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energy potentialized at the pinhole. Each new increment is added to the
stored energy or may also be withdrawn from it.
The results for cases in which the primary or secondary, or both primary

and secondary are removed, the pipe being tuned for each case, separately,
were unsatisfactory. With the primary only in circuit (secondary re-
moved) a distinctly higher pitch was heard, though the pipe depth is
about the same. In this case and when both I and II are cut out, the
graphs have definite crests and are, as a whole, more curvilinear than the
preceding. With II only in place, the largest fringe displacements, s,
obtainable are too small to be of service. In fact, taken together, these
graphs are, throughout, small in their s values, as compared with figures
2 and 3 with both I and II in place; and the latter, in turn of 4-5 times
less sensitivity than the earlier graphs (loc. cit.) for a completely separated
printary and secondary. The marked tendency to preserve linear progress
in the present cases has, however, been put in evidence.

* Advance note from a Report to the Carnegie Institution of Washington, D. C.
1 These PROCZZDINGS, 13, 1927, p. 87.
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This paper continues my endeavor to show that certain ideas embodied
in the dual theory of electric conduction within metals are capable of
illuminating the field of electronic emission.

It is probable that nearly every one who has undertaken to discuss the
behavior and functions of "free" electrons within metals has begun by
assuming these electrons to share the energy of thermal agitation. This
assumption is suggested by the general kinetic theory of the solid state,
and is supported by the behavior of electrons that have been emitted by
hot metals. It is embodied in the ordinary formulas, differing from each
other only by a constant factor, for electric conduction by means of free
electrons within metals. Only very powerful evidence or argument should
be accepted as upsetting this general pre-supposition.

Nevertheless, workers in thermionic emission have seemed disposed,
too hastily I think, to admit this disturbing change of conception. Ac-
cordingly, I shall here present and comment upon the various considera-
tions that, so far as I know, have been most influential in forming opinion
on the question at issue:
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(a) Richardson, on p. 34 of his "Emission of Electricity" (1916), says
that "the optical properties of metals lead us to conclude that the number
of free electrons present in them is quite large, and if this large number of
electrons possessed the kinetic energy which the classical dynamics endows
them with, the specific heats of metals would be very much larger than
those actually observed." This is, I believe, substantially equivalent
to saying that we cannot explain metallic electric conduction by means
of free electrons only without getting into difficulties over specific heats,
But the dual theory of conduction attributes a relatively small share

of this operation to the free electrons. Moreover, the general conception
as to the effectiveness of a single free electron in conduction has, I think,
changed since the passage quoted from Richardson was written. I be-
lieve, and I am not alone in believing, that the conclusions to be drawn
from the optical properties of metals are by no means unmistakable.

(b) Experiments like those of Davisson and Germerl indicate that the
amount of energy needed to maintain a given thermionic emission current
is greater than it would be if all the emitted electrons entered the emitting
filament as free electrons sharing the energy of thermal agitation.
But I have shown2 that, according to the dual theory of conduction,

most of the emitted electrons enter the emitting filament in the "associated"
conductive state, without thermal energy. If this view of the matter is
taken, there is no need of assuming that the free electrons also within the
metal lack energy of thermal agitation. I believe that the same considera-
tion will explain the evidence3 which has inclined Millikan to the view
that most of the conductive electrons do not have thermal energy.

(c) Finally we have the measure of success, whatever it may prove to
be, attained by Dushman and others in calculating the value of the con-
stant A, in Richardson's emission equation,

bo
I = AT2e T, (1)

by means of Nernst's "third law"-and the quantum theory.
But Bridgman4 has subjected Dushman's argument to a thorough

criticism, and, though he is disposed to admit that the calculated value of
A may prove to be approximately correct in the case of all pure metals,
he maintains that not all of Dushman's conclusions are justified.

In particular, Bridgman argues that Dushman's success in the case of
tungsten) where he treats the "surface heat" as zero, is no proof that this
heat is really zero. His conclusion is given as follows: "It is therefore
not necessary that the surface heat vanish in order that the emission
formula hold [with- Dushman's value of the 'universal constant' A1;
numerically it may be large or small provided only that it be proportional
to temperature."
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Bridgman defines "surface heat" as "the heat which must be absorbed
by the system to maintain it isothermal when one unit of electricity is
added to the surface." Now, according to the dual theory of conduction,
as I showed5 some years ago, this surface heat is due to the ionization
which occurs at the surface, in accordance with the mass law of chemical
equilibrium, when a positive charge (taking away of free electrons) is
added there. Accordingly the surface heat at any temperature should be
proportional to what I have called the heat of ionization within the metal
and have indicated, per electron freed, by the symbol X' in the equation

X'='X+skT, (2)

given as equation (3') in my "Summary"6 printed six years ago. I have
thus far taken X' and s in this equation as constants, though it is possible,
as will be shown later, that s should be regarded as a slowly changing
function of teiiiperature. The value of )' given for tungsten in the paper
referred to is 40k, while that of s is 11.4. Accordingly, if we take T as
20000, a reasonable temperature for emission experiments on tungsten,
we find that the second term in the value of Xc, which term is proportional
to T, is 570 times the value of the constant Xc. I attach na great im-
portance to the particular values of X and s here given for tungsten, as
they were derived from somewhat conjectural data and should be regarded
as tentative; but apparently equation (2), which I have used as one of
the fundamental formulas of the dual-conduction theory, may, for approx-
imate purposes at least, be regarded as indicating a "surface heat" pro-
portional to the temperature and so, according to Bridgman's argument,
held consistent with the practical correctness of equation (1), with Dush-
man's value of A, in the case of tungsten.
There is one other particular in which recent discussion seems favorable

to one of my cherished notions. Equation (1) of the "Summary" already
referred to is

n = zT", (3)

where n is the number of free electrons per unit volume within a metal,
while z and q are constants characteristic of the metal. Values of q as given
in the "Summary" for eighteen metals, including two alloys, range from 1.2
for iron and bismuth to 1.6 for nickel, palladium and platinum, the average
value being 1.47. Now the tendency in current treatment of emission
is to establish Richardson's equation (1) of this paper, in preference to his
older formula containing T0O5 instead of T2. But Richardson, on p. 34
of his "Emission of Electricity" (1916), writes that, "if ni [meaning the
same as my n] is proportional to T' 5 and 4 is independent of T,

I=(0I = A2Tle - I,
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provided we keep to the "classical kinetic theory" concerning conditions
within the metal. That is, Richardson in the passage referred to recognized
that, if the classical theory held, as he had apparently assumed at first,
the acceptance of equation (4) implied the relation

n = zT1-5, (5)

for the number of free electrons per unit volume within a metal, z being a
constant. Comparing this with my equation (3) above, and remembering
that my mean value of q is very near 1.5, we find a degree of coincidence
that is rather impressive, especially in view of the fact that thermionic
literature in general gives little prominence to the idea that n increases
with rise of temperature.
What precedes is enough, I trust, to show that the dual-conduction theory,

including the classical kinetic conception as to the state of free electrons
within a metal, should be reckoned with in future discussions of electronic
emission. Furthermore, it should not be forgotten that this theory gives
very definite and simple explanations of the Volta effect and of the Peltier
effect, including that phase of it which Bridgman was surprised to find
within a single metal crystal. In addition it makes possible a clear defini-
tion of "electron affinity," otherwise a rather vague term.

But I can well go farther than this. Equation (1) of this paper is
recognized by Richardson and also by Bridgman as probably only an
approximation to the true formula of thermionic emission. I shall,
therefore, keeping to the classical kinetic conception of the free electrons
within a metal, and following in general that particular method of Richard-
son which begins on p. 33 of his "Emission of Electricity" (1916), under-
take to derive and discuss a form of emission equation that will embody
those concepts of the dual-conduction theory which find application here.

If we assume a condition of equilibrium between the free electrons
within a metal and the free-electron atmosphere outside the metal, we have
a perfectly simple case for the application of Boltzmann's distribution law.
That is, letting n be the number of electrons per unit volume in the surface
layer of the metal and n' the number in unit volume of space just outside
the surface, and defining "electron affinity" in this case as the amount of
work, w, done against resisting forces in the passage of one electron from
the free state within to the free state just outside the metal, we have

n' _W=keT. (6)
n

For n I shall substitute zT', according to equation (3) above. As to w,
I have in these PROcZZDINGS for August, 1926, given my reasons for re-
garding it as a constant, which I will here write as bok, minus (s- 2.5)kT,
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where s is the same as in equation (2) of the present paper. That is,
putting a for (s-2.5), we have

w = k(bo- aT). (7)

Thus from (6) we get, by means of (3) and (7),
(bo-aT) bo

n' = zThe T - EazTQe T (8)

According to Richardson's admittedly venturesome but generally
accepted assumption, there is no reflection of electrons from the outer
surface of the metal, so that N', the total number of electrons entering
unit area of the surface per second from without, is the same as the number
reaching this area per second from without. This number is, according
to the kinetic theory of gases, proportional to n' and to the square root of
the absolute temperature; that is,

N' = Fn'T0O5, (9)

where F is a constant, (k -. 27rm) 5, m being the mass of an electron.
The numericdl value of F is 1.56 X 105.
Now in the case of equilibrium this inflow must be offset by an equal out-

flow. It is, furthermore, assumed by Richardson and accepted by others
that, when equilibrium is upset by applying an external potential-gradient
sufficient tt7 prevent any outside electrons from returning to the metal,
the outflow of electrons from the surface is the same as in the case of
equilibrium conditions. Argument in favor of this assumption is found
in the fact that moderate increase of the potential-gradient beyond a
certain value does not increase the observed outflow. Accordingly, the
saturation current outflow, I, measured for unit surface area, is equal to
e times the N' of equation (9). That is,

I = Fen'T0O5. (10)

From (10) and (8) we get
bo

I = FeTazT(q+05) (11)

Putting A' for the product Feeaz, we get from (11)
bo

I = A 'T(q+05)eT. (12)

Equation (12) differs from equation (1) in having (q + 0.5) instead of 2
as the exponent of the T factor and in having instead of the constant
factor A the factor A', which may prove to be not altogether constant.
I shall presently discuss these differences at some length, but for the mo-
ment I wish to comment on the constant bo. This may be numerically
the same as Richardson's bo, each being defined as (1 *. k) times the value
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of w for T = 0. But Richardson (loc. cit.) in arriving at equation (1)
assumes w, his 4, to be independent of temperature, whereas I take its value
as expressed by equation (7).

It has become the fashion to discuss the claim of A in equation (1) to be
regarded as a "universal constant," the same for all pure metals. My
contribution to this discussion must involve a somewhat roundabout
argument. Going back to equation (11), which immediately preceded
the introduction of my A', I can, using equation (3), write

bo bo
I = Fe T - FeeGnT5en T, (13)

where Fe is a constant.
I shall deal with the question whether the factor FeeazT1, or its equiva-

lent Feean, is likely to be the same in different metals at the temperature T.
If I took q to have the same value, 1.5, for all metals, I should in this in-
quiry be asking whether Feeaz, which is the A' of equation (12), is a uni-
versal constant.
The definition which I have given to a is such that I can rewrite equation

(2) as
' = X' + (a + 2.5)kT. (14)

In this equation, 2.5kT is the heat energy which one electron, after the
process of ionization, possesses as a gas particle within the.metal. If
we denote by -y the amount of kinetic energy which this electron possessed
before the ionization and by i the amount of work done against resisting
attractions or repulsions in freeing the electron from the atom of which
it formed a part, we shall have

i = St + Xc + akT. (15)

The quantity i, if it needs a name, -may be called the work-function of ion-
ization within the metal. It is unnecessary for our present purpose to
attempt any evaluation of y. That part of it which represents energy
of thermal agitation is negligibly small, and accordingly y as a whole may
be treated as a constant. It is to be noted in passing that z may prove
to be the larger part, at ordinary temperatures, of i in equation (15).

It is one of the tenets of the dual-conduction theory that, when any two
metals a and ,B are joined at the same temperature, the total energy,
including the energy -y, of an "associated" electron, an electron capable
of taking part in what 1 call associated-electron conduction, is the same
in an atom of a as in an atom of ,B. This tenet7 was not first suggested by
but is strongly supported by the observed fact that, when a and ,B are
joined together, the photo-electric work function is the same for both.8

Accordingly, the total amount of energy required from without to take
an associated electron from an atom of j# to the free state in P, thence to
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the free state in a and thence to the associated state in, a, is zero. Let
the work required for the second step of this process be called wsa. Then
we have

(Xc + (a + 2.5)kT)p + wa - (X1 + (a + 2.5)kT)a = 0, (16)
or

Wa= (Ac)a- (X + (aa - a,,)kT. (17)

Now, as a rule, according to the values given in my "Summary," already
referred to more thau once, Xc is decidedly smaller than akT for any metal,
even at room temperature, though not to be ignored. At thermionic
emission temperatures, as I have already shown in connection with equa-
tion (2) in this paper, the value of X' may in the case of some metals be
negligibly small compared with skT and even compared with akT. If
we can in the case of a and # at high temperatures neglect the Xc terms
in the value of woa, we have from (17)

Wga = (aa- a8)kT. (18)

But evidently, na being the number of free electrons per tnit volume
in a and n, the corresponding number in ,B, we have by the Boltzmann
law

Woca
-at _ ~ kT (19)
np

and so, from (18)
n

n- , (20)
or

(eafl)a = (ean)e (21)

Accordingly, since the Fe of equation (13) is a universal constant, the
quantity Feean, or FeeazTP, of the same equation is, within the limits of
accuracy of the preceding argument, the same for metal a as for metal .

It is to be noted that, if a is zero and if q is 1.5, equation (13) reduces to
the form

bo
I= FezT2e T, (22)

which is equivalent to the Richardson equation that I have written as (1).
Richardson does, in fact, in that part of his "Emission" to which I have re-
ferred, take a as always zero and q as always 1.5 in getting this equation.
Accordingly, his A is my Fez of equation (22), and if A is to be taken as a
universal constant, Fe being undoubtedly such, z must also be a uni-
versal constant, and so zT065, the number of free electrons per unit volume,
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according to Richardson's assumptions here, must be the same for all
metals at the same temperatures. This seems an improbable conclusion.
We can avoid it in any one of three ways. We can give up the simple
classical kinetic conception as to the state of the free electrons within the
metal, in spite of the great advantages it offers in several respects, or we
can assume either that a is not always zero or that q is not always 1.5.
1 have made both of these saving assumptions.

In neither case was I influenced originally by any consideration of elec-
tronic emission. My assumption regarding q, as introduced in my adop-
tion of equation (3), was made in an endeavor to account for the known
facts of thermo-electric action. I brought in a, by making the value
of s in equation (2) greater than 2.5, for the purpose of enabling my theory
of dual electric conduction to account for the small temperature coefficient
of thermal conductivity as compared with the temperature coefficient of
electric conductivity. If I should be compelled to give up the attempt to
explain the experimentally known relations of these two conductivities
and to adopt the conception that thermal conduction in metals is carried
on wholly or mainly by means of elastic vibrations, I might drop the as-
sumption that a is not zero. But I feel very sure that in any case the
conception of q as not always 1.5 would remain, so long as I might try to
understand thermo-electric action.
With given values of I and bo the effect of introducing a, which is always

positive, is to reduce in equation (13) the factor zTV, which represents
the number of free electrons per unit volume within the metal. This
is as it should be; for the greater a is, with a fixed value of bo, the less is the
work, see equation (7), required to remove a free electron from inside to
outside the metal, and evidently the less this work the smaller the number
of interior free electrons required to maintain a given outflow I.

The particular values of a and q which I have published in my "Summary"
are entitled to no great confidence, even if my dual-conduction theory is
accepted as sound, for they were derived, as I have explained,9 from im-
perfect data taken for the temperature range from 00C. to 100°C. and by
a method lacking in strict accuracy. Nevertheless, I shall undertake to
apply them in one or two cases, largely for the purpose of finding what
values of n are likely to be indicated by the logic of this paper.
The constant Fe, which must appear in every case, has the numerical

value
1.56 X 105 X 1.59 X 10-20 = 2.48 X 10-1O.

Tungsten.-I have q = 1.48 and a = 11.4-2.5 = 8.9. From data given
by Dushman10 and his co-workers it appears that, in the case of tungsten,
if I is measured in absolute electromagnetic units, the bo of equation (1)
is about 52,640 and the A is about 6.02. In order, with the same value of
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bo, to make my equation (13) conform to the experimental data, I must
have

A'T9 = AT1"5 = 6.02T1.5,

whence, if we, for example, take T = 2000,

A' = 6.02 X 20000.02 = 7.01.

Then, from the definition of A',

z = 7.01 * Fee' = 7.01 +. (2.48 X 10-1f X 2.728.9) = 3.86 X 1011,

and, for T = 2000,
n = zT1-48 = 2.97 X 1016

Molybdenum.-I have here q = 1.3, a = 8-2.5= 5.5. From Dushman's
paper I find that the universal constant A is not quite so constant as one
might expect from its name. Its logio is given as 1.776 in the case of tung-
sten and 2.268 for the case of molybdenum, when I is measured in amperes.
When I is measured in absolute units, we have for A in the case of molyb-
denum the value of 18.5, about three times as great as for tungsten.

Accordingly, for molybdenum we get, taking T as 2000,

A' = 18.5 X 2000(.5-13) = 84.8.
Then

z = 84.8 * (2.48 X 10-15 X 2.725 6) = 1.40 X 1014.

And, for T = 2000,

n = zT1-3 = 1.40 X 1014 X 20001.3 = 2.74 X 101'.
I have no estimates of q and a for tantalum, the third metal dealt with

by Dushman.

The value of n at 20000 which I have arrived at by the method above
shown is about ninety times as great in the case of molybdenum as in the
case of tungsten. This ratio seems improbably large, in view of the fact
that the electric conductivities of the two metals are not very different;
but when due consideration is given to the possibilities of error in the
valuations of a, q and A, the ratio is not large enough to discredit seriously
the argument that led to it. I shall have something more to say on this
matter at the end of this paper.
On the other hand, even the value of n found for molybdenum at 20000

is surprisingly small, about 1 in 20,000 as compared with the number of
the atoms. From one point of view this outcome is gratifying, as, if ac-
cepted, it banishes all concern about the influence of the free electrons
on the specific heat of metals. But it raises at once the question whether
so small a number of electrons, and the corresponding number of ions
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can reasonably be supposed to provide the observed value of electric
conductivity.

This question may well be regarded as an open one at present. The
answer will depend upon the admissible length of that very dubious quan-
tity the "mean free path" of the free electrons within the metal and on the
conception which may ultimately prevail as to the exact manner in which
the ions function in facilitating the passage of electrons which are not free
in the ordinary sense. I do not insist, nor have I ever insisted, on any
particular mode as the one in which this influence must be exercised,
though I have more than once made suggestions which seemed to me at the
time to have some degree of plausibility regarding this matter. What
I have emphasized and would still emphasize is the great importance of
the ions as furnishing leeway, clearance space, terminal facilities, what-
ever the freedom indicated may best be called, for the movement of
"associated" electrons, singly or in files, to progress in the direction of the
imposed electromotive force, without maintaining a lock-step relation to
each other all around the circuit.

I have once or twice suggested in the preceding pages that the a of my
equations may not be strictly a constant. In fact, if equation (21) be
written in the equivalent form

(eazTl),,= (e zTl)p (23)

we see at once that, z being taken as a constant for each metal, aa and ap
cannot both be taken as constant unless q. = q1,. It is quite probable
that both a and q are variables in the case of every metal; for it seems un-
likely that equations so simple as (14), with )4 and a constant, and (3),
with z and q constant, should hold all the way from room temperatures
up to T = 20000.

I shall, however, for the present assume za, q,, z, and qe to be constants
through any range of temperature here dealt with, and accordingly I
shall put upon a the responsibility of changing with temperature in such
a way as to maintain equation (23). This requires the differential relation

d(a# - aa) = (qa.- q,)d log T, (24)

whence, if we integrate from T = 3250, approximately the temperature
for which the conclusions of my "Summary" apply, to T = 20000, we have

p2000 r2000
d(ap-aa) = (q. - qp) d log T 1.8 (qa- qp). (25)

J325 J325

Of course, this change might come partly in a,, and partly in ap, a
indicating tungsten, let us say, and ,3 indicating molybdenum, in which
case (qa-qo) = 0.18. I shall, for simplicity, assume that it occurs wholly

324 PROC. N. A. S.



PHYSICS: E. H. HALL

in an, which accordingly increases from the value 5.5, used above in the
case of molybdenum, to 5.8 at 20000. If with this new value of a I repeat
my calculations relating to molybdenum, I have

and z = 84.8 *. (2.48 X 10-16 X 2.725.8) = 1.03 X 1014,
n = zT1-8 = 1.03 X 1014 X 20001:3 = 2.16 X 1018.

Thus the ratio of n for molybdenum to n for tungsten, at 20000, is
reduced from a value about 90 as found above, to a value about 65.

If, furthermore, I were to take for Dushman's A in the case of molyb-
denum the same value, 6.02, which I, on Dushman's authority, used in
the case of tungsten, the ratio of the two n's in question would come out
about 22, a value that still seems large.

1 have sometimes criticized, as others have, the argument by which
Richardson, beginning on page 28 of his "Emission of Electricity" (1916)
and ending on page 33, has deduced his emission equation. I have believed,
and I still believe, this argument to contain a fallacy, failure to distinguish
properly between the work done against resisting forces in removing a free
electron from a metal and the absorption of heat which attends this action;
but I have not found it easy to decide how much harm had resulted from
this fallacy in this particular connection. In the present paper, while
differing from Richardson as to certain explicit assumptions, I have found
no fault with his logic; for that argument of his which I have here been
following is different from the one referred to above.
The fact is that Richardson has in the book mentioned given three

derivations of his emission equation, the (1) of this paper. The first is
the one criticized, the third, running from page 35 to page 39, follows the
quantum theory and reaches a result not very different from that found
by Dushman in a similar way. The second is contained in a single page,
beginning on 33 and ending on 34. Unfortunately, I think, the author felt
obliged to give it up, because of a misgiving as to assigning thermal energy
to the free electrons within a metal. The purpose of the present paper
has been to show that such a misgiving lacks justification, and to modify,
without rejecting, Richardson's "classical kinetic theory" of thermionic
emission.

I predict that the A of Richardson's emission equation, equation (1)
of this paper, will not prove to be the same for different metals. I pro-
pose as a substitute for this equation (1) the equation numbered (12)
in this paper, the A' therein having the meaning given in the text. I
hope that, when sufficient data concerning the electric conductivity,
the heat conductivity and the thermo-electric behavior of metals are
available, the factor A'Ta, or FeeazTQ, will be found approximately the
same for metals in general.
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LAGRANGIAN FUNCTIONS AND SCHRODINGER'S RULE

By H. BATEMAN

CALIFORNIA INSTITUTh oF TZCHNOLOGY

Communicated March 23, 1927

In a recent paper Schrodingerl has extended a rule, used by writers in
the theory of gravitation, for deriving a stress energy tensor from a La-
grangian function and has illustrated its application in the case of the tensor
which he has associated with the system of equations proposed by Gordon.2
We shall now apply the rule to various Lagrangian functions to see if it

is generally applicable. Let (a,, a2, a3, a4) be the components of a typical
4-vector on which the Lagrangian function depends and let am, denote the
derivative of am with respect to the coordinate x,. The rule then states
that the component Tm,, of an associated stress-energy tensor is given by

F 6L 4 ?L 6L1
Tmg,,=i [~a,m + aE aa + am a J

-dmnL .....(1)
where

Bmn=0 m $ n

=1 m=n

and the summation E extends over all the four vectors of type a.
Let us now apply this rule to the Lagrangian function

L =2 (E2-H2) (2)
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