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PREFACE.

IN the present Treatise I have endeavoured to lay before the
reader in a connected form, the results of the most important in-
vestigations in the mathematical theory of Hydrodynamics, which
have been made during modern times. The Science of Hydro-
dynamics may properly be considered to include an enquiry into
the motion of all fluids, gaseous as well as liquid ; but for reasons
which are stated in the introductory paragraph of Chapter I.,
the present treatise is confined almost entirely to the motion
of liquids. The progress of scientific knowledge in all its
branches has been the peculiar feature of the present century,
and it is therefore not surprising that during the last fifty years
a great increase in hydrodynamical knowledge has taken place;
but many of the most important results of writers upon this
subject have never been inserted in any treatise, and still lie
buried in a variety of British and foreign mathematical periodicals
and transactions of learned Societies; and it has been my aim to
endeavour to collect together those investigations which are of
most interest to the mathematician, and to condense them into a
form suitable for a treatise.

The present work is divided into two volumes, the first
of which deals with the theory of the motion of frictionless
liquids, up to and including the theory of the motion of solid
bodies in a liquid. In the second volume, a considerable portion
of which is already written, it is proposed to discuss the theory of
rectilinear and circular vortices; the motion of a liquid ellipsoid
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under the influence of its own attraction, including Professor
G. H. Darwin’s important memoir on dumb-bell figures of equi-
librium ; the theories of liquid waves and tides; and the theory
of the motion of a viscous liquid and of solid bodies therein.

References have been given throughout to the original autho-
rities which have been incorporated or consulted; and a collection
of examples has been added, most of which have been taken from
University or College Examination Papers, which have been set

during recent years.

The valuable report of Mr W. M. Hicks on Hydrodynamics, to
the British Association in 1881—2, has proved of great service in
the difficult task of collecting and arranging materials. I have
also to express my obligations to the English treatises of Dr
Besant and Professor Lamb, from the latter of which I have
received considerable assistance in Chapters IV. and VL ; and also
to the German treatise of the late Professor Kirchhoff.

I am greatly indebted to Professor Greenhill for his kindness
in having read the proof sheets, and also for having made many
valuable suggestions during the progress of the work.

In a treatise which contains a large amount of analytical
detail, it is probable that there are several undetected errors;
and I shall esteem it a favour if those of my readers who discover
any errors or obscurities of treatment, or have any suggestions to

make, will communicate with me.

Unirep UxNiversiTy CLus,
Pary MaLL, Easr,
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CHAPTER I

HYDROKINEMATICS.

1. THE science of Hydrodynamics may be divided into two
separate branches, viz. the motion of liquids and the motion of
gases. The chief interest arising from the latter branch of the
subject is due to the fact that air is the vehicle by means of
which sound is transmitted, and consequbntly the discussion of
special problems relating to the motion of gases belongs to the
theory of sound rather than to hydrodynamics; it must also be
recollected that in order to deal satisfactorily with many problems
connected with the motion of gases, it is necessary to take into
account changes of temperature and other matters which properly
belong to the science of thermodynamics. In the earlier chapters
of the present treatise the general theory of the motion of fluids
is discussed, including those peculiarities of motion which are
alike common to liquids and gases; but the subsequent chapters
are limited almost entirely to the consideration of special problems
relating to the motion of liquids.

In ancient times very little advance in hydrodynamics appears
to have been made. In modern times the earliest pioneers were
Torricelli and Bernoulli, whose investigations were due to the
hydraulic requirements of Italian ornamental landscape gardening;
but the first great step was taken by D’Alembert and Euler, who
in the last century successfully applied dynamical principles to
the subject, and thereby discovered the general equations of
motion of a perfect fluid, and placed the subject on a satisfactory
basis. The discovery of the general equations of motion was
followed up by the investigations of the great French mathe-
maticians Laplace, Lagrange and Poisson, the first of whom has
left us a splendid memorial of his genius in his celebrated Theory
of the Tides.

B. 1



2 HYDROKINEMATICS.

The next advance was made by Poisson’ and Green®; the
former of whom in 1831 discovered the velocity potential due
to the motion of a sphere in an unlimited liquid, and the latter
of whom in 1833, without a knowledge of Poisson’s work, discovered
the velocity potential due to the motion of tfans'lation of an
ellipsoid in an unlimited liquid. Green’s investigation was com-
pleted for the case of rotation by Clebsch® in 1856.

The velocity potential due to the motion of a variety of cylin-
drical surfaces has also been discovered during the last fifteen
years; but a similar advance has not been made as regards the
motion of two or more solids. The kinetic energy of a liquid due
to the motion of two cylinders whose cross sections are circular,
has been obtained by Hicks* and Greenhill®. The former has also
written several valuable papers on the motion of two spheres®,
which have placed this problem in a perfectly satisfactory con-
dition. A complete discussion of the motion of two oblate or
prolate spheroids whose excentricities are nearly equal to zero or
unity, would be an attractive subject for investigation, and would
throw light on the motion of two ships sailing alongside one
another.

In 1845 Professor Stokes’ published his well-known theory of
the motion of aviscous liquid, in which he endeavoured to account
for the frictional action which exists in all known liquids, and
which causes the motion to gradually subside by converting the
kinetic energy into heat. This paper was followed up in 1850 by
another®, in which he solved various problems relating to the
motion of spheres and cylinders in a viscous liquid. Previously to
this paper no problem relating to the motion of a solid body in a

liquid had ever been solved, in which the viscosity had been taken
into account.

Since the time of Lagrange the essential difference between
the motion of a fluid when a velocity potential exists and when it
does not exist had been recognised ; and an opinion very generally

1 Mém. de UAcad. des Sciences. Paris, vol. xr. p. 521.

* Trans. Roy. Soc. Edinburgh, vol. xm. p. 54.

3 Crelle, vol. 11 p. 119,

4 Quart. Journ., vol. xv1. pp. 113 and 193,

¢ Ibid. vol. xvim1, pp. 356—362.

® Proc. Camb. Phil. Soc., vol. mi1. p. 276, vol. 1v. p. 29, and Phil. Trans., 1880.
? Trans. Camb. Phil. Soc., vol. vir1. p. 287.

8 Ibid. vol. 1x. part 11, p, 8.

Ty
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prevailed that if at any particular instant some particular portion
of the fluid were moving in such a manuner that a velocity poten-
tial existed, the subsequent motion of this same portion of fluid
would always be such that the component velocities of its ele-
ments would be derivable from a velocity potential. The first
rigorous proof of this important proposition was given by Cauchy,
and a different one was subsequently given by Stokes’, but until
the year 1858 no complete investigation respecting the peculiari-
ties of rotational motion had ever been made. This was effected
by Helmholtz® in his celebrated memoir on Vortex Motion, which
may perhaps be considered the most important step in hydro-
dynamics which has been made during the present century. The
same subject was subsequently taken up by Sir W. Thomson® and
the theory of polycyclic velocity potentials fully investigated.
During the last six years important additional investigations on
the theory of vortex rings have been made by Hicks* and J. J.
Thomson®.

The last twenty years have witnessed a great advance in
hydrodynamics, and numerous important papers have been written
by many eminent mathematicians both British and foreign,
which will be considered in detail in the present work.

We shall now proceed to consider the definitions and principles
of the subject.

2. A fluid may be defined to be an aggregation of molecules,
which yield to the slightest effort made to separate them from
each other, if it be continued long enough. All fluids with which
we are acquainted may be divided into liquids and gases; the
former are so slightly compressible that they are usually regarded
as incompressible fluids, whilst the latter are very highly com-
pressible. :

A perfect fluid is one which is incapable of sustaining any
tangential stress or action in the nature of a shear; and it will be
shown in the next chapter that the consequence of this property
is, that the pressure at every point of a perfect fluid is equal
in all directions, whether the fluid be at rest or in motion. A

1 Trans. Camb. Phil, Soc., vol. viir. p. 305.

2 Crelle, vol. Lv. p. 25; translated by Tait, Phil. Mag. (4) xxx11. p. 485.
3 Trans. Roy. Soc. Edin., vol. xxv. p. 217.

4 Phil. Trans., 1881, 1884 and 1885. ~

5 Adams’ Prize Essay, 1882,
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perfect fluid is however an entirely ideal substance, since all fluids
with which we are acquainted are capable of offering resistance to
tangential stresses. This property, which is known as viscosity,
gives rise to an action in the nature of friction, by which the
kinetic energy is gradually converted into heat.

In the case of gases, water and many other liquids, the effects
of viscosity are small ; such fluids may therefore be approximately
regarded as perfect fluids. It will therefore be desirable to com-
mence with the study of the motion of perfect fluids, reserving
the consideration of viscous fluids for the second volume.

There are certain kinematical propositions which are true for
all fluids, and which it will be convenient to investigate before
entering upon the dynamical portion of the subject. These
propositions form the subject of the present chapter.

3. The motion of a fluid may be investigated by two different
methods, the first of which is called the Lagrangian method, and
the second the Eulerian or flux method, although both are due to
Euler.

In the Lagrangian method, we fix our attention upon an
element of fluid, and follow its motion throughout its history.
The variables in this case are the initial coordinates a, b, ¢ of the
particular element upon which we fix our attention, and the time,
This method has been successfully employed in the solution of
very few problems.

In the Eulerian or flux method, we fix our attention upon a
particular point of the space occupied by the fluid, and observe
what is going on there. The variables in this case are the
coordinates z, , z of the particular point of space upon which we
fix our attention, and the time.

Velocity and Acceleration.

4.. In forming expressions for the velocity and acceleration of
a fluid, it is necessary to carefully distinguish between the
Langrangian and the flux method,

I The Langrangian Method.

Let u, v, w be the component velocities parallel to fixed axes,
of an element of fluid whose coordinates are a, Y, z and z + O,
Y+ 8y, 2+ 8z at times ¢ and ¢ + 8¢ respectively, then

u=dajdt=d; V=g wEE ..o 1),




VELOCITY AND ACCELERATION. 5

where in forming &, 9, £ we must suppose #, ¥, z to be expressed in
terms of the initial coordinates a, b, ¢ and the time.

If the axes, instead of being fixed, were moving with angular
velocities 6,, §,, 6, about themselves, the component velocities
would be given by the equations,

w=a—y0,+20,, v=0y—20,+ 20, w=2—a0, + y0,...(2).
It should be noticed that &, ¥, Z are the velocities of the fluid
relative to the moving axes.

The expressions for the component accelerations are
o mu =l L= A28 iy bemnly 3),
when the axes are fixed, and
Je=t—v0, +wb,, f,=0—w0,+ ub,, f,=w —ub, +v6,...(4)
when the axes are in motion. Here u, v, w must be supposed to
be expressed in terms of a, b, ¢ and ¢.

II. The Flux Method.

5. Let 8Q be the quantity of fluid which in time 8¢ flows across
any small area A4, which passes through a fixed point P in the
fluid ; let p be the density of the fluid, ¢ its resultant velocity, and
e the angle which the direction of ¢ makes with the normal to 4,
drawn towards the direction in which the fluid flows. Then
8Q =pg Adtcose,

PS50
1= A cose dt-

Now A cose is the projection of 4 upon a plane passing
through P perpendicular to the direction of motion of the fluid;
hence 8@ is the independent of the direction of the area, and is
the same for all areas whose projections upon the above-mentioned
plane are equal. Hence the velocity is equal to the rate per unit
of area divided by the density, at which liquid flows across a plane
perpendicular to its direction of motion.

therefore

The velocity is therefore a function of the position of P and
the time.

6. We may therefore put u=F (z, y, 2, t); whence if the axes
are fixed, and if u + 8u be the velocity parallel to = at time ¢+ &¢
of the element of fluid which at time ¢ was situated at the point
(%, 9, 2),

Su = F(z + ubt, y + vt, z +wdt, ¢t + 8t) — F(z, y, 2, t).



6 HYDROKINEMATICS.

Therefore the acceleration,
du _du , du du du
f lim St _(ﬁ+ +’Udy+’wdz
Hence if 9/0t denotes the operator
d/dt + ud/dz + vd/dy +wd/dz,

the component accelerations will be given by the equations

ou ov ow
fx=—a;t—,fv=a—t~,f;=~a—t‘ .................. (5).

When the axes are in motion let u + éu be the component
velocity at time ¢+ &, parallel to the new position of the axis of &,
of the element which at time ¢ was situated at the point «, y, 2;
then if U, V, W be the component velocities relative to the axes,

=F(z+ Udt, y+ V&, 2+ Wét, ¢t +8t) — F(z, y, 2, ¢)-
Therefore
Su du du du du
s~wmt'& Tyt e
where the values of U, ¥V, W are glven by (2). Hence if 0/0¢
denote the operator d/dt+ Ud/dx + Vd/dy + Wd/dz, the com-

ponent accelerations parallel to the moving axes are given by the
equations

f,=—_w +wb,, f, == —wb,+ub,, ﬁ=%if—u0,+v0,---(6)-

Similarly it can be shown that if =, 6, 2 be cylindrical coordi-
nates, and u, v, w be the component velocities measured in the
directions in which the former quantities increase,

8u v" uv ow
= ) Jo= ; y Jo= T e (1),
where
o _d Ghon: @l d
-Gt ' Teag TV &
If (r, 9., ¢) be polar coordinates and u, v, w be the velocities
measured in the directions in which these quantities increase,

ou v+w ov w?
fr= By = at_l_u_v_ —cot 0,

ow  uw ww
f¢.—— T+Tcot0 ......... (8),

where
G o) d vd w d

G dtt et rae T rsmedg
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The Equation of Continuity.

7. Before proceeding further, it will be convenient to intro-
duce the following lemma, which is a particular case of Green’s
Theorem, which will be considered more fully in Chapter IV.

Let & 7, ¢ be any functions of «, y, 2, which are finite and
continuous at all points within a closed surface S, then

fff (df g;’ leg) SeReige — f (& + mn + nf) d8...(9),

where the triple integral extends throughout the wvolume enclosed
by S, and the double integral vs taken over the surface of S, and
I, m, n ®id the direction cosines of the normal at any point of
S drawn outwards.

Integrating the left-hand side of (9) by parts we obtain

fffg—idxdydz=[ff§dydz],

where the brackets refer to the limits of integration. Now since
the surface S is closed, it follows that any line parallel to # which
enters the surface a given number of times must issue from it the
same number of times, hence if [ is positive at the point of
entrance, it must be negative at the corresponding point of exit;

hence

[ & dydz} =J[LEdS,
where the integration with respect to S extends over the whole
surface. Treating the other two terms in a similar manner we
obtain the theorem in question.

8. If the motion of a fluid be continuous, it is evident that
the increase in the amount of fluid within a fixed space, which
takes place during any given interval, must be equal to the amount
which flows in across the boundaries of that space.

Let p be the density of the fluid at time ¢, then the increment
during an interval 8 in the mass of the fluid bounded by any

fixed surface S,
= [[[ 2o

The amount of fluid which flows into S across the boundary,
= — [fp (lu + mv + nw) 8¢ dS,

f”{d(plt) d(pv) d(pﬂ)} Sedaaids,
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by (9). Equating these two values of the increment, we obtain

dp_ dlpu)  dlpv) dew) _qo .. (10).

dt ' dzx dy dz
This equation is usually called the equation of continuity.

In the case of a liquid p is constant, whence
du  dv | dw
=0 11).
" b o L 0 (11)

9. The same result is often obtained in a different manner,
which we shall illustrate by finding the equation of continuity of a
liquid referred to polar coordinates.

Let u, v, w be the velocities in the 7, 0, ¢ directions, and let

7 sin 08r8084 be a small element of volume. The quantity of
liquid which in unit of time flows in across the face r*sin 6606¢

= pur® sin 865¢.

The quantity which flows out across the opposite face - 8
_ purt sin 0303 + p sin 0 5 (r*u) &r3054.
Hence the total loss
=psin 6 d——g‘:i) 3r868¢.

Equating the total loss due to the flow across all the faces of
the element to zero, we obtain
d(r*u)y , d(vsin€)  dw
& T
If cylindrical coordinates are employed, the equation is
d(wu) , dv dw
B +Zz—0+“z;=° .................. (13).

. 10. 1In a large and important number of problems the quan-

tity udx 4+ vdy +wdz is a perfect differential d¢p, whence
u=d¢/de, v=dp/dy, w=dp/dz;

hence if ds be a linear element drawn in any direction, and ¢ be

f,he velocity in the same direction ¢=d¢/ds. The function ¢

is called the velocity potential.

Substituting the above values of u, v, w in (11), we obtain

sin @ 0>t (12).

I  d'd ¢
e +———dy2 + o Ny 0. . s S (14),
or V2¢ - 0

B e T DR D 7 | gy ——
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This equation is usually known as Laplace’s equation, and the
operator V* as Laplace’s operator.
The values of V* in polar and cylindrical coordinates are re-
spectively,
W 2a' 1 d cotdd i
g =S =4
V=t PHt 7 @t ed¢ ~(18),
et L) &
2 3 - _— -
and e e R JE T e Py (16).

do’® = dw

These results may be readily obtained by substituting the
values of u, v, w in terms of ¢ in (12) and (13).

11. The preceding forms of the equation of continuity are not
convenient when the Lagrangian method is employed. To find an
appropriate form, counsider a small rectangular parallelopiped
whose diagonal is PQ. Let a, b, ¢, a+38a, b+ 8b, ¢+ 8¢ be the
coordinates of P and @ respectively. At the end of a time £, the
fluid of which the parallelopiped is composed will form a dif-
ferently situated oblique-angled parallelopiped. The volume of
the latter =J8a dbdc,

where J is the Jacobian of #, , 2 and is equal to
de dy ds
do’ da’ dao
do dy de
db’ db’ db
g . v
de’ dec’ de

Hence if p, be the initial density, and p the density at time ¢,
the required equation is

ot e ARG R P @an.
In the case of a liquid p = p, and therefore
TS Sl v i (18).

The Bounding Surface.

12.  Besides the equations which must be satisfied within the
interior of a fluid, it is necessary that certain other conditions
should be satisfied at the boundary, which depend upon the
special problem under consideration.

If the fluid is bounded by a surface whose equation referred to
axes fixed in space is F (z, y, 2, t) = 0, the normal velocity of the
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fluid at the surface must be equal to the normal velocit)t of the
surface, hence the sheet of fluid of which the boundary is com-

posed must always consist of the same elements of fluid. Y

Hence
F (z + udt, y +v8t, 2 + wdt, ¢ + 8t) =0,

and therefore P o iF IF
o S == el AR 19).
7 ool e 0 (19).

If the boundary is fixed, the condition becomes
T+ 1w - =00 e e e e (20).

If the axes be in motion, the condition is
dF dF ar ar &5

where U, V, W are the velocities of an element of fluid relative to

the axes.
It should be noticed that (19) or (21) must be satisfied by
every surface which is composed of the same elements of fluid. .

............ (21),

ILanes of Flow and Stream Lines.

13. DEF. A line of flowis a line whose direction coincides
with the direction of the resultant velocity of the fluid.

The differential equations of a line of flow are | 37."
de_dy do | S0t

Hence if y, (29,2 t)=a, x,(x, ¥y, 2, ) =a, be any two in-
dependent integrals, the equations y, = const., i, = const., are the
equations of two families of surfaces whose intersections determine
the lines of flow.

Der. A stream line, or a line of motion, is a line whose
direction coincides with the direction of the actual paths of the
elements of fluid.

The equations of a stream line are determined by the simul-
taneous differential equations,
T=u, y=v, z=w,
where z, y, z must be regarded as unknown functions of . The

integration of these equations will determine , ¥, 2 in terms
of the initial coordinates and the time.

——

BT g
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14. If through every point of a small closed curve lines
of flow be drawn, they will enclose a mass of fluid which may be
called a tube of flow.

Let us apply the lemma of §7 to a portion of liquid bounded
by a tube of flow and two planes perpendicular to it. Putting
u=§ v=mn, w={, and taking account of (11), we obtain

0= fff@; Z; d)dxdydz ff(lu-l—mv—i—nw)dzs

At every point of the curved surface of the tube of flow,
lu+mv+nw=0; at the two ends this quantity is respectively
equal to ¢, and —g,, where g, and g, are the velocities of the
liquid at the ends. Hence the surface integral = ¢,dS, — ¢,dS,=0;
whence the product of the velocity of a liquid and the cross
section of a tube of flow s constant throughout the length of
the latter.

In the next place, a line of flow cannot begin or end tn any
portion of a liquid throughout which the velocity s finite, but must
either form a closed curve or have its extremities in the boundaries
of the portion of liquid. B

For if a line of flow endedAthe liquid, it would be possible to
draw a closed surface cutting a tube of flow once only. Hence
lu + mv + nw would be zero at every point of the closed surface
excepting where it cuts the tube of flow, and therefore the surface
integral would not be zero.

15. When a velocity potential exists, the equation
udz + vdy + wdz =0
is the equation of a family of surfaces, at every point of which the
velocity potential has a definite constant value, and which may be
called surfaces of equi-velocity potential.

If P be any point on the surface, ¢ = const., and dn be an
element of the normal at P which meets the neighbouring surface
¢ + ¢ at @, the velocity at P along PQ will be equal to d¢/dn;
hence d¢ must be positive, and therefore a fluid always flows
from places of lower to places of higher velocity potential.

The lines of flow evidently cut the surfaces of equi-velocity
potential at right angles.

16. The solution of hydrodynamical problems is much sim-
plified by the use of the velocity potential (whenever one exists),
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since it enables us to express the velocities in terms of a single
function ¢. But when a velocity potential does not exist, this
cannot in general be done, unless the motion either takfas place
in two dimensions, or is symmetrical with respect to an axis.

In the case of a liquid, if the motion takes place in planes
parallel to the plane of zy, the equation of the lines of flow is

udy —vdz = 0ccevrrireeennnieiiinininn (22).
The equation of continuity is fonleck hffoentat o QU s = %)
du | dv 2 ?J
Pl T

which shows that the left-hand side of (22) is a perfect differ-
ential dyr, whence

W W
_El—é—-, ’U-——% .................. (23).

The function - is called Earnshaw’s current function.

When the motion takes place in planes passing through the -
axis of z, the equation of the lines of flow may be written

@ (wde — udz) =0 ., i ooipems ot (24).
The equation of continuity is
d(mu) , _dw _
bl 7 e 0,

which shows that the left-hand side of (24) is a perfect differential
dyr, whence

PR (25),

wdm" "m_"dz ...............

where yr is Stokes’ current function.

17. The existence of a velocity potential function involves
the conditions that each of the three quantities,

dw/dy — dv/dz, du/dz— dw/de, dv/dz— du/dy,
should be everywhere zero; when such is not the case we
shall denote the above quantities by 2§, 27, 2¢. The quantities
& 7, § for reasons which will be explained in the following

chapter, are called the components of molecular rotation. They
evidently satisfy the equation




* be the coordinates of P, and let
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Formulae of Transformation’.

18. The equations connecting the components of molecular
relation with the velocities are,

dw dv du dw dv du

O e oy

In order to obtain the equivalent equations when polar
coordinates are employed, let », 6, ¢ 5
u, v, w and u 4+ Su, v+ Sv, w+ Sw be
the velocities at the points r, 6, ¢
and r+8r, 64680, ¢+8¢ respec-
tively, measured in the directions
in which these quantities increase; )
also let u+ duw, v+ &, w+ dw be
the velocities at the last mentioned
point parallel to the directions of , X
U, U, W.

Let us choose the axes of z, y, z —
so as to coincide with the directions of 7, 8, and ¢ respectively, then
dz =dr, dy=rd0, dz=rsin 0d¢,

and therefore we at once obtain
W _du i _do du _dw
dz dr’ de dr’ de dr "
Let @ be a point whose coordinates are r, 6 + 86, ¢ ; then

o ORI |

& (u+g—38€)00589—(v+%80)sin80—u

I

dy 760

-1 ng Lt A N (29),
dﬂ'_ (v+ @ 26) cos 30-+(u-+ 2 50) sin 80—
dy 766

. % g% B e o (30),
"% R (31)

1 Besant, Mess. of Math., vol. x1. p. 63.
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Let R be a point whose coordinates are 7, 6, ¢ + 8¢ ; and let
POR=28y, PTR =5y; then
dx = sin 08¢, &y’ = cos 03¢.

Hence
du
i 8 8
du,_(u+d¢8¢)c058x (w+d¢ ¢>sm X — %
dz rsin 05¢
R R A e (32),
_md¢ 7‘ ----------------------------
dv
i / e §ot L
dv,—<v+d¢8¢)cos8x ('w+ 8¢)smx v
dz 7 sin 66
LD A 40 sl e N 33
= i 3 COLO. i d o e e e e AR (33),
dw dv . TN
0w 5 s
dw,_<w+d¢8¢)cosb‘¢>+<u+d¢ ¢>sm8x+( prs gb)sm X —w
dz 7 sin 636
1 dw u
....................................... 34).
rsm6d¢+ T - cot0 (3
Hence
dw dv ldw w 1 dv
Lot Sk Pl el
_du  dw 1 du dw w
e e P O e -0
dv dv dv v 1du
=% Ay Tartr @ )

19. If cylindrical coordinates =, 6, z are employed ; let u, v, w
and u + du, v 4+ 8v, w + dw be the velocities at the points @, 0, z
and @ + 3w, 0+ 80, z+ 82 respectively; and let u + du, v+ dv’
be the velocities at the last mentioned point parallel to % and w.

Then dz =dw, dy = wdb,
dv _du dv _dv dw dw
and T Te’ da=de’ dp g e (36),
du dv :
2 du,=(u+398€)cosb‘9—-<v+3980)sm89—u
dy w0
ldu w»
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- (v+0d%ae) cosse+(u+gigae>sinse-u

dy =00
1dv
= 3 B P LRI R SRR (38),
dw dw
d"y =3 :‘m_—de ................................................... (39),
du' du dv dv
and do s’ G e (40).
Therefore
£ = 1 dw dv
T wdf dz
RO e = 41).
| dv v 1du
f 2§ = JE +; _;—JEJ
|
)
EXAMPLES.

/

1. Find the equation of continuity in a form suitable for air
in a tube, and prove that if the density be f(at — ) when ¢ is the
time and z the distance from one end of a uniform tube, the
velocity is

af (at —z)+(V — a)f(at)
f(at—2)
where V is the velocity at that end of the tube.

2. If the motion of a liquid be in two dimensions, prove that
if at any instant the velocity be everywhere the same in magni-
tude, it is so in direction.

g s 1t every particle of a fluid move in the surface of a sphere,
‘41 prove that the equafcion of continuity is

d
d:cos 0+d0(pwcos 0)+d¢(Pw cos 0) =0,

where p is the density, 8 and ¢ the latitude and longitude of any
element, and o, o’ the angular velocities of the element in latitude
and longitude respectively.
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4. In the last example prove that if the motion is irrotational
the velocity potential is equal to

f.(log tan 36 + «p) + F (log tan}f — i),
where ¢ =4/ —1 and fand F are arbitrary functions.

5. An infinite mass of liquid is bounded by the plane zz, on
which are small corrugations given by v = ¢ (#). The velocity of
the liquid at an infinite distance from the plane is parallel to «
and equal to V. Prove that the velocity potential is
Ve (=2 d)»

-0 ¥+ (@—=2)

6. In the general motion of a fluid, prove that if F is the
normal acceleration at any point on a closed surface described in a
fluid, @ the expansion, » the molecular rotation, and 3 the strain
invariant

J9+ gh+ hf — &’ = b* — ¢, where f=du/dx, 2a = dw/dy + dv/dz,
then [[Fas= m( +6+ 20" — 23 ) dedy .

7. Fluid is moving in a fine tube of variable section «, prove
that the equation of continuity is

Va +

d d
3 () + 35 (kpv) = 0,
where v is the velocity at the point s.

8. If F(xy,zt) is the equation of a moving surface the
velocity of the surface normal to itself is

;z?if where I = (dF/da)’ + (dF/dy)* + (dF/dz)".

Hence deduce equation (19).

9. If @,y and z are given functions of @, b, ¢ and ¢, where a,
b and ¢ are coustants for any particular element of fluid, and if
u, v and w are the values of #, y, £ when a, b, ¢ are eliminated,
prove analytically that

d’r  du it ) el du
i TR +”dy+wd

10. Liquid which is moving irrotationally in three dimen-
sions is bounded by the ellipsoid (z/a)?+ (y/b)* + (2/c)* =1, where
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a, b, ¢ are functions of the time, such that the volume of the
ellipsoid remains constant. Prove that if the ellipsoid is rotating
with angular velocities »,, ®,, @, about its principal axes, and
u, v, w are the component velocities of the liquid parallel to the
principal axes, the equation of continuity and the boundary con-
ditions are satisfied if

@, (@ =)y  w,(c'=0a’) 2z
P QA @ @,
=1 a a®+b* % e

with similar expressions for v and w.

11. If the lines of flow of a fluid lie on the surfaces of coaxial
cones having the same vertex, prove that the equation of con-

dp
r % + rﬁ (up) + 2pu + cosec 8 c-iTqS (pv) =

tinuity is

12. Show that
a*/(akte)t + ket {(y/b)* + (ofe)’) =

is a possible form of the bounding surface at time ¢ of a liquid.

13. The position of a point in a plane is determined by the
length » of the tangent from it to a fixed circle of radius @, and
the inclination @ of the tangent to a fixed line. Show that the
equation of continuity for a liquid moving irrotationally in the
plane will be

d2¢, ld¢  1d% g_(gliqb 1d¢)+%(2ﬁ ld(b)_o.

tear Teae e \at Trar drdd v d6) =

Hence indicate a method of finding the motion of a liquid
in the developable surface whose edge of regression is a right
helix, pointing out any peculiarities of the motion.

14. If the velocity potential of a liquid is of the form
¢=f(=) F(0) x (z), where =, 6, z are cylindrical coordinates,
prove that the equation of continuity is satisfied if £, F, y satisfy
the three equations

df+'ar~f+(fc —n®) f=0, (flzeﬁ: n’F = 0,%7—K2x=0,

where n and « are constants; and hence show that

¢ =24 coshk(z—c)cosn (68— a)f”cos (krsin @ — nw) do.
0

B. 2
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15. In the motion of a liquid in two dimensions, the velocity
at any point is given by two components v, ¢” along the directions
which pass through two fixed points distant @ from one another.
Show that the equation of continuity is

dv dv r*4r%—a’ /dv dv’) v
et e Gt ) a0

where 7, " are the distances of any point of the liquid from the
fixed points.




CHAPTER 11

ON THE GENERAL EQUATIONS OF MOTION OF A PERFECT
FLUID.

20. IT was stated in the preceding chapter, that the pressure
at every point of a perfect fluid is equal in all directions, whether
the fluid be at rest or in motion. It will now be shown that this
property is the consequence of such a fluid being incapable of
offering resistance to a tangential stress.

Let ABCD be a small tetrahedron of fluid, and let p, p” be the
pressures per unit of area upon
the faces A BC and BCD. B
By D’Alembert’s Principle,
the reversed effective forces and
the impressed forces which act s
upon the volume of fluid, together '
with the pressures upon its faces, \\V
constitute a system in statical ¢
equilibrium. The first two vary
as the volume, and the last vary as the areas of the faces of the
tetrahedron ; and therefore if the tetrahedron be made to diminish
indefinitely, the former will vanish in comparison with the latter.

Hence the tetrahedron will ultimately be in equilibrium under the
action of the pressures upon its faces.

Resolve the pressures upon the faces ABC and BCD parallel
to AD. Since the projections of the two faces upon a plane
perpendicular to AD are equal, the conditions of equilibrium
require that p = p’, which proves the proposition’.

1 This proposition is true even in the case of visecous fluids, provided they are at
rest.

2—2
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The Equations of Motion'.

21. Let X, Y, Z be the components per unit of mass of the
impressed forces which act on the fluid; p its density, and ¢ its
resultant velocity. Describe any imaginary closed surface S in the
fluid, and let € be the angle which the direction of ¢ makes with
the normal to S drawn outwards.

The rate at which momentum flows into S, parallel to =,
together with the rate of increase of the component of momentum
parallel to z, of the fluid contained within 8, must be equal to the
compounent parallel to « of the impressed forces which act on the
fluid within S, together with the component parallel to « of the
pressure upon the boundary of S.

The rate at which momentum flows into S, parallel to #, is

[ pg°l cos edS = [f pu (lu + mv + nw) dS

ALk U{{d(pu’) d(puv)+d(PuW)}d dyds
ARSI

The rate of increase of the component of momentum parallel
to # of the fluid contained within 8

] f f f % (o) dudyda, :

The component parallel to # of the impressed forces
= [[fpX dxdydz.

The component parallel to « of the pressure upon the boundary
of S, is

d
~[/plds= —ff Eg daedydz.
Whence

.W(PX“* s T Uf{d(pu) d<§;") _'_d(gzv)_i_d(puw)} dadyds,

which requires that

oX — % _ d(ow) d(Pw’) d(pu) . d(pumw)
dz~ dt dz dy dz

! This method of obtaining the equations of motion is due to Prof. Greenhill.
See Encyc. Brit., Art, Hydrodynamics.
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Taking account of the equation of continuity § 8, (10) the
right hand side of the last equation becomes equal to pou/ot,
dp  ou
do™ P ot

Two other symmetrical equations can be obtained, by consider-
ing the rate of change of momentum parallel to the other two
axes, whence the equations of motion are

ldp du, du,  du du

whence pX —

Gk g LAl P e
ldp dv dv dv dv
—;dy dt+ud‘é+vd +wdz* ......... (1)

w——
dz |

These equations together with the equation of continuity
furnish four relations between the five quantities u, v, w, p, p.

22. If the fluid be an incompressible liquid, p is constant,
and the above mentioned equations together with the boundary
conditions are sufficient to determine the motion; but in the
case of a gas another equation is required, which is furnished
by means of a relation which exists between p and p.

When the motion of the gas is such that the temperature
remains constant, we have by Boyle’s Law the equation

where k is a constant.

But when the motion is such as to cause a sudden compression
or dilatation, an increase or decrease of temperature will be
produced ; and if it is assumed (as is the case with sound waves),
that the compression is so sudden that loss or gain of heat by
radiation may be neglected, the required relation is

S NN Sy 3),
where  is the ratio of the specific heat at constant pressure to
the specific heat at constant volume'. This quantity for all
gases has the approximately constant value 1°408.

23. The expressions on the right hand of (1) are the ex-
pressions for the component accelerations of an element of fluid;
1t therefore follows that if F and f be the component force and

1 This equation will be proved in the Appendix.
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acceleration in any direction, and dp/dh be the space variation of
the pressure, the equations of motion are of the form
1dp
T e

Hence if the axes instead of being fixed are moving with
angular velocities 8, 6,, 6, about themselves, the equations of
motion will be obtained by employing the expressions for the
accelerations given in § 6, (6), and are therefore,

xolan _du v, pdu e g

pdxr dt dz dy dz
ldp dv dv dv dv ,
TR T+ U%-;- V@+ Wc—i—z —w8,+ ub,\ ...(4).

ldp dw dw dw dw

s

24. Let us now suppose that the forces arise from a con-
servative system whose potential is V. Since p is a function of

p, We may put
dp
= — —_— — V’
=-f;

and the left-hand sides of (1), will be respectively equal to
dQ/dx, dQ/dy, d@/dz. If therefore we eliminate @ by diffe-
rentiating the second equation with respect to z and the third
with respect to 7, we shall obtain
of du dv dw

g‘t—fa‘—x—*'??%-l-é’%—fe,

where £ 7, ¢ are the components of molecular rotation and
0 = du/dx + dv/dy + dw/dz. Eliminating 6 by means of the equa-
tion of continuity 0p/ot + pf =0, and taking account of the two

other equations which may be written down from symmetry, we
shall obtain

2 (£)ubdu ado  td

ot\p) pdz pdz pdx

oM\ _Edu ndv ¢dw :

ac(p)_p2z1 T dy (5).
_Edu ndv  Cdw

(o)

0t\p/  pdz pdz+;>%
25. It was stated in Chapter I, that in many limportant

problems the motion is such that a velocity potential exists.
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The condition that such should be the case is, that & #, ¢ should
each vanish. We shall now prove, that when the fluid is under
the action of a conservative system of forces, a velocity potential
will always exist whenever it exists at any particular instant.

Let us choose the particular instant at which a velocity poten-
tial exists as the origin of the time; then by hypotheses & 7, {
vanish when ¢=0; also the coefficients of these quantities in (5),
will not become infinite at any point of the interior of the fluid;
it will therefore be possible to determine a quantity L, which shall
be a superior limit to the numerical values of these coefficients.
Hence & 75, ¢ cannot increase faster than if they satisfied the

: o\ L
equations = (—) ==(E+ 79+ ), &c. &ec.
But if £+ 7+ £ = Qp, we obtain by adding the above equations
0Q
g 3LQ,
whence 0 = A",

Now Q=0 when ¢ =0, therefore 4 =0; and since Q is the
sum of three quantities each of which is essentially positive, it
follows that £ 7, £ must always remain zero, if they are o at any
particular instant. The above proof is due to Prof. Stokes’.

26. There is, as was first shown by Prof. Stokes, an important
physical distinction in the character of the motion which takes
place, according as a velocity potential does or does not exist.

Conceive an indefinitely small spherical element of a fluid
in motion to become suddenly solidified, and the fluid about it
to be suddenly destroyed. By the instantaneous solidification
velocities will be suddenly generated or destroyed in the different
portions of the element, and a set of mutual impulsive forces will
be called into action.

Let #, 7, z be the coordinates of the centre of inertia G of the
element at the instant of solidification, z + &', y +¥/, z + 2 those
of any other point P in it; let u, v, w be the velocities of G along
the three axes just before solidification, ' v/, w' the velocities of P
relative to G; also let %, ¥, W be the velocities of @, u,, v,, w, the
relative velocities of P, and £ 7, ¢ the angular velocities just

1 < On the friction of fluids in motion,” Section II. Trans. Camb. Phil. Soc.
vol. vi1r.
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after solidification. Since all the impulsive forces are internal,
we have J
a=u, V=v, W=w.
We have also, by the principle of conservation of angular mo-
mentum, Sm {y (w,—w) =2 (v, =)} =0, &e.
m denoting an element of the mass of the element considered.
But u, =72z’ — §y, and ' is ultimately equal to
d_u z + (.i_l!/ ans (_i_l_bz'
dz dy YTz ”
and similar expressions hold good for the other quantities. Sub-
stituting in the above equation, and observing that

Smy's =3m'z'a’ =Sma'y’ =0, and Sma” = Zmy* = Smz”,

we have §=~%(3—Z;——g—z), &c.

We see then that an indefinitely small spherical element of
the fluid if suddenly solidified and detached from the rest of the
fluid will begin to move with a motion of translation alone, or
a motion of translation combined with one rotation, according as
ud.c + vdy +wdz is, or is not, an exact differential, and in the latter
case the angular velocities will be determined by the equations

dw dv duv dw dv  du
2 e = e —— = e ———
£ dy dz’ % dz dx’ ¢ de dy’

On account of the physical meaning of the quantities &, , §,
they are called the components of molecular rotation, and motion
which is such that they do not vanish is called rotational or vortex
motion ; when they vanish, the motion is called irrotational.

In the foregoing investigations, it has been assumed that the
pressure is a function of the density and also that the fluid is
under the action of a conservative system of forces; it therefore
follows that vortex motion cannot be produced, and consequently,
if once set up, cannot be destroyed by such a system of forces. We
shall presently show that the theorem is not true if the pressure
is not a function of the density. If therefore by reason of any
chemical action the pressure should cease to be a function of the
density during any interval of time however short, vortex motion
might be produced, or if in existence might be destroyed.
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Lagrange's Equations.
27. In Lagrange’s method the initial coordinates a, b, ¢ and
the time are the independent variables, hence the equations of

motion are
gg” o ag L de
d—x =u, d—y‘ =1, 'J;
Multiplying the preceding equations by x,, ¥,, %, where the
suffixes denote partial differentiation with respect to a, b, ¢,we obtain

Qa =y lzxu-*_/éya +wzd}

=,

@, = t, + vy, + ws,

Q, = ux, + vy, + wz,

These equations together with the equation of continuity
pd = p,, are Lagrange’s hydrodynamical equations of motion.

Weber's Transformation.

28. Integrating the right hand side of the first of (6) between
the limits £ and 0, the first term becomes

f o f i, dt = (d,) f ad, dt
0 0 0

¢
icd w’ds,

== %= da),

where u, is the initial value of w. If we treat each of the other
two terms in a similar manner and put

x=f: (Q + 19" dt,

where ¢ is the resultant velocity of the liquid, we obtain

dy

U, + VY, + W2, — Uy =
d

ux, + vy, + wz, — v, =di>bC‘L .................. (7).
dy

uwc‘f"vyc"'wzc_ 0=%

These equations together with the equation of continuity and
dy/dt = Q + 1¢*, give five equations for determining , y, 2, p, X ;
p being supposed to have been eliminated by means of (2) or (3).

The above equations may be expressed in a different form, for
multiplying by dJ/dz,, dJ/dx,, dJ/dx, and adding, we obtain
1 ( dJ dJ dJ > + dy

u= '7. u‘,d—xa+v0d;b+ ond—;'c da; ............ (8),

with two similar equations.
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29. Multiply (7) by da, db, dc and add, and we obtain
udz + vdy + wdz — uda — v,db — wde =dy......... 9).
If at any particular instant which we shall choose for the
origin of the time a velocity potential exists, wda + v,db + wedec
will be a perfect differential ; hence if p be a function of p, dy will
also be a perfect differential, which proves that if a velocity
potential once exists, it will always exist ; but if p is not a function
of p we cannot put @ =— V — [p™* dp, but must write

1d
7ol ar-ma-[ %
for dy/da, in which case the right hand side of (9) becomes

df:(%qz— V)dt—fj(%g) at

where d denotes space differentiation. The right hand side of (9)
is no longer a perfect differential; hence ude +vdy + wdz is not a
perfect differential.

If therefore the pressure be not a function of the density, vortex
motion can be generated or destroyed in a perfect fluid moving
under the action of natural forces.

Cauchy's Integrals.

30. Eliminating @ from the last two of (6), we obtain
W, — UL, + Uy, — VY, + W2, — W2, =0,

Integrate this equation with respect to ¢, and let «, 'vo, w, be
the initial values of u, v, w; then

U, — Uy + VY, — 'vcy,, + Wz, —wz, = (fiul};o = ‘;_7;
du du du
But
u U, = w+dyy+d z,, &c. &e.
Substituting these values of u,, u,, &c., we obtain the equations
dJ
‘f d.’l) + Whzrr— dy gd E
aJ
fd—%+ﬂ@+ ;dT=770,

dJ dJ
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Multiplying these equations by «,, z,, #, and adding, and
remembering that Jp = p,, we obtain

P;;_E T Eowa + nawb + é’owc

pan = Eoya + 0 + gu%

p;;g a Eoza. + nozb + é’ozc

These equations show that & #, { are always zero, if they are
initially so.

31. The equations of motion can be integrated whenever
a force and a velocity potential exist; for putting

Q--[2-v.

and multiplying (1) by dz, dy, dz respectively and adding, we
obtain

dQ-?_”d +aa’;dJ+%’;’d.

Now in the present case

ou du du  dv dw
ot dt Ve Bt do

(dqb + %q)

where ¢ is the resultant velocity. Integrating, we obtain

dp dd e
fFJ” V42t dg =F @ e e (11),

where F is an arbitrary function.

32. DEr. A vortex line is a line whose direction coincides
with the direction of the instantaneous axis of molecular ro-
tation.

The differential equations of a vortex line are thus
oy dr
SR £
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Clebsch’'s Transformation’.

33. When a velocity potential does not exist, a first integral
of the general equations of motion can be obtained by means of a
method which depends upon the analytical theorem, that if u, v, w
are any given functions of #, y, z it is always possible to determine
three quantities ¢, A, 7, such that

udz +vdy + wdz =dp +Ady .ocoonvennnnnn. (12).

In order to prove the theorem,let u’, v, w', ¢ be four quantities,

such that
u=u+¢, v=v'+¢, w=w+4¢,.

These equations involve three relations between the four
quantities ', v, w’, ¢ and are therefore insufficient to determine
them as functions of u, v, w ; we may therefore assume any relation
between «', v, w’ which may be convenient. Let us therefore {
suppose that

u' Wy =)+ (W, =) + o' (v —w\)) =0 '

This is the condition that u'dz + v'dy + w'dz should have an
integrating factor, we may therefore put this quantity equal to f
Ady which proves the proposition. It therefore follows that,

d d d d d
u=£+ha§, v=d—;’;+7x(—i%, w=~d§

The components of molecular rotation are given by the
equations

“)"E SN T
2= X, N X e R e (14).
28= Xy — AXs

The form of these equations shows that the vortex lines are
the intersections of the surfaces A = const., N = const.

Now g <f‘li’+de) +£i} dx

at _dw dt Ej dt Xz — dt
Therefore
ou_d (dé | dy du  dv dw
ot  dz (—Jt-_l-)\’%)'i'u%'*‘?)a—w'-i-w%
oA aX
T+ a—tx"_-at X‘, ............... (15)

1 Crelle, vol. Lvi. p. 1. See also Hill, Quart. Journ. vol. xvir; Trans. Camb.

Phil. Soc. vol. x1v. p. 1; Phil. Trans. 1884, p. 363; Proc. Lond. Math. Soc.
vol. xv1. p. 171.
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Putting H=-Q+3 ’i"’ 4 )\dx T S M R (16),

and substituting the values of au/at and d@Q/dz from (15) and (16)
in (1), we obtain
dH o\ Ox

%-!-ﬁxz——a?)\z:O ............... (17),

with two similar equations.

Multiplying by & 7, ¢ and adding, we obtain
dH dH _dO
§%+ﬂ@+faz—0 ............... (18)
If ds be an element of a vortex line, and w be the resultant
molecular rotation, the operator is equal to wd/ds, whence in-
tegrating along a vortex line, we obtain

fdp+ V+‘flf fl;‘+ 3 =F &N o). (19).

Writing for a moment P =0\/0t, R = 0y/ot and eliminating H
from (17), we obtain
-Psz Ti Ryx'r i Pst/ + R, =0
Py,—Rx, — Py, +R)A, =0
Py, — RN —P,x.+B)\,=0.
Multiplying these equations in order by A,, A,, A, and adding
and taking account of (14), we obtain

SELPE P, =0 ... i (20).

If z, 9, z be any point on the surface A = A, where 4 is an
absolute constant, and if £/w, 5/, {/e be the direction cosines of
the vortex line at this point; equations (14) and (20) show that this
vortex line lies on the surfaces A = A and A + 0x/0t. dt = 4, which
is impossible unless OA/of=0. Similarly 0y/ot = 0; whence the
surfaces A and y and therefore the vortex lines are always composed
of the same elements of fluid. This important theorem was first
established by Helmholtz'.

Hence it follows from (17) that H,, I, H, are each equal to
zero, and therefore H is a function of the time alone; whence the
pressure is determined by the equation

fdf’+V+ ¢+x‘2§+ PP T @1).

1 Crelle, vol. uv. and Phil. Mag. (4) vol. xxxi1. p. 485.
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34. We can now show that in the case of a liquifi, the

integral
ffff (%’ +V ) dtdedyde....oovene 22),

is 2 maximum or minimum, where the value of p/p+ Vor —Qis _

given by (21), and the time remains invariable.

For 8Q = udu + vdv + wdw + o dx A+ oy
&t ds’
_dép | dy déy

Therefore

[fudu dtdzdydz = [[fu (8¢ + N8x) dtdydz
+fff | {“Xﬁ?‘ - oy o~ i 8¢>} dtdadyd:.

Omitting the triple integrals which refer to the boundary we
see that'the first three terms of 8¢ give rise to the terms

I + vxy + wxe) Sh — (u, + 0N, +wd,) Ox
— 0 (8¢ + Noy)} dtdwdydsz,

which
Ox _dy\g, _ (O _dr
ffff {( dt) (ﬁ 3 d7) ox— 0 (8¢ + xsx)} dtdzdyds,
where du dv dw
dy dz
Also the last three terms of 8Q (omitting triple integrals) give
rise to
ffff{dx o\ — L SX} dtdzdydz.
Whence

[[[[seatacayas = f[[f {ax B — 2y — 0 (56 + xsx)} didedyds
+ triple integrals.

In order that the quadruple integral should vanish, we must
have 6 =0, 0y/0t = 0, OA/ot = 0, which by virtue of the equation of
continuity and § 33 is obviously the case.
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On the Application of the Principles of Energy and Least Action.

35. Let S be any imaginary closed surface, which is fixed in
the fluid. The work done during a small interval 8¢ upon the
liquid contained within S, by the impressed forces which act
upon its mass, together with the work done by the pressure upon
the boundary of S, must be equal to the increase during the
interval & of the kinetic energy of the liquid contained within S,
together with the kinetic energy which, during the same interval,
flows into S across the boundary.

The work done by the impressed forces

__Uf ( + d:)Stdxdydz.

The work done by the pressure upon the boundary
= — [[p (lu + mv + nw) &t dS

dp d
ﬂ‘f u—+v-1— wdi;)) St dadydz,

by § 7. Hence the total work done

W ( +v——+wdQ> i

Let 7T be the kinetic energy per unit of mass, so that
T =3’ + 2 + u).

The increase in the kinetic energy of the liquid contained

within S
—fffd<Tp) 3t dxdydz.

The amount of kinetic energy which flows into S
= [[pT (lu + mv + mu)StdS

=Uf{,¢% (ouT) + (poT)+ (pr)} 8t dedydz.

Taking account of the equatlon of continuity § 9 (10) the total
increase in the kinetic energy

oT
=mp O Sidadyds.
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Whence fffp u(—ZQ+ -d%-wdQ>8tdmdydz=O

which requires that

oT dQ dQ dQ
_52. d.T 2Ry dy +w PR S o8 o (23)

If we substitute the values of u, », w from (13), we find that

%,=<d (Zﬁ )(Oolzqtb“dz)

d\ d
+ (ux. + vx, + WX 5 (uh, + VA, + WN,) E?tg .

The last two terms vanish by § 33, whence (23) becomes
d d d _d¢ dX

Now if ds be an elementary arc of a stream line u = gdu/ds, &ec.,
and the operator is therefore equal to gd/ds. Integrating along a
stream line, and restoring the values of @ and 7', we obtain

dt

36. The equations of motion may be deduced, as Mr Larmor
has shown, by means of the Principle of Least Action combined
with the Lagrangian method.

p+V+ q+d¢ dX = F ().

Let z, y, z be the coordinates at time ¢ of an element of fluid
whose initial coordinates are a, b, ¢; the Principle of Least Action
requires that

J1f (3p (@" + 9 + &%) — Vp} dt dedydz

should be a maximum or minimum subject to the condition that

sod@ 9.9 _p,
d(a, bo) p’

where the time of the motion is constant.

Hence if A represent an undetermined function of z, y, and z,
we must have

s 3 Mot d (=, y, 2)
3[[[[{%@ 4 )=V 2Lt da dbdo=0.
Taking the variation of the first two terms, we obtain

jﬁ{(‘”&"”ﬁﬁz&) ( Vs +‘7U—78 +dV8z)}dtdadbdc.
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LEAST ACTION. 38

Integrating by parts and omitting the triple integrals, this

=_Wf{(w+‘”f)a o+ i+ ‘”’) by+ (54 e 8z}dtdadbdc.

If M, M,, M, be the minors of dw/da, dz/db, dz/dc in J

d(8z, y, 2) déz déz db‘w
Sty s T thaog v Mg

whence, omitting triple integrals,

P o[ [n (50 -5

i (M Doy, ‘fl")} 8 dt dadbde.

1da
The first term in brackets vanishes, and the second term is
equal to Jd\/dz,

whence f f / A j ((x ‘Z’ Z; dt dadbde

_f[ff{‘”‘a +dy8y+d S}Jdtdadbdc.

Hence the conditions of the problem require that

. L L
sl i ey
av  p,dn
= et e S I A 24),
dy pdy il
L, AV p,d\
e i s

Now &, ¥, Z are the component accelerations of the element
whose coordinates are z, y, 2, and are therefore equal to 0u/ot,
ov/ot, and Ow/ot respectively ; and when we interpret — Ap, which
must represent the pressure, equatlons (24) are the equations of
motion in the ordinary form.

On Steady Motion.
37. When the motion is steady du/dt, dv/d¢ and dw/d¢ are

each zero, In this case the general equations of motion can be
integrated without having recourse to Clebsch’s transformation.
It will however be necessary to distinguish between irrotational and

B. 3
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The general equations of motion may be written,

ou du dq* _d@
e _—+%-——2v§+2wﬂ—dx

au dQ
e A0 === AT 25).
dt + % 2wE + 2uf Iy [ . (25)

?f dw+%——2un+2vs=‘il:@

When the motion is steady and irrotational 4, v, w, &, #, & are

each zero; whence, multiplying by d=, dy, dz, adding and inte-
grating, we obtain
Q=140

& | ‘%” FVEIFL0 (26).

In this case the quantity C is evidently an absolute constant.

When the motion is rotational, let ds be an element of a stream
line, then

dz dy dz
u=qg§, ’U=q%, w=q%.

Multiplying the general equations by %, v, w and adding,

: de _
we obtain e =1 ds
whence f (%2 + V43 =A.ciiiiiiiiiiiniiinins 7).

This is Bernoulli’s Theorem.

Since we have integrated along a stream line, the quantity 4
is not an absolute constant, but a function of the parameter of a
stream line: in other words if 4 = const., ¢ = const. be two surfaces
whose intersections determine the stream lines, 4 is a function
of ¥ and .

38. Let us now consider the steady motion of a liquid* which
is symmetrical with respect to the axis of z. The vortex lines
will evidently be perpendicular to every plane through the axis
of 2, hence by § 19 (41) the molecular rotation o will be determined
by the equation
du dw
dz  do’

! Stokes, ““On the steady motion of incompressible fluids,” Trans. Camb. Phil,
Soc. vol. vir. p. 439,

20 =
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STEADY MOTION. S0

Substituting for » and w their values in terms of Stokes’
current function yr, § 16 (25), we obtain

&y Ay 1dy =
it T i o gy T 2T =0 (28).

The equations of motion are

aQ  du du _ d(q)
W= %-El-m—_— + 2w,

Ja-—udw

aQ dw dw _ d(¢)
& e TV T e T
Eliminating @ — 4¢°, we obtain
dw dw dw
uw it rw m( +) =0 (29).
The equation of contmulty §9 (13) is
du dw  u
G
whence (29) becomes
do do uw
oy SR Tt
d i\ o
or ( Tt dz) ot 0 A (30).

Substituting the values of u, w and w in terms of +, (30)
becomes

(B - D18 o

A first integral of this equation is evidently

@y By ldy_
d2? +%’§ m_ d f(\P) ............... (32),
whence by (28) o8 A e

When the motion takes place in two dimensions, we shall, in
exactly the same way, arrive at the equations

g, dE_,
d_""”vd—y—
and % + %;_E L (34),
dp d_dy dy /@y by e
‘Vhence (Tiy d—m = 85 @) (dx + dJ ) (0% 00 oMt (30),

3—2
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a first integral of which is

¢y Y _
et o VEC ISP (36),
whence by (34)
204+ (¥) =0 corvrrenieninninriaianne 37).

39. The subject of the steady motion of a liquid has been
treated in the following manner by Clebsch'.

Let b and ¢ be any functions of #, y, z and ¢; then if the
suffixes denote differentiation with respect to z, ¥ and 2, we may
evidently put

u=be,—bge,, v=">bc,—bec,, w=be,—bge,...... (38),
for these values of u, v and w satisfy the equation of continuity.
From (38) we deduce

ub, + vb, + wb, = 0

uc, + ve, +we, =0
hence the stream lines are the intersections of the surfaces
b = const., ¢ = const,

Putting OT = w* + v* + w',
and multiplying equations (25) by dz, dy, dz respectively and
adding, we obtain

dQ—dT=Mdz+ Mdy + Mdz ............ (40),
where M, =—-v(v,—u,)+w (4, — w,) =— 20 + 2wy,
with similar expressions for M, and M,. From the values of M,,
M,, M, it follows that
Mu+Mp+ Mw=0 .......cccueveuee. (41).

Eliminating u, v, w from (39) and (41), we obtain

Mo b e =
|Y,, b, c,
IMSJ bz’ cz

Hence we may put
M, = Bb, + Ce,
M, = Bb, + Cc,

where .B and O are quantities whose values we shall hereafter
determine ; (40) may now be written

M, = Bb, + O’c,}

Y:Crelle, vol. x1v.’p. 293,
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d@Q—dT =B (bdx+ bdy + bdz) + C(c.dz+ c,dy +cdz),
or dQ —dT = Bdb + Cde..................... (43).

Since the left-hand side of (43) is a perfect differential, the
right-hand side must be so also, whence if ¥ be a function of b and
¢, we must have

dF dF
B — % 3 C = -CE ..................... (434.‘),
and therefore ()= T =T (050 ootion st dabess: (45)

is an integral of the equations of motion.

When the motion is irrotational, M, M, M, and therefore B
and C are each zero, and therefore F is an absolute constant.

40. We must now find the values of B and C. If we sub-
stitute the values of u, » and w from (38) in the expression for 7'
and differentiate partially, we shall obtain

—_— = - +
e A
El‘ = — we, + w
db, T o

s, + ve,,

z

B o 4 (‘?.1_’) ol (E@) o (dT >
de \db,/ ~ dy\db,/ ~ dz\db,
== (wy .- vz) - (u’z s wz) —C (vx o uy)

=—2(ct+omn+cl).
From the first two of equations (42), we obtain
Bw=Mgc,— Mg,
=2¢,(—v&+wn) — 2¢, (— wE + ub)
=2w (c.£+¢,n +¢8)
by (39). Therefore

d <dT)+ d <dT)+£(dT>=_B=_@ e (46).

dz\db,) " dy\db,) " dz\db, db
Similarly

d (dT\ d (dr\  d (dT dF

oﬁ(d_c) dy(ﬁc",)“L?zIz (%,)‘“0‘"% o (47).
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41. By means of the preceding equations it can be shown
that the conditions of steady motion make
(T - F) dzdydz

a maximum or minimum.

dT
For ST—-%b‘b + &c.,
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