 129.
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of which the second term is the increment of T due to Sp. Hence

if w oc cospt, and P denote the value of p previously to variation,

we have

* -r> * -i
4 (

a
[
a
$p . mirx .

2 W7ry , ,

^WrPmm2-!--; ^sa^wffAcdy ...... (1),
a~ J oJ Q PO a a

, _
, , . ,~

where Pmwt
2=

, and tf^T^p,.

For example, if there be a small load M attached to the middle of

the square ,

(2),

in which sin4 Jm-rr vanishes, if m be even, and is equal to unity, if

m be odd. In the former case the centre is on the nodal line of

the unloaded membrane, and thus the addition of the load produces
no result.

When, however, m and n are unequal, the problem, though re

maining subject to the same general principles, presents a pecu

liarity different from anything we have hitherto met with. The

natural type for the unloaded membrane corresponding to a speci

fied period is now to some extent arbitrary ;
but the introduction

of the load will in general remove the indeterminate element. In

attempting to calculate the period on the assumption of the undis

turbed type, the question will arise how the selection of the undis

turbed type is to .be made, seeing that there are an indefinite

number, which in the uniform condition of the membrane give
identical periods. The answer is that those types must be chosen

which differ infinitely little from the actual types assumed under

the operation of the load, and such a type will be known by the

criterion of its making the period calculated from it a maximum
or minimum.

As a simple example, let us suppose that a small load M is

attached to the membrane at a point lying on the line # = a, and

that we wish to know what periods are to be substituted for the

two equal periods of the unloaded membrane, found by making

m=2, n=l, or m=*l, rz = 2.

It is clear that the normal types to be chosen, are those whose

nodes are represented in the first two cases of Fig. (32). In the

first case the increase in the period due to the load is zero, which

is the least that it can be ; and in the second case the increase
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is the greatest possible. If be the ordinate of M, the kinetic

energy is altered in the ratio

pa" pa2 M .
S 27rj8

24'24 +sln!~
andthus :P=

(3)v '

The ratio characteristic of the interval between the two natural
tones of the loaded membrane is thus approximately

If /9 = Jo, neither period is affected by the load.

As another example, the case where the values of m and n
are 3 and 1, considered in 197, may be referred to. With a load
in the middle, the two normal types to be selected are those

corresponding to the last two cases of Fig. (34), in the former
of which the load has no effect on the period.

The problem of determining the vibration of a square mem
brane which carries a

relatively heavy load is more difficult, and
we shall not attempt its solution. But it may be worth while to
recall to memory the fact that the actual period is greater than

any that can be calculated from a hypothetical type, which differs
from the actual one.

199. The preceding theory of square membranes includes a

good deal more than was at first intended. Whenever in a vibrat

ing system certain parts remain at rest, they may be supposed to
be absolutely iked, and we thus obtain solutions of other questions
than those originally proposed. For example, in the present case,
wherever a diagonal of the square is nodal, we obtain a solution

applicable to a membrane whose fixed boundary is an isosceles

right-angled triangle. Moreover, any mode of vibration possible to

the triangle corresponds to some natural mode of the square, as

may be seen by supposing two triangles put together, the vibra

tions being equal and opposite at points which are the images of

each other in the common hypothenuse. Under these circum
stances it is evident that the hypothenuse would remain at rest

without constraint, and therefore the vibration in question is in

cluded among those of which a complete square is capable.
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The frequency of the gravest tone of the triangle is found by

putting m = 1, n = 2 in the formula

(i),

and is therefore equal to c</5/2a.

The next tone occurs, when m =
3, n = 1. In this case

(2)
277 2a

...........................w'

as might also be seen by noticing that the triangle divides itself

into two, Fig. (37), whose sides are less

than those of the whole triangle in thd Flg' 87 '

ratio V2 : 1.

For the theory of the vibrations of

a ikembrane whose boundary is in the

form of an equilateral triangle, the

reader is referred to Lamp's Lefons

sur rdlasticiti. It is proved that the frequency of the gravest

tone is c *- h, where h is the height of the triangle, which is the

same as the frequency of the gravest tone of a square whose

diagonal is h

200. When the fixed boundary of the membrane is circular,

the first step towards a solution of the problem is the expression

of the general differential equation in polar co-ordinates. This

may be effected analytically ;
but it is simpler to form the polar

equation de new by considering the forces which act on the polar

element of area r dd dr. As in 194 the force of restitution acting
on a small area of the membrane is

m [dw j m ( d /dw jA , d ( dw- 2i -j- fo = -Ti\^{-^ rdQ\dr + ^(-~tt
J dn

l

(dr\dr J dO\rdd

Idw ld*w]

and thus, if Ti/p
= c* as before, the equation of motion is

d*w d*w 1 dw 1 d*w

The subsidiary condition to be satisfied at the boundary is that

w = 0, when r= a.

In order to investigate the normal component vibrations we
have now to assume that iv is a harmonic function of the time.
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l"hus, if w cc cos (pt e), and for the sake of brevity we write

pfc
SB k, the differential equation appears in the form

Idw

in which & is the reciprocal of a linear quantity.

Now whatever may be the nature of w as a function of r and 6,

it can be expanded in Fourier's series

W^WQ + W! cos (6 + aO 4- w5 cos 2 (9 + a,,)
4- ......(3),

in which w0j wlt &c. are functions of r, but not of Q, The result

of substituting from (3) in (2) may be written

the summation extending to all integral values of n. If we

multiply this equation by cos n (6 + On), and integrate with respect

to 6 between the limits and 2?r, we see that each term must

vanish separately, and we thus obtain to determine wn as a

function of r

in which it is a matter of indifference whether the factor

cos n (6 + n) be supposed to be included in wn or not.

The solution of (4) involves two distinct functions of r,

each multiplied by an arbitrary constant. But one of these

functions becomes infinite when r vanishes, and the corresponding

particular solution must be excluded as not satisfying the pre

scribed conditions at the origin of co-ordinates. This poinii may
be illustrated by a reference to the simpler equation derived from

(4) by making k and n vanish, when the solution in question

reduces to w = logr, which, however, does not at the origin

satisfy Vaw= 0, as may be seen from the value of f(dw/dn) ds, inte

grated round a small circle with the origin for centre. In like

manner the complete integral of (4) is too general for our

present purpose, since it covers the case in which the centre of

the membrane is subjected to an external force.

The other function of r, which satisfies (4), is the Bessel's

function of the 71
th

order, denoted by Jn (kr), and may be expressed

in several ways. The ascending series (obtained immediately

from the differential equation) is
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4"

2.4.6.271-f 2.2?* + 4.27Z+3

from which the following relations between functions of consecu

tive orders may readily be deduced :

Jo = -</;(*) .............................. (6),

&/'(*) = .7U(*)-W*) ..................(7),
9
-j; (*)- /,(*) + /+!(*) .......... . ....... (8).z

When n is an integer, Jn (z) may be expressed by the definite

integral

Jn (z)
= -

J
cos (z sin o> ?z<u) cZ&> ..... .......... (9),

T.'O

which is Bessel's original form. From this expression it is evident

that Jn and its differential coefficients with respect to z are always
less than unity.

The ascending series (5), though infinite, is convergent for all

values of n and z\ but, when z is great, the convergence does not

begin for a long time, and then the series becomes useless as a

basis for numerical calculation. In such cases another series

proceeding by descending powers of z may be substituted with

advantage. This series is

/ 2
f
1 - 4n (P - 4ra) (3*

-
4n*) (5

2 -

V7r^[1.8^ l.g.S^a?)
8

"""

|

xrin(*-5-|) (10);

it terminates, if 2?i be equal to an odd integer, but otherwise, if

runs on to infinity, and becomes ultimately divergent. Nevertheless

when z is great, the convergent part may be employed in calcula

tion ; for it can be proved that the sum of any number of terms

differs from the true value of the function by less than the last

term included. We shall have occasion later, in connection with

another problem, to consider the derivation of this descending series.

As Bessel's functions are of considerable importance in theo

retical acoustics, I have thought it advisable to give a table for

the functions J" and Ji, extracted from Lommel's 1

work, and due
1 Lommel, Studien fiber die BesseVsclien Functioned Leipzig, 1863.
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originally to Hauseu. The functions J" and

the relation JJ= - J .

321

are connected by
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201. In accordance with the notation for Bessel's functions
the expression for a normal component vibration may therefore be
written

w~PJn (kr) cosn(0 + a) cos(pt+e) ........... (1);

and the boundary condition requires that

Jn (ka) = Q.......................... (2),

an equation whose roots give the admissible values of k, and
therefore of p.

The complete expression for w is obtained by combining the

particular solutions embodied in (1) with all admissible values of

k and 71, and is necessarily general enough to cover any initial

circumstances that may be imagined. We conclude that any
function of r and 6 may be expanded within the limits of the
circle r=a in the series

w = 22 ./^(Jr) {cos7i0 +^ sin 7i0}.:......... (3).

For every integral value of n there are a series of values of A,

given by (2) ;
and for each of these the constants

</>
and ^ are

arbitrary.

The determination of the constants is effected in the usual

way. Since the energy of the motion is equal to

/a
[2ir

o J o

Wrdffdr
o J o

and when expressed by means of the normal co-ordinates can only
involve their squares, it follows that the product of any two of the
terms in (3) vanishes, when integrated over the area of the circle.

Thus, if we multiply (3) by Jn (kr)coan0, and integrate, we
fad

ra
f2v

\
\ wJn (kr) cos nd rdr dOhh
=

<

jj
[Jn (r)]2 cos2 n0 rdr d0 = < . TT P*

[
Jn (Ar)J* rdr ...... (5),

by which $ is determined. The corresponding formula for ^ is

obtained by writing sin n6 for cos n0. A method of evaluating
the integral on the right will be given presently. Since < and -^
each contain two terms, one varying as cos_^ and the other as

sinptf, it is now evident how the solution may be adapted so as to

agree with arbitrary initial values of w and w.
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202. Let us now examine more particularly the character of

the fundamental vibrations. If n 0, w is a function of r only,

that is to say, the motion is symmetrical with respect to the centre

of the membrane. The nodes, if any, are the concentric circles,

whose equation is

When n has an integral value different from zero, w is a func

tion of as well as of r, and the equation of the nodal system

takes the form

Jn (kr) cos n (0 a)
=

(2).

The nodal system is thus divisible into two parts, the first con

sisting of the concentric circles represented by

jn (kr) = Q (3),

and the second of the diameters

#=a-f (2wr + l)Tr/2fl (4),

where m is an integer. These diameters are n in number, and

are ranged uniformly round the centre; in other respects their

position is arbitrary. The radii of the circular nodes will be

investigated further on.

203. The important integral formula

f
a

jn (kr)Jn (k'r)rdr=Q (1),
Jo

where k and k' are different roots of

may be verified analytically by means of the differential equations

satisfied by Jn (kr), Jn (Wr)\ but it is both simpler and more

instructive to begin with the more general problem, where the

boundary of the membrane is not restricted to be circular.

The variational equation of motion is

where

and therefore
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In these equations w refers to the actual motion, and Bw to a hypo
thetical displacement consistent with the conditions to which the

system is subjected. Let us now suppose that the system is exe

cuting one of its normal component vibrations, so that w = u, and

ii+p
2u = .................. . ........ (6),

while Sw is proportional to another normal function v.

Since k=pjc, we get from (3)

dudv , ,

......... (7).

The integral on the right is symmetrical with respect to u and
and thus

-...(8),

where &'- bears the same relation to v that k2 bears to it.

Accordingly, if the normal vibrations represented by u and v

have different periods,

\uvdxdy = <

In obtaining this result, we have made no assumption as to the

boundary conditions beyond what is implied in the absence of re

actions against acceleration, which, if they existed, would appear
in the fundamental equation (3).

If in (8) we suppose A'= i, the equation is satisfied
identically,

and we cannot infer the value of \Wdccdy. In order to evaluate

this integral we must follow a rather different course.

If u and v be functions satisfying within a certain contour the

equations V
2^ + k*u = 0, V2v 4- k'*v = 0, we have

f f f f
(k'* k-) 1 1 u v dx dy = 1 1 (v V2^ u V2

t;) dec dy

du dv^

by Green's theorem. Let us now suppose that v is derived from
u by slightly varying k, so that

substituting in (10), we find



203.] VALUES OF INTEGRATED SQUARES. 325

or, if u vanish on the boundary,

For the application to a circular area of radius r, we have

Jn (kr)

and thus from (10) on substitution of polar co-ordinates and integra
tion with respect to 0,

(ft*
- #) fV

./O/O

rJn (kr).Jn (k'r) ............ (14).

Accordingly, if

and A and k' be different,

^Jn (kr)Jn (k'r)rdr= Q ............... (15),

an equation first proved by Fourier for the case when

Jn (kr) = Jn (k'r)
= 0.

Again from (11)

= r

' +^ /")
,

dashes denoting differentiation with respect to fcr. Now

and thus

2 V^ (*r) rdr = ^Jtt
'^

(ftr) + 1* l - Jn*

(fcr) ...... (16).

This result is general ;
but if, as in the application to membranes

with fixed boundaries, Jn (kr)
= 0,

then 2 [

r

jn*(kr)rdr = r*J^(lcr) .................. (17).
J o
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201 We may use the result just arrived at to simplify the

expressions for T and V. From

w = 22
[<f>mnJn (kmnr) cos nd -f tymnJn (kmnr) sin n6] ......... (1),

we find

T=\ P7ra*22Jn'*(kmna){imn
z + irmn

2
}
............ (2),

F= i p^m
2 22 p,

2// 2
(t^a) {&

2 + ^W} ......(3) ;

whence is derived the normal equation of motion

2 4>'

and a similar equation for ^mn . The value of <&mn is to be found

from the consideration that <&mn S<j>mn denotes the work done by the

impressed forces during a hypothetical displacement S<j>mn ;
so that

ifZ be the impressed force, reckoned per unit of area,

(5).

These expressions and equations do not apply to the case n = 0,

when
<f>
and ^ are amalgamated. We then have

)

2
j

(7).

As an example, let us suppose that the initial velocities are zero,

and the initial configuration that assumed under the influence of a

constant pressure Z\ thus

4>mo = Z. 27r
O

Now by the differential equation,

r/ (fe.)
.

{
r/ -

(ir) + J jr/

and thus

jV,(*r)Zr--!j-,'(*)
.................(8);

so that *,, =-^ZJ' (ft^o).
#>M

Substituting this- in (7), we see that the initial value of
<f>mo is
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For values of n other than zero, <J> and the initial value of < mn
vanish. The state of the system at time t is expressed by

tf .................(10),

(11),

the summation extending to all the admissible values of kiw .

As an example offorced vibrations, we may suppose that Z, still

constant with respect to space, varies as a harmonic function of the

time. This may be taken to represent roughly the circumstances

of a small membrane set in vibration by a train of aerial waves.

If Z cos qt, we find, nearly as before.

The forced vibration is of course independent of 6. It will be seen

that, while none of the symmetrical normal components are missing,
their relative importance may vary greatly, especially if there be a

near approach in value between q and one of the series of quanti
ties pim . If the approach be very close, the effect of dissipabive
forces must be included.

[Again, suppose that the force is applied locally at the centre,

By (5)

(13),

if Z^ cos qt denote the whole force at time t. From (7)

and w is then given by (11). The series is convergent, unless

r = 0.

But this problem would be more naturally attacked by including
in the solutions of (4) 200 the second Bessel's function 341.

In this method k=q/c', and the ratio of constants by which the

two functions of r are multiplied is determined by the boundary
condition. When q coincides with one of the values of p, the

second function disappears from the solution.]

205. The pitches of the various simple tones and the radii of

the nodal circles depend on the roots of the equation

/(*)-<>.
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If these (exclusive of zero) taken in order of magnitude be

called $nw, zn (^
}

jgnw......znM ...... , then the admissible values of p
are to be found by multiplying the quantities zn (S]

by c/a. The

particular solution may then be written

w=Jn (*n
w
-} {-4

w cos u6 + Bn sin n0] cos {- zn (s] t - en
(

\
. . .(1).

\ &/ [CL )

The lowest tone of the group n corresponds to zn ;
and since in

this case Jn (zn rfa) does not vanish for any value of r less than a,

there is no interior nodal circle. If we put s = 2, Jn will vanish,

when

that is, when

Co

z

which is the radius of the one interior nodal circle. Similarly
if we take the root zn (B]

, we obtain a vibration with sl nodal

circles (exclusive of the boundary) whose radii are

All the roots of the equation Jn (ka)
= Q are real For, if

possible, let ka = X 4- ip be a root
;
then k'a= \ ip is also a root,

and thus by (14) 203,

'/'Jo
Jn (kr) Jn (Ic'r) rdr = 0.

Now Jn (kr), Jnfflr) are conjugate complex quantities, whose

product is necessarily positive ;
so that the above equation requires

that either X or ^ vanish. That X cannot vanish appears from

the consideration that if ka were a pure imaginary, each term of

the ascending series for Jn would be positive, and therefore the

sum of the series incapable of vanishing. We conclude that

yu-
= 0, or that k is real 1

. The same result might be arrived 'at

from the consideration that only circular functions of the time
can enter into the analytical expression for a normal component
vibration.

The equation Jn (z)
= has no equal roots (except zero). From

equations (7) and (8) . 200 we get

T >- n
T T^ n "-vn v n+l>Z

1 Kiemann, Partidle DifferentialgUicUwigen, Braunschweig, 1869, p. 260,
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whence we see that if Jn ,
Jn

'

vanished for the same value of
,
Jn+i

would also vanish for that value. But in virtue of (8) 200

this would require that all the functions Jn vanish for the value

of z in question \

206. The actual values of zn may be found by interpolation

from Hansen's tables so far as these extend
;
or formulae may be

calculated from the descending series by the method of successive

approximation, expressing the roots directly. For the important
case of the symmetrical vibrations (n = 0), the values of ZQ may be

found from the following, given by Stokes
2

:

*!!. = -. -25

' 50661 '053041 -262051

For n = 1, the formula is

ZJL = '151982 -015399 '245270

The latter series is convergent enough, even for the first root,

corresponding to 5 = 1. The series (1) will suffice for values of s

greater than unity; but the first root must be calculated

independently. The accompanying table (A) is taken from

Stokes' paper, with a slight difference of notation.

It will be seen either from the formula, or the table, that the

difference of successive roots of high order is approximately TT.

This is true for all values of n, as is evident from the descending
series (10) 200.

[The general formula, analogous to (1) and (2), for the roots of

Jn (z) has been investigated by Prof. McMahon. If m = 4ra2, and

a = i7r(2n-l + 4s) (S),

, M m-1 4 (m - 1) (7m - 31) .

we have *=- -^ ^^
32 (m - 1) (83m

2 - 982m 4- 3779) /4A

1
Bourget,

" M&uoire sur le mouvement vibratoire des membranes circulaires,"

Ann. de V6cole nonnale, t. in., 1866. In one passage M. Bourget implies that he

has proved that no two Bessel's functions of integral order can have the same root,

but I cannot find that he has done so. The theorem, however, is probably true ;

in the case of functions, whose orders differ by 1 or 2, it may be easily proved from

the formulae of 200.
2 Camb. Phil. Trans. Vol. ix.

" On the numerical calculation of a class of defi

nite integrals and infinite series." [In accordance with the calculation of Prof.

McMahon the numerator of the last term in (2) has been altered from -245835

to -245270.]
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This formula may be applied not only to integral values of n as in

(1) and (2), but also when n is fractional. The cases of n = J, and

n = I are considered in
, 207.]

M. Bourget has given in his memoir very elaborate tables of

the frequencies of the different simple tones and of the radii of

the nodal circles. Table B includes the values of z, which satisfy

JnO), for tt = 0, 1,... 5, 5=1, 2, ... 9.

TABLE A.

When n is considerable the calculation of the earlier roots

becomes troublesome. For very high values of n, zn (l

^jn approxi
mates to a ratio of equality, as may be seen from the consideration

that the pitch of the gravest tone of a very acute sector must tend

to coincide with that of a long parallel strip, whose width is equal
to the greatest width of the sector.

TABLE B.
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7.000

3.156

1.594

2,653

3.600

.878,038

The figures represent the more important normal modes of
vibration, and the numbers affixed give the frequency referred to



332 VIBRATIONS OF MEMBKANES. [206.

the gravest as unity, together with the radii of the circular nodes

expressed as fractions of the radius of the membrane. In the case

of six nodal diameters the frequency stated is the result of a rough
calculation by myself.

The tones corresponding to the various fundamental modes of

the circular membrane do not belong to a harmonic scale, but

there are one or two approximately harmonic relations which may
be worth notice. Thus

| x 1-594 = 2125 = 2-136 nearly,

| x 1-594 2-657 = 2*653 nearly,

2 x 1-594 = 3-188 = 3156 nearly;

so that the four gravest modes with nodal diameters only would

give a consonant chord.

The area of the membrane is divided into segments by the

nodal system in biich a manner that the sign of the vibration

changes whenever a node is crossed. In those modes of vibration

which have nodal diameters there is evidently no displacement of

the centre of inertia of the membrane. In the case of symmetri
cal vibrations the displacement of the centre of inertia is propor
tional to

fV (kr) rdr = - f j/" (kr) + ~ JV (kr) \
rdr = - J Jo' (to),

Jo J o (
to?

)
to

an expression which does not vanish for any of the admissible

values of k, since JQ

'

(z) and JQ (z) cannot vanish simultaneously.

In all the symmetrical modes there is therefore a displacement of

the centre of inertia of the membrane.

207. Hitherto we have supposed the circular area of the

membrane to be complete, and the circumference only to be

fixed
;
but it is evident that our theory virtually includes the

solution of other problems, for example some cases of a mem
brane bounded by two concentric circles. The complete theory
for a membrane in the form of a ring requires the second Bessel's

function.

The problem of the membrane in the form of a semi-circle

may be regarded as already solved, since any mode of vibration

of which the semi-circle is capable must be apwlioaKlA to tVA
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complete circle also. In order to see this, it is only necessary
to attribute to any point in the complementary semi-circle the

opposite motion to that which obtains at its optical image in

the bounding diameter. This line will then require no constraint

to keep it nodal. Similar considerations apply to any sector

whose angle is an aliquot part of two right angles.

When the opening of the sector is arbitrary, the problem

may be solved in terms of Bessel's functions of fractional order.

If the fixed radii are 6 = 0, =
ft, the particular solution is

sin^j-
cos (pt

-
e) ......... (1),

where v is an integer. We see that if yS be an aliquot part of TT>

J/TT//S
is integral, and the solution is included among those already

used for the complete circle.

An interesting case is when fi
= 2?r, which corresponds to the

problem of a complete circle, of which the

radius 6 = is constrained to be nodal. Fl - 38 *

We have

w = PJ%v (kr) sin \vB cos (pt e).

When v is even, this gives, as might be

expected, modes of vibration possible without

the constraint; but, when v is odd, new
modes make their appearance. In fact, in

the latter case the descending series for J
terminates, so that the solution is expressible in finite terms.

Thus, when v = 1,

sin fey*

The values of k are given by

sin ka = 0, or ka = sir.

Thus the circular nodes divide the fixed radius into equal

parts, and the series of tones form a har-
Fig< 39

monic scale. In the case of the gravest

mode, the whole of the membrane is at any
moment deflected on the same side of its

equilibrium position. It is remarkable that

the application of the constraint to the

radius Q makes the problem easier than

before.
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If we take v = 3, the solution is

in0cos(^-6) ........ (3).

\ kr

In this case the nodal radii are Fig. (39)

=
f7r, 0=f7r;

and the possible tones are given by the equation

tan&a = &o.

To calculate the roots of tan as = x we may assume

where y is a positive quantity, which is small when a? is large.

Substituting this, we find cot y X -
y,

whence _^
Viu.2/4-^^ ^ *_^!_!5[S!_

Z^JV +2 + T*
+ -y "3 15 315

"

This equation is to be solved by successive approximation.

It will readily be found that

so that the roots of tan x = x are given by

where Z=

In the first quadrant there is no root after zero since tan x > x,

and in the second quadrant there is none because the signs of

x and tana; are opposite. The first root after zero is thus in

the third quadrant, corresponding to * = 1. Even in this case

the series converges sufficiently to give the value of the root

with considerable accuracy, while for higher values of s it is

all that could be desired. The actual values of X/TT are 1-4303,

2-4590, 3-4709, 4-4747, 5-4818, 6*4844, &c.

208. The effect on the periods of a slight inequality in the

density of the circular membrane may be investigated by the

general method 90, of which several examples have already

been given. It will be sufficient here to consider the case of a



208.] EFFECT OF SMALL LOAD. 335

small load M attached to the membrane at a point whose radius

vector is r'.

We will take first the symmetrical types (n = 0), which may
still be supposed to apply notwithstanding the presence of M. The

kinetic energy T is (6) 204 altered from

% p-rrtfJ
'2
(kma) <f>m* to J pTra

2
JJ* (kma) <j>m

and therefore

where P^2 denotes the value of p*?, when there is no load.

The unsymmetrical normal types are not fully determinate for

the unloaded membrane
;
but for the present purpose they must

be taken so as to make the resulting periods a maximum or

minimum, that is to say, so that the effect of the load is the

greatest and least possible. Now, since a load can never raise

the pitch, it is clear that the influence of the load is the least

possible, viz. zero, when the type is such that a nodal diameter (it

is indifferent which) passes through the point at which the load is

attached. The unloaded membrane must be supposed to have two

coincident periods, of which one is unaltered by the addition of the

load. The other type is to be chosen, so that the alteration of

period is as great as possible, which will evidently be the case

when the radius vector r' bisects the angle between two adjacent

nodal diameters. Thus,, if r' correspond to = 0, we are to take

w =
<f>mnJn (kmnr) cos )iff

;

so that (2) 204

The altered pmn
* is therefore given by

Of course, if r' be such that the load lies on one of the nodal

circles, neither period is affected.

For example, let M be at the centre of the membrane. Jn (0)

vanishes, except when ?i = 0; and J" (0)
= l. It is only the

symmetrical vibrations whose pitch is influenced by a central load,

and for them by (1)

M
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By (6) 200 J'o
/

(*)
= -'7i<*),

so that the application of the formula requires only a knowledge of

the values of J^ (z), when J~ (z) vanishes, 200. For the gravest
mode the value of J<>' (kmQa) is '51903

1

. When kmoa is consider

able,

approximately; so that for the higher components the influence of

the load in altering the pitch increases.

The influence of a small irregularity in disturbing the nodal

system may be calculated from the formulae of 90. The most
obvious effect is the breaking up of nodal diameters into curves

of hyperbolic form due to the introduction of subsidiary sym
metrical vibrations. In many cases the disturbance is favoured

by close agreement between some of the natural periods.

209. We will next investigate how the natural vibrations of

a uniform membrane are affected by a slight departure from the

exact circular form.

Whatever may be the nature of the boundary, w satisfies the

equation
d?w 1 dw

where k is a constant to be determined. By Fourier's theorem w
may be expanded in the series

w =WQ +wl cos (6 + aO -j- w2 cos 2 (0 + a2) + ......

+wn cos 71(0 + 0^) + ......
,

where w6 , wlf &c. are functions of r only. Substituting in (1), we
see that wn must satisfy

of which the solution is

wn oc Jn (kr)

for, as in 200, the other function of r cannot appear.

The general expression for w may thus be written

w = A Q J (kr) 4- */! (kr) (A l cos 6 + l sin 6)

+ ... + J
r

n(fo")(-4n cos?i^-hJ5n smw^)+ ......... (2),

For all points on the boundary w is to vanish.

1 The succeeding values are approximately -341, -271, -232, -206, -187, etc.
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In the case of a nearly circular membrane the radius vector is

nearly constant. We may take r = a-hSr, Sr being a small

function of 6. Hence the boundary condition is

4- [Jn (te) + &8r Jn (ka)] [A n cos n6 + Bn sin nff\

+ .................................. . ......................... (3),

which is to hold good for all values of 0.

Let us consider first those modes of vibration which are nearly

symmetrical, for which therefore approximately

w = A Q JQ (kr).

All the remaining coefficients are small relatively to A Qi since

the type of vibration can only differ a little from what it would

be, were the boundary an exact circle. Hence if the squares of

the small quantities be omitted, (3) becomes

A, [/o (ka) + k&r JQ

'

(ka}] + Ji (ka) [A, cos 6 + B, sin 6}

.
= Q ...... (4).

If we integrate this equation with respect to between the

limits and 2tf, we obtain

(ka) + /
'

(ka)kSrde = 0,

/.{*.+/>}-<>
.....................(>.

which shews that the pitch of the vibration is approximately the

same as if the radius vector had uniformly its mean value.

This result allows us to form a rough estimate of the pitch of

any membrane whose boundary is not extravagantly elongated.

If a- denote the area, so that pa-
is the mass of the whole mem

brane, the frequency of the gravest tone is approximately

(27T)-
1 x 2-404 x y~ W 1

-

In order to investigate the altered type of vibration, we may

i
[A numerical error is here corrected.]
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multiply (4) by cos n69
or sinntf, and then integrate as before.

Thus

A J,'(ka) \

^
k Br cos n6 d$ + 7rAn Jn (ka) -

Jo

A J9'(ka) I

r

kSr sin n8 d0 + 7rJSn Jn (ka)
Jo

which determine the ratios An : A and Bn
' 4 .

If Sr = Sr + Sra + . . . + 8r + . . .

be Fourier's expansion, the final expression for w may be written,

w : A Q
= *

When the vibration is not approximately symmetrical, the

question becomes more complicated. The normal modes for the

truly circular membrane are to some extent indeterminate, but the

irregularity in the boundary will, in general, remove the indeter-

minateness. The position of the nodal diameters must be taken,

so that the resulting periods may have maximum or minimum

values, Let us, however, suppose that tbe approximate type is

w~A vJv (kr) CQ8V0 (9),

and afterwards investigate how the initial line must be taken in

order that this form may hold good.

All the remaining coefficients being treated as small in com

parison with A v >
we get from (4)

A Jo (ka) + ... + A V[JV (ka) + kSrJv

'

(ka)] cos v6

,Jv (ka) sin v9 +......

Multiplying by cos vQ and integrating,

TTJv (ka) + kJv

'

(ka) I

*

r cos2 v6d6 = 0,
Jo

or

Jv \ka + k I

*

Sr cos5 v6 1 = 0,

which shews that the effective radius of the membrane is

rtJfiSrcos2^- (11).
7T
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The ratios of A n and Bn to A v may be found as before by in

tegrating equation (10) after multiplication by cosn#,

But the point of greatest interest is the pitch. The initial line

is to be so taken as to make the expression (11) a maximum or

minimum. If we refer to a line fixed in space by putting 6 a

instead of 6, we have to consider the dependence on a of the

quantity

which may also be written

rfZito> cos2 i>0dd + 2 cos va. sin VOL \ 6> cos v& sin v8d6
Jo

a|

*

SrsitfvGdd ............... ...(12),
>o

and is of the form

A cos2
va. + 25 cos va sin VOL + G sin2

va,

A
}
B

t
G being independent of a. There are accordingly two

admissible positions for the nodal diameters, one of which makes

the period a maximum, and the other a minimum. The diameters

of one set bisect the angles between the diameters of the other

set.

There are, however, cases where the normal modes remain inde

terminate, which happens when the expression (12) is independent
of a. This is the case when Sr is constant, or when Sr is propor
tional to cos v6. For example, if Sr were proportional to cos 25,

or in other words the boundary were slightly elliptical, the nodal

system corresponding to 7i = 2 (that consisting of a pair of per

pendicular diameters) would be arbitrary in position, at least to

this order of approximation. But the single diameter, correspond

ing to n=l, must coincide with one of the principal axes of

the ellipse, and the periods will be different for the two axes

210. We have seen that the gravest tone of a membrane,

whose boundary is approximately circular, is nearly the same as

that of a mechanically similar membrane in the form of a circle of

the same mean radius or area. If the area of a membrane be

given, there must evidently be some form of boundary for which

the pitch (of the principal tone) is the gravest possible, and this
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form can be no other than the circle. In the case of approximate

circularity an analytical demonstration may be given, of which the

following is an outline.

The general value of w being

w =A Q JQ (kr)+... + Jn(kr)(An cosne + B$mne) + ...... (1),

in which for the present purpose the coefficients A ls Bly . . . are small

relatively to A*, we find from the condition that w vanishes

when r = a + fir,

A. J* (ka) +^o J* (ka) Sr + * IfA. Jf (ka) . (Sr)
2 + ......

+ 2 [{Jn (ka) + kJn'(ka) Br + . . .}{An cos ?i0 + Bn sin n0\]
= 0. . ,(2).

Hence, if

Sr ct COB fl + 18! sin * + ... + n cos ntf + ^fl sin n + ...... (3),

we obtain on integration with respect to 6 from to 2?r,

2^o Jo + IfA, JQ

"
(^ -h fa)

(4),

from which we see, as before, that if the squares of the small

quantities
be neglected, Jt(ka)**Q, or that to this order of ap

proximation the mean radius is also the effective radius. In

order to obtain a closer approximation we first determine A n : A Q

and Bn :A by multiplying (2) by cosn0, sinnft and then in

tegrating between the limits and 2?r. Thus

AnJn^-kanAtJJ, BnJn - - kpn A QJQ

'

......... (5).

Substituting these values in (4), we get

Since J" satisfies the fundamental equation

j- "+
*

jro
' + J^O (7),

and in the present case /o = approximately, we may replace

j by
-
j- JQ'. Equation (6) then becomes
/Ctt
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Let us now suppose that a 4- da is the equivalent radius of the

membrane, so that

Jo [A? (a + da)]
= J (lea) +JQ

'

(ka) kda = 0.

Then by (8) we find

Again, if a + da
7
be the radius of the truly circular membrane

of equal area,

so that

The question is now as to the sign of the right-hand member.

If n = 1, and $ be written for ka,

vanishes approximately by (7), since in general JT
= - Jo, and

in the present case Jo 0) = nearly. Thus da' - da = 0, as should

evidently be the case, since the term in question represents merely

a displacement of the circle without an alteration in the form of

the boundary. When n = 2, (8) 200,

J2
= Ji Jo>

Z

from which and (7) we find that, when J = 0,

whence

da'-da = ^( 2
'

which is positive, since z 2'404.

We have still to prove that

is positive for integral values of n greater than 2, when z = 2'404.
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For this purpose we may avail ourselves of a theorem given in

Riemarm's Partielle Differentialgleichungen, to the effect that

neither Jn nor </' has a root (other than zero) less than n. The

differential equation for Jn may be put into the form

while initially Jn and Jn
'

(as well as dJn/d\og^) are positive. Ac

cordingly dJn/d log z begins by increasing and does not cease to do

so before z = n, from which it is clear that within the range z =
to z =

7i, neither Jn nor J"n
'

can vanish. And since Jn and Jn
'

are

both positive until z = ?i, it follows that, when n is an integer greater

than 2*404, da! da is positive. We conclude that, unless 03, &,
3 , ... all vanish, da' is greater than da, which shews that in the

case of any membrane of approximately circular outline, the circle

of equal area exceeds the circle of equal pitch,

We have seen that a good estimate of the pitch of an approxi

mately circular membrane may be obtained from its area alone,

but by means of equation (9) a still closer approximation may be

effected. We will apply this method to the case of an ellipse,

whose semi-axis major is R and eccentricity e.

The polar equation of the boundary is

r~R {l-Je-e + ...... 4- ie
2 cos20 + ......

}
...... (14);

so that in the notation of this section

Accordingly by (9)

or by (12), since kR = z = 2-404,

, 2*779
da = ~

6

Thus the radius of the circle of equal pitch is

............. (15)

in which the term containing e4 should be correct'.
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The result may also be expressed in terms of e and the area a.

We have

and thus

from which we see how small is the influence of a moderate eccen

tricity, when the area is given.

211. When the fixed boundary of a membrane is neither

straight nor circular, the problem of determining its vibrations

presents difficulties which in general could not be overcome
without the introduction of functions not hitherto discussed or

tabulated. A partial exception must be made in favour of an

elliptic boundary; but for the purposes of this treatise the im

portance of the problem is scarcely sufficient to warrant the

introduction of complicated analysis. The reader is therefore

referred to the original investigation of M. Mathieu 1
.

[The method depends upon the use of conjugate functions. If

x + iy^ecostf+ ii)). .................... (1),

then the curves rj
= const, are confocal ellipses, and f ~ const, are

confocal hyperbolas. In terms of f, ^ the fundamental equation
(V

2 + A;
2
)w = becomes

-cos^) Z^0 ............ (2),

where k' = ke.

The solution of (2) may be found in the form

u-B(#.Hfo) ........................ (3),

in which 3 is a function of only, and H a function of TJ only,

provided

d 2 ~a)H = ................. (5),

a being an arbitrary constant 2
.

1
Liouville, xin., 1868; Court de physique mathSmattque, 1873, p. 122t

2
Pockels, Uber die partielle Differentialgleichung Au+*u=0, p. 114.
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Michell 1 has shewn that the elliptic transformation (1) is the

only one which yields an equation capable of satisfaction in the

form (3).]

Soluble cases may be invented by means of the general

solution

n sin n<

For example we might take

w = J (kr) -\Ji (kr) cos 6,

and attaching different values to X, trace the various forms of

boundary to which the solution will then apply.

Useful information may sometimes be obtained from the

theorem of 88, which allows us to prove that any contraction of

the fixed boundary of a vibrating membrane must cause an eleva

tion of pitch, because the new state of things may be conceived to

differ from the old merely by the introduction of an additional

constraint. Springs, without inertia, are supposed to urge the

line of the proposed boundary towards its equilibrium position,

and gradually to become stiffen At each step the vibrations

become more rapid, until they approach a limit, corresponding to

infinite stiffness of the springs and absolute fixity of their points

of application. It is not necessary that the part cut off should

have the same density as the rest, or even any density at all.

For instance, the pitch of a regular polygon is intermediate

between those of the inscribed and circumscribed circles. Closer

limits would however be obtained by substituting for the circum

scribed circle that of equal area according to the result of 210.

In the case of the hexagon, the ratio of the radius of the circle of

equal area to that of the circle inscribed is I'OoO, so that the mean

of the two limits cannot differ from the truth by so much as 2 per

cent. In the same way we might conclude that the sector of a

circle of 60 is a graver form than the equilateral triangle obtained

by substituting the chord for the arc of the circle.

The following table giving the relative frequency in certain

calculable cases for the gravest tone of membranes under similar

mechanical conditions and of equal area (cr), shews the effect of a

greater or less departure from the circular form.

1
Messenger of Mathematics, vol. xix. p. 86, 1890.
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Circle 2*404.^ = 4*261.

Square V2 . TT = 4*443,

f't't OK

Quadrant of a circle flrrf. V7r = 4*5

Sector of a circle 60 6*379 A/- =4'616.
v 6

Kectangle 3x2 A/ . TT == 4*624.

Equilateral triangle 2-rr . /tan 30 = 4*774.

Semicircle 3*832 A/? = 4*803.

Rectangle 2 x 1 ..............................
} fi

Eight-angled isosceles triangle ............
j

*V 2

EectangleS x 1 .............................. wy-y * 6736.

For instance, if a square and a circle have the same area, the

former is the more acute in the ratio 4*443 : 4*261, or T043 : 1.

For the circle the absolute frequency is

(27T)-
1 x 2*404 o A/~ , where

In the case of similar forms the frequency is inversely as the

linear dimension.

[From the principle that an extension of boundary is always

accompanied by a fall of pitch, we may infer that the gravest

mode of a membrane of any shape, and of any variable density, is

devoid of internal nodal lines.]

2112. The theory of the free vibrations of a metnbrane was

first successfully considered by Poisson 1
. His theory in the

case of the rectangle left little to be desired, but his treatment

of the circular membrane was restricted to the symmetrical

vibrations. KirchhofFs solution of the similar, but much more

difficult, problem of the circular plate was published in 1850,

and Clebsch's Theory of Elasticity (1862) gives the general theory

of the circular membrane including the effects of stiffness and

1 Mm. de VAcatemie, t. vin. 1829.
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of rotatory inertia 1
. It will therefore be seen that there was not

much left to be done in 1866
;
nevertheless the memoir of Bourget

already referred to contains a useful discussion of the problem

accompanied by very complete numerical results, the whole of

which however were not new.

213. In his experimental investigations M. Bourget made use

of various materials, of which paper proved to be as good as any.
The paper is immersed in water, and after removal of the superfluous

moisture by blotting-paper is placed upon a frame of wood whose

edges have been previously coated with glue. The contraction of the

j>aper in drying produces the necessary tension, Kut many failures

may be met with before a satisfactory result is obtained. Even
a well stretched membrane requires considerable precautions in

use, being liable to great variations in pitch in consequence of the

varying moisture of the atmosphere. The vibrations are excited

by organ-pipes, of which it is necessary to have a series proceeding

by small intervals of pitch, and they are made evident to the eye

by means of a little sand scattered on the membrane. If the

vibration be sufficiently vigorous, the sand accumulates on the

nodal lines, whose form is thus defined with more or less precision.

Any inequality in the tension shews itself by the circles becoming

elliptic.

The principal results of experiment are the following :

A circular membrane cannot vibrate in unison with every sound.

It can only place itself in unison with sounds more acute than

that heard when the membrane is gently tapped.

As theory indicates, these possible sounds are separated by less

and less intervals, the higher they become.

The nodal lines are only formed distinctly in response to

certain definite sounds. A little above or below confusion ensues,

and when the pitch of the pipe is decidedly altered, the membrane

remains unmoved. There is not, as Savart supposed, a continuous

transition from one system of nodal lines to another.

The nodal lines are circles or diameters or combinations of

circles and diameters, as theory requires. However, when the

1
[The reader who wishes to pursue the subject from a mathematical point of

view is referred to an excellent discussion hy Pockels (Leipzig, 1891) of the

differential equation v2 + Wu * 0.]
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number of diameters exceeds two, the sand tends to heap itself

confusedly towards the middle of the membrane, and the nodes
are not well defined.

The same general laws were verified by MM. Bernard and

Bourget in the case of square membranes 1

;
and these authors

consider that the results of theory are decisively established in

opposition to the views of Savart, who held that a membrane
was capable of responding to any sound, no matter what its pitch

might be. But I must here remark that the distinction between
forced and free vibrations does not seem to have been sufficiently
borne in mind. When a membrane is set in motion by aerial

waves having their origin in an organ-pipe, the vibration is

properly speaking forced. Theory asserts, not that the membrane
is only capable of vibrating with certain defined frequencies, but

that it is only capable of so vibrating freely. When however the

period of the force is not approximately equal to one of the

natural periods, the resulting vibration may be insensible.

In Savart's experiments the sound of the pipe was two or three

octaves higher than the gravest tone of the membrane, and was

accordingly never far from unison with one of the series of over

tones. MM. Bourget and Bernard made the experiment under

more favourable conditions. When they sounded a pipe somewhat
lower in pitch than the gravest tone of the membrane, the sand

remained at rest, but was thrown into vehement vibration as unison

was approached. So soon as the pipe was decidedly higher than the

membrane, the sand returned again to rest. A modification of the

experiment was made by first tuning a pipe about a third higher
than the membrane when in its natural condition. The membrane
was then heated until its tension had increased sufficiently to

bring the pitch above that of the pipe. During the process of

cooling the pitch gradually fell, and the point of coincidence

manifested itself by the violent motion of the sand, which at the

beginning and end of the experiment was sensibly at rest.

M. Bourget found a good agreement between theory and obser

vation with respect to the radii of the circular nodes, though the

test was not very precise, in consequence of the sensible width of

the bands of sand; but the relative pitch of the various simple

tones deviated considerably from the theoretical estimates. The

1 Ann. de Chim. LX. 449479. 1860.
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committee of the French Academy appointed to report on

M. Bourget's memoir suggest as the explanation the want of

perfect fixity of the boundary. It should also be remembered that

the theory proceeds on the supposition of perfect flexibility a

condition of things not at all closely approached by an ordinary

membrane stretched with a comparatively small force. But

perhaps the most important disturbing cause is the resistance of

the air, which acts with much greater force on a membrane than

on a string or bar in consequence of the large surface exposed.

The gravest mode of vibration, during which the displacement is

at all points in the same direction, might "be affected very

differently from the higher modes, which would not require so

great a transference of air from one side to the other.

[In the case of kettle-drums the matter is further complicated

by the action of the shell, which limits the motion of the air upon
one side of the membrane. From the fact that kettle-drums are

struck, not in the centre, but at a point about midway between

the centre and edge, we may infer that the vibrations which it is

desired to excite are not of the symmetrical class. The sound is

indeed but little affected when the central point is touched with

the finger. Under these circumstances the principal vibration (1) is

that with one nodal diameter and no nodal circle, and to this

corresponds the greater part of the sound obtained in the normal

use of the instrument. Other tones, however, are audible, which

correspond with vibrations characterized (2) by two nodal diameters

and no nodal circle, (3) by three nodal diameters and no nodal

circles, (4) by one nodal diameter and one nodal circle. By
observation with resonators upon a large kettle-drum of 25 inches

diameter the pitch of (2) was found to be about a fifth above (1),

that of (3) about a major seventh above (1), and that of (4) a little

higher again, forming an imperfect octave with the principal tone.

For the corresponding modes of a uniform perfectly flexible mem
brane vibrating in vacua, the theoretical intervals are those

represented by the ratios T34, 1*66, 1*83 respectively
1
.

The vibrations of soap films have been investigated by Melde a
.

The frequencies for surfaces of equal area in the form of the circle,

the square and the equilateral triangle, were found to be as

1 Phil. Mag., vol. vn., p. 160, 1879.
3
Pogg. Ann., 159, p. 275, 1876. Akwtik, p. 131, 1883.
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TOGO : 1*049 : 1*175. In membranes of this kind the tension is

due to capillarity, and is independent of the thickness of the film.]

213 a. The forced vibrations of square and circular membranes
have been further experimentally studied by Elsas

1

, who has

confirmed the conclusions of Savart as to the responsiveness of a

membrane to sounds of arbitrary pitch. In these experiments the

vibrations of a fork were communicated to the membrane by means

of a light thread, attached normally at the centre
;
and the position

of the nodal curves and of the maxima of disturbance was traced

in the usual manner by sand and lycopodium. A series of figures

accompanies the memoir, shewing the effect of sounds of pro

gressively rising pitch.

In many instances the curves found do not exhibit the

symmetries demanded by the supposed conditions. Thus in

the case of the square membrane all the curves should be similarly

related to the four corners, and in the case of the circular mem
brane all the curves should be circles. The explanation is probably

to be sought in the difficulty of attaining equality of tension. If

there be any irregularity, the effect will be to introduce modes of

vibration which should not appear, as having nodes at the point of

excitation, and this especially when there is a near agreement of

periods. Or again, an irregularity may operate to disturb the

balance between two modes of theoretically identical pitch, which

should be excited to the same degree. Indeed the passage through
such a point of isochromsm may be expected to be highly unstable

in the absence of moderate dissipative forces.

The theoretical solution of these questions has already ( 196,

204) been given, but would need much further development for

an accurate determination of the nodal curves relating to periods

not included among the natural periods. But the general course

of the phenomenon can be traced without difficulty.

If the imposed frequency be less than the lowest natural

frequency, the vibration is devoid of (internal) nodes. For a nodal

line", if it existed, being of necessity either endless or terminated

at the boundary
2

,
would divide the membrane into two parts. Of

1 Nova Acta der KsL Leop. Carol. Deutsclwu Akademie, Bd. XLY. Nr. 1, Halle,

1882.
2 Otherwise the extremity would have to remain at rest under the action of

component tensions from the surrounding parts which are all in one direction.
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these one part would be vibrating freely with a frequency less

than the lowest natural to the whole membrane, an impossible

condition of things ( 211). The absence of nodal curves under the

above-mentioned conditions is one of the conclusions drawn by
Elsas from his observations.

As the frequency of the imposed vibration rises through the

lowest natural frequency, a nodal curve manifests itself round the

point of excitation, and gradually extends. The course of things

is most easily followed in the case of the circular membrane,
excited at the centre. The nodal curves are then of necessity also

circles, and it is evident that the first appearance of a nodal circle

can take place only at the centre. Otherwise there would be a

circular annulus of finite internal diameter, vibrating freely with a

frequency only infinitesimally higher than that of the entire circle.

At first sight indeed it might appear that even an infinitely small

nodal circle would entail a finite elevation of pitch, but a con

sideration of the solution ( 204) as expressed by a combination of

Bessel's functions of the first and second kinds, shews that this is

not the case. At the point of isochronism the second function

disappears, and immediately afterwards re-enters with an infinitely

small coefficient. But inasmuch as this function is itself infinite

when r = 0, a nodal circle of vanishing radius is possible. Accord

ingly the fixation of the centre of a vibrating circular membrane
does not alter the pitch, a conclusion which may be extended to

the fixation of any number of detached points of a membrane of

any shape.

The effect of gradually increasing frequency upon the nodal

system of a circular membrane may be thus summarized. Below

the first proper tone there is no internal node. As this point is

reached, the mode of vibration identifies itself with the corre

sponding free mode, and then an infinitely small nodal circle

manifests itself. As the frequency further increases, this circle

expands, until when the second proper tone is reached, it coincides

with the nodal circle of the free vibration of this frequency.
Another infinitely small circle now appears, and it, as well as the

first, continually expands, until they coincide with the nodal system
of a free vibration in the third proper tone. This process con

tinues as the pitch rises, every circle moving continually outwards.

At each coincidence with a natural frequency the nodal system
identifies itself with that of the free vibration, and a new circle

begins to form itself at the centre.
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The behaviour of a square membrane is of course more difficult

to follow in detail. The transition from Fig. (34) case (4), corre

sponding to m 3, n = 1, and w = 1, n= 3, to Fig. (36) where ??i = 3,

n = 3, can be traced in Elsas's curves through such forms as

Fig. 39 a.

o n.



CHAPTER X.

VIBRATIONS OF PLATES 1

.

214. IN order to form according to Green's method the equa
tions of equilibrium and motion for a thin solid plate of uniform

isotropic material and constant thickness, we require the expression
for the potential energy of bending. It is easy to see that for each

unit of area the potential energy V is a positive homogeneous

symmetrical quadratic function of the two principal curvatures.

Thus, if pl9 p2 be the principal radii of curvature, the expression
for V will be

where A and
/JL

are constants, of which A must be positive, and

/JL
must be numerically less than unity. Moreover if the material

be of such a character that it undergoes no lateral contraction

when a bar is pulled out, the constant p must vanish. This

amount of information is almost all that is required for our

purpose, and we may therefore content ourselves with a mere
statement of the relations of the constants in (1) with those by
means of which the elastic properties of bodies are usually de
fined,

From Thomson and Tait's Natural Philosophy, 639, 642,

720, it appears that, if 2h be the thickness, q Young's modulus,

1
[This Chapter deals only with Jiexural vibrations. The extensional vibrations

of an infinite plane plate are briefly considered in Chapter X. A, as a particular
case of those of an infinite cylindrical shell. They are not of much acoustical

importance.]
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and \L the ratio of lateral contraction to longitudinal elongation
when a bar is pulled out, the expression for V is

,

U' ft* P1P.J

_ qlf-

[Equation (2) gives the interpretation of the constants of (1)

in its application to a homogeneous plate of isotropic material
;

but the expression (1) itself is of far wider scope. The material

composing the plate may vary from layer to layer, and the elastic

character of any layer need not be isotropic, but only symmetrical
with respect to the normal. As a particular case, the middle

layer, or indeed any other layer, may be supposed to be physically

inextensible.

Similar remarks apply to the investigations of the following

chapter relating to curved shells.]

If w be the small displacement perpendicular to the plane

of the plate at the point whose rectangular coordinates in the

plane of the plate are x, y,

-,
___ i

,_ v 3 tn _ --

Pi P* ftft ^ df

and thus for a unit of area, we have

which quantity has to be integrated over the surface (8) of the

plate.

1 The following comparison of the notations used by the principal writers may
save trouble to those who wish to consult the original memoirs.

Bigidity=/i (Thomson) =/* (Lame).

Young's modulus=E (Clebsch)=^ (Thomson)= ^- (Thomson)

^n(3m-7i)
(
Thomgonj ::=ff (Kirchhoff and Donkin)= 2JT (Kirchhoff).

Katio of lateral contraction to longitudinal elongation =/t (Clebsch and Donkin)
n \

= (T (Thomson)^ (Thomson) =5-^^ (Kirchhoff)=^-jr^ (Lam6).

Poisson assumed this ratio to be J, and Wertheim
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215. We proceed to find the variation of V, but it should be

^ , ffdS
previously noticed that the second term in V, namely JJ

,

represents the total curvature of the plate, and is therefore de

pendent only on the state of things at the edge.

so that we have to consider the two variations

. V*Sw . dS and
jjs

(fip^T
1 dS.

Now by Green's theorem

. dS fa*w .Sw.dS

in which ds denotes an element of the boundary, and d/dn denotes

differentiation with respect to the normal of the boundary drawn

outwards.

The transformation of the second part is more difficult. We
have

ff
d8 -

JJ ftft

"" _

ftft

""

JJW ^2/
a dv

2 "^" ctedy cto^J

The quantity under the sign of integration may be put into

the form

d (d&w d-w dSw dzw \ d
fdSw

d-w _ dSw d2w \

dy \ dy da? dx dccdy) dx\dx dy* dy doody)
'

Now, if F be any function of # and y,

}

^dxdy^
^ Fcos0ds\

where 6 is the angle between x and the normal drawn outwards,
and the integration on the right-hand side extends round the

boundary. Using these, we find

- A--= Ids Sin e -~- T-T - -=
dSw

~j- T-T - -= yj'
dy da? ax docdy)

d*w dSw d*w
\

-j~r -T -jj-f
dy* ay dxay)
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If we substitute for d^wjdx, d$w/dy their values in terms

d$w/dn, dSw/ds, from the equations (see Fig. 40)

d&w dSw + n dSw . n\
-j

=
-j cos ^ ~ "T ~ sm ^

Idx dn as

cw dSw . Q d$w ,__ _ sin 4.-j COS C'

dy an as J

Fig. 40.

(4)

we obtain

The second integral by a partial integration with respect to

may be put into the form

Collecting and rearranging our results, we find

d

232
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There will now be no difficulty in forming the equations of

motion. If p be the volume density, and Z.p . 2&. dS the transverse

force acting on the element dS,

is the general variational equation, which must be true whatever

function (consistent with the constitution of the system) Sw may
be supposed to be. Hence by the principles of the Calculus of

Variations

at every point of the plate.

If the edges of the plate be free, there is no restriction on the

hypothetical boundary values of Bw and d&w/dn, and therefore the

coefficients of these quantities in the expression for S Fmust vanish.

The conditions to be satisfied at a free odge are thus

d ( A . afd*w d2

w\- cos sine/ - =
t A . aKl u) j- i cos sine/^ ^'3

-- u j- cos sin r-s =

dn ^ ^'
ds

{ \dy* da?)

dxdy]

If the whole circumference of the plate be clamped, Sw = Q,

dSw/dn
= 0, and the satisfaction of the boundary conditions is

already secured. If the edge be *

supported'
3
, Sw = 0, but d&w/dn

is arbitrary. The second of the equations (9) must in this case be
satisfied by w.

216. The boundary equations may be simplified by getting
rid of the extrinsic element involved in the use of Cartesian
coordinates. Taking the axis of x parallel to the normal of the

bounding curve, we see that we may write

ii rr,Also V2^-f
-
:r --T

cin* da

1 The rotatory inertia is here neglected.
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where a- is a fixed axis coinciding with the tangent at the point
under consideration. In general cPwjda* differs from d?w/ds*.
To obtain the relation between them, we may proceed thus.

Expand w by Maclaurin's theorem in ascending powers of the

small quantities n and or, and substitute for n and a- their values

in terms of s, the arc of the curve.

Thus in general

,

dw dw - dzw _ d*w d2w

while on the curve a- = s + cubes, n =
fr $Yp + . . .

, where p is

the radius of curvature. Accordingly for points on the curve,

, dw s2 dw n d*w ,w = w
fr

-=---h -7 s + i ^ j s
2 + cubes of 5,2 dn p dcrQ

2
rf<7

2

1,, -
' 1 dw

and therefore _ = ----- ........................(2);
ds2 d<r* p dn ( h

whence from (1)

, dzw Idw
,
d?w ...

V*w= j-r + -j- + -rr .................. (3).
d?i

2
pdn ds? ^ *

We conclude that the second boundary condition in (9) 215

may be put into the form

d*w Idw d*w\

In the same way by putting 6 = 0, we see that

is equivalent to d*w/dndcr, where it is to be understood that

the axes of n and or are fixed* The first boundary condition now
becomes

...............(5).^ '

If we apply these equations to the rectangle whose sides are

parallel to the coordinate axes, we obtain as the conditions to be

satisfied along the edges parallel to y,

d
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In this case the distinction between <r and s disappears, and p, the

radius of curvature, ist infinitely great. The conditions for the

other pair of edges are found by interchanging x and y. These

results may be obtained equally well from (9) 215 directly, with

out the preliminary transformation.

217. If we suppose Z=Q, and write

sv22

-v,=c4
(l\

the general equation becomes

w-f c*V4w = ........................ (2),

or, if w oc cos (pt e),

V4w = A4w ........................... (3),

where fr=p*/c* ............. . ............. (4).

Any two values of w, u and v, corresponding to the same

boundary conditions, are conjugate, that is to say

(5),

provided that the periods be different. In order to prove this

from the ordinary differential equation (3), we should have to

retrace the steps by which (3) was obtained. This is the method

adopted by Kirchhoff for the circular disc, but it is much simpler
and more direct to use the variational equation

(6),

in which w refers to the actual motion, and &w to an arbitrary

displacement consistent with the nature of the system. SFis a

symmetrical function of w and Sw, as may be seen from 215, or

from the general character of V ( 94).

If we now suppose in the first place that w = u, $w~v, we
have

and in like manner if we put w = v, 8w*=uf which we are equally
entitled to do,

2php'*ffuvdS,
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Q .............. . ...... (7).

This demonstration is valid whatever may be the form of the

boundary, and whether the edge be clamped, supported, or free, in

whole or in pair.

As for the case of membranes in the last Chapter, equation
(7) may be employed to prove that the admissible values of p* are
real

;
but this is evident from physical considerations.

218. For the application to a circular disc, it is necessary to

express the equations by means of polar coordinates. Taking the
centre of the disc as pole, we have for the general equation to be
satisfied at all points of the area

O ........................(1),

where ( 200) V*= -f + 1 *
+ I *

vs }
dr* rdr r* dfr

To express the boundary condition ( 216) for a free edge
(r = a), we have

^_V2^ = V? d
(
d*w \- d d

(
dw

\
d*w

dn dr
'

ds \dnda) add dr \rd6j
' d&

p SB radius of curvature = a
;
and thus

d fdzw 1 dw\
_

dr Ur2 r~fc W\tir "dr

/Idw 1 d

After the differentiations are performed, r is to be made equal

to a.

If w be expanded in Fourier's series

w = wQ -h Wi + . . . 4- wn + . . .,

each term separately must satisfy (2), and thus, since

d fd*wn Idww\ ~
dr

*
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The superficial differential equation may be written

which becomes for the general term of the Fourier expansion

shewing that the complete value of wn will be obtained by adding

together, with arbitrary constants prefixed, the general solutions of

The equation with the upper sign is the same as that which

obtains in the case of the vibrations of circular membranes, and

as in the last Chapter we conclude that the solution applicable

to the problem in hand is wn &:Jn (kr), the second function of r

being here inadmissible,

In the same way the solution of the equation with the lower

sign is wn oc. Jn (ikr), where i = V ( 1) as usual. [See 221 a.]

The simple vibration is thus

wn = cos nd {a.Jn (kr) 4- @Jn (ikr)} + sin nO {yJn (kr) H- SJn (ikr)}.

The two boundary equations will determine the admissible

values of k and the values which must be given to the ratios

CL : y8 and 7 : S. From the form of these equations it is evident

that we must have a : ft
=

<y
: 8,

and thus wn may be expressed in the form

wn =P cos (nO
-

a) {Jn (kr) + XJn (ikr)} cos (pt e) ...... (5).

As in the case of a membrane the nodal system is composed of

the n diameters symmetrically distributed round the centre, but

otherwise arbitrary, denoted by

cos(n0-ct) = ........................ (6),

together with the concentric circles, whose equation is

Jn (kr) + \Jn (ikr) = Q .....................(7).

219. In order to determine X and k we must introduce the

boundary conditions. When the edge is free, we obtain from

(3) 218

_ ?i
2
(fM
-

1) {kgJn
'

(ka)
-Jn (ka)}

- freft/"/ (ka)

n* (fi
-

1) (ikaJn\ika)
- Jn(ika)} + ik*a*Jn'(ika) .

_ x (A*
-

1) [kaJn (ka)
- n*Jn (ka)}

- tfa?Jn (ka)
'

"

(fj,
-

1) [ikaJn (ika)
- n2Jn (ika)} + fc

2a2
t/"n (ife
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in which use has been made of the differential equations satisfied

by Jn (kr\ Jn (ikr). In each of the fractions on the right the

denominator may be derived from the numerator by writing ik in

place of k. By elimination of X the equation is obtained whose

roats give the admissible values of k.

When n = 0, the result assumes a simple form, viz.

This, of course, could have been more easily obtained by neglecting
n from the beginning.

The calculation of the lowest root for each value of n is trouble

some, and in the absence of appropriate tables must be effected

by means of the ascending series for the functions Jn (kr), Jn (ikr).

In the case of the higher roots recourse may be had to the semi-

convergent descending series for the same functions. Kirchhoff

finds

where

C= 7 (1
- 4n2

) (9
- 4?i2) + 48 (1 + 4/i2),

D = - 7 {(1
- 4w,2) (9

- 4rc
2

) (13
- 40} + 8 (9 + 136?i2

When ka is great,

tan (ka
-

nir)
=

approx. ;

whence

Ara = i7r(w + 2A) ........................ (4),

where h is an integer.

It appears by a numerical comparison that h is identical with

the number of circular nodes, and (4) expresses a law discovered

by Chladni, that the frequencies corresponding to figures with a

given number of nodal diameters are, with the exception of the

lowest, approximately proportional to the squares of consecutive

even or uneven numbers, according as the number of the diameters

is itself even or odd. Within the limits of application of (4), we

see also that the pitch is approximately unaltered, when any
number is subtracted from h, provided twice that number be
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added to n. This law, of which traces appear in the following table,

may be expressed by saying that towards raising the pitch nodal

circles have twice the effect of nodal diameters. It is probable,

however, that, strictly speaking, no two normal components have

exactly the same pitch.

The table, extracted from Kirchhoff's memoir, gives the pitch
of the more important overtones of a free circular plate, the gravest

being assumed to be C 1
. The three columns under the heads

Ch> P, W refer respectively to the results as observed by Chladni

and as calculated from theory with Poisson's and Wertheim's

values of p. A plus sign denotes that the actual pitch is a little

higher, and a minus sign that it is a little lower, than that written.

The discrepancies between theory and observation are considerable,

but perhaps not greater than may be attributed to irregularity in

the plate.

220. The radii of the nodal circles in the symmetrical case

(n = 0) were calculated by Poisson, and compared by him with

results obtained experimentally by Savart. The following numbers
are taken from a paper by Strehlke 2

, who made some careful

measurements. The radius of the disc is taken as unity.

Observation. Calculation.

. 0-6T815 0-68062.

(0-39133 0-39151.

(0-84149 0-84200.

[0-25631
0-25679.

Three circles ^0'59107 Q'59147.

One circle .,

Two circles..

[0-89360 0-89381.

Gis corresponds to G{ of the English notation, and U to ft natural.
2
Pogg. Ann. xcv. p. 577. 1855.
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The calculated results appear to refer to Poisson's value of p, but

would vary very little if Wertheim's value were substituted.

The following table gives a comparison of Kirchhoff's theory

(n not zero) with measurements by Strehlke made on less accurate

discs.

Radii of Circular Nodes.

The most general motion of the uniform circular plate is

expressed by the superposition, with arbitrary amplitudes and

phases, of the normal components already investigated. The

determination of the amplitude and phase to correspond to

arbitrary initial displacements and velocities is effected precisely

as in the corresponding problem for the membrane by the aid of

the characteristic property of the normal functions proved in 217.

221, When the plate is truly symmetrical, whether uniform

or not, theory indicates, and experiment verifies, that the position

of the nodal diameters is arbitrary, or rather dependent only on

the manner in which the plate is supported, and excited. By

varying the place of support, any desired diameter may be made

nodal. It is generally otherwise when there is any sensible

departure from exact symmetry. The two modes of vibration,

which originally, in consequence of the equality of periods, could

be combined in any proportion without ceasing to be simple

harmonic, are now separated and affected with different periods.

At the same time the position of the nodal diameters becomes

determinate, or rather limited to two alternatives. The one set is

derived from the other by rotation through half the angle included

between two adjacent diameters of the same set. This supposes

that the deviation from uniformity is small
;
otherwise the nodal

system will no longer be composed of approximate circles and

diameters at all. The cause of the deviation may be an irregu

larity either in the material or in the thickness or in the form of
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the boundary. The effect of a small load at any point may be

investigated as in the parallel problem of the membrane 208.

If the place at which the load is attached does not lie on a nodal

circle, the normal types are made determinate. The diametral

system corresponding to one of the types passes through the place

in question, and for this type the period is unaltered. The period

of the other type is increased.

[The divergence of free periods, which is due to slight in

equalities, would seem to afford an explanation of some curious

observations by Savart 1
. When a circular plate, vibrating with

nodal diameters, is under the influence of the bow applied at any

part of the circumference, the nodal diameters indicated by sand are

so situated that the bow lies in the middle of a vibrating segment.

If, however, the bow be suddenly withdrawn, the nodal system

oscillates, or even revolves, during the subsidence of the motion.

It is evident that no such displacement could be expected,

were the plate absolutely symmetrical. The same would be true,

even in the case of asymmetry, if the bow were so applied as to

excite one only of the two determinate vibrations then possible.

But in general the effect of the bow must be to excite both kinds

of vibrations, and then the matter is more complicated. It would

seem that so long as the constraining action of the bow lasts, both

vibrations are forced to keep the same time, and the effect is

much the same as in the case of symmetry. But on withdrawal

of the bow the free vibrations which then ensue take place each in

its proper frequency, and a phase difference soon arises by which

the effects are modified.

Let us suppose that the origin of is so chosen in relation

to the irregularities that the types of vibration are represented

by cos nO, sin n&. Then in general the free vibrations, resulting

from the action of the bow at an arbitrary point of the circum

ference, may be taken to be

cosset sin n6 cos pt sin rca cos ?i0 cos (p -h e) (1),

where is the difference of phase which has accumulated since

the commencement of the free vibrations. In the case of

symmetry e = 0, and (1) becomes

sin n ( a) cospt (2),

1 Ann. Chim.j vol. 36, p. 257, 1827.
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which represents a fixed nodal system

= *+m(7r/n). (3),

in any arbitrary position depending upon the point of application

of the bow. A similar fixity of the nodal system occurs, in spite

of the variable e, when a is so chosen that cos net = or sin no. = 0.

But in general there is no fixed nodal system. When is a

multiple of 2?r, that is when the two vibrations are restored to

the same phase, there is a nodal system represented by (3). And
when e is an odd multiple of TT, so that the two vibrations are in

opposite phases, we have in place of (2)

sin??(# -fa) cos _).... . (4),

with a nodal system
= -a-hm(7r/n) (5).

In thes cases there is a. nodal system, and in a sense the system

may be said to oscillate between the positions given by (3) and (5) ;

but it must not be overlooked that at intermediate times there is

no true nodal system at all. Thus, when e= JTT, (1) becomes

cos no. sin n6 cospt 4- sin no. cos nO sinpt

The squared amplitude of this motion is

cos2 na sin2 n0 + sin2 no. cos2 nff,

a quantity which does not vanish for any value of 0. In general

the squared amplitude is

cos2 na sin2 n6 + sin2 na cos2 nO - 2 cos na sin no. cos nd sin n& cos e,

or, as it may also be written,

^~^-cos2na cos %nO sin 2na sin 2?i0 cose (6).

This quantity is a maximum or a minimum when

tan 2/i0 = cose tan2na (7).

The minimum of motion thus oscillates backwards and forwards

between 0= -fa and 0=-a; but as we have seen, it is only in

these extreme positions that the minimum is zero.

A like phenomenon occurs during the free vibrations of a

circular membrane, or in fact of any system of revolution such

that the position of nodal lines is arbitrary so long as the

symmetry is complete.]
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The two other cases of a circular plate in which the edge

is either clamped or supported would be easier than the preceding

in their theoretical treatment, but are of less practical
interest on

account of the difficulty of experimentally realising the conditions

assumed. The general result that the nodal system is composed

of concentric circles, and diameters symmetrically distributed, is

applicable to all the three cases.

221 a. The use in the telephone of a thin circular plate

clamped at the edge lends a certain interest to the calculation of

the periods and modes of vibration of such a plate. It will suffice

to consider the symmetrical modes.

By (5) 218 we may take as representing the motion in

this case

from which

^.j;(foO + &j;(t^)=-Ji(*r)+X/
1 (*r) ...... (2);

KCLY

where we

Since the plate is clamped at r = a, both w and dw/dr must

there vanish. Hence, writing fe-*, we get as the frequency

equation

In (5) /i and / are both positive, so that the signs of J and /

must be opposite. Hence by Table B 206 the first root must

lie between 2-4 and 3'8, the second between 5'5 and 7'0, and

so on. The values of the earlier roots might be obtained without

much difficulty from the series for / and A by using the table

200 for J and Ji; hut it will be convenient for the present and

further purposes to give a short table
1
of the functions J and 7t

themselves. For large values of the argument descending series,

analogous to (10) 200, may be employed.

i Calculated by A. Lodge, Brit. Ass. ep., 1889.
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The first root of (5) is z = 3'20. This then is the value of ka

for the gravest symmetrical vibration. The next value of z is

about 6'3. Since the frequency varies as A8

( 217), the interval

between the tones is nearly two octaves.

Keturning to the first root, we have for the frequency (n\

217,

9i=~-~ = s ^~~^ /- ... -^=^ (6).
2?r 27ra2 2?ra2 V 3p (1

- M )

This is the general formula. For rough calculations /t
2 in the

denominator may be omitted. If for the case of iron we take

p = 7-7, q
= 2*0 x 1012

,

* , 2-4xl05 .2A mwe find ft =
^

- (O

2fe and a being expressed in centimetres.

A telephone plate measured by the author gave

a= 2-2, 2A = '020.

According to these values

7i = 991 vibrations per second.

222. We have seen that in general Ohladni's figures as traced

by sand agree very closely with the circles and diameters of

theory; but in certain cases deviations occur, which are usually

attributed to irregularities in the plate. It must however be re-
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membered that the vibrations excited by a bow are not strictly

speaking free, and that their periods are therefore liable to a

certain modification. It may be that under the action of the bow
two or more normal component vibrations coexist. The whole

motion may be simple harmonic in virtue of the external force,

although the natural periods would be a little different. Such an

explanation is suggested by the regular character of the figures

obtained in certain cases.

Another cause, of deviation may perhaps be found in the

manner in which the plates are supported. The requirements of

theory are often difficult to meet in actual experiment. When
this is so, we may have to be content with an imperfect compari
son

;
but we must remember that a discrepancy may be the fault

of the experiment as well as of the theory.

[In the ordinary use of- sand to investigate the vibrations of

flat plates and membranes the movement to the nodes is irregular

in its character. If a grain be situated elsewhere than at a node,

it is made to jump by a sufficiently vigorous transverse vibration.

The result may be a movement either towards or from a node
;

but after a succession of such jumps the grain ultimately finds its

way to a node as the only place where it can remain xindisturbed.

Grains which have already arrived at a node remain there, while

others are constantly shifting their position.

It was found by Savart that very fine powder, such as lyco-

podium, behaves differently from sand. Instead of collecting at

the nodes, it heaps itself up at the places of greatest motion.

This effect was traced by Faraday
1
to the influence of currents of

air, themselves the result of the vibration. In a vacuum all

powders move to the nodes.

In some cases the movement of sand to the nodes, or to some

of them, takes place in a more direct manner as the result of

friction. Thus, in his investigation of the longitudinal vibrations

of thin narrow strips of glass, held horizontally, Savart
2
observed

the delineation of nodes apparently dependent upon an accom

paniment of vibrations of a transverse character. The special

peculiarity of this phenomenon was the non-correspondence of the

lines traced by sand upon the two faces of the glass when tested

1 On a Peculiar Class of Acoustical Figures, Phil. Tram., 1831, p. 299.

2 Ann. d. Chim., vol. U, p. 113, 1820.
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in succession, a fact sufficient to shew that the transverse motion

was connected with a failure of uniformity. In consequence of

this there are developed transverse vibrations of the same (high)

pitch as that of the principal longitudinal motion, and therefore

attended with many nodes. These nodes are of course the same

whichever face of the glass is uppermost, and it might be supposed

that they would all be indicated by the sand, as would happen if

the transverse vibrations existed alone. But the combination of

the two kinds of motion causes a creeping of the sand towards the

alternate nodes, the movements of the sand at corresponding

points on the two sides of the plate being always in opposite

directions. On the one side an inwards longitudinal motion (for

example) is attended by an upwards transverse motion, but when

the plate is reversed the same inwards longitudinal motion is

associated with a transverse motion directed downwards. If there

were no transverse motion, the longitudinal force upon any

particle resulting from friction would vanish in the long run, but

in consequence of the transverse motion this balance is upset, and

in a manner different upon the two sides of the plate. The above

considerations appear to afford sufficient ground for an explanation

of the remarkable phenomenon observed by Savart,but an attempt

to follow the matter further into detail would lead us too

far 1

.]

223. The first attempt to solve the problem with which we

have just been occupied is due to Sophie Germain, who succeeded

in obtaining the correct differential equation, but was led to

erroneous boundary conditions. For a free plate the latter part of

the problem is indeed of considerable difficulty. In Poisson's

memoir ' Sur 1'dquilibre et le mouvement des corps ^lastiques V

that eminent mathematician gave three equations as necessary to be

satisfied at all points of a free edge, but Eirchhoff has proved that

in general it would be impossible to satisfy them all. It happens,

however, that an exception occurs in the case of the symmetrical

vibrations of a circular plate, when one of the equations is true

identically. Owing to this peculiarity, Poisson's theory of the

symmetrical vibrations is correct, notwithstanding the error in his

view as to the boundary conditions. Ifc 1850 the subject was

1 See Terquem, C. E,, XLVI., p. 775, 1858.

2 Mm. de VAcad. d. Sc. & Par< 1829.
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resumed by Kirchhoff *, who first gave the two equations appropriate
to a free edge, and completed the theory of the vibrations of a

circular disc.

224. The correctness of Kirchhoff's boundary equations has

been disputed by Mathieu*, who, without explaining where he

considers Kirchhoff's error to lie, has substituted a different set of

equations. He proves that if u and u be two normal functions, so

that w*=ucospt, w=zu'zo$p't are possible vibrations, then

*[= c
4

J

j '

ds 1 u jdn

This follows, if it be admitted that u, u' satisfy respectively
the equations

Since the left-hand member is zero, the same must be true of

the right-hand member; and this, according to Mathieu, cannot

be the case, unless at all points of the boundary both u and u'

satisfy one of the four following pairs of equations :

du

dn
u-of -

dn

The second pair would seem the most likely for a free edge, but

it is found to lead to an impossibility. Since the first and third

pairs are obviously inadmissible, Mathieu concludes that the fourth

pair of equations must be those which really express the condition

of a free edge. In his belief in this result he is not shaken by the

fact that the corresponding conditions for the free end of a bar

would be dufdx Q, d^u/da^ Q, the first of which is contradicted

by the roughest observation of the vibration of a large tuning-
fork.

1
Crelle, t. XL. p. 51. Ueber das Gleichgewickt und die Bewegung einer elas-

tischen Scheibe.
2
Liouville, i. xiv. 1869.



224.] HISTORY OF PROBLEM. 371

The fact is that although any of the four pairs of eqxiations

would secure the evanescence of the boundary integral in (1), it

does not follow conversely that the integral can be made to vanish

in no other way; and such a conclusion is negatived byKirchhoffs

investigation. 'There are besides innumerable other cases in

which the integral in question would vanish, all that is really

necessary being that the boundary appliances should be either at

rest, or devoid of inertia.

225. The vibrations of a rectangular plate, whose edge is

supported, may be easily investigated theoretically, the normal

functions being identical with those applicable to a membrane of

the same shape, whose boundary is fixed. If we assume

. , ST.
sin -~ cos or.................. (L),

a o

we see that at all points of the boundary,

w = 0, ftwldtf= 0, d*iv]dy*
= 0,

which secure the fulfilment of the necessary conditions ( 215).

The value of p, found by substitution in

^. J>-*
i$ +S (2))

shewing that the analogy to the membrane does not extend to the

sequence of tones.

It is not necessary to repeat here the discussion of the primary

and derived nodal systems given in Chapter ix. It is enough to

observe that if two of the fundamental modes (1) have the same

period in the case of the membrane, they must also have the same

period in the case of the plate. The derived nodal systems are

accordingly identical in the two cases.

The generality of the value of w obtained by compounding

with arbitrary amplitudes and phases all possible particular solu

tions of the form (1) requires no fresh discussion.

Unless the contrary assertion had been made, it would have

seemed unnecessary to say that the nodes of a supported plate

have nothing to do with the ordinary Chladni's figures, which

belong to a plate whose edges are free.
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The realization of the conditions for a supported edge is

scarcely attainable in practice. Appliances are required capable
of holding the boundary of the plate at rest, and of such a nature
that they give rise to no couples about tangential axes, We may
conceive the plate to be held in its place by friction against the
walls of a cylinder circumscribed closely round it.

226. The problem of a rectangular plate, whose edges are

free, is one of great difficulty, and has for the most part resisted

attack 1
. If we suppose that the displacement w is independent

of y, the general differential equation becomes identical with that

with which we were concerned in Chapter vin. If we take the
solution corresponding to the case of a bar whose ends are free,

and therefore satisfying dty/dx? = 0, d*w/dx
3 = 0, when # = and

when # = a, we obtain a value of w which satisfies the general
fferential equation, as well as the pair of boundary equations

.d*w

which are applicable to the edges parallel to y ; but the second

boundary condition for the other pair of edges, namely

d*w - ...................... (2)>

will be violated, unless /^==0. This shews that, except in the

case reserved, it is not possible for a free rectangular plate to

vibrate after the manner of a bar; unless indeed as an approxima
tion, when the length parallel to one pair of edges is so great that

the conditions to be satisfied at the second pair of edges may be

left out of account.

Although the constant p (which expresses the ratio of lateral

contraction to longitudinal extension when a bar is drawn out)

is positive for every known substance, in the case of a few sub

stances cork, for example it is comparatively very small There

is, so far as we know, nothing absurd in the idea of a substance

1
[The case where two opposite edges are free 'while the other two edges are

supported, has been discussed by Voigt (G&ttingen Nachrichten, 1893) p. 225.J
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for which p vanishes. The investigation of the problem under
this condition is therefore not devoid of interest, though the results

will not be strictly applicable to ordinary glass or metal plates,

for which the value of ^ is about $.
1

If t*!, Uy,, &c. denote the normal functions for a free bar inves^

tigated in Chapter VIIL, corresponding to 2, S, ...... nodes, the

vibrations of a rectangular plate will be expressed by

w = % (xja), w = u* (tf/a), &c,,

or w = u, (yjl>\ w = <

In each of these primitive modes the nodal system is composed
of straight lines parallel to one or other of the edges of the

rectangle, When 6 = a, the rectangle becomes a square, and the

vibrations

w = un (as/a), w=un (y/a),

having necessarily the same period, may be combined in any pro

portion,
while the whole motion still remains simple harmonic.

Whatever the proportion may be, the resulting nodal curve will of

necessity pass through the points determined by

un (as/a)
=

0, un (y/a)
= 0.

Now let us consider more particularly the case of ?i = l. The
nodal system of the primitive mode, w = u^ (#/a), consists of a

pair of straight lines parallel to y, whose distance from the nearest

edge is '2242 a. The points in which these lines are met by the

corresponding pair for w = u^ (y/a), are those through which the

nodal curve of the compound vibration must in all cases pass. It

is evident that they are symmetrically disposed on the diagonals

of the square. If the two primitive vibrations be taken equal,

but in opposite phases (or, algebraically, with equal and opposite

amplitudes), we have

w= MX (xfa)
-

Ui (y/a) (3),

1 In order to make a plate of material, for which /A is not zero, vibrate in the

manner of a bar, it would be necessary to apply constraining couples to the edges

parallel to the plane of bending to prevent the assumption of a contrary curvature.

The effect of these couples would be to raise the pitch, and therefore the calcu

lation founded on the type proper to ^=0 would give a result somewhat higher in

pitch than the truth.
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from which it is evident that w vanishes when x = y, that is along

the diagonal which passes through the origin. Fig. 41.

That w will also vanish along the other diagonal

follows from the symmetry of the functions, and

we conclude that the nodal system of (3) comprises

both the diagonals (Fig. 41 ). This is a well-known

mode of vibration of a square plate.

A second notable case is when the amplitudes are equal and

their phases the same, so that

(4).

The most convenient method of constructing graphically
the curves, for which w = const., is that employed by Maxwell
in similar cases. The two systems of curves (in this instance

straight lines) represented by w x (x/a) = const,, u^ (y/a)
= const., are

first laid down, the values of the constants forming an arith

metical progression with the same common difference in the two

cases. In this way a network is obtained which the required
curves cross diagonally. The execution of the proposed plan

requires an inversion of the table given in Chapter vin., 178,

expressing the march of the function uly of which the result is as

follows :

The system of lines represented by the above values of sc (com

pleted symmetrically on the further side of the central line) and

the corresponding system for y are laid down in Fig. 42. From
these the curves of equal displacement are deduced. At the

centre of the square we have w a maximum and equal to 2 on the

scale adopted. The first curve proceeding outwards is the locus of

points at which w = 1. The next is the nodal line, separating the

regions of opposite displacement. The remaining curves taken in
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order give the displacements - 1, 2, 3. The numerically great
est negative displacement occurs at the corners of the square,
where it amounts to 2 x T645 = S'290.1

The nodal curve thus constructed agrees pretty closely with the

observations of Strehlke 2
. His results, which refer to three care

fully worked plates of glass, are embodied in the following polar

equations :

40143
-0171] -00127]

r = -40143 + '0172V cos 4* -1- -00127V cos 8t,

4019 -0168J
'0013

J

Fig. 42.
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\ \/\\

\

~y \ \

~
the centre of the square being pole. From these we obtain for

the radius vector parallel to the sides of the square (t
= 0) '41980,

1 On the nodal lines of a square plate. Phil. Mag. August, 1873.

s POCK. Ann. Vol. CXLVI. p. 319. 1872.
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41981, '4-200, while the calculated result is -41 54. The radius

vector measured along a diagonal is "3856, '3855, '3864, and by

calculation '3900.

By crossing the network in the other direction we obtain the

locus of points for which 11^ (x/a) i (y/a) is constant, which are

the curves of constant displacement for that mode in which the

diagonals are nodal. The pitch of the vibration is (according to

theory) the same in both cases.

Fig. 43.

The primitive modes represented by w = u (x/a) or w = u* (y/a)

may be combined in like manner. Fig. 43 shews the nodal curve

for the vibration

The form of the curve is the same relatively to the other diagonal,

if the sign of the ambiguity be altered.
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227. The method of superposition does not depend for its

application on any particular form of normal function. Whatever

the form may be, the mode of vibration, which when ^i-O

passes into that just discussed, must have the same period,

whether the approximately straight nodal lines are parallel to

x or to y. If the two synchronous vibrations be superposed,

the resultant has still the same period, and the general course

of its nodal system may be traced by means of the considera

tion that no point of the plate can be nodal at which the

primitive vibrations have the same sign. To determine exactly

the line of compensation, a complete knowledge of the primitive

normal functions, and not merely of the points at which they

vanish, would in general be necessary. Doctor Young and the

brothers Weber appear to have had the idea of superposition as

capable of giving rise to new varieties of vibration, but it is to Sir

Charles Wheatstone l that we owe the first systematic application

of it to the explanation of Chladni's figures. The results actually

obtained by Wheatstone are however only very roughly applicable

to a plate, in consequence of the form of normal function implicitly

assumed. In place of Fig. 42 (itself, be it remembered, only an

approximation) Wheatstone finds for the node of the compound

vibration the inscribed square shewn in Fig. 44.
Fig. 44.

This form is really applicable, not to a plate vi

brating in virtue of rigidity, but to a stretched

membrane, so supported that every point of the

circumference is free to move along lines perpen

dicular to the plane of the membrane. The

boundary condition applicable under these circumstances is

= and it is easy to shew that the normal functions which
dn '

involve only one co-ordinate are

w = cos (m7rx/a), or w = cos (miry/a),

the origin being at a corner of the square. Thus the vibration

27r# STTV /n xw = cos--hcos - ..................... (1)
a . a

has its nodes determined by

cos
a

Phil Trans. 1833.
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whence a?+y = ia or fa, or cc-

represent the inscribed square.

If w

[227.

equations which

--- cos
CL a

the nodal system is composed of the two diagonals. This result,

which depends only on the symmetry of the normal functions, is

strictly applicable to a square plate.

When m = 3,

STTV= cos h cos -
a a

,..(3),

and the equations of the nodal lines are

a 5a Fig. 45.

shewn in Fig, 45. If the other sign be taken, we

obtain a similar figure with reference to the other

diagonal.

When m = 4,

: cos h cos
a a

giving the nodal lines

4
'

4
'

4
'

4
J

4' 4

With the other sign

we obtain

representing a system composed of the diagonals,

together with the inscribed square.

These forms, which are strictly applicable to the membrane,

resemble the figures obtained by means of sand on a square plate

more closely than might have been expected. The sequence of

tones is however quite different. From 176 we see that, if p, were

zero, the interval between the form (43) derived from three

primitive nodes, and (41) or (42) derived from two, would be
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1-4629 octaves; and the interval between (41) or (42) and (46) or

(47) would be 2'4358 octaves. Whatever may be the value of ^ the

forms (41) and (42) should have exactly the same pitch, and the

same should be true of (4) and (47). With respect to the first-

mentioned pair this result is not in agreement with Chkdni's

observations, who found a difference of more than a whole tone,

(42) giving the higher pitch. If however (42) be left out of

account, the comparison is more satisfactory. According to theory

(^
=

0), if (41) gave d, (48) should give g'
~

,
and (46), (47)

should give #" + . Chladni found for (43) g*$ + ,
and for (46),

(47) g'% and gr"# + respectively.

228. The gravest mode of a square plate has yet to be consi

dered. The nodes in this case are the two lines drawn through the

middle points of opposite sides. That there must be such a mode

will be shewn presently from considerations of symmetry, but

neither the form of the normal function, nor the pitch, has yet

been determined, even for the particular case of ft0. A rough

calculation however may be founded on an assumed type of

vibration.

It we take the nodal lines for axes, the form w = xy satisfies

V4w = 0, as well as the boundary conditions proper for a free edge

at all points of the perimeter except the actual corners. This is

in fact the form which the plate would assume if held at rest by

four forces numerically equal, acting at the corners perpendicu

larly to the plane of the plate, those at the ends of one diagonal

being in one direction, and those at the ends of the other diagonal

in the opposite direction. From this it follows that w^xycospt

would be a possible mode of vibration, if the mass of the plate

were concentrated equally in the four corners. By (3) 214, we

see that

V= W Cos>pt (1),
3 (! + /*)

1

inasmuch as

cPw/da?
= tfwldf = 0, d*w/dxdy = coapt.

For the kinetic energy, if p be the volume density, and M the

additional mass at each corner,

T = *
atept

""*

fyhtffdxdy + JMa
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Hence
. Jf

where Jf denotes the mass of the plate without the loads. This

result tends to become accurate when M is relatively great ;
other

wise by 89 it is sensibly less than the truth. But even when

Jf = 0, the error is probably not very great. In this case we

should have

giving a pitch which is somewhat too high. The gravest mode
next after this is when the diagonals are nodes, of which the pitch,

if /t
s= 0, would be given by

(see 174).

We may conclude that if the material of the plate were such

that ^ = 0, the interval between the two gravest tones would
be somewhat greater than that expressed by the ratio 1*318.

Chladni makes the interval a fifth.

229. That there must exist modes of vibration in which

the two shortest diameters are nodes may be

inferred from such considerations as the following.
In Fig. (48) suppose that GH is a plate of which

the edges HO, GO are supported, and the edges

GC, GH free. This plate, since it tends to a F '

definite position of equilibrium, must be capable
of vibrating in certain fundamental modes. Fixing
our attention on one of these, let us conceive a

distribution of w over the three remaining quadrants, such that in

any two that adjoin, the values of w are equal and opposite at

points which are the images of each other in the line of separation.
If the whole plate vibrate according to the law thus determined,

no constraint will be required in order to keep the lines GL\ FH
fixed, and therefore the whole plate may be regarded as free. The
same argument may be used to prove that modes exist in which

the diagonals are nodes, or in which both the diagonals and the

diameters just considered are together nodal.
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The principle of symmetry may also be applied to other forms

of plate. We might thus infer the possibility of nodal diameters

in a circle, or of nodal principal axes in an ellipse. When the

Fig. 49. Fig. 50. Fig. 51.

boundary is a regular hexagon, it is easy to see that Figs, (49),

(50), (51) represent possible forms.

It is interesting to trace the continuity of Chladni's figures, as

the form of the plate is gradually altered. In the circle, for

example, when there are two perpendicular nodal diameters, it is a

matter of indifference as respects the pitch and the type of vibra

tion, in what position they be taken. As the circle develops into

a square by throwing out corners, the position of these diameters

becomes definite. In the two alternatives the pitch of the vibra

tion is different, for the projecting corners have not the same effi

ciency in the two cases. The vibration of a square plate shewn in

Fig. (42) corresponds to that of a circle when there is one circular

node. The correspondence of the graver modes of a hexagon or

an ellipse with those of a circle may be traced in like manner,

230. For plates of uniform material and thickness and of

invariable shape, the period of the vibration in any fundamental

mode varies as the square of the linear dimension, provided of

course that the boundary conditions are the same in all the cases

compared. When the edges are clamped, we may go further

and assert that the removal of any external portion is attended

by a rise of pitch, whether the material and the thickness be

uniform, or not.

Let AB be a part of a clamped edge (it is of no consequence

whether the remainder of the boundary be clamped, or not), and



382 VIBRATIONS OF PLATES. [230.

let the piece AOBD be removed, the new edge ADB being also

clamped. The pitch of any fundamental vibration is sharper

than before the change. This is evident, since the altered

vibrations might be obtained from the original system by the

introduction of a constraint clamping the edge ADB. The effect

of the constraint is to raise the pitch of every component, and

the portion AOBD being plane and at rest throughout the motion,

may be removed. In order to follow the sequence of changes
with greater security from error, it is best to suppose the line

of clamping to advance by stages between the two positions

ACB, ADB. For example, the pitch of a uniform clamped plate
in the form of a regular hexagon is lower than for the inscribed

circle and higher than for the circumscribed circle.

When a plate is free, it is not true that an addition to

the edge always increases the period. In proof of this it may be

sufficient to notice a particular case.

AB is a narrow thin plate, itself without inertia but carrying
loads at A, B, G. It is clear that the addition to the breadth

Fig. 53.

A C B

indicated by the dotted line would augment the stiffness of the

bar, and therefore lessen the period of vibration. The same

consideration shews that for a uniform free plate of given area

there is no lower limit of pitch ;
for by a sufficient elongation

the period of the gravest component may be made to exceed

any assignable quantity. When the edges are clamped, the

form of gravest pitch is doubtless the circle.

If all the dimensions of a plate, including the thickness, be

altered in the same proportion, the period is proportional to the

linear dimension, as in every case of a solid body vibrating in

virtue of its own elasticity.

The period also varies inversely as the square root of Young's
modulus, if p be constant, and directly as the square root of the

mass of unit of volume of the substance.
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231. Experimenting with square plates of thin wood whose

grain ran parallel to one pair of sides, Wheatstone 1 found that

the pitch of the vibrations was different according as the ap

proximately straight nodal lines were parallel or perpendicular
to the fibre of the wood. This effect depends on a variation

in the flexural rigidity in the two directions. The two sets of

vibrations having different periods cannot be combined in the

usual manner, and consequently it is not possible to make such

a plate of wood vibrate with nodal diagonals. The inequality
of periods may however be obviated by altering the ratio of the

sides, and then the ordinary mode of superposition giving nodal

diagonals is again possible. This was verified by Wheatstone.

A further application of the principle of superposition is due

to Konig
2
. In order that iwo modes of vibration may combine,

it is only necessary that the periods agree. Now it is evident

that the sides of a rectangular plate may be taken in such a

ratio, that (for instance) the vibration with two nodes parallel

to one pair of sides may agree in pitch with the vibration having
three nodes parallel to the other pair of sides. In such a case

new nodal figures arise by composition of the two primary modes

of vibration.

232'. When the plate whose vibrations are to be considered

is naturally curved, the difficulties of the question are generally

much increased But there is one case in which the complication

due to curvature is more than compensated by the absence of a
'

free edge ;
and this case happens to be of considerable interest,

being the best representative of a bell which admits of simple

analytical treatment.

A long cylindrical shell of circular section and uniform thick

ness is evidently capable of vibrations of a flexural character

in which the axis remains at rest and the surface cylindrical,

while the motion of every part is perpendicular to the generating

lines. The problem may thus be treated as one of two dimensions

only, and depends upon the consideration of the potential and

kinetic energies of the various deformations of which the section

is capable. The same analysis also applies to the corresponding

vibrations of a ring, formed by the revolution of a small closed

area about an external axis ( 192 a).

1 Phil Trans. 1833.

3
Pogg. Ann. 1884, cxxn. p. 238.
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The cylinder, or ring, is susceptible of two classes of vibrations

depending respectively on extensibility and flexural rigidity, and

analogous to the longitudinal and lateral vibrations of straight

bars. When, however, the cylinder is thin, the forces resisting

bending become small in comparison with those by which ex

tension is opposed; and, as in the case of straight bars, the

vibrations depending on bending are graver and more important
than those which have their origin in longitudinal rigidity.

In the limiting case of an infinitely thin shell (or ring), the

flexural vibrations become independent of any extension of the

circumference as a whole, and may be calculated on the sup

position that each part of the circumference retains its natural

length throughout the motion.

But although the vibrations about to be Considered are

analogous to the transverse vibrations of straight bars in respect

of depending on the resistance to flexure, we must not fall into

the common mistake of supposing that they are exclusively
normal. It is indeed easy to see that a motion of a cylinder or

ring in which each particle is displaced in the direction of the

radius would be incompatible with the condition of no extension.

In order to satisfy this condition it is necessary to ascribe to

each part of the circumference a tangential as well as a normal

motion, whose relative magnitudes must satisfy a certain differ

ential equation. Our first step will be the investigation of this

equation.

233. The original radius of the circle being ci, let the equi
librium position of any element of the circumference be defined

by the vectorial an*gle 6. During the motion let the polar co

ordinates of the element become

If ds represent the arc of the deformed curve corresponding to add,
we have

whence we find, by neglecting the squares of the small quantities

fir, 80,

as the required relation.
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In whatever manner the original circle may be deformed at

time t, Sr may be expanded by Fourier's theorem in the series

Br = a [A 1 cos 8 + B1 sin + A z cos 29 + J52 sin 28 -f . . .

cos $0 + J?, sin s0+...} ............... (2),

and the corresponding tangential displacement required by the

condition of no extension will be

A. 7?
80 = -.A 1 sin0 + ,B1 cos0+... ---sin s0 + cossQ- ......... (3),

s $

the constant that might be added to 80 being omitted.

If a add denote the mass of the element add, the kinetic

energy T of the whole motion will be

-t- ...

(4),

the products of the co-ordinates A t} Bs disappearing in the

integration.

We have now to calculate the form of the potential energy V.

Let p be the radius of curvature of any element ds
;
then for the

corresponding element of V we may take ^Bds (8 (1/p)}
2

,
where

B is a constant depending on the material and on the thickness.

Thus
1\2

)
d6 (5).

pJ
Now

lip
= u 4- d*u/d<j>

z
,

and

u = - = -
{1 Ai cos < Bl sin <f>

. . .

},

for in the small terms the distinction between
<f>

and may be

neglected.

Hence

S - = - S {(s
2 -

1) (4. cos
s<f>

-4- -B, sin *$)},
p CL
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and

F =
^- j

2*

{2 (s
2 -

1) (A s cos sO + Bs sirsn

(6),

in which the summation extends to all positive integral values

of s.

The term for which s=l contributes nothing to the potential

energy, as it corresponds to a displacement of the circle as a whole,

without deformation.

We see that when the configuration of the system is defined as

above by the co-ordinates A lt Blt &c., the expressions for T and V
involve only squares ;

in other words, these are the normal co

ordinates, whose independent harmonic variation expresses the

vibration of the system.

If we consider only the terms involving cos s0, sin sB
9
we have

by taking the origin of suitably,

(7),
s

while the equation defining the dependence of A 8 upon the

time is

. + ^-lM.-O .......... --(3),U

from which we conclude that, if A s varies as cos (pi e),

j?-
P "*

This result was given by Hoppe for a ring in a memoir pub
lished in Crelle, Bd. 63, 1871. His method, though more complete
than the preceding, is less simple, in consequence of his not re

cognising explicitly that the motion contemplated corresponds to

complete inextensibility of the circumference.

[In the application of (9) to a ring we have, 192 a,

<j p

where q is Young's modulus, p the volume density, and c the
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radius of the circular section. For the cylindrical shell, (IS)

235 g,

( ; '

2/1 denoting the thickness, and m, n the elastic constants in

Thomson and Tait's notation.]

According to Chladni the frequencies of the tones of a ring

are as

3- : 52
: 72

: 9-

If we refer each tone to the gravest of the series, we find for

the ratios characteristic of the intervals

2-778, 5-445, 9, 13*44, &c.

The corresponding numbers obtained from the above theoretical

formula (9), by making s successively equal to 2, 3, 4. &c.. are

2-828, 5-423, 8'771, 12-87, &c.,

agreeing pretty nearly with those found experimentally.

[Observations upon the tones of thin metallic cylinders, open

at one end, have been made by Fenkner 1
. Since the pitch proved

to be very nearly independent of the height of the cylinder's, the

vibrations may be regarded as approximately two-dimensional.

In accordance with (9), (11), Fenkner found the frequency propor

tional to the thickness directly, and to the square of the radius

inversely. As regards the sequence of tones from a given

cylinder *, the numbers, referred to the gravest ($ = 2) as unity,

were 2*67, 5'OQ, 8'OQ, 12'00, &c. The agreement with (9) would

be improved if these numbers were raised by about ^ part,

equivalent to an alteration in the pitch of the gravest tone.

The influence of rotation of the shell about its axis has been

examined by Bryan
3

. It appears that the nodes are carried

round, but with an angular velocity less than that of the rotation.

If the latter be denoted by &>, the nodal angular velocity is

* iried. Ann. vol. 8, p. 185, 1879.

-" Melde, Akustik, Leipzig, 1883, p. 223.

* Proc. Camb. Phil. Soc< vol. vn. p. 101, 1890.
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234. When s = 1, the frequency is zero, as might have been

anticipated. The principal mode of vibration corresponds to s = 2,

and has four nodes, distant from each other by 90. These so-

called nodes are not, however, places of absolute rest, for the

tangential motion is there a maximum. In fact the tangential

vibration at these points is half the maximum normal motion.

In general for the 5
th term the maximum tangential motion is

(1/5) of the maximum normal motion, and occurs at the nodes of

the latter.

When a bell-shaped body is sounded by a blow, the point of

application of the blow is a place of maximum normal motion

of the resulting vibrations, and the same is true when the

vibrations are excited by a violin-bow, as generally in lecture-

room experiments. Bells of glass, such as finger-glasses, are

however more easily thrown into regular vibration by friction with

the wetted finger carried round the circumference. The pitch of

the resulting sound is the same as of that elicited by a tap with

the soft part of the finger; but inasmuch as the tangential motion

of a vibrating bell has been very generally ignored, the production
of sound in this manner has been felt as a difficulty. It is now

scarcely necessary to point out that the effect of the friction is in

the first instance to excite tangential motion, and that the point

of application of the friction is the place where the tangential

motion is greatest, and therefore where the normal motion

vanishes.

235. The existence of tangential vibration in the case of a bell

was verified in the following manner. A so-called air-pump re

ceiver was securely fastened to a table, open end uppermost, and set

into vibration with the moistened finger. A small chip in the rim,

reflecting the light of a candle, gave a bright spot whose motion

could be observed with a Coddington lens suitably fixed. As the

finger was carried round, the line of vibration was seen to re

volve with an angular velocity double that of the finger; and
the amount of excursion (indicated by the length of the line of

light), though variable, was finite in every position. There was,

however, some difficulty in observing the correspondence between
the momentary direction of vibration and the situation of the point
of excitement. To effect this satisfactorily it was found necessary
to apply the friction in the neighbourhood of one point. It then

became evident that the spot moved tangentially when the bell was



235,] TANGENTIAL MOTION. 389

excited at points distant therefrom 0, 90, 180, or 270 degrees.; and

normally when the friction was applied at the intermediate points
corresponding to 45, 135, 225 and 315 degrees. Care is sometimes

required in order to make the bell vibrate in its gravest mode
without sensible admixture of overtones.

If there be a small load at any point of the circumference,
a slight augmentation of period ensues, which is different accord

ing as the loaded point coincides with a node of the normal or
of the tangential motion, being greater in the latter case than
in the former, The sound produced depends therefore on the

place of excitation; in general both tones are heard, and by
interference give rise to beats, whose frequency is equal to the
difference between the frequencies of the two tones. This phe
nomenon may often be observed in the case of large bells.

235 a. In determining the number of nodal meridians (2s)

corresponding to any particular tone of a bell, advantage may be
taken of beats, whether due to accidental irregularities or intro

duced for the purpose by special loading (compare 208, 209). By
tapping cautiously round a circle of latitude the places may be in

vestigated where the beats disappear, owing to the absence of one

or other of the component tones. But here a decision must not

be made too hastily. The inaudibility of the beats may be favoured

by an unsuitable position of the ear or of the mouth of the re

sonator used in connection with the ear. By travelling round,
a situation is soon found where the observation can be made to

the best advantage. In the neighbourhood of the place where the

blow is being tried there is a loop of the vibration which is most

excited and a (coincident) node of the vibration which is least-

excited. When the ear is opposite to a node of the first vibration,

and therefore to a loop of the second, the original inequality is

redressed, and distinct beats may be heard even though the

deviation of the blow from a nodal point may be very small. The
accurate determination in this way of two consecutive places where

no beats are generated is all that is absolutely necessary for the

purpose in view. The ratio of the entire circumference of the

circle of latitude to the arc between the points in question is in

fact 4s. Thus, if the arc between consecutive points proved to

be 45, we should infer that we were dealing with the case of s = 2,

in which the deformation is elliptical. As a greater security

against error, it is advisable in practice to determine a larger
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number of points where no beats occur. Unless the deviation

from symmetry be considerable, these points should be uniformly

distributed along the circle of latitude 1
.

In the above process for determining nodes we are supposed to

hear distinctly the tone corresponding to the vibration under

investigation. For this purpose the beats are of assistance in

directing the attention; but in dealing with the more difficult

subjects, such as church bells, it is advisable to have recourse to

resonators. A set of v. Helmholtz's pattern, as manufactured by

Konig, are very convenient. The one next higher in pitch to

the tone under examination is chosen and tuned by advancing the

linger across the aperture, Without the security afforded by
resonators, the determination of the octave is very uncertain.

The only class of bells, for which an approximate theory can

be given, are those with thin walls, 233, 235 c. Of such the

following glass bells may be regarded as examples :

I. c', e"t, c'"$.

II. a, c"2, V.

m. /'::, &"i

The value of s for the gravest tone was 2, for the second 3,

and for the third tone 4.

Similar observations have been made upon a so-called hemi

spherical bell, of nearly uniform thickness, and weighing about 3

cwt. Four tones could be plainly heard,

b, /'- e", V,

the pitch being taken from a harmonium. The gravest tone has a

long duration. When the bell is struck by a hard bodv, the

higher tones are at first predominant, but after a time they die

away, and leave eb in possession of the field. If the striking body
be soft, the original preponderance of the higher elements is less

marked.

By the method described there was no difficulty in shewing
that the four tones correspond respectively to 5= 2, 3, 4, 5. Thus
for the gravest tone the vibration is elliptical with 4 nodal meri

dians, for the next tone there are 6 nodal meridians, and so on.

1 The bells, or gongs, as they are sometimes called, of striking clocks often give

disagreeable beats. A remedy may be found in a suitable rotation of the bell round
its axis.
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Tapping along a meridian shewed that the sounds became less

clear as the edge was departed from, and this in a continuous
manner with no suggestion of a nodal circle of latitude. A question
to which we shall recur in connection with church bells here

suggests itself. Which of the various coexisting tones characterizes

the pitch of the bell as a whole ? It would appear to be the third

in order, for the founders gave the pitch as E natural.

In church bells there is great concentration of metal at the
' sound-bow

"
where the clapper strikes, indeed to such an extent

that we can hardly expect much correspondence with what occurs

in the case of thin uniform bells. But the method already
described suffices to determine the number of nodal meridians for

all the more important tones. From a bell of 6 cwt. by Mears
and Stainbank 6 tones could be obtained, viz. :

*, c", /"+, b'\ d'", f".

(4) (4) (6) (6) (8)

The pitch of this bell as given by the makers is d", so that it

is the fifth in the above series of tones which characterizes the

bell. The number of nodal meridians in the various components
is indicated within the parentheses. Thus in the case of the tone

e' there are 4 nodal meridians. A similar method of examination

along a meridian shewed that there was no nodal circle of latitude.

At the same time differences of intensity were observed. This

tone is most fully developed when the blow is delivered about

midway between the crown and the rim of the bell.

The next tone is c". Observation shewed that for this vibra

tion also there are four, and but four, nodal meridians. But now

there is a well-defined nodal circle of latitude, situated about a

quarter of the way up from the rim towards the crown. As heard

with a resonator, this tone disappears when the blow is accurately

delivered at some point of this circle, but revives with a very small

displacement on either side. The nodal circle and the four meri

dians divide the surface into segments, over each of which the

normal motion is of one sign.

To the tone f" correspond 6 nodal meridians. There is no

well-defined nodal circle. The sound is indeed very faint when

the tap is much displaced from the sound-bow; it was thought
to fall to a minimum when a position about half-way up was

reached.
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The three graver tones are heard loudly from the sound-bow.

But the next in order, V'b, is there scarcely audible, unless the

blow is delivered to the rim itself in a tangential direction. The
maximum effect occurs about half-way up. Tapping round the

circle revealed 6 nodal meridians.

The fifth tone, rf'", is heard loudly from the sound-bow, but
soon falls off when the locality of the blow is varied, and in the

upper three-fourths of the bell it is very faint. No distinct circular

node could be detected. Tapping round the circumference shewed
that there were 8 nodal meridians.

The highest tone recorded, /"', was not easy of observation,
and the mode of vibration could not be fixed satisfactorily.

Similar results have been obtained from a bell of 4 cwt., cast

by Taylor of Loughborough for Ampton church. The nominal

pitch (without regard to octave) was d, and the following were the

tones observed :

^b-2, d"-6, /" + 4, 6"t> 6", d'", g
m

.

(4) (4) (6) (6) (8)

In the specification of pitch the numerals following the note

indicate by how much the frequency for the bell differed from

that of the harmonium employed as a standard. Thus the gravest
tone e'b gave 2 beats per second, and was flat. When the number
exceeds 3, it is the result of somewhat rough estimation, and
cannot be trusted to be quite accurate. Moreover, as has been

explained, there are in strictness two frequencies under each

head, and these often differ sensibly. In the case of the 4th tone,

6"b b" means that, as nearly as could be judged, the pitch of the

bell was midway between the two specified notes of the

harmonium.

Observations in the laboratory upon the above-mentioned bells

having settled the modes of vibration corresponding to the five

gravest tones, other bells of the church pattern could be sufficiently

investigated by simple determinations of pitch. The results are

collected in the following table 1
,
and include, besides those already

given, observations upon a Belgian bell, the property of Mr
Haweis, and upon the five bells of the Terling peal. As regards

1 On Bells, Phil Mag., vol. 29, p. 1, 1890.
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the nominal pitch of the latter bells, several observers concurred

in fixing the notes of the peal as

no attention being paid to the question of the octave.

Examination of the table reveals the remarkable fact that

in every case of the English bells it is the 5th tone in order

which agrees with the nominal pitch, and that, with the exception

of Terling (4), no other tone shews such agreement
1
. Moreover,

as appeared most clearly in the case of the bell cast by Mears and

Stainbank, the nominal pitch, as given by the makers, is an octave

below the only corresponding tone.

The highly, composite, and often discordant, character of the

sounds of bells tends to explain the discrepancies sometimes

manifested in estimations of pifcch,
Mr Simpson, who has devoted

much attention to the subject, has put forward strong arguments

for the opinion that the Belgian makers determine the pitch of

their bells by the tone 2nd in order in the above series, so that

for instance the pitch of Terling (3) would be a and not affi. In

subordination to this tone they pay attention also to the next

(the 3rd in order), classifying their bells according to the character

1 In this comparison the gravest tone is disregarded.
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of the third) whether major or minor, so compounded. Thus
in Terling (3) the interval, a to c" ,

is a major third. The com

parative neglect with which the Belgians treat the 5th tone,

regarded almost exclusively by English makers, may perhaps be

explained by a less prominent development of this tone in Belgian

bells, and by a difference in treatment. When a bell is sounded

alone, or with other bells in a comparatively slow succession,

attention is likely to concentrate itself upon the graver and more

persistent elements of the sound rather than upon the acuter

and more evanescent elements, while the contrary may be

expected to occur when bells follow one another rapidly in a peal.

In any case the false octaves with which the Table abounds

are simple facts of observation, and we may well believe that their

correction would improve the general effect. Especially should

the octave between the 2nd tone and the 5th tone be made true.

Probably the lower octave of the gravest, or hum-note, as it is

called by English founders, is of less importance. The same may
be said of the fifth, given by the 4th tone of the series, which

is much less prominent. The variations recorded in the Table

would seem to shew that no insuperable obstacle stands in the

way of obtaining accurate harmonic relations among the various

tones.

No adequate explanation has been given of the form adopted
for church bells. It appears both from experiment and from the

theory of thin shells that this form is especially stiff, as regards the

principal mode of deformation (s 2), to forces applied normally
and near the rim. Possibly the advantage of this form lies in its

rendering less prominent the gravest component of the sound,

or the hum-note.



CHAPTER XA.

CUBVED PLATES OR SHELLS.

235 5. Ix the last chapter ( 232, 233) we have considered

the comparatively simple problem of the vibration in two dimen

sions of a cylindrical shell, so tar at least as relates to vibrations

of a flexural character. The shell is supposed to be thin, to be

composed of isotropic material, and to be bounded by infinite

coaxal cylindrical surfaces. It is proposed in the present chapter

to treat the problem of the cylindrical shell more generally, and

further to give the theory of the flexural vibrations of spherical

bhells.

In considering the deformation of a thin shell the most

important question which presents itself is whether the middle

surface, viz. the surface which lies midway between the boundaries,

does, or does not, undergo extension. In the former case the

deformation may be called extensional, and its potential energy is

proportional to the thickness of the shell, which will be denoted

by 2A. Since the inertia of the shell, and therefore the kinetic

energy of a given motion, is also proportional to h, the frequencies

of vibration are in this case independent of h
t

44?. On the

other hand, when no line traced upon the middle surface under

goes extension, the potential energy of a deformation is of a

higher order in the small quantity h. If the shell be conceived

to be divided into laminae, the extension in any lamina is pro

portional to its distance from the middle surface, and the con

tribution to the potential energy is proportional to the square

of that distance. When the integration over the thickness

is carried out, the whole potential energy is found to be propor

tional to A3. -Vibrations of this kind may be called inextensional,
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or flexural, and ( 44) their frequencies are proportional to h, so

that the sounds become graver without limit as the thickness is

reduced.

Vibrations of the one class may thus be considered to depend

upon the term of order h, and vibrations of the other class upon
the term of order hs

, in the expression for the potential energy.
In general both terms occur

;
and it is only in the limit that the

separation into two classes becomes absolute. This is a question
which has sometimes presented difficulty. That in the case of

extensional vibrations the term in h3 should be negligible in

comparison with the term in h seems reasonable enough. But
is it permissible in dealing with the other class of vibrations to

omit the term in h while retaining the term in h? ?

The question may be illustrated by consideration of a statical

problem. It is a general mechanical principle ( 74) that, if given

displacements (not sufficient by themselves to determine the

configuration) be produced in a system originally in equilibrium

by forces of corresponding types, the resulting deformation is

determined by the condition that the potential energy shall be

as small as possible. Apply this principle to the case of an elastic

shell, the given displacements being such as not of themselves to

involve a stretching of the middle surface. The resulting defor

mation will, in general, include both stretching and bending, and

any expression for the energy will be of the form

Ah (extension)
2 + Bh3

(bending)
2

(1).

This energy is to be as small as possible. Hence, when the

thickness is diminished without limit, the actual displacement
will be one of pure bending, if such there be, consistent with

the given conditions.

At first sight it may well appear strange that of the two terms

the one proportional to the cube of the thickness is to be retained,

while that proportional to the first power may be neglected. The

fact, however, is that the large potential energy that would

accompany any stretching of the middle surface is the very reason

why such stretching does not occur. The comparative largeness
of the coefficient (proportional to h) is more than neutralized by
the smallness of the stretching itself, to the square of which the

energy is proportional.
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An example may be taken from the case of a rod, clamped at

one end A, and deflected by a lateral force
;

it is required to trace

the effect of constantly increasing stiffness of the part included

between A and a neighbouring point B. In the limit we may
regard the rod as clamped at J5, and neglect the energy of the

part AB, in spite of, or rather in consequence of, its infinite

stiffness.

It would thus be a mistake to regard the omission of the term

in h as especially mysterious. In any case of a constraint which

is supposed to be gradually introduced ( 92 a), the vibrations

tend to arrange themselves into two classes, in one of which the

constraint is observed, while in the other, in which the constraint

is violated, the frequencies increase without limit. The analogy
with the shell of gradually diminishing thickness is complete if

we suppose that at the same time the elastic constants are in

creased in such a manner that the resistance to bending remains

unchanged. The resistance to extension then becomes infinite,

and in the limit one class of vibrations is purely inextensional, or

flexural.

In the investigation which we are about to give of the

vibrations of a cylindrical shell, the extensional and the in-

extensional classes will be considered separately. It would

apparently be more direct to establish in the first instance a

general expression for the potential energy complete as far as

the term in A3
,
from which the whole theory might be deduced.

Such an expression would involve the extensions and the curva

tures of the middle surface. It appears, however, that this method

is difficult of application, inasmuch as the potential energy (correct

to A3

) does not depend only upon the above-mentioned quantities,

but also upon the manner of application of the normal forces,

which are in general implied in the existence of middle surface

extensions
1

235 c. The first question to be considered is the expression of

the conditions that the middle surface remain unextended, or if

these conditions be violated, to .find the values of the extensions in

terms of the displacements of the various points of the surface.

1 On the Uniform Deformation in Two Dimensions of a Cylindrical Shell, with

Application to the General Theory of Deformation of Thin Shells. Proc. Math.

Soc., vol. xx. p. 372, 1889.
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We will suppose in the first instance merely that the surface is of

revolution, and that a point is determined by cylindrical coordi

nates z, r, <. After deformation the co-ordinates of the above

point become z -f &z, r 4- r, <f>
-f $<f> respectively. If ds denote

an element of arc traced upon the surface,

(ds + dSs)
2 = (dz + dSz^ + (r + Br)* (d<f> + d$<f>)*+ (dr

so that

In this we regard

example,

+ r2^ dS<f> + rSr (d^)
2 + rfr <2Sr......(1).

and < as independent variables, so that, for

1-1
while

77
7T d&

in which by hypothesis dr/dcf>
= 0. Accordingly

dr (d^Y ( dS$> I

+
(3sy V <*f J

in which d8s/ds represents the extension of the element rfs. If

there be no extension of any arc traced upon the surface, (2) must

vanish independently of any relations between dz and d<f>. Hence

dSz dr dSr
___

~

dz dz dz

'

<ty
^ "'

cZSs ., d&d> dr

(3),

.(4),

,(5).

From these, by elimination of Br
t

.^..
dz dz dz > /

-_^.,._.

d<i>

drd*S<l> A_JL _ > __-u n
dz dz d

~
'

and again, by elimination of

d
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If the distribution of thickness and the form of the boundary
or boundaries be symmetrical with respect to the axis, the normal

functions of the system are to be found by assuming S< to be

proportional to cos
s<f>,

or sin
s<f>.

The equation for
8<f> may then

be put into the form

dz \ dz

It will be seen that the conditions of inextension go a long way
towards determining the form of the normal functions.

The simplest application is to the case of a cylinder for which

r is constant, equal say to a. Thus (3), (4), (5), (7) become simply

/y __ A __ _i_ n '2 ^__L ft /'ft\
-j v, v// ~r~ fz 7 , u, -7-7 r CL j u w/>
Cc^

1

cio cio rt^

- = 0.

By (9), if
B<f>

oc coss<, we may take

aS< = (A sa +B8z)coss(f> ................. (10),

and then, by (8), $r = s(A sa+ B8z)sm$<f> ., ........ ,....(11),

Sz = -s-lBsasms<f> ..................... (12).

Corresponding terms, with fresh arbitrary constants, obtained by

writing s$ + i-rr for S(f>, may of course be added. If Bs
= 0, the

displacement is in two dimensions only ( 233).

If an inextensible disc be attached to the cylinder at z = 0, so

as to form a kind of cup, the displacements Sr and 8< must vanish

for that value of z, exception being made of the case 5 = 1. Hence

A s
=

0, and

Again, in the case of a cone, for which r = tany. }
the equa

tions (3), (4), (5), (7) become

dS^ OJ . ^S^> ,
dSrw^*'

. ..*j.__o_. T- , 4. ^.
. ._ ^
r0 y

(15).
dz \ dz
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If we take, as usual, <$< oc cos
s<f>,

we get as the solution of (15)

and corresponding thereto

Sr = s tan 7 (A sz -f B&) sin s< .................. (17),

Sz = tan2

7 [s'
1 B& -s (A 8z + 5,)] sin s< ...... (18).

If the cone be complete up to the vertex at z = 0, JBS = 0, so that

Sr = sA s rsinscf> ........................... (20),

Ss = &4, tan 7 r sin * .................. (21).

For the cone and the cylinder, the second term in the general

equation (7) vanishes. We shall obtain a more extensive class of

soluble cases by supposing that the surface is such that

,cZ
2 r

r*
-^

= constant ..................... (22),

an equation which is satisfied by surfaces of the second degree in

general. If

we shall find

and thus (7) takes the form

if S< oc cos
scj),

and a is defined by

a=JV*<& (26),

or in the present case

The solution of (25) is

The corresponding values of Sr and z are to be obtained from (4)
and (5).
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If the surface be complete through the vertex z = a, the term

multiplied by S must disappear. Thus, omitting the constant

multiplier, we may take

whence, by (4), (5),

If we measure z' from the vertex, z = a z, and we may write

........................................ (32),-

/#
Sr sr

{ )
sin $<b ................... < .................. (33),

\rj
^

) a
- **' - sin

s<f>
...... (34).*

For the parabola, a and 6 are infinite, while i-/a==2a/ >
and

r2 = 4aV. Thus we may take 1

8< = r* cos $<f>,
&r = sr*+l

sin.s<l>, S2'=*-2(s + l)aVsin^...(S5).

We will now take into consideration the important case of the

sphere, for which in (23) b = a. Denoting by the angle between

the radius vector and the axis, we have z = a cos 6, r = a sin <9, and

thus from (29), (30), (31)

. ............ ....(36),

l9 ..................... (37),

The other terms of the complete solution, corresponding to

(28), are to be obtained by changing the sign of s.

In the above equations the displacements are resolved parallel

and perpendicular to the axis (9 = 0. It would usually be more

convenient to resolve along the normal and the meridian. If the

components in these directions be denoted by w and aS0, we have

w = Sr sin 8 + 82 cos 6, aS0 = Sr cos - &? sin 6 ;

i On the Infinitesimal Bending of Surfaces of Bevolution. Proc. Math. Soc.,

vol. xni. p. 4, 1881.
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so that altogether

S< = cos
s<j> [A s tan

8

^e + B8 cot* 0] ...... . ..................... (39),

80 = -sin$sin0[^tan40-S,coti0] ................... (40),

wfa = sin
s<f> [A s (s + cos 0) tan* \6 + B8 (s- cos 0) cot* \ff] . . .(41).

To the above may be added terms derived by writing s< + JTT

for
s<p,

and changing the arbitrary constants.

235 d. We now proceed to apply the equations of 235 c to

the principal extensions of a cylindrical surface, with a view to the

formation of the expression for the potential energy. The axial

and circumferential extensions will be denoted respectively by el9

e,, and the shear by w. The first of these is given by (2) 235 c,

if we suppose that
d<f>

= 0, dz/ds
= L Since in the case of a

cylinder drjdz = 0, we find

In like manner

The value of the shear may be arrived at by considering the

difference of extensions for the two diagonals of an infinitesimal

square whose sides are dz and ad<f>. It is

The next part of the problem, viz. the expression of the potential

energy by means of 61? e2 , r, appertains to the general theory of

elasticity, and can only be treated here in a cursory manner. But
it may be convenient to give the leading steps of the investigation,

referring for further explanations to the treatises of Thomson and

Tait and of Love. In the notation of the former (Natural

Philosophy, 694) the general equations in three dimensions are

naS, n& = 2
1

, nc= U.................. (4),

(5),

, m n
where <r = ~

1 M is Young's modulus, cr is Poisson's ratio, n is tlie constant of rigidity, and

(m - -Jn) that of compressibility.
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The energy w, corresponding to unit of volume, is given by

&) ...... (7).

In the application to a lamina, supposed parallel to the plane

,
we are to take R =

0, S = 0, T = 0, so that

.(8).

Thus in terms of the extensions et f, parallel to x, yt
and of the

shear c, we get

This is the energy reckoned per unit of volume. In order to

adapt the expression to our purposes, we must multiply it by the

thickness (2A). Hence as the energy per unit area of a shell

of thickness 2A, we may take in the notation adopted at the com

mencement of this section,

(10).

This expression may be applied to curved as well as to plane

plates, for any modification due to curvature must involve higher

powers of h. The same is true of the energy of bending.

235 e. We are now prepared for the investigation of the

extensional vibrations of an infinite cylindrical shell, assumed to

be periodic with respect both to z and to <. It will be convenient

to denote by single letters the displacements parallel to z, <f>,
r

;

we take
$z = M, aS =

fl,
6?*= w .................. (1).

These functions are to be assumed proportional to the sines or

cosines of jz/a and
s<f>.

Various combinations may be made, of

which an example
1 is

u= Z7cos s<f> co&jz/a, v = V sin s<j>
sinjzja t

w = W cos s<f> sin jz/a...... (2) ;

60 that (1), (2), (3), 235 d

(3),

(4),

.............. .(5).

Additions of JT to tf>,
or to Jz/a,

or to botb, may of course be made at pleasure.
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The potential energy per unit area is thus (10) 235 d

>
(̂ ??^ i

fit
)

(6).

Again, if p be the volume density, the kinetic energy per unit

of area is

phi (-Tr) cos2

S(f>
cos2

jjz/a + ( -77- )
sm-s<z>sin2

J/a
[_\ OtJ / \ C&J /

/cZTF\
2

1
4- ( -TT

j
cos- 50 8m*jz/a ...... (7).

In the integration of (6), (7) with respect to z and fa \ is the

mean value of the square of each sine or cosine.1 We may then

apply Lagrange's method, regarding U> V, W as independent
generalized co-ordinates. If the type of vibration be cosp,
and p

2

p/n &, the resulting equations may be written

F+ 2(^4- 1) 5F= 0. . .(9),

where ^ = !?iZ_
n

........... Hi)..........
v ;>

The frequency equation is that expressing the evanescence of
the determinant of this triad of equations. On reduction it may
be written

[^a - 2
(-flT + 1) (j

2
4- # + 1)]

+ 4 (2JV+ 1) j*} + 4 (2JST+ l)j?V = ...... (12).
2

These equations include of course the theory of the extensional

vibrations of a plane plate, for which a = co . In this application
it is convenient to write

a<f>
=

y, s/a
=

fi, j/a = 7. The displace
ments are then

u == V cos &y cos yz, v V sin fty sin yz, w =W cos /Sy sin yz

...(13).

1 In the physical problem of a simple cylinder the range of integration for <p is

from to 27T ; but mathematically we are not confined to one revolution. We may
conceive the shell to consist of several superposed convolutions, and then s is not
limited to be a whole number.

2 Note on the Free Vibrations of an infinitely long Cylindrical Shell. Proc*

Hoy. Soc., vol. 45, p. 446, 1889.
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When a is made infinite while fS, 7 remain constant, the

equations (10), (8), (9) ultimately assume the form 17 = 0, and

2 + 2 (JV+ 1)
-

A-'}
F =

...(15):

and the determinantal equation (12) becomes

k*\k*-i*-ft^\te-Z(N+i)(^ + pi)-\
= to ...... (16).

In (16), as was to be expected, k- appears as a function of

(ft
2
-f 7

2

).
The first root k- = relates to flexural vibrations,

not here regarded. The second root is

or ^ = + 7') ........................ (18).

At the same time (14) gives

yU-/3V=Q ........................ (19).

These vibrations involve only a shearing of the plate in its own

plane. For example, if 7 = 0, the vibration may be repre

sented by
u = cos/3y cosp, v = Q, w = .......... ..(20).

The third root of (16)

j- /C)ft .

gives
2 =- ^--J- ..................... (22).a ^ m 4- n p

The corresponding relation between U and V is

A simple example of this case is given by supposing in (13),

(23),
= 0. We may take

u = cos yz Gospt, v~Q, w = ............ (24),

the motion being in one dimension.

Reverting to the cylinder we will consider in detail a few

particular cases of importance. The first arises when j = 0, that is,

when the vibrations are independent of z. The three equations

(8), (9), (10) then reduce to

(5--yt
2^)D

r=0 ........................ (25),

= ......... (26),

-0......... (27);
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and ihev may be satisfied in two ways. First let V W=
: then

U may be finite, prodded
&-&a- = Q ........................ (28).

The corresponding type* for u is

u = cos s$ cos pt ..................... (29),

TL ?"

wherp P
2 =

;
........................... (30\r

pa
2 '

In this motion the material is sheared without dilatation of area

or volume, every generating line of the cylinder moving along
its own length. The frequency depends upon the circumferential

wave-length, and not upon the curvature of the cylinder.

The second kind of vibrations are those for which Z7=0, so

that the motion is strictly in two dimensions. The elimination of

the ratio F/TT from (26), (27) gives

.(31),

as the frequency equation. The first root is &2 =
0, indicating

infinitely slow motion. The modes in question are flexural, for

which, according to our present reckoning, the potential energy
is evanescent. The corresponding relation between V and W is

by (26)

= ........................ (32),

giving in (3), (4), (5),

*i
= 0, e,= 0, isr = 0.

The other root of (SI) is

#aa = 2 (tf+i) (i+*) ....... . .......... (33)

^=-*i*p m + n arp

while the relation between V and W is

................. . ...... (35).

The type of the motion may be taken to be

u = 0, v =t s sin
$<f>

cos pt, w= cos
S(f>

cos pt...... (36).

It will be observed that when s is very large, the flexural

vibrations (32) tend to become exclusively radial, and the exten-
sional vibrations (35) tend to become exclusively tangential.
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Another important class of vibrations are those which are

characterized by symmetry round the axis, for which accordingly
$ = 0, The general frequency equation (12) reduces in this case to

...(37).

Corresponding to the first root we have U=Q, TF=0, as is

readily proved on reference to the original equations (8), (9), (10)

with 8 = 0. The vibrations are the purely torsional ones repre

sented by
cospt, w-0 ............(38),

where

The frequency depends upon the wave-length parallel to the

axis, and not upon the radius of the cylinder.

The remaining roots of (37) correspond to motions for which

F=0, or which take place in planes passing through the axis.

The general character of these vibrations may be illustrated by
the case where j is small, so that the wave-length is a large

multiple of the radius of the cylinder. We find approximately
from the quadratic which gives the remaining roots

Or ,

y-j-j

The vibrations of (40) are almost purely radial. If we suppose
that j actually vanishes, we fall back upon

*<*- 2 (JV+1) ........................(42),

obtainable from (33), (34) on introduction of the condition 5 = 0.

The type of vibration is now

i This equation was given by Love in a memoir " On the Small Free

Vibrations and Deformation of a thin Elastic Shell," Phil Trans., vol. 179 (1888)

p. 523, and also by Chree, Cambridge Phil Trans. voL apv, p. 250, 1887.
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On the other hand, the vibrations of (41) are ultimately purely

axial. As the type we may take

it = cosjX a . cospt, v = 0, w=^JZTJ sin^ a ' cos ?* (*5 )>

where

Now, if q denote Young's modulus, we have, 214,

so that ^2== S ....... ' ................... (47) *

Thus u satisfies the equation

fru _ q dhi

dt*~ p dzz>

which is the usual formula ( 150) for the longitudinal vibrations

of a rod, the fact that the section is here a thin annulus not

influencing the result to this order of approximation.

Another particular case worthy of notice arises when 5= 1, so

that (12) assumes the form

As we have already seen, if j be zero, one of the values of &2

vanishes. If j be small, the corresponding value of fc
2

is of the

order j
4

. Equation (48) gives in this case

^-TnT''
4
...................... (49);

or in terms of p and q,

#-$?
........................... (50) -

The type of vibration is

w = cos
<f> sinjzfa . cos pt

and corresponds to the flexural vibrations of a rod ( 163). In

(51) v satisfies the equation

qa?



235
<3.] EXTENSIONAL VIBRATIONS. 409

in which Ja
2

represents the square of the radius of gyration of the

section of the cylindrical shell about a diameter.

This discussion of particular cases may suffice. It is scarcely

necessary to add, in conclusion, that the most general deformation

of the middle surface can be expressed by means of a series of such

as are periodic with respect to z and <, so that the problem con

sidered is really the most general small motion of an infinite

cylindrical shell.

The extensional vibrations of a cylinder of finite length have

been considered by Love in his Theory of Elasticity
1

(1893), where

will also be found a full investigation of the general equations of

extensional deformation.

235 f. When a shell is deformed in such a manner that no

line traced upon the middle surface changes in length, the term of

order h disappears from the expression for the potential energy,
and unless we are content to regard this function as zero, a

further approximation is necessary. In proceeding to this the

first remark that occurs is that the quality of inextension attaches

only to the central lamina. Consider, for example, a portion of a

cylindrical shell, which is bent so that the original curvature is

increased. It is evident that while the middle lamina remains

unextended, those laminae which lie extertfally must be stretched,

and those that lie internally must be contracted. The amount of

these stretchings and contractions is proportional in the first place

to the distance from the middle surface, and in the second place to

the change of curvature which the middle surface undergoes. The

potential energy of bending is thus a question of the curvatures of

the middle surface. Displacements of translation or rotation, such

as a rigid body is capable of, may be disregarded.

In order to take the question in its simplest form, let us refer

the original surface to the normal and principal tangents at any

point P as axes of co-ordinates, and let us suppose that after

deformation the lines in the sheet originally coincident with the

principal tangents are brought back (if necessary) so as to occupy

the same positions as at first. The possibility of this will be

apparent when it is remembered that, in virtue of the inexten

sion of the sheet, the angles of intersections of all lines traced

1 Also Phil Trans, vol. 179 A, 1888.
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upon it remain unaltered. The equation of the original surface in

the neighbourhood of the point being

2 -Lf-+yl] (1),

that of the deformed surface may be written

'

(2).

In strictness (p t 4- SpO"
1

, (p,> + Sp,)"
1 are the curvatures of the

sections made by the planes x, y ;
but since the principal curvatures

are a maximum and a minimum, they represent in general with

sufficient accuracy the new principal curvatures, although these

are to be found in slightly different planes. The condition of

inextension shews that points which have the same x, y in (1)

and (2) are corresponding points ;
and by Gauss's theorem it is

further necessary that

Sft + Sfe^o ........................... (3).

Pi P*

It -thus appears that the energy of bending will depend in

general upon two quantities, one giving the alterations of principal

curvature, and the other r depending upon the shift (in the

material) of the principal planes.

The case of a spherical surface is in some respects exceptional.

Previously to the' bending there are no planes marked out as

principal planes, and thus the position of these planes after

bending is of no consequence. The energy depends only upon
the alterations of principal curvature, and these by Gauss's theorem

are equal and opposite, so that, if a denote the radius of the

sphere, the new principal radii are a 4- Sp, a- Sp. If the equation

of the deformed surface be

we have (a + Sp)-
1 + (a

-
Sp)-

1 =A + 0,

so that S- = J(4-C) + .BJ.... ................. (5).

We have now to express the elongations of the various laminse

of a shell when bent, and we will begin with the case where r= 0,
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that is, when the principal planes of curvature remain unchanged.
It is evident that in this case the shear c vanishes, and we have to

deal only with the elongations e and /parallel to the axes, 235 d.

In the section by the plane of zx, let s, s' denote corresponding
iafinitely small arcs of the middle surface and of a lamina distant

h from it. If
-ty be the angle between the terminal normals,

s = p^r} s' = (ft + &) ^r, s' - s =
tity. In the bending, which leaves

s unchanged,

Hence e =
Ss'/s'

=

and in like manner f=hS(l/pz\ Thus for the energy U per unit

area we have

pt m + n\ Pl p

and on integration over the whole thickness of the shell (2A)

p w-htt ft p

This conclusion may be applied at once, so as to give the result

applicable to a spherical shell; for, since the original principal

planes are arbitrary, they can be taken so as to coincide with the

principal planes after bending. Thus r = 0; and by Gauss's

theorem

so that V s- *o

where B(I/p) denotes the change of principal curvature. Since

e f, # = 0, the various laminae are simply sheared, and that in

proportion to their distance from the middle surface. The energy
is thus a function of the constant of rigidity only.

The result (6) is applicable directly to the plane plate; but

this case is peculiar in that, on account of the infinitude of ft, pa

(3) is satisfied without any relation between Sft and Sp~>. Thus for

a plane plate

where I/ft, l//o2 , are the two independent principal curvatures after

bending
1
.

1 This -will be found to agree with the valne (2) 214, expressed in a different

notation.
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We have thus far considered r to vanish
;
and it remains to

investigate the effect of the deformations expressed by

& = y*iT(f-if).......... . .......... (9),

where f, t] relate to new axes inclined at 45 to those of a, y. The

curvatures defined by (9) are in the planes of f, 97, and are equal

in numerical value and opposite in sign. The elongations in these

directions for any lamina within the thickness of the shell are hr,

hr, and the corresponding energy (as in the case of the sphere

just considered) takes the form

U' =^ ......................... (10).

This energy is to be added 1
to that already found in (6) ;

and

we get finally

3 J\ pj \ pj m + n\ pl pj

as the complete expression of the energy, when the deformation is

such that the middle surface is unextended. We may interpret r

by means of the angle % through which the principal planes are

shifted; thus

236 g. We will now proceed with the calculation of the

potential energy involved in the bending of a cylindrical shell.

The problem before us is the expression of the changes of prin

cipal curvature and the shifts of the principal planes at any point
P (z> <f>)

of the cylinder in terms of the displacements u, v,w. As in

235 f, take as fixed co-ordinate axes the principal tangents and

normal to the undisturbed cylinder at the point P, the axis of x

being parallel to that of the cylinder, that of y tangential to the

circular section, and that of f normal, measured inwards. If, as it

will be convenient to do, we measure z and
<f>
from the point P, we

may express the undisturbed co-ordinates of a material point Q in

the neighbourhood of P, by

x = z, y = a<f>, f = Ja<
2

(1).

1 There are clearly no terms involving the products of r with the changes of

principal curvature 8(pr
l
)> 5 (/>a~

1
)J for a change in the sign of r can have no

influence upon the energy of the deformation defined by (2).
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During the displacement the co-ordinates of Q will receive the

increments

u, wsm<j> + v cos
<f>,

w cos $ -f v sin $ ;

so that after displacement

< 4- v (1

or, if u, v, w be expanded in powers of the small quantities z}

,
du du

,

cfo dv
*+__, +a

_

dw dw

w03 z; , . . - being the values of it, v at the point P.

These equations give the co-ordinates of the various points of

the deformed sheet. We have now to suppose the sheet moved as

a rigid body so as to restore the position (as far as the first power
of small quantities is concerned) of points infinitely near P. A
purely translatory motion by which the displaced P is brought
back to its original position will be expressed by the simple
omission in (2), (3), (4) of the terms u , t; , WQ respectively, which

are independent of z, <j>.
The effect of an arbitrary rotation is

represented by the additions to as, y, % respectively of yo>z a>z ,

0*! xcos, x<o yo>! ; where for the present purpose a)l3 o>2 , G>S are

small quantities of the order of the deformation, the square of

which is to be neglected throughout. If we make these additions

to (2), &c., substituting for x, y, % in the terms containing 9 their

approximate values, we find so far as the first powers of z} <f>

du du

dv dv
,

<f>
-f- j- z + -FT- 9

CLZQ Ct<>Q

dw dw
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Now, siiice the sheet is assumed to be unextended, it must be

possible so to determine o>lt o?2 ,
&>3 that to this order x = z, y = a<p t

= 0, Hence

du du

dv dv

CW? rt C
,,

j- -f t<>2
= 0, -j-r-

-
t'o + a<t>j

= 0.

The conditions of inexteusion are thus (if we drop the suffices

as no longer required)

v du dv .

which agree with (8) 235 c.

Returning to (2), &c., as modified by the addition of the trans-

latory and rotatory terms, we get

oc z-\- terms of 2nd order in z, <f>,

or since by (5) d-wfdz*= 0, and dv/d<j>
= w,

The equation of the deformed surface after transference is thus

l d 1

Comparing with (2)' 235/we see that

.1 A .1 I/ <?M;\ 1 /du
S = 0, 5 =- w + -y-7T ,

T = -
[-=--

Pa /32
aj

\ rf^V a \dz

so that by (11) 235/
m 1 / <2^\ 2 dv
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This is the potential energy of bending reckoned per unit of

area. It can, if desired, be expressed by (5) entirely in terms of v l
*

We will now apply (8) to calculate the whole potential energy
of a complete cylinder, bounded by plane edges =Z, and of

thickness which, if variable at all, is a function of z only. Since

u, vy w are periodic when
<f> increases by 27r, their most general

expression in accordance with (5) is [compare (10), &c., 235 c]

v = 2 [(Asa + ft*) cos s$
- (Ag'a +B9'z) sin *j . . . ......(9),

w = 2 1* (A,a + ft*) sin $< 4- s (Ag a 4- Biz) cos $].... (10),

^= 2[-5-1

^asin5^>-5-1

5/acos^]... ...............(11),

in which the summation extends to all integral values of s from

to oc . But the displacements corresponding to s 0, s = 1 are

such as a rigid body might undergo, and involve no absorption of

energy. When the values of u, v, w are substituted in (8) all the

terms containing products of sines or cosines with different values

of s vanish in the integration with respect to
<f>,

as do also those

which contain cos s< sin
s<f>. Accordingly

f

Jo

, . 4mik3
f m 1 ~

, , NAUadd> = -5 -----2 (s
3 - $Y

o 3a [m + n a?
^

{(A8a -f B&zf + (^/a + jB/^} + 2 (s
3 -

I)
2
(

Thus far we might consider A to be a function of z
;
but we will

now treat it as a constant. In the integration with respect to z

the odd powers of z will disappear, and we get as the energy of the

whole cylinder of radius a, length 21, and thickness 2A,

r+i r2ir

=*

J-iJo

-y,. -.v,2 (s* -I)
2

^ '.

3a ^ '

[m + n
(

.................. (13),

in which s 2, 3, 4, . . ..

The expression (13) for the potential energy suffices for the

solution of statical problems. As an example we will suppose

that the cylinder is compressed along a diameter by equal forces

F, applied at the points z = z^ < = 0, < = TT, although it is true

that so highly localised a force hardly comes within the scope of

1 From the general equations of Mr Love's memoir already cited a concordant

result may be obtained on introduction of the appropriate conditions.
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the investigation, in consequence of the stretchings of the middle

surface, which will occur in the immediate neighbourhood of the

points of application
1

.

The work done upon the cylinder by the forces F during the

hypothetical displacement indicated by BA 8 , &c., will be by (10)

- F2s (aSA, -f J?i&B/) (1 -f- cos STT\

so that the equations of equilibrium are

a-o- nr ft

= (1 -j- cos STT) saF, -v~-> = (1 4- cos sir) sz^F.
dj& g dljg

Thus for all values of s,

A s
= Ss ;

and for odd values of s, A 8

' = J5/ 0.

But when s is even,

m 4- u STrtihH (s~

(m -f n 3a2

and the displacement w at any point (z, <f>)
is given by

w = 2 (^l/a + 5a^) cos 2^> + 4 (4 4
7
a + 5^) cos 4^ 4- . . .(16),

where AJ, B t AJ,... are determined by (14), (15).

A further discussion of this solution will be found in the

memoir 2 from which the preceding results have been taken.

We will now proceed with the calculation for the frequencies
of vibration of the complete cylindrical shell of length 21, If the

volume-density
5 be p, we have as the expression of the kinetic

energy by means of (9), (10), (11),

/
2
)} (17).

1 Whatever the curvature of the surface, an area upon it may be taken so small

as to behave like a plane, and therefore bend, in violation of Gauss's condition,

-when subjected to a force which is so nearly discontinuous that it varies sensibly

within the area.

2 Proc. Roy. Soc. voL 45, p. 105, 1888.

3 This can scarcely be confused with the notation for the curvature in the

preceding parts of the investigation.
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From the expressions for V and T in (13), (17) the types and
frequencies of vibration can be at once deduced. The Vact that
the squares, and not the products, of A 99 Bk) are involved, shews
that these quantities are really the normal co-ordinates of the

vibrating system. If A t9 or A,', vary as cos/tf , we have

P/-r
mn

This is the equation for the frequencies of vibration in two
dimensions, 233. For a given material, the frequency is pro
portional directly to the thickness and inversely to the square
on the diameter of the cylinder

1
.

In like manner if 8 ,
or g

f

, vary as cospjt, we find

m + n

If the cylinder be at all long in proportion to its diameter, the
difference between _p/ and ps becomes very small. Approximately
in this case

or, if we take m = 2n, s= 2,

n 39os

235 h. We now pass on to the consideration of spherical
shells. The general theory of the extensional vibrations of a

complete shell has been given by Lamb 2
,
but as the subject is

of small importance from an acoustical point of view, we shall

limit our investigation to the very simple case of symmetrical
radial vibrations.

If w be the normal displacement, the lengths of all lines upon
the middle surface are altered in the ratio (a -h w) : a. In calcu

lating the potential energy we may take in (10) 235 d

i
=

2
= w/a, w =

;

1 There is nothing in these laws special to the cylinder. In the case of similar

shells of any form, vibrating by pure bending, the frequency will be as the thick

nesses and inversely as corresponding areas. If the similarity extend also to the

thickness, then the frequency is inversely as the linear dimension, in accordance
with the general law of Cauchy.

- Proc. Land. Math. Soc. xiv. p. 50, 1882.
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so that the energy per unit area is

A ,3m nw2

4nk----
-,m -f n a*

or for the whole sphere

IT A A i 3m nwz
...

F=47ra2 .4nA--- ..................(1).m + n a?
v '

Also for the kinetic energy, if p denote the volume density,

T=*$.4nra*.2h.p.v? ..................... (2).

Accordingly if w=> Wcospt, we have

2 __
4n 3m n

p ~~ ....................... * ( >>

as the equation for the frequency (p/27r).

As regards the general theory Prof. Lamb thus summarizes his

results. "The fundamental modes of vibration fall into two
classes. In the modes of the First Class, the motion at every
point of the shell is wholly tangential. In the nth species of

this class, the lines of motion are the contour lines of a surface

harmonic Sn (Ch. xvn.), and the amplitude of vibration at any
point is proportional to the value of dSnjde> where de is the angle
suotended at the centre by a linear element drawn on the surface
of the shell at right angles to the contour line passing through the

point. The frequency (P/^TT) is determined by the equation

2).... ................. (i),

where a is the radius of the shell, and k2

=fy/n, if p denote the

density, and n the rigidity, of the substance."

" In the vibrations of the Second Class, the motion is partly
radial and partly tangential. In the nth species of this class the

amplitude of the radial component is proportional to Sn , a surface

harmonic of order n. The tangential component is everywhere at

right angles to the contour lines of the harmonic Sn on the surface
of the shell, and its amplitude is proportional to AdSn/d, where
A is a certain constant, and de has the same meaning as before."

Pro Lamb finds

where k retains its former meaning, and 7 = (1 +'<r)/(l ) <r
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denoting Poisson's ratio.
"
Corresponding to each value of n there-

are two values of k2as
, given by the equation

k4a4 - k2a2

{(n
2
4- n+ 4) y -h >i

2
4- n, - 2} 4- 4 (?i- 4- B - 2) 7 = 0. . . (iii).

Of the two roots of this equation, one is < and the other > 4ry. It

appears, then, from (ii) that the corresponding fundamental modes
are of quite different characters. The mode corresponding to the

lower root is always the more important."

" When n = 1, the values of k-a- are and 67. The zero root

corresponds to a motion of translation of the shell as a whole

parallel to the axis of the harmonic Slt In the other mode the

radial motion is proportional to cos 9, where 6 is the co-latitude

measured from the pole of Sl ; the tangential motion is along the

meridian, and its amplitude (measured in the direction of in

creasing) is proportional to \ sin 6.

" When n 2, the values of ka corresponding to various values

of cr are given by the folio-wing table :

The most interesting variety is that of the zonal harmonic.

Making S=^(3cos'-0 1), we see that tho polar diameter of

the shell alternately elongates and contracts, whilst the equator

simultaneously contracts ana expands respectively. In the mode

corresponding to the lower root, the tangential motion is towards

the poles when the polar diameter is lengthening, and vice versd.

The reverse is the case in the other mode. We can hence under

stand the great difference in frequency."

Prof. Lamb calculates that a thin glass globe 20 cm. in

diameter should, in its gravest mode, make about 5350 vibrations

per second.

As regards inextensional modes, their form has already been

determined, (39) &c. 235 c, at least for the case where the

bounding curve and the thickness are symmetrical with respect

to an axis, and it will further appear in the course of the present

investigation. What remains to be effected is the calculation of
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the potential energy of bending corresponding thereto, as depend
ent upon the alterations of curvature of the middle surface. The

process is similar to that followed in 235 # for the case of the

cylinder, and consists in finding the equation of the deformed

surface when referred to rectangular axes in and perpendicular
to the original surface.

The two systems of co-ordinates to be connected are the usual

polar co-ordinates r, 0, <f>,
and rectangular co-ordinates x, y,

measured from the point P, or (a, , $0), on the undisturbed

sphere. Of these # is measured along the tangent to the

meridian, y along the tang' nt to the circle of latitude, and f

along the normal inwards.

Since the origin of
tj>

is arbitrary, we may take it so that

< e
= 0. The relation between the two systems is then

#= r
{

sin (0 ) -h sin 8 cos Q (1 cos <)} ......... (4),

(5),

If we suppose r a, these equations give the rectangular
co-ordinates of the point (a, 6, <) on the undisturbed sphere.

We have next to imagine this point displaced so that its polar

co-ordinates become a 4- oV, 6 + SB, <j>
+ S<f>, and to substitute these

values in (4), (5), (6), retaining only the first power of Sr, S0, S<f>.

Thus

x= (a -f Sr) {
sin (6 ) -f- sin 8 cos Q (1 cos <)}

-h aS0 {- cos (0
-

) 4- cos cos # (1 - cos 0)}

4- a&<f> sin.0cos0 sin.<f> ................................ ...-(7),

y = (a 4- Sr) sin sin
<f>

-i- aS# cos # sin c+aS< sin $ cos< ... .................. (8),

f= a (a -f Br) (cos (0 ) sin # sin (1 cos $)}

+ a$0 {sin (5
-

Q) + sin ^ cos 6 (1
- cos

^>)}

H-aS<sin# sin ^sin ............ . ....................... (9).

These equations give the co-ordinates of any point Q of the sphere
after displacement ;

but we shall only need to apply them in the

case where Q is in the neighbourhood of P, or (a, Q , 0), and then

the higher powers of (0 ) and <f> may be neglected.
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In pursuance of our plan we have now to imagine the displaced
and deformed sphere to be brought back as a rigid body so that

the parts about P occupy as nearly as possible their former

positions. We are thus in the first place to omit from (7), (8),

(9) the terms (involving B) which are independent of (0
-

), <j>.

Further we must add to each equation respectively the terms

which represent an arbitrary rotation, viz.

determining a>l} o>2 ,
o>3 in such a manner that, so far as the first

powers of (Q #
), <, there shall be coincidence between the original

and displaced positions of the point Q.

If we omit all terms of the second order in (9 # ) and <, we

get from (7) &c.

y = a sin # .
<f>
+ Sr sin -

<f> + &S# cos # .
<f>

(11),

S^ sin2 ^.^.... ..........................(12),

Sr &c. representing the values appropriate to P, where (0 )

and
<f>

vanish. The translation of the deformed surface necessary

to bring P back to its original position is represented by the

omission of the terms included in square brackets. The arbitrary

rotation is represented by the additions respectively of

a sin . < . G>3 , a (0 ) &>3 , a(0 )<*><t
a sin # . < .^ ;

and thus the destruction of the terms of the first order requires

that

Sr/a + dS0/d0 = Q ..................... (13),

-
dS0]d<l> + sin cos 6

S<j> + sin o>3
= .........(14) ;

sm0dS0/d0 + cos0S<4-&>s=0 ............ (15),

(Br/a) sin + S0 cos 5 -f sin d$<f>/d<f>
= ......... (16) ;

O ....... ..(18);

the suffixes being omitted.
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These six equations determine <*>ly co2 ,
a>3 , giving as the three

conditions of intension

. ..............(19),

Q ............... (20),

Q ............... (21).

From (19), (20), (21), by elimination of &r,

or, since sin 8 djdd= d/d log tan $0,

d
f
$0 \ dS<f> _

From (24), (25) we see that both
8<f> and S0/sin satisfy an

equation of the second order of the same form, viz.

rf(logtan^)
2

d$*

If the material system be symmetrical about the axis, u is a

periodic function of <, and can be expanded by Fourier's theorem
in a series of sines and cosines of

<f>
and its multiples. Moreover

each term of the series must satisfy the equations independently.
Tims, if u varies as cos

s<f>, (26) becomes

whence ^^tan'^ + jB'cot*^ (28),

where A' and & are independent of 9. If we take

S = cos$<[^tan*i0 + 5,cot*40] (29),

we get for the corresponding value of $0 from (24)

S0/sin
- sin

s<f> [A, tan* \6-B9 cot
8

0] (30) ;

and thence from (21)

Sr/a= sin
s<f> [A 8 (s + cos 0) tan* $9+ B8 (s- cos 0) cot* 0] . . .(31),

as in (39), (40), (41) 235 c.
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The second solution (in B8 ) may be derived from the first (iir-4*)

in two ways which are both worthy of notice. The manner of deri

vation from (27) shews that it is sufficient to alter the sign of 5,

tan*^0 becoming cot*|0, sins<f> becoming sins< ; while coss<

remains unchanged. The other method depends upon the con

sideration that the general solution must be similarly related to

the two poles, It is thus legitimate to alter the first solution by
writing throughout (IT

-
ff) in place of 8, changing at the same

time the sign of S#.

If we suppose s= 1, we get

sin 6S<f>
= cos < [A : + Q- (A,

- BJ cos 0],

Sr/a = sin
<j> [(4 Z -f BJ sin 0].

The displacement proportional to (A^, B^ is a rotation of the

whole surface as a rigid body round the axis =
^77,

= 0; and
that proportional to (Ai + BJ represents a translation parallel to

the axis Q = ^TT,
= 1^. The complementary translation and

rotation with respect to these axes is obtained by substituting
for <>.

The two other motions possible without bending correspond to

a zero value of s, and are readily obtained from the original

equations (19), (20), (21). They are a rotation round the axis

0=0, represented by

S0 = 0, S<f>
= const, Sr = 0,

and a displacement parallel to the same axis represented by

or < = 0,

If the sphere be complete, the displacements just considered,

and corresponding to 5= 0, 1, are the only ones possible. For

higher values of s we see from (31) that Sr is infinite at one or

other pole, unless A 8 and B8 both vanish. In accordance with

Jellet's theorem 1
the complete sphere is incapable of bending.

If neither pole be included in the actual surface, which for

example we may suppose bounded by circles of latitude, finite

1 "On the Properties of Inextensible Surfaces," Iri*h Acad. Tram., vol. 22,

p. 179, 1855.



424 CURVED PLATES OR SHELLS. [235 h.

values of buth .-1 and B are admissible, and therefore necessary for

a complete solution of the problem. But if, as would more often

happen, one of the poles, say # = 0, is included, the constants B
must be considered to vanish. Under these circumstances the

solution is

&<f>
= A s tan* ^6 cos

s<f>
>

80 = - A* sin tan* \Q sin s$ [ ............(32),

6r = A s a (s 4- cos 6) tan* ^6 sin
s<j> }

to which is to be added that obtained by writing s<j> 4- \TT for s$,
and changing the arbitrary c<~ - it.

From (32) we see that, along those meridians for which

sin
scf>
= 0, the displacement is tangential and in longitude only,

while along the intermediate meridians for which coss< = 0, there

is no displacement in longitude, but one in latitude, and one

normal to the surface of the sphere.

Along the equator 6 = -^TT,

S(f>
= A 8 cos ,9<, S9 = A 8 sin $<}>, Sr/a = A 8s sin s<,

so that the maximum displacements in latitude and longitude are

equal.

Reverting now to the expressions for x, y, % in (7), (8), (9),

with the addition of the translator^ and rotatory terms by which

the deformed sphere is brought back as nearly as possible to its

original position, we know that so far as the terms of the first

order in (6 ) and < are concerned, they are reduced to

x = -a(9-8,\ y = asw0Q .<f>, f= ......... (33).

These approximations will suffice for the values of x and y ;
but

in the case of f we require the expression complete so as to

include all terms of the second order. The calculation is straight
forward. For any displacement such as Sr in (9) we write

The additional rotatory terms are by (17), (18)

1 dSr] f
1 dSr .

*---jS'\+y\ - a -rr--smadvQ ]

*
[a sin d<
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In these we are to retain only those terms in x, y, which are of the

second order and independent of B, so that we may write

x = Ja<- sin 6Q cos #
, y = a (8 # ) <f>

cos # ,

In the complete expression for f as a quadratic function of

(6 # ) and < thus obtained, we substitute x and y from (33).

The final equation to the deformed surface, after simplification by
the aid of (19), (20), (21), may be written

^L^Sr^l^Sr) xy (
1 d?Sr

eot_0 d8r\
2a I a a d&- j a sin 6 \ a ddd$ a d<f> J

- __
a ct" d(9 <zsins <9

d</>
2
]

the suffixes being now unnecessary,

Taking the value of Sr/a from (32) we get

.........(35) '

d&d<f> asm2 8
d<f>

cot

ct/ CL du a sin2 d<h? sin2

To obtain the more complete solution corresponding to (31), we

have only to add new terms, multiplied by B8 ,
and derived from

the above by changing the sign of s. As was to be expected, the

values in (35) and (37) are equal and opposite.

Introducing the values now found into (5) 235 y, we obtain

as the square of the change of principal curvature at any point

1\
2

(s
3 s> , J

^^^ ^Q + i
cot2if ^Q __ %A gBg cos 2s(f>}

. . .(38).

pj a" sin*

It should be remarked that, if either A B or Bs vanish, (38) is

independent of
<f>,

so that the change of principal curvature is the

same for all points on a circle of latitude, and that in any case

(38) becomes independent of the product A 8B8 after integration

round the circumference. The change of curvature vanishes if

s = 0, or s = 1, the displacement being that of which a rigid body

is capable.

Equations (35) &c. shew that along the meridians where &(f>

vanishes (coss<
= 0) the principal planes of curvature are the
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meridian and its perpendicular, while along the meridians where

Br vanishes, the principal planes are inclined to the meridian at

angles of 45".

The value of the square of the change of curvature obtained in

(38) corresponds to that assumed for the displacements in (29) &c.,

and for some purposes needs to be generalised We may add

terms with coefficients A, and J?/ corresponding to a change
of

s<f>
to (s<-h^7r), and there is further to be considered the

summation with respect to s. Putting for brevity t in place of

, we may take as the complete expression for [S(l/p)]
2
,

sn 5 + * ts + r* sn

{(Atf
- B8t-*) cos s<t> + (Atf - jB/r*) cos (s< + ^T

T

When this is integrated with respect to < round the entire

circumference, all products of the generalised co-ordinates A a , Bs ,

Ag, J5/ disappear, so that (7) 235/ we have as the expression for

the potential energy of the surface included between two parallels

of latitude

......(39),

where H= $nh*....................................(40).

In the following applications to spherical surfaces where the

pole 6 = is included, we may omit the terms in B
; and, if

the thickness be constant, H may be removed from under the

integral sign. We have

so that

In the case of the hemisphere t=l, and (41) assumes the value

ttrrz <42 >-
1 \S~ S)

Hence for a hemisphere of uniform thickness

F= ^TTjSTS (
-

s) (2*- 1>M,2
-h 4/2

) (43).



2357^.] STATICAL PROBLEMS. 427

If the extreme value of G be 60", instead of 90
C

,
we get in

place of (42)

and F= ^rfTS 3~<^ (V - s) (8? 4- 45 - 3) (^/ 4- ^L/
2
). . .(45).

These expressions for F, in conjunction with (32), are sufficien

for the solution of statical problems, relative to the deformation of

infinitely thin spherical shells under the action of given impressed
forces. Suppose, for example, that a string of tension F connects

the opposite points on the edge of a hemisphere, represented by
6 = \7r3 (j>

=
^TT or

f-Tr,
and that it is required to find the deforma

tion. It is evident from (32) that all the quantities A8
'

vanish,

and that the work done by the impressed forces, corresponding to

the deformation &A8 , is

SA 8as {sin ^STT 4- sin fsir] F.

If s be odd this vanishes, and if s be even it is equal to

ZSA 8a$ sin for.jF.

Hence if 5 be odd A8 vanishes ;
and by (43), if s be even,

dV/dA 8 7TJ5T (s
3-

s) (2& -l)A s
= -2as sin for.F;

i_ A 2&jFsinis7r ,..whence A'
= ~ -- ............... (46)'

By (46) and (32) the deformation is completely determined.

If, to take a case in which the force is tangential, we suppose
that the hemisphere rests upon its pole with its edge horizontal,

and that a rod of weight W is laid symmetrically along the

diameter =
7r, we find in like manner

aWain for

for all even values of s, and A8
= for all odd values of s.

We now proceed to evaluate the kinetic energy as defined by
the formula

in which er denotes the surface density, supposed to be uniform.
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If we take the complete value of
S<f>

from (29), as supplemented by
the terras in A g\ B$\ we have

-

-^
= 2 [cos s<j> (A g? + ftr*) + cos

(s<f> +

When this expression is squared and integrated with respect
to < round the entire circumference, all products of letters with a

different suffix, and all products of dashed and undashed letters

even with the same suffix, will disappear. Hence replacing cos2 s<

&c. by the mean value i ,
we may take

sin2 6 = sn2
{

4- J sin2 6 S (B* 4- J3,'
3

)r*
4- sin2 2 (-4,5, 4- i//).

The mean value (30) of (d&8/dty~ is the same as that just
written with the substitution throughout of B for B, so that we

may take

)t-**............(49),

as the mean available for our present purpose. In (49) the

products of the symbols have disappeared, and if the expression
for the kinetic energy were as yet fully formed, the co-ordinates

would be shewn to be normal But we have still to include that

part of the kinetic energy dependent upon dSrfdt. As the mean
value, applicable for our purpose, we have from (31)

(s + cos 9^P

+ i 2 (B? + Bp) (s
- cos 6? tr

+ %(A 8 I}s + A;Bs

/

)(&-cos-e) ......... (50).

The expressions (49) and (50) have now to be added. If we set

for brevity

1

{(s + cos 0)
2
4- 2 sin* 5} sin 6d6 =/(s) (51),

or putting x = 1 4- cos 8,

\) a}dx .(52),
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we get

T = fr<ra* [S,f(s) (A? + A& + 2/(- s) (4* + B&

s + As'BiS')} .........(53)

It will be seen that, while V in (39) is expressible by the

squares only of the co-ordinates, a like assertion cannot in general
be made of T. Hence A g) Bs &c. are not in general the normal

co-ordinates. Nor could this have been expected. If, for example,
we take the case where the spherical surface is bounded by two
circles of latitude equidistant from the equator, symmetry shews
that the normal co-ordinates are, not A and 5, but (A + B) and

(A - B). In this case /(- s) =/(*).

A verification of (53) may readily be obtained in the particular
case of $=1, the surface under consideration being the entire

sphere. Dropping the dashed letters, we get

A-)2

}
....... (54).

In this case the displacements are of the purely translatory and

rotatory types already discussed, and the correctness of (54) may
be confirmed.

Whatever may be the position of the circles of latitude by
which the surface is bounded, the true types and periods of

vibration are determined by the application of Lagrange's- method

to (39), (53).

When one pole, e.g. 6 = 0, is included within the surface, the

co-ordinates B vanish, and A 8y A 8
'

become the normal co-ordinates.

If we omit the dashed letters, the expression for T becomes

simply

r=ia4

2/(s)i,
2
.....................(55).

From (43), (55) the frequencies of free vibrations for a hemi

sphere are immediately obtainable. The equation for A8 is

o-a4/(s)i*^-H
r

(s
s
-5)(2s

2-l)^ = ......... (56);

so that, if A8 vary as cosps t,

Spa*
*

/(*)
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if we introduce the value ofH from (40), and express <r by means
of the volume density p,

In like manner for the saucer of 120, from (44),

(58) '

The values of f(s) can be calculated without difficulty in the

various cases. Thus, for the hemisphere,

so that

-f 6# - a?) dx

= 20 log 2 - 12 = 1*52961,

/(3) = 57 - 80 log 2 = 1-88156,

/(4) - 200 log 2 - 136 2-29609, &c.
;

In experiment, it is the intervals between the various tones
with which we are most concerned. We find

z
= 2-8102, p4/p2

= 5-4316 ............... (59).

In the case of glass bells, such as are used with air-pumps,
the interval between the two gravest tones is usually somewhat
smaller

;
the representative fraction being nearer to 2*5 than 2*8.

For the saucer of 120, the lower limit of the integral in (52)
is f , and we get on calculation

/(2) = -12864, /(3) = -054884,

***** ^

pz : ^a = 2-6157.

The pitch of the two gravest tones is thus decidedly higher than
for the hemisphere, and the interval between them is less.

With reference to the theory of tuning bells, it may be worth
while to consider the effect of a small change in the angle, for the
case of a nearly hemispherical bell. In general

45" (5
s -

s)*
f sin-3 tan2*^ d0

'- -
... (60).

tan2*
%0 {(s -f cos 0)*+ 2 sin2 0} sin 6d8
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If 9 =. ^TT+ 80, and Pg denote the value of ps for the exact hemi

sphere, we get from previous results

Thus

shewing that an increase in the angle depresses the pitch. As to

the interval between the two gravest tones, we get

shewing that it increases with 6. This agrees with the results

given above for 6 60.

The fact that the form of the normal functions is independent
of the distribution of density and thickness, provided that they

vary only with latitude, allows us to calculate a great variety of

cases, the difficulties being merely those of simple integration. If

we suppose that only a narrow belt in co-latitude 6 has sufficient

thickness to contribute sensibly to the potential and kinetic

energies, we have simply, instead of (60),

2-
P* ""

a*<

i. Ps A /( 6 + 4 cos 0- cos2
0)whence = 4 A/'ta *

-
*
-

TT>\
p2 V (ll -h 6 cos cos2 0}

The ratio varies very slowly from 3, when = 0, to 2*954, when

If 2h denote the thickness at any co-latitude 0, Hack*, cr oc A.

I have calculated the ratio of frequencies of the two gravest tones

of a hemisphere on the suppositions (1) that A oc cos 0, and (2) that

h oc (1 -h cos 0). The formula used is that marked (60) withH and <r

under the integral signs. In the first case, p3 : pz
= 1*7942, differing

greatly from the value for a uniform thickness. On the second

more moderate supposition as to the law of thickness,

ps : pz
= 2-4591, p4 :p<s

= 4'4837.
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It would appear that the smallness of the interval between the

gravest tones of common glass bells is due in great measure to the

thickness diminishing with increasing B.

It is worthy of notice that the curvature of deformation S(p~
1

)^

which by (38) varies as sin~2 9 tan* #, vanishes at the pole for

5 = 3 and higher values, but is finite for 5 = 2.

The present chapter has been derived very largely from

various published memoirs by the author 1
. The methods have

not escaped criticism, some of which, however, is obviated by
the remark that the theory does not profess to be strictly

applicable to shells of finite thickness, but only to the limiting
case when the thickness is infinitely small. When the thickness

increases, it may become necessary to take into account certain
"
local perturbations

"
which occur in the immediate neighbourhood

of a boundary, and which are of such a nature as to involve

extensions of the middle surface. The reader who wishes to

pursue this rather difficult question may refer to memoirs by
Love 2

, Lamb 3
, and Basset

4
. From the point of view of the present

chapter the matter is perhaps not of great importance. For it

seems clear that any extension that may occur must be limited to

a region of infinitely small area, and affects neither the types nor

the frequencies of vibration. The question of what precisely

happens close to a free edge may require further elucidation, but
this can hardly be expected from a theory of thin shells. At

points whose distance from the edge is of the same order as the

thickness, the characteristic properties of thin shells are likely to

disappear.

1 Proc. Lond. Math. Soc., xm. p. 4, 1881 ; xx. p. 372, 1889 ; Proc. Roy. Soc., vol.

45, p. 105, 1888; vol. 45, p. 443, 1888.
2 Phil. Trans., 179 (A), p. 491, 1888; Proc. Roy. Soc., vol. 49, p. 100, 1891;

Theory of Elasticity ,
ch. xxi.

3 Proc. Lond. Math. Soc., vol xxi. p. 119, 1890.
4 Phil. Trans. 181 (A), p, 433, 1890 ; Am. Math. Journ., vol. xvi. p. 254, 1894.



CHAPTER XB.

ELECTRICAL VIBRATIONS.

235 i. The introduction of the telephone into practical use,

and the numerous applications to scientific experiment of which

it admits, bring the subject of alternating electric currents

within the scope of Acoustics, and impose upon us the obligation

of shewing how the general principles expounded in this work may
best be brought to bear upon the problems presenting themselves.

Indeed Electricity affords such excellent illustrations that the

temptation to use some of them has already ( 78, 92 a, 111 Z>)

proved irresistible. It will be necessary, however, to take for

granted a knowledge of elementary electrical theory, and to abstain

for the most part from pursuing the subject in its application to

vibrations of enormously high frequency, such as have in recent

years acquired so much importance from the researches initiated

by Lodge and by Hertz. In the writings of those physicists and in

the works of Prof. J. J. Thomson 1 and of Mr 0. Heaviside 2 the

reader will find the necessary information on that branch of the

subject.

The general idea of including electrical phenomena under those

of ordinary mechanics is exemplified in the early writings of Lord

Kelvin
;
and in his

"
Dynamical Theory of the Electro-magnetic

Field 3 " Maxwell gave a systematic exposition of the subject from

this point of view.

1 Recent Researches in Electricity and Magnetixm, 1893.

2 Electrical Papers, 1892.

3 PhiL Trans, vol. 155, p. 459, 1865
;
Collected Works, vol. 1, p. 526.
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235 j. We commence with the consideration of a simple
electrical circuit, consisting of an electro-magnet whose terminals

are connected with the poles of a condenser, or leyden
1
, of capacity

C. The electro-magnet may be a simple coil of insulated wire, of

resistance R, and of self-induction or inductance L. If there be an

iron core, it is necessary to suppose that the metal is divided so as

to avoid the interference of internal induced currents, and further

that the whole change of magnetism is small 2
. Otherwise the

behaviour of the iron is complicated with hysteresis, and its effect

cannot be represented as a simple augmentation of L. Also for

the present we will ignore the hysteresis exhibited by many kinds

of leydens.

If x denote the charge of the leyden at time t, x is the

current, and if EiCospt be the imposed electro-motive foz*ce, the

equation is

Lx + Hd + x/C^jEiCoapt .................. (1).

The solution of (1) gives the theory offorced electrical vibrations
;

but we may commence with the consideration of the free vibra

tions corresponding to ^ = 0. This problem has already been

treated in 45, from which it appears that the currents are

oscillatory, if

R<2*/(L/C) ........................... (2).

The fact that the discharges of leydens are often oscillatory was

suspected by Henry and by v. Helmholtz, but the mathematical

theory is due to Kelvin3
.

When R is much smaller than the critical value in (2), a large
number of vibrations occur without much loss of amplitude, and

the period r is given by
T= 2irV(G> ....... . ................ (3).

In (2), (3) the data may be supposed to be expressed in c. G. s.

electro-magnetic measure. If we introduce practical units, so

that L', Rf

, C' represent the inductance, resistance and capacity
reckoned respectively in earth-quadrants or henrys, ohms, and

microfarads
4
, we have in place of (2)

(2'),

1 This term has been approved by Lord Kelvin (" On a New Perm of Air Leyden
tc." Proc. Roy. Soc, t vol. 52, p. 6, 1892).

2 Phil Hag., vol. 23, p. 225, 1887.

8 " On Transient Electric Currents," Phil. Mag., June, 1853.
4 Ohm= 10, henry=10*, microfarad=10-15

.
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and in place of (3)
. ........... ..(3').

With ordinary appliances the value of r is very small ; but by

including a considerable coil of insulated wire in the discharging

circuit of a leyden composed of numerous glass plates Lodge
1 has

succeeded in exhibiting oscillatory sparks of periods as long as

-sfo second.

If the leyden be of infinite capacity or, what comes to the

same thing, if it be short-circuited, the equation of free motion

reduces to

Lx + Mx = Q ......................... (4);

whence <c=s# e""(B/Ir)f ........................ (o)
2

,

XQ representing the value of x when t = 0. The quantity L/R is

sometimes called the time-constant of the circuit, being the time

during which free currents fall off in the ratio of e : 1.

Returning to equation (1), we see that the problem falls under

the general head of vibrations of one degree of freedom, discussed

in 46. In the notation there adopted, n* = (CLy~
l

,
K = R!L,

E^EJL] and the solution is expressed by equations (4) and (5).

It is unnecessary to repeat at length the discussion already given,

but it may be well to call attention to the case of resonance,

where the natural pitch of the electrical vibrator coincides with

that of the imposed force (p*-LC=l). The first and third terms

then ( 46) compensate one another, and the equation reduces to

Rx^EiCospt ......................... (6).

In general, if the leyden be short-circuited (<7
= QC

),

E

so that, if p much exceed R/L, the current is greatly reduced by

self-induction. In such a case the introduction of a leyden of

suitable capacity, by which the self-induction is compensated,

results in a large augmentation of current 3
. The imposed electro

motive force may be obtained from a coil forming part of the

circuit and revolving in a magnetic field.

1 Proc. Roy. Insst., March, 1889.

2 Helmholtz, Pogg. Ann., LXXXIII., p. 505, 1851.

s Maxwell,
"
Experiment in Magneto-Electric Induction," Phil. Mag., May,

1868.
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In any circuit, where vibrations, whether forced or free, pro

portional to cospt are in progress, we have x p-x, and thus the

terms due to self-induction and to the leydeu enter into the

equation in the same manner. The law is more readily expressed

if we use the stiffness p, equal to 1/C, rather than the capacity

itself. We may say that a stiffness p, compensates an inductance

Z, if
fj,
=

Jp
2i, and that an additional inductance AZ is compensated

by an additional stiffness A/*,, provided the above proportionality

hold good. This remark allows us to simplify our equations by

omitting in the first instance the stiffness of leydens. When the

solution has been obtained, we may at any time generalise it

by the introduction, in place of L3 of L pp-*, or L (p^C)"
1
. In

following this course we must be prepared to admit negative
values of L.

235 k. We will next suppose that there are two independent
circuits with coefficients of self-induction L, N, and of mutual

induction M, and examine what will be the effect in the second

circuit of the instantaneous establishment and subsequent main
tenance of a current x in the first circuit. At the first moment
the question is one of the function T only, where

T^Jtltf+ Mxy + ltNy* .................. (1);

and by Kelvin's rule ( 79) the solution is to be obtained by

making (1) a minimum under the condition that x has the given
value. Thus initially

=-^ ........................... (2);

and accordingly ( 235 j) after time t

if S be the resistance of the circuit. The whole induced current,
as measuied by a ballistic galvanometer, is given by

in whichN does not appear. The current in the secondary circuit

due to the cessation of a previously established steady current x in

the primary circuit is the opposite of the above.

A curious property of the initial induced current is at once
evident from Kelvin's theorem, or from equation (2). It appears
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that, if M be given, the initial current is greatest when N is least.

Further, if the secondary circuit consist mainly of a coil of n turns,

the initial current increases with diminishing n. For, although
jlfcc 7i, JVoGtt2

; and thus y ocl/j?. In fact the small current

flowing through the more numerous convolutions has the same
effect as regards the energy of the field as the larger current in the

fewer convolutions. This peculiar dependence upon n cannot be

investigated by the galvanometer, at least without commutators

capable of separating one part of the induced current from the

rest ; for. as we see from (4), the galvanometer reading is affected

in the reverse direction. It is possible however to render evident

the increased initial current due to a diminished n by observing
the magnetizing effect upon steel needles. The magnetization

depends mainly upon the initial maximum value of the current,

and in a less degree, or scarcely at all, upon its subsequent
duration. *

The general equations for two detached circuits, influencing
one another only by induction, may be obtained in the usual

manner from (1) and

F=$Rx* + 1s8f (5).

Thus

These equations, in a more general form, are considered in

116. If a harmonic force X = eipt act in the first circuit, and

the second circuit be free from imposed force (F=0), we have on

elimination of y

shewing that the reaction of the secondary circuit upon the first is

to reduce the inductance by

and to increase the resistance by

1 Phil. Mag., vol. 38, p. 1, 1869 ; vol. 39, p. 428, 1870.
2
Maxwell, Phil Trans., voL 155, p. 459, 1865, where, however, M* is mis

printed M.
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The formulae (8) and (9) may be applied to deal with a more

general problem of considerable interest, which arises when (as in

some of Henry's experiments) the secondary circuit acts upon a

third, this upon a fourth, and so on, the only condition being that

there must be no mutual induction except between immediate

neighbours in the series. For the sake of distinctness we will

limit ourselves to four circuits.

In the fourth circuit the current is due ex hypoikesi only to

induction from the third. Its reaction upon the third, for the rate

of vibration under contemplation, is given at once by (8) and (9) ;

and if we use the complete values applicable to the third circuit

under these conditions, we may thenceforth ignore the fourth

circuit. In like manner we can now deduce the reaction upon
the secondary, giving the effective resistance and inductance of

that circuit under the influence of the third and fourth circuits
;

and then, by another step of the same kind, we may arrive at the

values applicable to the primary circuit, under the influence of all

the others. The process is evidently general; and we know by
the theorem of 111 b that, however extended the train of circuits,

the influence of the others upon the first must be to increase its

effective resistance and diminish its effective inertia, in greater
and greater degree as the frequency of vibration increases.

In the limit, when the frequency increases indefinitely, the

distribution of currents is determined by the induction-coefficients,

irrespective of resistance, and, as we shall see presently, it is of

such a character that the currents are alternately opposite in sign
as we pass along the series.

235 L Whatever may be the number of independent currents,

or degrees of freedom, the general equations are always of the

kind already discussed 82, 103, 104, viz.

ddT dF _+ -X ................... (1)'

where T, F, Fare ( 82) homogeneous quadratic functions. In (1)

the co-ordinates #1; xz ,
... denote the whole quantity of electricity

which has passed at time t, the currents being fa* z> &c When
F"=0, it is simpler to express the phenomena by means of the

currents. Thus, in the problem of steady electric flow where all
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the quantities X, representing electro-motive forces, are constant,

the currents are determined directly by the linear equations

dF/d^^X,, dF/d& = X, &e.......... . ..... (2).

On the other hand when the question under consideration is

one of initial impulsive effects, or of forced vibrations of ex

ceedingly high frequency, everything depends upon T, and the

equations reduce to

*L ^L = T =X &c f3>
dt d&i

3

dt dx*2

As an example we may consider the problem, touched upon at

the close of 235 k, of a train of circuits where the mutual induc

tion is confined to immediate neighbours, so that

s
2 +

coefficients such as aJ3 , a^, a24 not appearing. If ^ be given,

either as a current suddenly developed and afterwards maintained

constant, or as a harmonic time function of high frequency, while

no external forces operate in the other circuits, the problem
is to determine xz ,

#3 ,
&c. so as to make T as small as possible,

79. The equations are easily written down, but the conclusion

aimed at is perhaps arrived at more instructively by consideration

of the function T itself. For, T being homogeneous in xl9 as*, &c.,

we have identically

*-*>*+%+ ..................... <

And, since when T is a minimum, dT/dx2 , dT/d$9 , &a, all vanish,

jrp

But if a?2 , 0%, &c., had all been zero, 2I7 would have been equal to

diixf. It is clear therefore that CL^X-L is negative; or, as a13 is

taken positive, the sign of x is the opposite to that of ^.

Again supposing #j, x^ both given, we must, when T is a

minimum, have dT/dx3 , dTfdx^ &c., equal to zero, and thus

As before, 2T might have been

1 The dots are omitted as unnecessary.
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simply. The minimum value is necessarily less than this, and

accordingly the signs of x2 and #3 are opposite. This argument

may be continued, and it shews that, however long the series may
be, the induced currents are alternately opposite in sign

1

,
a result

in harmony with the magnetizations observed by Henry.

In certain cases the minimum value of T may be very nearly

zero. This happens when the coils which exercise a mutual

inductive influence are so close throughout their entire lengths

that they can produce approximately opposite magnetic forces at

all points of space. Suppose, for example, that there are two

similar coils A and
,
each wound with a double wire (A l3 A 2},

(2?!, J5,), and combined so that the primary circuit consists of A lt

the secondary of A 2 and Bl joined by inductionless leads, and the

tertiary of B2 simply closed upon itself. It is evident that T is

made approximately zero by taking #* ^ and ^3 = ^ = ^.
The argument may be extended to a train of such coils, howevei

long, and also to cases where the number of convolutions in

mutually reacting coils is not the same.

In a large class of problems, where leyden effects do not occur

sensibly, the course of events is determined by T and F simply.

These functions may then be reduced to sums of squares : and the

typical equation takes the form

ax + bd- = X. (6).

If X = 0, that is if there be no imposed electro-motive forces, the

solution is

x = x,e~
bt!

(7).

Thus any system of initial currents flowing whether in detached

or connected linear conductors, or in solid conducting masses, may
be resolved into

" normal" components, each of which dies down

exponentially at its own proper rate.

A general property of the "persistences/' equal to a/6, is

proved in 92 a. For example, any increase in permeability, due

to the introduction of iron (regarded as non-conducting), or any
diminution of resistance, however local, will in general bring about

a rise in the values of all the persistences
2
.

In view of the discussions of Chapter v, it is not necessary to

dwell upon the solution of equations (1) when X is retained. The

1 Phil Mag. t vol. 38, p. 13, 1869.
- Brit. Assoc. Report, 1885, p. 911.
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reciprocal theorem of 109 has many interesting electrical appli

cations ; but, after what has there been said, their deduction will

present no difficulty.

235 m. In 111 b one application of the general formulae to

an electrical system has already been given. As another example,
also relating to the case of two degrees of freedom, we may take

the problem of two conductors in parallel. It is not necessary to

include the influence of the leads outside the points of bifurcation
;

for provided that there be no mutual induction between these parts

and the remainder, their inductance and resistance enter into the

result by simple addition.

Under the sole operation of resistance, the total current a\

would divide itself between the two conductors (of resistances R
and S) in the parts

8 A R
^ and__

and we may conveniently so choose the second co-ordinate that

the currents in the two conductors are in general

and

#! still representing the total current in the leads. The dissi

pation-function, found by multiplying the squares of the above

currents by JJ?, ^S respectively, is

............... (1).

Also, L, M, N being the induction coefficients of the two

branches,

L
1 ~

Thus, in the notation of 111 b,
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Accordingly by (5), (8) 111 b,

RS f (~

T,_LS* + 21IRS+ jyjj* \(L
-

These are respectively the effective resistance and the effective

inductance of the combination 1
. It is to be remarked that

(Zr'~ 2Jf 4-N) is necessarily positive, representing twice the kinetic

energy of the system when the currents in the two conductors

are -f 1 and 1.

The expressions for R and U may be put into a form 2 which

for many purposes is more convenient, by combining the com

ponent fractional terms. Thus

Hy-} ,

............ ^ ''

*" ( } *

in which (LN M2
) is positive by virtue of the nature of T.

As p increases from zero, we know by the general theorem

111 6, or from the particular expressions (3), (4), that Rf
con

tinually increases and that L' continually decreases.

When p is very small,

, RS
t LS*

In this case the distribution of the main current between the

conductors is determined by the resistances, and ( 111 6) the values

of Rf and L coincide respectively with ZFfa*, ZT/xf. The resist

ance is manifestly the same as if the currents were steady.

On the other hand, when p is very great,

f)
'

In this case the distribution of currents is independent of the

resistances, being determined in accordance with Kelvin's theorem

1 Phil. Mag., vol. 21, p, 377, 1886.
2 J. J. Thomson, loc. cit. 421.
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in such a manner that the ratio of the currents in the two con

ductors is (N- M) : (L M\ As when p is small, the values in

(6) coincide with

When the two wires composing the conductors in parallel are

wound closely together, the energy of the field under high fre

quency may be very small There is an interesting distinction to

be noted here dependent upon the manner in which the con
nections are made. Consider, for example, the case of a bundle
of five contiguous wires wound into a coil, of which three wires,

connected in series so as to have maximum inductance, constitute

one of the branches in parallel, and the other two, connected

similarly in series, constitute the other branch. There is still an
alternative as to the manner of connection of the two branches.

If steady currents would circulate opposite ways (M negative), the

total current is divided into two parts in the ratio 3 : 2, in such a

manner that the more powerful current in the double wire nearly
neutralises at external points the magnetic effects of the less

powerful current in the triple wire, and the total energy of the

system is very small. But now suppose that the connections are

such that steady currents would circulate the same way in both

branches (M positive). It is evident that the condition of mini

mum energy cannot be satisfied when the currents are in the same

direction, but requires that the smaller current in the triple wire

should be in the opposite direction to that 6f the larger current in

the double wire. In fact the currents must be as 3 to 2
;
so

that (since on the same scale the total current is unity) the

component currents in the branches are botJi numerically greater
than the total current which is algebraically divided between
them. And this peculiar feature becomes more and more strongly
marked the nearer L and N approach to equality

1
.

The unusual development of currents in the branches is; of

course, attended by an augmented effective resistance. In the

limiting case when the m convolutions of one branch are supposed
to coincide geometrically \tfith one another and with the n convo

lutions of the second branch, we have

L : M : N= m? : mn : n\

i P /^ N TV nzR + m*S /t_.and from (6) R'= -^^ ........................ (7),

1 Phil. Mag. t vol. 21, p. 376, 1886.
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an expression which increases without limit, as in and n approach
to equality.

The fact that under certain conditions the currents in both

branches of a divided circuit may exceed the current in the mains

has been verified by direct experiment
1

. Each of the three

currents to be compared traversed short lengths of similar German-

silver wire, and the test consisted in finding what lengths of this

wire it was necessary in the various cases to include between the

terminals of a high resistance telephone in order to obtain sounds

of equal intensity. The variable currents were derived from a

battery and scraping contact apparatus ( 235 r), directly included

in the main circuit.

The general formulas (3'), (4?') undergo simplification when the

conductors in parallel exercise no mutual induction. Thus, when

T , _ LS* + NS* + p*LN(L 4- N)^ ~
(R + Sr +p(L +Ny

If further #= 0, (8) and (9) reduce to

flf{a(fl+g) +jrt') _ 18*
'

~

The peculiar features of the combination are brought out most

strongly when S, the resistance of the inductionless component, is

great in comparison With . In that case if the current be steady
or slowly vibrating, it flows mainly through R, while the resistance

and inductance of the combination approximate to R and L respec

tively ;
but if on the other hand the current be a rapidly vibrating

one, it flows mainly through S, so that the resistance of the combi
nation approximates to 8, and the inductance to zero. These
conclusions are in agreement with (10).

If the branches in parallel be simple electro-magnets, L and N
are necessarily positive, and the numerator in (9) is incapable of

vanishing. But, as we have seen, when leydens are admitted, this

restriction may be removed. An interesting case arises when the

second branch is inductionless, and is interrupted by a leyden of

1 Phil. Hag., vol. 22, p. 495, 1886.
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capacity C, so that 2T= - (CpP)-*, while at the same time It = 8.
The latter condition reduces the numerator in (9) to

Thus L vanishes, (i) when LGp* = 1, and (ii) when OB2 = L. The
first alternative is the condition that the loop circuit, considered
by itself, should be isochronous with the imposed vibrations.
The second expresses the equality of the time-constants of the two
branches. If they be equal, the combination behaves like a simple
resistance, whatever be the character of the imposed electro
motive force 1

.

235 n. When there are more than two conductors in parallel,
the general expressions for the equivalent resistance and induc
tance of the combination would be very complicated ; but a few
particular cases are worthy of notice.

The first of these occurs when there is no mutual induction
between the members. If the quantities relating to the various
branches be distinguished by the suffixes 1, 2, 3, ..., and if E be
the difference of potentials at the common terminals, we have

^ ......... ...(1);

by which R and L' are determined. Thus, if we write

****
we have from (2)

R'
^ T~*>' ~

Equations (3) and (4) contain the solution of the problem
2
.

When p = 0,

R'__L_ T'- 2C&-R-
2
)

""SCR-')' {S(R->)\*

When on the other hand p is very great,

1
Chrystal, "On the Differential Telephone," Edin. Trans., vol. 29, p. 615

1880.
*

2 Phil. Mag., vol. 21, p. 379, 1886.
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Even when the mutual induction between various members
cannot be neglected, tolerably simple expressions can be found for

the equivalent resistance and inductance in the extreme cases ofp
infinitely small or infinitely large. As has already been proved,

(111 b), the above-mentioned quantities then coincide in value

with 2-F/(#1 + tfs +...)
2
, and ST/^ + ^-f...)

3
,
and the calculation

of these values is easy, inasmuch as the distribution of currents

among the branches is determined in the first case entirely by F
and in the second case entirely by T. Thus, when p is infinitely

small, F is a minimum, and the currents are in proportion to the

conductances of the several branches. Accordingly, if the induction

coefficients of the branches be denoted, as in 111 6, by allt a^ }
...

i2 flis, , and the resistances by Rlt z , &c., we have

T , _ a^Rf+ ay/R* + . . .+ 2aI3

A similar method applies when p = oo
, but the result is less

simple on account of the complication in the ratios of currents due
to mutual induction 1

.

235 0. The induction-balance, originally contrived by Dove
for use with the galvanometer, has in recent years been adapted
to the telephone by Hughes

2
, who has described experiments

illustrating the marvellous sensibility of the arrangement. The
essential features are a primary, or battery, circuit, in which
circulates a current rendered intermittent by a make and break

interrupter, or by a simple scraping contact, and a secondary
circuit containing a telephone. By suitable adjustments the two
circuits are rendered conjugate, that is to say the coefficient of
mutual induction is caused to vanish, so as to reduce the telephone
to silence. The introduction into the neighbourhood of a third

circuit, whether composed of a coil of wire, or of a simple con

ducting mass, such as a coin, will then in general cause a revival

of sound.

The destruction of the mutual induction in the case of two flat

coils can be arrived at by placing them at a short distance apart,

1 J. J. Thomson, loc. eft. 422.
2 Phil. J/a<7. voi, vm., p. 50, 1879.
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in parallel planes, and with accurately adjusted overlapping. But
in Hughes' apparatus the balance is obtained more symmetrically
by the method of duplication. Four similar coils are employed.
Of these two A 19 A z , mounted at some distance apart with their

planes^
horizontal, and connected in series, constitute the primary

induction coil. The secondary induction coil consists in like
manner of Bl9 52 , placed symmetrically at short distances from
A 19 A and also connected in series, but in such a manner that
the induction between A l and Q tends to balance the induction
between A._ and 52 . If the four coils were perfectly similar,
balance would be obtained when the distances were equal. This
of course is not to be depended upon, but by a screw motion the
distance between one pair, e.g. A l and Bl3 is rendered adjustable,
and in this way a balance between the two inductions is obtained.
Wooden cups, fitting into the coils, are provided in such situations
that a coin resting in one of them is situated symmetrically
between the cou*esponding primary and secondary coils. The
balance, previously adjusted, is of course upset by the introduction
of a coin upon one side, but if a perfectly similar coin be intro

duced upon the other side also, balance may be restored. Hughes
found that very minute differences between coins could be ren
dered evident by outstanding sound in the telephone.

The theory of this apparatus, when the primary currents are

harmonic, is simple
1
, especially if we suppose that the primary

current ^ is given. If ^, a?2 , ... be the currents; 119 62 ,
... the

resistances; an , a^, a^, ... the inductances, the equations for

the case of three circuits are

= - #! )

...............

We now assume that xl9 #2 , &c. are proportional to eipt
,
where

is the frequency of vibration. Thus,

ip (a^o + a-js^) +

ip (a23#2 + CL&XS) -f

whence by elimination of #s

1 Brit. Assoc. Rep. 1880, p. 472.
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From this it appears that a want of balance depending on ft^

cannot compensate for the action of the third circuit, so as to

produce silence in the secondary circuit, unless 63 be negligible

in comparison with pa&, that is unless the time-constant of the

third circuit be very great in comparison with the period of the

vibration. Otherwise the effects are in different phases, and

therefore incapable of balancing.

We will now introduce a fourth circuit, and suppose that the

primary and secondary circuits are accurately conjugate, so that

a12
= 0, and also that the mutual induction a^ between the third

and fourth circuits may be neglected. Then

ip (a&x? -f a.^xs -f CL^SK^ -1- b2x*> = 0,

ip (a32#2 + #33^3) + &s#j = ~ ip&vti>

ip (a&x* -h ^44^4) -f &4#4 = if

whence

gJWfc+ra"\+ T
'gg

It appears that two conditions must be satisfied in order to

secure a balance, since both the phases and the intensities of the

separate effects must be the same. The first condition requires

that the time-constants of the third and fourth circuits be equal,

unless indeed both be very great, or both be very small, in com

parison with the period. If this condition be satisfied, balance

ensues when

(4);^ "

and it is especially to be noted that the adjustment is independent
of pitch, so that (by Fourier's theorem) it suffices whatever be the

nature of the variable currents operative in the primary.

As regards the position of the third and fourth circuits, usually

represented by coins in illustrative experiments, it will be seen

from the symmetry of the right-hand member of (3) that the

middle position between the primary and secondary coils is suit

able, inasmuch as the product a^a^ is stationary in value when
the coin is moved slightly so as to be nearer say to the primary
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and further from the secondary
1
. Approximate independence of

other displacements is secured by the geometrical symmetry of the

coils round the axis.

235 p. For the accurate comparison of electrical quantities
the "bridge" arrangement of Wheatstone is usually the most

convenient, and is equally available with the galvanometer in the

case of steady or transitory currents, or with the telephone in the

case of periodic currents. Similar effects may be obtained in most
cases without a bridge by the employment of the differential

galvanometer or the differential telephone
2
.

In the ordinary use of the bridge the four members a, b, c, d
combined in a quadrilateral Fig. (53 a) are

simple resistances. The battery branch/
joins one pair of opposite corners, and the

indicating instrument is in the "bridge"
e joining the other pair.

" Balance
"

is

obtained, when ad = be. But for our

purpose We have to suppose that any
member, e.g. a, is not merely a resistance,

or even a combination of resistances. It may include an electro

magnet, and it may be interrupted by a leyden. But in any case,

so long as the current x is strictly harmonic, proportional to e^f
,

the general relation between it and the difference of potentials V
at the extremities is given by

where a^ and ia, are the real and imaginary parts of a complex
coefficient a, and are functions of the frequency p/27r. In the

particular case of a simple conductor, endowed with inductance L,

Oj represents the resistance, and a* is equal to pL. In general, a^

is positive; but a.> may be either positive, as in the above ex

ample, or negative. The latter case arises when a resistance R is

interrupted by a leyden of capacity C. Here aa
= R, a2

= 1/pC*

If there be also inductance L,

(2).

As we have already seen, 235 j, a* may vanish for a particular

frequency, and the combination is then equivalent to a simple

1 See Lodge, Phil. Mag., vol. 9, p. 123, 1880.

2
Chrystal, Edin. Trans., loc. cit.
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resistance. But a variation of frequency gives rise to a positive

or negative a2 .

In all electrical problems, where there is no mutual induction,

the generalized quantities, a, 6, &c., combine, just as they do when

they represent simple resistances 1
. Thus, if a, a' be two complex

quantities representing two conductors in series, the corresponding

quantity for the combination is (a -t-a'). Again, if a, a' represent

two conductors in parallel, the reciprocal of the resultant is given

by addition of the reciprocals of a, a'. For, if the currents be a?, of,

corresponding to a difference of potentials V at the common

terminals,
V a# = aV,

so that x -f x = F(l/a + I/a').

In the application to Wheatstone's combination of the general

theory of forced vibrations, we will limit the impressed forces to

the battery and the telephone branches. If x, y be the currents

m these branches, X, Y the corresponding electro-motive forces,

we have, 107, linear relations between #, y, and X, F, which may
be written

the coefficient of y in the first equation being identical with that

of x in the second equation, by the reciprocal property. The three

constants A,By
C are in general complex quantities, functions of p.

The reciprocal relation may be interpreted as follows. If

7=0, Bx+ Cy = Q, and

In like manner, if we had supposed X = 0, we should have

found
BY

shewing that the ratio of the current in one member to the electro

motive force operative in the other is independent of the way in

which the parts are assigned to the two members.

1 For a more complete discussion of this subject see Heaviside " On Resistance

and Conductance Operators," Phil Mag., vol. 24, p. 479, 1887 ; Electrical Papers,
vol. n., p. 355.
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We have now to determine the constants A, 5, C in terms of

the electrical properties of the system. If y be maintained zero

by a suitable force 7, the relation between x and X is X = Ax.
A therefore denotes the (generalized) resistance to any electro

motive force in the battery member, when the telephone member is

open. This resistance is made up of /, the resistance in the

battery member, and of that of the conductors a -he,

combined in parallel. Thus

In like manner

To determine B let us consider the force 7 which must act

in e in order that the current through it may be zero, in spite
of the operation of X. We have Y=Bx. The total current A
flows partly along the branch (a -he), and partly along (b + d).

The current through (a 4- c) is

and that through (6 + d) is

The difference of potentials at the terminals of e, supposed to

be interrupted, is thus

a+b+c+d

and accordingly * =
~

......... . ........... (10).

By (6), (7), (10) the relationship of X, 7 to x, y is completely
determined.

The problem of the bridge requires the determination of the

current y as proportional to JT, when 7=0, that is when no

electro-motive force acts in the bridge itself; and the solution is

given at once by the introduction into (4) of the values of A, B, C
from (6), (7), (10).

If there be an approximate
"
balance/' the expression simplifies.

For (be ad) is then small, and B* may be neglected relatively to
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AC m the denominator of (4). Thus, as a sufficient approximation

in this case, we may write

_ - anx
~ ..................... v ''

The following interpretation of the process leads very simply
to the approximate form (11), and is independent of the general

theory. Let us first inquire what electro-motive force is necessary

in the telephone member to stop any current through it. If such

a force act, the conditions are, externally, the same as if the

member were open ;
and the current x in the battery member due

to a force equal to X in that member is X/A, where A is written

for brevity as representing the right-hand member of (6). The
difference of potentials at the terminals of e, still supposed to be

open, is found at once when x is known. It is given by

where B is defined by (10). In terms of X the difference of

potentials is thus BX/A, If e be now closed, the same fraction

expresses the force necessary in e in order to prevent the genera
tion of a current in that member.

The case with which we have to deal is when X acts in f and

there is no force in e. We are at liberty, however, to suppose that

two opposite forces, each of magnitude BX/A, act in e. One of

these, as we have seen, acting in conjunction with X infy gives no

current in e
;
so that, since electro-motive forces act independently

of one another, the actual current in e, closed without internal

electro-motive force, is simply that due to the other component.
The question is thus reduced to the determination of the current

in e due to a given force in that member.

So far the argument is rigorous ; but we will now suppose that

we have to deal with an approximate balance. In this case a force

in e gives rise to very little current in /, and in calculating the

current in e, we may suppose/to be broken. The total resistance

tb the force in e is then given simply by C of equation (7), and the

approximate value for y is derived by dividing BXJA by (7, as

we found in (11).

A continued application of the foregoing process gives y/X in

the form of an infinite geometric series :
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This is the rigorous solution already found in (4) ;
but the first

term of the series suffices for practical purposes.

The form of (11) enables us at once to compare the effects of

increments of resistance and of inductance in disturbing a balance.

For let ad = be, and then change d to d + d', where d' = </ -f id*.

The value of yjX is proportional to d'} and the amplitude of the

vibratory current in the bridge is proportional to mod. d\ that is,

to V(^/
2 + <^2

/2

)- Thus d/, d2

'

are equally efficacious when nu

merically equal
1
. In most cases where a telephone is employed,

the balance is more sensitive to changes of inductance than to

changes of resistance.

In the use of the Wheatstone balance for purposes of measure

ment, it is best to make a equal to c. The equality of b and d can

then be tested by interchange of a and c, independently of the

exactitude of the equality of these quantities. Another advantage
lies in the fact that balance is independent of mutual induction

between a and c or between b and d.

236 q. In the formulae of 235 p it has been assumed that

there is no mutual induction between the various members of the

combination. The more general theory has been considered very

fully by Heaviside
2
,
but to enter upon it would lead us too. far.

It may be well, however, to sketch the theory of the arrangement

adopted by Hughes, which possesses certain advantages in dealing
with the electrical properties of wires in short lengths

3
.

The apparatus consists of a Wheatstone's quadrilateral, Fig. 53 b}

with a telephone in the bridge, one of the

sides of the quadrilateral being the wire

or coil under examination (P), and the

other three being the parts into which a

single German-silver wire is divided by
two sliding contacts. If the battery-

branch (B) be closed, and a suitable in

terrupter be introduced into the telephone-

branch (T), balance may be obtained by

shifting the contacts. Provided that the

interrupter introduces no electro-motive

1 "On the Bridge Method in its Application to Periodic Electric Currents.'*

Froc. Roy. Soc., vol. 49, p. 203, 1891.
2 -'OntheSelMndnction of Wires," Part vi. ; Phil. Mag. t Feb. 1887; Electrical

Paper*, 1892, vol. u., p. 281.
3 Journ. TeL Eng., vol. xv. (1886) p. 1 ; Proc. Roy. 5oc. f vol. XL. (1886) p. 451.
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force of its own 1
, the balance indicates the proportionality of

the four resistances. If P be the unknown resistance of the

conductor under test, Q, R the resistances of the adjacent parts of

the divided wire, S that of the opposite part (between the sliding

contacts), then, by the ordinary rule, PS^QJR', while Q, R, S are

subject to the relation

W being a constant. If now the interrupter be transferred from

the telephone to the battery-branch, the balance is usually dis

turbed on account of induction, and cannot be restored by any
mere shifting of the contacts. In order to compensate the

induction, another influence of the same kind must be intro

duced. It is here that the peculiarity of the apparatus lies. A
coil (not shewn in the figure) is inserted in the battery and another

in the telephone-branch which act inductively upon one another,

and are so mounted that the effect may be readily varied. The

two coils may be concentric and relatively movable about the

common diameter. In this case the action vanishes when the

planes are perpendicular. If one coil be very much smaller than

the other, the coefficient of mutual induction M is proportional to

the cosine of the angle between the planes. By means of the

two -adjustments, the sliding of the contacts and the rotation of the

coil, it is usually possible to obtain a fair silence.

Hughes interpreted his observations on the basis of an as

sumption that the inductance of P was represented by M, irre

spective of resistance, and that the resistance to variable currents

could (as in the case of steady currents) be equated to QR/S.
But the matter is not quite so simple. The true formulae are,

however, readily obtained for the case where the only sensible

induction among the sides of the quadrilateral is the inductance L
of the conductor P.

Since there is no current through the bridge, there must be

the same current (#) in P and in one of the adjacent sides (say) R,
and for a like reason the same current y in Q and S. The differ

ence of potentials at time t between the junction of P and R and

the junction of Q and S may be expressed by each of the three

following equated quantities :

1 A condition not always satisfied in practice.
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Introducing the assumption that all the quantities vary har

monically with frequency j>/2-7r, and eliminating the ratio y : x, we
nd as the conditions required for silence in the telephone

(1),

(2).

It will be seen that the ordinary resistance balance (SP = QR)
is departed from. The change here considered is peculiar to the

apparatus and, so far as its influence is concerned, it does not

indicate a real alteration of resistance in the wire. Moreover,

since p is involved, the disturbance depends upon the rapidity of

vibration, so that in the case of ordinary mixed sounds silence can

be attained only appi-oxiniately. Again, from the second equation
we see that M is not in general a correct measure of the value

ofi 1
.

If however, P be known, the application of (2; presents no

difficulty. In many cases we may be sure beforehand that P,
viz. the effective resistance of the conductor, or combination of

conductors, to the variable currents, is the same as if the currents

were steady, and then P may be regarded as known. But there

are other cases, some of them will be alluded to below in

which this assumption cannot be made
;
and it is impossible to

determine the unknown quantities L and P from (2) alons. We
may then fall back upon (1). By means of the two equations

P and L can always be found in terras of the other quantities.

But among these is included the frequency of vibration ; so that

the method is practically applicable only when the interrupter is

such as to give an absolute periodicity. A scraping contact,

otherwise Very convenient, is thijs excluded; and this is un

doubtedly an objection to the method.

If the member P be without inductance, but be interrupted by
a leyden of capacity (7, the same formulae may be employed, with

substitution of l/p*C for L. Equation (1) then gives a measure

of G which is independent of the frequency.

235 r. The success of experiments with this kind of apparatus

depends very largely upon the action of the interrupter by which

the currents are rendered variable. When periodicity is not

1 * 4 Discussion on Prof. Hughes* Address."
1

Journ. Tel. Eng., roL xv., p. 54.

Feb., 1886.
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necessary, a scraping contact, actuated by a clock or by a small

motor, answers very well
;
but it is advisable, following Lodge

and Hughes, so to arrange matters that the current is suspended
altogether at short intervals. The faint scraping sound heard in

the neighbourhood of a balance, is more certainly identified when
thus rendered intermittent.

But for many of the most interesting experiments a scraping
contact is unsuitable. When the inductance and resistance under
observation are rapidly varying functions of the frequency, it is

evident that no sharp results are possible without an interrupter

giving a perfectly regular electrical vibration. With proper appli
ances an absolute silence, or at least one disturbed only by a slight
sensation of the octave of the principal tone, can be arrived at

under circumstances where a scraping contact would admit of no

approach to a balance at? all.

Tuning-forks, driven electromagnetically with liquid or solid

contacts ( 64), answer well so long as the frequency required
does not exceed (say) 300 per second

;
but for experiments with the

telephone we desire frequencies of from 500 to 2000 per second.

Good results may be obtained with harmonium reed interrupters,
the vibrating tongue making contact once during each period
with a stop, which can be adjusted exactly to the required position

by means of a screw 1
.

But perhaps the best interrupter for use with the telephone is

obtained by taking advantage of the instability of a jet of fluid.

If the diameter and the speed be chosen suitably, the jet may be
caused to resolve itself into drops under the action of a tuning-
fork in a perfectly regular manner, one drop corresponding to

each complete vibration of the fork. Each drop, as it passes,

may be made to complete an electric circuit by squeezing itself

between the extremities of two fine platinum wires. If the
electro-motive force of the battery be pretty high, and if the

jet be salted to improve its conductivity, sufficient current passes,

especially if the aid of a small step-down transformer be invoked.

Finally the apparatus is made self-acting by bringing the fork

under the influence of an electro-magnet, itself traversed by the
same intermittent current. Such an apparatus may be made to

work with frequencies up to 2000 per second, and it possesses

many advantages, among which maybe mentioned almost absolute

1 PJnl. Mag., vol. 22, p. 472, 1886
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constancy of pitch, and the avoidance of loud aerial disturbance.

The principles upon which the action of this interrupter depends
will be further considered in a subsequent chapter.

235 s. Scarcely less important than the interrupter are the

arrangements for measuring induction, whether mutual induc

tion, as required in 235 q, or self-induction. Inductometers, as

Heaviside calls them, may be conveniently constructed upon
the pattern of Hughes. A small coil is mounted so that one

diameter coincides with a diameter of a larger coil, and is

movable about that diameter. The mutual induction M between
the two circuits depends upon the position given to the smaller

coil, which is read by a pointer attached to it, and moving over a

graduated circle. If the smaller coil were supposed to be infinitely

small, the value of Jtf, as has already been stated, would be pro

portional to the sine of the displacement from the zero position

(M = 0). But an approximation to this state of things is not

desirable. If the mean radius of the small coil be increased until

it amounts to *55 of that of the larger, not only is the efficiency

much enhanced, but the scale of M is brought to approximate
coincidence, over almost the whole practical range, with the scale

of degrees
1
. The absolute value of each degree may be arrived at

in various ways, perhaps most simply by adjusting the mutual

induction of the instrument to balance a standard of mutual

induction.

For experiments upon the plan of 235 q the one coil is

included in the telephone and the other in the battery branch,

but when the object is to secure a variable and measurable

inductance, the two coils are connected in series. The inductance

of the combination is then L+ZM+N, of which the first and

third terms are independent of the relative position of the coils.

235 t. Good results by the method of 235 q have been

obtained by Weber2
,
and by the author 3

using a reed interrupter
of frequency 1050 per second ; but the fact that inductance and

resistance are mixed up in the measurements is a decided draw

back, if it be only because the readings require for their interpre

tation calculations not readily made upon the spot.

1 PhiL Mag., vol. 22, p. 498, 1886.

3 Electrical Review, April 9, July 9, 1886.

s PhiL Mag., toe. cit.
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The more obvious arrangement is one in which both the

induction and the resistance of the branch containing the subject-

under examination are in every case brought up to the given
totals necessary for a balance. To carry this out conveniently we

require to be able to add inductance without altering resistance,

and resistance without altering inductance, and both in a measur

able degree. The first demand is easily met. If we include in

the circuit the two coils of an inductometer, connected in series,

the inductance of the whole can be varied in a known manner by

rotating the smaller coil. On the other hand the introduction, or

removal, of resistance without alteration of inductance cannot well

be carried out with rigour. But in most cases the object can be

sufficiently attained with the aid of a resistance-slide of thin

German-silver wire which may be in the form of a nearly close

loop.

In the Wheatstone's quadrilateral, as arranged for these ex

periments, the adjacent sides H, S may be made of similar wires

of German silver of equal resistance ( ohm). If doubled they

give rise to little induction, but the accuracy of the method is

independent of this circumstance. The side P includes the

conductor, or combination of conductors, under examination, an

inductometer, and the resistance-slide. The other side, Q, must

possess -resistance and inductance greater than any of the con

ductors to be compared, but need not be susceptible of ready and

measurable variations. In order to avoid mutual induction be

tween the branches, P and Q should be placed at some distance

away, being connected with the rest of the apparatus by leads of

doubled wire.

It will be evident that when the interrupter acts in the

battery branch, balance can be obtained at the telephone in the

bridge only under the conditions that both the inductance and
the resistance in P are equal in the aggregate to the correspond

ing quantities in Q. Hence when one conductor is substituted for

another in P, the alterations demanded at the inductometer and
in the slide give respectively the changes of inductance and of

resistance. In this arrangement inductance and resistance are

well separated, so that the results can be interpreted without

calculation; but the movable contacts of the slide appear to

introduce uncertainty into the determination of resistance.

In order to get rid of the objectionable movable contacts

some sacrifice of theoretical simplicity seems unavoidable. We
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can no longer keep the total resistances P and Q constant
;
but by

reverting to the arrangement adopted in a well-known form of

Wheatstone's bridge, we cause the resistances taken from P to be
added to Q, and vice versa. The transferable resistance is that of

a straight wire of German-silver, with which one telephone ter

minal makes contact at a point whose position is read off on a

divided scale. Any uncertainty in the resistance of this contact

does not influence the measurements.

Fig. 53 c.

The diagram Fig. (53 c) shows the connection of the parts. One
of the telephone terminals T goes to the junction of the ( ohm)
resistances R and S, the other to a point upon the divided 'wire.

The branch P includes one inductometer (with coils connected in

series), the subject of examination, and part of the divided wire.

The branch Q includes a second inductometer (replaceable by a

simple coil possessing suitable inductance), a rheostat, or any
resistance roughly adjustable from time to time, and the re

mainder of the divided wire. The battery branch B, in which may
also be included the interrupter, has its terminals connected, one

to the junction ofP and R3 the other to the junction of Q and S.

When it is desired to use steady currents, the telephone can of

course be replaced by a galvanometer.

In this arrangement, as in the other, balance requires that the

branches P and Q be similar in respect both of inductance and of

resistance. The changes in inductance due to a shift in the

movable contact may usually be disregarded, and thus any alte

ration in the subject (included in P) is measured by the rotation

necessitated at the inductometer. As for the resistance, it is

evident that (R and S being equal) the value for any additional

conductor interposed in P is measured by twice the displacement
of the sliding contact necessary to regain the balance.

Experimental details of the application of this method to the
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measurement of various combinations will be found in the paper
1

from which the above sketch is derived. Among these may be

mentioned the verification of Maxwell's formulae, (8), (9) 235 k,

AS to the influence of a neighbouring circuit, especially in the

extreme case where the equivalent inductance is almost destroyed,

and of the formula (10) 235 m relating to the behaviour of an

electro-magnet shunted by a relatively high simple resistance.

But the most interesting in many respects is the application to

the phenomena presently to be considered, where the conductors

in question are no longer approximately linear but must be

regarded as solid masses in which the currents are distributed in

a manner that needs to be determined by general electrical

theory.

As has already been remarked more than once, a leyden may

always be supposed to be included in the circuit, the stiffness

thereof having the effect of a negative inductance. If there be no

hysteresis in the action of the leyden, the whole effect is thus

represented ;
but when the dielectric employed is solid, it appears

that dissipative loss cannot be avoided. The latter effect manifests

itself as an augmentation of apparent resistance, indistinguishable,

unless the frequency be varied, from the ordinary resistance of the

leads. A similar treatment may be applied to an electrolytic cell,

the stiffness and resistance being presumably both functions of the

frequency.

235 u. It was proved by Maxwell* that a perfectly con

ducting sheet, forming a closed or an infinite surface, acts as a

magnetic screen, no magnetic actions which may take place on

one side of the sheet producing any magnetic effect on the other

side.
" In practice we cannot use a sheet of perfect conductivity ;

but the above described state of things may be approximated to

in the case of periodic magnetic changes, if the time-constants of

the sheet circuits be large in comparison with the periods of the

changes."

"The experiment is made by connecting up into a primary
circuit a battery, a microphone-clock, and a coil of insulated wire.

The secondary circuit includes a parallel coil and a telephone.

Under these circumstances the hissing sound is heard almost as

well as if the telephone were inserted in the primary circuit

1 Phil. Affltf., Zoc. cit.

2
Electricity and Magnetism, 1873, 655,
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itself. But if a large and stout plate of copper be interposed
between the two coils, the sound is greatly enfeebled. By a proper
choice of battery and of the distance between the coils, it is not

difficult so to adjust the strength that the sound is conspicuous in

the one case and inaudible in the other" 1
.

One of the simplest applications of Maxwell's principle is to

the case of a long cylindrical shell placed within a coaxal magnet

izing helix. The condition of minimum energy requires that such

currents be developed in the shell as shall neutralize at internal

points the action of the coil. Thus, if the conductivity of the

shell be sufficiently high, the interior space is screened from the

magnetizing force of periodic currents flowing in the outer helix,

and conducting circuits situated within the shell must be devoid

of induced currents. An obvious deduction is that the currents

induced in a solid conducting core will be more and more confined

to the neighbourhood of the surface as the frequency of electrical

vibration is increased.

The point at which the concentration of current towards the

surface becomes important depends upon the relative values of the

imposed vibration-period and the principal time-constant of the

core circuit. If
/>
be the specific resistance of the material, p its

magnetic permeability, a the radius of the cylinder, the expression
for the induction (c) parallel to the axis, during the progress of the

subsidence of free currents in a normal mode, is

(1),

where & = -*?**L .......................... (2),
P

and ka is determined by the condition that

J (ia) = ............ . .............. (3).

The roots of (3) are, 206,

2-404, 5*520, 8'654, 11792, &c.,

so that for the principal mode of greatest persistence

) ..................... (4),

Acoustical Observations, Phil. Mag., vol. 13, p. 344, 1882.



462 ELECTKICAL VIBRATIONS [235%.

For copper in C.G.s. measure p = 1642, ^ = 1, and thus

In the case of iron we may take as approximate values, /A
= 100,

p = 104
. Thus for an iron wire of diameter (2a) equal to *33 cm,,

the vahie of T is about -^^ of a second, and is therefore comparable
with the periods concerned in telephonic experiments.

Regarded from an analytical point of view the theory of forced

vibrations in a conducting core is equally simple, and was worked

out almost simultaneously by Lamb 2
,
Oberbeck8 and Heaviside

4
.

In this case we are to regard X as given, equal (say) to ip. where

P/2.7T is the frequency. If Ielpt be the imposed magnetizing force,

the solution is

the value of k being given by (2).

" When the period in the field is long in comparison with the

time of decay of free currents, we have J (kr) = 1, nearly, so that

is approximately constant and =/i/ throughout the section of

the cylinder. But, in the opposite extreme, when the oscillations

in the intensity of the field are rapid in comparison with the decay
of free currents, the induced currents extend only to a small depth
beneath the surface of the cylinder, the inner strata (so to speak)

being almost completely sheltered from electromotive force by the

outer ones. Writing A2 = (1 i)
2
*?

2
,

we have, when qr is large,

r/7 \JQ (for)
== const, x

approximately, and thence

c = pi . V(a/r) . e? <r~

This indicates that the electrical disturbance in the cylinder

1 "On tiie Duration of Free Electric Currents in an Infinite Conducting

Cylinder/* Brit. Atsoc. Report for 1882, p. 446.
2 Proc. Math. Soc., vol. xv., p. 139, Jan. 1884.
s Wied. Ann., vol. XXIM p. 672, Ap. 1884.
4
Electrician, May, 1884. Electrical Papers, vol. n., p. 353.
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consists in a series of waves propagated inwards with rapidly

diminishing amplitude
1
."

For experimental purposes what we most require to know is

the reaction of the core currents upon the helix, in which alone

we can directly measure electrical effects. This problem is fully
treated by Heaviside2

, but we must confine ourselves here to a

mere statement of results. These are most conveniently expressed

by the changes of effective inductance L and resistance R due to

the core. If m be the number of turns per unit length in the

magnetizing helix, and if SL, SR be the apparent alterations ofL
and R due to the introduction of the core, also reckoned per unit

length, we have

.

" ( ''

where P and Q are defined by

P-iQ = <f>'/<j> ......................... (8),

the function
<f> being of the form

+... +
la ^+ ...... (9),

and the argument x being
ipp.mf/p ...........................(10).

If the material composing the core be non-conducting, #= 0, and
therefore

P-l, Q = 0.

Accordingly BL = 4m2
<7r

2a2
(p
-

1), SR ............ (11).

These values apply also, whatever be the conductivity of the

core, if the frequency be sufficiently low,

At the other extreme, when p= oo , we require the ultimate

form of
<tf/<f>.

From the value of J" given in (10) 200, or other

wise, it may be shewn that in the limit

*-* ........................ (12),

so that

The introduction of these values into (7) shews that in the

limit, when the frequency is exceedingly high,

8i=-4m2
7r

2a3
,

&R= ............... (14),

1 Lamb, loc. cit,, where is also discussed the problem of the currents induced by
the sudden cessation of a previously constant field.

2 loc. eft.



464 ELECTRICAL VIBRATIONS. [235 U.

03 might also have been inferred from the consideration that the

induced currents are then confined to the surface of the core.

An example of the application of these formulae to an inter

mediate case and a comparison with experiment will be found in

the paper already referred to 1
.

235 v. The application of Maxwell's principle to the case of

a wire, in which a longitudinal electric current is induced, is less

obvious; and Heaviside
5

appears to have been the first to state

distinctly that the current is to be regarded as propagated inwards

from the exterior. The relation between the electromotive force

E and the total current C had, however, been given many years

earlier by Maxwell 8
in the form of a series. His result is equi

valent to

in which H denotes the whole resistance of the length I to

steady currents, /* the permeability, and pj^ir the frequency. The

function
<f>

is that defined by (9) 235 u, and A is a constant

dependent upon the situation of the return current 4
.

The most convenient form of the results is that which we have

already several times employed. If we write

in which K and L are real, these quantities will represent the

effective resistance and inductance of the wire. When the argu
ment in (1) is small, that is when the frequency is relatively low,

we thus obtain

......... (3),

.. ......(4)'.

1 Phil. Mag., voL 22, p. 493, 1886.

-
Electrician, Jan., 1885 } Electrical Papers, vol. i., p. 440.

8 Phil. Trans., 1865 ; Electricity and Magnetism, vol. ii., 690.

.
4 The simplest case arises when the dielectric, -which bounds the cylindrical

wire of radios a, is enclosed within a second conducting mass extending outwards

to infinity and bounded internally at a cylindrical surface ?*=&. We then have

A = 2 log (IIa). See J. J. Thomson, loc. cit. t 272.

5 Phil, Mag., vol. 21, p. 387, 1886. It is singular that Maxwell (loc. cit.) seems

to have regarded his solution as conveying a correction to the self-induction only of

the wire.
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When p is very small, these equations give, as was to be

expected,

R?-R, l' = l(A+1w) ....... - .......... (5).

If we include the next terms, we recognise that, in accordance

with the general rule, I! begins to diminish and Rf

to increase.

When p is very great, we have to make use of the limiting
form of '/. As in 235 w,

(6);

and thus ultimately

(7),

(8),

the first of which increases without limit with p, while the second

tends to the finite limit A, corresponding to the total exclusion of

current from the interior of the wire.

Experiments
1

upon an iron wire about 18 metres long and 3'3

millimetres m diameter led to the conclusion that the resistance

to variable currents of frequency 1050 was such that -87R = 1*9,

A calculation based upon (1) shewed that this result is in harmony
with theory, if ^ = 99*5. Such is about the value indicated by
other telephonic experiments.

235 w. The theory of electric currents in such wires as are

commonly employed in laboratory experiments is simple, mainly in

consequence of the subordination of electrostatic capacity. When
this element can be neglected, the current is necessarily the same

at all points along the length of the wire, so that whatever enters

a wire at the sending end leaves it unimpaired at the receiving

end. In this case the whole electrical character of the wire can

be expressed by two quantities, its resistance JR and inductance L
}

and these may usually be treated as constants, independent of the

frequency. The relation of the current to the electromotive force

under such circumstances has already been discussed (7) 235 j.

When we have occasion to consider only the amplitude of the

current, irrespective of phase, we may regard it ,as determined

by */[R?+p*L*], a quantity which is called by Heaviside the

impedance. Thus in circuits devoid of capacity the inlpedance is

always increased by the existence of L>

1 Phil. Mag., Tol. 22, p. 488, 1886.
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Circuits employed for practical telephony may often be re

garded as coming under the above description, especially when

the wires are suspended and are of but moderate length. But

there are other cases in which electrostatic capacity is the domi

nating feature. The theory of electric cables was established

many years ago by Lord Kelvin 1 for telegraphic purposes. If >S

be the capacity and R the resistance of the cable, reckoned per
unit length, V and C the potential and the current at the point z,

we have

SdV'dt**-dCld* t RG=-dVfdz ......... (1),

whence RSdC/dt = d*C/dz* .................. ,.....(2),

the well known equation for the conduction of heat discussed by
Fourier. On the assumption that C is proportional to eipt, it

reduces to

d?C/d* = W(pRS).(l+i)}*C... ............ (3);

so that the solution for waves propagated in the positive direc

tion is

C=Cter*te**>-*coa{pt-J($pItS).z} ......... (4).

The distance in traversing which the current is attenuated in the

ratio of e to 1 is thus
* = V(2/pASf) ......................... (5).

A very slight consideration of the magnitudes involved is

sufficient to give an idea of the difficulty of telephoning through a

long cable. If, for example, the frequency (p/27r) be that of a

note rather more than an octave above middle c, and the cable be

such as are used to cross the Atlantic, we have in C.G.S. measure

and accordingly from (5)

z = 3 x 10* cm. = 20 miles approximately.

A distance of 20 miles would ttius reduce the intensity of

sound, measured by the square of the amplitude, to about a

tenth, an operation which could not be repeated often without

rendering it inaudible. With such a cable the practical limit

would not be likely to exceed fifty miles, more especially as

the easy intelligibility of speech requires the presence of tones

still higher than is supposed in the above numerical example
2

.

1 Proc t Roy. Soc., 1855 ; Mathematical and Physical Papers, voL n. p. 61.
- ' 4 On Telephoning through a Cable." Brit. Ass. Report for 1884, p. 632.
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235 x. In the above theory the insulation is supposed to be

perfect and the inductance to be negligible. It is probable that

these conditions are sufficiently satisfied in the case of a cable,

but in other telephonic lines the inductance is a feature of great (

importance. The problem has been treated with full generality

by Heaviside, but a slight sketch of his investigation is all that

our limits permit.

If R, S, Lt
K be the resistance, capacity or permittance, in

ductance, and leakage-conductance respectively per unit of length,

V and C the potential-difference and current at distance z, the

equations, analogous to (1) 235 w, are

AC dC dV

Thus, if the currents are harmonic, proportional to &**,

l)(K+ ipS)C................... (2),

with a similar equation for K
It might perhaps have been expected that a finite leakage K

would always act as a complication; but Heaviside 1 has shewn

that it may be so adjusted as to simplify the "matter. This case,

which is remarkable in itself and also serves to throw light upon
the general question, arises when R/L = K/S. We will write

where v is a velocity of the order of the velocity of light. The

equation for V is then by (1)

*&Vfd#= (d/dt + qpV .................. (3);

or if we take U so that

V=er*U ........................... (4),

v*d*UI<te = d?U/dP. .................... (5),

the well-known equation of undisturbed wave propagation 144.
"
Thus, if the wave be positive, or travel in the direction of

increasing z, we shall have, if/! (z) be the state of V initially,

T^^/i (*-*), C^VJLv ............... (6).

If F2 ,
(72 be a negative wave, travelling the other way,

(7).

1
Eloctrieian, June 17, 1887. Electrical Papws, vol. n. pp. 125, 309.
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Thus, any initial state being the sum of Vl and F2 to make F,

and of Cl and 7j to make G, the decomposition of an arbitrarily

given initial state of V and C into the waves is effected by

jr-HF+flIC), F2 -i(F-t'I(7) ......... (8).

We have now merely to move Vl bodily to the right at speed

v, and F2 bodily to the left at speed v, and attenuate them to the

extent e~&, to obtain the state at time t later, provided no changes
of condition have occurred. The solution is therefore true for all

future time in an infinitely long circuit. But when the end of a

circuit is reached, a reflected wave usually results, which must be

added on to obtain the real result."

As in 144, the precise character of the reflection depends

upon the terminal conditions. "One case is uniquely simple.
Let there be a resistance inserted of amount vL. It introduces

the condition F = vLC if at say B, the positive end of the circuit,

and F= vLO if at the negative end, or beginning. These are

the characteristics of a positive and of a negative wave respect

ively ;
it follows that any disturbance arriving at the resistance is

at once absorbed. Thus, if the circuit be given in any state

whatever, without irppressed force, it is wholly cleared of electrifi

cation and current in the time l/v at the most, if I be the length
of the circuit, by the complete absorption of the two waves into

which the initial state may be decomposed/'

" But let the resistance be of amount R-^ at say B ;
and let Vl

and F3 be corresponding elements in the incident and reflected

waves. Since we have

F, = vLClt V, -- vLCs, F!+ F3
= R, (C, + C,). . .(9),

we have the reflected wave given by

If Rl be greater than the critical resistance of complete ab

sorption, the current is negatived by reflection, whilst the electri

fication does not change sign. If it be less, the electrification is

negatived, whilst the current does not reverse."

"Two cases are specially notable. They are those in which
there is no absorption of energy. If J^^O, meaning a short

circuit, the reflected wave of F is a perverted and inverted copy of
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the incident. But if R = x
, representing insulation, it is G that

is inverted and perverted
1
/

1

The cases last mentioned are evidently analogous to the reflec

tion of a sonorous aerial wave travelling in a pipe. If the end of

the pipe be closed, the reflection is of one character, and if it be

open of another character. In both cases the whole energy is

reflected, 257. The waves reflected at the two ends of an electric

circuit complicate the general solution, especially when the sim

plifying condition (2) does not hold. But in many cases of

practical interest they may be omitted without much loss of

accuracy. One passage over a long line usually introduces con

siderable attenuation, and then the effect of the reflected wave,

which must traverse the line three times in all, becomes insigni

ficant.

In proceeding to the general solution of (2) for a positive

wave, we will introduce, after Heaviside, the following abbrevia

tions,

v*LS=l, fi/Xp=/, KI8p = g.......... ..(11).

In terms of these quantities (2) may be written

#CId*=(P + iQyC .................. (12),
where

P2 or Q* = $ (p/vY {(I +/<)* (1 + /)i + (fff - 1)} ... (13).

Thus, if P and Q be taken positively, the solution for a wave

travelling in the positive direction is

<7= C e~pz cos(pt
-

Qt).................. (14),

the current at the origin being C^cospt

The cable formula, 235 w, is the particular case arrived at by

supposing in (13)/= oo
, #= 0, which then reduces to

P = Q a =
JpjaSf ..................... (15).

Again, the special case of equation (3) is derivable by putting

f=g=z q/p t The result is

P =
q/v, Q=p/v.....................(16).

If the insulation be perfect, g = 0, and (13) becomes

(17).

Heaviside, Collected Works, vol. n. p. 312.
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In certain examples of long copper lines of high conductivity,

/ may be regarded as small so far a^ telephonic frequencies are

concerned. Equation (17) then gives

P=pffiv**RI2vl, Q=pfv (18).

For a further discussion of the various cases that may arise

the reader must be referred to the writings of Heaviside already
cited The object is to secure, as far as may be, the propagation
of waves without alteration of type. And here it is desirable to

distinguish between simple attenuation and distortion. If, as in

(16) and (18), P is independent of p, the amplitudes of all com

ponents are reduced in the same ratio, and thus a complex wave

travels without distortion, The cable formula (15) is an example
of the opposite state of things, where waves of high frequency are

attenuated out of proportion to waves of low frequency. It appears
from Heaviside's calculations that the distortion is lessened by
even a moderate inductance.

The effectiveness of the line requires that neither the attenua

tion nor the distortion exceed certain limits, which however it is

hard to lay down precisely. A considerable amount of distortion

is consistent with the intelligibility of speech, much that is

imperfectly rendered being supplied by the imagination of the

hearer.

235 y. It remains to consider the transmitting and receiving

appliances. In the early days of telephony, as rendered practical

by Graham Bell, similar instruments were employed for both

purposes. Bell's telephone consists of a bar magnet, or battery
of bar magnets, provided at one end with a short pole-piece
which serves as the core of a coil of fine insulated wire. In close

proximity to the outer end of the pole-piece is placed a circular

disc of thin iron, held at the circumference. Under the influence

of the permanent magnet the disc is magnetized radially, the

polarity at the centre being of course opposite to that of the

neighbouring end of the steel magnet.

The operation of the instrument as a transmitter is readily
traced. When sonorous waves impinge upon the disc, it responds
with a symmetrical transverse vibration by which its distance

from the pole-piece is alternately increased and diminished.

When the interval is diminished, more induction passes through
the pole-piece, and a corresponding electro-motive force acts in
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the enveloping coil. The periodic movement of the disc thus

gives rise to a periodic current in any circuit connected with the

telephone coil.

The electro-motive force is in the first instance proportional

to the permanent magnetism to which it is due
;
and this law

would continue to hold, were the behaviour of the pole-piece and

of the disc conformable to that of the "
soft iron

"
of approximate

theory. But as the magnetism rises, and the state of saturation

is more nearly approached, the response to periodic changes of

force becomes feebler, and thus the efficiency falls below that

indicated by the law of proportionality. If we could imagine the

state of saturation in the pole-piece to be actually attained, the

induction through the coil would become almost incapable of

variation, being reduced to such as might occur were the iron

removed. There is thus a point, dependent upon the properties

of magnetic matter, beyond which it is pernicious to raise the

amount of the permanent magnetism ;
and this point marks the

maximum efficiency of the transmitter. It is probable that the

most favourable condition is not fully reached in instruments

provided with steel magnets: but the considerations above

advanced may serve to explain why an electro-magnet is not

substituted.

The action of the receiving instrument may be explained on

the same principles. The periodic current in the coil alternately

opposes and cooperates with the permanent magnet, and thus the

iron disc is subjected to a periodic force acting at its centre.

The vibrations are thence communicated to the air, and so reach

the ear of the observer. As in the case of the transmitter, the

efficiency attains a maximum when the magnetism of the pole-

piece is still far short of saturation.

The explanation of the receiver in terms of magnetic forces

pulling at the disc is sometimes regarded as inadequate or even as

altogether wide of the mark, the sound being attributed to
" mole

cular disturbances
"
in the pole-piece and disc. There is indeed

every reason to suppose that molecular movements accompany
the change of magnetic state, but the question is how do these

movements influence the ear. It would appear that they can do

so only by causing a transverse motion of the surface of the disc>

a motion from which nodal subdivisions are not excluded.
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In support of the
"
push and pull theory

"
it may be useful to

cite an experiment tried upon a bipolar telephone. In this

instrument each end of a horse-shoe magnet is provided with a

pole-piece and coil, and the two pole-pieces are brought into

proximity with the disc at places symmetrically situated with

regard to the centre. In the normal use of the instrument the

two coils are permanently connected as in an ordinary horse-shoe

electro-magnet, but for the purposes of the experiment provision
was made whereby one of the coils could be reversed at pleasure

by means of a reversing key. The sensitiveness of the telephone
in the two conditions was tested by including it in the circuit of

a Daniell cell and a scraping contact apparatus, resistance from a

box being -added until the sound was but just easily audible.

The resistances employed were such as to dominate the self-

induction of the circuit, and the comparison shewed that the

reversal of the coil from its normal connection lowered the sensi

tiveness to current in the ratio of 11 : 1. That the reduction was
not still greater is readily explained by outstanding failures of

symmetry; but on the "molecular disturbance" theory it is not

evident why there should be any reduction at all.

Dissatisfaction with the ordinary theory of the action of a

receiving telephone may have arisen from the difficulty of under

standing how such very minute motions of the plate could be
audible. This is, however, a question of the sensitiveness of the

ear, which has been proved capable of appreciating an amplitude
of less than 8 x ID"8 cm. 1

. The subject of the audible minimum
will be further considered in the second volume of this work.

The calculation a priori of the minimum current that should

be audible in the telephone is a matter of considerable difficulty ;

and even the determination by direct experiment has led to

widely discrepant numbers. In some recent experiments by the
author a unipolar Bell telephone of 70 ohms resistance was

employed. The circuit included also a resistance box and an
induction coil of known construction, in which acted an electro

motive force capable of calculation. Up to a frequency of 307
this could be obtained from a revolving magnet of known moment
and situated at a meas'ured distance from the induction coil. For
the higher frequencies magnetized tuning-forks, vibrating with
measured amplitudes, were substituted. In either case the

1 Prac. Roy. Soc. vol. xxvx. p. 248, 1877.
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resistance of the circuit was increased until the residual sound

was but just easily audible. Care having been taken so to

arrange matters that the self-induction of the circuit was negli

gible, the current could then be deduced from the resistance nd

the calculated electro-motive force operating in the induction

coil. The following are the results, in which it is to be under

stood that the currents recorded might have been halved without

the sounds being altogether lost :

The effect of a given current depends, of course, upon the

manner in which the telephone is wound. If the same space be

occupied by the copper in the various cases, the current capable of

producing a particular effect is inversely as the square root of the

resistance.

The numbers in the above table giving the results of the

author's experiments are of the same order of magnitude as

those found by Ferraris 1
, whose observations, however, related

to sounds that were not pure tones. But much lower estimates

have been put forward. Thus Tait 2
gives 2 x 10~14

amperes,
and Preece a still lower figure, 6 x 10~13

. These discrepancies,

enormous as they stand, would be still further increased were

the comparison made to refer to the amounts of energy absorbed.

According to the calculations of the author the above tabulated

sensitiveness to a periodic current of frequency 256 is about what

might reasonably be expected on the push and pull theory
8
. At

1 Atti deUa Accad. d. Sci. Di Torino, vol. xni. p. 1024, 1877.
2 Edin. Proc. vol. ix. p. 551, 1878.
3 I propose shortly to publish these calculations.
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this frequency, which is below those proper to the telephone plate

( 221 a), the motion of the plate is governed by elasticity-rather

than by inertia, and an equilibrium theory ( 100) is applicable as

a rough approximation. The greater sensitiveness of the telephone

at frequencies in the neighbourhood of 512 would appear to

depend upon resonance ( 46). It is doubtful whether the much

higher sensitiveness claimed by Tait and Preece could be re

conciled with theory.

It appears to be established that the iron plate of a telephone

may be replaced by one of copper, or even of non-conducting

material, without absolute loss of sound; but these effects are

probably of a different order of magnitude. In the case of copper

induced currents may confer the necessary magnetic properties.

For a description of the ingenious receiver invented by Edison

and for other information upon telephonic appliances the reader

may consult Preece and Stubbs' Manual of Telephony.

In existing practice the transmitting instrument depends

upon a variable contact. The first carbon transmitter was con

structed by Edison in 1877, but the instruments now in use are

modifications of Hughes' microphone \ A battery current is led

into the line through pieces of metal or of carbon in loose juxta

position, carbon being almost universally employed in practice.

Under the influence of sonorous vibration the electrical resistance

of the contacts varies, and thus the current in the line is rendered

representative of the sound to be reproduced at the receiving

end.

That the resistance of the contact should vary with the

pressure is not surprising. If two clean convex pieces of metal

are forced together, the conductivity between them is represented

by the diameter of the circle of contact (306). The relation

between the circle of contact and the pressure with which the

masses are forced together has been investigated in detail by
Hertz \ His conclusion for the case of two equal spheres is that

the cube of the radius of the circle of contact is proportional to

the pressure and to the radii of the spheres. But it has not yet

been shewn that the action of the microphone can be adequately

explained upon this principle.

1 Proc. Roy. Soc.t YoL xxvii. p. 362, 1878.
1

Crelle, Jot/rn. MatJi. sen. p. 156, 1882.
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ON PROGRESSIVE WAVES.

From tlt& Proceedings of the London Mathematical Society,

Vol. 7X, p. 21, 1877.

IT has often been remarked that, when a group of waves advances

into still water, the velocity of the group is less than that of the indi

vidual waves of which it is composed ;
the waves appear to advance

through the group, dying a\vay as they approach its anterior limit.

This phenomenon was, I believe, first explained by Stokes, who re

garded the group as formed by the superposition of two infinite trains

of waves, of equal amplitudes and of nearly equal wave-lengths, ad

vancing in the same direction. My attention was called to the subject

about two years since by Mr Froude, and the same explanation then

occurred to me independently*. In my book on the "Theory of

Sound" (191), I have considered the question more generally, and

have shewn that, if Y be the velocity of propagation of any kind of

waves whose wave-length is A, and k = 2ir/X, then U9 the velocity of

a group composed of a great number of waves, and moving into an un

disturbed part of the medium, is expressed by

(i),

* Another phenomenon, also mentioned to me by Mr Froude, admits of a similar

explanation. A steam-launch moving quickly through the water is accompanied by

a peculiar system of diverging waves, of which the most striking feature is the

obliquity of the line containing the greatest elevations of successive waves to the

wave-fronts. This wave pattern may be explained by the superposition of two (or

more) infinite trains of waves, of slightly differing wave-lengths, whose directions

and velocities of propagation are so related in each case that there is no change of

position relatively to the boat. The mode of composition will be best understood by

drawing on paper two sets of parallel and equidistant lines, subject to the above

condition, to represent the crests of the component trains. In the case of two trains

of slightly different wave-lengths, it may be proved that the tangent of the angle

between the line of maxima and the wave-fronts is half the tangent of the angle

between the wave-fronts an r
l the boat's course.
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or, as we may also write it,

U: F-l+ ........................... (2).
dlogk

Thus, if FccX, J7=(l-) V.............................. (3).

In fact, if the two infinite trains be represented by cos k (Vt
-

x)

and cos k'
(
Vt - x), their resultant is represented by

cos k
(
Vt - x) + cos k

f

(
V't - x),

which is equal to

2cos
' -kV k'-k } (k'V' + kV^ k'k'-k } (k'V'

---*} .

cosj

If k
e -

k, V - V be small, we have a train of waves whose amplitude

varies slowly from one point to another between the limits and 2,

forming a series of groups separated from one another by regions com

paratively free from disturbance. The position at time t of the middle

of that group, which was initially at the origin, is given by

which shews that the velocity of the group is (k' F'
- k 7) -r (k'

-
k).

In the limit, when the number of waves in each group is indefinitely

great, this result coincides with (1).

The following particular cases are worth notice, and are here tabu

lated for convenience of comparison :

Foe A, 7=0, Reynolds' disconnected pendulums.

V oc X*, U =
|-F, Deep-water gravity waves.

V oc X
3

U= F, Aerial waves, <fcc.

V cc Ar, U = f F, Capillary water waves.

F oc AT1

,
27= 2 F, Flexural waves.

The capillary water waves are those whose wave-length is so small

that the force of restitution due to capillarity largely exceeds that due

to gravity. Their theory has been given by Thomson (PhiL Mag.,
JiJTov. 1871). The fiexural waves, for which Z7=2F, are those cor

responding to the bending of an elastic rod or plate ("Theory of

Sound," 191).

In a paper read at the Plymouth meeting of the British Association

(afterwards printed in "Mature," Aug. 23, 1877), Prof. Osborne

Reynolds gave a dynamical explanation of the fact that a group of

deep-water waves advances with only half the rapidity of the indi

vidual waves. It appears that the energy propagated across any point,

when a train of waves is passing, is only one-half of the energy neces-
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sary to supply the ^aves which pass in the same time, so that, if the

train of wares be limited, it is impossible that its front can be propa

gated with the full velocity of the waves, because this would imply the

acquisition of more energy than can in fact be supplied. Prof. Reynolds
did not contemplate the cases where more energy is propagated than

corresponds to the waves passing in the same time
\
but his argument,

applied conversely to the results already given, shews that such cases

must exist. The ratio of the energy propagated to that of the passing
waves is U : V ; thus the energy propagated in the unit time is U : V
of that existing in a length F, or U times that existing in the unit

length. Accordingly

Energy propagated in unit time : Energy contained (on an average)

in unit length =d(kV) : dk, by (1).

As an example, I will take the case of small irrotational waves in

water of finite depth I*. If % be measured downwards from the surface,

and the elevation (h) of the wave be denoted by

h = Hcos(nt-kx) .............. . ......... (4),

in which n = &F, the corresponding velocity-potential (<) is

^(*-9 4. ?-k(*-i)
< = . VH ^ .g sin fa* -fee) .......... ,.... (5).

GI
~ 6

This value of < satisfies the general differential equation for irrota

tional motion (v
a
< =

0)> makes the vertical velocity d<f>/dz zero when
z = Z, and dh/dt when z = Q. The velocity of propagation is given by

We may now calculate the energy contained in a length x, which is

supposed to include so great a number of waves that fractional parts

may be left out of account.

For the potential energy we have

(7).
Q

For the kinetic energy,

by (1) and (6). If, in accordance with the argument advanced at the

*
Prof. Reynolds considers the troohoidal wave of Bankine and Froude, which

involves molecular rotation.
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end of this paper, the equality of Vl
and T be assumed, the value of

the velocity of propagation follows from the present expressions. The

whole energy in the waves occupying a length x is therefore (for each

unit of breadth) FJ + T=$gpH
z ,x ........................... (9),

H denoting the maximum elevation.

We have next to calculate the energy propagated in time t across a

plane for which x is constant, or, in other words, the work ( W) that

must be done in order to sustain the motion of the plane (considered

as a flexible lamina) in the face of the fluid pressures acting upon the

front of it. The variable part of the pressure (Sp), at depth *, is

given by

Sp -p-nFg' cos (nt -fa).

while for the horizontal velocity

so that W=Spdzdt^^pH"'.7t.l+ ...... (10),

on integration. From the value of 7 in (6) it may be proved that

^-^{'4^}-^-^};
and it is thus verified that the value of W for a unit time

= -A/ * energy in unit length.
CvK

As an example of the direct calculation of 27, we may take the case

of waves moving under the joint influence of gravity and cohesion.

It is proved by Thomson that

F =
!+r* .......................... (11),

where T' is the cohesive tension. Hence

dk

When k is small, the surface tension is negligible, and then ^=i F;
but when, on the contrary, k is large, Z7=f F, as has already been

stated* When Tl&*zg, U= F. This corresponds to the minimum

velocity of propagation investigated by Thomson.
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Although the argument from interference groups seems satisfactory,

an independent investigation is desirable of the relation between

energy existing and energy propagated. For some time I was at a loss

for a method applicable to all kinds of waves, not seeing in particular

why the comparison of energies should introduce the consideration of

a variation of wave-length. The following investigation, in which the

increment of wave-length is nnayinary^ may perhaps he considered to

meet the want :

Let us suppose that the motion of every part of the medium is

resisted by a force of very small magnitude proportional to tke mass

and to the velocity of the part, the effect of which will be that waves

generated at the origin gradually die away as x increases. The motion,

which in the absence of friction would be represented by cos (nt fee),

under the influence of friction is represented by e-v* cos (nt kx),

where /* is a small positive coefficient. In strictness the value of k is

also altered by the friction; but the alteration is of the second order as

regards the frictional forces and may be omitted under the circum

stances here supposed The energy of the waves per unit length at

any stage of degradation is proportional to the square of the amplitude,
and thus the whole energy on the positive side of the origin is to the

energy of so much of the waves at their. greatest value, i.e., at the

origin, as would be contained in the unit of length, as J* e~^
x dx : 1,

or as (2/ji)-
1

: 1. The energy transmitted through the origin in the

unit time is the same as the energy dissipated : and, if the frictional

force acting on the element of mass m be hmv, where v is the velocity

of the element and h is constant, the energy dissipated in unit time is

AS/rttf
2 or 2hT, T being the kinetic energy. Thus, on the assumption

that the kinetic energy is half the whole energy, we find that the

energy transmitted in the unit time is to the greatest energy existing

in the unit length as Ji : 2p. It remains to find the connection be

tween h and /A.

For this purpose it will be convenient to regard cos (nt kx) as the

real part of e"lt
e

1

**, and to inquire how 1c is affected, when n is given,

by the introduction of friction. Now the effect of friction is repre

sented in the differential equations of motion by the substitution of

cPjdP + hdldt in place of d?/dP, or, since the whole motion is proportional

to e***, by substituting
- ?i

2 + ihn for - n\
' Hence the introduction of

friction corresponds to an alteration of n from n to n \ih (the square

of h being neglected); and accordingly k is altered from k to

k -\tiidk\dn. The solution thus becomes e~*hxtjkltl11 efC*-**, or, .when

the imaginary part is rejected, e~^hxdk'
dn cos (nt kx) ;

so that

jji
= h dkjdn, and h : 2p = dn/dk. The ratio of the energy transmitted
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in the unit time to the energy existing in the unit length is therefore

expressed by dn *dk or d (k V)/dk, as was to be proved.

It has often been noticed, in particular cases of progressive waves,

that the potential and kinetic energies are equal ;
but I do not call to

mind any general treatment of the question. The theorem is not

usually true for the individual parts of the medium*, but must be

understood to refer either to an integral number of wave-lengths, or to

a space so considerable that the outstanding fractional parts of waves

may be left out of account. As an example well adapted to give in

sight into the question, I will take the case of a uniform stretched

circular membrane ("Theory of Sound," 200) vibrating with a given

number of nodal circles and diameters. The fundamental modes are

not quite determinate in consequence of the symmetry, for any dia

meter may be made nodal. In order to get rid of this indeterminate-

ness, we may suppose the membrane to carry a small load attached to

it anywhere except on a nodal circle. There are then two definite

fundamental modes, in one of which the load lies on a nodal diameter,

thus producing no effect, and in the other midway between nodal dia

meters, where it produces a maximum effect ("Theory of Sound,"

208). If vibrations of both modes are going on simultaneously, the

potential and kinetic energies of the whole motion may be calculated

by simple addition of those of the components. Let us now, supposing
the load to diminish without limit, imagine that the vibrations are of

equal amplitude and differ in phase by a quarter of a period. The

result is a progressive wave, whose potential and kinetic energies are

the sums of those of the stationary waves of which it is composed.

For the first component we have V
l
= E cos2 nt, T^-E sin2 nt

;
and

for the second component, 72
= E sin2 nt^ T^ E cos2 nt

',
so that

V
l + F2

= TI + Ts
= J, or the potential and kinetic energies of the

progressive wave are equal, being the same as the whole energy of

either of the components. The method of proof here employed appears
to be sufficiently general, though it is rather difficult to express it in

language which is appropriate to all kinds of waves.

* Aerial waves are an important exception.

END OF VOL. I.
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PREFACE.

appearance of this second and concluding volume has

been delayed by pressure of other work that could not well

be postponed. As in Vol. I. the additions down to 348 are

indicated by square brackets, or by letters following the number

of the section. From that point onwards the matter is new

with the exception of 381, which appeared in the first edition

as 3*8.

The additions to Chapter xix. deal with aerial vibrations in

narrow tubes where the influence of viscosity and heat conduction

are important, and with certain phenomena of the second order

dependent upon viscosity. Chapter XX. is devoted to capillary

vibrations, and the explanation thereby of many beautiful obser

vations due to Savart and other physicists. The sensitiveness of

flames and smoke jets, a very interesting department of acoustics, is

considered in Chapter XXL, and an attempt is made to lay the

foundations of a theoretical treatment by the solution of problems

respecting the stability, or otherwise, of stratified fluid motion.

371, 372 deal with "
bird-calls," investigated by Sondhauss, and

with aeolian tones. In Chapter XXIL a slight sketch is given of

the theory of the vibrations of elastic solids, especially as regards

the propagation of plane waves, and the disturbance due to a

harmonic force operative at one point of an infnite solid. The

important problems of the vibrations of plates, cylinders and

spheres, are perhaps best dealt with in works devoted specially to

the theory of elasticity

The concluding chapter on the facts and theories of audition

could not well have been omitted, but it has entailed labour out of
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proportion to the results. A large part of our knowledge upon
this subject is due to Helmholtz, but most of the workers who

have since published their researches entertain divergent views, in

some cases, it would seem, without recognizing how fundamental

their objections really are. And on several points the observations

recorded by well qualified observers are so discrepant %that no satis

factory conclusion can be drawn at the present time. The future

may possibly shew that the differences are more nominal than real.

In any case I would desire to impress upon the student of this

part of our subject the importance of studying Helmholtz's views

at first hand. In such a book as the present an imperfect outline

of them is all that can be attempted. Only one thoroughly
familiar with the Twiempfindung&i is in a position to appreciate

many of the observations and criticisms of subsequent writers.

TEBLING PLACE, WITHAM.

February, 1896

EDITORIAL NOTE.

THE present re-issue has a few small corrections noted in the

author's copy, and an addition [335a] on the maximum dis

turbance that can be produced by an infinitesimal resonator

exposed to plane waves. The author had written this out

for inclusion.

May, 1926.
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CHAPTER XL

AEBIAL YIBBATIONS.

236. SINCE the atmosphere is the almost universal vehicle of

sound, the investigation of the vibrations of a gaseous medium

has always been considered the peculiar problem of Physical

Acoustics; but in all, except a few specially simple questions,

chiefly relating to the propagation of sound in one dimension, the

mathematical difficulties are such that progress has been very

slow. Even when a theoretical result is obtained, it often happens

that it cannot be submitted to the test of experiment, in default

of accurate methods of measuring the intensity of vibrations. In

some parts of the subject all that we can do is to solve those

problems whose mathematical conditions are sufficiently simple to

admit of solution, and to trust to them and to general principles

not to leave us quite in the dark with respect to other questions

in which we may be interested.

In the present chapter we shall regard fluids as perfect, that is

to say, we shall assume that the mutual action between any two

portions separated by an ideal surface is normal to that surface.

Hereafter we shall say something about fluid friction; but, in

general, acoustical phenomena are not materially disturbed by

such deviation from perfect fluidity as exists in the case of air

and other gases.

The equality of pressure in all directions about a given point

is a necessary consequence of perfect fluidity, whether there be

rest or motion, as is proved by considering the equilibrium of a

small tetrahedron under the operation of the fluid pressures, the
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impressed forces, and the reactions against acceleration. In the

limit, when the tetrahedron is taken indefinitely small, the fluid

pressures on its sides become paramount, and equilibrium requires

that their whole magnitudes be proportional to the areas of the

faces over which they act. The pressure at the point #, y, z will

be denoted by p.

237. If pXdV, pYdV, pZdV, denote the impressed forces

acting on the element of mass pdV, the equation of equilibrium

is

dp = p (Xdx + Ydy 4- Zdz),

where dp denotes the variation of pressure corresponding to

changes dx, dy, dz in the co-ordinates of the point at which the

pressure is estimated. This equation is readily established by

considering the equilibrium of a small cylinder with flat ends, the

projections of whose axis on those of co-ordinates are respectively

dx, dy, dz. To obtain the equations of motion we have, in accord

ance with D'Alembert's Principle, merely to replace X, &c. by
X Du/Dt, &c., where Du/Dt, &c. denote the accelerations of the

particle of fluid considered. Thus

^-,/V^
J)v

In hydrodynamical investigations it is usual to express the veloci

ties of the fluid u, v/w in terms of #, y, z and t. They then
denote the velocities of the particle, whichever it may be, that at

the time t is found at the point x
y y, z. After a small interval of

time dt, a new particle has reached x, y, z\ dujdt.dt expresses
the excess of its velocity over that of the first particle, while

Du/Dt. dt on the other hand expresses the change in the velocity
of the original particle in the same time, or the change of velocity
at a point, which is not fixed in space, but moves with the fluid.

To this notation we shall adhere. In the change contemplated in

dfdt, the position in space (determined by the values of #, y, z) is

retained invariable, while in D/Dt it is a certain particle of the
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fluid on which attention is fixed The relation between the two
kinds of differentiation with respect to time is expressed by

& d
.

d
. d d

and must be clearly conceived, though in a large class of impor
tant problems with which we shall be occupied in the sequel, the
distinction practically disappears. Whenever the motion is very
small, the terms ud/<fa, &c. diminish in relative importance, and

ultimately /Lt=

238. We have further to express the condition that there is

no creation or annihilation of matter in the interior of the fluid.

If a, ft} y be the edges of a small rectangular parallelepiped
parallel to the axes of co-ordinates, the quantity of matter which

passes out of the included space in time dt in excess of that which
enters is

\aftydf,

and this must be equal to the actual loss sustained, or

Hence

dp d(pu) d(pv) d(pw) .

-=- -4 - = (

the so-called equation of continuity. When p is constant (with

respect to both time and space), the equation assumes the simple
form

du dv dw
-j- 4- -j- + T- = Q (2).dx dy dz ^ *

In problems connected with sound, the velocities and the varia

tion of density are usually treated as small quantities. Putting

/>
=

pQ (1 4- s)9 where 5, called the condensation, is small, and neg

lecting the products uds/dx, &a, we find

& a* & ^=0
dt dx dy dz ^ '

In special cases these equations take even simpler forms. In

the case of an incompressible fluid whose motion is entirely

parallel to the plane of xy>

du dv ...
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from which we infer that the expression udy vdx is a perfect

differential. Calling it cty, we have as the equivalent of (4)

~-~
, -j- .................

,

dy dx ^ h

where ty is a function of the co-ordinates which so far is perfectly

arbitrary. The function ty is called the srgara-funetion, since the

motion of the fluid is everywhere in the direction of the curves

njr
= constant. When the motion is steady, that is, always the

same at the same point of space, the curves ty
= constant mark

out a system of pipes or channels in which the fluid may be sup

posed to flow. Analytically, the substitution of one function -^
for the two functions u and v is often a step of great consequence.

Another case of importance is when there is symmetry round

an axis, for example, that of x. Everything is then expressible in

terms of # and r, where r=^/(y*+ z*), and the motion takes place
in planes passing through the axis of symmetry. If the velocities

respectively parallel and perpendicular to the axis of symmetry be

u and q, the equation of continuity is-

which, as before, is equivalent to

-
- *--

^ being the stream-function.

239. In almost all the cases with which we shall have to

deal, the hydrodynamical equations undergo a remarkable sim

plification in virtue of a proposition first enunciated by Lagrange.
If for any part of a fluid mass udx+ vdy+ wdz be at one moment
a perfect differential

d<}>, it will remain so for all subsequent
time. In particular, if a fluid be originally at rest, and be then
set in motion by conservative forces and pressures transmitted
from the exterior, the quantities

d^__dw dw du du dv

dz dy' ~dx~~'dz
y

dy~'dx'

(which we shall denote by ^, f) can never depart from zero.
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We assume that p is a function of pf and we shall write for

brevity

The equations of motion obtained from (1), (2), 237, are

cfe _. du du du du
-j- = JL -=7 u-j-- v-^-- w^f- -- ........ ..(2),
doc dt dx dy dz ^ h

with two others of the same form relating to y and z. By
hypothesis,

dy dx '

so that by differentiating the first of the above equations with

respect to y and the second with respect to a?, and subtracting,
we eliminate tzr and the impressed forces, obtaining equations
which may be put into the form

t
.
dv

with two others of the same form giving Dg/Dt, Dq/Dt.

In the case of an incompressible fluid, we may substitute for

du/dx+ dv/dy its equivalent dw/dz, and thus obtain

J>f du dv dw -, . ,.s

which are the equations used by Helmholtz as the foundation

of his theorems respecting vortices.

If the motion be continuous, the coefficients of f, ^7, f in

the above equations are all finite. Let L denote their greatest

numerical value, and li the sum of the numerical values of , 17, f.

By hypothesis, XI is initially zero; the question is whether in

the course of time it can become finite. The preceding equa
tions shew that it cannot; for its rate of increase for a given

particle is at any time less than 3I/Q, all the quantities con

cerned being positive. Now even if its rate of increase were

as great as SLQ,, Ii would never become finite, as appears from

the solution of the equation
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A fortiori in the actual case, II cannot depart from zero, and
the same must be true of f, ??, .

It is worth notice that this conclusion would not be disturbed

by the presence of fiictional forces acting on each particle pro

portional to its velocity, as may be seen by substituting X K
,

Y KV, Z-KW, for X, F, Z in (2)
1
. But it is otherwise with

the frictional forces which actually exist in fluids, and are de

pendent on the relative velocities of their parts.

The first satisfactory demonstration of the important pro

position now under discussion was given by Cauchy; but that

sketched above is due to Stokes 2
. It is not sufficient merely to

shew that if, and whenever, f, ij, f vanish, their differential

coefficients Dg/Dt, &c. vanish also, though this is a point that is

often overlooked. When a body falls from rest under the action

of gravity, s oc 5*
;
but it does not follow that 5 never becomes

finite. To justify that conclusion it would be necessary to prove
that s vanishes in the limit, not merely to the first order, but
to all orders of the small quantity t\ which, of course, cannot

be done in the case of a falling body. If, however, the equation
had been s oc 5, all the differential coefficients of s with respect
to t would vanish with t, if s did so, and then it might be in

ferred legitimately that 5 could never vary from zero.

By a theorem due to Stokes, the moments of momentum about

the axes of co-ordinates of any infinitesimal spherical portion
of fluid are equal to

, 77, f, multiplied by the moment of

inertia of the mass
;
and thus these quantities may be regarded

as the component rotatory velocities of the fluid at the point to

which they refer.

If f, 77, % vanish throughout a space occupied by moving
fluid, any small spherical portion of the fluid if suddenly solidified

would retain only a motion of translation. A proof of this

proposition in a generalised form will be given a little later.

Lagrange's theorem thus consists in the assertion that particles
of fluid at any time destitute of rotation can never acquire it.

1 By introducing such forces and neglecting the terms dependent on inertia, we
should obtain equations applicable to the motion of electricity through uniform
conductors.

2
Cambridge Trans. Vol. vm. p. 307, 1845. B. A. Eeport on Hydrodynamics,

1847.
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240. A somewhat different mode of investigation has been

adopted by Thomson, which affords a highly instructive view

of the whole subject
1
.

By the fundamental equations
tiu Dv ,

d-s? = Xdx + Ydy -f Zdz
-jr-

dx j- ay ^-
dz.

Xow Xdx + Ydy + Zdz = dR, if the forces be conservative,

and
Du Dv, Dw ,

D
, , , ,

x Ddx Ldy Ddz
^(udv + vdy+wfy-

in which
Ddx ,Dx__ ==^_ =

Thus, if Z72 = ti
2 4- 1^ -J- ^2

, we have

disr = dR
jr-

or
j^

Integrating this equation along any finite arc PjP2 , moving
with the fluid, we have

in which suffixes denote the values of the bracketed function

at the points P2 and Pl respectively. If the arc be a complete

circuit,

jr- \(iidx +vdy + wdz) = Q ............... (4);
J-fkj

or, in words,

The line-integral of the tangential component velocity round

any closed curve of a moving fluid remains constant throughout all

time.

The line-integral in question is appropriately called the circu

lation, and the proposition may be stated :

The circulation in any closed line moving with the fluid re

mains cwistant.

1 Vortex Motion. Edinburgh Transactions, 1869.
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In a state of rest the circulation is of course zero, so that,

if a fluid be set in motion by pressures transmitted from the

outside or by conservative forces, the circulation along any closed

line must ever remain zero, which requires that udx + vdy + wdz
be a complete differential.

But it does not follow conversely that in irrotational motion
there can never be circulation, unless it be known that $ is single-
valued

;
for otherwise fd(}> need not vanish round a closed circuit.

In such a case all that can be said is that there is no circu

lation round any closed curve capable of being contracted to

a point without passing out of space occupied by irrotationally

moving fluid, or more generally, that the circulation is the same
in all mutually reconcilable closed curves. Two curves are said

to be reconcilable, when one can be obtained from the other

by continuous deformation, without passing out of the irrota

tionally moving fluid.

Within an oval space, such as that included by an ellipsoid, all

circuits are reconcilable, and therefore if a mass of fluid of that
form move irrotationally, there can be no circulation along any
closed curve drawn within it. Such spaces are called simply-
connected. But in an annular space like that bounded by the
surface of an anchor ring, a closed curve going round the ring is

not continuously reducible to a point, and therefore there may be
circulation along it, even although the motion be irrotational

throughout the whole volume included. But the circulation is

zero for every closed curve which does not pass round the ring, and
has the same constant value for all those that do.

[In the above theorems ''circulation
1 '

is defined without
reference to mass. If the fluid be of uniform density, the momen
tum reckoned round a closed circuit is proportional to circulation,
but in the case of a compressible fluid a distinction must be
drawn. The existence of a velocity-potential does not then imply
evanescence of the integral momentum reckoned round a closed

circuit.]

241. When udx + vdy + wdz is an exact differential
d<f>,

the

velocity in any direction is expressed by the corresponding rate

of change of <, which is called the velocity-potential, and

da
.
^ dw

dx dy ~dz
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may be replaced by

If 8 denote any closed surface, the rate of flow outwards across the

element dS is expressed by dS.d^jdn, where d<f>/dn is the rate of

variation of
<j>

in proceeding outwards along the normal. In the

case of constant density, the total loss of fluid in time dt is thus

the integration ranging over the whole surface of S. If the space

8 be full both at the beginning and at the end of the time dt,

the loss must vanish ;
and thus

.(1).

The application of this equation to the element dxdydz gives for

the equation of continuity of an incompressible fluid

da?

or, as it is generally written,

V^ = ........................... (3);

when it is desired to work with polar co-ordinates, the trans

formed equation is more readily obtained directly by applying (1)

to the corresponding element of volume, than by transforming (2)

in accordance with the analytical rules for effecting changes in the

independent variables.

Thus, if we take polar co-ordinates in the plane xy> so that

a?

we find

or, if we take polar co-ordinates in space,

Simpler forms are assumed in special cases, such, for example, as

that of symmetry round z in (5).
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When the fluid is compressible, and the motion such that the

squares of small quantities may be neglected, the equation of con

tinuity is by (3), 238,

where any form of V2
< may be used that may be most convenient

for the problem in hand

242. The irrotational motion of incompressible fluid within

any simply-connected closed space 8 is completely determined by
the normal velocities over the surface of S. If 8 be a material

envelope, it is evident that an arbitrary normal velocity may be im

pressed upon its surface, which normal velocity must be shared

by the fluid immediately in contact, provided that the whole

volume inclosed remain unaltered. If the fluid be previously at

rest, it can acquire no molecular rotation under the operation of

the fluid pressures, which shews that it must be possible to de

termine a function <, such that V2
< = throughout the space

inclosed by S, while over the surface d<pfdn has a prescribed value,

limited only by the condition

dn (1).

An analytical proof of this important proposition is indicated

in Thomson and Tait's Natural Philosophy, 317.

There is no difficulty in proving that but one solution of the

problem is possible. By Green's theorem, if V2
< = 0,

the integration on the left-hand side ranging over the volume,
and on the right over the surface of 8. Now if < and < + A<
be two functions, satisfying Laplace's equation, and giving pre
scribed surface-values of

d<j>fdn, their difference A< is a function
also satisfying Laplace's equation, and making dA<f>/dn vanish
over the surface of 8. Tinder these circumstances the double

integral in (2) vanishes, and we infer that at every point of 8
dAfydx, dA(f>/dyy d&fydz must be equal to zero. In other words
A< must be constant, and the two motions identical. As .a par
ticular case, there can be no motion of the irrotational kind
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within the volume S> independently of a motion of the surface.

The restriction to simply-connected spaces is rendered necessary

by the failure of Green's theorem, which, as was first pointed
out by Helmholtz, is otherwise possible.

When the space S is multiply-connected, the irrotational

motion is still determinate, if besides the normal velocity at

every point of S there be given the values of the constant

circulations in all the possible irreconcilable circuits. For a

complete discussion of this question we must refer to Thomson's

original memoir, and content ourselves here with the case of a

doubly-connected space, which will suffice for illustration.

Let ABCD be an endless tube within which fluid moves

irrotationally. For this motion there must exist a velocity-poten

tial, whose differential coefficients,

expressing, as they do, the com- -
FlS- 54-

ponent velocities, are necessarily

single-valued, but which need not

itselfbe single-valued. The simplest

way of attacking the difficulty pre
sented by the ambiguity of

<j>,
is to

conceive a barrier AB taken across

the ring, so as to close the passage.

The space ABCDBAEF is then

simply continuous, and Green's theo

rem applies to it without modifica

tion, if allowance be made for a possible finite difference in the

value of
<j>
on the two sides of the barrier. This difference, if it

exist, is necessarily the same at all points of AB, and in the

hydrodynamical application expresses the circulation round the

ring.

In applying the equation

we have to calculate the double integral over the two faces of

the barrier as well as over the original surface of the ring. Now

since -^ has the same value on the two sides,
dn

j&dS (over two faces of AS)= tj^
KdS=Kfl^8

*



12 MULTIPLY-CONNECTED SPACES. [242.

if K denote the constant difference of <. Thus, if K vanish,
or there be no circulation round the ring, we infer, just as for

a simply-connected space, that
<j>

is completely determined by
the surface-values of d$jdn. If there be circulation, <f>

is still

determined, if the amount of the circulation be given. For,
if

<f>
and < + A< be two functions satisfying Laplace's equation

and giving the same amount of circulation and the same normal
velocities at S, their difference A<f> also satisfies Laplace's equa
tion and the condition that there shall be neither circulation

nor normal velocities over 8. But, as we have just seen, under
these circumstances A< vanishes at every point.

Although in a doubly-connected space irrotational motion
is possible independently of surface normal velocities, yet such

a motion cannot be generated by conservative forces nor by
motions imposed (at any previous time) on the bounding surface,

for we have proved that if the fluid be originally at rest, there

can never be circulation along any closed curve. Hence, for

multiply-connected as well as simply-connected spaces, if a fluid

be set in motion by arbitrary deformation of the boundary, the

whole mass comes to rest so- soon as the motion of the boundary
ceases.

If in a fluid moving without circulation all the fluid outside

a reentrant tube-like surface of uniform section become instan

taneously solid, then also at the same moment all the fluid

within the tube comes to rest. This mechanical interpretation,
however unpractical, will help the student- to understand more

clearly what is meant by a fluid having no circulation, and it

leads to an extension of Stokes' theorem with respect to mole
cular rotation. For, if all the fluid (moving subject to a

velocity-potential) outside a spherical cavity of any radius be
come suddenly solid, the fluid inside the cavity can retain no
motion. Or, as we may also state it, any spherical portion of

an irrotationally moving [incompressible] fluid becoming suddenly
solid would possess only a motion of translation, without rotation

1
,

A similar proposition will apply to a cylinder disc, or cylinder
with flat ends, in the case of fluid moving irrotationally in two
dimensions only.

1 Thomson on Vortex Notion, loc. cit*
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The motion of an incompressible fluid which has been once

at rest partakes of the remarkable property ( 79) common to that

of all systems which are set in motion with prescribed velocities,

namely, that the energy is the least possible. If any other

motion be proposed satisfying the equation of continuity and

the boundary conditions, its energy is necessarily greater than

that of the motion which would be generated from rest 1
.

243. The fact that the irrotational motion of incompressible

fluid depends upon a velocity-potential satisfying Laplace's

equation, is the foundation of a far-reaching analogy between

the motion of such a fluid, and that of electricity or heat in

a uniform conductor, which it is often of great service to bear

in mind. The same may be said of the connection between

all the branches of Physics which depend mathematically on

a potential, for it often happens that the analogous theorems

are far from equally obvious. For example, the analytical

theorem that, if V2 = 0,

over a closed surface, is most readily suggested by the fluid

interpretation, but once obtained may be interpreted for electric

or magnetic forces.

Again, in the theory of the conduction of heat or electricity,

it is obvious that there can be no steady motion in the interior

of S, without transmission across some part of the bounding

surface, but this, when interpreted for incompressible fluids, gives

an important and rather recondite law.

244. "When a velocity-potential exists, the equation to deter

mine the pressure may be put into a simpler form. We have from

(1),240,

cZflr-dE-^<fy
+ i<H7* ................... (1),

whence by integration

1 [The reader who wishes to pursue the study of general hydrodynamics is

referred to the treatises of Lamb and Basset.]
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so that

which is the form ordinarily given.

If p be constant, / is replaced, of course, by .

The relation between p and < in the case of impulsive motion

from rest may be deduced from (2) by integration. We see that

-\pdt~ $ ultimately.

The same conclusion may be arrived at by a direct application of

mechanical principles to the circumstances of impulsive motion.

Ifp = tcp, equation (2) takes the form

(3).

If the motion be such that the component velocities are always the

same at the same point of space, it is called steady, and
<f>
becomes

independent of the time. The equation of pressure is then

,
-

:
<*>

or in the case when there are no impressed forces,

P
- <>

In most acoustical applications of (2), the velocities and condensa
tion are small, and then we may neglect the term f U*, and sub

stitute 2 for I -<
,
if 8p denote the small variable part of : thus

PQ J p
r -r '

po dt ^ ^

which with

ds

are the equations by means of which the small vibrations of an
elastic fluid are to be investigated.
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If a2 = dp/dp, so that Sp = a2
/?^ (6) becomes

and we get on elimination of ss

245. The simplest kind of wave-motion is that in which the

excursions of every particle are parallel to a fixed line, and are the

same in all planes perpendicular to that line. Let us therefore

(assuming that R = 0) suppose that
<f>

is a function of x (and t)

only. Our equation (9) 244 becomes

<

the same as that already considered in the chapter on Strings.

We there found that the general solution is

<j>=f(as-at) + F(a; + at) ..................(2),

representing the propagation of independent waves in the positive

and negative directions with the common velocity a.

Within such limits as allow the application of the approximate

equation (1), the velocity of sound is entirely independent of the

form of the wave, being, for example, the same for simple waves

n

<f>
= A cos -

(# at),
A-

whatever the wave-length may be. The condition satisfied by the

positive wave, and therefore by the initial disturbance if a posi

tive wave alone be generated, is

or by (8) 244
2-os = ............ . ......... ......(.3).

Similarly, for a negative wave

^-j-o$ = ............................ (4).

Whatever the initial disturbance may be (and u and s are both

arbitrary), it can always be divided into two parts, satisfying

respectively (3) and (4), which are propagated undisturbed In
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each component wave the direction of propagation is the same as

that of the motion of the condensed parts of the fluid.

The rate at which energy is transmitted across unit of area of

a plane parallel to the front of a progressive wave may be re

garded as the mechanical measure of the intensity of the radiation.

In the case of a simple wave, for which

the velocity of the particle at x (equal to d<f>/dx) is given by

=-^ sin
A.

and the displacement % is given by

- sin ?(#-- a*) ..................(6),
A. A.

<Z

The pressure p=po+ &p, where by (6) 244

^> =--/) ajisin-(a? at) ...............(8).

Hence, if W denote the work transmitted across unit area of the

plane x in time t,

_= (p + Sp) |= ^p^U\ A*+ periodic terms.

If the integration with respect to time extend over any number of

complete periods, or practically whenever its range is sufficiently

long, the periodic terms may be omitted, and we may take

(9)5

or by (3) and (6), if | now denote the maximum value of the

velocity and s the maximum value of the condensation,

W=fat*at = faa*tt (10).

Thus the work consumed in generating waves of harmonic type

is the same as would be required to give the maximum velocity |

to the whole mass of air through which the waves extend 1
.

1 The earliest statement of the principle embodied in equation (10) that I have

met "with is in a paper by Sir W. Thomson, "On the possible density of the

luminiferous medium, and on the mechanical value of a cubic mile of sun-light.
"

PML Mag. n. p. 36, 1855.
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In terms of the maximum excursion by (7) and (9)

where r(=X/a) is the periodic time. In a given medium the
mechanical measure of the intensity is proportional to the square
of the amplitude directly, and to the square of the periodic time

inversely. The reader, however, must be on his guard against

supposing that the mechanical measure of intensity of undulations
of different wave lengths is a proper measure of the loudness of
the corresponding sounds, as perceived by the ear.

In any plane progressive wave, whether the type be harmonic
or not, the whole energy is equally divided between the potential
and kinetic forms. Perhaps the simplest road to this result is

to consider the formation of positive and negative waves from an
initial disturbance, whose energy is wholly potential*. The total

energies of the two derived progressive waves are evidently equal,
and make up together the energy of the original disturbance.

Moreover, in each progressive wave the condensation (or rare

faction) is one-half of that which existed at the corresponding
point initially, so that the potential energy of each progressive
wave is one-quarter of that of the original disturbance. Since, as

we have just seen, the whole energy is one-half of the same

quantity, it follows that in a progressive wave of any type one-

half of the energy is potential and one-half is kinetic.

The same conclusion may also be drawn from the general

expressions for the potential and kinetic energies and the relations

between velocity and condensation expressed in (3) and (4).

The potential energy of the element of volume dV is the work

that would be gained during the expansion of the corresponding

quantity of gas from its actual to its normal volume, the expansion

being opposed throughout by the normal pressure pQ . At any
stage of the expansion, when the condensation is s', the effective

pressure Sp is by 244 az

pQ s
f

t which pressure has to be multiplied

by the corresponding increment of volume dV.ds'. The whole

work gained during the expansion from dV to dV(l+$) is

therefore a?p dV'. /O s''ds' or ^arp dV.s~. The general expressions
for the potential and kinetic energies are accordingly

1
Bosanquet, Phil. Mag. XLV. p. 173. 1873.

2 Phil. Mag. (5) i. p. 260. 1876.



18 NEWTON'S KVESTIGATION. [245.

potential energy = Ja
2
po Ifp

2 dV (12),

kinetic energy = Jp
j

1 1 u2 dV (13),

and these are equal in the case of plane progressive waves for

which
u as.

If the plane progressive waves be of harmonic type, u and s

at any moment of time are circular functions of one of the space
co-ordinates (#), and therefore the mean value of their squares
is one-half of the maximum value. Hence the total energy of

the waves is equal to the kinetic energy of the whole mass of

air concerned, moving with the maximum velocity to be found in

the waves, or to the potential energy of the same mass of air

when condensed to the maximum density of the waves.

[It may be worthy of notice that when terms of the second

order are retained, a purely periodic value of u does not correspond

to a purely periodic motion. The quantity of fluid which passes

unit of area at point x in time dt is pudt, or p (l + s)udt. If u

be periodic, fudt = 0, but fsudt may be finite. Thus in a positive

progressive wave

fsudt = afs*dt,

and there is a transference of fluid in the direction of wave

propagation.]

246. The first theoretical investigation of the velocity of

sound was made by Newton, who assumed that the relation be

tween pressure and density was that formulated in Boyle's law. If

we assume p = /cp, we see that the velocity of sound is expressed

by \/K, or Vp -* V/>> in which the dimensions of p (= force ~ area)

are [M] [L]~
l

[Z
1

]"
8
, and those of p (= mass ^-volume) are [M] [i]~

3
.

Newton expressed the result in terms of the '

height of the homo

geneous atmosphere' defined by the equation

9pk**p (1),

where p and p refer to the pressure and the density at the earth's

surface. The velocity of sound is thus *J(gh), or the velocity which

would be acquired by a body falling freely under the action of

gravity through half the height of the homogeneous atmosphere.

To obtain a numerical result we require to know a pair of

simultaneous values ofp and p,
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[It is found by experiment
1 that at Cent, under the pressure

due (at Paris) to 760 mm. of mercury at the density of dry air

is '0012933 gins, per cubic centimetre. If we assume as the

density of mercury at 13*5953*, and #=980*939, we have

in c.G.S. measure

p = 760 x 13-5953 x 980'939, p = '0012933,

whence a = \/(p/p)
= 27994*5

;

so that the velocity of sound at
=

would be 279'9-AS metres per

second, falling short of the result of direct observation by about a

sixth part.]

Newton's investigation established that the velocity of sound

should be independent of the amplitude of the vibration, and also

of the pitch, but the discrepancy between his calculated value

(published in 1687) and the experimental value was not explained
until Laplace pointed out that the use of Boyle's law involved

the assumption that in the condensations and rarefactions ac

companying sound the temperature remains constant, in contra

diction to the known fact that, when air is suddenly compressed,
its temperature rises. The laws of Boyle and Charles supply only

one relation between the three quantities, pressure, volume,

and temperature, of a gas, viz.

.(2),

where the temperature 6 is measured from the zero of the gas
thermometer ; and therefore without some auxiliary assumption it

is impossible to specify the connection between p and v (or p).

Laplace considered that the condensations and rarefactions con

cerned in the propagation of sound take place with such rapidity

that the heat and cold produced have not time to pass away, and

that therefore the relation between volume and pressure is sensibly

the same as if the air were confined in an absolutely non-con

ducting vessel. Under these circumstances the change of pressure

corresponding to a given condensation or rarefaction is greater

than on the hypothesis of constant temperature, and the velocity

of sound is accordingly increased.

1 On the Densities of the Principal Gases, Proc. Roy. Soc. vol. mi. p. 147,

1893.
2 Volkmann, Wied. Ann. vol. SHI. p, 221, 1881.
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In equation (2) let v denote the volume and p the pressure of

the unit of mass, and let 8 be expressed in centigrade degrees
reckoned from the absolute zero 1

. The condition of the gas (if

uniform) is defined by any two of the three quantities jp, v, ff, and

the third may be expressed in terms of them. The relation

between the simultaneous variations of the three quantities is

dd_dp dv

~9~J
+ ^ <8>"

In order to effect the change specified by dp and dv} it is

in general necessary to communicate heat to the gas. Calling
the necessary quantity of heat dQ, we may write

Suppose now (a) that dp 0. Equations (3) and (4) give

-r| (p const.) = f-~
J-=,

where
-^ (p const.) expresses the specific heat of the gas under a

constant pressure. This being denoted by /cp , we have

fdQ\v ._.

(5) -

Again, suppose (b) that dv = 0. We find in a similar manner
that, if KV denote the specific heat under a constant volume,

In order to obtain the relation between dp and dv when
there is no communication of heat, we have only to put dQ = 0.

Thus

or, on substituting for the differential coefficients of Q their values
in terms of KV , KP ,

dv dv

Since v =l/p, dv/v = -dp/p;

so that 'fE=,y
dp PK, p

7

1 On the ordinary centigrade scale the absolute zero is about - MS',
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if, as usual, the ratio of the specific heats be denoted by 7.

Laplace's value of the velocity of sound is therefore greater than

Newton's in the ratio of Vy : 1.

By integration of (8), we obtain for the relation between

p and p, on the supposition of no communication of heat,

where p , p, are two simultaneous values. Under the same
circumstances the relation between pressure and temperature is

by (3)

The magnitude of 7 cannot be determined with accuracy by direct

experiment, but an approximate value may be obtained by a
method of which the following is the principle. Air is compressed
into a reservoir capable of being put into communication with
the external atmosphere by opening a wide valve. At first the

temperature of the compressed air is raised, but after a time

the superfluous heat passes away and the whole mass assumes
the temperature of the atmosphere . Let the pressure (measured

by a manometer) be p. The valve is now opened for as short

a time as is sufficient to permit the equilibrium of pressure to

be completely established, that is, until the internal pressure
has become equal to that of the atmosphere P. If the experiment
be properly arranged, this operation is so quick that the air in the

vessel has not sufficient time to receive heat from the sides, and

therefore expands nearly according to the law expressed in (9).

Its temperature 6 at the moment the operation is complete
is therefore determined by

The enclosed air is next allowed to absorb heat until it has

regained the atmospheric temperature ,
and its pressure (p') is

then observed. During the last change the volume is constant,

and therefore the relation between pressure and temperature

gives

1 It is here assumed that y is constant. This equation appeaxs to have been

given first by Poisson.
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so that by elimination of

L -(}*p~\p) '

logp- logP ,,>.
whence y "

logy -log/
..................... ( )-

By experiments of this nature Clement and Desormes de

termined 7= 1'3492 ;
but the method Is obviously not susceptible

of any great accuracy. The value of 7 required to reconcile

the calculated and observed velocities of sound is 1-408, of the

substantial correctness of which there can be little doubt.

We are not, however, dependent on the phenomena of sound

for our knowledge of the magnitude of 7. The value of xp

the specific heat at constant pressure has been determined

experimentally by Begnault; and although on account of in

herent difficulties the experimental method 1

may fail to yield

a satisfactory result for #, the information sought for may be

obtained indirectly by means of a relation between the two

specific heats, brought to light by the modern science of Thermo

dynamics.

If from the equations

dQ dv dp }_^f If ___. 1 mf
* I

-/T
~ Kn i lf"B I

9 v

dff _ dv dp
0- T +

p )

we eliminate dp, there results

dQt.fe-.KjEJZ
+ iCtde ............... (15).

Let us suppose that dQ = 0, or that there is no communication

of heat. It is known that the heat developed during the com

pression of an approximately perfect gas, such as air, is almost

exactly the thermal equivalent of the work done in compressing
it.- This important principle was assumed by Mayer in his

celebrated memoir on the dynamical theory of heat, though
on grounds which can hardly be considered adequate. However

that may be, the principle itself is very nearly true, as has since

been proved by the experiments of Joule and Thomson.

If we measure heat in dynamical units, Mayer's principle may
be expressed jcvdffpdv on the understanding that there is

1
[See, however, Joly, Phil. Trans, vol. CLXXXH.A, 1891.]
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no communication of heat. Comparing this with (15), we see-

that

K K 7? (lft\Kp KV -* . ..^JLUJ,
and therefore

The value of pv in gravitation measure (gramme, centimetre)
is 1033 -4- -001293, at Cent, so that

1033

001293 x 272*85
*

By Regnault's experiments the specific heat of air is '2379

of that of water
;
and in order to raise a gramme of water one

degree Cent., 42350 gramme-centimetres of work must be done
on it. Hence with the same units as for R,

KP = -2379 x 42350.

Calculating from these data, we find <y
- 1-410, agreeing almost

exactly with the value deduced from the velocity of sound. This

investigation is due to Rankine, who employed in it 1850 to

calculate the specific heat of air, taking Joule's equivalent
and the observed velocity of sound as data. In this way he

anticipated the result of Regnault's experiments, which were

not published until 1853.

247. Laplace's theory has often been the subject of mis

apprehension among students, and a stumblingblock to those

remarkable persons, called by De Morgan
'

paradoxers/ But there

can be no reasonable doubt that, antecedently to all calculation,

the hypothesis of no communication of heat is greatly to be

preferred to the equally special hypothesis of constant temperature.
There would be a real difficulty if the velocity of sound were

not decidedly in excess of Newton's value, and the wonder is

rather that the cause of the excess remained so long undiscovered.

The only question which can possibly be considered open,
is whether a small part of the heat and cold developed may not

escape by conduction or radiation before producing its full effect.

Everything must depend on the rapidity of the alternations.

Below a certain limit of slowness, the heat in excess, or defect,

would have time to adjust itself, and the temperature would

remain sensibly constant. In this case the relation between
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pressure and density would be that which leads to Newton's value

of the velocity of sound. On the other hand, above a certain

limit of quickness, the gas would behave as if confined in a

non-conducting vessel, as supposed in Laplace's theory. Now

although the circumstances of the actual problem are better

represented by the latter than by the former supposition, there

may still (it may be said) be a sensible deviation from the law of

pressure and density involved in Laplace's theory, entailing a

somewhat slower velocity of propagation of sound. This question

has been carefully discussed by Stokes in a paper published

in 1851 1
,
of which the following is an outline.

The mechanical equations for the small motion of air are

with the equation of continuity

ds du dv dw

The temperature is supposed to be uniform except in so far as

it is disturbed by the vibrations themselves, so that if 6 denote

the excess of temperature,

(3).

The effect of a small sudden condensation 5 is to produce an

elevation of temperature, which may be denoted by @s. Let

dQ be the quantity of heat entering the element of volume in

time dt, measured by the rise of temperature that it would

produce, if there were no condensation. Then (the distinction

between DfDt and d/dt being neglected)

dt

dQIdt being a function of 6 and its differential coefficients with

respect to space, dependent on the special character of the

dissipation. Two extreme cases may be mentioned; the first

when the tendency to equalisation of temperature is due to

conduction, the second when the operating cause is radiation,

and the transparency of the medium such that radiant heat is

1 Phil. Mag. (4) i. 305.



247.] OF EFFECT OF BADIATIOX. 25

not sensibly absorbed within a distance of several wave-lengths.
In the former case dQjdt :t V 2

, and in the latter, which is that

selected by Stokes for analytical investigation, dQjdt x ( 6),

Newton's law of radiation being assumed as a sufficient approxi
mation to the truth. We have then

d6 ds

In the case of plane waves, to which we shall confine our

attention, v and w vanish, while u, p, s, 6 are functions of x (and )

only. Eliminatingp and u between (1), (2) and (3), we find

d?s__ (d-8 d*8\"**
from which and (5) we get

d \d*s d

if 7 be written (in the same sense as before) for 1 + a/8.

If the vibrations be harmonic, we may suppose that $ varies

as e*
71

*, and the equation becomes

M
n

$=Q
da? K q+ iyn'

Let the coefficient of s in (7) be put into the form

where

and

......(9).
q q

Equation (7) is then satisfied by terms of the form

tsin iff)x

but
(/*, being positive, and fy less than \*jf) if we wish for the

expression of the wave travelling in the positive direction, we

must take the lower sign. Discarding the imaginary part, we

find as the appropriate solution

s = Aer***** cos (nt - ^ cos^ x) ............(10).
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The first thing to be noticed is that the sound cannot be

propagated to a distance unless sin ty be insensible.

The velocity of propagation (F) is

V=n/jr
l

seci/r .....(11),

which, when sin
ijr

is insensible, reduces to

F=?i^~
1

(12).

Now from (9) we see that ty cannot be insensible, unless

qjn is either very great, or very small. On the first supposition

from (11), or directly from (7), we have approximately, Y=\/K
(Newton); and on the second, F=V(#7), (Laplace), as ought

evidently to be the case, when the meaning of q in (5) is con

sidered "What we now learn is that, if q and n were comparable,
the effect would be not merely a deviation of F from either of

the limiting values, but a rapid stifling of the sound, which we
know does not take place in nature.

Of this theoretical result we may convince ourselves, as

Stokes explains, without the use of analysis. Imagine a mass

of air to be confined within a closed cylinder, in which a piston

is worked with a reciprocating motion. If the period of the

motion be very long, the temperature of the air remains nearly

constant, the heat developed by compression having time to

escape by conduction or radiation. Under these circumstances

the pressure is a function of volume, and whatever work has

to be expended in producing a given compression is refunded

when the piston passes through the same position in the reverse

direction; no work is consumed in the long run. Next suppose
that the motion is so rapid that there is no time for the heat

and cold developed by the condensations and rarefactions to

escape. The pressure is still a function of volume, and no work

is dissipated. The only difference is that now the variations

of pressure are more considerable than before in comparison
with the variations of volume. We see how it is that both on

Newton's and on Laplace's hypothesis the waves travel without

dissipation, though with different velocities.

But in intermediate cases, when the motion of the piston
is neither so slow that the temperature remains constant nor

so quick that the heat has no time to adjust itself, the result

is different The work expended in producing a small condensa-
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tion is no longer completely refunded during the corresponding
rarefaction on account of the diminished temperature, part of

the heat developed by the compression having in the meantime

escaped. In fact the passage of heat by conduction or radiation

from a wanner to a finitely colder body always involves dissipa

tion, a principle which occupies a fundamental position in the

science of Thermodynamics, In order therefore to maintain the

motion of the piston, energy must be supplied from without,

and if there be only a limited store to be drawn from, the motion

must ultimately subside.

Another point to be noticed is that, if q and n were com

parable, V would depend upon >n, viz. on the pitch of the sound,

a state of things which from experiment we have no reason to

suspect. On the contrary the evidence of observation goes to

prove that there is no such connection.

From (10) we see that the falling off in the intensity, esti

mated per wave-length, is a maximum with tan ty, or ty ;
and

by (9) i/r is a maximum when q : n = A/T- In this case

^ = ntc- 7-*, 2*fr
= tan-1

7*
- tan^1

7-* ......(13),

whence, if we take 7 = 1*36, 2-^ = 8 47'.

Calculating from these data, we find that for each wave

length of advance, the amplitude of the vibration would be

diminished in the ratio *6172.

To take a numerical example, let

T=^_ of a second, \ = wave-length = 44 inches [112 cm.].

In 20 yards [1828 cm.] the intensity would be diminished in

the ratio of about 7 millions to one.

Corresponding to this,

5
= 2198.... ..................... ..(14).

If the value of q were actually that just written, sounds of

the pitch in question would be very rapidly stifled. We there

fore infer that q is in fact either much greater or else much less.

But even so large a value as 2000 is utterly inadmissible, as

we may convince ourselves by considering the significance of

equation (5).
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Suppose that by a rigid envelope transparent to radiant heat,

the volume of a small mass of gas were maintained constant,

then the equation to determine its thermal condition at any
time is

whence B= Ae-* ....... . ................. ..(15),

where A denotes the initial excess of temperature, proving that

after a time l/q the excess of temperature would fall to less than

half its original value. To suppose that this could happen in a

two thousandth of a second of time would be in contradiction to

the most superficial observation.

We are therefore justified in assuming that q is very small

in comparison with n, and our equations then become ap

proximately

The effects of a small radiation of heat are to be sought for

rather in a damping of the vibration than in an altered velocity of

propagation.

Stokes calculates that if 7 = 1'414, F=1100, the ratio (N : 1)
in which the intensity is diminished in passing over a distance a,

is given by logla JV *0001156 qx in foot-second measure. Although
we are not able-to make precise measurements of the intensity of

sound, yet the fact that audible vibrations can be propagated for

many miles excludes any such value of q as could appreciably
affect the velocity of transmission.

Neither is it possible to attribute to the air such a conducting

power as could materially disturb the application of Laplace's

theory. In order to trace the effects of conduction, we have only
to replace q in (5) by q'd*jda?. Assuming as a particular
solution

we find m^inicy=ms
4- q'tfrn? tcq'm

4
,
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whence, if q' be relatively small,

n /, 7 1 q'n \
......= 1- J- f- 1) ....... ... ........(17).

\ 7 2*7 /
x ;

Thus the solution in real quantities is

A -rt ( V 1 q
f
n-& \ ( nx \ ,--.

s = A.E3cp(- - i
^

: .cos (nt -r-r . .....(18),^\ 7 2(*7)/ V v(*7)/

leaving the velocity of propagation to this order of approximation
still equal to *J(tcy).

From (18) it appears that the first effect of conduction, as

of radiation, is on the amplitude rather than on the velocity of

propagation. In truth the conducting power of gases is so feeble,

and in the case of audible sounds at any rate the time during
which conduction can take place is so short, that disturbance from

this cause is not to be looked for.

In the preceding discussions the waves are supposed to be

propagated in an open space. When the air is confined within

a tube, whose diameter is small in comparison with the wave

length, the conditions of the problem are altered, at least in the

case of conduction. What we have to say on this head will,.

however, icome more conveniently in another place.

248. From the expression V(FV/P) we see ^a^ *n ^e same

gas the velocity of sound is independent of the density, because if

the temperature be constant, p varies as p(p= Rpd). On. the

other hand the velocity of sound is proportional to the square

root of the absolute temperature, so that if a be its value at

0Cent. _
'

-ax

where the temperature is measured in the ordinary manner from

the freezing point of water.

The most conspicuous effect of the dependence of the velocity

of sound on temperature is the variability of the pitch of organ

pipes. We shall see in the following chapters that the period

of the note of a flue organ-pipe is the time occupied by a pulse

in running over a distance which is a definite multiple of the

length of the pipe, and therefore varies inversely as the velocity

of propagation. The inconvenience arising from this alteration
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of pitch is aggravated by the fact that the reed pipes are not

similarly affected ; so that a change of temperature puts an organ

out of tune with itself.

Prof. Haver 1 has proposed to make the connection between

temperature and wave-length the foundation of a pyrometric

method, but I am not aware whether the experiment has ever

been carried out.

The correctness of (1) as regards air at the temperatures of

and 100 has been verified experimentally by Kundt. See 260.

In different gases at given temperature and pressure a is

inversely proportional to the square roots of the densities, at least

if 7 be constant
2
. For the non-condensable gases 7 does not

sensibly vary from its value for air. [Thus in the case of hydrogen
the velocity is greater than for air in the ratio

V(1'2933) : VOOS993),

or

*

3*792 ; L]

The velocity of sound is not entirely independent of the

degree of dryness of the air, since at a given pressure moist air

is somewhat lighter than dry air. It is calculated that at 50 F.

[10 C.], air saturated with moisture would propagate sound

between 2 and 3 feet per second faster than if it were perfectly

dry. [1 foot = 30-5 cm.]

The formula a2 = dp/dp may be applied to calculate the velocity

of sound in liquids, or, if that be known, to infer conversely the

coefficient of compressibility. In the case of water it is found by

experiment that the compression per atmosphere is '0000457.

Thus, if dp = 1033 x 981 in absolute c.G.s. units,

dp = '0000457, since p = 1.

Hence a = 1489 metres per second,

which does not differ much from the observed value (1435).

249. In the preceding sections the theory of plane waves

has been derived from the general equations of motion. We

1 On an Acoustic Pyrometer, Pktl. Hag. XLV. p. 18, 187S.
2
According to the kinetic theory of gases, the velocity of sound is determined

solely by, and is proportional to, the mean Telocity of the molecules. Preston,
Phil Mag. (5) ill. p. 441, 1877. [See also Waterston (1846), Phil. Trans, vol.

. A, p. 1, 1892.]
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now proceed to an independent investigation in which the motion

is expressed in terms of the actual position of the layers of air

instead of by means of the velocity-potential, whose aid is no

longer necessary inasmuch as in one dimension there can be no

question of molecular rotation.

If y> y + dyfdx.dx, define the actual positions at; time t of

neighbouring layers of air whose equilibrium positions are defined

by x and oc -f- dx, the density p of the included slice is given by

whence by (9) 246,

the expansions and condensations being supposed to take place

according to the adiabatic law. The mass of unit of area of

the slice is ^dx9
and the corresponding moving /orce is

dpjdx . d&,

giving for the equation of motion

Between (2) and (3) p is to be eliminated. Thus,

dxj dt* p dtf
..................... '

Equation (4) is an exact equation defining the actual abscissa

y in terms of the equilibrium abscissa & and the time. If the

motion be assumed to be small, we may replace (dy/dx)?*
1
, which

occurs as the coefficient of the small quantity ffiy'ldP, by its

approximate value unity ;
and (4) then becomes

df p, dtf
...........................

the ordinary approximate equation.

If the expansion be isothermal, as in Newton's theory, the

equations corresponding to (4) and (5) are obtained by merely

putting ry= 1.

Whatever may be the relation between p and p, depending on
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the constitution of the medium, the equation of motion is by

(1) and (3)

?/ dt- dp da?
v "

from which p, occurring in dp/dp, is to be eliminated by means of

the relation between p and dyfdx expressed in (1).

250. In the preceding investigations of aerial waves we

have supposed that the air is at rest except in so far as it is

disturbed by the vibrations of sound, but we are of course at

liberty to attribute to the whole mass of air concerned any
common motion. If we suppose that the air is moving in the

direction contrary to that of the waves and with the same actual

velocity, the wave form, if permanent, is stationary in space,

and the motion is steady. In the present section we will consider

the problem under this aspect, as it is important to obtain all

possible clearness in our views on the mechanics of wave propaga
tion.

If 2/
, p , po denote respectively the velocity, pressure, and

density of the fluid in its undisturbed state, and if u, p, p be the

corresponding quantities at a point in the wave, we have for the

equation of continuity

pu =pM (1),

and by (5) 244 for the equation of energy

iwo" %u
~

* (2).

Eliminating u, we get

P

determining the law of pressure under which alone it is possible

for a stationary wave to maintain itself in fluid moving with

velocity w . From (3)

or p = constant--^- ............. . .......(5).

Since the relation between the pressure and the density of

actual gases is not that expressed in (5), we conclude that a self-

maintaining stationary aerial wave is an impossibility, whatever
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may be the velocity u$ of the general current, or in other words that

a wave cannot be propagated relatively to the undisturbed parts

of the gas without undergoing an alteration of type. Nevertheless,

when the changes of density concerned are small, (5) may be

satisfied approximately ;
and we see from (4) that the velocity of

stream necessary to keep the wave stationary is given by

-v/(t>
which is the same as the velocity of the wave estimated relatively

to the fluid.

This method of regarding the subject shews, perhaps more

clearly than any other, the nature of the relation between velocity

and condensation 245 (3), (4). In a stationary wave-form a loss

of velocity accompanies an augmented density according to the

principle of energy, and therefore the fluid composing the con

densed parts of a wave moves forward more slowly than the

undisturbed portions. Relatively to the fluid therefore the

motion of the condensed parts is in the same direction as that in

which the waves are propagated.

When the relation between pressure and density is other than

that expressed in (5), a stationary wave can be maintained only

by the aid of an impressed force. By (1) and (2) 237 we have,

on the supposition that the motion is steady,

while the relation between u and p is given by (1). If we suppose

that p = a?p, (7) becomes

^ , . .. d log u . nv

shewing that an impressed force is necessary at every place where

u is variable and unequal to a.

251. ^The reason of the change of type which ensues when a

wave is left to itself is not difficult to understand. From the

ordinary theory we know that an infinitely small disturbance is

propagated with a certain velocity a, which velocity is relative

to the parts of the medium undisturbed by the wave. Let us

-consider now the case of a wave so long that the variations of
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velocity and density are insensible for a considerable distance

along it, and at a place where the velocity (u) is finite let us

imagine a small secondary wave to be superposed. The velocity

with which the secondary wave is propagated through the

medium is a, but on account of the local motion of the medium

itself the whole velocity of advance is a + u t and depends upon

the part of the long wave at which the small wave is placed.

What has been said of a secondary wave applies also to the parts

of the long wave itself, and thus we see that after a time t the

place, where a certain velocity u is to be found, is in advance of

its original position by a distance equal, not to at
y
but to (a -f u) t :

or, as we may express it, u is propagated with a velocity a -4- ft.

In symbolical notation u=f{x-(a + u) t}, where/ is an arbitrary

function, an equation first obtained by Poisson 1
.

From the argument just employed it might appear at first

sight that alteration of type was a necessary incident in the

progress of a wave, independently of any particular supposition as

to the relation between pressure and density, and yet it was

proved in 250 that in the case of one particular law of pressure

there would be no alteration of type. We have, however, tacitly

assumed in the present section that a is constant, which is tanta

mount to a restriction to Boyle's law. Under any other law of

pressure *J(dp/dp) is a function of p, and therefore, as we shall see

presently, of u. In the case of the law expressed in (5) 250, the

relation between u and p for a progressive wave is such that

*/(dp/dp) 4- u is constant, as much advance being lost by slower

propagation due to augmented density as is gained by superposi

tion of the velocity u.

So far as the constitution of the medium itself is concerned

there is nothing to prevent our ascribing arbitrary values to both

u and p, but in a progressive wave a relation between these two

quantities must be satisfied. We know already ( 245) that this

is the case when the disturbance is small, and the following

argument will not only shew that such a relation is to be expected
in cases where the square of the motion must be retained, but

will even define the form of the relation.

Whatever may be the law of pressure, the velocity of propaga
tion of small disturbances is by 245 equal to *J(dp/dp), and in

1 M6moire sur la Thorie du Son. Journal de Vcole polytechnique* t. TO.

p. 819. 1808.
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-yd)

a positive progressive wave the relation between velocity and

condensation is

~\

If this relation be violated at any point, a wave will emerge,

travelling in the negative direction. Let us now picture to our

selves the case of a positive progressive wave in which the changes
of velocity and density are very gradual but become important by
accumulation, and let us inquire what conditions must be satisfied

in order to prevent the formation of a negative wave. It is clear

that the answer to the question whether, or not, a negative wave

will be generated at any point will depend upon the state of

things in the immediate neighbourhood of the point, and not upon
the state of things at a distance from it, and will therefore be

determined by the criterion applicable to small disturbances. In

applying this criterion we are to consider the velocities and

condensations, not absolutely, but relatively to those prevailing in

the neighbouring parts of the medium, so that the form of (1)

proper for the present purpose is

.

which is the relation between and p necessary for a positive

progressive wave. Equation (2) was obtained analytically by
Earnshaw 1

.

In the case of Boyle's law, ^(dpjdp) is constant^ and the rela

tion between velocity and density, given first, I believe, by
Helmholtz 2

,
is

u=alog^ (4),

if PQ be the density corresponding to u = 0.

In this case Poisson's integral allows us to form a definite idea

of the change of type accompanying the earlier stages of the

progress of the wave, and it finally leads us to a difficulty which

has not as yet been surmounted
3
. If we draw a curve to represent

1 PML Trans. 1859, p. 146.

3 FortscJiritte der Physik, vr. p. 106. 1852.

* Stokes,
" On a difficulty in the Theory of Sound." Phil Mag. Nov. 1843.
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the distribution of velocity, taking sc for abscissa and u for

ordinate, we may find the corresponding curve after the lapse of

time t by the following construction. Through any point on the

original curve draw a straight line in the positive direction parallel

to #, and of length equal to (a + u) ty or, as we are concerned with

the shape of the curve only, equal to u t. The locus of the ends of

these lines is the velocity curve after a time t

But this law of derivation cannot hold good indefinitely. The
crests of the velocity curve gain continually on the troughs and

must at last overtake them. After this the curve would indicate

two values of u for one value of x, ceasing to represent anything
that could actually take place. In fact we are not at liberty to

push the application of the integral beyond the point at which the

velocity becomes discontinuous, or the velocity curve has a vertical

tangent. In order to find when this happens let us take two

neighbouring points on any part of the curve which slopes down
wards in the positive direction, and inquire after what time this

part of the curve becomes vertical. If the difference of abscissae

be dx> the hinder point will overtake the forward point in the

time (&&--( du). Thus the motion, as determined by Poisson's

equation, becomes discontinuous after a time equal to the reci

procal, taken positively, of the greatest negative value of dufdat.

For example, let us suppose that

&

u= JTcos {x-(a+u)t},
A.

where U is the greatest initial velocity. When t = 0, the greatest

negative value of dufdx is -27rCT/X; so that discontinuity will

commence at the time t~

When discontinuity sets in, a state of things exists to which
the usual differential equations are inapplicable ;

and the subse

quent progress of the motion has not been determined. It is

probable, as suggested by Stokes, that some sort of reflection would
ensue. In regard to this matter we must be careful to keep
purely mathematical questions distinct from physical ones. In

practice we have to do with spherical waves, whose divergency
may of itself be sufficient to hold in check the tendency to

discontinuity. In actual gases too it is certain that before dis

continuity could enter, the law of pressure would Begin to change
its form, and the influence of

viscosity could no longer be neglected.
But these considerations have nothing to do with the mathematical
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problem of determining what would happen to waves of finite

amplitude in a medium, free from viscosity, whose pressure is

under all circumstances exactly proportional to its density ;
and

this problem has not been solved.

It is worthy of remark that, although we may of course conceive

a wave of finite disturbance to exist at any moment, there is a

limit to the duration of its previous independent existence. By
drawing lines in the negative instead of in the positive direction

we may trace the history of the velocity curve ; and we see that

as we push our inquiry further and further into past time the

forward slopes become easier and the backward slopes steeper.

At a time, equal to the greatest positive value of dx/du, antecedent

to that at which the curve is first contemplated, the velocity

would be discontinuous.

252. The complete integration of the exact equations (4) and

(6) 249 in the case of a progressive wave was first effected by
Earnshaw 1

. Finding reason for thinking that in a sound wave

the equation

must always be satisfied, he observed that the result of differen

tiating (1) with respect to t, viz.

can by means of the arbitrary function F be made co coincide

with any dynamical equation in which the ratio of d*y/dt
2 and

d*yjda? is expressed in terms of dyjdx. The form of the function

F being thus determined, the solution may be completed by the

usual process applicable to such cases 2
.

Writing for brevity a in place of dyjda)3 we have

and the integral is to be found by eliminating a between the

equations

=

a. being equal to p<Jp 9 and <f> being an arbitrary function.

1
Proceedings of the Royal Society, Jan. 6, 1859. Phil. Trans. I860, p. 133.

3 Boole's Differential Equations, Ch. nv.
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If p = a*p> the exact equation (6 24?9) is

by comparison of which with (2) we see that

*~^ ...........................(5),

or on integration

F(a) = Ga\og a ........................(6),

as might also have been inferred from (4) 251. The constant C
vanishes, if F(&\ viz. u, vanish when a=l, or p = p<>': otherwise

it represents a velocity of the medium as a whole, having nothing
to do with the wave as such. For a positive progressive wave the

lower signs in the ambiguities are to be used. Thus in place of

(3), we have
-

{ }t

and ? = alog a = alog . .................... (8).
Po

If we subtract the second of equations (7) from the first, we get

y at + at log a = < (a) a <' (a),

from which by (8) we see that y - (a -f u) t is an arbitrary function

of a, or of u. Conversely therefore u is an arbitrary function of

y - (a 4- iO t, and we may write

u=f\y-(* + u)t} .....................(9).

Equation (9) is Poisson's integral, considered in the preceding
section, where the symbol x has the same meaning as here

attaches to y.

253, The problem of plane waves of finite amplitude attracted

also the attention of Riemann, whose memoir was communicated
to the Royal Society of Gottingen on the 28th of November, 1859 1

.

Riernann's investigation is founded on the general hydrodynamical
equations investigated in 237, 238, and is not restricted to any
particular law of pressure. In order, however, not unduly to

3 Ueber die Fortpflanznng ebener Luftwellen von endlicher Schwingungsweite.
Gottingen, Abhandlungen, t. vm. 1860. See also an excellent abstract in the
Farttckritte der P%fr, xv. p. 123. [Eeference may be made also to a paper by
C. V. Barton, Phil Mag. xsxv. p. 317, 1893.]
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extend the discussion of this part of our subject, already perhaps

treated at greater length than its acoustical importance would

warrant, we shall here confine ourselves to the case of Boyle's law

of pressure.

Applying equations (1), (2) of 237 and (1) of 238 to the

circumstances of the present problem, we get

_
dt dx dx

.(1),

djogp , d]2P = _*f ............ (2).
dt dx dx

...................

If we multiply (2) by a, and afterwards add it to (1), we

obtain
dP .dP dQ .dQ ,,-

where P =

Thus dP= ^{cfc-(w+a)<ft} ...... ............(5),

(6).

These equations are more general than Poisson's and Earashaw's

in that they are not limited to the case of a single positive, or

negative, progressive wave. From (5) we learn that whatever

may be the value of P corresponding to the point x and the time

t, the same value of P corresponds to the point x + (u + d)dt at

the time t + dt; and in the same way from (6) we see that Q

remains unchanged when x and t acquire the increments (u-a)dt

and dt respectively. If P and Q be given at a certain instant of

time as functions of x, and the representative curves be drawn, we

may deduce the corresponding value of u by (4), and thus, as in

251, construct the curves representing the values of P and Q

after the small interval of time db, from which the new values

of u and p in their turn become known, and the process can be

repeated.

The element of the fluid, to which the values of P and Q at

any moment belong,' is itself moving with the velocity u, so that

the velocities of P and Q relatively to the element are numerically

the same, and equal to a, that of P being in the positive direction

and that of Q in the negative direction.



40 LIMITED IKITIAL DISTURBANCE. [253.

We are now in a position to trace the consequences of an

initial disturbance which is confined to a finite portion of the

medium, e.g. between so = a and # =& outside which the medium

is at rest and at its normal density, so that the values of P and Q
are alogp& . Each value of P propagates itself in turn to the ele

ments of fluid which lie in front of it, and each value of Q to those

that lie behind it. The hinder limit of the region in which P is

variable, viz. the place where P first attains the constant value

a log p , comes into contact first with the variable values of Q, and

moves accordingly with a variable 1
velocity. At a definite time,

requiring for its determination a solution of the differential equa

tions, the hinder (left hand) limit of the region through which P
varies, meets the hinder (right hand) limit of the region through
which Q varies, after which the two regions separate themselves,

and include between them a portion of fluid in its equilibrium

condition, as appears from the fact that the values of P and Q are

both alog/v In the positive wave Q has the constant value

a log p , so that u= a log (p/p X as in (4) 251; in the negative wave

P has the same constant value, giving as the relation between u

and p, u a log (p//? )- Since in each progressive wave, when

isolated, a law prevails connecting the quantities u and p, we see

that in the positive wave du vanishes with dP, and in the negative
wave du vanishes with dQ. Thus from (5) we learn that in a

positive progressive wave du vanishes, if the increments of # and

t be such as to satisfy the equation dx (u + a) dt = 0, from which

Poisson's integral immediately follows.

It would lead us too far to follow out the analytical develop
ment of Kiemann's method, for which the reader must be referred

to the original memoir ; but it would be improper to pass over in

silence an error on the subject of discontinuous motion into which

Kiemann and other writers have fallen. It has been held that a

state of motion is possible in which the fluid is divided into two

parts by a surface of discontinuity propagating itself with constant

velocity, all the fluid on one side of the surface of discontinuity

being in one uniform condition as to density and velocity, and on

the other side in a second uniform condition in the same respects.

Now, if this motion were possible, a motion of the same kind

in which the surface of discontinuity is at rest would also be

1 At this point an error seems to have crept into Biemann's work, which is

corrected in the abstract of the Fortschritte der Physik.
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possible,
as we may see by supposing a velocity equal and

opposite to that with which the surface of discontinuity at first

moves, to be impressed upon the whole mass of fluid In order to

find the relations that must subsist between the velocity and

density on the one side (t^, p:) and the velocity and density on the

other side (u^, p2)> w notice in the first place that by the principle

of conservation of matter
/33
^2
= p1%. Again, if we consider the

momentum of a slice bounded by parallel planes and including the

surface of discontinuity, we see that the momentum leaving the

slice in the unit of time is for each unit of area (p^u^^=plu^)it^

while the momentum entering it is piitf. The difference of mo
mentum must be balanced by the pressures acting at the boundaries

of the slice, so that

_

whence

<7 >-

The motion thus determined is, however, not possible ;
it satisfies

indeed the conditions of mass and momentum, but it violates the

condition of energy ( 244) expressed by the equation

|^2-i%2= a2
log/^-a

2

logp*.... (8).

This argument has been already given in another form in 2503

which would alone justify us in rejecting the assumed motion, since

it appears that no steady motion is possible except under the law of

density there determined. From equation (8) of that section we

can find what impressed forces would be necessary to maintain the

motion defined by (7). It appears that the force X, though con

fined to the place of discontinuity, is made up of two parts of

opposite signs, since by (7) u passes through the value a. The

whole moving force, viz. [Xp dx, vanishes, and this explains how

it is that the condition relating to momentum is satisfied by (7),

though the force X be ignored altogether.

253 a. Among the phenomena of the second order which

admit of a ready explanation, a prominent place must be assigned

to the repulsion of resonators discovered independently by

DvoMk1 and Mayer
2
. These observers found that an air resonator

of any kind (Ch. XVI.) when exposed to a powerful source

1 Pogg. Ann. CLvn. p. 42, 1876 ;
Wied. Arm. nx. p. 328, 1878.

2 Phil. Mag. vol. vi. p. 225, 1878.
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of sound experiences a force directed inwards from the mouth,

somewhat after the manner of a rocket. A combination of

four light resonators, mounted anemometer fashion upon a steel

point, may be caused* to revolve continuously.

If there be no impressed forces, equation (2) 244 gives

Distinguishing the values of the quantities at two points of space

by suffixes, we may write

.. ......... (2).

This equation holds good at every instant. Integrating it over a

long range of time we obtain as applicable to every case of

fluid motion in which the flow between the two points does

not continually increase

fadt-S^dt^UUfdt-MUfdt ............. (3).

The first point (with suffix 0) is now to be chosen at such a

distance that the variation of pressure and the velocity are

there insensible. Accordingly

fvIdt=-%fUiidt........................(4).

This equation is true wherever the second point be taken. If it

be in the interior of a resonator, or at a corner where three fixed

walls meet, U-^
= 0, and therefore

/fa -w ) eft- ........................(5),

or the mean value of tsr in the interior is the same as at a distance

outside.

By (9) 246, if the expansions and contractions be adiabatic,

p oc py ;
and -a =^ (y

~
1)/r* Thus

If in (6) we suppose that the difference between pl and p
is comparatively small, we may expand the function there contained

by the binomial theorem. The approximate result may be

expressed

f&ZfilA.fff&Z&YcB (7),
J p, 2jJ\ pQ J

shewing that the mean value of (pl #>) is positive, or in other
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words that the mean pressure in the resonator is in excess of the

atmospheric pressure
1
. The resonator therefore tends to move as

if impelled by a force acting normally over the area of its

aperture and directed inwards.

The experiment may he made (after Dvorak) with a

Helrnholtz resonator by connecting the nipple with a horizontal

and not too narrow glass tube in which moves a piston of ether.

When a fork of suitable pitch, e.g. 256 or 512, is vigorously
excited and presented to the mouth of the resonator, the movement

of the ether shews an augmentation of pressure, while the similar

presentation of the non-vibrating fork is without effect.

If to the first order of small quantities

(p-po)lpo =P extent ............... ......(8),

its mean value correct to the second order is P2

/^, in which for air

and the principal gases 7= 1*4.

If the expansions and contractions be supposed to take place

isothermally, the corresponding result is arrived at by putting

7=1 in (7).

253 &. In 25.3 a the effect to be explained is intimately

connected with the compressibility of the fluid which occupies the

interior of the resonator. In the class of phenomena now to be

considered the compressibility of the fluid is of secondary import

ance, and the leading features of the explanation may be given

upon the supposition that the fluid retains a constant density

throughout.

If p be constant, (4) 253 a may be written

shewing that the mean pressure at a place where there is

motion is less than in the undisturbed parts of the fluid a

theorem due to Kelvin-, and applied by him to the explanation of

the attractions observed by Guthrie, and other experimenters.

Thus a vibrating tuning-fork, presented to a delicately suspended

rectangle of paper, appears to exercise an attraction, the mean

value of U* being greater on the face exposed to the fork than

upon the back.

1 Phil. Mag. vol. vi. p. 270, 1878.

2 Proc. Roy. Soc. vol. sis. p. 271, 1887.
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In the above experiment the action depends upon, the prox

imity of the source of disturbance. When the flow of fluid,

whether steady or alternating, is uniform over a large region, the

effect upon an obstacle introduced therein is a question of shape.

In the case of a sphere there is manifestly no tendency to turn :

and since the flow is symmetrical on the up-stream and down

stream sides, the mean pressures given by (1) balance one another.

Accordingly a sphere experiences neither force nor couple. It is

otherwise when the form of the body is elongated or .flattened.

That a flat obstacle tends to turn its flat side to the stream 1

may
be inferred from the general character of Fig. 54 a.

the lines of flow round it. The pressures

at the various points of the surface BC
(Fig. 54 a) depend upon the velocities of

the fluid there obtaining. The full

pressure due to the complete stoppage of

the stream is to be found at two points,

where the current divides. It is pretty evident that upon the up
stream side this lies (P) on AH, and upon the down-stream side

upon AC at the corresponding point Q. The resultant of the

pressures thus tends to turn AB so as to face the stream.

When the obstacle is in the form of an ellipsoid, the mathe
matical calculation of the forces can be effected; but it must
suffice here to refer to the particular case of a thin circular disc,

whose normal makes an angle 6 with the direction of the un
disturbed stream. It may be proved

2 that the moment M of the

couple tending to diminish 9 has the value given by

Jf=/>a
3TF2 sin20

,(2),

a being the radius of the disc and W the velocity of the stream.

If the stream be alternating instead of steady, we have merely to

employ the mean value of W\ as appeal's from (1).

The observation that a delicately suspended disc sets itself

across the direction of alternating currents of air originated in the

attempt to explain certain anomalies in the behaviour of a

magnetometer mirror3
. In illustration, "a small disc of paper,

about the size of a sixpence, was hung by a fine silk fibre across

1 Thomson and Tait's Natural Philosophy, 336, 1867.
2 W. Konig, Wied.Ann. t. XLHI. p. 51, 1891.
3 Proc. Roy. Soc. vol. *xxn. p. 110, 1881.
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the mouth of a resonator of pitch 128. When & sound of this

pitch is excited in the neighbourhood, there is a powerful rush of

air into and out of the resonator, and the disc sets itself promptly
across the passage. A fork of pitch 128 may be held near the

resonator, but it is better to use a second resonator at a little

distance in order to avoid any possible disturbance due to the

neighbourhood of the vibrating prongs. The experiment, though
rather less striking, was also successful with forks and resonators

of pitch 256."

Upon this principle an instrument may be constructed for

measuring the intensities of aerial vibrations of selected pitch
1
.

A tube, measuring three quarters of a wave length, is open at one

end and at the other is closed air-tight by a plate of glass/- At
one quarter of a wave length's distance from the closed end

is hung by a silk fibre a light mirror with attached magnet, such

as is used for reflecting galvanometers. In its undisturbed

condition the plane of the mirror makes an angle of 45 with the

axis of the tube. At the side is provided a glass window,

through which light, entering along the axis and reflected by the

mirror, is able to escape from the tube and to form a suitable

image upon a divided scale. The tube as a whole acts as a

resonator, and the alternating currents at the loop ( 255) deflect

the mirror through an angle which is read in the usual manner.

In an instrument constructed by Boys
2 the sensitiveness

is exalted to an extraordinary degree. This is effected partly

by the use of a very light mirror with suspension of quartz fibre,

and partly by the adoption of double resonance. The large
resonator is a heavy brass tube of about 10 cm. diameter, closed

at one end, and of such length as to resound to e'. The mirror is

hung in a short lateral tube forming a communication between

the large resonator and a small glass bulb of suitable capacity.

The external vibrations may be regarded as magnified first by the

large resonator and then again by the small one, so that the

mirror is affected by powerful alternating currents of air. The
selection of pitch is so definite that there is hardly any response
to sounds which are a semi-tone too high or too low.

Perhaps the most striking of all the effects of alternating
aerial currents is the rib-like structure assumed by cork filings in

1 Phil. Mag. vol. snv. p. 186, 1882.

2
Nature, vol. xui. p. 604, 1890.
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Fig. 54*.

Kundt's experiment 260. Close observation, while the vibrations

are in progress, shews that the filings are disposed in thin laminae

transverse to the tube and extending upwards to a certain distance

from the bottom. The effect is a maximum at the loops, and

disappears in the neighbourhood of the nodes. When the vibra

tions stop, the laminae necessarily fall, and in so doing lose much

of their sharpness, but they remain visible as transverse streaks.

The explanation of this peculiar behaviour has been given by
W. Konig

1
. We have seen that a single spherical obstacle

experiences no force from an alternating current. But this

condition of things is disturbed by the presence of a neighbour.

Consider for simplicity the case of two spheres at a moderate

distance apart, and so situated that the line of centres is either

parallel to the stream, Fig. 54 b, or

perpendicular to it, Fig, 54 c. It is ***

easy to recognise that the velocity

between the spheres will be less in

the first case and greater in the

second than on the averted hemi

spheres. Since the pressure increases

as the velocity diminishes, it follows

that in the first position the spheres will repel one another,

and that in the second position they will attract one another.

The result of these forces between neighbours is plainly a

tendency to aggregate in laminae. The case may be contrasted

with that of iron filings in a magnetic field, whose direction

is parallel to that of the aerial current. There is then attraction

in the first position and repulsion in the second, and the result is

A tendency to aggregate in filaments.

On the foundation of the analysis of Kirchhoff, Konig has

calculated the forces operative in the case

of two spheres which are not too close

together. If Oi, 0$ be the radii of the

spheres, r their distance asunder, 9 the

angle between the line of centres and the

direction of the current taken as axis of

z (Fig. 54 d\ W the velocity of the current,

then the components of force upon the

sphere B in the direction of z and of x

Fig.

1 Wied. Ann. t. xua. pp. 353, 549, 1891.
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drawn perpendicular to z in the plane containing z and the line

of centres, are given by
F
%os<?(3-5coS^) ............(3),

the third component Y vanishing by virtue of the symmetry. In

the case of Fig. 54 b 9 = 0, and there is repulsion equal to

STrpa^a^W-fr* ; in the case of Fig. 54 c B = TT, and the force is an

attraction ^irpa^a^W-j^. In oblique positions the direction of the

force does not coincide with the line of centres.

If the spheres be rigidly connected, the forces upon the system
reduce to a couple (tending to increase 6) of moment given by

- ^sin +X cos =
*V*

sin 2# ......... (5).

When the current is alternating, we are to take the mean

value of TF2 in (3), (4), (5).

254. The exact experimental determination of the velocity

of sound is a matter of greater difficulty than might have been

expected. Observations in the open air are liable to errors from

the effects of wind, and from uncertainty with respect to the

exact condition of the atmosphere as to temperature and dryness.

On the other hand when sound is propagated through air con

tained in pipes, disturbance arises from friction and from transfer

of heat; and, although no great errors from these sources are

to be feared in the case of tubes of considerable diameter, such

as some of those employed by Regnault, it is difficult to feel

sure that the ideal plane waves of theory are nearly enough

realized.

The following Table 1 contains a list of the principal experi

mental determinations which have been made hitherto.

Names of Observers. Velocity of Sound at

Gent, in iletres.

Acactemie des Sciences (1738) ..................... 332

(333*7

Benzenberg (1811) ................. . ...............
l332'3

Goldingham (1821) ...... .. ......................... 3311

Bureau des Longitudes (1822) .................. 330*6

Moll and van Beek ................................. 332'2

1 Bosanquet, PhiL Mag. April, 1877.
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Namea of Observers. Velocity of Sound at
Cent, in Metres.

Stampfer and Myrback 332*4

Bravais and Martins (1844) 332*4

Wertheim 331-6

Stone (1871) 332-4

LeRoux.. 330-7

Eegnault , 330'7

In Stone's experiments
1 the course over which the sound

was timed commenced at a distance of 640 feet from the source,

so that any errors arising from excessive disturbance were to

a great extent avoided.

A method has been proposed by Bosscha 2 for determining
the velocity of sound without the use of great distances. It

depends upon the precision with which the ear is able to decide

whether short ticks are simultaneous, or not. In Konig's
3 form of

the experiment, two small electro-magnetic counters are controlled

by a fork-interrupter ( 64), whose period is one-tenth of a second,

and give synchronous ticks of the same period. When the

counters are close together the audible ticks coincide, but as one

counter is gradually removed from the ear, the two series of ticks

fall asunder. When the difference of distances is about 34 metres,

coincidence again takes place, proving that 34 metres is about

the distance traversed by sound in a tenth part of a second.

[On the basis of experiments made in pipes Violle and Vautier 4

give 33110 as applicable in free air. The result includes a cor

rection, amounting to 0'68, which is of a more or less theoretical

character, representing the presumed influence of the pipe (0'7
m in

diameter).]

1 Phil. Trans. 1872, p. I. *
Pogg. Ann. xcn. 48$. 1354.

*
Pogg* Ann. crvm. 610. 1863. * Ann. de Chim. t. xrs.; 1890.



CHAPTER XIL

VIBBATIONS IN TUBES.

255. WE have already ( 24*5) considered the solution of our

fundamental equation, when the velocity-potential, in an unlimited

fluid, is a function of one space co-ordinate only. In the absence

of friction no change would be caused by the introduction of any
number of fixed cylindrical surfaces, whose generating lines are

parallel to the co-ordinate in question ; for even when the surfaces

are absent the fluid has no tendency to move across them. If one

of the cylindrical surfaces be closed (in respect to its transverse

section), we have the important problem of the axial motion of air

within a cylindrical pipe, which, when once the mechanical condi

tions at the ends are given, is independent of anything that may
happen outside the pipe.

Considering a simple harmonic vibration, we know ( 245)

that, if
<f>

varies as e"rf
,

o .............................. (i),

where

k^ = 1 .................................(2).\ a ^

The solution may be written in two forms

of which finally only the real parts will be retained. The first

form will be most convenient when the vibration is stationary, or



50 HARMONIC WAVES IN ONE DIMENSION. [255.

nearly so, and the second when the motion reduces itself to a

positive, or negative, progressive undulation. The constants A
arid B in the symbolical solution may be complex, and thus the

final expression in terms of real quantities will involve four arbi

trary constants. If we wish to use real quantities throughout, we
must take

< = (A cos kx + B sin kx) cos nt

-f (C cos fcr -fD sin kx) sin nt (4^

but the analytical work would generally be longer. When no

ambiguity can arise, we shall sometimes for the sake of brevitv

drop, or restore, the factor involving the time without express
mention. Equations such as (1) are of course equally true whether

the factor be understood or not.

Taking the first form in (3), we have

<f>
= A cos kx + B sin kx

-Jr s- _ kA sin kx + kB cos kx
j

.......... *

ax
j

If there be any point at which either < or
'd<f>/d-x is permanently

zero, the ratio A : B must be real, and then the vibration is sta

tionary, that is, the same in phase at all points simultaneously.

Let us suppose that there is a node at the origin. Then when
x = 0, dfydx vanishes, the condition of which is B = 0. Thus

~ = - kA sin kx eillt ......... (6),

from which, if we substitute P&* for A, and throw away the

imaginary part,

<f>
= P cos kx cos (nt + 0)]

-?==-- &P sin &r cos (?i -f 0)
j

.......... .....().

From these equations"we learn that d(j>/dx vanishes wherever
sin kx=

;
that is, that besides the origin there are nodes at the

points ;*r = JwiX, m being any positive or negative integer. At any
of these places infinitely thin rigid plane barriers normal to x
might be stretched across the tube without in any way alter

ing the motion. Midway between each pair of consecutive nodes
there is a loop, or place of no pressure variation, since Sp = -p<j>
(6) 244 At any of these loops a communication with the
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external atmosphere might be opened, without causing any disturb

ance of the motion from air passing in or out. The loops are the

places of maximum velocity, and the nodes those of maximum

pressure variation. At intervals of X everything is exactly re

peated.

If there be a node at #= I, as well as at the origin, sinA/ = 0,

or x = 2Z/ra, where m is a positive integer. The gravest tone

which can be sounded by air contained in a doubly closed pipe

of length I is therefore that which has a wave-length equal to ZL

This statement, it will be observed, holds good whatever be the

gas with which the pipe is filled ; but the frequency, or the place

of the tone in the musical scale, depends also on the nature of

the particular gas. The-periodic time is given by

X 2,1
f

.

T = - = ~ ...(8).a a

The other tones possible for a doubly closed pipe have periods

which are submultiples of that of the gravest tone, and the whole

system forms a harmonic scale.

Let us now suppose, without stopping for the moment to in

quire how such a condition of things can be secured, that there is

a loop instead of a node at the point # L Equation (6) gives

cosH = 0, whence X= 4 -^ (Sra -f 1), where m is zero or a positive

integer. In this case the gravest tone has a wave-length equal

to four times the length of the pipe reckoned from the node to

the loop, and the other tones form with it a harmonic scale, from

which, however, all the members of even order are missing.

256. By means of a rigid barrier there is no difficulty in

securing a node at any desired point of a tube, but the condition

for a loop, i.e. that under no circumstances shall the pressure vary,

can only be realized approximately. In most cases the variation

of pressure at any point of a pipe may be made small by allowing

& free communication with the external air. Thus Euler and

Lagrange assumed constancy of pressure as the condition to be

satisfied at the end of an open pipe. We shall afterwards return

to the problem of the open pipe, and investigate by a rigorous

process the conditions to be satisfied at the end. For our im

mediate purpose it will be sufficient to know, what is indeed

tolerably obvious, that the open end of a pipe may be treated as
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a loop, if the diameter of the pipe be neglected in comparison

with the wave-length, provided the external pressure in the neigh

bourhood of the open end be not itself variable from some cause

independent of the motion within the pipe. When there is an

independent source of sound, the pressure at the end of the pipe
is the same as it would be in the same place, if the pipe were

away. The impediment to securing the fulfilment of the condition

for a loop at any desired point lies in the inertia of the machinery

required to sustain the pressure. For theoretical purposes we may
overlook this difficulty, and imagine a massless piston backed by
a compressed spring also without mass. The assumption of a

loop at an open end of a pipe is tantamount to neglecting the

inertia of the outside air.

We have seen that, if a node exist at any point of a pipe,

there must be a series, ranged at equal intervals \, that midway
)>etween each pair of consecutive nodes there must be a loop, and

that the whole vibration must be stationary. The same conclusion

follows if there be at any point a loop ;
but it may perfectly well

happen that there are neither nodes nor loops, as for example in

the case when the motion reduces to a positive or negative pro

gressive wave. In stationary vibration there is no transference of

energy along the tube in either direction, for energy cannot pass
a node or a loop.

257. The relations between the lengths of an open or closed

pipe and the wave-lengths of the included column of air may also

be investigated by following the motion of a pulse, by which is

understood a wave confined within narrow limits and composed
of uniformly condensed or rarefied fluid. In looking at the matter

from this point of view it is necessary to take into account care

fully the circumstances under which the various reflections take

place. Let us first suppose that a condensed pulse travels in the

positive direction towards a barrier fixed across the tube. Since

the energy contained in the wave cannot escape from the tube,

there must be a reflected wave, and that this reflected wave is

also a wave of condensation appears from the fact that there is no

loss of fluid. The same conclusion may be arrived at in another

way. The effect of the barrier may be imitated by the introduc

tion of a similar and equidistant wave of condensation moving in

the negative direction. Since the two waves are both condensed

and are propagated in contrary directions, the velocities of the
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fluid composing them are equal and opposite, and therefore neu

tralise one another when the waves are superposed.

If the progress of the negative reflected wave be interrupted

by a second barrier, a similar reflection takes place, and the wave,

still remaining condensed, regains its positive character. When a

distance has been travelled equal to twice the length of the pipe,

the original state of things is completely restored, and the same

cycle of events repeats itself indefinitely. We learn therefore that

the period within a doubly closed pipe is the time occupied by a

pulse in travelling twice the length of the pipe.

The case of an open end is somewhat different. The supple

mentary negative wave necessary to imitate the effect of the open
end must evidently be a wave of rarefaction capable of neutralising

the positive pressure of the condensed primary wave, and thus in

the act of reflection a wave changes its character from condensed

to rarefied, or from rarefied to condensed. Another way of con

sidering the matter is to observe that in a positive condensed

pulse the momentum of the motion is forwards, and in the absence

of the necessary forces c&nnot be changed by the reflection. But

forward motion in the reflected negative wave is indissolubly

connected with the rarefied condition.

When both ends of a tube are open, a pulse travelling back

wards and forwards within it is completely restored to its original

state after traversing twice the length of the tube, suffering in the

process two reflections, and thus the relation between length and

period is the same as in the case of a tube, whose ends are both

closed
;
but when one end of a tube is open and the other closed,

a double passage is not sufficient to close the cycle of changes.

The original condensed or rarefied character cannot be recovered

until after two reflectiors from the open end, and accordingly in

the case contemplated the period is the time required by the pulse

to travel overfour times the length of the pipe.

258. After the full discussion of the corresponding problems

in the chapter on Strings, it will not be necessary to say much on

the compound vibrations of columns of air. As a simple example

we may take the case of a pipe open at one end and closed at the

other, which is suddenly brought to rest at the time = 0, after

being for some time in motion with a uniform velocity parallel to

its length. The initial state of the contained air is then one of
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uniform velocity u6 parallel to #, and of freedom from compression

and rarefaction. If we suppose that the origin is at the closed

end, the general solution is by (7) 255,

<p
= (Ai cos ??!# -f J?i sin n^t) cos k^
+ (A 9 cos ii -f jB2 sin n) cos kg-

4- ......... .- ................... - .................. (1),

where kr= (r
-

}) ir/J, nr
= dfer , and u4 lf J^, J.^ 2 ... are arbitrary

constants.

Since < is to be zero initially for all values of #, the coeffi

cients B must vanish
;
the coefficients A are to be determined by

the condition that for all values of x between and I,

= UQ ..................... (2),

where the summation extends to all integral values of r from

1 to oo. The determination of the coefficients A from (2) is

effected in the usual way. Multiplying by sink^dx, and inte

grating from to I, we get

The complete solution is therefore

^ 00 cos / ,

.(4).

269. In the case of a tube stopped at the origin and open at

#= Z, let
<f>
= cosnt be the value of the potential at the open end

due to an external source of sound. Determining P and in

equation (7) 255, we find

cosfe ^ _.
. ............. (1).^ /

It appears that the vibration within the tube is a minimum,
when cosH = 1, that is when I is a multiple of X, in which case

there is a node at #=Z. When I is an odd multiple of JX, cos kl

vanishes, and then according to (1) the motion would become
infinite. In this case the supposition that the pressure at the

open end is independent of what happens within the tube breaks

down ; and we can only infer that the vibration is very large, in
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consequence of the isochronisin. Since there is a node at x = 0,

there must be a loop when x is an odd multiple of |X, and we

conclude that in the case of isochronism the variation of pressure

at the open end of the tube due to the external cause is exactly

neutralised by the variation of pressure due to the motion within

the tube itself. If there were really at the open end a variation

of pressure on the whole, the motion must increase without limit

in the absence of dissipative forces.

If we suppose that the origin is a loop instead of a node, the

solution is

sinkx ,a\
< = -

YJ cosnt ........................ (2),^
sin A-6

where
<f>
= cos ?? is the given value of

<f>
at the open end x = L

In this case the expression becomes infinite, when &Z = W7r, or

We will next consider the case of a tube, whose ends are both

open and exposed to disturbances of the same period, making <f>

equal to Heint
,
Keint

respectively. Unless the disturbances at the

ends are in the same phase, one at least of the coefficients Ht K
must be complex.

Taking the first form in (3) 255, we have as the general

expression for
<f>

<f>
= e** (A cos kx -f B sin fcr).

If we take the origin in the middle of the tube, and assume that

the values He"*, Keint
correspond respectively to x = l, #=-,

we get to determine A and B,

H=A cos Jd 4- B sin kl,

K A cos kl-~B sin kl,

whence

giving

sin

This result might also be deduced from (2), if we consider that

the required motion arises from the superposition of the motion,

which is due to the disturbance Hel)lt calculated on the hypothesis

that the other end #= I is a loop, on the motion, which is

due to Keint on the hypothesis that the end x= l is a loop.
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The vibration expressed by (4) cannot be stationary, unless the

ratio H : K be real, that is unless the disturbances at the ends be

in similar, or in opposite, phases. Hence, except in the cases

reserved, there is no loop anywhere, and therefore no place at

which a branch tube can be connected along which sound will not

be propagated
1
.

At the middle of the tube, for which x = 0,

shewing that the variation of pressure (proportional to <>) vanishes

if JET -(-.#" = 0, that is, if the disturbances at the ends be equal and

in opposite phases. Unless this condition be satisfied, the expres
sion becomes infinite when 21 = ^ (2m + 1) X.

At a point distant |X from the middle of the tube the

expression for
<f>

is

vanishing when H=K, that is, when the disturbances at the ends

are equal and in the same phase. In general <f>
becomes infinite,

when sin kl = 0, or 2Z =

If at one end of an unlimited tube there be a variation of

pressure due to an external source, a train of progressive waves

will be propagated inwards from that end. Thus, if the length

along the tube measured from the open end be y, the velocity-

potential is expressed by <}>
= cos(ntny/d), corresponding to

< = cosn at y= 0; so that, if the cause of the disturbance within

the tube be the passage of a train of progressive waves across the

open end, the intensity within the tube will be the same as in the

space outside. It must not be forgotten that the diameter of the

tube is supposed to be infinitely small in comparison with the

length of a wave.

1 An arrangement of this kind has been proposed by Prof. Mayer (P77. Mag.
XLV. p. 90, 1873) for comparing the intensities of sources of sound of the same

pitch. Each end of the tube is exposed to the action of one of the sources to be

compared, and the distances are adjusted until the amplitudes of the vibrations

denoted by H and JT are equal. The branch tube is led to a manometric capsule

( 2G2), and the method assumes that by varying the point of junction the disturb

ance of the flame can be stopped. From the discussion in the text it appears that

this assumption is not theoretically correct
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Let us next suppose that the source of the motion is within the

tuhe itself, due for example to the inexorable motion of a piston

at the origin
1
. The constants in (5) 255 are to be determined

by the conditions that when X = 0, dfydx = cos nt (say), and that,

when x = ly
< = 0. Thus fcA = tan kl, fcB 1, and the ex

pression for <p is

sin ft (a?- Q m*" kcoskl
'" ................. - (7)-

The motion is a minimum, when cos kl = 1, that is, when the

length of the tube is a multiple of ^-X.

When I is an odd multiple of JX, the place occupied by the

piston would be a node, if the open end were really a loop, but in

this case the solution fails. The escape of energy from the tube

prevents the energy from accumulating beyond a certain point;

but no account can be taken of this so long as the open end is

treated rigorously as a loop. We shall resume the question of

resonance after we have considered in greater detail the theory of

the open end, when we shall be able to deal with it more satis

factorily.

In like manner if the point x = I be a node, instead of a loop,

the expression for <> is

cos

ksmkl

and thus the motion is a minimum when I is an odd multiple of JX,

in which case the origin is a loop. When I is an even multiple of

JX, the origin should be a node, which is forbidden by the condi

tions of the question. In this case according to (8) the motion

becomes infinite, which means that in the absence of dissipative

forces the vibration would increase without limit.

260. The experimental investigation of aerial waves within

pipes has been effected with considerable success by Kundt
3
. To

generate waves is easy enough ;
but it is not so easy to invent a

method by which they can be effectually examined. Kundt dis

covered that the nodes of stationary waves can be made evident

by dust. A little fine sand or lycopodium seed, shaken over the

interior of a glass tube containing a vibrating column of air

1 These problems are considered by Poisson, H/Swi. de Vlnxtitut, t. n. p. 305, 1819.

2
Pogg. Ann. t. cxxxv. p, 337, 1868.
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disposes itself in recurring patterns, by means of which It is easv

to determine the positions of the nodes and to measure the

intervals between them. In Kundt's experiments the origin of

the sound was in the longitudinal vibration of a glass tube called

the sounding-tube, and the dust-figures were formed in a second

and larger tube, called the wave-tube, the latter being provided
with a moveable stopper for the purpose of adjusting its length.
The other end of the wave-tube was fitted with a cork through
which the sounding-tube passed half way. By suitable friction

the sounding-tube was caused to. vibrate in its gravest mode, so

that the central point was nodal, and its interior extremity (closed
with a cork) excited aerial vibrations in the wave-tube. By means
of the stopper the length of the column of air could be adjusted so

as to make the vibrations as vigorous as possible, which happens
when the interval between the stopper and the end of the

sounding-tube is a multiple of half the wave-length of the

sound.

With this apparatus Kundt .was able to compare the wave

lengths of the same sound in various gases, from which the rela

tive velocities of propagation are at once dediicible, but the results

were not entirely satisfactory. It was found that the intervals

of recurrence of the dust-patterns were not strictly equal, and,
what was worse, that the pitch of the sound was not constant

from one experiment to another. These defects were traced to a
communication of motion to the wave-tube through the cork, by
which the dust-figures were disturbed, and the pitch made irregular
in consequence of unavoidable variations in the mounting of the

apparatus. To obviate them, Kundt replaced the cork, which
formed too stiff a connection between the tubes, by layers of sheet
indiarubber tied round with silk, obtaining in this way a flexible

and perfectly air-tight joint ;
and in order to avoid any risk of the

comparison of wave-lengths being vitiated by an alteration of pitch,
the apparatus was modified so as to make it possible to excite

the two systems of dust-figures simultaneously and in response to

the same sound. A collateral advantage of the new method con
sisted in the elimination of temperature-corrections.

In the improved
" Double Apparatus

"
the sounding-tube was

caused to vibrate in its second mode by friction applied near
the middle

;
and thus the nodes were formed at the points distant

from the ends by one-fourth of the length of the tube. At each
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of these points connection was made with an independent wave-

tube, provided with an adjustable stopper, and with branch tubes

and stop-cocks suitable for admitting the various gases to be

experimented upon. It is evident that dust-figures formed in the

two tubes correspond rigorously to the same pitch, and that there

fore a comparison of the intervals of recurrence leads to a correct

determination of the velocities of propagation, under the circum

stances of the experiment, for the two gases with which the tubes

are filled.

The results at which Kundt arrived were as follows :

(a) The velocity of sound in a tube diminishes with the

diameter. Above a certain diameter, however, the change is not

perceptible.

(b) The diminution of velocity increases with the wave

length of the tone employed.

(c) Powder, scattered in a tube, diminishes the velocity of

sound in narrow tubes, but in wide ones is without effect.

(d) In narrow tubes the effect of powder increases, when

it is very finely divided, and is strongly agitated in consequence.

(e) Roughening the interior of a narrow tube, or increasing
its surface, diminishes the velocity.

(f) In wide tubes these changes of velocity are of no im

portance, so that the method may be used in spite of them for

exact determinations.

(ff)
The influence of the intensity of sound on the velocity

cannot be proved.

(A) With the exception of the first, the wave-lengths of a

tone as shewn by dust are not affected by the mode of excitation.

(i) In wide tubes the velocity is independent of pressure,

but in small tubes the velocity increases with the pressure.

(j) All the observed changes in the velocity were due to

friction and especially to exchange of heat between the air and

the sides-of the tube.

(k) The velocity of sound at 100 agrees exactly wit'i that

given by theory
1
.

1 From some expressions In the memoir already cited, from which* the notice

in the text is principally derived, Kundt appears to have contemplated a continua

tion of his investigations; bat I am unable to find any later publication on the

subject.
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We shall return to the question of the propagation of sound in

narrow tubes as affected by the causes mentioned above (j), and

shall then investigate the formulas given by Helmholtz and

Kirchhoff.

[The genesis of the peculiar transverse striation which forms

a leading feature of the dust-figures has already been considered

2536. According to the observations of DvoMk 1
the powerful

vibrations which occur in a Kundt's tube are accompanied by
certain mean motions of the gas. Thus near the walls there is a

flow from the loops to the nodes, and in the interior a return flow

from the nodes to the loops. This is a consequence of viscosity

acting with peculiar advantage upon the parts of the fluid con

tiguous to the walls 2
. We may perhaps return to this subject in

a later chapter.]

261. In the experiments described in the preceding section the

aerial vibrations are forced, the pitch being determined by the

external source, and not (in any appreciable degree) by the length
of the column of air. Indeed, strictly speaking, all sustained

vibrations are forced, as it is not in the power of free vibrations

to maintain themselves, except in the ideal case when there is

absolutely no friction. Nevertheless there is an important prac

tical distinction between the vibrations of a column of air as

excited by a longitudinally vibrating rod or by a tuning-fork, and

such vibrations as those of the organ-pipe or chemical harmonicon.

In the latter cases the pitch of the sound depends principally on

the length of the aerial column, the function of the wind or of the

flame8
being merely to restore the energy lost by friction and by

communication to the external air. The air in an organ-pipe is to

be considered as a column swinging almost freely, the lower end,

across which the wind sweeps, being treated roughly as open, and

the upper end as closed, or open, as the case may be. Thus the

wave-length of the principal tone of a stopped pipe is four times

the length of the pipe ; and, except at the extremities, there is

neither node nor loop. The overtones of the pipe are the odd

- t. CLVU. p. 61, 1876.
- On the Circulation of Air observed in Kundt's Tubes, and on some allied

Acoustical Problems, Phil. Trans, vol. CLXXV. p. 1, 1884.
3 The subject of sensitive flames with and without pipes is treated in con

siderable detail by Prof. TyndaLL in Ms work on Sound; but the mechanics of

this class of phenomena is still very imperfectly understood. We shall return to

it in a subsequent chapter.
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harmonics, twelfth, higher third, &c., corresponding to the various
subdivisions of the column of air. In the case of the twelfth, for

example, there is a node at the point of trisection nearest to the

open end, and a loop at the other point of trisection midway
between the first and the stopped end of the pipe.

In the case of the open organ-pipe both ends are loops, and
there must be at least one internal node. The wave-length of the

principal tone is twice the length of the pipe, which is divided

into two similar parts by a node in the middle. From this we see

the foundation of the ordinary rule that the pitch of an open pipe
is the same as that of a stopped pipe of half its length. For reasons

to be more fully explained in a subsequent chapter, connected

with our present imperfect treatment of the open end, the rule is

only approximately correct. The open pipe, differing in this re

spect from the stopped pipe, is capable of sounding the whole series

of tones forming the harmonic scale founded upon its principal
tone. In the case of the octave there is a loop at the centre of the

pipe and nodes at the points midway between the centime and the

extremities.

Since the frequency of the vibration in a pipe is proportional

to the velocity of propagation of sound in the gas with which the

pipe is filled, the comparison of the pitches of the notes obtained

from the same pipe in different gases is an obvious method of

determining the velocity of propagation, in cases where the impos

sibility of obtaining a sufficiently long column of the gas precludes

the use of the direct method. In this application Chladni with his

usual sagacity led the way. The subject was resumed at a later

date by Dulong
1 and by Wertheim2

, who obtained fairly satisfac

tory results.

262. The condition of the air in the interior of an organ-pipe

was investigated experimentally by Savart 3
, who lowered into the

pipe a small stretched membrane on which a little sand was

scattered. In the neighbourhood of a node the sand remained

sensibly undisturbed, but, as a loop was approached, it danced with

more and more vigour. But by far the most striking form of the

1 Becherches BUT lea <slialeurs spcifiques des fluides 61astk[ues. Ann. de Cltim.*

t. XLI. p. 113, 1829.

2 Ann. de Chirn., 3iame s<*rie, t. xxm. p. 434, 1848.

3 Ann. de Chim., t. XXIT. p. 56, 1823.
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experiment is that invented by Konig. In this method the vibra

tion is indicated by a small gas flame, fed through a tube which

is in communication with a cavity called a manometric capsule.

This cavity is bounded on one side by a membrane on which

the vibrating air acts. As the membrane vibrates, rendering the

capacity of the capsule variable, the supply of gas becomes un

steady and the flame intermittent. The period is of course too

small for the intermittence to manifest itself as such when the

flame is looked at steadily. By shaking the head, or with the aid

of a moveable mirror, the resolution into more or less detached

images may be effected ; but even without resolution the altered

character of the flame is evident from its general appearance. In

the application to organ-pipes, one or more capsules are mounted

on a pipe in such a manner that the membranes are in contact

with the vibrating column of air
;
and the difference in the flame

is very marked, according as the associated capsule is situated at

a node or at a loop.

263. Hitherto we have supposed the pipe to be straight, but

it will readily be anticipated that, when the cross section is small

and does not vary in area, straightness is not a matter of impor
tance. Conceive <i curved axis of & running along the middle of

the pipe, and let the constant section perpendicular to this axis

be S. When the greatest diameter of S is very small in comparison
with the wave-length of the sound, the velocity-potential <

becomes nearly invariable over the section
; applying Green's

theorem to the space bounded by the interior of the pipe and by
two cross sections, we get

Xow by the general equation of motion

and in the limit, when the distance between the sections is made
to vanish,

.so that

#_
dff da?
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shewing that < depends upon x in the same way as if the pipe

were straight. By means of equation (1) the vibrations of air in

curved pipes of uniform section may be easily investigated, and the

results are the rigorous consequences of our fundamental equations

(which take no account of friction), when the section is supposed to

be infinitely small. In the case of thin tubes such as would be

used in experiment, they suffice at any rate to give a very good

representation of what actually happens.

264. We now piss on to the consideration of certain cases of

connected tubes. In the accompanying figure AD represents a

thin pipe, which divides at D into two branches DB, DC. At E
the branches reunite and form a single tube EF. The sections

of the single tubes and of the branches are assumed to be uniform

as well as very small.

Fig. 55.

JL.

In the first instance let us suppose that a positive wave of

arbitrary type is advancing in A. On its arrival at the fork D, it

will give rise to positive waves in B and C, and, unless a certain

condition be satisfied, to a negative reflected wave in A. Let the

potential of the positive waves be denoted by/^/^/^/beiug in

each case a function of x- at: and let the reflected wave be

F(x + at). Then the conditions to be satisfied at D are first that

the pressures shall be the same for the three pipes, and secondly

that the whole velocity of the fluid in A shall be equal to the sum

of the whole velocities of the fluid in B and (7. Thus, using

A, B, C to denote the areas of the sections, we have, 244,

whence F' =

1 These formula, as applied to determine the reflected and refracted waves

at the junction of two tubes of sections #+(7, and A respectively, aie given by
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It appears that/g and/c are always the same. There is no reflec

tion, if

B + C= A... .........................(4),

that is, if the combined sections of the branches be equal to the

section of the trunk ; and, when this condition is satisfied,

The wave then advances in B and (7 exactly as it would have

done in A, had there been no break. If the lengths of the

branches between D and E be equal, and the section of .Fbe equal

to that of A, the waves on arrival at E combine into a wave pro

pagated along F, and again there is no reflection. The division

of the tube has thus been absolutely without effect
;
and since the

same would be true for a negative wave passing from F to A,

we may conclude generally that a tube may. be divided into two,

or more, branches, all of the same length, without in any way

influencing the law of aerial vibration, provided that the whole

section remain constant. If the lengths of the branches from D
to E be unequal, the result is different. Besides the positive wave

in F, there will be in general negative reflected waves in B and C.

The most interesting case is when the wave is of harmonic type
and one of the branches is longer than the other by a multiple of

^ X. If the difference be an even multiple of J X, the result will be

the same as if the branches were of equal length, and no reflection

will ensue. But suppose that, while B and G are equal in section,

one of them is longer than the other by an odd multiple of ^ X.

Since the waves arrive at E in opposite phases, it follows from

symmetry that the positive wave in F must vanish, and that the

pressure at E, which is necessarily the same for all the tubes,

must be constant. The waves in B and C are thus reflected as

from an open end. That the conditions of the question are thus

satisfied may also be seen by supposing a barrier taken across the

tube F in the neighbourhood of E in such a way that the tubes

B and C communicate without a change of section. The wave in

each tube will then pass on into the other without interruption,
and the pressure-variation at E, being the resultant of equal and

opposite components, will vanish. This being so, the barrier may
be removed without altering the conditions, and no wave will be

propagated along F, whatever its section may be. The arrange-

Poisson, Mm. de VInstitut, t. n. p. 305, 1819. The reader will not forget that both

diameters must be small in comparison with the wave-length.
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ment now under consideration was invented by Herschel, and has

been employed by Quincke and others for experimental purposes,

an application that we shall afterwards have occasion to describe.

The phenomenon itself is often referred to as an example of inter

ference, to which there can be no objection, but the same cannot

be said when the reader is led to suppose that the positive waves

neutralise each other in F, and that there the matter ends. It must

never be forgotten that there is no loss of energy in interference,

but only a different distribution
;
when energy is diverted from

one place, it reappears in another. In the present case the positive

wave in A conveys energy with it. If there is no wave along F,

there are two possible alternatives. Either energy accumulates

in the branches, or else it passes back along A in the form of a

negative wave. In order to see what really happens, let us trace

the progress of the waves reflected back at E.

These waves are equal in magnitude and start from E in

opposite phases; in the passage from E to D one has to travel

a greater distance than the other by an odd multiple of X ; and

therefore on arrival at D they will be in complete accordance.

Under these circumstances they combine into a single wave, which

travels negatively along A, an there is no reflection. When the

negative wave reaches the end of the tube A, or is otherwise dis

turbed in its course, the whole or a part may be reflected, and then

the process is repeated. But however often this may happen there

will be no wave along F}
unless by accumulation, in consequence

of a coincidence of periods, the vibration in the branches becomes

so great that a small fraction of it can no longer be neglected

Or we may reason thus. Suppose the tube F cut off by a

barrier as befora The motion in the Fig. 56.

ring being due to forces acting at D is

necessarily symmetrical with respect to

D, and D7
the point which divides

DBOD into equal parts. Hence D' is

a node, and the vibration is stationary.

This being the case, at a pointE distant

\X from J)
r
on either side, there must be

a loop; and if the barrier be removed

there will still be no tendency to produce

vibration in F. If the perimeter of the

ring be a multiple of X, there may be
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vibration within it of the period in question, independently of

any lateral openings.

Any combination of connected tubes may be treated in a

similar manner. The general Fig. 57.

principle is that at any junction

a space can be taken large enough
to include all the region through

which the want of uniformity

affects the law of the waves, and

yet so small that its longest

dimension may be neglected in comparison with X. Under these

circumstances the fluid within the space in question may be

treated as if the wave-length were infinite, or the fluid itself

incompressible, in which case its velocity-potential would satisfy

V 2
< = 0, following the same laws as electricity.

265. When the section of a pipe is variable, the problem of the

vibrations of air within it cannot generally be solved. The case

of conical pipes will be treated on a future page. At present we
will investigate an approximate expression for the pitch of a nearly

cylindrical pipe, taking first the case where both ends are closed.

The method that will be employed is similar to that used for a string

"whose density is not quite constant, 91, 140, depending on the

principle that the period of a free vibration fulfils the stationary

condition, and may therefore be calculated from the potential and

kinetic energies of any hypothetical motion not departing far from

the actual type. In accordance with this plan we shall assume that

the velocity normal to any section $''is constant over the section,

as must be very nearly the case when the variation of S is slow.

Let X represent the total transfer of fluid at time t across the

section at so, reckoned from the equilibrium condition
;
then X

represents the total velocity of the current, and Jf -f- 8 represents
the actual velocity of the .particles of fluid, so that the kinetic

energy of the motion within the tube is expressed by

de ........................ (1).

The potential energy 245 (12) is expressed in general by
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or, since dV=Sdx, by

(2).

Again, by the condition of continuity,

re ........................... <

and thus

<$;)'*'
.....................<4>

If we now assume for X an expression of the same form as

would obtain if S were constant, viz.

. .
,X =

sin-y-
cosnt ........ ....

we obtain from the values of T and F in (1) and (4),

a3^ [
l

^irxdx (
l

. ^TTxdx
""=

-FJo
005" T *

Jo
8111

'

T
or, if we write S= SQ +AS and neglect the square of AS,

The result may be expressed conveniently in terms of AZ, the cor

rection that must be made to I in order that the pitch may be

calculated from the ordinary formula, as if S were constant. For

the value of AZ we have
. f* Z-irx&Sj /QNAZ= cos? -^rdx..................... (8).

Jo l M>

The effect of a variation of section is greatest near a node or near

a loop. An enlargement of section in the first case lowers the

pitch, and in the second case raises it. At the points midway

between the nodes and loops a slight variation of section is with

out effect. The pitch is thus decidedly altered by an enlargement

or contraction near the middle of the tube, but the influence of a

slight conicality would be much less.

The expression for AZ given by (8) is applicable as it stands to

the gravest tone only; but we may apply it to the m* tone

of the harmonic scale, if we modify it by the substitution of

Z for cos(27nrZ).
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In .the case of a tube open at both ends (5) is replaced by

vr TT&
A =cos

-y cosTrt
(9\

which leads to

A7 [
l 27r#AS 7AZ=

-Jo
cos

sr^ aox

instead of (8). The pitch of the sound is now raised by an

enlargement at the ends, or by a contraction at the middle, of the
tube : and, as before, it is unaffected by a slight general conicality

( 281).

266. The case of progressive waves moving in a tube of vari
able section is also interesting. In its general form the problem
would be one of great difficulty; but where the change of section
is very gradual, so that no considerable alteration occurs within a
distance of a great many wave-lengths, the principle of energy
will guide us to an approximate solution. It is not difficult to see
that in the case supposed there will be no sensible reflection of the
wave at any part of its course, and that therefore the energy of the
motion must remain unchanged

1
. Now we know, 245, that for

a given area of wave-front, the energy of a train of simple waves
is as the .xquaie of the amplitude, from which it follows that as
the waves advance the amplitude of vibration varies inversely as
the square root of the section of the tube. In all other respects
the type of vibration remains absolutely unchanged. From these
results we may get a general idea of the action of an ear-trumpet.
It appears that according to the ordinary approximate equations,
there is no limit to the concentration of sound producible in a
tube of gradually diminishing section.

The same method is applicable, when the density of the
medium varies slowly from point to point. For example, the

amplitude of a sound-wave moving upwards in the atmosphere
may be determined by the condition that the "energy remains

unchanged. From 245 it appears that the amplitude is in

versely as the square root of the density-.

1 PhiL Mag. (5) i. p. 261, 1876.
3 A delicate question arises as to the ultimate fate of sonorous waves propagated

upwards. It should be remarked that in rare air the deadening influence otk much increased.



CHAPTER XIII.

SPECIAL PROBLEMS. REFLECTION AND REFRACTION OF

PLANE WAVES.

267. BEFORE undertaking the discussion of the general equa
tions for aerial vibrations we may conveniently turn our 'attention

to a few special problems, relating principally to motion in two

dimensions, which are susceptible of rigorous and yet compara

tively simple solution. In this way the reader, to whom the

subject is new, will acquire some familiarity with the ideas and

methods employed before attacking more formidable difficulties.

In the previous chapter ( 255) we investigated the vibrations in

one dimension, which may take place parallel to the axis of a tube,

of which both ends are closed. We will now inquire what vibrations

are possible within a closed rectangular box, dispensing with the

restriction that the motion is to be in one dimension only. For

each simple vibration of which the system is capable, <f>
varies as

a circular function of the time, say coxkat, where k is some

constant
;
hence

<J>
= ^a2

^, and therefore by the general differen

tial equation (9) 244

V2
< + 2

< = 0.. ......................... (1).

Equation (1) must be satisfied throughout the whole of the

included volume. The surface condition to be satisfied over the

six sides of the box is simply

(2),

where dn represents au element of the normal to the surface. It

is only for special valuta of k that it is possible to satisfy (1) and

(2) simultaneously.
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Taking three edges which meet as axes of rectangular co-ordi

nates, and supposing that the lengths of the edges are respectively

> A y, we know ( 255) that

where p, q, r are integers, are particular solutions of the problem.

By any of these forms equation (2) is satisfied, and provided that

be equal to pir/a, qTrff3> or mr/% as the case may be, (1) is also

satisfied It is equally evident that the boundary equation (2) is

satisfied over all the surface by the form

irz\ x _ x

(3),

a form which also satisfies (1), if k be taken such that

where as before p, q, r are integers
1
.

The general solution, obtained by compounding all particular

solutions included under (3), is

<j>
= 2 2 2 (A cos kat + B sin Jcaf)

{ TTX\ ( 7ry\ / Trz\ ,.x cos p cos [q - cos [r ............... (a),Va/ VP/ \ 7 /

in which A and B ai
ie arbitrary constants, and the summation is

extended to all integral values ofp, q, r.

This solution is sufficiently general to cover the case of any
initial state of things within the box, not involving molecular

rotation. The initial distribution of velocities depends upon the

initial value of
<f>,

or J(uQdx+vQdy +w dz), and by Fourier's

theorem can be represented by (5), suitable values being ascribed

to the coefficients A. In like manner an arbitrary initial distribu

tion of condensation (or rarefaction), depending on the initial

value of
<j>,

can be represented by ascribing suitable values to the

coefficients JB.

The investigation might be presented somewhat differently

by commencing with assuming in accordance with Fourier's

1
Duhamel, Liouville Jouni. MatJu, vol. xiv. p. 84, 1849.
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theorem that the general value of
<f>

at time t can be expressed in

the form

I ^x\ ( it"*/ / 7TZ\
tp j

cos f

q-jf
\ cos f r 1

,

in which the coefficients G may depend upon t, but not upon
x, y, z. The expressions for T and F would then be formed, and
shewn to involve only the squares of the coefficients (7, and from

these expressions would follow the normal equations of motion

connecting each normal co-ordinate with the time.

The gravest mode of vibration is that in which the entire

motion is parallel to the longest dimension of the box, and there

is no internal node. Thus, if a be the greatest of the three sides

a> A % we are to take p = 1, q
=

0, r = 0.

In the case of a cubical box, a = yS
=

7, and then instead of

(4) we have

*5 =|V + ?
2 + ^) ........................ (6),

or, if X be the wave-length of plane waves of the same period,

X=2a + VG>-4-2
2 -fr2

) ..................... (7).

For the gravest mode p = 1, q = 0, r = 0, or p = 0, 2 = 1, r= 0, &c.,

and \-2oL The next gravest is when p = 1, 2 = 1, r = 0, &e., and

then X = V2 - When p = 1, q = 1, r = 1, X = 2a/V3. For the

fourth gravest mode p = 2, ^ = 0, 7* 0, &c., and then X = 4a.

As in the case of the membrane ( 197), when two or more

primitive modes have the same period of vibration, other modes

of like period may be derived by composition.

The trebly infinite series of possible simple component vibra

tions is not necessarily completely represented in particular cases

of compound vibrations. If, for example, we suppose the contents

of the box in its initial condition to be neither condensed nor

rarefied in any part, and to have a uniform velocity, whose

components parallel to the axes of co-ordinates are respectively

o i %> ^o no simple vibrations are generated for which more

than one of the three numbers p, q, r is finite. * In fact each

component initial velocity may be considered separately, and the

problem is similar to that solved in 258.

In future chapters we shall meet with other examples of the

vibrations of air within completely closed vessels.
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Some of the natural notes of the air contained within a room

may generally be detected on singing the scale. Probably it is

somewhat in this way that blind people are able to estimate the

size of rooms1
.

In long and narrow passages the vibrations parallel to the

length are too slow to affect the ear, but notes due to transverse

vibrations may often be heard. The relative proportions of the

various overtones depend upon the place at which the disturbance

is created 5
.

In some cases of this kind the pitch of the vibrations, whose
direction is principally transverse, is influenced by the occurrence

of longitudinal motion. Suppose, for example, in (3) and (4), that

q = l ? r= 0, and that a is much greater than ft. For the principal
transverse vibration p = 0, and &= 7r/;8. But besides this there

are other modes of vibration in which the motion is principally

transverse, obtained by ascribing to p small integral values. Thus,

shewing that the pitch is nearly the same as before 8
.

268. If we suppose 7 to become infinitely great, the box of

the preceding section is transformed into an infinite rectangular
tube, whose sides are a and . Whatever may be the motion of

the air within this tube, its velocity-potential may be expressed

by Fourier's theorem in the series

where the coefficients A are independent of a? and y. By the use

of this form we secure the fulfilment of the boundary condition

1 A remarkable instance is quoted in Young's Natural Philosophy, n. p. 272,
from Darwin's Zoonamia, n. 487. " The late blind Justice Fielding walked for the

first time into my room, when he once visited me, and after speaking a few words

said,
* This room is abont 22 feet long, 18 wide, and 12 high

*

; all which he guessed
by the ear with great accuracy."

2
Oppel, Die harmonischen Obertone des durch paralUle Wdnde erregten Re-

Jlexionstones. Fortftchritte der Physik, xx. p. 130.
3 There is an underground passage in my house in which it is possible, by

singing the right note, to excite free vibrations of many seconds* duration, and it

often happens that the resonant note is affected with distinct beats. The breadth
of the passage is about 4 feet, and the height about 6J feet.
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that there is to be no velocity across the sides of the tube
;
the

nature of A as a function of z and t depends upon the other

conditions of the problem.

Let us consider the case in which the motion at every point is

harmonic, and due to a normal motion imposed upon a barrier

stretching across the tube at z = 0. Assuming <j>
to be proportional

to eP * at all points, we have the usual differential equation

0*

which by the conjugate property of the functions must be satisfied

separately by each term of (1). Thus to determine A^ as a

function of z> we get

Tsr+[-(MDK- <*>

The solution of this equation differs in form according to the sign
of the coefficient of Apq. When p and q are both zero, the coeffi

cient is necessarily positive, but as p and q increase the coefficient

changes sign. If the coefficient be positive and be called /t*,

the general value of AM may be written

(4),

where, as the factor eP* is expressed, Bpg, Cpq are absolute

constants. However, the first term in (4) expresses a motion

propagated in the negative direction, which is excluded by the

conditions of the problem, and thus we are to take simply as the

term corresponding to p, q,

cos

In this expression Cpg may be complex ; passing to real quantities

and taking two new real arbitrary constants, we obtain

<==[jD^cos(&o-/^) +^ ...(5).

We have now to consider the form of the solution in cases

where the coefficient of AM in (3) is negative. If we call it -z/2
,

the solution corresponding to (4) is

.. ..............(6),
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of which the first term is to be rejected as becoming infinite with z.

We thus obtain corresponding to (5)

<f>
= r \DK cos kat -fEM sin kat] cos-^ cos

%~jt
...... (7).

The solution obtained by combining all the particular solutions

given by (5) and (7) is the general solution of the problem, and
allows of a value of dfydz over the section z = 0, arbitrary at

every point in both amplitude and phase.

At a great distance from the source the terms given in (7)

become insensible, and the motion is represented by the terms of

(5) alone. The effect of the terms involving high values ofp and q
is thus confined to the neighbourhood of the source, and at

moderate distances any sudden variations or discontinuities in the

motion at z = are gradually eased off and obliterated.

If we fix our attention on any particular simple mode of vibra

tion (for which p and q do not both vanish), and conceive the

frequency of vibration to increase from zero upwards, we see that

the effect, at first confined to the neighJbourhood of the source,

gradually extends further and further and, after a certain value

is passed, propagates itself to an infinite distance, the critical

frequency being that of the two dimensional free vibrations of the

corresponding mode. Below the critical point no work is required
to maintain the motion

;
above it as much work must be done at

z =s as is carried off to infinity in the same time.

268 a. If in the general formula? of 267 we suppose that

r = 0, we fall back upon the case of a motion purely two-dimen
sional. The third dimension (7) of the chamber is then a matter
of indifference

;
and the problem may be supposed to be that of

the vibrations of a rectangular plate of air bounded, for example,

by two parallel plates of glass, and confined at the rectangular

boundary. In this form it has been treated both iheoretically
and experimentally by Kundt 1

. The velocity-potential is simply

. ....... .(1),

where p and q are integers ;
and the frequency is determined by

*-*&!# +?//?) .....................(2).

1
Pogg. Aim. vol. XL. pp. 177, 337, 1873.
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If the plate be open at the boundary, an approximate solution

may be obtained by supposing that < is there evanescent. In

this case the expression for < is derived from (1) by writing sines

instead of cosines, while the frequency equation retains the same

form (2). This has already been discussed under the head of

membranes in 197. If a ==/?, so that the rectangle becomes a

square, the various normal modes of the same pitch may be

combined, as explained in 197.

In Kundt's experiments the vibrations were excited through a

perforation in one of the glass plates, to which was applied the

extremity of a suitably tuned rod vibrating longitudinally, and

the division into segments was indicated by the behaviour of cork

filings. As regards pitch there was a good agreement with

calculation in the case of plates closed at the boundary. When

the rectangular boundary was open, the observed frequencies were

too small, a discrepancy to be attributed to the merely approxi

mate character of the assumption that the pressure is there

invariable (see 307).

The theory of the circular plate of air depends upon Bessel's

functions, and is considered in 339.

269. We will now examine the result of the composition of

two trains of plane waves of harmonic type, whose amplitudes and

wave-lengths are equal, but whose directions of propagation are

inclined to one another at an angle 2o. The problem is one of

two dimensions only, inasmuch, as everything is the same in

planes perpendicular to the lines of intersection of the two sets of

wave-fronts.

At any moment of time the positions of the planes of maximum

condensation for each train of waves may be represented by pa

rallel lines drawn at equal intervals \ on the plane of the paper,

and these lines must be supposed to move with a velocity a in a

direction perpendicular to their length. If both sets of lines be

drawn, the paper will be divided into a system of equal parallelo

grams, which advance in the direction of one set of diagonals. At

each corner of a parallelogram the condensation is doubled by the

superposition of the two trains of waves, and in the centre of each

parallelogram the rarefaction is a maximum for the same reason.

On each diagonal there is therefore a series of maxima and minima

condensations, advancing without change of relative position and
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with velocity a /cos a. Between each adjacent pair of lines of

maxima and minima there is a parallel line of zero condensation,
on which the two trains of waves neutralize one another. It is

especially remarkable that, if the wave-pattern were visible (like

the corresponding water wave-pattern to which the whole of the

preceding argument is applicable), it would appear to move for

wards without change of type in a direction different from that of

either component train, and with a velocity different from that

with which both component trains move.

In order to express the result analytically, let us suppose
that the two directions of propagation are equally inclined at an

angle a to the axis of x. The condensations themselves may be
denoted by

27r / ^ - %
cos (a t x cos a y sin a)

A*

o
and cos (a t x cos a+ y sin a)

A*

respectively, and thus the expression for the resultant is

s = cos (a t x cos a y sin a) + cos (a t x cos a + y sin a)

= 2 cos (a #cosa) cos- (y sin a).. ...... .(1).
A* A,

It appears from (1) that the distribution of s on the plane xy
advances parallel to the axis of #, unchanged in type, and with a

uniform velocity a/cos a. Considered as depending on y, s is a

maximum, when y sin a is equal to 0, X, 2X, 3X, &c., while for the

intermediate values, viz. X, f X, &c., s vanishes.

If a = |7r, so that the two trains of waves meet one another

directly, the velocity of propagation parallel to x becomes infinite,

and (1) assumes the form

atj
cos f

yj.. .-(2);

which represents stationary waves.

The problem that we have just been considering is in reality
the same as that of the reflection of a train of plane waves by an
infinite plane wall Since the expression on the right-hand side

of equation (1) is an even function of y, s is symmetrical with

respect to the axis of x, and consequently there is no motion
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across that axis. Under these circumstances It is evident that the

motion could in no way be altered by the introduction along the

axis of os of an absolutely immovable wall. If a be the angle
between the surface and the direction of propagation of the inci

dent waves, the velocity with which, the places of maximum con

densation (corresponding to the greatest elevation of water-waves)
move along the wall is a/cos a. It may be noticed that the aerial

pressures have no tendency to move the wall as a whole, except in

the case of absolutely perpendicular incidence, since they are at

any moment as much negative as positive.

269 a. When sound waves proceeding from a distant source

are reflected perpendicularly by a solid wall, the superposition of

the direct and reflected waves gives rise to a system of nodes and

loops, exactly as in the case of a tube considered in 255. The
nodal planes, viz, the surfaces of evanescent motion, occur at

distances from the wall which are even multiples of the quarter
wave length, and the loops bisect the intervals between the nodes.

In exploring experimentally it is usually best to seek the places

of minimum effect, but whether these will be nodes or loops

depends upon the apparatus employed, a consideration of which

the neglect has led to some confusion
1
. Thus a resonator will

cease to respond when its mouth coincides with a loop, so that

this method of experimenting gives the loops whether the

resonator be in connection with the ear or with a "manometric

capsule
"

( 282). The same conclusion applies also to the use of

the unaided ear, except that in this case the head is an obstacle

large enough to disturb sensibly the original distribution of the

loop and nodes
2
. If on the other hand the indicating apparatus

be a small stretched membrane exposed upon both sides, or a

sensitive smoke jet or flame, the places of vanishing disturbance

are the nodes*.

The complete establishment of stationary vibrations with

nodes and loops occupies a certain time during which the sound is

to be maintained. When a harmonium reed is sounding steadily

in a room free from carpets and curtains, it is easy, listening with

a resonator, to find places where the principal tone is almost

entirely subdued. But at the first moment of putting down the

1 N. Savart, Ann. d. Chim. i/xxi. p. 20, 1839 ; XL . p. 385, 1845.

3 PhiU Mag. vn. p. 150, 1879.
* Phil Mag. loc. cit. p.
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key, or immediately after letting it go, the tone in question asserts

itself, often with surprising vigour.

The formation of stationary nodes and loops in front of a

reflecting wall may be turned to good account when it is desired

to determine the wave-lengths of aerial vibrations. The method

is especially valuable in the case of very acute sounds and of

vibrations of frequency so high as to be inaudible. With the aid

of a high pressure sensitive tiame vibrations produced by small

"bird-calls" may be traced down to a complete wave-length of

6 mm., corresponding to a frequency of about 55,000 per second.

270. So long as the medium which is the vehicle of sound

continues of unbroken uniformity, plane waves may be propagated
in any direction with constant v'elocity and with type unchanged ;

but a disturbance ensues when the waves reach any part where the

mechanical properties of the medium undergo a change. The

general problem of the vibrations of a variable medium is probably

quite beyond the grasp of our present mathematics, but many of

the points of physical interest are raised in the case of plane
waves. Let us suppose that the medium is uniform above and

below a certain infinite plane (#
=

0), but that in crossing that

plane there is an abrupt variation in the mechanical properties on

-which the propagation of sound depends namely the compressi

bility and the density. On the upper side of the plane (which for

distinctness of conception we may suppose horizontal) a train of

plane waves advances so as to meet it more or less obliquely ; the

problem is to determine the (refracted) wave which is propagated
onwards within the second medium, and also that thrown back

into the first medium, or reflected. We have in the first place
to form the equations of motion and to express the boundary
conditions.

In the upper medium, if p be the natural density and ,5 the

condensation,

density= p (1-fs),

and pressure =P (1 + As),

where A is a coefficient depending on the compressibility, and P
is the undisturbed pressure. In like manner in the lower medium

density =p1 (l+^1)>

pressure =P (1 + A, sj,
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the undisturbed pressure being the same on both sides of x = 0.

Taking the axis of z parallel to the line of intersection of the

plane of the waves with the surface of separation x = 0, we have

for the upper medium ( 244),

dff da? dy*J
..................... '

and H- F*s= ..........................(2),

where V*=PA+p ..........................(3).

Similarly, in the lower medium,

and 3*? + 7^-0.................. . ....... (5),

where 71
a=P-4 1 4-p1 ................. . ........ (6).

These equations must be satisfied at all points of the fluid. Further

the boundary conditions require (i) that at all points of the

surface of separation the velocities perpendicular to the surface

shall be the same for the two fluids, or

d<f>/dx
=

d<j>)/dx, when # = ....... . ........(7);

(ii) that the pressures shall be the same, whence A 1sl
= As, or by

(2), (3), (5) and (6),

when # = ..... ... ....... (8).

In order to represent a train of waves of harmonic type, we

may assume < and ^ to be proportional to ^flw+to-n*), where

o# -f fry
= const, gives the direction of the plane of the waves. If

we assume for the incident wave,

... ................... (9),

the reflected and refracted waves may be represented respectively

b
.......: ............. (10),

. ..... ....(11).

The coefficient of t is necessarily the same in all three waves

on account of the periodicity, and the coefficient of y must be the

same, since the traces of all the waves on the plane of separation
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must move together. With regard to the coefficient of x, it ap
pears by substitution in the differential equations that its sign is

changed in passing from the incident to the reflected wave
; in

fact

....(12).

Now b -f- V(a
2
4-

9
) is the sine of the angle included between the

axis of x and the normal to the plane of the waves in optical

language, the sine of the angle of incidence, and b -r- *J(a* 4- &*) is in
like manner the sine of the angle of refraction. If these angles
be called 8, l9 (12) asserts that sin 6 : sin ^ is equal to the con
stant ratio F: F1? the well-known law of sines. The laws of
refraction and reflection follow simply from the fact that the velo

city of propagation normal to the wave-fronts is constant in each
medium, that is to say, independent of the direction of the wave-
front, taken in connection with the equal velocities of the traces of
all the waves on the plane of separation (F-rsin0= F
It remains to satisfy the boundary conditions (7) and (8).

These give

whence

This completes the symbolical solution. If a^ (and 0J be real, we
see that if the incident wave be

or in terms of F, X, and 0,

ZTT=
a*Y

the reflected wave is

cot l

and the refracted wave is

./> cot
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The formula for the amplitude of the reflected wave, "viz.

Pi __
cot 8

l

<ft"_ p cot 6

$'~ Pl
i

cot ft

p

is here obtained on the supposition that the waves are of harmonic

type ;
but since it does not involve X, and there is no change of

phase, it may be extended by Fourier's theorem to waves of any
type whatever.

If there be no reflected wave, cot
l : cot 8 = p l : p, from which

and (1 -f- cot2 ft) : (1 -f cot5 6)
= F2

: F^, we deduce

o**-^-! ................. (19),

which shews that, provided the refractive index F
x : V be inter

mediate in value between unity and p : pls there is always an

angle of incidence at whieji the wave is completely intromitted
;

but otherwise there is no such angle.

Since (18) is not altered (except as to sign) by an interchange
of 0, ft ; p y P! ; &c., we infer that a wave incident in the second

medium at an angle ft is reflected in the same proportion as a
wave incident in the first medium at an angle 0.

As a numerical example let us suppose that the upper medium
is air at atmospheric pressure, and the lower medium water.

Substituting for cot ft its value in terms of 6 and the refractive

index, we get

or, since Vl : V = 4"3 approximately,

cot ft/cot 6= -23 V(l - 17-5 tan2
0),

which shews that the ratio of cotangents diminishes to zero, as &

increases from zero to about 13, after which it becomes imaginary,

indicating total reflection, as we shall see presently. It must be

remembered that in applying optical terms to acoustics, it is the

water that must be conceived to be the
e

rare
'

medium. The ratio

of densities is about 770 : 1
;
so that

<f>" 1 - '0003 V(l - 17-5 tan2
0)

<f>'~~I + -0003 V(l - 17-5 tan-"0)

= 1 - -0006 V(l - 17-5 tan2
0) very nearly.

Even at perpendicular incidence the reflection is sensibly perfect.



82 FBESNEI/S EXPRESSIONS.
[270.

If both media be gaseous, A l
= A, if the temperature be con

stant
;
and even if the development of heat by compression be

taken into account, there will be no sensible difference between
A and A l in the case of the simple gases. Now, if A

l *=A,
pl : p srn^O : sin

1

ft, and the formula for the intensity of the
reflected wave becomes

1 = sia 2# - sin 2ft __
tan (8

-
ft)

ft'

"
sin 26 + sin 2ft

~~

tan (6 -f ft)

"

coinciding with that given by Fresnel for light polarized perpen
dicularly to the plane of incidence. In accordance with Brewster's
law the reflection vanishes at the angle of incidence, whose

tangent is F/Fj.

But, if on the other hand ft
=

/>,
the cause of disturbance

being the change of compressibility, we have

ft" _ tan ft
~ tan 8 sin (ft

-
0)

ft'
tan ft -{-tan 6

""

sin (ft -f 0)

agreeing with Fresnel's formula for light polarized in the plane
of incidence. In this

1

case the reflected wave does not vanish at

any angle of incidence.

In general, when =
0,

so that there is no reflection, if Pl : p = V : V^ In the case of

gases F3
: 7^= ^ : p, and then

Suppose, for example, that after perpendicular incidence re
flection takes place at a surface separating air and hydrogen. We
have

p = -001276, Pl
= -00008837;

whence V/> :
A/ft

=
3*800, giving

The ratio of intensities, which is as the square of the amplitudes,
is -3402 : 1, so that about one-third part is reflected.

If the difference between the two media be very small, and we
write F1== F+SF, (24) becomes

>" SF
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If the first medium be air at 0Cent., and the second medium be
air at t Cent., V+ SF = F^(l + -00366 f) ;

so that

"/'= --0009U

The ratio of the intensities of the reflected and incident sounds is

therefore -S3 x 10"6 x t- : I.

As another example of the same kind we may take the case in

which the first medium is dry air and the second is air of the

same temperature saturated with moisture. At 10 Cent, air

saturated with moisture is lighter than dry air by about one part
in 220, so that 87 =^F nearly. Hence we conclude from (25)
that the reflected sound is only about one 774,000

th
part of the

incident sound.

From these calculations we see that reflections from warm or

moist air must generally be very small, though of course the effect

may accumulate by repetition. It must also be remembered that

in practice the transition from one state of things to the other

would be gradual, and not abrupt, as the present theory supposes.

If the space occupied by the transition amount to a considerable

fraction of the wave-length, the reflection would be materially

lessened. On this account we might expect grave sounds to travel

through a heterogeneous medium less freely than acute sounds.

The reflection of sound from surfaces separating portions of

gas of different densities has engaged the attention of Tyndall,

who has devised several striking experiments in illustration of the

subject
1
. For example, sound from a high-pitched reed was con

ducted through a tin tube towards a sensitive flame, which served

as an indicator. By the interposition of a coal-gas flame issuing

from an ordinary bat's-wing burner between the tube and the

sensitive flame, the greater part of the effect could be cut oft

Not only so, but by holding the flame at a suitable angle, the

sound could be reflected through another tube in sufficient quantity

to excite a second sensitive flame, which but for the interposition

of the reflecting flame would have remained undisturbed.

[The refraction of Sound has been demonstrated experimentally

by Sondhauss* with the aid of a collodion balloon charged with

carbonic acid.]

i Sound, 3rd edition, p. 282, 1875.

Pogg. Ann. t. 85, p. 378, 1852. Phil Mag. vol. v. p. 73, 1853.



84 TOTAL REFLECTION.
[270.

The preceding expressions (16), (17), (18) hold good in every
case of reflection from a 'denser* medium; but if the velocity of
sound be greater in the lower medium, and the angle of incidence
exceed the critical angle, a^ becomes imaginary, and the formulae

require modification. In the latter case it is impossible that a
refracted wave should exist, since, even if the angle of refraction

were 90, its trace on the plane of separation must necessarily
outrun the trace of the incident wave.

If za/ be written in place of alt the symbolical equations are

Incident wave
. ^

Reflected wave

Refracted wave

A --

p a

from which by discarding the imaginary parts, we obtain

Incident ivave

4>
=

co&(aas + ly + ct) ....... . ................(26),

Reflected wave

# = cos(-aar+&#-hcJ + 2e).

Refracted wave

where

These formulae indicate total reflection. The disturbance in the
second medium is not a wave at all in the ordinary sense, and at
a short distance from the surface of separation (x negative) be
comes insensible. Calculating a/ from (12) and expressing it in
terms of 6 and X, we find

shewing that the disturbance does not penetrate into the second
medium more than a few wave-lengths.
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The difference of phase between the reflected and the incident

waves is 2e, where

..,(31).

If the media have the same compressibilities, p : pa
= V^ : Vz

,
and

. ..... (32).

Since there is no loss of energy in reflection and refraction, the

work transmitted in any time across any area of the front of the

incident wave must be equal to the work transmitted in the same
time across corresponding areas of the reflected and refracted

waves. These corresponding areas are plainly in the ratio

cos Q : cos 6 : cos ffl ;

and thus by 245 (r being the same for all the waves),

or since F : 7i = sin : sin 19

p cot 6 (<'
2
-<"2) = pl cot i91 ^1

2
............... (33),

which is the energy condition, and agrees with the result of multi

plying together the two boundary equations (13).

When the velocity of propagation is greater in the lower than

in the upper medium, and the angle of incidence exceeds the

critical angle, no energy is transmitted into the second medium
;

in other words the reflection is total.

The method of the present investigation is substantially the

same as that employed by Green in a paper on the Reflection and

Refraction of Sound 1
. The case of perpendicular incidence was

first investigated by Poisson
2
, who obtained formulae corresponding

to (23) and (24), which had however been already given by Young
for the reflection of Light. In a subsequent memoir8 Poisson

considered the general case of oblique incidence, limiting himself,

however, to gaseous media for which Boyle's law holds good, and

by a very complicated analysis arrived at a result equivalent- to

1
Cambridge Transactions, vol. vi. p. 403, 1838.

2 M6m. de rinstitut, fc. n. p. 305. 1819.

3 " MSmoire sur le mouvemeut de deux fiuides elastiques superposes."

de VInstitut, t. x. p. 317. 1831.
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(21). He also verified that the energies of the reflected and re

fracted waves make up that of the incident wave 1
.

271. If the second medium be indefinitely extended down
wards with complete uniformity in its mechanical properties, the

transmitted wave is propagated onwards continually. But if at

&= l there be a further change in the compressibility, or density,

or both, part of the wave will be thrown back, and on arrival at

the first surface (x
= 0) mil be divided into two parts, one trans

mitted into the first medium, and one reflected back, to be again
divided at x= ly and so on. By following the progress of these

waves the solution of the problem may be obtained, the resultant

reflected and transmitted waves being compounded of an infinite

convergent series of components, all parallel and harmonic. This

is the method usually adopted in Optics for the corresponding

problem, and is quite rigorous, though perhaps not always suf

ficiently explained : but it does not appear to have any advantage
over a more straightforward analysis. In the following investi

gation we shall confine ourselves to the case where the third

medium is similar in its properties to the first medium.

In the first medium

In the second medium

In the third medium
=^

with the conditions

c*=Fa
(a

2 + ^)=F1
2
(a1

3+ &2) .................. (1).

At the two surfaces of separation we have to secure 'the

equality of normal motions and pressures ;
for x = 0,

for a; = I,

1
[It is interesting and encouraging to note Laplace's remark in a correspondence

vith T, Young. The great analyst writes (1817) "Je persiste a croire que le

pxobUme de la propagation des ondes, lorsqtt'elles traversent diffSrens milieux, n'a

jamais 4te resolu, et cjri'il surpasse peut-etre les forces actuelles de Tanalyse'
1

(Young's IForfe, vol. i. p. 374).]
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from which
-*fr'

and ^" are to be eliminated. We get

pl
(4);

and from these, if for brevity ap1/a1p = a,

^
r==

a + a-1 -2icota1 Z

* ^

In order to pass to real quantities, these expressions must be

put into the form Ret*. If a^ be real, we find corresponding to

the incident wave

^ = cos (cw?-f by -f ct),

the reflected wave

, _ (a"
1

a) sin ( cue+ by 4- ct e) ,^,"

and the transmitted wave

. _ 2 cos (CM? + 6y + c^ 4- oZ - e)
^""

where
., ........ ......(9).

If a = P! cot 0/p cot #! = 1, there is no reflected wave, and the

transmitted wave is represented by

(f> =cos(o#4 "by+ ct+ al a^l),

shewing that, except for the alteration of phase, the whole of the

medium might as well have been uniform.

If I be small, we have approximately for the reflected wave

^^^OiZ^1
a) sin(-a#-t- by + ct),

a formula applying, when the plate is thin in comparison with

the wave-length. Since o1
=

(27r/X1)cos51 , it appears that for a

given angle of incidence the amplitude varies inversely as XL , or

as X.

In any case the reflection vanishes, if cot2 a^l =QO , that is, if

m being an integer. The wave is then wholly transmitted.
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At perpendicular incidence, the intensity of the reflection is

expressed by

Let us now suppose that the second medium is incompressible, so

that Vi = oo
;
our expression becomes

shewing how the amount of reflection depends upon the relative

masses of such quantities of the media as have volumes in the ratio

of Z : X. It is obvious that the second medium behaves like a

rigid body and acts only in virtue of its inertia. If this be suf

ficient, the reflection may become sensibly total.

We have now to consider the case in which a^ is imaginary.
In the symbolical expressions (o) and (6) coso^Z and isinojaxe
real, while a, a + a"1

,
a cr1 are pure imaginaries. Thus, if we

suppose that a^ = a/, a = iaf, and introduce the notation of the

hyperbolic sine and cosine ( 170), we get

2 cosho/J - i (of
- a'-1) sinh a^'l

'

4>' 2 cosh o^l i (a! a
7"1

) sinh a^l
'

Hence, if the incident wave be

<f>
= cos (ass -f by + ct),

the reflected wave is expressed by

._(' + a'"1

) sinh a^l cos (- ax+ by + c 4- e)

V{4 cosh2^'^ -f (a' a'^1

)
2 sinh2^)

*

and the transmitted wave is expressed by

._ -

9
V{4 cosh2 a/J -f (a

7 - a^

It is easy to verify that the energies of the reflected and
transmitted waves account for the whole energy of the incident
wave. Since in the present case the corresponding areas of wave-
front are equal for all three waves, it is only necessary to add the

squares of the amplitudes given in equations (7), (8), or in equa
tions (12), (14).
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272. These calculations of reflection and refraction under

various circumstances might be carried farther, but their interest

would be rather optical than acoustical. It is important to bear

in mind that no energy is destroyed by any number of reflections

and refractions, whether partial or total, what is lost in one direc

tion always reappearing in another.

On account of the great difference of densities reflection is

usually nearly total at the boundary between air and any solid or

liquid matter. Sounds produced in air are not easily communi

cated to water, and vice versd sounds, whose origin is under water,

are heard with difficulty in air. A beam of wood, or a metallic

wire, acts like a speaking tube, conveying sounds to considerable

distances with very little loss.

272 a. In preceding sections the surface of separation, at

which reflection takes place, is supposed to be absolutely plane.

It is of interest, both from an acoustical and from an optical point

of view, to inquire what effect would be produced by roughnesses,

or corrugations, in the reflecting surface; and the problem thus

presented may be solved without difficulty to a certain extent by
the method of 268, especially if we limit ourselves to the case of

perpendicular incidence. The equation of the reflecting surface

will be supposed to be #=f, where f is a periodic function of x

whose mean value is zero. As a particular case we may take

f ccospx ...........................(1);

but in general we should have to supplement the first term of the

series expressed in (1) by cosines and sines of the multiples of px.

The velocity-potential of the incident wave (of amplitude unity)

may be written

^^(Crt
+ Z) .. ......................... (2),

For the regularly reflected wave we have
<f>
=A^e^^ the time

factor being dropped for the sake of brevity; but to this must be

added terms in cosps, cos2p#, &c. Thus, as the complete value

of
cf>

in the upper medium,

in which

The expression (3), in which for simplicity sines of multiples

of px have been omitted from the first, would be sufficiently
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general even though cosines of multiples of px accompanied
in (1).

As explained in 268, much turns upon whether the quanti
ties &, /^,... are real or imaginary. In the latter case the

corresponding terms are sensible only in the neighbourhood of= 0. If all the values of p be imaginary, as happens when
p> Jc> the reflected wave soon reduces itself to its first term.

For any real value of /*, say &, the corresponding part of the

velocity-potential is

<f>
= ^Ar [e-*

<***-rpx> 4- e
~i (.rz+rpx)

J^

representing plane waves inclined to z at angles whose sines are

rp/k. These are known in Optics as the spectra of the rth
order. When the wave-length of the corrugation is less than that
of the vibration, there are no lateral spectra.

In the lower medium we have

z cospx +B^z cos Zpx+ ......(5),

where ri*= kf-fr ^ =k*-p\ ............ ... (6).

In each exponential the coefficient of z is to be taken positive ;

if it be imaginary, because the wave is propagated in the negative
direction; if it be real, because the disturbance must decrease,
and not increase, in penetrating the second medium.

The conditions to be satisfied at the boundary are ( 270)
that

and that (ty/dn^dfa/dn, where dn is perpendicular to the surface
z= '. Hence

dz

Thus far there is no limitation upon either the amplitude (c)
or the wave-length (Sirfp) of the corrugation. We will now
suppose that the wave-length is* very large, so that p* may be
neglected throughout. Under these conditions/(8) reduces to

0. ....... ....... ... ...... (9).

In the differentiation of (3) and (5) with respect to z, the
various terms are multiplied by the coefficients /^, &,...&', f^',...;
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but when _p
2 is neglected these quantities may be identified with

kj ki respectively. Thus at the boundary

dz l

and ~~~j
==:

irZ\<4>i
=-

ds pi

by (7). Accordingly,

or

By this equation JL 0) A!, &c. are determined when f is known.

If we put = 0, we fall back on previous results (23) 270 for

a truly plane surface. Thus A l} A*,... vanish, while

expressing the amplitude of the wave regularly reflected.

We will now apply (10) to the case of a simple corrugation, as

expressed in (1), and for brevity we will denote the right hand

member of (11) by R. The determination of A*, A 19 ... requires

the expression of #** in Fourier's series. We have (compare

343)

cos 2w? + 2 J"4 (2ic) cos

2J"s (2ic) cos 3p^ + 2J"5 (2c cos pa?- ...

......--.(12),

where Jo, /!, are the BesseFs functions of the various orders.

Thus

the coefficients of even order being real, and those of odd order

pure imaginaries. The complete solution of the problem of

reflection, under the restriction that p is small, is then obtained

by substitution in (3); and it may be remarked that it is the same

as would be furnished by the usual optical methods, which take

account only of phase retardations. Thus, as regards the wave
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reflected parallel to z, the retardation at any point of the surface

due to the corrugation is 2 or 2c cospx. The influence of the

corrugations is therefore to change the amplitude of the reflected

vibration in the ratio

/ cos (2kc cospx) dx : fdx, or J" (2 kc).

In like manner the amplitude of each of the lateral spectra of

the first order is Ji (2kc\ and so on. The sum of the intensities

of all the reflected waves is

?lJj
t + 2J1

* + 2Jf + ...}
=& (14)

by a known theorem; so that, in the case supposed (ofp infinitely

small), the fraction of the whole energy thrown back is the same

as if the surface were smooth.

It should be remarked that in this theory there is no limitation

upon the value of 2kc. If 2kc be small, only the earlier terms of

the series are sensible, the BesseFs function Jn (2ko) being of order

(2kc)
n

. When on the other hand 2kc is large, the early terms are

small, while the series is less convergent. The values of J" and

Ji are tabulated in 200. For certain values of 2kc individual

reflected waves vanish. In the case of the regularly reflected wave,
or spectrum of zero order, this first occurs when 2kc = 2*404, 206,

or c = -2X

The full solution of the problem of the present section would

require the determination of the reflection when k is given for all

values of c and for all values of p. We have considered the case

of p infinitely small, and we shall presently deal with the case

where p>k. For intermediate values of p the problem is more

difficult, and in considering them we shall limit ourselves to the

simpler boundary conditions which obtain when no energy pene
trates the second medium. The simplest case of all arises when

Pa
= 0, so that the boundary equation (7) reduces to

4>
=

(15),

the condition for an "
open end," 256. We may also refer to

the case of a rigid wall, or "closed" end, where the surface condi

tion is

d<f>Jdn=-0 (16).

By (3) and (15) the condition to be satisfied at the surface is

**-M* cos px + A 2eW-*** cos 2px+ . . . = 0. . .(16).
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In our problem z is given by (1) as a function of #
;
and the

equations of condition are to be found by equating to zero the

coefficients of the various terms involving cos px, cos %p%> &c.,

when the left hand member of (16) is expanded in Fourier's series.

The development of the various exponentials is effected as in (12);

and the resulting equations are

...=Q ......... (18),

=<> ........ (19),

and so on, where for the sake of brevity c has been made equal to

unity. So far as (k p) may be treated as real, as happens for a

large number of terms when p is small relatively to k, the various

Bessel's functions are all real, and thus the A's of even order are

real and the A's of odd order are pure imaginaries. Accordingly

the phase of the perpendicularly reflected wave is the same as if

c= 0; but it must be remembered that this conclusion is in reality

only approximate, because, however small p may be, the ps end

by becoming imaginary.

From the above equations it is easy to obtain the value of A^

as fax as the term in p4
. From (19)

from (18)
iA, = 2J; (2fc) + (k

- pJJ, (2ft);

and finally from (17)

From (4)
P2 P

4

k -!* = 2k
+W+ --~>

so that, as expanded in powers ofp with reintroduction of c,
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This gives the amplitude of the perpendicularly reflected wave,

with omission of f and higher powers of p.

The case of reflection from a fixed wall is a little more compli
cated. By (8) the boundary condition is

dfycte -f pc sin px . dfyjdx
= 0,

which gives

...}
=

IK

.........(22)

as the equation to be satisfied when z c cospx. The first approxi
mation to A l gives

A^SiJ^Zkc)........................ (23);

whence to a second approximation

(24).

The first approximation to the various coefficients may be found

by putting R^ + I in (13).

When p > k, there are no diffracted spectra, and the whole

energy of the wave incident upon an impenetrable medium must
be represented in the wave directly reflected. The modulus of A Q

is therefore unity. When p<Jc, the energy is divided between

the various spectra, including that of zero order. There is thus a

relation between the squares of the moduli of A
,
A I} A, ..., the

seiies being continued as long as p, is real.

A more analytical investigation may be based upon v. Helm-
holtz's theorem ( 293), according to which

where S is any closed surface, and ^ and ^ satisfy the equation

V2 + &2 =0.

In order to apply this we take for -^ and ^ the real and
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imaginary parts respectively of < as given by (3). Thus repre

senting each complex coefficient An in the form Cn + iDn ,
we get

-^
= cos kz -f <7 cos kz + D sin kz

+ (Cj cos/^-z-fD1smp1 z)cQspj;+ .............. . ......(25),

% = sin kz <? sin kz -f jD cos &z

-h( Cr

1 sin/i1^-f2)1cos/i1^)cos|>^+.....................(26).

In (25), (26), when the series are carried sufficiently far, the

terms change their form on account of p becoming imaginary ;

but for the present purpose these terms will not be required, as

they disappear when z is very great. The surface of integration

8 is made up of the reflecting surface and of a plane parallel to it

at a great distance. Although this surface is not strictly closed,

it may be treated as such, since the part still remaining open

laterally at infinity does not contribute sensibly to the result.

Now the part of the integral corresponding to the reflecting

surface vanishes, either because

*-X = 0,

or else because dtyjdn
= d^jdn = ;

and we conclude that when z is great

_ **lefa-0 .................. (27).*
dz]

The application of (27) to the values of ^ and ^ in (25), (26)

gives

the series in (28) being continued so far as to include every real

value of /A.

In (28) J(<7* + JV) represents the intensity of each spectrum

of the nth order.

The coefficient fin/k is equal to cos#, where n is the

obliquity of the diffracted rays. The meaning of this factor

will be evident when it is remarked that to each unit of area

of the waves incident and directly reflected, there corresponds an

area cos 6n of the waves which constitute the spectrum of the nth

order.

If all the values of /* are imaginary, as happens when p>k,

(28) reduces to
V '

or the intensity of the wave directly reflected is unity. It is of
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importance to notice the fall significance of this result. However

deep the corrugations may be, if only they are periodic in a period
less than the wave-length of the vibration, the regular reflection is

totaL An extremely rough wall will thus reflect sound waves of

moderate pitch as well as if it were theoretically smooth.

The above investigation is limited to the case where the second

medium is impenetrable, so that the whole energy of the incident

wave is thrown back in the regularly reflected wave- and in the

diffracted spectra. It is an interesting question whether the

conclusion that corrugations of period less than X have no effect

can be extended so as to apply when there is a wave regularly
transmitted. It is evident that the principle of energy does not

suffice to decide the question, but it is probable that the answer

should be in the negative. If we suppose the corrugations of

given period to become very deep and involved, it would seem
that the condition of things would at last approach that of a very

gradual transition between the media, in which case ( 148 6) the

reflection tends to vanish.

Our limits will not allow us to treat at length the problem of

oblique incidence upon a corrugated surface; but one or two

remarks may be made.

Ifp* may be neglected, the solution corresponding to (13) is

A = JRJ (2kccos&) (30),

6 being the angle of incidence and reflection, and R the value of

A , 270, corresponding to c= Q. The factor expressing the

effect of the corrugations is thus a function of c cos 6
;
so that a

deep corrugation when 6 is large may have the same effect as a

shallow one when 6 is small.

Whatever be the angle of incidence, there are no reflected

spectra (except of zero order) when the wave-length of the

corrugation is less than the half of that of the vibrations. Hence,
if the second medium be impenetrable, the regular reflection

under the above condition is total.

The reader who wishes to pursue the study of the theory of

gratings is referred to treatises on optics, and to papers by the

Author 1
,
and by Prof. Rowland 2

.

1 The Manufacture and Theory of Diffraction Gratings, Phil. Mag. vol. XLVH.

pp. 81, 193, 1874 ; On Copying Diffraction Gratings, and on some Phenomena con
nected therewith, Phil. Mag. vol. xi. p. 196, 1881; Enc. Brit. Wave Theory of Light.

2
Gratings in Theory and Practice, PhiL Mag. vol. xxxv. p. 397, 1893,



CHAPTER. XIV.

GENERAL EQUATIONS.

273. Ix connection with the general problem of aerial

vibrations in three dimensions one of the first questions, which

naturally offers itself, is the determination of the motion in an

unlimited atmosphere consequent upon arbitrary initial dis

turbances. It will be assumed that the disturbance is small, so

that the ordinary approximate equations are applicable, and further

that the initial velocities are such as can be derived from a velocity-

potential, or ( 240) that there is no circulation. If the latter con

dition be violated, the problem is one of vortex motion, on which

we do not enter. We shall also suppose in the first place that no

external forces act upon the fluid, so that the motion to be

investigated is due solely to a disturbance actually existing at

a time (t
=

0), previous to which we do not push our inquiries.

The method that we shall employ is not very different from that

of Poisson
1

, by whom the problem was first successfully attacked.

If UQ, vQt w l>e the initial velocities at the point x, y, z, and s^

the initial condensation, we have { 244),

= / ( (1),

(2),

by which the initial values of the velocity-potential <j>
and of its

differential coefficient with respect to time
<f>

are determined.

The problem before us is to determine
<f>

at time t from the above

1 Sur I'integration de quelques Equations linSaires aux differences partielles,

et particnli&rement de I'gqaation g&i6rale du mouvement des fluides Slastiques.

Mem, de VlnMitut, t. ra. p. 121. 1820.
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initial value*, and the general equation applicable at all times and

places,

When
<j>

is known, its derivatives give the component velocities at

any point.

The symbolical solution of (3) may be written

<f>=*sm(iaVt).0 + cos(iaVt).x...... - ........ (4),

where 8 and # are two arbitrary functions of a\ y, z and i = V( 1).

To connect # and % with the initial values of
<f>
and <>, which we

shall denote by/ and F respectively, it is only necessary to observe

that when t = 0, (4) gives

so that our result may be expressed

............... (o),

in which equation the question of the interpretation of odd powers
of V need not be considered, as lx>th the symbolic functions are

wholly even.

In the case where
<f>
was a function of x only, we saw ( 245)

that its value for any point x at time t depended on the initial

values of
<j>

and
<f>

at the points whose co-ordinates were x at

and x 4- at, and was wholly independent of the initial circumstances

at all other points. In the present case the simplest supposition

open to us is that the value of at a point depends on the

initial values of
<f>

and
<j>

at points situated on the surface of the

sphere, whose centre is and radius at ; and, as there can be no
reason for giving one direction a preference over another, we are

thus- led to investigate the expression for the mean value of a

function over a spherical surface in terms of the successive differ

ential coefficients of the function at the centre.

By the symbolical form of Maclaurin's theorem the value of

F(x, yy z) at any point P on the surface of the sphere of radius r

may be written

F(x, y, z) =M+4.+'
. F(x., y<> , z,\

the centre of the sphere being the origin of co-ordinates. In
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the integration over the surface of the sphere djdx9l d/dy9 ,

behave as constants
;
we may denote them temporarily by I, m, ny

so that V2 = Z
3 -fm*-f n*.

Thus, r being the radius of the sphere, and dS an element of

its surface, since, by the symmetry of the sphere, we may replace

any function of ?
my

by the same function of z without
- a -- w-h wfc

a

altering the result of the integration,

> dS
rr

1 1 #****+* dS**

The mean value of F over the surface of the sphere of radius r is

thus expressed by the result of the operation on F of the symbol

sin (iVr)/iVr, or, if ffda denote integration with respect to angular

space,

By comparison with (5) we now see that so far as < depends

on the initial values of
<j>,

it is expressed by

.(7),

or in words, < at any point at time t is the mean of the initial

values of $ over the surface of the sphere described round the

point in question with radius at, the whole multiplied by t.

By Stokes' rule ( 95), or by simple inspection of (5), we see

that the part of
<f> depending on the initial values of may be

derived from that just written by differentiating with respect to t

and changing the arbitrary function. The complete value of < at

time t is therefore

which is Poisson's result \

On account of the importance of the present problem, it may

i Another investigation will be found in KirchhofTs Vorlesungen ilber MatTie-

matitche Phytik, p. 317. 1876. [See also Note to 273 at the end of this volume.]



100 VERIFICATION OF SOLUTION. [273.

Ix* well to verify the solution a posteriori We have first to prove
that it satisfies the general differential equation (3). Taking for

the present the first term only, and bearing in mind the general

symbolic equation
'

ap'-is'I ........................ <>
we find from (8)

dS being the surface element of the sphere r = at.

But by Green's theorem

and thus

Now ^Fd(7 is the same as V2 Fdv, and thus (3) is in fact

satisfied.

Since the second part of < is obtained from the first by differen

tiation, it also must satisfy the fundamental equation.

With respect to the initial conditions we see that when t is

made equal to zero in (8),

= 0) +

of which the first term becomes in the limit -F(O). When =0,

= 2 f(at) do- (t
=

0)

f (at) d<r (t
= 0) = 0,

since the oppositely situated elements cancel in the limit., when
the radius of the spherical surface is indefinitely diminished. The

expression in (8) therefore satisfies the prescribed initial con
ditions as well as the general differential equation.
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274. If the initial disturbance be confined to a space T, the

integrals in (8) 273 are zero, unless some part of the surface oi*

the sphere r at be included within T. Let be a point external

to T, r: and n the radii of the least and greatest spheres described

about which cut it. Then so long as at<rls <f>
remains equal

to zero. When at lies between rz and r2 ,
< may be finite, but for

values greater than r,
<f>

is again zero. The disturbance is thus at

any moment confined to those parts of space for which a t is inter

mediate between i\ and ?*2 . The limit of the wave is the envelope
of spheres with radius at, whose centres are situated on the surface

of T.
" When t is small, this system of spheres will have an

exterior envelope of two sheets, the outer of these sheets being

exterior, and the inner interior to the shell formed by the as

semblage of the spheres The outer sheet forms the outer limit

to the portion of the medium in which the dilatation is different

from zero. As t increases, the inner sheet contracts, and at last its

opposite sides cross, and it changes its character from being ex

terior, with reference to the spheres, to interior. It then expands,
and forms the inner boundary of the shell in which the wave of

condensation is comprised
3
." The successive positions of the

boundaries of the wave are thus a series of parallel surfaces, and

each boundary is propagated normally with a velocity equal to a.

If at the time = there be no motion, so that the initial

disturbance consists merely in a variation of density, the subse

quent condition of things is expressed by the first term of (8) 273.

Let us suppose that the original disturbance, still limited to a

finite region T, consists of condensation only, without rarefaction.

It might be thought that the same peculiarity would attach to the

resulting wave throughout the whole of its subsequent course; but,

as Prof. Stokes has remarked, such a conclusion would be erroneous.

For values of the time less than rja the potential at is zero
;

it then becomes negative (s being positive), and continues nega

tive until it vanishes again when t = rja, after which it always

remains equal to zero. While
<f>

is diminishing, the medium at

is in a state of condensation, but as
<f>

increases again to zero, the

state of the medium at is one of ra refection. The wave propa

gated "outwards consists therefore of two parts at least, of which

the first is condensed and the last rarefied. Whatever may be the

character <a the original disturbance within T, the final value of $

1

Stokes, Uyruumcal Theory of Diffraction," Cwwifc. Tnui*. ix p. 15,
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at any external point is the same as the initial value, and there

fore, since a*s = <, the mean condensation during the passage ol

the wave, depending on the integral fsdt, is zero. Under the

head of spherical waves we shall have occasion to return to this

subject ( 279).

The general solution embodied in (8) 273 must of course

embrace the particular case of plane waves, but a few words on

this application may not be superfluous, for it might appear at

first sight that the effect at a given point of a disturbance initially

confined to a slice of the medium enclosed between two parallel

planes would not pass off in any finite time, as we know it ought
to do. Let us suppose for simplicity that <p is zero throughout,
and that within the slice in question the initial value < is

constant. From the theory of plane waves we know that at any

arbitrary point the disturbance will finally cease after the lapse of

a time t, such that at is equal to the distance (d) of the point
under consideration from the further boundary of the initially

disturbed region; while on the other hand, since the sphere of

radius at continues to cut the region, it would appear from the

general formula that the disturbance continues. It is true indeed

that
<f>

remains finite, but this is not inconsistent with rest. It

will in fact appear on examination that the mean value of <

multiplied by the radius of the sphere is the same whatever may
be the position and size of the sphere, provided only that it

cut completely through the region of original disturbance. If

at>d3 <f>
is thus constant with respect both to space and time,

and accordingly the medium is at rest.

[The same principles may find an application to the phenomena
of thunder. Along the path of the lightning we may perhaps
suppose that the generation of heat is uniform, equivalent to a

uniform initial distribution of condensation. It appears that the

value of
<f>

at the point of observation can change rapidly only
when the sphere r = at meets the path of the discharge at its

extremities or very obliquely.]

275. In two dimensions, when < is independent of z, it might
be supposed that the corresponding formula would be obtained by
simply substituting for the sphere of radius at the circle of equal
radius. This, however, is not the case. It may be proved that
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the mean value of a function F(x, y) over the circumference of a

circle of radius r is J (irV)F , where i V(- 1),

and Jo is BesseVs function of zero order
;
so that

differing from what is required to satisfy the fundamental equation.

The correct result applicable to two dimensions may be obtained

from the general formula. The element of spherical surface dS

may be replaced by rdrdB/costy, where ?*, 9 are plane polar

co-ordinates, and
-fy

is the angle between the tangent plane and

that in which the motion takes place. Thus

,COS ilr =
,

at

F (at} is replaced by F(rt 6), and so

F(r,0)rdrdti

where the integration extends over the area of the circle r = a.
The other term might be obtained by Stokes' rule.

This solution is applicable to the motion of a layer of gas
between two parallel planes, or to that of an unlimited stretched

membrane, which depends upon the same fundamental equation.

276. From the solution in terms of initial conditions we may,
as usual ( 66), deduce the effect of a continually renewed dis

turbance. Let us suppose that throughout the space T (which
will ultimately be made to vanish), a uniform disturbance <,

equal to <I> (t') dt', is communicated at time '. The resulting value

of < at time t is

where S denotes the part of the surface of the sphere r a(t-~t'}

intercepted within T, a quantity which vanishes, unless a (t t') be

comprised between the narrow limits ?'j and rv -Ultimately t t'

may be replaced by rjay and <J> (f) by <E> (t r/a) ;
and the result

of the integration with respect to dt' is found by writing T (the

volume) for faSdt'. Hence

(1),
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shewing that the disturbance originating at any point spreads itself

symmetrically in all directions with velocity a, and with amplitude

varying inversely as the distance. Since any number of particular

solutions may be superposed, the general solution of the equation

<jb=a
2V2 <4-<I> ....................... .(2)

may be written

a

r denoting the distance of the element dV situated at #, y, z from

(at which <f>
is estimated), and <E> (t r/d) the value of <1> for the

point x, y, z at the time t r/a. Complementary terms, satisfying

through all space the equation < = a2V2
<, may of course occur

independently.

In our previous notation ( 244)

<J> = . I (Xdx -4- Tdy 4- Zdz) ;

and it is assumed that Xdx 4- Tdy -f Zdz is a complete differential.

Forces, under whose action the medium could not adjust itself to

equilibrium, are excluded
;
as for instance, a force uniform in mag

nitude and direction within a space T, and vanishing outside that

space. The nature of the disturbance denoted by <I> is perhaps best

seen by considering the extreme case when <& vanishes except

through a small volume, which is supposed to diminish without

limit, while the magnitude of <J> increases in such a manner that

the whole effect remains finite. If then we integrate equation (2)

through a small space including the point at which 4> is ulti

mately concentrated, we find in the limit

shewing that the effect of 4> may be represented by a proportional

introduction or abstraction of fluid at the place in question. The

simplest source of sound is thus analogous to a focus in the theory

of conduction of heat, or to an electrode in the theory of electricity.

277. The preceding expressions are general in respect of the

relation to time of the functions concerned
;
but in almost all the

applications that we shall have to make, it will be convenient to

analyse the motion by Fourier's theorem and treat separately the
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simple harmonic motions of various periods, afterwards, if necessary,

compounding the results. The values of
<f>
and <f>, if simple har

monic at every point of space, may be expressed in the form
R cos (lit + e),. jR and e being independent of time, but variable

from point to point. But as in such cases it often conduces to

simplicity to add the term iR bin (nt -f e), making altogether
R&W+4, or Reie .eint

, we will assume simply that all the functions

which enter into a problem are proportional to eint , the coeffi

cients being in general complex. After our operations are com

pleted, the real and imaginary parts of the expressions can be

separated, either of them by itself constituting a solution of the

question.

Since
<f>

is proportional to e tilt
, < =

n-<f>] and the differential

equation becomes

V*-h#-f- a-2<I> = ..... .. .................(1),

where, for the sake of brevity, k is written in place of nfa. If X
denote the wave-length of the vibration of the period in question,

(2).

To adapt (3) of the preceding section to ohe present ^ase, it is

only necessary to remark that the substitution of t rfa for t is

effected by introducing the factor ^-"^A^ or e~ijcr
: thus

and the solution of (1) is

to which may be added any solution of V2
^ + A2

<
= ().

If the disturbing forces be all in the same phase, and the

region through which they act be very small in comparison with

the wave-length, e~^r
may be removed from* under the integral

sign, and at a sufficient distance we may take

or in real quantities, on restoring the time factor and replacing

by 3>13

cos^-^r+e)
....................^



106 VERIFICATION OF SOLUTION. [277.

In order to verify that (3) satisfies the differential equation (1),

we may proceed as in the theory of the common potential. Con

sidering one element of the integral at a time, we have first to

shew that

(5)

satisfies V2
< -f A3

^ = 0, at points for which r is finite. The

simplest course is to express V2 in polar co-ordinates referred to

the element itself as pole, when it appears that

2 d\ e~ikr I d2 e~ikr
fd* 2 d \

- / I

]

\dr* r dr/

We infer that (3) satisfies V2
< -f- k2

<f>
= 0, at all points for

which <l> vanishes. In the case of a point at which <> does not

vanish, we may put out of account all the elements situated at a

finite distance (as contributing only terms satisfying V2
< -f &$ =

0),

and for the element at an infinitesimal distance replace e~~
ikr

by

unity. Thus on the whole

(V
2 + k2

) <b = V2 f 1 1 <3> =
<3>,

47TO2
jJJ r a-

exactly as in Poisson's theorem for the common potential
1
.

278. The effect of a force ^ distributed over a surface S may
be obtained as a limiting case from (3) 277. <& dV is replaced by
$ bdS

y b denoting the thickness of the layer ;
and in the limit we

may write <& b = <Iv Thus

S (1).

The value of
(f>

is the same on the two sides of S, but there is

discontinuity in its derivatives. If dn be drawn outwards from &

normally, (4) 276* gives

If the surface S be plane, the integral in (1) is evidently

symmetrical with respect to it, and therefore

1 See Thomson and Tait's Natural Philosophy t 491.
2 Helmholtz. Crelle, t. 57, p. 21, 1860.
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Hence, if d(f>/dn be the given normal velocity of the fluid in

contact with the plane, the value of <> is determined by

which is a result of considerable importance. To exhibit it in

terms of real quantities, we may take

(4),

P and 6 being real functions of the position of dS. The symbolical

solution then becomes

from which, if the imaginary part be rejected, we obtain

corresponding to

d<f>/dn
= P cos (nt + e).. ., (7).

The same method is applicable to the general case when the

motion is not restricted to be simple harmonic. We have

ltMt-?\.** (8),

where by F( r/a) is denoted the normal velocity at the plane
for the element dS at the time t r/a, that is to say, at a time

r/a antecedent to that at which
<j>

is estimated.

In order to complete the solution of the problem for the

unlimited mass of fluid lying on one side of an infinite plane, we

have to add the most general value of <, consistent with F= 0.

This part of the question is identical with the general problem of

reflection from an infinite rigid plane
1
.

It is evident that the effect of the constraint will be represented

by the introduction on the other side of the plane of fictitious

initial displacements and forces, forming in conjunction with those

actually existing on the first side a system perfectly symmetrical

with respect to the plane. Whatever the initial values of < and

< may be belonging to any point on the first side, the same must

be ascribed to its image, and in like manner whatever function of

1
Poisson, Journal de Vtcole poll/technique, t. vu. 1808.
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the time <l> may be at the first point, it must be conceived to be the

same function of the time at the other. Under these circumstances

it is clear that for all future time
<j>

will be symmetrical with

respect to the plane, and therefore the normal velocity zero. So

far then as the motion on the first side is concerned, there will be

no change if the plane be removed, and the fluid continued

indefinitely in all directions, provided the circumstances on the

second side are the exact reflection of those on the first. This

being understood, the general solution of the problem for a

fluid bounded by an infinite plane is contained in the formulae

(8) 273, (3) 277, and (8) of the present section. They give the

result of arbitrary initial conditions (<> and <<>), arbitrary applied

forces (<f>), and arbitrary motion of the plane (V).

Measured by the resulting potential, a source of given magni
tude, Le. a source at which a given introduction and withdrawal

of fluid takes place, is thus twice as effective when close to a rigid

plane, as if it were situated in the open ;
and the result is ulti

mately the same, whether the source be concentrated in a point

close to the plane, or be due to a corresponding normal motion

of the surface of the plane itself.

The operation of the plane is to double the effective pressures

which oppose the -expansion and contraction at the source, and

therefore to double the total energy emitted
;
and since this energy

is diffused through only the half of angular space, the intensity of

the sound is quadrupled, which corresponds to a doubled amplitude,
or potential ( 245).

We will now suppose that instead of d<f>/dn
= 0, the prescribed

condition at the infinite plane is that < = 0. In this case the

fictitious distribution of <
, <

, <I>, on the second side of the plane
must be the opposite of that on the first sidej so that the sum of the

values at two corresponding points is always zero. This secures

that on the plane of symmetry itself
<f>

shall vanish throughout.

Let us next suppose that there are two parallel surfaces Slt

S, separated by the infinitely small interval dn, and that the

value of <>! on the second surface is equal and opposite to the value

of 4>x on the first. In crossing Si, there is by (2) a finite change
in the value of dcf>/dti to the amount of ^/a*, but in crossing & the

same finite change occurs in the reverse direction. When dn is

reduced without limit, and Qdn replaced by 3>n , d<f>/dn will be
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the same on the two sides of the double sheet, but there will be

discontinuity in the value of < to the amount of *n/a
2
. At the

same time (1) becomes

If the surface S be plane, the values of
<f>

on the two sides of it

are numerically equal, and therefore close to the surface itself

<=ior2
<I>u .

Hence (9) may be written

where < under the integral sign represents the surface-potential,

positive on the one side and negative on the other, due to the

action of the forces at S. The direction of dn must be under

stood to be towards the side at which
cf>

is to be estimated.

279. The problem of spherical waves diverging from a point
has already been forced upon us and in some degree considered,

but on account of its importance it demands a more detailed

treatment. If the centre of symmetry be taken as pole the velo

city-potential is a function of r only, and ( 241) V 2 reduces to

d~ 2 d Id2

-?---{ =-, or to -
-7-,?*. The equation of free motion (3) S 273-

dr2 r dr r a?-
2 ^ e

thus becomes

whence, as in 245,

r<f>=f(at-r) + F(at + r) .............. ..,,(2).

The values of the velocity and condensation are to be found by
differentiation in accordance with the formulae

d6 1 d<f> /Q
u=-f , * = --;- ..... . ...............(3).

dr a? dt

As in the case of one dimension, the first term represents a wave

advancing in the direction of r increasing, that is to say, a diver

gent wave, and the second term represents a wave converging upon

the pole. The latter -does not in itself possess much interest. If

we confine our attention to the divergent wave, we have

f(at-r) f(at-r). />i--r)
......

' '
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When r is very great the term divided by r2

may be neglected,

and then approximately
it = as................ . ................ (5),

the same relation as obtains in the case of a plane wave, as might
have been expected.

If the type be harmonic,

r<f>
= A ?+*+*> .................... . ....... (6),

or, if only the real part be retained,

(7).

If a divergent disturbance be confined to a spherical shell,

within and without which there is neither condensation nor

velocity, the character of the wave is limited by a remarkable re

lation, first pointed out by Stokes 1
. From equations (4) we have

(as u)?*=f(at r),

shewing that the value of f(at .r) is the same, viz. zero, both

inside and outside the shell to which the wave is limited. Hence

by (4), if a and ft be radii less and greater than the extreme

radii of the shell,

Q ........................... (8),

which is the expression of the relation referred to. As in 274,

we see that
.
a condensed or a rarefied wave cannot exist alone.

When the radius becomes great in comparison with the thickness,

the variation of r in the integral may be neglected, and (8) then

expresses that the mean condensation is zero.

[Availing himself of Foucault's method for rendering visible

minute optical differences, Tcipler
2
succeeded in observing spherical

sonorous waves originating in small electric sparks, and their

reflection from a plane wall. Subsequently photographic records

of similar phenomena have been obtained by Mach 8
.]

In applying the general solution (2) to deduce the motion

resulting from arbitrary initial circumstances, we must remember

that in its present form it is too general for the purpose, since it

covers the case in which the pole is itself a source, or place where

1 Phil. Mag. xxxiv. p. 52. 1849.
2
Pogg. Ann. vol. cxxxi. pp. 33, 180. 1867.

3 Sitzber. far Wiener Akad. t 1889.
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fluid is introduced or withdrawn in violation of the equation of

continuity. The total current across the surface of a sphere of

radius r is Im^u, or by (2) and (3)

- 47r {/(at
-

r) -1- F(at + r)} + 4>*jrr [F
f

(at + r)-/ (at
-

r)},

so that, if the pole be not a source, f(at r) + F(a&+ r), or
r<f>,

must vanish with r. Thus

F(at) = Q........................ (9),

an equation which must hold good for all positive values of the

argument
1
.

By the known initial circumstances the values of u and s are

determined for the time t= 0, and for all (positive) values of r,

If these initial values be represented by UQ and SQ ,
we obtain from

(2) and (3)

by which the function f is determined for all negative arguments,
and the function F for all positive arguments. The form off for

positive arguments follows by means of (9), and then the whole

subsequent motion is determined by (2). The form of F for

negative arguments is not required.

The initial disturbance divides itself into two parts, travelling

in opposite directions, in each of which
r<f>

is propagated with

constant velocity a, and the inwards travelling wave is continually

reflected at the pole. Since the condition to be there satisfied is

r< = 0, the case is somewhat similar to that of a parallel tube

terminated by an open end, and we may thus perhaps better

understand why the condensed wave, arising from the liberation

of a mass of condensed air round the pole, is followed immediately

by a wave of rarefaction.

[The composite character of the wave resulting from an initial

condensation may be invoked to explain a phenomenon which has

often occasioned surprise. When windows are broken by a violent

explosion in their neighbourhood, they are frequently observed to

1 The solution for spherical vibrations may be obtained without the use of (1)

by superposition of trains of plane waves, related similarly to the pole, and tra

velling outwards in all directions symmetrically.
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have fallen outwards as if from exposure to a wave of rarefaction.
This effect may be attributed to the second part of the compound
wave; but it maybe asked why should the second part preponderate
over the first? If the window were freely suspended, the
momentum acquired from the waves of condensation and rare

faction would be equal. But under the actual conditions it may
well happen that the force of the condensed wave is spent in

overcoming the resistance of the supports, and then the rarefied

wave is left free to produce its full effect.]

280. Returning now to the case of a train of harmonic waves

travelling outwards continually from the pole as source, let us

investigate the connection between the velocity-potential and the

quantity of fluid which must be supposed to be introduced and
withdrawn alternately. If the velocity-potential be

A

we have, as in the preceding section, for the total current
crossing

a sphere of radius r,

47rr2
dr

= A
^ OS k (at

~ r)
~ *r sin ^ (at

~ r
)l
= A cos kat>

where r is small enough. If the maximum rate of introduction of
fluid be denoted by A, the corresponding potential is given by (1).

It will be observed that when the source, as measured by A, is

finite, the potential and the pressure-variation (proportional to <)
are infinite at the pole. But this does not, as might for a moment
be supposed, imply an infinite emission of energy. If the pressure
be divided into two parts, one of which has the same phase as
the velocity, and the other the same phase as the acceleration, it

will be found that the former part, on which the work depends,
is finite. The infinite part of the pressure does no work on the
whole, but merely keeps up the vibration of the air immediately
round the source, whose effective inertia is indefinitely great.

We will now investigate the energy emitted from a simple
source of given magnitude, supposing for the sake of greater
generality that the source is situated at the vertex of a rigid cone
of solid angle a>. If the rate of introduction of fluid at the source
be A cos kat, we have

a>7*d<f>/dr
= A cos kat
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ultimately, corresponding to

r) ................. ....(2);

kaA
whence <> =- sin(o r). ...... ......... .....(3),T

o>r
x f

and a)r*-~>A {cosk(at r) kr$mk(at r)} ....... (4).
CLT

Thus, as in 245, if dW be the work transmitted in time dt,

we get, since $p = p$,

dW pkaA* . , .
.

.

7
. .

__.== _ c- sin & (o r) cos A; (a r)

Of the right-hand member the first term is entirely periodic, and

in the second the nfean value of sina &(a r) is J. Thus in the

long run

It will be remarked that when the source is given, the ampli

tude varies inversely as o>, and therefore the intensity inversely

as a>
2
. For an acute cone the intensity is greater, not only on

account of the diminution in the solid angle through which the

sound is distributed, but also because the total energy emitted

from the source is itself increased.

When the source is in the open, we have only to put o> = 4-Tr,

and when it is close to a rigid plane, o> = 27r.

The results of this article find an interesting application in the

theory of the speaking trumpet, or (by the law of reciprocity

109, 294) hearing trumpet. If the diameter of the large open

end be small in comparison with the wave-length, the waves on

arrival suffer copious reflection, and the ultimate result, which

must depend largely on the precise relative lengths of the tube

and of the wave, requires to be determined by a different process.

But by sufficiently prolonging the cone, this reflection may be

diminished, and it will tend to cease when the diameter of the

open end includes a large number of wave-lengths. Apart from

friction it would therefore be possible by diminishing a> to obtain

from a given source any desired amount of energy, and at the

1
Cambridge Mathematical Tripos Examination, 1876.
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same time by lengthening the cone to secure the unimpeded
transference of this energy from the tube to the surrounding air.

From the theory of diffraction it appears that the sound will

not fall off to any great extent in a lateral direction, unless the

diameter at the large end exceed half a wave-length. The

ordinary explanation of the effect of a common trumpet, depending
on a supposed concentration of rays in the axial direction, is thus

untenable.

281. By means of Euler's equation,

a>,

we may easily establish a theory for conical pipes with open ends,

analogous to that of Bernoulli for parallel tubes, subject to the

same limitation as to the smallness of the diameter of the tubes in

comparison with ,the wave-length of the sound 1
. Assuming that

the vibration is stationary, so that
r<f>

is everywhere proportional

to cos kak, we get from (1)

^ +f.*-0 ...................... (2),

of which the general solution is

r<f>
=A eo&Jcr+ B&wkr ................... (3).

The condition to be satisfied at an open end, viz., that there is

to be no condensation or rarefaction, gives r<f>
= 0, so that, if the

extreme radii of the tube be ^ and rZ} we have

A cos kr!+B sin kr^ = 0, A cos kr2 +B sin Jcrz
= 0,

whence by elimination ofA : B, sin & (r2
- ra)

= 0, or r.2 n = \m\
where m is an integer. In fact since the form of the general
solution (3) and the condition for an open end are the same as for

a parallel tube, the result that the length of the tube is a multiple
of the half wave-length is necessarily also the same.

A cone, which is complete as far as the vertex, may be treated

as if the vertex were an open end, since, as we saw in 279, the

condition
r<j>

= is there satisfied.

The resemblance to the case of parallel tubes does not extend

to the position of the nodes. In the case of the gravest vibration

1 D. Bernoulli, Mm. d. VAcad. d. Sd, 1762; Duhamel, Liouyille Journ.

Math. yoL uv. p. 98, 1849,
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of a parallel tube open at both ends, the code occupies a central

position, and the two halves vibrate synchronously as tubes open
at one end and stopped at the other. But if a conical tube were

divided by a partition at its centre, the two parts would have

different periods, as is evident, because the one part differs from a

parallel tube by being contracted at its open end where the effect

of a contraction is to depress the pitch, while the other part is

contracted at its stopped end, where the effect is to raise the pitch.

In order that the two periods may be the same, the partition must

approach nearer to the narrower end of the tube. Its actual

position may be determined analytically from (3) by equating to

zero the value of dfydr,

When both ends of a conical pipe are closed, the corresponding
notes are determined by eliminating A : B between the equations,

A (cos kr^ + foysin kr^) + B (sin &ra kr^ cos kr^ = 0,

A (cos &r2 + krz sin ATS) 4-B (sin &r2 &r2 cos krt) = 0,

of which the result may be put into the form

krz tan"1 krz
=

Jcr^ tan""1 kr^ ............... (4).

If ri = o, we have simply

if ri and r2 be very great, tan"1 fa*! and tan"1^ are both odd

multiples of ^, so that rs ^ is a multiple of X, as the theory

of parallel tubes requires.

[If ra -r1
=

Z, r2 + r1
= r, (4) may be written

When r is great in comparison with Z,the approximate solution

of (6) gives

(7),

m being an integer. The influence of conicality upon the pitch is

thus of the second order.

Experiments upon conical pipes have been made by Boutet-

and by Blaikley
3
.]

1 For the roots of this equation see 207.

2 Ann. d. Chim, vol. xxi. p. 150, 1870.

* Phil. Mag. vi. p. 119, 1878.
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282. If there be two distinct sources of sound of the same

pitch, situated at 0^ and Os , the velocity-potential <p at a point
P whose distances from 19 2 are ra and r2 , may be expressed

, cosA((rf rj) pcosi(a* r, a)
9^A ~ +^ (1),ri r

where A and B are coefficients representing the magnitudes of

the sources (which without loss of generality may be supposed to

have the same sign), and a. represents the retardation (considered

as a distance) of the second source relatively to the first. The two

trains of spherical waves are in agreement at any point P, if

r2 -f- a rx
= mX, where m is an integer, that is, if P lie on any

one of a system of hyperboloids of revolution having foci at

Oi and 2 . At points lying on the intermediate hyperboloids,

represented by r2 4-a r3
= J(2w-fl)X, the two sets of waves

are opposed in phase, and neutralize one another as far as then-

actual magnitudes permit. The neutralization is complete, if

7*! : r2
= A : B, and then the density at P continues permanently

unchanged. The intersections of this sphere with the system of

hyperboloids will thus mark out in most cases several circles of

absolute silence. If the distance Oi02 between the sources be great

in comparison with the length of a wave, and the sources themselves

be not very unequal in power, it will be possible to depart from

the sphere ra : r^=A : B for a distance of several wave-lengths,
without appreciably disturbing the equality of intensities, and

thus to obtain over finite surfaces several alternations of sound

and of almost complete silence.

There is some difficulty in actually realising a satisfactory

interference of two independent sounds. Unless the unison be

extraordinarily perfect, the silences are only momentary and are

consequently difficult to appreciate. It is therefore best to employ
sources which are mechanically connected in such a way that the

relative phases of the sounds issuing from them cannot vary. The

simplest plan is to repeat the first sound by reflection from a flat

wall ( 269, 278), but the experiment then loses something in

directness owing to the fictitious character of the second source.

Perhaps the most satisfactory form of the experiment is that

described in the Philosophical Magazine for June 1877 by myself.
"An intermittent electric current, obtained from a fork interrupter

making 128 vibrations per second, excited by means of electro

magnets two other forks, whose frequency was 256, ( 63, 64).
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These latter forks were placed at a distance of about ten yards
apart, and were provided with suitably tuned resonators, by which
their sounds were reinforced. The pitch of the forks was

necessarily identical, since the vibrations Vere forced by electro

magnetic forces of absolutely the same period. With one ear
closed it was found possible to define the places of silence with
considerable accuracy, a motion of about an inch being sufficient

to produce a marked revival of sound. At a point of silence, from
which the line joining the forks subtended an angle of about 60,
the apparent striking up of one fork, when the other was stopped,
had a very peculiar effect."

Another method is to duplicate a sound coming along a tube

by means of branch tubes, whose open ends act as sources. But
the experiment in this form is not a very easy one.

It often happens that considerations of symmetry are sufficient

to indicate the existence of places of silence. For example, it is

evident that there can be no variation of density in the continua

tion of the plane of a vibrating plate, nor in the equatorial plane
of a symmetrical solid of revolution vibrating in the direction of

its axis. More generally, any plane is a plane of silence, with

respect to which the sources are symmetrical in such a manner
that at any point and at its image in the plane there are sources

of equal intensities and of opposite phases, or, as it is often more

conveniently expressed, of the same phase and of opposite ampli
tudes.

If any number of sources in the same phase, whose amplitudes
are on the whole as much negative as positive, be placed on the

circumference of a circle, they will give rise to no disturbance of

pressure at points on the straight line which passes through the

centre of the circle and is directed at right angles to its plane.

This is the case of the symmetrical bell ( 232), which emits no

sound in the direction of its axis
1
.

The accurate experimental investigation of aerial vibrations is

beset with considerable difficulties, which have been only partially

surmounted hitherto. In order to avoid unwished for reflections

it is generally necessary to work in the open air, where delicate

apparatus, such as a sensitive flame, is difficult of management.
Another impediment arises from the presence of the experimenter

himself, whose person is large enough to disturb materially the

i Phil. May. (5), HI. p. 460. 1877.
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state of things which he wishes to examine. Among indicators of

sound may be mentioned membranes stretched over cups, the agita

tion being made apparent by sand, or by small pendulums resting

lightly against them. If a membrane be simply stretched across a

hoop, both its faces are acted upon by nearly the same forces, and

consequently the motion is much diminished, unless the membrane
be large enough to cast a sensible shadow, in which its hinder face

may be protected. Probably the best method of examining the

intensity of sound at any point in the air is to divert a portion of

it by means of a tube ending in a small cone or resonator, the

sound so diverted being led to the ear, or to a manometric

capsula In this way it is not difficult to determine places of

silence with considerable precision.

By means of the same kind of apparatus it is possible to

examine even the phase of the vibration at any point in air, and to

trace out the surfaces on which the phase does not vary
1
. If the

interior of a resonator be connected by flexible tubing with a

manometric capsule, which influences a small gas flame, the motion

of the flame is related in an invariable manner (depending on the

apparatus itself) to the variation of pressure at the mouth of the

resonator; and in particular the interval between the lowest drop
of the flame and the lowest pressure at the resonator is independent
of the absolute time at which these effects occur. In Mayer's

experiment two flames were employed, placed close together in one

vertical line, and were examined with a revolving mirror. So long
as the associated resonators were undisturbed, the serrations of the

two flames occupied a fixed relative position, and this relative

position was also maintained when one resonator was moved about

so as to trace out a surface of invariable phase. For farther

details the reader must be referred to the original paper.

283. When waves of sound impinge upon an obstacle, a

portion of the motion is thrown back as an echo, and under cover

of the obstacle there is formed a sort of sound shadow. In order,

however, to produce shadows in anything like optical perfection,
the dimensions of the intervening body must be considerable.

The standard of comparison proper to the subject is the wave

length of the vibration
;

it requires almost as extreme conditions

to produce rays in the case of sound, as it requires in optics to

avoid producing them. Still, sound shadows thrown by hills, or

1
Mayer, Phil Mag. (4), ILIV. p. 321, 1372.
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buildings, are often tolerably complete, and must be within the

experience of all.

For closer examination let us take first the case of plane waves

of harmonic type impinging upon an immovable plane screen, of

infinitesimal thickness, in which there is an aperture of any form,

the plane of the screen (x = 0) being parallel to the fronts of the

waves. The velocity-potential of the undisturbed train of waves

may be taken,
< = cos (nt &#).... .......... . ......... (1).

If the value of dfydx over the apertui^ be known, formuL-e (6)

and (7) 278 allow us to calculate the value of < at any point on

the further side. In the ordinary theory of diffraction, as given
in works on optics, it is assumed that the disturbance in the plane
of the aperture is the same as if the screen were away. This

hypothesis, though it can never be rigorously exact, will suffice

when the aperture is very large in comparison with the wave

length, as is usually the case in optics.

For the undisturbed wave we have

.....................(2),

and therefore on the further side, we get

the integration extending over the area of the aperture.- Since

Jc= %7rj\ we see by comparison with (1) that in supposing a

primary wave broken up, with the view of applying Huygens'

principle, dS must be divided by Xr, and the phase must be

accelerated by a quarter of a period.

When r is large in comparison with the dimensions of the

aperture, the composition of the integral is best studied by the aid

of Fresnel's 1 zones. With the point 0, for which < is to be

estimated, as centre describe a series of spheres of radii increasing

by the constant difference -J\, the first sphere of the series being

of such radius (c) as to touch the plane of the screen. On this

plane are thus marked out a series of circles, whose radii p are

1
[These zones are usually spoken of as Huygens' zones by optical writers (e.g.

Billet, Traite tfOptique physique, vol. I. p. 102, Paris, 1858) ; but, as has been

pointed out by Schuster (Phil. Mag. vol. xxxi. p. 85, 1891), it is more correct to

name them after Fresnel.]
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given by /^-f tf = (c + iX)^ or p
2= ncX, very nearly; so that the

rings into which the plane is divided, being of approximately

equal area, make contributions to
<j>

which are approximately

equal in numerical magnitude and alternately opposite in sign,

If lie decidedly within the projection of the area, the first term

of the series representing the integral is finite, and the terms

which follow are alternately opposite in sign and of numerical

magnitude at first nearly constant, but afterwards diminishing

gradually to zero, as the parts of the rings intercepted within the

aperture become less and less. The case of an aperture, whose

boundary is equidistant from 0, is excepted.

In a series of this description any term after the first is

neutralized almost exactly [that is, so far as first differences are

concerned] by half the sum of those which immediately precede
and follow it, so that the sum of the whole series is represented

approximately by half the first term, which stands over uncom-

pensated We see that, provided a sufficient number of zones be

included within the" aperture, the value of
<f>

at the point is

independent of the nature of the aperture, and is therefore the

same as if there had been no screen at all. Or we may calculate

directly the effect of the circle with which the system of zones

begins ;
a course which will have the advantage of bringing out

more clearly the significance of the change of phase which we

found it necessary to introduce when the primary wave was broken

up. Thus, let us conceiye the circle in question divided into

infinitesimal rings of equal area. The parts of < due to each of

these rings are equal in amplitude and of phase ranging uniformly
over half a complete period. The phase of the resultant is there

fore midway between those of the extreme elements, that is to

say, a quarter of a period behind that due to the element at

the centre of the circle. The amplitude of the resultant will be

less than if all its components had been in the same phase, in

the ratio f? sin xdxnr, or 2 : TT
;
and therefore since the area

of the circle is TrXc, half the effect of the first zone is

1
2 sin (nt Jcc - TT-- --f- / * 7 \

. . . = cos (nt kc),
7T AC

the same as if the primary wave were to pass oh undisturbed.

When the point is well ^ away from the projection of the

aperture, the result is quite different. The series representing the

integral then converges at both ends, and by the same reasoning
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as before its sum is seen to be approximately zero. We conclude
that if the projection of on the plane #= fall within the

aperture, and be nearer to by a great many wave-lengths than
the nearest point of the boundary of the aperture, then the

disturbance at is nearly the same as if there were no obstacle at
all

; but, if the projection of fall outside the aperture and be
nearer to by a great many wave-lengths than the nearest point of

the boundary, then the disturbance at practically vanishes.

This is the theory of sound rays in its simplest form.

The argument is not very different if the screen be oblique to

the plane of the waves. As before, the motion on the further side

of the screen may be regarded as due to the normal motion of the

particles in the plane of the aperture, but this normal motion now
varies in phase from point to point. If the primary waves proceed
from a source at Q, FresnePs zones for a point P are the series of

ellipses represented by n-f r2 = PQ-f \n\ where rx and ra are

the distances of any point on the screen from Q andP respectively,
and n is an integer. On account of the assumed smallness of X in

comparison with ra and r2 , the zones are at first of equal area and
make equal and opposite contributions to the value of <

; and
thus by the same reasoning as before we may conclude that at any
point decidedly outside the geometrical projection of the aperture
the disturbance vanishes, while at any point decidedly within the

geometrical projection the disturbance is the same as if the

primary wave had passed the screen unimpeded. It may be

remarked that the increase of area of the Fresnel's zones due to

obliquity is compensated in the calculation of the integral by the

correspondingly diminished value of the normal velocity of the

fluid. The enfeeblement of the primary wave between the screen

and the point P due to divergency is represented by a diminution

in the area of the FresnePs zones below that corresponding to

plane incident waves in the ratio n + r2 : rx .

There is a simple relation between the transmission of sound

through an aperture in a screen and its reflection from a plane
reflector of the same form as the aperture, of which advantage may
sometimes be taken in experiment. Let us imagine a source

similar to Q and in the same phase to be placed at Q
7

, the image of

Q in the plane of the screen, and let us suppose that the screen is

removed and replaced by a plate whose form and position is exactly

that of the aperture ;
then we know that the effect at P of the two
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sources is uninfluenced by the presence of the plate, so that the
vibration from Q' reflected from the plate and the vibration from
Q transmitted round the plate together make up the same vibra
tion as would be received from Q if there were no obstacle at all.

Xow according to the assumption which we made at the begin
ning of this section, the unimpeded vibration from Q may be

regarded as composed of the vibration that finds its way round the

plate and of that which would pass an aperture of the same form
in an infinite screen, and thus the vibration from Q as transmitted

through the aperture is equal to the vibration from Q
f

as reflected
from the plate.

In order to obtain a nearly complete reflection it is not neces

sary that the reflecting plate include more than a small number of
FresnePs zones. In the case of direct reflection the radius p of
the first zone is determined by the equation

where ^ and c2 are the distances from the reflector of the source
and of the point of observation. When the distances concerned
are great, the zones become so large that ordinary walls are
insufficient to give a complete reflection, but at more moderate
distances echos are often nearly perfect. The area necessary for

complete reflection depends also upon the wave-length ; and thus
it happens that a board or plate, which would be quite inadequate
to reflect a grave musical note, may reflect very fairly a hiss or
the sound of a high whistle. In experiments on reflection by
screens of moderate size, the principal difficulty is to get rid

sufficiently of the direct sound. The simplest plan is to reflect
the sound from an electric bell, or other fairly steady source, round
the corner of a large building

1
.

^

284. In the preceding section we have applied Huygens'
principle to the case where the primary wave is supposed to be
broken up at the surface of an imaginary plane. If we really
know what the normal motion at the plane is, we can calculate
the disturbance at any point on the further side by a rigorous
process. For surfaces other than the plane the problem has not
been solved generally; nevertheless, it is not difficult to see that
when the radii of curvature of the surface are very great in com
parison with the wave-length, the effect of a normal motion of an

1 Phil. Hag. (5), m. p. 458. 1877.
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element of the surface must be very nearly the same as if the

surface were plane. On this understanding we may employ the

same integral as before to calculate the aggregate result. As a

matter of convenience it is usually best to suppose the wave to be

broken up at what is called in optics a wave-surface, that is, a

surface at every point of which the phase of the disturbance is the

same.

Let us consider the application of Huygens* principle to cal

culate the progress of a given divergent wave. With any point

P, at which the disturbance is required, as centre, describe a series

of spheres of radii continually increasing by the constant difference

X, the first of the series being of such radius (c) as to touch the

given wave-surface at G. If R be the radius of curvature of the

surface in any plane through P and (7, the corresponding radius p

of the outer boundary of the ?i
fch zone is given by the equation

from which we get approximately

If the surface be one of revolution round PC, the area of the first

n zones is >irp*t
and since

/>*
is proportional to n, it follows that the

zones are of equal area. If the surface be not of revolution, the

area of the first n zones is represented %fp*dff, where 6 is the

"azimuth of the plane in which p is measured, but it still remains

true that the zones are of equal area. Since by hypothesis the

normal motion does not vary rapidly over the wave-surface, the

disturbances at P due to the various zones are nearly equal in

magnitude and alternately opposite in sign, and we conclude that,

as in the case of plane waves, the aggregate effect is the half of

that due to the first zone. The phase at P is accordingly retarded

behind that prevailing over the given wave-surface by an amount

corresponding to the distance c.

The intensity of the disturbance at P depends upon the area of

the first Fresnel's zone, and upon the distance c. In the case of

symmetry, we have

which shews that the disturbance is less than if R were infinite in

the ratio JR4 c : R. This diminution is the effect of divergency,
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and is the same as would be obtained on the supposition that the

motion is limited by a conical tube whose vertex is at the centre of

curvature ( 266). When the surface is not of revolution, the

value of /*
v
p

zdd ~ c may be expressed in terms of the principal

radii of curvature Hi and R,
}
with which R is connected by the

relation

We obtain on effecting the integration

. + c)(5, + c)

so that the amplitude is diminished by divergency in the ratio

4- c) (Hz + c) : V.fljj&i, a result which might be anticipated by

supposing the motion limited to a tube formed by normals drawn

through a small contour traced on the wave-surface.

Although we have spoken hitherto of diverging waves only,

the preceding expressions may also be applied to waves converging
in one or in both of the principal planes, if we attach suitable

signs to 1^ and R%. In such a case the area of the first Fresnel's

zone is greater than if the wave were plane, and the intensity
of the vibration is correspondingly increased. If the point P
coincide with one of the principal centres of curvature, the

expression (2) becomes infinite. The investigation, on which (2)

was founded, is then insufficient
;

all that we are entitled to affirm

is that the disturbance is much greater at P than at other points

on the same normal, that the disproportion increases with the

frequency, and that it would become infinite for notes of infinitely

high pitch, whose wave-length would be negligible in comparison
with the distances concerned.

285. Huygens' principle may also be applied to investigate
the reflection of sound from curved surfaces. If the material

surface of the reflector yielded so completely to the aerial

pressures that the normal motion at every point were the same as

it would have been in the absence of the reflector, then the sound

waves would pass on undisturbed. The reflection which actually
ensues when the surface is unyielding may therefore be regarded
as due to a normal motion of each element of the reflector, equal
and opposite to that of the primary waves at the same point, and

may be investigated by the formula proper to plane surfaces in

the manner of the preceding section, and subject to a similar
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limitation as to the relative magnitudes of the wave-length and of

the other distances concerned.

The most interesting case of reflection occurs when the

surface is so shaped as to cause a concentration of rays upon a

particular point (P). If the sound issue originally from a simple
source at Q, and the surface he an ellipsoid of revolution having
its foci at P and Q, the concentration is complete, the vibration

reflected from every element of the surface being in the same

phase on arrival at Q. If Q be infinitely distant, so that the

incident waves are plane, the surface becomes a paraboloid having
its focus at P, and its axis parallel to the incident rays. We must

not suppose, however, that a symmetrical wave diverging from

Q is converted by reflection at the ellipsoidal surface into a

spherical wave converging symmetrically upon P; in fact, it is

easy to see that the intensity of the convergent wave must be

different in different directions. Nevertheless, when the wave

length is very small in comparison with the radius, the different

parts of the convergent wave become approximately independent
of one another, and their progress is not materially affected by
the failure of perfect symmetry.

The increase of loudness due to curvature depends upon the

area of reflecting surface, from which disturbances of uniform

phase arrive, as compared with the area of the first FresneFs

zone of a plane reflector in the same position. If the distances of

the reflector from the source and from the point of observation be

considerable, and the wave-length be not very small, the first

Fresnel's zone is already rather large, and therefore in the case

of a reflector of moderate dimensions but little is gained by

making it concave. On the other hand, in laboratory experiments,

when the distances are moderate and the sounds employed are of

high pitch, e.g. the ticking of a watch or the cracking of electric

sparks, concave reflectors are very efficient and give a distinct

concentration of sound on particular spots.

286. We have seen that if a ray proceeding from Q passes

after reflection at a plane or curved surface through P, the point

It at which it meets the surface is determined by the condition

that QR + RP is a minimum (or in some cases a maximum).

The point R is then the centre of the system of Fresnel's zones ;

the amplitude of the vibration at P depends upon the area of the
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first zone, and its phase depends upon the distance QR -f RP. IF

there be no point on the surface of the reflector, for which

QR + RP is a maximum or a minimum, the system of Fresnel's

zones has no centre, and there is no ray proceeding from Q which

arrives at P after reflection from the surface. In like manner if

sound be reflected more than once, the course of a ray is deter

mined by the condition that its whole length between any two

points is a maximum or a minimum.

The same principle may be applied to investigate the refraction

of sound in a medium, whose mechanical properties vary gradually

from point to point. The variation is supposed to be so slow

that no sensible reflection occurs, and this is not inconsistent

with decided refraction of the rays in travelling distances which

include a very great number of wave-lengths. It is evident

that what we are now concerned with is not merely the length

of the ray, but also the velocity with which the wave travels

along it, inasmuch as this velocity is no longer constant. The

condition to be satisfied is that the time occupied by a wave

in travelling along a ray between any two points shall be a

maximum or a minimum
;
so that, if F be the velocity of propa

gation at any point, and ds an element of the length of the ray,

the condition may be expressed, B J F" 1 ds = 0. This is Fermat's

principle of least time.

The further developement of this part of the subject would

lead us too far into the domain of geometrical optics. The funda

mental assumption of the smallness of the wave-length, on which

the doctrine of rays is built, having a far wider application to the

phenomena of light than to those of sound, the task of developing

its consequences may properly be left to the cultivators of the.

sister science. In the following sections the methods of optics

are applied to one or two isolated questions, whose acoustical

interest is sufficient to demand their consideration in the present

work.

287. One of the most striking of the phenomena connected

with the propagation of sound within closed buildings is that

presented by
"
whispering galleries,"

"

of which a good and easily

accessible example is to be found in the circular gallery at the

base of the dome of St Paul's cathedral. As to the precise mode

of action acoustical authorities are not entirely agreed. In the
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opinion of the Astronomer Royal
1
the effect is to be ascribed to

reflection from the surface of the dome overhead, and is to be

observed at the point of the gallery diametrically opposite to the

source of sound. Every ray proceeding from a radiant point and
reflected from the surface of a spherical reflector, -will after

reflection intersect that diameter of the sphere which contains the

radiant point. This diameter is in fact a degraded form of one of

the two caustic surfaces touched by systems of rays in general,

being the loci of the centres of principal curvature of the surface

to which the rays are normal. The concentration of rays on one

diameter thus effected, does not require the proximity of the

radiant point to the reflecting surface.

Judging from some observations that I have made in St Paul's

whispering gallery, I am disposed to think that the principal

phenomenon is to be explained somewhat differently. The ab

normal loudness with which a whisper is heard is not confined

to t"he position diametrically opposite to that occupied by the

whisperer, and therefore, it would appear, does not depend

materially upon the symmetry of the dome. The whisper seems

to creep round the gallery horizontally, not necessarily along the

shorter arc, but rather along that arc towards which the whisperer

faces. This is a consequence of the very unequal audibility of a

whisper in front of and behind the speaker, a phenomenon which

may easily be observed in the open air
2
.

Let us consider the course of the rays diverging from a radiant

point P, situated near the surface of a reflecting sphere, and let us

denote the centre of the sphere by 0, and the diameter passing

through P by AA, so that A is the point on the surface nearest

to P. If we fix our attention on a ray which issues from P at an

angle 6 with the tangent plane at A, we see that after any
number of reflections it continues to touch a concentric sphere of

radius OP cos 0, so that the whole conical pencil of rays which

originally make angles with the tangent plane at A numerically

less than 6, is ever afterwards included between the reflecting

surface and that of the concentric sphere of radius OP cos 9. The

usual divergence in three dimensions entailing a diminishing

intensity varying as r~ 2
is replaced by a divergence in two dimen

sions, like that of waves issuing from a source situated between

1
Airy On Sound, 2nd edition, 1871, p. 145.

2 Phil. Mag. (5), in. p. 458, 1877.
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two parallel reflecting planes, with an intensity varying as r~\

The less rapid enfeeblement of sound by distance than that usually

experienced is the leading feature in the phenomena of whispering

galleries.

The thickness of the sheet included between the two spheres

becomes less and less as A approaches P, and in the limiting case

of a radiant point situated on the surface of the reflector is

expressed by OA (1 -cos 0), or, if 6 be small \OA . 6* approxi

mately. The solid angle of the pencil, which determines the

whole amount of radiation in the sheet, is 4-7T0
;
so that as 8 is

diminished without limit the intensity becomes infinite, as com

pared with the intensity at a finite distance from a similar source

in the open.

It is evident that this clinging, so to speak, of sound to the

surface of a concave wall does not depend upon the exactness of

the spherical form. But in the case of a true sphere, or rather of

any surface symmetrical with respect to AA', there is in addition

the other kind of concentration spoken of at the commencement of

the present section which is peculiar to the point A' diametrically

opposite to the source. It is probable that in the case of a nearly

spherical dome like that of St Paul's a part of the observed effect

depends upon the symmetry, though perhaps the greater part is

referable simply to the general concavity of the walls.

The propagation of earthquake disturbances is probably affected

by the curvature of the surface of the globe acting like a whisper

ing gallery, and perhaps even sonorous vibrations generated at the

surface of the land or water do not entirely escape the same kind

of influence.

In connection with the acoustics of public buildings there are

many points which still remain obscure. It is important to bear

in mind that the loss of sound in a single reflection at a smooth

wall is very small, whether the wall be plane or curved. In order

to prevent reverberation it may often be necessary to introduce

carpets or hangings to absorb the sound. In some cases the

presence of an audience is found sufficient to produce the desired

effect. In the absence of all deadening material the prolongation

of* sound may be very considerable, of which perhaps the most

striking example is that afforded by the Baptistery at Pisa, where

the notes of the common chord sung consecutively may be heard
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ringing on together for many seconds
1
. According to Henry* it is

important to prevent the repeated reflection of sound backwards

and forwards along the length of a hall intended for public speak

ing, which may be accomplished by suitably placed oblique
surfaces. In this way the number of reflections in a given time is

increased, and the undue prolongation of sound is checked.

288. Almost the only instance of acoustical refraction, which

has a practical interest, is the deviation of sonorous rays from a

rectilinear course due to heterogeneity of the atmosphere. The
variation of pressure at different levels does not of itself give rise

to refraction, since the velocity of sound is independent of density;

but, as was first pointed out by Prof. Osborne Reynolds
3
,
the case

is different with the variations of temperature which are usually

to be met with. The temperature of the atmosphere is determined

principally by the condensation or rarefaction, which any portion

of air must undergo in its passage from one level to another, and

its normal state is one of
" convective equilibrium

4

," rather than of

uniformity. According to this view the relation between pressure

and density is that expressed in (9) 246, and the velocity of

sound is given by

p po \p

To connect the pressure and density with the elevation (z), we

have the hydrostatical equation

dp = -gpdz ............. . ............. (2),

from which and (1) we find

F* = F *-(7-l)^ ...............-...... (3),

if F be the velocity at the surface. The corresponding relation

between temperature and elevation obtained by means of equation

(10) 246 is

where is the temperature at the surface.

1 [Some observations of my own, made in 1883, gave the duration as 12 seconds.

If a note changes pitch, both sounds are heard together and may give rise to a

combination-tone, 68. Soe Haberditzl, TJeber die von Dvorak beobachteten Vari-

ationston. Wien, ATcad. Sitzber., 77, p. 204, 1878.]
2 Amer. Assoc. Proc. 1856, p. 119.

3
Proceedings of the Royal Society, Vol. xxn. p. 531. 1874.

4 Thomson, On the convectwe equilibrium of temperature in the atmosphere.

Manchester Memoirs, 186162.
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According to (4) the fall of temperature would be about

lf Cent. in 330 feet [100 m.], which does not differ much from the

results of Glaisher's balloon observations. When the sky is clear,

the fall of temperature during the day is more rapid than when

the sky is cloudy, but towards sunset the temperature becomes

approximately constant
1
. Probably on clear nights it is often

warmer above than below.

The explanation of acoustical refraction as dependent upon a

variation of temperature with height is almost exactly the same as

that of the optical phenomenon of mirage. The curvature (p""
1

) of

a ray, whose course is approximately horizontal, is easily estimated

by the method given by Prof. James Thomson 2
. Normal planes

drawn at two consecutive points along the ray meet at the centre of

curvature and are tangential to the wave-surface in its two con

secutive positions. The portions of rays at elevations z and z -f 82

respectively intercepted between the normal planes are to one

another in the ratio p : p $z9 and also, since they are described

in the same time, in the ratio V': F+SF Hence in the limit

In tiie normal state of the atmosphere a ray, which starts

horizontally, turns gradually upwards, and at a sufficient distance

passes over the head of an observer whose station is at the same

level as the source. If the source be elevated, the sound is heard

at the surface of the earth by means of a ray which starts with

a downward inclination; but, if both the observer and the

source be on the surface, there is no direct ray, and the sound is

heard, if at all, by means of diffraction. The observer may then

be sard to be situated in a sound shadow, although there may be

no obstacle in the direct line between himself and the source.

According to (3)

so that p = ~\ =* W - ^T ................ <6>;

or the radius of curvature of a horizontal ray is about ten times

the height through which a body must fall under the action of

1 Nature, Sept. 20, 1877.
* See Everett, On the Optics of Mirage. Phil. Mag. (4) XLV. pp. 161, 248.
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gravity in order to acquire a velocity equal to the velocity of

sound. If the elevations of the observer and of the source be Zi

and zz> the greatest distance at which the sound can be heard

otherwise than by diffraction is

V(2*lP)+V(2^p) (7).

It is not to be supposed that the condition of the atmosphere

is always such that the relation between velocity and elevation is

that expressed in (3). When the sun is shining, the variation of

temperature upwards is more rapid ; on the other hand, as Prof.

Reynolds has remarked, when rain is falling, a much slower varia

tion is to be expected. In the arctic regions, where the nights

are long and still, radiation may have more influence than convec

tion in determining the equilibrium of temperature, and if so the

propagation of sound in a horizontal direction would be favoured

by the approximately isothermal condition of the atmosphere.

The general differential equation for the path of a ray, when

the surfaces of equal velocity are parallel planes, is readily obtained

from the law of sines. If 6 be the angle of incidence, F/sin Q is

not altered by a refracting surface, and therefore in the case

supposed remains constant along the whole course of a ray. If x

be the horizontal co-ordinate, and the constant value of V/s'm 6

be called c, we get <Lc/dz= T
7/^- Fa

),

or # =

If the law of'velocity be that expressed in (3),

ZVdV
(7-D<7'

2 [ V*dV
and thus x =

;
- -T -,---^ ,

(y-I)gJ Vca - V-

or, on effecting the integration,

(7
-

l)ff x= constant + VJ(&-V*)-<? sin" 1

(F/c) ...... (9),

in which V may be expressed in terms of z by (3).

A simpler result will be obtained by taking an approximate

form of (3), which will be accurate enough to represent the cases

of practical interest. Neglecting the square and higher powers of

z, we may take
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Writing for brevity in place of ^#(7- 1)/F
8
, we have

By substitution in (8)

the origin of x being taken so as to correspond with F=c, that is

at the place where the ray is horizontal. Expressing V in terms

of #, we find

whence #z = - Fr 1 * (e** + e~**)... .......... (12).
Zc

The path of each ray is therefore a catenary whose vertex is

2F 3

downwards
;

the linear parameter is -
^rr- and varies from

#(7-l)c
ray to ray.

289. Another cause of atmospheric refraction is to be found

in the action of wind. It has long been Known that sounds are

generally better heard to leeward than to windward of the source
,

but the fact remained unexplained until Stokes 1

pointed out that

the increasing velocity of the wind overhead must interfere with

the rectilinear propagation of sound rays. From Fermat's law of

least time it follows that the course of a ray in a moving, but

otherwise homogeneous, medium, is the same as it would be in a

medium, of which all the parts are at rest, if the velocity of

propagation be increased at every point by the component of

the wind-velocity in the direction of the ray. If the wind be

horizontal, and do not vary in the same horizontal plane, the

course of a ray, whose direction is everywhere but slightly inclined

to that of the wind, may be calculated on the same principles as

were applied in the preceding section to the case of a variable

temperature, the normal velocity of propagation at any point being
increased, or diminished, by the local wind-velocity, according as

the motion of the sound is to leeward or to windward. Thus,

when the wind increases overhead, which may be looked upon as

the normal state of things, a horizontal ray travelling to windward
is gradually bent upwards, and at a moderate distance passes over

the head of an observer
; rays travelling with the wind, on the

1 Brit. Assoc. Rep. 1857, p. 22.
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other hand, are bent downwards, so that an observer to leeward of

the source hears by a direct ray which starts with a slight upward
inclination, and has the advantage of being out of the way of

obstructions for the greater part of its course.

The law of refraction at a horizontal surface, in crossing which

the velocity of the wind changes discontinuously, is easily investi

gated. It will be sufficient to consider the case in which the

direction of the wind and the ray are in the same vertical plane.

If 9 be the angle of incidence, which is also the angle between the

plane of the wave and the sxirface of separation, U be the velocity

of the air in that direction which makes the smaller angle with

the ray, and V be the common velocity of propagation, the velocity

of the trace of the plane of the wave on the surface of separa
tion is

which quantity is unchanged by the refraction. If therefore Ur

be

the velocity of the wind on the second side, and ff be the angle of

refraction,

which differs from the ordinary optical law. If the wind-velocity

vary continuously, the course of a ray may be calculated from the

condition that the expression (1) remains constant.

If we suppose that 17=0, the greatest admissible value of

U' is

-l} ..... . ............... (3).

At a stratum where U' has this value, the direction of the ray
which started at an angle & has become parallel to the refracting

surfaces, and a stratum where V has a greater value cannot be

penetrated at all. Thus a ray travelling upwards in still air at an

inclination QTT 6) to the horizon is reflected by a wind overhead

of velocity exceeding that given in (3), and this independently of

the velocities of intermediate strata. To take a numerical example,
all rays whose upward inclination is less than 11, are totally

reflected by a wind of the same azimuth moving at the moderate

speed of 15 miles per hour. The effects of such a wind on the

propagation of sound cannot fail to be very important. Over the

surface of still water sound moving to leeward, being confined
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between parallel reflecting planes, diverges in two dimensions

only, and may therefore be heard at distances far greater than

would otherwise be possible. Another possible effect of the reflector

overhead is to render sounds audible which in still air would

be intercepted by hills or other obstacles intervening. For the

production of these phenomena it is not necessary that there be

absence of wind at the source of sound, but, as appears at once

from the form of (2), merely that the difference of velocities Uf U
attain a sufficient value.

The differential equation to the path of a ray, when the wind-

velocity V is continuously variable, is

whence

In comparing (o) with (8) of the preceding section, which

is the corresponding equation for ordinary refraction, we must
remember that V is now constant. If, for the sake of obtaining a

definite result, we suppose that the law of variation of wind at

different levels is that expressed by

(G),

we have *- F
V{(o t H .................. <7 >>

which is of the same form as (11) of the preceding section. The
course of a ray is accordingly a catenary in the present case also,

but there is a most important distinction between the two problems.
When the refraction is of the ordinary kind, depending upon a

variable velocity of propagation, the direction of a ray may be

reversed. In the case of atmospheric refraction, due to a diminu
tion of temperature upwards, the course of a ray is a catenary,
whose vertex is downwards, in whichever direction the ray may be

propagated. When the refraction is due to wind, whose velocity
increases upwards, according to the law expressed in (6) with ft

positive, the path of a ray, whose direction is upwind, is also along
a catenary with vertex downwards, but a ray whose direction is

downwind cannot travel along this path. In the latter case the

vertex of the catenary along which the ray travels is directed

upwards.
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290 In the paper by Reynolds already referred to, an account

is given of i&v interesting experiments especially directed to test

the tl ory of refraction by wind. It was found that " In the

direction of the wind, when >- was strong, the sound (of an electric

bell) could be heard as well witL. the head on the ground as when

raised, even when in a hollow with the bell hidden from view by
the lope of the ground ; and no advant&jre whatever was gained
either by ascending to an elevation or raising the bell. Thus, with

the wind over the grass the sound could be heard 140 yards, and

over snow 360 yards, either with the head lifted or on the ground ;

whereas at right angles to the wind on all occasions the range was

extended by raising either the observer or the bell."

"
Elevation was found to affect the range of sound against the

wind in a much more marked manner than at right angles."
" Over the grass no sound could be heard with the head on the

ground at 20 yards from the bell, and at 30 yards it was lost with

the head 3 feet from the ground, and its full intensity was lost

when standing erect at 30 yards. At 70 yards, when standing

erect, the sound was lost at long intervals, and was only faintly

heard even then
;
but it became continuous again when the ear

was raised 9 feet from the ground, and it reached its full intensity

at an elevation of 12 feet."

Prof. Reynolds thus sums up the results of his experiments :

1.
" When there is no wind, sound proceeding over a rough

surface is more intense above than below."

2.
" As long as the velocity of the wind is greater above than

below, sound is lifted up to windward and is not destroyed."

3. "Under the same circumstances it is brought down to

leeward, and hence its range extended at the surface of the

ground/'

Atmospheric refraction has an important bearing on the

audibility of fog-signals, a subject which within the last few years

has occupied the attention of two eminent physicists, Prof. Henry
in America and Prof. Tyndall in this country. Henry

1 attributes

almost all the vagaries of distant sounds to refraction, and has

shewn how it is possible by various suppositions as to the motion

of the air overhead to explain certain abnormal phenomena which

have come under the notice of himself and other observers, while

1
Report of the Lighthouse Board of the United States for the year 1874.
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Tyndall
1
, whose investigations have been equally extensive,

considers the very limited distances to which sounds are sometimes

audible to be due to an actual stopping of the sound by a flocculent

condition of the atmosphere arising from unequal heating or

moisture. That the latter cause is capable of operating in this

direction to a certain extent cannot be doubted Tyndall has

proved by laboratory experiments that the sound of an electric bell

may be sensibly intercepted by alternate layers of gases of different

densities
; and, although it must be admitted that the alternations

of density were both more considerable and more abrupt than

can well be supposed to occur in the open air, except perhaps in

the immediate neighbourhood of the solid ground, some of the

observations on fog-signals themselves seem to point directly to

the explanation in question.

Thus it was found that the blast of a siren placed on the

summit of a cliff overlooking the sea was followed by an echo

of gradually diminishing intensity, whose duration sometimes

amounted to as much as 15 seconds. This phenomenon was

observed "when the sea was of glassy smoothness," and cannot

apparently be attributed to any other cause than that assigned to

it by Tyndall. It is therefore probable that refraction and

acoustical opacity are both concerned in the capricious behaviour

of fog-signals. A priori we should certainly be disposed to attach

the greater importance to refraction, and Reynolds has shewn that

some ofTyndalFs own observations admit of explanation upon this

principle. A failure in reciprocity can only be explained in

accordance with theory by the action of wind ( 111),

According to the hypothesis of acoustic clouds, a difference

might be expected in the behaviour of sounds of long and of short

duration, which it may be worth while to point out here, as it does

not appear to have been noticed by any previous writer. Since

energy is not lost in reflection and refraction, the intensity of

radiation at a given distance from a continuous source of sound (or

light) is not altered by an enveloping cloud of spherical form and of

uniform density, the loss due to the intervening parts of the cloud

being compensated by reflection from those which lie beyond the

source. When, however, the sound is of short duration, the

intensity at a distance may be very much diminished by the cloud

on account of the different distances of its reflecting parts and the

1 Phil. Trans. 1874. Sound, Srd edition, Ch. vn.
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consequent drawing out of the sound, although the whole intensity,

as measured by the time-integral, may be the same as if there had

been no cloud at all. This is perhaps the explanation of Tyndall's

observation, that different kinds of signals do not always preserve

the same order of effectiveness. In some states of the weather a
" howitzer firing a 3-lb. charge commanded a larger range than the

whistles, trumpets, or syren," while on other days
" the inferiority

of the gun to the syren was demonstrated in the clearest manner."

It should be noticed, however, that in the same series of experi

ments it was found that the liability of the sound of a gun
"
to be

quenched or deflected by an opposing wind, so as to be practically

useless at a very short distance to windward, is very remarkable."

The refraction proper must be the same for all kinds of sounds,

but for the reason explained above, the diffraction round the edge
of an obstacle may be less effective for the report of a gun than for

the sustained note of a siren.

Another point examined by Tyndall was the influence of fog on

the propagation of sound. In spite of isolated assertions to the

contrary
1

, it was generally believed on the authority of Derharn

that the influence of fog was prejudicial. TyndalFs observations

prove satisfactorily that this opinion is erroneous, and that the

passage of sound is favoured by the homogeneous condition of the

atmosphere which is the usual concomitant of foggy weather.

When the air is saturated with moisture, the fall of temperature

with elevation according to the law of convective equilibrium is

much less rapid than in the case of dry air, on account of the

condensation of vapour which then accompanies expansion. From

a calculation by Thomson 2
it appears that in warm fog the effect

of evaporation and condensation would be to diminish the fall of

temperature by one-half. The acoustical refraction due to tem

perature would thus be lessened, and in other respects no doubt,

the condition of the air would be favourable to the propagation of

sound, provided no obstruction were offered by the suspended

particles themselves. In a future chapter we shall investigate the

disturbance of plane sonorous waves by a small obstacle, and we

shall find that the effect depends upon the ratio of the diameter of

the obstacle to the wave-length of the sound

The reader who is desirous of pursuing this subject may

1 See for example Besor, Fortschritte der Physik, xi. p. 217* 1855.

3 Manchester Memoirs, 186162.
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consult a paper by Reynolds
" On the Refraction of Sound by the

Atmosphere
1

," as well as the authorities already referred to. It

may be mentioned that Reynolds agrees with Henry in consider

ing refraction to be the really important cause of disturbance, but

further observations are much needed. See also 294.

291. On the assumption that the disturbance at an aperture

in a screen is the same as it would have been at the same place in

the absence of the screen, we may solve various problems respecting

the diffraction of sound by the same methods as are employed for

the corresponding problems in physical optics. For example, the

disturbance at a distance on the further side of an infinite plane

wall, pierced with a circular aperture on which plane waves of

sound impinge directly, may be calculated as in the analogous

problem of the diffraction pattern formed at the focus of a circular

object-glass. Thus in the case of a symmetrical speaking trumpet

the sound is a maximum along the axis of the instrument, where

all the elementary disturbances issuing from the various points

of the plane of the mouth are in one phase. In oblique direc

tions the intensity is less; but it does not fall materially short

of the maximum value until the obliquity is such that the

difference of distances of the nearest and furthest points of the

mouth amounts to about half a wave-length. At a somewhat

greater obliquity the mouth may be divided into two parts, of

which the nearer gives an aggregate effect equal in magnitude,
but opposite in phase, to that of the further

;
so that the intensity

in this direction vanishes. In directions still more oblique the

sound revives, increases to an intensity equal to *017 of that

along the axis3
, again diminishes to zero, and so on, the alternations

corresponding to the bright and dark rings which surround the

central patch of light in the image of a star. If R denote the

radius of the mouth, the angle, at which the first silence occurs, is

sin"1

('610X/J2). When the diameter of the mouth does not exceed

^X, the elementary disturbances combine without any considerable

antagonism of phase, and the intensity is nearly uniform in all

directions. It appears that concentration of sound along the axis

requires that the ratio R : X should be large, a condition not

usually satisfied in the ordinary use of speaking trumpets, whose

efficiency depends rather upon an increase in the original volume

1 Phil. Trans. Vol. 166, p. 315. 1876.

54 Verdet, Lemons cToptique physique, t. i. p. 306.
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of sound ( 280). When, however, the vibrations are of very short

wave-length, a trumpet of moderate size is capable of effecting a
considerable concentration along the axis, as I have myself verified

in the case of a hiss.

292. Although such calculations as those referred to in the

preceding section are useful as giving us a general idea of the

phenomena of diffraction, it must not be forgotten that the

auxiliary assumption on which they are founded is by no means

strictly and generally true. Thus in the case of a wave directly
incident upon a screen the normal velocity in the plane of the

aperture is not constant, as has been supposed, but increases from
the centre towards the edge, becoming infinite at the edge itself.

In order to investigate the conditions by which the actual velocity
is determined, let us for the moment suppose that the aperture is

filled up. The incident wave
<f>
= cos (nt kx) is then perfectly

reflected, and the velocity-potential on the negative side of the

screen (x = 0) is

<f>
= cos (nt ksc) -f- cos (nt -f kx) ............... ( 1 ),

giving, when x = 0, <f>
= 2 cos nt. This corresponds to the vanish

ing of the normal velocity over the area of the aperture; the

completion of the problem requires us to determine a variable

normal velocity over the aperture such that the potential due to it

( 278) shall increase by the constant quantity 2 cos nt in crossing
from the negative to the positive side; or, since the crossing
involves simply a change of sign, to determine a value of the

normal velocity over the area of the aperture which shall give on

the positive side < = cos nt over the same area. The result of

superposing the two motions thus defined satisfies all the condi

tions of the problem, giving the same velocity and pressure on the

two sides of the aperture, and a vanishing normal velocity over the

remainder of the screen.

If P cos (nt -f e) denote the value of d$/dx at the various points
of the area (S) of the aperture, the condition for determining
P and e is by (6) 278,

cos (nt 7rr- dS = Cosnt ......... (2),

where r denotes the distance between the element dS and any
fixed point in the aperture. When P and e are known, the
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complete value of
<f>

for any point on the positive side of the screen

is given by

and for any point on the negative side by

fp
*("*-* +

^S+2eosnteoskx ...... (4).
-1

ff
ZTrJJ

The expression of P and for a finite aperture, even if of circular

form, is probably beyond the power of known methods
;
but in the

case where the dimensions are very small in comparison with the

wave-length the solution of the problem may be effected for the

circle and the ellipse. If r be the distance between two points,

both of which are situated in the aperture, kr may be neglected,

and we then obtain from (2)

shewing that P/2?r is the density of the matter which must be

distributed over S in order to produce there the constant potential

unity. At a distance from the opening on the positive side we

may consider r as constant, and take

^, jfeo.0rt-.fr) ..................... 6>

where Jlf= ~"~ I IPdS, denoting the total quantity of matter

which must be supposed to be distributed. It will be shewn

on a future page ( 306) that for an ellipse of semimajor axis a,

and eccentricity e,

M=a + F(e)...........................(7),

where F is the symbol of the complete elliptic function of the first

kind. In the ease of a circle, F(e) |?r, and

Jf- ................................. (8)-

This result is quite different from that which we should obtain on

the hypothesis that the normal velocity in the aperture has the

value proper to the primary wave. In that case by (3) 283

, ira? sin (nt kr) /m
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If there be several small apertures, whose distances apart are

much greater than their dimensions, the same method gives

(10).

The difiraction of sound is a subject which has attracted but
little attention either from mathematicians or experimentalists.

Although the general character of the phenomena is well under

stood, and therefore no very startling discoveries are to be

expected, the exact theoretical solution of a few of the simpler

problems, which the subject presents, would be interesting ; and,

even with the present imperfect methods, something probably

might be done in the way of experimental examination.

292 a. By means of a bird-call giving waves of about 1 cm.

wave-length and a high pressure sensitive flame it is possible to

imitate many interesting optical experiments. With this apparatus
the shadow of an obstacle so small as the hand may be made

apparent at a distance of several feet.

An experiment shewing the antagonism between the parts of a

wave corresponding to the first and second Fresnel's zones ( 283)

Fig. 57 a.

SOURCE
"1

BURNER
O

is very effective. A large glass screen (Fig. 57 a) is perforated

with a circular hole 20 cm. in diameter, and is so situated between

the source of sound and the burner that the aperture corresponds

to the first two zones. By means of a zinc plate, held close to the
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glass, the aperture may be reduced to 14 cm., and then admits

only the first zone. If the adjustments are well made, the flame,

unaffected by the waves which penetrate the larger aperture,

flares violently when the aperture is further restricted by the

zinc plate. Or, as an alternative, the perforated plate may be

replaced by a disc of 14 cm. diameter, which allows the second

zone to be operative while the first is blocked off.

If a, b denote the distances of the screen from the source and

from the point of observation, the external radius p of the ?ith

zone is given by

or approximately

When a = i>,

p
2 = 7Z,Xa.. ...... ................... (2),

With the apertures specified above, p
2 = 49 for n = 1

; p*
= 100

for n 2
;
so that

\a = 100,

the measurements being in centimetres. This gives the suitable

distances when X is known. In an actual experiment X = 1%
a = 83.

The process of augmenting the total effect by blocking out the

alternate zones may be carried much further. Thus when a

suitable circular grating, cut-out of a sheet of zinc, is iuterposed
between the source of sound and the flame, the effect is many
times greater than when the screen is removed altogether

1
. As

in Soret's corresponding optical experiment, the grating plays the

part of a condensing lens.

The focal length of the lens is determined by (1), which may
be written in the form

_ - .

/ a Z>~>
........................ W'

so that

/=/>
2M .................... . ..... (4).

In an actual grating constructed upon this plan eight zones the

first, third, fifth &c. are occupied by metal. The radius of the

first zone, or central circle, is 7*6 cm., so that p*/n = 58. Thus, if

X= 1*2 crn.,/= 48 cm. If a and b are equal, each must be 90 cm

3 "Diffraction of Sound/' Proc. Roy. Inst. Jan. 20, 1888.
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The condition of things at the centre of the shadow of a

circular disc is still more easily investigated. If we construct in

imagination a system of zones beginning with the circular edge of

the disc, we see, as in 283, that the total effect at a point upon
the axis, being represented by the half of that of the first zone, is

the same as if no obstacle at all were interposed. This analogue
of a famous optical phenomenon is readily exhibited 1^ In one

experiment a glass disc 38 cm. in diameter was employed, and its

distances from the source and from the flame were respectively
70 cm. and 25 cm. A bird-call giving a pure tone (X = 1-5 cm.) is

suitable, but may be replaced by a toy reed or other source giving
short, though not necessarily simple, waves. In private work the

ear furnished with a rubber tube may be used instead of a sensitive

flame.

The region of no sensible shadow, though not confined to a

mathematical point upon the axis, is of small dimensions, and a

very moderate movement of the disc in its own plane suffices to

reduce the flame to quiet Immediately surrounding the central

spot there is a ring of almost complete silence, and beyond that

again a moderate revival of effect. The calculation of the in

tensity of sound at points off the axis of symmetry is too com

plicated to be entered upon here. The results obtained by
Lommel 2

may be readily adapted to the acoustical problem. With

the data specified above the diameter of the silent ring immediately

surrounding the central region of activity is about 1*7 cm.

293. The value of a function < which satisfies V-< =
through

out the interior of a simply-connected closed space S can be

expressed as the potential of matter distributed over the surface

of S. In a certain sense this is also true of the class of functions

with which we are now occupied, which satisfy V2
^> + i2

^ = 0.

The following is Helmholtz's proof
3
. By Green's theorem, if

<f>

and
ijr

denote any two functions of x, y t z,
'

1 " Acoustical Observations," Phil. May. Vol. ix. p. 281, 1880 ; Proc. Roy. Inst.

loc. cit.

2 Abh. der layer. Akad. der Wiss. ii. Cl., xv. Bd., ii. Abth. See also Encyclo

pedia Britannica, Article " Wave Theory."
3 Theorie der Luftschwingunyen in Rohren mit offentn Enden. Crelle, Bd. LVII.

p. 1. 1860.
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To each side add - fffjf<^-dF; then if

If 4> and ^ vanish within $, we have simply

//*

Suppose, however, that
-itr

-T- (3),

where r represents the distance of any point from a fixed origin

within S. At all points, except 0, <J> vanishes
;
and the last term

in (1) becomes

^ referring to the point 0. Thus

-'"** rr d

dn T JJ dn

-h-r

in which, if^ vanish, we have an expression for the value of SP at

any interior point in terms of the surface values of ty and of

d-^/dri. In the case of the common potential, on which we fall

back by putting fc= 0, ^ would be determined by the surface

values of d^fdn only. But with k finite, this law ceases to be

universally true. For a given space S there is, as in the case

investigated in 267, a series of determinate values of k, corre

sponding to the periods of the possible modes of simple harmonic
vibration which may take place within a closed rigid envelope

having the form of S. With any of these values of kt it is obvious

that ^ cannot be determined by its normal variation over S, and
the fact that it satisfies throughout S the equation V2

-^ + i2^ = 0.

But if the supposed value of k do not coincide with one of the

series, then the problem is determinate
;
for the difference of any

two possible solutions, if finite, would satisfj
r the condition of

giving no normal velocity over S, a condition which by hypothesis
cannot be satisfied with the assumed value of k.
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If the dimensions of the space S be very small in comparison
with X(=27r/&), e~ikr

may be replaced by unity; and we learn

that
t/r

differs but little from a function which satisfies throughout
S the equation V*<f>

= 0.

294. On his extension of Green's theorem (1) Helmholtz

founds his proof of the important theorem contained in the following
statement: If in a space filled with air which is partly bounded by

finitely extended fixed bodies and is partly unbounded, sound waves

be excited at any point A, the resulting velocity-potential at a second

point B is the same both in magnitude and phase, as it would have

been at A, had B been the source of the sound.

If the equation

in which
<j>
and ty are arbitrary functions, and

= - a2
(V

be applied to a space completely enclosed by a rigid boundary and

containing any number of detached rigid fixed bodies, and if
<f>, ty

be velocity-potentials due to sources within S, we get

(2).

Thus, if
<f>

be due to a source concentrated in one point A, <I>

except at that point, and

where I

lj<t>dV represents the intensity of the source. Similarly,

if
TJT

be due to a source situated at B,

Accordingly, if the sources be finite and equal, so that

. ...............(3),

it follows that

*-.-** ...... - .................. -

which is the symbolical statement of Helmholtz's theorem.
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If the space S extend to infinity, the .surface integral still

vanishes, and the result is the same ;
but it is not necessary to go

into detail here, as this theorem is included in the vastly more

general principle of reeiprocicy established in Chapter V. The

investigation there given shews that the principle remains true in

the presence or dissipative forces, provided that these arise from
resistances varying as the first power of the velocity, that the

fluid need not be homogeneous, nor the neighbouring bodies, rigid
or fixed. In the application to infinite space, all obscurity is

avoided by supposing the vibrations to be slowly dissipated after

having escaped to a distance from A and B, the sources under

contemplation.

The reader must carefully remember that in this theorem

equal sources of sound are those produced by the periodic intro

duction and abstraction of equal quantities of fluid, or something
whose effect is the same, and that equal sources do not necessarily

evolve equal amounts of energy in equal times. For instance, a

source close to the surface of a large obstacle emits twice as much

energy as an equal source situated in the open.

As an example of the use of this theorem we may take the

case of a hearing, or speaking, trumpet consisting of a conical tube,

whose efficiency is thus seen to be the same, whether a sound pro
duced at a point outside is observed at the vertex of the cone, or

a source of equal strength situated at the vertex is observed at the

external point.

It. is important also to bear in mind that Helmholtz's form of

the reciprocity theorem is applicable only to simple sources of sound,
which in the absence of obstacles would generate symmetrical
waves. As we shall see more clearly in a subsequent chapter, it is

possible to have sources of sound, which, though concentrated in

an infinitely small region, do not satisfy this condition. It will be

sufficient
herujto^consider the case of double sources, for which the

modified reciprocal theorem has an interest of its own.

Let us suppose that A is a simple source, giving at a point B
the potential

-
t/r,

and that A' is an equal and opposite source

situated at a neighbouring point, whose potential at B is
T/T + A

If both sources be in operation simultaneously, the potential at

is A^/r. Now let us suppose that there is a simple source at
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who.se intensity and phase are the same as those of the sources at

A and A'
;
the resulting potential at A is ^ry and at A 1

-$- + A^.
If the distance AA' be denoted by A, and be supposed to diminish

without limit, the velocity of the fluid at A In the direction AA
is the limit of A-^/A. Hence, if we define a unit double source

as the limit of two equal and opposite simple sources whose dis

tance is diminished, and whose intensity is increased without

limit in such a manner that the product of the intensity and
the distance is the same as for two unit simple sources placed at

the unit distance apart, we may say that the velocity of the fluid

at A in direction AA' due to a unit simple source at B is numeri

cally equal to the potential at B due to a unit double source at A,
whose axis is in the direction AA'. This theorem, be it observed,

is true in spite of any obstacles or reflectors that may exist in the

neighbourhood of the sources.

Again, if AA' and BBf

represent two unit double sources of the

same phase, the velocity at B in direction BF due to the source

AA f
is the same as the velocity at A in direction AA' due to the

source B&. These and other results of a like character may also

be obtained on an immediate application of the general principle of

108. These examples will be sufficient to shew that in applying
the principle of reciprocity it is necessary to attend to the character

of the sources. A double source, situated in an open space, is in

audible from any point in its equatorial plane, but it does not

follow that a simple source in the equatorial plane is inaudible

from the {>osition of the double source. On this principle, I believe,

may be explained a curious experiment by Tyndall
1

, in which

there was an apparent failure of reciprocity-. The source of sound

employed was a reed of very high pitch, mounted in a tube, along
whose axis the intensity was considerably greater. than in oblique

directions,

295. The kinetic energy T of the motion within a closed

surface 8 is expressed by

1
Proceeding* of the Royal Institution, Jan. 1875. Also Tyndall, On Sound, 3rd

edition, p. 405,
- See a note " On the Application of the Principle of Reciprocity to Acoustics."

Royal Society Proceedings* Vol. xxv. p. 118, 1876, or Phil. Mag. (5), in. p. 300.
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by Green's theorem. For the potential energy Vl we have by
(12) 245

by the general equation of motion (9) 244. Thus, if E denote
the whole energy within the space S,

of which the first term represents the work transmitted across the

boundary S, and the second represents the work done by internal

sources of sound.

If the boundary S be a fixed rigid envelope, and *.here be no
internal sources, E retains its initial value throughout the motion.
This principle has been applied by Kirchhoff 1 to prove the deter-

minateness of the motion resulting from given arbitrary initial

conditions. Since every element of E is positive, there can be no
motion within S, if E be zero. Now, if there were two motions

possible corresponding to the same initial conditions, their differ

ence would be a motion for which the initial value of E was zero;
but by what has just been said such a motion cannot exist.

1
Vorlesungen iibcr Math. Physik, p. 311.



CHAPTER XV.

FURTHER APPLICATION OF THE GENERAL EQUATIONS.

296. WHEN a train of plane waves, otherwise unimpeded,

impinges upon a space occupied by matter, whose mechanical pro

perties differ from those of the surrounding medium, secondary
waves are thrown off, which may be regarded as a disturbance due
to the change in the nature of the medium a point of view more

especially appropriate, when the region of disturbance, as well

as the alteration of mechanical properties, is smalL If the

medium, and the obstacle be fluid, the mechanical properties

spoken of are two the compressibility and the density: no

account is here taken of friction or viscosity. In the chapter on

spherical harmonic analysis we shall consider the problem here

proposed on the supposition that the obstacle is spherical, without

any restriction as to the smallness of the change of mechanical

properties ;
in the present investigation the form of the obstacle

is arbitrary, but we assume that the squares and higher powers
of the changes of mechanical properties may be omitted.

If ^ denote the displacements parallel to the axes of

co-ordinates of the particle, whose equilibrium position is defined

by &> y> z, and if a- be the normal density, and m the constant

of compressibility so that Spurns, the equations of motion are

ax

and two similar equations in 17 and On the assumption
that the whole motion is proportional to eijtat> where as usual

k= 2?r/X, and ( 244) a*= m/a-, (1) may be written

-O .....................(2).
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The relation between the condensation s, and the displace

ments , 77, f, obtained by integrating (3) 238 with respect
to the time, is

For the system of primary waves advancing in the direction

of #, 17 and f vanish ; if , $ be the values of and s, and

m*, <r<> be the mechanical constants for the undisturbed medium,
we have as in (2)

^-<r^ = .................. (4);

but ffl , se do not satisfy (2) at the region of disturbance on account

of the variation in m and <r, which occurs there. Let us assume
that the complete values are -f 17, s +s 1

>
and substitute

in (2). .Then taking account of (4), we get

-
o) + SQ

_
(<r
_

ffo) i,a
i& - 0,

or, as it may also be written,

= ...... (5),

if Am, Ao- stand respectively for m ?tt
, <r <r . The equations

in 17 and f are in like manner

^ / \ T* ^

It is to be observed that Aw, A<r vanish, except through a

small space, which is regarded as the region of disturbance;

^j ^ being the result of the disturbance are to be treated

as small quantities of the order A;?i, A<r
;

so that in our ap

proximate analysis the variations of m and a in the first two
terms of (o) and (6) are to be neglected, being there multiplied

by small quantities. We thus obtain from (5) and (6) by differ

entiation and addition, with use of (3), as the differential equation
in s,

s = i2a2

(A<r,f )-V2(Am.s ) ...... (7).

1
[Tliis notation was adopted for brevity. It might be clearer to take

*=* 4- A*, &c. ; so that & $, <fcc. should retain their former meanings.]
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As in 277, the solution of (7) is

in which the integration extends over a volume completely in

cluding the region of disturbance. The integrals in (8) may be

transformed with the aid of Green's theorem. Calling the two

parts respectively P and Q, we have

p ^ V* A7ft.s dF

where S denotes the surface of the space through which the triple

integration extends. Now on S, Am and -T- (Am.se) vanish,
dflf

so that both the surface integrals disappear. Moreover

and thus

.dr ......... . ........ (9).

If the region of disturbance be small in comparison with X,

we may write

.(10).

In like manner for the second integral in (8), we find

where /i denotes the cosine of the angle between x and r. The

linear dimension of the region of disturbance is neglected in

comparison with X, and X is neglected in comparison with r.

If T be the volume of the space through which Am, A<r are

sensible, we may write

.Am, &<r dF= T.
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if on the right-hand sides A??*, ACT refer to the mean values of

the variations in question. Thus from (8)

]

o-i&a2
Ao-.f /4 ...... (12).

)

To express in terms of s , we have from (3), f = /s ckc; and

thus, if the condensation for the primary waves be s = e* (<lt+z}
,

i = sfl> and (12) may be put into the form

in which $<> denotes the condensation of the primary waves at

the place of disturbance at time t, and 5 denotes the condensa

tion of the secondary waves at the same time at a distance r from

the disturbance. Since the difference of phase represented by the

factor e~lkr
corresponds simply to the distance r, we may consider

that a simple reversal of phase occurs at the place of disturbance.

The amplitude of the secondary waves is inversely proportional
to the distance r, and to the square of the wave-length X. Of
the two terms expressed in (13) the first is symmetrical in all

directions round the place of disturbance, while the second varies

as the cosine of the angle between the primary and the secondary-

rays. Thus a place at which m varies behaves as a simple source,

and a place at which a varies behaves as a double source ( 294).

That the secondary disturbance must vary as Ar2
may be

proved immediately by the method of dimensions. Am and Ao-

being given, the amplitude is necessarily proportional to T, and in

accordance with the principle of energy must also vary inversely
as r. Now the only quantities (dependent upon space, time, and

mass) of which the ratio of amplitudes can be a function, are

T, r
t X, a (the velocity of sound), and <r, of which the last cannot

occur in the expression of a simple ratio, as it is the only one of

the five which involves a reference to mass. Of the remaining
four quantities T, r, X, and a, the last is the only one which

involves a reference to time, and is therefore excluded. We are

left with T, r, and X, of which the only combination varying
as SV"1

, and independent of the unit of length, is 2V-1 X-*.1

An interesting application of the results of this section may
be made to explain what have been called harmonic echoes*.

1 " On the Light from the Sky," Phil. Mag. Feb. 1871, and " On the scattering
of IA%kt by small Particles," Phil. Mag. June, 1871.

*
Nature* 1873, vra. 319.
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If the primary sound be a compound musical note, the various

component tones are scattered in unlike proportions. The octave,

for example, is sixteen times stronger relatively to the funda

mental tone in the secondary than it was in the primary sound.

There is thus no difficulty in understanding how it may happen
that echoes returned from such reflecting bodies as groups of trees

may be raised an octave. The phenomenon has also a comple

mentary side. If a number of small bodies lie in the path of

waves of sound, the vibrations which issue from them in all direc

tions are at the expense of the energy of the main stream, and

where the sound is compound, the exaltation of the higher har

monics in the scattered waves involves a proportional deficiency

of them in the direct wave after passing the obstacles. This is

perhaps the explanation of certain echoes which are said to return

a sound graver than the original ;
for it is known that the pitch of

a pure tone is apt to be estimated too low. But the evidence

is conflicting, and the whole subject requires further cajeful expe
rimental investigation ;

it may be commended to the attention of

those who may have the necessary opportunities. While an altera

tion in the character of a sound is easily intelligible, and must

.indeed generally happen to a limited extent, a change in the

pitch of a simple tone would be a violation of the law of forced

vibrations, and hardly to be reconciled with theoretical ideas.

In obtaining (13) we have neglected the effect of the variable

nature of the medium on the disturbance. When the disturb

ance on this supposition is thoroughly known, we might approxi
mate again in the same manner. The additional terms so obtained

would be necessarily of the second order in Aw, Ao-, so that our

expressions are in all cases correct as far as the first powers of

those quantities.

Even when the region of disturbance is not small in com

parison with X, the same method is applicable, provided the

squares of Am, A<r be really negligible. The total effect of any
obstacle may then be calculated by integration from those of its

parts. In this way we may trace the transition from a small

region of disturbance whose surface does not come into considera

tion, to a thin plate of a few or of a great many square wave

lengths in area, which will ultimately reflect according to the

regular optical law. But if the obstacle be at all elongated in the

direction of the primary rays, this method of calculation soon
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ceases to be practically available, because, erven although the

change of mechanical properties be very small, the interaction

of the various parts of the obstacle cannot be left out of account.

This caution is more especially needed in dealing with the case of

light, where the wave-length is so exceedingly small in comparison
with -the dimensions of ordinary obstacles.

297. In some degree similar to the effect produced by a

change in the mechanical properties of a small region of the fluid,

is that which ensues when the square of the motion rises any
where to such importance that it can be no longer neglected.
V2<-f ^(f) then acquires a finite value dependent upon the square
of the motion. Such places therefore act like sources of sound;
the periods of the sources including the submultiples of the ori

ginal period. Thus any part of space, at which the intensity
accumulates to a sufficient extent, becomes itself a secondary
source, emitting the harmonic tones of the primary sound. If

there be two primary sounds of sufficient intensity, the secondary
vibrations have frequencies which are the sums and differences of

the frequencies of the primaries ( 68) *.

298. The pitch of a sound is liable to modification when the

source and the recipient are in relative motion. It is clear, for

instance, that an observer approaching a fixed source will meet
the waves with a frequency exceeding that proper to the sound, by
the number of wave-lengths passed over in a second of time. Thus
if v be the velocity of the observer and a that of sound, the

frequency is altered in the ratio a V : a, according as the motion
is towards or from the source. Since the alteration of pitch is

constant, a musical performance would still be heard in tune,

although in the second case, when a and v are nearly equal, the

fall in pitch would be so great as to destroy all musical character.

If we could suppose v to be greater than a, a sound produced after

the motion had begun would never reach the observer, but sounds

previously excited would be gradually overtaken and heard in the

reverse of the natural order. If v = 2&, the observer would hear

a musical piece in correct time and tune, but backwards.

Corresponding results ensue when the source is in motion and

the observer at rest
;
the alteration depending only on the relative

motion in the line of hearing. If the source and the observer move
with the same velocity there is no alteration of frequency, whether

i Helmholtz uber Combinationstone. Pogg. Arm. BcL xcix. B. 497. 1856.
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the medium be in motion, or not. With a relative motion of

40 miles [64 kilometres] per hour the alteration of pitch is very

conspicuous, amounting to about a semitone. The whistle of a loco

motive is heard too high as it approaches, and too low as it recedes

from an observer at a station, changing rather suddenly at the

moment of passage.

The principle of the alteration of pitch by relative motion was

first enunciated by Doppler
1
, and is often called Doppler's prin

ciple. Strangely enough its legitimacy was disputed by Petzval 2
,

whose objection was the result of a confusion between two

perfectly distinct cases, that in which there is a relative motion

of the source and recipient, and that in which the medium is in

motion while the source and the recipient are at rest. In the

latter case the circumstances are mechanically the same as if the

medium were at rest and the source and the recipient had a

common motion, and therefore by Doppler's principle no change
of pitch is to be expected.

Doppler's principle has been experimentally verified by Buijs

Ballot 3 and Scott Russell, who examined the alterations of pitch

of musical instruments carried on locomotives. A laboratory in

strument for proving the change of pitch due to motion has been

invented by Mach 4
. It consists of a tube six feet [183 cm.] in

length, capable of turning about an axis at its centre. At one end is

placed a small whistle or reed, which is blown by wind forced

along the axis of the tube. An observer situated in the plane of

rotation hears a note of fluctuating pitch, but if he places himself

in the prolongation of the axis of rotation, the sound becomes

steady. Perhaps the simplest experiment is that described by

Konig
5
. Two c" tuning-forks mounted on resonance cases are

prepared to give with each other four beats per second. If the

graver of the forks be made to approach the ear while the other

remains at rest, one beat is lost for each two feet [61 cm.] of

approach ; if, however, it be the more acute of the two forks which

approaches the ear, one beat is gained in the same distance.

1 Theorie des farbigen Lichtes der Doppelsterne. Prag, 1842. See Pisko, Die

neueren Apparate der Akuttik. Wien, 1865.

2 Wien. Ber. vni. 134. 1852. Fortschritte der Physik, vm. 167.

3
Pogg. Ann. utvi. p. 321.

4
Pogg, Ann. cm. p. 66, 1861, and cm. p. 333, 1862.

5
Konig's Catalogue det Appareils d'Acoustique. .Paris, 1865.
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A modification of this experiment due to Mayer
1

may also be noticed.

In this case one fork excites the vibrations of a second in unison

with itself, the excitation being made apparent by a small pendulum,

whose bob rests against the extremity of one of the prongs. If the

exciting fork be at rest, the effect is apparent up to a distance

of 60 feet [1830 cm.], but it ceases when the exciting fork is

moved rapidly to or fro in the direction of the line joining the two

forks.

There is some difficulty in treating mathematically the problem

of a moving source, arising from the fact that any practical source

acts also as an obstacle. Thus in the case of a bell carried

through the air, we should require to solve a problem difficult

enough without including the vibrations at all. But the solution

of such a problem, even if it could be obtained, would throw no

particular light on Doppler's law, and we may therefore advan

tageously simplify the question by idealizing the bell into a simple

source of sound.

In 147 we considered the problem of a moving source of

disturbance in the case of a stretched string. The theory for

aerial waves in one dimension is precisely similar, but for the

general case of three dimensions some extension is necessary, in

order to take account of the possibility of a motion across the

direction of the sound rays. From 273, 276 it appears that the

effect at any point of a source of sound is the same, whether the

source be at rest, or whether it move in any manner otf the surface

of a sphere described about as centre. If the source move in

such a manner as to change its distance (r) from 0, its effect is

altered in two ways. Not only is the pha.se of the disturbance on

arrival at affected by the variation of distance, but the amplitude

also undergoes a change. The latter complication however may
be put out of account, if we limit ourselves to the case in which

the source is sufficiently distant. On this understanding we may
assert that the effect at of a disturbance generated at time t and

at distance r is the same as that of a similar disturbance generated
at the time t + t and at the distance r a St. In the case of a

periodic disturbance a velocity of approach (v) is equivalent to an

increase of frequency in the ratio a :. a + v.

299. We will now investigate the forced vibrations of the

air contained within a rectangular chamber, due to internal sources

1 Phil. Mag. (4), XLHI. p. 278, 1872.
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of sound. By 267 it appears that the result at time t of an

initial condensation confined to the neighbourhood of the point

<r\>
is

where

-~
) cos

(p
J
cos

(?^7r)
cos

(r J
...(1),

from which the effect of an impressed force may be deduced,
as in 276. The disturbance ffffadxdydz communicated at

time being denoted by fjf<&(t')dt'dxdydzt or fyffidtf, the

resultant disturbance at time t is

< = -5- 222 cosfp )
cos jo 5?) cosf r ]

x
#y V / V / Vr/

^) f *1

y / J -oo
cos

The symmetry of this expression with respect to x, y t
z and

, 77, f is an example of the principle of reciprocity ( 107).

In the case of a harmonic force, for which <&2 (f) A cos 7?ia^'

we have to consider the value of

t

Gosmat' coska(t t
1

) dt
f

(4).

Strictly speaking, this integral has no definite value
; but, if

we wish for the expression of the forced vibrations only, we must

omit the integrated function at the lower limit, as may be seen

by supposing the introduction of very small dissipative forces.

We thus obtain

f*

J

ma sin mat

As might have been predicted, the expressions become infinite

in case of a coincidence between the period of the source and one

of the natural periods of the chamber. Any particular normal

vibration will not be excited, if the source be situated on one

of its loops.

The effect of a multiplicity of sources may readily be inferred

by summation or integration,
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300. When sound is excited within a cylindrical pipe, the

simplest kind of excitation that we can suppose is by the forced

vibration of a piston. In this case the waves are plane from

the beginning. But it is important also to inquire what happens

when the source, instead of being uniformly diffused over the

section, is concentrated in one point of it. If we assume (what,

however, is not unreservedly true) that at a sufficient distance

from the source the waves become plane, the law of reciprocity

is sufficient to guide us to the desired information.

Let A be a simple source in an unlimited tube, B, B' two

points of the same normal section in the region of plane waves.

Ex hypothesis the potentials at B and Bf

due to the source A
are the same, and accordingly by the law of reciprocity equal

sources at B and R would give the same potential at A. From

this it follows that the effect of any source is the same at a

distance, as if the source were uniformly diffused over the section

which passes through it. For example, if B and B' were equal

sources in opposite phases, the disturbance at A would be nil.

The energy emitted by a simple source situated within a

tube may now be calculated. If the section of the tube be a,

and the source such that in the open the potential due to it

would be
A cos k (at

-
r)

<P= -r- . (L),
4<7r r

the velocity-potential at a distance within the tube will be

the same as if the cause of the disturbance were the motion

of a piston at the origin, giving the same total displacement,

and the energy emitted will also be the same. Now from (1)

27rr2 - = ^A cos kat ultimately,

and therefore if -^ be the velocity-potential of the plane waves

in the tube (supposed parallel to z), we may take

*) = ....(2),
.,

corresponding to which
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Hence, as in 245, the energy ( TF) emitted on each side of

the source is given bv

dW
(

. <ty\ pa A* ., 7 ,TT -^("-pty-r} =H cos- A f ;

<ft V
r r dz /z = 4<r

so that in the long run

If the tube be stopped by an immovable piston placed clo^e to

the source, the \vhole energy is omitted in one direction
;
but

this is not all In consequence uf the doubled pressure, twice

as much energy as before is developed, arid thus in this case

The narrower the tube, the greater is the energy issuing from

a given source. It is interesting to compare the efficiency of

a source at the stopped end of a cylindrical tube with that of

an equal source situated at the vertex of a cone. From 280

we have in the latter case,

so that W: F' = o> : tea ............. . .......(7).

The energies emitted in the two cases are the same when CD &V,
that is, when the section of the

^ cylinder is equal to the area

cut off by the cone from a sphere of radius k~l
.

301. We have now to examine how far it is true that vibra

tions within a cylindrical tube become approximately plane at a

sufficient distance from their source. Taking the axis of z parallel
to the generating lines of the cylinder, let us investigate the

motion, whose potential varies as e*
kat

,
on the positive side of a

source, situated at 2 = 0. If < be the potential and V 2 stand for

d-/dy* the equation of the motion is

If
<f)

be independent of z, it represents vibrations wholly
transverse to the axis of the cylinder. If the potential be then

proportional to e^rtf

,
it must satisfy

< = ........................... (2),
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as well as the condition that over the boundary of the section

d<f>

dn
-0....... (3).

In order that these equations may be compatible, p is restricted

to certain definite values corresponding to the periods of the

natural vibrations. A zero value of p gives </>
= constant, which

solution, though it is of no significance in the two dimension pro

blem, we shall presently have to consider. For each admissible

value of p, there is a definite normal function u of x and y ('92),

such that a solution is

f^AuJ**........................... (4).

Two functions u, u', corresponding to different values of p, are

conjugate, viz. make
Q... .......... . ..... . ....... (5),

and any function of x and y may be expanded within the contour

in the series

(6),

in which u09 corresponding to p = 0, is constant.

In the actual problem <f> may still be expanded in the same

series, provided that A^ A l} &c. be regarded as functions of z.

By substitution in (1) we get, having regard to (2),

...=0 ...............(7),

in which, by virtue of the conjugate property of the normal func

tions, each coefficient of u must vanish separately. Thus

(8).

The solution of the first of these equations is

giving
(9).

The solution of the general equation in A assumes a different

form, according as A2
p* is positive or negative. If the forced
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vibration be graver in pitch than the gravest of the purely trans

verse natural vibrations, every finite value of pr is greater than &%

or i2
jp

2 is always negative. Putting

^-^=-^ ............. . ..........(10),

we have A = ae** -f fier^,

whence $= (ae
z+ $&-*) it &***...... . ...........(11).

Now under the circumstances supposed, it is evident that the

motion does not become infinite with z> so that all the coefficients

a vanish. For a somewhat different reason the same is true of o^

as there can be no wave in the negative direction. We may
therefore take

t
4-A *~~^ '** + ........(1 2),

an expression which reduces to its first term when z is sufficiently

great. We conclude that in all cases the waves ultimately become

plane, if the forced vifcation be graver than the gravest of the

natural transverse vibrations.

In the case of a circular cylinder, of radius r, the gravest trans

verse vibration has a wave-length equal to 27r?
%
-H 1*841 = 3'413r

( 339). If then the wave-length of the forced vibration exceed

3*413?% the waves ultimately become plane. It may happen

however that the waves ultimately become plane, although the

wave-length fall short of the above limit. For example, if the

source of vibration be symmetrical with respect to the axis of the

tube, e.g. a simple source situated on the axis itself, the gravest

transverse vibration with which we should have to deal would

be more than an octave higher than in the general case, and

the wave-length of the forced vibration might have less than half

the above value.

From (12), when z = 0,

whence d<r = r &&****' ..................(13),

inasmuch as
jTfwj ckr, JJw ft <Zer, &c., all vanish.

It appears accordingly that the plane waves at a distance are

the same as would be produced by a rigid piston at the origin,
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giving the same mean normal velocity as actually exists. Any
normal motion of which the negative and positive parts are equal,

produces ultimately no effect.

When there is no restriction on the character of the source, and
when some of the transverse natural vibrations are graver than
the actual one, some of the values of *

p
2 are positive, and then

terms enter of the form

4>
= fiu

or in real quantities

indicating that the peculiarities of the source are propagated to

an infinite distance.

The problem here considered may be regarded as a generaliza
tion of that of 268. For the case of a circular cylinder it may
be worked out completely with the aid of Bessel's functions, but
this must be left to the reader.

302. In 278 we have fully determined the motion of the
air due to the normal periodic motion of a bounding plane plate of
infinite extent. If d<f>/dn be the given normal velocity at the
element dS,

gives the velocity-potential at any point P distant r from dS. The
remainder of this chapter is devoted to the examination of the

particular case of this problem which arises when the normal

velocity has a given constant value over a circular area of radius

R, while ovQr the remainder of the plane it is zero. In particular
we shall investigate what forces due to the reaction of the air will

act on a rigid circular plate, vibrating with a simple harmonic
motion in an equal circular aperture cut out of a rigid plane plate

extending to infinity.

For the whole variation of pressure acting on the plate we
have

( 244)
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where a is the natural density, and
<j>

varies as eikat. Thus by (1)

e
dSdff (2).

TT dn

In the double sum

y
""*\ />

which we have now to evaluate, each pair of elements is to be

taken once only, and the product is to be summed after multipli
cation by the factor r~l e~tkr

t depending on their mutual distance.

The best method is that suggested by Prof. Maxwell for the

common potential
1
. The quantity (3) is regarded as the work

that would be consumed in the complete dissociation of the

matter composing the disc, that is to say, in the removal of every
element from the influence of every other, on the supposition that

the potential of two elements is proportional to r~l e~ijer
. The

amount of work required, which depends only on the initial

and final states, may be calculated by supposing the operation

performed in any way that may be most convenient. For this

purpose we suppose that the disc is divided into elementary rings,

and that each ring is carried away to infinity before any of the

interior rings are disturbed.

The first step is the calculation of the potential (V) at the

edge of a disc of radius c. TakLig polar co-ordinates (p, 0) with

any point of the circumference for pole, we have

f f
~tip f^fr* f^ 00- e 2 ft*V= pdpdS = e-^dpdff = ^ I {1

- e~2ifccc08
*} d&.

JJ p J -in-JO 1KJ

This quantity must be multiplied by %7rcdc, and afterwards

integrated with respect to c between the limits and R. But

it will be convenient first to effect a transformation. We have

9 ri*

7TJ o

= - f
*

cos (2c sin 9)d8-\
*

sin (2kc sin 0) d0
TTJ I? J

= Jo (/>-;#(*) .......................... ...... ............. (4),

where z is written for 2&c. Jo (z) is the Bessel's function of zero

1 Theory of Resonance. PhiL Trans. 1870.



164 REACTION OF AIR [302.

order (| 200), and K (z) is a function defined by the equation

, . 2

Deferring for the moment the further consideration of the

function K, we have

and thus

Now by (6) 200 and (8) 204

!
Z

zdzJ<(z) = zJi(z).....................(7);
J

and thus, ifK
t be defined by

..................... (8),
/o

we may write

From this the total pressure is derived by introduction of the-

factor - -=
, so that

TT an

The reaction of the air on the disc may thus be divided into-

two parts, of which the first is proporoional to the velocity of the

disc, and the second to the acceleration. If f denote the dis

placement of the disc, so that f =-^ , we bave = ika = ifca -^
an * * dn '

and therefore in the equation of motion of the disc, the reaction of

the air is represented by a frictional force a* . -irB? . $ (1
- J* ^^]

\ Ki J

retarding the motion, and by an accession to the inertia equal to
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When kR is small, we have from the ascending series for Jl

(5) 200,

J,(2kR) _&& _ fr-B* .
&& L*R*

kR
""

*-2 1.2.3 + 1.2*.3F~.4 1.2?.8t .4.5
+ '" ^ ^

so that the fiictional ijerm is approximately

^.^........................(12).

From the nature of the case the coefficient of f must be

positive, otherwise the reaction of the air would tend to augment,
instead of to diminish, the motion. That J (z) is in fact always less

than \z may be verified as follows. If 6 lie between and -rr, and
z be positive, sin (z sin 6) z sin 8 is negative, and therefore also

i r*-
I {sin (z sin 9) z sin 6} sin 6 dd

TTJo

is negative. But this integral is Ji (z) %z, which is accordingly

negative for all positive values of z.

When kR is great, Ji(2fcB) tends to vanish, and then the

frictional term becomes simply acr.7rlt?.%. This result might
have been expected ;

for when kR is very large, the wave motion

in the neighbourhood of the disc becomes approximately plane.

We have then by (6) and (8) 245, dp=*ap %, in which
/?

is the

density (cr) ;
so that the retarding force is 7rlt?$p

=
aa-.trS?^.

We have now to consider the term representing an alteration

of inertia, and among other things to prove that this alteration is

an increase, or that K-^ (z) is positive. By direct integration of the

ascending series (5) for K (which is always convergent),

^ . . 2
f

2* &
f \

Kl (Z)SS
^T [1^3 "10^5

+ 1*.*.*. 7
......

f
.........

When therefore kR is small, we may take as the expression for

the increase of inertia

Scrfi* -ft- oxi /i >i \
(14)._._

This part of the reaction of the air is therefore represented by

supposing the vibrating plate to carry with it a mass of air equal

to that contained in a cylinder whose base is the plate, and whose

height is equal to 8J2/37T ;
so that, when the plate is sufficiently

small, the mass to be added is independent of the period of

vibration.
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From the series (5) for K (z), it may be proved immediately

that
9

From the first form (15) it follows that

...........(17).

By means of this expression for Kl (z) we may readily prove that

the function is always positive. For

dK(z} = ^ 2 f**
sin^ gin ^ dff =

2

j

^s ^ sm ^ gin e de ^(18)
.

so that

sn
(

(19),

an integi al of which every element is positive. When z is very

large, cos (z sin ff)
fluctuates with great rapidity, and thus Kl (z)

tends to the form

(20).
7T

When z is great, the ascending series for K and Kl7 though always

ultimately convergent, become useless for practical calculation, and

it is necessary to resort to other processes. It will be observed

that the differential equation (16) satisfied by K is the same as

that belonging to the Bessel's function JQ ,
with the exception of

the term on the right-hand side, viz. 2/7r^. The function K is

therefore included in the form obtained by adding to the general

solation of Bessel's equation containing two arbitrary constants any

particular solution of (16). Such a particular solution is

as may be readily verified on substitution. The series on the

right of (21), notwithstanding its ultimate divergency, may be

used successfully for computation when z is great. It is in fact
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the analytical equivalent off* e~* (& -f /J*)"*^, and we might take

K (z)
= -

j -ft
~-

-f Complementary Function,a

determining the two arbitrary constants by an examination of the

forms assumed when z is very great. But it is perhaps simpler to

follow the method used by Lipschitz
*
for Bessel's functions.

By (4) we have

Consider the integral I -7-^
-

r , where w is a complex variable of&
j4/(l+v?y

the form u + iv. Representing, as usual, simultaneous pairs of

values of u and v by the co-ordinates of a point, we see that the

value of the integral will be zero, if the integration with respect

to w range round the rectangle, whose angular points are respec-

tively 0, h, A + i, i, where h is any real positive quantity. Thus

/*
" "

*Vl

from which, if we suppose that A = oo ,

f g-*f+ft(fa Pe-^d(iv) _
J*Vl+ w + t 8

"
1

"^ Vl-'y2

""
'

Replacing ^r by ft we may write (23) in the form

er+/3-*dl3p g-^rfy _ __
. r ^rfff f^** f er+/3-*dl3

JoV(l -V)
"

"Jo ^V(l+^3
)

+
V(Si) Jo V(l -tjS/

The first term on the right in (24) is entirely imaginary ;
it

therefore follows by (22) that \TrJ*(z) is the real part of the

second term. By expanding the binomial under the integral sign,

and afterwards integrating by the formula

we obtain as the expansion for JQ (z) in negative powers of z>

1
Crelle, Bd. LVI. 1859. Lommel, Studien iiber die Bessel'schen Functwnen y p. 59.
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By stopping the expansion after any desired number of terms,

and forming the expression for the remainder, it may be proved
that the error committed by neglecting the remainder cannot

exceed the last term retained ( 200).

In like manner the imaginary part of the right-hand member
of (5&) is the equivalent of \i-jrK (z), so that

9 - -i -f
)

...... >

)

The value of K^(z) may now be determined by means of (17).

We find

TT

.5.7.9.11.1>3.5.7 )

1.2. 3. 4. 5. (80)*
......

j

......

The final expression for JTX (2?) may be put into the form

2

7T

4) (7* -4) _

It appears then that K^ does not vanish when z is great, but

approximates to ZZ/TT. But although the accession to the inertia,

1 As was to be expected, the series within brackets are the same as those that

occur in the expression of the function J^ (z).
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which is proportional to Kl , becomes infinite with J?, it vanishes

ultimately when compared with the area of the disc, and with the
other term which represents the dissipation. And this agrees
with what we should anticipate from the theory of plane waves.

If, independently of the reaction of the air, the mass of the

plate be M, and the force of restitution be ^f, the equation of

motion of the plate when acted on by an impressed force F, pro
portional to ^eat

, will be

or by (13), if, as will be usual in practical applications, kR be

small,

,. ...........(30) .

Two particular cases of this problem deserve notice. First let

M and JM vanish, so that the plate, itself devoid of mass, is subject
to no other forces than F and those arising from aerial pressures.
Since f = ika%, the factional term is relatively negligible, and we
get when kR is very small,

-t\F .....................(31).

Next let M and p be such that the natural period of the plate,
when subject to the reaction of the air, is the same as that imposed
upon it. Under these circumstances

and therefore

lafto

a*nr.j.$ =F ........... .. ..... (32).

Comparing with (31), we see that the amplitude of vibration is

greater in the case when the inertia of the air is balanced, in the
ratio of 16 : 37r&Z2A shewing a large increase when kR is small. In
the first case the phase of the motion is such that comparatively
very little work is done by the force F; while in the second, the
inertia of the air is compensated by the spring, and then F, being
of the same phase as the velocity, does the maximum amount of

work.



CHAPTER XVI.

THEORY OF RESONATORS.

303. IN the pipe closed at one end and open at the other we had
an example of a mass of air endowed with the property of vibrating
in certain definite periods peculiar to itself in more or less com

plete independence of the external atmosphere. If the air beyond
the open end were entirely without mass, the motion within the

pipe would have no tendency to escape, and the contained column
of air would behave like any other complex system not subject to

dissipation. In actual experiment the inertia of the external air

cannot, of course, be got rid of, but when the diameter of the pipe
is small, the effect produced in the course of a few periods may be

insignificant, and then vibrations once excited in the pipe have a
certain degree of persistence. The narrower the channel of com
munication between the interior of a vessel and the external

medium, the greater does the independence become. Such
cavities constitute resonators; in the presence of an external

source of sound, the contained air vibrates in unison, and with an

amplitude dependent upon the relative magnitudes of the natural

and forced periods, rising to great intensity in the case of approxi
mate isochronism. When the original cause of sound ceases, the

resonator yields back the vibrations stored up as it were within It,

thus becoming itself for a short time a secondary source. The

theory of resonators constitutes an important branch of our

subject.

As an introduction to it we may take the simple case of a

stopped cylinder, in which a piston moves without friction. On
the further side of the piston the air is supposed to be devoid of

inertia, so that the pressure is absolutely constant. If now the

piston be set into vibration of very long period, it is clear that

the contained air will be at any time very nearly in the equi
librium condition (of uniform density) corresponding to the
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momentary position of the piston. If the mass of the piston be

very considerable in comparison with that of the included air, the

natural vibrations resulting from a displacement will occur nearly
as if the air had no inertia

; and in deriving the period from the

kinetic and potential energies, the former may be calculated with

out allowance for the inertia of the air, and the latter as if the

rarefaction and condensation were uniform. Under the circum

stances contemplated the air acts merely as a spring in virtue of

its resistance to compression or dilatation
;
the form of the contain

ing vessel is therefore immaterial, and the period of vibration

remains the same, provided the capacity be not varied.

When a gas is compressed or rarefied, the mechanical value of

the resulting displacement is found by multiplying each infinitesi

mal increment of volume by the corresponding pressure and

integrating over the range required. In the present case it is of

course only the difference of pressure on the two sides of the

piston which is really operative, and this for a small change is

proportional to the alteration of volume. The whole mechanical

value of the small change is the same as if the expansion were

opposed throughout by the mean, that is half the final, pressure ;

thus corresponding to a change of volume from S to

since p = a2
/?,

If A denote the area of the piston, M its mass, and # its linear

displacement, &S = Ax, and the equation of motion is

(2),

indicating vibrations, whose periodic time is

Let us now imagine a vessel containing air, whose interior

communicates with the external atmosphere by a narrow aperture
or neck. It is not difficult to see that this system is capable of

vibrations similar to those just considered, the air in the neigh
bourhood of the aperture supplying the place of the piston. By
sufficiently increasing S, the period of the vibration may be made
as long as we please, and we obtain finally a state of things in

1
Compare (12) 245.
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which the kinetic energy of the motion may be neglected except

In the neighbourhood ot the aperture, and the potential energy

may be calculated as if the density in the interior of the vessel

were uniform. In flowing through the aperture under the operation

of a difference of pressure on the two sides, or in virtue of :te own

inertia after such pressure has ceased, the air moves approximately

as an incompressible fluid would do under like circumstances.

provided that the space through which the kinetic energy is

sensible be very small in comparison with the length of the wave,

The suppositions on which we are about to proceed are not of

course strictly correct as applied to actual resonators such as are

used in experiment, bus they are near enough to the mark to atfcrd

au instructive view of the subject and in many cases a foundation

for a sufficiently accurate calculation of the pitch. They become

rigorous only in the limit when the wave-length is indefinitely

great in comparison with the dimensions of the vessel.

[On the above principles we may at once calculate the pitch of

a resonator of volume S, whose cavity communicates with the

external air by a long cylindrical neck of length L and area A,

The mass of the aerial piston is pAL\ so that (3) gives as the

period of vibration

LS\ ...

or, if X be the length of plane waves of the same pitch,

If the cross-section of the neck be a circle of radius jR, A
and we obtain the formula (8) of | 307.]

304, The kinetic energy of the motion of an incompressible

fluid through a given channel may be expressed in terms of the

density p, and the rate of transfer, or current, Xy for under the cir

cumstances contemplated the character of the motion is always

the same. Since T necessarily varies as p and as X2
,
we may put

where the constant c, which depends only on the nature of the

channel, is a linear quantity, as may be inferred from the fact that
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the dimensions of A" ire 3 in space aru - i in tune. In fact, if

oe the Telocity-potential,

^rr
df

d&\
~: ' ds <

by Green's theorem^ where the integration is to be extended over

a surface including the whole region through which the motion is

sensible. At a sufficient distance on either side of &he aperture, $
becomes constant, and if the constant values be denoted by ^ and

^35 and the integration be now limited to that half of 5 towards

which the fluid flows, we have

Now, since within 5 $> is determined linearly by its surface
r r riAi

values, I I -=r- dS
y or X, is proportional to

(tfa < 2).
If we put

X = c C^i
- ^2) we get as before 21

Fig. 58.

The nature of the constant c will be better understood by con

sidering the electrical problem, whose

conditions are mathematically identical

with those of that under discussion.

Let us suppose that the fluid is re

placed by uniformly conducting ma
terial, and that the boundary of the

channel or aperture is replaced by in

sulators. We know that if by battery

power or otherwise, a difference of

electric potential be maintained on the

two sides, a steady current through the

aperture of proportional magnitude
will be generated. The ratio of the

total current to the electromotive force is called the conductivity
of the channel, and thus- we see that our constant c represents

simply this conductivity, on the supposition that the specific

conducting power of the hypothetical substance is unity. The
same thing may be otherwise expressed by saying that c is the

side of the cube, whose resistance between opposite faces is the

same as that of the channel. In the sequel we shall often avail

ourselves of the electrical analogy.
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When c is known, the proper tone of the resonator can be

easily deduced. Since

the equation of motion is

1+TZ=0 (3>-

indicating simple oscillations performed in a time

W-

If N be the frequency, or number of complete vibrations

executed in the unit time,

The wave-length X, which is the quantity most closely con
nected with the dimensions of the cavity, is given by

and varies directly as the linear dimension. The wave-length, it

will be observed, is a function of the size and shape of the

resonator only, while the frequency depends also upon the nature
of the gas ;

and it is important to remark that it is on the nature
of the gas in and near the channel that the pitch depends and not
on that occupying the interior of the vessel, for the inertia of the
air in the latter situation does not come into play, while the com
pressibility of all gases is very approximately the same. Thus in

the case of a pipe, the substitution of hydrogen for air in the

neighbourhood of a node would make but little difference, but its

effect in the neighbourhood of a loop would be considerable.

Hitherto we have spoken of the channel of communication as

single, but if there be more than one channel, the problem is not

essentially altered The same formula for the frequency is still

applicable, if as before we understand by c the whole conduc

tivity between the interior and exterior of the vessel. When the
channels are situated sufficiently far apart to act independently
one of another, the resultant conductivity is the simple sum of
those belonging to the separate channels

; otherwise the resultant
is less than that calculated by mere addition.
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If there be two precisely similar channels, which do not

interfere, and whose conductivity taken separately is c, we have

shewing that the note is higher than if there were only one

channel in ,the ratio V2 : 1, or by rather less than a fifth a law

observed by Sondhauss and proved theoretically by Helmholtz in

the case, where the channels of communication consist of simple

holes in the infinitely thin sides of the reservoir.

305. The investigation of the conductivity for various kinds

of channels is an important part of the theory of resonators
;
but

in all except a very few cases the accurate solution of the problem
is beyond the power of existing mathematics. Some general

principles throwing light on the question may however be laid

down, and in many cases of interest an approximate solution,

sufficient for practical purposes, may be obtained.

We know ( 79, 242) that the energy of a fluid flowing

through a channel cannot be greater than that of any fictitious

motion giving the same total current. Hence, if the channel be

narrowed in any way, or any obstruction be introduced, the con

ductivity is thereby diminished, because the alteration is of the

nature of an additional constraint. Before the change the fluid

was free to adopt the distribution of flow finally assumed. In

cases where a rigorous solution cannot be obtained we may use the

minimum property to estimate an inferior limit to the conductivity;

the energy calculated from a hypothetical law of flow can never be

less than the truth, and must exceed it unless the hypothetical

and the actual motion coincide.

Another general principle, which is of frequent use, may be

more conveniently stated in electrical language. The quantity
with which we are concerned is the conductivity of a certain con

ductor composed of matter of unit specific conductivity. The

principle is that if the conductivity of any part of the conductor

be increased that of the whole is increased, and if the conductivity
of any part be diminished that of the whole is diminished,

exception being made of certain very particular cases, where no

alteration ensues. In its passage through a conductor electricity

distributes itself, so that the energy dissipated is for a given total
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current the least possible ( 82). If now the specific resistance of

any part be diminished, the total dissipation would be less than

before
;
even if the distribution of currents remained unchanged. A

fortiori will this be the case, when the currents redistribute them

selves so as to make the dissipation a minimum. If an infinitely

thin lamina of matter stretching across the channel be made

perfectly conducting, the resistance of the whole will be diminished,

unless the lamina coincide with one of the undisturbed equipoten-

tial surfaces. In the excepted case no effect will be produced.

306. Among different kinds of channels an important place

must be assigned to those consisting of simple apertures in un

limited plane walls of infinitesimal thickness. In practical appli

cations it is sufficient that a wall be very thin in proportion to the

dimensions of the aperture, and approximately plane within a

distance from the aperture large in proportion to the same

quantity.

On account of the symmetry on the two sides of the wall, the

motion of the fltiid in the plane of the aperture must be normal,

and therefore the velocity-potential must be constant; over the

remainder of the plane the motion must be exclusively tangential,

so that to determine < on one side of the plane we have the

conditions (i) < = constant over the aperture, (ii) d<f>/dn
= over

the rest of the plane of the wall, (iii) <f>
= constant at infinity.

Since we are concerned only with the differences of
<f>
we may

suppose that at infinity $ vanishes. It will be seen that conditions

(ii) and (iii) are satisfied by supposing < to be the potential of

attracting matter distributed over the aperture ;
the remainder of

the problem consists in determining the distribution of matter so

that its potential may be constant over the same area. The

problem is mathematically the same as that of determining the

distribution of electricity on a charged conducting plate situated

in an open space, whose form is that of the aperture under con

sideration, and the conductivity of the aperture may be expressed

in terms of the capacity of the plate of the statical problem. If

<f>
denote the constant potential in the aperture, the electrical

resistance (for one side only) will be

the integration extending over the area of the opening.
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Now 1 1
-~ d<r = 27r x (whole quantity of matter distributed),

and thus, if M be the capacity, or charge corresponding to unit-

potential, the total resistance is (trM)*
1
. Accordingly for the con

ductivity, which is the reciprocal of the resistance,

(1).

So far as I am aware, the ellipse is the only form of aperture
for which c or M can be determined theoretically *, in which case

the result is included in the known solution of the problem of

determining the distribution of charge on an ellipsoidal conductor.

From the fact that a shell bounded by two concentric, similar aud

similarly situated ellipsoids exerts no force on an internal particle,

it is easy to see that the superficial density at any point of an ellip

soid necessary to give a constant potential is proportional to the

perpendicular (p) let fall from the centre upon the tangent plane

at the point in question. Thus if p be the density, p = /cp; the

whole quantity of matter Q is given by

sothat

In the usual notation

or, since 1 -&& - #
2

_

If we now suppose that c is infinitely small, we obtain the par

ticular case of an elliptic plate, and if we no longer distinguish

between the two surfaces, we get

1 The case of a resonator with an elliptic aperture was considered by Helmholtz

(Crelle, Bd. 57, 1860), whose result is equivalent to (8).

3 2c heing for the moment the third principal axig of the ellipsoid.
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We have next to find the value of the constant potential (P).

By considering the value of P at the centre of the plate, we see

that

Integrating first with respect to r, we have

rpdr = Q -=- 4a V(l - & coss 0),
Jo

e being the eccentricity; and thus

- QF(c)Wfa o l - #co&) a

where F is the symbol of the complete elliptic function of the first

order. Putting P= 1, we find

as the final expression for the capacity of an ellipse, whose semi-

major axis is a and eccentricity is e. In the particular case of the

circle, e = 0, F(e) %TT, and thus for a circle of radius R,

c = 2R..............................(6).

If the capacity of the resonator be S, we find from (6) 304

The area of the ellipse (<r) is given by

<r = <7r

and hence in terms of <r

When e is small, we obtain by expanding in powers of e pre
vious to integration,

whence

2f()(!-*)* ^ tf

IT 64 64-
+ '"
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Neglecting & and higher powers, we have therefore

From this result we see that, if its eccentricity be small, the

conductivity of an elliptic aperture is very nearly the same as
that of a circular aperture of equal area,. Among various forms
of aperture of given area there must be one which has a minimum
conductivity, and, though a formal proof might be difficult, it is

easy to recognise that this can be no other than the circle. An
inferior limit to the value of c is thus always afforded by the con

ductivity of the circle of equal area, that ib 2VO/7T), and when
the true form is nearly circular, this limit may bfc taken as a close

approximation to the real value.

The value of X is then given by

.(11).

In order to shew how slightly a moderate eccentricity affects

the value of ct I have calculated the following short table with the
aid of Legendre's values of F(e). Putting e = sin

-fr,
we have

cos
ifr

as the ratio of axes, and for the conductivity

The value of the last factor given in the fourth column is the

ratio of the conductivity of the ellipse to that of a circle of equal
area. It appears that even when the ellipse is so eccentric that
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the ratio of the axes Is 2:1, the conductivity is increased by

only about 3 per cent,, which would correspond to an alteration

of little more than a comma ( 18; in the pitch of a resonator.

There seems no reason to suppose that this approximate inde

pendence of shape is a property peculiar to the ellipse, and ^e

may conclude with some confidence that in the case of any mode

rately elongated oval aperture, the conductivity may be calculated

irom the area alone with a considerable degree of accuracy.

If the area bt given, there is no superior limit to c. For sup

pose the area & to be distributed over it equal circles sufficiently

far apart to act independently, The area of each circle is <T/H,

and its- conductivity is 2 \TiTr)~-a-. The whole conductivity is n

times as great, and therefore increases indefinitely with n. As a

general nile, the more the opening is elongated or broken up, the

greater will be the conductivity for a given area.

To find a superior limit to the conductivity of a given aperture

we may avail oursehes of the principle that any addition to the

aperture must be attended by an increase in the value of c. Thus

in the case of a square, we may be sure that c is less than for the

circumscribed circle, and we have already seen that it is greater

than for the circle of equal area. If b be the side of the square

^<c<^26.
V7T

The tones of a resonator with a square aperture calculated from

these two limits would differ by about a whole tone
;
the graver of

them would doubtless be much the nearer to the truth. This

example shews that even when analysis fails to give a solution in

the mathematical sense, we need not be altogether in the dark as

to the magnitudes of the quantities with which we are dealing.

In the case of similar orifices, or systems of orifices, c varies as

the linear dimension.

307. Most resonators used in practice have necks of greater or

less length, and even when there is nothing that would be called a

neck, the thickness of the side of the reservoir cannot always be

neglected. We shall therefore examine the conductivity of a

channel formed by a cylindrical boring through an obstructing

plate bounded by parallel pianos, and, though we fail to solve the

problem rigorously, we shall obtain information sufficient for most
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practical purposes. The thickness of the plate we shall call Z, and

the radius of the cylindrical channel J?.

Whatever the resistance of the channel may be,
^"

It will be lessened bv the Introduction of infinitely
" "

thin discs of perfect conductivity at A and B tig. 59,

The effect of the discs is to produce constant potential

over their areas, and the problem thus modified is

susceptible of rigorous solution. Outside A and B _
the motion is the same as that previously invest!- ^t': \JB

gated, when the obstructing plate is infinitely thin
;

between A and B the flow is uniform. The resist-

ance is therefore on the whole

uwhence

If a denote the correction, which must be added to L on

account of an open end,

a-jTTjR... .......................... (2),

This correction is in general under the mark, but, when L is

very small in comparison with R3 the assumed motion coincides

more and more nearly with the actual motion, and thus the value

of ce in (2) tends to become correct.

A superior limit to the resistance may be calculated from a

hypothetical motion of the fluid. For this purpose we will suppose

infinitely thin pistons introduced at A and B, the effect of which

will be to make the normal velocity constant at those places.

Within the tube the flow will be uniform as before, but for the

external space we have a new problem to consider : To determine

the motion of a fluid bounded by an infinite plane, the normal

velocity over a circular area of the plane having a given constant

value, and over the remainder of the plane being zero.

The potential may still be regarded as due to matter distributed

over the disc, but it is no longer constant over the area; the density

of the matter, however, being proportional to d<f>/dn is constant.

The kinetic energy of the motion

-*//*"-//**
the integration going over the area of the circle.
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The total current through the plane

Hence
2 kinetic energy = Jf<f>d<r

(current)
2

rfR*
d̂n

If the density of the matter be taken as unity, d<f>/dn
=

2-rr, and
the required ratio is expressed by P/7r*H\ where P denotes the

potential on itself of a circular layer of matter of unit density and
of radius K

The simplest method of calculating P depends upon the con

sideration that it represents the work required to break up the

disc into infinitesimal elements and to remove them from each

other's influence
1
. If we take polar co-ordinates (p, ff), the pole

being at the edge of the disc whose radius is a, we have fooi the

potential at the pole, V= ffd0dp, the limits of p being Oand
2a cos 6, and those of 6 being

-
J^TT and + \ TT.

Thus V=4a
(3).

Now let us cut off a strip of breadth da from the edge of the disc.

The work required to remove this to an infinite distance is

%7radaAa. If we gradually pare the disc down to nothing and

carry all the parings to infinity
2

, we find for the total work by
integrating with respect to a from to R,

87T.R3

The limit to the resistance (for one side) is thus S/S-jr
2^; we

conclude that the resistance of the whole channel is less than

L 16

Collecting our results, we see that

1 A part of 302 is repeated here for the sake of those who may wish to avoid
the difficulties of the more complete investigation.

3 This method of calculating P was suggested to the author by Professor
Clerk Maxwell.
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or in decimals,
'

>'785J2|
<-849-Kj

It must be observed that a here denotes the correction for one

end. The whole resistance corresponds to a length L + 2a of

tube having the section

When L is very great in relation to R, we may take simply

o-?* .............................. (7)-

In this case we have from (6) 304

JTL

The correction for an open end (a) is a function of L, coinciding
with the lower limit, viz. %7rR, when L vanishes. As L increases,

a increases with it
;
but does not, even when L is infinite, attain

the superior limit 8J?/37r. For consider the motion going on in

any middle piece of the tube. The kinetic energy is greater than

corresponds merely to the length of the piece. If therefore the

piece be removed, and the free ends brought together, the motion

otherwise continuing as before, the kinetic energy will be dimin

ished more than corresponds to the length of the piece subtracted.

A fortiori will this be true of the real motion which would exist in

the shortened tube. That, when L = oo
, a. does not become SR/^Tr

is evident, because the normal velocity at the end, far from being

constant, as was assumed in the calculation of this result, must

increase from the centre outwards and become infinite at the edge.

A further approximation to the value of a may be obtained by

assuming a variable velocity at the plane of the mouth. The

calculation will be found in Appendix A. It appears that in the

case of an infinitely long tube a cannot be so great as -82422 R.

The real value of a is probably not far from *82 R.

308. Besides the. cylinder there are very few forms of

channel whose conductivity can be determined mathematically.

When however the form is approximately cylindrical we may
obtain limits, which are useful as allowing us to estimate the
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effect of such departures from mathematical accuracy as must
occur in practice.

An inferior limit to the resistance of any elongated and approxi

mately straight conductor may be obtained immediately by the

imaginary introduction of an infinite number of plane perfectly

conducting layers perpendicular to the axis. If v denote the area

of the section at any point x, the resistance between two layers

distant dx will be cr~ldxt and therefore the whole actual resistance

is certainly greater than

(1),

uniess indeed the conductor be truly cylindrical.

In order to find a superior limit we may calculate the kinetic

energy of the current on the hypothesis that the velocity parallel
to the axis is uniform over each section. The hypothetical motion

is that which would follow from the introduction of an infinite

number of rigid pistons moving freely, and the calculated result is

necessarily in excess of the truth, unless the section be absolutely
constant We shall suppose for the sake of simplicity that the

channel is symmetrical about an axis, in which case of course the

motion of the fluid is symmetrical also.

If U denote the total current, we have esc hypothesi for the

axial velocity at any point x

(2),

from which the radial velocity v is determined by the equation of

continuity (6 238),

d (ru)
^
d (rv) = Q

dx dr

Thus rv = const. - \ ZTr8 ^ ,

or, since there is no source of fluid on the axis,



308.] SUPERIOR LIMIT. 185

The kinetic energy may now be calculated by simple integra
tion :

f
z

l<r-
l

dx,

JJ

if y be the radius of the channel at the point a?, so that a- = Try
2
.

This is the quantity which gives a superior limit to the resist

ance. The first term, which corresponds to the component velocity

w, is the same as that previously obtained for the lower limit, as

might have been foreseen. The difference between the two, which

gives the utmost error involved in taking either of them as the

true value, is

1 f 1 fdy
o~ ~

(T-
ZTTJ y

2 \dx

In a nearly cylindrical channel dy/dx is a small quantity and

so the result found in this manner is closely approximate. It is

not necessary that the section should be nearly constant, but only
that it should vary slowly. The success of the approximation in

this and similar cases depends upon the fact that the quantity to

be estimated is at a minimum. Any reasonable approximation to

the real motion will give a result very near the truth according to

the principles of the differential calculus.

By means of the properties of the potential and stream

functions ( 238) the present problem admits of actual approxi
mate solution. If < and -^ denote the values of these functions

at any point #, r
; u, v denote the axial and transverse velocities,

?4 = ^=!!:^ ==^ = _!*~~

dx r dr
'

dr~~ r dx ^ *'

whence by elimination

r dr
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If F denote the value of
<f>

as a function of x when r = 0, the

general values of
<f>

and
-v/r may be expressed in terms of F by

means of (7) and (8) in the series

(9),

~1T
~

2T~4> 2* . 42
. 6 22

where accents denote differentiation with respeet to x. At the

boundary of the channel where r = y, \fr
is constant, say fa. Then

v2F' tfF"
f

*
-i-__

22 .4 22 .42 .6

is the equation connecting y and jP. In the present problem y is

given, and we have to express F by means of it. By successive

approximation we obtain from (10)

The total stream is given by the integral

and therefore the resistance between any two equipotential surfaces

is represented by

The expression for the resistance admits of considerable simpli
fication by integration by parts in the case when the channel is

truly cylindrical in the neighbourhood of the limits of integration.
In this way we find for the final result,

y't y" denoting the differential coefficients of y with respect to x.

It thus appears that the superior limit of the preceding
investigation is in fact the correct result to the second order of

1
Proceedings of the London Mathematical Society, Vol. vii. p. 70, 1876.
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approximation. If we regard y as a function of cox, where w is a
small quantity, (12) is correct as far as terms containing o>*.

309. Our knowledge of the laws on which the pitch of

resonators depends, is due to the labours of several experimenters
and mathematicians.

The observation that for a given mouthpiece the pitch of a
resonator depends mainly upon the volume S is due to Liscovius,
who found that the pitch of a flask partly filled with water was
not altered when the flask was inclined. This result was con

firmed by Sondhauss 1
. The latter observer found further, that in

the case of resonators without necks, the influence of the aperture

depended mainly upon its area, although when the shape was very

elongated, a certain rise of pitch ensued. He gave the formula

j\T=52400~ ........................... (1),

the unit of length being the millimetre.

The theory of this kind of resonator we owe to Helraholtz 2
,

whose formula is

applicable to circular apertures.

For flasks with long necks, Sondhauss 3 found

(3),

corresponding to the theoretical

<>

In practice it does not often happen either that the neck
is so long that the correction for the open ends can be neglected,
as (4) supposes, or, on the other hand, so short that it can

itself be neglected, as supposed in (2). Wertheim 4 was the first

1 Ueber den Brummkreisel und das Schwingungsgesetz der cubischen Pfeifen.

Pogg. Ann. LXXXI. pp. 235, 347. 1850.
9

Crelle, Bd. LVII. 172. 1860.
3 Ueber die Schallschwingungen der Imft in erhitzten Glasrohren und in gedeck-

ten Pfeifen von ungleicher Weite. Pogg. Ann. LXXIX. p. 1. 1850.
4 M&noire sur lea vibrations sonores de 1'air. Ann. d. Chim. (3) xxxi. p. 385.

1851.
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to shew that the effect of an open end could be represented by
an addition (a) to the length, independent, or nearly so, of L
and X.

The approximate theoretical determination of GL is due to

Helmholtz, who gave \-nR as the correction for an open end

fitted with an infinite flange. His method consisted in inventing

forms of tube for which the problem was soluble, and selecting

that one which agreed most nearly with a cylinder. The cor

rection JTT/J is rigorously applicable to a tube whose radius at the

open end and at a great distance from it is R, but which in the

neighbourhood of the open end bulges slightly.

From the fact that the true cylinder may be derived by in

troducing an obstruction, we may infer that the result thus obtained

is too small

It is curious that the process followed in this work, which was

first given in the memoir on resonance, leads to exactly the same

result, though it would be difficult to conceive two methods more

unlike each other.

The correction to the length will depend to some extent upon
whether the flow of air from the open end is obstructed, or not.

When the neck projects into open space, there will be less ob

struction than when a backward flow is prevented by a flange as

supposed in our approximate calculations. However, the un

certainty introduced in this way is not very important, and we

may generally take a=%7rR as a sufficient approximation. In

practice, when the necks are short, the hypothesis of *the flange

agrees pretty well with fact, and when the necks are long, the

correction is itself of subordinate importance.

The general formula will then run

where <r is the area of the section of the neck, or in numbers

AT _ __
6-2832 flVC + -8863V*)

.................. '

A formula not differing much from this was given, as the em
bodiment of the results of his measurements, by Sondhauss 1 who

1
Pogg. Ann. CXL. pp. 53, 219. 1870.
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at the same time expressed a conviction that It ^as no mere

empirical formula of interpolation, but the expression of a natural

law. The theory of resonators with necks was given about the

same time 1 in a memoir f on Resonance
;

published in the Philo

sophical Transaciiohs for 1871. from which most of the last few

pages is derived.

310 The simple method of calculating the pitch of resonators

with which we have been occupied is applicable to the gravest
mode of vibration only, the character of which is quite distinct

The overtones of resonators with contracted necks are relatively

very high, and the corresponding modes of vibration are by no
means independent of the inertia of the air in the interior of the

resenoir. The character of these modes will be more evident,
when we come to consider the vibrations of aii within a com

pletely closed vessel, such as a sphere, but it will rarely happen
that the pitch can be calculated theoretically.

There are, however, cases of multiple resonance to which our

theory is applicable. These occur when fcwo or more vessels com
municate by channels with each other and with the external air:

and are readily treated by Lagrange's method, provided of course

that the wave-length of the vibration is sufficiently large in com

parison with the dimensions of the vessels.

Suppose that there are two reservoirs, 8, S', communicating
with each other and with the external air by narrow passages or

Fig. 60.

necks. If we were to consider SS' as a single reservoir and apply
our previous formula, we should be led to an erroneous result

;
for

that formula is founded on the assumption that within the reservoir

the inertia of the air may be left out of account, whereas it is

evident that the energy of the motion through the connecting

passage may be as great as through the two others. However, an

1

Proceedings of the Royal Society, Nov. 24, 1870.
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investigation on the same general plan as before meets the case

perfectly, Denoting by X^ X^, X$ the total transfers of fluid

through the three passages, we have as in (2) 304 for the kinetic

energy the expression

and for the potential energy,

An application of Lagrange's method gives as the differential

equations of motion,

By addition ^ind integration,

Kence on elimination of X,,

Assuming X^AtP, X^Be*, we obtain on substitution
and determination of A : B,

as the equation to determine the natural tones. If N be the

frequency of vibration, jaT = -pa

/4w* the two values of p* being
of course real and negative. The formula simplifies considerably
if cs = ct ,

S' = S', but it will be more instructive to work out this
case from the

beginning. Let Cj
= c3 = <mc2

= me.
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The differential equations take the form

(7),

while from (4) X = -
v ' " m

Hence

(8).

The whole motion may be divided into two parts. For the first of

these

o ........................... (9),

which requires that X2
= 0. The motion is therefore the same as

might take place were the communication between S and S' cut

off, and has its frequency given by

The density of the air is the same in both reservoirs.

For the other component part, Xi~~X3
= 0, so that

7- 2Z>- Ar
,2 _aa

"
--

'
^ "

The vibrations are thus opposed in phase. The ratio of frequencies

is given by N'3 :N*~m + 2:m, shewing that the second mode

has the shorter period. In this mode of vibration the connecting

passage acts in some measure as a second opening to both vessels,

and thus raises the pitch. If the passage be contracted, the interval

of pitch between the two notes is small.

A particular case of the general formula worthy of notice is

obtained by putting c3
= 0, which amounts to suppressing one of

the communications with the external air. We thus obtain

p4
4- a?
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or, if 8 S', Ci
= we* = me,

whence JV! = {m + 2 V(ms + 4)} (14).

If we further suppose m = 1, or c2 = Cj ,

If N' be the frequency for a simple resonator (S, c),

and thus ^2
: ^ /2 = - - 2'61S,

= 2-618.

It appears that the interval from N-^ to N* is the same as from

N' to Nz> namely, V(2'618) = 1-618, or rather more than a fifth.

It will be found that whatever the value of ra may be, the interval

between the two tones cannot be less than 2'414<
;
which is about

an octave and a minor third. The corresponding value of m is 2.

A similar method is applicable to any combination, however

complicated, of reservoirs and connecting passages under the

single restriction as to the comparative magnitudes of the reser

voirs and wave-lengths; but the example just given is sufficient

to illustrate the theory of multiple resonance. A few measure

ments of the pitch of double resonators are detailed in my memoir
on resonance, already referred to.

311. The equations which we have employed hitherto take

no account of the escape of energy from a resonator. If there

were really no transfer of energy between a resonator and the

external atmosphere, the motion would be isolated and of little

practical interest : nevertheless the characteristic of a resonator

consists in its vibrations being in great measure independent.
Vibrations, once excited, will continue for a considerable number of

periods without much loss of energy, and their frequency will be

almost entirely independent of the rate of dissipation. The rate

of dissipation is, however, an important feature in the character
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of a resonator, on which its behaviour under certain circumstances

materially depends. It will be understood that the dissipation
here spoken of means only the escape of energy from the vessel

and its neighbourhood, and its diffusion in the surrounding
medium, and not the transformation of ordinary energy into heat,

Of such transformation our equations take no account, unless

special terms be introduced for the purpose of representing the

effects of viscosity, and of the conduction and radiation of heat.

[The influence of the conduction of heat has been considered

by Kotocek 1

.]

Fig. 61.

-A,

In a previous chapter ( 278) we saw how to express the motion

on the right of the infinite flange (Fig. 61), in terms of the normal

velocity of the fluid over the disc A. We found, 278 (3),

where $ is proportional to eint.

If r be the distance between any two points of the disc, kr is a

small quantity, -and 6-^ = 1 ikr approximately.

Thus
dn r dn (1).^ '

The first term depends upon the distribution of the current. If

we suppose that d<j>/dn is constant, we obtain ultimately a term

representing an increase of inertia, or a correction to the length,

equal to SR/STT. This we have already considered, under the

supposition of a piston at A, The second term, on which the

dissipation depends, is independent of the distribution of current,

Wied. Ann. t. 12, p. 353, 1881.
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being a function of the total current (X) only. Confining our

attention to this term, we have

ikX

Assuming now that
<j>

oc eint, we have for the part of the varia

tion of pressure at A, on which dissipation depends,

onkX pn*X , x-

The corresponding work done during a transfer of fluid SX is

2 V
SX

;
and since, as in 304, the expressions for the potential

and kinetic energies are

the equation of motion ( 80) is

ft

?*=o (5)
1
,

in place of (3) 304. In the valuation of c an allowance must be
included for the inertia of the fluid on the right-hand side of A,
corresponding to the term omitted in the expression for 8p.

Equation (5) is of the standard form for the free vibrations

of dissipative systems of one degree of freedom ( 45). The

amplitude varies as $-/* being diminished in the ratio e ; I

after a time equal to 4?ra/n
2
c. If the pitch (determined by n) be

given, the vibrations have the greatest persistence when c is

smallest, that is, when the neck is mo$t contracted.

If S be given, we have on substituting for c its value in terms
of S and n,

shewing that under these circumstances the duration of the motion
increases rapidly as n diminishes.

In the case of similar resonators c oc 7T"1
, and then

1
Equation (5) is only approximate, inasmuch as the dissipative force is calcu

lated on the supposition that the vibration is permanent ; hut this will lead to no
material error when the dissipation is small.
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which shews that in this case the same proportional loss of

amplitude always occurs after the lapse of the same number of

periods. This result may be obtained by the method of di

mensions, as a consequence of the principle of dynamical

similarity.

As an example of (5), I may refer to the case of a globe with

a neck, intended for burning phosphorus in oxygen gas, whose

capacity is '251 cubic feet [7100 c.c.]. It was found by experiment
that the note of maximum resonance made 120 vibrations per

second, so that n =? 120 x 27r. Taking the velocity of sound (a) at

1120 feet [34200 cent.] per second, we find from these data

4nra? I , ,= -= oi a second nearly.J

Judging from the sound produced when the globe is struck,

I think that this estimate must be too low; but it should be

observed that the absence of the infinite flange assumed in the

theory must influence very materially the rate of dissipation.

We will now examine the forced vibrations due to a source

of sound external to the resonator. If the pressure Sp at the

mouth of the resonator due to the source, i.e. calculated on the

supposition that the mouth is closed, be Fe**"*, the equation of

motion corresponding to (5), but applicable to the forced vibration

only, is

If X = ^ro^^+
'>, where XQ is real,

The maximum variation of pressure (ff) inside the resonator

is connected with X by the equation

(8),

since Jf -r- S is the maximum condensation. Thus

which agrees with the equation obtained by Helmholtz for the

case where the communication with the external air is by a

simple aperture ( 306). The present problem is nearly, but not
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quite, a case of that treated in | 46, the difference depending

upon the fact that the coefficient of dissipation in (7) is itself

a function of the period, and not an absolutely constant
quantit}*,

If the period, determined by k
t
and S be given, (9) shews that

the internal variation of pressure (G) is a maximum when c = &*S,

that is, when the natural note of the resonator (calculated without

allowance for dissipation) is the same as that of the generating
sound. The maximum vibration, when the coincidence of periods

is perfect, varies inversely as &; but, if S be small, a very slight

inequality in the periods is sufficient to cause a marked falling

off in the intensity of the resonance ( 49).' In the practical

use of resonators it is not advantageous to carry the reduction

of 8 and o very far, probably because the arrangements necessary
for connecting the interior with the ear or other sensitive ap

paratus involve a departure from the suppositions on which the

calculations are founded, which becomes more and more important
as the dimensions are reduced. When the sensitive apparatus

is not in connection with the interior, as in the experiment of

reinforcing the sound of a tuning-fork by means of a resonator,

other elements enter into the question, and a distinct investigation

is necessary ( 319).

In virtue of the principle of reciprocity the investigation of the

preceding paragraph may be applied to calculate the effect of a

source of sound situated in the interior of a resonator.

312. We now pass on to the further discussion of the problem
of the open pipe. We shall suppose that the open end of the

pipe is provided with an infinite flange, and that its diameter

is small in comparison with the wave-length of the vibration

under consideration.

As an introduction to the question, we will further suppose
that the mouth of the pipe is fitted with a freely moving piston

without thickness and mass. The preceding problems, from

which the present differs in reality but little/ have already given
us reason to think that the presence of the piston will cause

no important modification. Within the tube we suppose ( 255)

that the velocity-potential is

<t>^(AcQskx + Bsmkx)eint
(1),

where, as usual, k = 2?r/X
=

nfa. At the mouth, where x 0,
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Cn the right of the mston the relation between <p and
{

-~ "

^

is by | 302

j& being the radius of the pipe. From this the solution of the

problem may be obtained without airy
7 restriction as to the

smallness of kit: since, however, it is only when kR is small

fciiat "he presence of the piston would not materially modify
the question, we may as well have she benefit of the simplification

at once by taking asin(l}311

"2 r ........

Now, since the piston occupies no space, the values of

must be the same on both sides of it
;
and since there is no mass,

the like must be true of the values of fjfada-. Thus

8R*

g-

8kR

Substituting in (1), we find on rejecting the imaginary part 3

and putting for brevity B l
}

<j>
= -I sin kx - cos kcc\ cos nt i&2 li2 cos kx sin-nt ...... (6).

( 67T
)

In this expression the term "containing sin?ii depends upon the

dissipation, and is the same as if there were no piston, while that

involving 8kR/3ir represents the effect of the inertia of the external

air in the neighbourhood of the mouth. In order to compare with

previous results, let a be such that

/ i -i/
sin KX 5 cos te = sin K (x a) ;

07T

then, the squares of small quantities being neglected,

8x2

and

<f>
= sin k (# a) cos nt -JA;

3 jR2 cos kx sin nt ..... * ...... (8).

These formulae shew that, if the dissipation be left out of account,

the velocity-potential is the same as if the tube were lengthened
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by 8/3or of the radius, and the open end then behaved as a loop.

The amount of the correction agrees with what previous investi

gations would have led us to expect as the result of the intro

duction of the piston. We have seen reason to know that the

true value of a lies between \TrR and 8-R/3-7T, and that the presence
of the piston does not affect the term representing the dissipation.

But, before discussing our results, it will be advantageous to in

vestigate them afresh by a rather different method, which besides

being of somewhat greater generality, will help to throw light on

the mechanics of the question.

313. For this purpose it will be convenient to shift the origin
in the negative direction to such a distance from the mouth that

the waves are there approximately plane, a displacement which

according to our suppositions need not amount to more than a

small fraction of the wave-length. The difficulty of the question
consists in finding the connection between the waves in the pipe,
which at a sufficient distance from the mouth are plane, and the

diverging waves outside, which at a moderate distance may be

treated as spherical. If the transition take place within a space
small compared with the wave-length, which it must evidently do,

if the diameter be small enough, the problem admits of solution,

whatever may be the form of the pipe in the neighbourhood of

the mouth.

Fig. 62.

At a point P, whose distance from A is moderate, the velocity-

potential is ( 279)

^LT** ........................ (1),

whence

Let us consider the behaviour of the mass of air included be
tween the plane section at and a hemispherical surface whose
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centre is A, and radius r, r being large in comparison with the

diameter of the pipe, but small in comparison with the wave

length. Within this space the air must move approximately as an

incompressible fluid would do. Now the current across the hemi

spherical surface

2 - = - 2-rrA'(I + ikr) &&*-** = -^A eint ......... (3),

if the square of kr be neglected.

If, as before, we take for the velocity-potential within the pipe

< =
(-4 cos &# -f Bsinkx)eint

..................... (4),

we have for the current across the section at 0,

and thus

<rkB=- ZirA' ........................... (6).

This is the first condition; the second is to be found from the

consideration that the total current (whose two values have just
been equated) is proportional to the difference of potential at the

terminals. Thus, if c denote the conductivity of the passage be

tween the terminal surfaces,

.-<*-**

-4 (J).

'0

<rkB

c

On substituting for A its value from (6), we have

A 7 T> /I-A = <rkB -
\c

In this expression the second term is negligible in-comparison with

the first, for c is at most a quantity of the same order as the radius

of the tube, and when the mouth is much contracted it is smaller

still. Thus we may take

Substituting this in (4), we have for the imaginary expression of

the velocity-potential within the tube, if B be put equal to unity,

f / 1 ik\ }

6 = -tain kx+ &k
{
---h ^p" cos^

r
tf<w

*

^
[ \ C 27T/ J
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or, if only the real part be retained,

<f> = \ sin k% cos kx\ cos nt = cos kx sin nt. . ,.(9).

(
C J

^7T

Following Helmholtz, we may simplify our results by introducing

a quantity a defined by the equation

tan&a = ........................... (10).
c

Thus
s

Y

and the corresponding potential outside the mouth is

s^-Ar) .................. (12).

If jR be the radius of the tube, we may replace <r by

When the tube is a simple cylinder, and the origin lies at a

distance A from the mouth, we know that ac~~l = AL + pR, where

p is a number rather greater than JTT. In such a case (the origin

being taken sufficiently near the mouth) ka. is a small quantity,

and therefore from (10)

(13).

At the same time cos ka may be identified with unity.

The principal term in 0, involving cosntf, may then be calcu

lated, as if the tube were prolonged, and there were a loop at a

point situated at a distance pR beyond the actual position of the

mouth, in accordance with what we found before. These results,

approximate for ordinary tubes, become rigorous when the diameter

is reduced without limit, friction being neglected.

If there be no flange at A, the value of c is slightly modified

by the removal of what acts as an obstruction, but the principal

effect is on the term representing the dissipation. If we suppose
as an approximation that the waves diverging from A are

spherical, we must take for the current 4<7rr
3
cfr/r/dr instead of

2-Trr
2

cfrjr/dr. The ultimate effect of the alteration will be to halve

the expression for the velocity-potential outside the mouth, as well

as the corresponding second term in < (involving sinntf). The

amount of dissipation is thus seen to depend materially on the

degree in which the waves are free to diverge, and our analytical

expressions must not be regarded as more than rough estimates.
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The correct theory of the open organ-pipe, including equations

(11) and (12), was discovered by Helmholtz 1
,
whose method,

however, differs considerably from that here adopted. The

earliest solutions of the problem by Lagrange, D. Bernoulli, and

Euler, were founded on the assumption that at an open end

the pressure could not vary from that of the surrounding atmo

sphere, a principle which may perhaps even now be considered

applicable to an end whose openness is ideally perfect. The fact

that in all ordinary cases energy escapes is a proof that there is

not anywhere in the pipe an absolute loop, and it might have been

expected that the inertia of the air just outside the mouth would

have the effect of an increase in the length. The positions of the

nodes in a sounding pipe were investigated experimentally by
Savart 2 afid Hopkins

3
, with the result that the interval between

the mouth and the nearest node is always less than the half of that

separating consecutive nodes.

[The correction necessary for an open end is the origin of a

departure from the simple law of octaves, which according to

elementary theory would connect the notes of closed and open pipes
of the same length. Thus in the application to an organ-pipe let

aJt denote the correction for the upper end when open, and I the

length of the pipe including the correction for the mouth at the

lower end. The whole effective length of the open pipe is then

I + dR} while the effective length of the pipe if closed at the upper
end is I simply. The open pipe is practically the longer, and the

interval between the notes is less than the octave of the simple

theory
4

.

It may be worthy of remark that the correction, assumed to be

independent of wave-length, does not disturb the harmonic rela

tions between the partial tones, whether a pipe be open or closed.]

314. Experimental determinations of the correction for an

open end have generally been made without the use of a flange,

and it therefore becomes important to form at any rate a rough
estimate of its effect. No theoretical solution of the problem of

an unflanged open end has hitherto been given, but it is easy to

1
Crelle, Bd. 57, p. 1. 1860.

2 Kecherches sur les vibrations de 1'air. Ann. d. Chim. t. xxiv. 1823.

8 Aerial vibrations in cylindrical tubes. Cambridge Transactions, Vol. v. p. 231.

1833.

4
Bosanquet, Phil. Mag. vi. p. 63, 1878.
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see ( 79, 307) that the removal of the flange will reduce the

correction materially below the value '82 R (Appendix A). In the

absence of theory I have attempted to determine the influence

of a flange experimentally
1
. Two organ-pipes nearly enough in

unison with one another to give countable beats were blown from

an organ bellows
;
the effect of the flange was deduced from the

difference in the frequencies of the beats according as one of the

pipes was flanged or not. The correction due to the flange was

about '%R. A (probably more trustworthy) repetition of this

experiment by Mr Bosanquet gave '25J2. If we subtract "22JK

from '&2R, we obtain -6J2, which may be regarded as about the

probable value of the correction for an unflanged open end, on the

supposition that the wave-length is great in comparison with the

diameter of the pipe.

Attempts to determine the correction entirely from experiment
have not led hitherto to very precise results. Measurements by
Wertheim 2 on doubly open pipes gave as a mean (for each end)
663 R, while for pipes open at one end only the mean result was

*746jR. In two careful experiments by Bosanquet
3 on doubly

open pipes the correction for one end was *635 R, when X = 12 jR,

and '543 R, when X = 30 R. Bosanquet lays it down as a general
rule that the correction (expressed as a fraction of R) increases

with the ratio of diameter to wave-length ; part of this increase

may however be due to the mutual reaction of the ends, which

causes the plane of symmetry to behave like a rigid wall. When
the pipe is only moderately long in proportion to its diameter, a

state of things is approached which may be more nearly repre
sented by the presence than by the absence of a flange. The

comparison of theory and observation on this subject is a matter

of some difficulty, because when the correction is small, its value,

as calculated from observation, is affected by uncertainties as to

absolute pitch and the velocity of sound, while for the case, when
the correction is relatively larger, which experiment is more com

petent to deal with, ther is at present no theory. Probably a more

accurate value of the correction could be obtained from a resonator

of the kind considered in 306, where the communication with

1 Phil. Mag. (5) in. 456. 1877. [The earliest experiments of the kind are

those of Gripon (Ann. d. Chirn. in. p. 384, 1874) who shewed that the effect of a

large flange is proportional to the diameter of the pipe.]
2 Ann. d. Chim. (3) t. xxxi. p. 394, 1851.
8 Phil. Mag. (5) iv. p. 219. 1877.
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the outside air is by a simple aperture ;
the "

length
"

is in that

case zero, and the "correction" is everything. Some measurements

of this kind, in which, however, no great accuracy was attempted,
will be found in my memoir on resonance 1

.

[Careful experimental determinations of the correction for an

unflanged open end have been made by Blaikley
2
,
who employed

a vertical tube of thin brass 2*08 inches (5*3 cm.) in diameter.

The lower part of the tube was immersed in water, the surface of

which defined the "
closed end/

5

and the experiment consisted in

varying the degree of immersion until the resonance to a fork of

known pitch was a maximum. If the two shortest distances of

the water surface from the open end thus found be ^ and Z2 ,

(Z2 ^i) represents the half wave-length, and the " correction for

the open end" is i( 2 ?i) ^i* The following are the results

obtained by Blaikley, expressed as a fraction of the radius. They
relate to the same tube resounding to forks of various pitch.

c' 253-68 -565

e 317-46 -595

/ 380-81 -564

W 444-72 -587

c" 507-45 -568

The mean correction is thus *576 R.]

Various methods have been used to determine the pitch of

resonators experimentally. Most frequently, perhaps, the resonators

have been made to speak after the manner of organ-pipes by a

stream of air blown obliquely across their mouths. Although good
results have been obtained in this way, our ignorance as to the

mode of action of the wind renders the method unsatisfactory. In

Bosanquet's experiments the pipes were not actually made to

speak, but short discontinuous jets of air were blown across the

open end, the pitch being estimated from the free vibrations as

the sound died away. A method, similar in principle, that I have

sometimes employed with advantage consists hi exciting free vibra

tions by means of a blow. In order to obtain as well defined a note

as possible, it is of importance to accommodate the hardness of the

substance with which the resonator comes into contact to the pitch,

1 Phil. Tram. 1871. See also Sondhauss, Pogg. Ann. 1. 140, 53, 219 (1870), and

some remarks thereupon by myself (Phil. Mag., Sept. 1870).
3 Phil. Mag. vol. 7, p. 339, 1879.
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a low pitch requiring a soft blow. Thus the pitch of a test-tube

may be determined in a moment by striking it against the bent

knee.

In using this method we ought not entirely to overlook the

fact that the natural pitch of a vibrating body is altered by a

term depending upon the square of the dissipation. With the

notation of 45, the frequency is diminished from n to

n(l
- J&2n~2

), or if x be the number of vibrations executed while

the amplitude falls in the ratio e : 1, from n to

-J-\

The correction, however, would rarely be worth taking into

account.

The measurements given in my memoir on resonance were

conducted upon a different principle by estimating the note of

maximum resonance. The ear was placed in communication with

the interior of the cavity, while the chromatic scale was sounded.

In this way it was found possible with a little practice to estimate

the pitch of a good resonator to about a quarter of a semitone. In

the case of small flasks with long necks, to which the above method

would not be applicable, it was found sufficient merely to hold the

flask near the vibrating wires of a pianoforte. The resonant note

announced itself by a quivering of the body of the flask, easily per

ceptible by the fingers. In using this method it is important that

the mind should be free from bias in subdividing the interval

between two consecutive semitones. When the theoretical result

is known, it is almost impossible to arrive at an independent

opinion by experiment.

315. We will now, following Helmholtz, examine more closely

the nature of the motion within the pipe, represented by the

formula (11) 313. We have

< = Zcos(n~0) ....................... (1),

where J- ***
<?

>~ *> +
*

cos' to............... (2),cos*a 2 '

T&G cos ka cos kx /riN
~- --p-r-. ................. (3).

(# a)
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In the expression for I? the second term is very small, and

therefore the maximum values of < occur very nearly when

or x =^rn\- JX-a ..................... (4),

where m is a positive integer.

The distance between consecutive maxima is thus X, and the

value of the maximum is sece
lea. The minimum values of Lz occur

approximately when k (x a) = mir,

or -# = -^ftX a .......................... (5),

and their magnitude is given by

-T n ~s2 a ............... (6).
4-7T

2
4-7T

2 V J

In like manner,

(7),

where J^J^ +sin2
fec ...............(8),

cos2 Aa 47T2
v '

&V cos &a sin lex /n N

tany = s
-

J-T
-

: ., ................... (9).A
2?r cos k (sc

-
a)

^ J

The maximum values of /2 occur when

x = fym\ a ........................ (10),

and the minimum values, when

#=^7nX X a .......................(11).

The approximate magnitude of the maximum is i2 sec2
fax, and

that of the minimum k*<r* cos2
ka. -4- 4?r2

. It appears that the

maxima of velocity occur in the same parts of the tube as the

minima of condensation (and rarefaction), and the minima of

velocity in the same places as the maxima of condensation. The

series of loops and nodes are arranged as if the first loop were at a

distance a beyond the mouth.

With regard to the phases, we see that both 6 and % are in

general small; and therefore with the exception of the places

where L'2 and J2 are near their minima the whole motion is

synchronous, as if there were no dissipation.

Hitherto we have considered the problem of the passage of

plane waves along the pipe and their gradual diffusion from the

mouth, without regard to the origin of the plane waves them-
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selves. All that we have assumed is that the origin of the motion

is somewhere within the pipe. We will now suppose that the

motion is due to the known vibration of a piston, situated

at #= Z, the origin of co-ordinates being at the mouth. Thus,

when x= I,

(12),

and this must be made to correspond with the expression for the

plane waves, generalized by the introduction of arbitrary amplitude
and phase.

We may take

.-x) ............... (13),

where / and % have the values given in (8), (9), while B and e are

arbitrary. Comparing (12) and (13) we conclude that

k?<r cos ka sin kl

.........
2 \ s>

by which B and are determined.

In accordance with (12) 313, the corresponding divergent
wave is represented by

(16).

If Gr be given, B is greatest, when cos Jc (I + a)
=

0, that is

when the piston is situated at an approximate node. In that case

(17),v J

shewing that the magnitude of the resulting vibration is very

great, though not infinite, since cos&a cannot vanish. When
the mouth is much contracted, cos ka may become small, but
in this case it is necessary that the adjustment of periods be

very exact in order that the first term of (15) may be negligible in

comparison with the second. In ordinary pipes cos ka. is nearly

equal to unity.

The minimum of vibration occurs when I is such that
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cos k (I 4- a)
= 1, that is, when the piston is situated at a loop. In

that case

The vibration outside the tube is then, according to the value of

a, equal to or smaller than the vibration which there would be

if there were no tube and the vibrating plate were made part of

the yz plane.

316. Our equations may also be applied to the investigation

of the motion excited in a tube by external sources of sound.

Let us suppose in the first place that the mouth of the tube is

closed by a fixed plate forming part of the yz plane, and that the

potential due to the external sources (approximately constant

over the plate) is under these circumstances

^ = Hco$nt........................... (1),

where ty is composed of the potential due to each source and its

image in the yz plane, as explained in 278. Inside the tube let

the potential be

<f>
=H coskxcosnt ..................... (2),

so that
<f>
and its differential coefficient are continuous across the

barrier. The physical meaning of this is simple. We imagine
within the tube such a motion as is determined by the conditions

that the velocity at the mouth is zero, and that the condensation

at the mouth is the same as that due to the sources of sound when

the mouth is closed. It is obvious that under these circumstances

the closing plate may be removed without any alteration in the

motion. Now, however, there is in general a finite velocity at

# = Z, and therefore we cannot suppose the pipe to be there

stopped. But when there happens to be a node at x = I, that is

to say when I is such that [sin kl] 0, all the conditions are

satisfied, and the actual motion within the pipe is that expressed

by (2)
1
. This motion is evidently the same as might obtain if the

pipe were closed at both ends; and in external space the potential

is the same as if the mouth of the pipe were closed with the rigid

plate.

In the general case in order to reduce the air at #= I to rest,

we must superpose on the motion represented by (2) another of

1
[An error, pointed out by Dr Burton, is here corrected.]
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the kind investigated in 313, so determined as to give at x = I

a velocity equal and opposite to that of the first. Thus, if the

second motion be given by

cty/dx
= BJ cos (nt e %),

we have -f %= 0, and

***!*.........(3).X J

When sinH=0, we have, as above explained, .8 = 0. The maxi

mum value ofB occurs when cos k (I _+ a) 0, and then

It appears, as might have been expected, that the resonance is

greatest when the reduced length is an odd multiple of

317. From the principle that in the neighbourhood of a node

the inertia of the air does not come much into play, we see that

in such places the form of a tube is of little consequence, and that

only the capacity need be attended to. This consideration allows

us to calculate the pitch of a pipe which is cylindrical through
most of its length (Z), but near the closed end expands into a

bulb of small capacity (8). The reduced length is then evi

dently

Z + a + flffiT-
1
.............................. (1),

where a is the correction for the open end, and a- is the area of

the transverse section of the cylindrical part. This formula is

often useful, and may be applied also when the deviation from the

cylindrical form does not take the shape of an enlargement.

When the enlargement represented by 8 is too large to allow

of the above treatment, we may proceed as follows. The dissipa
tion being neglected, the velocity-potential in the tube may be
taken to be

= sini(#- a) cosntf,

the origin being at the mouth, while a = \-rrR approximately. At
x = 1

9
we have

<j>
= tt sin k (I 4- a) sin nt,

and -.2 = k cos k (I + a) cos nt

1
Helmholtz, Crelle, Bd. 57, 1860.
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Now the condensation is given by s = &~*<j>, and the condition

to be satisfied at x = I is

a ds d<f>^-' 2

if it be assumed that the condensation within 8 is sensibly
uniform. Thus

Sn*ar* sin k (I -f a) = a-k cos k (I + a),

or, since n = ok,

<v ( :3>

is the equation determining the pitch. Numerical examples of

the application of (3) are given in my memoir on resonance

(Phil. Tram. 1871, p. 117).

Similar reasoning proves that in any -case of stationary vibra

tions, for which the wave-length is several times as great as the

diameter of the bulb, the end of the tube adjoining the bulb

behaves approximately as an open end if kS be much greater
than <r, and as a stopped end if kS be much less than a.

318. The action of a resonator when under the influence of a

source of sound in unison with itself is a point of considerable

delicacy and importance, and one on which there has been a

good deal of confusion among acoustical writers, the author not

excepted.

There are cases where a resonator absorbs sound, as it were

attracting the vibrations to itself and so diverting them from

regions where otherwise they would be felt. For example,

suppose that there is a simple source of sound B situated in a

narrow tube at a distance J\ (or any odd multiple thereof) from a

closed end, and not too near the mouth : then at any distant

external point A, its effect is nil. This is an immediate conse

quence of the principle of reciprocity, because if A were the

source, there could be no variation of potential at B. The

restriction, precluding too great a proximity to the mouth, may
be dispensed with, if we suppose the source B to be diffused

uniformly over the cross section, instead of concentrated in one

point. Then, whatever may be the size and shape of the section,

there is absolutely no disturbance on the further side. This

is clear from the theory of vibrations in one dimension; the
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reciprocal form of the proposition
that whatever sources of

disturbance may exist beyond the section, ftydo-
= may be

proved from Helmholtz's formula (2) 293, by taking for ^ the

velocity potential of the purely axial vibration of the same period.

It is scarcely necessary to say that, whenever no energy

is emitted, the source does no work; and this requires, not

that there shall be no variation of pressure at the source, for that

in the case of a simple source is impossible, but that the variable

part of the pressure shall have exactly the pjhase of the accelera

tion, and no component with the phase of the velocity.

Other examples of the absorption of sound by resonators are

afforded by certain modifications of HerscheFs1 interference tube

used by Quincke
2 to stop tones of definite pitch from reaching

the ear.

In the combinations of pipes represented in Fig. 63, the sound

enters freely at A
;
at B it finds itself at the mouth of a resonator

of pitch identical with its own. Under these circumstances

it is absorbed, and there is no vibration propagated along BD.

It is clear that the cylindrical tube EG may be replaced by any.

other resonator of the same pitch (7), without prejudice to the

action of the apparatus. The ordinary explanation by interference

(so called) of direct and reflected waves is then less applicable.

Fig. 63.

These cases where the source is at the mouth of a resonator

must not be confused with others where the source is in the

interior. If B be a source at the bottom of a stopped- tube whose

1 Phil Mat/. 1333, Vol. in. p. 405. 2
Pogg. Ann. oxxvin. 177, 1866.
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reduced length is JX, the intensity at an external point A may
be vastly greater than if there had been no tube. In fact the

potential at A due to the source at B is the same as it would be

at B were the source at A.

319. For a closer examination of the mechanics of resonance,

we shall obtain the problem in a form disembarrassed of unne

cessary difficulties by supposing the resonator to consist of a

small circular plate, backed by a spring, and imbedded in an

indefinite rigid plane. It was proved in a previous chapter, (30)

302, that if M be the mass of the plate, its displacement,

fju% the force of restitution, R the radius, and <r the density of the

air, the equation of vibration is

2

where F and f are proportional to eikat.

If the natural period of vibration (the reaction of external air

included) coincide with that imposed, the equation reduces to

%ao-7rk*R*$ =F ........................(2).

Let us now suppose that F is due to an external source of

sound, giving when the plate is at rest a potential i/r , which will

be nearly constant over the area of the plate. Thus

F^-Sp.TrR^ikao-.irR*.^ ..................(3);

so that 7rjR2f = ^'=2i7rfc-1^ = iX^o .................. (4),

and the potential <f>
due to the motion of the plate at a distance

r will be

independent, it should be observed, of the area of the plate.

Leaving for the present the case of perfect isochronism, let us

suppose that

(6),

so that 2-7T/&'
is the wave-length of the natural note of the

resonator. If M' be written for M + <rR*, the equation corre

sponding to (5) takes the form
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from which we may infer as before that if k' = k the efficiency of

the resonator as a source is independent of R. When the adjust

ment is imperfect, the law of falling off depends upon M'Sr*.

Thus if M' be great and R small, although the maximum efficiency

of the resonator is no less, a greater accuracy of adjustment is

required in order to approach the maximum ( 49). In the case

of resonators with simple apertures AT = ^<r-R
3
, so that N'R~*

varies as Br\ Accordingly resonators with small apertures re

quire the greatest precision of tuning, but the difference is not

important. From a comparison of the present investigation with

that of 311 it appears that the conditions of efficiency are

different according as internal or external effects are considered.

We will now return to the case of isochronism and suppose

further that the external source of sound to which the resonator

A responds, is the motion of a similar plate J5, whose distance

c from A is a quantity large in comparison with the dimensions

of the plates. The intensity of B may be supposed to be such

that its potential isr

Accordingly ^r
= c"1

*-**, and therefore by (5)

a ikr 0ikc pikr

^ ?'!_._ .................. (9),r r ikr ike r
^

shewing that at equal distances from their sources

: ^ = e~ikc
: ike ..................... (10).

The relation of phases may be represented by regarding the

induced vibration
(f>

as proceeding from B by way of A, and as

being subject to an additional retardation of JX, so that the whole

retardation between B and A is c + i^. In respect of amplitude
< is greater than ^ in the ratio of 1 : &c

Thus when kc is small, the induced vibration is much the

greater, and the total sound is much louder than if A were not

permitted to operate. In this case the phase is retarded by a

quarter of a period.

It is important to have a clear idea of the cause of this

augmentation of sound. In a previous chapter ( 280) we saw

that, when A is fixed, B gives out much IQSS sound than might
at first have been expected from the pressure developed. The

explanation was that the phase of the pressure was unfavourable
;
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the larger part of it is concerned only in overcoming the inertia

of the surrounding air, and is ineffective towards the performance
of work. Now the pressure which sets A in motion is the whole

pressure, and not merely the insignificant part that would of itself

do work. The motion of A is determined by the condition that

that component of the whole pressure upon it, which has the phase
of the velocity, shall vanish. But of the pressure that is due to

the motion of A, the larger part has the phase of the acceleration
;

and therefore the prescribed condition requires an equality
between the small component of the pressure due to A's motion,
and a pressure comparable with the large component of the

pressure due to JJ's motion. The result is that A becomes a

much more powerful source than J5. Of course no work is done

by the piston A : its effect is to augment the work done at J5,

by modifying the otherwise unfavourable relation between the

phases of the pressure and of the velocity.

The infinite plane in the preceding discussion is only required
in order that we may find room behind it for our machinery of

springs. If we are content with still more highly idealized

sources and resonators, we may dispense with it. To each piston
must be added a duplicate, vibrating in a similar manner, but in

the opposite direction, the effect of which will be to make the

normal velocity of the fluid vanish over the plane AB. Under

these circumstances the plane is without influence and may be

removed. If the size of the plates be reduced without limit they
become ultimately equivalent to simple sources of fluid

;
and we

conclude that a simple source B will become more efficient than

before in the ratio of 1 : kc, when at a small distance c from

it there is allowed to operate a simple resonator (as we may call

it) of like pitch, that is, a source in which the inertia of the

immediately surrounding fluid is compensated by some adequate

machinery, and which is set in motion by external causes only.

In the present state of our knowledge of the mechanics of

vibrating fluids, while the difficulties of deduction are for the

most part still to be overcome, any simplification of conditions

which allows progress to be made, without wholly destroying the

practical character of the question, may be a step of great

importance. Such, for example, was the introduction by Helm-

holtz of the idea of a source concentrated in one point, represented

analytically by the violation at that point of the equation of
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continuity. Perhaps in like manner the idea of a simple reso

nator may be useful, although the thing would be still more

impossible to construct than a simple source.

320. We have seen that there is a great augmentation of

sound, when a suitably tuned resonator is close to a simple
source. Much more is this the case, when the source of sound is

compound. The potential due to a double source is ( 294, 324)

If the resonator be at a small distance c,

0ikc

and therefore the potential due to the resonator at a distance r
1

is

0-ike
giJcr' g-ikc

If fiQ vanish, the resonator is without effect
;
but when

/LCO
=

1,

that is, when the resonator lies on the axis of the double source,

we have

At a distance from the double source its potential is

a Her

f = /*

Thus we may consider that the potential due to the resonator

is greater than that due to the double source in the ratio &(? : 1,

the angular variation being disregarded.

A vibrating rigid sphere gives the same kind of motion to the

surrounding air as a double source situated at its centre
;
but the

substitution suggested by this fact is only permissible when the

radius of the sphere is small in comparison with c : otherwise

the presence of the sphere modifies the action of the resonator.

Nevertheless the preceding investigation shews how powerful
in general the action of a resonator is when placed in a suitable

position close to a compound source of sound, whose character
is such that it would of itself produce but little effect at a
distance.
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One of the best examples of this use of a resonator is afforded

by a vibrating bar of glass, or metal, held at the nodes. A strip

of plate glass about a foot [30 cm.] long and an inch [2*5 cm.]

broad, of medium thickness (say inch ['32 cm.]), supported at

about 3 inches [7'6 cm.] from the ends by means of string twisted

round it, answers the purpose very well. When struck by a

hammer it gives but little sound except overtones ;
and even these

may almost be got rid of by choosing a hammer of suitable softness.

This deficiency of sound is a consequence of the small dimensions

of the bar in comparison with the wave-length, "which allows of the

easy transference of air from one side to the other. If now the

mouth of a resonator of the right pitch
1
be held over one of the

free ends, a sound of considerable force and purity may be

obtained by a well-managed blow. In this way an improved
harmonicon may be constructed, with tones much lower than

would be practicable without resonators. In the ordinary instru

ment the wave-lengths are sufficiently short to permit the bar to

communicate vibrations to the air independently.

The reinforcement of the sound of a bell in a well-known

experiment due to Savart 2
is an. example of the same mode of

action; but perhaps the most striking instance is in the ar

rangement adopted by Helmholtz in his experiments requiring

pure tones, which are obtained by holding tuning-forks over the

mouths of resonators.

321. When two simple resonators A lt A2J separately in tune

with the source, are close together, the effect is less than if there

were only one. If the potentials due respectively to A lt A 2 be

<i> a> we ma take

Let -E represent the distance A^Az, and ^ly -\Jr2 >
the potentials

that would exist at A 19 A z ,
if there were no resonators

;
then the

conditions to determine A^ A 2 are by (5) 319

^ +A Z/R =

1 To get the best effect, the mouth of the resonator ought to be pretty close to

the bar ;
and then the pitch is decidedly lower than it would be in the open. The

final adjustment may be made by varying the amount of obstruction. This use of

resonators is of great antiquity.
2 Ann. d. Chim. t. xxiv. 1823.
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By hypothesis fa and fa are nearly equal, and therefore

Since ikR is small, the effect is much less than if there were

only one resonator. It must be observed however that the

diminished effectiveness is due to the resonators putting one

another out of tune, and if this tendency be compensated by an

alteration in the spring, any number of resonators near together

have just the effect of one. This point is illustrated by 302,

where it will be seen (32) that though the resonance does not

depend upon the size of the plate, still the inertia of the air, which

has to be compensated by a spring, does depend upon it.

322. It will be proper to say a few words in this place on

an objection, which has been brought forward by Bosanquet
1 as

possibly invalidating the usual calculations of the pitch of re

sonators and of the correction to the length of organ-pipes. When

fluid flows in a steady stream through a hole in a thin plate, the

motion on the low pressure side is by no means of the character

investigated in 306. Instead of diverging after passing the hole

so as to follow the surface of the plate, the fluid shapes itself into

an approximately cylindrical jet, whose form for the case of two

dimensions can be calculated 2 from formulae given by Kirchhoff.

On the high pressure side the motion does not deviate so widely

from that determined by the electrical law. In like manner fluid

passing outwards from a pipe continues to move in a cylindrical

stream. If the external pressure be the greater, the character of

the motion is different. In this case the stream lines converge

from all directions to the mouth of the pipe, afterwards gathering

themselves into a parallel bundle, whose section is considerably

less than that of the pipe. It is clear that, if the formation of jets

took place to any considerable extent during the passage of air

through the mouths of resonators, our calculations of pitch would

have to be seriously modified.

The precise conditions under which jets are formed is a subject

of great delicacy. It may even be doubted whether they would occur

at all in frictionless fluid moving with velocities so small that the

corresponding pressures, which are proportional to the squares of

1 Phil. Mag. Vol. iv. p. 125, 1877.
2 Phil. Mag. Vol. n. p. 441, 1876.
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the velocities, are inconsiderable. But with air, as we actually
have it, moving under the action of the pressures to be found in

resonators, it must be admitted that jets may sometimes occur.

While experimenting about two years ago with one of Konig's
brass resonators of pitch c', I noticed that when the corresponding
fork, strongly excited, was held to the mouth, a wind of consider

able force issued from the nipple at the opposite side. This effect

may rise to such intensity as to blow out a candle upon whose
wick the stream is directed. It does not depend upon any peculiar
motion of the air near the ends of the fork, as is proved by
mounting the fork upon its resonance-box and presenting the open
end of the box, instead of the fork itself, to the mouth of the

resonator, when the effect is obtained with but slightly diminished

intensity. A similar result was obtained with a fork and re

sonator, of pitch an octave lower (c). Closer examination revealed

the fact that at the sides of the nipple the outward flowing
stream was replaced by one in the opposite direction, so that a

tongue of flame from a suitably placed candle appeared to enter

the nipple at the same time that another candle situated

immediately in front was blown away. The two effects are of

course in reality alternating, and only appear to be simultaneous

in consequence of the inability of the eye to follow such rapid

changes. The formation of jets must make a serious draft on the

energy of the motion, and this is no doubt the reason why it is

necessary to close the nipple in order to obtain a powerful sound
from a resonator of this form, when a suitably tuned fork is

presented to it.

At the same time it does not appear probable that jet forma
tion occurs to any appreciable extent at the mouths of resonators

as ordinarily used. The near agreement between the observed and
the calculated pitch is almost a sufficient proof of this. Another

argument tending to the same conclusion may be drawn from the

persistence of the free vibrations of resonators (311), whose dura

tion seems to exclude any important cause of
dissipation beyond

the communication of motion to the surrounding air.

In the case of organ-pipes, where the vibrations are very

powerful, these arguments are less cogent, but I see no reason for

thinking that the motion at the upper open end differs greatly
from that supposed in Helmholtz's calculation. No conclusion to

the contrary can, I think, safely be drawn from the phenomena of
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steady motion. In the opposite extreme case of impulsive motion

jets certainly cannot be formed, as follows from Thomson's prin

ciple of least energy ( 79), and it is doubtful to which extreme

the case of periodic motion may with greatest plausibility be

assimilated. Observation by the method of intermittent illumi

nation { 42) might lead to further information upon this subject.

322a. As has already been mentioned, the free vibrations of the

body of air contained in a resonator may be excited by a suitable

blow delivered to the latter. The gas does not at first partake of the

sudden movement imposed upon the walls, and the relative motion

thus initiated is the origin of free vibrations of the kind considered

in preceding sections. When corks are drawn from partially

empty bottles, or when the lids are suddenly removed from

tubular pasteboard pencil-cases, free vibrations of the resonating

air columns are initiated in like manner.

If the vibrations are to be maintained with a view to the

emission of a continued sound, the vibrating body must be in

communication with a source of energy ( 68 a), and the reaction

between the two must be rightly accommodated with respect to

phase. The question whether the source of energy or the resona

tor is to be regarded as the origin of the sound is of no particular

significance and will be variously answered according to the point
of view of the moment. In the organ the pipe, rather than the

compressed air within the bellows or even the escaping wind, is

regarded as the parent of the sound, but when a similar pipe
is maintained in action by a flame the credit of the joint perfor

mance is usually given to the latter.

Up to this point the explanation of maintained vibrations is

simple enough ;
but the complete theory in any particular case

demands such an investigation of the reaction as will determine

the phase relation. On this depends the whole question whether

the reaction is favourable or unfavourable to the continuance of

the vibrations, and the determination is often a matter of diffi

culty.

Before proceeding to discuss the action of the blast it will be

desirable to say something further upon the organ-pipe considered

simply as a resonator. We have seen ( 314) how to take account

of an upper open end, but according to the rule of Cavaill^-Coll

the whole addition which must be made to the measured length
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of an open pipe in order to bring about agreement with

the simple formula (8) 255 amounts to as much as 3jR,

very much greater than the correction (1/2 jR) necessary for a

simple tube of circular section open at both ends. This dis

crepancy is sometimes attributed to the blast. But it must be

remembered that the lower end is very much less open than the

upper end, and that if a sensible correction on account of deficient

openness is required for the latter, a much more important correc

tion will probably be necessary for the former. Observations by
the author 1 have shewn that this is the case. A pipe fitted with

a sliding prolongation was tuned to maximum resonance with a

given (256) fork as in Blaikley's experiment ( 314). It was then

blown from a well-regulated bellows with measured pressures of

wind, and the pitch of the sounds so obtained was referred to that

of the fork by the method of beats ( 30). The results shewed

that at practical pressures the pitch of the pipe as sounded by
wind was higher than its natural note of maximum resonance ;

so

that the considerable correction to the length found by Cavaille-

Coll is not attributable to the blast, but to the contracted

character of the lower end treated as open in the elementary

theory. In order to estimate the natural note an even larger
" correction to the length

"
would be required.

The rise of pitch due to the wind increases with pressure.

Thus in the case referred to above the pipe under a pressure of

T06 inches (2'7 cm.) of water gave a note about 2 vibrations per

second sharper than that of the fork, but when the wind pressure

was raised to 4'2 inches (10*7 cm.) the excess was as much as 11

vibrations per second. When the pressure was raised much

further, the pipe was " over blown
"
and gave the octave of its

proper pitch. This, of course, corresponds to another mode of

vibration of the aerial column.

It remains to consider the maintaining action of the blast.

The vibrations of a column of air may be encouraged either by
the introduction of fluid at a place where the density varies and

at a moment of condensation (and by the similar abstraction of

fluid at a moment of rarefaction), or by a suitable acceleration of

the parts of the column situated near a loop. Since the blast of

an organ acts at an open end of the pipe, it is clear that here we

i Phil. Mag. m. p. 462, 1877 j xm. p. 340, 1882.
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have to do with the latter alternative. The sheet of wind directed

across the lip of the pipe is easily deflected. When during the

vibration the external air tends to enter the pipe, it carries the jet

with it more or less completely. Half a period later when the

natural flow is outwards, the jet is deflected in the
corresponding

direction. In either case the jet encourages the prevailing motion,
and thus renders possible the maintenance of the vibration.

For ready speech it is necessary that the sheet of wind be

accurately adjusted. But Schneebeli 1 has shewn that when the

vibration is once started there is more latitude. In an experi
mental arrangement the jet was so adjusted as to pass entirely
outside the pipe. Under these circumstances there was failure

to speak until by a temporary strong blast directed upon it from
outside the jet was bent inwards to the proper position. The

pipe then spoke and continued in action until by a pressure in the

reverse direction the jet was bent back. The motion of the jet

may be made apparent with the aid of smoke or by means of

a piece of tissue paper held so as to vibrate with it. Both
Schneebeli and H. Smith 2

insist upon a comparison between the

jet and the tongue of a reed organ-pipe, but the modes of action

appear to be essentially different.

The above view of the matter, which is that adopted by
v. Helmholtz in the fourth edition of his great work, appears to be

satisfactory as a general explanation of the maintenance of a
continued vibration, but it cannot be regarded as complete. In
matters of this kind practice is usually in advance of theory;
and many generations of practical men have brought the organ-
pipe to a high degree of excellence.

Another view that has been favourably entertained by many
good authorities regards the pipe as merely reinforcing by its

resonance a sound primarily due to the friction of the jet playing
against the lip, and there seems to be no doubt that sounds may
thus originate

3
. Perhaps after all there is less difference than

might at first appear between the two views, and the latter may
be especially appropriate when the initiation of the sound rather
than its maintenance is under consideration. A detailed discussion

1
Pogg. Ann. Bd. 158, p, 301, 1874.

3
Nature, 1873, 1874, 1875.

* See for example Melde's Akustik, p. 252; Sondhauss Pogg. Ann. xci. p. 126,
1854.
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of the question will be found in an essay by Van Schaik 1
. For a

fuller explanation we must probably await a better knowledge of

the mechanics ofjets.

322 b. The character of the sound emitted from a pipe

depends upon the presence or absence of the various overtones, a

matter which requires further consideration. When a system
vibrates freely, the overtones may be harmonic or inharmonic

according to the nature of the system, and the composition of the

sound depends upon the initial circumstances. But in the case

of a maintained vibration like that now before us the motion

is strictly periodic, and the overtones must be harmonic if present
at all The frequency of the whole vibration will correspond

approximately with that natural to the pipe in its gravest mode 2
,

but the agreement between the pitch of an audible overtone and

that of any free vibration may be much less close. The strength of

any overtone thus depends upon two things : first upon the extent

to which the maintaining forces possess a component of the right

kind, and secondly upon the degree of approximation between the

overtone and some natural tone of the vibrating body. In organ-

pipes the sharpness of the upper lip and the comparative thinness

of the sheet of wind are favourable to the production of overtones
;

so that in narrow open pipes v. Helmholtz was able to hear plainly

the first six partial tones. In wider open pipes, on the other hand,

the agreement between the overtones and the natural tones is less

close. In consequence, pipes of this class, especially if of wood,

give a softer quality of sound, in which besides the fundamental

only the octave and twelfth are to be detected 3
.

When a bottle ( 26), or a spherical resonator, is blown by
wind after the manner of an organ-pipe, there are no natural

tones in the neighbourhood of the harmonics, and the resulting

sound is almost free from overtones.

322 c. When two organ-pipes of the same pitch stand side

by side, complications ensue which not unfrequently give trouble

in practice. In extreme cases the pipes may almost reduce one

another to silence. Even when the mutual influence is more

moderate, it may still go so far as to cause the pipes to speak

1 Ueber die Tonerreyitng in Labialpfelfen. Botterdam, 1891.

* We are not now speaking of " over blowing."
a

Tonempjindungcn. Fourth edition, p. 155, 1 Q77.
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in absolute unison, in spite of inevitable small natural differences.

The simplest case that can be considered is that of a pipe, along
the median plane of which a thin resisting wall is supposed to be

introduced. If this wall occupy the whole plane, the original

pipe is divided into two, independent of, and perfectly similar

to one another. And the pitch of these segments is the same

as that of the original pipe, fluid friction being neglected, since

during the vibrations of the latter there is no motion across

the median plane of symmetry. But the case is altered if the

wall be limited to the part of the plane included within the

pipe, for then the two vibrating columns are free to react upon
one another. The system as a whole has two degrees of freedom

we are not now regarding overtones and free vibrations are per
formed in two distinct periods. The first of these is character

ised by synchronism of phase between the vibrations of the com

ponent columns, and the pitch is accordingly the same as before

the separation into two parts. But in the second mode the

phases of vibration of the component columns are opposed, so

that the air which escapes from one open end is absorbed by
the contiguous open end of the other part. In consequence the

"correction for the open ends" is much diminished in amount,
and the pitch in this mode is correspondingly raised. So long
as the motion is free, temporary vibrations in both modes may
co-exist, and would give rise to beats; but it does not follow

that both can be maintained by the blast. This would indeed

seem improbable beforehand, and experiment shews that after

the first moment the vibrations are confined to the second

mode. The contiguous open ends act as opposed sources, and
but little sound escapes, although within the pipes, and indeed

outside in the immediate neighbourhood of their mouths, the

vigour of the vibrations is unimpaired. Effects of the same
kind are produced when two distinct but similar pipes are

mounted side by side, and under the influence of the blast the

compound system may vibrate in one mode only, in spite of

small differences of pitch between the notes of the pipes when

sounding separately
1
.

322 d. Direct observation of the state of things within a

vibrating air column is of course a matter of great difficulty, but

1
Proceedings of the Musical Association, Dec. 1878.
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interesting results have been obtained by Topler and Boltzmann 1

,

calling to their aid the method of optical interference to meet the

difficulty arising out of the invisibility of air and the method of

stroboscopic vision to meet that arising out of the rapidity of the

changes. The upper end of an organ-pipe, closed by a thin plate

of metal, was provided with sides of worked glass projecting above

beyond the metal plate, and by suitable optical arrangements inter

ference was produced between light which passed above and

below. The space above being occupied by air at normal density

and that below by air in a state of increased or diminished density

according to the phase at the moment, the interference bands

undergo displacements synchronous with the aerial vibration.

Observed directly these displacements would escape the eye ;
but

by the aid of a fork electrically maintained and provided with

suitable slits ( 42) the light may be rendered intermittent in a

period nearly coincident with that of the vibration, and then the

sequence of changes becomes apparent. From the observed move

ment of the bands it is possible to infer not merely the total

change of density from maximum to minimum, but the law of

the variation of denbity as a function of time.

When a pipe of large section was but moderately blown, the

change of density at the node amounted to '009 of an atmosphere,
and the law was very nearly simple harmonic. Under a greater

pressure of wind the simple harmonic law was widely departed

from, the bands shifting themselves almost suddenly from one

extreme position to the other. In this case the amplitude of the

first overtone (the twelfth) was about one quarter of that of the

fundamental tone. The whole variation of density was *019

atmosphere.

322 e. In some experimental investigations a form of pipe
more completely symmetrical with respect to the axis has been

employed'
2

. The lip is constituted by the entire circular edge of

the pipe as defined by a plane perpendicular to the axis, and upon
this an annular sheet of wind is brought to bear. A similar

arrangement is adopted in the ordinary steam whistle.

Another way of applying wind to evoke the speech of small

pipes has been experimented upon by Sondhauss 3

,
and the rationale

1
Pogg. Ann. CXLI. p. 321, 1870.

8
Gripon, Ann. d. Chemie, in. p. 384, 1874.

3
Fogg. Ann. xci. p. 126, 1854.
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is even less understood. A tube entirely open at one end is
partially

closed at the other by a plate of wood or metal 2 or 3 mm. thick

and pierced by a cylindrical aperture with sharp edges (Fig. 63 a).

Fig. 63 a.

fl

To set the pipe into action it is only necessary to insert the open
end into a reservoir of wind. For rough purposes when it is not

required to register the pressure nor to preserve a constant tempe
rature, the mouth suffices, and the sound may be evoked either by

pressure or by suction. The cylindrical aperture may be replaced

by one of conical form, but in that case the wind must flow from

the narrower towards the wider end. The sounds tabulated by
Sondhauss vary from a! to /

6
, corresponding in all cases to proper

tones of the tube.

The whistling sounds of the unaided mouth are evidently, of

this class, the adjustment of pitch (from about c" to c
5
) being

effected mainly by varying the internal capacity ( 304). The

formation of sound in whistling is sometimes said to be connected

with a vibration of the lips, but this appears to be a mistake. I

have found it possible to whistle through a suitable conical aperture
in a piece of box-wood held tightly between the lips.

The occurrence of vibration may be taken as evidence that

the steady flow of air through the passages in question is unstable.

Contrary to what occurs in the organ-pipe and in sensitive flames,

the deformations of the jet would seem here to be of the symme
trical sort. There is perhaps a tendency alternately to follow and

to depart from the course marked out by the walls.

322/ An important part of our present subject relates to

the maintenance of vibrations by means of heat, and it will be

possible to give at least a general account of the manner in which

the effect takes place. In almost all cases where heat is com
municated to a body expansion ensues, and this expansion may be

made to do mechanical work. If the phases of the forces thus

operative be favourable, a vibration may be maintained.

An instructive example is afforded by Trevelyan's rocker, con-
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sisting of a mass of iron or copper, so shaped that during vibration

the weight is alternately carried on one or other of two adjacent
and parallel ridges. When the instrument is heated and placed

upon a block of cold lead, the vibrations persist so long as the heat

remains sufficient. "Sir John Leslie first suggested that the

cause of these vibrations is to be found in the expansion of the

cold block by the heat which flows into it from the hot metal

at the points of contact. Faraday \ Seebeck 2
, and Tyndall

3 have

adopted this explanation ; and they have shewn that most of the

facts that they and others have ascertained respecting these

vibrations are easily explained upon this view of their cause,

supposing only that the expansion is sufficiently great to produce

any sensible effect. Forbes 4
, on the other hand, after an extensive

series of experiments, was led to reject Sir John Leslie's ex

planation, one of his principal reasons for doing so being the

impossibility, as it appeared to him, that the expansion occasioned

by so slow a process as the conduction of heat could produce any
sensible mechanical effect."

Davis, from whom 5
the above sentences are quoted, has

examined the question mathematically, and has shewn that the

explanation is adequate. It is evidently important that the

lower body should possess a high rate of expansibility with

temperature. In this respect lead stands high among the metals,

and rock salt, which Tyndall found to answer well, is even more

expansible.

The objection taken by Forbes may be met by the reply that

the conduction of heat is not a slow process when small distances

and masses are in question ;
and the special repulsion invoked by

him as the basis of an alternative explanation would be of

unsuitable character in respect of phase. It is essential that the

phase of the force should be in arrear of the phase of the negative

displacement.

In an experiment due to Page
6 the vibrations are made

independent of an initial difference of temperature, the local

heating at the points of contact being obtained with the aid of an

1 Proc. of Roy. Inst. vol. n. p. 119, 1831.
2
Fogg. Ann. vol. LI. p. 1, 1840. 3 Phil. Mag. vol. vin. p. 1, 1854.

4 Phil. Mag. vol. iv. pp. 15, 182, 1834.
3 Phil. Mag. vol. XLV. p. 296, 1873.
6 Silliman's Journal, vol. ix. p. 105, 1850.
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electric current caused to pass from one body to the other. In

this arrangement there is no contraction in the upper body to be

deducted from the expansion in the lower. On a similar principle

Gore l has contrived a continuous motion of a copper ball which

travels upon circular rails themselves connected with a powerful

battery.

322 #. But the most interesting examples of vibrations

maintained by heat are those which occur when the resonating

body is gaseous.
" If heat be periodically communicated to, and

abstracted from, a mass of air vibrating (for example) in a

cylinder bounded by a piston, the effect produced will depend

upon the phase of the vibration at which the transfer of heat

takes place. If heat be given to the air at the moment of greatest

condensation, or be taken from it at the moment of greatest

rarefaction, the vibration is encouraged. On the other hand,

if heat be given at the moment of greatest rarefaction, or

abstracted at the moment of greatest condensation, the vibration

is discouraged. The latter effect takes place of itself ( 247)

when the rapidity of alternation is neither very great nor very

small in consequence of radiation; for when air is condensed

it becomes hotter, and communicates heat to surrounding bodies.

The two extreme cases are exceptional, though for different

reasons. In the first, which corresponds to the suppositions of

Laplace's theory of the propagation of sound, there is not

sufficient time for a sensible transfer to be effected. In the

second, the temperature remains nearly constant, and the loss of

heat occurs during the process of condensation, and not when the

condensation is effected. This case corresponds to Newton's

theory of the velocity of sound. When the transfer of heat takes

place at the moment of greatest condensation or of greatest

rarefaction, the pitch is not affected.

If the air be at its normal density at the moment when the

transfer of heat takes place, the vibration is neither encouraged
nor discouraged, but the pitch is altered. Thus the pitch is raised

if heat be communicated to the air a quarter period before the

phase of greatest condensation
;
and the pitch is lowered if the

heat be communicated a quarter period after the phase of greatest

condensation.

1 Phil Mag. vol. xv. p. 519, 1858 ; vol. xvm. p. 94t 1859.
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In general both kinds of effects are produced by a periodic

transfer of heat. The pitch is altered, and the vibrations are

either encouraged or discouraged. But there is no effect of the

second kind if the air concerned be at a loop, i.e. a place where

the density does not vary, nor if the communication of heat be the

same at any stage of rarefaction as at the corresponding stage of

condensationV
Thus in any problem which may present itself of the main

tenance of a vibration by heat, the principal question to be

considered is the phase of the communication of heat relatively to

that of the vibration.

322 h. The sounds emitted by a jet of hydrogen burning in a

pipe open at both ends, were noticed soon after the discovery of

the gas, and have been the subject of several elaborate inquiries.

The fact that the notes are substantially the same as those which

may be elicited in other ways, e.g. by blowing, was announced by
Chladni. Faraday

2
proved that other gases were competent to

take the place of hydrogen, though not without disadvantage.
But it is to Sondhauss 8

that we owe the most detailed examina

tion of the circumstances under which the sound is produced.
His experiments prove the importance of the part taken by the

column of gas in the tube which supplies the jet. For example,
sound cannot be got with a supply tube which is plugged with

cotton in the neighbourhood of the jet, although no difference can

be detected by the eye between the flame thus obtained and

others which are competent to excite sound When the supply
tube is unobstructed, the sounds obtainable by varying the

resonator are limited as to pitch, often dividing themselves into

distinct groups. In the intervals between the groups no coaxing
will induce a maintained sound

;
and it may be added that, for a

part of the interval at any rate, the influence of the flame is

inimical, so that a vibration started by a blow is damped more

rapidly than if the jet were not ignited.

Forms of resonator other than the open pipe may be employed,
and sometimes with advantage. Very low notes can be got from

spherical resonators, such as the large globes employed for demon-

1 Proc. Hoy. Inst. vol. vm. p. 536, 1878 ; Nature, vol. xviii. p. 319, 1878.
3
Quart. Journ. Sri. vol. v. p. 274, 1818.

3
Pogg. Ann. vol. cix. pp. 1, 426, 1860.
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strating the combustion of phosphorus in oxygen gas. A globe

of this kind gave in its natural condition a deep and pure tone of

64 vibrations per second. When it was fitted with a longer and

narrower neck formed from a pasteboard tube, the calculated

frequency fell to 25, and the vibrations, though vigorous enough to

extinguish the flame, were hardly audible. When it is desired to

excite very deep sounds, the supply tube should be made of

considerable length, and the orifice must not be much con

tracted.

Singing flames may sometimes replace electrically maintained

tuning-forks for the production of pure tones, when absolute

constancy of pitch is not insisted upon. In order to avoid

progressive deterioration of the air, it is advisable to use a

resonator open above as well as below. A bulbous chimney,

such as are often used with paraffin lamps, meets this require

ment, and at the same time emits a pure tone. Or an otherwise

cylindrical pipe may be blocked in the middle by a loosely fitting

plug
1
.

As Wheatstone shewed, the intermittence of a singing flame is

easily made manifest by an oscillating, or a revolving, mirror. A
more minute examination is best effected by the stroboscopic

method, 42. Drawings of the transformations thus observed

have been given by Topler
2
, from which it appears that at one

phase the flame may withdraw itself entirely within the supply
tube.

Vibrations capable of being maintained are not always self-

starting. The initial impulse may be given by a blow ad

ministered to the resonator, or by a gentle blast directed across

the mouth. In the striking experiments of Schaffgotsch and

Tyndall
8
a flame, previously silent, responds to a sound in unison

with its own. In some cases the vibrations thus initiated rise to

such intensity as to extinguish the flame.

The experiments of Sondhauss shew that a relationship of

proportionality subsists between the lengths of the supply tubes

and of the sounding columns. When the nature of the gas is

varied, the same supply tube being retail ed, the mean lengths of

1 Phil. Mag. vol. vn. p. 149, 1879.
a
Pogg. Ann. vol. cxxvm. p. 126, 1866.

3
Sound, 3rd edition, p. 224, 1875.
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the speaking columns are approximately as the square roots of the

density of the gas. A. connection is thus established between the
natural note of a supply tube and the notes which can be sounded
with its aid.

Partly in consequence of the peculiar and ill understood be
haviour of flames, and partly for other reasons, the thorough
explanation of the phenomena now under consideration is a matter
of some difficulty ;

but there can be no doubt that they fall under
the head of vibrations maintained by heat, the heat being com
municated periodically to the mass of air confined in the sounding
tube at a place where, in the course of a vibration, the pressure
varies. Although some authors have shewn a tendency to lay
stress upon the effects of the draught of air through the pipe, the

sounds, as we have seen, can be readily produced, not only when
there is no through draught, but even when the flame is so

situated that there is no sensible periodic motion of the air in its

neighbourhood.

In consequence of the variable pressure within the resonator,
the issue of gas, and therefore the development of heat, varies

during the vibration. The question is under what circumstances

the variation is of the kind necessary for the maintenance of the

vibration. If we were to suppose, as we might at first be inclined

to do, that the issue of gas is greatest when the pressure in the

resonator is least, and that the phase of greatest development of

heat coincides with that of the greatest issue of gas, we should

have the condition of things the most unfavourable of all to the

persistence of the vibration. It is not difficult, however, to see

that both suppositions are incorrect. In the supply tube (sup

posed to be unplugged, and of not too small bore) stationary, or

approximately stationary, vibrations are excited, whose phase is

either the same or the opposite of that of the vibration in the

resonator. If the length of the supply tube from the burner to

the open end in the gas-generating flask be less than a quarter of

the wave-length in hydrogen of the actual vibration, the greatest
issue of gas precedes by a quarter period the phase of greatest

condensation; so that, if the development of heat is retarded

somewhat in comparison with the issue of gas, a state of things
exists favourable to the maintenance of the sound. Some such

retardation is inevitable, because a jet of inflammaVie gas can

uurn uuly at the outside ;
but in many cases a still more potent
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cause may be found in the fact that during the retreat of the gas

in the supply tube small quantities of air may enter from the

interior of the resonator, whose expulsion must be effected before

the inflammable gas can again begin to escape.

If the length of the supply tube amounts to exactly one

quarter of the wave-length, the stationary vibration within it will

be of such a character that a node is formed at the burner, the

variable part of the pressure just inside the burner being the same

as in the interior of the resonator. Under these circumstances

there is nothing to make the flow of gas, or the development of

heat, variable, and therefore the vibration cannot be maintained.

This particular case is free from some of the difficulties which

attach themselves to the general problem, and the conclusion is in

accordance with Sondhauss' observations.

When the supply tube is somewhat longer than a quarter of

the wave, the motion of the gas is materially different from that

first described. Instead of preceding, the greatest outward flow

of gas follows at a quarter period interval the phase of greatest

condensation, and therefore if the development of heat be some

what retarded, the whole effect is unfavourable. This state of

things continues to prevail, as the supply tube is lengthened, until

the length of half a wave is reached, after which the motion again

changes sign, so as to restore the possibility of maintenance.

Although the size of the flame and its position in the tube (or

neck of resonator) are not without influence, this sketch of the

theory is sufficient to explain the fact, formulated by Sondhauss,
that the principal element in the question is the length of the

supply tube.

322 i. Another phenomenon of the class now under considera

tion occasionally obtrudes itself upon the notice of glass-blowers.
When a bulb about 2 cm. in diameter is blown at the end of a

somewhat narrow tube, 12 or 15 cm. long, a sound is sometimes

heard proceeding from the heated glass. For experimental pur

poses it is well to use hard glass, which can afterwards be reheated

at pleasure without losing its shape. As was found by De la Bive,
the production of sound is facilitated by the presence of vapour,

especially of alcohol and ether.

It was proved by Sondhauss 1
that a vibration of the glass

. Ann. vol. LXXIX. p. 1, 1850.
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itself is no essential part of the phenomenon, and the same

indefatigable observer was very successful in discovering the con

nection ( 303, 309) between the pitch of the note and the

dimensions of the apparatus. But no adequate explanation of the

production of sound was given.

For the sake of simplicity, a simple tube, hot at the closed end

and getting gradually cooler towards the open end, may be con

sidered. At a quarter of a period before the phase of greatest
condensation (which occurs almost simultaneously at all parts of

the column) the air is moving inwards, i.e. towards the closed end,

and therefore is passing from colder to hotter parts of the tube
;

but the heat received at this moment (of normal density) has no

effect either in encouraging or discouraging the vibration. The
same would be true of the entire operation of the heat, if the

adjustment of temperature were instantaneous, so that there was

never any sensible difference between the temperatures of the air

and of the neighbouring parts of the tube. But in fact the

adjustment of temperature takes time, and thus the temperature
of the air deviates from that of the neighbouring parts of the

tube, inclining towards the temperature of that part of the tube

from which the air has just come. From this it follows that at

the phase of greatest condensation heat is received by the air, and

at the phase of greatest rarefaction heat is given up from it, and

thus there is a tendency to maintain the vibrations. It must not

be forgotten, however, that apart from transfer of heat altogether,

the condensed air is hotter than the rarefied air, and that in order

that the whole effect of heat may be on the side of encourage

ment, it is necessary that previous to condensation the air should

pass not merely towards a hotter part of the tube, but towards a

part of the tube which is hotter than the air will be when it

arrives there. On this account a great range of temperature is

necessary for the maintenance of vibration, and even with a great

range the influence of the transfer of heat is necessarily unfavour

able at the closed end, where the motion is very small. This is

probably the reason of the advantage of a bulb. It is obvious that

if the open end of the tube were heated, the effect of the transfer

of heat would be even more unfavourable than in the case of a

temperature uniform throughout.

322 j. The last example of the production of sound by heat

which we shall here consider is a very striking phenomenon
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discovered by Kijke
1
. When a piece of fine metallic gauze,

stretching across the lower part of a tube open at both ends and

held vertically, is heated by a gas flame placed under it, a sound

of considerable power and lasting for several seconds is observed

almost immediately after the removal of the flame. Differing in

this respect from the case of sonorous flames ( 322), the genera
tion of sound was found by Bijke to be closely connected with the

formation of a through draught impinging upon the heated gauze.
In this form of the experiment the heat is soon abstracted, and

then the sound ceases; but by keeping the gauze hot by the

current from a powerful galvanic battery Rijke was able to obtain

the prolongation of the sound for an indefinite period.

These notes may be obtained upon a large scale and form a

very effective lecture experiment. For this purpose a cast iron

pipe 5 feet (152cm.) long and 4f- inches (12cm.) in diameter may
be employed. The gauze (iron wire) is of about 32 meshes to the

linear inch (2%54 cm.), and may advantageously be used in two

thicknesses. It may be moulded with a hammer on a circular

wooden block of somewhat smaller diameter than that of the pipe,
and will then retain its position in the pipe by friction. When it

is desired to produce the sound, the gauze caps are pushed up
the pipe to a distance of about a foot (30*5 cm.), and a gas flame

from a large rose burner is adjusted underneath, at such a level as

to heat the gauze to bright redness. For this purpose the ver

tical tiube of the lamp should be prolonged, if necessary, by an
additional length of brass tubing. When a good red heat is

attained, the flame is suddenly removed, either by withdrawing
the lamp or by stopping the supply of gas. In about a second

the sound begins, and presently rises to such intensity as to shake
the room, after which it gradually dies away. The whole duration

of the sound may be about 10 seconds 2
.

In discussing the question of maintenance in accordance with
the views already explained, we have to examine the character of

the variable communication of heat from the gauze to the air.

So far as the communication is affected directly by variations of

pressure or density, the influence is unfavourable, inasmuch as

the air will receive less heat from the gauze when its own tem

perature is raised by condensation. The maintenance depends

1
Pogg. Ann. vol. cvn. p. 339, 1859 ; Phil. Mag. voL xvn. p. 419, 1859.

9 Phil. Mag, vol. vn. p. 155, 1879.
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upon the variable transfer of heat due to the varying motions of

the air through the gauze, this motion being compounded of a

uniform motion upwards with a motion, alternately upwards and

downwards, due to the vibration. In the lower half of the tube

these motions conspire a quarter period before the phase of greatest

condensation, and oppose one another a quarter period after that

phase. The rate of transfer of heat will depend mainly upon the

temperature of the air in contact with the gauze, being greatest

when that temperature is lowest. Perhaps the easiest way to

trace the mode of action is to begin with the case of a simple
vibration without a steady current. Under these circumstances

the whole of the air which comes in contact with the metal, in

the course of a complete period, becomes heated ;
and after this

state of things is established, there is comparatively little further

transfer of heat. The effect of superposing a small steady up
wards current is now easily recognized. At the limit of the

inwards motion, i.e. at the phase of greatest condensation, a small

quantity of air comes into contact with the metal, which has not

done so before, and is accordingly cool; and the heat communicated

to this quantity of air acts in the most favourable manner for the

maintenance of the vibration.

A quite different result ensues if the gauze be placed in the

upper half of the tube. In this case the fresh air will come into

the field at the moment of greatest rarefaction, when the commu
nication of heat has an unfavourable instead of a favourable

effect. The principal note of the tube therefore cannot be

sounded.

A complementary phenomenon discovered by Bosscha 1 and

Biess* may be explained upon the same principles. If a current

of hot air impinge upon cold gauze, sound is produced ;
but in

order to obtain the principal note of the tube the gauze must be

in the upper, and not as before in the lower, half of the tube. In

an experiment due to Biess the sound is maintained indefinitely.

The upper part of a brass tube is kept cool by water contained in

a surrounding vessel, through the bottom of which the tube passes.

In this way the gauze remains comparatively cool, although

exposed to the heat of a gas flame situated an inch or two below

it. The experiment sometimes succeeds better when the draught

1
Pogg. Ann. vol. cvii. p. 342, 1859.

2
Pogg. Ann. vol. cvrn. p. 653, 1859 ; cix. p. 145, 1860.
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is checked by a plate of wood placed somewhat closely over the

top of the tube.

Both in Rijke's and Riess' experiments the variable transfer of

heat depends upon the motion of vibration, while the effect of the

transfer depends upon the variation of pressure. The gauze must

therefore be placed where both effects are sensible, i.e. neither

near a node nor near a loop. About a quarter of the length of

the tube, from the lower or upper end, as the case may be, appears

to be the most favourable position
1
.

322 h It remains to consider briefly another class of main

tained aerial vibrations where the maintenance is provided for by
the actual mechanical introduction of fluid, taking effect at a node

and near the phase of maximum condensation. Well-known

examples are afforded by such reed instruments as the clarinette,

and by the various wind instruments actuated directly by the lips.

The notes obtained are determined in the main by the aerial

columns, modified, it may be, to some extent by the maintaining

appliances. The reeds of the harmonium and organ come under a

different head. The pitch is there determined almost entirely by
the tongues themselves vibrating under their own elasticity*

resonating air columns being either altogether absent or playing
but a subordinate part.

In the instruments now under discussion the air column and

the wind-pipe are connected by a narrow aperture, which is opened
and closed periodically by a vibrating tongue. Tongues are

distinguished by v. Helmholtz as in-beating and out-beating.
In the first case the passage is opened when the tongue moves

inwards, i.e. against the wind, as happens in the clarinette. Lip
instruments, such as the trombone, belong to the second class, the

passage being open when the lips are moved outwards or with the

wind.

Let us consider the case of a cylindrical pipe, open at the

further end, in which the air vibrates at such a pitch as to make
the quarter wave-length equal to the length of the pipe. The end

of the column where the tongue is situated thus coincides with an

approximate node, and the aerial vibration can be maintained if

the passage is open at the moment of greatest condensation, so

1 Proc. Hoy. Imt. vol. vin. p. 536, 1879 ; Nature, vol. xvm. p. 319, 1878.



322 k."]
IN REED INSTRUMENTS. 235

that air from the wind-pipe is then forcibly injected. The tongue
is maintained in motion by the variable pressure within the pipe,

and the phase of its motion will depend upon whether it is in-

beating or out-beating. In the latter case its phase is nearly the

opposite to that of the forces operative upon it, being open when

the pressure tending to close it is greatest. This is the state of

things in lip instruments, the lips being heavy in relation to the

rapidity of the vibrations actually performed, 46. When the

tongue is light and stiff, it must be made in-beating, as in the

clarinette, and its phase is then in approximate agreement with

the phase of the forces. A slight departure in the proper direction

from precise opposition or precise agreement of phase, as the case

may be, will allow of the communication of sufficient energy to

maintain the motion in spite of dissipative influences. A more

complete analytical statement of the circumstances has been

given by v. Helmholtz 1
, to whom the whole theory is due.

The character of the sounds from the various wind instru

ments used in music differs greatly. Strongly contrasted qualities

are obtained from the trombone and the euphonion; the former

brilliant and piercing, and the latter mellow. Blaikley
3 has

analysed the sounds from a number of instruments, and has called

attention to various circumstances, such as the size of the bell-

mouth, and the shape of the cup applied to the lips, upon which

the differences probably depend. The pressures used in practice,

rising to 40 inches (102 cm.) of water in the case of the euphonion,

have been measured by Stone 3
.

1
Tonempjindungen, 4th edition, appendix vn.

2 Phil. Mag. vol. vi. p. 119, 1878. 3 Phil. Mag. vol. XLVIII. p. 113, 1874.



CHAPTER XVII.

APPLICATIONS OF LAPLACE
?

S FUNCTIONS.

323. THE general equation of a velocity potential, when

referred to polar co-ordinates, takes the form ( 241)

T

If k vanish, we have the equation of the ordinary potential,

which, as we know, is satisfied, if ^=7^5^, where Sn denotes the

spherical surface harmonic 1 of order n. On substitution it appears
that the equation satisfied by Sn is

+l)Sn = ....... (2)./ \ /
sin 6 dd \ d6 J sin3 9

Now, whatever the form of ty may be, it can be expanded in

a series of spherical harmonics

+ ............... (3),

where tyn will satisfy an equation such as (2).

Comparing (1) and (2) we see that to determine ^rn as a

function of r, we have

or, as it may also be written,

1 On the theory of these functions the latest English works are Todhunter's
The Functions of Z&place, Lam4, and Bessel, Ferrers' Spherical Harmonics and

Gray and Mathews' Be&tel's Functions, Macmillan, 1895.
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In order to solve this equation, we may observe that when r
is very great, the middle term is relatively negligible, and that
then the solution is

r^n**AJ + Br** ................. ....(5).

The same form may be assumed to hold good for the complete
equation (4), if we look upon A and B no longer as constants, but
as functions of r, whose nature is to be determined. Substituting
in (4), we find for B

9

Let us assume

and substitute in (6). Equating to zero the coefficient of (ikr)
we obtain

Thus =i(n + !).,,

p -p(-l)( + 2)_(-l)tt( n n .

3
~

* 272
---

2~7i
-" " &c>

'

so that

i

M (ra + 1)
|

(n -!)...( + 2) . (n 2)...(n + 8)
"*"

2.iA;r
+

2.4.(i^)'
+

2.4.e.(tfcrX'

1.2.8...2n )

2.4.6...2n.(fcr)"J
...............(9)<

Denoting with Prof. Stokes1 the series within brackets by
f-n. (*fe"), we have

B = Btfn (ikr)...........................(10).

In like manner by changing the sign of i, we get

A=A,fn (-ikr)........................ (11).

The symbols -4 and S
, though independent of r, are functions

of the angular co-ordinates : in the most general case, they are

any two spherical surface harmonics of order n. Equation (5) may
therefore be written

r1rn
= Sner*rfn (ikr) + Sn'e^fn (- ikr).........(12).

1 On the Communication of Vibrations from a Vibrating Body to a surrounding
Gas. Phil. Tram. 1868.
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By differentiation of (12)

where

...... (14).

The forms of the functions F, as far as n = 7, are exhibited in

the accompanying table :

7+
240y~

3+ 525y-> + 525 jr
4

735jr
2+ 2625i/-

8 + 5670^+
9765y~

8
-f

4-1081080^

In order to find the leading terms in Fn (ikr) when ikr is small,

we have on reversing the series in (9)

/ (ikr)
= 1.3.5 ... (2n- l)(tfcr)r

|l
+iir -I- ^=-~ (tfo-y + ...I

v

whence by (14) we find

jfn (Or) =1.3.5...(2n-l)(7i + l) (r)r*

324. An important case of our general formulae occurs when

, ijr represents a disturbance which is propagated wholly outwards.

At a great distance from the origin, /n (iAr) =/w (iAr) = l, and

thus, if we restore the time factor (c**), we have

(1),

of which the second part represents a disturbance travelling
inwards. Under the circumstances contemplated we are there

fore to take Sn = 0, and thus

r+n= Snfn (ikr) #*<*- ..................... (2),

which represents in the most general manner the nth harmonic

component of a disturbance of the given period diffusing itself

outwards into infinite space.
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The origin of the disturbance may be in a prescribed normal
motion of the surface of a sphere of radius c. Let us suppose
that at any point on the sphere the outward velocity is repre

sented^ by
Ueitat

9
U being in general a function of the position of

the point considered.

If U be expanded in the spherical harmonic series

[7- J/o+ Z7i+ Z7a + ... + Un + ............... (3),

we must have by (13) 323

(4).

The complete value of ty is thus

............ (5),

where the summation is to be extended to all (integral) values of
n. The real part of this equation will give the velocity potential
due to the normal velocity Ucoskat 1 at the surface of the

sphere r = c.

Prof. Stokes has applied this solution to the explanation of a
remarkable experiment by Leslie, according to which it appeared
that the sound of a bell vibrating in a partially exhausted receiver

is diminished by the introduction of hydrogen. This paradoxical

phenomenon has its origin in the augmented wave-length due to

the addition of hydrogen, in consequence of which the bell loses

its hold (so to speak) on the surrounding gas. The general expla
nation cannot be better given than in the words of Prof. Stokes :

"
Suppose a person to move his hand to and fro through a small

space. The motion which is occasioned in the air is almost exactly
the same as it would have been if the air had been an incompres
sible fluid. There is a mere local reciprocating motion, in which
the air immediately in front is pushed forward, and that imme

diately behind impelled after the moving body, while in the

anterior space generally the air recedes from the encroachment of

the moving body, and in the posterior space generally flows in

from all sides to supply the vacuum which tends to be created
;
so

that in lateral directions the flow of the fluid is backwards, a

1 The assumption of a real value for U is equivalent to limiting the normal

velocity to be in the same phase all over the sphere r=c. To include the most

general aerial motion U would have to be treated as complex.
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portion of the excess of fluid in front going to supply the de

ficiency behind* Now conceive the periodic time of the motion
to be continually diminished. Gradually the alternation of move
ment becomes too rapid to permit of the full establishment of the

merely local reciprocating flow ;
the air is sensibly compressed and

rarefied, and a sensible sound wave (or wave of the same nature,
in case the periodic time be beyond the limits suitable to hearing)
is propagated to a distance. The same takes place in any gas ;

and the more rapid be the propagation of condensations and rare

factions in the gas, the more nearly will it approach, in relation to

the motions we have under consideration, to the condition of an

incompressible fluid
;
the more nearly will the conditions of the

displacement of the gas at the surface of the solid be satisfied by a

merely local reciprocating flow."

In discussing the solution (5), Prof. Stokes goes on to say,

"At a great distance from the sphere the function fn (ikr)
1 be

comes ultimately equal to 1, and we have

" It appears (from the value of dty/dr) that the component of

the velocity along the radius vector is of the order r"1
, and that in

any direction perpendicular to the radius vector of the order r"2
,

so that the lateral motion may be disregarded except in the

neighbourhood of the sphere.

" In order to examine the influence of the lateral motion in the

neighbourhood of the sphere, let us compare the actual disturb

ance at a great distance with what it would have been if all lateral

motion had been prevented, suppose by infinitely thin conical

partitions dividing the fluid into elementary canals, each bounded

by a conical surface having its vertex at the centre.

" On this supposition the motion in any canal would evidently
be the same as it would be in all directions if the sphere vibrated

by contraction and expansion of the surface, the same all round,
and such that the normal velocity of the surface was the same as
it is at the particular point at which the canal in question abuts
on the surface. Now if U were constant the expansion of U would

1 I have made some slight changes in Prof. Stokes 1

notation.
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be reduced to its first term Z70> and seeing that / (i&r)= 1, we
should have from (5),

77U
P _

FQ(ikc)'

This expression will apply to any particular canal if we take Z7 to

denote the normal velocity at the sphere's surface for that particular

canal; and therefore to obtain an expression applicable at once

to all the canals, we have merely to write U for Z7 . To facilitate

a comparison with (5) and (6), I shall, however, write 2f7n for U.

We have then,

F (ikc)
..... * ...............

- '*

It must be remembered that this is merely an expression appli

cable at once to all the canals, the motion in each of which takes

place wholly along the radius vector, and accordingly the expres

sion is not to be differentiated with respect to 9 or ay with the

view of finding the transverse velocities.

" On comparing (7) with the expression for the function ty in

the actual motion at a great distance from the sphere (6), we see

that the two are identical with the exception that Un is divided

by two different constants, namely F (ikc) in the former case and

Fn (ike) in the latter. The same will be true of the leading terms

(or those of the order r"1
) in the expressions for the condensation

and velocity. Hence if the mode of vibration of the sphere be

such that the normal velocity of its surface is expressed by a

Laplace's function of any one order, the disturbance at a great

distance from the sphere will vary from one direction to another

according to the same law as if lateral motions had been pre

vented, the amplitude of excursion at a given distance from the

centre varying in both cases as the amplitude of excursion, in a

normal direction, of the surface of the sphere itself. The only

difference is that expressed by the symbolic ratio Fn(ikc) : F<> (ike).

If we suppose Fn (ike) reduced to the form /% (cos o -I- i sin an),

the amplitude of vibration in the actual case will be to that in the

supposed case as /x to /xw ,
and the phases in the two cases will

differ by ct <*n .

" If the normal velocity of the surface of the sphere be not

expressible by a single Laplace's Function, but only by a series,

finite or infinite, of such functions, the disturbance at a given
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great distance from the centre will no longer vary from one direc

tion to another according to the same law as the normal velocity

of the surface of the sphere, sinc.e the modulus p,n and likewise

the amplitude o^ of the imaginary quantity Fn (ike) vary with the

order of the function.
" Let us now suppose the disturbance expressed by a Laplace's

function of some one order, and seek the numerical value of the

alteration of intensity at a distance, produced by the lateral

motion which actually exists.

"The intensity will be measured by the vis viva produced in a

given time, and consequently will vary as the density multiplied

by the velocity of propagation multiplied by the square of the

amplitude of vibration. It is the last factor alone that is different

from what it would have been if there had been no lateral motion.

The amplitude is altered in the proportion of ^ to //., so that if

^2
:^

2 =: /rt, In is the quantity by which the intensity that would

have existed if the fluid had been hindered from lateral motion

has to be divided.
"
If \ be the length of the sound-wave corresponding to the

period of the vibration, k = 27r/\, so that kc is the ratio of the

circumference of the sphere to the length of a wave. If we sup

pose the gas to be air and X to be 2 feet, which would correspond

to about 550 vibrations in a second, and the circumference 2?rc to

be 1 foot (a size and pitch which would correspond with the case

of a common house-bell), we shall have kc . The following

table gives the values of the squares of the modulus and of the

ratio In for the functions Fn (ike) of the first five orders, for each

of the values 4, 2, 1, J, and J of kc. It will presently appear why
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the table has been extended further in the direction of values

greater than than it has in the opposite direction. Five signi
ficant figures at least are retained.

" When kc = co we get from the analytical expressions In = 1.

We see from the table that when kc is somewhat large In is liable

to be a little less than 1, and consequently the sound to be a little

more intense than if lateral motion had been prevented. The

possibility of that is explained by considering that the waves of

condensation spreading from those compartments of the sphere
which at a given moment are vibrating positively, i.e. outwards,

after the lapse of a half period may have spread over the neigh

bouring compartments, which are now in their turn vibrating

positively, so that these latter compartments in their outward

motion work against a somewhat greater pressure than if such

compartment had opposite to it only the vibration of the gas
which it had itself occasioned

;
and the same explanation applies

mutatis mutandis to the waves of rarefaction. However, the in

crease of sound thus occasioned by the existence of lateral motion

is but small in any case, whereas when kc is somewhat small In
increases enormously, and the sound becomes a mere nothing

compared with what it would have been had lateral motion been

prevented.

"The higher be the order of the function, the greater will be the

number of compartments, alternately positive and negative as to

their mode of vibration at a given moment, into which the surface

of the sphere will be divided. We see from the table thiat for a

given periodic time as well as radius the value of In becomes con

siderable when n is somewhat high. However practically vibra

tions of this kind are produced when the elastic sphere executes,

not its principal, but one of its subordinate vibrations, the pitch

corresponding to which rises with the order of vibration, so that k

increases with that order. It was for this reason that the table

was extended from kc == 0*5 further in the direction of high pitch

than low pitch, namely, to three octaves higher and only one octave

lower.

" When the sphere vibrates symmetrically about the centre, i.e.

so that any two opposite points of the surface are at a given

moment moving with equal velocities in opposite directions, or

more generally when the mode of vibration is such that there is

no change of position of the centre of gravity of the volume, there
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Is no term of order 1. For a sphere vibrating in the manner of a

bell the principal vibration is that expressed by a term of the

order 2, to which I shall now more particularly attend.

"
Putting, for shortness, ^c3 =

q,
we have

" The minimum value of I2 is determined by

giving approximately,

q = 12-859, kc = 3'586, /V = 13'859, tf = 12'049,

72
= -86941;

so that the utmost increase of sound produced by lateral motion

amounts to about 15 per cent.

"I now come more particularly to Leslie's experiments. Nothing

is stated as to the form, size, or pitch of his bell; and even if these

had been accurately described, there would have been a good deal

of guess-work in fixing on the size of the sphere which should be

considered the best representative of the bell. Hence all we can

do is to choose such values for k and c as are comparable with the

probable conditions of the experiment.

"I possess a bell, belonging to an old bell-in-air apparatus,

which may probably be somewhat similar to that used by Leslie.

It is nearly hemispherical, the diameter is 1*96 inch, and the pitch

an octave above the middle c of a piano. Taking the number of

vibrations 1056 per second, and the velocity of sound in air 1100

feet per second, we have X = 12-5 inches. To represent the bell by
a sphere of the same radius would be very greatly tp underrate the

influence of local circulation, since near the mouth the gas has but

a little way to get round from the outside to the inside or the

reverse. To represent it by a sphere of half the radius would still

apparently be to underrate the .effect. Nevertheless for the sake

of rather under-estimating than exaggerating the influence of the

cause here investigated, I will make these two suppositions suc

cessively, giving respectively c = *98 and c = '4*9, kc = '4926, and

kc = '2463 for air.
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" If it were not for lateral motion the intensity would vary from

gas to gas in the proportion of the density into the velocity of

propagation, and therefore as the pressure into the square root of

the density under a standard pressure, if we take the factor de

pending on the development of heat as sensibly the same for the

gases and gaseous mixtures with which we have to deal. In the

following Table the first column gives the gas, the second the
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pressure p, in atmospheres, the third the density D under the

pressure p} referred to the density of the air at the atmospheric

pressure as unity, the fourth, Qr ,
what would have been the inten

sity had the motion been wholly radial, referred to the intensity
in air at atmospheric pressure as unity, or, in other words, a

quantity varying as p x (the density at pressure 1)*. Then follow

the values of q, /2 ,
and Q, the last being the actual intensity

referred to air as before.

"An inspection of the numbers contained in the columns headed

Q will shew that the cause here investigated is amply sufficient to

account for the facts mentioned by Leslie."

The importance of the subject, and the masterly manner in

which it has been treated by Prof. Stokes, will probably be thought
sufficient to justify this long quotation. The simplicity of the true

explanation contrasts remarkably with conjectures that had pre

viously been advanced. Sir J. Herschel, for example, thought
that the mixture of two gases tending to pyopagate sound with

different velocities might produce a confusion resulting in a rapid

stifling of the sound.

[The subject now under consideration may be still more simply
illustrated by the problems of 268, 301. The former, for in

stance, may be regarded as the extreme case of the present, in

which the spherical surface is reduced to a plane vibrating in

rectangular segments. If we suppose the size of these segments,
determined by p and q, to be given, and trace the effect of gradu

ally increasing frequency, we see that it is only when the frequency
attains a certain value that sensible vibrations are propagated to

infinity, the law of diminution with distance being exponential
in its form. On the other hand vibrations whose frequency
exceeds the critical value are propagated without loss, escaping
the attenuation to which spherical waves must of necessity

submit.]

325. The term of zero order

^ =
^ e*tt-r, (1).

where S is a complex constant, corresponds to the potential of a

simple source of arbitrary intensity and phase, situated at the

centre of the sphere ( 279). If, as often happens in practice, the
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source of sound be a solid body vibrating without much change of

volume, this term is relatively deficient. In the case of a rigid

sphere vibrating about a position of equilibrium, the deficiency is

absolute 1

,
inasmuch as the whole motion will then be represented

by a term of order 1
;
and whenever the body is very small in

comparison with the wave-length, the term of zero order must

be insignificant. For if we integrate the equation of motion,

V2

ijr -4-4*^
= 0, over the small volume included between the body

and a sphere closely surrounding it, we see that the whole quan

tity of fluid which enters and leaves this space is small, and that

therefore there is but little total flow across the surface of the

sphere.

Putting n = 1, we get for the term of the first order

(2),

and Si is proportional to the cosine of the angle between the

direction considered and some fixed axis. This expression is of

the same form as the potential of a double source ( 294), situated

at the centre, and composed of two equal and opposite simple

^sources lying on the axis in question, whose distance apart is

infinitely small, and intensities such that the product of the

intensities and distance is finite. For, if x be the axis, and the

cosine of the angle between x and r be
//,,

it is evident that the

potential of the double source is proportional to

d fe-
i]

^\ d /<r^ ., ptr** L
,

1 )-
//,

- - = ik --
i 1 4- -7 r -

dx\ r' ) ^dr\ r J r \ ^kr}

It appears then that the disturbance due to the vibration of a

sphere as a rigid body is the same as that corresponding to a

double source at the centre whose axis coincides with the line of

the sphere's vibration.

The reaction of the air on a small sphere vibrating as a rigid

body with a harmonic motion, may be readily calculated from

preceding formulae. If denote the velocity of the sphere at

time t
}

U.^^fr ........................... (3),

and therefore for the value of ^ at the surface of the sphere, we

have from (5) 324,

The centre of the sphere being the origin of coordinates.
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The force E due to aerial pressures accelerating the motion is

given by

If we write

then 3 = p . | Trpc
3

. f
- qka . f Trpc

3
. f ............... (6),

inasmuch as f = ia f.

The operation of the air is therefore to increase the effective

inertia of the sphere by p times the inertia of the air displaced,
and to retard the motion by a force proportional to the velocity,

and equal to | -rrpc
3

. qkaf>, these effects being in general functions

of the frequency of vibration. By introduction of the values of

and Fl we find

so that,

When kc is small, we have approximately p =
Hence the effective inertia of a small sphere is increased by one-

half of that of the air displaced a quantity independent of the

frequency and the same as if the fluid were incompressible. The

dissipative term, which corresponds to the energy emitted, is of

high order in kc, and therefore (the effects of viscosity being

disregarded) the vibrations of a small sphere are but slowly

damped.

The motion of an ellipsoid through an incompressible fluid has

been investigated by Green 1

, and his result is applicable to the

calculation of the increase of effective inertia due to a compressible
fluid, provided the dimensions of the body be small in comparison
with the wave-length of the vibration. For a small circular disc

vibrating at right angles to its plane, the increase of effective

inertia is to the mass of a sphere of fluid, whose radius is equal to

1
Edinburgh Transactions> Dec. 16, 1833. Also Green's Hatheviatical Papers,

edited by Ferrers. Macmillan & Co., 1871.
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that of the disc, as 2 to TT. The result for the case of a sphere

given above was obtained by Poisson 1

, a short time before the

publication of Green's paper.

It has been proved by Maxwell 2 that the various terms of the

harmonic expansion of the common potential may be regarded as

due to multiple points of corresponding degrees of complexity.

Thus Vi is proportional to -57-37
-rr (- )

where there are *r r dh1dh...dhi \rj
'

differentiations of r"1 with respect to the axes hly A2 , &c., any
number of which may in particular cases coincide. It might

perhaps have been expected that a similar law would hold for the

velocity potential with the substitution of r-1^-^ for r~l
. This

however is not the case
;

it may be shewn that the potential of a

c

quadruple source, denoted by ,, ,1 .
-

, corresponds in general

not to the term of the second order simply, viz., $
-ticr

2

but to a combination of this with a term of zero order. The

analogy therefore holds only in the single instance of the doiMe

point or source, though of course the function r^e"^ after any
number of differentiations continues to satisfy the fundamental

equation

(V
2

It is perhaps worth notice that the disturbance outside any

imaginary sphere which completely encloses the origin of sound

may be represented as due to the normal motion of the surface of

any smaller concentric sphere, or, as a particular case when the

radius of the sphere is infinitely small, as due to a source concen

trated in one point at the centre. This source will in general be

composed of a combination of multiple sources of all orders of

complexity.

326. When the origin of the disturbance is the vibration of a

rigid body parallel to its axis of revolution, the various spherical

harmonics Sn reduce to simple multiples of the zonal harmonic

Pn (/*,),
which may be defined as the coefficient' of. e

n in the expan
sion of (1 2e/4-f

2

}~* in rising powers of e. [For the forms of

these functions see 334.] And whenever the solid, besides being

1 Jdemoires de VAcadmie des Sciences, Tom. xi. p. 521.

2 Maxwell's Electricity and Magnetism, Ch. ix.
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symmetrical about an axis, is also 'symmetrical with respect to an

equatorial plane (whose intersection with the axis is taken as

origin of co-ordinates), the expansion of the resulting disturbance

in spherical harmonics will contain terras of odd order only. For

example, if the vibrating body were a circular disc moving perpen

dicularly to its plane, the expansion of ty would contain terms

proportional to Pa (//), P3 (/*.),
P5 (/&),

&c. In the case of the sphere,

as we have seen, the series reduces absolutely to its first term, and

this term will generally be preponderant.

On the other hand we may have a vibrating system symmetri
cal about an axis and with respect to an equatorial plane, but in

such a manner that the motions of the parts on the two sides of

the plane are opposed. Under this head comes the ideal tuning-

fork, composed of equal spheres or parallel circular discs, whose

distance apart varies periodically. Symmetry shews that the

velocity-potential, being the same at any point and at its image in

the plane of symmetry, must be an even function of
/-&,

and there

fore expressible by a series containing only the even functions

PO(/*), P2 (/i), &c. The second function P2 (X) would usually

preponderate, though in particular cases, as for example if the

body were composed of two discs very close together in comparison
with their diameter, the symmetrical term of zero order might
become important. A comparison with the known solution for the

sphere whose surface vibrates according to any law, will in most

cases furnish material for an estimate as to the relative importance
of the various terms.

[The accompanying table, p. 251, giving Pn as a function of

6, or cos"*^, is abbreviated from that of Perry
1

.]

327. The total emission of energy by a vibrating sphere is

found by multiplying the variable part of the pressure (proportional
to 1^) by the normal velocity and integrating over the surface

( 245). In virtue of the conjugate property the various spherical

harmonic terms may be taken separately without loss of generality.
We have ( 323)

dr
~

r
*

1 Phil. Mag. vol. xxxn., p. 516, 1891.
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Table of Zonal Spherical Harmonics.
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or on rejecting the imaginary part

^n =- ^SS* {p cos k (at
-

r) + a' sin k (at
-

r)}}

dr

where

Thus

cos3 A (a*
-

r)
-

a'/3 sin
2

(a*
-

r)

+ (aa'
-

/3fi) sin k (at
-

r) cos fc (a*
-

r)}.

When this is integrated over a long range of timer the periodic

terms may be omitted, and thus

Now, since there can be on the whole no accumulation of

energy in the space included between "two concentric spherical

surfaces, the rates of transmission of energy across these surfaces

must be the same, that is to say r""
1
(af/3 yS'a) must be independent

of r. In order to determine the constant value, we may take the

particular case of r indefinitely great, when

Fn (ikr) = ihr, a = 0, /3 kr,

Thus a
/

y3-/S
/
a= Ar, identically ............... ,..(5).

It may be observed that the left-hand member of (5) when

multiplied by i is the imaginary part of (a 4- if3) (a' iff) or of

Fn (ikr)fn (:-ikr) t so that our result may be expressed by saying
that the imaginary part ofFn (ikr)fn ( ikr) is ikr, or

Fn (ikr)fn (-ikr)-Fn (-ikr)fn (ikr)
= 2ikr ...... (6).

In this form we shall have occasion presently to make use of it.

The same conclusion may be arrived at somewhat more directly

by an application of Helmhdltz's theorem ( 294), i.e. that if two

functions u and v satisfy through a closed space S the equation
^= 0, then

//(-*- .....................<7>-
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If we take for S the space between two concentric spheres,

making

we find that r-*{Fn (ikr)fn (-ikr)-Fn (-ikr)fn (ikr)} must be

independent of r.

We have therefore

so that the expression for the energy emitted in time t is (since

zd<T ..................... (8).

It will be more instructive to exhibit W as a function of the

normal motion at the surface of a sphere of radius c. From (2)

Y _ --
^ j-

cos fatf ( CQS fo ^ ft gjn c)

+ sin kat (a sin kc ft cos Ac)],

so that, if the amplitude of d^n/dr be Un , we. have as the relation

between Sn and Un
.....................(9).

This formula may be verified for the particular cases n = and

n= 1, treated in 280, 325 respectively.

328. If the source of disturbance be a normal motion of a

small part of the surface of the sphere (r
=

c) in the immediate

neighbourhood of the point ^ = 1, we must take in the general

solution applicable to divergent waves, viz.

n .............(1),
7 Sf n (IKC)

Un = K2n + 1) P O) - !

+1
UPn(p) dp

J 1

.........(2);
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for where U is sensible, Pn (ji)
= 1. Thus

*=-^-//^<2 ^$i ......

la this formula \\ UdS measures the intensity of the source.

If ike be very small,

so that ultimately

and the waves diverge as from a simple source of equal magnitude.

We will now examine the problem when ko is not very small,

taking for simplicity the case where
-*fr

is required at a great

distance only, so that fn(ikr) 1. The factor on which the rela

tive intensities in various directions depend is

~~2 Fn(iko)
..................... '

and a complete solution of the question would involve a discussion

of this series as a function of p and kc.

Thus, if

<">

. . ......... (7),

where tan(9= ff : F ....................... (8).

The intensity of the vibrations in the various directions is thus

measured by F2 + ffi. If, as before, Fn = z + i /3,

The following table gives the means of calculating F and G
for any value of

/i, when &c=^, 1, or 2. In the last case it is

necessary to go as far as n = 7 to get a tolerably accurate result, and

for larger values of kc the calculation would soon become very
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laborious. In all problems of this sort the harmonic analysis seems

to lose its power when the waves are very small in comparison
with the dimensions of bodies.

kc =

kc = 2,

The most interesting question on which this analysis informs

us is the influence which a rigid sphere, situated close to the

source, has on the intensity of sound in different directions.

By the principle of reciprocity ( 294) the source and the place of

observation may be interchanged. When therefore we know the
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relative intensities at two distant points .B, J3', due to a source A
on the surface of the sphere, we have also the relative intensities

(measured by potential) at the point A, due to distant sources at

and Br

. On this account the problem has a double interest.

As a numerical example I have calculated the values ofF+ iCr

and jP3 -f G* for the above values of kc, when /-t
= 1, yu,

= 1, ^ == 0,

that is, looking from the centre of the sphere, in the direction of

the source, in the opposite direction, and laterally.

When ko is zero, the value of F* + G2
is '25, which therefore

represents on the same scale as in the table the intensity due to

an unobstructed source of equal magnitude. We may interpret kc

as the ratio of the circumference of the sphere to the wave-length
of the sound.

In looking at these figures the first point which attracts

attention is the comparatively slight deviation from uniformity
in the intensities in different directions. Even when the circum

ference of the sphere amounts to twice the wave-length, there is

scarcely anything to be called a sound shadow. But what is

perhaps still more unexpected is that in the first two cases the

intensity behind the sphere exceeds that in a transverse direction.

This result depends mainly on the preponderance of the term of

the first order, which vanishes with
JJL.

The order of the more

important terms increases with fee; when kc is 2, the principal
term is that of the second order.

Up to a certain point the augmentation of the sphere will

increase the total energy emitted, because a simple source emits
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twice as much energy when close to a rigid plane as when entirely

in the open. Within the limits of the table this effect masks the

obstruction due to an increasing sphere, so that when
jj>
= 1,

the intensity is greater when the circumference is twice the wave

length than when it is half the wave-length, the source itself

remaining constant.

If the source be not simple harmonic with respect to time, the

relative proportions of the various constituents will vary to some

extent both with the size of the sphere and with the direction

of the point of observation, illustrating the fundamental character

of the analysis into simple harmonics.

When kc is decidedly less than one-half, the calculation may
be conducted with sufficient approximation algebraically. The

result is

4- terms in A6 c6 ...... ............... (10).

It appears that so far as the term in #c2
,
the intensity is an

even function of p, viz. the same at any two points diametrically

opposed. For the principal directions //,= 1, or 0, the numerical

calculation of the coefficient of k*c4 is easy on account of the simple

values then assumed by the functions P. Thus

'77755 &V+ ......

-19534&V+

When A^c4 can be neglected, the intensity is less in a lateral

direction than immediately in front of or behind the sphere. Or,

by the reciprocal property, a source at a distance will give a greater

intensity on the surface of a small sphere at the point furthest

from the source than in a lateral position.

If we apply these formulae to the case of kc = J, we get

which agree pretty closely with the results of the more complete

calculation.



258 EFFECT OF SMALL SPHERE. [328.

For other values of p, the coefficient of &*c4 in (10) might be

calculated with the aid of tables of Legendre's functions, or from

the following algebraic expression in terms of /t
1

,

= -78138 H- 1-5 p + -85938 tf
- "03056 ^

4
.

The difference of intensities in the directions p, -f 1 and

6= 1 may be very simply expressed. Thus

(F* -f G%=1
-

(J* +

If yfcc = f,

If jtc = $,

If ic=
3

At the same time the total value of Fz + <?
2
approximates to

25, when Jcc is small.

These numbers have an interesting bearing on the explanation
of the part played by the two ears in the perception of the quarter
from which a sound proceeds.

It should be observed that the variations of intensity in different

directions about which we have been speaking are due to the

presence of the sphere as an obstacle, and not to the fact that

the source is on the circumference of the sphere instead of at

the centre. At a great distance a small displacement of a

source of sound will affect the phase but not the intensity in any
direction.

In order to find the alteration of phase we have for a small

sphere

= G: J = c (- 1 -f f /*), or = A;c(- 1 +$/*) nearly.

Thus in (7) eik <**--+c)+i0 = e
* fct-r+fcuo

}

from which we may infer that the phase at a distance is the same
as if the source had been situated at the point y^=l, r = |-c

(instead of r = c), and there had been no obstacle.

329. The functional symbols / and F may be expressed in

terms of P. It is known 2 that

1 For* the forms of the functions P, see 334.
2 Thomson and Tait's Nat. Phil 782 (quoted from Murphy).
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or, on changing p into 1
//,,

/ ^7 \
Consider now 'the symbolic operator Pn f l _J, and let it

operate on y\

A comparison with (9) 323 now shews that

.................. (2),

from which we deduce by a known formula,

In like manner,

If we now identify y with ikr, we see that the general solution,

(12) 323, may be written

from which the second term is to be omitted, if no part of the

disturbance be propagated inwards.

Again from (14) 323 we see that

d\fn (y)

d)'y* V dy' y
'

whence Fn (y)
= y*Pn l - l-- ............ (5),

Similarly,
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Using these expressions in (13) 323, we get

/ v*n-<? P (
d
-}= _* -

330. We have already considered in some detail the form

assumed Toy our general expressions when there is no source at

infinity. An equally important class of cases is defined by the

condition that there be no source at the origin. We shall now

investigate what restriction is thereby imposed on our general

expressions.

Reversing the series for/n ,
we have

shewing that, as r diminishes without limit, r^n approximates to

In order therefore that
yfrn may be finite at the origin,

& + (-l)Sf/-0 ........................... (1)

is a necessary condition ; that it is sufficient we shall see later.

Accordingly (12) 323 becomes

T^Tn
= Sn [e-^fn (*T>

" (~ Dtt 6+{^/n (- *r)} ......(2).

If, separating the real and imaginary parts of /, we write (as

before)

fn = ! + ip ........................... (3),

(2) may be put into the form

rfn
- 2in+1 Sn [a!

sin (kr 4- i iwr)
-

/3
;

cos (ir + i UTT)} ...... (4).

Another form may be derived from (4) 329. We have
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Since the function Pn is either wholly odd or wholly even, the

expression for tyn is wholly real or wholly imaginary.

In order to prove that the value of ^n in (5) remains finite

when r vanishes, we hegin by observing that

sothat

(7),

as is obvious when it is considered that the effect of differentiating

gifo-M any number of times with respect to ikr is to multiply it by
the corresponding power of /*. It remains to expand the expres

sion on the right in ascending powers of r. We have

Now any positive integral power of
/x,,

such as /A*, can be

expanded in a terminating series of the functions P, the function

of highest order being Pp . It follows that, ifp < n,

j i

by known properties of these functions
;
so that the lowest power

r-KL

of ikr in Pn (p) eikr* dp is (ikr)
n

. Retaining only the leading
J -i

tfirm. we mav writeterm, we may write

r+l

I
p.

J -i-i . * ... -i

From the expression for Pn (^) in terms of
yu-,

viz.

_
-

2 (2n
-

we see that

' ' '

....-
n(n-l)(n-2)(n-3)

"""2.4.(2n-l)(2n-3)
M

Q g /o'

M
1% -P (A1) + terms in V- of lower order than f*

n
'

1.0.5... ^71 1^
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and therefore

Accordingly, by (5) and (7)

which shews that
\frn vanishes with r, except when n 0.

The complete series for i^, when there is no source at the

pole, is more conveniently obtained by the aid of the theory of

Bessel's functions. The differential equations (4) 200, satisfied

by these functions, viz.

may also be written in the form

It is known ( 200). that the solution of (11) subject to the

condition of finiteness when z = 0, is y = AJm (z), where

2. (2m + 2)

is the Bessel's function of order m.

When m is integral, T (m + 1) = 1 . 2 . 3 . . . m; but here we have

to do with m fractional and of the form n-t~ , n being integral.

In this case

- ............(u).

Referring now to (12), we see that the solution of

under the same condition of finiteness when z = 0, is

z) ........................ (16).
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Now the function fa ,
with which we are at present concerned,

satisfies (4) 323, viz.

which is of the same form as (15), ifm = n + ^ ;
so that the solu

tion is

_ , __ ___ _~ _
TT

(
2 . (2?i + 3)

Determining the constant by a comparibon with (10), we find

= - Zik (- I)'
1 Sn

lB 3. 5 ...(2n+i) i

1 ~
ZW+S)

_+
2~T~(2i + 3) (2n +5) 2.4.6. (2. + 3) (2 + 5) (2/z + 7)

(19),

as the complete expression for ^n in rising power* of >\

Comparing the different expressions (5) and (19) for $*, we

obtain

.>(kr ) (20).

'"{Tl

If F = a 4- i/8, the corresponding expressions for dfa/dr, are

~dr
~

r3
*

= 2t/l+
'

-
{a sin (fcr + i nir)

-
/9 cos (/^' + J /w)}

ra

d \ rf sin &?*

. i^rv cZ . kr
'

kr

T^ > i ft.. /r,7"i r\ "!( -
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It will be convenient to write down for reference the forms of

ty and d-v/r/dr for the first three orders.

~~

sin kr

(sin&r , |- =-- J_-- cos kr> .

\dr r
(

kr )

sinfcr- ooer

(f. 9 \ .

7
/, 9\ -

7
1

^
4 - 77^ sin AT - [kr

-
7- cos Ark

[V iV2
/ \ *r/ j

-
dr

331. One of the most interesting applications of these results

is to the investigation of the motion of a gas within a rigid

spherical envelope. To determine the free periods we have only
to suppose that d^/dr vanishes, when r is equal to the radius of

the envelope. Thus in the case of the symmetrical vibrations, we
have to determine k,

tan kr = kr (1),

an equation which we have already considered in the chapter
on membranes, 207. The first finite root (kr = 1*4303 TT) corre

sponds to the symmetrical vibration of lowest pitch. In the case

of a higher root, the vibration in question has spherical nodes,

whose radii correspond to thfe inferior roots.

Any cone, whose vertex is at the origin, may be made rigid
without affecting the conditions of the question.

The loops, or places of no pressure variation, are given by

(kr)"
1 sin kr = 0, or Ar = m7r, where ra is any integer, except

zero.

The case of n=l, when the vibrations may be called dia

metral, is perhaps the most interesting. Slt being a harmonic
of order 1, is proportional to cos 6 where is the angle between r

ajid some fixed direction of reference. Since dfa/dd vanishes only
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at the poles, there are no conical nodes 1 with vertex at the centre.

Any meridional plane, however, is nodal, and may be supposed

rigid. Along any specified radius vector, fa and dfa/dd vanish,

and change sign, with cos kr (kr)"
1 sin kr, viz. when tan kr Jcr.

To find the spherical nodes, we have

The first root is kr = 0. Calculating from Trigonometrical
Tables by trial and error, I find for the next root, which cor

responds to the vibration of most importance within a sphere,

kr = 119-26 x Tr/180 ;
so that r:\ = -3313.

The air sways from side to side in much the same manner as

in a doubly closed pipe. Without analysis we might anticipate

that the pitch would be higher for the sphere than for a closed

pipe of equal length, because the sphere may be derived from the

cylinder with closed ends, by filling up part of the latter with

obstructing material, the effect of which must be to sharpen the

spring, while the mass to be moved remains but little changed.
In fact, for a closed pipe of length 2r,

r :X = 25.

The sphere is thus higher in pitch than the cylinder by about

a Fourth.

The vibration now under consideration is the gravest of which

the sphere is capable ;
it is more than an octave graver than the

gravest radial vibration. The next vibration of this type is such

that AT = 340-35 Tr/180, or

r :7t=-9454,

and is therefore higher than the first radial.

When kr is great, the roots of (2) may be conveniently calcu

lated by means of a series. If kr = <TTT ~y, [where cr is an integer,]

then
2 QTT - y)-

from which we find

7
2 16 ^ ,.

kr cnr y 3+ (*)*
CT7T 6cr7TZ

1 A node is a surface which might be supposed rigid, viz. one across which there

is no motion.
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When n - 2, the general expression for fflf is

& = A (cos*9 - J) + (^i cos G) -f B! sin a) sin (9 cos 6

L 2 cos 2o> + 52 sin 2o>) sin
2 #. ...(4),

from which we may select for \pecial consideration the following

notable cases:

(a) the zonal harmonic,

Here dfajdQ is proportional to sin 29, and therefore vanishes

when =
^7r. This shews that the equatorial plane is a nodal

surface, so that the same motion might take place within a closed

hemisphere. Also since Sz does not involve co, any meridianal plane

may be regarded as rigid.

(jS) the sectorial harmonic

2 =J. 2 cos2o>sin
2

....................... (5).

Here again d^jdd varies as sin 26, and the equatorial plane is

nodal. But d^2fda> varies as sin 2o>, and therefore does not vanish

independently of 9, except when sin 2a> = 0. It appears accordingly

that two, and but two, meridianal planes are nodal, and that these

are at right angles to one another.

(7) the tesseral harmonic,

82 = -Ai cos a) sin 0cos 9 ..................... (6).

In this case d^jdd vanishes independently of o> with cos 29,

that is, when 9 = 71% or |TT, which gives a nodal cone of revolution

whose vertical angle is a right angle, d^/dco varies as sin CD, and

thus there is one meridianal nodal plane, and but one 1
.

The spherical nodes are given by

of which the first finite solution is

kr = 3-3422,

giving a tone graver than any of the radial group.

In the case of the general harmonic, the equation giving the

1
[I owe to Prof. Lamb the remark that the difference between (p) and (7) is

only in relation to the axes of reference.]
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tones possible within a sphere of radius r may be written (21)
330

or p( d Y d _ sinkr =Q (9),

or again,

[For the roots of

equivalent to (10), Prof. McMahon gives
1

32 (83m3
4- 3535m2 + 3561m + 6138)

15(8#)
5

"
(12) >

where m 4i/
2
, and

If n 1, so that v ~ f,

and (12) gives a result in harniony with (3).]

Table A shews the values of X for a sphere of radius unity,

corresponding to the more important modes of vibration. In B is

exhibited the frequency of the various vibrations referred to the

gravest of the^whole system. The Table is extended far enough
to include two octaves.

TABLE A,

Giving the values of X for a sphere of unit radius.

Order of Harmonic.

11
og

IB-

1-3983

-81334

57622

44670

36485

30833

3-0186

1-0577

-68251

50653

-40330

33523

1-8800

86195

59208

45380

3

1-392

7320

5248

1-113

6385

9300 -8002

1 Annals of Mathematics, vol. ix. no. 1.
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TABLE B.

[331.

332. If we drop unnecessary constants, the particular solu

tion for the vibrations of gas within a spherical case of radius

unity is represented by

(1),

where k is a root of

(2).

In generalising this, we must remember that Sn may be com

posed of several terms, corresponding to each of which there may
exist a vibration of arbitrary amplitude and phase. Further, each

term in Sn may be associated with any, or all, of the values of k,

determined by (2). For example, under the head of n = 2, we

might have

^2
= A (cos

36 - ) (V)-* /n-H far) cos favb + ft)

+ J5 cos 2o> sin2 far)-*Jn+ far) cos (k^at + ft),

&! and &a being different roots of

Any two of the constituents of
>/r

are conjugate, i.e. will vanish

when multiplied together and integrated over the volume of the

sphere. This follows from the property of the spherical harmonica,
wherever the two terms considered correspond to different values of

ny or to two different constituents of S^. The only case remaining
for consideration requires us to shew that

J
. far)-* JnH far) . (itr)r* J^ far) = ......(3),

1 Thomson and Tait's Nat. Phil. p. 151.
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where ^ and &3 are different roots of

ZkJ'n+i(k} = J^(k).....................(4),

and this is an immediate consequence of a fundamental property
of these functions ( 203). There is therefore no difficulty in

adapting the general solution to prescribed initial circumstances.

In order to illustrate this subject we will take the case where

initially the gas is in its position of equilibrium but is moving
with constant velocity parallel to #. This condition of things
would be approximately realised, if the case, having been pre

viously in uniform motion, were suddenly stopped.

Since there is no initial condensation or rarefaction, all the

quantities On vanish. If d^jda> be initially unity, we have

^r
= x = rp, which shews that the solution contains only terms of

the first order in spherical harmonics. The solution is therefore

of the form

! r) /JL
cos k at

(ktr)ij,coskzat+ ..................(5),

where Jkl9 A2 , &c. are roots of

2kJj(k) = Jt(k) ...........................(6).

To determine the coefficients, we have initially for values of r

from to 1,

)* ......... (7).

Multiplying by r*J$(kr) and integrating with respect to r from

to 1, we find

(8),

the other terms on the right vanishing in virtue of the conjugate

property. Now by (16), 203,

2 [/i(*r)?rdr = [/,'(*)]+ l - [Jf (A)]*

-(l -!)[</(*)]'
..................... (9),

(6)-

The evaluation of / r*
J^ (kr) dr may be effected by the aid of
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a general theorem relating to these functions. By the fundamental

differential equation

whence by integration by parts we obtain,

If
\

T

r^Jn (kr) dr= r / (fo-)
- r

JO

or, if we make r= 1,

fc
j

l

fn+lJn (kr) dr = nJn(k) - kJn'(k) ............... (11).

Thus in the case, with which we are here concerned,

# f r*J
f (ir) dt fJT^ft)

-
4/^(4)

= /
(fc) by (6).

Equation (8) therefore takes the form

and the final solution is

where the summation is to be extended to all the admissible

values of fc

When t *a 0, and r = 1, we must have ^ =
p, and accordingly

It will be remembered that the higher values of k are approxi
mately, (3) 331,

2

CT7T ^ D
'"

The first value of k is 2*0815, and the second 5*9402, whence

shewing that the first term in the series for -^ is by far the most

important.
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It may be well to recall here that

2 sin z

Equation (14) may be verified thus : the quantities k are the

roots of

or, if $>
= z~$ Jj (z), the roots of <' = 0, where

cj>
satisfies

Now, since the leading term in the expansion of
<f>'

in ascending

powers of z is independent of z, we may write

whence, by taking the logarithms and differentiating,

_ g' = %z %z

If we now put z* = 2, we get by (17),

2
2 = ^

(^ 2) = 1 .^2 ^^>

333. In a similar manner we may treat the problem of the

vibrations of air included between rigid concentric spherical

surfaces, whose radii are n and rv For by (13) 323, if d-^n/dr

vanish for these values of ?%

Fn(+ibrty
whence

where as before

a + ip ........................ (2).

When the difference between ra and r2 is very small compared with

either, the problem identifies itself with that of the vibration of a

spherical sheet of air, and is best solved independently. In (1)
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323, if if-
be independent of r, as it is evident that it must

approximately be in the case supposed, we have

whose solution is simply

^n = S

while the admissible values of kz are given by

(5).

The interval between the gravest tone (n = 1) and the next is such

that two of them would make a twelfth (octave -f fifth). The

problem of the spherical sheet of gas will be further considered in

the following chapter. [For a derivation of (5) from the funda

mental determinant, equivalent to (1), the reader may be referred

to a short paper
1

by Mr ChreeJ

334. The next application that we shall make of the spherical

harmonic analysis is to investigate the disturbance which ensues

when plane waves of sound impinge on an obstructing sphere.

Taking the centre of the sphere as origin of polar co-ordinates, and

the direction from which the waves come as the axis of /A, let
<f>

be the potential of the unobstructed plane waves. Then, leaving

out an unnecessary complex coefficient, we have

and the solution of the problem requires the expansion of eikriL in

spherical harmonics. On account of the symmetry the harmonics

reduce themselves to Legendre's functions Pn (p), so that we may
take

n + ...... . ..... (2),

where A Q ... are functions of r, but not of
/*,.

From what has

been already proved we may anticipate that An , considered as a

function of r, must vary as

d \ siukr

but the same result may easily be obtained directly. Multiplying

1
Messenger of Mathematics, vol. xv. p. 20, 1886.



334.] PLANE WAVES. 273

(2) by Pn (/*), an(i integrating with respect to p from p,
= 1 to

^ = 4-1, we find

and, as in. 330,

/

so that finally

d \ sinir

In the problem in hand the whole motion outside the sphere

may be divided into two parts ;
the first, that represented by <f>

and corresponding to undisturbed plane waves, and the second

a disturbance due to the presence of the sphere, and radiating

outwards from it. If the potential of the latter part be ^r, we

have (2) 324 on replacing the general harmonic Sn by anPn (fJi))

fn(ikr)

.(5).

The velocity-potential of the whole motion is found by addition

of
<f>
and

i/r,
the constants o being determined by the boundary

conditions, whose form depends upon the character of the obstruc

tion presented by the sphere. The simplest case is that of a rigid

and fixed sphere, and then the condition to be satisfied when r c

is that

2+2-' ...........................<">

a relation which must of course hold good for each harmonic

element separately. For the element of order n, we get

d\ d

Corresponding to the plane waves
<f>
= e?k(at+x>, the disturbance

due to the presence of the sphere is expressed by

d d sin Ac
(

,

f ({nW -Jn \1>r, ,.* ;
rn -j

rr- , ,

' "
IMFn fyke) \d . ikcJ d .KG fee
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At a sufficient distance from the source of disturbance we may
take /n(ifer)

= l. In order to pass to the solution of a real

problem, we may separate the real and imaginary parts, and

throw away the latter. On this supposition the plane waves are

represented by

[<]
= cos k (at + x) ........................ (9).

Confining ourselves for simplicity's sake to parts of space at a

great distance from the sphere, where /7l (iir) = l, we proceed to

extract the real part of (8). Since the functions P are wholly

even or wholly odd,

P (
^ \ d sin Arc

n
\dTikcJdTkc

'

kc

is wholly real or wholly imaginary, so that this factor presents no

difficulty. {Fn (ikc)}~
1

, however, is complex, and sinceFn(ikc)=

where tan 7 = -
/3/a. [If the positive value of V(^

2 + /3
2
) be taken

in all cases, 7 must be so chosen that cos 7 has the same sign as a.]

Thus

r = 2 (2n +1)
~ 6<

^ , N /-,.P^)....... (10).
d si

When therefore n is even,

fr

(2n + 1
)
~ Cos [k (at-r + c) + 7}

. .

while, if n be odd,

Arc
2

= (Zn + l)i sin {i (a
- r + c) + 7}

d sin &c n

As examples we may write down the terms in [>/r],
in

volving harmonics of orders 0, 1, 2. The following table of the

functions Pn (p) will be useful.
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(14);

9 81

The solution of the problem here obtained, though analytically

quite general, is hardly of practical use except when kc is a small

quantity. In this case we may advantageously expand our results

in rising powers of kc.

x cos {k (at
- r + c) 4- 70} .................. (16).

r

.......(18).

It appears that while [>o] and [^] are of the same order in

the small quantity fto, [-^J is two orders higher. We shall find

presently that the higher harmonic components
in |>] depend upon
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still more elevated powers of Ice. For a first approximation, then,
we may confine ourselves to the elements of order and 1.

Although [ijrj contains a cosine, and [-^rj a sine, they never

theless differ in phase by a small quantity only. Comparing two

of the values of d^jrn/dr in (21) 330 we see that

a sin (kc + rnr) & cos (kc -f ^ mr)

n (kc)n+l"

1.8. 5. ..(271 + 1)
P wers of kc

identically. Dividing by a cos (kc 4- ^wr), we get ultimately

n(kc)
n+1

When n is even, this equation becomes on substitution for a of

its leading term from (16) 323,

B n (kcYn+1
tan C -- = -

(n + 1

For example, if w= 2,

. , //8\ 2(tan Ac - ~ = oV~\a/ a 3a
.

When n is at all high, the expressions tan kc and /S/a become

very nearly identical for moderate values of kc.

When n is odd, we get in a nearly similar manner,

B n

[From (19) we see that when n is even tan 7, or /3/a, is

approximately equal to tan Ac, and from (20) when n is odd that

cot 7 = tan kc. In the first case, by (16) 323, a has the sign of
i~n or of (- l)*

n
;
and in the second case a has the sign of i~n+1 or

of (-I)**
71-1

'. In both cases the approximate solution may be

expressed

The velocity-potential of the disturbance due to a small rigid
and fixed sphere is therefore approximately,

cr
[fo] + W-J = -^ (1 +M cos k (at

-
r)

=
-^(l+i/Ocos*(o*-r)......(21),

1 This emendation and others consequential to it are due to Dr Burton.
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if T denote the volume of the obstacle, the corresponding direct

wave being

[<]
= cos k (at + as) ..................... (22).

For a given obstacle and a given distance the ratio of the

amplitudes of the scattered and the direct waves is in general pro

portional to the inverse square of the wave-length, and the ratio of

intensities is proportional to the inverse fourth power ( 296).

In order to compare the intensities of the primary and

scattered sounds, we may suppose the former to originate in a

simple source, provided it be sufficiently distant (R) from T.

Thus, if

(28),

so that at equal distances from their sources the secondary and

the primary waves are in the ratio

(25).

The intensities are therefore in the ratio

...................... (26)-

-(27).

which, in the case of /-i
= + 1, gives approximately

61-72 T2

It must be well understood that in order that this result may

apply, X must be great compared with the linear dimension of T,

and li must be great compared with X.

To find the leading term in the expression for ^rw ,
when kc is

small, we have in the first place,
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Again,

a2 + /3
2 = Fn (ike) x Fn (- ife)

.....................(29);

so that

........................ (30).

Hence, from (lO),

. _
n ~

r {1 . 3 . 5 ... (2n- 1)}
2

(
-
1)

When n is even, [since 7 = kc + ^UTr approximately,]

while if n be odd, we have merely to replace in by in+1 [and cos by

sin], the result being then still real.

By means of (31) we may verify the first two terms in the

expressions for [^rj, tyj, in (17), (18). To the case of n = 0, (31)

does not apply,

Again, by (31),

Combining (17), (18), (33), (34), we have the value of

complete as far as the terms which are of the order &6 c6 compared
with the two leading terms given in (21). In compounding the

partial expressions, it is as necessary to be exact with respect to

the phases of the components as with respect to their amplitudes ;

but for purposes requiring only one harmonic element at a time,
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the phase is often of subordinate importance. In such cases we

may take

7 = T- kc + ^ nrr.

From (31) or (32) it appears that the leading terra in ^7l
rises

two orders in kc with each step in the order of the harmonic
;
and

that *fyn is itself expressed by a series containing only even, or only

odd, powers of kc. But besides being of higher order in kc, the

leading term becomes rapidly smaller as n increases, on account of

the other factors which it contains. This is evident, because for

all values of n and
//,,
Pn (//,)< 1; the same is true of w/(

while i
n

only affects the phase.

In particular cases any one of the harmonic elements of

may vanish. From (11), (12), since (a
a + $2

)~* cannot vanish, we

have in such a case

_
'

the same equation as that which gives the periods of the vibrations

of order n in a closed sphere of radius c, A little consideration

will shew that this result might have been expected. The table

of 331 is applicable to this question and shews, among other

things, that when kc is small, no harmonic element in [^] can

vanish.

In consequence of the aerial pressures the sphere is acted on

by a force parallel to the axis of /x, whose tendency is to set the

sphere into vibration. The magnitude of this force, if a be the

density of the fluid, is given by

f"
1
" 1

27TCV
J -i

in which, by the conjugate property of Legendre's functions, only

the term of the first order affects the result of the integration.

Now, when r =
c,

,

d.ikc kc

d d sin Ac

where

/, (Ac) o 1 + -
, fl (ike)

- ike + 2 + .



280 SOURCE AT FINITE DISTANCE. [334.

In order that the force may vanish, it would be necessary that

d smkc , /i (ike) d* sinkc
__ ft

_ - ,
-i- ~f" /CO ~~n f *^ i / 7 7 \ tt

--_- \J .

d.kc kc F
l (ike) (a . kef Ice

which cannot be satisfied by any real value of kc. We conclude

that, if the sphere be free to move, it will always be set into

vibration.

If instead of being absolutely plane, the primary waves have

their origin in a unit source at a great, though finite, distance H
from the centre of the sphere, we have

- ( d \ d
xP(-j -

-r"j
--

7

\d . ikcj d.kc kc

On the sphere itself r = c, so that the value of the total poten

tial at any point at the surface is

f /_d\ sinfe
,., /(tfeo) p / d \ d

sinkc]X
L

"
(d^ikc) ~kT

+ KC Fn (ike)
**

(d . ike) d . kc kc ]

This expression may be simplified. We have

t TT iff
-

and thus the quantity within square brackets may be written

which by (6) 327 is identical with eikc [Fn (ike)]-
1
. Thus

,t-R+c)

which is the same as if the source had been on the sphere, and

the point at which the potential is required at a great distance

( 328), and is an example of the general Principle of Reciprocity.
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By assuming the principle, and making use of the result (3) of

328, we see that if the source of the primary waves be at a finite

distance R, the value of the total potential "at any point on the

sphere is

...... <88>-

If A and B be any two points external to the sphere, a unit

source at ^i will give the same total potential at jB, as a unit

source at B would give at A. In either case the total potential is

made up of two parts, of which the first is the same as if there

were no obstacle to the free propagation of the waves, and the

second represents the disturbance due to the obstacle. Of these

two parts the first is obviously the same, whichever of the two

points be regarded as source, and therefore the other parts must

also be equal, that is the value of ty at B when A is a source is

equal to the value of -^ at A when B is an equal source. Now
when the source A is at a great distance R, the value of ty at a

point B whose angular distance from A is cos""1

^, and linear

distance from the centre is r, is (36)

2 (2 + 1)v ' Fn (ikc)
d \ d sin

and accordingly this is also the value of ^ at a great distance R,

when the source is at A But since ^ is a disturbance radiating

outwards from the sphere, its value at any finite distance R may
be inferred from that at an infinite distance by introducing into

each harmonic term the factor /(*'#). We thus obtain the

following symmetrical expression

which gives this part of the potential at either point, when the

other is a unit source.

It should be observed that the general part of the argument

does not depend upon the obstacle being either spherical or rigid
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From the expansion of e ikr* in spherical harmonics, we may
deduce that of the potential of waves issuing from a unit simple
source A finitely distant (7*) from the origin of co-ordinates. The
potential at a point B at an infinite distance R from the origin,
and in a direction making an angle cos" 1 p with r, will be

the time factor being omitted.

Hence by the expansion of e ikrfi

ikn d \ sin

from which we pass to the case of a finite R by the simple intro

duction of the factorfn (ikR).

Thus the potential at a finitely distant point B of a unit source

at A is

335. Having considered at some length the case of a rigid

spherical obstacle, we will now sketch briefly the course of the

investigation when the obstacle is gaseous. Although in all

natural gases the compressibility is nearly the same, we will

suppose for the sake of generality that the matter occupying the

sphere differs in compressibility, as well as in density, from the
medium in which the plane waves advance.

Exterior to the sphere, < is the same exactly, and ,^ is of

the same form as before. For the motion inside the sphere, if

k' = 2-Tr/X' be the internal wave-length, (2) 330,

* =~U
[<r*

r

satisfying the condition of continuity through the centre.

If <r, <r' be the natural densities, m, m' the compressibilities,

V*/k***<r'/<r.mlni ........................ (1);
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and the conditions, to be satisfied by each harmonic element

separately, are

d<f>/dr + d^/dr (outside) =d$fdr (inside) (2),

<r{^+Vr (outside)}
=

a'^r (inside) (3),.

expressing respectively the equalities of the normal motions and

of the pressures on the two sides of the bounding surface. From

these equations the complete solution may be worked out
;
but

we will here confine ourselves to finding the value of the leading

terms, when kc, k'c are very small.

In this case, when r = c,

v|r (inside)
= 2iA'a

'

(4)
fdr (inside)

=
$ ifc

/3ca
'

(outside) =
ffo/e

(outside) = tf /

Using these in (2), (3), and eliminating ', retaining only the

principal term, we find

Ar
a c3 m' m ,,

3
*

#?

In like manner for the term of first order,

^ (inside) = $o?i'i'
2

c/4 ) .^.

ir (inside) =- fa/A'-yu, J

\

i (outside)
=

tti/iAc'
2

.p }

(outside)
-

2ai/iArc* . ^ j

which give

At a^ distance from the sphere the disturbance due to it is

expressed by g
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If we introduce the relations

and throw away the imaginary part, we obtain

as the expression for the most important part of the disturb

ance, corresponding to (21) 334 for a fixed rigid sphere. It

appears, as might have been expected, that the term of zero

order is due to the variation of compressibility, and that of

order one to the variation of density.

From (13) we may fall back on the case of a rigid fixed sphere,

by making both </ and m' infinite. It is not sufficient to make </

by itself infinite, apparently because, if m' at the same time

remained finite, k'c would not be small, as the investigation has

assumed.

When m m, <r
f

cr are small, (13) becomes equivalent to

corresponding to ^>
= cos kat at the centre of the sphere. This

agrees with the result (13) of 296, in which the obstacle may be

of any form.

In actual gases m' = m, and the term of zero order disappears.

If the gas occupying the spherical space be incomparably lighter

than the other gas, cr' = 0, and

irT
T/r=3~r- /xcosi(aJ-r) .................. (14),

A* r

so that in the term of order one, the effect is twice that of a rigid

body, and has the reverse sign.

The greater part of this chapter is taken from two papers by
the author " On the vibrations of a gas contained within a rigid

spherical envelope," and an "
Investigation of the disturbance pro

duced by a spherical obstacle on the waves of sound 1

," and from

the paper by Professor Stokes already referred to.

. Society's Proceeding, March 14, 1872 ; Nov. 14, 1872.
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335 a. An interesting function, which has been considered

by Prof. Lamb,1 relates to the maximum disturbance that

can be produced by an infinitesimal resonator exposed to plane
waves.

The value of $ for the expansion of the primary waves is

given by (1), (2), (4), 334. By (5) 334 and (3) 329 the value

of ^ for the secondary waves may be taken to be

in which

d \e-ik>\ ID d \/cos/cr .smkrT) f d \(e-
ik>\ ID/ d \/cos/cr

^(d^J V
=

~i

P*
\d^kr)(-Tr

--

If we omit the common factor Pn(/x), we have

Now the only condition imposed upon the appliances intro

duced at r is that they shall do no work. This requires that

<p+ \fs
be in the same phase as d<f>/dr+d\Js/dr, viz. that the

ratio of (1) and of its derivative with respect to r shall be real.

Since Pn is a wholly odd or wholly even function, this requires

that

Zn+ l~(~-l)
n
iJcan , ,

.
> *

'-- be real.

( l)
nkan

If an,
which may be complex, be written Aeia

,
we get

fcJ.= -(-l)
n
(2n+l)sina .................. (2).

Thus A is a maximum when

sina -(-!) ........................ (3),

and the maximum value is

(4).

^London Math. Soc. Proc. Vol. xxxn, p. 11, 1900.
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By (3) and (4), 0*= -(-l)i^l ..................... (5),

so that in (1), 2n+ l -(-l)
wifcan= ..................... (6),

but <f>+\fs does not itself vanish.

If the incident plane waves are regarded as due to a source at

a great distance R, we have, in order to secure the value unity

at the resonator as supposed,

with which we may compare

ct &~ ^"^*

) ........................ (8).

The work emitted by the primary source being represented by

I+i
dv

-i

that emitted, or rather diverted, by the resonator will be

-i

f+1
I dp= 2.
J-i

Now

and

Also Mod2an^ .................... (9);

so that the ratio of works is

This agrees with the result of 319 for a symmetrical resonator

Prof. Lamb expresses his conclusion in terms of the energy
transmitted in the primary waves across unit of area. This

being taken as unity, the work emitted by the resonator is
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given by multiplying (10) by the area of the sphere of radius R,

viz. 4f7rR
z

. We get accordingly

being substituted for L This formula, given by Prof. Lamb,

expresses the whole energy emitted by the resonator in terms

of the energy of the primary waves per unit of area.

It is worthy of remark that we have nowhere assumed that r

at the surface of the resonator is small. The results therefore

apply to resonators of finite size, provided that the symmetrical

constitution implied in the harmonic analysis is maintained, And

the maximum energy emitted is the same whatever be the size of

the resonator.

The case of n = I is in some respects the simplest, inasmuch

as the resonator may then consist of a rigid sphere held to a

fixed point by elastic attachments. As a particular case of (1)

we have

d sin fa*
7

d coskr

This may be considered to represent the force acting upon the

sphere due to the pressures. Its derivative with respect to r will

represent in like manner the acceleration of the sphere, and by

suitable choice of mass and spring all the conditions may be

satisfied, provided that the ratio of these quantities is real. The

maximum a
l in, as in (5),

(13);

and, as in (II), the energy emitted by the resonator is, on the

scale there adopted, 3X a
/7r.

Tt may occasion surprise that the energy omissible in the

present case \A 3 times that emiawblo from a symmetrical resonator
;

but the 3 may be got rid of by another presentation of the matter,

We have supposed"hitherto that the sphere is capable of vibration

in the line of symmetry defined by the direction of propagation

of the primary waves. If the sphere, considered as infinitesimal,

be capable of vibration along one line only, its efficiency as a

resonator is proportional to the cosine squared of the angle

between this direction and that of the primary waves. This

limitation to a single direction of vibration is really the standard
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case, while that previously considered involves three degrees of

freedom. If now we inquire what is the average efficiency of

the resonator for primary waves reaching it in one direction, we

see that the above specially favoured efficiencies must be reduced,

in the ratio

ju?djui
:

\ d/m ;

Jo

that is, in the ratio of 3;1. The average efficiency of the

resonator when <n= l is then the same as when n = Q, and a

like result applies whatever n may be. The increased efficiency

represented by the factors 2n+ l must be regarded as due to the

cooperation of 2n+ l degrees of freedom.



CHAPTER XVIII.

SPHERICAL SHEETS OF AIK. MOTION IN TWO DIMENSIONS.

336. IN a former chapter ( 135), we saw that a proof of

Fourier's theorem might be obtained by considering the mechanics

of a vibrating string. A similar treatment of the problem of

a spherical sheet of air will lead us to a proof of Laplace's

expansion for a function which is arbitrary at every point of

a spherical surface.

As in 333, if -^ is the velocity-potential, the equation of

continuity, referred to the ordinary polar co-ordinates 0, a>, takes

the form,

o.
Whatever may be the character of the free motion^ it can

be analysed into a series of^slxnple harmonic vibrations, the

nature of which is determined by the corresponding functions

^, considered as dependent on space. Thus, if
-fy<x:e

ikat
,
the

equation to determine ^ as a function of 6 and co is

Again, whatever function ty may be, it can be expanded by

Fourier's theorem 1 in a series of sines and cosines of the multiples

of G). Thus

COS CD +^ 8111 6) +^2 COS 2( +^ Sin 2d)

in56) + ......... (2),

1 We here introduce the condition that ip recurs after one revolution round the

sphere.
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where the coefficients^ ^i ^i'>^ are functions of 6 only ;

and by the conjugate property of the circular functions, each

term of the series must satisfy the equation independently.

Accordingly,

is the equation from which the character of
^r,

or i/r/ is to be

determined. This equation may be written in various ways.

In terms of p, (= cos $),

or, if v = sin 9,

where A2
is written for k*c2

,

When the original function
-\Jr

is symmetrical with respect

to the pole, that is, depends upon latitude only, s vanishes, and

the equations simplify. This case we may conveniently take

first. In terms of p,

The solution of this equation involves two arbitrary constants,

multiplying two definite functions of /*, and may be obtained

in the ordinary way by assuming an ascending series and de

termining the exponents and coefficients by substitution. Thus

1.2.3.4

in which A and B are arbitrary constants.

Let us now further suppose that ty besides being symmetrical

round the pole is also symmetrical with respect to the equator

(which is accordingly nodal), or in other words that ty is an
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even function of ftie sine of the latitude (JJL). Under these circum

stances it is clear that B must vanish, and the value of ^ be

expressed simply by the first series, multiplied by the arbitrary

constant A. This value of the velocity-potential is the logical

consequence of the original differential equation and of the two

restrictions as to symmetry. The value of A2

might appear
to be arbitrary, but from what we know of the mechanics of the

problem, it is certain beforehand that A2 is really limited to a

series of particular values. The condition, which yet remains

to be introduced and by which h is determined, is that the

original equation is satisfied at the pole itself, or in other words

that the pole is not a source; and this requires us to consider

the value of the series when ^=1. Since the series is an

even function of /A, if the pole ju.
= + 1 be not a source, neither

will be the pole yu,
= 1. It is evident at once that if h* be of

the form n(n + l), where n is an even integer, the series termi

nates, and therefore remains finite when //,
= 1

;
but what we

now want to prove is that, if the series remain finite for /*
=

!,

/t
2 is necessarily of the above-mentioned form. By the ordinary

rule it appears at once that, whatever be the value of A-,

the ratio of successive terms tends to the limit yu
2

,
and there

fore the series is convergent for all values of
yu,

less than unity.

But for the extreme value /*=!, a higher method of discrimi

nation is necessary.

It is known 1

that the infinite hypergeometrical series

*\i , .+

is convergent, if c-fd a 6 be greater than 1, and divergent

if 04. $_&.. be equal to, or less than 1. In the latter case

the value of c + d~a~b affords a criterion of the degree of

divergency. Of two divergent series of the above form, for

which the values ofc + cZ a 6 are different, that one is relatively

infinite for which the value ofc-t-d a b is the smaller.

Our present series (7) may be reduced to the standard form

by taking A* = n(n + l), where n is not assumed to be integral.

Thus

* Boole's Finite Differences, p. 79.
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h" . #(#-2.3) ,

(n+l) . M
rT~ p 1.2.3.4

+ .............(9),

which is of the standard form, if

a = -4w, 6 = iw + i c = 4, d=l.

Accordingly, since c + d a 6 = 1, the series is divergent 'for

/*
=

1, ttftfew i$ terminate; and it terminates only when n is an

even integer. We are thus led to the conclusion that when

the pole is not a source, and ^ is an even function of /t,
h? must

be of the form n(n + 1), where n is an even integer.

In like manner, we may prove that when i|r
is an odd function

of /A,
and the poles are not sources, A = 0, and h* must be of the

form n(n + l)9
n being an odd integer.

If n be fractional, both series are divergent for /a=l, and

although a combination of them may be found which remains

finite at one or other pole, there can be no combination which

remains finite at loth poles. If therefore it be a condition that

no point on the surface of the sphere is a source, we have no

alternative but to make n integral, and even then we do not

secure finiteness at the poles unless we further suppose A = 0,

when n is odd, and 5 = 0, when n is even. We conclude that

for a complete spherical layer, the only admissible values of tyy

which are functions of latitude only, and proportional to harmonic

functions of the time, are included under

where fn(^} is Legendre's function, and n is any odd or even

integer. The possibility of expanding an arbitrary function of

latitude in a series of Legendre's functions is a necessary con

sequence of what has now been proved. Any possible motion

of the layer of gas is represented by the series

cos
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(11),

and the value of ^ when t is an arbitrary function of latitude.

The method that we,have here followed has also the advantage
of proving the conjugate property,

(12),

where n and m are different integers. For the functions P(f*>)

are the normal functions ( 94) for the vibrating system under

consideration, and accordingly the expression for the kinetic

energy can only involve the squares of the generalized velocities.

If (12) do not hold good, the products also of the velocities must

enter.

The value of ty appropriate to a plane layer of vibrating gas
can of course be deduced as a particular case of the general solu

tion applicable to a spherical layer. Confining ourselves to the

case where there is no source at the pole (^=1), we have to in

vestigate the limiting form of ^ = OPn(^) f
where >? (n + l) = /t

2
cv

,

when ca and na are infinite. At the same time /z 1 and v arc

infinitesimal, and cv passes into the plane polar radius (r), so

that nv~kr. For this purpose the most convenient form of Pn(p)

is that of Murphy
1

:

- ............... (13).

The limit is evidently

'

/t A\
......(14),

shewing that the Bossel's function of zero order is an extreme case

of Legendre's functions.

When the spherical layer is not complete, the problem re

quires a different treatment. Thus, if the gas be bounded by walls

stretching along two parallels of latitude, the complete integral

involving two arbitrary constants will in general be necessary.

Thomson and Tait's Nat. Phil 782. [tsarin
9
^, not 4 sin3 J0J Todhunter'n

Laplace'* Functiom, 19.
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The ratio of the constants and the admissible values of h- are to be

determined by the two boundary conditions expressing that at the

parallels in question the motion is wholly in longitude. The value

of
/j, being throughout numerically less than unity, the series are

always convergent.

If the portion of the surface occupied by gas be that included

between two parallels of latitude at equal distances from the

equator, the question becomes simpler, since then one or other of

the constants A and B in (7) vanishes in the case of each normal

function.

337. When the spherical area contemplated includes a pole,

we have, as in the case of the complete sphere, to introduce the

condition that the pole is not a source. For this purpose the solu

tion in terms of v, i.e. sin 6, will be more convenient.

If we restrict ourselves for the present to the case of symmetry,
we have, putting s = in (5) 336,

A'^-o a).

One solution of this equation is readily obtained in the ordinary

way by assuming an ascending series and substituting in the

differential equation to determine the exponents and coefficients.

We get
1

0.1-&2
(0.1--&2)(2.3-A2

) <
_j_ Tf* _j_

.
/

,.> -/ If*

22 22 42

(0.1-/i')(2.3-^)(4.5-A
2
)

2*. 4*. 6 ""+-! (2)"

This value of ^ is the most general solution of (1), subject to

the condition of finiteness when y = 0. The complete solution

involving two arbitrary constants provides for a source of arbitrary

intensity at the pole, in which case the value of ^r is infinite when
j/ = 0. Any solution which remains 6nite when y = and involves

one arbitrary constant, is therefore the most general possible under

the restriction that the pole be not a source. Accordingly it is

unnecessary for our purpose to complete the solution. The nature

of the second function (involving a logarithm of v) will be illus

trated in the particular case of a plane layer to be considered

presently.
\

1 Heine's Kunelfunctioned 28.
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By writing n(n+ 1) for A2 the series within brackets becomes

,_n(n+^ (n^2)n(n + l)(n + 3)
21

2*
v +

2T^
- "2 ~ ....... (3),

or, when reduced to the standard hypergeometrical form,

corresponding to

Since c-f-d a 6==|, the series converges for all values of v

from to 1 inclusive. To values of 6 (= sin"1

v) greater than i?r

the solution is inapplicable.

When n is an integer, the series becomes identical with

Legendre's function Pn<. If the integer be even, the series

terminates, but otherwise remains infinite. Thus, when n = 1, the

series is identical with the expansion of
//,,

viz. ^(1 z/
2

), in powers
of v.

The expression for ty in terms of v may be conveniently applied
to the investigation of the free symmetrical vibrations of a spheri
cal layer of air, bounded by a small circle, whose radius is less than

the quadrant. The condition to be satisfied is simply d-^/dv^O,
an equation by which the possible values of A2

, or &2
c
a
,
are con

nected with the given boundary value of v.

Certain particular cases of this problem may be treated by
means of Legendre's functions. Suppose, for example, that n = 6,

so that /4
2 = &u

c
3 = 42. The corresponding solution is ^ = .4P6 (//,).

The greatest value of ^ for which d^/dp = is ^ = "8302, corre

sponding to = 33 53' = '59137 radians
1
.

If we take c# = r, so that r is the radius of the small circle

measured along the sphere, we get

kr= V(42) x '59137 = 3'8325,

which is the equation connecting the value of k (= 27T/X) with the

curved nadius r, in the case of a small circle, whose angular radius

is 33 53'. If the layer were plane ( 339), the value of kr would

be 3"8317
;
so that it makes no perceptible difference in the pitch

of the gravest tone whether the radius (r) of given length be

1 The radian is the unit of circular measure.
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straight, or be curved to an arc of 33. The result of the com

parison would, however, be materially different, if we were to take

the length of the circumference as the same in the two cases, that

is, replace c0 = r by cv = r.

In order to deduce the symmetrical solution for a plane layer,

it is only necessary to make c infinite, while cv remains finite. On

account of the infinite value of h\ the solution assumes the simple

form
AV AV

,..
(4),

or, if we write cv = r, where r is the polar radius in two dimensions,

......... (5),

as in (14) 336.

The differential equation for ty in terms of v, when c Is infinite

and cv = r, becomes

An independent investigation and solution for the plane problem
will be given presently.

338. When $ is different from zero, the differential equation
satisfied by the coefficients of sin so>, cos $<*>, is

*>(l-*
2)^+Kl-2^)^+^^-^ = ......(1),

and the solution, subject to the condition of finiteness when v = O1
,

is easily found to be

I n
2(2+2)

or, if we put h"= n(n+ 1),

1 The solution may be completed by the addition of a second function derived

from (2) by changing the sign of s t
which occurs in (1) only as a

2
,
but a modification

is necessary, when s is a positive integer. The method of procedure will be

exemplified presently in the case of the plane layer.
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We have here the complete solution of the problem of the

vibrations of a spherical layer of gas bounded by a small circle

whose radius is less than the quadrant. For each value of s, there

are a series of possible values of n
t
determined by the condition

dtys/dv
=

;
with any of these values of n the function on the

right-hand side of (2), when multiplied by cossa> or sinso>, is a

normal function of the system. The aggregate of all the normal

functions corresponding to every admissible value of s and n, with

an arbitrary coefficient prefixed to each, gives an expression

capable of being identified with the initial value of -^, i.e. with a

function given arbitrarily over the area of the small circle.

When the radius of the sphere c is infinitely great, h* is infinite.

If cv = r, AV = fcV2
,
and (2) becomes

a function of r proportional to J8 (kr).

In terms of /*, the differential equation satisfied by the co

efficient of cos 5<w, or sin so>, is

Assuming ^ = (1 ^a

)
ia^, we find as the equation for

which will be more easily dealt with.

To solve it, let

and substitute in (5). The coefficient of the lowest power of

/* is a (a -I); so that a = 0, or a = l. The relation between

z ,
and a, found by equating to zero the coefficient of /i

a+tm
,
is

where
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The complete value of
<f>e

is accordingly given by

1.2.3.4

1.2.3.4.5.6

2.3.4.5
.

where A and J5 are arbitrary constants ;

and *. = (1-A*W, ........................ (7).

We have now to prove that the condition that neither pole is

a source requires that n s be a positive integer, in which case

one or other of the series in the expression for
<f>s terminates.

For this purpose it will not be enough to shew that the series

(unless terminating) are infinite when fi
= 1

;
it will be necessary

to prove that they remain divergent after multiplication by

(1^a^ or as we may put it more conveniently, that they are

infinite when ^ = 1 in comparison with (1 /i
a

)~K It will be

sufficient to consider in detail the case of the first series.

We have

1.2 1.2.3.4

"

1.2.J.f

which is of the standard form (8) 336

. .

"*"""

ab
^

if

The degree of divergency is determined by the value of a 4-6 c - d,

which is here equal to s 1.
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On the other hand, the binomial theorem gives for the ex

pansion of (1 ;

1 -|
S

. ! S (iS+1 ) 4 .

!+.-,- + -T-
1_^ + .

which is of the standard form, if

rt = J,$, c = l, b d, and makes a-f& c d = ^s 1.

Since 5 1 > ^s 1, it appears that the series in the expression
for

<f>8 are infinities of a higher order than (1 ^2
)~**, and there

fore remain infinite after multiplication by (1 yu,

2
)**. Accordingly

tys cannot be finite at both poles unless one or other of the series

terminate, which can only happen when n s is zero, or a positive

integer. If the integer be even, we have still to suppose B = ;

and if the integer be odd, A 0, in order to secure finiteness at

the poles.

In either case the value of
<f>8

for the complete sphere may be

put into the form

where the constant multiplier is omitted. The complete expres
sion for that part of ^r which contains cos s<o or sin sco as a factor

is therefore

. d* p f /Q ,^-PnW ........................(9),

where J. w is constant with respect to p and o>, but as a function

of the time will vary as

f\/\n . n + 1) at \ /IA\
cos (.U:

i- +e (10).
\ c /

For most purposes, however, it is more convenient to group
the terms for which n is the same, rather than those for which s

is the same. Thus for any value of n

+ BgSmsco) (H)>

where every coefficient A 8> B8 may be regarded as containing a

time factor of the form (10).

Initially y}r
is an arbitrary function of p and o>, and therefore

any such function is capable of being represented in the form
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n=oo s**n flsp ( /.\

<ir = 2 2 v*~(A
which is Laplace's expansion in spherical surface harmonics.

From the differential equation (5), or from its general solution

(6), it is easy to prove that
<f>g is of the same form as d^^dp., so

that we may write
'

........................ < 13 >-

(in which no connection between the arbitrary constants is as

serted), or in terms of -^ by (7),

Equation (13) is a generalization of the property of Laplace's
functions used in (8).

The corresponding relations for the plane problem may be

deduced, as before, by attaching an infinite value to ?i, which
in (13), (14) is arbitrary, and writing nv = Tcr. Since ^ + v* = 1 ,

^ being regarded as a function of v. In the limit p (even

though subject to differentiation) may be identified with unity,

and thus we may take

When the pole is not a source, fa is proportional to J8 (kr).

The constant coefficient, left undetermined by (15), may be

readily found by a comparison of the leading terms, It thus

appears that

J^^) =
(~2^(^72)V (4r) (16),

a well-known property of Bessel's functions1
.

The vibrations of a plane layer of gas are of course more

easily dealt with, than those of a layer of finite curvature, but

I have preferred to exhibit the indirect as well as the direct

method of investigation, both for the sake of the spherical problem

1 Todhunter's Laplace'* Functions t 390.
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itself with the corresponding Laplace's expansion
1
,
and because

the connection between Bessel's and Laplace's functions appears
not to be generally understood. We may now, however, proceed
to the independent treatment of the plane problem.

339. If in the general equation of simple aerial vibrations

we assume that ^ is independent of z, and introduce plane polar
coordinates, we get ( 241)

or, if ^ be expanded in Fourier's series

^=fo+^i+... + fn+..................... (2),

where ^n is of the form An cos nO + Bn sin n0,

This equation is of the same form as that with which we had to

deal in treating of circular membranes ( 200); the principal
mathematical difference between the two questions lies in the

fact that while in the case of membranes the condition to be
satisfied at the boundary is ^ = 0, in the present case interest

attaches itself rather to the boundary condition d^/dr = 0, corre

sponding to the confinement of the gas by a rigid cylindrical

envelope
8
.

The pole not being a source, the solution of (3) is

^n = AJn (kr) ........................ (4),

and the equation giving the possible periods of vibration within

a cylinder of radius r, is

Jn'(kr)
= Q ........................... (5).

The lower values of kr satisfying (5) are given in the following
table 4

, which was calculated from Hansen's tables of the functions

1 I have been much assisted by Heine's Handbuch der Kugelfunctionen, Berlin,

1861, and by Sir W. Thomson's papers on Laplace's Theory of the Tides, Phil.

Mag. Vol. L. 1875.
2 I here recur to the usual notation, but the reader will understand that n cor

responds to the s of preceding sections. The n of Laplace's functions is now infinite.
3
[The symmetrical vibrations within a cylindrical boundary, corresponding to

n=0, were considered by Duhamel (Liouville Journ. Math. Vol. 14, p. 69, 1849).]
4 Notes on Bessel's Functions, Phil. Mag. Nov. 1872.
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J by means of the relations allowing Jn to be expressed in terms

of t7" and Ji.

[For the roots of the equation Jn(z) = 0, Prof. McMahon 1 finds

M a, m-f-3 4 (7m
2 + 82m -9)

32 (83m
3 + 2075m2 - 3039m + 3527)

where m = 4na
, and ' = ?r (2?i -I- 4$-f* 1). It will be found that

n = in (6 a) gives the same result as n I in (4) 206, in

accordance with the identity J*(z) = Ji (X).]

The particular solution may be written

ijrn
=

(
A cos nd + B sin n#)Jn (kr) cos to

f((7cosft0 + Dsinn0)Jn (kr)smkat ............ (6),

where A, B, (7, D are arbitrary for every admissible value of

n and Ic. As in the corresponding problems for the sphere and

circular membrane, the sum of all the particular solutions must
be general enough to represent, when t 0, arbitrary values of

^r and
-fy.

As an example of compound vibrations we may suppose, as

in 332, that the initial condition of the gas is that defined by

-^
= 0, -\Jr

= # = r cos 6.

Under these circumstances (6) reduces to

ty
=s AI cos 9 /! (k r) cos J^at + A z cos 6 Jl (k^r) cos k^at + * . .(7),

and, if we suppose the radius of the cylinder to be unity, the

admissible values of k are the roots of

1 Annals of Mathematics, Vol. ix. No. 1.



339.] CASE OF COMPOUND VIBRATIONS. 299

The condition to determine the coefficients A is that for all values

of r from r = to r = 1,

r^A lJl (klr)^A,Jl (t,r) + ............... (9),

whence, as in 332,

The complete solution is therefore

where the summation extends to all the values of k determined

by (8)-

If we put t = and r = 1, we get from (9) and (10)

an equation which may be verified numerically, or by an analy

tical process similar to that applied in the case of (14) 332.

We may prove that

log Ji (z)
= constant -f S log f 1

-p J
,

whence by differentiation

From this (12) is derived by putting 2 = 1, and having regard
to the fundamental differential equation satisfied by Jlf which

shews that

//'(I) :W) = -1.

[More generally, ifJn'(k) = 0,

v 2n -1 i

^A--^""
1 ' J

Hitherto we have supposed the cylinder complete, so that

^ recurs after each revolution, which requires that n be integral ;

hut if instead of the complete cylinder we take the sector included

between 6 = and & fractional values of n will in general pre

sent themselves. Since d^fr/dQ vanishes at both limits of 0, ty

must be of the form

i|r
= A cos (kat + e) cos nO Jn (kr) ............ (13),

where n^vrr/f}, v being integral. If /3 be an aliquot part of

TT (or TT itself), the complete solution involves only integral values
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of n, as might have been foreseen
; but, in general, functions of

fractional order must be introduced,

Ail interesting example occurs when ft
= 2?r, which corre

sponds to the case of a cylinder, traversed by a rigid wall

stretching from the centre to the circumference (compare 207).

The effect of the wall is to render possible a difference of pressure
on its two sides; but when no such difference occurs, the wall

may be removed, and the vibrations are included under the

theory of a complete cylinder. This state of things occurs

when v is even. But when v is odd, n is of the form (integer + ^),

and the pressures on the two sides of the wall are different. In

the latter case Jn is expressible in finite terms. The gravest
tone is obtained by taking v = 1, or n = , when

01 yi fffr*

^ = A cos (kat 4- e) . cos J .

and the admissible values of k are the roots of tan k = 2k. The
first root (after i=0) is & = V1655, corresponding to a tone

decidedly graver than any of which the complete cylinder is

capable.

The preceding analysis has an interesting application to

the mathematically analogous problem of the vibrations of water

in a cylindrical vessel of uniform depth. The reader may
consult a paper on waves by the author in the Philosophical

Magazine for April, 1876, and papers by Prof. Guthrie to which

reference is there made. The observation of the periodic time

is very easy, and in this way may be obtained an experimental
solution of problems, whose theoretical treatment is far beyond
the power of known methods.

340. Returning to the complete cylinder, let us suppose it

closed by rigid transverse walls at z = 0, and z = Z, and remove

the restriction that the motion is to be the same in all transverse

sections. The general differential equation ( 241) is

Let
yfr be expanded by Fourier's theorem in the series

t = ^o + ^iCos^4-^3

cos^4-...4-^cos(py)
+ ...(2),

where the coefficients Hp may be functions of r and 0. This form
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secures the fulfilment of the boundary conditions, when z = 0, z = I,

and each term must satisfy the differential equation separately.

Thus

jMTP + l_dH l*H , _
p2
W

o (3) ,

dr1 r dr r2 dd- V
2
/

^ 7

which is of the same form as when the motion is independent of

2, IP being replaced by &2

j^w^""
3

. The particular solution may
therefore be written

irz= (An cos nd + Bn sin n&) . cos p-j-.Jn (s/Ar
2

jp'

J
7r

2 f~2
. r) cos to

TTZ

+ (Cn cos n0 + Dn sin ?i#) cos j)
-r- . / (Jte-p^^l-*. r) sin to. . .(4),
6

which must be generalized by a triple summation, with respect to

all integral values of p and n, and also with respect to all the

values of k, determined by the equation,

(5).

If r = 1, andK denote the values of k given in the table ( 339),

corresponding to purely transverse vibrations, we have

The purely axial vibrations correspond to a zero value of K ,

not included in the table.

341. The complete integral of the equation

when there is no limitation as to the absence of a source at the

pole, involves a second function of r, which may be denoted by

JL.n (kr). Thus, omitting unnecessary constant multipliers, we may
take ( 200)

{&
2rfi &?^*

1 "
2 . 2,+ 2n

+ tt. 2 + 2n

but the second series requires modification, if n be integral. When

7i==0, the two series become identical, and thus the immediate

result of supposing n in (2) lacks the necessary generality. The
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required solution may, however, be obtained by the ordinary rule

applicable to such cases. Denoting the coefficients of A and S
in (2) by /(ft), /(- n\ we have

by Maclaurin's theorem. Hence, taking new arbitrary constants,

we may write as the limiting form of (2),

In this equation /(O) is J (kr) ;
to find /'(()) we have

y^r4

'(n\ - rn loff r II -(n)-r
logrji 2 . 2 .4.

2.

If u denote the general term (involving r2

) of the series within

brackets, taken without regard to sign,

ldu_dlogu_ 2 2 2

udn~~ dn
~~

so that
(- )

= - 1^=0 Sm ,

\an/n=Q

if s-- + +

22 .42 .63 3
~ ......

j

'

and the complete integral for the case n = is

For the general integral value of n the corresponding ex

pression may be derived by means of (15) 338
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The formula of derivation (5) may be obtained directly from

the differential equation (1). Writing z for kr and putting

^ =^.............................. (6),

we find in place of (1)

Again (7) may be put into the form

from which it follows at once that

dl

(

N
71

^-^2J <o ........................ (10),

or by (6)

which is equivalent to (5), since the constants in ^ are arbitrary

in both equations.

The serial expressions for tyn thus obtained are convergent for

all values of the argument, but are practically useless when the

argument is great. In such cases we must have recourse to semi-

convergent series corresponding to that of (10) 200.

Equation (1) may be put into the form

whence by 323 (4), (12), we find as the general solution of (1)
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When n is integral, these series are infinite and ultimately

divergent, but ( 200, 302) this circumstance does not interfere

with their practical utility.

The most important application of the complete integral of (1)

is to represent a disturbance diverging from the pole, a problem

which has been treated by Stokes in his memoir on the communi

cation of vibrations to a gas. The condition that the disturbance

represented by (13) shall be exclusively divergent is simply

D = 0, as appears immediately on introduction of the time factor

e
iJcat

by supposing r to be very great ;
the principal difficulty of

the question consists in discovering what relation between the

coefficients of the ascending series corresponds to this condition,

for which purpose Stokes employs the solution of (1) in the form

of a definite integral. We shall attain the same object, perhaps

more simply, by using the results of 302.

By (22), (24) 302

and thus the question reduces itself to the determination of the

form of the right-hand member of (14) when z is small. By (5)

| 302 and (5) 200 we have

TT (K(z) + i Jo (*)}
= z + wr + higher terms in z ......(15),

so that all that remains is to find the form of the definite integral

in (14), when z is small. Putting *J(j& + 22
)
= y

- 0, we have

r
Joo V(/3* + *2

) Jz y h y

When z is small, zz

/%y is also small throughout the range of

integration, and thus we may write

.

The first integral on the right is

...... (16V,

De Morgan's Differential and Integral Calculus, p. 653.
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where 7 is Euler's constant (-5772...); and, as we may easily

satisfy ourselves by integration by parts, the other integrals do not

contribute anything to the leading terms. Thus, when z is very

small,

__*L .

!' 1 2 .3*.5* )

1.8i* 1.2.(8i*) 1.2.3.(8**)"
i

"'"J

="y + log(i*)+ JMT + ......... (17).

Replacing z by kr, and comparing with the form assumed by (4)

when r is small, we see that in order to make the series identical

we must take

^4 = 7 + 1og -f log i + ^V, 5 = 1;

so that a series of waves diverging from the pole, whose expression
in descending series is

is represented also by the ascending series

2
"

l-a 2

"

2
......... ^ ^*

In applying the formula of derivation (11) to the descending

series, the parts containing e~~
ikr and e+ikr as factors will evidently

remain distinct, and the complete integral for the general value

of n, subject to the condition that the part containing e+ikr shall

not appear, will be got by differentiation from the complete

integral for 7i = subject to the same condition. Thus, since

by (5) ^i
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or, In terms of the ascending series,

[341.

ikr\(kr

Jcr
<, ,

1
~

T 2 3
~' .(21).

These expressions are applied by Prof. Stokes to shew how feebly

the vibrations of a string, (corresponding to the term of order

one), are communicated to the surrounding gas. For this purpose
he makes a comparison between the actual sound, and what would

have been emitted in the same direction, were the lateral motion

of the gas in the neighbourhood of the string prevented. For a

piano string corresponding to the middle C, the radius of the

wire may be about '02 inch, and X is about 25 inches; and it

appears that the sound is nearly 40,000 times weaker than it would

have been if the motion of the particles of air had taken place in

planes passing through the axis of the string.
" This shews the

vital importance of sounding-boards in stringed instruments.

Although the amplitude of vibration of the particles of the sound

ing-board is extremely small compared with that of the particles
of the string, yet as it presents a broad surface to the air it is able

to excite loud sonorous vibrations, whereas were the string

supported in an absolutely rigid manner, the vibrations which it

could excite directly in the air would be so small as to be almost

or altogether inaudible."

Fig. 64.

" The increase of sound produced by the stoppage of lateral

motion may be prettily exhibited by a very simple experiment.
Take a tuning-fork, and holding it in the fingers after it has been
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made to vibrate, place a sheet of paper, or the blade of a broad

knife, with its edge parallel to the axis of the fork, and as near to

the fork as conveniently may be without touching. If the plane of

the obstacle coincide with either of the planes of symmetry of the

fork, as represented in section at A or B, no effect is produced;

but if it be placed in an intermediate position, such as C, the

sound becomes much stronger
1
."

342. The real expression for the velocity-potential of sym
metrical waves diverging in two dimensions is obtained from (18)

341 after introduction of the time factor eilMt by rejecting the

imaginary part ;
it is

in which, as usual, two arbitrary constants may be inserted, one as

a multiplier of the whole expression and the other as an addition

to the time.

The problem of a linear source of uniform intensity may also

be treated by the general method applicable in three dimensions.

Thus by (3) 277, if p be the distance of any element dx from 0,

the point at which the potential is to be estimated, and r be the

smallest value of p, so that
/)

a ==r2+ ^, we may take

which must be of the same form as (1). Taking y=zp-r, we

may write in place of (2)

from which the various expressions follow as in (14) 341. When

kr is great, an approximate value of the integral may be obtained

by neglecting the variation of V(2r + y) since on accouut of the

rapid fluctuation of sign caused by the factor $-** we need attend

Phil. Trans, vol. 158, p. 447, 1868.
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only to small values of y. Now

so that

Introducing the factor 0**, and rejecting the imaginary part

of the expression, we have finally

(6),

as the value of the velocity-potential at r great distance. A
similar argument is applicable to shew that (1) is also the expres

sion for the velocity-potential on one side of an infinite plane

( 278) due to the uniform normal motion of an infinitesimal strip

bounded by parallel lines.

In like manner we may regard the term of the first order

(20) 341 as the expression of the velocity-potential due to double

sources uniformly distributed along an infinite straight line.

From the point of view of the present section we see the

significance of the retardation of JX, which appears in (1) and in

the results of the following section (16), (17). In the ordinary

integration for surface distributions by Fresnel's zones ( 283)

the whole effect is the half of that of the first zone, and the phase
of the effect of the first zone is midway between the phases due

to its extreme parts, i.e. Jx behind the phase due to the central

point. In the present case the retardation of the resultant

relatively to the central element is less, on account of the pre

ponderance of the central parts.

[From the formulae of the present section for the velocity-

potential of a linear source we may obtain by integration a

corresponding expression for a source which is uniformly distributed

over a plane. The waves issuing from this latter are necessarily

plane waves, of which the velocity-potential can at once be written

down, and the comparison of results leads to the evaluation of

certain definite integrals relating to Bessel's and allied functions 1

.]

1 On Point-, Line-, and Plane-Sources of Sound. Proc, London Math. Soc t

Vol. six. p. 504, 1888.
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343. In illustration of the formulae of 341 we may take

the problem of the disturbance of plane waves of sound by a

cylindrical obstacle, whose radius is small in comparison with

the length of the waves, and whose axis is parallel to their plane.

(Compare 335.)

Let the plane waves be represented by

The general expansion of < in Fourier s series may be readily

effected, the coefficients of the various terms being, as might

be anticipated, simply the Bessel's functions of corresponding

orders.- [Thus, as in (12) 272 a,

e
ikr cos* - / (Ar) + ZiJ^kr) cos 6 + . . . + 2inJn(kr) cos n8 +....]

But, as we confine ourselves here to the case where c the radius of

the cylinder is small, we will at once expand in powers of r.

Thus, when r = c, if e
ikat be omitted,

= 1 -#<$* + t'foj. cos 0+ ................. (2),

=r--.- ..................... (3).
dr

The amount and even the law of the disturbance depends upon

the character of the obstacle. We will begin by supposing the

material of the cylinder to be a gas of density <r' and compressi

bility w'; the solution of the problem for a rigid obstacle may

finally be derived by suitable suppositions
with respect to </, w,

If V be the internal value of fc, we have inside the cylinder by the

condition that the axis its not a source ( 339),

so that, when r = c,

+ (inside)
= A, (1

- }&V) + AlC (1
-^V) - cos 6. . .(4),

*
(inside)

= -i^oi'
2c + ^ 1 (l-|^V) cos 6 ...........(5).

dT

Outside the cylinder, when r- c, we have by (19), (21) 341,

d* _ -go
Ik cos 6

(7).

dr c he?
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The conditions to be satisfied at the surface of separation
are thus

(8),

......(9),

from which by eliminating A ,
A l we get approximately

(13).

Thus at a distance from the cylinder we have by (18) and

(20) 341,

w m <r <r

o / + -r2m <r -f <r

27T.7TC2

Hence, corresponding to the primary wave

= cos (atf-fa?) -(15),

the scattered wave is approximately

. 2?r . 7TC
2

(wi m <r
r

<

The fact that ^ varies inversely as X* might have been

anticipated by the method of dimensions, as in the corresponding
problem for the sphere ( 296). As in that case, the symmetrical
part of the divergent wave depends upon the variation of com

pressibility, and would disappear in the application to an actual
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gas ;
and the term of the first order depends upon the variation of

density.

By supposing a and in' to become infinite, in such a manner

that their ratio remains finite, we obtain the solution corresponding

to a rigid and immoveable obstacle,

The exceeding smallness of the obstruction offered by fine

wires or fibres to the passage of sound is strikingly illustrated

in some of Tyndali's experiments. A piece of stiff* felt half an

inch in thickness allows much more sound to pass than a wetted

pocket-handkerchief, which in consequence of the closing of

its pores behaves rather as a thin lamina. For the same reason

fogs, and even rain and snow, interfere but little with the free

propagation of sounds of moderate wave-length. In the case

of a hiss, or other very acute sound, the effect would perhaps
be apparent.

[The partial reflections from sheets of muslin may be utilized

to illustrate an important principle. If a pure tone of high

(inaudible) pitch be reflected from a single sheet so as to impinge

upon a sensitive flame, the intensity will probably be insufficient

to produce a visible effect. If, however, a moderate number of

such sheets be placed parallel to one another and at such equal

distances apart that the partial reflections agree in phase, then

the flame may be powerfully affected. The parallelism and

equidistanco of the sheets may be maintained mechanically by

a lazy-tongs arrangement, which nevertheless allows the common

distance to be varied. It is then easy to trace the dependence of

the action npon the accommodation of the interval to the wave

length of the sound: Thus, if the incidence were perpendicular,

the flame would be most powerfully influenced when the interval

between adjacent sheets was equal to the half wave length;

and although the exigencies of experiment make it necessary

to introduce obliquity, allowance for this is readily made 1

.]

i Iridescent Crystals, Proc. JRoy . Imt. April 1889. See also Phil. Mag. vol. xxiv.

p. 145, 1887
;
vol. xxvi, p. 256, 1888.



CHAPTER XIX.

FRICTION AND HEAT CONDUCTION.

344. THE equations of Chapter xi. and the consequences that

we have deduced from them are based upon the assumption ( 236),

that the mutual action between any two portions of fluid separated

by an imaginary surface is normal to that surface. Actual fluids

however do not come up to this ideal; in many phenomena the

defect of fluidity, usually called viscosity or fluid friction, plays an

important and even a preponderating part. It will therefore be

proper to inquire whether the laws of aerial vibrations are sensibly

influenced by the viscosity of air, and if so in what manner.

In order to understand clearly the nature of viscosity, let us

conceive a fluid divided into parallel strata in such a manner that

while each stratum moves in its own plane with uniform velocity,

a change of velocity occurs in passing from one stratum to another.

The simplest supposition which we can make is that the velocities

of all the strata are in the same direction, but increase uniformly
in magnitude as we pass along a line perpendicular to the planes
of stratification. Under these circumstances a tangential force

between contiguous strata is called into play, in the direction of

the relative motion, and of magnitude proportional to the rate at

which the velocity changes, and to a coefficient 6f viscosity, com

monly denoted by the letter p. Thus, if the strata be parallel to

xy and the direction of their motion be parallel to y, the tangential

force, reckoned (like a pressure) per unit of area, is

dv

The dimensions of p, are [ML"
1T~~1

'].

The examination of the origin of the tangential force belongs
to molecular science. It has been explained by Maxwell in ac-
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cordance with the kinetic theory of gases as resulting from inter

change of molecules between the strata, .living rise to diffusion of

momentum. Both by theory and experiment the remarkable

conclusion has been established that within wide limits the force

is independent of the density of the gas. For air at Centigrade
Maxwell

l found

/*
= -0001878(1 + -00366 0)..................... (2),

the centimetre, gramme, and second being units.

345. The investigation of the equations of fluid motion in

which regard is paid to viscous forces can scarcely be considered

to belong to the subject of this work, but it may be of service

to some readers to point out its close connection with the more

generally known theory of solid elasticity,

The potential energy of unit of volume of uniformly strained

isotropic matter may be expressed
2

a + 62 + c
2
) ......... (1),

in which S(= e+f+g) is the dilatation, e,f, g, a, b
}
c are the six

components of strain, connected with the actual displacements

ft* /?> 7 by the equations

da f dp dy me
~Tv> /== ^' *>-"&

.................... (2) '

a- + j*. &-^ + ^> *~;r + ;r ............
<8 >-

dz dy dx dz dy dx N "

and w, n, tc are constants of elasticity, connected by the equation

/c = m -Jn ................................. (4),

of which n, measures the rigidity, or resistance to shearing, and K

measures the resistance to change of volume. The components of

stress P, Q, R, S, 1\ U, corresponding respectively to e,f, g> a, 6, c,

are found from V by simple differentiation with respect to those

quantities ;
thus

c................... (5),

(6).

1 On the Viscosity or Internal Friction of Air and other Gases. Phil Trans.

vol. 156, p, 249, 1866.

<J Thomson and Tait's Natural Philosophy. Appendix C.
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If X, Y, Z be the components of the applied force reckoned per
unit of volume, the equations of equilibrium are of the form

dPdUdT
~j
--h-j-4--j-+-l=0, &c............ I- -(7),dx dy dz

from which the equations of motion are immediately obtainable

by means of D'Alembert's principle. In terms of the displace

ments a, /3, 7, these equations become

(8),

where + + /
...................... (9).dx dy dz ^ '

In the ordinary theory of fluid friction no forces of restitution

are included, but on the other hand we have to consider viscous

forces whose relation to the velocities (tt, v, w) of the fluid elements

is of precisely the same character as that of the forces of restitution

to the displacements (a, /3, 7) of an isotropic solid. Thus if 8' be

the velocity of dilatation, so that

X_du dv dw
o j "~ j

--
|~ jdx dy dz

the force parallel to so due to viscosity is, as in (8),

So far K and n are arbitrary constants
;
but it has been argued

with great force by Prof. Stokes, that there is no reason why a

motion of dilatation uniform in all directions should give rise to

viscous force, or cause the pressure to differ from the statical pres
sure corresponding to the actual density. In accordance with this

argument we are to put K =
; and, as appears from (6), n coincides

with the quantity previously denoted by //,.
The factional terms

are therefore

(. . d fdu dv dw\]
^1 V w + i J-(T-+T- + J" >

&c - :r
( dx\dx dy dz 1}

and ( 237) the equations of motion take the form

(Du v\ dp d (du dv--
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or, if there be no applied forces and the square of the motion be

neglected,

du dp _
i

^ (du dv dw\--
We may observe that the dissipative forces here considered

correspond to a dissipation function, whose form is the same with

respect to u, v
9
w as that of F with respect to a, /3, 7, in the theory

of isotropic solids. Thus putting re = 0, we have from (1)

fdv ,

dw\*
, fdw du\* fdu cfaA

2

~]
, , , /1/1X+ -T+T- + -j- + :H + ry + T" d^2/^ ...... (14),

Vd^ dy/ \d^ dz) \dy dxj ]
* x

in agreement with Prof. Stokes' calculation 1
. The theory of friction

for the case of a compressible fluid was first given by Poisson 2
.

346. We will now apply the differential equations to the in

vestigation of plane waves of sound. Supposing that v and w are

zero and that u, p t
&c. are functions of oc only, we obtain from

(13) 345

The equation of continuity (3) 238 is in this case

and the relation between the variable part of the pressure &p and

the condensation s is as usual ( 24>4)

8p = aV>o* ........................... (3).

Thus, eliminating Sp and s between (1), (2), (3), we obtain

which is the equation given by Stokes".

Let us now inquire how a train of harmonic waves of wave

length \, which are maintained at the origin (x
=

0), fade away

]

Cambridge Transactions, vol. ix. 49, 1851.

3 Journal de VEcoU Polytechnique, t. xni. oah. 20, p. 139.

8
Cambridge Transactions, vol. vni. p. 287, 1845.
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as x increases. Assuming that u varies as eint
,
we find as in

148,

u = Ae~** cos (nt fix) ..................... (5),

\. a* o o o /fi v

where #-0* =-T7^-? , 2a/3 =-r^^ ............ (6).

In the application to air at ordinary pressures p, may be con

sidered to be a very small quantity and its square may be

neglected. Thus

- n W
(7).,

a

It appears that to this order of approximation the velocity of

sound is unaffected by fluid friction. If we replace n by
the expression for the coefficient of decay becomes

8?r>

shewing that the influence of viscosity is greatest on the waves of

short wave-length. The amplitude is diminished in the ratio

e:l, when x = crl
. In c. G. s. measure we may take

, /it
= -00019, a = 33200;

whence #=S800V ........................... (9).

Thus the amplitude of waves of one centimetre wave-length is

diminished in the ratio e : 1 after travelling a distance of 88

metres. A wave-length of 10 centimetres would correspond nearly
to c/

iv

;
for this case oc = 8800 metres. It appears therefore that at

atmospheric pressures the influence of friction is nob likely to be

sensible to ordinary observation, except near the upper limit of the

musical scale. The mellowing of sounds by distance, as observed in

mountainoxis countries, is perhaps to be attributed to friction, by
the operation of which the higher and harsher components are

gradually eliminated. It must often have been noticed that the

sound ,y is scarcely, if at all, returned by echos, and I have found '

that at a distance of 200,metres a powerful hiss loses its character,

even when there is no reflection. Probably this effect also is due

to viscosity.

1 Acoustical Observations, Phil, Md<j. vol. in. p. 456, 1877.
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In highly rarefied air the value of a as given in (8) is much

increased, yw- being constant. Sounds even of grave pitch may then

be affected within moderate distances.

From the observations of Colladon in the lake of Geneva it

would appear that in water grave sounds are more rapidly damped

than acute sounds. At a moderate distance from a bell, struck

under water, he found the sound short and sharp, without musical

character.

347. The effect of viscosity in modifying the motion of air in

contact with vibrating solids will be best understood from the solu

tion of the problem for a very simple case given by Stokes. Let us

suppose that an infinite plane (yz) executes harmonic vibrations in

a direction (y) parallel to itself. The motion being in parallel

strata, u and w vanish, and the variable quantities are func

tions of x only. The first of equations (13) 345 shews that the

pressure is constant; the corresponding equation in v takes the

form
dv d*v ,-.

similar to the equation for the linear conduction of heat. If we

now suppose that v is proportional to &nt
,
the resulting equation

in x is

and its general solution

(3),

where

If the gas be on the positive side of the vibrating plane the motion

is to vanish when # + oo. Hence .# = 0, and the value of v

becomes on rejection of the imaginary part

(5),

corresponding to the motion

(6)

at # 0. The velocity of the fluid in contact with the plane is

usually assumed to be the same as that of the plane itself on the
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apparently sufficient ground that the contrary would imply an

infinitely greater smoothness of the fluid with respect to the solid

than with respect to itself. On this supposition (5) expresses the

motion of the fluid on the positive side due to a motion of the

plane given by (6).

The tangential force per unit area acting on the plane is

or -cosn* +smn^^

if A = 1. The first term represents a dissipative force tending to

stop the motion
;
the second represents a force equivalent to an

increase in the inertia of the vibrating body. The magnitude of

both forces depends upon the frequency of the vibration.

We will apply this result to calculate approximately the velocity

of sound in tubes so narrow that the viscosity of air exercises a

sensible influence. As in 265, let X denote the total transfer of

fluid across the section of the tube at the point x. The force,

due to hydrostatic pressure, acting on the slice between x and

x + So; is, as usual,

x

The force due to viscosity may be inferred from the investigation

for a vibrating plane, provided that the thickness of the layer of

air adhering to the walls of the tube be small in comparison with

the diameter. Thus, ifP be the perimeter of the tube, and V be

the velocity of the current at a distance from the walls of the

tube, the tangential force on the slice, whose volume is $&r, is

by (7)

j ~\r

or on replacing V by
-- ~ 8

S .............. (9).

The equation of motion for this period is therefore
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P

The velocity of sound is approximately

{'-**/(
or in the case of a circular tube of radius r,

The result expressed in (12) was first obtained by Helmholtz.

348 l
. In the investigation of Kirchhoff2

,
to which we now

proceed, account is taken not only of viscosity but of the equally

important effects arising from the generation of heat and its

communication by conduction to and from the solid walls of a

narrow tube.

The square of the motion being neglected, the
"
equation of

continuity
"

(3) 237 is

+ *? +*+*?. .................. (1);
at duo dy dz

so that the dynamical equations (13) 345 may be written in the

form

(2).
.

dt p<>dx po

The thermal questions involved have already been considered

in 247. By equation (4)

where v is a constant representing the thermometric conductivity.

By (3) 247
8 + a0) ..................... (4),

in which b denotes Newton's value of the velocity of sound, viz.

V(:Po/Po)' If we denote Laplace's value for the velocity by a,

ay&*== 7 ==l4-a/9 ........................ (5),

so that = (a-&*)/&' ........................ (6).

1 This and the following appear for the first time in the second edition.

The first edition closed with 3 IB, there devoted to the question of dynamical

similarity.
*
Pogg. Ann. vol. cxxxiv., p. 177, 1808.
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It will simplify the equations if we introduce a new symbol & in

place of 0, connected with it by the relation & = 0//3. Thus (3)

becomes

and the typical equation (2) may be written

where /jf is equal to /*/p . p!' represents a second constant, whose

value according to Stokes' theory is |//. This relation is in

accordance with Maxwell's kinetic theory, which on the intro

duction of more special suppositions further gives

*-*/ .............................. (9).

In any case //, //', v may be regarded as being of the same order

of magnitude.

We will now, following Kirchhoff closely, introduce the suppo
sition that the variables u, v, w, s, ff are functions of the time on

account only of the factor dlt

,
where h is a constant to be after

wards taken as imaginary. Differentiations with respect to t are

then represented by the insertion of the factor h, and the equations
become

du/dx + dv/dy + dw/dz + hs = Q ............ (10),

hu - //V*w = - dPjdx \

> .................. (11),

J

2

)0' ............... (12),

s = f

-(v/h)V*e' ..................... (13).

By (13), if s be eliminated, (12) and (10) become

+
ay dz

(14),

(15).^ '

By differentiation of equations (11) with respect to #, y, z,

with subsequent addition and use of (14), (15), we find as the

equation in ff

'+
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A solution of (16) may be obtained in the form

ff^A^ + AAt ..................... (17),

where Qa , Q2 are functions satisfying respectively

VQ^X^, v*Q2 =x2& ............ (is),

Xj, X2 being the roots of

h* - {a
a + h (JA + /*" + v)} X + J {6

2 + h (/*' + /')} V = 0. . .(19),

while 4 a ,
-4 2 denote arbitrary constants.

ID correspondence with this value of 6' 9 particular solutions of

equations (11) are obtained by equating u
t v, w to the differential

coefficients of

AQi + j^Qt,

taken with respect to #, y, z* The relation of the constants 5a ,
J52

to AI, A$ appears at once from (15), which gives

V* (BlQl + B9 Qt) + (h
-
j/V) (AQi + ^ 2Q2)

= 0,

so that by (18)

-^"- .........(20) -

More general solutions may be obtained by addition to u, v, w

respectively of< v'
t
wf

, where u
f

, v', w
r

satisfy

W = A u', Vv' - 4 ^ W = A / . . . (21 )./*/*/*
Thus

(22),
'

4- B^dQijdz 4- 2

where JBi, 52 have the values above given.

By substitution in (15) of the values of u, v, w specified in (22)

it appears that

^i' +^ +^-O ..................... (23).
dx^dy^.dz

^ v ;

349. These results are first applied by Kirchhoff to the case

of plane waves, supposed to be propagated in infinite space in

the direction of +0. Thus */ and.w' vanish, while u', Qlt Q2 are

independent of y and *. It follows from (23) 348 that u' also

vanishes. The equations for Ql
and Q9 are

(1);
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so that we may take

Q, = e-**i, Q2
- e-*^> ............... (2),

where the signs of the square roots are to be so chosen that the

real parts are positive. Accordingly

(3),

-* 11** .................. (4),

in which the constants A lt A z may be regarded as determined by
the values of u and 0' when x = 0.

The solution, as expressed by (3), (4), is too general for our

present purpose, providing as it does for arbitrary communication

of heat at # = 0. From the quadratic in X, (19) 348, we see that

if ///, //', v be regarded as small quantities, one of the values of X,

say X1? is approximately equal to A3
/a

2
, while the other \ is very

great. The solution which we require is that corresponding to Xj

simply. The second approximation to Xj is by (19) 348

_
7^ i *

ha? a2

]" a2

so that VXa - -^ [p! + !' + v (1
- 62

/a
2

)} ......... (5).

If we now write in for h, we see that the typical solution is

u = e~m
'x

ein(t
~
xfa) ........................(6),

where m'. M
' +^ + pl- ............... (7).

In (6) an arbitrary multiplier and an arbitrary addition to t

may, as usual, be introduced
; and, if desired, the solution may be

realized by omitting the imaginary part.

These results are in harmony with those already obtained for

particular cases. Thus, if v = 0, (7) gives

in agreement with (7) 346, where

On the other hand if viscosity be left out of account, so that

p! = ^" = ;
we fall back upon (18) 247. It is unnecessary to add

anything to the discussions already given.
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In the case of spherical waves, propagated in the direction of

+ r, Kirchhoff finds in like manner as the expression for the radial

velocity
/7 0~-m'r~ --

. efn<-r/a) ........................ (8),dr r
^ '

where in' has the same value (7) as before.

350. We will now pass on to the more important problem and

suppose that the air is contained in a cylindrical tube of circular

section, and that the motion is symmetrical with respect to the

axis of #. If jr* + & = r*> and

v q. yjr, w^q. zjr,

v
' =

</ y/r>
w' =-q. z/r 9

then \i} u
f

, q, q' } Qi , Qa &r@ to be regarded as functions of x and r.

We suppose further that as functions of x these quantities are

proportional to e
7

'^, where m is a complex constant to be deter

mined. The equations (18) 348 for Ql9 Q2 become

For u', $ equations (21), (23) give

^+1^' .(*_.) ^
dr* r dr \p J

r dr r2

(5).
r

These three equations are satisfied if u' be determined by

means of the first, and q' is chosen so that

a relation obtained by subtracting from (4) the result of differen

tiating (5) with respect to r. The solution of (3) may be written

u' AQ> in which A is a constant, and Q a function of r satisfying

d*9*lL^&(L- m*}Q . ..(7)
dr2 r dr \uf J
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Thus, by (20), (22) | 348,

ff =A& + A*Q> ..................... (10).

On the walls of the tube , q,
0' must satisfy certain conditions.

It will here be supposed that there is neither motion of the gas

nor change of temperature; so that when r has a value equal to

the radius of the tube, u, q.
ff vanish. The condition of which we

are in search is thus expressed by the evanescence of the determi

nant of (8), (9), (10), viz. :

(11).

The three functions Q, Qlt Q,, which are required to remain finite

when r = 0, are Bessel's functions of order zero ( 200), so that we

may write in the usual notation

.

In equation (11) the values of X,, X, are independent of r,

being determined by (19) 348. In the application to air under

normal conditions /, //', v may be regarded as small, and we have

approximately

A second approximation to the value of \ has already been given

in (5) 349. It is here assumed that the velocity of propagation

of viscous effects of the pitch in question, viz. V(V)> 347 >
LS

small compared with that of sound, so that inp'/cf, or
//ft'/a

2
,
is a

small quantity.

In interpreting the solution there are two extreme cases

worthy of special notice. The first of these, which is that

considered ty Kirchhoff, arises When /, p", v are treated as very

small, so small that the layer of gas immediately affected by the

walls of the tube is but an insignificant
fraction of the whole

contents. When p! &c. vanish, we have
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so that rV(w
2
-^i) is here, to be regarded as small On the other

hand rVO2 - V/O> rVO2
-X,) are large.

The value of J*(z\ when z is small, is given by the ascending

series (5) 200
;
from which it follows at once that

dlog J<>(z)ldz
= -%z.

When z is very large and such that its imaginary part is positive,

(10) 200 gives

d log / (z)ldz
= - tan (z

-
JTT)

= - i.

Thus, if we retain only the terms of highest order,

Using these in (11) with the approximate values of \, X, from

(13), we find

where 7'
= Jp! + (a>lb-b/a)*Jv .................. (16),

and the sign of *Jh is to be so chosen that the real part is positive.

We now write

so that the frequency is n/27r. Thus

and

where by (15)

If we restore the hitherto suppressed factors dependent upon a

and t, we have

u =SJ8^ q
= jBB'e*"*-, ^ - BIT*"*",

where JJ is an arbitrary constant, and E, ^', K' are certain

functions of r, which vanish when r is equated to the radius of

the tube, and which for points lying at a finite distance from the

walls assume the values
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The realized solution for u, applicable at points which lie at a

finite distance from the walls, may be written

u= GI&*'* sin (nt -f m"x + ^) + Oze~
m'x sin (nt

- m"x+ S2). . .(21),

where Ol9 <72 , $i, S2 denote four real arbitrary constants. Ac

cordingly m' determines the attenuation which the waves suffer

in their progress, and m" determines the velocity of propagation.

This velocity is

in harmony with (12) 347.

The diminution of the velocity of sound in narrow tubes, as

indicated by the wave-length of stationary vibrations, was observed

by Kundt ( 260), and has been specially investigated by Schnee-

beli1 and A. Seebeck 2
. From their experiments it appears that

the diminution of velocity varies as r"1
,
in accordance with (22),

but that, when n varies, it is proportional rather to n~^ than to

w"*. Since p, is independent of the density (p\ the effect would

be increased in rarefied air.

We will now turn to the consideration of another extreme case

of equation (11). This arises when the tube is such that the

layer immediately affected by the friction, instead of merely

forming a thin coating to the walls, extends itself over the whole

section, as must inevitably happen if the diameter be sufficiently

reduced. Under these circumstances hr*//j,' is a small, and not, as

in the case treated by Kirchhoff, a large quantity, and the argu
ments of all the three functions in (12) are to be regarded as

small.

One result of the investigation may be foreseen. When the

diameter of the tube is very much reduced, the conduction of heat

from the centre to the circumference of the column of air becomes
more and more free. In the limit the temperature of the solid

walls controls that of the included gas, and the expansions and
rarefactions take place isothermally. Under these circumstances

there is no dissipation due to conduction, and everything is the

same as if no heat were developed at all. Consequently the

coefficient of heat-conduction will not appear in the result, which

1
Pogg. Ann, vol. cxxxvi. p. 296, 1869.

2
Pogg. Ann. vol. cxxxix. p. 104, 1870.
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will involve, moreover, the Newtonian value (6) of the velocity of

sound, and not that of Laplace (a).

When z is small,

so that approximately

rflog / (*)/<fe
= --i*(l+i*

i

) ............... (2:3).

When the results of the application of (23) to Q, Qlt Q2 are

introduced into (11), the equation may be divided by r, and the

left-hand member will then consist of two parts, of which the first

is independent of r and the second is proportional to r2
. The first

part reduces itself without further approximations to v (X2 X^.

For the second part the leading terms only need be retained.

Thus with use of (13)

whence

The ratio of the second term to the first is of the order In^/v, by

supposition a small quantity, so that we are to take simply

8i>'n f:)
..

....................... (24)>

as the solution applicable under the supposed conditions.

Before leaving this question it may be worth while to consider

briefly the corresponding problem in two dimensions, although it

is of less importance than that of the circular tube treated by

Kirchhoff. The analysis is a. little simpler; but, as it follows

practically the same course, we may content ourselves with a mere

indication of the necessary changes. The motion is supposed to

be independent of z and to take place between parallel walls at

2/=yi-

The equations (1) to (11) of the preceding investigation may
be regarded as still applicable in the present problem, if we write

v for q and y for r, with omission of the terms where r occurs in

the denominator. The general solution of the equations corre

sponding to (1), (2), (7) contains two functions whose form is that

of sines and cosines of multiples of
ij.

But from (8), (9), (10) it

is evident that the conditions of the problem at y = require the
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absence of the sine function, so that in (12) we are simply to

replace the function JQ by the cosine.

In the case where p' &c. are regarded as infinitely small we
have as in (14), when y ylt

but in place of the second of equations (14)

dlogQJdy^yifa-m*) .................. (26V

When these values are substituted in (11), the resulting equation

is unchanged, except that r is replaced by %yl
. The same substi

tution is to be made in (15), (20), (22). The latter gives for the

velocity of sound

(2r >-

It is worth notice that (27) is what (11) 347 becomes for

this case when we replace V/*' by 7' ;
and we may perhaps infer

that the same change is sufficient to render that equation ap

plicable to a section of any form when thermal effects are to be

taken into account.

In the second extreme case where the distance between the

walls (2^) is so small that hy^fv is to be neglected, we have in

place of (23)
d log cos z/dz^-zQ + bz*) ............... (28).

The equations following are thus adapted to our present

purpose if we replace Jr
2
by J^

2
. The analogue of (24) is ac

cordingly

351. The results of 350 have an important bearing upon
the explanation of the behaviour of porous bodies in relation to

sound. Tyndstll has shewn that in matiy cases sound penetrates
such bodies more freely than would have been expected, although
it is reflected from thin layers of continuous solid matter. On
the other hand a hay-stack seems to form a very perfect obstacle.

It is probable that porous walls give a diminished reflection, so

that within a building so bounded resonance is less prolonged
than if the walls were formed of continuous matter.
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When we inquire into the mechanical question, it is evident

that sound is not destroyed by obstacles as such. In the absence

of dissipative forces, what is not transmitted must be reflected.

Destruction depends upon viscosity and upon conduction of heat ;

but the influence of these agencies is enormously augmented by
the contact of solid matter exposing a large surface. At such a

surface the tangential as well as the normal motion is hindered,

and a passage of heat to and fro takes place, as the neighbouring
air is heated and cooled during its condensations and rarefactions.

With such rapidity of alternation as we are concerned with in the

case of audible sounds, these influences extend to only a very thin

layer of the air and of the solid, and are thus greatly favoured by
a fine state of division.

Let us conceive an otherwise continuous wall, presenting a

flat face, to be perforated by a great number of similar narrow

channels, uniformly distributed, and bounded by surfaces every
where perpendicular to the face of the wall. If the channels be

sufficiently numerous, the transition, when sound impinges, from

simple plane waves on the outside to the state on the inside of

aerial vibration corresponding to the interior of a channel of

unlimited length, occupies a space which is small relatively to

the wave-length of the vibration, and then the connection between

the condition of things inside and outside admits of simple ex

pression.

Considering first the interior of one of the channels, and

taking the axis of & parallel to the axis of the channel, we suppose
that as functions of x the velocity components u, v, w and the

condensation s are proportional to eikx,
while as functions of t

everything is proportional to e
int

,
n being real. The relationship

between k and n depends upon the nature of the gas and upon
the size and form of the channel, and has been determined for

certain important cases in 350, ik being there denoted by m.

Supposing it to bo known, we will go on to shew how the problem
of reflection is to be dealt with.

For this purpose consider the equation of continuity as

integrated over the cross-section <r of the channel. Since the

walls of the channel are impenetrable,

so that nJfsd<r + kff
rud<T^Q ..................... (1).



330 REFLECTION OF SOUND [35 L

This equation is applicable at points distant from the open end

more than several diameters of the channel.

Taking now the origin of x at the face of the wall, we have to

form corresponding expressions for the waves outside
;
and we

may there neglect the effects of viscosity of conduction of heat.

If a be the velocity of sound in the open, and Jc = n/a, we may
write for waves incident and reflected perpendicularly

"*
..................... (2),

*
................. (3):

so that the incident wave is

or, on throwing away the imaginary part,

$ = cos (nt + & #) ........................ (5 ).

These expressions are applicable when x exceeds a moderate

multiple of the distance between the channels. Close up to the

face the motion will be more complicated ;
but we have no need

to investigate it in detail. The ratio of u and s at a place near

the wall is given with sufficient accuracy by putting x = in (2)

and (3),

We now assume that a space, defined by parallel planes one

on either side of # = 0, may be taken so thin relatively to the

wave-length that the mean pressures are sensibly the same at the

two boundaries, and that the flow into the space at one boundary
is sensibly equal to the flow out of the space at the other boundary,
and yet broad enough relatively to the transverse dimensions of the

channels to allow the application of (6) at one bounding plane and
of (1) at the other bounding plane. The equality of flow does not

imply an equality of mean velocities, since the areas concerned are

different. The mean velocities will be inversely proportional to

the corresponding areas that is in the ratio <r : <r 4- </, if a' denote

the area of the unperforated part of the wall corresponding to each

channel By (1) and (6) the connection between the inside and
outside motion is expressed by
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We will denote the ratio of the unperforated to the perforated

parts of the wall by g, so that g = cr'/cr.
Thus

If (7
= 0, & = & *nak is if *ne wall be abolished, or if it be

reduced to infinitely ^hin partitions between the channels while at

the same time the dissipative effects are neglected, there is no

reflection. If there are no perforations (#
=

oo), then 5 = 1,

signifying
total reflection. Generally in place of (7) we may write

which is the solution of the problem proposed. It is understood

that waves which have once entered the wall do not return,

When dissipative forces act, this condition may always be satisfied

by supposing the channels to be long enough. The necessary

length of channel, or thickness of wall, will depend upon the

properties of the gas and upon the size and shape of the channels.

Even in the absence of dissipative forces there must be reflection,

except in the extreme case # = 0. Putting k k in (8), we

have

If gsssl, that is if half the wall be cut away, J3 = J, *=*$, so

that the reflection is but small If the channels be circular and

arranged in square order as close as possible to one another,

<7
= (4 7r)/7r, whence JJ-121, ^='015, nearly all the motion,

being transmitted.

If the channels be circular in section and so small that nr-/v

may be neglected, we have, (24) 350,

so that (21) the wave propagated into a channel is proportional to

(11),

where
br ar

being the ratio of specific heats 246.
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To take a numerical example, suppose that the pitch is 256,

so that n = 2-7r x 256. The value of p! for air is '16 C.G.S., and that

of v is -256. If we take r = -rfm cm., we find nr*ISv equal to about

Y^. If r were ten times as great, the approximation in (10)

would perhaps still be sufficient.

From (12), if 71= 2?r x 256,

m' = m" = -00115/r (13);

so that, if r^-tffa cm., m' = ri5. In this case the amplitude is

reduced in the ratio e : I in passing over the distance 1/m', that is

about one centimetre. The distance penetrated is proportional to

the radius of the channel.

The amplitude of the reflected wave is by (8)

or, as we may write it,

^ M-l~iM

where M= (l+g)m'/k (15).

If / be the intensity of the reflected sound, that of the incident

sound being unity,

T_2M*-2M+l
* < }'

The intensity of the intromitted sound is given by

i r~JL
^^

J. "

By (12), (15)

If we suppose r = y^ cm., and g = I, we shall have a wall

of pretty close texture. In this case by (18), Jf=4 l

7-4 and

l~/ = -0412. A loss of 4 per cent, may not appear to be im

portant; but we must remember that in prolonged resonance

we are concerned with the accumulated effect of a large number
of reflections, so that a comparatively small loss in a single re

flection may well be material. The thickness of the porous layer

necessary to produce this effect is less than one centimetre.

Again, suppose r=TJTTcm., ^=1. WenndJbf=4-74, 1-I='342;
and the necessary thickness would be less than 10 centimetres.
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If r be much greater than -^ cm., the exchange of heat

between the air and the sides of the channel is no longer suffi

ciently free to allow of the use of (24) 350. When the diameter

is so great that the thermal and viscous effects extend through

only a small fraction of it, we have the case discussed by Kirchhoff

(15) 350. Here

a

which value is to be substituted in (8). If for simplicity we put

g = 0, we find

(21).

The supposition that g = is, however, inconsistent with- the

circular section
;
and it is therefore preferable to use the solution

corresponding to (27) 350, applicable when the channels assume

the form of narrow crevasses 1
. We have merely to replace r in

(19), (20), (21) by 2^, 2^ being the width of a crevasse. The

incident sound is absorbed more and more completely as the width

of the channels increases
;
but at the same time a greater length

of channel, or thickness of wall, becomes necessary in order to

prevent a return from the further side. If g = 0, there is no

theoretical limit to the absorption; and, as we have seen, a

moderate value of g does not of itself entail more than a com

paratively small reflection. A loosely compacted hay-stack would

seem to be as effective an absorbent of sound as anything likely to

be met with,

In large spaces bounded by non-porous walls, roof, and floor,

and with few windows, a prolonged resonance seems inevitable.

The mitigating influence of thick carpets in such cases is well

known. The application of similar material to the walls and to

the roof appears to offer the best chance of further improve

ment.

362. One of the most curious consequences of viscosity is the

generation in certain cases of regular vortices, Of this an example,

discovered by Dvorak, has already been mentioned in 260. In

1 It may be remarked that even in the two-dimensional problem the sup

position 0=0 involves an infinite capacity for heat in the material composing

the partitions.
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a theoretically inviscid fluid no such effect could occur, 240
; and,

even when viscosity enters, the phenomenon is one of the second

order, dependent, that is, upon the square of the motion. Three

problems of this kind have been treated by the author 1 on a

former occasion, but here we must limit ourselves to Dvorak's

phenomenon, further simplifying the question by taking the case

of two dimensions and by neglecting the terms dependent upon
the development and conduction of heat.

If we suppose that p = a,
z

p, and write s for log(/?/p ), the

fundamental equations (12) 345 are

ds du du da.
, , 9 ,

,
d fdu dv\ ,, .

a2 -r-=--T7 tt-r w :r- + M v U + P j-i-r +j-)(!)dx dt dx dy dx\dx dy)
^ '

with a corresponding equation for v, and the equation of continuity

| 238
du dv ds ds ds_ + + 4, u H-V-T- =0 (2).dx dy dt dx dy

'

Whatever may be the actual values of u and v, we may write

in which

du dv du dv

From (1), (2)

d \ ds du

(a
\

du du d f ds ds\ /K .

U-J--V-J /* -5- h* -T- + v -3- ) ...... (5),dx dy
^

dx\ dx dy/
^ h

,,d\ds dv
-rr- ^~= -j7
dtj dy dt

dv dv d ( ds d$\ //v .- u -. v -
p!'

i u jrv ^r.

)
...... /e).dx dy

^
dy\ dx dy)

^ }

Again, from (5), (6),

&s d

-
dx dy) dy\ dx dy

......... (7).

1 On the Circulation of Air observed in Kundt's Tubes, and on some allied

Acoustical Problems. PhiL Trans, vol. 175, p. 1, 1888.



352.] TO A SECOND APPROXIMATION. 335

For the first approximation the terms of the second order in

u, v, s are to be omitted. If we assume that as functions of t all

the periodic quantities are proportional to eint, and write q for

a2 + inp! + inp!', (7) becomes

?V
2s + 7i

2s = ........................ (8).

Now by (2), (4) V2
< = - ins = i (q/n) V8

*,

so that
<f>
=

iqs/n ........................... (9) *,

and _*+, ,_*Z* *t ......... no).n dx dy
y

n dy dx v ;

Substituting in (5), (6), with omission of the terms of the

second order, we get in view of (8),

whence (//V
2

-m)-f =0 ..................... (11).

If we eliminate s directly from equations (1), we get

d ( du
%

du\ d

. u ~.rz- +v 2 r _ /12 )

doc dy

If we now assume that as functions of x the quantities $, ty, &c.

are proportional to e***, equations (8), (11) may be written

where k"2 = A8 na

/#,

(d*/dy*
- A/

2
) ijr

=
(14),

where A/a = 4s
4- tw/X-

If the origin for y be in the middle between the two parallel

bounding planes, s must be an oven function of y, and -^ must be

an odd function. Thus we may write

s ** A cosh V'y . e
{n*

, e
to

, ^ = B sinh% . ^n<
. eP*. ..(15),

u ==
(
-

Ag'/?^ . A cosh Fy + k'B cosh Ay) e
7Vit

. e
ikx

i) (i^F/n , ul sinh ^y - iA:B sinh My) e
int

. efkx

1 It is unnecessary to add a complementary function <' satisfying vV=0' :

the motion corresponding thereto may be regarded aa covered by ^.
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If the fixed walls are situated at y= yl9 u and v must vanish

for these values of y. Eliminating from (16) the ratio of A to B,

we get as the equation for determining k,

Jfcnanh %! = &'&'' tanh FJA ............... (17),

where &', k" are the functions of k above defined. Equation (17)

may be regarded as a modified and simplified form of (11) 350,

modified on account of the change from symmetry about an axis

to two dimensions, and simplified by the omission of the thermal

terms represented by v. The comparison is readily made. Since

X>= oo
,
the third term in (11), involving Q.2 , disappears altogether,

and then Xf1 divides out. In (11), (12) r is to be replaced by y,

and J by cosine, as has already been explained. Further,

mz =
jfc

2
,

h = in.

We now introduce further approximations dependent upon the

assumption that the direct influence of viscosity extends through
a layer whose thickness is a small fraction only of y^ In this case

A2 = nz

/a? nearly, so that k/f

y^ is a small quantity and k'y-^ is a large

quantity, and we may take

tanh Vy^ = 1, tanh &"yx
= kff

yl
.

Equation (17) then becomes

Tf = M*yi ........................... (18),

or, if we introduce the values of &', &" from (13), (14),

* =
yi (k*

-

Thus approximately

in agreement with the result already indicated in 350.

In taking approximate forms for (16) we must specify which

half of the symmetrical motion we contemplate. If we choose

that for which y is negative, we replace cosh&'y and sinh&'y by
\e~*y. For cosh k"y we may write unity, and for sinh Wy simply

k"y. If we change the arbitrary multiplier so that -the maximum
valu of 4is u and for the present take UQ equaHo unity, we have

u = (- 1 + er**+n) &* #* \

v = ik/k' . (y/y, + e~* (^>>
) <P* e^}

............ ^ ''

in which, of course, u and v vanish when y = y,
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If in (20) we change k into k and then take the mean, we
obtain

u = (- 1 + e-* ft*-*)) Cos kx eitlt

\
v = _

k/k'
. (yfy, + en* <*+*>

) sin kx eint
j

......... '
''

Although A? is not absolutely a real quantity, we may consider it

to be so with sufficient approximation for our purpose. We may
also take in (14)

*) .................. (22),

if /3
=

*/(n/2/j,'). Using this approximation in (21), we get in terms

of real quantities,

u = cos k% [ cosnt 4- e-0fyW cos {nt /8 (y 4-

/ . i\
' i?r)

cos
{/?

-
JTT

-
(y

It will shorten the expressions with which we have to deal if

we measure y from the wall (on the negative side) instead of, as

hitherto, from the plane of symmetry, for which purpose we must

write y for y -f 2/i
Thus

i^ = cos kx [- cos nt 4- e~M cos (nt
-

j3y)]

the subscripts indicating the order of the terms.

These are the values of the velocities when the square of the

motion is neglected. In proceeding to a second approximation we

require to form expressions for the right-hand members of (7) and

(12), which for the purposes of the first approximation were

neglected altogether. The additional terms dependent upon the

square of the motion are partly independent of the time and

partly of double frequency involving 2nt. The latter are not of

much interest, so that we shall confine ourselves to the non-

periodic part. Further simplifications are admissible in virtue

of the small thickness of the retarded layer in proportion to the

width of the channel (2^) and still more in proportion to the

wave-length (X). Thus k/0 is a small quantity and may usually

be neglected.
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From (24)

V2^ = 4/2 . cos kx e~*y sin (n*
- Jw - y) ...... (25),

dujda; -f dvjdy = k sin kx cos nt ............ (26),

Wl^^l + Vld^1 =p# sin 2te en* (- cos /3y + er&)
CLQb Cty

4- terms in 2nt ...............(27),

f Ji1

4. J!l\ V*^ = - J&/3 sin 2J&; e~^y (s in fly + cos /3y)
\ cia/ ay /

4- terms in 2nt ...............(28).

Thus for the non-periodic part of ^ of the second order, we
have from (12)

kB
V4

i/r2
= -

4
/ sin Zkx e~^ {sin fty + 3 cos $y - 2^^} ... (29 ).

In this we identify V4 with (d/dy)*, so that

to which may be added a complementary function, satisfying

V^2
= 0, of the form

sin

or, as we may take it approximately, if ^ be small compared
with X,

-yy} ....... (32).

Equations (30), (32) give the non-periodic part of^ of the second

order.

The value of s to a second approximation would have to be

investigated by means of (7). It will be composed of two parts,
the first independent of t, the second a harmonic function of 2n#.

In calculating the part of dfldx independent of t from

V2
< = ds/db uds/dx - v ds/dy,

we shall obtain nothing from ds/dt. In the remaining terms on
the right-hand wide it will be sufficient to employ the values u, v, s

of the first approximation. From

ds/dt
=

du/dtt dv/dy,
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in conjunction with (26), we get

s = -w-o/a . sin kx sin nt,

whence #fa/d (/3yY ** ku^/Za/S
2

. cos2 kx er+v sin 0y.

From this it is easily seen that the part of i^ resulting from

d<f)(d
in (3) is of order &I/3

2 in comparison with the part (33)

resulting from ^2 ,
and may be omitted. Accordingly by (30),

with introduction of the value of fj and (in order to restore

homogeneity) of u 2
,

and from (32)

[A' (yt

-
y)' 4- Bf

(yi y)*} (36).

The complete value of the terms of the second order in u, v are

given by addition of (33), (35) and of (34), (36). The constants

-A', B
f

arc to be determined by the condition that these values

vanish when y 0. Wo thus obtain as the complete expression of

the terms of tho second order

1 8m 2faW (4 sin py + 2 cos% 4 <r<^) 4- f
-

J

yi )

(37),

Outside the thin film of air immediately influenced by the

friction we may put e~fv = 0, and then

sin 2to f.
3 Q/i

-
y)'[ /Q\~~"~ ............... (39))
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From (39) we see that u3 changes sign as we pass from the

boundary j/= to the plane of symmetry y = yl> the critical value

of y being yl (1
-

VJ), or '423^.

The value of ^ from (24) corresponding to (39) is

Uj = UQ cos kx cos nt (41),

so that the loops correspond to kx = 0, TT } STT, . . . , and the nodes

correspond to fcc= \TT, |TT,

The steady motion represented by (39), (40) is of a very simple
character. It consists of a series of vortices periodic with respect
to x in the distance

-J-X.
From (40) it appears that v is positive

at the nodes and negative at the loops, vanishing of course in each

case both at the wall y = and at the plane of symmetry y = ylm

Fig. 65.

2*r

In the figure AB represents the wall, CD the plane of symmetry,
and the directions of motion in the vortices are indicated by
arrows. It is especially to be remarked that the velocity of the

vortical motion is independent of /i/, so that this effect is not to be
obviated by taking the viscosity infinitely small. In that way
the tendency to generate the vortices may indeed be diminished,
but in the same proportion the maintenance of the vortices is

facilitated, so that when the motion has reached a final state the
vortices are as important with a small as with a large viscosity.
The fact that when viscosity is neglected from the first no such
vortices make their appearance in the solution shews what extreme
care is required in dealing with problems relating to the be
haviour of slightly viscous fluid in contact with solid bodies.

In estimating the mean motion to the second order there is

another point to be considered which has not yet been touched

upon. The values of i^ and, vl in (24) are, it is true, strictly

periodic, but the same property does not attach to the motions

thereby defined of the particles of the fluid. In our notation u is

not the velocity of any individual particle of the fluid, but of the

particle, whichever it may be, that at the moment under conside-
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ration occupies the position #, y, ( 237). If # + y + rj define

the actual position at time t of the particle whose mean position

during several vibrations is (#, y\ then the actual velocities of the

particle
at time t are, not ult vlt but

diii p du dvl ^ dvl

and thus the mean velocity parallel to x is not necessarily zero,

but is equal to the mean value of

^dujdx -\-riduJdy .....................(42),

in which again

f^fadt, rj^fadt .................. (43).

In the present case the mean value of (42) is

- w 2
/4a . sin Zkx er+v (e~M - cos &y) ........... (44),

which is to be regarded as an addition to (37). However, at a

short distance from the wall (44) may be neglected, so that (39)

remains adequate.

We have seen that the width of the direct current along the

wall y = is '423 yl9 and that of the return current, measured up
to the plane of symmetry, is '577^. The ratio of these widths is

not altered by the inclusibn of the second half of the channel

lying beyond the plane of symmetry ;
so that the direct current is

distinctly narrower than the return current. This disproportion

will be increased in the case of a tube of circular section. The

point under consideration depends in fact only upon a comple

mentary function analogous to (32), and is so simple that it may
be worth while briefly to indicate the steps of the calculation.

The equation for ^ is
1

but, if we suppose that the radius of the tube is small in compari

son with X, &a

may be omitted. The general solution is

fa = (A + Br2 + BV2

log T + CV4

} sin 2fcs ....... (46),

so that

u, = dfa/rdr = [25 4- B f

(2 log r + 1) + 4CV}- sin 2kx . . . (47),

i Stokes, Tram, Cnmb. Phil #oc., vol. ix. 1856; Basset's Hydrodynamics

485.
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whence B' = 0, by the condition at r = 0. Again,

Vt = - d^rdx= - 2i {Ar~
l +Br + <?r

3

} cos 2kx . . .(48),

whence -4=0.

We may therefore take

If, as in (40), v3 = 0, when r = R, B+ CR2 = 0, and

%>=2<7(27*-.H?)sin2Aa? .................. (50).

Thus -> vanishes, when

The direct current is thus limited to an annulus of thickness

*293 R, the return current occupying the whole interior and having
therefore a diameter of 2 x '707 R, or r4



CHAPTER XX.

CAPILLARITY.

353. THE subject of the present chapter is the behaviour of

inviscid incompressible fluid vibrating under the action of gravity

and capillary force, more especially the latter. In virtue of the

first condition we may assume the existence of a velocity-potential

(<), which by the second condition must satisfy ( 241) the

equation1

V^ = .............................. (1),

throughout the interior of the fluid. In terms of
<f>

the equation

for the pressure is ( 244)

fy/p
= R-d<}>/dt....................... (2),

if we assume that the motion is so small that its square may be

neglected. The only impressed force, acting upon the interior of

the fluid, which we have occasion to consider is that due to gravity ;

so that, if z be measured vertically downwards, R -
gz, and (2)

becomes
, v

(3).

Let us now consider the propagation of waves upon the hori

zontal surface =
0) of water, or other liquid, of uniform depth Z,

limiting our attention to the case of two dimensions, where the

motion is confined to the plane zx. The general solution of (1)

under this condition, and that the motion is proportional to

or, with regard to the condition that the vertical velocity must

vanish at the bottom where z = l,
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If the motion be proportional also to e
int

,
and we throw away the

imaginary part in (4), we get as the expression for waves propa

gated in the negative direction

<f>
= Ccoshk(2-l) cos(n*+ jfeo?) ............... (5),

in which it remains to find the connection between n and k.

If h denote the elevation of the water surface at the point #,

and T the constant tension, the pressure at the surface due to

capillarity is T&h/dtf, and (3) becomes

, d<f>

or, if we differentiate with respect to t and remember that

_
y dz dt*

.....................W '

Applying this equation to (5) where z = 0, we get for the velocity
of propagation

where, as usual,

&=27r/X ........................... (8).

In many cases the depth of liquid is sufficient to allow us to

take tanh kl = 1
;
and then

gives the relation between F and X. When X is great, the waves
move mainly under gravity and with velocity approximately equal
to \7(#X/2-7r). On the other hand, when X is small, the influence

of capillarity becomes predominant and the expression for the

velocity assumes the form

F-V^TT^X) ........................ (10).

Since X = FT, the relation between wave-length and periodic
time corresponding to (10) is

xyT
2 =

27rT//>., ...................... (11).

Except as regards the numerical factor, the relations (10), (11)
can be deduced by considerations of dimensions from the fact that
the dimensions of T are those of ,a force divided by a line.

1 A more general formula for the velocity of propagation (n/k) at the interface
between two liquids is given in (7) 365.

2
Kelvin, PJriL Mat), vol. xi u. p. 875, 1871.
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If we inquire what values of X correspond to a given value of

F, we obtain from the quadratic (9)

\ = *r*lg*/g.J(V*-tTglp) (12),

which shews that for no wave-length can F be less than F
() ,

where
F, = (4Zfc/P)* (13).

The values of X and of r corresponding to the minimum

velocity are given by

X =
27r(T/tfp)i, T = 27rOF/W (1*)-

If we take in C.G.S. measure # = 981, and for water
/>
= !,

T=76, we have F = 23'l, X = r71
7 l/r = 13'6.

The accompanying table gives a few corresponding values of

wave-length, velocity, and frequency in the neighbourhood of the

critical point :

A comparison of Kelvin's formula (9) with observation has

been effected by Matthiesseu
1

,
the ripples being generated by

touching the surface of the various liquids with dippers attached

to vibrating forks of known pitch. Among the liquids tried were

water, mercury, alcohol, ether, bisulphide of carbon; and the

agreement was found to be satisfactory. The observations include

frequencies as high as 1832, and wave-lengths as small as

04 cm.

Somewhat similar experiments have been carried out by the

author" with the view of determining T by a method independent

of any assumption respecting angles of contact between fluid and

solid, and admitting of application to surfaces purified to the

utmost from grease. In order to see the waves well, the light

was made intermittent in a period equal to that of the waves

( 42), and Foucault's optical method was employed for rendering

visible small departures from truth in plane or spherical reflecting

i Wied, Ann. vol. xxxvm. p. 118, 1889.

* On the Tension of Water Surfaces, clean and contaminated. P7Z. Mag.

vol. xxx p. 886, 1890.
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surfaces. From the measured values of T and X, T m&y be deter

mined by (11), corrected, if necessary, for any small effect of

gravity. The values thus found were for clean water 74'0 C.G.S.,

for a surface greasy to the point where camphor motions nearly

cease 53'0, for a surface saturated with olive-oil 41*0, and for one

saturated with oleate of soda 25*0. It should be remembered that

the tension of contaminated surfaces is liable to variations depen
dent upon the extension which has taken place, or is taking

place; but it is not necessary for the purposes of this work to

enter further upon the question of "superficial viscosity."

354. Another way of generating capillary waves, or crispa-

tions as they were termed by Faraday, depends upon the principle

discussed in 68 b. If a glass plate, held horizontally and made

to vibrate as for the production of Chladni's figures, be covered

with a thin layer of water or other mobile liquid, the phenomena
in question may be readily observed

1
. Over those parts of the

plate which vibrate sensibly the surface is ruffled by minute waves,

the degree of fineness increasing with the frequency of vibration.

The same crispations are observed upon the surface of liquid in a

large wine-glass or finger-glass which is caused to vibrate in the

usual manner by carrying the moistened finger round the circum

ference ( 234). All that is essential to the production of

crispations is that a body of liquid with a free surface be

constrained to execute a vertical vibration. It is indifferent

whether the origin of the motion be at the bottom, as in the

first case, or, as in the second, be due to the alternate advance

and retreat of a lateral boundary, to accommodate itself to which

the neighbouring surface must rise and fall.

More than sixty years ago the nature of these vibrations was

examined by Faraday
2 with great ingenuity and success. The

conditions are simplest when the motion of the vibrating horizontal

plate on which the liquid is spread is a simple up and down
motion without rotation. To secure this Faraday attached the

plate to the centre of a strip of glass or lath of deal, supported
at the nodes, and caused to vibrate by friction. Still more con

venient is a large iron bar, maintained in vibration electrically, to

which the plate may be attached by cement.

1 On the Crispations of Fluid resting upon a Vibrating Support. Phil. Mag.
vol. xvi. p. 50, 1883.

2 Phil Trans. 1831, p. 299.
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The vibrating liquid standing upon the plate presents appear

ances which at first are rather difficult to interpret, and which

vary a good deal with the nature of the liquid in respect of

transparency and opacity, and with the incidence of the light.

The vibrations are too quick to be followed by the eye ;
and thus

the effect observed is an average, due to the superposition of an

indefinite number of elementary impressions corresponding to the

various phases.

If the plate be rectangular, the motion of the liquid consists of

two sets of stationary vibrations superposed, the ridges and furrows

of the two sets being perpendicular to one another and usually

parallel to the edges of the plate. Confining our attention for the

moment to one set of stationary waves, let us consider what

appearance it might be expected to present. At one moment

the ridges form a set of parallel and equidistant lines, the interval

being X. Midway between these are the lines which represent at

that moment the position of the furrows. After the lapse of a \

period the surface is flat; after another J period the ridges and

furrows are again at their maximum developement, but the

positions are exchanged. Now, since only an average effect can

be perceived, it is clear that no distinction is recognizable between

the ridges and the furrows, and that the observed effect must be

periodic within a distance equal to -X, If the liquid on the plate

be rendered moderately opaque by addition of aniline blue, and be

seen by diffused transmitted light, the lines of ridge and furrow

will appear bright in comparison with the intermediate nodal

lines where the normal depth is preserved throughout the vi

bration. The gain of light when the thickness is small will, in

accordance with the law of absorption, outweigh the loss of light

which occurs half a period later when the furrow is replaced by a

ridge.

The actual phenomenon is more complicated in consequence of

the coexistence of the two sets of ridges and furrows in perpendi

cular directions (#, y). In the adjoining figure (Fig. 66) the thick

lines represent the ridges, and the thin lines the furrows, of the

two systems at a moment of maximum excursion. One quarter

period later the surface is flat, and one half period later the ridges

and furrows are interchanged. The places of maximum elevation

and depression are the intersections of the thick lines with one

another and of the thin lines with one another, places not distin-
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guishable by ordinary vision. They appear like holes in the sheet

of colour. The nodal lines where the normal depth of colour is

preserved throughout the vibration are shewn dotted; they are

inclined at 45, and pass through the intersections of the thin

lines with the thick lines. The pattern is recurrent in the

Fig. 66.

directions both of x and y, and in each case with an interval

equal to the real wave-length (X). The distance between the

bright spots measured parallel to x or y is thus X; but the

shortest distance between these spots is in directions inclined at

45, and is equal to X/\/2.

As in all similar cases, these stationary waves may be resolved

into their progressive components by a suitable motion of the eye.

Consider, for example, the simple set of waves represented by

2 cos kx cos nt = cos (nt -f kx) + cos (nt kx).

This is with reference to an origin fixed in space. But let UB

refer the phenomenon to an origin moving forward with the velocity

(n/k) of the waves, so as to obtain the impression that would be

produced upon the eye, or in a photographic camera, carried

forward in this manner. Writing fer'-f nt for kx, we get

cos (kx' + 2nt) + cos fee'.
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Now the average effect of the first fcerm is independent of #', so

that what is seen is simply that set of progressive waves which

moves with the eye.

In order to see the progressive waves it is not necessary to

move the head as a whole, but only to turn the eye as when we

follow the motion of a real object. To do this without assistance

is not very easy at first, especially if the area of the plate be

somewhat small. By moving a pointer at various speeds until the

right one is found, the eye may be guided to do what is required
of it

;
and after a few successes repetition becomes easy.

Faraday's assertion that the waves have a period double that of

the support has been disputed, but it may be verified in various

ways. Observation by stroboscopic methods is perhaps the most

satisfactory. The violence of the vibrations and the small depth
of the liquid interfere with an accurate calculation of frequency on

the basis of the observed wave-length. The theory of vibrations

in the sub-octave has already been considered ( 68 6).

355. Typical stationary waves are formed by the superposi
tion of equal positive and negative progressive waves of like

frequency. If the one set be derived from the other by reflection,

the equality of frequencies is secured automatically; but if the two

sets of waves originate in different sources, the unison is a matter

of adjustment, and a question arises as to the effect of a slight

error. We may take as the expression for the two sets of

progressive waves of equal amplitude and of approximately equal

frequency
cos (kx nt) -f cos (k'x + n't),

or, which is the same,

2 cos
{ (k -I- k') % 4- (ri

-
n) t]

x cos
{ (k* -*) + (ri 4- n) t}

(1).

If n'=fl, k
f

=&, the waves are absolutely stationary; but we

have now to interpret (1) when (n' ri) t (k'
-

k) are merely small.

The position at any time t of the crests and hollows of the

nearly stationary waves i*epresented by (1) is given by

%(k + W)x + %(ri -~n)t^mv (2),

where m is an integer. The velocity of displacement U is

accordingly
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or approximately

from which it appears 'that in every case the shifting takes place

in the direction of waves of higher pitch, or towards the source of

graver pitch. If F be the velocity (njk) of propagation of the

progressive waves, (3) may be written

UIV=(n-n')/toi ..................... (4).

The slow travel under these circumstances of the places where

the maximum displacements occur is a general phenomenon, not

dependent upon the peculiarities of any particular kind of waves
;

but the most striking example is that afforded by capillary waves

and described by Lissajous
2
. In his experiment two nearly

unisonant forks touch the surface of water so as to form approxi

mately stationary waves in the region between the points of

contact. Since the crests and troughs cannot be distinguished,

the pattern seen has an apparent wave-length half that of the real

waves, and it travels slowly towards the graver fork. A frequency
of about 50 will be found suitable for convenient observation.

If the waves be aerial, there is no difference of velocity ;
but

(4) still holds good, and gives the rate at which the ear must

travel in order to remain continually in a loop or in a node.

356. One of the best opportunities for the examination of capil

lary waves occurs when they are reduced to rest by a contrary

movement of the water. Waves of this kind are sometimes described

as standing waves, and they may usually be observed when the

uniform motion of a stream is disturbed by obstacles. Thus when

the surface is touched by a small rod, or by a fishing-line, or is

displaced by the impact of a gentle stream of air from a small

nozzle, a beautiful pattern is often displayed, stationary with

respect to the obstacle. This was described and figured by Scott

Russell
3

,
who remarked that the purity of the water had much to

do with the extent and range of the phenomenon. On the

up-stream side of the obstacle the wave-length is short, and, as

was first clearly shewn by Kelvin, the force governing the vibra-

1 Phil. Mag. vol. xvi. p. 57, 1883.

2
Compt. Rend. vol. LXVII. p. 1187, 1868.

3 Brit. AM. Rep. 1844, p. 375, Plate 57. See also Poncelet, Ann. d. Chim.

vol. XLVI. p. 5, 1831.
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tions is principally cohesion. On the down-stream side the waves

are longer and are governed principally by gravity. Both sets of

waves move with the same velocity relatively to the water ( 353) ;

namely, that required in order that they may maintain a fixed

position relatively to the obstacle. The same condition governs

the velocity and therefore the wave-lengths of those parts of the

pattern where the fronts are oblique to the direction of motion.

If the angle between this direction and the normal to the wave-

front be called 6, the velocity of propagation must be equal to

v cos 0, where v represents the velocity of the water.

If tf be less than 23 cm. per sec., no wave-pattern is possible,

for no waves can then move over the surface so slowly as to

maintain a stationary position with respect to the obstacle. When
VQ exceeds 23 cm. per sec., a pattern is formed

;
but the angle 6 has

a limit defined by VQ cos 6 = 23, and the curved wave-front has a

corresponding asymptote.

It would lead us too far to go further into the matter here, but

it may be mentioned that the problem in two dimensions admits

of analytical treatment 1
,
and that the solution explains satis

factorily one of the peculiar features of the case, namely, the

limitation of the smaller capillary waves to, the up-stream side,

and of the larger (gravity) waves to the down-stream side of the

obstacle.

357. A large class of phenomena, interesting not only in

themselves but also as throwing light upon others yet more

obscure, depend for their explanation upon the transformations

undergone by a cylindrical body of liquid when slightly displaced

from its equilibrium configuration and then left to itself. Such a

cylinder is formed when liquid issues under pressure through a

circular orifice, at least when gravity may be neglected ;
and the

behaviour of the jet, as studied experimentally by Savart, Magnus,

Plateau and others, is substantially independent of the forward

motion common to all its parts. It will save repetition and be

more in accordance with the general character of this work if we

commence our investigation with the theory of an infinite cylinder

of liquid, considered as a system in equilibrium under the action

1 On the form of Standing Waves on the Surface of Running Water. Proc.

Lond. Math. 8oc. vol. xv. p, 69, 1883.
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of the capillary force. With a solution of this mechanical problem
most of the experimental results will easily be connected.

Taking cylindrical coordinates z, r, <, the equation of the

slightly disturbed surface may be written

r-o, +/(,*) ........................ (1),

in which /(<, z) is always a small quantity. By Fourier's theorem

the arbitrary function / may be expanded in a series of terms of

the type an cos n<f>
cos kz

; and, as we shall see in the coarse of the

investigation, each of these terms may be considered independently
of the others. Either cosine may be replaced by a sine

;
and the

summation extends to all positive values of k and to all positive

integral values of n, zero included.

During the motion the quantity OQ does not remain absolutely
constant

;
its value must be determined by the condition that the

enclosed volume is invariable. Now for the surface

T = OQ 4- an cos n<f) cos kz .................. (2),

we find

Volume = %ffr*d<f>dz
= z (iraf 4- i7ran-) ;

so that, if a. denote the radius of the section of the undisturbed

cylinder,
a2 = a 2 +K2

>

whence approximately
a = a(l -fcohYa') ..................... (3).

This holds good when n=l, 2, 3.... If 7^= 0, (2) gives in place
of (3)

ao = a(l-Ja(,

2
/a

!!

) ..................... (4).

The potential energy of the system in any configuration, due to

the capillary force, is proportional simply to the surface. Now
in (2)

so that by (3), if a- denote the surface corresponding upon the

average to unit of length,

(5).
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The potential energy due to capillarity, estimated per unit

length and from the configuration of equilibrium, is accordingly

T denoting, as usual, the superficial tension.

In (6) it is supposed that k and n are not zero. If k be zero,

(6) requires to be doubled in order to give the potential energy

corresponding to

r = a + an cos
ncj> ..................... (7):

and again, if n be zero, we are to take

.................. (8),

corresponding to

r = a + a cos kz ........................ (9).

From (6) it appears that when n is unity or any greater

integer, the value of P is positive, shewing that for all displace

ments of these kinds the original equilibrium is stable. For the

case of displacements symmetrical about the axis (n 0), we see

from (8) that the equilibrium is stable or unstable according as lea

is greater or less than unity, i.e. according as the wave-length

(27T/&) of tho symmetrical deformation is less or greater than the

circumference of the cylinder, a proposition first established by
Plateau.

If the expression for r in (2) involve a number of terms with

various values of n and k, arid with arbitrary substitution of

sines for cosines, the corresponding expression for P is found by

simple addition of the expressions relating to the component

terms, and it contains the squares only (and not the products) of

the quantities a.

We have now to consider the kinetic energy of the motion.

Since the fluid is supposed to be inviscid, there is a velocity-

potential ty, and this in virtue of the incompressibility satisfies

Laplace's eqtiation. Thus, (4) 241,

ffljr I
djr

1
ffft d*y

Jr* r dr
*

r d^ dz*
'

or, if in order to correspond with (2) we assume that the variable

part is proportional to co.sw^>

............... (10).
rfr* r dr *
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The solution of (10) under the condition that there is no

introduction or abstraction of fluid along the axis of symmetry
is 200

ty
=

/3nJn (ikr) cos
n<f>

cos kz ............... (11).

The constant /3n is to be found from the condition that the

radial velocity when r = a coincides with that implied in (2).

Thus
ikfinSn'ttk^^don/dt .................. (12).

If p be the density, the kinetic energy of the motion is by
Green's theorem (2) 242

i/> IIb^d^r/dr]r^a adfydz = ^irpz.ika.Jn (ika) Jn
'

(ika) . /3n
2

;

so that by (12), ifK denote the kinetic energy per unit of length,

(dan\*rrK =7rpa--7}
-

rr7-T~-\ \~ji
ika.Jn (tka)\dtJ

When ?i = 0, we must take in place of (13)

rr -. - J(ika) fdctoV , .

K. =-&7rpa* r=
--

T .
,..- r- ............ (1**)-2 r ika.JQ

'

(ika) \dtJ
^ }

The most general value ofK is to be found by simple summa
tion from the particular values expressed in (13), (14). Since the

expressions for P and K involve the squares only, and not the

products, of the quantities a, da/dt, and the corresponding quanti
ties in which cosines are replaced' by sines, it follows that the

motions represented by (2) take place in perfect independence of

one another, so long as the whole displacement is small

For the free motion we get by Lagrange's method from

(6), (13)
d* T ika. J^ (ika)-"

which applies without change to the case n ~ 0. Thus, if an varies

as cos (pt e),

giving the frequency of vibration in the cases of stability.

If ?fc = 0, and ka<l, the solution changes its form. If we

suppose that OQ varies as e*&,

pa*
1 Proc. Roy. Soc. vol. xxix. p. 94, 1879.
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When n is greater than unity, the circumstances are usually

such that the motion is approximately in two dimensions only.

We may then advantageously introduce into (16) the supposition

that ka is small. In this way we get, (5) 200,

T f l&ni 1

jp>
= n(n

fl - 1 +k*tf) ~\l + -T^rin ......... (18),*
pa

s
i ft (2ra -f 2)J

^ ;

or, if ka be neglected altogether,

the two-dimensional formula. When n = 1
,
there is no force of resti

tution for a displacement purely in two dimensions. If X denote

the wave-length measured round the circumference, X

Thus in (19), if n and a are infinite,

in agreement with the theory of capillary waves upon a plane

surface. Compare (7) 353. A similar conclusion may be reached

by the consideration of waves whose length is measured axially.

Thus, if X = 27r/&, and a == oo
,
n = 0, (16) reduces to (20) in virtue

of the relation, 302, 350,

358. Many years ago Bidone investigated by experiment the

behaviour of jets of water issuing horizontally under considerable

pressure from orifices in thin plates. If the orifice be circular, the

section of the jet, though diminished in area, retains the circular

form. But if the orifice be not circular, curious transformations

ensue. The peculiarities of the orifice are exaggerated in the jet,

but in an inverted manner. Thus in the case of an elliptical

aperture, with major axis horizontal, the sections of the jet taken

at increasing distances gradually lose their ellipticity until at a

certain distance the section is circular. Further out the section

again assumes ellipticity, but now with major axis vertical, and

(in the circumstances of Bidone's experiments) the ellipticity

increases until the jet is reduced to a flat sheet in the vertical

plane, very broad and thin. This sheet preserves its continuity to

a considerable distance (e.g. six feet) from the orifice, where finally

it is penetrated by air. If the orifice be in the form of an equi-



356 OBSERVATIONS BY BIDONE AND MAGNUS. [358.

lateral triangle, the jet resolves itself into three sheets disposed

symmetrically round the axis, the planes of the sheets being

perpendicular to the sides of the orifice
;
and in like manner if

the aperture be a regular polygon of any number of sides, there

are developed a corresponding number of sheets perpendicular to

the sides of the polygon.

Bidone explains the formation of these sheets by reference to

simpler cases of meeting streams. Thus equal jets, moving in the

same straight line with equal and opposite velocities, flatten them

selves into a disc situated in the perpendicular plane. If the axes

of the jets intersect obliquely, a sheet is formed symmetrically in

the plane perpendicular to that of the impinging jets. Those

portions of a jet which proceed from the outlying parts of a single

unsymmetrical orifice are regarded as behaving in some degree
like independent meeting streams.

In many cases, especially when the orifices are small and the

pressures low, the extension of the sheets reaches a limit. Sections

taken at still greater distances from the orifice shew a gradual

gathering together of the sheets, until a compact form is regained

similar to that at the first contraction. Beyond this point, if the

jet retains its coherence, sheets are gradually thrown out again,

but in directions bisecting the angles between the directions of

the former sheets. These sheets may in their turn reach a limit

of developement, again contract, and so on. The forms assumed

in the case of orifices of various shapes including the rectangle,

the equilateral triangle, and the square, have been carefully

investigated and figured by Magnus. Phenomena of this kind

are of every day occurrence, and may generally be observed

whenever liquid falls from the lip of a moderately elevated

vessel.

As was first suggested by Magnus
1 and Buff 2

,
the cause of the

contraction of the sheets after their first developement is to be

found in the capillary force, in virtue of which the fluid behaves

as if enclosed in an envelope of constant tension; and the re

current form of the jet is due to vibrations of the fluid column

about the circular figure of equilibrium, superposed upon the

general progressive motion. Since the phase of the vibration,

initiated during passage through the aperture, depends upon the

1
Hydraulische Untersuclmngen, Pogg. Ann. vol. xcv, p. 1, 1855.

2
Pogg, Ann. vol. c, p. 168, 1857.
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time elapsed, it is always the same at the same point in space,

and thus the motion is steady in the hydrodynamical sense, and the

boundary of the jet is a fixed surface. Relatively to the water the

waves here concerned are progressive, such as may be compounded
of two stationary systems, and they move up stream with a velocity

equal to that of the water so as to maintain a fixed position rela

tively to external objects, 356.

If the departure from the circxilar form be small, the vibrations

are those considered in 357, of which the frequency is determined

by equations (16), (18), (19). The distance between consecutive

corresponding points of the recurrent figure, or, as it may be called,

the wave-length of the figure, is the space travelled over by the

stream during
1 one vibration. Thence results a relation between

wave-length and period. If the circumference of the jet be small

in comparison with the wave-length, so that (19) 357 is appli

cable, the periodic time is independent of the wave-length ;
and

then the wave-length is directly proportional to the velocity of

the jet, or to the square root of the pressure. The elongation of

wave-length with increasing pressure was remarked by Bidone and

by Magnus, but no definite law was arrived at.

In the experiments of the author 1

upon elliptical, triangular,

and square apertures, the jets were caused to issue horizontally in

order to avoid the complications due to gravity ; and, if the pressure

were not too high, the law above stated was found to bo verified.

At higher pressures the observed wave-lengths had a marked

tendency to increase more rapidly than the velocity of the jet.

This result points to a departure from the law of isochronous

vibration. Strict isochronism is only to be expected when vibra

tions are infinitely small, that is when the section of the jet never

deviates more than iufinitesimally from the circular form. Under

the high pressures in question the departures from circularity were

very considerable, and there is no reason for expecting that such

vibrations will be executed in precisely the same time as vibrations

of infinitely small amplitude.

The increase of amplitude under high pressure is easily ex

plained, inasmuch as the lateral velocities to which the vibrations

are mainly duo vary in direct proportion to the longitudinal

velocity of the jet. Consequently the amplitude varies approxi-

e<ty. .SVr. vol. xxix, p. 71, !H7i).
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mately as the square root of the pressure, or as the wave-length.
In general, the periodic time of a vibration is an even function of

amplitude ( 67) ;
and thus, if h represent the head of liquid, the

wave-length may be expected to be a function of h of the form

(M+Nh)*Jh, where If and JVare constants for a given aperture.

It appears from experiment, and might perhaps have been ex

pected, that N is here positive.

For a comparison with theory it is necessary to keep within the

range of the law of isochronism
;
and it is convenient to employ in

the calculations the area of the section of the jet in place of the

mean radius. Thus, ifA = Tra2
, (19) 357 may be written

(>
3
--n) .................. (1),

in which A is to be determined by experiments upon the rate of

total discharge. For the case of water ( 353) we may take in

C.G.s. measure jT=74, p = l; so that for the frequency of the

gravest vibration (n = 2) we get from (1)

(2).

For a sectional area of one square centimetre there are thus

about 8 vibrations per second. A pitch of 256 would correspond
to a diameter of about one millimetre.

For the general value of n
}
we have

--n) .................. (3).

If h be the head of water to which the velocity of the jet is due

and X the wave-length,

In one experiment with an elliptical aperture (n = 2) the

observed value of X was 3*95 while the value calculated from

(4) is 3'93. In the case of a triangular aperture (n = 3) the

observed value of X was 2*3 and the calculated was 2'1. Again,
the observed value for a square aperture (?i 4) was T85 and the

calculated 1*78. The excess of the observed over the calculated

values in the last two cases may perhaps have been due to exces

sive departure from the circular figure.

The general theory, unrestricted to small amplitudes, would

doubtless involve great complications; but some information
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respecting it may be obtained with facility by the method of

dimensions. If the shape of the orifice be given, X may be re

garded as a function of T, p, A, and H the pressure under which

the jet escapes. Of these T is a force divided by a line, so that its

dimensions are 1 in mass, in length, and 2 in time
; p is of

dimensions 1 in mass, 3 in length, in time
;
A is of dimensions

in mass, 2 in length, in time
;
and finally H is of dimensions

1 in mass, 1 in length, and - 2 in time. If we assume

X oc TxpvAzHu
,

then

whence

so that

The exponent x is here undetermined
; and, since any number

of terms with different values of x may occur simultaneously, all

that we can infer is that X is of the form

or, if we prefer it,

} .................. (5),

where/and F are arbitrary functional symbols. Thus for a given

liquid and shape of orifice there is complete dynamical similarity

if the pressure be taken inversely proportional to the linear

dimension. The simple case previously considered where the

departures from circularity are small, and the vibrations take place

approximately in two dimensions, corresponds to F~ constant.

The method of determining T by observations upon X is

scarcely delicate enough to compete with others that may be

employed for the same purpose when the tension is constant.

But the possibility of thus experimenting upon surfaces which

have been formed but a fraction of a second earlier is of consi

derable interest. In this way it may be proved with great ease

that the tension of a soapy solution immediately after the forma

tion of a free surface differs comparatively little from that of pure

water, whereas when a few seconds have elapsed the difference

becomes very great
1
.

i On tbe Tension of Becently Formed Liquid Surfaces, Proc. Hoy. Soc. vol.

XLVH, p. 281, 1890,
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Hitherto it has been supposed for the sake of simplicity that

the jet after its issue from the nozzle is withdrawn from the action

of gravity. If the direction of projection be vertically downwards,
as is often convenient, the velocity of flow (v) continually increases,

while at the same time the area of the section diminishes, the

relation being vA = constant. But, so far as regards X, the dis

turbance which thus ensues is less than might have been expected,
for the changes in v and A compensate one another to a con

siderable extent. By (1)

\ oc vfp CCV^GC h*
3

if h denote the whole difference of level between the surface of

liquid in the reservoir and the place where X is measured.

359. In 358 the motion of the liquid is regarded as steady,

every portion as in turn it passes the orifice being similarly

affected. Under these circumstances no term corresponding to

ft can appear in the mathematical expressions; but it must

not be forgotten that for certain disturbances of this type the

cylindrical form is unstable and that therefore the jet cannot long

preserve its integrity. The minute disturbances required to bring
the instability into play are such as act differently at different

moments of time, and have their origin in eddying motions of the

fluid due to friction, and especially in vibration communicated to

the nozzle and of such a character as to render the rate of discharge

subject to a slight periodic variation. If v be the velocity of the

jet and r the period of the vibration, the cylindrical column issuing

from a circular orifice is launched subject to a disturbance of

wave-length (X) equal to VT. If this wave-length exceed the

circumference of the jet (2?ra), the disturbance grows exponentially^
until finally the column of liquid is divided into detached masses

separated by the common interval X, and passing a fixed point
with velocity v and frequency 1/r. Even though no regular
vibration has access to the nozzle, the instability cannot fail to

assert itself, and casual disturbances of a complex character will

bring about disintegration. It will be convenient to discuss in

the first place somewhat in detail the theory of the case of n =
in (16), (17) 357, and then to consider its application to the

beautiful phenomena described by Savart and to a large extent

explained by Plateau.
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If ka = z, and we introduce the notation of 221 a, (17) 357

becomes

In this equation I^z) and I^(z) are both positive, so that as z

decreases (or as X increases) q first becomes real when # = 1. At
this point instability commences, and at first the degree of in

stability is infinitely small. Also when z is very small, or X is

T z*

very great, <f
= -

ultimately, so that q is again small. For some value of z

between and 1, q is a maximum, and the investigation of this

value is a matter of importance, because, as has already been

shewn 87, the unstable equilibrium will give way by preference
in the mode so characterized.

The function to be made a maximum is

or, expanded in powers of z,

\( 2_ JL 6
25 91

2 \ 8 24 .3 2*^ 2 11 .3.5

Hence, to find the maximum, we obtain on differentiation

If the last terms be neglected, the quadratic gives & = '4914. If

this value be substituted in the small terms, the equation becomes

98928 -f^ +^^0,
whence f = -486, z = *679 1

.

The values of expression (2), or of its square root, to which q

is proportional, may be calculated from tables of 7 and Il9 221 a.

We have

O'O

0-1

0-2

0-3

0-4

0-5

1 On the Instability of Jcta, Proc. Lond, Math. Hoc. vol. x, p. 7, 1878.
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From these values we find for the maximum by Lagrange's

interpolation formula ^='696, corresponding to

X= 27ra/ 4'51 x 2a (3).

Hence the maximum instability occurs when the wave-length

of disturbance is about half as great again as that at which

instability first commences.

Taking for water in C.G.S. units T= 73, p.= 1, we get for the

case of maximum instability

This is the time in which the disturbance is multiplied in the

ratio e : 1. Thus in the case of a diameter of one centimetre the

disturbance is multiplied 2'7 times in about second. If the

disturbance be multiplied 1000 fold in time *, qt
= 3 loge 10 = 6'9,

so that ='828(2a)i For example, if the diameter be one milli

metre, the disturbance is multiplied 1000 fold in about ^ second.

In view of these estimates the rapid disintegration of a jet of water

will not cause surprise.

The above theory of the instability of a cylindrical surface

separating liquid from gas may be extended to meet the case

where the liquid is outside and the gas, whose inertia is neglected,

is inside the surface. This represents a jet of gas discharged

under liquid; and it appears that the degree of maximum in

stability is even higher than before, and that it occurs when

\ = 6'48 x 2a l
. But it is scarcely necessary for our purpose to

pursue this part of the subject further.

360. The application of our mathematical results to actual

jets presents no great difficulty. The disturbances, by which

equilibrium is upset, are impressed upon the fluid as it leaves

the aperture, and the continuous portion of the jet represents the

distance travelled over during the time necessary to produce

disintegration. Thus the length of the continuous portion neces

sarily depends upon the character of the disturbances in respect of

amplitude and wave-length. It may be increased considerably, as

Savart shewed 2
, by a suitable isolation of the reservoir from

1 On the Instability of Cylindrical Fluid Surfaces, Phil. Mag. vol. xxxiv, p. 177 r

1892.
2 Ann. de Chimie, LIII, p. 337, 1833.
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tremors, whether due to external sources or to the impact of the

jet itself in the vessel placed to receive it. Nevertheless it does

not appear possible to carry the prolongation very far. Whether
the residual disturbances are of external origin or are due to

friction, or to some peculiarity of the fluid motion within the

reservoir, has not been satisfactorily determined. On this point
Plateau's explanations are not very clear, and he sometimes

expresses himself as if the time of disintegration depended

only upon the capillary tension without reference to initial dis

turbances at all.

Two laws were formulated by Savart with respect to the length
of the continuous portion of a jet, and have been to a certain

extent explained by Plateau 1

. For a given fluid and a given
orifice the length is approximately proportional to the square root

of the head. This follows at once from theory, if it can be assumed

that the disturbances remain always of the same character, so that

the time of disintegration is constant When the head is given,
Savart found the length to be proportional to the diameter of the

orifice. From (4) 359 it appears that the time in which a small

disturbance is multiplied in a given ratio varies not as a, but as c&

Again, when the fluid is changed, the time varies as p*T~*. But

it may well be doubted whether the length of the continuous

portion obeys any very simple laws, even when external disturb

ances are avoided as far as possible.

When a jet falls vertically downwards, the circumstances upon
which its stability or instability depend are continually changing,
more especially if the initial velocity be very small. The kind of

disturbance to which the jet is most sensitive as it leaves the

nozzle is one which impresses upon it undulations of length equal
to about 44- times the initial diameter. But as the jet falls, its

velocity increases, with consequent lengthening of the undulations,

and its diameter diminishes, so that the degree of instability soon

becomes much reduced. On the other hand, the kind of disturb

ance which will be effective in a later stage is altogether ineffective

in the earlier stages. The change of conditions during fall has

thus a protective influence, and the continuous part tends to

become longer than would be the case were the velocity constant,

the initial disturbances being unaltered.

1
Statique experimental et tb^orique des Liquides eoumis aux seulea forces

moteculaires, Paris, 1878.
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When the circumstances are such that the reservoir is

influenced by the shocks due to the impact of the jet, the

disintegration often assumes a complete regularity and is attended

by a musical note (Savart). The impact of the regular series of

drops, which at any moment strike the receiving vessel, determines

the rupture into similar drops of the portion of the jet at the same

moment passing the orifice. The pitch of the note, though not

definite, cannot differ greatly from that which corresponds to the

division of the column into wave-lengths of maximum instability ;

and in fact Savart found that the frequency was directly as the

square root of the head, inversely as the diameter of the orifice,

and independent of the nature of the fluid laws which follow

immediately from Plateau's theory.

From the observed pitch of the note due to a jet of given

diameter, and issuing under a given head, the wave-length of the

nascent divisions can be at once deduced. Reasoning from some

observations of Savart, Plateau found in this way 4*38 as the ratio

of the length of a division to the diameter of the jet. Now that

the length of a division can be estimated a priori, it is preferable

to reverse Plateau's* calculation and to exhibit the frequency of

vibration in terms of the other data of the problem. Thus

..................... (1),

and in many cases, where the jet is not too fine, v may be replaced

by \/(2gk) with sufficient accuracy.

But the most certain method of attaining complete regularity
of resolution is to bring the reservoir under the influence of an

external vibrator, whose pitch is approximately the same as that

proper to the jet. Magnus
1

employed a Neef 's hammer, attached

to the frame which supported the reservoir. Perhaps an electrically

maintained tuning-fork is still better. Magnus shewed that the

most important part of the effect is due to the forced vibration of

that side of the vessel which contains the orifice, and that but little

of it is propagated through the air. With respect to the limits of

pitch, Savart found that the note might be a fifth above, and more
than an octave below, that proper to the jet. According to theory
there is no well defined lower limit

; while, on the other side the

external vibration cannot be efficient if it tends to produce divisions

1

Pogg. Ann. vol. cvi, p. 1, 1859.



360.] VIBKATIONS OF LOW FREQUENCY. 365

whose length is less than the circumference of the jet. This gives
for the interval defining the upper limit TT : 4'51, or about a fifth.

In the case of Plateau's numbers (TT : 4'38) the discrepancy is a

little greater.

361. The question of the influence of vibrations of low

frequency is difficult to treat experimentally in consequence of
the complications which arise from the almost universal presence
of harmonic overtones. It is evident that the octave, for example,
of the principal tone, though present in a very subordinate degree,
may nevertheless be the more important agent of the two in

determining the behaviour of the jet, if its pitch happen to lie

in the neighbourhood of that of maximum
instability. In my own

experiments
1

tuning-forks were employed as sources of vibration,

and in every case the behaviour of the jet on its horizontal course

was examined not only by direct inspection, but also by the

method of intermittent illumination
( 42) so arranged that

there was one view for each complete period of the phenomenon
to be observed. Except when it was important to eliminate the

octave as far as possible, the vibration was communicated to the

reservoir through the table on which it stood. The forks were
either screwed to the table and vibrated by a bow, or maintained

electrically, the former method being adequate when only one fork

was required at a time. The circumstances of the jet were such

that the pitch of maximum sensitiveness, as determined by calcu

lation, was 259, and that forming the transition between stability

and instability
4

}72,

With pitches varying downwards from 370 to about 180, the

observed phenomena agreed perfectly with the unambiguous pre
dictions of theory. From the point decidedly below 370 at

which a regular effect was first observed, there was always one

drop for each complete vibration of the fork, and a single stream,

each drop breaking away under precisely the same conditions as

its predecessor. After passing 180 it becomes a question whether

the octave* of the fork's note may not produce an effect as well as

the prime. If this effect be sufficient, the number of drops is

doubled, and when the prime is very subordinate indeed, there is

a double stream, jxlternate drops breaking away under different

conditions and (under the action of gravity) taking sensibly

. Jlotj. ,SV, \'<>1. xxxiv, p. 133, 1882.
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different courses. In these experiments the influence of the

prime was usually sufficient to determine the number of drops,

even in the neighbourhood of pitch 128. Sometimes, however,

the octave became predominant and doubled the number of drops.

When the octave is not strong enough actually to double the

drops, it often produces an effect which is very apparent to an

observer examining the transformation through the revolving
holes. On one occasion a vigorous bowing of the fork, which

favours the octave, gave at first a double stream, but this after

a few seconds passed into a single one. Near the point of

resolution those consecutive drops which ultimately coalesce as

the fork dies down are connected by a ligament. If the octave

is strong enough, this ligament subsequently breaks, and the

drops are separated ;
otherwise the ligament draws the half-formed

drops together, and the stream becomes single. The transition

from the one state of things to the other could be watched with

facility.

In order to get rid entirely of the influence of the octave a

different arrangement was necessary. It was found that the

desired result could be arrived at by holding a 128 fork in the

hand over a resonator of the same pitch resting upon the table.

The transformation was now quite similar in appearance to that

effected by a fork of frequency 256, the only differences being that

the drops were bigger and twice as widely spaced, and that the

spherule, which results from the gathering together of the liga

ment, was much larger. We may conclude that the cause of the

doubling of a jet by the sub-octave of the note natural to it is to be

found in the presence of the second component from which hardly

any musical notes are free.

When two forks of pitches 128 and 256 were sounded together,
the single or double stream could be obtained at pleasure by
varying the relative intensities. Any imperfection in the tuning
is rendered very evident by the behaviour of the jet, which per
forms evolutions synchronous with the audible beats. This

observation, which does not require the aid of the stroboscopic

disc, suggests that the effect depends in some degree upon the

relative phases of the two tones, as might be expected a priori.
In some cases the influence of the sub-octave is shewn more in

making the alternate drops unequal in magnitude than in pro

jecting them into very different paths.
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Returning now to the case of a single fork screwed to the table,

it was found that as the pitch was lowered below 128, the double

stream was regularly established. The action of the twelfth (85)
below the principal note demands special attention. At this pitch

we might expect the first three components of a compound note to

influence the result. If the third component were pretty strong,

it would determine the number of drops, and the result would be

a three-fold stream. In the case of a fork screwed to the table the

third component of the note must be extremely weak if not alto

gether missing ;
but the second (octave) component is fairly strong,

and in fact determined the number of drops (190f ). At the same

time the influence of the prime (85|) is sufficient to cause the

alternate drops to pursue different paths, so that a double stream

is observed.

By the addition of a 256 fork there was no difficulty in

obtaining a triple stream
;
but it was of more interest to examine

whether it were possible to reduce the double stream to a single

one with only 85J drops per second. In order to secure as strong

and as pure a fundamental tone as possible and to cause it to act

upon the jet in the most favourable manner, the air space in the

reservoir (an aspirator bottle) above the water was tuned to the

note of the fork by sliding a plate of glass over the neck so as

partially to cover it ( 305). When the fork was held over the

resonator thus formed, the pressure which expels the jet was

rendered variable with a frequency of 85, and overtones were

excluded as far as possible. To the unaided eye, however, the jet

still appeared double, though on more attentive examination one

set of drops was seen to be decidedly smaller than the other.

With the revolving disc, giving about 85 views per second, the

real state of the case was made clear. The smaller drops were the

spherules, and the stream was single in the same sense as the

streams given by pure tones of frequencies 128 and 256. The

increased sixe of the spherule is of course to be attributed to the

greater length of the ligament, the principal drops being now three

times as widely spaced as when the jet is under the influence of

the 256 fork.

With still graver forks screwed to the table the number of

drops continued to correspond to the second component of the

note. The double oetave of the principal note (64) gave 128 drops

per second, and the influence of the prime was so feeble that the
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duplicity of the stream was only just recognisable. Below 64 the

observations were not carried, and even at this pitch attempts to

attain a single stream of drops were unsuccessful.

362. Savart's experiments upon this subject have been further

developed by Mr C. A. Bell, who shewed that a jet maybe made to

play the part of a telephonic receiver 1
. The external vibrations

may be conveyed to the nozzle through a string telephone (156 a).

An India rubber membrane, stretched over the upper end of a

metal tube, receives the jet and communicates the vibration due

to the varying impact to the cavity behind, with which the ear

may be connected. The diameter and velocity of the jet require

to be accommodated to the general character as to pitch of the

sounds to be dealt with. "When the membrane is held close

under the jet orifice, no sound will be audible in the ear-piece ; but

as the receiving tube is gradually withdrawn along the jet path, a

sound will be heard corresponding in pitch and quality to the dis

turbing sound provided, of course, that the jet is at such pressure

as to be capable of responding to all the higher tones to which the

disturbing sound may owe its timbre. The intensity of this sound

grows as the distance between jet orifice and membrane is in

creased. Finally, while the jet is still continuous above the

membrane, a point o maximum intensity and purity of tone will

be reached
;
and if the membrane be carried beyond this point the

sound heard will at first increase in loudness, becoming harsh in

character at the same time, and at a still lower point will de

generate into an unmusical roar. In the latter case the jet will be

seen to break above the membrane."

From the fact that small jets travelling at high speeds respond

equally to sounds whose pitch varies over a wide range Mr Bell

argues that Plateau's theory is inadequate, and he looks rather to

vortex motion, dependent upon unequal velocity at the centre and

at the exterior of the column, as the real cause of the phenomena
presented by these jets.

As an example of a jet self-excited, the interrupter of 285 r

may be referred to. In this case the machinery by which \tfie

effect is carried back to the nozzle is electric. But ordinary
mechanical devices answer the purpose equally well. The intro

duction of a resonator, such as the fork of 235 r, or the telephone

1 Phil. Trans, vol. 177, p. 383, 1886.
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plate which may be made to take its place, if the telephone be

brought in contact with the nozzle, gives greater regularity to the

process, and usually allows also of a greater latitude in respect of

pitch. It should not be forgotten that in all these cases of self-

excitation a certain condition as to phase needs to be satisfied.

If for instance in the interrupter of 235 r, supposed to be working
well, the platinum points be displaced through half the interval

between consecutive drops, it is evident that the action will cease

until some fresh accommodation is brought about.

363. When a small jet is projected upwards in a nearly
vertical direction, there are complications dependent upon the

collisions of the drops with one another. Such collisions are

inevitable in consequence of the different velocities acquired by
the drops as they break away irregularly from the continuous

portion of the column. Even when the resolution is regularized

by the action of external vibrations of suitable frequency, the

drops must still come into contact before they reach the summit
of their parabolic path. In the case of a continuous jet the

"equation of continuity" shews that as the jet loses velocity in

ascending, it must increase in section. When the stream consists

of drops following the same path in single file, no such increase

of section is possible ;
and then the constancy of the total stream

demands a gradual approximation of the drops, which in the case

of a nearly vertical direction of motion cannot stop short of actual

contact. Regular vibration has, however, the effect of postponing
the collisions and consequent scattering of the drops, and in the

case of a direction of motion less nearly vertical may prevent them

altogether.

The behaviour of a nearly vertical fountain is influenced in an

extraordinary manner by the neighbourhood of an electrified body.
The experiment may be tried with a jet from a nozzle of 1 mm.
diameter rising about 50 centims. In its normal state thejet resolves

itself into drops, which even before passing the summit, and still

more after passing it, are scattered through a considerable width.

When a feebly electrified body is presented to it, the jet undergoes
a remarkable transformation, and appears to become coherent;
but under more powerful electrical action the scattering becomes

even greater than at first. The second effect is readily attributed

to the mutual repulsion of the electrified drops, but the action of
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feeble electricity in producing apparent coherence depends upon a

different principle.

It has been shewn by Beetz 1 that the coherence is apparent

only, and that the place where the jet breaks into drops is not

perceptibly shifted by the electricity. By screening various parts
with metallic plates connected to earth, Beetz further proved that,

contrary to the opinion of earlier observers, the seat of sensitive

ness is not at the root of the jet where it leaves the orifice, but at

the place of resolution into drops. As in Lord Kelvin's water-

dropping apparatus for atmospheric electricity, the drops carry

away with them an electric charge, which may be collected by
receiving them in an insulated vessel.

It may be proved by instantaneous illumination that the

normal scattering is due to the rebound of the drops when they
come into collision. Under moderate electrical influence there is

no material change in the resolution into drops nor in the subse

quent motion of the drops up to the moment of collision. The
difference begins here. Instead of rebounding after collision, as

the unelectrified drops of clean water generally do, the electrified

drops coalesce, and thus the jet is no longer scattered about 2
. An

elaborate discussion of this subject would be out of place here.

It must suffice to say that the effect depends upon a difference of

potential between the drops at the moment of collision, and that

when this difference is too small to cause coalescence there is

complete electrical insulation between the contiguous masses.

When the jet is projected upwards at a moderate obliquity,
the scattering is confined to the vertical plane. Under these

circumstances there are few or no collisions, as the drops have
room to clear one another, and moderate electrical influence is

without effect. At a higher obliquity the drops begin to be
scattered out of the vertical plane, whiqh is a sign that collisions

are taking place. Moderate electrical influence will reduce the

scattering to the vertical plane by causing coalescence of drops
which come into contact.

If, as in Savart's beautiful experiments, the resolution, into

drops is regularized by external vibrations of suitable frequency,

1
Pogg. Ann. vol. CXLIV. p. 443, 1872.

2 The influence of Electricity on Colliding Water Drops, Proc. JRoj/, Soc. vol.

xxvux. p. 406, 1879.
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the principal drops follow the same course, and unless the

projection is nearly vertical there are no collisions between them.

But it sometimes happens that the spherules are thrown out

laterally in a distinct stream, making a considerable angle with

the main stream. This is the result of collisions between the

spherules and the principal drops. It may even happen that the

former are reflected backwards and forwards several times until at

last they escape laterally. In all cases the behaviour under

feeble electrical influence is a criterion of the occurrence of

collisions.

In an experiment, due to Magnus
1

,
the spherules are diverted

from the main stream without collisions by electrical attraction.

Advantage may be taken of this to obtain a regular procession

of drops finer than would otherwise be possible.

364. The detached masses of liquid into which a jet is

resolved do not at once assume and retain a spherical figure, but

execute a series of vibrations, being alternately compressed and

elongated in the direction of the axis of symmetry. When the

resolution is effected in a perfectly periodic manner, each drop is

in the same phase of its vibration as it passes through a given

point of space ;
and thence arises the remarkable appearance of

alternate swellings and contractions described by Savart. The

interval from one swelling to the next is the space described by

the drop during one complete vibration about its figure of equi

librium, and is therefore, as Plateau shewed, proportional crcfem

paribitf to the square root of the head.

The time of vibration is of course itself a function of the

nature of the fluid (2
1

, p) and of the size of the drop, to the

calculation of which we now proceed, It may be remarked that

the argument from dimensions is sufficient to shew that the

time (r) of an infinitely small vibration of any type is proportional

to >J(pV/T\), where Fis the volume of the drop.

In the mathematical investigation of the small vibrations of a

liquid mass' about its spherical figure
of equilibrium,

we will

confine ourselves to modes of vibration symmetrical about an axis,

which suffice for the problem in hand. These modes require for

their expression only Legendre's functions Pn ;
the more general

J Fogg* Ann. vol. cvi. p, 27, 1859.
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problem, involving Laplace's functions, may be treated in the
same way and leads to the same results.

The radius r of the surface bounding the liquid may be
expanded at any time t in the series ( 336)

where Oj, a2 ... are small quantities relatively to a
, and p repre

sents, as usual, the cosine of the colatitude (0).

For the volume (V) included within the surface (1) we have

the summation commencing at n = 1. Thus, if a be the radius of
the sphere of equilibrium,

2
] ............... (3).

The potential energy of capillarity is the product of the
tension T and of the surface S. To calculate S we have

For the first part

r+i

J
i*dp = 2a 2 + 22 (2 + 1)-

1 an2.

For the second part

The value of the quantity on the right may be found with the
aid of the formula

in which m is an integer equal to or different from n. Thus

i2n ( + 1) a^ Pn*dfj, = 2n (n + 1) ( 2 + I)-
1 an

2
.

Accordingly

S = 47ra 3 + 27r 2 (2 + 1)-' (n* + n + 2) an
2

by (3)

=4ira2 + 27rS (w - 1)(^ + 2)(2n+l)-
1 a 2

...... (4)
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Thus, if T be the cohesive tension, the potential energy (P)

corresponding thereto may be taken to be

an2 ......... (5).

We have now to calculate the kinetia energy of the motion.

The velocity-potential ty may be expanded in the series

+ = & + &rPl <j*)+...+pnv*Pn(p) + ......... (6);

and thus for the kinetic energy we get

K = $p //t d^fdr . a* d<f> dp

= 27rpa
2

. 2 (2n + I)-
1 no-*fa.

But by comparison of the value of d^/dr from (6) with (1) we find

and thus
(7).

Since the products of the quantities an and dan/dt do not occur

in the expressions for P and JSf, the motions represented by the

various terms take place independently of one another. The

equation for an is by Lagrange's method ( 87)

(8);

so that, if On oc cos (pt + e),

p-n(n

The periodic time is equal to 2?r/p, so that in terms of V (equal

to

or in the particular case of n equal -to 2

(11)-

To find the radius of the sphere of water which vibrates

seconds, we put in (9) p = ^, 7 =H P
= l> n = 2 - Thus

a = 2-47 ccntims., or a little less than one inch.

An attempt to compare (11) with the phenomena observed in

a jet did not bring out a good agreement. A stream of 19'7 cub.

i Proc. Roy. Soc. vol. xxnc. p. 97, 1879 ; Webb, Mat. of Math. vol. is. p. 177, 1880.
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cent, per second was broken up under the action of a fork making
128 vibrations per second. Neglecting the mass of the small

spherules, we may take for the volume of each principal drop

19-7/128, or '154 cub. cent. Thence by (11), putting p = l,

r=74} we have r = '0494 second. This is the calculated value.

By observation of the vibrating jet the distance between the first

and second swellings, corresponding to the maximum oblateness of

the drops, was 16*5 centims. The level of the contraction midway
between the two swellings was 36*8 centims. below the surface of

the liquid in the reservoir, corresponding to a velocity of 269

centims. per second. These data give for the time of vibration

r = 16-5/269 = -0612 second.

The discrepancy between the two values of r is probably attribu

table to excessive amplitude, entailing a departure from the

law of isochronism. Observations upon the vibrations of drops
delivered singly from pipettes have been made by Lenard 1

.

The tendency of the capillary force is always towards the

restoration of the spherical figure of equilibrium. By electrifying

the drop we may introduce a force operative in the opposite direc

tion. It may be proved
2 that if Q be the charge of electricity in

electrostatic measure, the formula corresponding to (9) is

If T > QPllGira*, the spherical form is stable for all displace
ments. When Q is great, the spherical form becomes unstable for

all values of n below a certain limit, the maximum instability

corresponding to a great, but still finite, value of n. Under these

circumstances the liquid is thrown out in fine jets, whose fineness,

however, has a limit.

Observations upon the swellings and contractions of a regularly
resolved jet may be made

stroboscopicalty, one view corresponding
to each complete period of the vibrator

;
or photographs may be

taken by the instantaneous illumination furnished by a powerful
electric spark

3
.

1 Wied. Ann. vol. xxx. p. 209, 1887.
2 Phil Mag. vol. xiv. p. 184, 1882.
8 Some Applications of Photography, Proc. Roy. Soc. Inst. vol. xm. p. 261,

1891 ; Nature, vol. XLIV. p. 249, 1891.
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In the mathematical investigations of this chapter no account

has been taken of viscosity. Plateau held the opinion that the

difference between the wave-length of spontaneous division of a

jet (4' 5 x 2a) and the critical wave-length (TT x 2a) was an effect

of viscosity; but we have seen that it is sufficiently accounted for

by inertia. The inclusion of viscosity considerably complicates

the mathematical problem
1

,
and it will not here be attempted.

The result is to shew that, when viscosity is paramount, long

threads do not tond to divide themselves into drops at mutual

distances comparable with the diameter of the thread, but rather

to give way by attenuation at few and distant places. This

appears to be in agreement with the observed behaviour of highly

viscous threads of glass, or treacle, when supported only at the

terminals. A separation into numerous drops, or a varicosity

pointing to such a resolution, may thus be taken as evidence that

the fluidity has been sufficient to bring inertia into play.

A still more general investigation, in which the influence of

electrification is considered, has been given by Basset 2
,

1 Phil, Mag. vol. xmv. p. 145, 1892.

3 Amer* Journ, of Uath, vol. xvi. No. 1.



CHAPTER XXL

VORTEX MOTION AND SENSITIVE JETS.

365. A LARGE and important group of acoustical phenomena
have their origin in the instability of certain fluid motions of the

kind classified in hydrodynamics as steady. A motion, the same
at all times, satisfies the dynamical conditions, and is thus in a
sense possible; but the smallest departure from the ideal so

defined tends spontaneously to increase, and usually with great

rapidity according to the law of compound interest. Examples of

such instability are afforded by sensitive jets and flames, seolian

tones, and by the flute pipes of the organ. These phenomena are

still very imperfectly understood
;
but their importance is such as

to demand all the consideration that we can give them.

So long as we regard the fluid as absolutely inviscid there is

nothing to forbid a finite slip at the surface where two masses
come into contact. At such a surface the vorticity ( 239) is

infinite, and the surface may be called a vortex sh'eet. The
existence of a vortex sheet is compatible with the dynamical
conditions for steady motion

; but, as was remarked at an early
date by v. Helmholtz 1

, the steady motion is unstable. The

simplest case occurs when a plane vortex sheet separates two
masses of fluid which move with different velocities, but without
internal relative motion a problem considered by Lord Kelvin in

his investigation of the influence of wind upon waves 2
. In the

following discussion the method of Lord Kelvin is applied to

determine the law of falling away from steady motion in some of
the simpler cases of a plane surface of separation.

1 Phil. Mag. vol. xxxvi. p. 337, 1868.
2 Phil Mag. vol. XLII. p. 368, 1871. See also Proc. Math. Soc. vol. x. p. 4,

1878; Basset's Hydrodynamics, 391, 1888; Lamb's Hydrodynamics, 224, 1895.'
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Let us suppose that below the plane # = the fluid is of

constant density p and moves parallel to x with velocity F, and

that ,above that plane the density is p and the velocity V. As

in "353, let z be measured downwards, and let there be rigid

walls bounding the lower fluid at z = I and the upper fluid at

z = l
f

. The disturbance is supposed to involve x and t only

through the factors e
ikx

,
eint. The velocity potential ( Vx + <) in

the lower fluid satisfies Laplace's equation, and thus
<f> by the

condition at z = I takes the form

(1);

and a similar expression,

applies to the lower fluid, if the whole velocity-potential be there

( l^'tf -i-<'). The connection between
</>

and the elevation (h) at

the common surface is

_**(,. 0)-S+rS;dz ^
dt dx

so that, if h = He^^ ........................ (3),

JfeCsinhiM = '< + *7)5" ............... (4).

In like manner, -kC' sinhM = i(n + kV')H ............... (5).

We have now to express the condition relating to pressures at

z = 0. The general equation (2), 244, gives for the lower fluid

= gh in^ i

*

squares of small quantities being neglected. In like manner for

the upper fluid at z =

If there be no capillary tension, Sp and Sp' are equal. If the

capillary tension be T
9
the difference is

so that

......... (6).
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When the values of <, <f>'
at z = Q are introduced from (1), (2),

(4), (5), the condition becomes

g (p
-

p') + #r= kp (F + n^)
2 coth w + fy/ (v + n(k)* coth kr

............... 00-

This is the equation which determines the values of n/k. If

the roots of the quadratic are real, waves are propagated with the

corresponding real velocities; if on the other hand the roots are

imaginary, exponential functions of the time enter into the

solution, indicating that the steady motion is unstable. The

criterion of stability is accordingly

(p coth kl + p coth kl') {g (p
-

p') 4- TA2
}

-
kpp' coth kl coth H'(F-F')

2 >0 ...... (8).

If g and T both vanish, the motion is unstable for all disturb

ances, that is, whatever may be the value of k. If T vanish, the

operation of gravity may be to secure stability for certain values

of k, but it cannot render the steady motion stable on the whole.

For when k is infinitely great, that is, when the corrugations are

infinitely fine, coth JM = coth kl' = I, and the term in g disappears
from the criterion. In spite of the impressed forces tending to

stability the motion is necessarily unstable for waves of infini

tesimal length ;
and this conclusion may be extended to vortex

sheets of any form and to impressed forces of any kind.

If T be finite, then on the contrary there is of necessity

stability for waves of infinitesimal length, although there may be

instability for waves of finite length.

For further examination we may take the simpler conditions

which arise when I and V are infinite. The criterion of stability

then becomes

V^Vr>Q ...... (9),

and the critical case is determined by equating the left-hand

member to zero. This gives a quadratic in k. If the roots of the

quadratic are imaginary, the criterion (9) is satisfied for all inter

mediate values of fe, as well as for the infinitely small and in

finitely large values by which it is satisfied in all cases, provided
that p > p' t The condition of complete stability is thus
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Let W denote the minimum velocity ( 353) of waves when

F=0,F = 0. Thenby"(7)

(p + P')*W* = 4g(p-p')T ............... (11),

and (10) may be written

If (F F') do not exceed the value thus determined, the

steady motion is stable for all disturbances
;
otherwise there will

be some finite wave-lengths for which disturbances increase ex

ponentially.

If we now omit the terms in (7) dependent upon gravity and

upon capillarity, the equation becomes

p(n + &F)
a coth Id + p (n -f &F

7

)
2 coth kl

r = ..... .(13).

When =T, or when both these quantities are infinite, we

have simply
...............(14),

^
k p -f p'

We see from (15) that, as was to be expected, a motion

common to both parts of the liquid has no dynamical significance.

An equal addition to V and Y is equivalent to a deduction of

like amount from n/k. Ifp=/o', (15) becomes

nlk**~t(V+V)ki(V-V) ............ (16).

The essential features of the case are brought out by the

simple case where V = F, so that the steady motions of the two

masses of fluid are equal and opposite. We have then

n/k***V ........ ... ............. (17);

and for the elevation,

A~jff^*n oos(te+6) .................. (18),

corresponding to h^H cos (nx 4- e) ..................... (19),

initially*

If when t 0, dh/dt
= 0,

............... (20),

indicating that the waves upon the surface of separation are

stationary, and increase ia amplitude with the time according to
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the law of the hyperbolic cosine. The rate of increase of the term

with the positive exponent is extremely rapid. Since k = 27T/X,

the amplitude is multiplied by e", or about 23, in the time

occupied by either stream in passing over a distance X.

If V = Yy the roots (16) are equal, but the general solution

may be obtained by the usual method. Thus, if we put

where ot is ultimately to vanish,

and h

where A
9
B are arbitrary constants. Passing now to the limit

where a = 0, and taking new arbitrary constants, we get

or in real quantities,

h

If initially h = cos kx, dhjdt = 0,

*) (21).

The peculiarity of this case is that previous to the displacement
there is no real surface of separation at all.

The general solution involving I and V may be adapted to

represent certain cases of disturbance of a two-dimensional jet of

width 21 playing into stationary fluid. For if the disturbance be

symmetrical, so that the median plane is a plane of symmetry, the

conditions are the same^ as if a fixed wall were there introduced.

If the surrounding fluid be unlimited, i' = oo, coth JW' = 1; and
the equation determining n becomes, if 7' = 0, p'

=
p,

(n 4- kV)
z coth kl -f n2 =

(22),

of which the solution is

ji 1 W(tanh kl)

kV
~

r+ tanh?^

Thus h = .

TT -*"m --- 7 f Vt

1 + tanh kl

. //^rt"U

where ^ =
1 -f tanh kl'
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This represents the progression of symmetrical disturbances in a

jet of width 21 playing into a stationary environment of the

same density.

If kl be very small, so that the wave-length is large in com

parison with the thickness of the jet,

h = He^W-m wsk{x- Vt] ............... (26).

The investigation of the asy inmetrical disturbance of a jet

requires the solution of the problem of a single vortex sheet when
the condition to be satisfied at #= I is < = 0, instead of as hitherto

= 0. The value of < is

from which, if as before dfi/dz = when z~ l
f

,

p(n + kV^*t&nhkl+p'(n4-kV'ycothkl' = Q ... (28).

If I'^Ktp'^p, F'=0,

(7i + F)
2 tanhM + 7i

2=0 ............... (29>

This is applicable to a jet of width 2Z, moving with velocity V
in still fluid and displaced in such a manner that the sinuosities

of its two surfaces are parallel.

When kl is small, we have approximately

h = He ^kl^ kVt cosk(x-kLVt) ............ (30).

By a combination of the solutions represented by (26), (30), we

may determine the consequences of any displacements in two

dimensions of the two surfaces of a thin jet moving with velocity

V in still fluid of its own density.

366. The investigations of 365 may be considered to afford

an adequate general explanation of the sensitiveness of jets. In

the ideal case of abrupt transitions of velocity, constituting vortex

sheets, in frictionless fluid, the motion is always unstable, and the

degree of instability increases as the wave-length of the disturb

ance diminishes.

The direct application of this result to actual jets would lead

us to the conclusion that their sensitiveness increases indefinitely

with pitch. It is true that, in the case of certain flames, the

pitch of the most efficient sounds is very high, not far from the
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upper limit of human hearing; but there are other kinds of

sensitive jets on which these high sounds are without effect, and

which require for their excitation a moderate or even a grave

pitch.

A probable explanation of the discrepancy readily suggests

itself. The calculations are founded upon the supposition that

the changes of velocity are discontinuous a supposition that

cannot possibly agree with reality. In consequence of fluid

friction a surface of discontinuity, even if it could ever be formed,

would instantaneously disappear, the transition from the one

velocity to the other becoming more and more gradual, until the

layer of transition attained a sensible width. When this width is

comparable with the wave-length of a sinuous disturbance, the

solution for an abrupt transition ceases to be applicable, and we
have no reason for supposing that the instability would increase

for much shorter wave-lengths.

A general idea of the influence of viscosity in broadening a

jet may be obtained from Fourier's solution of the problem where

the initial width is supposed to be infinitesimal. Thus, if in the

general equations v and w vanish, while u is a function of y only,

the equation satisfied by u is (as in 347)

du d2u

The solution of this equation for the case where n is initially

sensible only at y = is

where z/ = /t/p, and Z/i denotes the initial value of Judy. When
y
2 = 4i/, the value of u is less than that to be found at the same
time at y = in the ratio e : 1. For air z/ = '16 C.G.S., and thus

after a time t the thickness (2y) of the jet is comparable in

magnitude with l'6*/t'9 for example, after one second it may be

considered to be about 1J cm.

There is therefore ample foundation for the suspicion that the

phenomena of sensitive jets may be greatly influenced by fluid

friction, and deviate materially from the results of calculations

based upon the supposition of discontinuous changes of velocity.
Under these circumstances it becomes important to investigate
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the character of the equilibrium of stratified motion in cases more

nearly approaching what is met with in practice. A complete

investigation which should take account of all the effects of

viscosity would encounter many formidable difficulties. For the

present purpose we shall treat the fluid as frictionless and be

content to obtain solutions for laws of stratification which are free

from discontinuity. For the undisturbed motion the component

velocities v, w are zero, and u is a function of y only, which we

will denote by U, A curve in which U is ordinate and y is

abscissa represents the law of stratification, and may be called for

brevity the velocity curve. The vorticity Z ( 239) of the steady

motion is equal to ^dU/dy.

If in the disturbed motion, assumed to be in two dimensions,

the velocities be denoted by U + u, v, and the vorticity by

the general equation (4), 239, takes the form

dt

in which dZjdt
=

0, dZfdx = 0.

Thus, if the square of the disturbances be neglected, the

equation may be written

+l7 + ..................... (3);
dt dx dy

and the equation of continuity for an incompressible fluid gives

^+^ = ........................... (4).
dx dy

If the values of Z and in terms of the velocities be sub

stituted in (3),

_ u u_
dx) &

We now introduce the supposition that as functions of x and t,

u and v are proportional to eint . &**. From (4)

iku + dv/dy
*= Q ........................(6);

and if this value of 11 be substituted in (5), we obtain

Proc. Math. Soc. vol. xi. p. 68, 1880.
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In (7) k may be regarded as real, and in any particular

problem that may be proposed the principal object is to determine

the corresponding value of n, arid especially whether it is real or

imaginary. One general proposition of importance relates to the

case where d*U/dy* is of one sign, so that the velocity curve is

wholly convex, or wholly concave, throughout the entire space

between two fixed walls at which the condition v = is satisfied.

Let n/k = p + iq,v = a+ ift t
where p, q, a, ft are real. Substituting

in (7) we get

d*a . d*/3

or, on equating separately to zero the real and imaginary parts,

(8)v h

...... (9 )." V '

Multiplying (8) by /3, (9) by a, and subtracting, we get

_d( fi
da"

At the limits v, and therefore both a and ft, are by hypothesis

zero. Hence integrating (10) between the limits, we see that q

must be zero, if d2
Ujdy* is of one sign throughout the range of

integration. Accordingly n is real, and the motion, if not abso

lutely stable, is at any rate not exponentially unstable.

Another general conclusion worthy of notice can be deduced

from (7). Writing it in the form

we see that, if n be real, v cannot pass from one zero value to

another zero value, unless dz

U/dy
2 and (n + kU) be somewhere of

contrary signs. Thus if we suppose that U is positive and

d-U/dy
z

negative throughout, and that Fis the greatest value of

U, we find that n + kV must be positive.

367. A class of problems admitting of fairly simple solution

is obtained by supposing the vorticity Z to be constant through

out layers of finite thickness and to change its value only in
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passing a limited number of planes, for each of which y is constant.

In such cases the velocity curve is composed of portions of straight

lines which meet one another at finite angles. This state of things

is supposed to be disturbed by bending the surfaces of transition.

Throughout any layer of constant vorticity d?U/dy
z = Q, and

thus by (7), 366, wherever n+kU is not equal to zero,

of which the solution is

v = AeP + Ber*y ........................ (2).

If there are several layers in each of which Z is constant, the

various solutions of the form (2) are to be fitted together, the

arbitrary constants being so chosen as to satisfy certain boundary

conditions. The first of these conditions is evidently the conti

nuity of v, or as it may be expressed,

Av = .............................. (3).

The other necessary condition may be obtained by integrating

(7) 366, across the surface of transition. Thus

These are the conditions that the velocity shall be continuous

at the places whore dUfdy changes its value.

In the problems which we shall consider the fluid is either

bounded by a fixed plane at which y is constant, or else extends

to infinity. For the former the condition is simply ^ = 0. If

there be a layer extending to infinity in the positive direction, A

must vanish in the expression (2) applicable to this layer : if a

layer extend to infinity in the negative direction, the correspond

ing B must vanish.

Under the first head we will consider a problem of some

generality, where the stratified steady motion
Ux

takes place between fixed walls at
2/
= and at

y &! + &' + 6*

The vorticity is constant throughout each of

the three layers bounded by y = 0, y = &i; 2/
= &i>

y^ + 6'; y &! + &', y~&x + &' + &* (Fig- 67).

There are thus two internal surfaces where the

vorticity changes* The values of U at these

surfaces may be denoted by Ul9 t/V Fig. 67.
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In conformity with (3) and with the condition that v ='0 when

y = 0, we may take in the first layer

v = v^
= sinh ky (5);

in the second layer

= ^= 1^-1- Ml sinh fc (y &i) (6) ;

in the third layer

v = v$ = vz + J/a sinh Jc (y &! &') (7).

The condition that v = 0, when y = &i -h &' -f ia ,
now gives

=M2 sinh &62 4- .Mi sinh A (6, + V) 4- sinh ft (63 + &' + 60. . .(8).

We have still to express the other two conditions (4) at the

surfaces of transition. At the first surface

v = sinh &&! ,
A (dv/dy)

= kMl ;

at the second surface

v= MI sinh &&' + sinh k fa + &0 ^ (dvfdy)
= &j?lf2 .

If we denote the values of &(dU/dy) at the two surfaces

respectively by A l5 A s ,
our conditions become

(tt + &/70^,~ A! sinh fc&^O (9),

(n+ ftZTi) Jf2 - A2 {Afj sinh tt
7 + sinh A fa + b')}

=
O...(10).

By (8), (9), (10) the values of M}t M,2) n are determined.

The equation for n is found by equating to zero the determi

nant of the throe equations. It may be written

An*+Bn + C = (11),
where

A =sinh&(&2 + 6'-h&3 ) (12),

=k(Ul + U>) sinh k fa + V + l^)

+ A2 sinh fc6a sinh k fa + b') + Aa sinh kh sinh k fa + b')... (13),

(7 = & U, U> sinh k fa + 6' + 60
4- A Z/iA2 sinh A62 sinh fc (fij + &') + & D^A! sinh fc6i sinh k fa -f 6')

+ A 1A2 sinhife1 sinh&&2 sinhit' (14).

To find the character of the roots we have to form the expression
for J32 4fAC. On reduction we get

2 - 4AC = {k ( U,
- UJ sinh k fa + V -f 6,)

H- A! sinh &! sinh k fa + 6')
- A2 sinh i62 sinh k fa + 6

7

)}
2

-f 4A aA2 sinh
2 k^ sinh2M2 (15).
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Hence if A1? A2 have the same sign, that is, if the velocity

curve ( 366) be of one curvature throughout, J?
2 4*AC is positive,

and the two values of n are real. Under these circumstances the

disturbed motion is stable.

We will now suppose that the surfaces at which the vorticity

changes are symmetrically situated, so that ^ = 62
= b.

In this case we find

A = sinh * (26 4- V) (16),

C= fc
2
U,Uz sinh k (26 + b') + k ( Z7iA2 + Z7A) sinh kb sinh k (b + &')

+ A!A2 sinh
2 kb sinh IcV (18),

4A tA2 sinh
4 kb

;)sinhi(264-60+(^i-"^2)sinh/c&sinhfc(6-f6
/

)}
2

-(19)-

Under this head there are two sub-cases which may be

especially noted. The first is that in which the

values of U are the same on both sides of the

median plane, so that the middle layer is a

region of constant velocity without vorticity,

and the velocity curve is that shewn in Fig. 68.

We tr>ay suppose that 7= V in the middle

layer, and that C7"=0 at the walls, without loss

of generality, since any constant velocity (I7 )

superposed upon this system merely alters n by

the corresponding quantity -IcU^ as is evident from (7), 366.

B2 - 44 C = 4A2 sinh4 kb.

V sinh kb sinh k (b + 6') sinh2 kb /s>m= -- - --- ......<>>

Thus

and

rrHence

As was to be expected, since the curvature of the velocity

curve is of one sign, the values of n in (20) are real. It is easy

from the symmetry to see that the two normal disturbances are

such that the values of v at the surfaces of separation are either

equal or opposite for a given value of x. In the first case the

surfaces are bent towards the same side, and (as may bo found

from the equations or inferred from the particular case presently

to be mentioned) the corresponding value of 74 in (20) has the
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upper sign.
In the second case the motion is symmetrical with

respect to the median plane which behaves as a fixed wall.

If the middle layer be absent (&'
=

0), one value of n, that

corresponding to the symmetrical motion, vanishes. The remain

ing value is given by
> Ftanh&fc

The other case which we shall consider is that in which the

velocities U on the two sides of the median plane are opposite to

one another ;
so that

U^-U^V, A^-A^-^F ......... (22).

Here 5 = 0, and

For the sake of brevity we will write Jcb = /3,
kb' = ff ;

so that

the equation for n becomes

k* sinh

sinh(/3+/3'Wsinh2
/3 sinh

U sinh/3 sinh /=-Fsm

Q !
I

'sinh (2/3 + /3')

Here the two values of n are equal and opposite ; and, since

A!, A2 are of opposite signs, the question is

open as to whether n is real or imaginary.

It is at once evident that n is real if /* be

positive,
that is, if A> and V are of the same

sign as in Fig. 69.

Even when p> is negative, n2 is necessarily

positive for great values of k, that is, for small

wave-lengths. For we have ultimately from

(23)
n=kV. "*<""

We may now inquire for what values of p, n* may be negative

when k is very small, that is, when the wave-length is very great.

Equating the numerator of (23) to zero, and expanding the

hyperbolic sines, we get as a quadratic in /A,

ffW + fyb (b + &') + 2& + 6'=*0,

whence /*=!/&, or ,, 1/&-2/6' (24).
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When p lies between these limits (and then only), n
2
is nega

tive, and the disturbance (of great wave-length) increases expo

nentially with the time.

We may express these results by means of the velocity VQ at

the wall where y = 0. We have

The' limiting values of F are therefore bVfyb' and 0. The

velocity curve corresponding to the first limit is shewn in Fig. 70

by the line QPOP'Q', the point Q being found by drawing a line

AQ parallel to OP to meet the wall in Q. If 6' = 26, QP is

parallel to OA, or the velocity is constant in each of the extreme

layers.

At the second limit F = 0, and the velocity curve is that

shewn in Fig. 71.

Fig. 70.

A

Hg. 71.

It is important to notice that motions represented by velocity

curves intermediate between these limits are unstable in a manner

not possible to motions in which the velocity curve, as in Fig. 68,

is of one curvature throughout.

According to the first approximation, the motion of Fig. 71

is on the border-lino between stability and instability for disturb

ances of great wave-length ; but, if we pursue the calculation,

wo find that it w really unstable. Taking in (23)

M -!/&- 2/6',

we get, after reduction,

(25),

indioatincr instability.



390 LAYERS OF UNIFORM VORTICITY. [367.

From the second form of (23) we see that, whatever may be

the value of k, it is possible so to determine /* that the disturb

ance shall be unstable. The condition is simply that p must be

between the limits

, sinh k (b -{V) sinh kb~
sinh 6 sinh 6'

'

or - k {coth kb + coth ^kb'},
- k {coth kb + tanh \kV] . . .(26),

of which the first corresponds to the superior limit to the numeri

cal value of fM.

When k is very large, the limits are very great and very close.

When k is small, they become

-1/6-2/6' and -1/6,

as has already been proved. As k increases from to oo
, the

numerical value of the upper limit increases continuously from

1/6 + 2/6' to oo
,
and in like manner that of the inferior limit from

1/6 to oo . The motion therefore cannot be stable for all values of

k, if /x (being negative) exceed numerically 1/6. The final condi

tion of complete stability is therefore that algebraically

l-l/b .......................... (27).

In the transition case

it is that represented in Fig. 70: If PQ be bent more downwards
than is there shewn, as for example in Fig. 71, the steady motion

is certainly unstable.

Eeverting to the general equations (11), (12), (13), (14), (15),

let us suppose that A2
=

0, amounting to the abolition of the

corresponding surface of discontinuity. We get

jB = k
( Ul 4- U2) sinh k (62 + 6' + 6X) + A! sinh kbi sinh k (6a -f 6'),

! sinh A*! si

so that n = -&172 .................. . ........ (29),

. -fcUi- ^g.> ^*^ + 52 ......... (30).

The latter is the general solution for two layers of constant

vorticity of breadths ^ and 6' + &a An equivalent result may be

obtained by supposing in (11) &c. that 6' = 0, or that 6
1
= 0.
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The occurrence of (29) suggests that any value of -klf is

admissible as a value of n, and the meaning of this is apparent
from the fundamental equation (7), 366. For, at the place where
n + kU^O, (1) need not be satisfied, that is, the arbitrary con
stants in (2) may change their values. It is evident that, with
the prescribed values of n and k, a solution may be found satisfy

ing the required conditions at the walls and at the surfaces where

dU/dy changes value, as well as equation (3) at the plane where
n + kU~0. In this motion an additional vorticity is supposed to

be communicated to the fluid at the plane in question, and it

moves with the fluid at velocity U.

We may inquire what occurs at a second place in the fluid

where the velocity happens to be the same as at the first place of

added vorticity. The second place may be either within a layer of

originally uniform vorticity, or upon a surface of transition. In
the first case nothing very special presents itself. If there be no
new vorticity at the second place, the value of v is definite as

usual, save as to one arbitrary multiplyer. But, consistently with
the given value of n, there may be new vorticity at the second as

well as at the first place, and then the complete value of v for the

given n may be regarded as composed of two parts, each propor
tional to one of the uew vorticities and each affected by an

arbitrary multiplyer.

If the second place lie upon a surface of transition, it follows

from (4>) that v 0, since &(dU/dy) is finite. From this fact we

might be tempted to infer that the surface in question behaves

like a fixed wall, but a closer examination shews that the inference

would be unwarranted, In order to understand this, it may be

well to investigate the relation between v iind the displacement of

the surface, supposed also to be proportional to e iilt
, e

lkx
. Thus, if

the equation of the surface be

^0 ..................... (31),

the condition to be satisfied is
1

dF TT dF dF A /0 o\^ 27 ._ 4-^_ ~o ..................... (32),
at dx dy

so that ~~ih(n + kU) + v^O ..................... (33)

1 Larab'd Hydrodynamics, 10.
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is the required relation. A finite h is thus consistent with an

evanescent v.

368. In the problems of 367 the fluid is bounded by fixed

walls
;
in those to which we now proceed, it will be considered to

be unlimited. As a first example, let us suppose that on the

upper side of a layer of thickness b the undisturbed velocity U is

equal to + V, and on the lower side to - V, while inside the layer

Fig. 72. Fig. 73. Fig. 74.

it changes uniformly, Fig. 72. The vorticity within the layer is

V/b, and outside the layer it is zero.

The most straightforward method of attacking this problem is

perhaps on the lines of 367. From y = - oo to y = 0, we should

assume an expression of the form v1
= d*, satisfying the necessary

condition when y = oo . Then from y = to y = b,

V2
= VI+M! sinh ky ;

and from y = 6toy=-f-oo,

v3
= Vt +Mz sinh k (y b).

But by the conditions at + oo
, v& must be of the form e~kv, so that

The two other conditions may then be formed as in 367, and the

two constants MI9 Mz eliminated, giving finally an equation for n.

But it will be more appropriate and instructive to follow a

different course, suggested by vortex theory.

If we write the fundamental equation

in the form

d*v/dy*-k*v=Y......................... (2),

we see that, if F= from y = oo to y = 4- oo
, then v 0. Any

value that v may have may thus be regarded as dependent upon
F, and further, in virtue of the linearity, as compounded by simple
addition of the values corresponding to the partial values of F.
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In the applications which we have in view T vanishes, except at

certain definite places the surfaces of discontinuity where alone

d^U/dy* differs from zero. The complete value of v may thus be

found by summation of partial values, each corresponding to a

single surface of discontinuity.

To find the partial value corresponding to a surface of dis

continuity situate at
2/
=

2/i,
we have to suppose in (2) that Y

vanishes at all other places, while v vanishes at 00. Thus,

when y>y^>v must be proportional to e"~*<y~yi)
,
and when y<y^

v must be proportional to e+Hv-2/i). Moreover, since v itself must

be continuous at y = ya ,
the coefficients of the exponentials must

be equal, so that the value may be written

^(V^y-z/o (3),

when C is some constant.

In the particular problem above proposed there are two

surfaces of discontinuity, at t/
= and at y='6; and accordingly

the complete value of v may be written in the form

Wo have now to satisfy at each surface the equation of condi

tion (4), 307. When y = 0, we have from (4)

% A + Etr*\ A (dv/dyh
= - 2kA,

while U~ - V, A (dff/dy)
- + 2F/6 ;

and when y =
/;,

while J7 + r, A (d 17/dy )
- - 2 K/6.

The conditions to bo satisfied by B : A and n are thus

= (5),

= (6);

from which by elimination of B : A,

n'{(*6-iy-r*>} (7).

When kb is small, that is, when the wave-length is great in

comparison with 6, the case approximates to that of a sudden

transition from the velocity
- V to the velocity + V. Then

(8),
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in agreement with the value already found (17), 365. In this

case the steady motion is unstable. On the other hand, when kb

is great, we find from (7)

(9);

and, since the two values of n are real, the motion is stable.
^

It

appears, therefore, that so far from the instability increasing

indefinitely with vanishing wave-length, as happens when the

transition from - V to + V is sudden, a diminution of wave-length

below a certain value is accompanied by an instability' which

gradually decreases, and is finally exchanged for actual stability.

The following table exhibits more in detail the progress of 6V-/F'
2

as a function of kb :

We see that the instability is greatest when fc& = "8 nearly,

that is, when X=86; and that the passage from instability to

stability takes place when kb = 1*3 nearly, or X =* 56.

Corresponding with the two values of n, there are two ratios

of B : A determined by (5) or (6), each of which gives a normal

mode of disturbance, and by means of these normal modes arbi

trary initial circumstances may be represented. It will be seen

that for the stable disturbances the ratio B : A is real, indicating

that the sinuosities of the two surfaces are at every moment in

the same phase.

We may next take an example from a jet of thickness 26

moving in still fluid, supposing that the velocity in the middle of

the jet is F, and that it falls uniformly to zero on either side,

(Fig. 73). Taking the origin of y in the middle line, we may write

U^V(l^ylb) (10),

in which the sign applies to the upper, and the + sign to the

lower half of the jet (Fig. 73). There are now three surfaces

y = - 6, y = 0, y = 4- b y
at which the form of v suffers discontinuity.

As in (4) we may take

(11);
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so that, when

y = -6, 17=0, &(dU/dy)=V/b,
v = A + Be~kb + Ce~*kb , A (dv/dy)

- - 244
;

when y = 0, U - F, A (d 6
r
/dy)

= - 2 F/6,

v = 4a-tt
4- U + Ce~k\ A (dv/dy)

- - 2kB
;

when y = ft, Z7= 0, A (d Ufdy) = V/6,
= Ae~^ + ^-fc6 + 0, A (dv/dy) = - 2A?C.

The introduction of these values into the equations of condition

(4), 367 gives

(12),

= ............ (13),

(14),

which are the equations determining A : S : C and n.

By the symmetries of the case, or by inspection of (12), (13),

(14), we see that one of the normal distxirbances is defined by

jB0, A + 0^0 ..................... (15),

and that the corresponding value of m is 7
2
. Thus for the

symmetrical disturbance

(16),= -

indicating stability, so far as this mode is concerned.

The general determinant of the system of three equations may
be put into the form

(m - 7
3
) {m* + (7

s
4- 2kb - 3) m + 7

2
(1 + 2*6)}

= . .(17),

in which the first factor corresponds to the symmetrical disturb

ance already considered. The two remaining values of n are

real, if

but not otherwise. When kb is infinite, 7 = 0, and (18) is satis

fied; so that the motion is stable when the wave-length of

disturbance is small in comparison with the thickness (2 6) of the

jet. On the other hand, as may be proved without difficulty by

expanding 7, or e~kb ,
in (18), the motion is unstable, when the

wave-length is great in comparison with the thickness of the jet.
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The values of the left-hand member of (18) can be more easily

computed when it is thrown into the form

(5 + 2*6 -0-***)'- 16(1 + 2kb) (19).

Some corresponding values of (19) and 2kb are tabulated below :

The imaginary part of n, when such exists, is proportional to

the square root of (19). The wave-length of maximum instability
is thus determined approximately by 2&&=2'5, or X = 2*5x26.
The critical wave-length is given by 2kb = 3*5 nearly, or X = T8 x 26,

smaller wave-lengths than this leading to stability, and greater

wave-lengths to instability. In these respects there is a fairly
close analogy with cylindrical columns of liquid under capillary
force ( 357), although the nature of the equilibrium itself and the

manner in which it is departed from are so entirely different.

One more step in the direction of generality may be taken by
supposing the maximum velocity F to extend through a layer of

finite thickness V in the middle of the jet (Fig. 74). In this layer

accordingly there is no vorticity, while in the adjacent layers of

thickness 6 the vorticity and velocity remain as before.

Taking, as in (11), four constants A, B, C, D to represent the

discontinuities at the four surfaces considered in order, and

writing 7 = $-**, 7
f

=e-^', we have at the first surface

Z7=0,

A (dv/dy)
= - 2kA

at the second surface

v = yA + B + </0+ 77'!), A (dv/dy) = - 2kB
;

at the third surface

v = 7701 + yJS + C + 7JD, A (dv/dy) = - 2kC
;
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at the fourth surface

v = rfy'A 4- yy'B 4- jG + D, A (dvfdy) = -

Using these values in (4) 367, we get

= ...... (20),

= ...... (21),

77^ -f yJB+C{l-26(& + n/F)} + 7l> = ...... (22),

7V4 + 7^5 + 70+ 1) {l+2&w/Ff=:0 ...... (23).

The elimination of the ratios A : B : G : D would give a bi

quadratic in w, which, however, may be split into two quadratics,

one relating to symmetrical disturbances for which A + D = Q,

B 4- G = ;
and the other to disturbances for which A D = 0,

BC~Q, The resulting equation in n may be written

y - 1 + 2*6 + 7* (1 T y' + 2&&70 - ...... (24).

In (24) the upper signs of the ambiguities correspond to the

symmetrical disturbances. The roots are real, and the correspond

ing disturbances are stable, if

be positive).

In what follows we will limit our attention to the symmetrical

disturbances, that is, to the upper signs in (25), and to terms of

orders not higher than the first in V. The expression (25) may
then bo reduced to

4- 2kV (I + 7
2
) (1

- 7
2 - 2M>) ...... (26).

If kb J>o voxy nmall, this becomes

If I! is zero (27) in positive, and the disturbance is stable, as we

found before
; but, if 6 and V be of the same order of magnitude

and both small compared with X, it follows from (27) that the

disturbance is unstable, although it be symmetrical.

If in. (24) we suppose that V ~ 0, we fall back upon the suppo-
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sitions of the previous problem. For the symmetrical disturbances,

putting y = 1 in (24), we get

shewing that the values of 26n/F are 7
2 -l and -2kb. The

former agrees with (16), and the latter gives n-t-&F=0. We
have already seen that any value of kU is a possible solution

for ??.

If on the other hand we suppose that b = 0, we fall back upon
the case of a jet of uniform velocity Fand thickness U moving in

still fluid. The equation for n becomes, after division by 62 ,

n* + (1 7') kV. n + (I 7 )

or

In (28) ,

so that the result is in harmony with (22), (29), 365, where I

corresponds with \V.

Another particular case of (24), comparable with previous

results, is obtained by supposing 6' to be infinite.

369. When d?U[dy* is finite, we must fall back upon the

general equation 366

from which the curve representing v as a function of y can

theoretically be constructed when n (being real) is known. In fact

we may regard (1) as determining the curvature with which we
are to proceed in tracing the curve through any point. At a

place when n + kU vanishes, that is, where the stream-velocity is

equal to the wave-velocity, the curvature becomes infinite, unless

v vanishes. The character of the infinity at such a place (suppose

y = 0) would be most satisfactorily investigated by means of the

complete solution of some particular case. It is, however, sufficient

to examine the form of solution in the neighbourhood of y = 0, and

for this purpose the differential equation may be simplified. Thus,
when y is small, n + fcZ7may be treated as proportional to y, and
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d*U/dy
2 as approximately constant.

* In comparison with the large

term, k*v~ may be neglected, and it suffices to consider
1

d*v/dy* + y~
l v = Q ........................ (2),

a known constant multiplying y being omitted for the sake of

brevity. This falls under the head of Ricati's equation

d*vjdy* + y*v=*Q ........................(S),

of which the solution is in general (m fractional)
1

v~*J!/.{AJm (l*)+BJ^m (&} ................ (4),

where w *!/(/* + 2), f = 2roy* .................. (5).

When, as in the present case, m is integral, J^m (f) is to be replaced

( 341) by the function of the second kind Yni (%). The general

solution of (2) is accordingly

(6).

In passing through zero y changes sign and with it the

character of the functions; If we regard (6) as applicable on the

positive side, then on the negative side vr may write

v^^y^CJ^Z^+DT^y)} .............. (7),

the argument of the functions in (7) being pure imaginaries.

From the known forms of the functions ( 341) we may deduce,

as applicable when y is small,

so that ultimately

v remaining finite in any case.

We will now shew that any value of -kU is an admissible

value of n in (1). The place where n + kU= is taken as origin

of y; and in the first instance we will suppose that n + kU

vanishes nowhere else. In the immediate neighbourhood of y =

the solutions applicable upon the two sides are (6), (7), and they are

subject to the condition that v shall be continuous. Hence by

i Lommel, Studien Ul>er die Baul'tehen Fwtctimen 81, Leipzig, 1868; Gray

and Matthews' Semi Fuiictioiu, p. 288, 1895.
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(9), B = D, leaving three constants arbitrary. The manner in

which the functions start from y = being thus ascertained, their

further progress is subject to the original equation (1), which

completely defines them when the three arbitraries are known. In

the present case two relations are given by the conditions to be

satisfied at the fixed walls or other boundaries of the fluid, and

thus is determined the entire form of v, save as to a constant

multiplyer. If B and D are finite, there is infinite vorticity at the

origin.

Any other places at which n -f kU= may be treated in a

similar manner, and the most general solution will contain as

many arbitrary constants as there are places of infinite vorticity.

But the vorticity need not be infinite merely because n + kU~ ;

and in fact a particular solution may be obtained with only one

infinite vorticity. At any other of the critical places, such for

example as we may now suppose the origin to be, B and D may
vanish, so that v = 0, dz

v/dy*
= A, or C.

From this discussion it would seem that the infinities which

present themselves when n + kU=*Q do not seriously interfere with

the application of the general theory, so long as the square of the

disturbance from steady motion is neglected.

A large part of the preceding paragraphs is taken from certain

papers by the author 1
. The reader should also consult Lord

Kelvin's writings
2 in which the effects of viscosity are dealt with.

370. It remains to describe the phenomena of sensitive

flames and to indicate, so far as can be done, the application of

theoretical principles. In a sense the combination of flame and
resonator described in 322 h may be called sensitive, but in this

case it is rather the resonator to which the name attaches, the

office of the flame being to maintain by a periodic supply of heat

the vibration of the resonator when once started. Following
Tyndall, we may conveniently limit the term to naked flames and

jets, where the origin of the sensitiveness is undoubtedly to be

found in the instability which accompanies vortex motion.

The earliest observation upon this subject was that of Prof.

1 Proc. Math. oc., vol. xr. p. 57, 1880; vol. xix. p. 67, 1887. It is hoped shortly
to communicate a supplement.

2 Phil. Mag. vol. xxiv. pp. 188, 272, 1887.
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Leconte 1
,
who noticed the jumping of the flame from an ordinary

fishtail burner in response to certain notes of a violoncello. The

sensitive condition demanded that in the absence of sound the

flame should be on the point of flaring. When the pressure of

gas was reduced, the sensitiveness was lost.

An independent observation of the same nature drew the

attention of Prof. Barrett to sensitive flames
;
and he investigated

the kind of burner best suited to work with the ordinary pressure

of the gas mains fl

.

"
It is formed of glass tubing about of an

inch (1 cm.) in diameter, contracted to an orifice
-fa of an inch

(16 cm.) in diameter. It is very essential that this orifice should

be slightly V-shaped.,..Nothing is easier than to form such a

burner
;

it is only necessary to draw out a piece of glass tubing in

u gas flame, and with a pair of scissors snip the contraction into

the shape indicated."

But the most striking by far is the high-pressure flame

employed by Tytidal 1. The gas is supplied from a special holder

under a pressure of say 25 cm. of water to a pinhole steatite

burner, and the flame rises to a height of about 40 cm. Under the

influence of a sound of suitable (very high) pitch the flame roars,

and drops down to perhaps half its original height
3

. Tyndall

shewed that the seat of sensitiveness is at the root of the flame.

Sound coming along a tube is ineffective when presented to the

flame a little higher up, arid also when caused to impinge upon

the burner below the place of issue.

It is to Tyridall that we owe also the demonstration that it is

riot to the flame as auch that these extraordinary effects are to be

ascribed Phenomena substantially the same are obtained when

a jet of unigmUid gas, of carbonic acid, hydrogen, or even air

itself, issues from an orifice under proper pressure. They may be

rendered visible in two ways. By association with smoke the

whole course of the jet may be made apparent; arid it is found

that suitable smoke jets can surpass even flames in delicacy.

"The notes here effective are of much lower pitch than those

which are most efficient in the case of flames." Another way of

making the sensitiveness of an air-jet visible to the eye is to cause

1 On the JMutmoe of Musical Hounds on the Flame of a Jet of Coal-gas. Phil.

Mag, vol. xv. p. 235, 1858,
a Phil Mag. vol* xxxm. p. 216, 1807.

Phil. Mag. vol. xmn. pp. 92, 875, 1807; Sound, 3rd ed. ch. vi.
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it to impinge upon a flame, such as a candle flame, which plays

merely the part of an indicator.

In the sensitive flame of Prof. Govi : and of Mr Barry
- the gas

is unignited at the burner, but catches fire on the further side of

wire-gauze held at a suitable distance. On the same principle is

an arrangement employed by the author 3
. A jet of coal gas from

a pinhole burner rises vertically in the interior of a cavity from

which air is excluded. It then passes into a brass tube a few

. inches long, and on reaching the top burns in the open. The
front wall of the cavity is formed of a flexible membrane of tissue-

paper, through which external sounds can reach the burner. la
these cases the sensitive agent is the unignited part of the jet.

Used in this way a given burner requires a much less pressure of

gas than is necessary when the flame is allowed to reach it, and
the sounds which have the most influence are graver.

Struck by the analogy between these phenomena and those

of water-jets investigated by Savart and Plateau, the earlier ob

servers seem to have leaped to the conclusion that the manner of

disintegration was also similar symmetrical, that is, about the

axis
;
and Prof. Leconte went so far as to deduce the existence of

a cohesive force in gases. A surface tension, however, requires a

very abrupt transition between the properties of the matter on

the two sides, such as could have only a momentary existence

when there is a tendency to mix, so that it appears extremely

unlikely that capillarity plays here any sensible part.

The question of the manner of disintegration, whether it be by
gradually increasing varicosity or by gradually increasing sinuosity,
is of the greatest importance, and the answer is still, perhaps, in

some cases open to doubt. But that the latter is predominant in

general follows from a variety of arguments. The necessity, as

remarked by Barrett, for an unsymmetrical orifice points strongly
in this direction. The same conclusion is drawn by Ridout 4 from

the results of some ingenious experiments. The latter observer

found further that fishtail flames, formed by the union at a small

angle of jets from two perfectly similar glass nozzles, shewed a

1
Torino, Atti Acad. Set. vol. v. p. 396, 1869.

2
Tyndall's Sound, 3rd edition, p. 240.

3 Camb. Phil. Soc. Proc. vol. iv. p. 17, 1883.
4
Nature, vol. xvni. p. 604, 1878.
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sensitiveness dependent upon the direction of the sound. If this

direction lie in the plane of symmetry containing the flame (that

perpendicular to the plane of the nozzles), there is no response.

Even in the case of the tall high-pressure flame from a pin-
hole burner, where to all appearance both the nozzle and the

flame (when undisturbed) are perfectly symmetrical, there is

reason to believe that the manner of disintegration is sinuous, or

unsymmetrical. Perhaps the easiest road to this conclusion is by

examining the behaviour of the flame when exposed to stationary
sonorous waves, such as may be derived by superposing upon direct

waves from a source giving a pure tone the waves reflected perpen

dicularly from a flat obstacle, e.g. a sheet of glass. According to

the analogy with capillary jets, an analogy pushed further than it

will bear by most writers upon this subject, the flame should be

excited when the nozzle is situated at a node, where the pressure

varies most, and remain unaffected at a loop where the pressure

does not vary at all. There was no difficulty in proving experi

mentally
1 that the facts are precisely the opposite. The source

of sound was a bird-call ( 371), and the observations were made

by moving the burner to and fro in front of the reflector until

the positions were found in which the flame was least disturbed.

These positions were very well defined, and the measurements

shewed distances from the reflector proportional to the series

of numbers 1, 2, 3, &c,, and therefore corresponding to nodes.

If the positions had coincided with loops, the distances would

have formed a series proportional to the odd numbers 1, 3, 5, &c.

The wave-length of the sound, determined by the doubled

interval between consecutive minima, was 31'2 mm., corresponding

to pitch /#'''.

A few observations wore made at the same time on the

positions of the silencea as estimated by the ear listening through

a tube. AH wan to be expected, they coincided with the loops,

bisecting the intervals given by the flame. When the flame was

in a position of minimum effect, and the free end of the tube was

held close to the burner at an equal distance from the reflector,

the sound heard was a maximum, and diminished when the

end of the tube was displaced a little in either direction. It was

thus established that the flame is affected where the ear would

not be affected, and vice versd.

1 Phil, Mag. vol vn. p. 153, 1879.
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Flames from pinhole burners, which perform well in other

respects, seem always to shew a marked difference according to

the direction in which the sound arrives. If, while a bird-call is

in operation, the burner be turned steadily round its axis, two

positions differing by 180 are found, in which there is little or no

response. This peculiarity may sometimes be turned to account

in experiment
1
. Thus after such an adjustment has been made

that the direct sound has no effect, vigorous flaring may yet

result from the impact of sound from the same source after

reflection from a small pane of glass, the pane being held so that

the direction of arrival is at 90 to that of the direct sound,

and this although the distance travelled by the reflected sound is

the greater.

Tyndall
2
lays it down as an essential condition of complete

success in the more delicate experiments with these flames,
"
that

a free way should be open for the transmission of the vibrations

from the flame, backwards, through the gaspipe which feeds it.

The orifices of the stopcocks near the flame ought to be as wide

as possible." The recommendation is probably better justified

than the reason given for it. Prof. Barrett 3 attributes the evil

effect of a partially opened stopcock to the irregular flow and

consequent ricochetting of the current of gas from side to side of

the pipe. In some experiments of my own 4 the introduction of a

glass nozzle into the supply pipe, making the flow of gas in

the highest degree irregular,, did not interfere, nor did other

obstructions unless attended by hissing sounds. The prejudicial

action of a partially opened stopcock was thus naturally attri

buted to the production of internal sounds of the kind to which

the flame is sensitive, and this view of the matter was confirmed

by some observations of the pressure of the gas in the neighbour
hood of the burner.

" In the path of the gas there were inserted

two stopcocks, one only a little way behind the manometer

junction, the other separated from it by a long length of india-

rubber tubing. When the first cock was fully open, and the

flame was brought near the flaring-point by adjustment of the

distant coqk, the sensitiveness to external sounds was great,

1 Proc. Roy. List. vol. xn. p. 192, 1888
; Nature, vol. xxxvni, p. 208, 1888.

2 Phil Mag. vol. xxxm. p. 99, 1867.

s Phil. Mag. vol. xxxm. p. 288, 1867.

4 Phil. Mag. vol. xni. p. 345, 1882.
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and the manometer indicated a pressure of 10 inches (25'4 cm.)

of water. But when the distant cock stood fully open and the

adjustment was effected at the other, high sensitiveness could not

be obtained ;
and the reason was obvious, because the flame

flared without external excitation while the pressure was still an

inch (2'54 cm.) short of that which had been borne without

flinching in the former arrangement. On opening again the

neighbouring cock to its full extent, and adjusting the distant

one until the pressure at the manometer measured 9 inches

(22"9 cm.), the flame was found comparatively insensitive/'

The most direct and satisfactory evidence as to the manner of

disintegration is of course that of actual observation. Using a jet

of phosphorus smoke from a glass nozzle and a stroboscopic disc,

I was able (in 1879) to see the sinuosities when the jet was

disturbed by a fork of pitch 256 vibrating in its neighbourhood
1
.

Moreover by placing the nozzle exactly in the plane of symmetry
between the prongs of the tuning-fork, it could be verified that

the disturbance required is motion transverse to the jet. In this

position thore wa but little effect
;
but the slightest displacement

led to an early rupture of the jet.

" In order to exalt the sensitiveness of jets to notes of mode

rate pitch, I found the use of resonators advantageous. These

may be of Helmholtz's pattern ;
but suitably selected wide-mouth

bottles answer the purpose. What is essential is that the jet

should issue from the nozzle in the region of rapid reciprocating

motion at the mouth of the resonator, and in a transverse direction.

"Good results? were obtained at a pitch of 256. When two

forks of about this pitch, and slightly out of tune with one another,

were allowed to Bound simultaneously, the evolutions of the smoke-

jet in correspondence with the audible beats were very remarkable.

By gradually raising the pressure at which the smoke is supplied,

in the manner usual in theye experiments, a high degree of

sensitiveness may be attained, either with a drawn-out glass

nozzle or with the steatite piuhole burner used by Tyndall. In

some cases (even at pitch 256) the combination of jet and resona

tor proved almost as sensitive to sound as the ear itself.

" The behaviour of the sensitive jet does not depend upon the

smoke-particles, whose office is merely to render the effects more

i Phil. Muff. vol. xvn, p. 188, 1884.
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easily visible. I have repeated these observations without smoke

by simply causing air-jets from the same nozzles to impinge upon
the rlarne of a candle placed at a suitable distance. In such cases,

as has been pointed out by Tyndall, the flame acts merely as an

indicator of the condition of the otherwise invisible jet. Even

without a resonator the sensitiveness of such jets to hissing

sounds may be taken advantage of to form a pretty experiment.

"The combination of jet, resonator, and flamo shows sometimes

a tendency to speak on its own account
;
but I did not succeed in

getting a well-sustained sound. Such as it is, the effect probably

corresponds to one observed by Savart and Plateau with water-jets

breaking up under the operation of the capillary tension and, when

resolved into drops, impinging upon a solid obstacle, such as the

bottom of a sink, in mechanical connection with the nozzle from

which the jet originally issues. In virtue of the connexion, any

regular cycle in the mode of disintegration is able, as it were, to

propagate itself."

"In the hope of being able to make bettor observations

upon the transformations of unstable jets, I next had recourse to

coloured water issuing under water. In this form the experiment
is more manageable

"

than in the case of smoke-jets, which are

difficult to light, and liable to be disturbed by the slightest

draught. Permanganate of potash was preferred as a colouring

agent, and the colour may be discharged by mixing with the

general mass of liquid a little acicl ferrous sulphate. The jets

were usxxally projected downwards into a largo beaker or tank

of glass, and were lighted from behind through a piece of ground

glass.

"The notes of maximum sensitiveness of these liquid jets were

found to be far graver than for smoke-jots or for flames. Forks

vibrating from 20 to 50 times per second appeared to produce the

maximum effect, to observe which it is only necessary to bring the

stalk of the fork into contact with the tablo supporting the appa
ratus. The general behaviour of the jet could be observed without

stroboscopic appliances by causing the liquid in the beaker to

vibrate from side to side under the action of gravity. The line of

colour proceeding from the nozzle is seen to become gradually more
and more sinuous, and a little further down presents the appear
ance of a rope bent backwards and forwards upon itself. I have
followed the process of disintegration with gradually increasing
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frequencies of vibrational disturbance from 1 or 2 per second up
to about 24 per second, using electro-magnetic interrupters to

send intermittent currents through an electro-magnet which acted

upon a soft-iron armature attached to the nozzle. At each stage
the pressure at which the jet is supplied should be adjusted so as
to give the right degree of sensitiveness. If the pressure be too

great, the jet flares independently of the imposed vibration, and
the transformations become irregular: in the contrary case the

phenomena, though usually observable, are not so well marked as

when a suitable adjustment is made. After a little practice it is

possible to interpret pretty well what is seen directly; but in

order to have before the eye an image of what is really going on,
we must have recourse to intermittent vision. The best results

are obtained with two forks slightly out of tune, one of which is

used to effect the disintegration of the jet, and the other (by means
of perforated plates attached to its prongs) to give an intermittent

view. The difference of frequencies should be about one per
second. When the means of obtaining uniform rotation are at

hand, a stroboacopic disk may be substituted for the second fork
1

.

" The carrying out of these observations, especially when it is

desired to make a drawing, is difficult unless we can control the

plane of the bondings. In order to sec the phases properly it is

necessary that the plane of bondings should be perpendicular to

the Hue of vision
;
but with a symmetrical nozzle this would occur

only by accident. The difficulty may be got over by slightly

nicking the end of the drawn-out glass nozzle at two opposite

points (Barrett). In this way the plane of bending is usually
rendered determinate, being that which includes the nicks, so that

by turning the nozzle round its axis the sinuosities of the jet may
be properly presented to the eye.

"Occasionally the jet appears to divide itself into two parts

imperfectly connected by a sort of sheet. This seems to corre

spond to the duplication of flames and smoke-jets under powerful
HonorouB action, and to be due to what we may regard as the

broken WUVCH taking alternately different courses."

"
Tt has already been noticed that the notes appropriate to

water-jets are far graver than for air-jets from the same nozzles.

1 In the original papr (Phil Mtttj. vol. xvn, p. 188, 1884) drawings by Mr

Sidgwick are given. See alao JProc. ttoy. Inst, vol. xm. p. 261, 1891, for repro

ductions of iHStuntaneous photograph?;,
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Moreover, the velocities suitable in the former case are much less

than in the latter. This difference relates not, as might perhaps

be at first supposed, to the greater density, but to the smaller

viscosity of the water, measured of course kinematically. It is

not difficult to see that the density, presumed to be the same for

the jet and surrounding fluid, is immaterial, except of course in so

far as a denser fluid requires a greater pressure to give it an

assigned velocity. The influence of fluid viscosity upon these

phenomena is explained in a former paper on the Stability or

Instability of certain Fluid Motions
1

;
and the laws of dynamical

similarity with regard to fluid friction, laid down by Prof. Stokes 2
,

allow us to compare the behaviour of one fluid with another. The

dimensions of the kinematic coefficient of viscosity are those of an

area divided by a time. If we use the same nozzle in both cases,

we must keep the same standard of length ;
and thus the times

must be taken inversely, arid the velocities directly, as the co

efficients of viscosity. In passing from air to water the pitch and

velocity are to be reduced some ten times. But, in spite of the

smaller velocity, the water-jet will require the greater pressure

behind it, inasmuch as the densities differ in a ratio exceeding

100 : 1."

Guided by these considerations, I made experiments to try

whether the jets would behave differently in warm (less viscous)

water, and as to the effect of substituting for water a mixture of

alcohol and water in equal parts, a fluid known to be more viscous

than either of its constituents. The effect of varying the viscosity

was found to be very distinct. A jet which would not bear

a pressure of more than | inch ('63 cm.) of water without flaring

when the liquid was water at a temperature under the boiling-

point required about 25 inches (63 cm.) pressure to make it flare

when the alcoholic mixture was substituted. The importance
of viscosity in these phenomena was thus abundantly established

The manner in which viscosity operates is probably as follows,

At the root of the jet, jxist after it issues from the nozzle, there is

a near approach to discontinuous motion, and a high degree

of instability. If a disturbance of sufficient intensity and of

h. Soc. Proc. Feb. 12, 1880. TSce 366.

2 Canib. Phil. Trans. 1850,
U 0n the Effect of Internal Friction of Fluids on the

Motion of Pendulums," 5. See also Helmholtz, Wied. Ann. Bd. vii. p. 337 (1879)

or Beprint, vol. i, p. 891.
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suitable period have access, the regular motion is lost and cannot

afterwards be recovered. But the instability has a very short

time in which to produce its effect. Under the-influence of viscosity
the changes of velocity become more gradual, and the instability
decreases rapidly if it does not disappear altogether. Thus if the

disturbance be insufficient to cause disintegration during the

brief period of instability, the jet may behave very much as

though it had not been disturbed at all, and may reach the full

developement observed in long flames and smoke-jets. This

temporary character of the instability is a second feature differ

entiating strongly these jets from those of Savart, in which

capillarity has an unlimited time of action.

When a flame is lighted at the burner, there are further

complications of which it is difficult to give an adequate

explanation. The high temperature leads indeed to increased

viscosity, and this tends to explain the higher pressure then

admissible, and the graver notes which then become operative.

But it is probable that the change due to ignition is of a still

more fundamental nature.

An ingenious method of observation, due to Mr C. Bell l

, may
be applied so as to give valuable information with regard to

the disintegration of jets ;
but the results obtained by the author

are- not in harmony with the views of Mr Bell, who favours

the symmetrical theory. In this method a second similar nozzle

fa cos directly the nozzle from which the air issues, and is con

nected with the ear of the observer by means of rubber tubing.

Suitable meaim are provided whereby the position of the hearing

nozzle may be adjusted with accuracy, both longitudinally and

laterally* When the distance is properly chosen, small disturb

ances acting upon the jet are perceived upon a magnified scale.

Thus a fork vibrating feebly and presented to the jet is loudly

heard; and that the effect is due to the peculiar properties of

the jet is proved at once by cutting off the supply of air, when

the sound becomes feeble, if wot inaudible. Mr Bell proved that

the efficacy of the arrangement requires a small area in the

hearing nozzle
;

if the latter be large enough to receive the whole

stream of air accompanying the jet, comparatively little is heard.

In the following experiments an air-jet from a well-regulated

bellows issued from a glass nozzle and impinged upon a similar

* Phil Tm/M. vol. cwcxvn. p, $83, 1886.
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hearing nozzle. It was excited by forks (c
f

or c") held in the

neighbourhood.

If the position of 'the fork was such that the plane of its

prongs was perpendicular to the jet, and that the prolongation of

the axis of the stalk intersected the delivery end of the nozzle,

the sound perceived was much less than when the fork was

displaced laterally in its own plane so as to bring the nozzle

nearer to one prong. This appears to prove that here again the

effect is due, not to variation of pressure, but to transverse motion^

causing the jet to become sinuous.

Confirmatory evidence may be drawn from observations upon
the effect of slight movements of the hearing nozzle. When this

is adjusted axially, but little is perceived of the fundamental tone

of a fork presented laterally to the jet nozzle, but the octave tone

is heard and often very strongly. When, however, the hearing
nozzle is displaced laterally, the fundamental tone of the fork

comes in loudly.

371. In that very convenient source of sounds of high pitch,

the "bird-call," a stream of air issuing from a circular hole in

a thin plate impinges centrically upon a similar hole in a parallel

plate held at a little distance. The circumstances upon which

the pitch depends have been investigated by Sondhauss 1

, but

much remains obscure as regards the manner in. which the

vibrations are excited.

According to Sondhauss the pitch is comparatively inde

pendent of the size and shape of the plates, varying directly

as the velocity (v) of the jet and inversely as the distance (d)

between the plates. If we assume independence of other

elements, and that the frequency (n) is a function only of v t d, and

b the diameter of the jet, it follows from dynamical similarity

that

n = v/d.f(bfd) (1),

where / is an arbitrary function. Thus, if b/d be constant,

Sondhauss' law must hold. From the very small dimensions

employed it might fairly be argued that the action must be nearly

independent of the velocity of sound, and therefore (v being given)
of the density of the gas; but the question arises whether

viscosity may not be an element of importance. If we suppose

1
Pogg. Ann. vol. xci. p. 126, 1854.
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that geometrical similarity i maintained (6 proportional to d),

the theoretical form, when viscosity is retained, is

n=v/d . F(vlud) (2),

v being the kinematic coefficient of viscosity, of dimensions 2

in space and 1 in time. But when we take a numerical example,

it appears improbable that the degree of viscosity can play much

part in determining the pitch. In C.CJ.H. measure v= *16 for air;

and if the pressure propelling the jet be 1 cm. of mercury, v =

4000 (cm./sec.). Thus, if we take d = 'I cm., we have v/vd
= '0004-,

so that F(v/vd) could hardly differ much from F(Q).

Bird-calls are very easily made. The first plate, of 1 or 2 cm.

in diameter, is cemented, or soldered, to the end of a short supply

tube. The second plate may conveniently be made triangular,

the turned down corners being soldered to the lirst plate. For

calls of medium pitch the holes may bo made in tin plate,

but when it is desired to attain a very high pitch thin brass,

or sheet silver, is more suitable. The holes may then be as small

as \ mm, in diameter, and the distance between them as little as

1 mm. In any case the edges of the holes should be sharp

and clean *.

In order to test a bird-call it should be connected -\vith a well-

regulated supply of wind and with a manometer by which the

operative pressure can be measured with precision. When it

is found to speak well, the pressure and corresponding wave

length should be recorded. If the tones a,iv high or inaudible, a

high-pressure sensitive ilame is required, the wave-length being

deduced from the interval between the positions in which

a reflector must be hold in order that the Hani') niny shew the

least disturbance (370). There is no difficulty in obtaining

wave-lengths (complete) as low as 1 cm,, and with care wave

lengths of '6 cm, may bo reached, corresponding to about 50,000

vibrations per second. In experimenting upon minimum wave

lengths, the distance between the call and the flame should

not exceed 50 cm., and the flame should be adjusted to the verge

of flaring.

In many cases a bird-call, which otherwise will not speak, may
be made to do BO by a reflecting plate held at a sliort distance in

front. In practice the reflector is with advantage reduced to a

1 Prof, A. M. Mayer has constructed beautifully finished bird calls in which the

^mtance between the plates is adjustable by a screw motion.
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strip of metal, e.g. 1 cm. wide
; and, when this assistance is required,

the right distance is an (even or odd) multiple of the half wave

length. In some cases the necessary position of the strip is very

sharply defined.

On the question whether the disturbance of the jet accom

panying the production of the sound is varicose or sinuous, some

evidence may be derived from observations upon the manner in

which the sound radiates. Upon the latter view we might expect

that the sound would fall off, or even disappear altogether, in the

axial direction, as happens, for example, in the case of the sound

radiated from a bell ( 282). But, so far as I have been able to

observe, the sound emitted from a bird-call, speaking without the

aid of a reflecting strip, is uniform through a wide angle ;
and this

fact may be regarded as telling strongly in favour of the view that

the disturbance is here symmetrical, or varicose, in character.

Other evidence tending in the same direction is afforded by the

behaviour of resonating pipes made to speak with the aid of bird

calls. The pair of perforated plates is mounted symmetrically at

one end of a pipe 40 or 50 cm. long. The other end of the pipe is

acoustically open, and a gentle stream of air is made to pass the

bird-call, most easily with the aid of a very narrow tube inserted

into the open end and supplied from the mouth. By careful regu

lation of the force of the blast, the pipe may be made to speak in

various harmonics, and the fact that it speaks at all seems to shew

that the issue of air through the bird-call is variable.

The manner of action is perhaps somewhat as follows. When

a symmetrical excrescence reaches the second plate, it is unable to

pass the hole with* freedom, and the disturbance is thrown back,

probably with the velocity of sound, to the first plate, where it

gives rise to a further disturbance, to grow in its turr during the

progress of the jet. But the elucidation of this and many kindred

phenomena remains still to be effected.

372. -^Colian tones, as in the ceolian harp, are generated when

wind plays upon a stretched wire capable of vibration at various

speeds, and their production also is doubtless connected with the

instability of vortex sheets. It is not essential, however, that the

wire should partake in the vibration, and the general phenomenon
has been investigated by Strouhal 1

,
under the name of reibungstone.

1 Wied. Ann. vol. v. p. 216, 1878. See also W. Kohlrausch, IVied. Ann, vol.

xm. p. 545, 1881.
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In Strouhal's experiments a vertical wire attached to a suitable

frame was caused to revolve with uniform velocity about a parallel

axis. The pitch of the seolian tone generated by the relative

motion of the wire and of the air was found to be independent of

the length and of the tension of the wire, but to vary with the

diameter (d) and with the speed (v) of the relative motion.

Within certain limits the relation between the frequency (n) and

these data was expressible by

v/d ........................... (1),

the centimetre and second being units.

When the speed is such that the asolian tone coincides with one

of the proper tones of the wire, supported so as to be capable of

free independent vibration, the sound is greatly reinforced, and

with this advantage Strouhal found it possible to extend the range
of the observations. Under the more extreme conditions then

practicable the observed pitch deviated sensibly from the value

given by (1). He shewed further that with a given diameter and

a given speed a rise of temperature was attended by a fall in pitch.

Observations 1

upon a string, vibrating after the manner of

the seolian harp under the stimulus of a chimney draught, have

shewn that, contrary to the opinion generally expressed, the vi

brations are effected in a plane perpendicular to the direction of

the wind. According to (1) the distance travelled over by the wind

during one complete vibration is about 6 times the diameter of the

wire.

If, as appears probable, the compressibility of the fluid may be

left out of account, we may regard n as a function of v, d, and v the

kinematic coefficient of viscosity. In this case n is necessarily of

the form

n**v/d.f(v/vd) ........................ (2),

where / represents an arbitrary function J
and there is dynamical

similarity, if v oc v d. In observations upon air at one temperature

v is constant
; and, if d vary inversely as v, nd/v should be constant,

a result fairly in harmony with the observations of Strouhal. Again,

if the temperature rises, v increases, and in order to accord with

observation, we must suppose that the function / diminishes with

increasing argument.

* Phil, J/tttf. vol. vn. p. 161, 1879.
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An examination of the actual values in Strouhai's experiments

shew that v/vd was always small ; and we are thus led to represent

/'by a few terms of Mac Laurin's series. If we take

we get

nssa +l>+ c
v*

..................... (3).
a d2 vd3

If the third term iu (&) may be neglected, the relation between

)t and v is linear. This law was formulated by Strouhal, and his

diagrams shew that the coefficient 6 is negative, as is also required

to express the observed effect of a rise of temperature. Further

, dn ci>
2

so that d . dn/dv is very nearly constant, a result also given by
Strouhal on the basis of his measurements.

On the whole it would appear that the phenomena are satis

factorily represented by (2) or (3), but a dynamical theory has yet

to be given. It would also be of interest to extend the experi

ments to liquids.



CHAPTER XXII.

VIBRATIONS OF SOLID BODIES.
*

373, IT is impossible in the present work to attempt anything

approaching to a full consideration of the problems suggested by

vibrating solid bodies ; and yet the simpler parts of the theory

seem to demand our notice. We shall limit ourselves entirely to

the case of isotropic matter*

The general equations of equilibrium have already been stated

in 345. If p be the density, and

a3 ==* + >i), fr = n/p ............... (1),

webivo (a
fl

~&0;
+^a + ^' = 0, etc............... (2),

where X', Y', Z
f

are the impressed forces reckoned per unit of

mass.

If from these wo separate the reactions against acceleration,

we obtain by D'Alembert's principle

ox

and two similar equations.
In (8) 8 is the dilatation, related to

a, #, 7 according to

S = da/dx + dpldy + dy/dz .................. (4).

If a, $, % etc. be proportional to &*, $ *!&**-&*, and (3)

becomes

+ X' = .............. (5).
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Differentiating equation (3) and its companions with respect

to x, y, z, and adding, we obtain by (4)

d*S
,

dX'dY'dZ_ ==aVg +_ + __ + __ ............... (6 ).

Similar equations may be obtained for the rotations (compare

239), defined by

dy d/3 , da dy d/3 da _ , m
_^. -- ...

2-cr . -5
---=- = ZBT -=-- -j-

= ATX ..... (<).

dy dz dz dx dx dy
x '

Thus, if we differentiate the third of equations (3) with respect to

y, the second with respect to z, and subtract,

and there ar,e two similar equations relative to -or", -or'". It is to

be observed that -sr', TO-", -cr'" are subject to the relation

dr*'/dx + d"/dy + dv'"/dz= () ............... (9).

We will now consider briefly certain cases of the propagation
of plane waves in the absence of impressed forces. In (6), if

X f

,
Yf

,
Z' vanish, and B be a function of x only,

d*ldt* = <#d*$lda? ...................... (10),

of which the solution is, as in 245,

S=/(a?-aO + JP(a? + a$) ................... (11).

In this wave & = da/da, while /9 and 7 vanish
; so that the case is

similar to that of the' propagation of waves in a compressible
fluid. It should be observed, however, that by (1) the velocity

depends upon the constant of rigidity (w) as well as upon that of

compressibility (#),

In the dilatational wave (11) the rotations w', -cr", -c/" vanish,
as appears at once from their expressions in (7). We have now
to consider a wave of transverse vibration for which S vanishes.

If, for example, we suppose that a. and /3 vanish and that 7 is a
function of x (and t) only, we have

8 = 0, BT' = */" - 0, 2r" = - dry/ete.

The equation for TO-" is

d**r"ld# = b*$inf
'lda* ..................... (12),

of the same form as (10) ; and the same equation obtains for 7,
The transverse vibration is thus propagated in plane waves with

velocity 6, a velocity less than that (a) of the dilatational waves.
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The formation of stationary waves by superposition of positive

and negative progressive waves of like wave-length need not be

dwelt upon. If k = 27T/X, where X is the wave-length, the super

position
of the positive wave 7 = T cos k (bt x) upon the negative

wave 7 = F cos k (bt -j- x) gives

7 = 2r cos &6 . cos fcs .................... (13).

The second progressive wave may be the reflection of the first at a

bounding surface impenetrable to energy. This may be either

a free surface, or one at which 7 is prevented from varying.

374. The problem of the propagation in three dimensions of

a disturbance initially limited to a finite region of the solid was

first successfully considered by Poisson, and the whole subject has

been exhaustively treated by Stokes 1
, By (6), (8) 373 the dila

tation and the rotations satisfy the equations

a2V2
S, d**r/dt* =&

8V*w............ (1),

the solutions of which, applicable to the present purpose, have

already been fully discussed in 273, 274. It appears that

distinct waves of dilatation and distortion are propagated out

wards with different velocities, so that at a sufficient distance

from the source they become separated. If we consider what

occurs at a distant point, we see that at first there is neither

dilatation nor distortion. When the wave of dilatation arrives

this effect commences, but there is no distortion. After a while

the wave of dilatation passes, and there is an interval of no

dilatation and no distortion. Then the wave of distortion arrives

and for a time produces its effect, after which there is never again

either dilatation or distortion,

The complete discussion requires the expressions for the dis

placements in terms of 8, vrl9 ra ,
rs> for the derivation of which

we have not space. From these it may be proved that before the

arrival of the wave of dilatation and subsequently to the passage

of the wave of distortion, the medium remains at rest. Between

the two waves the medium is not absolutely undisturbed, although

there is neither dilatation nor distortion,

If the initial disturbances be of such a character that there is

no wave of distortion, the whole disturbance is confined to the

wave of dilatation.

31 "Dynamical Theory of Diffraction," Camb. Phil Trans. Vol. ix. p. 1, 1849.
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375 The subject of 374 was the free propagation of waves

resulting from a disturbance initially given.
A problem at least

equally important is that of divergent waves maintained by

harmonic forces operative in the neighbourhood of a given centre.

We may take first the case of a harmonic force of such a

character as to generate waves of dilatation. By equation (6)

373 we may suppose that at all points except the origin of

coordinates

or,

o

, if 8 as a function of x, y, z depend upon r, or ,/(*" +.y* + **),

nly, and as a function of the time be proportional
to &**, 241,

+ + A.8_0 ....................... (2),
dr2 r dr

where h =p/a. The solution of (2) is, as in 277,

- ................................ (3).
r

In terms of real quantities

r

in which A and e are arbitrary.

By transformation of (4) 373, the relation between & and the

radial displacement w may be shewn to be

S**r*d(i*w)ldr ........................ (5),

or at a great distance from the origin simply

S = dw/dr ........................... (6).

Thus, when r is great, corresponding to (4)

A
w _ -sin (pt hr-\-) .................. (7 ).

In these purely dilatational waves the motion is radial, that is,

parallel to the direction of propagation, and the distribution is

symmetrical with respect to the origin.

The theory of forced waves of distortion proceeding outwards

from a centre is of still greater interest. The simplest case is

when the waves are due to a periodic force, say Z', acting through
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a space T at the origin. If we suppose in (8) 373 that X', Y'

vanish, and that all the quantities are proportional to eipt, we find

................. (8),

................. (9),

=0............... (10),

k being written for plb.

These equations are solved as in 277. We get r"' = 0, and

dZ'e
-ikr

r denoting the distance between the element at x, y, z near the

origin (0) and the point (P) under consideration. If we integrate

partially with respect to y, we find

the integrated term vanishing in virtue of the condition that Z' is

finite only within the space T. Moreover, since the dimensions of

T are supposed to be very small in comparison with the wave

length, d(r~
le !kf

')/dy may be removed from under the integral

sign. It will be convenient also to change the meaning of x
} y, &

9

so that they shall now represent the coordinates of P relatively to

0. Thus, if Z f

now stand for the mean value of -Z" throughout the

space T,

TZ' d fe-**\ y* -+^&V
In like manner

and tar'" as
(14).

In virtue of the symmetry round the axis of z it suffices to

consider points which lie in the plane ZX. Then -or
7

vanishes, so

that the rotation takes place about an axis perpendicular both to

the direction of propagation (r) and to that of the force (z). If 6

denote thejingfle. between these directions, the resultant rotation,

coincident with r", is

_ TZ' sin 6 d /e~~
ikft

dr
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If we confine our attention to points at a great distance, this

becomes simply
ikTZ'siii0e~ikr

The displacement, corresponding to (16), is perpendicular to r and

in the plane zr. Its val'ue is given by

or, if we restore the factor eikbt
,
and reject the imaginary part of

the solution,

r

If Zt cos kbt denote the whole force applied at the origin,

Z^TZ'.p .......................... (18),

so that (17) may be written

(19).x /

The amplitude of the vibration radiated outwards is thus inversely
as the distance, and directly as the sine of the angle between the

ray and the direction, in which the force acts. In the latter

direction itself there is no transverse vibration propagated.

These expressions may be applied to find the secondary vibra

tion dispersed in various directions when plane waves impinge
upon a small obstacle of density different from that of the rest of

the solid. We may suppose that the plane waves are expressed

by
y = r cos &(&*-#) ..................... (20),

and that they impinge at the origin upon an obstacle of volume T
and density p. The additional inertia of the solid at this place would
be compensated by a force (/>'-/>)?, or -

(p~-p)k*b*T cos kbt,

acting throughout T; and, if this force be actually applied, the

primary waves would proceed without interruption. The secon

dary waves may thus be regarded as due to a force equal to the

opposite of this, acting at parallel to Z. The whole amount of

the force is given by

ZtCoskbt^tf-p^frTFcoskbt ............ (21);

so that by (19) the secondary displacement at a distant point
(r, 6) is

oost(M-r)
4iirp

'

r
............. ^ '"
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The intensity of the scattered vibration is thus inversely as the
fourth power of the wave-length (T being given), and as the

square of the sine of the angle between the scattered ray and the
direction of vibration in the primary waves. Thus, if the primary
ray be along x and the secondary ray along z, there are no

secondary vibrations if (as above supposed) the primary vibrations

are parallel to z
;
but if the primary vibrations are parallel to y,

there are secondary vibrations of full amplitude (sin =
1), and

these vibrations are themselves executed in a direction parallel
to y.

1

376. In 375 we have examined ,the effect of a periodic force

#z cos&&, localized at the origin. We now proceed to consider

the case of a force uniformly distributed along an infinite line.

Of this there are two principal sub-cases : the first where the

force, itself always parallel to z, is distributed along the axis of z
9

the second whore the distribution is along the axis of y. In the

first, with which we commence, the entire motion is in two

dimensions, symmetrical with respect to OZ, and further is such

that a and ft vanish, while 7 is a function of (x* + y
2

) only. If, as

suffices, we limit ourselves to points situated along OX, &', <&"'

vanish, and we have only to find &",

The simplest course to this end is by integration of the result

given in (16) 375. pTZ
f

will be replaced by Zudz, the amount
of the force distributed on dz

;
r denotes the distance between P

on OX and de on OZ] the angle between r and z. The rotation

r" about an axis parallel to y and due to this element of the force

is thus

In the integration x is constant, and r 2 = # a -M 2
,
so that we have

to consider

r

J(

if we write r x^h.

1 "On the laght from the Sky, its Polarization and Colour." Phil. Mag, Vol.

XLI. pp. 107, 274, 1871 ;
see also Phil. Mag, Vol. XLI, p, 447, 1871, for an investi

gation of the oas where the obstacle differs in elastic quality, as well as in density,

from the remamder of the medium.
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From this integral a rigorous solution may be developed, but,

as in 342, we may content ourselves with the limiting form

assumed when kx is very great. Thus, as the equivalent of (2),

we get

so thai; as the integral of (1)

From this 7 may be at once deduced. We have

or, if we restore the time-factor, and omit the imaginary part of

the solution,

This corresponds to the force Zu cos kit per unit of length of the

axis of z. In virtue of the symmetry we may apply (6) to points
not situated upon the axis of x, if we replace cc by V(#

2 + 2/

2
)-

That the value of*7 would be inversely as the square root of the

distance from the 'axis of z might have been anticipated from the

principle of energy.

The solution might also be investigated directly in terms of 7
without the aid of the rotations CT.

It now remains to consider the case in which the applied force,

still parallel to z, is distributed along OF, instead of along OZ.

The point P, at which the effect is required, may be supposed to

be situated in the plane ZX at a great distance -R from and in

such a direction that the angle ZOP is 0.

In virtue of the two-dimensional character of the force, /3
= 0,

while a, 7 are independent of y. Hence r', tar"' vanish. But,

although these component rotations vanish as regards the resultant

effect,* the action of a single element of the force Zudy, situated

at y t would be more complicated. Into this, however, we need not

enter, because, as before, the effect in reality depends only upon
the elements in the neighbourhood of 0. Thus, in place of (1),

we may take

ikZudy . sin e~ihr m~
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r being the distance between dy and P, so that

dy/r = dr/y = dr/*J(r* R z
).

Writing r - =
A, we get, as in (2), (3), (4),

kZu sin ^ VTT

and for the displacement, perpendicular to R,

Hence, corresponding to the force Zu cos kbt per unit of length of

the axis of
?/,
we have the displacement perpendicular to R at the

point (jR, 0)

377. As in 375, we may employ the results of 376 to form

expressions for the secondary waves dispersed from a small

cylindrical obstacle, coincident with OZ and of density />', upon
which primary parallel waves impinge. If the expression for the

primary waves be (20) 375, we have

^-(//-p^.Trc'.r..................... (1),

7TC
2

being the area of the cross section of the obstacle. Thus, if

we denote V(^ + 2/
a

) by r, we have from (6) 376 as the expression

of the secondary waves,

'

7/ ,,cos k (bt
- r -

. 7T,. 1N . /0 ,

cos^ (6-r- JX) ......... (2),

& being replaced by its equivalent (2?r/X). In this case the

secondary waves are symmetrical, and their intensity varies in

versely as the distance and as the cube of the wave-length.
The solution expressed by (10) 376 shews that if primary

waves

/3 = Bcosk(bt-x) ........................ (3)

impinge upon the same small cylindrical obstacle, the displace

ment perpendicular to the secondary ray, viz. r, will be

cos (fc-r-iX) .........(4),
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denoting the angle between the direction of the primary ray (#)

and the secondary ray (r). In this case the secondary disturbance

vanishes in one direction, that is along a ray parallel to the

primary vibration.

Returning to the first case, in which a and ft vanish through

out, while 7 is a function of x and y only, let us suppose that

the material composing the cylindrical obstacle differs from its

surroundings in rigidity (n
1

}
as well as in density (//). The

conditions to be satisfied at the cylindrical surface are

7 (inside)
= 7 (outside),

ridr/jdr (inside)
= n dj/dr (outside).

In the exterior space 7 satisfies the equation ( 373)

dz
vldtf + d*y/dy

z + fry = 0,

where k = p/b ;
and in the space interior to the cylinder 7 satisfies

ffiy/da* + d^jdf +
'2

7= 0,

where k
1

~pjb' and V denotes the velocity of transverse vibrations

in the material composing the cylinder. The investigation of the

secondary waves thrown off by the obstacle when primary plane

waves impinge
1

upon it is then analogous to that of 343, and the

conclusion is that, corresponding to primary waves

(fa-*) (5),

the secondary waves thrown off by a small cylinder in a direction

making an angle 9 with x are given by

'-p n'-n J 27T,,,

which includes (2) as a particular case.

378. We now return to the fundamental problem, already

partially treated in 375, of the vibrations in an unlimited solid

due to the application of a periodic force at the origin of coordi

nates. Equations (12), (13), (14) 375 give the solution so far as

to specify the values of the component rotations. If, as we shall

ultimately suppose, the solid be incompressible, we have in

addition S = 0. On this basis the solution might be completed,
but it may be more instructive to give au independent investi

gation.
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Since in the notation of 373 X'= T = 0, we have by (5)

...............(1),
-

:0 ............... (2),

-Z' ......... (3).

Let us assume

a**d*x/dxdz, /3
=
d*x/dydz, y = d*xldz* +w ...... (4),

and accordingly
S = d(V*x)ldz + dw/dz..................... (5).

The substitution of these values in (1) gives~
{a?V*x +p*x + (a?

-
&) W]

=
;

so that (1) and (2) are satisfied if

tf^X+P^X + ^-tyw^Q ............... (6).

The same substitutions in (3) give

or in virtue of (6)

frV*w+pw + Z' = Q ..................... (7).

By nhis equation w is determined, and thence % by (6).

In the notation of 375, k^p/b, h^pja. Since Z? = at all

points other than the origin, (7) becomes

(V
2
-}~&

2)w = ........................ (8),

whence by (6) (
V2 + &a

) (V
2+ If) % = .....................(9)

is to be satisfied everywhere except at the origin. The solution

of (9) is

ikr

where A and S are constants. The corresponding values of w
and S are by (6) and (5)

,

- ......... (11).r dz\ r )
^ '

To connect A and B with Z', we have from (7), as in 375,
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Again, by (6) 373,

^

so that, as in 375,

Thus, by comparison with (11),

-(13);

(14).

From the values of % and w thus fully determined a, ft, 7 are

found by simple differentiations, as indicated in (4).
We have

d*

r--- +
r

~ e +

As the complete expressions are rather long, we will limit

ourselves to the case of incompressibility (&
= 0). Thus, if we

restore the time-factor (e^) and throw away the imaginary part

of the solution, we get

(17),

the value of ft differing from that of a merely by the substitution

of y for x. The value of A is given in (12), and Z.coQpt is the

whole force operative at the origin at time t.

At a great distance from the origin (17), (18) reduce to

Zl
xz cos(pt-kr)-- - - ---' ....

r

in agreement with (19) 375.
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W. Konig
1 has remarked upon the non-agreement of the

complete solution (17), (18), first given in a different form by
Stokes

2
,
with the results of a somewhat similar investigation by

Hertz 8
, in which the terms involving cospt, sinpt do not occur,

and he seems disposed to regard Stokes' results as affected by
error. But the fact is that the problems treated are essentially

different, that of Hertz having no relation to elastic solids. The
source of the discrepancy is in the first terms of (1) &c., which are

omitted by Hertz in his theory of the ether. But assuredly in a

theory of elastic solids these terms must be retained. Even when
the material is supposed to be incompressible, so that 8 vanishes,
the retention is still necessary, because, as was fully explained by
Stokes in the memoir referred to, the factor (a

2 - b2

) is infinite at

the same time.

If we suppose in (17), (18) that p and k are very small, and

trace the limiting form, we obtain the solution of the statical

problem of the deformation of an incompressible solid by a force

localized at a point in its interior.

379. In 373 we saw that in a uniform medium plane waves

of transverse vibration
'

~Aa?) ............ (1)

may be propagated without limit. We will now suppose that on

the positive side of the plane x = the medium changes, so, that

the density becomes pl instead of p y
while the rigidity becomes ^

instead of n. In the transmitted wave p remains the same, but k

is changed to fci, where

kflfr^npjntf ........................... (2).

Assuming, as will be verified presently, that no change of phase
need be allowed for, we may take as the expressions for the

transmitted and reflected waves

7a =a r\ cos (pt
-

&!#), 7 =? F cos (pt + kx) , ..... (3),

so that altogether the value of 7 in the first medium is

7 = rcos(p-fez?)-f T'coB(pt + kx) ......... (4),

and in the second

ryx
= TI cos (pt &!#) .....................(5 ).

Wied. Ann. vol. xxxvu. p. 651, 1889.

Camb. Phil Tran$, vol. ix. p. 1, 1849; Collected Works, vol. n. p. 243.

Wfr h Am. vol. xxxvr, p. 1, 1889.
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The conditions to be satisfied at the interface (x = 0), upon which

no external force acts, are

7i
==

y> nidyjdx = ndy/dx ...............(6) ;

so that r + r^A, ^(r-r) = %^1 r1 ............... (7).

If, as can plainly be done, I", Fj be determined in accordance with

(7), the conditions are all satisfied. We have

F _ nk-nik _ */(np)
-

T nk + rkki V(p)+ V(wifr

by which the reflected and transmitted waves are determined.

The particular cases in which p l
=

p, or ?i
x
= n, may be specially

noted.

When the incidence upon the plane separating the two bodies

is oblique, the problem becomes more complicated, and divides

itself into two parts according as the vibrations (always perpen
dicular to the incident ray) are executed in the plane of incidence,

or in the perpendicular plane. Into these matters, which have

been much discussed from an optical point of view, we shall

not enter. The method of investigation, due mainly to Green,
is similar to that of 270. A full account with the necessary
references is given in Basset's Treatise on Physical Optics,

Ch. xii.

380. The vibrations of solid bodies bounded by free surfaces

which are plane, cylindrical, or spherical, can be investigated
without great difficulty, but the subject belongs rather to the

Theory of Elasticity. For an infinite plate of constant thickness

the functions of the coordinates required are merely circular

and exponential
1
. The solution of the problem for an infinite

cylinder
2
depends upon Bessel's functions, and is of interest

as giving a more complete view of the longitudinal and flexural

vibrations of a thin rod.

The case of the sphere is important as of a body limited in

all directions. The symmetrical radial vibrations, purely dila-

tational in their character, were first investigated by Poisson and

1 Proc. Lond. Math. Soc. vol. xvn. p. 4, 1885 ; vol. xx. p, 225, 1889,
2 Pochhammer, Crelle, vol. LXXXI. 1876 ; Ohree, Quart. Journ. 1886. See also

Love's Theory of Elasticity, ch. xvn.
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Clebsch *. The complete theory is due to Jaerisch 2 and especially
to Lamb 3

. An exposition of it will be found in Love's treatise

already cited.

The calculations of frequency are complicated by the existence

of two elastic constants K and n 373, or q and
//,

214. From
the principle of 88 we may infer, as Lamb has remarked, that

the frequency increases with any rise either of tc or of n, for

as appears feom (1) 345 either change increases the potential

energy of a given deformation.

381 4
. In the course of this work we have had frequent

occasion to notice the importance of the conclusions that may be

arrived at by the method of dimensions. Now that we afe

in a position to draw illustrations from a greater variety of

acoustical phenomena relating to the vibrations of both solids and

fluids, it will be convenient to resume the subject, and to develope
somewhat in detail the principles upon which the method rests.

In the case of systems, such as bells or tuning-forks, formed of

uniform isotropic material, and vibrating in virtue of elasticity, the

acoustical elements are the shape, the linear dimension c, the

constants of elasticity q and ^ ( 149), and the density p. Hence,

by the method of dimensions, the periodic time varies cceteris

paribus as the linear dimension, at least if the amplitude of vibra

tion be in the same proportion ; and, if the law of isochronism

be assumed, the last-named restriction may be dispensed with. In

fact, since the dimensions of q and p are respectively [ML-1
T~*]

and [.MZ"~
S
],

while # is a mere number, the only combination

capable of representing a time is q~* . p* . c.

The argument which underlies this mathematical shorthand is

of the following nature. Conceive two geometrically similar bodies,

whoso mechanical constitution at corresponding points is the

same, to execute similar movements in such a manner that the

corresponding changes occupy times 8 which are proportional to the

i Thwtie der Klasticittit Fester Ktirper, Leipzig, 1862.

9
Crelk, vol. LXXXVXU. 1879.

8 Proc. Land. Math. Soc. vol. xm. p, 189, 1882,

< This section appeared in the First Edition as 348.

tt The conception of an alteration of scale in space has been made familiar by

the universal use of maps and models, but the corresponding conception for time

is often less distinct* Beference to the case of a musical composition performed at

different speeds may assist the imagination of the student.
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linear dimensions in the ratio, say, of 1 : n. Then, if the one

movement be possible as a consequence of the elastic forces, the

other will be also. For the masses to be moved are as 1 : rc
3
, the

accelerations as 1 : ft"1
,
and therefore the necessary forces are

as 1 : ri*
; and, since the strains are the same, this is in fact the

ratio of the elastic forces due to them when referred to corre

sponding areas. If the elastic forces are competent to produce

the supposed motion in the first case, they are also competent to

produce the supposed motion in the second case.

The dynamical similarity is disturbed by the operation of a

force like gravity, proportional to the cubes, and not to the squares,

of corresponding lines; but in cases where gravity is the sole

motive power, dynamical similarity may be secured by a different

relation between corresponding spaces and corresponding times.

Thus if the ratio of corresponding spaces be 1 : n, and that of

corresponding times be 1 : r$, the accelerations are in both cases

the same, and may be the effects of forces in the ratio 1 : n3

acting
on masses which are in the same ratio. As examples coming under

this head may be mentioned the common pendulum, sea-waves,

whose velocity varies as the square root of the wave-length, and

the whole theory of the comparison of ships and their models

by which Froude predicted the behaviour of ships from experi
ments made on models of moderate dimensions.

The same comparison that we have employed above for elastic

solids applies also to aerial vibrations. The pressures in the cases

to be compared are the same, and therefore when acting over

areas in the ratio 1 :n2
, give forces in the same ratio. These

forces operate on masses in the ratio 1 : n3
, and therefore ppoduce

accelerations in the ratio 1 : n"1

,
which is the ratio of the actual

accelerations when both spaces and times are as 1 : n. Accordingly
the periodic times of similar resonant cavities, filled with the

same gas, are directly as the linear dimension a very important
law first formulated by Savart.

Since the same method of comparison applies both to elastic

solids and to elastic fluids, an extension may be made to systems
into which both kinds of vibration enter. For example, the scale

of a system compounded of a tuning-fork and of an air resonator

may be supposed to be altered without change in the motion other

than that involved in taking the times in the same ratio as

the linear dimensions.
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Hitherto the alteration of scale has been supposed to be

uniform in all dimensions, but there are cases, not coming under

this head, to which the principle of dynamical similarity may be

most usefully applied. Let us consider, for example, the flexural

vibrations of a system composed of a thin elastic lamina, plane or

curved. By 214, 215 we see that the thickness of the lamina 6,

and the mechanical constants q and
/>,

will occur only in the com

binations qb* and
6/3, and thus a comparison may be made even

although the alteration of thickness be not in the same proportion

as for the other dimensions. If c be the linear dimension when

the thickness is disregarded, the times must vary cceteris paribus
as

</""*
. p* . c

2
. b~ l

. For a given material, thickness, and shape, the

times are therefore as the squares of the linear dimension. It must

not be forgotten, however, that results such as these, which involve

a law whose truth is only approximate, stand on a different level

from the more immediate consequences of the principle of

similarity.



CHAPTER XXIII.

FACTS AND THEORIES OF AUDITION.

382. THE subject of the present chapter has especial relation

to the ear as the organ of hearing, but it can be considered only

froin the physical side. The discussion of anatomical or physio

logical questions would accord neither with the scope of this book

nor with the qualifications of the author. Constant reference to

the great work of Helmholtz is indispensable
1
. Although, as we

shall see, some of the positions taken by the author have been

relinquished, perhaps too hastily, by subsequent writers, the im

portance of the observations and reasonings contained in it, as well

as the charm with which they are expounded, ensure its long

remaining the starting point of all discussions relating to sound

sensations.

383. The range of pitch over which the ear is capable of

perceiving sounds is very wide. Naturally neither limit is well

defined. From his experiments Helmholtz concluded that the

sensation of musical tone begins at about 30 vibrations per second,

but that a determinate musical pitch is not perceived till about

40 vibrations are performed in a second. Preyer* believes that he

.heard pure tones as low as 15 per second, but it seems doubtful

whether the octave was absolutely excluded. On a recent review

of tHe evidence and in the light of some fresh experiments, Van
Schaik8 sees no reason for departing greatly from Helmholtz's

estimate, and fixes the limit at about 24 vibrations per second.

1
Tonempfindungen, 4th edition, 1877 ; Sensations of Tone, 2nd English edition

translated from the 4th German edition by A. J. Ellis. Citations will be made from

this English edition, which is further furnished by the translator with many valuable

notes.
a
Physiologische Abhandlungen, Jena, 1876.

Arch. merl. vol. xxxx- p. 87, 1895.
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On the upper side the discrepancies are still greater. Much
no doubt depends upon the intensity of the vibrations. In experi
ments with bird-calls ( 371) nothing is heard above 10,000,

although sensitive flames respond up to 50,000. But forks care

fully bowed, or metal bars struck with a hammer, appear to give
rise to audible sounds of still higher frequencies. Preyer gives

20,000 as near the limit for normal ears.

In the case of very high sounds there is little or no appreciation
of pitch, so that for musical purposes nothing over 4000 need be

considered.

The next question is how accurately can we estimate pitch by
the ear only ? The sounds are here supposed to be heard in

succession, for ( 59) when two uniformly sustained notes are

sounded together there is no limit to the accuracy of comparison
attainable by the method of beats. From a series of elaborate

experiments Preyer
1 concludes that at no part of the scale can "20

vibration per second be distinguished with certainty. The sensi

tiveness varies with pitch. In the neighbourhood of 120, '4

vibration per second can be just distinguished ;
at 500 about '3

vibration; and at 1000 about P

5 vibration per second. In some

cases where a difference of pitch was recognised, the observer could

not decide which of the two sounds was the graver.

384. In determinations of the limits of pitch, or of the

perceptible differences of pitch, the sounds are to be chosen of

convenient intensity. But a further question remains behind as

to the degree of intensity at given pitch necessary for audibility.

The earliest estimate of the amplitude of but just audible sounds

appears to be that of Toepler and Boltzmann 2
. It depends upon an

ingenious application of v. Helmholtz's theory of the open organ
-

pipe (313) to data relating to the maximum condensation within

the pipe, as obtained by the authors experimentally ( 322 d).

They conclude that plane waves, of pitch 181, in which the

maximum condensation ($) is 6'5 x 10~8
,
are just audible.

It is evident that a superior limit to the amplitude of waves

giving an audible sound may be derived from a knowledge of the

energy which must be expended in a given time in order to

1 An account of Preyer's work was given by A. J. Ellis in the Proceedings of the

Musical Association, 3rd session, p. 1, 1877.

2
Pogg. Ann. vol. CXLI. p. 321, 1870.
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generate them and of the extent of surface over which the waves

so generated are spread at the time of hearing. An estimate

founded on these data will necessarily be too high, both because

sound-waves must suffer some dissipation in their progress and
also because a part, and in some cases a large part, of the energy

expended never takes the form of sound-waves at all.

In the first application of the method 1

, the source of sound
was a whistle, mounted upon a Wolfe's bottle, in connection with

which was a siphon manometer for the purpose of measuring the

pressure of the wind., The apparatus was inflated from the lungs,
and with a little practice there was no difficulty in maintaining a

sufficiently constant blast of the requisite duration. The most
suitable pressure was determined by preliminary trials, and was
measured by a column of water 9J cm. high.

The first point to be determined was the distance from the

source to which the sound remained clearly audible. The experi
ment was tried upon a still winter's day and it was ascertained

that the whistle could be heard without effort (in both directions)
to a distance of 820 metres.

The only remaining datum necessary for the calculation is the

quantity of air which passes through the whistle in a given time.

This was determined by a laboratory experiment from, which it

appfeared that the consumption was 196 cub. cents, per second.

In working out the result it is most convenient to use con

sistently the c. G. s. system. On this system of measurement the

pressure employed was 9 x 981 dynes per sq. cent., and therefore

the work expended per second in generating the waves was
196 x 9| x 981 ergs

2
.

Now ( 245) the mechanical value of a series of progressive
waves is the same as the kinetic energy of the whole mass of air

concerned, supposed to be moving with the maximum velocity (v)
of vibration; so that, if S denote the area of the wave-front

considered, a the velocity of sound, p the density of air, the
mechanical value of the waves passing in a unit of time is

expressed by S.a.p.^v*, in which the numerical value of a is

about 34TOO, and that of p about '0013. In the present applica
tion 8 is the area of the surface of a hemisphere whose radius is

1 Proc. Roy. Soc. vol. xxvx, p. 248, 1877.
-
Nearly 2 x 10s ergs.
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82000 centimetres
;
and thus, if the whole energy of the escaping

air were converted into sound and there were no dissipation on the

way, the value of v at a distance of 82000 centimetres would be

given by the equation

3 = 2xl96x 9^x981V
27r (82000)

2 x 34100 x -0013
'

whence v = -0014
,

s = - - 4-1 x 10-*.
sec. a

This result does not require a knowledge of the pitch of the

sound. If the period be T, the relation between the maximum
excursion x and the maximum velocity v is # = ?;T/27r. In the

experiment under discussion the note was flv
,
with a frequency of

about 2730. Hence

or the amplitude of the aerial particles was less than a ten-

millionth of a centimetre. It was estimated that under favourable

conditions an amplitude of 10~8 cm. would still have been audible.

It is an objection to the above method that when such large

distances are concerned it is difficult to feel sure that the disturb

ing influence of atmospheric refraction is sufficiently excluded

Subsequently experiments were attempted with pipes of lower

pitch which should be audible to a less distance, but these were

not successful, and ultimately recourse was had to tuning-forks.

" A fork of known dimensions, vibrating with a known ampli

tude, may be regarded as a store of energy of which the amount

may readily bo calculated. This energy is gradually consumed by

internal friction and by generation of sound. When a resonator

is employed the latter element is the more important, and in some

caes we may regard the dying down of the amplitude as sufficiently

accounted for by the emission of sound. Adopting this view for

the present, we may deduce the rate of emission of sonorous energy

from the observed amplitude of the fork at the moment in question

and from the rate at which the amplitude decreases. Thus if the

law of decrease be e~*
kt for the amplitude of the fork, or e~H for

the energy, and if E be the total energy at time t, the rate at

which energy is emitted at that time is -dE/dt, or kE. The value

of k is deducible from observations of the rate of decay, e. g. of the

time during which the amplitude is halved. With these arrange
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ments there is no difficulty in converting energy into sound upon
a small scale, and thus in reducing the distance of audibility to

such a figure as 30 metres. Under these circumstances the obser

vations are much more manageable than when the operators are

separated by half a mile, and there is no reason to fear disturbance

from atmospheric refraction.

The fork is mounted upon a stand to which is also firmly

attached the observing-microscope. Suitable points of light are

obtained from starch grains, and the line of light into which each

point is extended by the vibration is determined with the aid of

an eyepiece-micrometer. Each division of the micrometer-scale

represents "001 centim. The resonator, when in use, is situated in

the position of maximum effect, with its mouth under the free ends

of the vibrating prongs.

The course of an experiment was as follows : In the first place

the rates of dying down were observed, with and without the

resonator, the stand being situated upon the ground in the middle

of a lawn. The fork was set in vibration with a bow, and the time

required for the double amplitude to fall to half its original value

was determined. Thus in the case of a fork of frequency 256, the

time during which the vibration fell from 20 micrometer-divisions

to 10 micrometer-divisions was 16 s without the resonator, and 9 8

when the resonator was in position. These times of halving were,

as far as could be observed, independent of the initial amplitude.
To determine the minimum audible, one observer (myself) took up
a position 30 yards (27*4? metres) from the

'

fork, and a second

(Mr, Gordon) communicated a large vibration to the fork. At the

moment when the double amplitude measured 20 micrometer-

divisions the second observer gave a signal, and immediately
afterwards withdrew to a distance. The business of the first

observer was to estimate for how many seconds after the signal
the sound still remained audible. In the case referred to the

time was 12s
. When the distance was reduced to 15 yards (13'7

metres), an initial (Jouble amplitude of 10 micrometer-divisions was

audible for almost exactly the same time.

These estimates of audibility are not made without some diffi

culty. There are usually 2 or 3 seconds during which the observer

is in doubt whether he hears or only imagines, and different

individuals decide the question in opposite ways. There is also

of course room for a real difference of hearing, but this has not
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obtruded itself much. A given observer on a given day will often

agree with himself surprisingly well, but the accuracy thus

suggested is, I think, illusory. Much depends upon freedom
from disturbing noises. The wind in the trees or the twittering
of birds embarrasses the observer, and interferes more or less with

the accuracy of results.

The equality of emission of sound in various horizontal direc

tions was tested, but no difference could be found. The sound
issues almost entirely from the resonator, and this may be expected
to act as a simple source.

When the time of audibility is regarded as known, it is easy to

deduce the amplitude of the vibration of the fork at the moment
when the sound ceases to impress the observer. From this the

rate of emission of sonorous energy and the amplitude of the aerial

vibration as it reaches the observer are to be calculated.

The first step in the calculation is the expression of the total

energy of the fork as a function of the amplitude of vibration

measured at the extremity of one of the prongs. This problem is

considered in 164, If I be the length, p the density, and & the

sectional area of a rod damped at one end and free at the other,

the kinetic energy T is connected with the displacement rj at the

free end by the equation (10)

At the moment of passage through the position of equilibrium

rf and dy/dt has its maximum value, the whole energy being
then kinetic. The maximum value of dq/dt is connected with the

maximum va^ue of 17 by the equation

so that if we now denote the double .amplitude by 277, the whole

energy of the vibrating bar is /3o>7r
a

/T
a

.(2?7)
2

,

or for the two bars composing the fork

E**pk?l't.(%ny9 ........................... (A)

where po>l is the mass of each prong.

The application of (A) to the 256-fork, vibrating with a double

amplitude of 20 micrometer-divisions, is as follows. We have

Z=14'0cm., < = -6x1-1 = -66 sq. cm.,

I/T =* 256, p = 7-8, &/ = -050 cm.;

and thus JB'* 4*06x10* ergs.
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This is the whole energy of the fork when the actual double

amplitude at the ends of the prongs is '050 centim.

As has already been shewn, the energy lost per second is kE, if

the amplitude vary as e~*kt . For the present purpose k must be

regarded as made up of two parts, one k
l representing the dissipa

tion which occurs in the absence of the resonator, the other &
2 due

to the resonator. It is the latter part only which is effective

towards the production of sound. For when the resonator is out

of use the fork is practically silent
; and, indeed, even if it were

worth while to make a correction on account of the residual sound,

its phase would only accidentally agree with that of the sound

issuing from the resonator.

The values of k^ and k are conveniently derived from the times,

t
t
and t, during which the amplitude falls to one half. Thus

so that

Id- 2 loge 2 . (1/t
-

1/*,)
- 1*386 (l/t

And the energy converted into sound per second is k^E.

We may now apply these formulae to the case, already quoted,
of the 256-fork, for which t= 9, ,

= 16. Thus t# the time which

would be occupied in halving the amplitude were the dissipation

due entirely to the resonator, is 20"6; and &
8
= '0674. Accordingly,

kyE^ 267 ergs per second,

corresponding to a double amplitude represented by 20 micrometer-

divisions. In the experiment quoted the duration of audibility
was 12 seconds, during which the amplitude would fall in the ratio

213/9
: 1, and the energy in the ratio' 4l2/$

: 1. Hence at the moment
when the sound was just becoming inaudible the energy emitted

as sound was 42"! ergs per second 1
.

1 It is of interest to compare with the energy-emission of a source of light. An
incandescent electric lamp of 200 candles absorbs about a horse-power, or say 1010

ergs per second. Of the total radiation only about Tfo. part acts effectively upon
the eye ;

so that radiation of suitable quality consuming # x 10 ergs per second

corresponds to a candle-power. This is about 104 times that emitted as sound by
the fork in the experiment described above. At a distance of 10a x80, or 3000

metres, the stream of energy from the ideal candle would be about equal to the

stream of energy just audible to the ear. It appears that the streams of energy

required to influence the eye and the ear are of the same order of magnitude, a

conclusion already drawn by Toepler and Boltzmann.
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The question now remains, What is the corresponding ampli
tude or condensation in the progressive aerial waves at 27*4 metres

from the source ? If we suppose, as in my former calculations,

that the ground reflects well, we are to treat the waves as hemi

spherical. On the whole this seems to be the best supposition to

make, although the reflexion is doubtless imperfect. The area S
covered at the distance of the observer is thus 2?r x 2740 2

sq.

centini., and since ( 245)

S. }>apv
2 = S . ipctV = 421,

* ^ *

'

\VP> trnn Q*

TT x 27402 x -00125 x 34100s '

awl $ = 6"0 x 10~
9

.

The condensation 6* is here reckoned in atmospheres; and the

result shews that the ear is able to recognize the addition and

subtraction of densities far less than those to be found in our

highest vacua.

The amplitude of aerial vibration is given by asr/%7r, where

l/r=256, and is thus equal to T27 x 10~
7 cm.

It is to be observed that the numbers thus obtained are still

somewhat of the nature of superior limits, for they depend upon
the assumption that all the dissipation due to the resonator repre

sents production of sound. This may not be strictly the case even

with the moderate amplitudes here in question, bxit the uncertainty

under this head is far less than in the case of resonators or organ-

pipes caused to speak by wind. From the nature of the calculation

by which the amplitude or condensation in the aerial waves is

deduced, a considerable loss of energy does not largely influence

the final numbers.

Similar experiments have been tried at various times with forks

of pitch 384 and 512. The results were not quite so accordant as

was at first hoped might be the case, but they suffice to fix with

Borne approximation the condensation necessary for audibility. The

mean resxtlts are as follows :

c', frequency
= 256, 6'0 x 10"

9

,

g\ =-384, ,9^4-exlO-
9

,

c" ^-512, $ = 4-6xlO- fl

,

no reliable distinction appearing between the two last numbers,

Even the distinction between 6*0 and 4*6 should be accepted with
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reserve
;
so that the comparison must not be taken to prove much

more than that the condensation necessary for audibility varies but

slowly in the singly dashed octave 1
."

Results of the same order of magnitude have been obtained

also by Wien s
,
who used an entirely different method.

385. For most purposes of experiment and for many of

ordinary life it makes but little difference whether we employ
one ear only, or both

;
and yet there can be no doubt that we can

derive most important information from the simultaneous use of

the two ears. How this is effected still remains very obscure.

Although the utmost precautions be taken to ensure separate

action, it is certain that a sound led into one ear is capable of

giving beats with a second sound of slightly different pitch led

into the other ear. There is, of course, no approximation to such

silence as would occur at the moment of antagonism were the two-

sounds conveyed to the same ear; but the beats are perfectly

distinct, and remain so as the sounds die away so as to become

singly all but inaudible 3
. It is found, however, that combination

tones ( 391) are not produced under these conditions 4
. Some

curious observations with the telephone are thus described by
Prof. S. P. Thompson

5
. "Almost all persons who have experi

mented with the Bell telephone, when using a pair of instruments
to receive the sound, one applied to each ear, have at some time
or other noticed the apparent localization of the sounds of the

telephone at the back of the h.ead. Few, however, seemed to be
aware that this was the result of either reversed order in the
connection of the terminals of the instruments with the circuit, or

reversed order in the polarity of the magnet of one of the receiving
instruments. When the two vibrating discs execute similar vi

brations, both advancing or both receding at once, the sound is

heard as usual in the ears
;
but if the action of one instrument be

reversed, so that when one disc advances the other recedes, and
the vibrations have opposite phases, the sound apparently changes
its place from the interior of the ear, and is heard as if proceeding
from the back of the head, or, as I would rather say, from the top

1 Phil Mag. vol. xxxvxri. p. 366, 1894.
2 Wied. Ann. vol.loxvx. p. 834, 1889,
3 S. P. Thompson, Phil Mag, vol. iv. p. 274, 1877.
4 See also Dove, Pogg, Ann. vol. cvn. p. 652, 1859.
5 Phil. Mag. vol. vi. p. 385, 1878,
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of the cerebellum." "I arranged a Hughes's microphone with two

cells of a Fuller's battery and two Bell telephones, one of them

having a commutator under my control. Placing the telephones
to my ears, I requested my assistant to tap on the wooden support
of the microphone. The result was deafening. I felt as if simul

taneous blows had been given to the tympana of my ears. But

on reversing the current through one telephone, I experienced a

sensation only to be described as of some one tapping with a hammer
on the back of the skullfrom the inside."

In our estimation of the direction in which a sound comes to

us we are largely dependent upon the evidence afforded by bin-

aural audition. This is one of those familiar and instinctive

operations which often present peculiar difficulties to scientific

analysis. A blindfold observer in the open air is usually able to

indicate within a few degrees the direction of a sound, even though
it be of short duration, such as a single vowel or a clap of the

hands. The decision is made with confidence and does not require

a movement of the head.

To obtain further evidence experiments were made with the

approximately pure tones emitted from forks in association with

resonators; but in order to meet the objection that the first sound

of the fork, especially when struck, might give a clue, and so

vitiate the experiment, two similar forks and resonators, of pitch

256, were provided. These were held by two assistants, between

whom the observer stood midway. In each trial both forks were

struck, and afterwards one only was held to its resonator. The

results were perfectly clear. When the forks were to the right

and to the loft, the observer could distinguish them instinctively

and without fail But when he turned through a right angle,

so as to bring the forks to positions in front and behind him, no

discrimination was possible, and an attempt to pronounce was

felt to be only guessing.

That it should be impossible to distinguish whether a pure

tone comes from in front or from behind is intelligible enough.

On account of the symmetry the two ears would be affected alike

in both cases, and any difference of intensity due to the position

could not avail in the absence of information as to the original

intensity. The difficulty is rather to understand how the discrimi

nation between front and rear is effected in other cases, e.g. of the

voice, where it is found to be easy. It can only be conjectured
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that the quality of a compound sound is liable to modification by
the external ear, which is differently presented in the two cases.

The ready discrimination between right and left, even when

pure tones are concerned, is naturally attributed to the different

intensities with which the sound would be perceived by the two

ears. But this explanation is not so complete as might be sup

posed. It is true that very high sounds, such as a hiss, are ill

heard with the averted ear ; but when the pitch is moderate, e.g.

256 per second, the difference of intensity on the two sides does

not seem very great. The experiment may easily be tried roughly

by stopping one ear with the finger and turning round backwards

and forwards while listening to a sound held steadily. Calcula

tion ( 328) shews, moreover, that the human head, considered as

an obstacle to the waves of sound, is scarcely big enough in relation

to the wave length to throw a distinct shadow. As an illus

tration I have calculated the intensity of sound due to a distant

source at various points on the surface of a fixed spherical obstacle.

The result depends upon the ratio (kc) between the circumference

of the sphere and the length of the wave. If we call the point

upon the spherical surface nearest to the source the anterior pole,

and the opposite point (where the shadow might be expected to be

most intense) the posterior pole, the results on three ^suppositions

as to the relative magnitudes of the sphere and wave length are

as follows :

When for example the circumference of the sphere is but half

the wave length, the intensity at the posterior pole is only about

a tenth part less than at the anterior pole, while the intensity is

least of all in a lateral direction. When kc is less than ^, the

difference of the intensities at the two poles is still less important,

amounting to about 1 per cent, when kc = J.

The case of the head and a pitch c' would correspond to kc = "4

about, so that the differences of intensity indicated by theory are

decidedly small. The explanation of the power of discrimination

actually observed would be easier, if it were possible to suppose
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account taken of the different phases of the vibrations by which

the two ears are attacked 1
.

386. Passing on to another branch of our subject, we have

now to consider more closely the impression produced upon the

ear by an arbitrary sequence of aerial pressures fluctuating about

a certain mean value. According to the literal statement of

Ohm's law (27) the ear is capable of hearing as separate tones

all the simple vibrations into which the sequence of pressures may
be analysed by Fourier's theorem, provided that the pitch of these

components lies between certain limits. Components whose pitch

lies outside the limits would be ignored. Moreover, within the

limits of audibility the relative phases of the various components
would be a matter of indifference.

To the law stated in this extreme form there must obviously

be exceptions. It is impossible to suppose that the ear would

hear as separate tones simple components of extremely nearly the

same frequency. Such components, it is well known, give rise to

beats, and their relative phase is a material element in the question.

Again, it will be evident that the corresponding tone will not be

heard unless a vibration reaches a certain intensity. A finite

intensity would be demanded, even if the vibration stood by itself
;

and we should expect that the intensity necessary for audibility

would be greater in the presence of other vibrations, especially

perhaps when these correspond to harmonic undertones, It will

be advisable to consider these necessary exceptions to the univer

sality of Ohm's law a little more in detail.

The course of events, when the interval between two simple

vibrations is gradually increased, has been specially studied by

Bosanquet*. As in 30, 65a, if the components be cos 2-7^,

cos 27rna ,
we have for the resultant,

u cos 27171^ + cos 2irn.it

2 cos 7r(>2
-n$ . cos TT(T^ + n^t. ....... (1) ;

shewing that the resultant of two simple vibrations of equal

amplitudes and of frequencies %, ra2 can be represented mathe

matically by a single vibration whose frequency is the mean, viz.

* Nature, vol. xiv. p. 82, 1876. Phil. Mag. vol. in. p. 456, 1877; vol. viz. p. 149,

1870.

PhiL Jkf0. vol. xi. p. 420, 1881.
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^ (MI + tta),
and whose amplitude varies according to the cosine law,

involving a change of sign ( 65a), with a frequency (n2 w1 ). This

single vibration is not simple. The question now arises under

which of the two forms in (1) will the ear perceive the sound.

According to the strict reading of Ohm's law the two tones n x and

nz would be perceived separately. We know that when % and ??2

are nearly enough equal this does not and could not happen.
The second form then represents the phenomenon; and it indicates

beats, the tone ^(n1 + ?i2) having an intensity which varies between

and 4 with a frequency (n^ n^ equal to the difference of fre

quencies of the original tones. Mr Bosanquet found that "
(a) the

critical interval'at which two notes begin to be heard beside their

beats, or resultant displacements, is about two commas, throughout
that medium portion of the scale which is used in practical music

;

(#) this critical interval appears to be not exactly the same for all

ears." But in both the cases examined the beats alone were heard

with an interval of one comma, and the two notes were quite clear

beside the beats with an interval of three commas. "As the

interval increases, the separate notes become more and more pro

minent, and the beats diminish in loudness and distinctness, till,

by the time that a certain interval is reached, which is about a

minor third in the middle of the scale, the beats practically dis

appear and the two notes alone survive."

On the second question as to the strength in which a com

ponent simple vibration, of sufficiently distinct pitch, must be

present in order to assert itself as a separate tone there is but

little evidence, and that not very accordant. According to the

experiments, of Brandt and Helmholtz ( 130) Young's law as to

the absence in certain cases of particular components from the

sound of a plucked string is verified. Observations of this kind

are easily made with resonators; but for the present purpose the

use of resonators is inadmissible, the question relating to the

behaviour of the unassisted ear.

On the other hand A, M. Mayer
1 found that sounds of consider

able intensity when heard by themselves were liable to be completely
obliterated by graver sounds of sufficient force. In some experi
ments the graver note was from an open organ-pipe which sounded

steadily, while the higher was that of a fork, excited vigorously
and then allowed to die down. The action of the fork could be

1 Phil Mag, vol. n. p. 500, 1876.
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made intermittent by moving the hand to and fro over the mouth

of its resonance box. The results are thus described.
" At first

every time that the mouth of the box is open the sound of the

fork is distinctly heard and changes the quality of the note of the

open pipe. But as the vibrations of the fork run down in ampli
tude the sensatioiis of its effect become less and less till they soon

entirely vanish, and not the slightest change can be observed in

the quality or intensity of the note of the organ-pipe, whether the

resonance box of the fork be open or closed. Indeed at this stage

of the experiment the vibrations of the fork may be suddenly and

totally stopped without the ear being able to detect the fact. But

if instead of stopping the fork when it becomes inaudible we stop

the sound of the organ-pipe, it is impossible not to feel surprised

at the strong sound of the fork which the open pipe had smothered

and had rendered powerless to affect the ear."

But " no sound, even when very intense, can diminish or

obliterate the sensation of a concurrent sound which is lower in

pitch. This was proved by experiments similar to the last, but

differing in having the more intense sound higher (instead of

lower) in pitch. In this case, when the ear decides that the

sound of the (lower and feebler) tuning-fork is just extinguished,

it IK generally discovered ou stopping the higher sound that the

forkt
which should produce the lower sound, has ceased to vibrate.

This surprising experiment must be made in order to be appre

ciated, I will only remark that very many similar experiments,

ranging through four octaves, have been made, with consonant

and dissonant intervals, and that scores of different hearers have

confirmed this discovery/'

Theno results, which are not difficult to verify
1
,
involve a

serious deduction from the universality of Ohm's law, and must

have an important bearing upon other unsettled questions relating

to audition. It is to be observed that in Mayer's experiments

the question is not merely whether a particular tone can be

heard as such. The higher sound of feebler intensity is not heard

at all

The audibility of a sound, even when isolated, is influenced by

the state of the ear as regards fatigue. The effect is especially

1 Instead of a box screwed to the fork, I found it "better to use an independent

resonator, to the mouth of which tho fork ifi made to approach and recede in a

definite* maimer.
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apparent with the very high notes of bird-calls ( 371). "A
bird-call was mounted in connection with a loaded gas-bag and a

water-manometer, by which means the pressure could be kept

constant for a considerable time. When the ear is placed at a

moderate distance from the instrument, a disagreeable sound is

heard at first, but after a short interval, usually not more than

three or four seconds, fades away and disappears altogether. A
very short intermission suffices for at any rate a partial recovery

of the power of hearing. A pretty rapid passage of the hand,

screening the ear for a fraction of a second, allows the sound to be

heard again
1
."

But although Ohm's law is subject to important limitations, it

can hardly be disputed that the ear is capable of making a rough

analysis of a compound vibration into its simple parts. The

nature of the difficulty commonly met with has already been

referred to ( 25, 26), but a few further remarks may here be

made.

In resolving compound notes a certain control over the

attention is the principal requisite, and Helmholtz found that

the advantage does not always lie with musically trained ears.

Before a particular tone is listened for, it ought to be sounded

so as to become fixed in the memory, but not too loudly, lest

the sensitiveness of the ear be unduly impaired. As a rule the

uneven component tones, twelfth, higher third, &c., arc more easily

recognised than the octaves.

On the pianoforte, for example, let g' be first gently given, and

as soon as the key is released, let c be sounded strongly. The
tone g

r

on which the attention should be kept rivetted throughout,

may now be heard as part of the compound note c. A similar

experiment may be made with the higher third e"
9
and an acute

ear may detect a slight fall in pitch. This is a consequence of the

equal temperament tuning ( 19), and ahew^ clearly that the

apparent prolongation of the tone is not due to imagination. In

modern pianos the seventh and ninth component tones are often

weak or altogether absent, but on the harmonium these tones may
usually be heard.

It is still better when the tone to be listened for is first

obtained as a harmonic from the string c itself. In the case of

* Phil. Mag. vol. xin. p. 344, 1882.
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the twelfth, for example, strike the key gently while the string is

lightly touched at one-third of its length, and then after, removal

of the finger more strongly. The proper point may be con

veniently found by sliding the finger slowly along the string,

while the key is continually struck. When a point of aliquot
division is reached, the corresponding harmonic rings out clearly ;

otherwise the sound is feeble and muffled. In this way Helmholtz

succeeded in hearing the overtones of thin strings as far as the

sixteenth. From this point they lie too close together to be

easily distinguished.

A further slight modification of this method is especially

recommended by Helmholtz. Instead of using the finger, the

nodal point is touched with a small camel's hair brush. This

allows the degree of damping to be varied at pleasure, and a

gradual transition to be made from the pure harmonic, free from

all admixture of components which have not a node at the point

touched, to the natural note of the string.

But it is with the assistance of resonators that overtones are

most easily heard in the first instance. For this purpose a

resonator is chosen, tuned, say, to g', and the ear is placed in

communication with its cavity. When c is sounded, either on the

piano or harmonium, or with the human voice, the tone g
f

may
usually be heard very loud and distinct. Indeed on many
pianofortes a tone g

f

may be heard as loudly from its harmonic

undertones g or c as from the string g' itself. When an overtone

has once been heard, the assistance of the resonator should be

gradually withdrawn, which may be done either by removing it

from the ear, or putting it out of tune by an obstacle (such as the

finger) held near its mouth.

387. If it be admitted that the ear is capable of analysing

a musical note into components, or partials, it follows almost of

necessity that these more elementary sensations correspond to

simple vibrations. So long as we keep within the range of the

principle of superposition, this is the kind of analysis effected by

mechanical appliances, such as resonators, and all the more patent

facts go to prove that the ear resolves according to the same laws.

Moreover, the d priori probabilities of the case seem to tend in

the same direction. It is difficult to suppose that physiological

effects electrical, chemical, or of some unknown character, are
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produced directly by the impact of sonorous waves involving

merely a variable fluid pressure. Helmholtz's theory of audition

is based upon the more natural supposition that the immediate

effect of the waves is to set. into ordinary mechanical vibration

certain internal vibrators 1
,
and that nervous excitation follows as a

secondary consequence.

The modus operandi is conceived to be as follows. When a

simple tone finds access to the ear, all the parts capable of motion

vibrate in synchronism with the source. If there be any part,

approximately isolated, whose natural period nearly agrees with

that of the sound, then the vibration of that part is far more

intense than it would otherwise be. Practically this part of the

system may be said to respond only to tones whose pitch lies

within somewhat narrow limits. Now it is supposed that the

auditory nerves are in communication with vibrating parts of the

kind described, whose natural pitch ranges at small intervals

between the limits of hearing in such a manner that when any

part vibrates the corresponding nerve is excited and conveys the

impression to the brain. In the case of a simple tone, one (or at

most a relatively small number) of the whole series of nerves is

excited, the excitation of the nerve being the proximate cause of

the hearing of the tone.

At this point the question presents itself whether more than

one simple vibration may not have the power of exciting the same
nerve ? A priori, this might well be the case

; for the vibrating

parts might be susceptible of more than one mode of vibration,

and therefore of more than one natural period. If we were to

suppose that the natural periods of any vibrating part formed a

harmonic scale, so that the same auditory nerve was excited by a

tone and its octave, the supposition would certainly give a very

ready explanation of the remarkable resemblance of octaves, and
would tend to mitigate some of the difficulties which at present
stand in, the way of accepting Helmholtz's theory as a complete
account of the facts of audition 2

. As we shall see presently,

1 The drum-skin and its attachments are here regarded ae external to the true

auditory mechanism. However important may be the part they play, it is analogous
rather to that of a hearing tube or of the disc of a mechanical telephone.

3 A curious question suggests itself as to what would happen in case the vibra

tions capable of exciting the same nerve deviated sensibly or considerably from the

harmonic scale. In this way ears naturally confused in their appreciation of

musical relations may easily be imagined.
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Helmholtz would admit, or rather assert, that when the sounds are

strong two originally simple vibrations, such as c and c\ would

excite to some extent the same nerve, but he regards this as

depending upon a failure in the law of superposition, due to

excessive vibration.

388. It is evident that Helmholtz's theory gives a very

natural account of Ohm's law, as well as of the limitation to which

it is subject when two simple vibrations are in operation of nearly

the same pitch. Some of the internal vibrators are then within

the influence of both disturbing causes, and are accordingly

excited in an intermittent mannei, giving rise to beats, when the

period is long, and to a sensation of roughness as the beats

become too quick to be easily perceived separately. But when

the interval between the two vibrations is increased, a point is

soon reached after which no internal vibrator is sensibly affected

by both disturbing causes, so that from this point onwards the

resulting sensation is free from beats or roughnesses, or at least

should be so according to the strict interpretation of the law. To

thin point we shall return later.

The magnitude of the interval, over which a single internal

vibrator will respond sensibly, is an element of considerable

importance in the theory. It has already been shewn ( 49) that

there is a relation between this interval and the number of free

vibrations which can be executed by the vibrating body. Thus, if

the interval between the natural and the forced vibration required

to reduce the resonance to ^ of the maximum be a semitone,

thin implies that after 9*5 free vibrations the intensity would be

reduced to ^ of its original value, and so on for other intervals.

From a consideration of the effect of trills in music, Helmholtz

conchidoB that the ciuse of the ear corresponds somewhat to that

above .specified,
and he gives the accompanying table shewing the
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relation obtaining in this case between the difference of free and

forced pitch and the intensity of resonance, measured by the

square of the amplitude of vibration.

Although according to Helmholtz's theory the sensation of

dissonance is caused by intermittent excitation of those vibrating

parts which are within the range of two or more elements of the

sound, it is not to be inferred that the number of beats is a

sufficient measure of the dissonance* On the contrary it is found

that if the number of beats be retained constant (e.g. 33 per

second), the effect is more and more free from roughness as the

sounds are made deeper, the internals being correspondingly
increased.

The experiments of A. M. Mayer
1 extend over a considerable

range of pitch, and have been made by two methods. In the first

method a sound, which would otherwise be a pure tone, is

rendered intermittent, and the rate of intermittence is gradually
raised to the point at which the effect upon the ear again becomes
smooth. The results are shewn in the accompanying table, in

which the first column gives the pitch of the sound and the

second the minimum number of intermittences per second

required to eliminate the roughness.

The theory of intermittent vibrations has already been given
65 a. It is to be remembered that by the nature of the case an

intermittent vibration cannot be simple. To a first approximation
it may be supposed to be equivalent to three simple vibrations of

frequencies, n~~w, n, n + m, and the roughness experienced by

* Phil Mag* vol. xux. p. 352, 1875; vol. xxxvn, p. 250, 1894*



389.] SMALLEST CONSONANT INTERVAL. 451

the ear may be looked upon as clue to the beats of these three

tones.

Mayer has experimented also upon the
"
smallest consonant

intervals among simple tones," i.e. upon the intervals at which the

roughness due to beats just disappears, the plural being used

since it is found that the necessary interval varies at different

parts of the scale.

Different observers agreed very closely as to the point *s.+

which roughness disappeared.

According to the theory of intermittent sounds it is to be

expected that for a given pitch m in the first set of experiments

should be nearly the same as (% - nO in the second, and this is

pretty well verified by Mayer's numbers, at least over the middle

region of the scale.

389. Prom the degree of damping above determined it

follows that the natural pitch of the internal vibrators, which

respond sensibly to a given simple sound, ranges over about a

whole tone, tod it may excite surprise that we are able to

compare with such accuracy the pitch of musical sounds heard in

succession. The explanation probably depends a good deal upon

the symmetry of the etfects on the two sides of the maximum. A

comparison with the capabilities
of the eye in a similar case may
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be instructive. In setting the cross wires of a telescope upon the

centre of a symmetrical luminous band, e.g. an interference band,

it is found that the error need not exceed ^j- of the width. A
similarly accurate judgment as to the centre of the region excited

by a given musical note would lead to an estimation of pitch
accurate to about

-nnrtf, agreeing well enough with the facts to be

explained.

In the light of the same principle we may consider how far

the perception of pitch would be prejudiced by a limitation of the

number of vibrations executed during the continuance of a sound,

According to. the estimate of Helmholtz already employed ( 388)
the internal vibrations, excited and then left to themselves, would

remain sensible over about 10 periods. The number of impulses

required to produce nearly the full effect is of this order of

magnitude. If the number were increased beyond 20 or 30,

there would be little further concentration of effect in the

neighbourhood of the maximum, and therefore little foundation

for greater accuracy in the estimation of pitch.

Experiments upon this subject have been made by Seebeck 1

,

Pfaundler 2
, S. Exner 3

,
Auerbach 4

,
and W. Kohlrausch 5

,
those of

the last being the most extensive. An arc of a circle carrying a

limited number of teeth was attached to a pendulum, which could

be let go under known conditions. In their passage the teeth

struck against a card suitably held ; and the sound thus generated
was compared with that of a monochord. By varying the length
in the usual manner the chord was tuned until the pitch was just

perceptibly higher, or just perceptibly lower, than that proceeding
from the card, and the interval between the two, called the

characteristic interval, determined the precision with which the

pitch could be estimated in the cause of/ a given total number of

vibrations. The best results were obtained only after considerable

practice and in the entire absence of extraneous sounds.

Sixteen teeth appeared to define the pitch with all the

precision attainable, the characteristic interval (on the mean of a

number of experiments) being- in this case '9922. Even with 9

0* Ann. vol. LIU, p. 417, 1841.
- Wien. Ber, vol. Laavx. p. 561, 1877.
8

Pflttger'n Archiv, vol. MIX. p. 228, 1876. ,

* Wied, Ann. vol, vi, p. 691, 1879.
5 Wien* Ann, vol, ac. p. 1, 1880.
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teeth the characteristic interval was 9903, shewing that this

small number of vibrations was capable of defining the pitch to

within one part in 200. But the most surprising results were

those obtained with a very low number of teeth. For 3 teeth

the characteristic interval was '9*790, and for 2 teeth 'd*71&.

The fact that pitch can be defined with considerable accuracy

by so small a sequence of vibrations has sometimes been regarded
as an objection to Helmholtz's theory of audition. I do not think

that there is any ground for this opinion. So far as there is a

difficulty, it is one that would tell equally against any other

theory that could be proposed.

It would seem that the delimitation of pitch in Kohlrausch's

experiments may have been greatly favoured by the approximate

discontinuity of the impulses. For it is to be remembered that

the internal vibrators concerned are not those only whose period

ranges round the interval between the taps, but also those whose

periods are approximately submultiples of this quantity. As

regards the vibrators in the octave, the number of impulses is

practically doubled, for the twelfth trebled, and so on, just as in

optics the resolving power of a grating with a limited number of

lines is increased in the spectra of the second and higher orders.

Vibrations limited to a moderate number of periods are some

times generated by reflection of short sounds from railings or

steps. At Terling there is a flight of about 20 steps which returns

an echo of a clap of the hands as a note resembling the chirp of a

sparrow. In all such cases the action is exactly analogous to that

of a grating in optics.

390. When two sounds nearly in unison are compound, we

have to consider not only the beats of their first partials, or

primes, but also the beats of the overtones. The beats of the

octave components are twice, and those of the twelfth three times,

as quick a the simultaneous beats of the primes. In some case^,

especially where the pitch is very low, mistakes may easily be

made by overlooking the prime beats, which affect the ear but

feebly, If the octave beats be reckoned as though they were the

beats of the primes, the difference of pitch will be taken to be the

double of its true value.

But it is in the case of disturbed consonances other than the

unison that the importance of upper partials, or overtones, makes
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itself specially felt. For example, take the Fifth c g, The third

partial of c and the second partial of g coincide at g '. If the

interval be true, there are no beats
;
but if it be slightly disturbed

from the true ratio 3 : 2, the two previously coincident tones

separate from one another and give rise to beats. The frequency
of the beats follows at once from the manner of their genesis.

Thus if the lower note be distxirbed from its original frequency by
one vibration per second, its third partial is changed by 3

vibrations per second, and 3 per second is accordingly the

frequency of the beats. But if the upper note undergoes a

disturbance of one vibration per second, while the lower remains

unaltered, the frequency of the beats is 2. This rule is evidently

general. If the consonance be such that the hth partial of the

lower note coincides with the kih partial of the upper note, then

when the lower note is altered by one vibration per second, the

freqtiency of the beats is A, and when the upper note is altered by
the same quantity, the frequency of the beats is k.

" We have stated that the beats heard are the beats of those

partial tones of both compounds which nearly coincide. Now it

is not always very easy on hearing a Fifth or an Octave which is

slightly out of tune, to recognise clearly with the unassisted ear

which part of the whole sound is beating. On listening we are

apt to feel that the whole sound is alternately reinforced and

weakened. Yet an ear accustomed to distinguish upper partial

tones, aft^r directing its attention upon the common upper partials

concerned, will easily hear the strong beats of these particular

tones, and recognise the continued and undisturbed sound of the

primes. Strike the note (c), attend to its upper partial (g'\ and
then strike a tempered Fifth (g) ;

the beats of (/) will be clearly

heard. To an unpractised ear the resonators already described

will be of great assistance. Apply the resonator for (#'), and the

above beats will be heard with great distinctnoas. If, on the

other hand, a resonator, tuned to one of the primes (c) or (g), be

employed, the beats are heard much- less distinctly, because the

continuous part of the tone is then reinforced 1
.

1 '

Experiments of this kind are conveniently made on the

harmonium. Small changes of pitch may be obtained by only

partially (instead of fully) depressing the key, the effect of which

is to flatten the note. The beats of the common overtone are

1 Stmations of Tone, 2nd ed. p. 181.
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easily heard when a (tempered) Fifth is sounded
;
those of the

equal temperament Third are somewhat rapid.

The harmonium is also a suitable instrument for experiments

illustrative of just intonation. A reed may be flattened by

loading the free end of the tongue with a fragment of wax, and

sharpened by a slight filing at the same place. It is easy,

especially with the aid of resonators, to tune truly the chords

c
'

e
r

g', f of c", whose consonance will then contrast favour

ably with the unaltered tempered chcrd g' b
f

d". It is not

consistent with the plan of this work to enter at length into

questions of temperament and just, intonation. Full particulars

will be found in the English edition of Helmholtz (with Ellis's

notes) and in Mr Bosanquet's treatise.

According to Helmholtz's theory it is mainly the beats of the

upper partials which determine the ordinary consonant intervals,

any departure from which is made evident by the beats of the

previously coincident overtones. But even when the notes are

truly tuned, the various consonances differ in degree, on account

of the disturbances which may arise from overtones which approach

one another too nearly.

The unison, octave, twelfth, double octave, etc., may be

regarded as absolute consonances, the second component intro

ducing no new element but merely reinforcing a part of the other.

The remaining consonant intervals, such as the Fifth and the

Major Third, are in a manner disturbed by their neighbourhood to

other consonant intervals. In the case of the truly tuned Fifth,

for example, with frequencies represented by 8 and 2, there is

indeed coincidence between the second partial of the higher note

and the third partial of the graver note, but the partials which

define the Fourth, of pitch 3x3 = 9 and 4x2 = 8, are within a

whole* Tone of one another and accordingly near enough to

produce disturbance. In like manner the Major Third may be

regarded as disturbed by its neighbourhood to the Fourth, and so

on in the case of other intervals.

The importance of these disturbances, and consequently the

order in which the various intervals stand in respect to their

degree of consonance, varies with the quality of the sounds. As

an example where overtones are present in considerable strength,

Helmholtz has estimated the degree of consonance of various
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intervals on the violin, and has exhibited the results in the form

of a curve 1
.

391. The principle of superpositiop ( 83), assumed in

ordinary acoustical discussions, depends for its validity upon the

assumption that the vibrations concerned are infinitely small, or

at any rate similar in their character to infinitely small vibrations,

and it is only upon this supposition that Ohm's law finds

immediate application. One apparent exception to the law has

long been known. This is the combi&ation-tone discovered by

Sorge and Tartini in the last century. If two notes, at the

interval for example of a Major Third, be sounded together

strongly, there is heard a grave sound in addition to the two

others. In the case specified, where the primary sounds, or

generators, as they may conveniently be called, are represented by
the numbers 4 and 5, the combination-tone is represented by 1,

being thus two octaves below the graver generator.

In the above example the new tone has the period of the cycle
of the generating tones

;
but Helmholtz found that this rule fails

in many cases. The following table 2 exhibits his results as

obtained by means of tuning-forks:

In the last three cases the tones heard were not those in the

period of the complete cycle, but their frequencies are the differ

ences of the frequencies of the generators. In virtue of this rule,

which was found to apply in all cases 3
, the combination-tones in

question are called difference-tones.

1 Stmatiom of Tone, p. 198.
3 Berlin Monatsber.

,
1856.

:i It is, however, disputed by other writerB.
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According to'Helmholtz it is necessary to the distinct audibility

of combination-tones that the generators be strong. We shall see

presently that this statement has been contested. "They are

most easily heard when the two generating tones are less than an,

octave apart, because in that case the differential is deeper than

either of the two generating tones. To hear it at first, choose two

tones which can be held with great force for some time, and form

a justly intoned harmonic interval. First sound the low tone and

then the high one. On properly directing attention, a weaker low

tone will be heard at the moment that the higher note is struck ;

this is the required combinational tone. For particular instru

ments, as the harmonium, the combinational tones can be made

more audible by properly tuned resonators. In this case the tones

are generated in the air contained within the instrument. But in

other cases where they are generated solely within the ear, the

resonators are of little or no use*."

On the strength of some observations by Bosanquet and Preyer,

doubts have been expressed as to the correctness of Helmholtz's

statement that combination-tones may exist outside the ear, and

strangely enough they have been adopted by Ellis. The question

has an important bearing upon the theory of combination-tones ;

and it has recently been examined by Rucker and Edser 2
,
who

used apparatus entirely independent of the ear. They conclude

that
" Helmholtz was correct in stating that the siren produces

two objective notes the frequencies of which are respectively equal

to the sum and difference of the frequencies of the fundamentals."

My own observations have been made upon the harmonium, and

leave me at a loss to understand how two opinions are possible. The

resonator is held with its mouth as near as may be to the reeds

which sound the generating notes, and is put in and out of tune

to the difference-tone by slight movements of the finger. When

the tuning is good, the difference-tone swells out with considerable

strength, but a slight mistuning (probably of the order of a

semitone) reduces it almost to silence. In some cases, e.g. when

he interval between the generators is a (tempered) Fifth, the

ifference-tone is heard to beat

The last observation proves that in some cases there exist two

difference-tones of nearly the same pitch. Helmholtz finds the

1 Sensations of Totie, p. 153.

'* Phil, Mag. vol. xxxix. p. 357, 1895,
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explanation of this in the compound nature of the sounds. Thus

in the case of the Fifth, represented by the numbers 2 and 3, we

have not only the primes to consider, but the overtones 2x2,
3x2, etc., 2x3, 3x3, etc. Accordingly the difference-tone 1

may be derived from 2x2 = 4 and 3, as well as from 3 and 2, and

since the octave partial is usually strong, the one source may be

as important as the other. But if we substitute the Major Third

(5 : 4) for the Fifth, we do not get a second difference-tone 1 until we

come to the fourth partial (16) of the graver note and the third

(15) of the higher, and these would usually be too feeble to produce
much effect.

As regards the frequency of the beats, let us return to the case

of the Fifth, supposing it to be so disturbed that the frequencies

are 200 and 301. The difference tone due to the primes is

301 200 = 101, and that due to the octave partial is

2x200-301=99;
and these difference-tones sounding together will give beats with

frequency 2. This, it will be observed, is the same number of

beats as is due to the common overtone, viz. 2 x 301 - 3 x 200
;

but while the latter beats are those of the tone 600, the boats of

the combination-tone are at pitch 100.

392. According to the views of the older theorists Chladni,

Lagrange, Young, etc., the explanation of the difference-tone

presented no particular difficulty, As the generators separate in

pitch, the beats quicken and at last become too rapid for apprecia

tion as such, passing into a difference-tone, whose frequency is

continuous with the frequency of the beats* This view of the

matter, which has commended itself to many writers, was rejected

by Helmholtz, as inconsistent with Ohm's law ; and that physicist

has elaborated an alternative theory, according to which the

failure is not in Ohm's law, but irx the principle *of superposition.

Helmholtz's calculation of the effect of a want of symmetry in

the forces of restitution, when the vibrations of a nystem cannot be

regarded as infinitely small, has already been given ( 68). It

appears that in addition to the terms in pt, qt t corresponding to

the generating forces, there must be added other terms of the

second order in Zpt, 2gtf, (p + q)t, (p q)t> the last of which repre

sents the difference-tone. This explanation depends, as Hermann 1

, vol. xux. p. 507, X89L
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has remarked, upon the assumed failure of symmetry. If, as in

67
3
we suppose a force of restitution proportional partly to the

first power and partly to the cube of the displacement, we do not

obtain a term in (p q) t, but in place of it terms of the third

order involving (2p
-

q) t, (Zqp) t, etc. This objection, however,
is of little practical importance, because the failure of symmetry
almost always occurs, It may suffice to instance the all important
case of aerial vibrations. Whether we are considering progressive
waves advancing from a source, or the stationary vibrations of a

resonator, there is an essential want of symmetry between conden
sation and rarefaction, and the formation in some degree of octaves

and combination-tones is a mathematical necessity.

The production of external, or objective, combinatiou-ton'es

demands the coexistence of the generators at a place where they
are strong

1
. This will usually occur only when the generating

sounds are closely associated, as in the polyphonic siren and in the

harmomutn. In these cases the conditions are especially favourable,

because the limited mass of air included within the instrument is

necessarily strongly affected by both tones. When the generating
sources are two organ-pipes, even though they stand pretty near

together, the difference-tone is not appreciably strengthened by a

resonator, from which we may infer that but little of it exists

externally to the ear,

We have as yet said nothing about the summation-tone, corre

sponding to the term in (p -f q) t The existence of this tone was

deduced by Helmholtz theoretically ;
and he afterwards succeeded

in hearing it, not only from the siren and harmonium, where it

exists objectively and is reinforced by resonators, but also from

tuning-forks and organ-pipes. Helmholtz narrates also an experi

ment in which he caused a membrane to vibrate in response to

the summation-tone, and similar experiments have recently been

carried out with success by Rttcker and Edser (1. c.).

Nevertheless, it must be admitted that surtimation-tone are

extremely difficult to hear. Hermann (1. c.) asserts that he can

neither hear them himself nor find any one able to do so
;
and he

regards this difficulty as a serious objection to Helmholtz's theory,

according to which the summation and the difference tone should

be about equally strong.
1 The estimates of condensation ( 884) for sounds just audible make it highly

improbable that the principle pf superposition could fail to apply to sounds of that

order of magnitude.



460 HELMHOLTZ'S VIEWS [392.

An objection of another kind has been raised by Konig
1
. He

remarks that even if a tone exist of the pitch of the summation-

tone, it may in reality be a difference-tone, derived from the upper

partials of the generators.
As a matter of arithmetic this

Argu
ment cannot be disputed; for ifp and q be commensurable, it will

always be possible to find integers h and k, such that

But this explanation is plausible only when h and k are small

integers.

It seems to me that the comparative difficulty with which

summation-tones are heard is in great measure, if not altogether,

explained by the observations of Mayer ( 386). These tones are

of necessity higher in pitch than their generators, and are accord

ingly liable to be overwhelmed and rendered inaudible. On the

other hand the difference-tone, being usually graver, and often

much graver, than either of its generators, is able to make itself

felt in spite of them. And even as regards difference-tones, it

had already been remarked by Helmholtz that they become more

difficult to hear when they cease to constitute the gravest element

of the sound by reason of the interval between the generators

exceeding an octave.

393. In the numerous cases where differential tones are

audible which are not reinforced by resonators, it is necessary in

order to carry out Helrnholtz's theory to suppose .that they have

their origin in the vibrating parts of the outer ear, such as the

drum-skin and its attachments. Helmholtz considers that the

structure of these parts is so unsymmetrical that there is nothing

forced in such a supposition. But it is evident that this explana

tion is admissible only when the generating sounds are loud, i.e.

powerful as they reach the ear. Now, the opponents of Helmholtz's

views, represented by Hermann, maintain that this condition is

not at all necessary to the perception of difference-tones. Here

we have an issue as to facts, the satisfactory resolution of which

demands better experiments, preferably of a quantitative nature,

than any yet execut3d. My own experience tends rather to

support the view of Helmholtz that loud generators are necessary.

On several occasions stopped organ-pipes d'", e'"> were blown with

i
Fogg. Ann. vol. 157, p, 177, 1870.



393.] AND CRITICISMS THEREON. 461

a steady wind, and were so tuned that the difference-tone gave
slow beats with an electrically maintained fork, of pitch 128,
mounted in association with a resonator of the same pitch. When
the ear was brought up close to the mouths of the pip?s, the

difference-tone was so loud as to require all the force of the fork

in order to get the most distinct beats. These beats could be
made so slow as to allow the momentary disappearance of the

grave sound, when the intensities were rightly adjusted, to be
observed with some precision. In this state of things the two
tones of pitch 128, one the difference-tone and the other derived

from the fork, were of equal strength as they reached the observer;
but as the ear was withdrawn so as to enfeeble both sounds by
distance, it seemed that the combination-tone fell off more quickly
than the ordinary tone from the fork. It might be possible to

execute an experiment of this kind which should prove decisively
whether the combination-tone is really an effect of the second

order, or not.

In default of decisive experiments we must endeavour to

balance the a priori probabilities of the case. According to the

views of the older theorists, adopted by Konig, Hermann,, and
other critics of Helmholtz, the beats of the generators, with their

alternations of swellings and pauses, pass into the differential tone

of like frequency, without any such failure of superposition as is

invoked by Helmholtz. The critics go further, and maintain that

the ear is capable of recognising as a tone any periodicity within

certain limits of frequency
1

.

Plausible as this doctrine is from certain points of view, a

closer examination will, I think, shew that it is encumbered with

difficulties. Among these is the ambiguity, referred to in 12, as

to what exactly is meant by period. A periodicity with frequency
128 is also periodicity with frequency 64. Is the latter tone to be

heard as well as the former ? So far as theory is concerned, such

questions are satisfactorily answered by Ohm's law. Experiment

may compel us to abandon this law, but it is well to remember

that there is nothing to take its place. Again, by consideration of

particular cases it is not difficult to prove that the general doctrine

above formulated cannot be true. Take the example above

mentioned in which two organ-pipes gave a difference-tone of

pitch 128. There is periodicity with frequency 128, and the

1 Hermann, loc. cit. p. 514.
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corresponding tone is heard 1
. So far, so good. But experiment

proves also that it is only necessary, to superpose upon this another

tone of frequency 128, obtained from a fork, in order to neutralize

the combination-tone and reduce it to silence. The periodicity of

128 remains, if anything in a more marked manner than before,

but the corresponding tone is not heard.

I think it is often overlooked in discussions upon this subject

that a difference-tone is not a mere sensation, but involves a

vibration of definite amplitude and phase. The question at once

arises, how is the phase determined ? It would seem natural to

suppose that the maximum swell of the beats corresponds to one

or other extreme elongation in the difference-tone, but upon the

principles under discussion there seems to be no ground for a

selection between the alternatives. Again, how is the amplitude
determined ? The tone certainly vanishes with either of the

generators. From this it would seem to follow that its amplitude
must be proportional to the product of the amplitudes of the

generators, exactly as in Helmholtz's theory. If so, we come back

to difference-tones of the second order, and their asserted easy

audibility from feeble generators is no more an objection to one

theory than to another.

An observation, of great interest in itself, and with a possible

bearing upon our present subject, has been made by Ktfnig and

Mayer
8
. Experimenting both with forks and bird-calls, they have

found that audible difference-tones may arise from generators
whose pitch is so high that they are separately inaudible. Perhaps
an interpretation might be given in more than one way, but the

passage of an inaudible beat into an audible difference-tone seems

to be more easily explicable upon the basis of Helmholtz's theory.

Upon the whole this theory seems to afford the best ex

planation of the facts thus far considered, but it presupposes a more

ready departure from superposition of vibrations within the ear

than would have been expected,

394. In 390 we saw that in the case of ordinary compound
sounds, containing upper partials fairly developed, the recognised
consonant intervals are distinguished from neighbouring intervals

1 la strictness, the periodicity is incomplete, unless p and g are multiples of

)

Mayer, .Rep. Brit. As*, p, 573, 1894.
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by well marked phenomena, of which there was no difficulty in

rendering a satisfactory account. We have now to consider the

more difficult subject of consonance among pure tones; and we
shall have to encounter considerable differences of opinion, not only
as to theoretical explanations, but as to matters of observation.

Here, as elsewhere, it will be convenient to begin with a statement

of Helmholtz's views 1

according to which, in a word, the beats

of such mistuned consonances are due to combination-tones.

" If combinational tones were not taken into account, two

simple tones, as those of tuning-forks, or stopped organ-pipes,

could not produce beats unless they were very nearly of the

same pitch, and such beats are strong when their interval is

a minor or major second, but weak for a Third, and then only

recognisable in the lower parts of the scale, and they gradually

diminish in distinctness as the interval increases, without shewing

any special differences for the harmonic intervals themselves. For

any larger interval between two simple tones there would be

absolutely no beats at all, if there were no upper partial or

combinational tones, and hence the consoijant intervals...would

be in no way distinguished from adjacent intervals ;
there would

in fact be no distinction at all between wide consonant intervals

and absolutely dissonant intervals.

Now such wider intervals between simple tones are known

to produce beats, although very much weaker than those hitherto

considered, so that even for such tones there is a difference be

tween consonances and dissonances, although it is very much

more imperfect than for compound tones 2
."

Experiments upon this subject are difficult to execute satis

factorily. In the first place it is not easy to secure simple tones.

As sources recourse is usually had to stopped organ-pipes or to

tuning-forks) but much precaution is required. From the free

ends of the vibrating prongs of a fork many overtones may usually

be heard 8
. Again, if a fork be employed after the manner of

musicians with its stalk pressed against a resonating board, the

octave is loud and often predominant
4

. The best way is to hold

1 Ascribed by him to HSllstrdm and Scheibler.

a Sensation* of Tone, p. 199.

3
Ktfnig's experiments shew that this is especially the case when the prongs are

thin. Wied. Ann. vol. xiv. p. 373, 188l!

4 The prime tone may even disappear altogether. If in their natural position

the prongs of a fork are closest below, an outward movement during the vibration
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the free ends of the prongs over a suitably tuned resonator. But

even then we cannot be sure that a loud sound thus obtained is

absolutely free from the octave partial.

In the case of the octave the differential tone already con

sidered suffices. "If the lower note makes 100 vibrations per

second, while the imperfect octave makes 201, the first differential

tone makes 201 100 = 101, and Hence nearly coincides with the

lower note of 100 vibrations, producing one beat for each 100

vibrations. There is no difficulty in hearing these beats, and
hence it is easily possible to distinguish imperfect octaves from

perfect ones, even for simple tones, by the beats produced by
the former."

The frequency of the beats is the same as if it were due to

overtones; but there is one important difference between the

two cases noted by Ellis though scarcely, if at all, referred to by
Helmholtz. In the latter the beats would affect the octave tone,

whereas according to the above theory the beats will belong to

the lower tone. Bosanquet, Konig and others are agreed that

in this respect the theory is verified.

Again, if the beats were due to combination-tones, they must
tend to disappear as the sounds die away. The experiment is

very easily tried with forks, and according to my experience the

facts are in harmony. When the sounds are much reduced,
the mistuiiing fails to make itself apparent.

" For the Fifth, the first order of differential tones no longer
suffices. Take an imperfect Fifth with the ratio 200 : 301

;
then

the differential tone of the first order is 101, which is too far

from either primary to generate beats. But it forms an imperfect
Octave with the tone 200, and, as just seen, in such a case beats

ensue. Here they are produced by the differential tone 99

arising from the tone 101 and the tone 200, and this tone 99

makes two beats in a second with the tone 101. These beats

then serve to distinguish the imperfect from the justly intoned

Fifth, even in the case of two simple tones. The number of these

beats is also exactly the same as if they were the beats due to

will depress the centre of inertia, the stalk being immovable, but if the prongs are

closest above, the contrary result may ensue. There must be some intermediate

construction for which the centre of inertia will remain at rest during the vibration.

In this case the sound from a resonance board is of the second order, and is

destitute of the prime tone*
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the upper partial tones. But to observe these beats the two

primary tones must be loud, and the ear must not be distracted

by any extraneous noise. Under favourable circumstances, how

ever, they are not difficult to hear."

It is important to be clear as to the order of magnitude of

the various differential tones concerned. If the primary tones,

with frequencies represented by p and q, have amplitudes e and

/ respectively, quantities of the first order, then ( 68) the first

difference and summation tones have frequencies corresponding
to

2p, 2q, p + q, p-q,

and are of the second order in e and f. A. complete treatment

o the second differential tones requires the retention of another

term /3w
8

( 67) in the expression of the force of restitution. From
this will arise terms of the third order in e and / with frequencies

corresponding to

3p, Zpq, p2q, 3?;
1

and there are in addition other terms of the same frequencies

and order of magnitude, independent of ft arising from the full

development to the third order of au\ In the case of the disturbed

Fifth above taken, the beats are between the tone 2g-jp = 99,

which is of the third order of magnitude, and p q
= 101 of the

second order. The exposition, quoted from Helmholtz, refers to

the terms last mentioned, which are independent of ft

The beats of a disturbed Fourth or major Third depend upon
difference-tones of a still higher order of magnitude, and according

to Helmholtz's observations they are scarcely, if at all, audible,

even when the primary tones are strong. This is no more than

would have been expected ;
the difficulty is rather to understand

how the beats of the disturbed Fifth are perceptible and those of

the disturbed Octave so easy to hear.

When more than two simple tones are sounded together,

fresh conditions arise.
" We have seen that Octaves are precisely

limited even for simple tones by the beats of the first differential

tone with the lower primary. Now suppose that an Octave has

been tuned perfectly, and that then a third tone is interposed

to act as a Fifth. Then if the Fifth is not perfect, beats will ensue

from the first differential tone.

1
Bosanquet, Phil. Mag. vol. xi. p. 497, 1881.
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Let the tones forming the perfect Octave have the pitch

numbers 200 and 400, and let that of the imperfect Fifth be

301. The differential tones are

400-301= 99

301-200 = 101

Number of beats 2.

These beats of the Fifth which lies between two Octaves arc

much more audible than those of the Fifth alone without its

Octave. The latter depend on the weak differential tones of

the second order, the former on those of the first order. Hence

Scheibler some time ago laid down the rule for tuning tuning-

forks, first to tune two of them as a perfect Octave, and then to

sound them both at once with the Fifth, in order to tune the

latter. If Fifth and Octave are both perfect, they also give

together the perfect Fourth.

The case is similar, when two simple tones have been tuned

to a perfect Fifth, and we interpose a new tone between them to act

as a major Third. Let the perfect Fifth have the pitch numbers

400 and 600. On intercalating the impure major Third with the

pitch number 501 in lieu of 500, the differential tones are

600-501= 99

500 -400 = 101

Number of beats 2."

395, In Helmholtz's theory of imperfect consonances the

cycles heard are regarded as risings and fallings of intensity of

one or more of the constituents of the sound, whether these bo

present from the first, or be generated by transformation, to xise

Bosauquet's
*

phrase, in the transmitting mechanism of the ear.

According to Ohm's law, such, changes of intensity are the only

thing that could be heard, for the relative phases of the constitu

ents (supposed to be sufficiently removed from one another in

pitch) are asserted to be matters of indifference.

This question of independence of phase-relation was examined

by Helmholtz in connection with his researches upon vowel sound**

( 397). Various forks, electrically driven from one interrupter

( 64?), could be made to sound the prime tone, octave, twelfth

etc., of a compound note, and the intensities and phases of the

constituents could be controlled by slight modifications in the
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(natural) pitch of the forks and associated resonators. According
to Helmholtz's observations changes of phase were without

distinct effect upon the quality of the. compound sound.

It is evident, however, that the question of the effect, if any,

upon ihe ear of a change in the phase relationship of the various

components of a sound can be more advantageously examined by
the method of slightly mistuned consonances. If, for example, an

Octave interval between two pure tones be a very little imperfect,

the effect upon the ear at any particular moment will be that of a

true interval with a certain relation of phases, but after a short

time, the phase relationship will change, and will pass in turn

through every possible value. The audibility of the cycle is

accordingly a criterion for the question whether or not the ear

appreciates phase relationship; and the results recorded by
Helmholtz himself, and easily to be repeated, shew that in a

certain sense the answer 'must be in the affirmative. Otherwise

slow beats of an imperfect Octave would not be heard. The

explanation by means of combination-tones does not alter the

fact that the ear appreciates the phase relationship of two

originally simple tones, at any rate when they are moderately

loud 1
.

According to the observations of Lord Kelvin 2 the "beats of

imperfect harmonies," other than the Octave and Fifth, are not so

difficult to hear as Helmholtz supposed. The tuning-forks employed

were mounted upon box resonators, and it might indeed be argued

that the sounds conveyed down the stalks were not thoroughly

purged from Octave partials. But this consideration would hardly

affect the result in some of the cases mentioned. It appeared that

the beats on approximations to each of the harmonies 2 : 3, 3 : 4,

4 : 5, 5 : 6, 6 : 7, 7 : 8, 1 : 3, 3 : 5 could be distinctly heard, and

that they all
"
fulfil the condition of having the whole period of the

imperfection, and not any sub-multiple of it, for their period," the

same rule as would apply were the beats due to nearly coincident

overtones. As regards the necessity for loud notes, Kelvin found

that the beats of an imperfectly tuned chord 3:4:5 were some

times the very last sound heard, as the vibrations of the forks

died down, when the intensities of the three notes chanced at the

end to be suitably proportioned.

i
K6nig, Wied. Ann. vol. xiv. p. 375, 1881.

a Proc, Kay. Soc. Edin. vol. ix. p. 602, 1878.
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The last observation is certainly difficult to reconcile with a

theory which ascribes the beats to combination-tones. But on the

other side it may be remarked that the relatively easy audibility

of the beats from a disturbed Octave and from a disturbed chord

of three notes (3:4: 5), which would depend upon the first differ

ential tone, is in good accord with that theory, and (so far as

appears) is not explained by any other.

396. But the observations most difficult of reconciliation

with the theory of Helmholtz are those recorded by Konig
1

, who
finds tones, described as beat-tones, not included among the

combination-tones
;

and these observations, corning from so

skilful and so well equipped an investigator, must carry great

weight. The principal conclusions are thus summarised by
Ellis 2

. "If two simple tones of either very slightly or greatly

different pitches, called generators, be sounded together, then

the upper pitch number necessarily lies between two multiples
of the lower pitch number, one smaller and the other greater, and

the differences between these multiples of the pitch number of the

lower generator and the pitch number of the upper generator give
two numbers which either determine the frequency of the two sets

of beats which may be heard or the pitch of the beat-notGvS which

may be heard in their place.

The frequency arising from the lower multiple of the lower

generator is called the frequency of the lower beat or lower beat-

note, that arising from the higher multiple is called the frequency
of the higher beat or beat-note, without at all implying that one

set of beats should be greater or leas than the other, or that one

beat-note should be sharper or flatter than, the other. They are in

reality sometimes one way and sometimes the other.

Both sets of beats, or both beat-notes, are not usually heard

at the same time. If we divide the intervals examined into groups

(1) from 1 : 1 to 1 : 2, (2) from 1 : 2 to 1 :

j3, (3) from 1 : 3 to 1 : 4,

(4) from 1 : 4 to 1 : 5, and so on, the lower beats and beat-tones

extend over little more than the lower half of each group, and the

upper beats and beat-tones over little more than the upper half.

For a short distance in the middle of each period both fcjets of beats,

or both beat-notes are audible, and these bcat-noten beat with each

0. Ann. vol. CLVII.
jj* 177, 1870*

- Sensations of Tone, p. 529,
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other, forming secondary beats, or are replaced by new or secondary

beat-notes."

In certain cases the beat-notes coincide with the differential

tone, but Konig considers that the existence of combinational

tones has not been proved with certainty. It is to be observed that

in these experiments the generating tones were as simple as Konig
could make them

;
but the possibility remains that overtones, not

audible except through their beats, may have arisen within the

ear by transformation. This is the view favoured by Bosanquet,

who has also made independent observations with results less diffi

cult of accommodation to Helmholtz's views.

It will be seen that Konig adopts in its entirety the opinion

that beats, when quick enough, pass into tones. Some objections

to this idea have already been pointed out
;
and the question must

be regarded as still an open one. Experiments upon these subjects

have hitherto been of a merely qualitative character. The diffi

culties of going further are doubtless considerable; but I am

disposed to think that what is most wanted at the present time

is a better reckoning of the intensities of the various tones dealt

with and observed. If, for example, it could be shewn that the

intensity of a beat-tone is proportional to that- of the generators,

it would become clear that something more than combination-tones

is necessary to explain the effects.

Konig has also examined the question of the dependence of

quality upon phase relation, using a special siren of his own con

struction 1
. His conclusion is that while quality is mainly deter

mined by the number and relative intensity of the harmonic tones,

still the influence of phase is not to be neglected. A variation of

phase produces such differences as are met with in different

instruments of the same class, or in various voices singing the

same vowel. A ready appreciation of such minor differences re

quires a series of notes, upon which a melody can be executed, and

they may escape observation when only a single note is available.

To me it appears that these results are in harmony with the view

that would ascribe the departure from Ohm's law, involved in any

recognition of phase relations, to secondary causes.

397. The dependence of the quality of musical sourids of given

pitch upon the proportions in which the various partial tones are

i Wied. Ann. vol. xiv. p. 392, 1881.
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present has been investigated by Helmholtz in the case of several

musical instruments. Further observations upon wind instru

ments will be found in a paper by Blaikley
1

. But the most

interesting, and the most disputed, application of the theory is to

the vowel sounds of human speech.

The acoustical treatment of this subject may be considered to

date from a remarkable memoir by Willis 2
. His experiments

were conducted by means of the free reed, invented by Kratzcn-

stein (1780) and subsequently by Grenie, which imitates with fair

accuracy the operation of the larynx. Having first repeated success

fully Kempelen
;

s experiment of the production of vowel sounds by

shading in various degrees the mouth of a funnel-shaped cavity in

association with the reed, he passed on to examine the effect of

various lengths of cylindrical tube, the mounting being similar to

that adopted in organ-pipes. The results shewed that the vowel

quality depended upon the length of the tube. From these and other

experiments he concluded that cavities yielding (when sounded in

dependently) an identical note "
will impart the same vowel quality

to a given reed, or indeed to any reed, provided the note of the

reed be flatter than that of the cavity." Willis proceeds (p. 243) :

" A few theoretical considerations will shew that some such effects

as we have seen, might perhaps have been expected. According
to Euler, if a single pulsation be excited at the bottom of a tube

closed at one end, it will travel to the mouth of this tube with the

velocity of sound. Here an echo of the pulsation will be formed

which will run back again, be reflected from the bottom of the

tube, and again present itself at the mouth where a new echo will

be produced, and so on in succession till the motion is destroyed

by friction and imperfect reflection... .The effect therefore will be

a propagation from the mouth of the tube of a succession of

equidistant pulsations alternately condensed and rarefied, at

intervals corresponding to the time required for the pulse . to

travel down the tube and back again ;
that is to say, a short burst

of the musical note corresponding to a stopped pipe of the length
in question, will be produced.

Let us now endeavour to apply this result of Euler's to the

case before us, of a vibrating reed, applied to a pipe of any length,

> Phil Mag. vol. vi. p. 119, 1878.
fl On the Vowel Sounds, and on Beed Organ-pipes. G<mib* Phil Trans, vol. in.

p. 231, 1829.
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and examine the nature of the series of pulsations that ought
to be produced by such a system upon this theory.

The vibrating tongue of the reed will generate a series of

pulsations of equal force, at equal intervals of time, but alternately

condensed and rarefied, which \ve may call the primary pulsations ;

on the other hand each of these will be followed by a series

of secondary pulsations of decreasing strength, but also at equal

intervals from their respective primaries, the interval between

them being, as we have seen, regulated by the length of the

attached pipe."

And further on (p. 247) :

"
Experiment shews us that the series

of effects produced are characterized and distinguished from each

other by that quality we call the vowel, and it shews us more, it

shews us not only that the pitch of the sound produced is always

that of'the reed or primary pulse, but that the vowel produced is

always identical for the same value of 6' [the period of the secondary

pulses]. Thus, in the example just adduced, g" is peculiar to the

vowel A [as in Paw, Nought] ;
when this is repeated 512 times in

a second, the pitch of the sound is d , and the vowel is A" : if by
means of another reed applied to the same pipe it were repeated

340 times in a second, the pitch would be/, but the vowel still A.
Hence it would appear that the ear in losing the consciousness of

the pitch of s, is yet able to identify it by this vowel quality."

From the importance of his .results and from the fact that the

early volumes of the Cambridge Transactions are not everywhere

accessible, I have thought it desirable to let Willis speak for

himself. It will be seen that so far as general principles are

concerned, he left little to be effected by his successors, Some

what later in the same memoir (p. 249) he gives an account of a

special experiment undertaken as a test of his theory.
"
Having

shewn the probability that a given vowel is merely the rapid

repetition of its peculiar note, it should follow that if we can

produce thin rapid repetition in any other way, we may expect to

hear vowels. Robison and others had shewn that a quill held

against <x revolving toothed wheel, would produce a musical note

by the rapid equidistant repetition of the snaps of the quill upon

the teeth. For the quill I substituted a piece of watch-spring

pressed lightly against the teeth of the wheel, so that each snap

became the musical note of the spring. The spring being at the

same time grasped in a pair of pincers, so as to admit of any
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alteration in length of the vibrating portion. This system
evidently produces a compound sound similar to that of the pipe
and reed, and an alteration in the length of the spring ought
therefore to produce the same effect as that of the pipe. In effect

the sound produced retains the same pitch as long as the wheel
revolves uniformly, but puts on in succession all the vowel

qualities, as the effective length of the spring is altered, and that

with considerable distinctness, when due allowance is made for

the harsh and disagreeable quality of the sound itself."

In his presentation of vowel theory Helmholtz, following
Wheatstone 1

, puts the matter a little differently. The aerial

vibrations constituting natural or artificial vowels are, when a

uniform regime has been attained ( 48, 66, 322 &), truly periodic,
and the period is that of the reed. According to Fourier's

theorem they are susceptible of analysis into simple vibrations,
whose periods are accurately submultiples of the reed period.
The effect of an associated resonator can only be to modify the

intensity and phase of the several components, whose periods are

already prescribed. If the note of the resonating cavity the
mouth-tone coincide with one of the partial tones of the voice-

or larynx-note, the effect must be to exalt in a special degree the

intensity of that tone
; and whether there be coincidence or not,

those partial tones whose pitch approximates to that of the
mouth-tone will be favoured.

This view of the action of a resonator is of course perfectly
correct

;
but at first sight it may appear essentially different from,

or even inconsistent with, the account of the matter given by
Willis. For example, according to the latter the mouth-tone may
be, and generally will be, inharmonic as regards the larynx-tone,
In order to understand this matter we must bear in mind two
things which are often imperfectly appreciated. The first is the
distinction between forced and free vibrations. Although the
natural vibrations of the oral cavity may be inharmonic, the forced
vibrations can include only harmonic partials of the larynx
note. And again, it is important to remember the definition
of simple vibrations, according to which no vibrations can be

simple that are not permanently maintained without variation of

amplitude or phase. The secondary vibrations of Willis, which

1 London and Westminster Review, Oct 1837
; Wheatttontf* Scientific Papers

London, 1879, p. 848.
* *
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die down after a few periods, are not simple. When the complete

succession of them is resolved by Fourier's theorem, it is repre

sented, not by one simple vibration, but by a large or infinite

number of such.

From these considerations it will be seen that both ways
of regarding the subject are legitimate and not inconsistent with

one another. When the relative pitch of the mouth-tone is low,

so that, for example, the partial of the larynx note most reinforced

is the second or the third, the analysis by Fourier's series is the

proper treatment. But when the pitch of the mouth-tone is high,

and each succession of vibrations occupies only a small fraction of

the complete period, we may agree with Hermann that the

resolution by Fourier's series is unnatural, and that we may
do better to concentrate our attention upon the actual form

of the curve by which the complete vibration is expressed. More

especially shall we be inclined to take this course if we entertain

doubts as to the applicability of Ohm's law to partials of high
order*

Since the publication of Helmholtz's treatise the question has

been much discussed whether a given vowel is characterized by
the prominence of partials of given order (the relative pitch

theory), or by the prominence of partials of given pitch (the fixed

pitch theory), and every possible conclusion has been advocated.

We have seen that Willis decided the question, without even

expressly formulating it, in favour of the fixed pitch theory.

Helmholtz himself, if not very explicitly, appeared to hold the

same opinion, perhaps more on a priori grounds than as the result

of experiment. If indeed, as has usually been assumed by
writers on phonetics, a particular vowel quality is associated with

a given oral configuration, the question is scarcely an open one.

Subsequently under Helmholtz's superintendence the matter was

further examined by Auerbach *, who along with other methods

employed a direct analysis of the various vowels by means

of resonators associated with the ear. His conclusion on the

question under discussion was the intermediate one that both

characteristics were concerned. The analysis shewed also that in

all cases the first, or fundamental tone, was the strongest element

in the sound.

A few years later Edison's beautiful invention of the phono-

0. Ann, Erg&nzung-baud vm. p. 177, 1876.
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graph stimulated anew inquiry upon this subject by apparently

affording easy means of making an experimentum crucis. If

vowels were characterized by fixed pitch, they should undergo
alteration with the speed of the machine

;
but if on the other

hand the relative pitch theory were the true one, the vowel

quality should be preserved and only the pitch of the note

be altered. But, owing probably to the imperfection of the earlier

instruments, the results arrived at by various observers were still

discrepant. The balance of evidence inclined perhaps in favour of

the fixed pitch theory
1

. Jenkin and Ewing
8

analysed the

impressions actually made upon the recording cylinder, and their

results led them to take an intermediate view, similar to that of

Auerbach. It is clear, they say, "that the quality of a vowel

sound does not depend either on the absolute pitch of reinforce

ment of the constituent tones alone, or on the simple grouping of

relative partials independently of pitch. Before the constituents

of a vowel can be assigned, the pitch of the prime must be given ;

and, on the other hand, the pitch of the most strongly reinforced

partial is not alone sufficient to allow us to name the vowel/'

With the improved phonographs of recent years the question
can be attacked with greater advantage, and observations have been

made by McKendrick and others, but still with variable results.

Especially to be noted are the extensive researches of Hermann

published in Pflugers Archiv. Hermann pronounces unequivocally
in favour of the fixed pitch characteristic as at any rate by far the

more important, and his experiments apparently justify this

conclusion. He finds that the vowels sounded by the phonograph
are markedly altered when the speed is varied.

Hermann's general view, to which he was led independently,
is identical with that of Willis.

" The vowel character consists in

a mouth-tone of amplitude variable in the period of the larynx
tone 8

." The propriety of this point of view may perhaps be

considered to be established, but Hermann somewhat exaggerates
the difference between it and that of Helmhoitz.

His examination of the automatically recorded curves was

effected in more than one way. In the case of the vowel A 4 the

1 Orabam Bell, Ann. Journ. of Otology, vol. i. July, 1879.
3 Kdin. Trans, vol. xxvin, p, 745, 1878.
tf P/%. Arch. vol. XLVU. p. 351, 1890.
4 The vowel signs refer of course to the continental pronunciation*
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amplitudes of the various partials, as given by the Fourier

analysis, are set forth in the annexed table, from which it appears

that the favoured partial lies throughout between e
2 and g\

VOWEL A.

The analysis of the curves into their Fourier components

involves a great deal of computation, and Hermann is of opinion

that the principal result, the pitch of the vowel characteristic, can

be obtained as accurately and far more simply by direct measure

ment on the diagram of the wave-lengths of the intermittent

vibrations. The application
of this method to the curves for A

before used gave
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VOWEL A.

Here L is the double period of the complete vibration and I the

double period of the vowel characteristic. It appears plainly
that I preserves a nearly constant value when L varies over a

considerable range.

A general comparison of his results with those obtained by
other methods has been given by Hermann, from which it will be

seen that much remains to be done before the perplexities

involving this subject can be removed. Some of the discrepancies

that have been encountered may probably have their origin in

real differences of pronunciation to which only experts in phonetics
are sufficiently alive 1

. Again, the question of double resonance

has to be considered, for the known shape of the cavities concerned

1
Lloyd, Phonetische Studun> vol. in, part J.
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renders it not unlikely that the complete characterization of a

vowel is of a multiple nature ( 310). It should be mentioned

that in Lloyd's view the double characteristic is essential, and

that the identity of a vowel depends not upon the absolute pitch

of one or more resonances, but upon the relative pitch of two or

more. In this way he explains the difficulty arising from the fact

that the articulation for a given vowel appears to be the same for

an infant and for a grown man, although on account of the great
difference in the size of the resonating cavities the absolute pitch
must vary widely.

It would not be consistent with the plan of this work to

go further into details with regard to particular vowels; but

one remarkable discrepancy between the results of Hermann
and Auerbach must be alluded to. The measurements by the

former of graphical records shew in all cases a nearly complete
absence of the first, or fundamental, tone from the general sound,

which Auerbach on the contrary, using resonators, found this tone

the most prominent of alL Hermann, while admitting that the

tone is heard, regards it as developed within the ear after

the manner of combination-tones ( 393). I have endeavoured

to repeat some of Auerbach's observations, and I find that for all

the principal vowels (except perhaps A) the fundamental tone is

loudly reinforced, the contrast being very marked as the resonator

is put in and out of tune by a movement of the finger over

its mouth. This must be taken to prove that the tone in

question does exist externally to the ear, as indeed from the

manner in which the sound is produced could hardly fail to be the

case; and the contrary evidence from the records must be

explained in some other way.

An important branch of the subject is the artificial imitation

of vowel sounds. The actual synthesis by putting together in

suitable strengths the various partials was effected by Helm-

holtz *. For this purpose he used tuning-forks and resonators, the

forks being all driven from a single interrupter ( 63, 64). These

experiments arc difficult, and do not appear to have been repeated.

Helmholtz was satisfied with the reproduction in some cases,

although in others the imitation was incomplete. Less satisfactory

results were attained when organ-pipes were substituted for

the forks.

1 Sensations of Sound, oh. vi.
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Vowel sounds have been successfully imitated by Preece and

Stroh 1
,
who employed an apparatus upon the principle of the

phonograph, in which the motion: of the membrane was controlled

by specially shaped teeth, cut upon the circumference of a re

volving wheel They found that the vowel quality underwent

important changes as the speed of rotation was altered.

For artificial vowels, illustrative of his special views, Hermann

recommends the polyphonic siren (11). If when the series of

12 holes is in operation and a suitable velocity has been attained,

the series of 18 holes be put alternately into and out of action,

the difference-tone (6) is heard with great loudness and it

assumes distinctly the character of an 0. At a greater speed the

vowel is Ao, and at a still higher speed an unmistakable -4.

With the use of double resonators, suitably proportioned,

Lloyd has successfully imitated some of the whispered vowels.

In the account here given of the vowel question it has only
been possible to touch upon a few of the more general aspects of

it. The reader who wishes to form a judgment upon controverted

points and to pursue the subject into detail must consult the

original writings of recent workers, among whom may be specially

mentioned Hermann, Pipping, and Lloyd. The field is an

attractive one
;
but those who would work in it need to be well

equipped, both on the physical and on the phonetic side.

3 Proc, Roy. Soc. vol. xxvin. pk 858, 1879.
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NOTE TO 86 1
.

IT may be observed that the motion of any point belonging to

a system of n degrees of freedom, which executes a harmonic motion, is

in general linear. For, if x, y, z be the space coordinates of the point,

we have

x = X cos nt, y~Y cos nt, z-Z cos nt,

where X, JT, Z are certain constants
;
so that at all times

*:y:* = JC: Y\Z.

If there be more than one mode of the frequency in question,
the coordinates are not necessarily in the same phase. The most

general values of a, y, z, subject to the given periodicity, are then

x - Xl
cos nt + X2 sin nt,

yzzYl cos nt + Y% sin nt,

z= Z
l
cos nt + Z*. sin nt>

equations which indicate elliptic motion in the plane

* (Y^ - Z, 72) + y (Z,Xt
- X^a)

+ * (X, Tt
- Y,Xt)

- 0.

1 This note appears now for the first time.



APPENDIX TO CHAPTEE V 1
.

ON THE VIBRATIONS OF COMPOUND SYSTEMS WHEN THE AMPLITUDES

ARE NOT INFINITELY SMALL.

IN 67, 68 we have found second approximations for the vibrations

of systems of one degree of freedom, both in the case where the

vibrations are free and where they are due to the imposition of given
forces acting from without. It is now proposed to extend the investi

gation to cases where there is more than one degree of freedom.

In the absence of dissipative and of impressed forces, everything

may be expressed ( 80) by means of the functions T and V. In

the case of infinitely small motion in the neighbourhood of the

configuration of equilibrium, T and V reduce themselves to quadratic
functions of the velocities and displacements with constant coefficients,

and by a suitable choice of coordinates the terms involving products
of the several coordinates may be made to disappear { 87). Even

though we intend to include terms of higher order, we may still avail

ourselves of this simplification, choosing as coordinates those which
have the property of reducing the terms of the second order to Hums of

squares. Thus we may write

.......... (1),

in which A ll9 A&,*.. are functions of ^, <^,,.. including constant terms
al9 <&2 , ..., while A^ A n ,

... are functions of the amo variables without

constant terms :

r=fa<i>? + fa<i>*+... + v,+ v<+ ............... (2),

where Fs ,
F4 ,

... denote the parts of V which are of degree 3, 4, ...

in <&, <J>8 ,
...

For the first approximation, applicable to infinitely small vibrations,
we have

4n=i, -daa=aa ,.,. .dw *0, ^=0..., F3 0, F4 '

0, _ ;

i This appendix appears now for the first time.
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so that
( 87) Lagrange's equations are

0, &c............. (3),

in which the coordinates are separated. The solution relative to $1

may be taken to be

^-flicosw*, < 2
= 0, < 3

= 0, ... <fcc............. (4),

where c^ 7i
2o1

= .............................. (5).

Similar solutions exist relative to the other coordinates.

The second approximation, to which we now proceed, is to be

founded on (4), (5); and thus
</>2 ,

< 3 , ... are to be regarded as small

quantities relatively to < a .

For the coefficients in (1) we write

......... (6),

and in (2) F3
= y1 1

s + y2<k
2&+ ........................ (7);

so that for a further approximation

+ ^l + a3^1^3 + ^lS +
>

Thus as the equation ( 80) for ^ terms of the order ^j
2

being retained,

we get

To this order of approximation the coordinate <
a
is separated from the

others, 'and the solution proceeds as in the case of but one degree

of freedom ( 67). We have from (4)

&& *= - tt
2
//!

3 cos2 nt = - Jn
9
5i

fl

( 1,

<^x
2 sr ^^ SHI3 W5 = ^W

2
//!

2

(1
- COS

<^ = H? cos2 n^ JfTi
8

(
1 + cos

so that (8) becomes

The solution of (9) may be expressed in the form

^aJ^H- J?
l
cosw + ji5ra cos2n<+ ............... (10),

and a comparison gives

= (l^n - In)^
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Thus to a second approximation

and the value of n is the same, i.e. ^(c^a^ as in the first approxi
mation.

We have now to express the corresponding values of fa, fa
From (6)

dT/dfa =

and Lagrange's equation becomes, terms of order fa* being retained,

^fa + <bfa + atfafa + (o,
-
Jou) <fr

2
-f ya <k* = 0,

or on substitution from (4) in the small terms

%<ta + <*& + (- n2a13 + y2) Hf + (- n
2a3 + Jn'ofc 4- y2) JBT^ cos 2n =

......... (12).

.Accordingly, if

< 2
= # +^ cos 7^ + jK"2 cos 2wi{ -f .............. (13),

we find on comparison with (12)

(15),

Thus JEi
= 0, and the introduction of the values of Ar

and &% from (14),

(16) into (13) gives the complete value of fa to the second approxima
tion.

The values of fa, fa, &c. are obtained in a similar manner, and
thus we find to a second approximation the complete expression for

those vibrations of a system of any number of degrees of freedom
which to a first approximation are expressed by (4).

The principal results of the second approximation are
(i) t;hat the

motion remains periodic with frequency unaltered, (ii) that terms,
constant and proportional to cos2n are added to the value of that

coordinate which is finite in the firsli approximation, as well as to those

which in the first approximation are zero.

We now proceed to a third approximation ; but for brevity we will

confine ourselves to the case (a) where there are but two degrees
of freedom, and (ft) where the kinetic energy is completely expressed as

a sum of squares of the velocities with constant coefficients. This will

include the vibrations of a particle moving in two dimensions in

the neighbourhood of a place of equilibrium,
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We have

T =.^<k
2 + K< 2

8
,

F= fat* + fatf + V, + F4>

where Pi = yifc + y2<k
2
<k + y'<M2

2 + .................. (17),

so that Lagrange's equations are

....... (19),

......... (20).

As before, we are to take for the first approximation

<& = .#! COS Wtf,
< 2
= .................. (21).

For the solution of (19), (20) we may write

<h = B't + fl
r

1 coswi+ #a cos 2nt + jBT, cos 3w + ......... (22),

^8 = ^0 + 2^00891* + j2Ts cos2^ + j5T8 cos3r^ + ........ (23).

In (22), (23) JET
, H^ JKOJ K^ are quantities of the second order in Hlt

whose values have already been given, while Kly Hs , K% are of the

third order. Retaining terms of the third order, we have

HT, + ^ ffs)
cos nt +J^ cos STZ^ + H^H* cos 3^,

cos 7i + #i#"2 cos 3^,

</>x
s = IB? cos n + i^!

8 cos 3n^.

Substituting these values in the small terms of (19), (20), and from

(22), (23) in the two first terms, we get the following 8 equations,

correct to the third Oxder,

(24),

(ca
- **<$ KI + y,^ (2// + AT2) + ///i (2JT + JT2)

(ct-4*f*jZt+fafr<? = ..................... (30),

(ca
- 9naa

fl) 3̂ + yffii JT, + y'H& + JSi^ -
O...(31).

Of these (24), (26), (28), (30) give immediately the values of # ,
HZJ

KO> %*r which are the same as to the second order of approximation,

and the substitution of these values in (27), (29), (31) determines

HK JKlt jfiT$ as quantities of the third order. The remaining equation

(25) serves to determine n. We find as correct to this order
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If y2
=

0, this result will be found to harmonize with (9) 67, when, the

differences of notation are allowed for, and the first approximation to n
is substituted in the small terms.

The vibration above determined is that founded upon (21) as first

approximation. The other mode, in which approximately fa = 0, can

be investigated in like mariner.

If V be an even function both of fa and <
2 , y15 y2 , y> ^ vanish, and

the third approximation is expressed by

// =
0, H, = 0, H, = -W/^ - 9nX) ;

Indeed under this condition fa vanishes to any order of approxi
mation.

These examples may suffice to elucidate the process of approximation.
An examination of its nature in the general case shews that the

following conclusions hold good however far the approximation may be

carried.

(a) The solution obtained by this process is periodic, and the

frequency is an even function of the amplitude of the principal
term (#,).

(b) The Fourier series expressive of each coordinate contains

cosines only, without sines, of the multiples of nt. Thus the whole

system comes to rest at the same moment of time, o.g.
= Q, and then

retraces its course.

(c) The coefficient of cos rnt in the series for any coordinate is of

the rth order (at least) in the amplitude (//,) of the principal term,

For example, the series of the third approximation, in which higher

powers of ff
l than H-f are neglected, stop at am ftnt

(d) There are as many types of solution an degrees of freedom
;

but, it need hardly be said, the various solutions are not superpoaable.

One important reservation has yet to be mado. It ban been
assumed that all the factors, such as

(<j,
- 4^X) in (30), aj* %ite, that

is, that no coincidence occurs between a harmonic o the actual

frequency and the natural frequency of some other mode of infinitesimal

vibration. Otherwise, some of the coefficients, originally assumed to

be subordinate, e.g. JT2 in (30), become infinite, and the approximation
breaks down. Wo are thus precluded from obtaining a nolution in

some of the case where we should moat deniro to do so,

As an example of thi failure we may briefly notice the graveHt
vibrations in one dimension of a gas, obeying Boyle's law, and
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contained in a cylindrical tube with stopped ends. The equation to be

satisfied throughout, (4) 249, is of the form

\faj

and the procedure suggested by the general theory is to assume

y = x + y + yl cos nt + y2 cos %nt + ...
,

where y = /jT01 sin a; +^ sin 2# + ZT^ sin 3# + ...,

2/j
= #n sin x + H1St

sin 2#

2/2
=

jfi^ sin x + jBTja sin 2as w

and so on. In the first approximation

y x + Hu sin x cos nt,

with = 1. But when we proceed to a second approximation, we find

still with n equal to 1, so that the method breaks down. The term

//aa sin 2as cos %nt in the value of y, originally supposed to be subordinate,

enters with an infinite coefficient.

It is possible that we have here an explanation of the difficulty of

causing long narrow pipes to speak in their gravest mode.

The behaviour of a system vibrating under the action of an

impressed force may be treated in a very similar manner. Taking, for

example, the case of two degrees of freedom already considered in

respect of its free vibrations, let us suppose that the impressed

forces are

so that the solution to a first approximation is

-

With substitution of p for n equations (22), (23) are still applicable,

and also the resulting equations (24) to. (31), except that in (25) the

left-hand member is to b multiplied by Jfft and that on the right El
is

to be substituted for zero. This equation now serves to determine Hly

instead of, as before, to determine n.

It is evident that in this way a truly periodic solution can always

be built up. The period is that of the force, and the phases are such

that the entire system comes to rest at the moment when the force is

at a maximum (positive or negative). After this the previous course

is retraced, as in the case of free vibrations, each series of cosines

remaining unchanged when the sign of t is reversed.



NOTE TO 273*.

A METHOD of obtaining Poisson's solution (8) given by Liouville 2
is

worthy of notice.

If r be the polar radius vector measured from any point 0, and the

general differential equation be integrated over the volume included

between spherical surfaces of radii r and r + dr, we find on transforma

tion of the second integral by Green's theorem

in which X = //<d[flr, that is to say is proportional to the mean value

of < reckoned over the spherical surface of radius r. Equation (a) may
be regarded as an extension of (1) 279 ; it may also be proved

from the expression (5) 241 for Va
< in terms of the ordinary polar

co-ordinates r, 0, <o.

The general solution of (a) is

where x ai*d # are arbitrary functions ; but, as in 279, if the pole be

not a source, x (^0 + ^
(
at

) >
80

It appears from (y) that at 0, when r=0, X =s
2x' (4), which is

therefore also the value of 4ir</> at at time t. Again from (y)

or in the notation of 273

By writing a/ in place of r in (5) we obtain the value of 2/ (at), or

,
which agrees with (8) 273.

1 This note appeared in the first edition.

Liouville, torn. i. p. 1, 1856.



APPENDIX A.
(

307 \)

COKEECTION FOR OPEN ETO.

THE problem of determining the correction for the open end of a

tube is one of considerable difficulty, even when there is an infinite

flange. It is proved in the text
( 307) that the correction a is greater

than frrR, and less than (8/3ir) R. The latter value is obtained by

calculating the energy of the motion on the supposition that the velocity

parallel to the axis is constant over the plane of the mouth, and

comparing this energy with the square of the total current. The actual

velocity, no doubt, increases from the centre outwards, becoming infinite

at the sharp edge ;
and the assumption of a constant value is a some

what violent one. Nevertheless the value of a so calculated turns out

to be not greatly in excess of the truth. It is evident that we

should be justified in expecting a very good result, if we assume an

axial velocity of the form

r denoting the distance of the point considered from the centre of the

mouth, and then determine
/u.
and ft'

so as to make the whole energy k

minimum. The energy so calculated, though necessarily in excess, must

be a very good approximation to the truth.

In carrying out this plan we have two distinct problems to deal with,

the determination of the motion (1) outside, and (2) inside the cylinder.

The former, being the easier, we will take first.

The conditions are that $ vanish at infinity, and" that when # = 0,

d^/dx vanish, except over the area of the circle r = R, where

d<t>ldx**l+ f*,r>l& + p!i
A
lir .................. (1).

Under these circumstances we know ( 278) that

where p denotes the distance of the point where
<j>

is to be estimated

from the element of area da-. Now

1 This appendix appeared in the first edition.

* The density of the fluid is supposed to be unity.
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if P represent the potential on itself of a disc of radius ft, whose

density = 1 + fjn^/JR* + //r
4
/^

4
.

The value of P is to be calculated by the method employed in the text

( 307) for a uniform density. At the edge of the disc, when cut down
to radius a, we have the potential

20/ta
8 356 ftV /QN

and thus

f. 14 5 , 314 , 214 ,
89

,

|
1 +

15'
1+

lT /i+ 525'*
+
675'

t
'
t+

825'
A

on effecting the integration. This quantity divided by TT gives twice

the kinetic energy of the motion defined by (1).

The total current

^ + $rt ........ (5).

We have next to consider the problem of determining the motion of

an incompressible fluid within a rigid cylinder under the conditions

that the axial velocity shall be uniform when x = - oo , and when x =

shall be of the form

d<t>/dx
= 1 + i^lW + /xV

4

/^.

It will conduce to clearness if we separate from
</>,

that part of it which

corresponds to a uniform flow. Thus, if we take

\f/
will correspond to a motion which vanishes when x is numerically

great. When ,T = 0,

<^/eto = /*(r-.i)-|./(f*-J) .................. (6),

if for the sake of brevity we put R 1.

Now
\l/ may be expanded in the series

^-S^^^(pr) ..... , ......... .. .......... (7),

where p denotes a root of the equation

Each term of this series satisfies the condition of giving no radial

1 The numerical values of the roots are approximately

ft- 8*881705, ^8
* 7-015, ft 10174,
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velocity, when r = 1
;
and no motion of any kind, when x = oo . It

remains to determine the coefficients ap so as to satisfy (6), when # = 0.

From r = to r = 1, we must have

/* (r*
-

1) + ^ (i-
-

J),

whence multiplying by /" (pr) rdr and integrating from to 1,

every term on the left, except one, vanishing by the property of the

functions. For the right-hand side we have

so that

The velocity-potential <jf>
of the whole motion is thus

the summation extending to all the admissible values of p. "We have

now to find the energy of motion of so much of the fluid as is included

between x 0, and x = - ?, where I is so great that the velocity is there

sensibly constant,

By Green's theorem

2 (kinetic energy) = P < ^ 27ir rfr (a?
= 0)

-
J

<

-^
27rr dr (x = -l).

Now, when a? = I,

so that the second term is irf(l + ^/u-
+ J/*')

a
-

In calculating the first term, we must remember that if pl
and p

be two different values of jp,

f

X

70
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Thus

Accordingly, on restoring E9

2 (kinetic energy) irl&l (1 + J/x + J/w.')
2

To this must be added the energy of the motion on the positive side

of x = 0. On the whole

2 kinetic energy * 16_ f / _8\>
(current)" irS"

*
a-.fi (1 f

/
+ /*')* r ^

\ 2>VJ
7

(current)" irS" a-.fi (1

8 1 + HM + A^ + */*' + *w'

Hence, if a be the correction to the length,

By numerical calculation from the values of p

2jtr
5 = -00128266

; :%>-'
- 8S^-

7 = -00061255,

S^5 -
16SJP-

7 + 64rS2t?-
9

-00030351,

and thus 37ra/8j5
=

[1 + -9333333/x 4- -5980951 p!

+ -2622728 ^
3 + -363223^ + -1307634 ^'^(l + J/* +

-0666667 /x 4- '0685716/- -Q122728 yt- -029890^ - -0196523^
(1 + ^ +w

..................... (11),

The fraction on the right is the ratio of two quadratic functions of

ft, p, and our object is to determine its maximum value* In general if

S and Sf

be two quadratic functions, the maximum and minimum values

of z = S+S' are given by the cubic equation

- Az*-8 + #-8 - <S>'ar
l + A' 0,

where S - a/x
a + 6/fl

-f- c 4- ^t' -t- 2^r/x 4- 2A-/^',

^' = <*V -I- 6>
/f + c' + 2/V + 2^> + 2A>/>

j ~f*) a! 4- (ca-^) V 4* (ai
-
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and 0', A', are derived from and A by interchanging the accented and

unaccented letters.

In the present case, since S' is a product of linear factors, A' =
;

and since the two factors are the same,
' = 0, so that z = A -r simply.

Substituting the numerical values, and effecting the calculations, we
find z = -0289864, which is the maximum value of the fraction consistent

with real values of /* and /*,'.

The corresponding value of a is -82422 E, than which the true

correction cannot be greater.

If we assume // = 0, the greatest value of z then possible is '024363,

which gives

a = -828146 R\

On the other hand if we put ^ = 0, the maximum value of z comes

out -027653, whence

a = -825353 R.

It would appear from this result that the variable part of the

normal velocity at the mouth is better represented by a term varying
as r*, than by one varying as r2.

The value a *8242 R is probably pretty close to the truth. If the

normal velocity be assumed constant, a = -848826 R ;
if of the form

1 4- /xr
2
,

a = '82815 R, when /x is suitably determined ; and when the

form 1 + /xr
3 + pfr

4
, containing another arbitrary constant, is made

the foundation of the calculation, we get a = -8242 J?.

The true value of a is probably about -82 R.

In the case of /*
= 0, the minimum energy corresponds to pf = 1*103,

so that

On this supposition the normal velocity of the edge (r
= R) would

be about double of that near the centre.

1 Notes on BesseTs functions. Phil. Mag. Nov. 1872.
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End, correction for open, n. 487

Energy emitted from vibrating spherical

surface, n. 252

kinetic, i. 96

law of, verified in reflection, u. 85

of spherical waves, n, 112

* >, , when confined in &

conical tube, xx.

113

Energy, potential, i. 92

,, of condensation, n. 17

bending, i. 256

transmission of energy in plane

aerial waves, n. 16

Equal roots of determinantal equation,

1.109

Temperament, x. 11

Equations, Lagrange'a, i. 100

Equilibrium theory, 1. 133

Fabrics, interference of partial reflections

from, u. 311

passage ofsound through, xx. 311

Faraday's investigations on crispationa,

XL 346

Fatigue of ear, u. 446

Format's principle of least time, xx. 126

Fifth, i. 8

beats of, n. 464

Flame, reflection of sound from, xx. 83

sensitive for diffraction experi

ments, xi. 141

Flames, sensitive, xx. 400

singing, xx. 227

,, SondhausB' experiments

upon, n. 227

Fluid, perfect, n. 1

Fog signals, xx. 187

Force applied at a single point, x. 184

at one point of elastic solid, xx.

425

Forced electrical vibrations, x. 485

,, vibration, x. 46, 68, 145

it of string, x, 192

Fork for intermittent illumination, x. 84

electric, x. 65

,, ideal, x. 58

opposing action of two prongs, n.

806

Forks for experiments on interference,
nt. 117

tuning-, i* 59

Fountain, disturbed by electricity, xx. 369
Fourier's solution for trantvem vibra

tion* of bars, x, 802

Theorem, x* 25

Fourth, x. 8

beats of, xx. 465

Free vibration, x. 46, 74, 105, 109

Frequency, i. 7

Table of, X. 11
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Fresnel's expressions for reflected and

refracted waves, n. 82

zones, n. 119

Friction fluid, n. 312

Functions, normal, 1. 118

Galleries, whispering, 11. 127

General equations of aerial vibration, n.

97

free vibration, 1. 138

Generalized Coordinates, i. 91

Grating circular, n. 142

Greeks investigation of reflection and

refraction, 11. 78

theorem, Helmholtz's extension

of, n. 144

Groups of waves, i. 301

Gyrostatic terms, x. 104

Harmonic curve, i. 21

echoes, n. 152

scale, x, 8

vibrations, i. 19, 44

Harmonics, x. 8, 12

Harmonies, beats of imperfect, n. 467

Harmonium, absolute pitch by, i. 88

Harp, ^Bolian, i. 212 ; n. 413

Head as an obstacle, n. 442

Heat, analogy with fluid motion, n. 13

conduction, effects of, n. 321

,, maintenance of vibrations by
means of, 11. 224

Heats, specific, it. 20

Heaviside's theory of electrical propaga
tion in wires, i. 467

Helmholtz's extension of Green's theo

rem, xi. 144

reciprocal theorem, n. 145

Hooke's law, x. 171

Huygens' principle, n. 119

Hughes' apparatus, i. 453

Hydrogen, bell sounded in, n. 239

flames, n. 227

Impulses, i. 96

number necessary to define

pitch, ix. 452

Incompressible fluid, n. 9

Induction balance, x. 446

Inductometer, i. 457

Inertia, lateral, of bars, i. 251

Inexorable motions, i. 149

Infinities occurring when n-f /*TC7=0, ix.

398

Initial conditions, i. 127

Instability, i. 75, 143

,, of electrified drops, n. 374

,, jets, n. 360

,, vortex motion, n. 378

Intensity, mean, i. 39

Interference, i. 20

Intermittent Illumination, i. 34

vibrations, i. 71, 165 ; n. 440

Interrupter, fork, i. 68, 455

Interval, smallest consonant, n. 451

Intervals, i. 7, 8

Inversion of Intervals, i. 8

Irrotational motion, n. 10

Jet interrupter, i. 456; n. 368

Jets, Bell's experiments, u. 368

,, Bidone'a observations, n. 356

instability of, n* 361

, , instability of, due to vorticity ,
n. 380

,, Savart's observations upon, n. 363

.wave length of maximum instabi

lity, n. 361

,, under electrical influence, u. 369

,, used to find the tension of recently

formed surfaces, n. 359

,, varicose or sinuous?, xx. 402

.
, vibrations about a circular figure, n.

357

Kaleidophone, i. 32

Kelvin's Theorem, i, 99

Kettle-drurm, x. 348

Key-note, x. 8

Kinetic energy, i, 96

Kirchhoff's investigation of propagation
of sound in narrow tubes, n. 319

Koenig's apparatus for absolute pitch,

i.85

Kundt's tube, n. 47, $7, 333

Lagrange's equations, i. 100

theorem in fluid motion, xi. 6

Laplace's correction to velocity of Sound,
n. 19, 20

,, functions, applications of, n. 236

Lateral inertia of bars, i. 251

,, vibrations of bars, i. 255

Leconte's observation of sensitive

flames, n. 401
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JLesiic's experiment of bell struck in

hydrogen, n. 239

Leyden and electromagnet, i. 434

Liouville's theorem, i. 222

Liquidcylinderandcapillaryforce, n. 352

Lissajous' Figures, i. 28

phenomenon, n. 349

Load carried by string, i. 53

Loaded spring, i. 57

Longitudinal Vibrations, i. 242

Loudness of Sounds, i. 13

Low notes from flames, n. 228

Maintenance of aerial vibrations by heat,

ii. 226

,, vibrations, i. 79, 81

Mass, effect of increase in, i. Ill

Melde's experiment, i. 81

Membranes, boundary an approximate

circle, t. 337

Bourget's observations on,

i. 347

circular, i. 318

,, elliptical boundary, i. 343

,, forced vibrations, i. 349

,, form of maximum period,

i. 341

loaded, i, 334

,, nodal figures of, i. 331

,, potential energy, i. 307

,, rectangular, i, 307

,, triangular, x. 317

Merstmne's laws for vibration of strings,

i. 182

Microscope, vibration, i. 34

Modulation, 1. 10

Moisture, effect of, on velocity of Sound,

n, 30

Motional forces, i. 104

Motions, coexistence of small, i. 105

Multiple sources, n. 249

Multiply-connected spaces, n. 11

Mufdcal sounds, i. 4

Narrow tubes, propagations of sound in,

n. 319

Nodal lines for circular membrane, x. 331

,, >F rectangular membrane,
i. 814

f ,
of square plates, t. 374

meridians of bells, i, 389, 391

Node* end Loops, IT. 61, 77, 400

Nodes of vibrating strings, i. 223

Normal coordinates, r. 107

functions, i. 118

,, ,,
for lateral vibrations

of bars, r. 262

Notations, comparison of (elasticity),

i. 353

Notes and Noises, i. 4

Tones, i. 13

Obstacle, cylindrical, n. 309

,, in elastic solid, IT. 420

,, linear, n. 423

,, spherical, i. 272

Octave, Beats of, u. 464

,, corresponds* to 2 : 1, i. 7, 8

Ohm's law, exceptions to, n. 443

One degree of freedom, i. 43

Open end, condition for, n. 52, 19G

,, ,, correction for, n. 487

,, experiments upon correction

for, ii. 201

Order, vibrations of the second, n. 480

Organ -pipes, n. 218

influence of wind in dis

turbing pitch, ii. 219

,, maintenance of vibration,

ii. 220

,, mutual influence of, n, 222

,, overtones of, n. 221

Ovcrtoiiou, i. 13

absolute pitch by, i. 88

,, best way of hearing, n. 446

Pendulous vibration, x, 19

Period, 1. 19

,, calculation of, i. 44

Periodic vibration, x, 5

Periods of free vibrations, i. 109

,, lateral vibration of IWVH, t. 277

,, for rectangular nwiuhrauc, j. 31 1

,, stationary in value, i. 109

Permanent type, wavon of, n. 82

PermBtanoOB, theorem respecting, i. 126

Phase, i, 19

,, doonit influence quality? n. 467,

469

Phases at random, i, SO

Phonograph, n, 478

Phonic wheel, L 67

Pianoforte atring* i, 191

Pisa Baptistery, roBonaneo in, n, 128
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Pitch, i. 4, 13

,, absolute, i. 85

estimation of, n. 433

,, high, bird-calls of, n. 411

,, number of impulses necessary for

definition of, n. 452

,, range of audibility, n. 432

related to Frequency, i. 6

standard, i. 9

Plane waves of aerial vibration, n. 15

,, reflection of, n. 427

Plateau's theory of jets, n. 364

Plate plane, i. 404

,, vibrating circular, reaction of air

upon, n. 162

Plates, circular, i. 359

,, clamped edge, i. 367

,, comparison with observation, i.

362

,, conditions for free edge, i. 357

curved, i. 395

,, gravest mode of square, i. 379

Kirchhoff 's theory, i. 363, 370

,, nodal lines by symmetry, i. 381

,, oscillation of nodes, i. 365

, , potential energy of bending, i. 353

,, rectangular, i. 371

,, theory of a special case, i. 372

,, vibrations of, i. 352

Point, most general motion of a, of a

ayetem executing simple vibrations,

n. 479

PoiHson'H integral, u> 38, 41

,, Bolutiou for arbitrary initial

disturbance, n. 99

Porous walk, n. 328

Potential wiergy. i. 92, 353

,, of bonding, x. 256

PresBuro, equations of, n. 2, 14

Probability of various resultants, i, 4.1

Pi'ogi'UHBive WUVOH, i. 475

,, ,, Hubjoct to damping,
i. 232

Propagation of Hound in water, i, 3

Quality of Hounds, i. 13; it. 467, 469

Quincke'H tubcB, n. 210

diation, effect of, on propagation oi
1

Hound, n, 24

atikineV calculation of HpeeUu: heats,

n. M

Beaction at driving point, i. 158

of a dependent system, i. 167

Bocipiocal relation, i. 93, 95, 98, 150

,, theorem, n. 145

Bectaiigular chamber, n. 70, 156

,, membrane, i. 307

,, Plate of air, n. 74

Beed instruments, n. 234

interrupter, i. 457

Beflection and refraction of plane waves,

ii. 78

from a corrugated surface, n.

89

,, ,, plate of air of finite

thickness, n. 87

,, porous wall, n. 330

,, ,, curved surfaces, n. 125

,, strata of varying tempe

rature, ii. 83

,, ,, wall, ii. 77

,, of waves at a junction of two

strings, i. 234

,, ,, waves in elastic solid, n. 427

total, n. 84

Befraction, atmospheric, n. 130

by wind, n. 133, 135

Begnault's experiments on specific

heats, ii. 23

Besistance, i. 160, 437

forces of, i. 137

generalised, i. 449

,, of wires to alternating cur

rents, i. 464

BeBonance, i. 70

,, cases, i. 59

,, in buildings, n. 128, 333

multiple, n. 189

Besormtor, n. 447

absorption of Sound by, n. 209

,, and double source, n. 214

close to source, n. 211

,, excitation by flames, ii. 227

of, ix. 218

,, experiments upon pitch of,

n. 203

forced vibration of, n, 395

,, loss of energy from, n. 193

,, two 01 more, ir. 215

BoaonatorK and forks, i. 85

comparison with experiment, .

ii. 187

,, natural pitch of, n. 174
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Besonators, repulsion of, n. 42

theory of, xx. 170

Biemann's equations, xx. 39

Bijke's Sound, n. 232

Bing, vibrations of, i. 383

Bings, circular, vibrations of, i. 304

Bipples, used for determination of capil

lary tension, n. 346

Boots of determinantal equation, 1. 139

Bouth'e theorems, 1. 140

Sand, movements of, I, 368

Savart's observations upon jets, n. 363,

371

Second approximation, i. 76, 78
;
n. 480

,, order, phenomena of, a. 41

Secondary circuit, influence of, i. 160,

437

,, waves, due to variation of

medium, n. 150

Self-induction, x. 160, 487, 434

Sensitive flames, n, 400

jets of liquid in liquid, n. 406

Shadow caused by sphere, n. 255

,, of circular disc, n* 148

Shadows, xx. 119

Shell, cylindrical, i. 884

effect of rotation, i. 887

,, observations by Fenker, i. 887

,, potential and kinetic energies, i.

385

,, tangential vibrations, i. 888

Shells, i. 895

conditions of ^extension, x. 898

conical, x. 899

cylindrical, potential energy, i.

408

,, extensional vibra-

tions, i. 407

potential energy of bending, i,

411

flexural and extensional vibra

tions, i, 896

normal inextensionai modes, i.

401

spherical, x. 401, 417, 420

Signal^ fog, n, 185

Silence, points of, due to interference,

n. 116

Similarity, dynamical, xx, 410, 418, 429

Singing iame, xx. 227

Smoke jefca, sensitive, XL 401

Smoke jets, periodic view of, n. 405

Solid bodies, vibrations of, n. 415

elastic plane waves, n. 416

limited initial disturbance, n. 417

small obstacle in, n. 420

Sondhauss' observations upon bird-calls,

n. 410

Sonometer, i. 183

Sound, movements of, i. 368

Source, linear, n. 421

of harmonic type, n. 105

,, of sound, direction of, n. 441

Sources, multiple, n. 249

simple and double, xx. 146

Sparks forintermittent illumination,!. 34

Speaking trumpet, n. 113, 138

,, tubes, x. 8

Specific heats, n. 20

Sphere, communication of motion to air

from vibrating, n. 828

,, obstructing, on which plane

waves impinge, xx. 272

pressure upon, n. 279

Spherical enclosure, gas contained with*

in a, xx, 264

waves, energy propagated, xx,

112

harmonics, table of zonal, xx.

251

sheet of gas, xx, 285

,, ,, transition to two dimen

sions, xx. 296

waves, xx, 109

Spring, i. 57

Standard of pitch, x. 9, 60

Standing waves on running water, xx* 850

jets of liquid in liquid, xx, 406

Statical theorems, x, 92, 95

Steel, velocity of eoouad in a wire of, x.

245

Steps, reflection from, xx. 458

Btokee, investigation of communication

of vibration from sounding

body to a gas, xx. 289

on effect of radiation on propa

gation of Sound, xx. 24

theorem, i, 128

Stop-cock, effect of, in disturbing s^nai*

tive flames, n. 404

Stream-function, n. 4

Striationa in Kundt's tubes, xx* 47

String, employed in experiment* on the
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analysis of sounds by the ear,

i. 191 ; n. 444

String extremities not absolutely fixed,

1.200

finite load, i. 204

forced vibrations of, i. 192

,, imperfect flexibility, i. 239

, , mass concentrated in equidistant

points, i. 172

nodes under applied force, i. 223

,, normal Modes, 1. 185

of pianoforte, i. 191

variable density
?

i. 115, 215

,, partial Differential Equation, i,

177

, , propagation ofwaves along, i. 224

reflection at a junction, i. 235

Seebeok's observations, i. 184

,, stretched on spherical surface,

1.213

tones form a musical note, 1. 181

,, transverse vibrations of, i. 170

values of T and V, i. 178

,, vibrations started by plucking, i.

188

,,ablow,i.!88

,, violin, i, 209

with load, i. 58

,, two attached masses, 1. 165

Stroboscopio disc, i. 85
;
n. 407

Strouhal's observations upon ffiolian

tones, n. 418

Sturm'B theorems, i. 217

Subsidence, rates of, 1. 188

Summation-tone, n. 459

Superposition, principle of, i. 49

Supply tube, influence of, in sensitive

flames, n. 229

Syren, i. 5
;
n. 469

,, for determining pitch, i. 9

Telephone experiment on conducting

screen, i. 460

,, minimum current audible,

x. 473

plate, i. 867

(see Electricity), theory of,

i. 471

Temperament, i* 10 ; 11. 445

equal, x. 10

Temperature, effect of, in altering vis

cosity, n. 408

Temperature, effect of, on forks, i. 60,

86

influence on velocity of

sound, n. 29

Tension, capillary, determined by me
thod of ripples, n. 346

Terling bells, i. 393

Theory, Helmholtz's, of audition, n.

448

Third, i. 8

major, beats of, n. 465

Time, principle of least, n, 126

Tone corresponds to simple vibration,

i. 17; n.447
Tones and Notes, 1. 13

pure from forks, i. 59; n. 463

Tonio, i. 8

Tonometer, Scheibler's, i. 62

Torsional vibrations of bars, i. 253

Transformation to sums of squares, i.

108

Transition, gradual, of density, i. 235

Transverse vibrations in elastic solids,

n. 416

Trevelyan's rocker, n. 224

Triangular membrane, i. 317

Trumpet, speaking, 11. 113, 138

Tube, unlimited, containing simple

source, n. 158

Tubes, branched, n. 65

Kundt's, n. 47; n. 334

rectangular, n. 78

,, variable section, n. 67

,, vibrations in, n. 49

Tuning by beats, i. 23

Twelfth (3 : 1), I. 7

Two degrees of freedom, i. 160

Tyndall's high pressure sensitive flame,

n. 401

Type, change of, n. 84

Variable section, tubes of, n. 67

Vehicle necessary, 1. 1

Velocity and condensation, relation be

tween, 11. 15, 35

,, in Air, i. 2

independent of Intensity and

Pitch, i. 2

t, minimum, of waves on water,

n. 846

of sound, dependent on tempe

rature, n. 29
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Velocity of sound in air, observations

upon, n. 47

,, in water, n. 30

Laplace's correction,

n. 19, 20

,, Newton's calculation,

n.18

potential, u. 4, 8, 15

Velocities, system startedwith given, i. 99

Vibration, forced, i. 63

Vibrations, forced and free, i, 49

of the second order, n. 480

Violin string, i. 209

Viscosity, analogy with elastic strain,

n. 313

denned, n. 312

, ,
narrow tubes with small, u. 325

of air, it. 313

varied by temperature, u. 408

Viscous fluid, propagation of plane waves

in, n. 315, 322

,, threads of, ir. 375

,, transverse vibrations in,

n. 317

Vortex motion and Bonsitive jets, n. 376

Vortices in Kundt's tubes, n. 340

Vorticity, case of stability, n. 384

,, general equation for stratified,

n. 383

,, layers of uniform, n. 385

Vowel A, Hermann's results, n. 475, 476

Vowels, artificial, n. 471, 477, 478

investigated by phonograph, H.

474

, , pitch of characteristic, two theo

ries, n. 473

presence of prime tone, n. 477

question of double resonance,

n. 477

Wheatstone and HelmholtssX

n. 472

,, Willis's experiments and theo

ries, n, 470

Wall, porous, n, 328

reflexion from fixed, n. 77, 108

Water, propagation of sound in, x. 3;

11.80

Water, surface waves on, n. 344

,, waves on running, n. 350

Waves, aerial, diverging in two dimen

sions, n. 304

dilatational, in an elastic solid,

ii. 416

diverging, n. 123

,, of permanent type, n. 32

on water, n. 344

plane, energy half potential and

half kinetic, n. 17

exact investigation of, n.

31

,, of aerial vibration, n. 15

,, of transverse vibration,

. 416

,, positive and negative, I. 227

progressive, i. 475

subject to damping,

1.282

,, secondary, due to variation of

medium, n, 150

t , npherical, n. 109

standing, on running water, n,

350

t , stationary, ju 227

two trains croBBWg obliquely,

ii. 76

Wheatstone'a bridge, x, 449

,, kaleidophone, i, 32

Wheel, phonic, i* 67

Whinpering galleries, n, 127

Whistle, steam, ii. 223

Whistling by the mouth, n. 221

Wind, refraction by, n. 182, 180

Windowa, how arfcsctM by explosions,

ii. Ill

Wires, conveyance of Hound by, i S, 261

,, electrical currents in, x. 464

Young'n moduluB, L 243

theorem regarding vibrations of

Btringa, x. 187

Zonal spherical harmonicn, n, 251

^onen of Huyg^na or l^rennel, TCL 110,

141
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