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PKEFACE

It is probable that almost every teacher of advanced calculus feels the

need of a text suited to present conditions and adaptable to his use. To

write such a book is extremely difficult, for the attainments of students

who enter a second course in calculus are different, their needs are not

uniform, and the viewpoint of their teachers is no less varied. Yet in

view of the cost of time and money involved in producing an Advanced

Calculus, in proportion to the small number of students who will use it,

it seems that few teachers can afford the luxury of having their own

text
;
and that it consequently devolves upon an author to take as un-

selfish and unprejudiced a view of the subject as possible, and, so far as

in him lies, to produce a book which shall have the maximum flexibility

and adaptability. It was the recognition of this duty that has kept the

present work in a perpetual state of growth and modification during

five or six years of composition. Every attempt has been made to write

in such a manner that the individual teacher may feel the minimum

embarrassment in picking and choosing what seems to him best to meet

the needs of any particular class.

As the aim of the book is to be a working text or laboratory manual

for classroom use rather than an artistic treatise on analysis, especial

attention has been given to the preparation of numerous exercises which

should range all the way from those which require nothing but substi-

tution in certain formulas to those which embody important results

withheld from the text for the purpose of leaving the student some

vital bits of mathematics to develop. It has been fully recognized that

for the student of mathematics the work on advanced calculus falls in

a period of transition, of adolescence, in which he must grow from

close reliance upon his book to a large reliance upon himself. More-

over, as a course in advanced calculus is the ultima Thule of the

mathematical voyages of most students of physics and engineering, it

is appropriate that the text placed in the hands of those who seek that

goal should by its method cultivate in them the attitude of courageous



explorers, and in its extent supply not only their immediate needs, but

much that may be useful for later reference and independent study.

With the large necessities of the physicist and the growing require-

ments of the engineer, it is inevitable that the great majority of our

students of calculus should need to use their mathematics readily and

vigorously rather than with hesitation and rigor. Hence, although due

attention has been paid to modern questions of rigor, the chief desire

has been to confirm and to extend the student's working knowledge of

those great algorisms of mathematics which are naturally associated

with the calculus. That the compositor should have set "vigor" where

"rigor" was written, might appear more amusing were it not for the

suggested antithesis that there may be many who set rigor where vigor

should be.

As I have had practically no assistance with either the manuscript

or the proofs, I cannot expect that so large a work shall be free from

errors
;
I can only have faith that such errors as occur may not prove

seriously troublesome. To spend upon this book so much time and

energy which could have been reserved with keener pleasure for vari-

ous fields of research would have been too great a sacrifice, had it not

been for the hope that I might accomplish something which should be

of material assistance in solving one of the most difficult problems of

mathematical instruction, that of advanced calculus.

EDWIN BIDWELL WILSON
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
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ADVANCED CALCULUS

INTRODUCTORY REVIEW

CHAPTER I

REVIEW OF FUNDAMENTAL RULES

1. On differentiation. If the function f(x) is interpreted as the

curve y =/(%),* the quotient of the increments Ay and Ax of the

dependent and independent variables measured from (XQ} ?/ )
is

y - y ^y A/() /( + *) -/K)
x X Ax Ax Ax

and represents the slope of the secant through the points P (x , y )
and

P' (x -f- Ax, y + Ay) on the curve. The limit approached by the quo-

tient Ay/Ace when P remains fixed and Ax == is the slope, of the

tangent to the curve at the point P. This limit,

A*=o Ax ^ V o/

is called the derivative of /(x) for the value x X
Q

. As the derivative

may be computed for different points of the curve, it is customary to

speak of the derivative as itself a function of x and write

.. Ay .. f .., , , ,

lira ~z- = Inn J ^ -'- -L = f(x). (3)
Aa: =oAX Aa:= Ax V X V '

There are numerous notations for the derivative, for instance

* Here and throughout the work, where figures are not given, the reader should draw

graphs to illustrate the statements. Training in making one's own illustrations, whether

graphical or analytic, is of great value.

1



1. Carry through the derivation of (7) when n = p/q, and review the proofs of

typical formulas selected from the list (5)-(17). Note that the formulas are often

given as Dxun = nun - l l)xu, Dx smu = cosuJLtxu, ,
and may be derived in this

form directly from the definition (3).

2. Derive the two limits necessary for the differentiation of sinx.

3. Draw graphs of the inverse trigonometric functions and label the portions

of the curves which correspond to quadrants I, II, III, IV. Verify the sign in

(12)-(17) from the slope of the curves.

4. Find D tana and D cotx by applying the definition (3) directly.

5. Find D sin x by the identity sin u sin v = 2 cos-- sin ----
A 2

6. Find D taii-ix by the identity tan-1 it tan-1
!? = tan- 1-- and (3).

1 + MB

7. Differentiate the following expressions :

(a) esc 2 x cot 2 x, (/3) | tan8 x tan x + x, (y) a; cos- 1 x Vl x2
,

(5) sec-i-
l

-, (e) ahi-i
X

-. (f) x Vaa - x2 + a2 sin- 1 -,

(77) avers-1 -- V2 ax x2
, (#) cot-1-

r 2tan~ 1 -.
ft C ^~ Ct CC

What trigonometric identities are suggested by the answers for the following :

(a) sec2 *, (5)
- L=, (> r^i' ()0?
Vl x2 H- x2

8. In B. 0. Peirce's " Short Table of Integrals" (revised edition) differentiate the

right-hand members to confirm the formulas : Nos. 31, 45-47, 91-97, 125, 127-128,

131-135, 161-163, 214-216, 220, 260-269, 294-298, 300, 380-381, 386-394.

9. If a; is measured in degrees, what is D sinx ?

4. The logarithmic, exponential, and hyperbolic functions. The
next set of formulas to be cited are

D loge
x = 1

, D logax = i^ , (19)
tJ&

Dtf = e, Du? = a* log, a.t (20)

It may be recalled that the procedure for differentiating the logarithm is

A loggtc __ logq(x+ Ax) logax _ 1 x + Ax _ 1 / Ax\55
-

ioga- ioga (
1 -f
--

1

Ax Ax Ax x x \ x/

* The student should keep on file his solutions of at least the important exercises
;

many subsequent exercises and considerable portions of the text depend on previous
exercises.

f As is customary, the subscript e will hereafter be omitted and the symbol log will

denote the logarithm to the base e
; any base other than e must be specially designated

as such. This observation is particularly necessary with reference to the common base
10 used in computation.



Hm l + = e = 2.71828--. Iog10 c = 0.434294-
; (21)

A = <*> \ /(./

and hence if e be chosen as the base of the system, D logic takes the simple form

l/x. The exponential functions ex and a-
T may be regarded as the inverse functions

of logx and Iog x in deducing (21). Further it should be noted that it is frequently

useful to take the logarithm of an expression before differentiating. This is known
as logarithmic differentiation and is used for products and complicated powers and

roots. Thus

if y = x-r
,

then log?/ = a; logx,

and -
y' = 1 + log x or y' = xx

(1 + log x).

It is the expression y'/y which is called the logarithmic derivative of y. An especially

noteworthy property of the function y = Cex is that the function and its derivative

are equal, y' = y ;
and more generally the function y = Cete is proportional to its

derivative, y' = ky.

5. The hyperbolic functions are the hyperbolic sine and cosine,

gX g
X

gX
I

Q
X

sinh x = > cosh x = ; (22)

and the related functions tanhx, cothx, sechx, cschx, derived from

them by the same ratios as those by which the corresponding trigono-

metric functions are derived from, sinx and coscc. From these defini-

tions in terms of exponentials follow the formulas :

cosh2x sinh2x = 1, tanh2
cc -f- sech

2
o; = 1, (23)

sinh(xy) = sinh x cosh y _
cosh x sinh y, (24)

cosh (x y~)
= cosh x cosh y sinh x sinh y, (25)

, x lcoshic+1 x Icosha; 1
cosh - = +^ , smh - =

^ , (26)

D sinh x = cosh x, D cosh x = sinh a;, (27)

D taiih x = sech2 x, D coth x = csch2

x, (28)

D sech x = sech x tanh x, D csch x = csch x coth x. (29)

The inverse functions are expressible in terms of logarithms. Thus

1
y = sinh"1

x, x = sinh y

e
2-"-2x^-1=0,

* The treatment of this limit is far from complete in the majority of texts. Reference

for a careful presentation may, however, be made to Granville's
"
Calculus," pp. 31-34,

and Osgood's
"
Calculus," pp. 78-82. See also Ex. 1, (8), in 165 below.



sinh-1 x = log (a; + Vx2

+l),

cosh" 1
a; = log(.r Vx'2

-l),
1 4-r-L -t- '-

any a;

x > 1,

x2 < 1,

(30)

(31)

Vl

(33)

(34)

(35)

(36)

(37)

(38)

EXERCISES

1. Show by logarithmic differentiation that

and hence derive the rule : To differentiate a product differentiate each factor

alone and add all the results thus obtained.

2. Sketch the graphs of the hyperbolic functions, interpret the graphs as those

of the inverse functions, and verify the range of values assigned to x in (30)-(35).

3. Prove sundry of formulas (23)-(29) from the definitions (22).

4. Prove sundry of (30)-(88), checking the signs with care. In cases where

double signs remain, state when each applies. Note that in (81) and (34) the

double sign may be placed before the log for the reason that the two expressions

are reciprocals.

5. Derive a formula for sinhu sinhv by applying (24) ;
find a formula for

tanh \x analogous to the trigonometric formula tan \ x sin x/(l + cosx).

6. The gudermannictn. The function <j>
~ gdx, defined by the relations

sinhx = tan tf, <j>
= gd * = tan-1 sinh x, \ IT < <f> < + \ TT,

is called the gudermannian of x. Prove the set of formulas :

cosh x = sec
<f>,

tanh x = sin 0, csch x = cot <, etc. ;

Dgdx = secha;,. x = gd- a # = logtan(|< + TT),
D gd- 1

<j>
= sec

<j>.

7. Substitute the functions of
tj>

in Ex. 6 for their hyperbolic equivalents in

<28), (26), (27), and reduce to simple known trigonometric formulas.



o. jLuummiuHrbtj inc Jtuiiuwiug tsjtprejscsiuiiis :

(a) (x + 1)2 (x + 2)-
a
(x + 3)- , (0) a;l6*, (7) logx (x + 1),

(8) x + logcos(x |TT), (e) 2tan- 1 ea;

, (f) x tanhx,

, ..,,,,,,, ,\ ,
6* (a sin mx m cos mx)

(,) x tanh-is + | log(l
- a2

), (ff)
i ^ ^

'-.

9, Check sundry formulas of Peirce's "Table," pp. 1-61, 81-82.

6. Geometric properties of the derivative. As the quotient (1) and

its limit (2) give the slope of a secant and of the tangent, it appears

from graphical considerations that when the derivative is positive the

function is increasing with x, but decreasing when the derivative is

negative.* Hence to determine the regions in which a, function is in-

creasing or decreasing, one may find the derivative and determine the

regions in which it is positive or negative.

One must, however, be careful not to apply this rule too blindly ;
for in so

simple a case as /(x) = logx it is seen that /'(x) = 1/x is positive when x > and

negative when x < 0, and yet log x has no graph when x < and is not considered

as decreasing. Thus the formal derivative may be real when the function is not

real, and it is therefore best to make a rough sketch of the function to corroborate

the evidence furnished by the examination of /'(x).

If X
Q
is a value of x such that immediately t upon one side of x = x

the function f(x) is increasing whereas immediately upon the other

side it is decreasing, the ordinate t/ =/(o; )
will be a maximum or

minimum or f(x) will become positively or negatively infinite at zc .

If the case where f(x) becomes infinite be ruled out, one may say that

the function will have a minimum or maximum at X
Q according as the

derivative changes from negative to positive or from positive to negative

when x, moving in the positive direction, passes through the value X
Q

.

Hence the usual rule for determining maxima and minima is to find

the roots of f'(x)
= 0.

This rule, again, must not be applied blindly. Tor first, f'(x) may vanish where

there is no maximum or minimum as in the case y = x8 at x where the deriva-

tive does not change sign ;
or second, /'(sc) may change sign by becoming infinite

as in the case y = x* at x = where the curve has a vertical cusp, point down, and

a minimum
;
or third, the function /(x) may be restricted to a given range of values

a ^ x ^ b for x and then the value3/(a) and/(6) of the function at the ends of the

interval will in general be maxima or minima without implying that the deriva-

tive vanish. Thus although the derivative is highly useful in determining maxima
and minima, it should not be trusted to the complete exclusion of the corroborative

evidence furnished by a rough sketch of the curve y = f(x).

* The construction of illustrative figures is again left to the reader.

t The word "immediately" is necessary because the maxima or minima may fee

merely relative ; in the case of several maxima and minima in an interval, some, of

the maxima may actually be less than some of the minima.



INTEODUCTOEY REVIEW

7. The derivative may be used to express the equations of the tangent

and normal, the values of the subtangent and subnormal, and so on.

Equation of tangent, 1/ 1/Q
=

2/'o(.
x X

)> (39)

Equation of normal, (y y ) y' -f- (x x )
= 0, (40)

TM= subtangent = y /y' ,
MN subnormal = y y' , (41)

OT = cc-intercept of tangent = CC
Q yjy[, etc. (42)

The derivation of these results is sufficiently evi-

dent from the figure. It may be noted that the

subtangent, subnormal, etc., are numerical values

for a given point of the curve but may be regarded

as functions of x like the derivative.

In geometrical and physical problems it is frequently necessary to

apply the definition of the derivative to finding the derivative of an

unknown function. For instance if A denote the

area under a curve and measured from a fixed

ordinate to a variable ordinate, A is surely a func-

tion A(x) of the abscissa x of the variable ordinate.

If the curve is rising, as in the figure, then

MPQ'M' <&A< MQP'M', or y&x < A4

O M \ X

MM'

(y + Ay) AOJ.

Divide by Ace and take the limit when A# = 0. There results

lim y g lim lim (y + Ay).

Hence
.. AJ. dA

'

x dx (43)

Rollers Theorem and the Theorem of the Mean are two important
theorems on derivatives which will be treated in the next chapter but

may here be stated as evident from their geometric interpretation.

Theorem states that : If a function has a derivative at every

-X

FIG. 1 . 2 FIG. 3

point of an interval and if the function vanishes at the ends of the in-

f:1i.(>vp. iJ! rti. Jf.rrst nvia innint ii^if-Ji-in fJia i"-n/i>w!/Tf7 n+ /i7)V/i/i +1, a



II/M.O U/ WC// (.(/W/C/fcl/tJ / dU-Uft/ JJVIilW VJ U,lb bflil/&l
</W-[-j

l-lb&l & VO .(- [-CU..M/ VII/& J.IVWUI,

in the interval such that the tangent to the curve y =/(&') is parallel to

the chord of the interval. This is illustrated in Fig. 2 in which there

is only one such point.

Again care must be exercised. In Fig. 3 the funotion vanishes at A and B but

there is no point at which the slope of the tangent is zero. This is not an excep-
tion or contradiction to Rolle's Theorem for the reason that the function does not

satisfy the conditions of the theorem. In fact at the point P, although there is a

tangent to the curve, there is no derivative
;
the quotient (1) formed for the point P

becomes negatively infinite as Ax = from one side, positively infinite as Ax =
from the other side, and therefore does not approach a definite limit as is required
in the definition of a derivative. The hypothesis of the theorem is not satisfied and

there is no reason that the conclusion should hold.

EXERCISES

1. Determine the regions in which the following functions are increasing or

decreasing, sketch the graphs, and find the maxima and minima :

(a) \ x
- x2 + 2, (/3) (z + 1)* (x

-
5)

3
, (7) log (x

2 -
4) ,

(5) (x-2)Vz-l, (e) -(x + 2)Vl2-x2
, (f) xs + ax + b.

2. The ellipse is r = Vx2 + y2 = e (d + x) referred to an origin at the focxis.

Find the maxima and minima of the focal radius r, and state why Dxr = does

not give the solutions while D^r = does [the polar form of the ellipse being
r = k(l ecos^)-1

].

3. Take the ellipse as x2
/q

2 + j/
2
/b

2 1 and discuss the maxima and minima of

the central radius r =V 2 + y2
. Why does Dxr = give half the result when r is

expressed as a function of x, and why will D^r = give the whole result when
x = a cos X, y = 6 sin X and the ellipse is thus expressed in terms of the eccentric

angle ?

"

4. If y = P (x) is a polynomial in x such that the equation P (x) = has multiple

roots, show that P'(x) = for each multiple root. What more complete relationship

can be stated and proved ?

5. Show that the triple relation 27 &2 + 4 a8 = determines completely the nature

of the roots of x8 + ax + b = 0, and state what corresponds to each possibility.

6. Define the angle 9 between two intersecting curves. Show that

tan e = [/'(x )
-

0'(x )] -f- [1 +/'(x ) g'(x )]

if y =/() and y
~

g (x) cut at the point (x , y ).

7. Find the subnormal and subtangent of the three curves

(a) y
2 = 4j>x, 03) x2 = 4py, (7) x2 + 1/2

= a2
.

8. The pedal curve. The locus of the foot of the perpendicular dropped from

a fixed point to a variable tangent of a given curve is called the pedal of the given

curve with respect to the given point. Show that if the fixed point is the origin,

the pedal of y =f(x) may be obtained by eliminating x
, y , yd from the equations



volume of revolution thus generated when measured from a fixed plane perpen-

dicular to the axis out to a variable plane perpendicular to the axis, show that

DxV = iry*.

10. More generally if A (x) denote the area of the section cut from a solid by
a plane perpendicular to the x-axis, show that DXV= A (x).

11. If A (0) denote the sectorial area of a plane curve r =/(0) and be measured

from a fixed radius to a variable radius, show that D^A = J r2 .

12. If p, 7t, p are the density, height, pressure in a vertical column of air, show

that dp/dh = p. If p = fcp, show p = Ce~ kil
.

13. Draw a graph to illustrate an apparent exception to the Theorem of the

'Mean analogous to the apparent exception to Rolle's Theorem, and discuss.

14. Show that the analytic. statement of the Theorem of the Mean for/(x) is

that a value x = intermediate to o and & may be found such that

/(&)- /(a) = /'(*) (6 -a), . <<&.
15. Show that the semiaxis of an ellipse is a mean proportional between the

ic-intercept of the tangent and the abscissa of the point of contact.

16. "Find the values of the length of the tangent (a) from the point of tangency
10 the x-axis, (/3) to the y-axis, (7) the total length intercepted between the axes.

Consider the same problems for the normal (figure on page 8) .

17. Find the angle of intersection of (a) y
2 = 2mx and a;

2 + y2 = a2
,

18. A constant length is laid off along the normal to a parabola. Find the locus.

19. The length of the tangent to a$" + y% afr intercepted by the axes is constant.

20. The triangle formed by the asymptotes and any tangent to a hyperbola has

constant area.

21. Find the length FT of the tangent to x = Vc2 y2 + c sech-1
(y/c).

22. Find the greatest right cylinder inscribed in a given right cone.

23. Find the cylinder of greatest lateral surface iriscribed in a sphere.

24. From a given circular sheet of metal cut out a sector that will form a cone

('without base) of maximum volume.

25. Join two points -4, S in the same side of a line to a point P of the line in

duch a way that the distance PA + PB shall be least.

26. Obtain the formula for the distance from a point to a line as the minimum
distance.

27. Test for maximum or minimum, (a) If f(x) vanishes at the ends of an inter-

val and is positive within the interval and if /'(x) = has only one root in the

interval, that root indicates a maximum. Prove this by Bolle's Theorem. Apply
it in Exs. 22-24. (/3) If /(a) becomes indefinitely great at the ends of an interval

and f'(x) = has only one root in the interval, that root indicates a minimum.



ncauons 01 them generally sumce in practical problems to distinguish between

maxima and minima without examining either the changes in sign of the first

derivative or the sign of the second derivative
;
for generally there is only one

root of f'(x) in the region considered.

28. Show that x~l sin * from x=Qtox = %ir steadily decreases from 1 to 2/7T.

29. If 0<x<l, show (a)0<-log(l + a;)<-a;
2

, (j3)
-&L. < x log(l + )

30. If > x > 1, show that -x2 < x log(l + x)< -i-5_.
2 1 -}- x

8. Derivatives of higher order. The derivative of the derivative

(regarded as itself a function of x) is the second derivative, and so on

to the nib. derivative. Customary notations are :

.

dx* dx*
' dxn

The nth derivative of the sum or difference is the sum or difference of

the nth derivatives. For the wth derivative of the product there is a

special formula known as Leibniz's Theorem. It is

Dn
(uv)

=Dnu v+ nDn ~luDv+ ^~-.
^Dn ~ 2uD*v {

-----
f- uDn

v. (44)
2i !

This result may be written in symbolic form as

Leibniz's Theorem Dn
(uv)

= (Du + Dv)
n

, (44')

where it is to be understood that in expanding (Du + Dv)
n the term

(Du)
k
is to be replaced by D^u and (Du) by Du = u. In other words

the powers refer to repeated differentiations.

A proof of (44) by induction will be found in 27. The following proof is

interesting on account of its ingenuity. Note first that from

D (uv) = uDv + vDu, D2
(uv) - J) (uDv) + D (vDu),

and so on, it appears that D2
(uv) consists of a sum of terms, in each of which there

are two differentiations, with numerical coefficients independent of u and w. In like

manner it is clear that

J> (uv) = C I>u v + C
1
Dn ~1 Ml> H---- + Cn _iZ>w.Z>-iu + CnuDv

is a sum of terms, in each of which there are n differentiations, with coefficients C

independent of u and v. To determine the C"s any suitable functions u and v, say,

may be substituted. If the substitution be made and e^+ a^ x be canceled,

e-(i+a)xDn(ul)) = (1 + a)" = C + ^a + + Cn^an-i + Cna\

and hence the C's are the coefficients in the binomial expansion of (1 + a)



and (5).
For if x and y be expressed in terms of known functions

of new variables u and v, it is always possible to obtain the deriva-

tives Dxy, D%y, in terms of 2\v, D?t v } ,
and thus any expression

F(x ) 1)i y'> v"y
' '

')
ma/ De changed into an equivalent expression

^(it-, v, v', v", )
ill the new variables. In each case that arises the

transformations should be carried out by repeated application of (4)

and (5) rather than by substitution in any general formulas.

The following typical cases are illustrative of the method of change of variable.

Suppose only the dependent variable y is to be changed to z defined as y=f(z) . Then

^ = L (W\ = A l*L W\ = !*!

dx2 dx \dx/ dx \dx dz] dxz dz dx \dx dz

__ d?z dy dz
ld_ dy dz\ _ d?z dy

(dz\
z cPy~

dx2 dz dx \Tz dz dx)
~

dx? dz \dx) ~dz?'

As the derivatives of y =f(z) are known, the derivative d2y/dxz has been expressed
in terms of z and derivatives of 2 with respect to x. The third derivative would be

found by repeating the process. If the problem were to change the independent
variable x to 2, defined by x =/(z),

*v - ^ <b - ^ /^V 1

dx
~

dz dx
~

dz \dz) dx2
~

dx dz \dz

1!? = ^L (Y1- *. (^}~
2
^L^ _

dx2
~

dz* dx \dz) dz \dz) dx dz2
~

_~dz? dz
~

dz? dz
""

dz

The change is thus made as far as derivatives of the second order are concerned. If

the change of both dependent and independent variables was to be made, the work
would be similar. Particularly useful changes are to find the derivatives of y by x
when y and x are expressed parametrically as functions of

t, or when both are ex-

pressed in terms of new variables r, as x = r cos <, y = r sin
</>.

For these cases

see the exercises.

9. The concavity of a curve T/=/(CC) is given by the table:

if /" (,7.- ) > 0, the curve is concave up at x = X
Q,

if f"(yj) < 0, the curve is concave down at x X
Q ,

if /"(a; ) 0, an inflection point at x X
Q

. (?)

Hence the criterion for distinguishing between maxima and minima:

if /'(a; )
= and /"(:) > ;

a minimum at x = aj
Q ,

if /' (a? )
= and /" (a: ) < 0, a maximum at x = x

,

if /'(a5 )
= and f"(xQ)

= 0, neither max. nor min. (?)
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The question points are necessary in the third line because the state-

ments are not always true unless /"'(#)
=

(see Ex. 7 under 39).

It may be recalled that the reason that the curve is concave up in case/"(x ) >
is because the derivative f'(x) is then an increasing function in the neighborhood.
of x x

;
whereas if /"( )

< 0, the derivative /'() is a decreasing function and
the curve is convex up. It should be noted that concave up is not the same as

concave toward the x-axis, except when the curve is below the axis. With regard
to the use of the second derivative as a criterion for distinguishing between maxima
and minima, it should be stated that in practical examples the criterion is of rela-

tively small value. It is usually shorter to discuss the change of sign of f'(x) directly,

and indeed in most cases either a rough graph of f(x) or the physical conditions

Df the problem which calls for the determination of a maximum or minimum will

\mmediately serve to distinguish between them (see Ex. 27 above).

The second derivative is fundamental in dynamics. By definition the

average velocity v of a particle is the ratio of the space traversed to the

time consumed, v = s/t. The actual velocity v at any time is the limit

of this ratio when the interval of time is diminished and approaches

zero as its limit. Thus

As . As ds
v = and v= hm =

(45)A* At~oA dt ^ '

In like manner if a particle describes a straight line, say the x-axis, the

average acceleration f is the ratio of the increment of velocity to the

increment of time, and the actual accelerationf at any time is the limit

of this ratio as A* == 0. Thus

5 Av Av dv d*x
/=_ and /== i^_ = _ = _.

(46)

By Newton's Second Law of Motion, the force acting on the particle is

equal to the rate of change of momentum, with the time, momentum

being denned as the product of the mass and velocity. Thus

I

where it has been assumed in differentiating that the mass is constant,

as is usually the case. Hence (47) appears as the fundamental equa-

tion for rectilinear motion (see also 79, 84). It may be noted that

da d /1 A dT



3. Write the nth derivatives of the following functions, of which the last three

should first be simplified by division or separation into partial fractions.

(a) VxTT, 03) log (ax + i), (y) (x
z + 1) (z + !)-,

(5) cos ax, (e) e^sinx, (f) (l-x)/(l + x),

()
1

(0)

C8 + X+1
,

/-v / + 1\
2

4. If y and x are each functions of t, show that

cix ci y dy CL x

d^v dt dtp dt dtP x't/" *- '_ _

\dt;

ct y *c \x> y y x
)

" d x (*c y
" ' y *^

)___ _

5. Find the inflection points of the curve x = 4 2 sin
</>, y = 4 2 cos 0.

6. Prove (47'). Hence infer that the force which is the time-derivative of the

momentum mv by (47) is also the space-derivative of the kinetic energy.

7. If A denote the area under a curve, as in (43), find dA/d6 for the curves

(a) y = a (1 cos 0), x = a (0 sin 0), (/3)
x = a cos 0, y = b sin 0.

8. Make the indicated change of variable in the following equations :

dx* l + x*dx

f-l
y

Ans. + 1=0.

9. Transformation topolar coordinates. Suppose that a;= r cos <f>,y=r sin
<f>.

Then

dx dr . dy dr .

- = - cos tf> r sm 0,
- = - sin < + r cos <,

(20 U0 C10 Ctrp

A < v- v /, ,- is- ^*y ^^ r2 + 2 (i> r)
2 - rD 2

r
and so on for higher derivatives. I ind and - =- -^_ .

dx cte
2

(cos D^,r r sin <)
8

10. Generalize formula (5) for the differentiation of 'an inverse function. Find
d2x/dyz and d s

x/dy
s

. Note that these may also be found from Ex. 4.

11. A point describes a circle with constant speed. Find the velocity and
acceleration of the projection of the point on any fixed diameter.

10 -n o a A < * .,
12. Prove ^- = 2uvs + 4vM v5 if x = -. u =

cfcc
2

\duj du? \du/ v
'



indefinite integral. To integrate a function f(x) is to find

F(x) the derivative of which is f(x). The integral F(.r) is

y determined by the integrand f(x) ;
for any two functions

r merely by an additive constant have the same derivative.

r'ormulas for integration the conotant may be omitted and

;
but in applications of integration to actual problems it

ays be inserted and must usually be determined to fit the

ts of special conditions imposed upon the problem and

the initial conditions.

t be thought that the constant of integration always appears added to the

). It may be combined with F(x) so as to be somewhat disguised. Thus

log a;, logas + C, logCx, log(*/C)

rals of 1/fc, and all except the first have the constant of integration C,

y in the second does it appear as formally additive. To illustrate the

m of the constant by initial conditions, consider the problem of finding

ler the curve y = cos a;. By (43)

y = cosx and hence A = sin x + C.

s to be measured from the ordinate x 0, then A = when x = 0, and

.bstitutJ.on it is seen that ,C = 0. Hence A =? sin cc. But if the area be

om x'^ir, then .4=0 when cc= |TT and C =1. Hence .4= 1 + sin a;.

area under a curve is not definite until the ordinate from which it is

i specified, and the constant is needed to allow the integral to fit this

.tion.

} fundamental formulas of integration are as follows :

/\xn = xn if =jt 1, (48)n 4-1

:=
e*, I a* ss a*/log a, (49)

incc = cosx, / cos x = sin x, (50)

in x = log cos 35, I cot x = log sin a, (51)

tan x, . I csc2 e = cot x
} (52)

I cot x esc x esc x, (53)

aulas similar to (50)-(53) for the hyperbolic functions. Also

i r i
;

-
:,
= tan^x or cofc"

1
^, I ^
-

s
= tanh~1^ or ooth"1

^, (54)
1+ ic

2
/ 1 a;

3 '

an x sec * = sec x



J Vl-x2 J

/i
r i

-j== = sec" 1
:*; or csc~ 1

a;,
I
-T~ = T secli"

1

:*:, (56)
ccVce2 1 J xVl x2

f
/

1 = cosh- 1

*, f ^ = qp csch-1

*, (57)
J Var2 1 J aVl-f-ar

2

/I /"* /7T X\
- = vers~ 1

x, I sec = gd~
a
a; = logtan( +-) (58)

V2cc x2 J V* ^/

For the integrals expressed in terms of the inverse hyperbolic functions, the

logarithmic equivalents are sometimes preferable. This is not the case, however,

in the many instances in which the problem calls for immediate solution with

regard to x. Thus if y = f (1 + a;
2
)

- 1 = siuh-1 x + C1

,
then x = sinh (y C], and the

solution is effected and may be translated into exponentials. This is not so easily

accomplished from the form y log(x + Vl + x2
) + C. Tor this reason and

because the inverse hyperbolic functions are briefer and offer striking analogies

with the inverse trigonometric functions, it has been thought better to use them

in the text and allow the reader to make the necessary substitutions from the table

(80)-(85) in case the logarithmic form is desired.

12. In addition to these special integrals, which are consequences

of the corresponding formulas for differentiation, there are the general

rales of integration which arise from (4) and (6).

Cd^dy _ r^_ ?, ,KQS

J dyfa-J dx~*' (59)

I (u + v
10)
= I u-{-

I
v I w, (60)

uv I uv 1

-f- I u'v. (61)

Of these rules the second needs no comment and the third will be treated later.

Especial attention should be given to the first. For instance suppose it were re-

quired to integrate 2 logx/x. This does not fall under any of the given types ;
but

2 _ d(logx)
2
dloga; __ dz dy

x d log x dx dy dx

Here (logfc)
2 takes the place of z and log* takes the place of y. The integral is

therefore (logs)
2 as may be verified by differentiation. In general, it may be

possible to see that a given integrand is separable into two factors, of which ene

is integrable when considered as a function of some function of *, while the other

is the derivative of that function. Then (59) applies. Other examples are :

reeiua; cos X) ftan-* X/(l + 2
), fa?2 gin (

8
)

.



integrable and as y = tan-ix, y' = (1 + x2
)-

1
;
in the third z = s\\\y is integrable

and as y = x3
, T/' = 3x2

. The results are

e8in
<*, J (tan-i x)

2
, \ cos (z

3
) .

This method of integration at sight covers such a large percentage of the cases

that arise in geometry and physics that it must be thoroughly mastered.*

EXERCISES

1. Verify the fundamental integrals (48)-(58) and give the hyperbolic analogues

of (50}-(53).

2.JTabulate the integrals here expressed in terms of inverse hyperbolic func-

tions by means of the corresponding logarithmic equivalents.

3. Write the integrals of the following integrands at sight :

(a) sin ax, (p) cot (ax + 6), (7) tanh3x,
1 i

tt)
v 2 ax x2

. i

x log x

(K) x3Vax2 + 6, (\) tan x sec2 x,

1-x2

sinx
(p) a1 + Bina:

cosx, (<r)
:

,

Vcosx

(fj) cot x log sinx,

2 + logx

4. Integrate after making appropriate changes such as sin2 x = J ^ cos2x

or sec2x = 1 + tan2
x, division of denominator into numerator, resolution of the

product oi trigonometric functions into a sum, completing the square, and so on.

(a) cos2 2x,
1

(0

sin*x.

2x + l

x + 2

e2x + <

(7) tan*x,

( f)
1 - shlx

,

(K) sin 5x cos2x + 1, (X) sinh mx sinh ?ix,

1
f*r* I /?

(v) secG xtanx v2x, (o) -,

(0
X2 ax + x2

(/j.)
cos x cos 2 x cos 3 x,

* The use of differentials ( 35) is perhaps more familiar than the use of derivatives.

f dz j Cdz dy .,

C dz , r . .
n

(*)= / T~ rfa; =
/ 3~ ,

da: =
/ T-^y^CyW]-J dx J dy dx J dy

Then J
-
log x dx =

J
2 log v d log cc = (log x)

2
.

The use of this notation is left optional with the reader
;

it has some advantages ana

some disadvantages. The essential thing is to keep clearly in mind the fact that the

problem is to be inspected with a view to detecting the function which will differentiate

into the given integrand.



(a) smm x cos"x, m or n odd, or m and n even,

(/3) tannx or cofx when n is an integer,

(7) sec^a; or cscn x when n is even,

(8) tanroxsec1^ or cotmxcscn x, n even,

6. Explain the alternative forms in (54)-(56) with all detail possible.

7. Tind (ex) the area under the parabola y2 = &px from x = to * = o ; also

(/3) the corresponding volume of revolution. Find (7) the total volume of an ellip-

soid of revolution, (see Ex. 9, p. 10).

8 . Show that the area under y = sin mx, sin nx or y = cos mx cos nx from' x =
to x = IT is zero if m and H are unequal integers but \ TT if they are equal.

9. Find the sectorial area of r = a tan^> between the radii < = and
<}>
=

\TT.

10. Tind the area of the (a) lemniscate r2=a2 cos2# and
(/3) cardioid r=l cos<.

11. By Ex. 10, p. 10, find the volumes of these solids. Be careful to -choose the

parallel planes so that A (x) may be found easily.

(a) The part cut off from a right circular cylinder by a plane through a diameter

of one base and tangent to the other. Ans. 2/3 TT of the whole volume.

(/3) How much is cut off from a right circular cylinder by a plane tangent to its

lower, base and inclined at an angle & to the plane of the base ?

(y) A circle of radius b < a is revolved, about a line in its plane at a distance cc

from its center, to generate a ring. The volume of the ring is 27r2 62 .

(8) The axes, of two equal cylinders of revolution of radius r intersect at right

angles. The volume common to the cylinders is 16rV3.

12. If the cross section of a solid is A(x) = a^c
3 + a^ + z

x + a
s ,
a cubic in x,

the volume of the solid between two parallel planes is }h(B + 4JH+ B') where h

is the altitude and B and B' are the bases and If is 'the middle section;

13. Show that f - = tan-i
J 1 x21 + x2 1 - c

13. Aids to integration. The majority of cases of integration which

urise in simple applications of calculus may be treated by the method

of 12. Of the remaining cases a large number cannot be integrated

at all in terms of the functions which have been treated up to this

ll/I. : - :. -..

V(l-x
2

)(l-
of elementary functions. One of the chief reasons for introducing a

variety of new functions in higher analysis is to have means for effect-

ing the integrations called for by important applications. The dis-

cussion of this matter cannot be taken up here. The problem of

integration from an elementary point of view calls for the tabula-

tion of some devices which "will accomplish the integration for a
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The devices which will be treated are :

Integration by parts, Evolution into partial fractions,

Various substitutions, Reference to tables of integrals.

Integration by parts is an application of (61) when written as

/ uv' = uv
j

u'v. (61')

That is, it may happen that the integrand can be written as the product uv' of two

factors, where v' is integrable and where u'v is also integrable. Then uv' is integrable.

For instance, logx is not integrated by the fundamental formulas
;
but

I logx = flogs 1 = a; logx I x/x = xlogx x.

Here log x is taken as u and 1 as
',

so that v is x, u' is 1/x, and u'v = 1 is immedi-

ately integrable. This method applies to the inverse trigonometric and hyperbolic

functions. Another example is

fxsinx = xcosx + fcosx = sinx xcosx.

Here if x = u and sinx = v', "both v' and u'v = cos x are integrable. If the choice

sin x=u and x=v' had been made, v' would have been integrable but u'v=% x
2 cos x

would have been less simple to integrate than the original integrand. Hence in

applying integration by parts it is necessary to look ahead far enough to see that

both v' and u'v are integrable, or at any rate that v' is integrable and the integral

of u'v is simpler than the original integral.*

Frequently integrationby parts has to be applied seveial times in succession. Thus

fx2e* = xV f2 xe* if u = x2
,

v' = e*,

= xV 2 xe* - C& if u = x, u' = e*,

Sometimes it may be applied in such a way as to lead back to the given integral

and thus afford an equation from which that integral can be obtained by solution.

For example,

le
x cosx = e^cosx 4- I e*sinx if u = cosx, '= e*,

= e? cos x + le* sin x I e* cos x\ if u sin x, v' e*

e*(cosx 4- sinx) ( e^cosx.

Hence Cex cosx = $e
x
(cos x 4- sin x) .

* The method of differentials may again be introduced if desired-



nomials in x, the fraction is first resolved into partial fractions. This is accom-

plished as follows. First if / is not of lower degree than F, divide F into/ until the

remainder is of lower degree than F. The fraction f/F is thus resolved into the

sum of a polynomial (the quotient) and a fraction (the remainder divided by F)
of which the numerator is of lower degree than the denominator. As the polyno-

mial is integrable, it is merely necessary to consider fractions f/F where / is of

lower degree than F. Next it is a fundamental theorem of algebra that a poly-

nomial F may be resolved into linear and quadratic factors

F(x) = fc(z- a)
a (x- &)P(x c)v.

.

-(x
2

-f mx -f- n)** (x
2
-f px, + ?)"-,

where a, i, c, are the real roots of the equation F(x) = and are of the respec-

tive multiplicities a, $ 7, ,
and where the quadratic factors when set equal to

zero give the pairs of conjugate imaginary roots of F = 0, the multiplicities of the

imaginary roots being /K, ?, . It is then a further theorem of algebra that the

fractionf/F may be written as

,
*

|

.

|
1

*
I

- -

I I
.

I(x) x-a (x-a)
2

(z-)"-& (z-6)/

.

____
..

x2 + mx + ?i (x
2 + mx -j- n)

2
(sc

2 + mx + %)/

where there is for each irreducible factor of F a term corresponding to the highest

power to which that factor occurs in F and also a term corresponding to every

lesser power. The coefficients A, B, , Jlf, N, may be obtained by clearing

of fractions and equating coefficients of like powers of cc, and solving the equations ;

or they may be obtained by clearing of fractions, substituting for x as many dif-

ferent values as the degree of F, and solving the resulting equations.

When f/F has thus been resolved into partial fractions, the problem has been

iduced to the integration of each fraction, and this does not present serious

Ifficulty. The following two examples will illustrate the method of resolution

nto partial fractions and of integration. Let it be required to integrate

f_*1_ and f
2

J xx - 1 x - 2 x2 + x + 1 J x -1) (x
-

2) (x
2 + x + 1) (x

-
I)

2
(z
-

3)
8

The first fraction is expansible into partial fractions in the form

x2 + 1 _ A B C Dx +
x (x

-
1) (x,

-
2) (x

2 + + 1) x x 1 x - 2 x2 + x + 1

Hence x2 + 1 = A(x - 1) (x
-

2) (x
2 + x + 1) + Bx (x

-
2) (x

2
-f x + 1)

+ Cx v
x 1) (x

z + x + 1) + (Zte + E) x (x
-

1) (x
-

2).

lather than multiply out and equate coefficients, let 0, 1, 2, 1, 2 be substi-

tuted. Then

2 = - 8 B, 5 = 14 C, D~E =

_& r

(x - 2) J

2 f 5 c 4x+ 5
.. . "T*

21 (x

llog(-2)-Ai? _-5



The substitution of 1, 3, 0, 2, 4 gives the equations

8=-8JJ, 60 = 4#, QA +3C-D+ 12=0,

The solutions are 9/4, 1, + 9/4, 3/2, 16, and the integral becomes

(x
-

I)
2
(x
-

3)
8 4

D x '

x - 1

3 15

2 (x
-

3) 2
(
-

3)
2

The importance of the fact that the method of partial fractions shows that any

rational fraction may be integrated and, moreover, that the integral may at most con-

sist of a rational part plus the logarithm of a rational fraction plus the inverse

tangent of a rational fraction should not be overlooked. Taken with the method

of substitution it establishes very wide categories of integrands which are inte-

grable in terms of elementary functions, and effects their integration even though

by a somewhat laborious method.

15. The method of substitution depends on the identity

r
ay

which is allied to (59). To show that the integral on the right with respect to y

is the integral of /(x) with respect to x it is merely necessary to show that its

derivative with respect to a; is /(x). By definition of integration,

f/()=f /[ if

Jx Jy

by (4). The identity is therefore proved. The method of integration by substitu-

tion is in fact seen to be merely such a systematization of the method based on

(59) and set forth in 12 as will make it practicable for more complicated problems.

Again, differentials may be used if preferred.

Let R denote a rational function. To effect the integration of

fsin x B (sin
2
x, cos x), let cos x = y, then CE(l y*, y) ;

fcosxR(cos
2
x, sinx), let sin x = y, then CR(l yz

,y);

CR(^\ = CE (tan x), let tanx = y, then fJ \cosx/ J Jy

/
rf /> / 2 V 1_

^(sin^cosx), let tan =
,

The last substitution renders any rational function of sin x and cos x rational in

the variable y ;
it should not be ueed, however, if the previous ones are applicable

. it is almost certain to give a more difficult final rational fraction to integrate,



and in some one of the radicals Va2 + a2
,
Va2 x2

,
Va2 a2 . These may be con-

vertedinto trigonometric or hyperbolic integrands by the following substitutions:

CR (x, Va2 x2
) x = a sin ?/, IE (a sin y, a cos y) a cos y ;

(/.
x = atany, I R (a tan y, a secy) a sec2 y^
x = a sinh y, I

R (a sinh y, a cosh y) a cosh y ;

l^
**

{/i
x = asecy, I B(asecy, a tan y) a secy tan y

r= a cosh y, I E (a cosh y, o sinh y) a sinh y.
Jy

It frequently turns out that the integrals on the right are easily obtained by
methods already given; otherwise they can be treated by the substitutions above.

In addition to these substitutions there are a large number of others which are

applied under specific conditions. Many of them will be found among the exer-

cises. Moreover, it frequently happens that an integrand, which does not come
under any of the standard types for which substitutions are indicated, is none the

less integrable by some substitution which the form of the integrand will suggest.

Tables of integrals, giving the integrals of a large number of integrands, have
been constructed by using various methods of integration. B. 0. Peirce's " Short

Table of Integrals
" may be cited. If the particular integrand which is desired does

not occur in the Table, it may be possible to devise some substitution which will

reduce it to a tabulated form. In the Table are also given a large number of

reduction formulas (for the most part deduced by means of integration by parts)
which accomplish the successive simplification of integrands which could perhaps
be treated by other methods, but only with an excessive amount of labor. Several

of these reduction formulas are cited among the exercises. Although the Table is

useful in performing integrations and indeed makes it to a, large extent unneces-

sary to learn the various methods of integration, the exercises immediately below,
which are constructed for the purpose of illustrating methods of integration, should
be done without the aid of a Table.

EXERCISES

1. Integrate the following by parts :

(a) J*x
cosh

, (|8) J'tan-
1
z, (7) Cxm log *,

sin~la;

2. If P(x) is a polynomial and P'(K), P"(cc), its derivatives, show

() fP (x) e* =
e*[p

(x)
- I

P'(x) + 1 P"(x) ----1

(/3) Jp (x) cos ax = - sin ax
|P (x)

-
-^ P"(x] +

~
P*(o;)

----1

and (7) derive a similar result for the integrand P (x) sin ax.



FUNDAMENTAL RULES 23

3. By successive integration by parts and subsequent solution, show

. . r . .

(a) e* Bin to =

. . r , e"x (b sin to + a cos to)
(/3) |

e"x cos to = ,

v a2 + 62

(7) |
xe2 - cosx = ^e2:c

[5x(sinx -f 2 cosx) 4 sinx 3 cosx].

4. Prove by integration by parts the reduction formulas

, . r . sin.m + l xcos- l x n lr.
(a) I smm x cos'lx =

1 /
sinm a; cos"- 2

x,
J m + n m + n J

,. /v tan'"- 1 x sec"x m 1 r
(|3) I tanni xsecx = I tan- 2 xsecn x,

/I 1 P x r I ~\

(x
2 + a2

)"

=
2 (n

-
1) a

2
L (z

2 + a2
)"-i

+ ' n ~
' J (x

2 + a2)-1
J'

. . r xm xm + 1 m +
(5)

/ = ^ Z.

5. Integrate by decomposition into partial fractions :

/\ r
z^ J (x + 2)
2

6. Integrate by trigonometric or hyperbolic substitution :

(a) JVfl
2 -z2

, (/S) JVx
2 - a2

, (7)

7. Find the areas of these curves and their volumes of revolution :

x + y = a, (|8) a^2 = a*x* - x6
, (7)

-

8. Integrate by converting to a rational algebraic fraction:

' f BinSx . . / cos 3 x / sin 2 x
^^ J a2cos2 x + &2 sinz a;

'
' J a2 cos2 x + ft

2 sin2 x
' W J a? cos2 a; + 62 sin2 x'

r 1 , /*_1_ ,.., /"l-cosx

J a + b cosx .
/ a -j- 6 cosx + c sinx J 1 + sinx

9. Show that fu (x, Va + bx + ex2) may be treated by trigonometric substitu-

tion
; distinguish between 62 4 ac 5 0-

10. Show that TE ( x, -^ /
-

) is made rational by yn =-- Hence infer
J \ \cx + d/ cx + d

X 8 _. .



11. Show that IR\ x. [
-

) . (
-

) , , where the exponents TO, w,
J I \cx-\- d/ \cx + d!/ J

are rational, is rationalized by yk - if k is so chosen that km, A:n, are

integers.
cx + d

12. Show that I (a + by}pyi may be rationalized if p or q or p + q is an integer.

By setting x" = y show that lz (a + bx")P may be reduced to the above type and

. . . . , , . w + 1 m + 1
. ... ,

hence is integrable when- or jp or--1- p is integral.
n n

13. If the roots of a + foe + ex2 = are imaginary, f JK (x, V + foe + ex2
) may

be rationalized by y Vet + bx + ex2 =p * Vc.

14. Integrate the following .

15. In view of Ex. 12 discuss the integrability of :

(a) I
sinm x cos"x, let sinx=V?/, (^) |-J J .Vox-x2

16. Apply the reduction formulas, Table, p. 66, to show that the final integral for

r xm r i r* ri
I

is
f

===. or I
- ... - or

j

-
: -. :

'Vl-x2 J VI x2 J VI x2 J x Vl x2

according as m is even or odd and positive or odd and negative.

17. Prove sundry of the formulas of Peirce's Table.

18. Show that if E (x, Va2 x2
) contains x only to odd powers, the substitu-

tion z =Va2 x2 will rationalize the expression. Use Exs. 1 (f) and 6 (e) to

compare the labor of this algebraic substitution with that of the trigonometric or

hyperbolic.

16. Definite integrals. If an interval from x = a to x b be divided

into n successive intervals AJC
I; Az2 , -,

Axn and the value /() of a

function /(x) be computed from some point & in each interval Ax
t
- and

be multiplied by Ax,-, then the limit of the sum

lim + =/ /(as) <e, (62)



a broken line, and it is clear

that the limit of the sum, that

is, the integral, will be repre-

sented by the area under the

curve y=f(x~) and between

the ordinates x = a and x= b.

Thus the definite integral, de-

fined arithmetically by (62),

may be connected with a geo-

metric concept which can serve to suggest properties of the integral

much as the interpretation of the derivative as the slope of the tan-

gent served as a useful geometric representation of the arithmetical

definition (2).

For instance, if a, &, c are successive values of x, then

JT "f(x)d (63)

is the equivalent of the fact that the area from a to c is equal to the

sum of the areas from a to b and I to c. Again, if Ace be considered

positive when x moves from a to b, it must be considered negative

when x moves from b to a and hence from (62)

(64)

Finally, if M be the maximum of f(x~) in the interval, the area under

the curve will be less than that under the line y =M through the

highest point of the curve
;
and if m be the minimum of f(x), the

area under the curve is greater than that under y = m. Hence

f(x) dx
-

a). (65)

There is, then, some intermediate value m < p. < M such that the inte-

gral is equal to /i(& a); and if the line y=n cuts the curve in a

point whose abscissa is intermediate between a and &, then

fj(x) dx = r(b-a) = (l>- a)f(fy (65')

This is the fundamental Theorem o.f the Mean for definite integrals.



The definition (62) may be applied directly to the evaluation of the definite in-

tegrals of the simplest functions. Consider first 1/x and let a, b be positive with a

less than b. Let the interval from a to & be divided into n intervals Axi which are

in geometrical progression in the ratio r so that xj. = a, x% = ar, ,
xn+1 = <w"

and Azi = a (r 1), Ax2 = ar (r 1), Ax8 = a**2 (r 1), , Ax,, = ar"- 1^ 1) ;

whence b a = Axt -1- Ax2 -f + Axn = a (r
n

1) and rn = b/a.

Choose the points & in the intervals Axi as the initial points of the intervals. Then

Azi Aj Axn _a(r-l) ar(r-l) qr-*(r- 1
___

_|
.

j.
. . .

_j-
_.

-| _|_
. . .

-j
.

fc. ^ a ar ar-i

But r=V&7a or n = log (b/a) -s- logr.

Yt . Axi , Axz , ,
Axn , 1N ,

b r 1 . b h
Hence - + ~~ + 1-

-- = n(r 1) = log
- - = log

-

fc **
'

a logr a log (1 + ft)

Now if n becomes infinite, r approaches 1, and h approaches 0. But the limit of

log (1 4- h)/h as h == is by definition the derivative of log (1 + x) when x = and

is 1. Hence

r b dx ,. PAxi ,

Ax2
, ,

Axn"l . b . . .

f
=hm ! + -- + ... + _-.5= log- = logft

-
log a.

Jo. X n= L fl 2 fn J

As another illustration let it be required to evaluate the integral of cos2 x from

to |TT. Here let the intervals Axt
- be equal and their number odd. Choose the 's

as the initial points of their intervals. The sum of which the limit is desired is

<r = cos2 A + cos2 Ax Ax + cos2 2 Ax Ax +
+ cos2 (n 2) Ax Ax + cos2 (n 1) Ax Ax.

But nAz = TT, and (n 1) Ax = J TT Ax, (n 2) Ax = TT 2 Ax, ,

and cos (\ IT y) = sin y an.d sin2 y + cos2 y = 1.

Hence <r = Ax [cos
2 + cos2 Ax + cos2 2 Ax + -f sin2 2 Ax + sin2 Ax]

Hence C
2
cos2 xdx = lim [ nAz + | Ax] = lim

( TT + J Ax) = 4 TT.
"O Aa:==0 Aa;=

Indications for finding the integrals of other functions are given in the exercises.

It should be noticed that the variable x which appears in the expression of the

definite integral really has nothing to do with the value of the integral but merely
s&rves as a symbol useful in forming the sum in (62). What is of importance is

the function / and the limits a, b of the interval over which the integral is taken.

T /(x) dx = f /(i) dt = C /O/) dy = C /(*) dm.
*J a v a t/a J a

ThA VM ri fl,lil *> in f.liA in t orr-ran r\ rliociTvTioaTc in
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17. If the lower limit of the integral be fixed, the value

of the integral is a function of the upper limit regarded as variable

To find the derivative <&'(&), form the quotient (2),

o + Ao / o

f(x)dx- i f(x)dx
*J a

By applying (63) and (65'), this takes the simpler form

b + A6

f(x) dx

~ti
=

^b'f
*b

>

where is intermediate between b and b + Ai. Let A == 0. Then

approaches b and/() approaches f(b}. Hence

If preferred, the variable i may be written as z, and

(x-)dx=f(x~). (66')

This equation will establish the relation between the definite integral

and the indefinite integral. For by definition, the indefinite integral

F(x) of f(x) is any function such that F'(x) equals /(a). As '(x) =f(x)
it follows that ~ x

I f(x)dx = F(x)+C. (67)
Ja

Hence except for an additive constant, the indefinite integral of / is

the definite integral of / from a fixed lower limit to a variable upper
limit. As the definite integral vanishes when the upper limit coincides

with the lower, the constant C is F(a) and

(67')

Hence, the definite integral of f(x) from a to b is the difference between

the values of any indefinite integral F (x) taken for the upper and lower



curve cannot in the first instance be evaluated
;
but if only that portion

of the curve which lies over a small interval Ax be considered and the

rectangle corresponding to the ordinate /() be drawn, it is clear that

the area of the rectangle is /() Ace, that the area of all the rectangles is

the sum 2/() Ax taken from a to b, that when the intervals Ax approach

zero the limit of their sum is the area under the curve
;
and hence that

area may be written as the definite integral of f(x) from a to b.*

In like manner consider the mass of a roc* of variable density and suppose the

rod to lie along the x-axis so that the density may be taken as a function of x.

In any small length Ax of the rod the density is nearly constant and the mass of

that part is approximately equal to the product /oAx of the density p(x) at the

initial point of that part times the length Ax of the part. In fact it is clear that

the mass will be intermediate between the products mAx and 3fAx, where m and

M are the minimum and maximum densities in the interval Ax. In other words

the mass of the section Ax will be exactly equal to p() Ax where is some value of

x in the interval Ax. The mass of the whole rod is therefore the sum 2/o()Ao?

taken from one end of the rod to the other, and if the intervals be allowed to

approach zero, the mass may be written as the integral of p(x) from one end of

the rod to the other.t

Another problem that may be treated by these methods is that of finding the

total pressure on a vertical area submerged in a liquid, say, in water. Let w be the

weight of a column of water of cross section 1 sq. unit and

of height 1 unit. (If the unit is a foot, w = 62.5 Ib.) At a~^^ V. W*. JULVA^HU JL U.A1AU \JLi I/A-IV U1I.I.U AO VU
\J\J\J^

LV V** \J i*-/.l -LA.U \M

- / &(kjx point h units below the surface of the water the pressure is
x

w^ an(j Up0n a sinaii area near that depth the pressure is

V^____ .--' approximately whA if A be the area. The pressure on the

area A is exactly equal to w A if is some depth interme-

diate between that of the top and that of the bottom of

the area. Now let the finite area be ruled into strips of height Aft. Consider the

product whb(h) Aft where b(h) = f(h) is the breadth of the area at the depth h. This

* The 's may evidently be so chosen that the finite sum 2if ()Aa; is exactly equal to

the area under the curve ;
but still it is necessary to let the intervals approach zero and

thus replace the sum by an integral because the values of which make the sum equal
to the area are unknown.

t This and similar problems, here treated by using the Theorem of the Mean foi

integrals, may be treated from the point of view of differentiation as in 7 or from that

of Duhamel's or Osgood's Theorem as in 34, 35. It should be needless to state that in

any particular problem some one of the three methods is likely to be somewhat preferable
to either of the others. The reason for laying such emphasis upon the Theorem of the

Mean here and in the exercises belcrv is that the theorem is in itself very important and
needs to be thoroughly mastered.



is approximately me pressure on me strip as it is tne pressure at tue top 01 uie strip

multiplied by the approximate area of the strip. Then wb() A/t, where is some
value between h and h + AA, is the actual pressure on the strip, (It is sufficient to

write the pressure as approximately vihb(h)Ah and not trouble with the .) The
total pressure is then 2Jt0g&(D AA or better the limit of that sum. Then

P = lim Vw& () dh = f MJ/I& (A) d/t,

where a is the depth of the top of the area and & that of the bottom. To evaluate

the pressure it is merely necessary to find the breadth & as a function of A and

integrate.

EXERCISES

p b /&
1. If k is a constant, show I kf(x)dx = kl f(x)dx.

Ja Ja

2. Show that f (u f)dz = f wdx f vdx.
i/a /a "a

3. If, from a to 6, ^ (x) </(z) < <f> (x), show T
i/- (x) dx < C f(x) dx < T (x)dx.

/a /a /a

4. Suppose that the minimum and maximum of the quotient Q(x) =f(x)/<j>(x)

of two functions in the interval from a to I) are m and JM", and let < (z) be positive

so that
fix)m < Q (x)

= ^-i-i- < Jf and m^ (x) </(x) < JtfV> (x)
0(x)

are true relations. Show by Exs. 3 and 1 that

r/(x)dx r/(x)dx
<M and =/i= ^^

f <f>(x)dx
Ja

where f is some value of x between a and &.

5. If m and If are the minimum and maximum of /(x) between a and 6 and if

<t> (x) is always positive in the interval, show that

m C
<f> (x) dx < C f(x) <f>(x)dx<]tf f <j>(x)dx

Ja va /o

and f/(x)0(x)dx = M f <f>(x)te=f(Q f <p(x)dx.
Ja "a /a

Note that the integrals of [Jf /(x)]0(x) and [/(z) m]#(x) are positive and

apply Ex. 2.

6. Evaluate the following by the direct application of (62) :

n b K2 _ a2 f,b

(a) I zdx = -
, (/3)

I e^dx = e6 -e.
Ja 2 /a

Take equal intervals and use the rules for arithmetic and geometric progressions.

7. Evaluate (a) C xmdx ---
(b
m + l - a*1

), (/3) f c^dx = --
(c*
-

c).
Ja m + 1 Ja lOgC

In the first the intervals should be taken in geometric progression with r = b/a.



8. Show directly that (a) I sin2 xax = ^w, (/3)
I cos" xOx =z 0, it n is odd.

/0 JQ

9. With the aid of the trigonometric formulas

cos* + cosSx -\ + cos(n l)x = J [sin nz cot Jx 1 cosnx],

sin x + sin 2 + + sin (n 1) x \ [(1 cos nx) cot J
x sin nx],

Xb
j*b

cosx<fo = sinb-- sina, (13)
I sinxx = cosct cosb,

_; /<

10. A function Js said to be even if /( x) =/(x) and odd if /( x)
= /(x).

Show (a) f */(x)*c = 2 C"f(x)dx, /even, (0) f /(x) dx = 0, / odd.
/ a vfl / a

11. Show that if an integral is regarded as a function of the lower limit, the

Upper limit being fixed, then

V(a) = - C
l

f(x)dx = -f(a), if *(a) = f /(x)dx.
da. J u Jo.

12. Use the relation between definite and indefinite integrals to compare

and F(V)-F (a)
=

(b
-

a) F'( ),

the Theorem of the Mean for derivatives and for definite integrals

13. From consideration of Exs. 12 and 4 establish Cauchy's Fo'.inula

A* * (b)
- * (a) <&'()

'

which states that the quotient of the increments AJP and A* of two functions, in

any interval in which the derivative *'(x) does not vanish, is equal to the quotient

of the derivatives of the functions for some interior point of the interval. What
would the application of the Theorem 01 the Mean for derivatives to numerator

and denominator of the left-hand fraction give, and wherein does it differ from

Cauchy's Formula ?

14. Discuss the volume of revolution of y = f(x) as the limit of the sum of thin

cylinders and compare the results with those found in Ex. 9, p. 10.

15. Show that the mass of a rod running from a to & along the x-axis is

\ k{b
z a2

)
if the density varies as the distance from the origin (fc

is a factor of

proportionality).

16. Show (a) that the mass in a rod running from a to 6 is the same as the area

under the curve y p (x) between the ordinates x = a and x = 6, and explain why
this should "be seen intuitively to be so. Show (ft) that if the density iu a plane slab

bounded by the x-axis, the curve y =f(x), and the ordinates x = a and x = 6 is a
/>b

function p (x) of x alone, the mass of the slab is I yp (x) dx ;
also (7) that the mass

v (t

r b

of the corresponding volume of revolution is I iry
2
p(x)dx.J a

17. An isosceles triangle has the altitude a and the base 26. Find (a) the mass

on the assumption that the density varies as the distance from the vertex (meas-
ured along the altitude). Find () the mass of the cone of revolution formed by
revolving the triangle about its altitude if the law of density is the same.



18. In a plane, the moment of inertia I of a particle of mass m with respect to a

point is defined as the product mrz of the mass by the square of its distance from the

point. Extend this definition from particles to bodies.

(a) Show that the moments of inertia of a rod running from a to b and of a

circular slab of radius a are respectively

/i b na
I = I xz

p (x) dx and 1=1 2 Trr3p (r) dr, p the density,
Jn Jo

if the point of reference for the rod is the origin and for the slab is the center.

(p) Show that for a rod of length 21 and of uniform density, 7= $MP with

respect to the center and I =
J-
Ml2 with respect to the end, M being the total mass

of the rod.

(7) For a uniform circular slab with respect to the center I = $Maz
.

(5) For a uniform rod of length 2 1 with respect to a point at a distance d from

its center is I = M
(

l

s
l
z + d2

).
Take the rod along the axis and let the point be

(a, p) with a2 = a2 + j3
2

.

19. A rectangular gate holds in check the water in a reservoir. If the gate is

submerged over a vertical distance H and has a breadth B and the top of the

gate is a units below the surface of the water, find the pressure on the gate. At

what depth in the water is the point where the pressure is the mean pressure

over the gate ?

20. A dam is in the form of an isosceles trapezoid 100 ft. along the top (which
is at the water level) and 60 ft. along the bottom and 30 ft. high. Find the pres-

sure in tons.

21. Find the pressure on a circular gate in a water main if the radius of the

circle is r and the depth of the center of the circle below the water level is d^r.

22. In space, moments of inertia are defined relative to an axis and in the for-

mula I rw2
,
for a single particle, r is the perpendicular distance from the

particle to the axis.

(a) Show that if the density in a solid of revolution generated by y f(x) varies

only with the distance along the axis, the moment of inertia about the axis of

r b

revolution is I = I \ Try*p (x) dx. Apply Ex. 18 after dividing the solid into disks.
Jo,

(p) Find the moment of inertia of a sphere about a diameter in case the density

is constant
;
I = $ Ma2 ^ trpcfi.

(7) Apply the result to find the moment of inertia of a spherical shell with

external and internal radii a and 6
;
/= \ M(a* 65

)/(a
8 b3). Let 6 = and

thus find I $ Maz as the moment of inertia of a spherical surface (shell of negli-

gible thickness).

(5) For a cone of revolution I = -fy Ma2 where a is the radius of the base.

23. If the force of attraction exerted by a mass m upon a point is kmf(r) where

r is the distance from the mass to the point, show that the attraction exerted at-

the origin by a rod of density p (x) running from a to & along the x-axis is

r b

A = I kf(x) p (x) dx, and that A = kM/ab, M = p (b a),
v a

is the attraction of a uniform rod if the law is the Law of Nature, that is



both x and y. Show that the mass of a small slice over the interval Axt
- would be

of the form

/.;/=/() r 6 r b r rv=S& , 1
Ax p (x, y) dy = <E> () Ax and that

f
* (x) Ax = I II p (a;, y) <ty

Jo ^ ^a L^O J
cto

would be the expression for the total mass and would require an integration with

respect to y in which x was held constant, a substitution of the limits f(x) and

for j/, and then an integration with respect to x from a to 6.

25. Apply the considerations of Ex. 24 to rinding moments of inertia of

(a) a uniform triangle y = mx, y 0, x = a with respect to the origin,

(|3)
a uniform rectangle with respect to the center,

(7) a uniform ellipse with respect to the center.

26. Compare Exs. 24 and 16 to treat the volume under the surface z = p (x, y)

and over the area bounded by y =/(x), y = 0, x = a, x = b. Find the volume

(a) under z = xy and over y
2 = 4px, y = 0, x = 0, x = 6,

(/3) under z = x2
-f y

2 and over 2
-f y'

2 = a?, y 0. x = 0, x = Q,

(7) under \- -\
= 1 and over H = 1, y = 0, x = 0, x = a.

a2 62 c2 a2 62

27. Discuss sectorial area | fr2d< in polar coordinates as the limit of the sum

of small sectors running out from the pole.

28. Show that the moment of inertia of a uniform circular sector of angle a
r a

\

and radius a is } pcra*. Hence infer I = \ p I r*d<f> in polar coordinates.
Ja

29. Find the moment of inertia of a uniform () lemniscate r2 = a2 cos2 2<

and
(/3)

cardioid r = a (1 cos
<j>)

with respect to the pole. Also of (7) the circle

r = 2 a cos
<j>
and (5) the rose r = a sin 2 < and (c) the rose r = a sin 8 #.



CHAPTER II

REVIEW OF FUNDAMENTAL THEORY*

18. Numbers and limits. The concept and theory of real number,

integral, rational, and irrational, will not be set forth in detail here.

Some matters, however, which are necessary to the proper understand-

ing of rigorous methods in analysis must be mentioned
;
and numerous

points of view which are adopted in the study of irrational number

will be suggested in the text or exercises.

It is taken for granted that by his earlier work the reader has become familiar

with the use of real numbers. In particular it is assumed that he is accustomed

to represent numbers as a scale, that is, by points on a straight line, and that lie

knows that when a line is given and an origin chosen upon it and a unit of measure

and a positive direction have been chosen, then to each point of the line corre-

sponds one and only one real number, and conversely. Owing to this correspond-

ence, that is, owing to the conception of a scale, it is possible to interchange
statements about numbers with statements about points and hence to obtain a

more vivid and graphic or a more abstract and arithmetic phraseology as may be

desired. Thus instead of saying that the numbers xi, xz ,
are increasing algebra-

ically, one may say that the points (whose coordinates are) Xi, x2 ,
are moving

in the positive direction or to the right ;
with a similar correlation of a decreasing

suite of numbers with points moving in the negative direction or to the left. It

should be remembered, however, that whether a statement is couched in geometric
or algebraic terms, it is always a statement concerning numbers when one has in

mind the point of view of pure analysis.!

It may be recalled that arithmetic begins with the integers, including 0, and

with addition and multiplication. That second, the rational numbers of the

form p/q are introduced with the operation of division and the negative rational

numbers with the operation of subtraction. Finally, the irrational numbers are

introduced by various processes. Thus V2 occurs in geometry through the

necessity of expressing the length of the diagonal of a square, and V3 for the

diagonal of a cube. Again, TT is needed for the ratio of circumference to diameter

in a circle. In algebra any equation of odd degree has at least one real root and

hence may be regarded as denning a number. But there is an essential difference

between rational and irrational numbers in that any rational number is of the

* The object of this chapter is to set forth systematically, with attention to precision

of statement and accuracy of proof, those fundamental definitions and theorems which

lie at the basis of calculus and which have been given in the previous chapter from aD



form p/q -with # ^ and can therefore be written down explicitly ;
whereas

the irrational numbers arise by a variety of processes and, although they may be

represented to any desired accuracy by a decimal, they cannot all be written

down explicitly. It is therefore necessary to have some definite axioms regulating

the essential properties of irrational numbers. The particular axiom upon which

stress will here be laid is the axiom of continuity, the use of which is essential

to the proof of elementary theorems on limits.

19. AXIOM OF CONTINUITY. If all thepoints of a line are divided into

two classes such that, every point of the first class precedes every point of

the second class, there must be a point C such that any point preceding
is in the first class and any point succeeding C 'is in the second class.

This principle may be stated .in ternie of numbers, as : If all real num-

bers be assorted into two classes such that every number of the first class

is algebraically less than every number of the second class, there must be

a number N such that any number less than N 'is in the first class and

any number greater than N is in the second. The number N (or point C)
is called the frontier number (or .point), or simply the frontier of the

two classes, and in particular it is the upper frontier for the first class

and the lower frontier for the second.

To consider a particular case, let all the negative numbers and zero constitute

the first class and all the positive numbers the second, or let the negative numbers
alone be the first class and the positive numbers with zero the second. In either

case it is clear that the classes satisfy the conditions of the axiom and that zero is

the frontier number such that any lesser number is in the first class and any
greater in the second. If, however, one were to consider the system of all positive
and negative numbers but without zero, it is clear that there would be no number
N which would satisfy the conditions demanded by the axiom when the two
classes were the negative and positive numbers

;
for no matter how small a posi-

tive number were taken as JV, there would be smaller numbers which would also

be positive and would not belong to the first class
;
and similarly in case it were

attempted to find a negative N. Thus the axiom insures the presence of zero in

the system, and in like manner insures the presence of every other number a

matter which is of importance because there is no way of writing all (irrational)
numbers in explicit form.

Further to appreciate the continuity of the number scale, consider the four

significations attributable to the phrase "the intervalfrom a to &." They are

agx^fc, a<x^b, S x < b, &<x<b.
That is to say, both end points or either or neither may belong to the interval. In
the case a is absent, the interval has no first point ;

and if b is absent, there is no
last point. Thus if zero is not counted as a positive number, there is no least

positive number ;
for if any least number were named, half of it would surely be

less, and hence the absurdity. The axiom of continuity shows that if all numbers
be divided into two classes as required, there must be either a greatest in the first

Or a Ifiast in thfi Sfinrmf) t.hp. frrvnt.iw hut. nnJ- hnt.h 11n lose *>i frrmtittr is



20. DEFINITION OF A LIMIT. If x is a variable which takes on succes-

sive values
x-j,

x
2 , ,

x
i} x,-, ,

the variable x is said to approach the con-

stant I as a limit if the numerical difference betiveen x and I ultimately

becomes, and for all succeeding values of x remains,

less than any preassigned number no matter how '

'"^,"

'

l"'l"l
' '

small. The numerical difference between x and I

is denoted by [a; l\
or

\l x\ and is called the absolute value of the

difference. The fact of the approach to a limit may be stated as

|

a:
l\
< e for all x's subsequent to some x

or x = I + rj, \rj\
< f for all x's subsequent to some x,

where e is a positive number which may be assigned at pleasure and

must be assigned before the attempt be made to find an x such that

for all subsequent x's the relation
|. l\

< e holds.

So long as the conditions required in the definition of a limit are satisfied there

is no need of bothering about how the variable approaches its limit, whether from

one side or alternately from one side and the other, whether discontinuously as in

the case of the area of the polygons used for computing the area of a circle or

continuously as in the case of a train brought to rest by its brakes. To speak

geometrically, a point x which changes its position upon a line approaches the

point I as a limit if the point x ultimately comes into and remains in an assigned

interval, no matter how small, surrounding I.

A variable is said to become infinite if the numerical value of the

variable ultimately becomes and remains greater than any preassigned
number K, no matter how large.* The notation is x = oo, but had best

be read " x becomes infinite," not " x equals infinity."

THEOREM 1. If a variable is always increasing, it either becomes

infinite or approaches a limit.

That the variable may increase indefinitely is apparent. But if it does not

become infinite, there must be numbers K which are greater than any value of

the variable. Then any number must satisfy one of two conditions : either there

are values of the variable which are greater than it or there are no values of the

variable greater than it. Moreover all numbers that satisfy the first condition are

less than any number which satisfies the second. All numbers are therefore

divided into two classes fulfilling the requirements of the axiom of continuity, and

there must be a number N such that there are values of the variable greater than

any number N e which is less than N. Hence if e be assigned, there is a value of

the variable which lies in the intervalN e < x =g 2V, and as the variable is always

increasing, all subsequent values must lie in this interval. Therefore the variable

approaches N as a limit.

* This definition means what it says, and no more. Later, additional or different

meaniners mav be assigned to infinity, but not now. Loose and extraneous r-oncents in



1. If BI, X2 , , x,,, , x,1 + p ,
is a suite approaching a limit, apply the defi-

nition of a limit to show that when e is given it must be possible to find a value of

n so great that
|
xn +p xn

\
< e for all values of p.

2. If xi, x2 ,
is a suite approaching a limit and if yi, y2 ,

is any suite sucli

that \yn xn
| approaches zero when n becomes infinite, show that the y's approach

a limit which is identical with the limit of the x's.

3. As the definition of a limit is phrased in terms of inequalities and absolute

values, note the following rules of operation .-

(a) If a > and Ob. then - > - and - < -
>

a a c b

+ -, (7) |o6c .|
=

|a|-|&|-|c|. -,

where the equality sign in
(ft)

holds only if the numbers a, &, c, have the same

sign. By these relations and the definition of a limit prove the fundamental

theorems :

~
f. = X and lim y = Y, then lim (x y) = X Y and lira xy = XY.

eorem 1 when restated in the slightly changed form : If a variable

s and never exceeds JT, then x approaches a limit 2V and IV == K .

"li - i - nnd prove the corresponding theorem for the case of a

r_

u ^2, are two suites of which the first never decreases

ireases, all the y's being greater than any of the x's, and if

-^.v^ c 10 aocugiieu. an. 76 can be found such that yn n < ,
show that the limits

of the suites are identical.

6. If Xi, x2 ,
and y^ 2/2, are two suites which never decrease, show by Ex. 4

(not by Ex. 3) that the suites Xi + j/ t ,
x2 + 2/2, and

Xjj/i,
x2i/2, approach

limits. Note that two infinite decimals are precisely two suites which never de-

crease as more and more figures are taken. They do not always increase, for some
of the figures may be 0.

7. If the word " all" in the hypothesis of the axiom of continuity be assumed to

refer only to rational numbers so that the statement becomes : If all rational

numbers be divided into two classes
,
there shall be a number N (not neces-

sarily rational) such that
;
then the conclusion may be taken as defining a

number as the frontier of a sequence of rational numbers. Show that if two num-
bers X, F be defined by two such sequences, and if the sum of the numbers be

defined as the number defined by the sequence of the sums of corresponding terms

as in Ex. 6, and if the product of the numbers be defined as the number defined by
the sequence of the products as in Ex. 6, then the fundamental rules

Z+Y=Y+X, XY^YX, (X+Y)Z=XZ+YZ
of arithmetic hold for the numbers X, F, Z defined by sequences. In this way a

complete theory of irrationals may be built up from the properties of rationals

combined with the principle of continuity, namely, 1 by defining irrationals as

frontiers of sequences of rationale, 2 by defining the operations of addition, multi-

plication, as operations upon the rational numbers in the sequences, 8 by
showing that the fundamental rules of arithmetic still hold for the irrationals.



sucn tnat x* = z. JLO uo tnis it anouia ue snown tnat the rationals are divisible

into two classes, those whose square is less than 2 and those whose square is not

les& than 2
;
and that these classes satisfy the requirements of the axiom of conti-

nuity. In like manner if a is any positive number and n is any positive integer,

show that there is an x such that x" = a.

21. Theorems on limits and on sets of points. The theorem on

limits which is of fundamental algebraic importance is

THEORKM 2. If R (x, i/, %, )
be any rational function of the variables

x, y, %, and if these variables are approaching limits X, Y, Z, ,

then the value of R approaches a limit and the limit is R (A, Y, Z, ),

provided there is no division by zero.

As any rational expression is made up from its elements by combinations of

addition, subtraction, multiplication, and division, it is sufficient to prove the

theorem for these four operations. All except the last have been indicated in the

above Ex. 3. As multiplication has been cared for, division need be considered

only in the simple case of a reciprocal 1/x. It must be proved that if lim x = A',

then lim (1/x) = 1/X. Now

I/. ~Y \

' -' by Ex. 3 (7) above._
x X \X\ I

A
|

This quantity must be shown to be less than any assigned e. As the quantity is

complicated it will be replaced by a simpler one which is greater, owing to an

increase in the denominator. Since x = JT, x X may be made numerically as

small as desired, say less than e', for all z's subsequent to some particular x. Hence

if e' be taken at least as small as $\X\, it appears that |xj must be greater than

\\X\. Then

and if t' be restricted to being less than ^|J5T|
2

,
the difference is less than e and

the theorem that lim (1/x) = 1/X is proved, and also Theorem 2. The necessity

for the restriction X ^ and the corresponding restriction in the statement of

the theorem is obvious.

THEOREM 3. If when e is given, no matter how small, it is possible

to find a value of n so great that the difference
\xn+p xn \

between xn
and every subsequent term xn+p in the suite x-^, x2 , ,

xn ,
is less

than e, the suite approaches a limit, and conversely.

The converse part has already been given as Ex. 1 above. The theorem itself is

a consequence of the axiom of continuity. First note that as \n+p xn
\

< f for

all 's subsequent to
,
the z's cannot become infinite. Suppose 1 that there

is some number I such that no matter how remote xn is in the suite, there are

always subsequent values of x which are greater than I and others which are less

than 1. As all the 's after xn lie in the interval 2 e and as I is less than some a's

and greater than others, I must lie in that interval. Hence
1

1 xn +p j
< 2 e for all



z's subsequent to *. But now 2 e can be made as small as desired because e can be

taken as small as desired. Hence the definition of a limit applies and the z's

approach I as a limit.

Suppose 2 that there is no such number I. Then every number k is such triat

either it is possible to go so far in the suite that all subsequent numbers x are

as great as k or it is possible to go so far that all subsequent x's are less than k.

Hence all numbers k are divided into two classes which satisfy the requirements of

the axiom of continuity, and there must be a number N such that the x's ultimately

come to lie between N e' and N + e', no matter how small <' is. Hence the x's

approach N as a limit. Thus under either supposition the suite approaches a limit

and the theorem is proved. It may be noted that under the second supposition the

K'S ultimately lie entirely upon one side of the point N" and that the condition

\xn + I>
xn

\

< e is not used except to show that the x's remain finite.

22. Consider next a set of points (or their correlative numbers)
without any implication that they form a suite, that is, that one may
be said to be subsequent to another. If there is only a finite number

of points in the set, there is a point farthest to the right and one

farthest to the left. If there is an infinity of points in the set, two

possibilities arise. Either 1 it is not possible to assign a point K so

far to the right that no point of the set is farther to the right in

which case the set is said to be unlimited above -or 2 there is a

point K such that no point of the set is beyond K and the set is

said to be limited above. Similarly, a set may be limited below or un-

limited below. If a set is limited above and below so that it is entirely

contained in a finite interval, it is said merely to be limited. If there

is a point C such that in any interval, no matter how small, surround-

ing C there are points of the set, then C is called a point of condensa-

tion of the set (C itself may or may not belong to the
set).

THEOREM 4. Any infinite set of points which is limited has an

upper frontier (maximum?), a lower frontier (minimum?), and at

least one point of condensation.

Before proving this theorem, consider three infinite sets as illustrations :

(a) 1, 1.9, K99, 1.999,
. . .

, (j8)
-

2,
. . .

,
-

1.99, 1.9,
-

1,

(7) -i,-i,-i,-,i.i.i-
In (or)

the element 1 is the minimum and serves also as the lower frontier
;
it is

clearly not a point of condensation, but is isolated. There is no maximum
;
but 2

is the upper frontier and also a point of condensation. In (/3) there is a maximum
1 and a minimum 2 (for 2 has been incorporated with the set). In (7) there

is a maximum and minimum
;
the point of condensation is 0. If one could be sure

that an infinite set had a maximum and minimum, as is the case with finite

sets, there would be no need of considering upper and lower frontiers. It is clear

that if the upper or lower frontier belongs to the set, there is a maximum or



the corresponding, extrerne pomt is missing.

To prove that there is an upper frontier, divide the points of the line into two

classes, one consisting of points which are to the left of some point of the set, the

other of points which are not to the left of any point of the set then apply the

axiom. Similarly for the lower frontier. To show the existence of a point of con-

densation, note that as there is an infinity of elements in the set, any point p is such

that either there is an infinity of points of the set to the right of it or there is not.

Hence the two classes into which all points are to be assorted are suggested, and

the application of the axiom offers no difficulty.

EXERCISES

1. In a manner analogous to the proof of Theorem 2, show that

~l 5 .... x2 +/si- - /* r
(a) hm- = -, (8) liraV; w-2 2 *ax + 6 7 *=-ix8 -

2. Given an infinite series S = ut + uz + ua + , Construct the suite

Si = MI, S2 = MI + 2, S8 = MI + M2 + w8 , , Si = MI +uz + + u,-, ,

where S,- is the sum of the first i terms. Show that Theorem 3 gives : The neces-

sary and sufficient condition that the series /S converge is that it is possible to find

an 7i so large that \Sn+p Sn [

shall be less than an assigned e for all values of p.

It is to be understood that a series converges when the suite of fi"s approaches a limit,

and conversely.

3. If in a series u\ HZ + Us M* + the terms approach the limit 0, are

alternately positive and negative, and each term is less than the preceding, the

series converges. Consider the suites Si, <Sg, 5, and Sz, S4 ,
Se ,

4. Given three infinite suites of numbers

Xi, Xa, , x, ; yi, ifa, , y* ; *x, z,"-, B>

of which the first never decreases, the second never increases, and the terms of the

third lie between corresponding terms of the first two, xn =i Zn = yn . Show that

the suite of z's has a point of condensation at or between the limits approached by
the z's and by the y's ;

and that if lim x = Urn y = 1,
then the 's approach I as a

limit.

5. Restate the definitions and theorems on sets of points in arithmetic terms.

6. Give the details of the proof of Theorem 4. Show that the proof as outlined

gives the least point of condensation. How would the proof be worded so as to give

the greatest point of condensation? Show that if a set is limited above, it has an

upper frontier but need not have a lower frontier.

7. If a set of points is such that between any two there is a third, the set is said

to be dense. Show that the rationals form a dense set
;
also the irrationals. Show

that any point of a dense set is a point of condensation for the set.

8. Show that the rationals p/q where q <K do not form a dense set in fact

aie a finite set in any limited interval. Hence in regarding any irrational as the

limit of a set of rationals it is necessary that the denominators and also the numer-

ators should become infinite,



9. Show that if an infinite set or points lies in a limited, region 01 the plane,

say in the rectangle a=x==b, c = y =i ci,
there must be at least one point of

condensation of the sot. Give the necessary definitions and apply the axiom

of continuity successively to the abscissas and ordinates.

23. Real functions of a real variable. Jf x be a variable which

takes on a Certain sat of values of which the totality may be denoted

by [;] and if y in a, sec.ond variable the value of which is uniquely

determined for vac-h x of the set
[a:], then y is said to be a function of

x defined over the set [x]. The terms "
limited,"

"
unlimited,"

" limited

above,"
" unlimited below," are applied to a function if they are

applicable to the set [y] of values of the function. Hence Theorem 4

has the corollary :

THEOREM 5. If a function is limited over the set [x], it has an

upper frontier M and a lower frontier m for that set.

If the function, takes on its upper frontier M, that is, if there is a

value in the set
[x~\ such that /(# )

= M, the function has the abso-

lute maximum M at CK
Q ;

and similarly with respect to the lower

frontier. In any case, the difference M m between the upper and

lower frontiers is called the oscillation of the function for the set
[cc].

The set [x] is generally an interval.

Consider some illustrations of functions and sets over which they are defined.

The reciprocal I/a; is denned for all values of x save 0. In the neighborhood of

the function is unlimited above for positive x's and unlimited below for negative z's.

It should be noted that the function is not limited in the interval 0<x^ a but is

limited in the interval e =g x = a where e is any assigned positive number. The
function +Vx is defined for all positive x's including and is limited below. It

is not limited above for the totality of all positive numbers
;
but if K is assigned,

the function is limited in the interval =! x ^ K. The factorial function x ! is de-

nned only for positive integers, is limited below by the value 1, but is not limited

above xmless the set [a;] is limited above. The function E (x) denoting the integer
not greater than x or " the integral part of x "

is defined for all positive numbers
for instance E(3) = E(ir) = 3. This function is not expressed, like the elemen-

tary functions of calculus, as a " formula "
;
it is defined by a definite law, however,

and is just as much of a function as x2 + 3z + 2 or sin2 2 a; + logx. Indeed it

should be noted that the elementary functions themselves are in the first instance

defined by definite laws and that it is not until after they have been made the

subject of considerable study and have been largely developed along analytic lines

that they appear as formulas. The ideas of function and formula are essentially

distinct and the latter is essentially secondary to the former.
The definition of function as given above excludes the so-called multiple-valued

functions such as ~vx and sin-1 x where to a given value of x correspond more than
one value of the function. It is usual, however, in treating multiple-valued func-

tions to resolve the functions into different parts or branches so that each branch
is a single-valued function. Thus + Vx is one branch and Vsc the other branch



of Vz
;
in fact when x is positive the symbol V& is usually restricted to mean

merely + Vx and thus becomes a single-valued symbol. One branch of sin- 1 x con-

sists of the values between | TT and + J TT, other branches give values between

^ TT and |TT or | TT and f TT, and so on. Hence the term "function " will be

restricted in this chapter to the single-valued functions allowed by the definition.

24. If x = a is any point of an interval over which f(x) is defined,.

the functionf(x) is said to be continuoiis at the point x = a if

=f(a), no matter how x == a.

The function is said to be continuous in the interval if it is continuous

at every point of the interval. If the function is not continuous at the

point a, it is said to be discontinuous at a
;
and if it fails to be con-

tinuous at any one point of an interval, it is said to be discontinuous

in the interval.

THEOREM 6. If any finite number of functions are continuous (at a

point or over an interval), any rational expression formed of those

functions is continuous (at the point or over the interval) provided no

division by zero is called for.

THEOREM 7. If y=f(x) is continuous at x and takes the value

?/ =/(x ) and if z =
<f>(y)

is a continuous function of y at y = yg,
then

z =<# will be a continuous function of x at x.

In regard to the definition of continuity note that a function cannot be con-

tinuous at a point unless it is defined at that point. Thus a-1/3"
2
is not continuous

at x = because division by is impossible and the function is undefined. If, how-

ever, the function be defined at as/(0) = 0, the function becomes continuous at

x 0. In like manner the function l/x is not continuous at the origin, and in this

case it is impossible to assign to/(0) any value which will render the function

continuous ; the function becomes infinite at the origin and the very idea of be-

coming infinite precludes the possibility of approach to a definite limit. Again, the

function E (x) is in general continuous, but is discontinuous for integral values

of x. "When a function is discontinuous at x a, the amount of the discontinuity is

the limit of the oscillation M m of the function in the interval a 5<x<c + 5

surrounding the point a when 5 approaches zero as its limit. The discontinuity

of E (x) at each integral value of x is clearly 1
;
that of 1/x at the origin is infi-

nite no matter what value is assigned to /(O) .

In case the interval over which /(x) is defined has end points, say a S x S &,

the question of continuity at x = a must of course be decided by allowing x to

approach a from the right-hand side only ;
and similarly it is a question of left-

handed approach to 6. In general, if for any reason it is desired to restrict the

approach of a variable to its limit to being one-sided, the notations x = a+ and

x = b~ respectively are used to denote approach through greater values (right-

handed) and through lesser values (left-handed). It is not necessary to make this

specification in the case of the ends of an interval ; for it is understood that x



7

simpU) example is tuiu 01 & (Zj at me positive integral points.

Tho proof of Theorem 6 IB an immediate corollary application of Theorem 2. For

lim R [/(x), (x) ]
= K [lira /(x), lini (), ]

= R [/(lim x), (liin x), ],

and the proof of Theorem 7 is equally simple.

THEOREM 8. If f(x) is continuous at x = a, then for any positive

e which has been assigned, no matter how small, there may be found a

number 8 such that \f(x) f(n) [<e in the interval \x a|<8, and

hence in this interval the oscillation of f(x) is less than 2c. And

conversely, if these conditions hold, the function is continuous.

This theorem is in reality nothing bub a restatement of the definition of conti-

nuity combined with the definition of a limit. For u
lim/(x) =/(a) when x = a,

no matter how" means that the difference between /(x) and /(a) can be made as

small as desired by taking x sufficiently near to a
;
and conversely. The reason

for this restatement is that the present form is more amenable to analytic opera-

tions. It albo suggests the geometric picture which corre-

sponds to the usual idea of continuity in graphs. For the

theorem states that if the two lines y =/() e be drawn,
the graph of the function remains between them for at least

the short distance S on each side of x a
;
and as e may be

assigned a value as small as desired, the graph cannot exhibit

breaks. On the other hand it should be noted that the actual

physical graph is not a curve but a band, a two-dimensional region of greater or

less breadth, and that a function could be discontinuous at every point of an

interval and yet lie entirely within the limits of any given physical graph.
It is clear that 5, which has to be determined subsequently to e,

is in general
more and more restricted as e is taken smaller and that for different points it is

more restricted as the graph rises more rapidly. Thus if /(x) = 1/x and e = 1/1000,

5 can be nearly 1/10 if x = 100, but must be slightly less than 1/1000 if x = 1, and

something less than 10- if x is 10- 8
. Indeed, if x be allowed to approach zero, the

value 5 for any assigned e also approaches zero
;
and although the function

f(x>)
= 1/x is continuous in the interval < x = 1 and for any given XQ and a

number 5 may be found such that [/(x) /(x ) |

< e when |x x
1
< 5, yet it is not

possible to assign a number 8 which shall serve uniformly for all values of x .

25. THEOREM 9. If a function f(x) is continuous in an interval

a^x^b with end points, it is possible to find a 8 such that

\f(x) f(xo)\ < when [x
x

\

< 8 for all points x
;
and the function

is said to be uniformly continuous.

The proof is conducted by the method of reductio ad absurdum. Suppose e

Is assigned. Consider the suite of values J, , \, ,
or any other suite which

approaches zero as a limit. Suppose that no one of these values will serve as a S

for all points of the interval. Then there must be at least one point for which |
will not serve, at least one for which will not serve, at least one for which

J-
will

not serve, and so on indefinitely. This infinite set of points must have at least one



which 2~* will not serve as 5, no matter how large fc. But now by hypothesis /(x)
is continuous at C and hence a number 5 can be found such that \f(x) f(C)\ < \ e

when
|

X z
1
< 2 8. The oscillation of f(x) in the whole interval 4 8 is less than .

Now if xQ be any point in the middle half of this interval, |
XQ C

]

< 3
;
and if a;

satisfies the relation
|

x XQ
|

< 8, it must still lie in the interval 4 8 and the differ-

ence \f(x) f(x ) |

< ej being surely not greater than the oscillation of /in the whol

interval. Hence it is possible to surround (7 with an interval so small that the

same 8 will serve for any point of the interval. This contradicts the former con-

clusion, and hence the hypothesis upon which that conclusion was based must have

been false and it must have been possible to find a 5 which would1 serve for all

points of the interval. The reason why the proof would not apply to a function

like 1/x defined in the interval < x == 1 lacking an end point is precisely that

the point of condensation C would be 0, and at the function is not continuous

and |/(x) /(C) |

< $ e, |x C
|
< 2 3 could not be satisfied.

THEOREM 10. If a function is continuous in a region which includes

its end points, the function is limited.

THEOREM 11. If a function is continuous in an interval which includes

its end points, the function takes on its upper frontier and has a maxi-

mum M
; similarly it has a minimum m.

These are successive corollaries of Theorem 9. For let e be assigned and let 5

be determined so as to serve uniformly for all points of the interval. Divide the

interval b a into n successive intervals of length 8 or less. Then in each such

interval / cannot increase by more than e nor decrease by more than e. Hence /
will be contained between the values /(a) + ne and /(a) e, and is limited. And

f(x) has an upper and a lower frontier in the interval. Next consider the rational

function l/(Jf /) of /. By Theorem 6 this is continuous in the interval unless

the denominator vanishes, and if continuous it is limited. This, however, is impos-
sible for the reason that, as M is a frontier of values of /, the difference M f

may be made as small as desired. Hence l/(Jf /) is not continuous and there

must be some value of x for which/= M.

THEOREM 12. If /(x) is continuous in the interval a S ccS & with end

points and if /(a) and/(&) have opposite signs, there is at least one

point ,
a < < b, in the interval for which the function vanishes.

And whether f(a) and f(li) have opposite signs or not, there is a point

,
a < < b, such that /() = /m, where /*

is any value intermediate be-

tween the maximum and minimum of/ in the interval.

For convenience suppose that/(a) < 0. Then in the neighborhood of x = a the

function will remain negative on account of its continuity ;
and in the neighbor-

hood of & it will remain positive. Let be the lower frontier of values of x which

make/(z) positive. Suppose that/() were either positive or negative. Then as

/ is continuous, an interval could be chosen surrounding and so small that / re-

mained positive or negative in that interval. In neither case could $ be the lower

frontier of positive values Hence the contradiction, and /() must be zero. To



prove the second part of the theorem, let c and d be the values of x which make

/ a minimum and maximum. Then the function f-n has opposite signs at c and

d, and must vanish at some point of the interval between c and d
;
and hence a

fortiori at some point of the interval from a to 6.

EXERCISES

1. Note that x is a continuous function of x, and that consequently it follows

from Theorem 6 that any rational fraction P(x)/Q(x), where P and Q are poly-

nomials in x, must be continuous for all x's except roots of Q (x)
= 0.

2. Graph the function x E (x) for x S and show that it is continuous except

for integral values of x. Show that it is limited, has a minimum 0, an upper fron-

tier 1, but no maximum.

3. Suppose that/(x) is denned for an infinite set [x] of which x = a is a point

of condensation (not necessarily itself a point of the set). Suppose

lira [f(x'}
-

/(x")] = or \f(x') -/(") |
< e, |

x' - a
\

< 5, |

x" - a
\
< 5,

x', x" == a

when x' and x" regarded as independent variables approach a as a limit (passing

only over values of the set [x], of course). Show that/(x) approaches a limit as

x = a. By considering the set of values of /(x), the method of Theorem 8 applies

almost verbatim. Show that there is no essential change in the proof if it be

assumed that x' and x" become infinite, the set [x] being unlimited instead of

having a point of condensation a.

4. From the formula sin x < x and the formulas for sin u sin v and cos u cos v

show that A sin x and A cos x are numerically less than 2
[

Ax
| ;

hence infer that sin x

and cosx are continuous functions of x for all values of x.

5. What are the intervals of continuity for tanx and cscx? If = 10~ 4
,
what

are approximately the largest available values of 5 that will make |/(x) /(x ) |
< e

when x = 1, 30, 60, 89 for each ? Use a four-place table.

6. Let /(x) be defined in the interval from to 1 as equal to when x is irra-

tional and equal to l/q when x is rational and expressed as a fraction p/q in lowest

terras. Show that/ is continuous for irrational values and discontinuous for

rational values. Ex. 8, p. 39, will be of assistance in treating the irrational values.

7. Note that in the definition of continuity a generalization may be introduced

by allowing the set [x] over which / is defined to be any set each point of which

is a point of condensation of the set, and that hence continuity over a dense set

(Ex. 7 above), say the rationals or irrationals, may be defined. This is important
because many functions are in the first instance defined only for rationals and are

subsequently defined for irrationals by interpolation. Note that if a function is

continuous over a dense set (say, the rationals), it does not follow that it is uni-

formly continuous over the set. Tor the point of condensation C which was used

in the proof of Theorem 9 may not be a point of the set (may be irrational), and

the proof would fall through for the same reason that it would in the case of 1/x
in the interval < x =E 1, namely, because it could not be affirmed that the function

was continuous at C. Show that if a function is defined and is uniformly continu-

ous over a dense set, the value /(x) will approach a limit when x approaches any



function will remain continuous. Ex. 3 may be used to advantage.

8. By factoring (x + A x)
n xn

,
show for integral values of n that when

=i x ==i K, then A (x
n
) <nKn ~l Ax for small Ax's and consequently xn is uniformly

continuous in the interval =2 x =i K. If it be assumed that xn has been defined

only for rational x's, it follows from Ex. 7 that the definition may be extended

to all x' and that the resulting xn will be continuous.

9. Suppose (a) that f(x) +f(y) = /(x + y) for any numbers x and y. Show that

/(n) = n/(l) and nf(l/n) =/(!), and hence infer that /(x) = x/(l) = Cx, where

C =/(!), for all rational x's. From Ex. 7 it follows that if /(x) is continuous,

/(x) = Cx for all x's. Consider (0) the function /(x) such that/(x) /(y) =/(x + y).

Show that it is G&- = a1 .

10. Show by Theorem 12 that if y f(x) is a continuous constantly increasing

function in the interval a =i x 6, then to each value of y corresponds a single value

of x so that the function x=f~l
(y) exists and is single-valued; show also that

it is continuous and constantly increasing. State the corresponding theorem if

/(x) is constantly decreasing. The function f~ l
(y) is called the inverse function

to/(x).

11. Apply Ex. 10 to discuss y = Vx, where n is integral, x is positive, and only

positive roots are taken into consideration.

12. In arithmetic it may readily be shown that the equations

aman am +
", (a

m
)
rt = amit

,
o"6B = (a6)

n
,

are true when a and b are rational and positive and when m and n are any positive

and negative integers or zero, (a) Can it be inferred that they hold when a

and 6 are positive irrationals ? () How about the extension of the fundamental

inequalities
x" > 1, when x > 1, x" < 1, when ^ y, < 1

to all rational values of n and the proof of the inequalities

xm >xn if m>n and x>l, xm <x if m>n and 0<x<l.

(7) Next consider x as held constant and the exponent n as variable. Discuss the

exponential function ax from this relation, and Exs. 10, 11, and other theorems that

may seem necessary. Treat the logarithm as the inverse of the exponential.

26. The derivative. If x = a is a point of an interval over which

f(x) is defined and if the quotient

*/_/(* + &)-/() ,

A*" h
' A ~ AX

'

approaches a limit when h approaches zero, no matter how, the function

f(x) is said to be differentiable at x = a and the value of the limit of

the quotient is the derivative f'(a) off at x = a. In the case of differ-

entiability, the definition of a limit gives

where lim
77
= when lini h = 0, no matter how.



\f(a + h)
-

/(a) |

=i |/'(u) ]

5 + eS, |

h
|

< 8.

If the limit of the quotient exists when h = through positive values only

function has a right-hand derivative which may be denoted by/' (+) and simi

for the left-hand derivative /'(a-). At tins end points of an interval the dertv

is always considered as one-handed
;
but for interior pointH the right-hand and

hand derivatives must be equal if the function is to have a derivative (unquali

Tho function is said to have an infinite derivative at a if the quotient become?

nite as h =
;
but if a is an interior point, the quotient must become posil

infinite or negatively infinite for all manners of approach and not positively in

for some and negatively infinite for others. Geometrically this allows a ve

tangent with an inflection point, but not with a cusp as in Fig. 8, p. 8. If in

derivatives are allowed, the function may have a derivative and yet be discc

uous, as is suggested by any figure where /(a) is any value between lim/(x)
x == a+ and lim/(x) when x = a~.

THEOREM 13. If a function takes on its maximum (or minirnur

an interior point of the interval of definition and if it is different

at that point, the derivative is zero.

THEOREM 14. Rollers Theorem,. If a function /(*) is continuous

an interval a ^ x b with end points and vanishes at the ends am
a derivative at each interior point a < x < b, there is some poi

a < $ < I, such that /' () = 0.

THEOREM 15. Theorem of the Mean. If a function is continuous

an interval a x S & and has a derivative at each interior point,

is some point such that

where h^l> a* and B is a proper fraction, < < 1.

To prove the first theorem, note that if /(a) = M, the difference /(a + h)
-

tannot be positive for any value of h and the quotient Af/h cannot be pc
when ft > and cannot be negative when h < 0. Hence the right-hand deit

cannot be positive and the left-hand derivative cannot be negative. As thes

must be equal if the function has a derivative, it follows that they must be
and the derivative is zero. The second theorem is an immediate corollary. :

the function is continuous it must have a maximum and a minimum (Theore
both of which cannot be zero unless the function is always zero in the int

Now if the function is identically zero, the derivative is identically zero aT

theorem is true
;
whereas if the function is not identically zero, either the max

or minimum must be at an interior point, and at that point the derivative will v;

* That the theorem is true for any part of the interval from to 6 if it is true J

whole interval follows from the fact that the conditions, namely, that / be cont:
and that/' exist, hold for any part of the interval if they hold for the whole.
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To prove the last theorem construct the auxiliary function

o a o a

As $ (a) i/- (b)
3 O

f
Kolle's Theorem shows that there is some point for which

f () 0, and if this value, be substituted in the expression for ^' (x) the solution

f r /'() gives the result demanded by the theorem. The proof, however, requires
the use of the function ^ (a;)

and its derivative and is not complete until it is shown
that i/-(x) really satisfies the conditions of Rolle's Theorem, namely, is continuous

in the interval a s x ~ b and has a derivative for every point a < x < b. The con-

tinuity is a consequence of Theorem 6
;
that the derivative exists follows from the

direct application of the definition combined with the assumption that the deriva-

tive of /exists.

27. THEOREM 16. If a function has a derivative which, is identically

zero in the interval a s x b, the function is constant
;
and if two

functions have derivatives equal throughout the interval, the functions

differ by a constant.

THEOREM 17. If f(x) is differentiable and becomes infinite when
x == a, the derivative cannot remain finite as x = a.

THEOREM 18. If the derivative /'(#) of a function exists and is a

continuous function of x in the interval a s x g Z, the quotient A/y/i

converges uniformly toward its limit /' (x).

These theorems are consequences of the Theorem of the Mean. For the first.

/(a + h) /(a) = hf(a+ 0A) = 0, if fts&_ a
,

or /(a + h) =/(a).

Hence /(x) is constant. And in case of two functions/ and <j>
with equal derivativfg,

the difference ^ () = f(x) *f> (x) will have a derivative that is zero and the differ-

ence will be constant. Tor the second, let be a fixed value near a and suppose that.

in the interval from x to a the derivative remained finite, say less than K. Then

h)
-

/(xo) |

=
I hf'(x + 0h)\^\

Now let XQ + h approach a and note that the left-hand term becomes infinite and

the supposition that/' remained finite is contradicted. Tor the third, note that/',

being continuous, must be uniformly continuous (Theorem 9), and hence tha.t if e is

given, a 8 may be found such that

h

when
[ h\< S and for all x's in the interval

;
and the theorem is proved.

Concerning derivatives of higher order no special remarks are necessary. Each
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contribute to tbe term D'uDn + 1 - lu in the formula for the (n + l)st derivative of

uv are the terms

n(n-l)...(n-< + 2) n(n - 1) (n-
1-2-. (*-!) 1.2-.-i

in which the first factor is to be differentiated in the first and the second in the

second. The sum of the coefficients obtained by differentiating is

n(n l).'-(n,-i + 2) n(n l)---(n-i + l) _ (n + l)n (n
- i + 2)

1.2..-(i-l) l-2-.-i
~

1-2- --i

which is precisely the proper coefficient for the term DiuDn + l - iv in the expansion

of the (n 4- 1) st derivative of uv by Leibniz's Theorem.

"With regard to this rule and the other elementary rules of operation (4)-(7) of

the previous chapter it should be remarked that a theorem, as well as a rule is in-

volved thus: If two functions u and v are differentiable at x
,
then the product

wo is differentiable at
,
and the value of the derivative is u(x )

v' (x ) + u' (x )
v (x ).

And similar theorems arise in connection with the other rules. As a matter of fact

the ordinary proof needs only to be gone over with care in order to convert it into

a rigorous demonstration. But care does need to be exercised both in stating the

theorem and in looking to the proof. For instance, the above theorem concerning
a product is not true if infinite derivatives are allowed. For let u be 1, 0, or -f 1

according as x is negative, 0, or positive, and let v = x. Now v has always a deriva-

tive which is 1 and u has always a derivative which is 0, + oo, or according as a;

is negative, 0, or positive. The product uv is |x|, of which the derivative is 1 for

negative x's, + 1 for positive x's, and nonexistent for 0. Here the product has no

derivative at 0, although each factor has a derivative, and it would be useless to have

a formula for attempting to evaluate something that did not exist.

EXERCISES

1. Show that if at a point the derivative of a function exists and is positive, the

function must be increasing at that point.

2. Suppose that the derivatives /'(a) and f'(b) exist and are not zero. Show
that /(a) and f(b) are relative maxima or minima of / in the interval a =g x =i b, and

determine the precise criteria in terms of the signs of the derivatives /'(a) and /'(&).

3. Show that if a continuous function has a positive right-hand derivative at

every point of the interval a^x^b, then /(&) is the maximum value of/. Simi-

larly, if the right-hand derivative is negative, show that/(6) is the minimum of/.

4. Apply the Theorem of the Mean to show that if /'(x) is continuous at a, then

m /*)-/f),m
x',x"a X' X"

x' and a;" being regarded as independent.



which are called the second differences
;
in like manner there are third differences

Ai
3/ = f(a + 8 A)

- 3/(a + 2 A) + 8/(o + A) -/(a),

and so on. Apply the Law of the Mean to all the differences and show that

A*f= Wf"(a + ^A + 2A), A/ = As
/"'(a + 0jh + 2

A + sh), -.

Hence show that if the first derivatives of / are continuous at a, then

A2 f A8 f A" f

/"(a) = lim ^f , /'"(a) = lira ^f , , /c)(a) = lim^ -

ft = o
^ A = O A" ft = o A"

6. Canch^s Theorem. If /(a) and < (z) are continuous over a =g a; =
6, have

derivatives at each interior point, and if 0' (x) does not vanish in the interval,

_

<l> (a) 0'() <j>(a + h) <j> (a) <f>'(a + 0/i)

Prove that this follows from the application of Rolle's Theorem to the function

0(6) -0(0)

7. One application of Ex, 6 is to the theory of indeterminate forms. Show that

if /(a) = 0(o) = and iif'(x)/<j>'(x) approaches a limit when x = a, then f(x)/<t> (x)

will approach the same limit.

8. Taylor's Theorem. Note that the form /(&) =/() -f (6 )/'(!) is one way
of writing the Theorem of the Mean. By the application of Kolle's Theorem to

t > =/<) -/(x) - (5
-

*)/<(*)
-

((-- *)*
/M-/W-P

(o a;

Bhow /(6) =/(a) + (b
-

o)/'(a) + ^/"(f),

and to

show /(6) =/(a) + (6
-

o)/'(a) + /"(a) +

What are the restrictions that must be imposed on the function and its derivatives ?

9. If a continuous function over a ==x =s b has a right-hand derivative at each

point of the interval which is zero, show that the function is constant. Apply Ex. 2

to the functions /(x) + e (x a) and/(x) e(o5 a) to show that the maximum
difference between the functions is 2 e (b a) and that/ must therefore be constant



lias a nmw) derivative ai eacn point 01 tne interval a = x = y, ouo

derivative /'(x) must take on every value intermediate between any two of its values.

To show this, take first the case where /'(a) and /'(&) have opposite signs and show,

by the continuity of / and by Theorem 18 and Ex. 2, that /'() = 0. Next if

/'(a) <m </'(&) without any restrictions on /'(a) and /'(&), consider the function

/(x)
~

fix and its derivative /'(x) /*. Finally, prove the complete theorem. It

should be noted that the continuity of /'(x) is not assumed, nor is it proved ;
for

there are functions which take every value intermediate between two given values

and yet are not continuous.

28. Summation and integration. Let /(cc) be defined and limited

over the interval a 31 x s 6 and let M, m, and = M m be the

upper frontier, lower fron-

tier, and oscillation of f(x)
in the interval. Let n~~\

points of division be intro-

duced in the interval divid-

ing it into n consecutive

intervals o\, 82; ,
of

which the largest has the

length A, and let Mi} mi}
O

l}

and /( t) be the upper and lower frontiers, the oscillation, and any
value of the function in the interval 8

{
. Then the inequalities

will hold, and if these terms oe summed up for all n intervals,

m (b a)
= V w^S,- 2}/(,) S

f =i ]VMt
-8

t
- ^ M(b a)

Fromwill also hold. Let s = 3mA, " = 5/(^) so and ^ =
it is clear that the difference <S 5 does not exceed

the product of the length of the interval by the oscillation in it. The

values of the sums S, s, or will evidently depend on the number of parts
into which the interval is divided and on the way in which it is divided

into that number of parts.

THEOREM 19. If n' additional points of division be introduced into

the interval, the sum S' constructed for the n + n' 1 points of division



cannot be greater than S and cannot be less than S by more than

n'OA. Similarly, .9' cannot be less than s and cannot exceed s by more

than n'OA..

THEOREM 20. There exists a lower frontier L for all possible methods

of constructing the sum S and an upper frontier I for s.

THEOREM 21. Darboux's Theorem. When e is assigned it is possible

to find a A so small that for all methods of division for which 8
{ S A,

the sums S and .s shall differ from their frontier values L and I by less

than any preassigned c.

To prove the first theorem note that although (A) is written for the whole inter-

val from a to 6 and for the sums constructed on it, yet it applies equally to any

part of the interval and to the sums constructed on that part. Hence if Sf =M jfi,- be

the part of S due to the interval 5,- and if 8f be the part of S' due to this interval

after the introduction of some of the additional points into it, 7n,-S,-S S'
(

= S{ = >/t-5,-.

Hence S{ is not greater than Si (and as this is true for each interval 5;, S' is not

greater than S) and, moreover, 3t
- S'

t
is not greater than 0,'5t

- and a fortiori not

greater than OA. As there are only n" new points, not more than n' of the intervals

5i can be affected, and hence the total decrease S S' in S cannot be more than

n'OA. The treatment of s is analogous.

Inasmuch as (A) shows that the sums S and s are limited, it follows from Theo-

rem 4 that they possess the frontiers required in Theorem 20. To prove Theorem 21

note first that as L is a frontier for all the sums S, there is some particular sum S

which differs from L by as little as desired, say \ e. For this S let n be the number

of divisions. Now consider S' as any sum for which each 5,- is less than A = e/nO.

If the sum S" be constructed by adding the n points of division for S to the points

of division for S', S" cannot be greater than S and hence cannot 'differ from L by
so -much ^s \ e. Also S" cannot be greater than S' and cannot be less than S' by
more than nOA, which is \ e. As S" differs from L by less than \ e and S' differs

from S" by less than e, S' cannot differ from L by more than e, wluch was to be

proved. The treatment of s and I is analogous.

29. If indices are introduced to indicate the interval for which the

frontiers L and I are calculated and if
ft lies in the interval from a to b,

then Lg and 1% will be functions of
ft.

THEOREM 22. The equations L% = Za
c + c

6
,
a< c < b

;
Za

b = Z4
"

;

L^ = p, (b a), m^fi^=M:
hold for L, and similar equations for I. As

functions of ft, L% and 1% are continuous, and if f(x) is continuous,

they are differentiable and have the common derivative /(/3).

To prove that L% = L + *, consider c as one of the points of division of the

interval from a to 6. Then the sums S will satisfy S% = S + S% ,
and as the limit

of a sum is the sum of the limits, the corresponding relation must hold for the

frontier L. To show thatL^L" it is merely necessary to note that S% S"

because in passing from & to a the intervals Si must be taken with the sign opposite

to that which they have when the direction is from a to b. Erom (A) it appears



- L* =

Hence if e is assigned, a 5 may be found, namely 5 < e/JT, so that \L%
* A -

when ft < 5 and is therefore continuous. Finally consider the quotients

c and
h ft

where /* is some number between the maximum and minimum of /(x) in the inter-

val
/S ^ a; ^ /3 + h and, if / is continuous, is some value /() of / in that interval

and where / =/(') is some value of / in the interval /3- ft^x^/3. Now let

ft = 0. As the function/ is continuous, lira /() = /(/3) and Urn /(') = /(j3) . Hence

the right-hand and left-hand derivatives exist and are equal and the function Lg
has the derivative /((3) . The treatment of I is analogous.

THEOREM 23. For a given interval and function /, the quantities I

and L satisfy the relation I ^ L
;
and the necessary and sufficient con-

dition that L = I is that there shall be some division of the interval

which shall make 2 (M< raf) 5,-
= 20A-< e.

If L% = 1%, the function / is said to be integrable over the interval

X f(x) dx is defined as the common value

L* = 1%. Thus the definite integral is defined.

THEOREM 24. If a function is integrable over an interval, it is inte-

grable over any part of the interval and the equations

ff(x)dx+ f f(x) dx= C f(x)dx,
Ja Jq Ja

r/()cfoj = - f/(x)<Zx, C f(x)dx = p(b-d)
Ja tJb Jo,

/J3

hold
; moreover, I /(x) dx F([) is a continuous function of /? ;

and
i/a

if f(x) is continuous, the derivative F'(P) will exist and be/(/3).

By (A) the sums S and s constructed for the same division of the interval satisfy

the relation S sS 0. By Darboux's Theorem the sums S and s will approach the

values L and I when the divisions are indefinitely decreased. Hence L I^ 0.

Now if L = I and a A be found so that when 5,- < A the inequalities S L < \ e and

I s < e hold, then S s = S (Jf< m*) $t
- = S O,-5,- < ;

;
and hence the condition

20,-$i < e is seen to be necessary. Conversely if there is any method of division such

that 20,'5i < e, then S s < t and the lesser quantity L I must also be less than .

But if the difference between two constant quantities can be made less than e,

where e is arbitrarily assigned, the constant quantities are equal ;
and hence the



sum o- =

condition IB seen to be also sufficient. To snow that it a function is integrable over

an interval, it is integrable over any part of the interval, it is merely necessary to

show that if Z 6 = /a
b

,
then L% = lg where a and /3 are two points of the interval.

Here the condition Z0iSt-<e applies; for if SOjS,- can be made less than e for the

whole interval, its value for any part of the interval, being less than for the whole,
must be less than e. The rest of Theorem 24 is a corollary of Theorem 22.

30. THEOREM 25. A function is integrable over the interval a^x^b
if it is continuous in that interval.

THEOREM: 26. If the interval a^x^f> over which f(x) is defined

and limited contains only a finite number of points at which / is dis-

continuous or if it contains an infinite number of points at which f is

discontinuous but these points have only a finite number of points of

condensation, the function is integrable.

THEOREM 27. If f(x) is integrable over the interval a- ^ x ^ I, the

will approach the limit I f(x) dx when the iudi-

Ja
vidual intervals 8

t
- approach the limit zero, it being immaterial how

they approach that limit or how the points are selected in their

respective intervals 8;.

THEOREM 28. If f(x) is continuous in an interval a 3= s 5, then

c*
f(x) has an indefinite integral, namely I f(x) dx, in the interval.

Jo.

Theorem 26 may be reduced to Theorem 23. For as the function is continuous,

it is possible to find a A so small that the oscillation of the function in any interval

of length A shall be as small as desired (Theorem 9). Suppose A be chosen so that

the oscillation is less than e/(6 a). Then SOiSf < e when 5f < A ;
and the function

is integrable. To prove Theorem 26, take first the case of a finite number of discon-

tinuities. Cut out the discontinuities surrounding each value of x at which/ is dis-

continuous by an interval of length 8. As the oscillation in each of these intervals

is not greater than 0, the contribution of these intervals to the sum SO;Sj is not

greater than On5, where n is the number of the discontinuities. By taking 5 small

enough this may be made as small as desired, say less than \ e. Now in each of the

remaining parts of the interval a = x ==
&, the function / is continuous and hence

integrable, and consequently the value of Z0;5i for these portions may be made as

small as desired, say . Thus the sum SO,-5{ for the whole interval can be made
as small as desired and/(x) is integrable. When there are points of condensation

they may be treated just as the isolated points of discontinuity were treated. After

they have been surrounded by intervals, there will remain over only a finite num-
ber of discontinuities. Further details will be left to the reader.

For the proof of Theorem 27, appeal may be taken to the fundamental relation

(A) which shows that s^a-^S. Now let the number of divisions increase indefi-

nitely and each division become indefinitely small. As the function is integrable,
nb

S and s approach the same limit I /(x)dx, and consequently cr which is included
"O

between them must atroroach that limit. Theorem 28 is a corollary of Theorem 24



nition, the indefinite integral is any function whose derivative is the integrand.
r\X

Hence I f(x)dx is an indefinite integral of /(x), and any other may be obtained
J (t

by adding to this an arbitrary constant (Theorem 10). Thus it is seen that the

proof of the existence of the indefinite integral for any given continuous function

Is made to depend on the theory of definite integrals.

EXERCISES

1. Rework some of the proofs in the text with I replacing L.

2. Show that the L obtained from Cf(x), where C is a constant, is C times the L

obtained from/. Also if u, w, w are all limited in the interval a =x =g 6, the L for

the combination u + v w will be L (u) + L (v) L (w), where L (u) denotes the L

for u, etc. State and prove the corresponding theorems for definite integrals and

\ience the corresponding theorems for indefinite integrals.

3. Show that SO.-5,- can be made less than an assigned <? in the case of the func-

tion of Ex. 6, p. 44. Note that i = 0, and hence infer that the function is integrable

and the integral is zero. The proof may be made to depend on the fact that there

are only a finite number of values of the function greater than any assigned value.

4. State with care and prove the results of Exs. 3 and 5, p. 29. What restric-

tion is to be placed on /(x) if /() may replace /t ?

5. State with care and prove the results of Ex. 4, p. 29, and Ex. 13, p. 30.

6. If a function is limited in the interval a 5i x S b and never decreases, show

that the function is integrable. This follows from the fact that SO; s is finite.

7. More generally, let/(x) be such a function that SO,- remains less than somo

number K
,
no matter how the interval be divided. Show that / is integrable. Such

a function is called & function of limited variation
( 127).

8. Change of variable. Let f(x) be continuous over a, == x == b. Change the

variable to x = #(t), where it is supposed that a = ^(t^) and b = 4>(t2), and that

<f> (t), 0'(), and/[< (t)] are continuous in t over *
t
s= t = t

z . Show that

r\ b n fa /*<fr(n /* t

\ /()<&} = C /]>(*)] $>'() eft or C f(x)dx = \ /O(t)] *'(*)#.
Ja Jti ><f>(i) A

Do this by showing that the derivatives of the two sides of the last equation with

respect to t exist and are equal over t
t
== t ^ 2 ,

that the two sides vanish when
t = ^ and are equal, and hence that they must be equal throughout the interval.

9. Osgood's Theorem. Let ai be a set of quantities which differ uniformly from

f(ki) ^i by an amount
f,-5i, that is, suppose

= /(fi) 5,- + ftS,-, wbere
| ft| < e and a^ g 5.

Prove that if /is integrable, the sum Scr,- approaches a limit when Si = and that
/6

the limit of the sum is
| /() dx.
va

10. Apply Ex. 9 to the case A/ = /'Az + fAx where /' is continuous to show

directly that/(6)- /(a) = f /'(x)dx. Also by regarding Aaj = <J>' (t) A + A, apply
Ja

tc Ex. 8 to Drove the rule for change of variable.



PART I. DIFFEKENTIAL CALCULUS

CHAPTER III

TAYLOR'S FORMULA AND ALLIED TOPICS

31. Taylor's Formula. The object of Taylor's Formula is to express

the value of a function f(x) in terms of the values of the function and

its derivatives at some one point x a. Thus

Such an expansion is necessarily true because the remainder R may be

considered as defined by the equation ;
the real significance of the

formula must therefore lie in the possibility of finding a simple ex-

pression for R, and there are several.

THEOREM. On the hypothesis that f(x) and its first n derivatives

exist and are continuous over the interval a^x^b, the function may
be expanded in that interval into a polynomial in x a,

with the remainder R expressible in any one of the forms

=
T^rTf f"""/""(a + *-
\lb ).JQ

where h = x a and a < < x or = a -f 6h where < 6 < 1



tive Y (x) is merely

(5 _ x\n -i (5 _ x\n -i
*' (X} = "

(n-l)l
^ (X) + n

(6-0)"

By Rolle's Theorem \j/'()
= 0. Hence if be substituted above, the result is

/(&) =/() + (6
-

a)/'(a) + +
^^V'-^Co)

+~^f(n) (0,

after striking out the factor
(I> )

n
-i, multiplying by (b a)

n
/n, and transposing

f(b). The theorem is therefore proved with the first form of the remainder. This

proof does not require the continuity of the nth derivative nor its existence at a and at b.

The second form of the remainder may be found by applying Rolle's Theorem to

*(x}=f(b)-f(x)-(b-x)f'(x) -----
(

(n~- 1) l^"
"

1}
(X)
-

<
b " *) P'

where P is determined so that E = (b a) P. Note that f (b)
= and that by

Taylor's Formula f (a)
= 0. Now

= 0.

\Yl 1^ I

Hence if be written =a+0/i. where h=b a, then 6 =&- a 6h=(b a)(l 8).

And R =
(&-a)

P= (^a)(
&- a)"- 1

<1-^- 1

/()^) =:(
& - tt)'

>

(
1

-^-Vn)(g).X ; V '

(n-l)l
W

(-!)'
The second form of R is thus found. In this work as before, the result is proved
for x = b, the end point of the interval a =g x^ b. But as the interval could be

considered as terminating at any of its points, the proof clearly applies to any x

in the interval.

A second proof of Taylor's Formula, and the easiest to remember, consists in

integrating the nth derivative n times from a to x. The successive results are

f7(n)
(K) dx =/-i(a;)]

a!

=/Cn-i) (
X) -/("-!) (a).

/o Ja

f
*
f /W (x) d& = fV"-15

(x) dx - C */( -i)
(a) dx

>/a /a t/a /o

= /<"-2) (X) -/(n-2) (a)
_

(x _ a)/(n-l) (a).

f
X

f /W () *c8 =/* -
8) ()_/(-) (a)

-
(
-

a)/(-2) (a)
- fcj2!/o-i> (a).va </a 2i I

*
' '

JT/(n) (:c)
^ =/(zj ~ /(a)

~
(x
~

a)// (a)

The formula is therefore proved with R in the form C . . . CV(n)
(
x
)
<**" To trans-

form this to the ordinary form, the Law of the Mean may be applied ((65), 16). For

> a)
n

n! t/* V '

w!



some intermediate value /<">() = n such that

ft x s* x Iff __ fi\n
... /00(X)

<*X = i -2i /()().
/ a "a Tl 1

This proof requires that the nth derivative he continuous and is less general.
The third proof is obtained by applying successive integrations by parts to the

c
obvious identity /(a + h) /(a) = I /'(a + h

t)
dt to make the integrand contain

Jo

higher derivatives.

/(a + h) /(a) = C f'(a + h t)dt = if(a + h -
1) ( + f 'if'(a + h-t)dt

Ju
, Jo Jo

= hf'(a) + I t*f"(a + h- t)]

*

+ f
*

J i
2
/'"(a + h - t)

dt
Jo Jo

7i2 h n -1 nh in-l
'

/"(a)
-i

.

This, however, is precisely Taylor's Formula with the third form of remainder.

If the point a about which the function is expanded is x = 0, the

expansion will take the form known as Maclaurin's Formula :

/W+.-. + /o-') (0)+*, (3)

32. Both Taylor's Formula and its special case, Maclaurin's, express

a function as a polynomial in h = x a, of which all the coefficients

except the last are constants while the last is not constant but depends
on h both explicitly and through tie unknown fraction which itself is

a function of h. If, however, the rath derivative is continuous, the coeffi-

cient/(n)
(cu-\- 6Ji)/nl must remain finite, and if the form of the deriva-

tive is known, it may be possible actually to assign limits between

which fw(a + 61i)/n ! lies. This is of great importance in making

approximate calculations as in Exs. 8 ff. below
;
for it sets a limit to

the value of R for any value of n.

THEOREM. There is only one possible expansion of a function into

a polynomial in h = x ~ a of which all the coefficients except the last

are constant and the last finite; and hence if such an expansion is

found in any manner, it must be Taylor's (or Maclaurin's).

To prove this theorem consider two polynomials of the nth order

/i-i + cnA" = C + C +

which represent the same function and hence are equal for all values of h from

to & a. It follows that the coefficients must be equal. For let h approach 0.



The terniH containing h will approach and henco c and (!
() may be made as

nearly equal iiu desired; and as they are constants, they nmut be equal. Strike

them out from the equation and divide by A. Tho new equation must hold for all

values of h from to l> <i with the possible exception of 0. Again let h = and

now it follows that c^
= Cr And so on, with all the coefiideuts. The two devel-

opments are Keen to be identical, and hence identical with Taylor's.

To illustrate the application of the theorem, let it be required to find the expan-

sion of tanx about when the expansion? of sin x arid eosx about are given.

sin x = x -
-J
x8 + Tb x<! + Px>l

i
cos x = 1 - | x

2 + 2
>

T x
4 + Qx,

whore P and Q remain finite in the neighborhood of x = 0. In the first place note

that tan a; clearly has an expansion ;
for the function and its derivatives (which

are combinations of tan x and sec x) are finite and continuous until x approaches -J-
v.

By division,
x + -x? + xc

| X8_

C'/

Hence tan x = x + * x8 + y^x5 +- x7
, where S is the remainder in tbe division

cosx
and is an expression containing P, Q, and powers of x

;
it must remain finite if P

and Q remain finite. The quotient S/coe x which Is the coefficient of x7 therefore

remains finite near x = 0, and the expression for tan x is the Maclaurin expansion

up to terms of the sixth order, plus a remainder.

In the case of functions compounded from simple functions of which the expan-
sion is known, this method of obtaining the expansion by algebraic processes upon
tlie known expansions treated as polynomials is generally shorter than to obtain

the result by differentiation. The computation may be abridged by omitting the

last terms and work such as follows the dotted line in the example above
;
but if

this is done, care must be exercised against carrying the algebraic operations too

far or not far enough. In Ex. 5 below, the last terms should be put in and carried

far enough to insure that the desired expansion has neither more nor fewer terms

than the circumstances warrant.

EXERCISES

1. Assume R = (6
-

a)
kP; show E = -

n ^ ~
V ' '

2. Apply Ex. 5, p. 29, to compare the third form of remainder with the first.

3. Obtain, by differentiation and substitution in (1), three nonvanishing terms:

(a) sin-ix, a = 0, (/3) tanh x, a = 0, (7) tan x, a - \ w,

(S) esc x, a = |TT, (e) e aina;
,
a = 0, (f) log sin x, a \ ir.

4. Find the nth derivatives in the following cases and write the expansion :

^a) sin x, a 0, ^J) sin x, a = |ir, (7) c*, a = 0,



(a) sec x, (/3)
tanh x, (7) Vl x2

,

(5) e^sinx, (e) [log (1
-

x)]
2

, (f) + Vcosh x,

(17) e Bina:
, (0) logcosx, (t) log Vl + x2 .

The expansions needed in this work may be found by differentiation or taken

from B. 0. Peirce's "Tables." In (7) and (f) apply the binomial theorem of Ex.

4 (f). In
(17)

let y = sin x, expand ev, and substitute for y the expansion of sin x.

In (0) let cos x = 1 y. In all cases show that the coefficient of the term in x6

really remains finite when x = 0.

6. If f(a + h)
= c + Cj/i + c

2
h2 + + Cn-i/i"- 1 + cn/i", show that in

Jo 2 3 n Jo

the last term may really be put in the form Phn+l with P finite. Apply Ex. 5, p. 29.

7. Apply Ex. 6 to sin-ix = C etc., to find developments of

(a) sin
- 1

x, (/3)
tan-1

x, (7) sinh.-1 x,

io
iri' w xv"^ r *r fc

In all these cases the results may be found if desired to n terms.

8. Show that the remainder in the Maclaurin development of e* is less than

xnef/n !
;
and hence that the error introduced by disregarding the remainder in com-

puting & is less than xeVn ! How many terms will suffice to compute e to four

decimals ? How many for e5 and for e0>1 ?

9. Show that the error introduced by disregarding the remainder in comput-

ing log (1+ x) is not greater than xn/n if x > 0. How many terms are required foi

the computation of log 1 to four places ? of log 1.2 ? Compute the latter.

10. The hypotenuse of a triangle is 20 and one angle is 31. Find the sides by

expanding sin x and cos x about a = % IT as linear functions of x | ir. Examine

the term in (x ^ 7r)
2 to find a maximum value to the error introduced by

neglecting it.

11. Compute to 6 places: (a) e, (/3) log 1.1, (7) sin 30', (8) cos 30'. During

the computation one place more than the desired numbeF should be carried along

in the arithmetic work for safety.

12. Show that the remainder for log (1 + x) is less than xn/n (1 + x) if x < 0.

Compute (a) log 0.9 to 5 places, (/3) log 0.8 to 4 places.

13. Show that the remainder for tan-1 x is less than xn/n where n may always

be taken as odd. Compute to 4 places tan-1
^.

14. The relation J rr = tan-1 1 = 4 tan-1
\ tan- 1

2 5 enables \ v to be found

easily from the series for tan- 1 x. Find \ TT to 7 places (intermediate work carried

to 8 places).

15. Computation of logarithms, (a) If a = log ^, & = log |f ,
c = log f, then

Iog2 = 7a 2& + 3c, Iog3 = lla 3&+ 5c, Iog6=16a



and hence log 2, log 8, .log 5 may be lound. Carry the calculations 01 a-, o, c to

10 places and deduce the logarithms of 2, 3, 5, 10, retaining only 8 places. Com-

pare Peirce's "Tables," p. 109.
1 + x 2 x"

(8) Show that the error in the series for log
- is less than - Com-

v '
1 x n (1 x)

n

pute log 2 corresponding to x =
-J-
to 4 places, log If to 5 places, log 1| to 6 places.

(,) Show log = 2 + + +x;
g Lj3 + q 3 \jj + ?/

give an estimate of B2jl +i, and compute to 10 figures log 3 and log 7 from 'log 2

and log 5 of Peirce's "Tables " and from

81 7*
4 log 8 4 log 2 log 5 = log , 4 log 7 5 log 2 log 3 2 log 6 = logHA 74 1

16. Compute Ex. 7
(e)

to 4 places for a; = 1 and to 6 places for x = J.

17. Compute sin-1 0.1 to seconds and sin-1
-J-
to minutes.

18. Show that in the expansion of (1 + )* the remainder, as x is > or < 0, is

X"
l-2.--.rt (l+ x)-

Hence compute to 5 figures Vl03, V98, V28, V250, ^1000.

19. Sometimes the remainder cannot be readily found but the terms of the

expansion appear to be diminishing so rapidly that all after a certain point appear

negligible. Thus use Peirce's "Tables," Nos. 774-789, to compute to four places

(estimated) the values of tan 6, log cos 10, esc 8, sec 2.

20. Find to within 1% the area under cos (x
2
) and sin (x

2
) from to \ ir.

21. A unit magnetic pole is placed at a distance L from the center of a magnet
of pole strength M and length 2

J,
where l/L is small. Find the force on the -pole

if (a) the pole is in the line of the magnet and. if (|3) it is in the perpendicular

bisector.

4 Ml 1 1 \2 2 Ml 3 / 1 \2
Ans. (a) (1 + e) with e about 21

}
, (p) (1 )

with about -
1 I

Ls
\L/ L3 2 \L/

22. The formula for the distance of the horizon is D = Vf~A where J) is the

distance in miles and h is the altitude of the observer in feet. Prove the formula

and show that the error is about 1% for heights up to a few miles. Take the radius

of the earth as 3960 miles.

23. Find an approximate formula for the dip of the horizon in minutes below

the horizontal if h in feet is the height of the observer.

24. If /S is a circular arc and C its chord and c the chord of half the arc, prove
S = |(8 c - C) (1 + c) where e is about 54/7680 E* if R is the radius.

25. If two quantities differ from each other by a small fraction e of their value,
show that their geometric mean will differ from their arithmetic mean by about

2 of its vaiue.

26. The algebraic method may be applied to finding expansions of some func-

tions which become infinite. (Thus if the series for cosz and sinx be divided to

find cotx, the initial term is 1/x and becomes infinite at x = just as cotx does.



The function x cot x would, however, have a Maclaurin development and the

expansion found for cotx is this development divided by x.) Find the develop-

ments about x = to terms in x4 for

(a) cotx, (/3) cot2 x, (7) cscx, (5) cscs x,

(e) cotx cscx, (f) l/(tan~
1
x)

2
, (ij) (sin x tan x)-

1

27. Obtain the expansions :

(a) logsinx = logx-x2 -
T $.7 x

4 + E, (/3) logtanx = logx + |x
2 + ^x4 + -,

(7) likewise for log versx.

33. Indeterminate forms, infinitesimals, infinites. If two functions

f(x) and
<f> (x) are defined for x = a and if

<f> (a) =?= 0, the quotient //</> is

defined for x = a. But if
<f> (a)

=
0, the quotient f/<f> is not defined for a.

If in this case / a.nd < are defined and continuous in the neighborhood
of a and f(a) =

0, the quotient will become infinite as x ~= a
;
whereas

if /(a) = 0, the behavior of the quotient //< is not immediately appar-

ent but gives rise to the indeterminate form 0/0. In like manner if /
and < become infinite at a, the quotient //< is not defined, as neither

its numerator nor its denominator is defined
;
thus arises the indeter-

minate form oo/oo. The question of determining or evaluating an

indeterminate form is merely the question of finding out whether the

quotient //< approaches a limit (and if so, what limit) or becomes

positively or negatively infinite when x approaches a.

THEOREM. L}

Hospital's Rule. If the functions f(x) and <
(x), which

give rise to the indeterminate form 0/0 or oo/oo when x = a, are con-

tinuous and differentiate in the interval a < x s b and if b can be

taken so near to a that
<f>'(x)

does not vanish in the interval and if the

quotient /'/<' of the derivatives approaches a limit or becomes posi-

tively or negatively infinite as x = a, then the quotient f/<f> will ap-

proach that limit or become positively or negatively infinite as the case

may be. Hence an indeterminate form 0/0 or oo/oo may be replaced by

the quotient of the derivatives of numerator and denominator.

CASE I. /(a) = <f> (a)
= 0. The proof follows from Cauchy's Formula, Ex. 6, p. 49.

\

For = ^ a<
'

Now if x == a, so must |, which lies between x and a. Hence if the quotient on the

right approaches a limit or becomes positively or negatively infinite, the same is

true of that on the left. The necessity of inserting the restrictions that / and <6

shall be continuous and differentiate and that </>' shall not have a root indefinitely

near to a is apparent from the fact that Cauchy's Formula is proved only for func-

tions that satisfy these conditions. If the derived form/'/tf/ should also be inde-

terminate, the rule could again be applied and the quotient /"/0" would replace

f'jtf with the understanding that proper restrictions were satisfied by/', $', and <f>".



/(x) -/(b)

(} - (b) (x) 1 - (')/< (x) <*.'()

'

z < f < b,

where the middle expression is merely a different way of writing the first.

suppose that /'(x)/0'(ic
) approaches a limit when x == tt. It must then he possible to

take b so near to a that/'()/0'() differs from that limit hy as little as desired, no

matter what value may have between a and b. Now as /and become infinite

when x =
,
it is possible to take x so near to a, that f(b)/f(x) and 0(b)/0(x) are

as near zero as desired. The second equation above then shows that /(x)/0 (x),

multiplied by a quantity which differs from 1 by as little as desired, is etjual to

a quantity /'()/<'() which differs from the limit of /'(x)/<//(x) as x = a by as little

as desired. Hence //^ must approach the same limit as/'/tf/. Similar reasoning

would apply to the supposition that/'/0' became positively or negatively infinite,

and the theorem is proved. It may be noted that, by Theorem 10 of 27, the form

/'/</>' is sure to be indeterminate. The advantage of being able to differentiate

therefore lies wholly in the possibility that the new form be more amenable to

algebraic transformation than the old.

The other indeterminate forma oo, 0, 1, 00, oo oo may be reduced to the

foregoing by various devices which may be indicated as follows :

0-c = =
,

= e loe = e lo6 = e
' 00

, oo 00 = loge00 - 00 = log

l_ l_
e
00

oo 1)

The case where the variable becomes infinite instead of approaching a finite value

is covered in Ex. 1 below. The theory is therefore completed.
Two methods which frequently may be used to shorten the work of evaluating

an indeterminate form are the method ofE-functions and the application of Taylor's

Formula. By definition an E-function for the point x = a is any continuous function

which approaches a finite limit other than when x == a. Suppose then that/(x) or

0(x) or both may be written as the products E^f}
and E^. Then the method of

treating indeterminate forms need be applied only to/j/^ and the result multiplied

hylim JSj/^2- For example,

lim f~ a*

^
= lira (x* + ax + a

-) lira -

X ~ a
. = 3 a2 lim

X ~ a = 3 a2 .

z=asm(x a) x=a a; = asin(x a) K =asin(x a)

Again, suppose that in the form 0/0 both numerator and denominator may be de-

veloped about x = a by Taylor's Formula. The valuation is immediate. Thus

tanx- sinx (x + ^x
8 + Px6)- (x- ^x

8 + Qxs
) _ $ + (P- Q)x

2
.

z2
log(H-x)~ x*(z-^x2 + x3)

-
I-IX + R&

'

and now if x = 0, the limit is at once shown to be simply |.

Then the functions become infinite at x = a, the conditions requisite for Taylor's
Formula are not present and there is no Taylor expansion. Nevertheless an expan-
sion may sometimes be obtained by the algebraic method ( 32) and may frequently
be used to advantage. To illustrate, let it be required to evaluate cot x 1 /x which
is of the form oo oo when x == 0. Here

sinx



lira /cot x - -\ = lira /i - - x -f Sz8 - -
)
= lim (

-- x + Sx*} = 0.

a- = 0\ X/ K = 0\X 3 X/ z = 0\ 3 /

34. An infinitesimal is a variable which is ultimately to approach the

limit zero ; an infinite is a variable which is to become either positively

or negatively infinite. Thus the increments Ay and Ax are finite quan-

tities, but when they are to serve in the definition of a derivative they

must ultimately approach zero and hence may be called infinitesimals.

The form 0/0 represents the quotient of two infinitesimals
;

* the form

oo/oo, the quotient of two infinites
;
and 0- oo, the product of an infin-

itesimal by an infinite. If any infinitesimal a is chosen as the primary

infinitesimal, a second infinitesimal (3 is said to be of the same order as

a if the limit of the quotient ft/a exists and is not zero when a ==
;

whereas if the quotient ft/a becomes zero, ft is said to be an infinites-

imal of higher order than a, but of lower order if the quotient becomes

infinite. If in particular the limit ft/a? exists and is not zero when

a == 0, then ft is said to be of the nth order relative to a. The deter-

mination of the order of one infinitesimal relative to another is there-

fore essentially a problem in indeterminate forms. Similar definitions

may be given in regard to infinites.

THEOREM. If the quotient ft/a of two infinitesimals approaches a

limit or becomes infinite when a = 0, the quotient ft'/a' of two infin-

itesimals which differ respectively from ft and a by infinitesimals of

higher order will approach the same limit or become infinite.

THEOREM. DuhameVs Theorem If the sum 2af
= a

x -f
a
2 -\

-----
\- <xn

of n positive infinitesimals approaches a limit when their number n

becomes infinite, the sum 2$ = /^ -f- j32 H
-----

1- ftn ,
where each f}t

differs

uniformly from the corresponding ,- by an infinitesimal of higher

order, will approach the same limit.

As a' a is of higher order than a and ft' ft of higher order than /S,

,

a ft a

where v and are infinitesimals. Now a* = a (I + rj)
and /3'

=
/3(1 + f). Hence

and lim = !!,
a' a 1 + 1) of

provided ft/a approaches a limit ;
whereas if ft/a becomes infinite, so will

In * more complex fraction such as
(ft y)/a it is not permissible to replace ft

* It cannot be emphasized too strongly that in the symbol 0/0 the O's are merely sym-
bolic for a mode of variation just as w is; they are not actual O's and some other nota-

tion would be far preferable, likewise for oo, 0, etc-



relative to x although tan x and sin x are only of the first order. To replace

and sin x by infinitesimals which differ from them by those of the second ord

even of the third order would generally alter the limit of the ratio of tan x

to x8 when x == 0.

To prove Duhainel'a Theorem the jS's may be written in the form

ft= ort-(l + iji),
i = l, 2, ..., n, hi|<*,

where the VB are infinitesimals and where all the ij's simultaneously may be :

lees than the assigned e owing to the uniformity required in the theorem. Tl

I (ft + Pa + ' + ft)
-

(*i + 2 + ' ' ' + *) I

=
I V*i + 7aa3 + ' ' ' + fn^nl <

Hence the sum of the /S'e may be made to differ from the sum of the 1

s b;

than eSa, a quantity as small as desired, and as Sor approaches a limit by hy

esis, so Sj8 must approach the same limit. The theorem may clearly be exte

to the case where the a's are not all positive provided the sum S
| <X{\

of the

lute values of the a's approaches a limit.

35. If y =f(x), the differential of y is defined as

dy =/'(x) AJC, and hence dx = 1 Ace.

From. this definition of dy and cfo it appears that dy/dx =f'(x), -w

the quotient dy/dx is the quotient of two finite quantities of whic

may be assigned at pleasure. This is true if x is the indepen
variable. If x and y are both expressed in terras of t,

and -$- = ^ =
ZLt/, by virtue of (4)dx Dp xy) J v ;

Trom this appears the important theorem : The quotient dy/dx i

derivative of y with respect to x no matter what the independent vai

may be. It is this theorem which really justifies writing the deriv

as a fraction and treating the component differentials according t

rules of ordinary fractions. For higher derivatives this is not

may be seen by reference to Ex. 10.

As At/ and AJC are regarded as infinitesimals in defining the d<

tive, it is natural to regard dy and dx as infinitesimals. The diffe:

Ay dy may be put in the form

wherein it appears that, when Aa i 0, the bracket approaches
Hence arises the theorem: Ifxis the independent variable and
and dy are regarded as infinitesimals, the difference Ay dy is an
itesimal of higher order than Ace. This has an application tc



then dx = <'(') dt, and apparently

f(x)dx=f
Jo,

where <

(^)
= a and <

( 2)
=

b, so that ranges from t
1
to <5

2
-when x

ranges from a to I.

But this substitution is too hasty ;
for the dx written in the integrand

is really A#, which differs from dx by an infinitesimal of higher order

when x is not the independent variable. The -true condition, may be

seen by comparing the two sums

(o:,.) Ao:,,

the limits of which are the two integrals above. Now as Aaj differs

from dx = </>'() dt by an infinitesimal of higher order, so /(#) Ace will

differ from /[<()]<'() d by an infinitesimal of higher order, and

with the proper assumptions as to continuity the difference will be uni-

form. Hence if the infinitesimals /(cc) Ax be all positive, Duhamel's

Theorem may be applied to justify the formula for change of variable.

To avoid the restriction to positive infinitesimals it is well to replace

Duhamel's Theorem by the new

THEOREM. Osgood's Theorem. Let av cc
2 , ,

an be n infinitesimals

and let a
t
differ uniformly by infinitesimals of higher order than Aa;

from the elements /(o^Aa^ of the integrand of a definite integral

I f(x) dx, where/ is continuous
;
then the sum 2a=

<x^ + #
2 H

-----h *
\Jot

'

approaches the value of the definite integral as a limit when the num-

ber n becomes infinite.

Let i
= /(Xi) Axi+ ftAx,-, where

|f,-| <e owing to the uniformity demanded.

Then

But as /is continuous, the definite integral exists and one can make

.5

f f(x)dx and hence

It therefore appears that So^ may be made to differ from the integral by as little

as desired, and 2i must then approach the integral as a limit. Now if this theo-

rem be applied to the case of the change of variable and if it be assumed that

/[#()] and #'(t) are continuous, the infinitesimals AJ and dxi = 0'((,-) dti will

differ uniformly (compare Theorem 18 of 27 and the above theorem on Ay dy)

by an infinitesimal of higher order, and so will the infinitesimals /(zt-)
Azt

- and

/[# (*)]
/

(*
-

)
* Hence the change of variable suggested by the hasty substitution

is justified.



1. Show that ]' Hospital's Rule applies to evaluating the indeterminate form

x
)
w "len x "becomes infinite and both / and

<f>
either become zero or infinite.

2. Evaluate the following forms by differentiation. Examine the quotients

for left-hand and for right-hand approach ;
sketch the graphs in the neighborhood

of the points.

, , ,, aF If* .. ,. tana; 1 .... .

(a) lim- , (p) lim--
, (7) Inn x log x,

K = X KAJtrX \TT x =

(5) lim ace-*, (e) lim(cot)
8lua;

, (

x =00 a; == a; =

3. Evaluate the following forms by the method of expansions :

(1

\ pX _ fltan X \ nrr T- - cot2 x } , (/3)
lim - -

, (7) lim ^s ,

K2 / jciox tanx sc=il x

.,..,. , , x ,. x sin (sin x) sin2 x . . .. e* e
(8) hm (cschx cscx), (c) lim-*-~*--

, (rt lim
6 '

4. Evaluate by any method:

. . v ,. .,

(a) lim-^-
, (/3) Urnx v

a;
5 v

^=0^ x

(7)lim
*cos8 x-log(l

X8

5. Give definitions for order as applied to infinites, noting that higher order

would mean becoming infinite to a greater degree just as it means becoming zero

to a greater degree for infinitesimals. State and prove the theorem relative to quo-
tients of infinites analogous to that given in the text for infinitesimals. State and

prove an analogous theorem for the product of an infinitesimal and infinite.

6. Note that if the quotient of two infinites has the limit 1, the difference of

the infinites is an infinite of lower order. Apply this to the proof of the resolution

in partial fractions of the quotient f(x)/F (x) of two polynomials in case the roota

of the denominator are all real. For if F(x) = (x a)*Fi(x), the quotient is an
infinite of order k in the neighborhood of x = a

;
but the difference of the quotient

and/(a)/(x a)
kF

l (a) will be of lower integral order and so on.

7. Show that when x = + oo, the function e* is an infinite of higher orde*

than xn no matter how large n. Hence show that if P(x) is any polynomial,
lim P(x) e~ x = when x = + oo.
=00

8. Show that (log x)
m when x is infinite is a weaker infinite than xn no matter

how large m or how small n, supposed positive, may be. What is the graphical

interpretation ?

fl\ -
9. If P is a polynomial, show that lim P(-]e

& 0. Hence show that the
K == \X/

_! _! \L
Maclaurin development of e

*

is/(x) = e *" = /<n>(fo) if /(O) is defined as 0.
n I



as the independent variable. Show that dkx = for k > 1 if x is the independent
variable. Show that the higher derivatives Dy, Dj!y, are not the quotients
dz
y/dx

z
,
dsy/dxz

,
if x and y are expressed in terms of a third variable, but that

the relations are

2
-

8
- - 3 dzx (dx&y - dyd

z
x)

*V ~
dx8

' xV ~
da;

5 '
""

The fact that the quotient d'ty/dx", n > 1, is not the derivative when x and y are

expressed parametrically militates against the usefulness of the higher differentials

and emphasizes the advantage of working with derivatives. The notation d"y/dxn

is, however, used for the derivative. Nevertheless, as indicated in Exs. 16-19,

higher differentials may be used if proper care is exercised.

11. Compare the conception of higher differentials with the work of Ex. 6, p. 48.

12. Show that in a circle the difference between an infinitesimal arc and its

chord is of the third order relative to either arc or chord.

13. Show that if /3 is of the nth order with respect to cr, and 7 is of the first

order with respect to a, then /3 is of the nth order with respect to 7.

14. Show that the order of a product of infinitesimals is equal to the sum of the

orders of the infinitesimals when all are referred to the same primary infinitesimal

a. Infer that in a product each infinitesimal may be replaced by one which differs

from it by an infinitesimal of higher order than it without affecting the order of the

product.

15. Let A and B be two points of a unit circle and let the angle AOB subtended

at the center be the primary infinitesimal. Let the tangents at A and B meet at

T, and OT cut the chord AB in M and the arc AB in 0. Find the trigonometric

expression for the infinitesimal difference TC CM and determine its order'.

16 . Compute d2
(x sin x) = (2 cos x x sin x) dx

2 + (sin x + x cos x) d
zx by taking

the differential of the differential. Thus find the second derivative of x sin a; if x is

the independent variable and the second derivative with respect to i if x = 1 -f- 12 .

17. Compute the first, second, and third differentials, d2x 0.

(a) x2 cosx, (p) Vl x log (1 x), (y) xe2a: sinx.

18. In Ex. 10 take y as the independent variable and hence express Djj/, Dy
in terms of DyX, D 2

x. Cf . Ex. 10, p. 14.

19. Make the changes of variable in Exs. 8, 9, 12, p. 14, by the method of

differentials, that is, by replacing the derivatives by the corresponding differentia*

expressions where x is not assumed as independent variable and by replacing these

differentials by their values in terms of the new variables where the higher differ-

entials of the new independent variable are set equal to 0.

20. Reconsider some of the exercises at the end of Chap. I, say, 17-19, 22, 23,

27, from the point of view of Osgood's Theorem instead of the Theorem of the Mean.

21. Find the areas of the bounding suzfaces of the solids of Ex. 11, p. 18.



(a) a circular wire of radius a and of massM on a particle m at a distance r from

the center of the wire along a perpendicular to its plane ;
Ans. kMmr (a?

'

+ r2)"'.

(|3)
a circular disk, etc., as in (a) ;

Ans. 2 kMma~ 2
(l r/Vr2 + a?).

(7) a semicircular wire on a particle at its center ;
Ann. 2 kMm/irv?>

(6) a finite rod upon a particle not in the line of the rod. The answer should

be expressed in terms of the angle the rod subtends at the particle.

() two parallel equal rods, forming the opposite sides of a rectangle, on each

other.

23. Compare the method of derivatives ( 7), the method of the Theorem of the

Mean
( 17), and the method of infinitesimals above as applied to obtaining the for-

mulas for (a) area in polar coordinates, ((3)
mass of a rod of variable density, (7) pres-

sure on a vertical submerged bulkhead, (5) attraction of a rod on a particle. Obtain

the results by each method and state which method seems preferable for each case.

24. Is the substitution dx = </>'()
dl in the indefinite integral Cf(x) dx to obtain/vf\$ (

A)l #'(*)<& justifiable immediately ?

36. Infinitesimal analysis. To work rapidly in the applications of

calculus to problems in geometry and physics and to follow readily the

books written on those subjects, it is necessary to have some familiarity

with working directly with infinitesimals. It is possible by making use

of the Theorem of the Mean and allied theorems to retain in every ex-

pression its complete exact value
;
but if that expression is an infini-

tesimal which is ultimately to enter into a quotient or a limit of a sum,

any infinitesimal which is of higher order than that which is ultimately

kept will not influence the result and may be discarded at any stage of

the work if the work may thereby be simplified. A few theorems

worked through by the infinitesimal method will serve partly to show

how the method is used and partly to establish results which may be

of use in further work. The theorems which will be chosen are :

1. The increment Ax and the differential dec of a variable differ by
an infinitesimal of higher order than either.

2. If a tangent is drawn to a curve, the perpendicular from the curve

to the tangent is of higher order than the distance from the foot of the

perpendicular to the point of tangency.
3. An infinitesimal arc differs from its chord by an infinitesimal of

higher order relative to the arc.

4. If one angle of a triangle, none of whose angles are infinitesimal,

differs infinitesimally from a right angle and if h is the side opposite
and if

<f>
is another angle of the triangle, then the side opposite <jb

is

h sin
<f> except for an infinitesimal of the second order and the adjacent

side is h cos
</> except for an infinitesimal of the first order.



it and from the idea of tangency. For take the ce-axis coincident with the tangent
or parallel to it. Then the perpendicular is Ay and the distance from its foot to the

point of tangency is Ax. The quotient Ay/Ax approaches as its limit because the

tangent is horizontal
;
and the theorem is proved. The theorem would remain true

if the perpendicular were replaced by a line making a constant angle with the tangent

and the distance from the point of tangency to the foot of the perpendicular were re-

placed by the distance to the foot of the oblwiue line. For if Z PMN = 6,

PM PNcscQ PN csc0
P//

TM TN-PNcot0 TA" PN

and therefore when P approaches T with 6 constant, PM/TM approaches zero and

PM is of higher order than TM.
The third theorem follows without difficulty from the assumption or theorem

that the arc has a length intermediate between that of the chord and that of the

sum of the two tangents at the ends of the chord. Let 6
l
and 6Z

be the angles

between the chord and the tangents. Then

s- AB AT+ TB-AB _ AM(SGG t
-

1) + MB (sec 8
-

1)

B
< AM+MB

~
AM+MB

'

( '

Now as AB approaches 0, both sec G
l

1 and sec 2 1 approach and their

coefficients remain necessarily finite. Hence the difference between the arc and

the chord is an infinitesimal of higher order than the chord. As
the arc and chord are therefore of the same order, the difference

is of higher order than the arc. This result enables one to replace

the arc by its chord and vice versa in discussing infinitesimals of

the first order, and for such purposes to consider an infinitesimal

arc as straight. In discussing infinitesimals of the second order, this substitution

would not be permissible except in view of the further theorem given below in

37, and even then the substitution will hold only as far as the lengths of arcs are

concerned and not in regard to directions.

For the fourth theorem let 6 be the angle by which C departs from 90 and with

the perpendicular BM as radius strike an arc cutting BO. Then by trigonometry

AC - AM+ MC = h cos0 + BMtan0,

BC = h sin# + BM (sec 6 1).

Now tan 6 is an infinitesimal of the first order with respect to 6
;

fo its Maclaurin development begins with ff. And sec 6 1

is an infinitesimal of the second order; for its development

begins with a term in 62 . The theorem is therefore proved.

This theorem is frequently applied to infinitesimal triangles,

that is, triangles in which h is to approach 0.

37- As a further discussion of the third theorem it may be recalled that by defi-

nition the length of the arc of a curve is the limit of the length of an inscribed

polygon, namely,

s= lim
n= w



DIFFERENTIAL CALCULUS

Now

(Ax

''Ax2 + Ay
2 - Vdx2 + dy2

__

Ax2 + Ay2 - dx2 - dy2

Ay2 + Vdx2 + dy2

dx) (Ax -f dx) + (Ay
-

dy) (Ay + dy)

VAx2
-f Ay2 + Vdx2 + dy2

(Ax
-

dx) Ax + dx

VAx2
-f Ay2 VAX2 + Ay2 + VcZx2 + dy2

(Ay
-

dy) Ay + dy

But Ax dx and Ay dy are infinitesimals of higher order than As and Ay.

Hence the right-hand side must approach zero as its limit and hence VAx2 + Ay2

differs from Veto2 + dy
2 by an infinitesimal of higher order and may replace it in

the sum

3 = lim 5! VAX? + A]/,
2 = Km V Vdx2 + dy

2 = f
*'

Vl + y'
2 dx.

n =a^ n=m^ /x

The length of the arc measured from a fixed point to a variable point is a func-

tion of the upper limit and the differential of arc is

ds
nX

=
df

,

'oo

To find the order of the difference between the arc and its chord let the origin

be taken at the initial point and the x-axis tangent to the curve at that point.

The expansion of the arc by Maclaurin's Formula gives

3(x) = s(0) + xs'(0) + ix
2
s"(0) + xV"(i?x),

"/"//

= 0.
,
-

where s(0) = 0, s'(0)=Vl-H/
2

|

=
l, "(0) =

Vl +

Owing to the choice of axes, the expansion of the curve reduces to

y =f(x) = y (0) + zy'(O) + } xV(^) =

and hence the chord of the curve is

c(x) = = xVl+ Jx
2
[y" x2

P),

where P is a complicated expression arising in the expansion of the radical by
Maclaurin's Formula. The difference

s (x)
- c (x)

=
[as + i xV"(0x)] - [x (1 + x'P)] = z (i *"(9x)

- P) .

This is an infinitesimal of at least the third order relative to x. Now as both s (x)

and c (x) are of the first order relative to x, it follows that the difference s (x) c (x)

must also be of the third order relative to either s (x) or c (x). Note that the proof
assumes that y" is finite at the point considered. This result, which has been

found analytically, follows more simply though perhaps less rigorously from the

fact that sec Bl 1 and sec Z 1 in (6) are infinitesimals of the second order with

^ and 9y

38. The theory of contact of wlane curves mav be treated bv means



If these developments agree up to but not including the term in x", the

difference between the ordinates of the curves is

f(x) g (x) = x" f f<"YO) - <7
(B)

(0)1 H . WO) = 9
(n)

(0).v \ / y \ / _. i i_t/ \ / i? \ / J ' * v \ / y \ / /

and is an infinitesimal of the nth order with respect to x. The curves

are then said to have contact of order n 1 at their point of tangency.

In general when two curves are tangent, the derivatives /"(O) and #"(0)

are unequal and the curves have simple contact or contact of the first

order.

The problem may be stated differently. Let PM be a line which

makes a constant angle & with the z-axis. Then, when P approaches T,

if RQ, be regarded as straight, the proportion

lim (PR : PQ")
= lim (sin Z. PQR : six, </PR$) = sin : 1

shows that PR and PQ are of the same order. Clearly also the lines

TM and TN are of the same order. Hence if

PR " rt

fc 0, oo, then lii

Hence if two curves have contact of the (n l)st y<<7 MI N
order, the segment of a line intercepted between

~"jjt

the two curves is of the nth order with respect to

the distance from the point of tangency to its foot. It would also be

of the nth order with respect to the perpendicular TF from the point

of tangency to the line.

In view of these results it is not necessary to assume that the two

curves have a special relation to the axis. Lei two curves y= f(x) and

y=:g(x) intersect when x = a, and assume that the tangents at that point

are not parallel to the y-axis. Then

y = 2/o + (*
-

o>>f(a) + + (X

(~^i"V^(a) +^f^fw(")+
(*>..

y = yo + (v a
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uth order with respect to x a which is the perpendicular from the

point of tangency to the ordinate, then the Taylor developments must

agree up to but not including the terms in xn
. This is the condition for

contact of order n 1.

As the difference between the ordinates is

the difference will change sign or keep its sign when x passes through

a according as n is odd or even, because for values sufficiently near to

x the higher terms may be neglected. Hence the curves will cross each

other if the order of contact is even, but will not cross each other if the

order of contact 'is odd. If the values of the ordinates are equated to find

the points of intersection of the two curves, the result is

and shows that x = a is a root of multiplicity n. Hence it is said that

two curves have in common as many coincident points as the order of

their contact plus one. This fact is usually stated more graphically

by saying that the curves have n consecutive points in common. It may
be remarked that what Taylor's development carried to n terms does, is

to give a polynomial which has contact of order n 1 with the function

that is developed by it.

As a problem on contact consider the determination of the circle which shall

have contact of the second order with a curve at a given point (a, y ).
Let

V = 2/0 + (
-

a)/'(a) + \(x - a)
3
/"(a) +

be the development of the curve and let y' =/'(<*) = tanr be the slope. If the

circle is to have contact with the curve, its center must be at some point of the

normal. Then if B denotes the assumed radius, the equation of the circle may be

written as

(x
-

a)
2 + 2 R sin T (x

-
a) + (y

- y )
2 - 2 B cos r (y

- y )
= 0,

where it remains to determine R so that the development of the circle will coincide

with that of the curve as far as written. Differentiate the equation of the circle.

E sin T + (x a) /dy\ __W a> y<

~ tanT=/'(a),

dy _ [ft cos r - (y
- yn)]

2 + [B sin T + (x
-

o)]
g

and v



TAYLOB'S FORMULA; ALLIED TOPICS

is the development of the circle. The equation of the coefficients of (x a)
2

,

1 secT (1 + [/'(a)]
2
}*,

gwes =

This is the well known formula for the radius of curvature and shows that the cir-

cle of curvature has contact of at least the second order with the curve. The circle

is sometimes called the osculating circle instead of the circle of curvature.

39. Three theorems, one in geometry and two in kinematics, will,

now be proved to illustrate the direct application of the infinitesimal

methods to such problems. The choice will be :

1. The tangent to the ellipse is equally inclined to the focal radii

drawn to the point of contact,

2. The displacement of any rigid body in a plane may be regarded

at any instant as a rotation through an infinitesimal angle about some

point unless the body is moving parallel to itself.

3. The motion of a rigid body in a plane may be regarded as the

rolling of one curve upon another.

For the first problem consider a secant PP' which may be converted into a

tangent TT' by letting the two points approach until they coincide. Draw the

focal radii to P and P' and strike arcs with F and F' as

centers.' As F'P + PF F'P' + P'F = 2 a, it follows

that NP = MP'. Now consider the two triangles PP'M
and P'PN nearly right-angled at M and N. The sideg

PP', PM, PN, P'M, P'N are all infinitesimals of the

same order and of the same order as the angles at F and .

F'. By proposition 4 of 36

MP' = PP' cos Z.PP'M + ev NP = PP' cosZ P'PN + ea ,

where e
t
and e8 are infinitesimals relative to MP' and NP or PP'. Therefore

lim [cos Z PP'M- cos Z. P'PN] = cos Z TPF- cos Z T'PF' = liin = 0,

and the two angles TPF' and T'PF are proved to be equal as desired.

To prove the second theorem note first that if a body is rigid, its position is 0011*

pletely determined when the position AB of any rectilinear segment of the bodj
is known. Let the points A and B of the body be de-

scribing curves AA' and BB' so that, in an infinitesimal

interval of time, the line AB takes the neighboring posi-

tion A'B'. Erect the perpendicular bisectors of the lines

AA' and BB' and let them intersect at 0. Then the tri-

angles A OB and A'OB' have the three sides of the one

equal to the three sides of the other and are equal, and

the second mav be obtained from the first bv a mere rotation about through the



the normals to the arcs AA' and EW at A and #, and the point will approach

the intersection of those normals.

The theorem rnay then "be stated that : At any instant of time the motion of a

rigid body in a plane may be considered as a rotation through an infinitesimal angle

about the intersection of the normals to the paths of any two of its points at that in-

stant ;
the amount of the rotation will be the distance da that any point moves divided

by the distance of that point from the instantaneous center of rotation ; the angular

velocity about the instantaneous center will be this amount of rotation divided by the

interval of time d, that is, it will be v/r, where v is the velocity of any point of the body

and r is Us distance from the instantaneous center of rotation. It is therefore seen

that not only is the desired theorem proved, but numerous other details are found.

As has been stated, the point about which the body is rotating at a given instant

is called the instantaneous center for that instant.

As time goes on, the position of the instantaneous center will generally change.

If at each instant of time the position of the center is marked on the moving plane

or hody, there results a locus which is called the moving centrode or body centrode;

if at each instant the position of the center is also marked on a fixed plane over

which the moving plane may be considered to glide, there results another locus which

is called t\\&fixed centrode or the space centrode. From these definitions it follows

that at each instant of time the body centrode and the space centrode intersect at

the instantaneous center for that instant. Consider a series of

positions of the instantaneous center as P-aP-iPP^s marked
in space and Q-zQ-iQQiQ2

lnarked in the body. At a given
instant two of the points, say P and Q, coincide

;
an instant - *

later the body will have moved so as to bring Qt
into coin-

cidence with P
t ;

at an earlier instant Q_i was coincident with

P_I. Now as the motion at the instant when P and Q are together is one of

rotation through an infinitesimal angle about that point, the angle between PP
l

and QQt
is infinitesimal and the lengths PPt

and QQX are equal ;
for it is by the

rotation about P and' Q that Ql is to be brought into coincidence with Pv Hence
it follows 1 that the two centrodes are tangent and 2 that the distances PP^ = QQl

which the point of contact moves along the two curves during an infinitesimal inter-

val of time are the same, and this means that the two curves roll on one another

without slipping because the very idea of slipping implies that the point of con-

tact of the two curves should move by different amounts along the two curves,
the difference in the amounts being the amount of the slip. The third theorem
is therefore proved.

EXERCISES

1. If a finite parallelogram is nearly rectangled, what is the order of infinites-

imals neglected by talcing the area as the product of the two sides ? What if the

figure were an isosceles trapezoid ? What if it were any rectilinear quadrilateral
all of whose angles differ from right angles by infinitesimals of the same order ?

2. On a sphere of radius r the area of the zone between the parallels of latitude

X and X + dX is taken as 2 trr cos X rdX, the perimeter of the base times the slant

height. Of what order relative to dX is the infinitesimal neglected ? What if the

perimeter of the middle latitude were taken so that 2 Tir2 cos (X + dX) dx were



volume of a hollow sphere of interior radius r and thickness dr ? What if the mean
radius were taken instead of the interior radius ? Would any particular radius be

best?

4. Discuss the length of a space curve y = /(x), z = g(x) analytically as the

length of the plane curve was discussed in the text.

5. Discuss proposition 2, p. 68, by Maclaurin's Formula and in particular show

that if the second derivative is continuous at the point of tangency, the infinites-

imal in question is of the second order at least. How about the case of the tractrix

y = ^Og
a ~ v

f-
x2
+ v^rr^r

2 a + v a2 - x2

and its tangent at the vertex x = a ? How about s (x) c (x) of 37 ?

6. Show that if two curves have contact of order n 1, their derivatives will

have contact of order n 2. What is the order of contact of the fcth derivatives

fc<n 1?

7. State the conditions for maxima, minima, and points of inflection in the

neighborhood of a point where /(")(a) is the first derivative that does not vanish.

8. Determine the order of contact of these curves at their intersections :

V2 (x
2 + y

2 + 2) = 3 (x + y) . r2 = a2 cos 2 x2 + yz = y
'a

' 6x2 6 xy + 5y2 = 8,
'^'

y
2 = |o(o x),

'7' x8 + y& = xy.

9. Show that at points v/here the radius of curvature is a maximum or mini-

mum the contact of the osculating circle with the curve must be of at least the

third order and must always be of odd order.

10. Let PN be a normal to a curve and P'N a neighboring normal. If is the

center of the osculating circle at P, show with the aid of Ex. 6 that ordinarily the

perpendicular from to P'N is of the second order relative to the arc PP" and that

the distance ON is of the first order. Hence interpret the statement : Consecutive

normals to a curve meet at the center of the osculating circle.

11. Does the osculating circle cross the curve at the point of osculation ? Will

the osculating circles at neighboring points of the curve intersect in real points ?

12. In the hyperbola the focal radii drawn to any point make equal angles with

the tangent. Prove this and state and prove the corresponding theorem for the

parabola.

13. Given an infinitesimal arc AB cut at by the perpendicular bisector of its

chord AB. What is the order of the difference AC BG ?

14. Of what order is the area of the segment included between an infinitesimal

arc and its chord compared with the square on the chord ?

15. Two sides AB, AC of a triangle are finite and differ infinitesimally ;
the

angle 6 at A is an infinitesimal of the same order and the side BC is either recti-

linear or curvilinear. What is the order of the neglected infinitesimal if the area

is assumed as \ AB
Z
6 ? What if the assumption is JAB AC &?



a straight line. Show that the tangent and normal to the cycloid pass through tt

highest and lowest points of the rolling circle at each of its instantaneous position

17. Show that the increment of arc As in the cycloid differs from 2 a sin \Qo

by an infinitesimal of higher order and that the increment of area (between tw

consecutive normals) differs from 8 a2 sin3 OdB by an infinitesimal of higher orde

Hence show that the total length and area are 8 a and S-nra2 . Here a is the radii

of the generating circle and 6 is the angle subtended at the center by the lowe

point anil the iixed point which traces the cycloid,

18. Show that the radius of curvature of the cycloid is bisected at the lowe

point of the generating circle and hence its 4 a sin \ 0.

19. A triangle ABC is circumscribed about any oval curve. Show that if tl

side JBC is bisected at the point of contact, the area of the triangle will be changi

by an infinitesimal of the second order when BC is replaced by a neighboring ta

gent Ji'C", but that if BO be not bisected, the change will be of the first orde

Hence infer that the minimum -triangle circumscribed about an oval will have i

thiee sides bisected at the points of contact.

20. If a string is wrapped about a circle of radius a and then unwound so th

its end describes a curve, show that the length of the curve and the area betwe

the curve, the circle, and the string are

s = C'a0d0. A - C ^ a
2 2

d!0,
Jo JQ

where 6 is the angle that the unwinding string has turned through.

21. Show that the motion in space of a rigid body one point of which is fix

may be regarded as an instantaneous rotation about some axis through the giv

point. To do this examine the displacements of a unit sphere surrounding the fix

point as center.

22. Suppose a fluid of variable density D(x) is flowing at a given instant thron

a tube surrounding the x-axis. Let the velocity of the fluid be a function v(x) of

Show that during the infinitesimal time St the diminution of the amount of 1

fluid which lies between x = a and x = a + h is

h)D(a + h)St u(a) J)(a)5t],

where S is the cross section of the tube. Hence show that D (x) v (x)
= const, is 1

condition that the flow of the fluid shall not change the density at any point.

23. Consider the curve y =/(x) and three equally spaced ordinates at x = a -

z = a, x = a + 8. Inscribe a trapezoid by joining the ends of the ordinates

x = a S and circumscribe a trapezoid by drawing the tangent at the end of

ordinate at x a and producing to meet the other ordinatea. Show that

= 2 j

,
= 2

*[/(a)
+ | /"(a) +
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are the areas of the circumscribed trapezoid, the curve, the inscribed trapezoid.

Hence infer that to compute the area under the curve from the inscribed or cir-

cumscribed trapezoids introduces a relative error of the order 5Z ,
but that to com-

pute from the relation S = $ (2 S + SJ introduces an error of only the order of 5*.

24. Let the interval from a to & be divided into an even number 2n of equal

parts $ and let the 2 n + 1 ordinates 2/0, yt , , J/2 at the extremities of the inter-

vals be drawn to the curve y =f(x). Inscribe trapezoids by joining the ends of

every other ordinate beginning with j/ , 2/2 ,
and going to y^ n - Circumscribe trape-

zoids by drawing tangents at the ends of every other ordinate j/t , ya , , 3/2n-i.

Compute the area under the curve as

S =

+ 2 (y + y2 + + 2/2n]
-

2/o
-

ton] + R

by using the work of Ex. 23 and infer that the error R is less than (b a) 84/(iv)(f)/45 -

This method of computation is known as Simpson's Rule, It usually gives accu-

racy sufficient for work to four or even five figures when S = 0.1 and 5 a = 1
;
for

/(
iv
>(x) usually is small.

25. Compute these integrals by Simpson's Rule. Take 2n = 10 equal intervals.

Carry numerical work to six figures except where tables must be used to find /() :

(a) f
2

= log 2 = 0.69315, (/S) f*-^ = tan-U = ]ir
= 0.78535,

J\ x Jo l + %> *

(y) C*
1T

smxdx = 1.00000, (S) f Iog10 a;dte = 2 loglo z
- M = 0.16776,

Jo "I

/-
l logfa to = 0.27880, (f) r 1IOg <

1 + a;)
(te=: 0.82247.

v '

Jo 1 + x2 Jo x

The answers here given are the true values of the integrals to five places.

26. Show that the quadrant of the ellipse x = a sin <, y = b cos < is

s = a C Vl e2 sin2 d< = ?ra f Vj (2 e2) -f ^ e2 cos irw du,.

Jo Jo

Compute to four figures by Simpson's Kule with six divisions the quadrants of

the ellipses :

(a) e = $V, s = 1.211 a, (/3)
e = $ VI, 8 = 1.361 a.

27. Expand s in Ex. 26 into a sefies and discuss the remainder.

/I 3- . . (2n-l)\
2

8.4...8

SeeEx.l8,p.60,andPeiTce's "Tables,"?. 62



pended between two points at the same level and at a distance I nearly equal to

L, find the first approximation connecting L, Z,
and d, where d is the dip of the

wire at its lowest point below the level of support.

30. At its middle point the parabolic cable of a suspension bridge 1000 ft. long

between the supports sags 60 ft. below the level of the ends. Find the length of

the cable correct to inches.

40. Some differential geometry. Suppose that between the incre-

ments of a set of variables all of which depend on a single variable t

there exists an equation which is true except for infinitesimals of higher

order than A* = dt, then the equation will be exactly true for the differ-

entials of the variables. Thus if

/Ace + ff&y+ hkz + l&t + . - -f &1 +- e
a + =

is an equation of the sort mentioned and if the coefficients are any func-

tions of the variables and if ev e
2,--- are infinitesimals of higher order

than dt, the limit of

or fdx 4- gdy + hdz -{-ldt=Q;

and the statement is proved. This result is very useful in writing

down various differential formulas of geometry where the approximate
relation between the increments is obvious and where the true relation

between the differentials can therefore be found.

For instance in the case of the differential of arc in rectangular coor-

dinates, if the increment of arc is known to differ from its chord by an

infinitesimal of higher order, the Pythagorean theorem shows that the

equation AS
2 = Ax2 + A?/

2
or As2 = Ax2 + A/ + A*2

(7)

is true except for infinitesimals of higher order; and hence

ds^^dx^ + df or ds*=:dx*-\-dif+ dz2. (7')

In tlie case of plane polar coordinates, the triangle PP'N (see Fig.)

has two curvilinear sides PP' and PN and is right-
P'

Ay
M

angled at N. The Pythagorean theorem may be

applied to a curvilinear triangle, or the triangle may
be replaced by the rectilinear triangle PP'N with

the angle at N no longer a right angle but nearly so. In either way of

looking at the figure, it is easily seen that the equation As2 = Ar* + ^A^
2
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which the figure suggests differs from a true equation by an infinitesi-

mal of higher 'order; and hence the inference that in polar coordinates

The two most used systems of coordinates

other than rectangular in space are the polar

or ft2>herical and the cylindrical. In the first

the distance r = OP from the pole or center,

the longitude or meridional angle <, and the

colatitude or polar angle are chosen as coor-

dinates
;
in the second, ordinary polar coordinates r OM and < in

the ay-plane are combined with the ordinary rectangular z for distance

from that plane. The formulas of transformation are

= r COS 0, r = V;

= r sin sin 6 = cos v (8)

x = r sin cos <f>,
il>

for polar coordinates, and for cylindrical coordinates they are

3 = 3, y = r sin
<f>,

x =

Formulas such as that

for the differential of

arc may be obtained for

these new coordinates by
mere transformation of

(7') according to the rules

for change of variable.

In both these cases,

however, the value of

ds may be found readily

by direct inspection of

the figure. The small

parallelepiped (figure
for polar case) of which

As is the diagonal has

some of its edges and

faces curved instead of

r=V;e2 + y
2

, <A=tan-
1^-

(9)



or ds
2

diy -f- r
2
sin 2

Odtf? -f- t^d(P and ds2 = c^r
2

-f- r*d<j? -(- dz*. (10')

To make the proof complete, it would be necessary to show that noth-

ing but infinitesimals of higher order have been neglected and it anight

actually be easier to transform Vefce
2
-f- dif + d rather than give a

rigorous demonstration of this fact. Indeed the infinitesimal method is

seldom used rigorously ;
its great use is to make the facts so clear to the

rapid worker that he is willing to take the evidence and omit the proof.

In the plane for rectangular cobrdinates with rulings parallel to the

?/-axis and for polar coordinates with rulings issuing from the pole the

increments of area differ from

dA = ydx and dA = % r*d<j> (11)

respectively by infinitesimals of higher order, and

/"*! /*l
A = I ydx and A = I r2^ (11')

Jrf, ^</>0

are therefore the formulas for the area under a curve and between two

ordinates, and for the area between the curve and two radii. If the plane

is ruled by lines parallel to both axes or by lines issuing from the pole

and by circles concentric with the pole, as is customary for double inte-

gration ( 131, 134), the increments of area differ respectively by
infinitesimals of higher order from

dA = dxdy and dA rdrd<$>, (12)

and the formulas for the area in the two cases are

A == KmV &A = ifdA =
ifaxdy, (12')

,. -^ /Y\ CCA = lim 2> AX = I I dA = I I rdrd<f>,^ JJ JJ

where the double integrals are extended over the area desired.

The elements of volume which are required for triple integration

( 133, 134) over a volume in space may readily be written down, for

the three cases of rectangular, polar, and cylindrical coordinates. In the

first case space is supposed to be divided up by planes x = a, y b,

z = c perpendicular to the axes and spaced at infinitesimal intervals
;
in

the second case the division is made by the spheres r= a concentric

with the pole, the planes < = b through the polar axis, and the cones

= c of revolution about the polar axis
;
in the third case by the cylin-

ders r = a, the planes <j>
= b, and the planes 2 = c. The infinitesimal



av = axayaz, av r~ sin vara<f>av, civ = rara<f>az (16)

respectively by infinitesimals of higher order, and

if ir* sin $drd<j>d0, llfrdrdtftds (13')

are the formulas for the volumes.

41. The direction of a line in space is represented by the three angles

which the line makes with the positive directions of the axes or by the

cosines of those angles, the direction cosines of the line. From the defi-

nition and figure it appears that

I = cos a = dx

ds'

dy
-f

1
,

ds

ds
, = cos y =' ds (14)

are the direction cosines of the tangent to the arc at the point; of the

tangent and hot of the chord for the reason

that the increments are replaced by the differ-

entials. Hence it is seen that for the direc-

tion cosines of the tangent the proportion

holds. The equations of a space curve are

in terms of a variable parameter t.*. At the point (# , y ,
2

) where

t = t the equations of the tangent lines would then be

or

As the cosine of the angle 6 between the two directions given by the

direction cosines I, m, n and I', m\ n' is

cos 6 = IV + mm' -j- nn', so IV + mm' -f- nn' = (16)

is the condition for the perpendicularity of the lines. Now if (x, ij) z)

lies in the plane normal to the curve at x^ y ,
#

,
the lines determined

by the ratios x X
Q

: y y : z and (dx\ : (dy\ : (dz\ will be per-

pendicular. Hence the equation of the normal plane is

(x
-

av)(cto) + (y
-

y,}(dy\ + (*
-

)(&) =

or (17)

* For the sake of generality the parametric form iii t is assumed ;
in a particular case a

simplification might be made by taking one of the variables as t and one of the functions

/', g', h' would then be 1. Thus in Ex. 8 (), y should be taken as I.



There is one particular tangent plane, called the osculating plane,which

is of especial importance. Let

T, T = I

with similar expansions for y and
,
be the Taylor developments of

x, y, z about the point of tangency. When these are substituted in the

equation of the plane, the result is

.

2 AO

This expression is of course proportional to the distance from any point

a:, y, ?, of the curve to the tangent plane and is seen to be in general of

the second order with respect to T or ds. It is, however, possible to

choose for X that value which makes the first bracket vanish. The tan-

gent plane thus selected has the property that the distance of the curve

from it in the neighborhood of the point of tangency is of the third order

and is called the oscitlatinyplane. The substitution of the value of X gives

'

?/ z zr

/"(O A'o) A
"(*o)

= or

?/ z z.

Wo
Wo Wo

=
(18)

or

dy*x\(-*d = *

as the equation of the osculating plane. In case/"(z! )
=
g"(t^

= A"( )
= 0,

this equation of the osculating plane vanishes identically and it is neces-

sary to push the development further (Ex. 11).

42. Tor the case of plane curves the curvature is defined as the rate

at which the tangent turns compared with the description of arc, that

is, as d$jds if d<f> denotes the differential of the angle through which

the tangent turns when the point of tangency advances along the curve

by ds. The radius of curvature R is the reciprocal of the curvature,

that is, it is
ds/d<f>. Then

^tan-^,dx ds

dx

dx ds

d$ dx __ y
(19)



Hence dP + dm* + dnz = 2 - 2 cos d< =
(2 sin

! AW= rarin^y dp + drf + a.-

-ft \af6 / L ^s J ^s

where accents denote differentiation with respect to s.

The torsion of a space curve is defined as the rate of turning of the

osculating plane compared with the increase of arc (that is, d^/ds, where

fty is the differential angle the normal to the osculating plane turns

through), and may clearly be calculated by the same formula as the

curvature provided the direction cosines L, M, N of the normal to the

plane take the places of the direction cosines I, m, n of the tangent line.

Hence the torsion is

(20)
R
2

\ds
* ^ J

and the radius of torsion R is denned as the reciprocal of the torsion,

where from the equation of the osculating plane

L _ M _ N
dycPz dzd?y dzd*x dxd?z dxd?y dyd?x

=
,

*
(20')Vsum of squares

The actual computation of these quantities is somewhat tedious.

The vectorial discussion of curvature and torsion ( 77) gives a better insight

into the principal directions connected with a space curve. These are the direction

of the tangent, that of the normal in the osculating plane and directed towards

the concave side of the curve and called the principal normal, and that of the

normal to the osculating plane drawn upon that side which makes the three direc-

tions form a right-handed system and called the binormal. In the notations there

given, combined with those above,

r = xi + yi + zk, t = Zi + mj + nk, c = Xi + /AJ + /k, n = Li + Mj + JVk,

where X, /x, v are taken as the direction cosines of the principal normal. Now dt

is parallel to c and dn is parallel to c. Hence the results

dl _ dm _ dn __ ds dL _ dM_ dN __ ds ._.."~~~~"~~ an ~~~~~~~~ ""



mas = as -\ as.
li R

rr dx l
,

L dp m M dv n N
Hence -=-- + -. -=-- + -, ^

=
~* +

R-
(22)

Formulas (22) are known as Frenefs Formulas ; they are usually written witli R

in the place of R because a left-handed system of axes is used and the torsion, being

an odd function, changes its sign when all the axes are reversed. If accents denote

differentiation by s,

above formulas,
- =

x' y z

x" y" z"

x'" y'" z'"
usual formulas, =

x' y' z'

x" y" z"

x'" y"' z'"

right-handed
R *"2+'"a+ *"a

left-handed R
(23)

EXERCISES

1. Show that in polar coordinates in the plane, the tangent of the inclination

of the curve to the radius vector is rd<p/dr.

2. Verify (10), (10') by direct transformation of coordinates.

3. Fill in the steps omitted in the text in regard to the proof of (10), (10') by
the method of infinitesimal analysis.

4. A rhumb line on a sphere is a line which cuts all the meridians at a constant

angle, say a. Show that for a rhumb line sindd<f> = tanacW and ds = rsecadff.

Hence find the equation of the line, show that it coils indefinitely around the

poles of the sphere, and that its total length is TTT sec a.

5. Show that the surfaces represented by F(<j>, 0) and F(r, 6) = in polar

coordinates in space are respectively cones and surfaces of revolution about the

polar axis. What sort of surface would the equation P(r, <f>)
= represent ?

6. Show accurately that the expression given for the differential of area in

polar coordinates in the plane and for the differentials of volume in polar and

cylindrical coordinates in space differ from the corresponding increments by in-

finitesimals of higher order.

7. Show that -
, r , r sin 6 -^ are the direction cosines of the tangent to a

ds ds ds

space curve relative to the radius, meridian, and parallel of latitude.

8. Find the tangent line and normal plane of these curves.

(a) xyz = 1, ya = x at (1, 1, 1), (0) * = cos t, y- sin*, z - kt,

(7) 2ay = x2
, Qa?z = it

8
, (5) x = t cos*, y = tsint, z = kt,

(e) y = x\ zz s= 1 - y, (f) x2 + y2 + 22 = a2
,
x2 + y + 2ax = 0.

9. Find the equation of the osculating plane in the examples of Ex. 8. Note
that if x is the independent variable, the equation of the plane is



z as its osculating plane at the origin. Show that

x = tf'(Q) + $
2
/"(0) + , y = i tV'(O) + . . .

,
z =

will be the form of its Maclaurin development if t gives x = y = z = 0.

11. If the 2d, 3d, , (n l)st derivatives of /, g, h vanish for t = tQ but not

all the nth derivatives vanish, show that there is a plane from which the curve

departs by an infinitesimal of the (n -f l)st order and with which it therefore

has contact of order n. Such a plane is called a hyperosculating plane. Find its

equation.

12. At what points if any do the curves (/3), (7), (e), (f), Ex. 8 have hyperoscu-

lating planes and what is the degree of contact in each case ?

13. Show that the expression for the radius of curvature is

= s*.
i y i

^^
R

where in the first case accents denote differentiation by s, in the second by t.

14. Show that the radius of curvature of a space curve is the radius of curva-

ture of its projection on the osculating plane at the point in question.

15. From Frenet's Formulas show that the successive derivatives of x are

/ _ //_;/_ X "' _ X' XK/ _ l
\
R' L

x-l, x-t--, x _~_~__~_x_ + _,

where accents denote differentiation by s. Show that the results for y and z are

the same except that m, p, M or n, v, N take the places of
I, X, L. Hence infer

that for the nth derivatives the results are

z(>0 =
ZP., + XP

2 + LP8 , 000
- mp

1 + nP2 4. MPS ,
(> = nP

a -f vP2 + NP9 ,

where Pv P2 ,
Ps are rational functions of B and R and their derivatives by s.

16. Apply the foregoing to the expansion of Ex. 10 to show that

1 s2 .R' ss

where R and R are the values at the origin where s = 0, I = n = N ~ 1, and the

other six direction cosines m, n, X, y, i, M vanish. Find s and write the expan-

sion of the curve of Ex. 8 (7) in this form.

17. Note that the distance of a point on the curve as expanded in Ex. 16 from

the sphere through the origin and with center at the point (0, R, B'R) is

+ (V
- R)

2 + (z
-

.R'R)
2 - R2 + fl'2R 2

(x* + y* - 2 Ry + z2 - 2 R'Rz)

(y
- E)

2 + (z
-

.R'R)"
a

and consequently is of the fourth order. The curve therefore has contact of the

third order with this sphere. Can the equation of this sphere be derived by a

limiting process like that of Ex, 18 as applied to the osculating plane
'



consecutive points of the curve ;
in fact it is easily shown that

x
lim

&x, Sv< 8z
Ax, by, Az
approach

y

I/O

Sx 8y Sz

x - x

(dx)

-y z-z
(

(<te)
= 0.

19. Express the radius of torsion in terms of the derivatives of x, y, z by t

(Ex. 10, p. 67).

20. Find the direction, curvature, osculating plane, torsion, and osculating

sphere (Ex. 17) of the conical helix x = t cos
t, y = < sin i, 2 = &t at t 2 TT.

21. Upon a plane diagram which shows As, Ax, Ay, exhibit the lines which

represent ds, (to, cfy under the different hypotheses that a, y, or a is the independ-

ent variable.



CHAPTER IV

PARTIAL DIFFERENTIATION; EXPLICIT FUNCTIONS

43. Functions of two or more variables. The definitions and theo-

rems about functions of more than one independent variable are to a

large extent similar to those given in Chap. II for functions of a single

variable, and the changes and difficulties which occur are for the most

part amply illustrated by the case of two variables. The work in the

text will therefore be confined largely to this case and the generaliza-

tions to functions involving more than two variables may be left as

exercises.

If the value of a variable z is uniquely determined when the values

(x, y) of two variables are known, z is said to be a function K = f(x, y)

of the two variables. The set of values [(#, y)~\
or of points P(x, y) of

the ccy-plane for which z is defined may be any set, but usually consists

of all the points in a certain area or region of the plane bounded by
a curve which may or may not belong to the region, just as the end

points of an interval may or may not belong to it. Thus the function

1/Vl a;
2

y
2
is defined for all points within the circle x* -f- y

2 =
1,

but not for points on the perimeter of the circle. For most purposes it

is sufficient to think of the boundary of the region of definition as a

polygon whose sides are straight lines or such curves as the geometric

intuition naturally suggests.

The first way of representing the function % =f(x, y) geometrically

is by the surface z =f(x, y), just as y =/(#) was represented by a curve.

This method is not available for u =f(x, y, z),
a function of three vari-

ables, or for functions of a greater number of variables
;
for space has

only three dimensions. A second method of representing the function

z f(x, y) is by its contour lines in the ccy-plane, that is, the curves

f(x, y)
= const, are plotted and to each curve is attached the value of

the constant. This is the method employed on maps in marking heights

above sea level or depths of the ocean below sea level. It is evident that

these contour lines are nothing but the projections on the ay-plane

of the curves in which the surface zf(x) y) is cut by the planes

z = const. This method is applicable to functions u = f(x, y, z) of

three variables. The contour surfaces u = const, which are thus obtained
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Y

are frequently called equipotential surfaces. If the function is siuglo

valued, the contour lines or surfaces cannot intersect one another.

The function z f(x, y) is continuous for (a, ft)
when either of the

following equivalent conditions is satisfied:

1. lim/(jc, y)
= /(, 1) or \\n\f(x, y) =/(lima-, lim y),

TIO matter how the variable point P(x, y) approaches (a, .'/).

2. Iffor any assigned e, a number 8 may be found so that

\f(x > y} ~f(a > &) |

< when \x a\ < 8, \y b\ < 8.

Geometrically this means that if a square with (a, ft)
as center and

with sides of length 2 8 parallel to the axes be drawn,

the portion of the surface z = f(x, y) above the

square will lie between the two planes z= f(a, b) e.

Or if contour lines are used, 110 line f(x, ?/)
= const.

where the constant differs from /(a, b) by so much

as e will cut into the square. It is clear that in place

of a square surrounding (a,, b")
a circle of radius 8 or any other figure

which lay within the square might be used.

44. Continuity examined. From the definition of continuity just given and

from the corresponding definition in 24, it follows that if /(x, y) is a continuous

function of * and y for (a, b), then/(x, i) is a continuous function of x for x = a

and /(a, y) is a continuous function of y for y = b. That is, if / is continuous in

x and y jointly, it is continuous in x and y severally. It might be thought that

conversely if /(&, 6) is continuous for x a and /(a, y) for y = &, /(x, y) would

be continuous in (x, #) for (a, &). That is, if / is continuous in x and y severally,

it would be continuous in x and y

jointly. A simple example will show
that this is not necessarily true. Con-
sider the case

. l/"(a,b)

35 X

/(O, 0)
=

and examine z for continuity at

(0, 0). The functions /(x, 0)
^

,

and/(0, y)~y are surely continuous

in their respective variables. But the surface z =/(x, y} is a conical surface (except
for the points of the 2-axis other than the origin) and it is clear that P(x, y) may
approach the origin in such a manner that z shall approach any desired value.

Moreover, a glance at the contour lines shows that they all enter any circle or

square, no matter how small, concentric with the oriarin. If P ant>roaches the orisrin
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Double limits. Tliere often arise for considei-ation expressions like

lira r lira /(x, y)"],
lim f lira /(x, j/H,

y==b Lx= a J a: = o Lj/ = 6 J
(1)

where the limits exist whether x first approaches its limit, and then y its limit, or

vice versa, and where the question arises as to whether the two limits thus obtained

are equal, that is, whether the order of taking the limits in the double limit may
be interchanged. It i clear that if the function /(x, y) is continuous at (a, &), the

limits approached by the two expressions will be equal; for the limit of /(x, y) is

/(, V) no matter how (x, y) approaches (a, b). If / is discontinuous at (a, !>),
it

may still happen that the order of the limits in the double limit may be inter-

changed, as was true in the case above where the value in either order was zero
;

but this cannot be affirmed in general, and special considerations must be applied
to each case when / is discontinuous.

Varieties of regions.* For both pure mathematics and physics the classification

of regions according to their connectivity is important. Consider a finite region R
bounded by a curve which nowhere cuts itself. (For the present

purposes it is not necessary to enter upon the subtleties of the

meaning of "curve" (see 127-128); ordinary intuition will

suffice.) It is clear that if any closed curve drawn in this region
had an unlimited tendency to contract, it could draw together
to a point and disappear. On the other hand, if R' be a region
like R except that a portion has been removed so that R' is

bounded by two curves one within the other, it is clear that

some closed curves, namely those which did not encircle the

portion removed, could shrink away to a point, whereas other

closed curves, namely those which encircled that portion, could

at most shrink down into coincidence with the boundary of that

portion. Again, if two portions are removed so as to give rise R"(
to the region JR", there are circuits around each of the portions

which at most can only shrink down to the boundaries of those

portions and circuits around both portions which can shrink down to the bounda-

ries and a line joining them. A region like 22, where any closed curve or circuit

may be shrunk away to nothing is called a simply connected region ; whereas regions
in which there are circuits which cannot be shrunk away to nothing are called

multiply connected regions.

A multiply connected region may be made simply connected by a simple device

and convention. For suppose that in JR' a line were drawn connecting the two

bounding curves and it were agreed that no curve or circuit drawn within R' should

cross this line. Then the entire region would be surrounded by a

single boundary, part of which would be counted twice. The figure

indicates the situation. In like manner if two lines were drawn in

R" connecting both interior boundaries to the exterior or connecting
the two interior boundaries together and either of them to the outer

boundary, the region would be rendered simply connected. The entire region

would have a single boundary of which parts would be counted twice, and any
circuit which did not cross the lines could be shrunk away to nothing. The lines
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thus drawn in the region to make it simply connected are called cuts. There is

need that the region be finite
;

it might extend off indefinitely in some directic

like the region between twc^parallel lines or between the sides of an angle, or 1:

the entire half of the ay-plane for which y is positive. In such cases the cuts ir

be drawn either to the boundary or off indefinitely in such a way as not to m

the boundary.
45. Multiple valued functions. If more than one value of z corresponds to

pair of values (, y), the function z is multiple valued, and there are some nc

worthy differences between multiple valued functions of one variable and of seve

variables. It was stated ( 23) that multiple

valued functions were divided into branches

each of which was single valued. There are

two cases to consider when there is one vari-

able, and they are illustrated in the figure.

Either there is no value of x in the interval

for which the different values of the function

are equal and there is consequently a number

D which gives the least value of the difference

between any two branches, or there is a value of * for which different branc

have the same value. Now in the first case, if x changes its value continuously i

if /(a;) be constrained also to change continuously, there is no possibility of pass

from one branch of the function to another
;
but in the second case such chang

possible for, when x passes through the value for which the branches have the si

value, the function while constrained to change its value continuously may turr

onto the other branch, although it need not do so.

In the case of a function z =/(x, y) of two variables, it is not true that if

values of the function nowhere become equal in or on the boundary of the re{

over which, the function is defined, then it is impossible to pass continuously f :

one branch to another, and if P (x, y) describes any
continuous closed curve or circuit in the region, the

value of /(x, y) changing continuously must return to

its original value when P has completed the descrip-

tion of the circuit. For suppose the function z be a

helicoidal surface z = a tan- 1
(?//), or rather the por-

tion of that surface between two cylindrical surfaces

concentric with the axis of the helicoid, as is the case

of the surface of the screw of a jack, and the circuit

be taken around the inner cylinder. The multiple num-

bering of the contour lines indicates the fact that the

function is multiple valued. Clearly, each time that

the circuit is described, the value of z is increased by the amount between the

cessive branches or leaves of the surface (or decreased by that amount if the cii

is described in the opposite direction). The region here dealt with is not sir

connected and the circuit cannot be shrunk to nothing which is the key to

situation.

THEOREM. If the difference between the different values of a continuous i

tinlft Vfl.lnp.rl fnnp.t.icvn IR nfiVftr IP.SS than a. finif.fi nnm'hpr D frr cm-vr sp.t. (?. i
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point.

Now owing to the continuity of / throughout the region, it is possible to find a

number 5 so that \f(x, y) f(x', y') \

< e when
|

x x'
\

< 8 and
|
y ~- y'

\
< S no matter

what points of the region (x, y) and (x', y') may be. Hence the values of / at any
two points of a small region which lies within any circle of radius

|
5 cannot differ

by so much as the amount D. If, then, the circuit is so small

that it may be inclosed within such a circle, there is no possi-

bility of passing from one value of / to another when the circuit

is described and / must return to its initial value. Next let

there be given any circuit such that the value of/ starting from

a given value /(x, y) returns to that value when the circuit has

been completely described. Suppose that a modification were

introduced in the circuit by enlarging or diminishing the inclosed area by a small

area lying wholly within a circle of radius \ 8. Consider the circuit ABCDEA and

the modified circuit ABC'DEA. As these circuits coincide except for the arcs BCD
and. BC'D, it is only necessary to show that /takes on the same value at D whether

D is reached from B by the way of C or by the way of C''. But this is necessarily

so for the reason that both arcs are within a circle of radius \ 5.

Then the value of / must still return to its initial value /(x, y)

when the modified circuit is described. Now to complete the

proof of the theorem, it suffices to note that any circuit which

can be shrunk to nothing can be made up by piecing together a

number of small circuits as shown in the figure. Then as the

change in/ around any one of the small circuits is zero, the change must be zero

around 2, 3, 4, adjacent circuits, and thus finally around the complete large

circuit.

Reducibiltty of circuits. If a circuit can be shrunk away to nothing, it is said to

be reducible ; if it cannot, it is said to be irreducible. In a simply connected region

all circuits are reducible
;
in a multiply connected region there are an infinity of

irreducible circuits. Two circuits are said to be equivalent or reducible to each

other when either can be expanded or shrunk into the other. The change in the

value of / on passing around two equivalent circuits from A to A
is the same, provided the circuits are described in the same direc-

tion. For consider the figure and the equivalent circuits ACA
and AC'A described as indicated by the large arrows. It is clear

that either may be modified little by little, as indicated in the

proof above, until it has been changed into the other. Hence the

change in the value of / around the two circuits is the same. Or, as another proof,

it may be observed that the combined circuit ACAC'A, where the second is

described as indicated by the small arrows, may be regarded as a reducible circuit

which touches itself at A. Then the change of / around the circuit is zero and /
must lose as much on passing from A to A by C' as it gains in passing from A to

A by C. Hence on passing from A to A by C' in the direction of the large arrows

the gain in / must be the same as on passing by C.

It is now possible to see that any circuit ABC may be reduced to circuits around

the portions cut out of the region combined with lines going to and from A and the

boundaries. The figure shows this; for the circuit ABC'BADG"DA is clearly



/ on passing around the irreducible circuit BC'B. One of the

cases which arises most frequently in practice is that in

which the successive branches of f(x, y) differ by a constant

amount as in the case z = tan- l
(y/x) where 2 ir is the differ-

ence between successive values of z for the same values of the

variables. If now a circuit such as ABC'BA be considered, where it is imagined

that the origin lies within BC'B, it is clear that the values of z along A B and

along BA differ by 2ir, and whatever z gains on passing from A to

B will be lost on passing from B to A, although the values through

which 2 changes will be different in the two cases by the amount //

27T. Hence the circuit ABC'BA gives the same changes for z as

the simpler circuit BC'B. In other words the result is obtained

that if the different values of a multiple valued function for the mme
values of the variables differ by a constant independent of the values of

the variables, any circuit may be reduced to circuits about the bound-

aries of the portions removed; in this case the lines going from the point A to th<

boundaries and back may be discarded.

EXERCISES

1. Draw the contour lines and sketch the surfaces corresponding to

(a)2 = !~f z(0,0) = 0, ^) Z =
_^_,

Z (0,0) = 0.

Note that here and in the text only one of the contour lines passes through th

origin although an infinite number have it as a frontier point between two part
of the same contour line. Discuss the double limits lim lim z, lim lira z.

x = y = v = a;==0

2. Draw the contour lines and sketch the surfaces corresponding to

,- ?/
,

.

(0)2 = , (7)2 =x ;
-- _

x
x ; 2a2 + 2/

2 -l
Examine particularly the behavior of the function in the neighborhood of th

apparent points of intersection of different contour lines. Why apparent ?

3. State and prove for functions of two independent variables the generalize
tions of Theorems 6-11 of Chap. II. Note that the theorem on uniformity is prove
for two variables by the application of Ex. 0, p. 40, in almost the identical manne
as for the case of one variable.

4. Outline definitions and theorems for functions of three variables. In partii
ular indicate the contour surfaces of the functions

and discuss the triple limits as x, y, z in different orders approach the origin.

5. Let 2 = P(Z, y)/Q(x, y), where P and Q are polynomials, be a rational fun
tion of x and y. Show that if the curves P = and Q = intersect in any point
all the contour lines of z will

converge toward these points ;
and conversely sho



that, if two different contour lines of z apparently cut in some point, all the contour

lines will converge toward that point, P and Q will there vanish, and z will be

andefined.

6. If J} is the minimum difference between different values of a multiple valued

function, as in the text, and if the function returns to its initial value plusD'sD
when P describes a circuit, show that it will return to its initial value plus Df^D
when P describes the new circuit formed by piecing ori to the given circuit a small

region which lies within a circle of radius ^ 5,

7. Study the function z = t&n- l
(y/x), noting especially the relation between

contour lines and the surface. To eliminate the origin at which the function is not

denned draw a small circle about the point (0, 0) and observe that the region of

the whole xj/-plane outside this circle is not simply connected but may be made so

by drawing a cut from the circumference off to an infinite distance. Study the

variation of the function as P describes various circuits.

8. Study the contour lines and the surfaces due to the functions

1 yZ

(a) z = tan- 1
ojy, (/8)

= tan~ 1
-, (7) z = sin- 1

(a; y).
1 2r

Cut out the points where the functions are not defined and follow the changes in

the functions about such circuits as indicated in the figures of the text. How may
the region of definition be made simply connected ?

9. Consider the function z = tan~ 1
(P/Q) where P and Q are polynomials and

where the curves P and Q = intersect in n points (04, b
t), ( 2 ,

&
2)'
"

'> (am &)
but are not tangent (the polynomials have common solutions which are not mul-

tiple roots). Show that the value of the function will change by 2/rtr if
(a;, y)

describes a circuit which includes k of the points. Illustrate by taking for P/Q
the fractions in Ex. 2.

10. Consider regions or volumes in space. Show that there are regions in which

some circuits cannot be shrunk away to nothing ;
also regions in which all circuits

may be shrunk away but not all closed surfaces.

46. First partial derivatives. Let =/(, y) be a single valued

function, or one branch of a multiple valued function, defined for (a, V)

and for all points in the neighborhood. If ?/ be given the value b,

then z becomes a function f(x, &) of x alone, and if that function has a

derivative for x = a, that derivative is called the partial derivative of

z f(x, y) with respect to x at (a, ft). Similarly, if x is held fast and

equal to a and if f(a, y) has a derivative -when y = b, that derivative is

called the partial derivative of z with respect to-y at
(a., ).

To obtain

these derivatives formally in the case of a given function f(x, y) it is

merely necessary to differentiate the function by the ordinary rules,

treating y as a constant when finding the derivative with respect to x

and a; as a constant for the derivative with respect to y. Notations are

df da . _ /dz\



derivatives are the limits of the quotients

lim '/
'

t lim
'f

!
> (2)

AiO /* * = k '

provided those limits exist. The application of the Theorem of the

Mean to the functions f(x f b) and f(a, y) gives

f(a 4- A, V) f(a, b)
=

hf'y. (a, -f- OJ/,, ),
<

l
< 1, ._

under the proper but evident restrictions (see 26).

Two comments may be made. First, some writers denote the partial derivatives

by the same symbols dz/dx and dz/dy as if z were a function of only one variable

and were differentiated with respect to that variable
;
and if they desire especially

to call attention to the other variables which are held constant, they affix them as

subscripts as shown in the last symbol given (p. 93). This notation is particularly

prevalent in thermodynamics. As a matter of fact, it would probably be impos-

sible to devise a simple notation for partial derivatives which should be satisfac-

tory for all purposes. The only safe rule to adopt is to use a notation which is

sufficiently explicit for the purposes in hand, and at all times to pay careful atten-

tion to what the derivative actually means in each case. Second, it should be noted

that for points on the boundary of the region of definition of /(x, y) there may be

merely right-hand or left-hand partial derivatives or perhaps none at all. For it

is necessary that the lines y = b and x a cut into the region on one side or the

other in the neighborhood of (a, 6) if there is to be a derivative even one-sided
;

and at a corner of the boundary it may happen that neither of these lines cuts

into the region.

THEOREM. If f(x, y) and its derivatives fx and/,,' are continuous func-

tions of (x, y) in the neighborhood of (a, b), the increment A/ may be

written in any of the three forms

A/= /(a -f- h, b + k) /(&> b)

= hfx(a + Oh, b + Ok) + kfv (a + 0h,b + Ok)
^ *

where the O's are proper fractions, the 's infinitesimals.

To prove the first form, add and subtract/(a + A, 5) ;
then

A/= [/(a + h, b) -/(a, 6)] -f [/(a + ft, b + k) -/(a + ft, &)]

by the application of the Theorem of the Mean for functions of a single variable

( 7, 26). The application may be made because the function is continuous and
the indicated derivatives exist. Now if the derivatives are also continuous, they

may be expressed as

/; (a + A b)
= /; (a, 5) + ft , /; (a + A, b + ZK)

= /' (a, 6) + f



Hence the third form follows from the first. The second form, which is symmetric
in the increments /&, &, may be obtained by writing x = a + lh and y = 6 + tk.

Then/(x, y)
= *(). As/ is continuous in

(x, y), the function $ is continuous in i

and its increment is

A* =f(a + t + Ath, b + t + Atk) -/(a + th, b + to).

This may be regarded as the increment of / taken from the point (35, y) with At h

and At k as increments in x and y. Hence A*' may be written as

A* = At hfx (a + th,b + tk) + At kfj(a + th, b + tk) + f,A( h + f2At fc.

Now if A* be divided by At and At be allowed to approach zero, it is seen that

A* rf*
lira = hf'x (a + th, b + tk) + kfj(a + th, b + tk)

= .

t\L (MJ

The Theorem of the Mean may now be applied to * to give * (1) * (0)
= 1 *'(0),

and hence

*(!)-* (0) =f(a + h,b + k) -/(a, 6)

= A/= hfx (a + 6h,b + 6k) + kf'v (a + 6h,b + 6k).

47. The partial differentials of/may be defined as

dxf= jAa?, so that dx = Ax, -ft
= ~

ctx ox

df df w
so that % = Ay, -^

=
^'

where the indices x and y introduced in dxf and c?
y/ indicate that x and

y respectively are alone allowed to vary in forming the corresponding

partial differentials. The total differential

df= dj+ </= f
dx +

f dy, (6)

which is the sum of the partial differentials, may be defined as that

sum; but it is better defined as that part of the increment

A/== fe
AX +

fy
Ay +^X + ^V (7)

which is obtained by neglecting the terms ^Ax + ^2Ay, which are of

higher order than Asc and Ay. The total differential may therefore be

computed by finding the partial derivatives, multiplying them respec-

tively by dx and dy, and adding.

The total differential of z f(x, y) may be formed for (x , y ) as

where the values x X
Q
and y y^ are given to the independent differ-

entials dx and cfy, and df= d% is written as z
Q

. This, however, is



A/ df which measures the distance from the plane to the surface

along a parallel to the #-axis is of higher order than VAx2
-f- Ay

2
;
for

VAx2 + A?/
2

Hence the plane (8) will be defined as the tangent plane at (xQ) y ,

to the surface =/( } y)- The normal to the plane is

(9)

which will be defined as the normal to the surface at (x , y , ).
The

tangent plane will cut the planes y = y and x = X
Q
in lines of which

the slope is /^ and fw The surface will cut these planes in curves

which are tangent to the lines.

In the figure, PQSR is a portion of the

surface =/(, y) and PT'TT" is a cor-

responding portion of its tangent plane
at P(JCO , y , ).

Now the various values

may be read off.

PP' = Ax,

48. J[f the variables as and y are expressed as x
<J>(f)

and y \(/(t)

so that f(x, y) becomes a function of t, the derivative off with respect

to t is found from the expression for the increment of f.

A*

or
dt

(10)

The conclusion requires that x and y should, have finite derivatives with

respect to t. The differential of / as a function of t is

a ftc at cy dt ox vy

and hence it appears that the differential has the same form as the total

differential. This result will be generalized later.



and

1 T
> y i/o '

D1 T ""^

.2 &/.
/.rtj uy = OJLIJ.

sin T. (13)

The derivative (13) is called the directional derivative of /in the direc-

tion of the line. The partial derivatives /, f'v are the particular direc-

tional derivatives along the directions of the cr-axis and y-axis. The

directional derivative of / in any direction is the rate of increase of

/along that direction
;
if K =/(#, ?/)

be inter-

preted as 'a surface, the directional derivative is

the slope of the curve in which a plane through
the line (12) and perpendicular to the #?/-plane

cuts the surface. If f(x, y) be represented by
its contour lines, the derivative at a point

(x, y) in any direction is the limit of the ratio

A//As = A6*/As of the increase of /, from one contour line to a neigh-

boring one, to. the distance between the lines in that direction. It is

therefore evident that the derivative along any contour line is zero and

that the derivative along the normal to the contour line is greater than

in any other direction because the element dn of the normal is less than

ds in any other direction. In fact, apart fiom infinitesimals of higher

order, An = COS - = -~ COS
l(f,

i An -f-
=

-f- COS
^r.dn (14)

Hence it is seen that the derivative along any direction may be found

by multiplying the derivative along the normal by the cosine of the angle

between that direction and the normal. The derivative along the normal

to a contour line is called the normal derivative of / and is, of course,

a function of (x, y).

49. Next suppose that u = f(x, y,z,-- )
is a function of any number

of variables. The reasoning of the foregoing paragraphs may be

repeated without change except for the additional number of variables.

The increment of/ will take any of the forms

(a + Ofl, b, c,
- -

)

lf,(a + h, b + k, c + O
sl,

x "I" fyfv 4" We + Ja + M.

+ h, b

) +



and finally if ac, y, ,
be functions of

t,
it follows that

_ ,.,,
dt fadt dydt dzdt

and the differential of /as a function of t is still (16).

If the variables x, y, ,
were expressed in terms of several new

variables r, s, ,
the function / would become a function of those vari-

ables. To find the partial derivative of / with respect to one of those

variables, say r, the remaining ones, s, ,
would be held constant and

/ would for the moment become a function of r alone, and so would x,

y, 3, . Hence (17) may be applied to obtain the partial derivatives

...

8r 8x 8r dy dr dz dr
'

. . ,

= + _i_4. t
8s 8x 8s 8y 8s 8 8s

'
'

These are the formulas for change of variable analogous to (4) of 2.

If these equations be multiplied by Ar, As, and added,

8f A 3/ , 8f/8x 8x
, \ Sf/dy

f- Ar + f- As + ... =
/-( Ar + -^ As + )+ /( -* Ar +

or os 8x\or 8s / cy\or

or df^M. fa + %f. dy + %.<& + ....
dx 8y

J da
'

for when r, s, are the independent variables, the parentheses above

are dx, dy, dz, and the expression on the left is df.

THEOREM. The expression of the total differential of a function of

x, y, z, as df=.f'xdx -ffydy +f'sdz -{- is the same whether x, y,

z, are the independent variables or functions of other independent
variables r, s, ;

it being assumed that all the derivatives which occur,

whether of / by cc, y, z, or of x, y, z, by r, s,
-

,
are continuous

functions.

By the same reasoning or by virtue of this theorem the rules

d (CM)
= cdu, d (u + v w~)

= du -f- dv dw,

jf \ j i 7 7/w\ vdu udv (19)
d(uv) = udv + vdu. d[ I=-;

-
>

v

\y] ir

of the differential calculus will apply to calculate the total differential

of combinations or functions of several variables. If by this means, or

any other, there is obtained an expression



For in the equation <lf
= Rd>>+ Sds+ !Teft H----=frdr+ft ds+ft

dt -\
----

,

the variables r, ,<?, t, , being independent, may be assigned increments

absolutely at pleasure and if the particular choice dr= 1, ds= dt= =
0,

be made, it follows that R =f'r ;
and so on. The single equation (20) is

thus equivalent to the equations (21) in number equal to the number of

the independent variables.

As an example, consider the case of the function tan- 1
(y/x). By the rules (19)

,y d(y/x) dy/x ydx/x
z

xdy ydx" - -- ~-
Then tan- * y- =

Sx x x2 +
tan- 1 v- -

,

dy x x2 + yz
by (20)-(21).v ' v '

If y and x were expressed as y = sinh rst and x = cosh rst, then

_ 1 y _ xdy ydx __ [stdr + rtds + rsdt] [cosh
2rsi sinhVst]

x x2 + j/
2 cosh2rst + sinhVsi

*L - st -t ~ rt *L = rs

Sr cosh2rs6' 3s cosh 2 rat dt cosh2rs<
and

EXERCISES

1. Pind the partial derivatives f, fy or /^, /y', f'a of these functions :

(a) Iog(x
2 + y

2
), (/3)

& cosy sin z, (y) xs

(f) log(8inx

( sin-, (*) l. (

2. Apply the definition (2) directly to the following to find the partial deriva-

tives at the indicated points :

(a) at (1, 1), (/3) x2 + 3 xy + y> at (0, 0), and (y) at (1, 1),

(S)
-- at (0, 0); also try differentiating and substituting (0, 0).x + y

3. Find the partial derivatives and hence the total differential of :

pxy

() (e)



surfaces and find the equations of the plane and line foi the indicated (x , j/ )
;

(a) the helicoid z = k tan-^y/z), (1, 0), (1, 1), (0, 1),

(|3)
the paraboloid 4pz = (a;

2 + y2
), (0,1)), (2p, 0), (p, p),

(7) the hemisphere z = Va2 - x2 - y
2
, (0,

-
a), (J a, J a), (J Vs a, 0),

(3) the cubic xyz = 1, (1, 1, 1), ( $, |, 4), (4, $, $).

5. Find the derivative with respect to t in these cases by (10) :

(a) f= x2 + y2
,
x = a cos i, y = 6 sin

, () tan- a - /- , y = cosh t,
X = sinh <,

\a;

(7) sin- x
(x #), x = 3 1, y = 4 t

s
, (8) cos 2 xj/, x = tan- T

t, j/
= cot- x

t.

6. Find the directional derivative in the direction indicated and obtain its

numerical value at the points indicated :

(a) a%, T = 45, (1, 2), (|8) shAcy, T = 60, (Vs, - 2).

7. (a) Determine the maximum value of df/ds from (13) by regarding T as

variable and applying the ordinary rules. Show that the direction that gives the

maximum is , .

T = tan- l
,, and then -4-

(/3) Show that the sum of the squares of the derivatives along any two perpen-

dicular directions is the same and is the square of the normal derivative.

8. Show that (/a
'

+ y'/y')/Vl + y'
z and (f^y' -jQ/Vl + y

/z are the deriva-

Vves of /along the curve y = <p(x) and normal to the curve.

9. If df/dn is defined by the work of Ex. 7 (a), prove (14) as a consequence.

10. Apply the formulas for the change of variable to the following cases :

(a) r =V^T^,^un-^. Find , ^, J(\% pv ' TIT ,v x 5a
.

Sy \
Find

S
, ,

(y) x = 2r-Ss+ 7, y = r + 8s - 9r Find = 4x+ 2y if M = x2 -

{^
^y =

(e) Prove + = if /(w, B) =/( -
y, y - z).

oz cy

(f) Let z = ox' + by' + cz', y = a'x' + b'y' -f c'z', z af'x' + V'y' + c"z', where

a, 6, c, a', 6', c', a", 6", c" are the direction cosines of new rectangular axes with

respect to the old. This transformation is called an orthogonal transformation. Show

8*/ / 3y'/ az' \dn

11. Define directional derivative in space ;
also normal derivative and estab-

lish (14) for this case. Find the normal derivative of / = xyz at (1, 2, 3).

12. Find the total differential and hence the partial derivatives in Exs. 1, 3, and

(a) Io
t (a;

2 + y
2 + a

), (/3) y/x, (y) x*ye**, (S) xyzlogxyz,



\T1) u = e*", x = log v r- -f s-, y =

i Q T f
9/ 30 i

8/ 30 i 3/ 1
Sflr , 1 a/ 80 . , ,13. If = and = , show = - and - = if r, are polar

ax Sy dy dx dr r d<(> r d</> dr

cobrdinates and /, g are any two functions.

14 . If p (x, j/, 2, i)
is the pressure in a fluid, or p (x, j/, z, )

is the density, depend-

ing on the position in the fluid and on the time, and if w, v, w are the velocities of

the particles of the fluid along the axes,

dp dp dp dp , dp , dp dp . dp So dp-. u + v~ + w + and - = u -*- + v -- + w + .

dt dx dy dz dt dt dx dy dz dt

Explain the meaning of each derivative and prove the formula.

15. If z = xy, interpret z as the area of a rectangle and mark d^z, A^z, Az on the

figure. Consider likewise w = xyz as the volume of a rectangular parallelepiped.

16. Small errors. If /(x, y) be a quantity determined by measurements on x

and j/, the error in / due to small errors dx, dy in x and y may be estimated as

df = fxdx+fydy and the relative error may be taken as d/s-/= dlog/. Why
is this ?

(a) Suppose =
-J
ab sin C be the area of a triangle with a = 10, 6 = 20, C = 30.

Find the error and the relative error if a is subject to an error of 0.1. Am. 0.5, 1%.

(0) In (a) suppose C were liable to an error of 10' of arc. Ans. 0.27, \%.

(7) If a, ft,
C are liable to errors of 1%, the combined error in 5 may be 3.1%.

(S) The radius r of a capillary tube is determined from l3.6-jrr*l = w by find-

ing the weight w of a column of mercury of length I. If w = 1 gram with an error

of 10~ 8
gr. and I = 10 cm. with an error of 0.2 cm., determine the possible error

and relative error in r. Ans. 1.06%, 6 x 10- 4
, mostly due to error in I.

(e) The formula c2 = a2 + W 2 06 cos C is used to determine c where a 20,

6 = 20, C = 60 with possible errors of 0.1 in a and 6 and 30' in C. Find the possible

absolute and relative errors in c. Ans. J, \\%.

(f) The possible percentage error of a product is the sum of the percentage
errors of the factors.

(ij) The constant g of gravity is determined from g = 2 st~ z by observing a body
fall. If s is set at 4 ft. and t determined at about | sec., show that the error in g
is almost wholly due to the error in i, that is, th'at s can be set very much more

accurately than t can be determined. For example, find the error in t which would

make the same error in gr as an error of inch in s.

(#) The constant g is determined by gt
2 = tfil with a pendulum of length I and

period t. Suppose t is determined by taking the time 100 sec. of 100 beats of the

pendulum with a stop watch that measures to sec. and that I may be measured

as 100 cm. accurate to ^ millimeter. Discuss the errors in g.

17. Let the cobrdinate x of a particle be x =f(qv q.2)
and depend on two i

variables qv q2 . Show that the velocity and kinetic energy are



Show = . i = l,2, and similarly for any number of variables q.

St'n Sqi

18. The helix x = a cos t
, y = a sin i, z = at tan a cuts the sphere x

2 + J/
2 + za =

a2 sec2j3 at sin- *
(sin t r sin y3) .

19. Apply the Theorem of the. Mean to prove that /(x, y, z) is a constant if

f'x =f =/z
' = is trun for all values of x, y, z. Compare Theorem 16

( 27) and

make the statement accurate.

20. Transform ^--
-\/( V+ ( V+ ( V to () cylindrical and

(/3) polar
di \\dx/ \dy/ \Sz/

coordinates
( 40).

21. Find the angle of intersection of the helix x = 2cos, y = 2sini, z = t and

the surface xyz = 1 at their first intersection, that is, with U < t < $ ir.

22. Let/, 0, h be three functions of (x, y, z). In cylindrical coordinates ( 40)

form the combinations F = /cos + g sin 0, <? = /sin + g cos
<f>,
H = h. Trans-

f rm
texV.^.a* n_3e, M_
(flr)

ac
+

ciy

+
az'

w
<& a

' (7)
ac 5y

to cylindrical coSrdinates and express in terms of F, <?, JT in simplest form.

23. Given the functions yx and (z)
x and sW). Find the total differentials and

hence obtain the derivatives of xx and (x? )* and x^).

50. Derivatives of higher order. If the first derivatives be again

differentiated, there arise four derivatives f^., f v̂, fv
'

x,fv'

y
of the second

order, where the first subscript denotes the first differentiation. These

may also be written

f~-
Jy*

where the derivative of df/dy with respect to x is written

with the variables in the same order as required in DxDyf and opposite
to the order of the subscripts in fy'x . This matter of order is usually of

no importance owing to the theorem : If the derivatives f'x, f'y have

derivatives /^, f'y
'

x which are continuous in (x, y) in the neighborhood

of any point (x , y ),
the derivatives f^ and fyx are equal, that is,

/^(a;o'2/o)=/^(^yo)-

The theorem may be proved by repeated application of the Theorem of the

Mean. For

[/(So + A, y, + *) -/(Xo, 2/ + fc)]
- [f(x + h, y )-/(x , y )]

= &(y + k)- <f>(y )]

where $(y) stands for /(x + h, y)-J(xw y) and ^(z) for/(x, y + fc)-/(x,
Now

*(y<> + *)
- *(y )

= fc0
7

(yo + ^) = *[/^(o + *, yfl
+ ^) -/(



single variable and then substituting. The results obtained are necessarily equal
to each other

;
but each of these is in form for another application of the theorem.

*[/'(*<> + h
, V* + **) -/;(*oi Vo + *fc)]

= W(x + vli, y + 0k),

*[/*'(3 + 0'1>>, ?/ + *) -/*>o + W, 2/o)]
= W^K +^ 2/o + I'*)-

Hence f(x + r,/i., ?/ + 6k) = f^ (x + Q'h, y + i,'k).

As the derivatives
/^., /^ are supposed to exist and be continuous in the variables

(x, y) at and in the neighborhood of (x , y ), the limit of each side of the equation
exists as h == 0, k = and the equation is true in the limit. Hence

Jyx (XQi 1/0!
=

Jxy (X0i V<j)

The differentiation of the three derivatives/^.,/^ =f X̂J f'y
'

!l
will give

six derivatives of the third order. Consider f û
and f x̂. These may

be written as (/x)^ and (/^)^ and are equal by the theorem just proved

(provided the restrictions as to continuity and existence are satisfied).

A similar conclusion holds for f v̂
and f x̂ ;

the number of distinct

derivatives of the third order reduces from six to four, just as the

number of the second order reduces from four to three. In like manner

for derivatives of any order, the value of the derivative depends not on

the order in which the individual differentiations with respect to x and

y are performed, but only on the total number of differentiations with

respect to each, and the result may be written with the differentiations

collected as o^,,^
gra + n f

T\mf\nf __!/_ yKm + n) of /99^DX vf ~ dxmdy
n
~~ /*m " '

6 ( '

Analogous results hold for functions of any number of variables. If

several derivatives are to be found and added together, a symbolic
form of writing is frequently advantageous. For example,

or (D, + D,)*f= (Dl + 2 D,D,

51. It is sometimes necessary to change the variable in higher deriv-

atives, particularly in those of the second order. This is done by a

repeated application of (18). Thus /^ would be found by differentiat-

ing the first equation with respect to r, and fr

'

s by differentiating the

first by s or the second by r, and so on. Compare p. 12. The exercise

below illustrates the method. It may be remarked that the use of higher

differentials is often of advantage, although these differentials, like the

higher differentials of functions of a single variable (Exs. 10, 16-19,

p. 67), have the disadvantage that their form depends on what the

independent variables are. This is also illustrated below. It should be

particularly borne in mind that the great value of the first differential



dx* 8y
2

dr'
2 rSr r2 d<f>'

2
'

dv __ 8v dr dv 80 So _ dv cr dv 80

dx
~

dr dx 8<f> dx
'

dy dr 5y 80 8y

by applying (18) directly with x, y taking the place of r, s, and r, <f>
the place

of x, y, 2, . These expressions may be reduced so that

dv _dv x

8x

4.

_d<j>dr r

The differentiations of x/r and y/r
z maybe performed as indicated with respect to

r, (/>, remembering that, as r, <j>
are independent, the derivative of r by <f>

is 0. Then

Q =cy
<>_

yz 82v
" '

In like manner dzv/dy
z may be found, and the sum of the two derivatives reduces

to the desired expression. This method is long and tedious though straightforward.

It is considerably shorter to start with the expression in polar coordinates and

transform by the same method to the one in rectangular coordinates. Thus

Sv _ dv dx dv dy _ dv_ dv_
. _ 1 /8i) dv

8r
~

dx dr dy dr
~

dx dy
~

r \8x dy

8 / dv\_ /82
i) 82u . \ / 82i/ dzv . \ dv . . dv

dr\ dr) \8a>
2

dydx ) \dxdy dy
z

) dx dy

dv dv dx
,

dv dy dv . dv dv dv=
1

= rsm0H rcos0 = y H x,
80 9x80 8?/80 8x dy dx dy

dv dv .

cos d sin 0.
dx

r
By

,, 8 / dv\ 1 82v /82
Then ( r } -{

=
( [-

-

dr\ dr} r802 \8x2 i

i 1 an 1 a2n

(23)..

dx* dy
2 rdr\ dr/ r* 8^ drz rdr r2 80

2

The definitions d^f =f^dx2
, d^f^f^dxdy, df=fy'y dy* would naturally be

given for partial differentials of the second order, each of which would vanish if/
reduced to either of the independent variables x, y or to any linear function of

them. Thus the second differentials of the independent variables are zero. The



dy / Bx dy dx

but d^
and d2/ = dx* + 2 -- dxdy +^ d;,

2 + ^ d2x + d2
?/. (24)2

ay
2 sx a?/

^ '

The last two terms vanisli and the total differential reduces to the first three terms
if x and y are the independent variables

;
and in this case the second derivatives,

faanfxyifw are tne coefficients of dx2
, 2dxdy, dj/

2
,
which enables those derivatives

to be found by an extension of the method of finding the first derivatives
( 49).

The method is particularly useful when all the second derivatives are needed.

The problem of the change of variable may now be treated. Let'

d*v = 8
dx* + 2~ dxdy +

d
dy*

ex2 3ia 3y
a

.

drd* + ^d^ +
*

30
2 dr

where x, y are the independent variables 'and r, <j>
other variables dependent on

them in this case, defined by the relations for polar cob'rdinates. Then

dx = cos 4>dr r sin 0d<, dy sin <j>dr + r cos </>d<

or dr = cos efrdx + sin <j4dj/, rd<f>
= sin 0dx -f cos <j>dy. (26)

Then d2r =
(

sin <j>dx -f cos ^dy) d</>
=

rd<j>d<j> = rd^
2

,

2
< = (cos <f>dx + sin <j>dy) d<p = drd(/>,

where the differentials of dr and rdtp have been found subject to d2x = dzy = 0.

Hence d2r = rd^b
2 and rd2^ = 2drd0. These may be substituted in d2 which

becomes

r a</>/ \a^.
2

ar/

Next the values of dr2
, drd<, d<j>

z may bb substituted from (25) and

,, r32" 9 2/82u 1 giA . /a2u 8u\sinV1 , ,d*v = - cos2 ^> -- ---- 1 cos d> sin d> + (
--

f- r }
-- dx2

|_8r
2 r \ara0 r 807

^
\a^

2
3r/ r2 J

, O s2 sin2 a2 u cos sin <Al , ,+ 2 - cos sin + ---- )
-"-"---^--^- dxdyr

r S0
2 r2 J

P2" 2. ,

2 / 82 1 9U \ , t&v au
- sm2 + - ---- cos^sm0 + -; + r

L8r
2 ^

r \ar80 r 30/ W2 3rr/

Thus finally the derivatives u^, uâ , u^ are tlie three brackets which are the

coefficients of dx2
,
2 dxdy, dy2

. The value of v^ + Vy'u
is as found before.

52. The condition /^ = f'v
'

x which subsists in accordance with the

fundamental theorem of 50 gives the condition that

M (x, y}dx + N (x, y}dy = -

c

dx + ~

dy = df



g a/ _ 8M _ SN _ d Sf

dy dx dy dx ex dy

dM dN dM\ fdN~ =S ~and T~ = T~ or 1^~ =S T~)' (
26

fy dx \dy }x \dxjy

The second form, where the variables which are constant during the

differentiation, are explicitly indicated as subscripts, is more common ii

works on thermodynamics. It will be proved later that conversely i:

this relation (26) holds, the expression Mdx + Ndy is the total differ

ential of some function, and the method of finding the function wil

also be given ( 92, 124). In case Mdx + Ndy is the differential o:

some function f(x, y) it is usually called an exact differential.

The application of the condition for an exact differential may l><

made in connection with a problem in thermodynamics. Let S and I

be the entropy and energy of a gas or vapor inclosed in a receptacle o:

volume v and subjected to the pressure p at the temperature T. Th<

fundamental equation of thermodynamics, connecting the differential:

of energy, entropy, and volume, is

dU = TdS-pdv : and - = - (2T1 '

\dv)s \dS)v
^ '

is the condition that dU be a total differential. Now, any two of th<

five quantities U, S, v, T, p may be taken as independent variables. Ir

(27) the choice is S, v
;

if the equation were solved for dS, the choici

would be 17, v
;
and U, S if solved for dv. In each case the cross differ-

entiation to express the condition (26) would give rise to a relatioi

between the derivatives.

If p, T were desired as independent variables, the change of variable

,*cr ids\ * , ids \ jrr, * /dv\ , /dv\ jrr,dS=
) dp+ -)dT, dv =

( }dp + (-~}dT
\dp/T \dT/p \dp/T \dT/p

should be made. The expression of the condition is then

dr /ds

+ --p- = -- J,-,
dp/ T dTSp STdp dpdT \dTjp 8pdT

where the differentiation on the left is made with p constant and that on the righ
with T constant and where the subscripts have been dropped from the seconc

derivatives and the usual notation adopted. Everything cancels except two termi

which give



,

<28>

The importance of the test for an exact differentia] lies not only in the relations

obtained between the derivatives as above, but also in the fact that in applied
mathematics a great many expressions are written as differentials which are not

the total differentials of any functions and which must be distinguished from exact

differentials. For instance if dH denote the infinitesimal portion of heat added

to the gas or vapor above considered, the fundamental equation is expressed as

dH = dU + pdv. That is to say, the amount of heat added is equal to the increase

in the energy plus the work done by the gas in expanding. Now dH is not the dif-

ferential of any function H(U, v) ;
it is dS = dH/T which is the differential, and

this is one reason for introducing the entropy S. Again if the forces JT, F act on a

particle, the work done during the displacement through the arc ds Vdtx'2 + dy*

is wi-itten dW = Xdx + Ydy. It may happen that this is the total differential of

some function
; indeed, if

dW=-dV(x,y), Xdx + Ydy = - dF, X=-, Y=-,
dx dy

where the negative sign is introduced in accordance with custom, the function V is

called the potential energy of the particle. In general, however, there is no poten-

tial energy function V, and dW is not an exact differential
;
this is always true

when part of the work is due to forces of friction. A notation which should dis-

tinguish between exact differentials and those which are not exact is much more
needed than a notation to distinguish between partial and ordinary derivatives

;

but there appears to be none.

Many of the physical magnitudes of thermodynamics are expressed as deriva-

tives and such relations as (26) establish relations between the magnitudes. Some
definitions :

specific heat at constant volume is Cv (
1 = T / -

}
,

\dT/v \dT/v

specific heat at constant pressure is Cp = ( I = T[-] ,

\dT/p \dT/P

latent heat of expansion is Lv = { }
= T{ } ,

\ dv IT \dv/T

coefficient of cubic expansion is av = -
( )

v \dT/p

modulus of elasticity (isothermal) is ET= v( } >

\dv/T

modulus of elasticity (adiabatic) is ES= "v
\dv/s

53. A polynomial is said to be homogeneous when each of its terms

is of the same order when, all the variables are considered. A defini-

tion of homogeneity -which includes this case and is applicable to more

general cases is : A function f(x, y, z, ) of any number of variables is

oalled homogeneous if the function is multiplied by somepower of A when

all the, variables are multiplied by \; and the power of X which factors



out is called the order of homogeneity of the function. In symbols

condition for homogeneity of order n is

f(\x, Ay, Az, )
= X/(aj, y, z, )-

y o/2
C?/ iJC

Thus X<F -f >
~ + tan- 1 -

>

are homogeneous functions of order 1, 0, 1 respectively. To te

function for homogeneity it is merely necessary to replace all the '

ables by X times the variables and see if A factors out completely.

homogeneity may usually be seen without the test.

If the identity (29) "be differentiated with respect to A, with x'=\x}

n o p

A second differentiation with respect to A would give

a
2 & \ / a2 a2

Now if A be set equal to 1 in these equations, then x' = x and

In words, these equations state that the sum of the partial deriva'

each multiplied by the variable with respect to which the differe

tion is performed is n times the function if the function is homogen
of order n

;
and that the sum of the second derivatives each multi]

by the variables involved and by 1 or 2, according as the variab

repeated or not, is n (n 1) times the function. The general for;

obtained by differentiating any number of times with respect to A

be expressed symbolically in the convenient form

(xDx + yDv + *D, + - - .)*/= n(n - !) ->(n
- k + I)/.

This is known as Euhr's Formula, on homogeneous functions.

It is worth -while noting that in a certain sense every equation which rep

a geometric or physical relation is homogeneous. For instance, in geometr
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lengths, areas to areas, etc. The fundamental unit is taken as length. The units of

area, volume, and angle are derived therefrom. Thus the area of a rectangle or

the volume of a rectangular parallelepiped is

A = att. x &ft. = &ft. 2 = a&sqft., F=oft. x&ft. x eft. = abcft. s abc cu. ft.,

and the units sq. ft., cu. ft. are denoted as ft.
2

,
ft. 8 just as if the simple unit ft.

had been treated as a literal quantity and included in the multiplication. An area

or volume is therefore considered as a compound quantity consisting of a number

which gives its magnitude and a unit which gives its quality or dimensions. If L
denote length and [i] denote "of the dimensions of length," and if similar nota-

tions be introduced for area and volume, the equations [A] = [i]
2 and [J

7

"]
= [L]

s

state that the dimensions of area are squares of length, and of volumes, cubes of

lengths. If it be recalled that for purposes of analysis an angle is measured by the

ratio of the arc subtended to the radius of the circle, the dimensions of angle are

seen to be nil, as the definition involves the ratio of like magnitudes and must

therefore be a pure number.

When geometric facts are represented analytically, either of two alternatives is

open : 1, the equations may be regarded as existing between mere numbers
;
or

2, as between actual magnitudes. Sometimes one method is preferable, sometimes

the other. Thus the equation x* + y
2 = rz of a circle may be interpreted as 1, the

sum of the squares of the coordinates (numbers) is constant
;
or 2, the sum of the

squares on the legs of a right triangle is equal to the square on the hypotenuse

(Pythagorean Theorem). The second interpretation better sets forth the true

inwardness of the equation. Consider in like manner the parabola yz = 4=px. Gen-

erally y and x are regarded as mere numbers, but they may equally be looked

upon as lengths and then the statement is that the square upon the ordinate equals

the rectangle upon the abscissa and the constant length 4p ;
this may be inter-

preted into an actual construction for the parabola, because a square equivalent
to a rectangle may be constructed.

In the last interpretation the constant p was assigned the dimensions of length

so as to render the equation homogeneous in dimensions, with each term of the

dimensions of area or [L]
2

. It will be recalled, however, that in the definition of

the parabola, the quantity p actually has the dimensions of length, being half the

distance from the fixed point to the fixed line (focus and directrix). This is merely

another corroboration of the initial statement that the equations which actually

arise in considering geometric problems are homogeneous in their dimensions, and

must be so for the reason that in stating the first equation like magnitudes must

be compared with like magnitudes.
The question of dimensions may be carried along through such processes as

differentiation and integration. For let y have the dimensions [y] and x the dimen-

sions []. Then Ay, the difference of two y's, must still have the dimensions [y]

and Ax the dimensions [cc]. The quotient Ay/Ax then has the dimensions

For example the relations for area and for volume of revolution,

dA dV rdA~l [A] rrn^ = y, Tx =*y\ g-e
[__J

= LJ = [i] ,

and the dimensions of the, left-hand side check with those of the right-hand side.

As "integration is the limit of a sum, the dimensions of an integral are the product



of the dimensions 01 tne Junction w oe imegratea ana 01 LUB uuitueuw

Thus if r , ,r x ax 1 , ,
x

,

w = I = - tan- 1 - + c

t/o a? 4- x2
<z ct

were an integral arising in actual practice, the very fact that a2 and x2 are

would show that they must have the same dimensions. If the dimension

be [L], then

and this checks with the dimensions on the right which are [L]~
l

, since anj

no dimensions. As a rule, the theory of dimensions is neglected in pure i

matics
;
but it can nevertheless be made exceedingly useful and instructive.

In mechanics the fundamental units are length, mass, and time
;
and are d<

by [L], [Jf], [T]. The following table contains some derived units :

Til [LI , W[ ]

velocity
-^ acceleration -r~ force

'

2

areal velocity LL, density
JJTs'

momentum il -

L J L J L j

angular velocity , moment
-^

J
, energy

With the aid of a table like this it is easy to convert magnitudes in one

units as ft., lb., sec., to another system, say cm., gm., sec. All that is neces

to substitute for each individual unit its value in the new system. Thus

ft cm err

g
- 321 J_ , 1 f t. = 30.48 cm., g = 821 x 30.48 '- = 9804

sec.2 sec. 2 sec

EXERCISES

1. Obtain the derivatives/" , f' f' f' and verify/" =/"

(a) sin-i , (/3) log , (7) 4> + f (xy).
x xy \x/

2. Compute d2
v/dy

2 in polar coordinates by the straightforward method.

?~V ^211

3. Show that a2^ =^ if =/(x + ai) + < (x
-

trf).
2x2 S(

4. Show that this equation is unchanged in form by the transformation

dx* ox Sy

5. In polar coordinates z = r cos #, = r sin ^ cos
<f>, y r sin sin in s

a2 s2u azv i r a / dv\ i a2
,

i s / . e\i
_.
__

__ U__ !__ - __ I _ I yZ _ I _\, __ I __ f
QMI M _ I I .

8xs 8 g r2 L8r\ ar/ sin2 ^ a^2 sin Q 80 \

The work of transformation may be shortened by substituting successively

x = r
t
cos 0, y = ^j sin 0, and z = r cos 0, rt = r sin 0.

6. Let z, ?y, z, i be four independent variables and a; = r cos0, ,y
= r sin .

the equations for transforming z, y, 2 to cylindrical coordinates. Let



PARTIAL DIFFERENTIATION; EXPLICIT III

, -, , =, = --
Bxdz

'

dydz
'

dxz
dy*

'

8ydt
' *

dxdt
'

show Z = --, X cos0 + Fsm0 = --, Fsin</.
-

r 8r r 5z r

where r-^Q = 5//Sr. (Of importance for the Hertz oscillator.) Take cf/d(j> = 0.

7. Apply the test for an exact differential to each of the following, and write

by inspection the functions corresponding to the exact differentials :

(a) 3xdx + y'
2
dy, (13)

3 xydx + xn
dy, (y) xz

ydx + y*dy,

xdx + ydy xdx ydy ydx - xdy
( '

a2 + j/
2

' ( *'
~

x* + y
z
~' ( '

x2 + y
r '

(n) (4x
8 + 3 x*y + i/

2
) dx + (x

8 + 2 xy + 3 y) dy, (6} x2
2/
2
(etc + dy).

8. Express the conditions that P(x, y, z)dx + Q(x, y, z)dy + R(x, y, z)dfz be

an exact differential dF(z, y, z). Apply these conditions to the differentials :

(a) 3 X2
y
2zdx + 2 cc

8
2/zdy + xVcZz, (^) (y + z) dx + (x + z) dy + (x + y) dz.

9. Obtain ( )
=

( ]
and

j )
=

( ]
from (27) with proper variables.

\dT/v \dv/T \dS/p \dp/s
^ '

10. If three functions (called thermodynamic potentials) be defined as

show
dif>

- SdT pdv, dx = TdS + vdp, df = SdT + vdp,

and express the conditions that d^, dx, df be exact. Compare with Ex. 9.

11. State in words the definitions corresponding to the defining formulas, p. 107

12. If the sum (Mdx + Ndy) + (Pdx + Qdy) of two differentials is exact and one

of the differentials is exact, the other is. Prove this.

13. Apply Euler's Formula (31), for the simple case k = 1, to the three func-

tions (29') and verify the formula. Apply it for k = 2 to the first function.

14. Verify the homogeneity of these functions and determine their order :

XmlJn XVZ
(a) y*/x + x(logx-\ogy), (ft) /

y
, (y)

"

--
va; + v y

15. State the dimensions of moment of inertia and convert a unit of moment of

inertia in ft.-lb. into its equivalent in cm.-gm.

16. Discuss for dimensions Peirce's formulas Nos. 93, 124-125, 220, 300.

1* r, i- I, -,m * u d Sx Sv A d 8T . 8x
t

ST
17. Continue Ex. 17, p. 101, to show = ajnd = mv

1

dt dqi dqt dt dqi dqt 9?i
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19. If (Xj, ?/,)
and (x2 , yz)

are the coordinates of two moving particles and

dzx, , dzy* d2x2 d2
y, ...

m, = A,, m. ^ = F,, m, -* = X,, m
2 ^ = Y.

1
di2

"' l
(ft

2 *' 2
d 2 2 2

dt2
2

are the equations of motion, and if xv yv x
2 , yz

are expressible as

x
i
= /i(?u ?si TB)I Vi = Pifau ?a <fe) *8 =/(?! 0ai?8)i y8

= (7s(9i9a9f8)

in terms of three independent variables qv qv <?8 ,
show that

O-Y^+F^l+JT^ + r^-^^-^,qi ~ l

Sq,

+ l
dql

+ 2

Sq,

+ 2
Sgt

~
dt Sq, 8q l

where T= % (m^f + TO
2v|) = T(q^, 2 , $3 , ^j ^2 , </3)

and is homogeneous of the

second degree in qv </ 2 , qs . The work may be carried on as a generalization of

Ex. 17, p. 101, and Ex. 17 above. It may be further extended to any number of

particles whose positions in space depend on a number of variables q,

20. In Ex. 19 if Pi , generalize Ex. 18 to obtain
8qi

f. = ?H d-2- = - Q _ dPi ar/
<h ~

dpi
'

dq{

~
8qi

'
l
~

dt dql

'

The equations Qi =---- and Q; = -i
-- are respectively the Lagraii-H V

dt dqf dqt

^
dt Sqt

* *

gian and Hamiltonian equations of motion.

21. If n' kz and $' = andv'^, <p') =v(r, <j>),
show

5V 1 dv' 1 &' _ rz /S2v Idv 1 dzv\

dr'
2

IP dp r^d^~^r^\d^ r~8r r* 84?)

'

k
22. If rr' = A2

, ^ = $, 0' = 6, and v'(r', <f>', 9") = -(r, <f>, 6), show that the

expression of Ex. 5 in the primed letters is fcr2/r'
8 of its value for the unprimed

letters. (Useful in 198.)

23. If z = :

24. Make the indicated changes of variable :

f^
du'

25. For an orthogonal transformation (Ex. 10 (f), p. 100)



*"(0)
1

Dhe expressions for <'() and
4>'(0) may be found as follows by (10) :

*'(*)
= A + VS, *'(0) [A/: -f- *>;],..,

hen *"(0 = A(% + A^) + *(^ + W)
'"'

= A2

/;; + 2 hwz + /c
2

/;;
= (AD, +.&D,>/,

= (AD. 4- AD,)'/, *co(0)
= [(/^ 4. 4

VM /(a + A, & + *) -/(, &)
= A/= $(1)

-
*(0) = (AD,

+
I; (AD. + *D,)/(a, &)+.-.+

^
-

(AD, + ftD
F)" /(, ft)

+ i (AD, + kD
yyf(a + tfA, 6 + 0&). (32)

/2>

In this expansion, the increments A and k may be replaced, if de-

ired, by x a and y b and then /(#, ?/)
will be expressed in terms

if its value and the values of its derivatives at (a, b] in a manner

sntirely analogous to the case of a single variable. In particular if the

)oint (a, V) about which the development takes place be (0, 0) the

levelopment becomes Maclaurin's Formula for /(a, y).

f(x, y) =/(0, 0) + (xDx + yDr)/(0, 0) + (xDx + yDf)/(0, 0) +

^). (32-)

Whether in Maclaurin's or Taylor's Formula, the successive terms are

lomogeneous polynomials of the 1st, 2d, -, (n l)st order in x, y or

n x a, y b. The formulas are unique as in 32.

Suppose Vl x2 y2 is to be developed about (0, 0). The successive deriva-

ives are
~ y

,nd Vl - gz - yg = l + (Ox + Oy) + |(- x2 + OKI/ - y
2
) + | (Ox

3 + ...) + ...,
'r Vl x2 y2 = 1

|. (x
2 + z/

2
) + terms of fourth order H .

n this case the expansion may be found by treating x2 + y2 as. a single term and

xpanding by the binomial theorem. The result would be



That the development thus obtained is identical -vvitn tne Maciaurm deveiopmen

that might be had by the method above, follows from the uniqueness of the devel

opment. Some such short cut is usually available.

55. The condition that a function z=f(x, y) haye a minimum o

maximum at (a, i) is that A/> or A/< for all values of h = A;

and 7c = Ay which are sufficiently small. From either geometrical o

analytic considerations it is seen that if the surface =/(:, y) has i

minimum or maximum at (a, &), the curves in which the planes y =
fcnd x = a cut the surface have minima or maxima at x = a and y =

respectively. Hence the partial derivatives f'x and f'u must both vanisl

lit
(a, V), provided, of course, that exceptions like those mentioned 01

page 7 be made. The two simultaneous equations

JE=0, /' = (), (33

corresponding to f'(x)
= in the case of a function of a single varia

ble, may then be solved to find the positions (x, y) of the minim;

and maxima. Frequently the geometric or physical interpretation o

z = f(x, y) or some special device will then determine whether ther

is a maximum or a minimum or neither at each of these points.

For example let it be required to find the maximum rectangular parallelepipe

which has three faces in the coordinate planes and one vertex in the plan

y/b + z/c = 1. The volume is

- ---
Sic a b 8y b a

The solution of these equations is x = a, y = \ b. The corresponding z is | c an

the volume Vi& therefore abc/27 or $ of the volume cut off from the first octant b

the plane. It is evident that this solution is a maximum. There are other solutior

of V =
V'y

= which have been discarded because they give V = 0.

The conditions/,,' =// = may be established analytically. For

A/= (/*' + C.)
** + !f,+ O Ay.

Now as
15 2

are infinitesimals, the signs o.1 Mie parentheses are dete:

mined by the signs of /,',/' unless these derivatives vanish; and henc

unless f =
0, the sign of A/ for Ace sufficiently small and positive an

Ay = would be opposite to the sign of A/ for &x sufficiently small an

negative and Ay = 0. Therefore for a minimum or maximicm j"x = C

and in like manner f'y 0. Considerations like these will serve t

establish a criterion for distinguishing between maxima and minim



by Taylor's Formula to two terms. Now if the second derivatives are

continuous functions of (x, ?/)
in the neighborhood of (a, />),

each deriv-

ative at (a -)- Oh, 1) -f- Ok) may be written as its value at
(a, b) plus an

infinitesimal. Hence

A/= i (A
2

/^ + 2 hkj- + %'k b) 4- i (A
2

x
+ 2 /,*, + *2

g.

Now the sign of A/ for sufficiently small values of h, k must be the

same as the sign of the first parenthesis provided that parenthesis does

not vanish. Hence if the quantity

"
4- 2 JiTff" -I- Jc*f"\ > '

a mnmiim
t- *

/<</*,, f */,;(,&) < o for eveiy fa ^ a maximum.

As the derivatives are taken at the point (a, &), they have certain constant

values, say .4, J?, C. The question of distinguishing between minima and maxima
therefore reduces to the discussion of the possible signs of a quadratic form
Ah2 + 2 Bhk + C7c2 for different values of h and k. The examples

show that a quadratic form may be : either 1, positive for every (h, k) except (0, 0) ;

or 2, negative for every (ft, k) except (0, 0) ;
or 3, positive for some values (h, k)

and negative for others and zero for others
;
or finally 4, zero for values other than

(0, 0), but either never negative or never positive. Moreover, the four possibilities

here mentioned are the only cases conceivable except 5, that A = B = C = and

the form always is 0. In the first case the form is called a definite positive form, in

the second a definite negative form, in the third an indefinite form, and in the fourth

and fifth a singular form. The first case assures a minimum, the second a maxi-

mum, the third neither a minimum nor a maximum (sometimes called a minimax) ;

but the case of a singular form leaves the question entirely undecided just as the

condition /"(x) = did.

The conditions which distinguish between the different possibilities may be ex-

pressed in terms of the coefficients J., JS, C.

lpos. def., B*<AC, A,C>0; 3 indef .,
JP > AC ;

2neg. del, B*<AC, A,C<0; 4 sing., B* = AC.

The conditions for distinguishing between maxima and minima are :

> minhnum
J

(S4)= " **^ f^ / < maximum
;

* '

It may be noted that in applying these conditions to the case of a definite form it

is sufficient to show that either/.^, or/^ is positive or negative because they neces-

sarily have the same sign.



1. Write at length, without symbolic shortening, the expansion of /(x, y) by

Taylor's Formula to and including the terms of the third order in x a, y b.

Write thtj formula also with the terms of the third order as the remainder.

2. Write by analogy the proper form of Taylor's Formula for/(x, y, z) and

prove it. Indicate the result for any number of variables.

3. Obtain the quadratic and lower terms in the development

(a) of x?/ + sin xy at (1, I TT) and
(/3)

of tau-i (y/x) at (1, 1).

4. A rectangular parallelepiped with one vertex at the origin and three faces

in the coordinate planes has the opposite vertex upon the ellipsoid

x2/a
2 + 2/V&

2 + z2/c
a =l.

Find the maximum volume.

5. Find the point within a triangle such that the sum of the squares of its

distances to the vertices shall be a minimum. Note that the point is the intersec-

tion of the medians. Is it obvious that a minimum and not a maximum is present ?

6. A floating anchorage is to be made with a cylindrical body and equal coni-

cal ends. Find the dimensions that make the surface least for a given volume.

7. A cylindrical tent has a conical roof. Find the best dimensions.

8. Apply the test by second derivatives to the problem in the text and to any
of Exs. 4-7. Discuss for maxima or minima the following functions :

(a:) x2
?/ + xy* - x, () Xs + y3 - x*y

2 -
\ (x

2 + y2
),

(7) x2 + j/
2

-t- x + V, (8) i2/
8 -X2/2 + :c

2
2/-fc,

(t) xs + y
s - 9x?/ + 27, (f) x4 + y*- 2x2 + 4xy- 2y*.

9. State the conditions on the first derivatives for a maximum or minimum of

function of three or any number of variables. Prove in the case of three variables.

10. A wall tent with rectangular body and gable roof is to be so constructed as

to use the least amount of tenting for a given volume. Find the dimensions.

11. Given any number of masses mv m2 , ,
rnn situated at (xl7 y^, (x2 , y2), ,

(ii, J/n). Show that the point about which their moment of, inertia is least is their

center of gravity. If the points were (x: , yv Zj), in space, what point would

make Smr2 a minimum ?

12. A test for maximum or minimum analogous to that of Ex. 27, p. 10, may
be given for a function /(x, y) of two variables, namely : If a function is positive

all over a region and vanishes upon the contour of the region, it must have a max-
imum within the region at the point for which /^ =fy = 0. If a function is finite

all over a region and becomes infinite over the contour of the region, it must have
a minimum within the region at the point for which /^ ~J'y = 0. These tests are

subject to the proviso that/^ =/^ = has only a single solution. Comment on the

test and apply it to exercises above.

13. If a, &, c, r are the sides of a given triangle and the radius of the inscribed

circle, the pyramid of altitude h constructed on the triangle as base will have its

maximum surface when the surface is J (a + 6 + c) Vr* +1^.



CHAPTER V

PARTIAL DIFFERENTIATION; IMPLICIT FUNCTIONS

56. The simplest case ; F(x, y) = 0. The total differential

dF= F'xdx + F'
v dy = dQ =

O7

T , dy F' dx *. ...

indicates -f-
= - -

, =--*
(1)dx F

y dy Fx !

as the derivative of y by x, or of x by i/, where y is defined as a function

of x, or x as a function of y, by the relation F(x, y)
=

;
and this method

of obtaining a derivative of an implicit function without solving expli-

citly for the function has probably been familiar long before the notion

of a partial derivative was obtained. The relation F(x, y)
= is pictured

as a curve, and the function y <f>(x), which would be obtained by solu-

tion, is considered as multiple valued or as restricted to some definite

portion or branch of the curve F(x, y)
= 0. If the results (1) are to

be applied to find the derivative at some point

(XQ) y )
of the curve F(x, y)

= 0, it is necessary
that at that point the denominator F'

y
or F'x should

not vanish.

These pictorial and somewhat vague notions

may be stated precisely as a theorem susceptible
of proof, namely : Let x be any real value of x

such that 1, the equation F(XO , y)
= has a real solution y ;

and 2, the

function F(x, y) regarded as a function of two independent variables

(x, y) is continuous and has continuous first partial derivatives F'x ,
F'
y
in

the neighborhood of (XQ , y ) ;
and 3, the derivative F'

v (x , y ) =?*= does

not vanish for (x , y ) ;
then F(x, y)

= may be solved (theoretically)

as y = $ (x) in the vicinity of x = X
Q
and in such, a manner that

?/
= <(x ),

that <(z) is continuous in x, and that <(a) has a derivative

<'(cc)
=

F^/Fy ;
and the solution is unique. This is the fundamental

theorem on implicit functions for the simple case, and the proof follows.

By the conditions on F^ F^ the Theorem of the Mean is applicable. Hence

F(x, y)
- F(x , y )

= F(x, y) = (hF'x + JcFy)Xo + gh , w + w . (2-

Furthermore, in any square |^|<3, \k]<8 surrounding (x , y )
and suflBciently

small, the continuity of F'a insures |^|<M and the continuity of F^ token with

117
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the fact that Fy(x , y ) 5* insures |Fy|>m. Consider the range of x as furthei

restricted to values such that |x x \<m5/M if m<M. Now consider the value

of .F(x, y) for any x in the permissible interval

and for y = y + S or y = y S. As
j

kF'
y \

> md
but

|
(x x

)
F'x

|

< mS, it follows from (2) that

F(x, y + 5} has the sign of SF^ and F(x, y S)

has the sign of SF^ ;
and as the sign of F'

y
does

not change, F(x, y + 5) and F(x, yQ S) have

opposite signs. Hence by Ex. 10, p. 45, there is

one and only one value of y between y 5 and

2/ + 5 such that JF(x, y) ~ 0. Thus for each x in

the interval there is one and only one y such

that JF(x, y) = 0. The equation JF(x, y) = has a

unique solution near (x , y ).
Let y <p(x) denote the solution. The solution is

continuous at x = x because
|
y y \

< d. If
(a;, y) are restricted to values y = if>(x)

such that F'(x, y) = 0, equation (2) gives at once

dy

hx-y- Ax 0k)

As J^, Fy are continuous and ^ ^ 0, the fraction /c//i approaches a limit and the

derivative ^'(x,,) exists and is given by (1). The same reasoning would apply to

any point x in the interval. The theorem is completely proved. It may be added
that the expression for 0'(x) is such as to show that 4>'(x) itself is continuous.

The values of higher derivatives of implicit functions are obtainable

by successive total differentiation as

= o, (3)

etc. It is noteworthy that these successive equations may be solved for

the derivative of highest order by dividing by F'
y
which has been assumed

not to vanish. The question of whether the function y = < (x) denned

implicitly by F(x, y} has derivatives of order higher than the first

may be seen by these equations to depend on whether F(x, y) has

higher partial derivatives which are continuous in (x, y).
57. To find the maxima and minima of y = <f> (x), that is, to find the

points where the tangent to F(xy y) = is parallel to the z-axis, observe

that at such points y' = 0. Equations (3) give



3(x
2 -

ay] + 3 (y
2 - ax)y' = 0,

dx y
2 ax

dx2 (y
2

ox)
8

To find the maxima or minima of y as a function of x, solve

F'x = = a;
2

ay, JF = = x8 + y
s 3 axy, F' ^ 0.

The real solutions of F'x = and F = are (0, 0) and (j/2 a, J/4 a) of which the

first must be discarded because Fy(Q, 0)
= 0. At (^2 a, "vXi a) the derivatives

.Fy
and F. are positive ;

and the point is a maximum. The curve F = is the

folium of Descartes.

The r61e of the variables x and y may be interchanged if F'x = and

the equation F(x, y)
= may be solved for x = <^(y), the functions

<f>

and
\j/ being inverse. In this way the vertical tangents to the curve

F = may be discussed. For the points of F= at which both F f

x

and F'
y
=

0, the equation cannot be solved in the sense here defined.

Such points are called singular points of the curve. The questions of

the singJilar points of F = and of maxima, minima, or minimax ( 55)
of the surface z = F(x, y) are related. For if F'x = F'

y
= 0, the surface

has a tangent plane parallel to z = 0, and if the condition = F = is

also satisfied, the surface is tangent to the xy-plane. Now if z = F(x, y)

has a maximum or minimum at its point of tahgency with z = 0, the

surface lies entirely on one side of the plane and the point of tangency
is an isolated point of F(x, y) ;

whereas if the surface has a- mini-

max it cuts through the plane 2 = and the point of tangency is not

an isolated point of F(x } y)
= 0. The shape of the curve F in the

neighborhood of a singular point is discussed by developing F(x, y~)

about that point by Taylor's Formula.

For example, consider the curve F(x, y) = x8 + ys x2
j/
2

J (x
2 + y

2
)
= and

the surface z = JF'(x, y). The common rearsolutions of

jF^ = 3x2 -
2xj/

2 - x = 0, Fy
= 3y* - 2x*y - y = 0, F(x, y) = Q

are the singular points. The real solutions of F'x = 0, F'
y
= are (0, 0), (1, 1),

(, )
and of these the first two satisfy F(x, y)

= Q but the last does not. The

singular points of the curve are therefore (0, 0) and (1, 1). The test (34) of 55

shows that (0, 0) is a maximum for z = F(x, y) and hence an isolated point of

F(x, y) = 0. The test also shows that (1, 1) is a minimax. To discuss the curve

F(x, y) = near (1, 1) apply Taylor's Formula.

= F(x, y) = l(8h
z -8hk + Sk2

) + $(6h*- 12h*k - 12M2 + 6F) + remainder

= (3 cos2 $ 8 sin /> cos <j> + 3 sin2
<j>)

+ r (cos
3 2 cos2 sin 2 cos sin2 + sin8

<f>) -\
----

,
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if polar coordinates h = r cos<, k = rsin< be introduced at (1, 1) and r2 be can-

celed. Now for very small values of r, the equation can be satisfied only when

the first parenthesis is very small. Hence the solutions of

3 - 4 sin 2 < =
0, sin2</> = |, or = 24 17J', 0542J',

and + TT,
are the directions of the tangents to .F(x, y) 0. The equation F = is

=
(l 2 sin 2

</>) + r (cos <f> + sin
</>) (1 1 J sin 2 0)

if only the first two terms are kept, and this will serve to sketch F(x, y) = for

very small values of r, that is, for very near to the tangent directions.

58, It is important to obtain conditions for the maximum or minimum

of a function z = /(x, y) where the variables x, y are connected by a

relation F(x, ?/)
= so that & really becomes a function of x alone or y

alone. For it is not always possible, and frequently it is inconvenient,

to solve F(x, y) for either variable and thus eliminate that variable

from = /(, y} by substitution. When the variables x, y in si = /(.*, ?/)

are thus connected, the minimum or maximum is called a constrained

minimum or maximum ; when there is no equation F(.r, ?/)
= between

them the minimum or maximum is called free if any designation is

needed.* The conditions are obtained by differentiating z = /(#> y}

and F(x,y)Q totally with respect to x. Thus

dx dx dy dx ' dx 8x "by dx
'

dfdF dfdF 'd?z nand a fl--p T~ = ^ T~^ Q
>

F =
^ (

5
)dx oy Oy dx dx2 v y

where the first equation arises from the two above by eliminating dy/dx
and the second is added to insure a minimum or maximum, are the con-

ditions desired. Note that all singular points of F(x, y)
= satisfy the

first condition identically, but that the process by means of which it

was obtained excludes such points, and that the rule cannot be expected
to apply to them.

Another method of treating the problem of constrained maxima and
minima is to introduce a multiplier and form the function

z$(x,-y)=f(x,y) + \F(x,y), A a multiplier. (6)

Now if this function z is to have a free maximum or minimum, then

**=/* + A^ = O, *;=/; + XF; = O. (7)

These two equations taken with F = constitute a set of three from



method also rejects the singular points. That this method really deter-

mines the constrained maxima and minima of f(x, ?/) subject to the

constraint F(x, y) = is seen from the fact that if A be eliminated from

[7) the condition/;^' fv F'x = of (5) is obtained. The new method

is therefore identical with the former, and its introduction is more a

matter of convenience than necessity. It is possible to show directly

:hat the new method gives the constrained maxima and minima. For

:he conditions (7) are those of a free extreme for the function $ (x, y}

which depends on two independent variables
(a;, y). Now if the equa-

tions (7) be solved for (x, y), it appears that the position of the maximum
3r minimum will be expressed in terms of A. as a parameter and that

3onsequently the point (x (A), y (A)) cannot in general lie on the curve

F(x, y)
= 0; but if A be so determined that the point shall lie on this

3urve, the function <t>(x, y) has a free extreme at a point for which

F= and hence in particular must have a constrained extreme for the

particular values for which F(x, y)
= 0. In speaking of (7) as the con-

iitions for an extreme, the conditions which should be imposed on

;he second derivative have been disregarded.

For example, suppose the maximum radius vector from the origin to the folium

A Descartes were desired. The problem is to render/(x, y) = a;
2 + y2 maximum

subject to the condition F(x, y) = x3 + y
3 3 axy = 0. Hence

2x + 3X(x
2 -

ay) = 0, 2y + 3\(y
2 -

az) = 0, x3
-f ys - Saxy =

)r 2x-3(2/
2
_ax)-2i/.3(x2-a2/)=:0, x8 + ys ~ 3 axy =

ire the conditions in the two cases. These equations may be solved for (0, 0),

^l|a, l^o), and some imaginary values. The value (0, 0) is singular and X cannot

oe determined, but the point is evidently a minimum of x2 + y
2 by inspection. The

point (1$ a, 1$ a) gives X = 1$ a. That the point is a (relative constrained) maxi-

mum of x2 + y2 is also seen by inspection. There is no need to examine d2
/. In

most practical problems the examination of the conditions of the second order

may be waived. This example is one which may be treated in polar coordinates

by the ordinary methods
;
but it is noteworthy that if it could not be treated that

way, the method of solution by eliminating one of the variables by solving the

3ubic F(x, y) = would be unavailable and the methods of constrained maxima
would be required.

EXERCISES

1. By total differentiation and division obtain dy/dx in these cases. Do not

substitute in (1), but use the method by which it was derived.

(a) ax2 + 2 bxy + cy
2 1 = 0, (p) x* + y* = 4 a?xy, (j) (cos x) (sin y)* = 0,

(5) (x* + j/
2
)2
= 2(x

2 -
s/2), (,) ex + <*> = 2xy, (f) x~ 2y~ 2 = tau-iay.

2. Obtain the second derivative dfy/dx
2

in Ex. 1 (a), (/3), (e), (f) by differen-

tiating the value of dy/dx obtained above. Compare with use of (3).



,72,, H'tjf _ y, H If If 4- fr'jr
3 Prove = y

^ ^ xf y
f
xy ^ ^ x fw

>

dx2

Jf^'

8

4. Find the radius of curvature of these curves :

(a) f + y$ ~ at, E = 3 (axy)%, (|3)
xi + 2/2 = oi, ft = 2 V(x

(7) &2x2 + <5
2
y
2 s= 2

J>
2

, (5) xyz - a2 (a
-

x), (e) (ax)
2 + (fy)

= 1.

5. Find j/', y", y"' in case x3 + ys 3 axy = 0.

6. Extend equations (3) to obtain y'" and reduce by Ex. 3.

7. Find tangents parallel to the x-axis for (x
2 + j/

2
)

2 = 2 a2 (x
2

j/
2
).

8. Find tangents parallel to the j/-axis for (x
2 + y

z + ax)
2 = a? (x

z + y
2
).

9. If 62 < ac in ox'"
1 + 2 &xj/ 4- cyz + /x + #?/ + h = 0, circumscribe about the

curve a rectangle parallel to the axes. Check algebraically.

10. Sketch 8 + j/
8 = x2

?/
2 + \ (x

2 + V2
)
near the singular point (1, 1).

11. Find the singular points and discuss the curves near them :

(a) x3 + y8 = 3 axy, (0) (x
2 + 2/

2
)
2 = 2 a2

(x
2 - y2

),

(r) x4 + l/
4 = 2(x - 2/)

2
, (5) y5 + 2xy2 = x2 + ^4

-

12. Make these functions maxima or minima subject to the given conditions.

Discuss the work both with and without a multiplier :

. . a
,

b A , n .sinxw
(a)
--

(

--
> a tan x + o tan y = c. Ans. - = - .

u cos x D cos y sin y w

(^) xz + y
2

,
ox2 + 2&xj/ + cj/

2 =/. Find axes of conic.

(y) Find the shortest distance from a point to a line (in a plane).

13. Write the second and third total differentials of .F(x, y) = and comparts
with (3) and Ex. 5. Try this method of calculating in Ex. 2,

14. Show that F^dx + F'
ydy

= does and should give the tangent line to

F(x, y} = at the points (, y) if dx = x and dy = 77 y, where
, 77 are the

co5rdinates of points other than (x, y) on the tangent line. Why is the equation

inapplicable at singular points of the curve ?

59. More general cases of implicit functions. The problem, of

implicit functions may be generalized in two ways. In the first place
a greater number of variables may occur in the function, as

F(x, y, *)
=

0, F(x, y, ,-.., w)
=

;

and the question may be to solve the equation for one of the variables

in terms of the others and to determine the partial derivatives of the

chosen dependent variable. In the second place there may be several

equations connecting the variables and it may be required to solve the

equations for some of the variables in terms of the others and tc

determine the partial derivatives of the chosen dependent variables



differentiation and attempted formal solution of the equations for the

derivatives will indicate the results and the theorem under -which the

solution is proper.

Consider the case F(x, y, z)
= and form the differential.

dF(x, y, z)
= F'x dx + F'

y dy + F't d = 0. (8)

If # is to be the dependent variable, the partial derivative of # by x is

found by setting dy = so that y is constant. Thus

are obtained by ordinary division after setting dy = and dx = re-

spectively. If this division is to be legitimate, F'x must not vanish at

the point considered. The immediate suggestion is the theorem : If,

when real values (& , y ) are chosen and a real value # is obtained

from F(z, X
Q)

?/ )
= by solution, the function F(x, y, z) regarded as

a function of three independent variables (x, y, z) is continuous at

and near (x , yQ , ) and has continuous first partial derivatives and

Fg(x , ?/ , )
-

0, then F(x, y, )
= may be solved uniquely for

s = < (x, y) and
</> (x, y) will be continuous and have partial derivatives

(9) for values of (x, y) sufficiently near to (x , y ).

The theorem is again proved by the Law of the Mean, and in a similar manner,

F(x, y, 2)
- F(x , y ,

z
)
= F(x, y, z)

= (hF^ + kF^ + ZF.% + *, +

As F^, F^, Fg are continuous and F'z (x , y ,
z

) -^ 0, it is possible to take S so

small that, when | h\ < 5,
| k\ < 8,

\ l\
< 5, the derivative

|

F'
z

\

> m and
|

F'x
\

< M, |^|< M-

Now it is desired so to restrict h, k that 8F^ shall determine the sign of the

parenthesis. Let

|- |<im5/M, {y-y^^mS/fji, then
\h

and the signs of the parenthesis for (x, y, z + 8) and (x, y, 8) Will be opposite

since
|

JF
z'|>m. Hence if (x, y) be held fixed, there is one and only one value of z

for which the parenthesis vanishes between z + S and z 8. Thus z is defined as a

single valued function of (x, y) for sufficiently small values of h = x x
,
k = y y .

Also

when fc and A respectively are assigned the values 0. The limits exist when h = or

k = 0. But in the first case I = Az = A^2 is the increment of z when x alone varies,

and in the second case I = Az =A
tf
z, The limits are therefore the desired partial

derivatives of z by x and y. The proof for any number of variables would bq

similar.



may be solved for any one of the variables, and formulas like (9) will

express the partial derivatives. It then appears that

\ /dx\ dz dx F: Fl .

and L
f oX

in like manner. The first equation is in this case identical with (4)

of 2 because if y is constant the relation F(x, y, z)
= reduces to

G(x, s)
= 0. The second equation is new. By virtue of (10) and simi-

lar relations, the derivatives in (11) may be inverted and transformed

to the right side of the equation. As it is assumed in thermodynamics
that the pressure, volume, and temperature of a given simple substance

are connected by an equation F(p, v, T) = 0, called the characteristic

equation of the substance, a relation between different thermodynamic

magnitudes is furnished by (11).

60. In the next place suppose there are two equations

F(x, y, u, v)
= 0, G (x, y, u, v}

=
(12)

between four variables. Let each equation be differentiated.

dF = = F'xdx -(- F'ydy -f- Ftfu + F'vdv,

dG = Q= G'xdx + G'
ydy -f- G'udu + G',dv. (13)

If it be desired to consider u, v as the dependent variables and x, y as

independent, it would be natural to solve these equations for the differ-

entials du and dv in terms of dx and dy ;
for example,

,

^ }
F;LG;,-F;,G:V "U

The differential dv would have a different numerator but the same de-

nominator. The solution requires F'u G'v F'v G'u 3= 0. This suggests the

desired theorem : If (w ,
v

)
are solutions of F 0, G = corresponding

*
(
x
o> y*)

an(l^F*Gv Fv&u d.es not vanish for the values (x , y ,
u

,
v

),

the equations F = 0, G = may be solved for u =
</>(z, y), v

*j/(x, y)

and the solution is unique and valid for
(a:, y) sufficiently near (x , ?;)

it being assumed that jPand G regarded as functions in four variables

are continuous and have continuous first partial derivatives at and near

(a; , y ,
u

,
v

) ; moreover, the total differentials du, dv are given by (13')

and a similar equation.



du(x, y) du (x, v) dx(u, v) dx (u, y)
dx

'

dx
'

du
'

du
"

^

of tc by x or of x by u will naturally depend on whether the solution

for u is in terms of (x, y) or of (x, v), and the solution for a? is in (u, v~)

or (%, y). Moreover, it must not be assumed that du/dx and dx/du are

reciprocals no matter which meaning is attached to each. In obtaining
relations between the derivatives analogous to (10), (11), the values of

the derivatives in terms of the derivatives of F and G may be found or

the equations (12) may first be considered as solved.

Thus if u =
<J> (x, y), du =

<f>xdx + <j>'dy,

v =
\f/ (x, y), dv =

\f/xdx + ^ydy.

Then dx = , dy =

. dx ^u dx <t>,,and =
, =. , etc.

Hence ^ +^ = i, (15)
dx du dx dv

as may be seen by direct substitution. Here
,
v are expressed in terms of x, y for

the derivatives ux ,
vx ;

and x, y are considered as expressed in terms of w, v for the

derivatives x^, x'v .

61. The questions of free or constrained maxima and minima, at any
rate in so far as the determination of the conditions of the first order is

concerned, may now be treated. If F(x, y, z)
= is given and the max-

ima and minima of z as a function of (x, y) are wanted,

K(*> y, *)
=

0, F; (x, y, z)
=

0, F(x, y, z)
= (16)

are three equations which may be solved for x, y, z. If for any of these

solutions the derivative F'z does not vanish, the surface a =
<j> (x, y) has

at that point a tangent plane parallel to z and there is a maximum,

minimum, or minimax. To distinguish between the possibilities further

investigation must be made if necessary ;
the details of such an investi-

gation will not be outlined for the reason that special methods are

usually available. The conditions for an extreme of u as a function of

(x, y) defined implicitly by the equations (13') are seen to be

The four equations may be solved for x, y, u, v or merely for x, y.



L xt. ^^ ^ 5 y, <*^
euu-

ject either to one equation P(aj, y, 2)
= or two equations F(o;, y, 2)

= 0,

G(x, ?/,#)
= of constraint are desired. Note that if only one equation

of constraint is imposed, the function u =f(x, y, ) becomes a function,

of two variables
;
whereas if two equations are imposed, the function n

really contains only one variable and the question of a minimax does

not arise. The method of 'multipliers is again employed. Consider

or <J>=/4- AF+ /j,G (18)

as the case may be. The conditions for a free extreme of <J> are

<j>
/

*&' $' = T19^
as > y > z \ /

These three equations may be solved for the coordinates x, y, z which

will then be expressed as functions of A or of A and
/u, according to the

case. If then A or A and /* be determined so that (x, y, z) satisfy F=
or F = and G = 0, the constrained extremes of u =f(x, y, z) will be

found except for the examination of the conditions of higher order.

As a problem in constrained maxima and minima let the axes of the section of

an ellipsoid by a plane through the origin be determined. Form the function

$ = x2 + y2 + z2 + X (-n +
y-

-f- ^ -
l) + M(& + my + 712)

\Cl" C j

by adding to z2 + y
2 + z2

,
which is to be made extreme, the equations of the ellipsoid

and plane, which are the equations of constraint. Then apply (19). Hence

taken with the equations of ellipsoid and plane will determine
cc, y, z, X, /*. If the

equations are multiplied by a, y, z and reduced by the equations of plane and

ellipsoid, the solution for X is X = r2 = (x
2 + y

2 + z2). The three equations
then become

1 /j.la
z

Hence -- + - + -- = determines r2 . (20)
p2 _ O2

j.2 52 r2 C2
\ /

The two roots for r are the major and minor axes of the ellipse in which the plane
cuts the ellipsoid. The substitution of

, y, z above in the ellipsoid determines

al

Now when (20) is solved for any particular root r and the value of n is found "by

(21), the actual coordinates x, y, z of the extremities of the axes may be found.



1. Obtain the partial derivatives of z by x and y directly from (8) and not by
substitution in (9). Where does the solution fail ?

X2
?
/2 Z2 7

<
a

)
- + & + -5

= *' <# z + v + * = .

a" o2 c2 zj/z

(7) (z
2 + 3/

2 + z2
)
2 = a2x2 + &V + c222

, (8) xyz
- c.

2. Find the second derivatives in Ex. 1 (a), (/3), (3) by repeated differentiation.

3. State and prove the theorem on the solution of F(x, y, z, u)
= 0.

4. Show that the product apET of the coefficient of expansion by the modulus
of elasticity ( 52) is equal to the rate of rise of pressure with the temperature if

the volume is constant.

5. Establish the proportion ES :ET= Cp : Cv (see 52).

T , , . A , 8uBx8ydz , ,
6. If F(x. y. z, u) = 0. show ---- =

1,
-- = 1.v ' ' ' ' '

Sxdydzdu 'ax du

7. Write the equations of tangent plane and normal line to -F(z, y, z)
= and

find the tangent planes and normal lines to Ex. 1
(/3), (S) at x = 1, y = 1.

8. Find, by using (13), the indicated derivatives on the assumption that either

x, y or u, are dependent and the other pair independent :

(or) w6 + v5 + x5 -3j/ = 0, u8 + v8 + 3/
8 + 3x = 0, u^ u'

y , u^, v

(/3)
x + y + u + v = a, x2 + j/

2 + w2 + v2 = 6, <, <, v
y', <^

(y) Find dy in both cases if x, v are independent variables.

9. Prove + = if F(x, y, u, v)
= 0, <?(x f y, w, )

= 0.
ox &o

10. Find du and the derivatives u^u^ u'z in case

2 + 2/
2 + 2 = w, xy w2 + 2 + w2

, xj/ = u

11. If .F(x, y, )
= 0, G(x, j/, z)

= define a curve, show that

(F'yG'z -F'z G'v\ (F'XG'X -F'XG'Z\ (F^-Ffi^
is the tangent line to the curve at (x , y ,

z ). Write the normal plane.

12. Formulate the problem of implicit functions occurring in Ex. 11.

13. Find the perpendicular distance from a point to a plane.

14. The sum of three positive numbers is x + y + z = 2V", where N is given.

Determine x, y, z so that the product xpyiz
r shall be maximum if jp, g, r are given.

Ans. x:y :Z: N = p :q-.r:(p } q + r).

15. The sum of three positive numbers and the sum of their squares are both

given. Make the product a maximum or minimum.

16. The surface (x
2+y2+22

)
2 =oa;2+&y2 +C2:

2 is cut by the plane lx+my+nz=0.
. 2

Find the maximum or minimum radius of the section. Ans. > - = 0.

4 r
2
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17. In case F(x, y, w, v)
= 0, G (x, y, w, v) consider the differentials

. dv ,
,

8v , , 6x ,
,
5z , , dy ,

,
8y ,

dv = ax -i
-- ay, ax aw -f- au. ay = aw H-- dv.

ox 8y du dv du Bv

Substitute in the first from the last two and. obtain relations like (15) and Ex. 9.

18. If /(x, j/, z) is to be maximum or minimum subject to the constraint

F(x, y, z)
= 0, show that the conditions are that dx : dy : dz = : : are indeter-

minate when their solution is attempted from

f'xdx + f'vdy + f'jiz - and F'xdx, + Ffiy + F'
zdz = 0.

From what geometrical considerations should this be obvious ? Discuss in connec-

tion with the problem of inscribing the maximum rectangular parallelepiped in

the ellipsoid. These equations,

<fe : dy : dz =fyF'z -fzF'v :fzF'x-f^ :f'xF'y -f'uF'x = 0:0:0,

may sometimes be used to advantage for such problems.

19. Given the curve F(x, y, z)
= 0, (?{x, y, z)

= 0. Discuss the conditions for

the highest or lowest points, or more generally the points where the tangent is

parallel to z = 0, by treating u = /(x, y, z) = z as a maximum or minimum sub-

ject to the two constraining equations F = 0, G = 0. Show that the condition

F^G'y
= F'

y
G'x which is thus obtained is equivalent to setting dz = in

Fjte + Fydy + F'
zdz = and G^dx + G'

ydy + G'zdz = 0.

20. Find the highest and lowest points of these curves :

(a) K2 + y2 = z2 -t- 1, * + y + 2z = 0, (0) 9 +
V-

-t-
~ = 1, to + my + nz - 0.

a/ cr cj

21. Show that F'xdz + F'
udy + F'zdz

-
0, with dx = f

-
x, dy = 17 y, dz = $ 2,

is the tangent plane to the surface F(x, y, z)
= at (x, y, z). Apply to Ex. 1.

22. Given F(x, y, w, v)
= 0, (?(x, y, u, v)

= 0. Obtain the equations

8F
_ ___Q 4. 4. - n

Sw 8x SD 9*
'

8y du 8y &o dy
'

4.-0
,8z 9u 8x SD 9cc

'

Sy Su dy dv dy

and explain their significance as a sort of partial-total differentiation of F =
and G = 0. Find u'x from them and compare with (13'). Write similar equations
where x, y are considered as functions of (u, v). Hence prove, and compare with

(15) and Ex. 9,

du Sy &v
dy_ _ 1

du dx &v dx __

8y du dy 8v
'

dy du. dy dv

23. Show that the differentiation with respect to x and y of the four equations
nnrto-r- "RVv 99 laorlc trv oirrVit d/->na+i<-inc! fvnm xrrTii/i'K <->>Q a?<li+ Aomtrnt-i-rrnc,



ana 01 tnen msu aenvauves is assumed, uuuugiiuui/ tins tusuuss.i<ju

and will not be mentioned again. Suppose that there were a relation

F(u, v)
= or F(<f>, \j/)

between the- functions. Then

The last two equations arise on differentiating the first with respect to

x and y. The elimination of F'^ and F'v from these gives

</>*
'

d(x, y) \x,yj

The determinant is merely another way of writing the first expression ;

the next form is the customary short way of wilting the determinant

and denotes that the elements of the determinant are the first deriva-

tives of u and v with respect to x and y. This determinant is called the

functional determinant or Jacobian of the functions u, v or <, (j/
with

respect to the variables x, y and is denoted by /. It is seen that : If

there is a functional relation F(<f>, \j/)
= between two functions, the

Jacobian of the functions vanishes identically, that is, vanishes for all

values of the variables (x, ?/)
under consideration.

Conversely, if the Jacobian vanishes identically over a two-dimensional

region for (x, y), the functions are connected by a functional relation.

For, the functions u, v may be assumed not to reduce to mere constants

and hence there may be assumed to be points for which at least one of

the partial derivatives ^, <f>y, \j/^,, ty'y
does not vanish. Let $'x be the

derivative which does not vanish at some particular point of the region.

Then u =
<f>(x, y) may be solved as x = x(u , ?/)

in tlie vicinity of that

point and the result may be substituted in v.

8v . , dv . ., .,dx, .,

-n j.

But Ty
=

by (11) and substitution. Thus dv/dy = J/fe ;
and if / = 0, then

dv/dy = 0. This relation holds at least throughout the region for which

^ =
0, and for points in this region dv/dy vanishes identically. Hence

v does not depend on y but becomes a function of u alone. This es-

tablishes the fact that v and u are functionally connected.



= ^ (, & *) v = ^ (x > y> *) w = x (
x

> y> *) (
25

)

If there is a functional relation F(u, v, w~)
= 0, differentiate it.

or

4- F'y' =i^ K>Ay >

' ifASS J

^, ^) $ (w, t

X'

=
0, (26)

= J = 0.

d(x,y,) d(x,y,z)

The result is obtained by eliminating F^, F'v ,
F'w from the three equations.

The assumption is made, here as above, that F^, Pv', F'w do not all vanish
;

for if they did, the three equations would not imply J= 0. On the

other hand their vanishing would imply that F did not contain u, v, w,

as it must if there is really a relation between them. And now con-

versely it may be shown that if J vanishes identically, there is a func-

tional relation between u, v, w. Hence again the necessary and sufficient

conditions that the three functions (25) be functionally connected is that

their Jacobian vanish.

The proof of the converse part is about as before. It may be assumed that at

least one of the derivatives of u, v, w or #, y>, x by #? Vi K does not vanish. Let

<f>'y. ji be that derivative. Then it =
<f> (a;, y, z) may be solved as x = w (u, y, z)

and the result may be substituted in v and w as

Next the Jacobian of v and w relative to y and z may be written as

8v Bw

dz ~dz

,,<&
^~ ' Xz

ry + *',

As J" vanishes identically, the Jacobian of v and w expressed as functions of y, z,

also vanishes. Hence by the case previously discussed there is a functional rela-

tion F(v, w) = independent of y, z
;
and as w, w now contain u, this relation maj

be considered as a functional relation between
, v, w.

63. If in (22) the variables u, v be assigned constant values, the

equations define two curves, and if u, v be assigned a series of such

values, the equations (22) define a network of curves in some part of the



X

for which u is constant
;
the set of v-curves coincides with the set of

^-curves and no true network is formed. This

case is uninteresting. Let it be assumed that

the Jacobian does not vanish identically and

even that it does not vanish for any point (x, y)

of a certain region of the a;?/-plane. The indi-

cations of 60 are that the equations (22) may
then be solved for x, y in terms of u, v at any

point of the region and that there is a pair of

the curves through each point. It is then proper to consider (u, v] as

the coordinates of the points in the region. To any point there corre-

spond not only the rectangular coordinates (x, y~)
but also the curvi-

linear coordinates (u, v").

The equations connecting the rectangular and curvilinear coordinates

may be taken in either of the two forms

u = <(x > V)> v
il/(x, y) or x =f(u, v), y = g(u, v), (22')

each of which are the solutions of the other. The Jacobians

J u, v
j (27)

are reciprocal each to each
;
and this rela-

tion may be regarded as the analogy of

the relation (4) of 2 for the case of

the function y = <j> (x) and the solution

x = f(y) = <t>~
l

(y) in the case of a single

variable. The differential of arc is X

dsz= dxz+ dif= Edu?+ 2 Fdudv + Gdv*, (28)

8aj
' ^ .^, L. ZJ?L V f* / ^L. \ Ji-_ I ^ I

8u do 8udv y * ^ ' * fl" '

The differential of area included between two neighboring w-curves and

two neighboring v-curves may be written in the form

dA = dudv = dudv -5-

u, v \x, y

These statements will now be proved in detail*

(29)



^ 1

1

= 1,

where the rule for multiplying determinants has been applied and the reduction

has been made by (15), Ex. 9 above, and similar formulas. If the rule for multi-

plying determinants is unfamiliar, the Jacobians may be written and multiplied

without that notation and the reduction may be made by the same formulas as

before.

To establish the formula for the differential of arc it is only necessary to write

the total differentials of dx and dy, to square and add, and then collect. To obtain

the differential area between four adjacent curves consider the triangle determined

by (u, t>), (u + du, v), (u, v + dv), which is half that area, and double the result.

The determinantal form of the area of a triangle is the best to use.

<U=2.-
dvv

dx , 8y ,

du du
8u du

dx , dy _
du dv

dv dv

dx 8y

du du

8x
dy_

dv dv

dudv.

The subscripts on the differentials indicate which variable changes ; thus d^x, duy
are the coordinates of (u + du, v) relative to (u, v). This method is easily extended

to determine the analogous quantities in three dimensions or more. It may be

noticed that the triangle does not look as if it were half the area (except for infin-

itesimals of higher order) in the figure ;
but see Ex. 12 below.

It should be remarked that as the differential of area dA is usually

considered positive when du and du are positive, it is usually better to

replace J in (29) by its absolute value. Instead of regarding (u, v) as

cuivilinear coordinates in the xy-pl&ne, it is possible to plot them in

their own uv-plane and thus to establish by (22 ')
a transformation of

the xy-plane over onto the w-plane. A small area in the xy-~p\a,ne then

becomes a small area in the wy-plane. If / > 0, the transformation is

called direct
;
but if / < 0, the transformation is called perverted. The

significance of the distinction can be made clear only when the ques-
tion of the signs of areas has been treated. The transformation is called

conformed when elements of arc in the neighborhood of a point in the

xy-plane are proportional to the elements of arc in the neighborhood of

the corresponding point in the wu-plane, that is, when

= dx* = k (di? -f dv2
)
= kd<r

2
. (30)



angle similar to it, and hence angles will be unchanged by the transfor-

mation. That the transformation be conformal requires that F = and

E = G. It is not necessary that E = G k be constants
;
the ratio of

similitude may be different for different points.

64. There remains outstanding the proof that equations may be solved

in the neighborhood of a point at which the Jacobian does not vanish.

The fact was indicated in 60 and used in 63.

THEOREM. Let p equations in n -f- p variables be given, say,

=
0, (31)

Let the p functions be soluble for x
10 , x^, ,

x
pg
when a particular set

^(P+DO' '"> X(n+P)
f the other n variables are given. Let the functions

and their first derivatives be continuous in all the n -+-p variables in the

neighborhood of
(jclo , x^, ,

a?
(n+jp)o).

Let the Jacobian of the functions

with respect to x
l}
x
2 , ,

xp ,

*;

oxn 00^

(32)

'"> X
(n+j)o

fail to vanish for the particular set mentioned. Then the p equations

may be solved for the p variables xv a;
2 , ,

x
p)

and the solutions will be

continuous, unique, and differentiable with continuous first partial

derivatives for all values of xv+1 , ,
xn+p sufficiently near to the

values x x

THEOREM. The necessary and sufficient condition that a functional

relation exist between p functions of p variables is that the Jacobian

of the functions with respect to the variables shall vanish identically,

that is, for all values of the variables.

The proofs of these theorems will naturally be given by mathematical induction.

Each of the theorems has been proved in the simplest cases and it remains only to

show that the theorems are true for p functions in case they are for p 1. Expand
the determinant <7.

minors.

For the first theorem J ^ and hence at least one of the minors J^ ,
Jp must

^ail to vanish. Let that one be Jv which is the Jacobian of F
2 , ,

Ff with respect
to x

2 ,
. .

., Xf. By the assumption that the theorem holds for the case p 1, these

p 1 equations may be solved for x2 , ,
xp in terms of the n + 1 variables x

ls



Xp +1 , , XT, + j> ,
and the results may be substituted in 1^ . It remains to show that

F
l
= Q is soluble for xr Now

S = ffi + ^2a + ... + i S,, mdx
l

5z1 Sx2 8x
t 8Xp dx

l

'

For the derivatives of x2 , , Xp with respect to x
l
are obtained from the equations

= !^ + ^^2 + ... + Mjf^ = ^' + ^?^ + ... +^^
5x

l
5x2 dx

t dXj, SXj
' '

a
1

Sx2 dXj Sxp 5x
t

resulting from the differentiation of Fz
= 0, , Fj,

= with respect to xr The

derivative 8X{/dxl
is therefore merely /{//! ,

and hence dF^dx^ = .///j and does

not vanish. The equation therefore may be solved for x
l
in terms of Xp + i, ,

xn+p ,
and this result may be substituted in the solutions above found for x

2 , -, xp .

Hence the equations have been solved for x
t ,

x
2 , ,

xp in terms of
x,, +1 , ,

xn +p
and the theorem is proved.

For the second theorem the procedure is analogous to that previously followed.

If there is a relation -F(ux , ,
up)

= between the p functions

u
i
=

<t>i(
xu ) Zp),

' UP = <t>i>(
x
i, , XP),

differentiation with respect to x
t , ,

xp gives p equations from which the deriva-

tives of F by-it, ,
. Up may be eliminated and J( '} = becomes the con-

\XI,---,XP/
dition desired. If conversely this Jacobian vanishes identically and it be assumed

that one of the derivatives of U{ by a//, say du^/dx^ does not vanish, then the solution

KJ
= w(u1 ,

x
2 , , Xj,) may be effected and the result may be substituted in w

2 ,

,
i(p . The Jacobian of w2 , ,

up with respect to 2 , ,
xp will then turn out

to be J -r- 6w
1/5x1

and will vanish because / vanishes. Now, however, only p 1

functions are involved, and hence if the theorem is true for p 1 functions it must

be true for p functions.

EXERCISES

1. If u = ax + by + c and v a'x + b'y + c' are functionally dependent, the

lines u = and v are parallel ;
and conversely.

2. Prove x + y + z, xy + yz + zx, x2 + y2 + z2 functionally dependent.

3. If u = ax + by + cz + d, v = a'x + b'y + c'z + <f, w = a"x + Vy + c"z + d"

are functionally dependent, the planes =
0,

= 0, w = are parallel to a line.

4. In what senses are and $' of (24') and ! and - of (32') partial or total

8y
v

dx.^ dxl

^ '

derivatives ? Are not the two sets completely analogous ?

0. Solve v = ty and w x for y and z, substi-

T

X,

5. Given (26), suppose
I Z f^Z

tute in u = 0, and prove du/dx = J -s-

6. If u = u (x, y),
= v (x, y), and x = x (f , *;), y = y (, j), prove

State the extension to any number of variables. How may (27') be used to prove
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volume in space 'with curvilinear coordinates u, u, w = consts.

8. In what parts of the plane can u ?=
2 + j/

2
,
v = xy not be used as curvi-

linear coSrdinates ? Express ds2 for these coordinates.

9. Prove that 2w = x2 y2 ,
v = xy is a conformal transformation,

W V
10. Prove that x = > y = is a conformal transformation.

u2 + v2 u2 + v2

11. Define conformal transformation in space. If the transformation

x = au + bv + cio, y afu + &'i> + c'w, z = a"u + b"v + c"w

la conformal, is it orthogonal ? See Ex. 10 (f), p. 100.

12. Show that the areas of the triangles whose vertices are

(u, u), (u + du, v), (u, v + dv) and (u + du, v + dv), (u + du, v), (u, v + du)

are infinitesimals of the same order, as suggested in 63.

13. Would the condition JP= in (28) mean that the set of curves u = const,

were perpendicular to the set v = const. ?

14. Express 2S, JP, G in (28) in terms of the derivatives of w, v by x, y.

15. If x = 0(s, t), y = \{/(s, t), z = x(*j are the parametric equations of a

surface (from which s, t could be eliminated to obtain the equation between

X, y, z), show

and find
8x \ 3, * / \ s, t

65. Envelopes of curves and surfaces. Let the equation F(x, y, <x)
=

be considered as representing a family of curves where the different

curves of the family are obtained by assigning different values to the

parameter a. Such families are illustrated by

(x of + /= 1 and ax + y/a = 1, (33)

which are circles of unit radius centered on the cc-axis and lines which

cut off the area a2 from the first quadrant. As a changes, the circles

remain always tangent to the two lines y = 1 and

the point of tangency traces those lines. Again, as

a changes, the lines (33) remain tangent to the hyper-
bola xy = k, owing to the property of the hyperbola
that a tangent forms a triangle of constant area with

the asymptotes. The lines y = 1 are called the -

envelope of the system of circles and the hyperbola

xy = k the envelope of the set of lines. In general, ifthere is a curve

to which the curves of a family F(x, y, a) are tangent and if the

point of tangency describes that curve as a varies, the curve w called
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the envelope (or part of the envelope if there are several such curves)

of the family F(r, y, )
= 0. Thus any curve may be regarded as the

envelope of its tangents or as the envelope of its circles of curvature.

To find the equations of the envelope note that by definition the

enveloping curves of the family F(;r, y, #;)
= are tangent to the envelope

and that the point of tangency moves along the envelope as a varies.

The equation of the envelope may therefore be written

x = <(a), y = $(<*) with F(<j>, $, a)
=

0, (34)

where the first equations express the dependence of the points on the

envelope upon the parameter a and the last equation states that each

point of the envelope lies also on some curve of the family F(x, y, #) = 0.

Differentiate (34) with respect to a. Then

W(aO + W(*) + *;=<>. (35)

STow if the point of contact of the envelope with the curve F is an

ordinary point of that curve, the tangent to the curve is

Ffa-xJ + F^-yJ^O; and F^' + F^' = 0,

since the tangent direction dy : dx = <// : <' along the envelope is by
definition identical with that along the enveloping curve; and if the

point of contact is a singular point for the enveloping curve, F'x = F'
y

0.

Hence in either case F'a = 0.

Thus for points on the envelope the two equations

F(x, y, )
= 0, F&, y, )

=
(36)

are satisfied and the equation of the envelope of the family F= maij

be found by solving (36) to find the parametric equations x = <(<z),

y \fs (a) of the envelope or by eliminating a between (36) to find the

equation of the envelope in the form <3> (x, ?/)
= 0. It should be remarked

that the locus found by this process may contain other curves than the

envelope. For instance if the curves of the family F = have singular

points and if x = <
(a), y = \j/ (a) be the locus of the singular points

as a varies, equations (34), (35) still hold and hence (36) also. The

rule for finding the envelope therefore finds also the locus of singular

points. Other extraneous factors may also be introduced in performing
the elimination. It is therefore important to test graphically or analyt-

ically the solution obtained by applying the rule.



But as a second example consider ax + y/a 1. Here

F(x, y, a) = ax, + y/a -1 = 0, F'a = x - y/a- = 0.

The solution is y = a/2, x = l/2<r, which gives xy \. This is the envelope; it could

not be a locus of singular points of F = as there are none. Suppose the elimina-

tion of a be made by Sylvester's method as

-y/az + 0/<r + x + Qa =
0/a

2 -y/a + + xa =
y/az

I/a- + x + Oa =
0/cr

and

y o x

-y
y I x

y -I

= 0;

the reduction of the determinant gives xy (xy 1)
= as the eliminant, and con-

tains not only the envelope 4x?/ = 1, but the factors x = and y = which are

obviously extraneous.

As a third problem find the envelope of a line of which the length intercepted

between the axes is constant. The necessary equations are

Z- da + ^ dj3 = 0, ada + BdB = 0.

Two parameters a, p connected by a relation have been introduced; both equations
have been differentiated totally with respect to the parameters ;

and the problen?

is to eliminate a, /3, da, d/3 from the equations. In this case it is simpler to carry

both parameters than to introduce the radicals which would be required if only
one parameter were used. The elimination of da, dp from the last two equations

gives x : y = a8
:
/3
8 or 3/x : "\/y = a : /3. From this and the first equation,

1
and hence x? + yf =

66. Consider two neighboring curves of F(x, y, a)
= 0. Let (XQ , y )

be an ordinary point of a = a
fl

and
(a; + ax, yQ + dy) of + da. Then

F(x + d, y + dy, + der)
-

F(a? , y , ?)

= F'xdx + l?;dy + F&e = (37)

holds except for infinitesimals of higher order. The distance from the

point on a
fl

-f- dec to the tangent to a
Q
at (x , y )

is

F'da; + .F'fZ?/
,

**> '__tf / .^_ .._

"

4-
i

(38)

3xcept for infinitesimals of higher order. This distance is of the first

Drder with da, and the normal derivative doc/dn of 48 is finite except

when F'a = 0. The distance is of higher order than, da, and dcc/dn is

infinite or dn/doc is zero when F'a 0. It appears therefore that the

envelope is the locus ofpoints at which the distance between two neigh-

boring curves is of higher order than dec. This is also apparent geomet-

rically from the fact that the distance from a point on a curve to the



curves of the family and is not an envelope but an extraneous tact

in exceptional cases this locus is an envelope.

If two neighboring curves F(x, y, a) 0, F(x, y, a + Aa) = in1

sect, their point of intersection satisfies both of the equations, and hei

also the equation

[F(x, y, a + A*) -F(x, y, )]
= ^(, y, <x + Oka) = 0.

If the limit be taken for Act == 0, the limiting position of the intere

tion satisfies F'a = and hence may lie on the envelope, and will lie

the envelope if the common point of intersection is remote from singu

points of the curves F(x, y, a)
= 0. This idea of an envelope as

limit of points in which neighboring curves of the family intersect

valuable. It is sometimes taken as the definition of the envelope. I

unless imaginary points of intersection are considered, it is an ina

quate definition
;
for otherwise y = (x a)

8 would have no enveL

according to the definition (whereas y = is obviously an envelope)
a curve could not be regarded as the envelope of its osculating circL

Care must be used in applying the rule for finding an envelope. Otherwise

only may extraneous solutions be mistaken for the envelope, but the envelope i

be missed entirely. Consider

y sinorx = or a x-1 sin-1 y = 0,
'

where the second form, is obtained by solution and contains a multiple val

function. These two families of curves are identical, and it is geometrically cl

that they have an envelope, namely y = 1. This is precisely what would

found on applying the rule to the first of (39) ;
but if the rule be applied to

second of (39), it is seen that F^ = 1, which does not vanish and hence indicate*

envelope. The whole matter should be examined carefully in the light of imp!

functions.

Hence let F(x, y, a) = be a continuous single valued function of the ti

variables (x, y, a) and let its derivatives F^ F'
y ,

F'a exist and be continuous. C

aider the behavior of the curves of the family near a point (z , y )
of the curve

a = cr provided that (z , yQ) is an ordinary (nonsingular) point of the curve

that the derivative F'a (x , y , Q) does not vanish. As F'a & and either F'x
or F'

y jt for (z , j/ , ),
it is possible to surround (x , y )

with a region so si

that F(a;, y, a) = may be solved for a =/(x, y) which will be single valued

differentiable
;
and the region may further be taken so small that F^. or F' remi

different from throughout the region. Then through every point of the rej

there is one and only one curve a =/(x, y) and the curves have no singular po
within the region. In particular no two curves of the family can be tangen
each other within the region.



traverses the region be x =
<j> (t), y = f (). Then

a (t)
= /(* (t), f ()), cr'(')

= />'(*) + /,y().

Along any curve a =/(x, y) the equation /^cix -\-fvdy = holds, and if x = </>(),

/ = ^ (()
be tangent to this curve, dy dx, = ^' :

<j>'
and a'(t)

= or a = const.

Hence the only curve which has at each point the direction of the curve of the

tamily through that point is a curve which coincides throughout with some curve

jf the family and is tangent to no other member of the family. Hence there is no

snvelope. The result is that an envelope can be present only when F'a = or when

F, = Fy 0, and this latter case has been seen to be included in the condition

F'a = 0. If F(x, y, a) were not single valued but the branches were separable, the

same conclusion would hold. Hence in case F(x, y, a) is not single valued the loci

yver which two or more values become inseparable must be added to those over

which F'a = in order to insure that all the loci which may be envelopes are taken

nto account.

67. The preceding considerations apply with, so little change to other

jases of envelopes that the facts will merely be stated without proof.

Consider a family of surfaces F(x, y, x, a, /?)
= depending oil two

parameters. The envelope may be defined by the property of tangency
is in 65

;
and the conditions for an envelope would be

F(x,y,*,a,p) = Q, ^ =
0, *<>. (40)

rhese three equations may be solved to express the envelope as

parametrically in terms of
, /3 ;

or the two parameters may be elimi-

lated and the envelope may be found as $(#, y, z)
= 0. In any case

extraneous loci may be introduced and the results of the work should

;herefore be tested, which generally may be done at sight.

It is also possible to determine the distance from the tangent plane
)f one surface to the neighboring surfaces as

F'xdx + F'ydy + Jfrto = F'ada + F^dft = ^ ._

V*? + *?+*? -VF^+Jf+J^
ind to define the envelope as the locus of points such that this distance

s of higher order than
\dcc\ + \dfi\.

The equations (40) would then also

'ollow. This definition would apply only to ordinary points of the sur-
!

aces of the family, that is, to points for which not all the derivatives

?x, Fy, F'z vanish. But as the elimination of <x, /? from (40) would give

m equation which included the loci of these singular points, there

vould be no danger of losing such loci in the rare instances where they,

oo, happened to be tangent to the surfaces of the family.



ana would, snow tnat no envelope coma exist in regions wnere no singular pi

occurred and -where either F'a or F^ failed to vanish. This work could be b

either on the first definition involving tangency directly or on the second deflni

which involves tangency indirectly in the statements concerning infinitesima

higher order. It may be added that if F(x, y, z, or, j8)
= were not single val

the surfaces over which two values of the function become inseparable shoul

added as possible envelopes.

A family of surfaces F(x, y, z, a)
= depending on a single pai

eter may have an envelope, and the envelope is found from

F(x, y, , a)
=

0, F(x, y, z, a}
=

by the elimination of the single parameter. The details of the deduc

of the rule will be omitted. If two neighboring surfaces intersect,

limiting position of the curve of intersection lies on the envelope

the envelope is the surface generated by this curve as a varies,

surfaces of the family touch the envelope not at a point merely

along these curves. The curves are called characteristics of the fan

In the case where consecutive surfaces of the family do not intei

in a real curve it is necessary to fall back on the conception of in

naries or on the definition of an envelope in terms of tangenc;

infinitesimals
;

the characteristic curves are still the curves a

which the surfaces of the family are in contact with the envelope

along which two consecutive surfaces of the family are distant i

each other by an infinitesimal of higher order than da.

A particular case of importance is the envelope of a plane w
depends on one parameter. The equations (42) are then

Ax + By + Ca + D = 0, A 'x + B'y + C'z + D' = 0,

where A, B, C, D are functions of the parameter and differentiE

with respect to it is denoted by accents. The case where the j

moves parallel to itself or turns about a line may be excluded as tri

As the intersection of two planes is a line, the characteristics oi

system are straight lines, the envelope is a ruled surface, and a $

tangent to the surface at one point of the lines is tangent to the su'i

throughout the whole extent of the line. Cones and cylinders are e:

pies of this sort of surface. Another example is the surface envel

by the osculating planes of a curve in space ;
for the osculating I

depends on only one parameter. As the osculating plane ( 41) ma

regarded as passing through three consecutive points of the curvej

consecutive osculating planes may be considered as having two con:

live points of the curve in common and hence the characteristic!



plane which depends on a single parameter are called developable surfaces.

A. family of curves dependent on two parameters as

F(x, y, z, a, /?)
=

0, G(x, y, z, a, /?)
=

(44)

is called a congruence of curves. The curves may have an envelope, that

is, there may be a surface to which the curves are tangent and which

naay be regarded as the locus of their points of tangency. The envelope
Is obtained by eliminating a, /3 from the equations

^=0, =
0, F'aG^-F;G = 0. (45)

Io see this, suppose that the third condition is not fulfilled. The equa-

tions (44) may then be solved as a = f(x, y, z), ft
= g(x, y, z). Reason-

ing like that of 66 now shows that there cannot possibly be an

envelope in the region for which the solution is valid. It may therefore

be inferred that the only possibilities for an envelope are contained in

ihe equations (45). As various extraneous loci might be introduced in

ihe elimination of a, ft from (45) and as the solutions should therefore

be tested individually, it is hardly necessary to examine the general

question further. The envelope of a congruence of curves is called the

focal surface of the congruence and the points of contact of the curves

with the envelope are called the focal points on the curves.

EXERCISES

1. Find the envelopes of these families of curves. In each case test the answer

sr its individual factors and check the results by a sketch :

(a) y = 2ax + a*, (/3) y2 = a(x - a), (y) y = ax + k/a,

(8) a (y + a)
2 = x\ (e) y = a (x + a), (f) y2 = a (x

-
a)

3
.

2. Find the envelope of the ellipses x
2
/a? + y

2
/b

s 1 under the condition that

(a) the sum of the axes is constant or () the area is constant.

3. Find the envelope of the circles whose center is on a given parabola and

which pass through the vertex of the parabola.

4. Circles pass through the origin and have their centers on x2 j/
2 = c2 . Find

their envelope. Ans, A lemniscate.

5. Find the envelopes in these cases :

(a) x + xya = sin- 1^, (/3)
x + a = vers- 1 ^ + V2y J/

2
>

(7) V + a = Vl-l/z.

6. Find the envelopes in these cases :

(a) ax + ft + apz = 1, 03)
- + \ +

- = 1,

3.2 v* *z
a & i-a-P

(7) ^ +
|j
+ ^

= l witha/37 = fc.

V. Find the envelopes in Ex. 6 (a), (ft) if a = or if a = /3.



the whole characteristic by snowing tnat tne normal to * (x, y, z, a) = u ana

eliminant of F = 0, F'a = are the same, namely

*':*:* and *' + F -. F' + F : F' +F,
where a

(a;, y, z) is the function obtained by solving Fa = 0. Consider theprol

also from the point of view of infinitesimals and the normal derivative.

9. If there is a curve x = <(<*), V f (")) z = x() tangent to the curv<

the family defined by F(x, j/, z, a) = 0, G (x, y, z, a) = in space, then that c

is called the envelope of the family. Show, by the same reasoning as in 6

the case of the plane, that the four conditions F = 0, G = 0, F'a = 0, G'a = i

be satisfied for an envelope ;
and hence infer that ordinarily a family of curvi

space dependent on a single parameter has no envelope.

10. Show that the family F(x, y, z, a) = 0, F'a (%, y, z, a) = of curves w
are the characteristics of a family of surfaces has in general an envelope givei

the three equations F = 0, F = 0, F^ = 0.

11. Derive the condition (45) for the envelope of a two-parametered famil

curves from the idea of tangency, as in the case of one parameter.

12. Find the envelope of the normals to a plane curve y = /(x) and show

the envelope is the locus of the center of curvature.

13. The locus of Ex. 12 is called the evolute of the curve y = /(x). In these <

find the evolute as an envelope :

(a) y x2
, (ft)

x = a sin t, y = b cos t, (y) 2xy = a'

(5)j/
2 = 2mx, (e) x a(6 sintf), y = a(l costf), (f) y cosh

14. Given a surface z =/(x, y). Construct the family of normal lines and

their envelope.

15. If rays of light issuing from a point in a plane are reflected from a cur

the plane, the angle of reflection being equal to the angle of incidence, the enve

of the reflected rays is called the caustic of the curve with respect to the p<

Show that the caustic of a circle with respect to a point on its circumference

cardioid.

16. The curve which is the envelope of the characteristic lines, that is,
oi

rulings, on the developable surface (43) is called the cuspidal edge of the suid

Show that the equations of this curve may be found parametrically in terms oJ

parameter of (43) by solving simultaneously

Ax + By + Cz + D = 0, A'x, + B'y + C'z + V -
0, A"x + B"y + C"z + D"

for x, y, z. Consider the exceptional cases of cones and cylinders.

17. The term "
developable

"
signifies that a developable surface may be devel

or mapped on a plane in such a way that lengths of arcs on the surface become t

lengths in the plane, that is, the map may be made without distortion of siz

shape. In the case of cones or cylinders this map may be made by slitting the

or cylinder along an element and rolling it out upon a plane. What is the ana

statement in this case ? In the case of any developable surface with a cus]

edge, the developable surface being the locus of all tangents to the cuspidal e



ices for which the radius of curvature R of the cuspidal edge is the same function

f a without regard to the torsion
;
in particular the torsion may be zero and the

evelopable may reduce to a plane.

18. Let the line x az + b, y = cz + d depend on one parameter so as to gen-
rate a ruled surface. By identifying this form of the line with (43) obtain by
ibstitution the conditions

Aa -f Be + C = 0, A'a + B'c + C' = Aof + Be' =
*

of c'

V d'
=

Q, A'b + B'd + iy = Q Ab' + Bd'-Q

s the condition that the line generates a developable surface.

68. More differential geometry. The representation

F(x, y, z)
= 0, or =/(*, y) (46)

r x- (M, v), y = ^(, v),
z = x (u, v")

f a surface may be taken in the unsolved, the solved, or the parametric

Drm. The parametric form is equivalent to the solved form provided

,
v be taken as x, y. The notation

0* 8* 8*z &z &z
P ^T' 9Z~' r Z~2' S ~3~Z~ t t~*~3.f

cx vy V oxcy oy*

i adopted for the derivatives of * with respect to x and y. The applica-

ion of Taylor's Formula to the solved form gives

Az -=ph + qk + $(rh* + 2shk + tk*) + (47)

dth h = Ace, k'= A^. The linear terms ph + qk constitute the differ-

ntial dz and represent that part of the increment of which would be

btained by replacing the surface by its tangent plane. Apart from

ifinitesimals of the third order, the distance from the tangent plane up
r down to the surface along a parallel to the 2-axis is given by the

uadratic terms ^(rh
z + 2 slik + tk*).

Hence if the quadratic terms at any point are a positive definite form

55), the surface lies above its tangent plane and is concave up ;
but

'. the form is negative definite, the surface lies below its tangent plane

ad is concave down or convex up. If the form is indefinite but not

ingular, the surface lies partly above and partly below its tangent

lane and may be called concavo-convex, that is, it is saddle-shaped. If

ie form is singular nothing can be definitely stated. These statements



tangent plane is parallel to the xy-plane. It will be assumed in the

further work of these articles that at least one of the derivatives r, s, t

is not 0.

To examine more closely the behavior of a surface in the vicinity of

a particular point upon it, let the ccy-plane be taken in coincidence with

the tangent plane at the point and let the point be taken as origin.

Then Maclaurin's Formula is available.

K \ (TO
2
-f 2 sxy H- tif} 4- terms of higher order

= \ P
z

(r cos2
& + 2 s sin 6 cos -f- t sin

2

6} + higher terms,

'
'

where (p, 0) are polar coordinates in the zy-plane. Then

1 (Pz, r /^2\ 2lfi = rcos2
04-2ssin0cos04-*siii

2 = ^-2 -s- l + (~) (49)R df I \dP/ ]
^ '

is the curvature of a normal section of the surface. The sum of the

curvatures in two normal sections which are in perpendicular planes

may be obtained by giving 6 the values and 6 -f- TT. This sum

reduces to r + t and is therefore independent of Q.

As the sum of the curvatures in two perpendicular normal planes is

constant, the maximum and minimum values of the curvature will be

found in perpendicular planes. These values of the curvature are called

the principal values and their reciprocals are the principal radii of

curvature and the sections in which they lie are the principal sections.

If s = 0, the principal sections are = and = TT
;
and conversely

if the axes of x and y had been chosen in the tangent plane so as to be

tangent to the principal sections, the derivative s would have vanished

The equation of the surface would then have taken the simple form

2 = (nc
2
-f ty*) + higher terms.

(50)

The principal curvatures would be merely r and t, and the curvature

in any normal section would have had the form

1 cos
2

,
sin2 .- =

(-
- = r cos2

6 -f t sin2 0.M
JK.^

/t
2

If the two principal curvatures have opposite signs, that is, if the

signs of r and t in (50) are opposite, the surface is saddle-shaped.
There are then two directions for which the curvature of a normal sec-

tion vanishes, namely the directions of the lines

tan-1V R
z /R^ or Vjrjx = VjTJT/.

These are called the asymptotic directions. Along 'these directions the
surface departs from its tangent plane by infinitesimals of the third



v- i, rfpr If a curve is drawn on a surface so that at each

order, or higher order. If a
al one of the asymp-

point
of the curve the tangent to the

^curv

* *
^^ of ^SLT^s^KS

JLVt'ofthe^t^ fcLtri* is the conic

cf. * =
R

2

which has the principal
directions ^

square roots of the absolute values 01 * ep
Jegwdfld ao_ _

as the magnitudes of its axes, me c

tangent plane cuts the

the conic in which a plane infinitely ne* ^ ^^ are neg,

surface when infinitesimals
_

of

^J^J^^ indicatrix is a hyper-

leoted. In case the surface is concavo
,

,^ f the two oonj^te
bola and should be considered as either or bo h o

^

hyperbolas
that would arise from ^*V^

*
^

in (51).
The point

on the ^^ - jS^Taly^rbl, a pair

parabolic according as the indicatrix is al

\j^
''

curvattires vanishes.

of lines, as happens when one o

^^totas definite, indefinite,

These classes of points correspon o

^^ ^ ^ ^^ ^^
and singular applied to the <l

dr^ drawn on the surface

Two further results are noteworthy. Any o ^^ by

differs from the section of its'^^^ as the osculating

infinitesimals of ^er
order than the second

^ ^ ^^ . .

plane passes^V^rh same three consecutive

section with the surface passes roug
a It foliows

point, and the two curves^*"^ ^"surface is identical

that the radius of curvature of *^ lme cuts tto surface.

with that of the curve m which its g
^iu8 o OUITature of an

The other result is JfeoM* 3*"
jection upon the

oblige section of the surface at any point
**J ^ 8eotiott

plane of that section of the radius <* ^ T0lds,
if the

which passes through the same tangat hue. I
rf ^ ^.^

radius of curvature of a normal^^eA by multiplying

sections through the same ngent h ^^ snrM8



IB-axis in the tangent plane be taken along the intersection with the oblique plai

Neglect infinitesimals of higher order than the second. Then

y = <j>(x)= iox
2

,
z = %(rx? + 2sxy + ty

2
)
= \nz

(4

will be the equations of the curve. The plane of the section is az ry = 0, as ir

be seen by inspection. The radius of curvature of the curve in this plane may
found at once. Tor if u denote distance in the plane and perpendicular to

x-axis and if v be the angle between the normal plane and the oblique ph

az ry = 0,

w = z sec v = y esc v = \ r sec v x2 = | a esc v x2 .

The form u = \ r sec v x2 gives the curvature as r sec v. But the curvature in

normal section is r by (48'). As the curvature in the oblique section is secy tit

that in the normal section, the radius of curvature in the oblique section is ci

times that of the normal section. Meusnier's Theorem is thus proved.

69. These investigations with a special choice of axes give geometric proi

ties of the surface, hut do not express those properties in a convenient anal]

form
;
for if a surface z f(x, y) is given, the transformation to the special a

is difficult. The idea of the indicatrix or its similar conic as the section of

surface by a plane near the tangent plane and parallel to it will, however, del

mine the general conditions readily. If in the expansion

Az dz = | (rA
2 + 2 sM + <fc

2
)
= const. (

the quadratic terms be set equal to a constant, the conic obtained is the project

of the indicatrix on the ccy-plane, or if (52) be regarded as a cylinder upon

xy-plane, the indicatrix (or similar conic) is the intersection of the cylinder v

the tangent plane. As the character of the conic is unchanged by the project!

the point on the surface is elliptic if s2 < rt, hyperbolic if s2 > rt, and parabolu

s2 = rt. Moreover if the indicatrix is hyperbolic, its asymptotes must project into

asymptotes of the conic (52), and hence if dx and dy replace h and fc, the equal

rdx2 + 2 xdxdy + tdy
2 = <

may be regarded as the differential equation of the projection of the asymptotic k

on the xy-plane. If r, s, t be expressed as functions/^., /^, f^ of (x, y) and (53]

factored, the integration of the two equations M (x, y)dx + -ZV(, y)dy thus foi

will give the finite equations of the projections of the asymptotic lines and, ta

with the equation z =/(z, y), will give the curves on the surface.

To find the lines of curvature is not quite so simple ;
for it is necessary to de

mine the directions which are the projections of the axes of the indicatrix, :

these are not the axes of the projected conic. Any radius of the indicatrix i

he regarded as the intersection of the tangent plane and a plane perpendicula
the xy-plane through the radius of the projected conic. Hence

z z
o
= P (* BO) + q (y y ), (x x )k = (y yQ) h

are the two planes which intersect in the radius that projects along the direct

determined by h. k. The direction cosines

h.:k-.ph + qk , , . .* and h : k : I

-j. fc2 +



me square 01 tne corresponding radius in the indicatrix. To deter-

line the axes of the indicatrix, this radius is to be made a maximum or minimum
abject to (52). With a multiplier X,

h + ph + qk + X (rh + sk)
= 0, k + ph + qk + X (sh + tk) =

re the conditions required, and the elimination of X gives

A" [ (1 + P2
)
-

pgr] + hk [t (1 + p*)
- r (1 + g

2
)]
- fc

2
[t (1 + j) - pg<] =

s the equation that determines the projection of the axes. Or

(1 + p2
)
dx + pqdy _ pqdx + (1 + g) dy

rda; -f scfy sctc + Wy
'

'

i the differential equation of the projected lines of curvature.

In addition to the asymptotic lines and lines of curvature the geodesic or shortest

nes on the surface are important. These, however, are better left for the methods
E the calculus of variations

( 159). The attention may therefore be turned to

nding the value of the radius of curvature in any normal section of the surface.

A reference to (48) and (49) shows that the curvature is

E
~

/o
2
~

p*

~

i the special case. But in the general case the normal distance to the surface is

iz dz) cos 7, with sec y Vl + pz + <p, instead of the 2 z of the special case, and
le radius

/o
2 of the special case becomes p

2 sec2 # = A2 + k2 + (ph + qk)
2 in the

ingent plane. Hence

2slm + tm?

here the direction cosines
I,
m of a radius in the tangent plane have been intro-

aced from (64), is the general expression for the curvature of a normal section.

he form
1 rh* + 2shk + tk* 1 ._-

______^____________ .
, (OD I

B A2 + * + (!>*+?*) Vl +p2 + q
z

here the direction h, k of the projected radius remains, is frequently more con-

mient than (56) which contains the direction cosines i,
m of the original direction

the tangent plane. Meusnier's Theorem may now be written in the form

cos v rP + 2 slm + tm2 ,._,

here v is the angle between an oblique section and the tangent plane and where

m are the direction cosines of the intersection of the planes.

The work here given has depended for its relative simplicity of statement upon
e assumption of the surface (46) in solved form. It is merely a problem in

iplicit partial differentiation to pass from p, q, r, s, t to their equivalents in terms

^*i -Fj/'. K or the derivatives of ^, ^, x by <* P-



1. In (49) show = 1
-- cos 2 B + s sin 2 and find the directions of

N ' E 2 2

maximum and minimum R. It B
v
and JB

2 are the maximum and minimum values

of B, show

_L + _L = r+ i and JLJ-^rt-A
BI B

8

T
E! E2

Half of the sum of the curvatures is called the mean curvature ; the product of tho

curvatures is called the total curvature.

2. Find the mean curvature, the total curvature, and therefrom (by construct-

ing and solving a quadratic equation) the principal radii of curvature at the origin :

(a) z = xy, (/3)
z = x2 + xy + y*, (7) z = x(x + y).

3. In the surfaces (a) z = xy and
(/3) z 2x? -f y2 find at (0, 0) the radius of

curvature in the sections made by the planes

(6)x-2y = 0, (e) x- 2y + z = Q, (f) * + 2y + \z = 0.

The oblique sections are to be treated by applying Meusnier's Theorem.

4. Find the asymptotic directions at (0, 0) in Exs. 2 and 3.

5. Show that a developable surface is everywhere parabolic, that is, that rt s2 =
at every point ;

and conversely. To do this consider the surface as the envelope of

its tangent planez-p^-q^^ z p^ - q y ,
where p , q ,

x
, yw z are func-

tions of a single parameter a. Hence show

=
(8
2 _ .

rt)

The first result proves the statement
;
the second, its converse.

6. Find the differential equations of the asymptotic lines and lines of curvature

on these surfaces :

(a) z = xy, (j3) z = tan-i(y/x), (7) z2 + I/
2 = coshx, (5) xyz = 1.

7. Show that the mean curvature and total curvature are

1/1 IV
2Ui V

8. Tind the principal radii of curvature at (1, 1) in Ex. 6.

9. An umbilio is a point of a surface at which the principal radii of curvature

(and hence all radii of curvature for normal sections) are equal. Show that the

T S t
conditions are-- = =- for an umbilic, and determine the umbilics of

1+p2 pq
the ellipsoid with semiaxes a, 6, c.



CHAPTER VI

COMPLEX NUMBERS AND VECTORS

70. Operators and operations. If an entity u is changed into an

entity v by some law, the change may be regarded as an operation per-

formed upon u, the operand, to convert it into v
;
and iff be introduced

as the symbol of the operation, the result may be written as v =fu.
For brevity the symbol / is often called an operator. Various sorts

of operand, operator, and result are familiar. Thus if u is a positive

number n, the application of the operator V gives the square root
j
if u

represents a range of values of a variable x, the expression f(x) or fx
denotes a function of x

;
if u be a function of x, the operation of dif-

ferentiation may be symbolized by D and the result Du is the deriva-

c b

tive
;
the symbol of definite integration I (#) d* converts a function

Ja

u (x) into a number
;
and so on in great variety.

The reason for making a short study of operators is that a consider-

able number of the concepts and rules of arithmetic and algebra may
be so denned for operators themselves as to lead to a calculus of opera-

tions which is of frequent use in mathematics
;
the single application to

the integration of certain differential equations ( 95) is in itself highly
valuable. The fundamental concept is that of a product : If u is oper-

ated upon by f to givefu= v and ifvis operated upon by g to give gv = w,

so that . ,.,,

fu = v, gv = afu = w, gfu = w, (1)

then the operation indicated as gf which converts u directly into w is

catted the product off by g. If the functional symbols sin and log be

regarded as operators, the symbol log sin could be regarded as the

product. The transformations of turning the scy-plane over on the

x-axis, so that x' = x, y' = y, and over the y-axis, so that x' =
sc,

y' = y, may be regarded as operations ;
the combination of these opera-

tions gives the transformation x' = x, y' = y, which is equivalent

to rotating the plane through 180 about the origin.

The products of arithmetic and algebra satisfy the commutative law

fff= fg, that is, the products of g by /and of/ by g are equal. This

is not true of operators in general, as may be seen from the fact that



log Sin. X ana smioga; art) uiiioieiio. vr-uenevei me UIUCJL uj. i/z

is immaterial, as in the case of the transformations just considered, the

operators are said to be commutative. Another law of arithmetic and

algebra is that when there are three or more factors in a product, the

factors may be grouped at pleasure without altering the result, that
is,

W)==(W=%/- (2)

This is known as the associative law and operators which obey it are

called associative. Only associative operators are considered in the

work here given,

For the repetition of an operator several times

ff= f, ///=/", fmfn =fm + n
, (3)

the usual notation of powers is used. The law of indices clearly holds ;

for/m+n means that f is applied m + n times successively, whereas

fmfn means that it is applied n times and then ra times more. Not

applying the operator / at all would naturally be denoted by /, so that

fu ~ u and the operator / would be equivalent to multiplication by 1;

the notation/ = 1 is adopted.

If for a given operation / there can be found an operation g such

that the product fg =f = 1 is equivalent to no operation, then g is

called the inverse of/ and notations such as

fff
=

l, g=f-* =
J> ff*=fj

= l (4)

are regularly borrowed from arithmetic and algebra. Thus the inverse

of the square is the square root, the inverse of sin is sin~ \ the inverse

of the logarithm is the exponential, the inverse of D is
|

. Some oper-

ations have no inverse; multiplication by is a case, and so is the

square wnen applied to a negative number if only real numbers are

considered. Other operations have more than one inverse; integra-

tion, the inverse of D, involves an arbitrary additive constant, and the

inverse sine is a multiple valued function. It is therefore not always
true that/~

1/= 1, but it is customary to mean by /-1 that particular

inverse of / for which f~
lf=ff~

l = 1. Higher negative powers are

defined by the equation /-" = (/~
1

)",
and it readily follows that

fr

-f~
n = 1, as may be seen by the example

The law of indices fm
f" fm + n also holds for negative indices, except

in so far as /~ */ may not be equal to 1 and may be required in the

reduction of /"/" to /*+".



If M, v, and u + v are operands for the operator/ and if

f(u + v)=fu+fv, (5)

that the operator applied to the sum gives the same result as the

in of the results of operating on each operand, then the operator

is called linear or distributive. If / denotes a function such that

'x -f- if) f(x) +/(?/), it has been seen (Ex. 9, p. 45) that / must be

uivalent to multiplication by a constant and fx = Cx. For a less

ecialized interpretation this is not so; for

D (u + v) Du + Dv and I (u + v)
= I u+ I v

e two of the fundamental formulas of calculus and show operators

rich are distributive and not equivalent to multiplication by a constant,

svertheless it does follow by the same reasoning as used before (Ex. 9,

45), that fnu = nfu if / is distributive and if n is a rational number.

Some operators have also the property of addition. Suppose that u

an operand and /, g are operators such that fu and gu are things that

ay be added together as fu -f- gu, then the sum of the operators, /+ g,

denned by the equation (f+g)u=ftt-\-gu. If furthermore the

orators /, g, Ji are distributive, then

A(/+<7) = A/+A<7 and (f+g}h=fh + gh, (6)

id the multiplication of the operators becomes itself distributive. To

ove this fact, it is merely necessary to consider that

7i [(/+ g} u] = h (fu + gu) = hfu + hgu

ld (/+ ff) (
Jiu

~)

=fhu + 9hu-

Operators which are associative, commutative, distributive, and which

Imit addition may be treated algebraically, in so far as polynomials are

ncerned, by the ordinary algorisms of algebra; for it is by means

the associative, commutative, and distributive laws, and the law of

dices that ordinary algebraic polynomials are rearranged, multiplied

.t, and factored. Now the operations of multiplication by constants

id of differentiation or partial differentiation as applied to a function

one or more variables x,y,z,--- do satisfy these laws. Eor instance

c(Du)=D(&u), DsT)yu = Dy
Dxu, (Dx + Dr)D,u = Da!D.u+D,D,u. (7)

ence, for example, if y be a function of x, the expression

Dn
y + c^D-V -f + _!% + <W>

aere the coefficients a are constants, may be written as



where a
l5 2 , ,

an are tlie roots of the algebraic polynomial

x" -f e^'-
1 + . . . + _! + an = 0.

EXERCISES

1. Show that (/fif^)"
1 = h~^g~lf~l

,
that is, that the reciprocal of a produci

operations is the product of the reciprocals in inverse order.

2. By definition the operator (jfg-
1 is called the transform of / by g. SI

that (a) the transform of a product is the product of the transforms of the faci

taken in the same order, and
(/3)

the transform of the inverse is the inverse of

transform.

3. If s ?t 1 but s2 = 1, the operator s is by definition said to be involutory. SI

that (a) an involutory operator is equal to its own inverse
;
and conversely (

an operator and its inverse are equal, the operator is involutory ;
and (7) if

product of two involutory operators is commutative, the product is itself invi

tory ;
and conversely (5) if the product of two involutory operators is involut<

the operators are commutative.

4. If/and g are both distributive, so are the products fg and gf.

5. If /is distributive and n rational, show/nw = n/u.

6. Expand the following operators first by ordinary formal multiplication

second by applying the operators successively as indicated, and show the res

are identical by translating both into familiar forms.

(a) p-l){D-2)y, An*. ^ -
3^ + 2y,

(0) (D-l)D(D + l)y, (y) D (D - 2) (D + 1) (D + 3) y.

7. Show that (D a) efx fe-*ZcZa; = -Z, where JT is a function of x,

hence infer that e * Ce~ <**(#) dx is the inverse of the operator (D a) (*).

8. Show that D(&tx
y) = K̂C(D + a)y and hence generalize to show tha

P (D) denote any polynomial in D with constant coefficients, then

P(D) epxy eP*P(D + a)y.

Apply this to the following and check the results.

(a) (D*
- 3 D + 2) e**y = e**(D*

\dx2- 8D- 2) e*y, (7) (J>8
- 3D +

9. If y is a function of x and x e* show that

Dxy = e-'Dc jr, Dy == er Z> (D,
-

1) y, , D|y = e-P*Dt (JDt
~ l)...(Dt -p +

10. Is the expression (hl>x + fcDj,)", which occurs in Taylor's Formula (

the nth power of the operator 7iDx + kDy or is it merely a conventional symt
The same question relative to (xDx + yDy}

k
occurring in Euler's Formula (

&



tions for the equality, addition, and multiplication of complex num-

bers are
a -f. 4. = c + rfi it and only 11 a = c, b = a,

[a + fti] + [c + rfi]
=

(" + <) + (6 + rf) i, (9)

[a + IU] [c + eft]
= ("C

-
&<*) + (ad + ftr)

i.

It readily follows that the commutative, associative, and distributive

laws hold in the domain of complex numbers, namely,

or -f /3
=

/? + a, (a + ft) + y = a + ( + y),

a (0 + y) = + ay, (a + /S) y = ay + j8y,

where Greek letters have been used to denote complex numbers.

Division is accomplished by the method of rationalization.

a -{ hi _ a -}- l>i c di _ (ac + bd~) + (be ad) i
f-\-\\

c + di c + di c di c
2 + d?

'

This is always possible except when c
2 + d? = 0, that is, when both c

and d are 0. A complex number is defined as when and only when

its real and pure imaginary parts are both zero. With this definition

has the ordinary properties that cc + = a and <*0 = and that cc/0 is

impossible. Furthermore if a product aft vanishes, either a or ft vanishes.

For suppose

[a + &i] [c + di] (ac bd) -f- (ad -\- be) i = 0.

Then ac bd = and ad + be = 0, (12)

from which it follows that either a, I = or c = cZ=0. From the

fact that a product cannot vanish unless one of its factors vanishes

follow the ordinary laws of cancellation. In brief, all the elementary

laws of real algebra hold also for the algebra of complex numbers.

By assuming a set of Cartesian coordinates in the ay-plane and asso-

ciating the number a + bi to the point (a, b~),
a graphical representation

is obtained which is the counterpart of the number scale for real num-

bers. The point (a, &) alone or the directed line from the origin to the

point (a, 5) may be considered as representing the number a + bi.

If OP and OQ are two directed lines representing the two numbers

a }- bi and c -4 di, a reference to the figure shows that the line which



magnitude, the length AB, and direction, the

direction of the line AB from A to B. A
quantity wJuch has magnitude and direction is

catted a vector j and the parallelogram, law is

called the law of vector addition. Complex nwrrv-

bers may therefore be regarded as vectors.

From the figure it also appears that OQ and PR have the same mag-

nitude and direction, so that as vectors they are equal although they

start from different points. As OP -f PR will be regarded as equal to

OP + OQ, the definition of addition may be given as the triangle law

instead of as the parallelogram law
; namely, from the terminal end P

of the first vector lay off the second vector PR and close the triangle

by joining the initial end of the first vector to the terminal end ft of

the second. The absolute value of a complex number a -f- bi is the

magnitude of its vector OP and is equal to Va2 + V*, the square root of

the sum of the squares of its real part and of the coefficient of its pure

imaginary part. The absolute value is denoted by \a + bi\
as in the case

of reals. If a and /? are two complex numbers, the rule
|

or
j

-f
| /8|
S <x-\- j}\

is a consequence of the fact that one side of a triangle is less than the

sum of the other two. If the absolute value is given and the initial end

of the vector is fixed, the terminal end is thereby constrained to lie

upon a circle concentric with the initial end.

72. When the complex numbers are laid off from the origin, polar

coordinates may be used in place of Cartesian. Then

< = tair'ty/a*, a = r cos <, b = r sin <

a + ib = r(cos <jj + i sin 0).
'

The absolute value r is often called the modulus or magnitude of the

complex number
;
the angle $ is called the angle or argument of the

number and suffers a certain indeterraination in that 2 mr, where n is

a positive or negative integer, may be added to < without affecting the

number. This polar representation is particularly useful in discussing

products and quotients. For if

a =
T-J (cos ^ 4- i sin ^, ft

= r
z (cos </>2 -f i sin <

2),

then a = rcoa <> + <> + i sin

* As both cos i> and sin are known, the quadrant of this angle is determined



as may oe seen ny multiplication according to tne ruie. ience tne

magnitude of a product is the product of the magnitudes of the factors,

and the any la of a product is the sum of the angles of the factors} the

general rule being proved by induction.

The interpretation of multiplication by a complex number as an oper-

ation is illuminating. Let /3 be the multiplicand and a the multiplier.

As the product a/3 has a magnitude equal to the product of the magni-
tudes and an angle equal to the sum of the angles, the factor a used as

a multiplier may be interpreted as effecting the rotation of yS through
the angle of a and the stretching of /J in the ratio

\a\
: 1. From the

geometric viewpoint, therefore, multiplication by a complex number is

an operation of rotation and stretching in the plane. In the case of

a = cos
</> -f- i sin < with r = 1, the operation is only of rotation and

nence the factor cos
<jb + i sin

<j>
is often called a cyclic factor or versor.

In particular the number i = V 1 -will effect a rotation through 90

when used as a multiplier and is known as a quadrantal versor. The

series of powers i,
i? = ~1, i? i, i* = 1 give rotations through 90,

180, 270, 360. This fact is often given as the reason for laying off

pure imaginary numbers "bi along an axis at right angles to the axis

of reals.

As a particular product, the nth power of a complex number is

a" = (a + ib)
n =

[r (cos < + i sin <)]" = r" (cos n$ -f- i sin
n)Si) ; (15)

and (cos <j!> + i sin <)" = cos n<f> -f- i sin n<j>, (15')

which is a special case, is known as De Moivre's Theorem and is of use

in evaluating the functions of n$ ;
for the binomial theorem may be

applied and the real and imaginary parts of the expansion may be

equated to cos n<f> and sin n<j>. Hence

cos n<f)
= cos>

n
^
n ~

' cos"- 2
< snrtya \

-3) 4J . 4 . /iR.
* cos"

~ 4
<f>
sm*< ----

(16)

sin n$ = n cosn -*<j> sin <
- *

(
re -

^)
(
n T 2

) cos 8^ sin8^ +
o !

As the nth root "v/a of a must be a number which when raised to the

nth power gives a, the nth root may be written as

-y^ _ -^
(Cos <f>/n + i sin

<f>/ri). (17)

The angle <J>, however, may have any of the set of values

<>. A4-27T. A4-47T. .... <k-4-2(n~- 1W.



$ < 2 TT < 4 TT
<J> 2(n 1) TT

j -t ? I j
, i

= i
(18)n n n n n n n %/

Hence there may be found just n different nth roots of any given com-

plex number (including, of course, the reals).

The roots of unity deserve mention. The equation xn = 1 has in the real domain
one or two roots according as n is odd or even. But if 1 be regarded as a complex
number of which the pure imaginary part is zero, it may be represented by a point
at a unit distance from the origin upon the axis of reals

;
the magnitude of 1 is 1

and the angle of 1 is 0, 2 TT, ,
2 (n 1) IT. The nth roots of 1 will therefore have

the magnitude 1 and one of the angles 0, 2 TT/ n, ,
2 (n 1) rr/n. The n nth roots

are therefore

. 2-n-
,

. . 2?r 4?r
,

. . 4?r
1, a = cos |-*8in , az = cos 1- ism , ,

n n n n

. 2(n-l)7r ,

. . 2(n-l)7ran-i _ cos h i sin -
'

,

n n

and may be evaluated with a table of natural functions. Now x" 1 =0 is factor-

able as (x l)(x
n ~ 1 + x- 2 + (- x + 1)

= 0, and it therefore follows that the

nth roots other than 1 must all satisfy the equation formed by setting the second

factor equal to 0. As a in particular satisfies this equation and the other roots are

cr
2

, ,
a"- 1

,
it follows that the sum of the n nth roots of unity is zero.

EXERCISES

1. Prove the distributive law of multiplication for complex numbers.

2. By definition the pair of imaginaries a + bi and a bi are called conjugate

imaginaries. Prove that (or) the sum and the product of two conjugate imaginaries
are real

;
and conversely (|3)

if the sum and the product of two imaginaries are both

real, the imaginaries are conjugate.

3. Show that if P(x, y) is a symmetric polynomial in x and y with real coeffi-

cients so that P(x, y) = P(l/, x), then if conjugate imaginaries be substituted for x
and y, the value of the polynomial will be real.

4. Show that if a + bi is a root of an algebraic equation P(x) = with real

coefficients, then a bi is also a root of the equation.

5. Carry out the indicated operations algebraically and make a graphical reprei

sentation for every number concerned and for the answer :

-
t), (7) (3 + V^2) (4 + V=

, N
(t

6. Plot and find the modulus and angle in the following cases :

<a)
- 2, 03) - 2 V^T, (7) 3 + 4

i, (5) i - iV



8. Darry out the indicated operations trigonometrically and plot:

(<f) The examples of Ex. 5, (/3) Vl+ i Vl - i, (7) V 2 + 2V3i;

(5) (VIT^ + VI^l) 2
, (e) VV2 + V^f,

(TJ) ^16 (cos 200 + i sin 200), (ff) ^T, (i)

9. Find the equations of analytic geometry which represent the transforma-

tion equivalent to multiplication by a = 1 + V 3.

10. Show that \z a\ = r, where z is a variable and a a fixed complex number,
is the equation of the circle (x a)

2 + (y 6)
2 = r2 .

11. Find cosSx and cosSx in terms of cosx, and sinGx and sinTx in terms of

sinx.

12. Obtain to four decimal places the five roots -v/T.

13. If z = x + iy and z' = x' + iy', show that z' = (cos< i sin
<f>)

z a is the

formula for shifting the axes through the vector distance a = a + ib to the new

origin (a, 6) and turning them through the angle <f>.
Deduce the ordinary equa-

tions of transformation.

14. Show that \z a\ = k\z /S[,
where k is real, is the equation of a circle

;

specify the position of the circle carefully. Use the theorem : The locus of points

whose distances to two fixed points are in a constant ratio is a circle the diameter

of which is divided internally and externally in the same ratio by the fixed points.

15 . The transformation z' = , where a, 6, c, d are complex and ad 6c ^ 0,
cz + a

is called the general linear transformation of z into z'. Show that

ca + d . a .

\z' a'
|

= k]z' /3'| becomes \za\k
c/3 +

Hence infer that the transformation carries circles into circles, and points which

divide a diameter internally and externally in the same ratio into points which

divide some diameter of the new circle similarly, but generally with a different ratio.

73. Functions of a complex variable. Let * = x + iy be a complex
variable representable geometrically as a variable point in the ay-plane,

which, may be called the complex plane. As z determines the two real

numbers x and y, any function F(x, y) which is the sum of two single

valued real functions in the form

F(x, y)
= X (x, y) + iY(x, y)

= R (cos * + t sin *) (19)

will be completely determined in value if z is given. Such a function

is called a complexfunction (and not a function of the complex variable,

for reasons that will appear later). The magnitude and angle of the

function are determined by
X Y

cos * =
,
sin $ = . (20)



additive 2
TITT)

unless R = 0, in which case X and Y also vanish and the

expression for $ involves an indeterminate form in two variables and

is generally neither determinate nor continuous ( 44).

If the derivative of F with respect to z were sought for the value

z = a + ib, the procedure would be entirely analogous to that in the

case of a real function of a real variable. The increment A# = Ax -f- iAy
would be assumed for z and AF would be computed and the quotient

would be formed. Thus by the Theorem of the Mean (46),

+ (, (21)

where the derivatives are formed for (a, b} and where is an infinitesi-

mal complex number. When A approaches 0, both Ace and Ay must

approach without any implied' relation between them. In general the

limit of A.F/A2 is a double limit
( 44) and may therefore depend on

the way in which Ao? and Ay approach their limit 0.

Now if first Ay ~ and then subsequently Aa? ~= 0, the value of the

limit of A.F/A2 is X'x + iY'a taken at the point (a, V) ;
whereas if first

Ax =s and then Ay == 0, the value is iX'
y -f Y'

y
. Hence if the limit

of AjP/A is to be independent of the way in which A approaches 0, it

ia surely necessary that

J~ + *^~ = *"a~+a~~>ox ex oy oy

or
!T
=
ir

and !T
==
~"d~ (22)

And (inversely if these relations are satisfied, then

AF

and the limit is X'x -{-iY
f

x = Yy iX'
y
taken at the point (a, 5), and is

independent of the way in which A approaches zero. The desirability
of having at least the ordinary functions differentiable suggests the

definition: A complex function F(x, y) = X(x, y) + iY(x, y) is corv-

sidered as a function of the complex variable z = x -\- iy when and only
when X and Y are in general differentiable and satisfy the relations

In this case the derivative is



r"M - = +- -
^"' dz dx dx dy "by

^ '

These conditions may also be expressed in polar coordinates (Ex. 2).

A few words about the function <J>(x, y). This is a multiple valued function of

the variables (x, j/),
and the difference between two neighboring branches is the con-

stant 2 TT. The application of the discussion of 45 to this case shows at once that,

iu any simply connected region of the complex plane which contains no point (a, &)

such that R (a, 6)
= 0, the different branches of <t> (x, y) may be entirely separated

so that the value of * must return to its initial value when any closed curve is de-

scribed by the point (x, y). If, however, the region is multiply connected or contains

pointe for which R = (which makes the region multiply connected because these

points must be cut out), it may happen that there will be circuits for which $,

although changing continuously, will not return to its initial value. Indeed if it can

be shown that * does not return to its initial value when changing continuously as

(x, y) describes the boundary of a region simply connected except for the excised

points, it may be inferred that there must be points in the region for which R =
An application of these results may be made to give a very simple demonstration

of the fundamental theorem of algebra that every equation of the nth degree has at least

one root. Consider the function

F(z) = z" + c^z"-
1 + + On-iz + an = X(x, y) + iY(x, y),

where X and Y are found by writing z as x + iy and expanding and rearranging.

The functions X and Y will be polynomials in (x, y) and will therefore be every-

where finite and continuous in (x, y). Consider the angle $ of F. Then

$ = ang. of JP
1 = ang.ofzl + 1 + . . . + = + )

= ang. of z"+ ang. o
\ z zn

~l
z"/

Next draw about the origin a circle of radius r so large that

+ ltl
4. ... 4.

l
a ~ll i Ign)

A* n * 1 *^i

Then for all points z upon the circumference the angle of F is

* = ang. of F = n (ang. of z) + ang. of (1 + ;), |i?| < t.

Now let the point (x, y) describe the circumference. The angle of z will change by
2?r for the complete circuit. Hence $ must change by 2 nir and does not return to

its initial value. Hence there is within the circle at least one point (a, 6) for which

R (a, 6)
= and consequently for which JT(a, &)

= and F(a, 6)
= and JF(a, 6) =0.

Thus if a. = a + 16, then F(a) = and the equation F(z) = is seen to have at

least the one root a. It follows that z a is a factor of F (z) ;
and hence by induc-

tion it may be seen that F(z) = has just n roots.

74. The discussion of the algebra of complex numbers showed how
the sum, difference, product, quotient, real powers, and real roots of

such numbers could be found, and hence made it possible to compute
the value of any given algebraic expression or function of z for a given



really a function of in the sense that it has a derivative with respect

to 2, and to find the derivative. Now the differentiation of an algebraic

function of the variable x was made to depend upon the formulas of dif-

ferentiation, (6) and (7) of 2. A glance at the methods of derivation

of these formulas shows that they were proved by ordinary algebraic

manipulations such as have been seen to be equally possible with imagi-

naries as with reals. It therefore may be concluded that an algebraic

expression in z has a derivative with respect to z and that derivation

may be found just as if z were a rev I variable.

The case of the elementary functions e
z
, log z, sin z, cos z, other

than algebraic is different
;
for these functions have not been defined

for complex variables. Now in seeking to define these functions when

is complex, an effort should be made to define in such a way that : 1

when K is real, the new and the old definitions become identical
;
and

2 the rules of operation with the function shall be as nearly as possi-

ble the same for the complex domain as for the real. Thus it would be

desirable that Dez = e
z and e

z + w = e*e
w

,
when z and w are complex.

With these ideas in mind one may proceed to define the elementary
functions for complex arguments. Let

e* = R (x, y) [cos
<

(a:, y) -f i sin $ (x, ?/)]. (24)

The derivative of this function is, by the first rule of (23),

Q O

De* = z- (R cos $) + i
%- (R sin *)

vfl/ v3J

= (R'x cos <J> R sin $ 3>) -\- i (R'x sin <& -\- R cos <J> <&),

and if this is to be identical with e
z
above, the equations

R'x cos $ R<b'x sin <E> = R cos $ R'x = R
R'x sin $ + R& cos <& = R sin $ <$>'x =

must hold, where the second pair is obtained by solving the first. If

the second form of the derivative in (23) had been used, the results

would have been R'
y 0, &y = 1. It therefore appears that if the

derivative of e
z
,
however computed, is to be e

z
,
then

are four conditions imposed upon R and <f>. These conditions will be
satisfied if R = e* and $ = y* Hence define

e* ex+ iy = e? (cos y + i sin y}. (25)



exponential law e
z + w = e

ze
w

holds.

For the special values iri, iri, 2 iri of z the value of e
z is

Hence it appears that if 2 mri be added to z, e" is unchanged 5

e
x + 2nni =

<i*, period 2?.
(26)

Thus m i/ie complex domain e
s has the period 2 Tri, just as cos x and

sin x have the real period 2 TT. This relation is inherent
;
for

evi = cos y + i sin
?/,

e~ vl cos ?/ i sin y,

0tt + e~* _ <}_ e-rf
and cos ?/

=---
> sm y = (27)

The trigonometric functions of a real variable y may be expressed in

terms of the exponentials of yi and yi. As the exponential has been

denned for all complex values of
,
it is natural to use (27) to define

the trigonometric functions for complex values as

ert-l-e-* . e
s{ -e~ zt

,ftfTfNcos =---
} sm * =

(27')& & I/

With these definitions the ordinary formulas for cos (z + w),D sin z,

may be obtained and be seen to hold for complex arguments, just as the

corresponding formulas were derived for the hyperbolic functions
( 5).

As in the case of reals, the logarithm log % will be defined for com-

plex numbers as the inverse of the exponential. Thus

if tf = w, then log w % + 2 mri, (28)

where the periodicity of the function e
z shows that the logarithm is not

uniquely determined but admits the addition of 2 mri to any one of its

values, just as tan"1 x admits the addition of nir. If w is written as a

complex number u + w with modulus ? = vV -f v* and with the angle

rf> }
it follows that

w = u -f iv = r (cos < -M sin
j!>)
= re* 1 = elogr + **

; (29)

and log iv ~ log r + <j>i
= log Vw2

4. v2 + t
'

tan- 1

(v/w)

is the expression for the logarithm of w in terms of the modulus and

angle of w; the 2 mri may be added if desired.

To this point the expression of a power ab
,
where the exponent b is

imaginary, has had no definition. The definition may now be given iri

terms of exponentials and logarithms. Let

ab _ g&ioga or } ab



in tms way tne problem ot computing a" is reduced to one already
solved. From the very definition it is seen that the logarithm of a

power is the product of the exponent by the logarithm of the base, as
in the case of reals. To indicate the path that has been followed in

denning functions, a sort of family tree may be made,

real numbers, * real angles, x

real powers and real trigonometric functions,
roots of reals, xn cos x, sin x, tan- *,

exponentials, logarithms real powers and roots
of reals, e*, logx of imaginaries, z

exponentials of imaginaries, e*

logarithms of imaginaries, log z trigonometric functions

imaginary powers, z
f imaginaries

EXERCISES

1. Show that the following complex functions satisfy the conditions (22) and
are therefore functions of the complex variable z. Find F'(z) :

(a) *2 -
2/2 + 2 ixy,

(e) e?cosy + ie*8'my, (f) sinajsinhy + icosxcoshy.

2. Show that in polar coordinates the conditions for the existence of F'(z) are

BY

3. Use the conditions of Ex. 2 to show fromD log z = z~ l that log z = log r + <f>i.

4. From the definitions given above prove the formulas

(a) sin (x + iy) ~ sin x cosh y + i cos x sinh y,

(P) cos (* + iy) = cos x cosh y i sin x sinh y,

(7) tan(x + iy) =
2x + tsinh2y

cos 2 x + cosh 2 y

5. Find to three decimals the complex numbers which express the values of:

(a) **", (ft es (7)
i +i^ ^ (5) g-!-^

() sin^Tri, (f) cosi, (,) sin(i + V^3), (ff) tan (- 1 -
i),

(.) log(-l), (r) logi, (X) log(^ + ^V^3), 0*) log(-l-t).
6. Owing to the fact that log a is multiple valued, a6 is multiple valued in such

a manner that any one value may be multiplied by e2 "*". Find one value of each
of the following and several values of one of them :

(a) 2< (8) i\ M l/i (s\ ^5 i*\ fi.



8. Show that (a
b
)
c = abc

;
and fill in such other steps as may be suggested by

the work in the text, which for the most part has merely been sketched in a broad

way.

9. Show that if f(z) and g(z) are two functions of a complex variable, then

/() ff(z), <*/(2) with a a complex constant, /()</ (2), f(z)/g(z) are also func-

tions of z.

10. Obtain logarithmic expressions for the inverse trigonometric functions.

Find sin- l
i.

75. Vector sums and products. As stated in 71, a vector is a quan-

tity which has magnitude and direction. If the magnitudes of two

vectors are equal and the directions of the two vectors are the same,

the vectors are said to be equal irrespective of the

position which they occupy in space. The vector

a is by definition a vector which has the same

magnitude as a but the opposite direction. The

vector ma is a vector which has the same direction

as a (or the opposite) and is m (or m) times as

long. The law of vector or geometric addition is

the parallelogram or triangle law ( 71) and is still

applicable when the vectors do not lie in a plane

but have any directions in space ;
for any two vec-

tors brought end to end determine a plane in which the construction

may be carried out. Vectors will be designated by Greek small letters

or by letters in heavy type. The relations of equality or similarity

between triangles establish the rules

m (a = ma mp (30)

as true for vectors as well as for numbers whether real or complex. A
vector is said to be zero when its magnitude is zero, and it is writ-

ten 0. From the definition of addition it follows that

a + = a. In fact as far as addition, subtraction, and

multiplication by numbers are concerned, vectors obey

the same formal laws as numbers.

A vector p may be resolved into components par-

allel to any three given vectors a, ft, y which are not

parallel to any one plane. For let a parallelepiped

be constructed with its edges parallel to the three

given vectors and with its diagonal equal to the vector whose compo-
nents are desired. The edges of the parallelepiped are then, certain



of p.
The vector p may be written as

p = -j' + yJ3 + sy.* (31)

It is clear that two equal vectors would necessarily have the same

components along three given directions and that the components of a

zero vector would all be zero, .lust as the equality of two complex
numbers involved the two equalities of the respective real and imagi-

nary parts, so the equality of two vectors as

p = xa + ///? + isy
= a-'or + //'/? -)- &'y

=
p' (31

f

)

involves the three equations x = x', y //',
z = K'.

As a problem in the use of vectors let there be given the three vectors or, /3, y
from an assumed origin Oto three vertices of a parallelogram ; required the vector

to the other vertex, the vector expressions for the sides and diagonals of the paral-

lelogram, and the proof of the fact that the diagonals bisect

each other. Consider the figure. The side AB is, by the

triangle law, that vector which when added to OA - <r

gives OB = /3, ami hence it must be that AB =
f)

u .

In like manner AC = y a. Now OD is the sum of ')
r
l

and CD, and CD = AB; hence OD = 7 + j3 ex. The ^ v,_.-

onal AD is the difference of the vectors OD and OA., 'H

is therefore 7 + /? 2 a. The diagonal BC is 7 /3. I r.ne voi
'

: i from to the

middle point of BC may be found by adding to OB ow half of /'C
1

. Hence this

vector is j3 + ^ (7 j3)
or J (|3 + 7). In like manner the vector to the middle point of

AD is seen to be a + % (j + /3 2 a) or | (7 + j8), which is identical with the former.

The two middle points therefore coincide and the diagonals bisect each other.

Let a and /3 be any two vectors, \a\
and

|/3|
their respective lengths,

and Z (a, /J)
the angle between them. For convenience the vectors may

he considered to be laid off from the same origin. The product of the

lengths of the vectors by the cosine of the angle between the vectors

is called the scalar product,

scalar product = (3
=

a\\ft\ cos Z (a, /?), (32)

of the two vectors and is denoted by placing a dot between the letters.

This combination^ called the scalar product, is a number, not a vector.

As
|/3 1

cos Z. (a, /3)
is the projection of ft upon the direction of a, the

scalar product may be stated to be equal to the product of the length,

of either vector by the length of the projection of the other upon it.

In particular if either vector were of unit length, the scalar product
would be the projection of the other upon it, with proper regard for

* The numbers x, y, z are the oblique coordinates of the terminal end of p (if the
initial end be at the origin) referred to a set of axes which are parallel to <x, )3, 7 and
upon which the unit lengths are taken as the lengths of a, /3, 7 respectively.



D the angle between them.

The scalar product, from its definition, is commutative so that a*/3=fi'a.

Moreover (ma)fi = #(/,/?)
= in (/3), thus allowing a numerical factor

in to be combined with either factor of the product. Fxirthermore the

a.(/8 + 7)
= .

j
8 + .y or (a + 0).y = a.y + ft-y (33)

is satisfied as in the case of numbers. For if a be written as the product
rm

l
of its length a by a vector a

l
of unit length in the direction of a,

bhe first equation becomes

<V(0 + y)
= aai'P + aa

i-y
or ai'(P + y)

= ai'P + a
i'y-

&nd now
tfj'OQ 4- y) is the projection of the sum ft -f- y upon the direc-

tion of a, and a^ft -f- i*y is the sum of the projections of ft and y upon
this direction

; by the law of projections these are equal and hence the

distributive law is proved.
The associative law does not hold for scalar products ;

for (a>/3) y
means that the vector y is multiplied by the number a*

ft,
whereas

ic (j8y) means that a is multiplied by (/3y), a very different matter.

The laws of cancellation cannot hold
;
for if

or./?
== 0, then

\a\\ft\
cos Z (a, ft)

= 0, (34)

and the vanishing of the scalar product a*ft implies either that one of

the factors is or that the two vectors are perpendicular. In fact

vfi = is called the condition ofperpendicularity. It should be noted,

however, that if a vector p satisfies

p .of = Q, P ./3
= 0, py = 0, (35)

three conditions of perpendicularity with three vectors a, j8, y not

parallel to the same plane, the inference is that p = 0.

76. Another product of two vectors is the vector product,

vector product = ax ft
= v

\ a\ \
ft

\

sin /. (a, /3), (36)

where v represents a vector of unit length normal to the plane of

and ft upon that side on which rotation from a to

|8 through an angle of less than 180 appears posi- ax/3

tive or counterclockwise. Thus the vector product
is itself a vector of which the direction is perpen-

dicular to each factor, and of which the magni-
tude is the product of the magnitudes into the

sine of the included angle. The magnitude is therefore equal to the

Eirea of the parallelogram of which the vectors a and j8 are the sides,



As rotation from /3 to a is the opposite of that from cc to /3, it follows

from the definition of the vector product that

flxa = ax/3, not rx/3
=

fixa, (37)

and the product is not commutative^ the order of the factors must be

carefully observed. Furthermore the equation

ax/3 = v a||j3|smZ(, /3)
= (38)

implies either that one of the factors vanishes or that the vectors a and

/8 are parallel. Indeed the condition cex/3
= is called the condition of

parallelism. The laws of cancellation do not hold. The associative law

also does not hold; for (<rx/3)xy is a vector perpendicular to ax/3 and y,

and since orx/J is perpendicular to the plane of a and ft, the vector (arx/?)xy

perpendicular to it must lie in the plane of a and /3 ;
whereas the vec-

tor x(/3xy), by similar reasoning, must lie in the plane of ft and y ;
and

hence the two vectors cannot be equal except in the very special case

where each was parallel to ft which is common to the two planes.

But the operation (mor)x/?
=

ax(m(3') m(ax/J), which consists in

allowing the transference of a numerical factor to any position in the

product, does hold
;
and so does the distributive law

*x (0 + y)
= <x*P + tf*y and (a -f /3)xy

= axy + 0xy, (39)

the proof of which will be given below. In expanding according to

the distributive law care must be exercised to keep the order of the

factors in each vector product the same on both sides of the equation,

owing to the failure of the commutative law
;
an interchange of the

order of the factors changes the sign. It might seem as if any algebraic

operations where so many of the laws of elementary algebra fail as in

the case of vector products would be too restricted to be very useful ;

that this is not so is due to the astonishingly great number of problems
in which the analysis can be carried on. with only the laws of addition

and the distributive law of multiplication combined with the possibility
of transferring a numerical factor from one position to another in a

product ;
in addition to these laws, the scalar product aft is commuta-

tive and the vector product axfi is commutative except for change of sign.

In addition to segments of lines, plane areas may be regarded as

vector quantities ; for a plane area has magnitude (the amount of the

area) and direction (the direction of the normal to its plane). To specify
on which side of the plane the normal lies, some convention must be

made. If the area is part of a surface inclosing a portion of space, the



plane, its positive side is determined only in connection with some

assigned direction of description of its bounding curve
;
the rule is : If

a person is assumed to walk along the boundary of an area in an

assigned direction and upon that side of the plane which

causes the inclosed area to lie upon his left, he is said

to be upon the positive side (for the assigned direction

of description of the boundary), and the vector which

represents the area is the normal to that side. It has

been mentioned that the vector product represented

an area.

That the projection of a plane area upon a given plane gives an area

which is the original area multiplied by the cosine of the angle between

the two planes is a fundamental fact of projection, following from the

simple fact that lines parallel to the intersection of the two planes are

unchanged in length whereas lines perpendicular to the intersection

are multiplied by the cosine of the angle between the planes. As the

angle between the normals is the same as that between the planes, the

projection of an area upon a plane and the projection of the vector rep-

resenting the area upon the normal to the plane are equivalent. The

projection of a closed area upon a plane is zero; for the area in the

projection is covered twice (or an even number of times) with opposite

signs and the total algebraic sum is therefore 0.

To prove the law ax(/3 + y)
= ax/8 + axy and illustrate the use of

the vector interpretation of areas, construct a triangular prism with the

triangle on
ft, y, and ft + y as base and a as lateral edge. The total

vector expression for the surface of this prism is ,

fl

/Jxa -f- yxa -+- ax(/3 + y) + y(P*y)
~

y /3*y
== 0?

and vanishes because the surface is closed. A cancel-

lation of the equal and opposite terms (the two

bases) and a simple transposition combined with the

rule /3xa = x/3 gives the result

x(/3 + y)
= /3xa yxa = ax/3 -f axy.

A system of vectors of reference which is particularly useful consists

of three vectors i, j, k of unit length directed along the axes X, F, Z
drawn so that rotation from X to Y appears positive from the side of

the ccy-plane upon which Z lies. The components of any vector r drawn

from the origin to the point (a;, y, 2) are

xi, yj, zk, and r = xi -f yj + k.

-

W?l



i. j
=

j.i
= j.k = k.j = k.i = i.k = 0,

ixi = jxj = kxk = 0,

ixj
= - jxi

= k, jxk = - kx j
=

i, kxi = - ixk =
j.

By means of these products and the distributive laws for scalar am

vector products, any given products may be expanded. Thus if

a = a
x
i + aj + g

k and /?
=

Z^i -f ftj + 8k,

then o>/8
=

afa -f- / -f />8, (41

by direct multiplication. In this way a passage may be made fror

vector formulas to Cartesian formulas whenever desired.

EXERCISES

1. Prove geometrically that <x + (/3 + 7) = (a + /3) + 7 and m(a + /3)
= ma + mf.

2. If a and )3
are the vectors from an assumed origin to A and B and if

divides AB in the ratio m : n, show that the vector to C is 7 = (no. + mj8)/(w + ?i

3. In the parallelogram ABCD show that the line BJS connecting the vertex t

the middle point of the opposite side CD is trisected by the diagonal AD an

trisects it.

4. Show that the medians of a triangle meet in a point and are trisected.

5. If m
t
and m2 are two masses situated at Pr and P

2 ,
the center of gravity c

center of mass of m^ and wi2 is defined as that point G on the line P
a
P

2
wliic

divides P
t
P

2 inversely as the masses. Moreover if G
l

is the center of mass of

number of masses of which the total mass is M
l
and if G

2
is the center of mass c

a number of other masses whose total mass is Jf
2 ,

the same rule applied to M
l
an

M2
and G and G?

2 gives the center of gravity G of the total number of masse,

Show that

^ _ _ ?n
1
r
1 + m2

r
2 + + mnrn _ Zmr^m

l + m2 H---- + mn sm
'

where f denotes the vector to the center of gravity. Resolve into components <

show
- 2mo; _ -Zmy - Smz
x =- , y =--, 2 = --

2m. Sm Sm

6. If a and ft are two fixed vectors and p a variable vector, all being laid o

from the same origin, show that (p j8).or = is the equation of a plane throug
the end of /3 perpendicular to a.

7. Let or, /3, 7 be the vectors to the vertices A, JB, C of a triangle. Write tl

three equations of the planes through the vertices perpendicular to the opposii

sides. Show that the third of these can be derived as a combination of the oth<

two
;
and hence infer that the three planes have a line in common and that tl

perpendiculars from the vertices of a triangle meet in a point.



8. Solve the problem analogous to Ex. 7 for the perpendicular bisectors of the

iides.

9. Note that the length of a vector is Vor. If <r, ft, and 7 = ft <x are the

three sides of a triangle, expand 7*7 = (ft a)-(ft a) to obtain the law of cosines.

10. Show that the sum of the squares of the diagonals of a parallelogram equals
the sum of the squares of the sides. What does the difference of the squares of the

diagonals equal ?

11. Show that a and - ~ are the components of ft parallel and perpen-
a-a a-a

dicular to a by showing 1 that these vectors have the right direction, and 2 that

they have the right magnitude.

12. If cr, /3, 7 are the three edges of a parallelepiped which start from the saine

vertex, show that (crx/3)7 is the volume of the parallelepiped, the volume being
considered positive if 7 lies on the same side of the plane of a and ft with the

vector axj3.

13. Show by Ex. 12 that (axft)-y = a^ftxy) and (ax/3).y = (ftxy).a; and hence

infer that in a product of three vectors with cross and dot, the position of the ccdss

and dot may be interchanged and the order of the factors may be permuted cyc-

lically without altering the value. Show that the vanishing of (axft).y or any of

its equivalent expressions denotes that a, /3, 7 are parallel to the same plane ;
the

condition axft-y = is called the condition of complanarity.

14. Assuming cr = 04 i + a
2j + a

8k, ft
=

bji + &
2J + ^gk, 7 = C]A + c

zJ + C
8^>

expand o>7, a./?, and ax(ftxy) in terms of the coefficients to show

ax(ftxy) = (a-y) ft (a>ft) y ;
and hence (axft)xy = (a>y) ft (7-18) a.

15. The formulas of Ex. 14 for expanding a product with two crosses and the

rule of Ex. 13 that a dot and a cross may be interchanged may be applied to expand

(ax/3) x (7x5) = (a>yxS)ft (18.7x8) a = (ax/3.8) 7 (axft.y)S

16. If cr and ft are two unit vectors in the xy-plane inclined at angles 6 and ^
to the x-axis, show that

a = i cos 6 + j sin 0, ft
= i cos

<f> + j sin <p

and from the fact that a-ft
= cos(< ff)

and ax ft ksin(0 0) obtain by multi-

plication the trigonometric formulas for sin(0 0) and cos(< 8).

IT. If I, m, n are direction cosines, the vector li + mj + nk is a vector of unit

length in the direction for which
I, m, n are direction cosines. Show that the

condition for perpendicularity of two directions (I, m, n) and (f, m', n') is

II' + mm' + nn' = 0.

18, With the same notations as in Ex. 14 show that

i j k
~ a? 4- a 4- a.? and ax.8 = and axfl7 =



v '

0.3j-5k
O.li- 4.2 j + 2.6k,

i + k

20. Find the areas of the parallelograms defined by the pairs of vectors in

Ex. 19. Find also the sine and cosine of the angles between the vectors.

21. Prove ax[px(yxd)'] = (a-yx5)/3 a-ftyx5 = /3-d axy /3yaxd.

22. What is the area of the triangle (1, 1, 1), (0, 2, 3), (0, 0,
-

1) ?

77. Vector differentiation. As the fundamental rules of differentia-

tion depend on the laws of subtraction, multiplication by a number,
the distributive law, and the rules permitting rearrangement, it follows

that the rules must be applicable to expressions containing rectors

without any changes except those implied by the fact that ax/3
=

/3*a.

As an illustration consider the application of the definition of differen-

tiation to the vector product tuv of two vectors which are supposed
to be functions of a numerical variable, say x. Then

A(UxV) = (U + All)x(v + AV) UxV
= ttxAV + AUxV + AUxAV,

AUxAvAV
,
All

: Ux
* 1~ 7~xV ' * '

Ax Ax Ax

eZy 5u

dx dx

Here the ordinary rule for a product is seen to hold, except that
the order of the factors must not be interchanged.
The interpretation of the derivative is important. Let the variable

vector r be regarded as a function of some variable, say x, and suppose
r is laid off from an assumed origin so that, as x varies,
the terminal point of r describes a curve. The incre-

ment Ar of r corresponding to Lx is a vector quantity
and in fact is the chord of the curve as indicated.

The derivative

di .. Ar di ,. Ar= lim , = hm = t (4:2}dx Ax ds As v '

is therefore a vector tangent to the curve; in particular if

the variable x were the arc s, the derivative would have
the magnitude unity and would be a unit vector tangent to the curve.
The derivative or differential of a vector of constant length is per-

pendicular to the vector. This follows from the fact that the vectox-
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;hen describes a circle concentric with the origin. It may also be seen

inalytically from the equation

d(r-r)
= dT'T -f r*di 2 r.cfr = d const. = 0. (43)

"3 the vector of constant length is of length unity, the increment Ar is

;he chord in a unit circle and, apart from infinitesimals of higher

>rder, it is equal in magnitude to the angle subtended at the center.

Consider then the derivative of the unit tangent t to a curve with

espect to the arc s. The magnitude of dt is the angle the tangent turns

ihrough and the direction of dt is normal to t and hence to the curve.

Che vector quantity, ^ *2_

curvature = =
-7-55 (44)

ds ds2 ^ '

iherefore has the magnitude of the curvature (by the definition in 42)

md the direction of the interior normal to the curve.

This work holds equally for plane or space curves. In the case of a space curve

he plane which contains the tangent t and the curvature C is called the osculating

>lane ( 41). By definition
( 42) the torsion of a space curve is the rate of turning

if the osculating plane wi'th the arc, that is, d\f>/ds. To find the torsion by vector

nethods let c be a unit vector C/VC^C along C. Then as t and c are perpendicular,

i = txc is a unit vector perpendicular to the osculating plane and dn will equal d\f/

n magnitude. Hence as a vector quantity the torsion is

_ dn d(txc) dt . dc . dc ....
T = =-l = xc + tx = tx , (45)

ds ds ds ds ds

vhere (since dt/ds = C, and c is parallel to C) the first term

Irops out. Next note that dn is perpendicular to n because it

B the differential of a unit vector, and is perpendicular to t

>ecause dn = d(txc) =txdc and t(txdc) = since t, t, dc are

necessarily complanar (Ex. 12, p. 169). Hence T is parallel

o c. It is convenient to consider the torsion as positive when
he osculating plane seems to turn in the positive direction when
iewed from the side of the normal plane upon which t lies. An inspection of the

igure shows that in this case dn has the direction c and not + c. As c is a unit

r

ector, the numerical value of the torsion is therefore cT. Then

m m j.
& . d C

r = C.T = c.tx = otx
ds

dsr 1
c* x

- t~~ '

d 1 1 . dr 1

3 F= = ~ c 'tx^S^=ds VC-cJ &P VC-C

r"r"

phere differentiation with respect to s is denoted by accents.



change of F along the normal to the surfaces and

is written dF/dn. The rate of change of F along

the normal to the surface F C is more rapid than

along any other direction
;
for the change in F be-

tween the two surfaces is dF = dC and is constant,

whereas the distance dn between the two surfaces is

least (apart from infinitesimals of higher &*der) along the normal. In

fact if dr denote the distance along any other direction, the relations

shown by the figure are

dr = sec Odn and - -r- cos 9. (46)
dr dn ^ '

If now n denote a vector of unit length normal to the surface, the

product ndF/dn will be a vector quantity which has both the magnitude
and the direction of most rapid increase of F. Let

dF
n VF = grad F (47)

be the symbolic expressions for this vector, where VF is read as "del F"
and grad F is read as

"
the gradient of F." If di be the vector of which

dr is the length, the scalar product ncZr is precisely cos ddr, and hence

it follows that

dr.VF=dF and r.VF ^-, (48)1 dr ^ J

where T
1
is a unit vector in the direction dr. The second of the equa-

tions shows that the directional derivative in any direction is the com-

ponent or projection of the gradient in that direction.

From this fact the expression of the gradient may be found in terms
of its components 'along the axes. For the derivatives of F along the

axes are dF/8x, dF/dt/, dF/dz, and as these are the components of V,F

along the directions i, j, k, the result is

d 39
Hence V = i^--fj^--f-k^-cx oy cz

may be regarded as a symbolic vector-differentiating operator which
when applied to F gives the gradient of F. The product

^----z-
oy oz

(50}^ '



:orm of grad F it does not appear that the gradient of a function is

independent of the choice of axes, but from the manner of derivation

)f VF first given it does appear that grad F is a definite vector quan-

;ity independent of the choice of axes.

In the case of any given function F the gradient may be found by
;he application of the formula (49) ;

but in many instances it may also

De found by means of the important relation drVF = dF of (48). For

ustance to prove the formula V(FG) = FVG -f- GVF, the relation may
je applied as follows :

dr*V(FG) = d(FG) = FdG + GdP
== FdT'VG + Gdt-VF = dr-(FVG + GVF).

tfow as these equations hold for any direction dr, the di may be can

jeled by (35), p. 165, and the desired result is obtained.

The use of vector notations for treating assigned practical problems involving

:omputation is not great, but for handling the general theory of such parts of

jhysics as are essentially concerned with direct quantities, mechanics, hydro-

aechanics, electromagnetic theories, etc., the actual use of the vector algorisms

:onsiderably shortens the formulas and has the added advantage of operating

lirectly upon the magnitudes involved. At this point some of the elements of

nechanics will be developed.

79. According to Newton's Second Law, when a force acts upon a

particle of mass m, the rate of change of momentum is equal to the

force acting, and takes place in the direction of the force. It therefore

ippears that the rate of change of momentum and momentum itself

ire to be regarded as vector or directed magnitudes in the application

)f the Second Law. Now if the vector r, laid off from a fixed origin

;o the point at which the moving mass m is situated at any instant ol

;ime t, be differentiated with respect to the time t, the derivative dr/dt
s a vector, tangent to the curve in which the particle is moving and of

nagnitude equal to ds/dt or v, the velocity of motion. As vectors*,

;hen, the velocity v and the momentum and the force may be written a,v

dr _ d
V =

~dt'
mV

>
F== ^dt dt

dv cPr , . . dv dh
Sence J? = m ~- = m--^ = m,f if f -57 -33dt air at air

From the equations it appears that the force F is the product of tht

nass m by a vector f which is the rate of change of the velocity regarded

* la. applications, it is usual to denote vectors by heavy type and to denote the magbi-
udep of those var.tors by corresponding italic letters.



fused with the rate 01 change dv/dt or d*s/ar ol the speed, or magnitude

of the velocity. The components /.,., /,,, fz
of the acceleration along the

axes are the projections of f along the directions i, j, k and may be

written as f
-i,

f
.j,

f -k. Then by the laws of differentiation it follows

that

Hence f
v" "

fz
~

d?'

and it is seen that the components of the acceleration are the acceler-

ations of the components. If X, Y, Z are the components of the force,

thb equations of motion in rectangular coordinates are

Instead of resolving the acceleration, force, and displacement along

the axes, it may be convenient to resolve them along the tangent and

normal to the curve. The velocity v may be written as vt, where v is

the magnitude of the velocity and t is a unit vector tangent to the

curve. Then , _
dv . dt

But ^ =^^ = Cu = n, (53)^ '

where R is the radius of curvature and n is a unit normal. Hence

'-S'+s-. /- /.-s-

It therefore is seen that the component of the acceleration along the

tangent is d?s/dt?, or the rate of change of the velocity regarded as a

number, and the component normal to the curve is vz

/R. If T and N
are the components of the force along the tangent and normal to the

curve of motion, the equations are

d?s v*
T = mft

=
m-^,

N = mfn = m~-

It is noteworthy that the force must lie in the osculating plane.

If r and r + Ar are two positions of the radius vector, the area of

the sector included by them is (except for infinitesimals of higher order)



>r me areai velocity, is tnereiore

dA Ar
,

di . ._~ = lim irx- = ^rx-=^rxv. (54)

Che projections of the areal velocities on the coordinate planes, which

ire the same as the areal velocities of the projection of the motion on

hose planes, are (Ex. 11 below)

I/ d% di/\ 1 / dx d%\ If dii dx

If the force F acting on the mass m passes through the origin, then

and F lie along the same direction and rxF = 0. The equation of

action may then be integrated at sight.

dv dv _, Am = F, wrx = rxF = 0,
dt dt

dv d , . .
,

rx - = (rxv) = 0, rxv = const.
dt dt ^ J

t is seen that in this case the rate of description of area is a constant

ector, which means that the rate is not only constant in magnitude

>ut is constant in direction, that is, the path of the particle m must lie

n a plane through the origin. When the force passes through a fixed

ioint, as in this case, the force is said to be central. Therefore when a

larticle moves under the action of a central force, the motion takes place

n a plane passing through the center and the rate of description of

reas, or the areal velocity, is constant.

80. If there are several particles, say n, in motion, each has its own equation

f motion. These equations may be combined by addition and subsequent reduction.

w
2
r2 + ----

1- m^n = (m^ + m2 H---- + mn) f = -M" f

-

ml + m2 + ' ' ' + mn Sm M
'hen M = P + F + . . + P. =



1 (JW l/IJUC

mass or center of gravity of the particles (Ex. 5, p. 168). The result (55) states, on

comparison with (51), that the center of gravity of the n masses moves as if all the

mass M were concentrated at it and all the forces applied there.

The force F; acting on the ith mass may be wholly or partly due to attractions,

repulsions, pressures, or other actions exerted on that mass by one or more of the

other masses of the system of n particles. In fact let Ft
- be written as

F; = P, + Fa + F,- 2 + + F,n ,

where Fy is the force exerted on m; by ro,-
and F; is the force due to some agency

external to the n masses which form the system. Now by Newton's Third Law,
when one particle acts upon a second, the second reacts upon the first with a

force which is equal in magnitude and opposite in direction. Hence to F# above

there will correspond a force F,-,-
= Fy exerted by m,- on

rrij.
In the sum SF all

these equal and opposite actions and reactions will drop out and SFt
- may be re-

placed by SPio, the sum of the external forces. Hence the important theorem that .-

The motion of the center of mass of a set of particles is as if all the mass were concen-

trated there and all the external forces were applied there (the internal forces, that is,

the forces of mutual action and reaction between the particles being entirely

neglected).

The moment of a force about a given point is defined as the product of the force

by the perpendicular distance of the force from the point. If r is the vector from

the point as origin to any point in the line of the force, the moment is therefore

rxF when considered as a vector quantity, and is perpendicular to the plane of the

line of the force and the origin. The equations of n moving masses may now be

combined in a different way and reduced. Multiply the equations by r
t ,

r
2 , ,

rn

and add. Then

m^x -II + m2
r
2
x _!* + ...+ m^x -~ =r

1
xF

1 + r2xF2 + + rnxFn
at at at

or jn
t
-r^ + m2

- r
2
xv2 + + WH - rnxyn =r^ + r

2
xF2 + + rnxFn

at dt etc

or (m-^xvj^ + m
2r,xv2 -\ + m^xy^) = SrxF. (56)

at

This equation shows that if the areal velocities of the different masses are multiplied

by those masses, and all added together, the derivative of the sum obtained is equal
to the moment of all the forces about the origin, the moments of the different forces

being added as vector quantities.

This result may be simplified and put in a different form. Consider again the

resolution of F; into the sum F;o + Fa -4- + Ft
-

n ,
and in particular consider the

action Fy- and the reaction F/t
= Fy between two particles. Let it be assumed

that the action and reaction are not only equal and opposite, but lie along the line

connecting the two particles. Then the perpendicular distances from the origin to

the action and reaction are equal and the moments of the action and reaction are

equal and opposite, and may be dropped from the sum Sr;xF;, which then reduces

to SrfxFio- On the other hand a term like mjr;xvj may be written as r;x(mYi). This

product is formed from, the momentum in exactly the same way that the moment
is formed from the force, and it is called the moment of momentum. Hence the

equation (56) becomes



iwjia.1 inomenb ui muinenmiiij = momeub m external xorces.
dt

Hence the result that, as vector quantities : The rate of change of the moment of

nomentum of a system of particles is equal to the moment of the external forces (the

forces between the masses being entirely neglected under the assumption that action

uid reaction lie along the line connecting the masses) .

EXERCISES

1. Apply the definition of differentiation to prove

a) d (uv) = u.cZv + v.du, (j8)
d [u-(vxw)] = du.(vxw) -f u(dvxw) + u-(vxciw) .

2. Differentiate under the assumption that vectors denoted by early letters of

;he alphabet are constant and those designated by the later letters are variable :

(a) ux(vxw), (/3) acosi+bsinZ, (7) (uu)u,

(8\ ux , (e) u./^x^V <f) c(a.u).
(Ly \ (LjT GL I

d2i t"s' t's"
3. Apply the rules for change of variable to show that = , where

iccents denote differentiation witli respect to x. In case r = xi + 2/j show that

L/A/C^C takes the usual form for the radius of curvature of a plane curve.

4 . The equation of the helix is r = ia cos <#> + j sin
</> + ki>0 with s = Va2 + 1>

Z
tf> ;

ihow that the radius of curvature is (a
2 + &2)/a.

5. Find the torsion of the helix. It is o/(a
z + * 2

)-

6. Change the variable from s to some other variable t in the formula for torsion.

7. In the following cases find the gradient either by applying the formula -which

iontains the partial derivatives, or by using the relation di>VF = dF, or both :

(a) r.r = x2 + y2 + z2
, (ft logr, (7) r = VM,

(5) log (a
2 + y*) = log [r.r

-
(k.r)

2
], () (rxa).(rxb).

8. Prove these laws of operation with the symbol V :

(a) V(F + Q) = VF + VG, (0) G*V(F/G) = GVF- FVG.

9. If r, <j>
are polar coordinates in a plane and r

l
is a unit vector along the radius

rector, show that dr
t /ii = nd</>/dt where n is a unit vector perpendicular to the

adius. Thus differentiate r = nr
t
twice and separate the result into components

ilong the radius vector and perpendicular to it so that

10. Prove conversely to the text that if the vector rate of description of area is

lonstant, the force must be central, that is, rxF = 0.

11. Note that rxvi, rxvj, rxvk are the projections of the areal velocities upon

he planes a; = 0, y 0, z = 0. Hence derive (54') of the tex>
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12. Show that the Cartesian expressions for the magnitude of the velocity and

of the acceleration and for the rate of change of the speed dv/dt are

,

Vx'2 + 2/'
2 + z'2

where accents denote differentiation with respect to the time.

13. Suppose that a body which is rigid is rotating about an axis with the

angular velocity = dQ/dt. Represent the angular velocity by a vector a drawn

along the axis and of magnitude equal to . Show that the velocity of any point

in space is v = axr, where r is the vector drawn to that point from any point of

the axis as origin. Show that the acceleration of the point determined byr is in a

plane through the point and perpendicular to the axis, and that the components are

ax (axr) = (a.r)a w2r toward the axis, (da/d)xr perpendicular to the axis,

under the assumption that the axis of rotation is invariable.

14. Let r denote the center of gravity of a system of particles and r- denote the

vector drawn from the center of gravity to the ith particle so that r; = f + r/ and

v, = v + v/. The kinetic energy of the itli particle is by definition

- =
i-wif (v + v/).(v + v

t').

Sum up for all particles and simplify by using the fact "Smf^ = 0, which is due to

the assumption that the origin for the vectors r/ is at the center of gravity. Hence

prove the important theorem : The total kinetic, energy of a system is equal to the

kinetic energy which the total mass would have if moving with the center of gravity

plus the energy computed from the motion relative to the center of gravity as origin,

that is,

15. Consider a rigid body moving in a plane, which may be taken as the xy~

plane. Let any point r ol the body be marked and other points be denoted rela-

tive to it by r'. The motion of any point r' is compounded from the motion of r

and from the angular velocity a = kw of the body about the point r . In fact the

velocity v of any point is v = V + axr'. Show that the velocity of the point denoted

by r' = kxv /<o is zero. This point is known as the instantaneous center of rotation

( 39). Show that the coordinates of the instantaneous center referred to axes at

the origin of the vectors r are

u at u at

16. If several forces F
x ,
F

2 , ,
Fn act on a body, the sum R = SPt

- is called

the resultant and the sum Sr^xF,-, where r,- is drawn from an origin to a point
in the line of the force F,-, is called the resultant moment about 0. Show that the



PAET II. DIFFERENTIAL EQUATIONS

CHAPTER VII

GENERAL INTRODUCTION TO DIFFERENTIAL EQUATIONS

81. Some geometric problems. The application of the differential

alculus to plane curves has given a means of determining some

eometric properties of the curves. For instance, the length of the

abnormal of a curve ( 7) is ydy/dx, which in the case of the parabola
2 = kpx is 2p, that is, the subnormal is constant. Suppose now it

rere desired conversely to find all curves for which the subnormal is

given constant m. The statement of this problem is evidently con-

idned in the equation

dy . 7 7

v ,
= m or yy = m or ydy = max.

///vCtw

Lgain, the radius of curvature of the lemniscate r2 == a2 cos 2 < is found

D be R = 2

/3 r, that is, the radius of curvature varies inversely as the

idius. If conversely it were desired to find all curves for which the

adius of curvature varies inversely as the radius of the curve, the state-

lent of the problem would be the equation

T /dr\
2
"]2

r +U) *

cf'r
. ,/dr\' r

rhere k is a constant called a factor of proportionality.*

Equations like these are unlike ordinary algebraic equations because,

i addition to the variables x, y or r, <$>
and certain constants m or 7c,

ley contain also derivatives, as dy/dx or dr/d<f> and d^r/dtf, of one of

le variables with respect to the other. An equation which contains

* Many problems in geometry, mechanics, and physics are stated in. terms of varia-

on. For purposes of analysis the statement a; varies as y, or a; oc y, is written as x = ky,

itroducing a constant k called a factor of proportionality to convert the variation into

i equation. la like manner the statement x varies inversely as y, or * <* 1/y, becomes
= k/y, and x varies jointly with y and z becomes a = kyz.

179
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derivatives is called a differential equation. The order of the differential

equation is the order of the highest derivative it contains. The equa-

tions above are respectively of the first and second orders. A differen-

tial equation of the first order may be symbolized as <

(a;, y, y
1

}
=

0,

and one of the second order as i>(a;, y, y', y")
= 0. A function y = f(x)

given explicitly or defined implicitly by the relation F(x, y)= Q is

said to be a solution of a given differential equation if the equation is

true for all values of the independent variable x when the expressions

for y and its derivatives are substituted in the equation.

Thus to show that (no matter what the value of a is) the relation

4 ay - x* + 2 a2
log x, -

gives a solution of the differential equation of the second order

it is merely necessary to form the derivatives

dx x dx* x2

and substitute them in the given equation together with y to see that

is clearly satisfied for all values of x. It appears therefore that the given relation

for y is a solution of the given equation.

To integrate or solve a differential equation is to find all the functions

which satisfy the equation. Geometrically speaking, it is to find all the

curves which have the property expressed by the equation. In mechan-
ics it is to find all possible motions arising from the given forces. The
method of integrating or solving a differential equation depends largely

upon the ingenuity of the solver. In many cases, however, some method
is immediately obvious. For instance if it be possible to separate the

variables, so that the differential dy is multiplied by a function of y
alone and dx by a function of x alone, as in the equation

4> (y) dy = A (*) dx, then / $(y')dy = j tj/ (x} dx -f C (1)

will clearly be the integral or solution of the differential equation.

As an example, let the curves of constant subnormal be determined. Here

ydy = mdx and yz = 2 mx + G.



curve whose subnormal was m and which passed through the origin, it would

nerely be necessary to substitute (0, 0) in the equation y2 2 raz + C to ascertain

what particular value must be assigned to C in order that the curve pass through

(0, 0). The value is C = 0.

Another example might be to determine the curves for which the a;-intercept

varies as the abscissa of the point of tangency. As the expression ( 7) for the

5-intercept is x ydx/dy, the statement is

fix, .
., ,. dx

x y = kx or (1 k) x y
dy dy

Hence (1
-

fc)
^ = and (1

-
k) log y = log x + C.

y ^

[f desired, this expression may be changed to another form by using each side of

She equality as an exponent with the base e. Then

eO-AOlosp = glogx + C' or yl-i: eCx = C?'x .

As C is an arbitrary constant, the constant C' = ec is also arbitrary and the solution

nay simply be written as yl~ k = Cx, where the accent has been omitted from the

constant. It' it were desired to pick out that particular curve which passed through
,he point (1, 1), it would merely be necessary to determine C from the equation

li-* =(71, and hence C = 1.

As a third example let the curves whose tangent i.s constant and equal to a bo

letermined. The length of the tangent is y Vl + y"
2
/i/ and hence the equation is

- or y2 -

y' y'
z

fhe variables are therefore separable and the results are

v (ft tfi / ft 4"
dx = dy and x 4- C = Va2 y2 a log

[f it be desired that the tangent at the origin be vertical so that the curve passes

;hrough (0, a), the constant C is 0. The curve is the tractrix or " curve of pursuit
"

is described by a calf dragged at the end of a rope by a person walking along
i straight line.

82. Problems which involve the radius of curvature will lead to differ-

ential equations of the second order. The method of solving such

aroblems is to reduce the equation, if possible, to one of the first order.

For the second derivative may be written as

---
dx y

dy



is the expression for the radius of curvature. If it be given that the

radius of curvature is of the form f(x) <j> (?/')
or f(y) <j> (?/'),

(3)

~dx
IJ

dy

the variables x and y' or y and y' are immediately separable, and an

integration may be performed. This will lead to an equation of the

first order
;
and if the variables are again separable, the solution may

be completed by the methods of the above examples.

In the first place consider curves whose radius of curvature is constant. Then

V
'

X ~ C= and

dx

where the constant of integration has been written as C/a for future conven-

ience. The equation may now be solved for y' and the variables become separated

with the results

x - C , (x
-

C) ,

y = - - or dy = '- dx.

Va2 -
(x
-

C)
2 Va2 -

(x
-

C)
2

Hence y - C' = - Va2 -
(x
~

C)
2 or (x

-
C)

2 + (y
-

C')
2 = a2

.

The curves, as should be anticipated, are circles of radius a and with any arbi-

trary point (C, C') as center. It should be noted that, as the solution has required
two successive integrations, there are two arbitrary constants C and C' of integra-

tion in the result.

As a second example consider the curves whose radius of curvature is double

the normal. As the length of the normal is y Vl + ?/'
2

,
the equation becomes

dy

where the double sign has been introduced when the radical is removed by cancel-

lation. This is necessary ;
for before the cancellation the signs were ambiguous

and there is no reason to assume that the ambiguity disappears. In fact, if the

curve is concave up, the second derivative is positive and the radius of curvature

is reckoned as positive, whereas the normal is positive or negative according as

the curve is above or below the axis of x
; similarly, if the curve is concave down.

Let the negative sign be chosen. This corresponds to a curve above the axis and.

concave down . or below the axis and concave up, that is, the normal and the radius

of curvature have the same direction. Then

- =-ri and
y i + y*

where the constant has been given the form log 2 C for convenience. This exprss-
sinn mn.v VIP. t.lirnwn int.n n.lfTf>hvnir>. fnnn tiv pYnnnfint.iat.irm enlvr-rl fnr 11' a-nrl t.hnn



The curves are cycloids of which the generating circle has an arbitrary radius C
and of which the cusps are upon the x-axis at the points 0' Ik-rrC. If the posi-

tive sign had been taken in the equation, the curves would have been entirely

different
;
see Ex. 6 (a).

The number of arbitrary constants of integration which enter into

the solution of a differential equation depends on the number of inte-

grations which are performed and is equal to the order of the equation,

This results in giving a family of curves, dependent on one or more

parameters, as the solution of the equation. To pick out any particular

member of the family, additional conditions must be given. Thus, if

there is only one constant of integration, the curve may be required

to pass through a given point ;
if there are two constants, the curve

may be required to pass through a given point and have a given slope

at that point, or to pass through two given points. These additional

conditions are called initial conditions. In mechanics the initial condi-

tions are very important ;
for the point reached by a particle describing

a curve under the action of assigned forces depends not only on the

forces, but on the point at which the particle started and the velocity

with which it started. In all cases the distinction between the constants

of integration and the given constants of the problem (in the foregoing

examples, the distinction between C, C' and m, Jc, a) should be kept

dearly in mind

EXERCISES

1. Verify the solutions of the differential equations :

(a) xy+^x2 =C, y + x + xy' = 0, (/3) x*y
s
(3 &=+ C)= 1, xy'+ y+x*y*e*= 0,

(7) (l+x
2
)?/'

2
=l, 2x= C&<- C-ierv, (8) y + xy' = X*?/

2
, *V = C2 + C,

(e) y" + y'/x = 0, y = C logx + Cu (f) y = Ce* + C
a
e*L y" + 2 y = 3 y',

(i?) V" -y = x*,y = Ce* + erWc^ cos ^ + C
2
sin

j
- x2

.

2. Determine the curves which have the following properties:

(a) The subtangent is constant
; y = Ce*. If through (2, 2), y - 2"1ea=- 2

.

(|3) The right triangle formed by the tangent, subtangent, and ordinate has the

constant area fc/2 ;
the hyperbolas xy + Cy + k = 0. Show that if the curve passes

through (1, 2) and (2, 1), the arbitrary constant C is and the given k is 2.

(7) The normal is constant in length ;
the circles (x C)

2 + y2 = k2
.

(5) The normal varies as the square of the ordinate
;
catenaries fc7/=cosh k(x C).

If in particular the curve is perpendicular to the y-axis, C = 0.

(e )
The area of the right triangle formed by the tangent, normal, and x-axis is

inversely proportional to the slope ;
the circles (x C)

2 + y
2 = k.



3. Determine the curves which have the following properties:

(a) The angle between the radius vector and tangent is constant; spirals

r = Ce**.

(j3)
The angle between the radius vector and tangent is half that between the

radius and initial line
;
cardioids r = (7(1 cos 0).

(y) The perpendicular from the pole to a tangent is constant
;
r cos ($ C) k.

(5) The tangent is equally inclined to the radius vector and to the initial lino
;

the two sets of parabolas r = C/(l cos <).

(e) The radius is equally inclined to the normal and to the initial line
;
circles

r = cos or lines r cos = C.

4. The arc 3 of a curve is proportional to the area A, where in rectangular

coordinates A is the area under the curve and in polar coordinates it is the area

included by the curve and the radius vectors. From the equation ds = dA show
that the curves which satisfy the condition are catenaries for rectangular coordi-

nates and lines for polar coordinates.

5. Determine the curves for which the radius of curvature

(a) is twice the normal and oppositely directed
; parabolas (x C)~ = C'(2y C')

((3) is equal to the normal and in same direction
;
circles (x C)

2 + y
2 = C'2 .

(7) is equal to the normal and in opposite direction
;
catenaries.

(8) varies as the cube of the normal
;
conies kCyz C2

(x + C')
2 = k.

(
e

) projected on the x-axis equals the abscissa
;
catenaries.

( f ) projected on the x-axis is the negative of the abscissa
; circles.

(17) projected on the x-axis is twice the abscissa.

(0) is proportional to the slope of the tangent or of the normal.

83. Problems in mechanics and physics. In many physical problems
the statement involves an equation between the rate of change of some

quantity and the value of that quantity. In this way the solution of

the problem is made to depend on the integration of a differential equa-
tion of the first order. If x denotes any quantity, the rate of increase

in x is dx/dt and the rate of decrease in x is dx/dt ;
and consequently

when the rate of change of x is a function of x, the variables are

immediately separated and the integration may be performed. The
constant of integration has to be determined from the initial conditions

;

the constants inherent in the problem may be given in advance or their

values may be determined by comparing x and t at some subsequent
time. The exercises offered below will exemplify the treatment of

such problems.

In other physical problems the statement of the question as a differ-

ential equation is not so direct and is carried out by an examination of

the problem with a view to stating a relation between the increments

or differentials of the dependent and independent variables, as in some

geometric relations already discussed ( 40), and in the problem of the



ential equations of the curve of equilibrium of a flexible string or

chain. Let p be the density of the chain so that pAs is the mass of

the length As
;
let X and Y be the components

of the force (estimated per unit mass) acting on

the elements of the chain. Let T denote the

tension in the chain, and T the inclination of

the element of chain. From the figure it then

appears that the components of all the forces

acting on As are

(T + AT7

)
COS (T + AT) T COS T + Xp&s = 0,

(T + AT) sin (T + AT) T sin T + Yp&s = ;

for these must be zero if the element is to be in a position of equi-

librium. The equations may be written in the form

A (T cos T) -f Xp&s = 0, A
(
T sin T) + T/oAs = ;

and if they now be divided by As and if As be allowed to approach

zero, the result is the two equations of equilibrium

A/r \+ X = Q (T
ds\dsj

'

ds \ ds

where cos T and sin T are replaced by their values dx/ds and dy/ds.

If the string is acted on only by forces parallel to a given direction, let the

y-axis be taken as parallel to that direction. Then the component X will be zero

and the first equation may be integrated. The result is

ds \ ds)
'

ds
'

dx

This value of T may be substituted in the second equation. There is thus obtained

a differential equation of the second order

V"
II; I -I* U _L ^ \t ttr \J

ds VfT
(4f)

ZMrA!

If this equation can be integrated, the form of the curve

of equilibrium may be found.

Another problem of a different nature in strings is to

consider the variation of the tension in a rope wound around

a cylinder without overlapping. The forces acting on the

element As of the rope are the tensions T and T + AT, the

normal pressure or reaction B of the cylinder, and the force

of friction which is proportional to the pressure. It will

be assumed that the normal reaction lies in the angle A0 and that the coefficient

of friction is n so that the force of friction is p,R. The components along the radiua

and along the tangent are



(T + AT) sin A</> E cos (0A0) pR sin (0A0) = 0, < < 1,

(T + AT) cos A0 + R sin (0A0) /*# cos (0A0) T = 0.

Now discard all infinitesimals except those of the first order. It must be borne in

mind that the pressure R is the reaction on the infinitesimal arc As and hence is

itself infinitesimal. The substitutions are therefore Td<f> for (T + AT) sin A0, R for

R cos 0A0, for R sin #A<, and T + dT for (T + AT) cos A0. The equations there-

fore reduce to two simple equations

Td<j>-R = Q, dr-/iR = 0,

from which the unknown R may be eliminated with the result

or T = CeM> or T= TeN>,

where T is the tension when is 0. The tension therefore runs ap exponentially

and affords ample explanation of why a man, by winding a rope about a post, can

readily hold a ship or other object exerting a great force at the other end of the

rope. If
fj. is 1/3, three turns about the post will hold a force 535 T

,
or over 2fi

tons, if the man exerts a force of a hundredweight.

84. If a constant mass m is moving along a line under the influence

of a force F acting along the line, Newton's Second Law of Motion (p. 13)
states the problem of the motion as the differential equation

(P"r

mf=F or m^f-^F (5)
(AJ\J

of the second order
;
and it therefore appears that the complete solution

of a problem in rectilinear motion requires the integration of this equa-
tion. The acceleration may be written as

dv dv dx dv

and hence the equation of motion takes either of the forms

dv dv , /KI .m- = F or m,- = 7, (5')

It now appears that there are several cases in which the first integration

may be performed. For if the force is a function of the velocity or of

the time or a product of two such functions, the variables are separated
in the first form of the equation ;

whereas if the force is a function of

the velocity or of the coordinate x or a product of two such functions,

the variables are separated in the second form of the equation.

When the first integration is performed according to either of these

methods, there will arise an equation between the velocity and either

the time t or the coordinate x. In this equation will be contained a

constant of integration which may be determined by the initial condi-



to solve the equation and express the velocity as a function of the time

t or of the position x, as the case may be, and integrate a second time.

The carrying through in practice of this sketch of the work will be

exemplified in the following two examples.

Suppose a particle of mass m is projected vertically upward with the velocity V.

Solve the pi obiem of the motion under the assumption that the resistance of the

air varies as the velocity of the particle. Let the distance be measured vertically

upward. The forces acting on the particle are two, the force of gravity which is

the weight W mg, and the resistance of the air which is kv. Both these forces

are negative because they are directed toward diminishing values of x. Hence

f i
dv

mf = mg kv or m = mg kv,
dt

where the first foi'm of the equation of motion has been chosen, although in this>

case the second form would be equally available. Then integrate.

dv --dt and \ g(g +-v\ = - t+ 0.
\ m / mk

g -| i

m
As by the initial conditions v = V when t 0, the constant C is found from

k_

*
hence

" +^ '='

m I m k

m
is the relation between v and t found by substituting the vahie of (7. The solution

for v gives

dx fm \
-- m

v = = l-g + V)e --g.
dt \k I k

m [m ,_\ * m . _,
Hence x = -- (-g + V }e

m -- gt+C.
k\k 1 k

If the particle starts from the origin x = 0, the constant C is found to be

Hence the position of the particle is expressed in terms of the time and the prob-

lem is solved. If it be desired to find the time which elapses before the particle

comes to rest and starts to drop back, it is merely necessary to substitute v = in

the relation connecting the velocity and the time, and solve for the time t = T
;

and if this value of t be substituted in the expression or
,
the total distance X

covered in the ascent will be found. The results are

k \ mg I \k/ [m \ mg

As a second example consider the motion of a particle vibrating up and down

at the end of an elastic string held in the field of gravitj. Bv; Hooke's Law for



the string over its natural length, that is, F = fcAJ. Let I be the length of the string,

A i the extension of the string just sufficient to hold the weight W mg at rest BO

that k\l = mg, and let x measured downward be the additional extension of the

string at any instant of the motion. The force of gravity mg is positive and the

force of elasticity fc(A Z + x) is negative. The second form of the equation of

motion is to be chosen. Hence

mv = mg k (AJ + x) or mv = fee, since mg = k L
dx dx

Then rnvdv = kxdx or mvz = fcx2 + C.

Suppose that x = a is the amplitude of the motion, so that when x = a the velocity

W = and the particle stops and starts back. Then C = ka?. Hence

dx lie /
v = = -\/ Va2

dt \m

and sin-1-^ -\/ i-f C or
a \m

Now let the time be measured from the instant when the particle passes through
the position x = 0. Then C satisfies the equation = a sin C and may be. taken as

zero. The motion is therefore given by the equation x = a sin -Vk/mt and is

periodic. While t changes by 2 TT Vm/ifc the particle completes an entire oscilla-

tion. The time T = 2 TT Vm/fc is called the periodic time. The motion considered

in this example is characterized by the fact that the total force fcx is propor-
tional to the displacement from a certain origin and is directed toward the origin.

Motion of this sort is called simple harmonic motion (briefly S. H. M.) and is of

great importance in mechanics and physics.

EXERCISES

1. The sum of $100 is put at interest at 4 per cent per annum under the condition

that the interest shall be compounded at each instant. Show that the sum will

amount to $200 in 17 yr. 4 mo., and to $1000 in 57j yr.

2. Given that the rate of decomposition of an amount x of a given substance is

proportional to the amount of the substance remaining undecomposed. Solve the

problem of the decomposition and determine the constant of integration and the

physical constant of proportionality if x = 5.11 when t = and x = 1.48 when
t = 40 min. Ans. k = .0309.

3. A substance is undergoing transformation into another at a rate which is

assumed to be proportional to the amount of the substance still remaining untrans-

formed. If that amount is 35.6 when t = 1 hr. and 13.8 when t = 4 hr., determine

the amount at the start when t = and the constant of proportionality and find

how many hours will elapse before only one-thousandth of the original amount
will remain.

4. If the activity A of a radioactive deposit is proportional to its rate of

diminution and is found to decrease to J its initial value in 4 days, show that A

satisfies the equation AJA+ =. e~ -ira *



a reaction in wmcu me veiocny 01 transiormation ax/ai is proportional to tne proa-

uct (a x) (6 x) of the amounts remaining untransformed. Integrate on the

supposition that a ^ b.

Q=a-
t

a (b x)
(a -b)kt; and if 393

a x

0.3879

&-a?

0.2342

0.1354

determine the product k (a b).

6. Integrate the equation of Ex. 5 if a = 6, and determine a and it if z = 9.87

when t = 15 and x = 13.69 when t 55.

7. If the velocity of a chemical reaction in which three substances are involved

is proportional to the continued product of the amounts of the substances remaining,

show that the equation between x and the time is

t=Q.

8. Solve Ex. 7 if a = b 5* c
;
also when a = 6 = c. Note the very different

forms of the solution in the three cases.

9. The rate at which water runs out of a tank through a small pipe issuing

horizontally near the bottom of the tank is proportional to the square root of the

height of the surface of the water above the pipe. If the tank is cylindrical and

half empties in 30 min., show that it will completely empty in about 100 min.

10. Discuss Ex. 9 in case the tank were a right cone or frustum of a cone.

11. Consider a vertical column of air and assume that the pressure at any level

is due to the weight of the air above. Show that p = p e- kh
gives the pressure at

any height A, if Boyle's Law that the density of a gas varies as the pressure be used.

12. "Work Ex. 11 under the assumption that the adiabatic law poc/a
1 -4

repre-

sents the conditions in the atmosphere. Show that in this case the pressure would

become zero at a finite height. (If the proper numerical data are inserted, the

height turns out to be about 20 miles. The adiabatic law 'seems to correspond

better to the facts than Boyle's Law.)

13. Let I be the natural length of an elastic string, let AJ be the extension, and

assume Hooke's Law that the force is proportional to the extension in the form

AJ = klF. Let the string be held in a vertical position so as to elongate under its

own weight W. Show that the elongation is \kWL

14. The density of water under a pressure of p atmospheres is p = 1 + 0.00004p.

Show that the surface of an ocean six miles deep is about 600 ft. below the position

it would have if water were incompressible.

15. Show that the equations of the curve of equilibrium of a string or chain are

,

ds\ ds/
'

ds\ ds

In polar coordinates, where R and * are the components of the force along the

radius vector and perpendicular to it.



'him of a string if R is the radius of curvature and S and N are the tangential a

normal components of the forces.

17.* Show that when a uniform chain is supported at two points and hangs do 1

between the points under its own weight, the curve of equilibrium is the catena]

18. Suppose the mass dm of the element ds of a chain is proportional to the p:

jection dx of ds on the x-axis, and that the chain hangs in the field of gravi

Show that the curve is a parabola. (This is essentially the problem of the sha

of the cables in a .suspension bridge when the roadbed is of uniform linear densil

for the weight of the cables is negligible compared to that of the roadbed.)

19. It is desired to string upon a cord a great many uniform heavy rods

rarying lengths so that when the cord is hung up with the rods dangling from

the rods will be equally spaced along the horizontal and have their lower ends

the same level. Required the shape the cord will take. (It should be noted tl

the shape must be known before the rods can be cut in the proper lengths to ha

as desired.) The weight of the cord may be neglected.

20. A masonry arch carries a horizontal roadbed. On the assumption that 1

material between the arch and tlie roadbed is of uniform density and that es

element of the arch supports the Aveight of the material above it, lincl the shape
the arch.

21. In equations (4') the integration may be carried through in terms of quad
tares if pT is a function of y alone

;
and similarly in Ex. 1 5 the integration may

carried through if $ = and pR is a function of r alone so that the field is centi

Show that the results of thus carrying through the integration are the formulas

C Cdy r Cdr/r
x-+C'= I .

J =. 0+C'= / .

'

J V(J>rdV)
a-C J V(J>Bdr)-C

22. A particle falls from rest through the air, which is assumed to offer a resi

ance proportional to the velocity. Solve the problem with the initial conditi<

u = 0,
=

0, i = 0. Show that as the particle falls, the velocity does not incre:

indefinitely, but approaches a definite limit V = mg/lc.

23. Solve Ex. 22 with the initial conditions v = u
,
x = 0, t = 0, where t>

e

greater than the limiting velocity F. Show that the particle slows down as it fa

24. A particle rises through the air, which is assumed to resist proportionallj
the square of the velocity. Solve the motion.

25. Solve the problem analogous to Ex. 24 for a falling particle. Show tl

there is a limiting velocity V = Vmg/k. If the particle were projected down w
an initial velocity greater than F, it would slow down as in Ex. 23.

26. A particle falls towards a point which attracts it inversely as the square of 1

distance and directly as its mass. Find the relation between x and t and determ
the total time T taken to reach the center. Initial conditions v = 0, x = a, t = <

a _i2x a, / ; _ _j./a\l
t = - cos 1- Vox x2

,
T = ?rk

"
I
-

1 .

a 2 a \2/

* Exercises 17-20 should be worked ab initio by the method by which (4) were deriv

not by applying (4) directly.



(Jo. Solve Ex. 27 under the assumption that the resistance varies as Vi>.

29. A particle falls toward a point which attracts inversely as the cube of the

distance and directly as the mass. The initial conditions are x = a, u = 0, t = 0.

Show that x2 = a2
ktf/a? and the total time of descent is T = cP

30. A cylindrical spar buoy stands vertically in the water. The buoy is pressed

iown a little and released. Show that, if the resistance of the water and air be

neglected, the motion is simple harmonic. Integrate and determine the constants

from the initial conditions x = 0, v = F", t = 0, where x measures the displacement
from the position of equilibrium.

31. A particle slides down a rough inclined plane. Determine the motion. Note

that uf the force of gravity only the component mg sin i acts down the plane,

whereas the component mg cos i acts perpendicularly to the plane and develops the

force p.mg cos i of friction. Here i is the inclination of the plane and /* is the

inefficient of friction.

32. A bead is free to move upon a Motionless wire in the form of an inverted

jycloid (vertex down) . Show that the component of the weight along the tangent
to the cycloid is proportional to the distance of the particle from the vertex. Hence

letermine the motion as simple harmonic and fix the constants of integration by
the initial conditions that the particle starts from rest at the top of the cycloid.

33. Two equal weights are hanging at the end of an elastic string. One drops

rff. Determine completely the motion of the particle remaining.

34. One end of an elastic spring (such as is used in a spring balance) is attached

rigidly to a point on a horizontal table. To the other end a particle is attached.

[f the particle be held at such a point that the spring is elongated by the amount

i and then released, determine the motion on the assumption that the coefficient

)f friction between the particle and the table is p ;
and discuss the possibility of

iifferent cases according as the force of friction is small or large relative to the

force exerted by the spring.

85. Lineal element and differential equation. The idea of a curve

is made up of the points upon it is familiar. Points, however, have no

extension and therefore must be regarded not as pieces of a curve but

merely as positions on it. Strictly speaking, the pieces of a curve are

;he elements As of arc
;
but for many purposes it is convenient to re-

place the complicated element As by a piece of the tangent to the curve

it some point of the arc As, and from this point of view a curve is made

jp of an infinite number of infinitesimal elements tangent to it. This

is analogous to the point of view by which a curve is regarded as made



A point on a curve taken with an infinitesimal portion of the tangent

to the curve at that point is called a lineal element of the curve. These

concepts and definitions are clearly equally available in two or three

dimensions. For the present the curves under dis-

cussion will be plane curves and the lineal elements

will therefore all lie in a plane.

To specify any particular lineal element three

coordinates x, y, p will be used, of which the two (x, y) determine the

point through which the element passes and of which the third p is

the slope of the element. If a curve f(x, y) is given, the slope at

any point may be found by differentiation,

_dy __ 2f i Sf
p -fa-~dx/dy' <6>

and hence the third coordinate p of the lineal elements of this particular

curve is expressed in terms of the other two. If in place of one curve

f(x, y)
= the whole family of curves f(x, y)

= C, where C is an

arbitrary constant, had been given, the slope p would still be found

from (6), and it therefore appears that the third coordinate of the lineal

elements of such a family of curves is expressible in terms of x and y.

In the more general case where the family of curves is given in the

unsolved form F(x, y, C) = 0, the slope p is found by the same formula

but it now depends apparently on C in addition to on x and y. If, how*

ever, the constant C be eliminated from the two equations

F(x,y, C) = and g +^ =
0| (7)

there will arise an equation $ (x, y, p) which connects the slope p
of any curve of the family with the coordinates (x, y) of any point

through which a curve of the family passes and at which the slope of

that curve is^?. Hence it appears that the three coordinates (#, y,p) of

the lineal elements of all the curves of a family are connected by an equa-
tion 3> (x, y, p] 0, just as the coordinates

(x, y, )
of the points of a

surface are connected by an equation <& (x, y, z)
= 0. As the equation

$(x, yy z)
= is called the equation of the surface, so the equation

*(aj, y,p}~0 is called the equation of the family of curves
;

it is, how-

ever, not the finite equation F(x, y, C) = but the differential equation
of the family, because it involves the derivative p = dy/dx of y by x
instead of the parameter C.



y'
2 = Cx or y

2
/x = C.

The differentiation of the equation in the second form gives at once

y
2
/x

2 + 2 yp/x, = or y = 2 xp

as the differential equation of the family. In the unsolved form the work is

2 VP = C, y2 = 2 2/pz, y = 2 xp.

The result is, of course, the same in either case. For the family here treated it

makes little difference which method is followed. As a general rule it is perhaps
best to solve for the constant if the solution is simple and leads to a simple form
of the function /(x, y) ;

whereas if the solution is not simple or the form of the

function is complicated, it is best to differentiate first because the differentiated

equation may be simpler to solve for the constant than the original equation, or

because the elimination of the constant between the two equations can be con-

ducted advantageously.

If an equation <& (x, y, p) = connecting the three coordinates of the

lineal element be given, the elements which satisfy the equation may
be plotted much as a surface is plotted ;

that is, a pair of values (x, y}

may "be assumed and substituted in the equation, the equation may then

be solved for one or more values of p, and lineal elements with these

values of p may be drawn through the point (x, y). In this manner the

elements through as many points as desired may be found. The de-

tached elements are of interest and significance chiefly from the fact

that they can be assembled into curves, in fact, into the curves of a

family F(x, y, C) = of which the equation <

(x, y, p~)
= is the differ-

ential equation. This is the converse of the problem treated above and

requires the integration of the differential equation $ (x, y, p} = for its

solution. In some simple cases the assembling may be accomplished

intuitively from the geometric properties implied in the equation, in

other cases it follows from the integration of the equation by analytic

means, in other cases it can be done only approximately and by methods

of computation.

As an example of intuitively assembling the lineal elements into curves, take

$ (x, y, p) = y*p
2 + y2 rz = or p =

The quantity Vr2
y* may be interpreted as one leg of a right triangle of which

y is the other leg and r the hypotenuse. The slope of the hypotenuse is then

y/ Vr2
y
2
according to the position of the figure, and the differential equation

* (*> Vt P) states that the coordinate p of the lineal element which satisfies it

is the negative reciprocal of this slope. Hence the lineal element is perpendicular
to the hypotenuse. It therefore appears that the lineal elements are tangent to cir-

cles of radius r described about points of the x-axis. The equation of these circles is



The correctness or this integral may be cnecKea by direct integration. or

ydy = dx or

86. In geometric problems which relate the slope of the tangent o

curve to other lines in the figure, it is clear that not the tangent 1

the lineal element is the vital thing. Among such problems that of 1

orthogonal trajectories (or trajectories under any angle) of a given fam

of curves is of especial importance. If two families of curves are

related that the angle at which any curve of one of the families c

any curve of the other family is a right angle, then the curves of eitl

family are said to be the orthogonal trajectories of the curves of 1

other family. Hence at any point (x, y) at which two curves belong:

to the different families intersect, there are two lineal elements, <

belonging to each curve, which are perpendicular. As the slopes of t

perpendicular lines are the negative reciprocals of each other, it folk

that if the coordinates of one lineal element are (x, y,p) the coordina

of the other are (x, y, 1/p) ;
and if the coordinates of the lineal <

ment (x, y, p) satisfy the equation <& (x, y, p) = 0, the coordinates of
'

orthogonal lineal element must satisfy <& (x, y, 1/jt?)
= 0. Theref

the ruleforfinding the orthogonal trajectories of the curves F(x, y, C) =

is to find first the differential equation 3> (x, y,p}'= of the family, til

to replace p by 1/p to find the differential equation of the orthogo-

family, and finally to integrate this equation to find the family. It n

be noted that if F(%) = X
(x, y) + iY(x, y) is a function ofz = x +

( 73), the families X (x, y)
= C and Y(x, y)

= K are orthogonal.

As a problem in orthogonal trajectories find the trajectories of the semicub

parabolas (x C)
3 = y2

. The differential equation of this family is found as

This is the differential equation of the given family, B.eplace p by 1/p :

integrate :

o .. o q r

~ r = y* or 1 + -_p2/s" = or d + - y s dy = 0, and x + - y = C.
3p 2 2 p

Thus the differential equation and finite equation of the orthogonal family are fou

The curves look something like parabolas with axis horizontal and vertex tow
the right.

Given a differential equation $(x, y, p~)=0 or, in solved foi

p <f> (x} y) ;
the lineal element affords a means for obtaining graphico

and numerically an approximation to the solution which passes throi



an assigned point PO(XO , 2/ ).
For the value p ofp at this point may be

computed from the equation and a lineal element P P
t may be drawn,

the length being taken small. As the lineal element is tangent to the

curve, its end point will not lie upon the curve but will depart from it

by an infinitesimal of higher order. Next the slope pt
of the lineal

element which satisfies the equation and passes

through P
l may be found and the element P^PZ

may be drawn. This element will not be tangent

to the desired solution but to a solution lying near

that one. Next the element P
Z
P

S may be drawn,

and so on. The broken line P
fl

P
1
P

2
P

g
is clearly

an approximation to the solution and will be a better approximation
the shorter the elements P,-P( + i are taken. If the radius of curvature

of the solution at P is not great, the curve will be "bending rapidly and

the elements must be taken fairly short in order to get a fair approx-

imation
;
but if the radius of curvature is great, the elements need not

be taken so small. (This method of approximate graphical solution

indicates a method which is of value in proving by the method of

limits that the equation p = $ (x, y) actually has a solution
;
but that

matter will not be treated here.)

Let it be required to plot approximately that solution of yp + x = which

passes through (0, 1) and thus to find the ordinate for x = 0. 5, and the area under

the curve and the length of the curve to this point. Instead of assuming the lengths

of the successive lineal elements, let the

lengths of successive increments SB of

05 be taken as Sx = 0.1. At the start

x = 0, y =
1, and from p = x/y it

follows that p = 0. The increment Sy

of y acquired in moving along the tan-

gent is Sy pSx = 0. Hence the new

point of departure (xt , y-,)
is (0.1, 1) and

the new slope is p l
x

l /yl
= 0.1.

The results of the work, as it is contin-

ued, may be grouped in the table. Hence it appears that the final ordinate is

y = 0.90. By adding up the trapezoids the area is computed as 0.48, and by find-

ing the elements 8s = VSx2 + 5y* the length is found as 0.51. Now the particular

equation here treated can be integrated.

yp + x = 0, ydy + xdx = 0, x2 + y* = C, and hence

is the solution which passes through (0, 1). The ordinate, area, and length found

from the curve are therefore 0.87, 0.48, 0.52 respectively. The errors in the

approximate results to two places are therefore respectively 3, 0, 2 per cent. If Sx

had been chosen as 0.01 and four daces had been kept in the computations, the



EXERCISES

1. In the following cases eliminate the constant G to find the differential equa-

tion of the family given :

(a) x2 = 2Cj/+ O2
, (ft y = C* + Vl - C2

,

(7)
2 - y2 = Cx, (5) y = z tan (z + C),

2. Plot the lineal elements and intuitively assemble them into the solution :

(or) yp + x - 0, </S) asp- V = 0, (7) r-^
= 1.

Check the results by direct integration of the differential equations.

3. Lines drawn from the points ( c, 0) to the lineal element are equally in^

clined to it. Show that the differential equation is that of Ex. 1 (e). What are the

curves ?

4. The trapezoidal area under the lineal element equals the sectorial area formed

by joining the origin to the extremities of the element (disregarding infinitesimals

of higher order), (a) Find the differential equation and integrate. (/3)
Solve the

same problem where the areas are equal in magnitude but opposite in sign. What
are the curves ?

5. Find the orthogonal trajectories of the following families. Sketch the curvet,

(a) parabolas j/
2 = 2 <7x, Ans. ellipses 2 y? + y2 = G.

(P) exponentials y = Ce**, Ans. parabolas ky
z + x = C.

(7) circles (a; C)
2 + yz = a2

,
Ans. tractrices.

(5) z2 - y2
_ c, () Cy2 = x8

, (f) xl + yf = C*.

6. Show from .the answer to Ex. 1 (e) that the family is self-orthogonal and

illustrate with a sketch. From the fact that the lineal element of a parabola makes

equal angles with the axis and with the line drawn to the focus, derive the differ-

ential equation of all coaxial confocal parabolas and show that the family is self-

orthogonal.

7. If $(&, j/, p) = is the differential equation of a family, show

= and ** i o(*,,\ 11 + mp \ 1 mp

are the differential equations of the family whose curves cut those of the given

family at tan-1
-. What is the difference between these two cases ?

8. Show that the differential equations

*/ ,. r, $} = and $ (- r2^, r, ^ =W / \ dr /

define orthogonal families in polar cobrdinates, and write the equation of the family

which cuts the first of these at the constant angle tan-1 m.

9 F>nd the orthogonal trajectories of the following families. Sketch.



11. Plot the approximate solution of p = xy between (1, 1) and the y-axis. Tane
Sx = 0.2. Find the ordinate, area, and length. Check by integration and

comparison.

12. Plot the approximate solution of p = x through (1, 1), taking Sx = 0.1 and

following the curve to its intersection with the x-axis. Find also the area and the

length.

IB. Plot the solution of p = Vz2 + y
2- from the point (0, 1) to its intersection

with the a-axis. Take 5x = 0.2 and find the area and length.

14, Plot the solution of p = s which starts from the origin into the first quad-

rant (s is the length of the arc). Take Sx = 0.1 and carry the work for five steps

to find the final ordinate, the area, and the length. Compare with the true integral.

87. The higher derivatives ; analytic approximations. Although a

differential equation <J> (x, y, y'}
= does not determine the relation

between x and y without the application of some process equivalent to

integration, it does afford a means of computing the higher derivatives

simply by differentiation. Thus

d& a<I> d$
, . d$ n

, - _1_ - a/' _1_- ai" (I

dx dx^ dy
y ^

8y'
y

is an equation which may be solved for y" as a function of x
} ?/, y

1

;

and y" may therefore be expressed in terms of x and y by means of

$ (x} y, y
1

')

= 0. A further differentiation gives the equation

aa *
oxdy

y
oxoy

1 y
6y

z *
oydy'

...

which may be solved for y'" in terms of x, y, y', y"', and hence, by the

preceding results, y'" is expressible as a function of x and y ;
and so

on to all the higher derivatives. In this way any property of the inte-

grals of $ (x, y, y')
= which, like the radius of curvature, is expressi-

ble in terms of the derivatives, may be found as a function of x and y.

As the differential equation $ (x, y, y')
= defines y

1 and all the

higher derivatives as functions of x, y, it is clear that the values of the

derivatives may be found as y , y'
f

, y'Q", at any given point (x , y ~).

Hence it is possible to write the series

If this power series in x x converges, it defines y as a function of

x for values of x near x
;

it is indeed the Taylor development of the



y = yo 4- y '(x
-

^o) + $ 2/0 (
- B

O)' -\ .

It may be shown that the function y denned by the series actually

satisfies the differential equation 4> (x, y, y'}
= 0, that is, that

for all values of x near X
Q

. To prove this accurately, however, is beyond
the scope of the present discussion

;
the fact may be taken for granted.

Hence an analytic expansion for the integral of a differential equar
tion has been found.

As an example of computation with higher derivatives let it be required to deter-

mine the radius of curvature of that solution of y' = tan (y/x) which passes through

(1, 1). Here the slope 2/( 1)1}
at (1, 1}

is tan 1 = 1.657. The second derivative is

dx dx x xx*
From these data the radius of curvature is found to he

E = (1 + y'*^ = sec
y- ^

, I<
(1 i,

= sec 1--- = 3.250.
y" x xy' y tan 1 1

The equation of the circle of curvature may also he found. For as y"^ ^ is positive,

the curve is concave up. Hence (1 8.250 sin 1, 1 + 3.250 cos 1) is the center of

curvature
;
and the circle is

(x + 1. 735)
2 + (y

-
2.757)

2 = (3.250)
2

.

As a second example let four terms of the expansion of that integral of

x tan y' = y which passes through (2, 1) be found. The differential equation may
be solved

;
then

+Q -i- = tan M
dx \x/ dx2 x2 + y

2

d*y _ (x
2 + y

2
) (x
-

1) y" + (3 y
2 - x2

) y'
- 2 xyy"* + 2xy

d 8
~

(x
2 + y2

)
2

Now it must be noted that the problem is not wholly determinate
;
for y

f
is multi-

ple valued and any one of the values for tan-1
\ may be taken as the slope of a

solution through (2, 1). Suppose that the angle be taken in the first quadrant ;
then

tan-1
J = 0.462. Substituting this in y", we find

y'^ 1;
= 0.0152

;
and hence may

be found
y^'jj

= 0.110. The series for y to four terms is therefore

y = I + 0.462 (x
-

2)
- 0.0076 (x

-
2)

2 + 0.018 (x
-

2).

It may be noted that it is generally simpler not to express the higher derivatives in

terms of x and y, but to compute each one successively from the preceding ones.

88. Picard has given a method for the integration of the equation

y' = <f> (x, y) by successive approximations which, although of the highest
theoretic value and importance, is not particularly suitable to analytic?



equation y' *j>(x, y) be given in solved form, and suppose (XG} T/O)
is

the point through which the solution is to pass. To find the first

approximation let y be held constant and equal to ?/ ,
and integrate the

equation y
1 =

<j>(x, y ).
Thus

dy = <K> v/ ) dx ; y = yQ + I
<j>(x, T/O)

dx = //z) , (9)
i/a:

where it will be noticed that the constant of integration has been chosen

so that the curve passes through (XQ , y ).
For the second approximation

let y have the value just found, substitute this in <

(a-, ?/),
and integrate

again. Then

y = y, + I *U, y + I *(*%) dx
\

dx =/&) (
9

')

A- \_ Jx J

With, this new value for y continue as before. The successive deter-

minations of y as a function of x actually converge toward a limiting

function which is a solution of the equation and which passes through

(x0> ?/ ).
It may be noted that at each step of the work an integration

is required. The difficulty of actually performing this integration in

formal practice limits the usefulness of the method in such cases. It is

clear, however, that with an integrating machine such as the integraph

the method could be applied as rapidly as the curves
<f> (x, fi(x)) could

be plotted.

To see how the method works, consider the integration of y' = x + y to find the

integral through (1, 1). For the first approximation y = 1. Then

dy = (x + l)dx, y = \x* + x + C, y = x2 + x - \ =/i().

From this value of y the next approximation may be found, and then still another :

dy = [x + (ix
2 + x - i)]dx, y = |cc

8 + x2 - \x + | =/,(),
dy = [x +/,(*)] dx, y = -&x

4 + 8 + } x2

In this case there are no difficulties which would prevent any number of appli-

cations of the method. In fact it is evident that if / is a polynomial in x and y, the

result of any number of applications of the method will be a polynomial in x.

The method of undetermined coefficients may often be employed to

advantage to develop the solution of a differential equation into a

series. The result is of course identical with that obtained by the

application of successive differentiation and Taylor's series as above;

the work is sometimes shorter. Let the equation be in the form

y
1

< (x, y) and assume an integral in the form

y = y + a
i(
x - x

o) + a
i(x

- xoY + a
>(
x -O8 +



4>(x, y)
= A

9 +At(x - x
) + A

2 (x
- x )* + A

s (x
-

)> + .. s

But by differentiating the assumed form for y we have

y
' =

ftl + 2 a
a (a?

- x ) + 3
8 (

~ x
)
2 + 4

4 (x
- a>

) +

Thus there arise two different expressions as series in x x for the

function y', and therefore the corresponding coefficients must be equal.

The resulting set of equations

i
= 4) 2a

2
= yl

i> 3a, = 4
2 ,

4a
4
= yI

8 , (11)

may be solved successively for the undetermined coefficients av 2 ,
ff
s ,

a
4 ,

which enter into the assumed expansion. This method is partic-

ularly useful when the form of the differential equation is such that

some of the terms may be omitted from the assumed expansion (see

Ex. 14).

As an example in the use of undetermined coefficients consider that solution of

the equation y' = Vx2 + 8yz which passes through (1, 1). The expansion will pro-

ceed according to powers of x 1, and for convenience the variable may be clanged
to t = x 1 so that

dy

at

are the equation and the assumed expansion. One expression for y' is

y' = j + 2 a
2
t + 8 a

8
t
2 + 4 a

4
t
8 + .

To find the other it is necessary to expand into a series in t the expression

^ = V(l + *)
a + 8(1 + 0^+03,

If this had to be done by Maclaurin's series, nothing would be gained over the

method of 87
;
but in this and many other cases algebraic methods and known

expansions may be applied ( 32). First square y and retain only terms up to the

third power. Hence

Now let the quantity under the radical be called 1 + h and expand so that

y' = 2 Vl + h = 2 (1 + \ h \ h
z + -fah

a
),

Finally raise h to the indicated powers and collect in powers of t. Then

t
2

= 8



The methods of developing a solution by Taylor's series or by un.

determined coefficients apply equally well to equations of higher order

For example consider an equation of the second order in solved form

y" = <
(x, y, ?/')

and its derivatives

"?* + ?*' + ?
J V^'V

Evidently the higher derivatives of y may be obtained in terms of x,

y, y' ;
and y itself may be written in the expanded form

y = 2/0

where any desired values may be attributed to the ordinate y at which

the curve cuts the line x = x
,
and to the slope y'Q of the curve at that

point; Moreover the coefficients y'', y", are determined in such a way
that they depend on the assumed values of yQ

and y'v It therefore is

seen that the solution (12) of the differential equation of the second

order really involves two arbitrary constants, and the justification of

writing it as F(x, y, Cv C
2)
= is clear.

In following out the method of undetermined coefficients a solution

of the equation would be assumed in the form

V = y, + 2/o(z
~

*o) + >

2 (x
- x

)
2 +,(*- )

8 + 4 (x
-

xj* + , (13)

from which y' and y" would be obtained by differentiation. Then if the

series for y and y' be substituted in y" $ (x, y, y') and the result

arranged as a series, a second expression for y" is obtained and the

comparison of the coefficients in the two series will afford a set of equa-

tions from which the successive coefficients may be found in terms of

y and y' by solution. These results may clearly be generalized to the

case of differential equations of the nth order, whereof the solutions

will depend on n arbitrary constants, namely, the values assumed for

y and its first n 1 derivatives when x = cc



1. Find the radii and circles of curvature of the solutions of the following equa-
tions at the points indicated :

(a) ?/ = Vx2 + y* at (0, 1), (0) yy' + x = at (z , y ).

2. Find y 1}
= (5 V -

2)/4 if / = Vx2 + y
2

.

3. Given the equation y
2
y'

3
-f x^/y'

2
2/y' + x2 = of the third degree in y' so

that there will be three solutions with different slopes through any ordinary point

(z, i/).
Find the radii of curvature of the three solutions through (0, 1).

4. Find three terms in the expansion of the solution of y' = e3* about (2, ^).

5. Find four terms in the expansion of the solution of y=logsin xy about (\ TT, 1).

6. Expand the solution of y' = xy about (1, y )
to five terms.

7. Expand the solution of y' = tan (y/x) about (1, 0) to four terms. Note that

here x should be expanded in terms of y, not y in terms of x.

8. Expand two of the solutions of y
2
y'

3 + xyy'
2

yy' 4- x2 = about (-- 2, 1)

to four terms.

9. Obtain four successive approximations to the integral of y'=xy through (1,1).

10. Find four successive approximations to the integral of y' = x + y through

(0, y ).

11. Show by successive approximations that the integral ofy' = y through (0, y )

is the well-known y = y ex ,

12. Carry the approximations to the solution of y' = x/y through (0, 1) as

far as you can integrate, and plot each approximation on the same figure with the

exact integral.

13. Find by the method of undetermined coefficients the number of terms indi-

cated in the expansions of the solutions of these differential equations about the

points given :

(a) y' = Vx + y, five terms, (0, 1), '(j3) y' = Vx + y, four terms, (1, 3),

(y) y' = x + y, n terms, (0, # ), (5) y' = Vz2 + y2
,
four terms, (f, J).

14. If the solution of an equation is to be expanded about (0, y ) and if the

change of x into x and #' into y' does not alter the equation, the solution is

necessarily symmetric with respect to the y-axis and the expansion may be assumed
to contain only even powers of x. It the solution is to be expanded about (0, 0)
and a change of x into x and y into y does not alter the equation, the solution

is symmetric with respect to the origin and the expansion may be assumed in odd

powers. Obtain the expansions to four terms in the following cases and compare
the labor involved in the method of undetermined coefficients with that -which

would be involved in performing the requisite six or seven differentiations for the

application of Maclaurin's series:

/y

(a) y' = - about (0, 2), (/?) f = sin xy about (0, 1),
Vx2 + y*

(y) y' = (pv about (0, 0), (S) y' = xsy + xy9 about (0, 0).

15. Expand to and including the term x* :

(a) y" = y^Jfxy aboxit x = 0, y = a
, y' = o

t (by both methods),

(/3) xy" + ?/ + y = about x = 0, y = a
, y'Q

= a (by und. coeffs.).



CHAPTER VIII

89. Integration by separating the variables. If a differential equa-

tion of the first order may be solved for ?/' so that

y'
=

4> 0, y) or M(x, y) dx + N(x, y)dy = Q (1)

(where the functions <, M, N are single valued or where only one spe-

cific branch of each function is selected in case the solution leads to

multiple valued functions), the differential equation involves only the

first power of the derivative and is said to be of the first degree. If,

furthermore, it so happens that the functions <, M, N are products of

functions of x and functions of y so that the equation (1) takes the form

y'
=

^(x)*,(y) or M^M^dx-t- N^N^tfdy = 0, (2)

it is clear that the variables may be separated in the manner

and the integration is then immediately performed by integrating each

side of the equation. It was in this way that the numerous problems
considered in Chap. VII were solved.

As an example consider the equation yy
f + xy

2 = x. Here

ydy + x(y*-l)dx = Q or J^L + xdx = 0,

and log (y
2 -

1) + \& = C or (y*
- 1)^ = C.

The second form of the solution is found by taking the exponential of both sides

of the first form after multiplying by 2.

In some differential equations (1) in which the variables are not

immediately separable as above, the introduction of some change of

variable, whether of the dependent or independent variable or both,

may lead to a differential equation in which the new variables are sepa-

rated and the integration may be accomplished. The selection of the

proper change of variable is in general a matter for the exercise of

ingenuity ; succeeding paragraphs, however, will point out some special



types of equations for -which a definite type of substitution is k

to accomplish the separation.

As an example consider the equation xdy ydx = x Vx2 + y2
dx, where the

bles are clearly not separable without substitution. The presence of Va

suggests a change to polar coordinates. The work of finding the solution is :

x = r cos 6, y = r sin 0, dx = cos tidr r sin 0dO, dy = sin Odr + r cos t

then xdy - ydx = r2<20, xVx2 + y'
2 dx = r2 COB 0d (r cos 6) ,

Hence the differential equation may be written lu the form

rztW = r2 cos 6d (r cos 6) or sec 0d0 = d(r cos 6),

and log tan (f 9 + JTT)
= r cos 6 + C or log

- - = x + C.
COH t7

"Y 0*2 U. 9/2 J.
iy

Hence -T y
~ " = Ce* (on Hubstitution for 0).

x

Another change of variable which works, is to let y = vx. Then the worl

x(vdx + xdv)
- vxdx = x2 Vl + t)

2
cLc or du = Vl + tfdx.

dv
Then

^
-- = fa, sinh-iu = x + C, y = x sinh (x + C).

This solution turns out to be shorter and the answer appears in neater forr

before obtained. The great difference of form that may arise in the answei

different methods of integration are employed, is a noteworthy fact, and rei

set of answers practically worthless
;
two solvers may frequently waste moi

in trying to get their answers reduced to a common form than each would sp

solving the problem in two ways.

90. If in the equation y
1 =

<j>(x, y) the function < turns out

*(y/*)i a function of y/x alone, that
is, if the functions M and

homogeneous functions of x, y and of the same order
( 53), the

ential equation is said to be homogeneous and the change of va

y - vx or x = vy will always result in separating the variables.

statement may be tabulated as :

or x vy.
A sort of

corollary case is given in Ex. 6 below.

As an example take y (l + J)<fc + ef (y
,

x)dy = of which the hom0|
is perhaps somewhat disguised. Here it is better to choose x = y. Then

Hence

ev



If the differential equation may be arranged so that

ll.ll rfrr.

(4)

where the second form differs from the first only through the inter-

change of x and y and where X
l
and X

2
are functions of x alone and

K
x
and Y

2
functions of ?/, the equation is called a Bernoulli equation; and

in particular if n 0, so that the dependent variable does not occur on

the right-hand side, the equation is called linear. The substitution

which separates the variables in the respective cases is

y = ve-S-^W'1* or x = ve-Jri(y)ilyf (5)

To show that the separation is really accomplished and to find a general

formula for the solution of any Bernoulli or linear equation, the sab-

stitution may be carried out formally. For

The substitution of this value in the equation gives

^ e-A.* = Y v"e~ "/'r' rf* or = X,<P-
n)I^dx dx.

dx 2 vn 2

Hence v1~ n =
(1
-

n) Cx^-^f^^dx, when n = 1,*

or y
1- = (1

-
n) e("-vfwJ f^ll

~
">/**"dx1 . (6)

There is an analogous form for the second form of the equation.

The equation (a;
2^8 + xy) dy = dx may be treated by this method by writing it as

dx-- yx = y8*2 so that Y, = y, F2
= y

3
,
n = 2.

aj/

Then let x = Be~/~ ** = v
v
\

m. dx dv lift iys iy2 dv 4y
Then -- y = e

2 + vye'' yve
2

e
2

dy dy dy

and ^e^
2

= yvV2 or
*

s=ye*
1V

dy v2

and _i =
(2/2_2)e^

2

+ C or - = 2- y2 + Ge~l*.
v x

This result could have been obtained by direct substitution in the formula

a*- = (1
-

n) ^-

but actually to carry the method through is far more instructive.



EXERCISES

1. Solve the equations (variables immediately separable) :

(a) (1 + x)y + (1 y) M/ = 0, Arts, xy = Ce - x
.

(j8) a (xdy + 2 ydx) = xydy, (7).
-/I x2 dy + Vl - y

2 dx = 0,

(5) (1 + y2
)
dx - (y + Vl + y)(l + x)$ dy = 0.

2. By various ingenious changes of variable, solve :

(a) (x + y)
z
y' = a2

, Ans. x + y = a tan (y/a + C),

(/3) (x
-

?/) dx + 2 xydy = 0, (7) xdy - ?ydx = (x
2 + ?/) dx,

(5) ?/ = X ~ y, (f) yy' + y* + x + 1 = 0.

3. Solve these homogeneous equations :

(a) (2 Vxfy x) y' + y = 0, ./4ns. Vx/y + logy = C.
v

(/3) xe? -f- T/
- xy' = 0, J.ns. i/ + x log log C/x = 0.

(7) (x
2

H- i/
2
) dy = xydx, (8) xy' - y = Vx2 + y2

.

4. Solve these Bernoulli or linear equations :

(a) y' + l//sc
= y2 , Ans. xy log Cx + 1 = 0.

(/3) 2/' V esc x = cos x 1, ^Lns. y = sin x + C tan j x.

(y) XT/' -j- y = y2
log x, J.ns. y- 1 = log x + 1 + Cx.

(S) (1 + y2
) dx = (tan-

1 y - x) dy, ( ) ydz + (ox
2
?/"
- 2 x) dy = 0,

(f) x/ - ay = x + 1, 0?) yy' -i- ) r/
2 = cos x.

5. Show that the substitution y = m always separates the variables in the

homogeneous equation y' = <f> (y/x) and derive the general formula for the integral.

6. Let a differential equation be reducible to the form

b
iy + CA

,

by + c
'

bzy + c or a^z a^ = 0.

In case a^ a261 ^ 0, the two lines atx 4- \y + c
t
= and a

zx + 6
2y + c

2
=

will meet in a point. Show that a transformation to this point as origin makes
the new equation homogeneous and hence soluble. In case aj)z

a261
= 0, the

two lines are parallel and the substitution z ~ a
2x -f b

zy or z = a^x + b^y will

separate the variables.

7. By the method of Ex. 6 solve the equations :

(a) (3y-7x + 7)cte + (77/-3x + 3)d7/= 0, Ans. (y
~ x + l)

2
(y + y,- 1)5 = C.

(ft) (2x + 3?y-5)2/'+(3x + 2y-5)=0, (7)

(5) (2a; + y)=:y'(4aj+2y-.l), (
e
)
dx

8. Show that if the equation may be written as yf(xy) dx + xg (xy) dy = 0,
where/and g are functions of the product xy, the substitution v = xy will sepa-
rate the variables.

9. By virtue of Ex. 8 integrate the equations :

(a) (y + 2 xy* - X2y3
) dx + 2 x2ydy = 0, Ans. x 4- x2v = C (1 - xv).



method is applicable, state what methods, and any apparent reasons for choos-

ing one :

(a) y' + ycosx = yn sin 2 x, ()3) (2 x*y + 3 y
s
)
dx = (x

s + 2 xy
z
) dy,

(7) (4x + 2 ?/-l)2/' + 2z + 2/ + l = 0, (5) yy' + sy
2 = x,

(e) j/' sin y + sin x cos y = sin x, (f) Va2 + x2
(1 ^') = x + y,

(ij) (x
8y

s + x'*i/
2 + xj/ + 1) y + (x

3
?/
8 x2

y
2

xy + 1) xy', (0) y" = sin (x y),

_v
(

i
) xydy y

2dx = (x + y)
2 e x

dx, (K) (1 y
2
)
dx = axy (x + 1) dy.

91. Integrating fagtors. If the equation Mdx + iV% = by a suita-

ble rearrangement of the terms can be put in the form of a sum of total

differentials of certain functions u, v, , say

du + dv-\---- = 0, then u + v -\
---- = C (7)

is surely the solution of the equation. In this case the equation is called

an exact differential equation. It frequently happens that although the

equation cannot itself be so arranged, yet the equation obtained from

it by multiplying through with a certain factor fi (x, y) may be so

arranged. The factor /A (x, y) is then called an integrating factor of the

given equation. Thus in the case of variables separable, an integrating

factor is l/M2N
r

l ;
for

^[Ws +W^^ +^I^O; (8)

and the integration is immediate. Again, the linear equation may be

treated by an integrating factor. Let

dy 4- Xj/dx = X2
dx and /x

= e/***
; (9)

then <?/** dy -f X^eS*** ydx = ef^dxX
2
dx (10)

,
and yef

x>d* = I e!x^ X
2
dx. (11)

In the case of variables separable the use of an integrating factor is

therefore implied in the process of separating the variables. In the

case of the linear equation the use of the integrating factor is somewhat

shorter than the use of the substitution for separating the variables.

In general it is not possible to hit upon an integrating factor by inspec-

tion and not practicable to obtain an integrating factor by analysis, but

the integration of an equation is so simple when the factor is known,

and the equations which arise in practice so frequently do have simple

integrating factors, that it is worth while to examine the equation to

see if the factor cannot be determined by inspection and trial. To aid

in the work, the differentials of the simpler functions such as

or
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dxy xdy -f ydx, ?d(x
2 + y*~)

= xdx -f-

, ?/ xdy ydx 7 , 1
x i/dx xdy

<*>-
= '

a
' rftan-1 -='/

,x x2
y or + 2/

should be borne in mind.

,+ _,.

, (12)'

Consider the equation (x
4^ 2 nwey

8
)
tfcc + 2 maPydy ss 0. Here the first term

4ea;da5 will be a differential of a function of x no matter what function of x may be

assumed as a trial p. With p. = 1/x* the equation takes the form

-.
X2

The integral is therefore seen to be e? + myz
/x

2 = C without more ado. It may
be noticed that this equation is of the Bernoulli type and that an integration by
that method would be considerably longer and more tedious than this use of an

integrating factor.

Again, consider (x + y) dx (x y) dy and let it be written as

acdx + ydy + ydx xdy = ; try ju, =l/(x
2 + y2

) ;

. or

and the integral is log Vx2 + yz + tan-1
(x/y) = C. Here the terms xdx + ydy

strongly suggested x2 + yz and the known form of the differential of tan-1
(x/y)

corroborated the idea. This equation comes under the homogeneous type, but the

use of the integrating factor considerably shortens the work of integration.

92. The attempt has been to write Mdx + Ndy or fi (Mdx -f- Ndy)
as the sum of total differentials du -f dv -\

----
,
that is, as the differential

dF of the function u + v -\
----

,
so that the solution of the equation

Mdx + Ndy = could be obtained as F = C. When the expressions
are complicated, the attempt may fail in practice even where it theoreti-

cally should succeed. It is therefore of importance to establish condi-

tions under which a differential expression like Pdx + Qdy shall be the

total differential dF of some function, and to find a means of obtaining
F when the conditions are satisfied. This will now be done.

SF SF
Suppose Pdx + Qdy = dF =

j-
dx +

jr-
dy ', (13)

then P =
*f,

" -*!
vx oy cy ox oxoy

Hence if Pdx + Qdy is a total differential dF, it follows (as in 62) that



where the fixed value x or y will naturally be so chosen as to simplify
the integrations as much as possible.

To show that these expressions may be taken as F it is merely neces-

sary to compute their derivatives for identification with P and Q. Now

= pdx

a f>

(X' ^^ +
fe J

2 T-Y o /#
x) /"*

=
fy J,

p(a; ' y)^ +
fyJ

These differentiations, applied to the first form of jF, require only the

fact that the derivative of an integral is the integrand. The first turns

out satisfactorily. The second must be simplified by interchanging the

order of differentiation by y and integration by x (Leibniz's Rule,

119) and by use of the fundamental hypothesis that P'y
= Q'x .

Pdx
r x dp

Q , y) =J -^dx
+ Q(xv y)

-/'Jxn

The identity of P and Q with the derivatives of F is therefore estab-

lished. The second form of F would be treated similarly.

Show that (x
2 + log y) dx + x/ydy = is an exact differential equation and obtain

the solution. Here it is first necessary to apply the test P/

y =Q'!K . Now

S/o.i \
! j 5 x *

(x
z + log y) = - and = -

sy y fay y

Hence the test is satisfied and the integral is obtained by applying the formula :

r*(z
2 + logj/)da;+ C -dy = -x8 + xlogy = G

Jo v y o

/* y 3* /* 1
or / - dy + f (*

2 + log 1) dx = x log y + -a8 = (7.

/l y J 3

It should be noticed that the choice of x = simplifies the integration in the first

case because the substitution of the lower limit is easy and because the second

integral vanishes. The choice of y = 1 introduces corresponding simplifications in

the second case.



ratio
/tt/v

is eitner constant or a solution ol tne equation ;
ana tne prod-

uct of /u-by any function of a solution, as /x$(F), is an integrating fac-

tor of the equation.

3. The normal derivative dF/dn of a solution obtained from the

factor /i is the product p VjJf2 + N2

(see 48).

It has already been seen that if an integrating factor
fj.

is known, the corre-

sponding solution F = C may be found by (14). Now if the solution is known, the

equation

dF = Fxdx + Ffiy = /x (Mdx + Ndy) gives F'x = /nM", F'
y
= ^N ;

and hence
/u. may be found from either of these equations as the quotient of a

derivative of F by a coefficient of the differential equation. The statement 1 is

therefore proved. It may be remarked that the discussion of approximate solutions

to differential equations ( 86-88), combined with the theory of limits (beyond the

scope of this text), affords a demonstration that any equation Mdx + Ndy = 0,

where M and -ZV satisfy certain restrictive conditions, has a solution
;
and hence it

may be inferred that such an equation has an integrating factor.

If n be eliminated from the relations F'x = pM, F'
v
= uN found above, it is seen

that

MF'
y
- NF'X = 0, and similarly, MG'

y
- NG'X = 0, (16)

are the conditions that F and G should be solutions of the differential equation.
Now these are two simultaneous homogeneous equations of the first degree in M
and N. If M and N are eliminated from them, there results the equation

= J(F, G) = 0, (16')

which shows
( 62) that F and G are functionally related as required. To show

that any function $ (F) is a solution, consider the equation

As F is a sohxtion, the expression MF'y NF'x vanishes by (16), and hence M&yN&.
also vanishes, and * is a solution of the equation as is desired. The first half of 2

is proved.

Next, if /* and v are two integrating factors, equation (16') gives

or
dy dx dy dx dy 8x

On comparing with (16) it then appears that log (/*/") must be a solution of the

equation and hence /j./v itself must be a solution. The inference, however, would
not hold if p/v reduced to a constant. Finally if /x is an integrating factor leading
to the solution F C, then

dF =
fj. (Mdx + Ndy), and hence /*$ (F) (Mdx + Ndy) = d T* (F) dF,

It therefore appears that the factor n$ (F) makes the equation an exact differen-

tial and must be an integrating factor. Statement 2 is therefore wholly proved.
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The third proposition is proved simply by differentiation and substitution. For

dn dx dn dy dn dn dn

And if T denotes the inclination of the curve F = C, it follows that

dy _ _~ __ __
f mn T ,t.T^.~

+ N2

Hence dF/dn = n VJf2
4- JV2 and the proposition is proved.

EXERCISES

1. Find the integrating factor by inspection and integrate :

(a) xdy -ydx = (x
2 + y

2
) cfcc, (P) (y

2
-xy)dx + y?dy = 0,

(y) ydx xdy 4- logxdx = 0, (5) y (2xy 4- e*) dx &>dy = 0,

(e) (1 4- xy)ydx + (1 xy)xdy = 0, (f) (x y2
)
dx + 2xydj/ = 0,

(ij) (xy* + y) dx xdy 0, (0) a (xdy 4- 2 ydx) = xydy,

(0 (x
2 + y

2
) (xdx + ydy) + Vl + (x

2 + #
2
) (ydx xdjr)

= 0,

(K) x2j/dx (x
8 + y

s
) dy = 0, (A) xdy ydx = xVx2 yz dy.

2. Integrate these linear equations with an integrating factor :

(a) y
f + ay = sin 6x, (/3) y' + y cot x = sec x,

(7) ( + l)y'- 2y = (x + I)
4

, (5) (1 +x2)/ + y - e^"-1

*,

and OS), (5), (f) of Ex. 4, p. 206.

3. Show that the expression given under II, p. 210, is an integrating factor fol

the Bernoulli equation, and integrate the following equations by that method :

(a) y' y tan x = y* sec x, (/3) 3 y*y' + ya x 1,

(7) y' + V cos x = yn sin 2 x, (8) dx + 2 xt/dy = 2 ox8
2/
8
dy,

and (a), (7), (), (?) of Ex. 4, p. 206.

4. Show the following are exact differential equations and integrate :

(a) (3 x
2+ 6 xj/

2
) dx+ (6 x

2y+ 4 y
2
) dy= 0, (/3)

sin x cos ydx + cos x sin ydy = 0,

= 0,
y y'*

~

(0) (y sinx 1) dx + (y cosx)dy = 0,

6? fl
-

-)dy = 0,
\ y/

5. Show that (Mx Ny)~l is an integrating factor for type III. Determine

the integrating factors of the following equations, thus render them exact, and

integrate :

(a) (y + x) dx + xdy = 0, (0) fo
2 -

xy) dx + x*dy
-

0,

(7) (a;
2
+j/

2
)
dx - 2 xydy = 0, (5) (x

2
y
2 + xy) ydx + (x*y

2 -
1) xdy - 0,

(e) (-Vxy- l)xdy (V7+ l)ydx = 0, (f) X8dx + (3x
2
j/ + 2y*)dy = 0,

and Exs. 3 and 9, p. 206.



(a) (y + 2y)dw + (x?/ + 2y _ 4x
j dy

_
, (0) (x

2 + y* + l)dx- 2ycfy = 0,

(7) (3x
2 +6x2/ + 32/

z)dx+(2x
2 + 3a;i/)cfy

= 0, (5) (2xV + I/)- (z
8y- 8

as) if -e 0,

(e) (2x
27/~32/4

)diC + (3x
s + 2xy8

)dy = 0,

(f) (2
-

y') sin (3x ~- 2y) + ^ sin (x
- 2 y) = 0.

8. By virtue of proposition 2 above, it follows that if an equation is exact and

homogeneous, or exact and has the variables separable, or homogeneous and under

types IV-VII, so that two different integrating factors may be obtained, the solu-

tion of the equation may be obtained without integration. Apply this to finding

the solutions of Ex. 4
(j3), (5), (7) ;

Ex. 5 (a), (7).

9. Discuss the apparent exceptions to the rules for types I, III, VII, that
is.,

when MX + Ny = or MX Ny = or qm pn = 0.

10. Consider this rule for integrating Mdx + Ndy=0 when the equation is known
to be exact : Integrate Mdx regarding y as constant, differentiate the result regard-

ing y as variable, and subtract from N
;
then integrate the difference with respect

to y. In symbols,

G = f (Mdx + Ndy) = j*Mdx
+ f IN- C Mdx\ dy.

Apply this instead of (14) to Ex. 4. Observe that in no case should either this

formula or (14) be applied when the integral is obtainable by inspection.

95. Linear equations with constant coefficients. The type

of differential equation of the nth order which is of the first degree in

y and its derivatives is called a linear equation. For the present only
the case where the coefficients a

,
av , n _1? an are constant will be

treated, and for convenience it will be assumed that the equation has

been divided through by a so that the coefficient of the highest deriva-

tive is 1. Then if differentiation be denoted by D, the equation may be

written symbolically as

(D + a^D*-
1 + ... + _,> + n) y=s x, (17')

where the symbol D combined with constants follows many of the laws

of ordinary algebraic quantities (see 70).

The simplest equation would be of the first order. Here

-^ afl
= X and y = ei I e~ x

Xdx, (18)

as may be seen by reference to (11) or
(6). Now if D a

x
be treated

as an algebraic symbol, the solution may be indicated as

(D-aJy = X and y = ---x, (18')"~*



where the operator (D aj-
1

is the inverse of D a
1

. The solution

which has just been obtained shows that the interpretation which must

be assigned to the inverse operator is

D _ a (*)
= e

a*
je~

*
(*) dx, (19)

where (*) denotes the function of x upon which it operates. That the

integrating operator is the inverse of D a
x may be proved by direct

differentiation (see Ex. 7, p. 152).

This operational method may at once be extended to obtain the solu-

tion of equations of higher order. For consider

M + ^te + W*** r
(

2 + V> + O2/ = *. (20)

Let o^ and
2
be the roots of the equation Z>

2 + a^D -f- aa
= so that

the differential equation may be written in the form

1
a
a]y = Z or (D

-
a,) (D

-
2) y = X. (20')

The solution may now be evaluated by a succession of steps as

(D - a.) y = - X = c^i* / e-***Xdx,^ v * '

or y=e* re(*i-*i>* re-'^Jftfe efos. (20")

The solution of the equation is thus reduced to quadratures.

The extension of the method to an equation of any order is immediate.

The first step in the solution is to solve the equation

D" 4- a^- 1 + + an _a
Z? + an =

so that the differential equation may be written in the form

whereupon the solution is comprised in the formula

y = eanx I e^n-i-*")* I . . . I g(i-)*
|
e-^a:Ar

(c?a;)
n
, (17'")

where the successive integrations are to be performed by beginning

upon the extreme right and working toward the left. Moreover, it

appears that if the operators D #, D OL ,, , Z> , D a, were



cWlU. ItJcWl UeUJn. bu urns uiigiiicfci ov^uavuuii. .HL.O iv iuirt3yi.cvi>ivii

required, there will occur n arbitrary constants of integration ii

answer for y.

As an example consider the equation (D
8 4 D)y = x2

. Here the roots

algebraic equation D8 4D = are 0, 2, 2, and the solution for y is

l/
= - --- x2 = f e2 * f e

- 2 *e- 2a! f e2 *x2 (dx)
8

.
17 Z>D-2Z>+2 J J J v '

The successive integrations are very simple by means of a table. Then

f e2a;x2dx =

fe-4* re2*x*(dx)
z = C(%x

2e- Zx -%xe- 2 * + $e~
2x + C

= \x
ze-^~- \e-tx + C

1e-**+ C
2 ,

y = fe^/V** fe2 *x2(dx)
8 = f(- \x

z -
\ + C

1
e- 2*+

This is the solution. It may be noted that in integrating a term like C
t
e-

result may be written as G
l
e-* a:

,
for the reason that C

l
is arbitrary anyhow

moreover, if the integration had introduced any terms such as 2 e- 233
, f e2 *, 6,

could be combined with the terms Ojg-
21

,
C
2
e2x

,
Ca to simplify the fo

the results.

In case the roots are imaginary the procedure is the same. Consider

or (D
2 + 1) y sin x or (D + i)(D i)y = sin.

dx2 11 r r
Then y =-.

-.sinx = ete I e- 2fe
I e** sin x (dx)

2
,

i=-

The formula for
|
e^sin ftcdx, as given in the tables, is not applicable

o2 4- ft
2 = 0, as is the case here, because the denominator vanishes. It therefo

comes expedient to write sin x in terms of exponentials. Then

oix_ Q w? oix _ o ta;//e
- 2w

|
/

- 2 te f (e
2 fa

1) (dx)
2 = &x Ce- 2fa

|
e2 te x +

/ 2i J L2i

= efa xH-- e- 2te x
2i L2t 2i 4

Now efa e- 2 te
(e

2 fa
1) (dx)

2 = &x e- 2fa e2 te x + C, dx
2i J / 2i

. _
Now Cl6

-<* + C2
e- = (O, + CJ Y + (C,

- C
t) < - --

Hence this expression may be written as C
l
cosx + C72 sinx, and then

y =. \ x cosx + C
t
cosx + C2 sinx.

The solution of such equations as these gives excellent opportunity to cultiva

art of manipulating trigonometric functions through exponentials ( 74).



96. The general method of solution given above may be considerably

simplified in case the function X (x) has certain special forms. In the

first place suppose X = 0, and let the equation be P (>) y = 0, where
P

(.D) denotes the symbolic polynomial of the nth degree in D. Suppose
the roots of P(J3) = are a

lt

-

2 , ,
ak and their respective multiplicities

are mv mz , ,
mk) so that

(D cc^
mk ...(D a^(D a^y = \

is the form of the differential equation. Now, as above, if

(D-a^y =
0, then y =^^0 = f

J".
- .

J*0(<fa)-t.

Hence y == e
a^

(Cl + CJK -f C"
8
x2

H-----\- Cmi
xm >

~l

)

is annihilated by the application of the operator (D a,)
1

,
and there-

fore by the application of the whole operator P (JD), and must be a solu-

bion of the equation. As the factors in P(D~) may be written so that

any one of them, as (Z> a,-)

m
,
comes last, it follows that to each factor

(D a^)
m

i will correspond a solution

y.
= e^(Ca + CaB + + C.-m^-

1

), P(D}y{
= 0,

of the equation. Moreover the sum of all these solutions,

'+ CX-a^-
1

), (21)
=i

will be a solution of the equation ;
for in applying P(Z>) to ?/,

Hence the general rule may be stated that : The solution of the dif-

ferential equation P (D) y = of the nth order may be found by multiply-

ing each eax by a polynomial of (m 1) st degree in x (where a is a root of

the equation P (Z))
= of 'multiplicity m and where the coefficients of -the

polynomial are arbitrary") and adding the results. Two observations

may be made. First, the solution thus found contains n arbitrary con-

stants and may therefore be considered as the general solution
;
and

second, if there are imaginary roots for P (D) = 0, the exponentials aris-

ing from the pure imaginary parts of the roots may be converted into

trigonometric functions.

As an example take (D* 2D8 + D2
)y = 0. The roots are 1, 1, 0, 0. Hence the

solution is ._.~ .
~ ..,,-, , ^

(C78 + C4 ).

Acrain if /TM _L A\fii ft fha vnnta r\f Tit J- A A nvn J_ 1 _i_ i ar\r\ flio onliifinn is



where 7 and 8, A and B, are arbitrary constants, .tor

((7
\ /

-
--

^), then GJCOSX+ C'
2
Rinx= VCi

2 + (7|cos(x+ 7).
C

1 /

Next if Z is not zero but if any one solution I can be found so that

P(D)Z"=A", then a solution containing n arbitrary constants intty be

found by adding to I the solution of P(DJy = 0. For if

P(D} I= X and P(D} y = 0, then P(D] (I+ y)
= X.

It therefore remains to devise means for finding one solution /. This

solution I may be found by the long method of (17'"), where the inte-

gration may be shortened by omitting the constants of integration since

only one, and not the general, value of the solution is needed. In. the

most important cases which arise in practice there are, however, some

very short cuts to the solution /. The solution I of P(D)y = X is

called the particular integral of the equation and the general solu-

tion of P(D~) y = is called the complementary function for the equar
tion P(Z>) y=*X.

Suppose that X is a polynomial in x. Solve symbolically, arrange
P (J3) in ascending powers of D, and divide out to powers of D equal to

the order of the polynomial X. Then

(22)

where the remainder R (D) is of higher order in D than X in x. Then

Hence Q (Z>) x may be taken as /, since P (D) Q (D)X = P (D) I = Z. By
this method the solution / may he found, when X is a polynomial, as

rapidly as P (D) can be divided into 1
;
the solution of P (Z>) y = may

be written down by (21) ;
and the sum of I and this will be the required

solution of P (D) y = X containing n constants.

As an example consider (D
8 + 4X>2 + 3 D) y = x2

. The work is as follows :

, ,

D1_S 9 27 P(D)



Hence /=

For D8 + 4D2 + 3 D = the roots are 0, 1, 3 and the complementary function
or solution of P(D)y = would be C

l + C^-* + Cae-
Sx

. Hence the solution of

the equation P (D) y = x2 is

2/
= C\ + 2e- + C,e-* + $:c

s - fx
2 + Jf .

It should be noted that in this example D is a factor of P (D) and has been taken out

before dividing ;
this shortens the work. Furthermore note that, in interpreting

1/D as integration, the constant may be omitted because any one value of I will do.

97. Next suppose that X = Ceax. Now Deax = aeax
,
Dk

e
ax

ate,

and P (D) e
ax P (a) eax

;
hence P (D)

|

~r eax
\

= Cea*.
^P (a) J

But P(D}ICeax
,

and hence i--2 e
*

(23)'

P(a)
v '

is clearly a solution of the equation, provided a is not a root of P (D) = 0.

If P (a)
=

0, the division by P (a) is impossible and the quest for I has

to be directed more carefully. Let a be a root of multiplicity m so that

P (D) = (D - a)
mP

l(D). Then

a)/ = Ce**, (D - a)
ml =

-j^- 0%

and
/ /
I ... /

J J
For in the integration the constants may be omitted. It follows that

when X = Ceax
,
the solution I may be found by direct substitution.

Now if X broke up into the sum of terms X = X
: + Xa -\

---- and if

solutions
Jj,

/
2,

were determined for each of the equations P(JD)/1
= Xv

P(D) J2= Z2, -, the solution J corresponding to X would be the sum

/! + /
2 H

----
. Thus it is seen that the above short methods apply to

equations in which X is a sum of terms of the form Cxm or Ce"*.

As an example consider (D* 2D2 + l)y = ex. The roots are 1, 1, 1, 1,

and a = 1. Hence the solution for I is written as

(D + I)
2
(D -Tfl= e*, (D - 1)21 = \ e*, I = | e*fc3.

Then y = e* (C^ + C
2x) + e~ a:

(C8 + <74 ) + $ e^a
.

Again consider (D
2 5D+6)y = oM- ema! . To find the I

t corresponding to x,

diTide '

5 \ 1 5

To find the I
z corresponding to e*, substitute. There are three cases,

JT_ = p.rnx T !r.e$x 7- = 3^fi2a:



according as m is neither 2 nor 3, or is 3, or is 2. Hence for the complete solution,

-^ . -,- .

6
_

. ^ .

TO2 _ 6m+6
-

,

when m is neither 2 nor 3
;
but in these special cases the results are

The next case to consider is where X is of the form cos /See or sin fix.

If these trigonometric functions be expressed in terms of exponentials,
the solution may be conducted by the method above

;
and this is per-

haps the best method when pi are roots of the equation -P(-D)
= 0.

It may be noted that this method would apply also to the case where
X might be of the form e

ax cos fix or e"* sin /3x. Instead of splitting the

trigonometric functions into two exponentials, it is possible to combine

two trigonometric functions into an exponential. Thus, consider the

equations

P(D)y = &
ax cos PX, P (Z>) y = eax sin /3x,

and P(D)y eax (cos fix -f t sin fix)
= e(ar + *>*. (24)

The solution / of this last equation may be found and split into its

real and imaginary parts, of which the real part is the solution of the

equation involving the cosine, and the imaginary part the sine.

When X has the form cos fix or sin (3x and /8* ar not roots of the

equation P(D) = 0, there is a very short method of finding /. For

D2
cos fix

= f& cos (3x and D2 sin fix
=

/3
2 sin /3x. .

Hence if P(D) be written as P
X(Z>

2

) -f-Z>P2 (>
2
) by collecting the even

terms and the odd terms so that P
1
and P

2
are both even in D, the

solution may be carried out symbolically as11 1

ff)-DPt(-lf)'-

By this device of substitution and of rationalization as if Z) were a surd,

the differentiation is transferred to the numerator and can be performed.
This method of procedure may he justified directly, or it may be made
to depend upon that of the paragraph above.

Consider the example (D2 + \)y = coax. Here pi = i is a, root of &* + 1 = 0.

As an operator J)2 is equivalent to 1, and the rationalization method will not

work. If the first solution be followed, the method of solution is

1 pix 1 f vc 1 . 1
* -

D2+12 J)2 + l 2 D-i4i D + i4i 4t 2



2i

Now I = : (cosx + i sin x) = -x sin x -- ix cosx.

Hence I = $ x sin x for (D
2 + 1)1 = cos

,

and I = IXCOBX for (D
2 +i)I = sin:t.

The complete solution is y = C^ cos x + C2 sin x + $ x sin x,

and for (D
2 + l)j/ = sin x, y = C

t
cosx + (72 sinx ^x cosx.

As another example take (D
2 3D + 2)y = cosx. The roots are 1, 2, neither

is equal to /3i
=

i, and the method of rationalization is practicable. Then

1 1 1 + 3D 1

The complete solution is y = C^e~
x + C2e-

2a; + ^(cosx Ssinx). The extreme

simplicity of this substitution-rationalization method is noteworthy.

EXERCISES

1. By the general method solve the equations :

x, (5) (I?
8 + D2 - 4D - 4)y = x,

() (J)
8 + 5.D2 + 6 J))y = x, (f) (I?

2 + D + l)y = xe^,

(17) (D2 + D+ I)y = sin2x, (tf) (D
8 - 4)y = x + e2 *,

(t) (D2 + 8D+2)y = x + cosx, (K) (D*
- 4D2

) y = 1 - sin as,

(X) (JD
2 + l)y = cosx, (M) (JD

2 + l)y = secx, () (D2 + l)y = tanaj.

2. By the rule write the solutions of these equations :

(a) (D
2 + 3.D + 2)y = 0, (/3) (D

8 + 3D2 + D - 6)y = 0,

(7) (D- l)y = 0, () (J>* + 2D2 + l)y = 0,

0, (f) (D*-I>
8

{ .) (D
6 - 2JD* + 2))y = 0, (

K ) (D
8 - J52 + D)y = 0,

(X) (D*
-

l)
2 y SB 0, (ft) (D

5 - 13D8 + 26D2 + 82D + 104)i/ = 0.

3. By the short method solve (7), (5), (e)
of Ex. 1, and also :

(a) (D*
-

l)i/
=

*, (|8) (D
8 - 6JD2 + 11 D - 6)j/

= x,

(X) (J>
8 + 3D2 + 2D)y = x2

, () (J>
8

(e) (D
8 + 8)y = x* + 2x + l, (f) (D

8 -

(t) (D
8
-l)y = x2

, (<c) (D*-2D8

4. By the short method solve (a), (0), (tf)
of Ex. 1, and also :

(a) (D-3D + 2)y = e*, 03) (D*- D3 - 3J>2 + 6 J>- 2)y -

(7) (D
2-2Z+l)y = e*, ()

(e) (D
2 + l)y = 2e^ + x8 -x, (f)

(;) (D* + 22)2 + 1)^ = 6* + 4, ()

(t) (D
2 -2D)y = e2 * + l, (K) (D

8 + 2D + D)y = e?* + x + *,



y = sin3x + e* + x2

-

(TT) (
s + l)2/ = sinf xsin|x, (p) (X*

3 + l)y = e2a: sinx + e2 sin

(<r) (Z>
2 + 4)y = sin2

x, (T) (D
4 + 32 D + 48)?/ = xe- 2a:

6. If .XT has the form e<Xr show that I =- eaxX
l
= &x- Xr

This enables the solution of equations where Xl
is a polynomial to be obtained by

a short method
;

it also gives a way of treating equations where X is eax cos fix or

eax sin j3x, but is not an improvement on (24) ; finally, combined with the second

suggestion of (24), it covers the case where X is the product of a sine or cosine by
a polynomial. Solve by this method, or partly by this method, (f) of Ex. !;(), (X),

(")> (p)i (
T

)
* ^x - 5

>
an(^ a^so

(a) (D
2 - 2 D + l)y = xV*, (/3) (Z>

3 + 3 J52 + 3D + l)?y
=

(2
- x2

)
e- 31

,

(7) (D
2 + nz)y = X4ex

, (5) (D
4 - 2D3 - 3D2 + 4 J> + 4)y = a^e*,

(e) (D
3 - 7 D 6) y = e2*(l + x), (f) (D - l)

z
y = e* + cos x + x2e :B

,

(7?) (D- l)*y =x- xs
e*, (6) (D

z + 2)y = xW* + e^ cos2x,

(() (D
8 - l)y = xeK + cos2 x, (K) (D

2 -
l)y = x sin x + (1 + x2

) e*,

(\) (D
2 + 4) y = x sin x, (/x) (D* + 2D2 + 1) y = x2 cos ox,_

(K) (D
2 + 4)y = (x sinx)

2
, (o) (J>

2 - 2 J + 4)
2
?/ = xe* cos V3x.

7. Show that the substitution x = e', Ex. 9, p. 152, changes equations of the type

x"D"2/ + ajX" -iJD
-
iy + + an - ixDy + any = X (x) (26)

into equations with constant coefficients
;
also that ax + b = e* would make a simi-

lar simplification for equations whose coefficients were powers of ax + b. Hence

integrate :

(a) (x
2i>2 - xZ + 2)y = xlogx, (/3) (x

8!)3 - x2!*2 + 2 xD - 2) y = x8 + 3x,

(7) [(2x-l)
8
Zs+(2x-l)I-2]y=0, (5) (x

2D2 + 3xZ + l)2/=(l-x)- 2
,

(e) (x
8!)8 + xD - l)y = x log x, (f) [(x + 1)

2D2 ~ 4 (x + 1)J> + 6] y = x,

(77) (z
2I)2 + 4xD+ 2)y = e, ((9) (x

8D2-3x2Z) + a;)l/=logxsinlogx+l,

(t) (x
4Z>* + Bx8^ + 4x2Z>2 - 2xD - 4)y = x2 + 2 cos log x.

8. If L be self-induction, R resistance, C capacity, i current, q charge upon the

plates of a condenser, and/(t) the electromotive force, then the differential equa-
tions for the circuit are

- _
dt LG

~L' d 2 i <Zt LC

Solve (a) when/(i) = e- at sin bt and (/3) when/(i) = sin bt. Reduce the trigonometric
part of the particular solution to the form K sin (bt + 7). Show that if R is small

and 6 is nearly equal to 1/ViC, the amplitude I is large.



there be given two (or in general ri)
linear equations with, constant

coefficients in two (or in general ri) dependent variables and one inde-

pendent variable t, the symbolic method of solution may still "be used

to advantage. Let the equations be

(<V0" 4- a^D-i 4 +)* +
(c Z>* + c^*-

1 4 + 0>) * +
when there are two variables and where D denotes differentiation by t.

The equations may also be written more briefly as

J2 and PD x + QD = S.

The ordinary algebraic process of solution for x and y may be employed
because it depends only on such laws as are satisfied equally by the

symbols D, Pl(D\ ^C^)? an(i so on -

Hence the solution for x and y is found by multiplying by the ap-

propriate coefficients and adding the equations.

Then [Pa() Q2 (D~)
- P

2(Z>) Q^)] x = Op) 12 - Q,(D) S,

[P^D) Q(D)
- P

a(D) (^(D)] y
= P^D) S - P,(D) fi.

^ ^

It will l>e noticed that the coefficients by which the equations are multi-

plied (-written on the left) are so chosen as to make the coefficients of

x and y in the solved form the same in sign as in other respects. It may
also be noted that the order of P and Q in the symbolic products is im-

material. By expanding the operator P^D) Q
2(D) P

Z(D) QI(-) & certain

polynomial in D is obtained and by applying the operators to R and S

as indicated certain functions of t are obtained. Each equation, whether

in x or in y, is quite of the form that has been treated in 95-97.

As an example consider the solution for x and y in the case of

dtz dt
~

'

dt dt
'

Solve 4Z>-3 -22?
2D2 ~4 =0.

Then [(4D- 3) (2I>
2 -

4) + 2JD2]x = (4D- 3)2, .

[2D2 + (2D2 - 4)(4D- 8)]y = - (2D)2<,

or 4(2Z)
8 -I>2 -4D+ 8)x=:8-6i, 4(2Z>

3 - D2 - 4D + S)y = - 4.

The roots of the polynomial in D are 1, 1, 1J ;
and the particular solution Ix foi

K is ^ t, and Iy for y is . Hence the solutions have the form



and y are not independent nor are they identical. The sohttions

be substituted into one of the equations to establish the necessary relations

between the constants. It will be noticed that in general the order of the

equation in D for x and for y is the sum of the orders of the highest

derivatives which occur in the two equations, in this case, 3=2+1.
The order may be diminished by cancellations which occur in the formal

algebraic solutions for x and y. In fact it is conceivable that the coeffi-

cient PjQj, Pfoi of x and y in the solved equations should vanish and

the solution become illusory. This case is of so little consequence in

practice that it may be dismissed with the statement that the solution

is then either impossible or indeterminate
;
that is, either there are no

functions x and y of t which satisfy the two given differential equations,

or there are an infinite number in each of which other things than the

constants of integration are arbitrary.

To finish the example above and determine one set of arbitrary constants in

terms of the other, substitute in the second differential equation. Then

or e<(2 Ci + 2 C2 + Kl + K2) + te<(2 C2+ JT2)
~ 3 e~ \0Z + 3 Jf

As the terms ee
,
tel

,
e~* t are independent, the linear relation between them can

hold only if each of the coefficients vanishes. Hence

C
8 + 3tf

g
= 0, 2C2 + JT

2
= 0, 2C

l + 2C8 + K1 + JEra
= 0,

and (78
= -3JT8 ,

2C2
= -JT

2 , 20^-JB^.
Hence = (0, + <7,t) e

- 3K
8
e~ i ' -

Jt, ^ = -2(0! + C
2t)e +K^ 1 -- i

are the finished solutions, where C
t ,
C2 ,

^"
8 are three arbitrary constants of inte-

gration and might equally well be denoted by C1? Ca , C8 ,
or K^ K2 ,

K
s

.

99. One of the most important applications of the theory of simultaneous equa-
tions with constant coefficients is to the theory of small vibrations about a state of

equilibrium in a conservative* dynamical system. If
</j, </2 , , qn are n coordinates

(see Exs. 19-20, p. 112) which specify the position of the system measured relatively

* The potential energyT is defined as dV= dW= QidQi + Qzdqs + ----h Qndqn ,

This is the immediate extension of Qt as given in Ex. 19, p. 112. Here dW denotes the
differential of work and dW = 2Fi-dri =2, (Xidxi+ Yidyt + Zidzd. To find Qf it is

generally quickest to compute dWfrom this relation with dx{ , dtji , dzi expressed in terms
of the differentials dql , , dqn . The generalized forces Qi are then the coefficients of

dq^. If there is to be a potential F, the differential cZJFmust be exact. It is frequently
easy to find V directly in terms of q^ , , qn rather than through the mediation of

Qi i

'
> Qn ;

when this is not so, it is usually better to leave the equations in the form
fl f\ T* 7^ T*

~Z~ Qi rather than to introduce Vand L-



where the first term is constant, the second is linear, and the third is quadratic, and
where the supposition that the <?'s take on only small values, owing to the restriction

to small vibrations, shows that each term is infinitesimal with respect to the preced-

ing. Now the constant term may be neglected in any expression of potential energy.
As the position when all the q's are is assumed to be one of equilibrium, the forces

must all vanish when the g's are 0. This shows that the coefficients, (8V/dqi)o 0,

of the linear expression are all zero. Hence the first term in the expansion is the

quadratic term, and relative to it the higher terms may be disregarded. As the

position of equilibrium is stable, the system will tend to return to the position

where all the Q'S are when it is slightly displaced from that position. It follows

that the quadratic expression must be definitely positive.

The kinetic energy is always a quadratic function of the velocities q\ , qz , , qn

with coefficients which may be functions of the g's. If each coefficient be expanded

by the Maclaurin Formula and only the first or constant term be retained, the

kinetic energy becomes a quadratic function with constant coefficients. Hence the

Lagrangian function (cf . 160)

when substituted in the formulas for the motion of the system, gives

dt dgj 0gt

'

dt dq2 dq%
' '

dt dqn dqn
'

a set of equations of the second order with constant coefficients. The equations

moreover involve the operator D only through its square, and the roots of the equa-
tion in D must be either real or pure imaginary. The pure imaginary roots intro-

duce trigonometric functions in the solution and represent vibrations. If there were

real roots, which would have to occur in pairs, the positive root would represent

a term of exponential form which would increase indefinitely with the time, a

result which is at variance both with the assumption of stable equilibrium and

with the fact that the energy of the system is constant.

When there is friction in the system, the forces of friction are supposed to vary

with the velocities for small vibrations. In this case there exists a dissipative func-

tion F(ql , q2,,?) which is quadratic in the velocities and may be assumed to

have constant coefficients. The equations of motion of the system then become

dt Bqi dq. dcfi
dt dqn dqn dqn

which are still linear with constant coefficients but involve first powers of the

operator Z>. It is physically obvious that the roots of the equation in D must be

negative if real, and must have their real parts negative if the roots are complex ;

for otherwise the energy Of the motion would increase indefinitely with the time,

whereas it is known to be steadily dissipating its initial energy. It may be added

that if, in addition to the internal forces arising from the potential V and the



impressed on the system, these forces would remain to be inserted upon the right-

hand side of the equations of motion just given.

The fact that the equations for small vibrations lead to equations with constant

coefficients by neglecting the higher powers of the variables gives the important

physical theorem of the superposition of small vibrations. The theorem is : If with

a certain set of initial conditions, a system executes a certain motion
;
and if with

a different set of initial conditions taken at the same initial time, the system
executes a second motion; then the system may execute the motion which consists

of merely adding or superposing these motions at each instant of time
;
and in

particular this combined motion will be that which the system would execute under
initial conditions which are found by simply adding the corresponding values in

the two sets of initial conditions. This theorem is of course a mere corollary of the

linearity of the equations.

EXERCISES

1. Integrate the following systems of equations :

(a) Dx Dy + x = cos t,
D2x Dy + 3 x y = ezt

,

(/3) 3Dx + 3x+ Zy = e(
,

4x- SDy + 3y = 3f,

(7) D*x-3x- 4y.= 0, D2y + x + y = 0,

& - *
y7x 2x + 5y 3x + 4y 2x+5y

(f )
tDx + 2 (x y) = 1, tDy + x + 5y = t,

(r?) Dx ny mz, Dy Iz nx, Dz = wuc .

(i) D2x- 3x-4y + 3 = 0, D*y + x- 8y + 5 = 0,

2. A particle vibrates without friction upon the inner surface of an ellipsoid.

Discuss the motion. Take the ellipsoid as

2 yZ fy ,,\2 /-/

+ + - =1; then x=(7sin( -t +~t) 7.O ' _O ' \ _
'

\ a

3. Same as Ex. 2 when friction varies with the velocity.

4. Two heavy particles of equal mass are attached to a light string, one at the

middle, one at one end, and are suspended by attaching the other end of the string
to a fixed point. If the particles are slightly displaced and the oscillations take

place without friction in a vertical plane containing the fixed point, discuss the
motion.

5. If there be given two electric circuits without capacity, the equations are

where ^ ,
i2 are the currents in the circuits, Lj , 2

are the coefficients of self-

induction, E! ,
R

2
are the resistances, and M is the coefficient of mutual induction.

(a) Integrate the equations when the impressed electromotive forces Elt
E

2 are
zero in both circuits.

(/?)
Also when E

2
= but ~E

l
= sinpt is a periodic force.

(7) Discuss the cases of loose coupling, that is, where M*/L^Lz
is small

;
and the

case of close coupling, that is, where M2/Ll
L

2
is nearly unity. What values for p

are especially noteworthy when the damping is small ?



charges on the condensers so that i
x
=

dq^dt, i, z= dq2/dt are the currents, the

equations are

di C

Integrate when the resistances are negligible and E\=. Ez 0. If T
x
= 27rV(7

1 1

and T"
2
= 2 ff_VC'2X>g are the periods of the individual separate circuits and

6 = 27rM VC
a
C

2 ,
and if 7\ = r

a ,
show that VT2 + 9a and VT 2 - 2 are the

independent periods in the coupled circuits.

7. A uniform beam of weight 6 Ib. and length 2 ft. is placed orthogonally

across a rough horizontal cylinder 1 ft. in diameter. To each end of the beam is

suspended a weight of ] Ib. upon a string 1 ft. long. Solve the motion produced

by giving one of the weights a slight horizontal velocity. Note that in finding the

kinetic energy of the beam, the beam may be considered as rotating about its

middle point ( 39).



CHAPTER IX

ADDITIONAL TYPES OF ORDINARY EQUATIONS

100. Equations of the first order and higher degree. The degree of

a differential equation is defined as the degree of the derivative of

highest order which enters In the equation. In the case of the equation

*CT J y> y'}~ of the first order, the degree will be the degree of the

equation in y
{

. From the idea of the lineal element ( 85) it appears
that if the degree of # in y' is n, there will be n lineal elements through
each point (x, y). Hence it is seen that there are n curves, which are

compounded of these elements, passing through each point. It may be

pointed out that equations such as y' = xVl + y
2

,
which are apparently

of the first degree in y', are really of higher degree if the multiple value

of the functions, such as Vl~4- y
2
,
which enter in the equation, is taken

into consideration
;
the equation above is replaceable by y'

2 = x* -f a;
2
?/

2
,

which is of the second degree and without any multiple valued function.*

First suppose that the differential equation

* (*, y, y'}
=

[y'
-

^(*, y)] x [y
f -

A2(^, y)] = o (1)

may be solved for y'. It then becomes equivalent to the set

y'
-

fc(*, y) = 0, y'
-

^(z, y)
= 0, (!')

of equations each of the first order, and each of these may be treated

by the methods of Chap. VIII. Thus a set of integrals t

Ffa y, <7)
= 0, J-^y, C)=0, ...

(2)

may be obtained, and the product of these separate integrals

F(x, y, C) = Ffa y, C)
. Ffa y, C)

. - =
(2')

is the complete solution of the original equation. Geometrically speak-

ing, each integral F{(x, y, C) = represents a family of curves and the

product represents all the families simultaneously.

* It is therefore apparent that the idea of degree as applied in practice is somewhat
indefinite.

t The same constant C or any desired function of C may be used in the different

solutions because C is an arbitrary constant and no specialization is introduced by its

repeated use in this way.
9.9A



y'2 -f. 2 2/'y cot x + y2 cot? x = j/
2
(l + cot2 *) = y2 esc2 x,

and (?/ -f 7/cotx ?/cscx)(y' + ycotx + ycscx) = 0.

These equations both come under the type of variables separable. Integrate

dy 1 cosx dcosx
.,

. _= dx = , y(l + cosx) = C.
y sin 1 + cos x

, dy 1 + cosx, dcosx ... . _
and = dx = , y (1 cosx) = C.

y sin x 1 cos x

Hence [y (1 + cos x) + C] [y (I
- cos x) + C] =

is the solution. It may be put in a different form by multiplying out. Then

y2 sin2 x + 2 Cy + C2 = 0.

If the equation cannot be solved for y
1 or if the equations resulting

from the solution cannot be integrated, this first method fails. In that

case it may be possible to solve for y or for x and treat the equation by
differentiation. Let y' =p. Then if

/./ x ^y df . flf dp ,_.

y=f(x,p\ j =#- +arj (3)y j \ j rn ^x ^
^x dp dx ^ '

The equation thus found by differentiation is a differential equation of

the first order in dp/dx and it may be solved by the methods of Chap.
VIII to find F(p, x, C) = 0. The two equations

y =/(, JP) and F(j>, x, C) = (3')

may be regarded as defining x and y parametrically in terms of p, or p
may be eliminated between them to determine the solution in the form

[) (x, y, C) = if this is more convenient. If the given differential equa-

tion had been solved for
,
then

<* A dx I Vfdfdp ...

} and = = J- + -J--f-- (4); ^ '

The resulting equation on the right is an equation of the first order in

dp/dy and may be treated in the same way.

As an example take p2 2 yp + ax = and solve for y. Then

o _ OKB o^_o_ dp ax dp a

p
'

dx dx p* dx p
xT a~]dp [a \ n , , A

or \p + ( P) = 0, or xdp pdx = Q.

PL PJ dx \p I

The solution of this equation is x = Cp. The solution of the given equation is

2 y = xp H , x = Cp
P

when expressed parametrically in terms of p. If p be eliminated, then

x3

2y = + aC parabolas.
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As another example take p*y + 2px = y and solve for x. Then

/I \ O dx 2 1
t / I \dp

2x=y(--p), 2-~ = - = ---p + y(
--

--i\f.,
\p I dy p p \ p* I dy

or -

p

Two special types of equation may be mentioned in addition, although.

their method of solution is a mere corollary of the methods already

given in general. They are the equation homogeneous in (x, y) and

Clairaut?s equation. The general form of the homogeneous equation is

> 2/A)
= 0- This equation may be solved as

or as =/(?), y = /(?); (5)
*O

and in the first case is treated by the methods of Chap. VIII, and in

the second by the methods of this article. Which method is chosen

rests with the solver. The Clairaut type of equation is

y=px+f(p) (6)

and comes directly under the methods of this article. It is especially

noteworthy, however, that on differentiating with respect to x the result-

ing equation is d d
[+/(*)] -0 or J-0.

(6-)

Hence the solution for p is p = C, and thus y = Cx +/(C) is the solu-

tion for the Clairaut equation and represents a family of straight lines.

The rule is merely to substitute C in place of p. This type occurs very

frequently in geometric applications either directly or in a disguised

form requiring a preliminary change of variable.

101. To this point the only solution of the differential equation
*

(
x

> y> P) = which has been considered is the general solution

F(x, y, C) = containing an arbitrary constant. If a special value,

say 2, is given to C, the solution F(x, y, 2)
= is called a particular

solution. It may happen that the arbitrary constant C enters into the

expression F(x, y, C) = in such a way that when C becomes positively
infinite (or negatively infinite) the curve F(x, y, C) = approaches a

definite limiting position which is a solution of the differential equation ;



for the singular solution. That which will be adopted here is : A singu-

lar solution is the envelope of the family of curves defined by the

general solution.

The consideration of the lineal elements
( 85) will show how it is

that the envelope ( 65) of the family of particular solutions which

constitute the general solution is itself a solution of the equation. For

consider the figure, which represents the particular solutions broken up
into their lineal elements. Note that the envelope is made up of those

lineal elements, one taken from each particular so-

lution, which are at the points of contact of the
<^M>efope

envelope with the curves of the family. It is seen ^"^/^^^^
that the envelope is a curve all of whose lineal ' mi y \
elements satisfy the equation ^ (x, y^p} for the

reason that they lie upon solutions of the equation. Now any curve

whose lineal elements satisfy the equation is by definition a solution

of the equation ;
and so the envelope must be a solution. It might

conceivably happen that the family F(x, y, C) = was so constituted

as to envelope one of its own curves. In that case that curve would

be both a particular and a singular solution.

If the general solution F(x, y, C)= of a given differential equation

is known, the singular solution may be found according to the rule for

finding envelopes ( 65) by eliminating C from

F(x,y,C)=0 and ~ F (x, y, C) = 0. (7)

It should be borne in mind that in the eliminant of these two equations

there may occur some factors which do not represent envelopes and

which must be discarded from the singular solution. If only the singu-

lar solution is desired and the general solution is not known, this

method is inconvenient. In the case of Clairaut's equation, however,

where the solution is known, it gives the result immediately as that

obtained by eliminating C from the two equations

y =Cx+f(C} and Q = x-\-f'(C). (8)

It may be noted that as p = C, the second of the equations is merely

the factor x +f(p) = discarded from (6').
The singular solution may

therefore be found by eliminating p between the given Clairaut equa-

tion and the discarded factor x +f'(p)= 0.

A reexamination of the figure will suggest a means of finding the

singular solution without integrating the given equation. For it is seen

that when two neighboring curves of the family intersect in a point P



near the envelope, then through this point there are two lineal elements

which satisfy the differential equation. These two lineal elements have

nearly the same direction, and indeed the nearer the two neighboring

curves are to each other the nearer will their intersection lie to tlie

envelope and the nearer will the two lineal elements approach coinci-

dence with each other and with the element upon the envelope at the

point of contact. Hence for all points (x, y) on the envelope the equa/-

tion * (x, y, p")
= of the lineal elements must have double roots for p.

Now if an equation has double roots, the derivative of the equation

must have a root. Hence the requirement that the two equations
o

<K^ y> X> = and ^ |K^?/>X> = (
9)

have a common solution for p will insure that the first has a double

root for p ;
and the points (a;, y) which satisfy these equations simul-

taneously must surely include all the points of the envelope. The rule

for finding the singular solution is therefore : Eliminate p from, the

given differential equation and its derivative loith respect to py
that is,

from (9). The result should be tested.

If the equation xp
2 2 yp + ax = treated above be tried for a singular solution,

the elimination of p is required between the two equations

xp
2 2 yp + ax = and xp y = 0.

The result is y
z = ox2

,
which gives a_pair of lines through the origin. The substi-

tution of y = i Vox and p = i Va in the given equation shows at once that

y2 = ox2 satisfies the equation. Thus y
2 = ax2 is a singular solution. The same

result is found by finding the envelope of the general solution given above. It is

clear that in this case the singular solution is not a particular solution, as the par-
ticular solutions are parabolas.

If the elimination had been carried on by Sylvester's method, then

x y
x 2y a = x(y

2 ax2
)
=

;

x - y

and the eliminant is the product of two factors x = and y2 ax2 = 0, of which
the second is that just found and the first is the y-axis. As the slope of the y-axis

is infinite, the substitution in the equation is hardly legitimate, and the equation
can hardly be said to be satisfied. The occurrence of these extraneous factors in

the eliminant is the real reason for the necessity of testing the result to see if it

actually represents a singular solution. These extraneous factors may represent
a great variety of conditions. Thus in the case of the equation p2

-f 2 yp cot x = y2

previously treated, the elimination gives y2 esc* x = 0, and as esc x cannot vanish,

the result reduces to y2 = 0, or the x-axis. As the slope along the x-axis is and y
is 0, the equation is clearly satisfied. Yet the line y = is not the envelope of the

general solution
;
for the curves of the family touch the line only at the points TWT.



what may not occur among the extraneous loci and how many times it may occur.

The result is a considerable number of statements which in their details are either

grossly incomplete or glaringly false or both (of. 66-67). The rules here given

for finding singular solutions should not be regarded in any other light than as

leading to some expressions which are to be examined, the best way one can, to

find out whether or not they are singular solutions. One curve which may appear in

the elimination of p and which deserves a note is the tac-locus or locus of points of

tangency of the particular solutions with each other. Thus in the system of circles

(x C)
2 +y2 r2 there may be found two which are tangent to each other at any

assigned point of the x-axis. This tangency represents two coincident lineal

elements and hence may be expected to occur in the elimination of p between the

differential equation of the family and its derivative with respect to p ;
but not in

the eliminant from (7).

EXERCISES

1. Integrate the following equations by solving for p = y'\

(a) p2 - 6p + 5 = 0, (j9) p
s -

(2 x + y*)p
2 + (a;

2 - y
2 + 2 xyz

)p-(x* - y*)y* =0,

(7) xp
2 ~2yp-x = 0, (8) p8

(x + 2 y) + 3p2
(x + y) + p (y + 2 x) = 0,

(e)i^+p=l, (f)p
2 -ox8 =

0, (n) p = (a-x)Vl-f-p2
.

2. Integrate the following equations by solving for y or x :

(a) 4xp
2 + 2xp-y = 0, (/3) y = - xp + x*p

2
> (7) p + 2xy- x2 - y3 = 0,

(5) 2px y + logp = 0, (e) x yp = ap
2

, (f) y = x + atan-ip,

{,) x = y+alogp, (0) x+py(2p2 + 3) = 0, (i) afyp
2 - 2xp + y = 0,

() p8 - 4xi/p + 8^/2 = 0, (X) x = p + logp, (/) p2
(*

2 + 2 ax) = a2
.

3. Integrate these equations [substitutions suggested in (t) and (K)] :

(a) xy- (p
z + 2) =2p2/

8 + x8
, (/S) (nx + joy)

2 = (1 + p2
) (y

2 + nx2),

(7) V
2 + *W> - afy

a = 0, () y = KP + 2jpa;,

(
t
) y = px + sin-ip, (f)

= p (-&) + o/p,

(,) y = px + p (1
- p2

), (0) j/
2 - 2pxy - 1 = p2

(1 -x2
),

(t) 4e2 yp
2 + 2xp 1=0, z = e2 y, (K) j/

= 2jpx + j/
2p8

, i/
2 = z,

(X) 4e2^2 + 2e2a:p e* = 0, (jt)
x2

(y px) = i/p
2

.

4. Treat these equations by the p method (9) to find the singular solutions.

Also solve and treat by the C method (7). Sketch the family of solutions and

examine the significance of the extraneous factors as well as that of the factor

which gives the singular solution :

(a) pz
y + p (x

-
y)
- x = 0, (/5) pV cos2 a - 2pxy sinz a + yz - x2 sin2 a = 0,

(7) 4xp2 = (3x- a)
2

, (5) yp2x(x-a)(x-fc) = [3
2 -2x(a + b) + ab]

2
,

(e) p2 + xp- y = 0, (f) 8o(l + p)
8 = 27 (x + y) (1 -p)8

,

(ij) x8p2 + x2yp + a8 = 0, (9) y (8
- 4 y)

2p2 = 4 (1
-

y).

5. Examine sundry of the equations of Exs. 1, 2, 8, for singular solutions.

6. Show that the solution of y = x0(p) +/(p) is given parametrically by the

given equation and the solution of the linear equation :

= /(J?) Solve (a) y = mxp + n (1 + p8 *

dp
_

+p2
), .(7) * = yp + ap

2
,



y mx +f(m) or by the Clairaut equation y=px -f f(p). Show that the orthog-

onal trajectories of any family of lines leads to an equation of the type of Ex. 6.

The same is true of the trajectories at any constant angle. Express the equations

of the following systems of lines in the Clairaut form, write the equations of the

orthogonal trajectories, and integrate :

(a) tangents to z2
-f y2 = 1, (/3) tangents to y2 = 2 ax,

(y) tangents to y2 = Xs
, (5) normals to y2 = 2 ox,

( e) normals to yz = x3
, (f) normals to &2x2 + a?y* = cPlfl,

8. The evolute of a given curve is the locus of the center of curvature of the

curve, or, what amounts to the same thing, it is the envelope of the normals of the

given curve. If the Clairaut equation of the normals is known, the evolute may be

obtained as its singular solution. Thus find the evolutes of

(a) 7/
2 = 4 ox, (jS)

2 xy = a2
, (7) x* + yi = af

,

9. The involutes of a given curve are the curves which cut the tangents of the

given curve orthogonally, or, what amounts to the same thing, they are the curves

which have the given curve as the locus of their centers of curvature. Find the

involutes of

(a) x2 + y* = a2
, (0) y

2 = 2 mx, (7) y = a cosh (a/a).

10. As any curve is the envelope of its tangents, it follows that when the curve

is described by a property of its tangents the curve may be regarded as the singu-
lar solution of the Clairaut equation of its tangent lines. Determine thus what
curves have these properties :

(a) length of the tangent intercepted between the axes is
I,

() sum of the intercepts of the tangent on the axes is c,

(7) area between the tangent and axes is the constant fc
2

,

(S) product of perpendiculars from two fixed points to tangent is 3
,

(
e
) product of ordinates from two points of x-axis to tangent is k3

,

J
7JT ____

11. From the relation - = n V.W2 + N z of Proposition 3, p. 212, show that as
an

the curve F C is moving tangentially to itself along its envelope, the singular
solution of Mdx + Ndy = may be expected to be found in the equation I//* = ;

also the infinite solutions. Discuss the equation I//K = in the following cases :

(a) Vl y2 dx = Vl x2 d?/, (/3) xdx + ydy = Vx2 + j/
2 a2 dy.

102. Equations of higher order. In the treatment of special prob-
lems ( 82) it was seen that the substitutions

& = ^ = ^ or ^ = 0^
dx Py dx2 dx dx2 P

dy

rendered the differential equations integrable by reducing them to in-

tegrable equations of the first order. These substitutions or others like

them are useful in treating certain cases of the differential equation



y(x> y> y'> Z/"> > ?/')= of the nth order, namely, when one of. the

variables and perhaps some of the derivatives of lowest order do not

occur in the equation.

AIncase **, ,
_...

f
_o

f (11)

y and the first i 1 derivatives being absent, substitute

f&
= y so that *(*, q , ^,...,fT2\ = 0. (11')l J ' *' ' n ~' ^ '

The original equation is therefore replaced by one of lower order. If

the integral of this be F(x, <?)
= 0, which will of course contain n i

arbitrary constants, the solution for q gives

<?=/(*) and
y=f.~f/(*)(<**)'. (12)

The solution has therefore been accomplished. If it were more con-

venient to solve F(x, q) for x = <(<7), the integration would be

and this equation with x <(<?) would give a parametric expression

for the integral of the differential equation.

*(**'&-) = * (13)

x being absent, substitute p and regard ^ as a function of y. Then

<fy <?V dp d?y d / dp-2- = n Z- . n _i_
,

3. n- / n -JL

dx P>
dx*

P
dy dx P

dy\ dy

j , "
\ rv

and *.
( y. p. -f- > .

- -, 0.
a

\
y ' *'

dy
'

c^y"-
1

/

In this way the order of the equation is lowered by unity. If this equa-

tion can be integrated as F(y, p) = 0, the last step in the solution may
be obtained either directly or parametrically as

It is no particular simplification in this case to have some of the lower

derivatives of y absent from ^ = 0, because in general the lower deriva-

tives of will none the less be introduced bv the substitution that



AS an example uoneiuer i K -

\ da:8

Then

for the equation is a Clairaut type. Hence, finally,

y =//[ci
x Vctf 4- l](dx)

2 =
J Ct

x x2
Vc'i

3 + 1 + C
2
x + 8

.

As another example consider y" y'
2 = y2

logy. This becomes

or

The equation is linear in jp
2 and has the integrating factor e- 2 ".

-pV-zj.
_
JVe-

2
logj/cfy, -= p = le^vfy^e

and r-^- = V2 x.
/

I

j

The integration is therefore reduced to quadratures and becomes a problei

ordinary integration.

If an equation is homogeneous with respect to y and its derivat

that is, if the equation is multiplied by a power of 7c when y is repls

by ky, the order of the equation may be lowered by the substitu

y t? and by taking
'

as the new variable. If the equation is Ai

geneous with respect to x and dx, that is, if the equation is multij

by a power of 7c when x is replaced by fcx, the order of the equa

may be reduced by the substitution x = &*. The work may be simpl:

(Ex. 9, p. 152) by the use of

Dy = 6-*D
t(D t

-
1)

... (A - n + l)y.

If the equation is homogeneous with respect to x and y and the

ferentials dx, dy, d?y,
-

,
the order may be lowered by the substita

x = #
t y = 6*2, where it may be recalled that

D-y = <r"A(A - 1) (A - n + l)y
= e- <-~ l> f

(Dt 4- 1) Dt
. (A - + 2) .

Finally, if the equation is homogeneous with respect to x considere*

dimensions 1, and y considered of dimensions m, that is, if the equz

is multiplied by a power of 7c when kx replaces x and kmy replaci

the substitution x =
e*, y~ emtz will lower the degree of the equa

It may be recalled that

m 1)
...

(D, + m + !)*. (



sort mentioned. Substitute

y = ez
, y' = e*z', y" = e*(z" + z'2).

Then e2z will cancel from the whole equation, leaving merely

xz" = z' + bxz'z/Va? x'
2 or

/
dx =

The equation in the first form is Bernoulli
;
in the second form, exact. Then

xdx

b Va2 - x2 + C

The variables are separated for the last integration which will determine z = logy
as a function of x.

dzv dy
Again consider x* ^ = (x

8 + 2xy) 4j/
2

. If x be replaced by fee and y by
dx2 dx

k2y so that j/' is replaced by ky' and y" remains unchanged, the equation is multi-

plied by k* and hence comes under the fourth type mentioned above. Substitute

z = e, T/ = e2 <2, Dxy = c(D, + 2)z, 2)*y = (Dt + 2) (D, + 1) z.

Then et( will cancel and leave z" + 2 (1 z)z' = 0, if accents denote differentiation

with respect to .. This equation lacks the independent variable t and is reduced

by the substitution z" = z'dz'/dz. Then

There remains only to perform the quadrature and replace z and t by x and y.

103. If tlie equation may be obtained by differentiation, as

dy dn
. ^L ...
> dx'

'

da? dx dx dy dy<-
'

it is called an exact equation, and 1 (x, y, y ', , i/
(n -1)

)
= C is an inte-

gral of * = 0. Thus in case the equation is exact, the order may be

lowered by unity. It may be noted that unless the degree of the nth

derivative is 1 the equation cannot be exact. Consider

where the coefficient of y
w is collected into <

t
. Now integrate <

1} par-

tially regarding only y^-v as variable so that/dW"- V

Then ,

That is, the expression ^ O/ does not contain y^ and may contain

no derivative of order higher than n 7c, and may be collected as



if m =
1, the conclusion is that \J> was not exact. If m =

1, the process

of integration may be continued to obtain O
2 by integrating partially

with respect to yO
1 -*- 1

). And so on until it is shown that * is not exact

or until * is seen to be the derivative of an expression O t -f O2 -{
---- = C.

As an example consider * = xzy'" + xy" + (2 xy 1) y' + y
z - 0. Then

B!
= fzW = zV, * - Oj = - x^" + (2 zy - 1) y

' + 2/
2

,

n
2
= f- xcfy' = - xy', * fij

-
Qg = 2 xj/y' + j/

2 =
(xj/

2
)'.

As the expression of the first order is an exact derivative, the result is

* - i fig (a:?/
2
)'
=

5
and *"i

= &V" - XV' + xy
2 -

G! =

is the new equation. The method may be tried again.

Qj
= /Vdj/' = xz

y', *i - i
= - 3 xy' + xy* - O

t
.

This is not an exact derivative and the equation ^ = is not exact. Moreover

the equation ^r
l
= contains both x and y and is not homogeneous of any type

except when C
t
= 0. It therefore appears as though the further integration of the

equation Sl> = were impossible.

The method is applied with especial ease to the case of

*(*)=o, (17)

where the coefficients are functions of x alone. This is known as the

linear equation, the integration of which has been treated only when
the order is 1 or when the coefficients are constants. The application

of successive integration by parts gives

and after n such integrations there is left merely

(Xn -X^ + - - - +(-l)-iJCi -t-(-l)X )2/
_

R,

which is a derivative only when it is a function of x. Hence

*- X^ + ... +(_l)-i*l
+ (_l)jco

s (18)

is the condition that the linear equation shall be exact, and

XfflO-v + tX^
- ^o)y

(n- 2) + (*,
- X( + XfiyO-o + =

fRdx (19)

is the first solution in case it is exact.

As an example take y'" + y" cosx 2 y'sinx y cosx = sin 2 x. The test

JT
8

X'z + JEj" XQ" = cosx + 2 cosx cosx =



is satisfied. The integral is therefore y" -f y'cosx ysinx = \ cos2z + C..

This equation still satisfies the test for exactness. Hence it may be integrated

again with the result y' + y cosz = |sin2z )- CjX + C2 . This belongs to the

linear type. The final result is therefore

y = e-^^C^z + C
2)dz + C

a
e- sina: + i (1

-
since),

EXERCISES

1. Integrate these equations or at least reduce them to quadratures :

(a) 2z?/"7/" = y"2 - a2
, (jS) (1 + i*) y" + 1 + y'

2 = 0,

(7) 2/
iv + V =0, (5) y

v - mV" = e"*, (e) zVv + oV' =
(f) ayy = x, (,) zy" + y^ 0, (0) y'"y'' = 4,

(
i

) (1
- z2

) y" - Z7/ = 2, ( /c) y* = -vV", (X) y" = f(y) ,

(l) 2 (2 a
-

y) y" = 1 + 7/2, () yy" - y'2
- y2?/ = 0,

() W" + 2/'
2 +1=0, (TT)

2 y" = &, (p) y*y" = a.

2. Carry the integration as far as possible in these cases :

(a) x2y" = (mzV2 + n?y
2
)i, (/3)

mx8
T/" = (y

-
x?/)

2
,

(y) ay =
(?y
-

z?/)
8

, (5) x4
?y"
- z5

?/
- z2?/'

2 + 4?y
2 = 0,

() x-Y' + x~ 4y = i^'
2

, (f) GW" + &?/'
2 =

2/l/'(c
2 + x2)~i

3. Carry the integration as far as possible in these cases :

(a) (y
2 + x) y'" + 6 yy'y" + y" + 2 ?/

2 =
0, (/3) y'y" - yx*y' = xy2

,

(Y) asW" + 3zV" + 9 x2
j/?y" + 9 z2?/2 + 18 zyy' + 3 y* = 0,

(5) y + 8x0" + Zyy'*- + (z
2 + 2 yV)v" = >

(
e
) (2 X

8
y" + x*y) y" + 4 z2?/2 + 2 zyy' = 0.

4. Treat these linear equations :

(a) xy" + 2y = 2x, (/3) (x
2 - l)y" + 4xy' + 2?y = 2x,

(7) 2/" y'cotx + y csc2 z = cos'z, (8) (z
2

x)y" + (3x 2)y' + y = 0,

(e) (x- z8
)y'" + (1

-
5x2)y" - 2x/ + 2y = 6z,

(f) (z
s + z2 -3x+ l)y'" + (9x

2 + 6z-9)y"+(18x + 6)y
/ + 6y = x8

,

(r)) (z + 2)
2
y'" + (x + 2) y" + y' = 1, (9) z2

jy" + 3 xy' + V = x,

(i) (z
8 -

z)y'" + (8x
2 - 3)y" + 14zy' + 4y = 0.

5. Note that Ex. 4 (0) comes under the third homogeneous type, and that Ex. 4

(if) may be brought under that type by multiplying by (z -f 2). Test sundry of Ess.

1, 2, 3 for exactness. Show that any linear equation in which the coefficients are

polynomials of degree less than the order of the derivatives of which they are the

coefficients, is surely exact.

6. Sometimes, when the condition that an equation be exact is not satisfied, it

is possible to find an integrating factor for the equation so that after multiplication

by the factor the equation becomes exact. For linear equations try zm . Integrate

(a) x*y" + (2z< - x)y'
- (2x

8 -
l)y = 0, (/?) (x

2 -
x*)y"

- z8?/ - 2y = 0.

7. Show that the equation y" + Py' + Q?/
2 = may be reduced to quadratures

1 when P and Q are both functions of y, or 2 when both are functions of x, or 3

when P is a function of x and Q is a function of y (integrating factor 1/y'). In

each case find the general expression for y in terms of quadratures. Integrate



measured from some point, the equation JK = E
(s) or s = s (R) is called the intrinsic

equation of the curve. To find the relation between x and y the second equation

may be differentiated as ds = s'(R) dB, and this equation of the third order may be

solved. Show that if the origin be taken on the curve at the point s = and if the

a>axis be tangent to the curve, the equations

express the curve parametrically. Find the curves whose intrinsic equations are

(a) E = a, (0) aZ? = s2 + a2
, (7) R* + s2 = 16 a.

10. Given F = y<> + X$<.*-*> + X#<>1- 2 ) + + X*-\tf + Xny = 0. S) ow
that if /x, a function of x alone, is an integrating factor of the equation, then

so ---- + - i-l xn -in + ~ i*xn = o

is the equation satisfied by /*. Collect the coefficient of /* to show that the condition

that the given equation be exact is the condition that this coefficient vanish. The

equation $ = is called the adjoint of the given equation F = 0. Any integral n
of the adjoint equation is an integrating factor of the original equation. Moreover

note that

C

Or <JF - - lny$ = Ct yfr -1) + - /) 2/(n- 2)

Hence if pF is an exact differential, so is y&. In other words, any solution y of the

original equation is an integrating factor for the adjoint equation.

104. Linear differential equations. The equations

X Dy + XJ3-*y + + X^Dy + Xny = R (x),

X
vD*y + Xl

D*-l

y + ... + Xn _1Dy + Xjf = ^ >

are linear differential equations of the nih order
;
the first is called the

complete equation and the second the reduced equation. If yx , yt) yt}

are any solutions of the reduced equation, and C
1}
C

2 ,
C

8 ,
are any

constants, then y = C$^ + C
2y2 + C^/s -\

---- is also a solution of the

reduced equation. This follows at once from the linearity of the reduced

equation and is proved by direct substitution. Furthermore if / is any
solution of the complete equation, then y + 1 is also a solution of the

complete equation (cf. 96).

As the equations (20) are of the nth order, they will determine y<
n)

and, by differentiation, all higher derivatives in terms of the values of

x, y,y',---, y
(-
n~1\ Hence if the values of the n quantities yQ , y'Q , , yb*

~ 1J

which correspond to the value x = x
g
be given, all the higher derivatives

are determined ( 87-88). Hence there are n and no more than n arbi-

trary conditions that may be imposed as initial conditions. A solution



SUJ.UU1UUS ox tne reaucea. equation, ana

then ?/ is a solution and y', , y'"-
1 ) are its first n 1 derivatives. If

x be substituted on the right and the assumed corresponding initial

values ?/, 7/0, > y$~l) be substituted on the left, the above equations
become linear equations in the n unknowns G

I}
C

2 , ,
Cn ;

and if they
are to be soluble for the C"s, the condition

(22)

must hold for every value of x = X
Q

. Conversely if the condition does

hold, .the equations will be soluble for the C"s.

The determinant W(yv y^ , yn) is called the Wronsldan of the n

functions yv y2 , >, yn . The result may be stated as : If n functions

2/i > yZ i '>yn which are solutions of the reduced equation, and of which
the Wronskian does not vanish, can be found, the general solution of the

reduced equation can be written down. In general no solution of the

equation can be found, whether by a definite process or by inspection ;

but in the rare instances in which the n solutions can be seen by inspec-
tion the problem of the solution of the reduced equation is completed.

Frequently one solution may be found by inspection, and it is therefore

important to see how much this contributes toward effecting the solution.

If yl
is a solution of the reduced equation, make the substitution

y = y^. The derivatives of y may be obtained by Leibniz's Theorem

( 8). As the formula is linear in the derivatives of 2, it follows that

the result of the substitution will leave the equation linear in the new
variable z. Moreover, to collect the coefficient of z itself, it is necessary
to take only the first term -fflz in the expansions for the derivative T/

W-

=
is the coefficient of and vanishes by the assumption that y^ is a solu-

tion of the reduced equation. Then the equation for z is

_^ = ; (23)



.Now if ?/2 , 7/8 , , yp were other solutions, the derived ratios

(23

would be solutions of the equation in #'
;
for by substitution,

y = yi*i
= ya > y = y^z

= y& , --, y = y^P -i = yf

are all solutions of the equation in y. Moreover, if there were a line?

relation C-^ -f- C2.% + + Cv -\z'p _i
= connecting the solutions z

an integration would give a linear relation

c$* + c&* + ' ' + cP -i!/n+ CpVi
=

connecting the p solutions y^ Hence if there is no linear relation (c

which the coefficients are not all zero) connecting the p solutions yf
c

the original equation, there can be none connecting the p 1 solution

z( of the transformed equation. Hence a knowledge of p solutions o
t

the original reduced equation gives a neio reduced equation of whic

p 1 solutions are known. And the process of substitution may t

continued to reduce the order further until the order n p is reachec

As an example consider the equation of the third order

(1
-

x) y"' + (z
2 -

1) y" - xy+ xy = 0.

Here a simple trial shows that x and ex are two solutions. Substitute

y = e% y
f= e?(z+ z'), y"- e*(z + 2z' + 2"), y"'= &:

(z + 3z' + 3z" + z"'

Then (1- x)z'" + {x
2 - 835 + 2)z" + (as

2 - 3x + l)z"
=

is of the second order in z
f

. A known solution is the derived ratio (x/e
1
)'.

z' = (xe-*Y = e-x (1 x). Let z' = e-^l x) w>.

From this, 0" and z"' may be found and the equation takes the form

(l-x)w" + (l + x)(x-~2)w)
/ = or ~ = xdx-- dx-

w' x 1

This is a linear equation of the first order and may be solved.

logio' = |x
2
-21og(x-l) + (7 or v/ =Cx -!-.

Hence
*

= C^ J*e4 ^{s 1)- dx + <73 ,



The value for y is thus obtained in terms of quadratures. It may be shown that in

case the equation is of the nth degree with p known solutions, the final result wili

call for p (n p) quadratures.

105. If the general solution y C
lyl
+ C

zy2 -\
-----h Cnyn of the reduced

equation has been found (called the complementary function for the

complete equation), the general solution of the complete equation may
always be obtained in terms of quadratures by the important and far-

reaching method of the variation of constants due to Lagrange. The

question is : Cannot functions of x be found so that the expression

y = 6\(x) /A + C',(*) % + + Cn(x) yn (24)

shall be the solution of the complete equation ? As there are n of these

functions to be determined, it should be possible to impose n 1 condi-

tions upon them and still find the functions.

Differentiate y on the supposition that the C's are variable.

y'
= C\y{ + C,y'2 + + Cny'n+y& + y2C'2 + + ynC'n.

As one of the conditions on the C's suppose that

Differentiate again and impose the new condition

so that y" Cji/"+ Csya H-----1- Cny'^ .

The differentiation may be continued to the (n l)st condition

yCn-2)^ + yjf-VC't _J_
. . . 4. y(-C; = 0,

and 2/<"-
1> = Cjyf-" + C^J-" -f- + Cny^\

Then y<> = C$?> + C2y + + Cny

Now if the expressions thus found for y, y\ y
1

', , y (

*~v, yw be

substituted in the complete equation, and it be remembered that yv

Vv > l/n are solutions of the reduced equation and hence give when

substituted in the left-hand side of the equation, the result is

yJ-Ci + yJ-^C", + -f- y^c; = R.

Hence, in all, there are n linear equations

+... + ync; =0,

(25)

|-r, -f 4- y^~^C'n = 0,



for those derivatives wnich -will then be expressed in terms ol x. l

C"s may then be found by quadrature.
As an example consider the equation with constant coefficients

(D
8 + D) y = sec x with y = C

t + C
2
cos a; + Cs

sin a;

as the solution of the reduced equation. Here the solutions y l , yz , j/8 may be tat

as 1, cos x, sin x respectively. The conditions on the derivatives of the C"s beco;

by direct substitution in (26)

GI + cos w(?2 + sin xCg = 0, sin xC'2 + cos zCg = 0, cosxC'z sinxCg = sec

Hence C[ sec x, C'
z
= 1, C'a = tan x

and Gt
= log tan (J x + TT) -f c

t ,
C2
= x + c

2 ,
C

5
= log cos x + c

s
.

Hence y = c
t + log tan (J x + TT) + (c2 x) cos x + (c8 + log cos x) sin x

is the general solution of the complete equation. This result could not be obtain

by any of the real short methods of 90-97. It could be obtained by the gene:

method of 95, but with little if any advantage over the method of variation

constants here given. The present method is equally available for equations w:

variable coefficients.

106. Linear equations of the second order are especially frequent

practical problems. In a number of cases the solution may be foun

Thus 1 when the coefficients are constant or may be made constant
'

a change of variable as in Ex. 7, p. 222, the general solution of t

reduced equation may be written down at once. The solution of t

complete equation may then be found by obtaining a particular integi

/ by the methods of 95-97 or by the application of the method

variation of constants. And 2 when the equation is exact, the solutii

may be had by integrating the linear equation (19) of 103 of the fii

order by the ordinary methods. And 3 when one solution of the :

duced equation is known ( 104), the reduced equation may be coi

pletely solved and the complete equation may then be solved by t'

method of variation of constants, or the complete equation may
solved directly by Ex. 6 below.

Otherwise, write the differential equation in the form

The substitution y = uz gives the new equation

If u be determined so that the coefficient of z' vanishes, then

and + Q - - f* z = *,* (2dxz
\ 2 dx 4 v



(27) may be integrated ;
and 5 it it is k/x ,

the equation may also be

integrated by the method of Ex. 7, p. 222. The integral of the com-

plete equation may then be found. (In other cases this method may
be useful in that the equation is reduced to a simpler form where solu-

tions of the reduced equation are more evident.)

Again, suppose that the independent variable is changed to . Then

ffy
z + Px'dy Q R

d^
+

*'* dz^~z J ~z* ( }

Now 6 if z'
2 = Q will make *" + P*' = k%*, so that the coefficient

of dy/dz becomes a constant k, the equation is integrable. (Trying if

z
n = QS? will make z" + Pz' = Jc.z/z is needless because nothing in

addition to 6 is thereby obtained. It may happen that if z be deter-

mined so as to make z" + Pz' = 0, the equation will be so far simpli-

fied that a solution of the reduced equation becomes evident.)

dpy 2 dy a2

Consider the example -
-|
---- + -r y = 0. Here no solution is apparent.

ax2 xdx x*

Hence compute Q \ P' J P2
. This is a2

/x
4 and is neither constant nor propor-

tional to I/a;
2

. Hence the methods 4 and 5 will not work. From z'z = Q = oP/x.*

or z' = a/x
2

,
it appears that z" + Pz' = 0, and 6 works ; the new equation is

f*+y=o with = -.
dz2 x

The solution is therefore seen immediately to be

y = C, cos 2 C2 sin z or y = C
l
cos (a/x) + C

z
sin (a/a;).

If there had been a right-hand member in the original equation, the solution could

have been found by the method of variation of constants, or by some of the short

methods for finding a particular solution if B had been of the proper form.

EXERCISES

1. If a relation C^yl + C2yz {
-----

1- Cnyn = 0, with constant coefficients not ail 0,

exists between n functions yl , y2 , , yn of x for all values of
,
the functions are

by definition said to be linearly dependent; if no such relation exists, they are said

to be linearly independent. Show that the nonvanishing of the Wronskian is a

criterion for linear independence.

2. If the general solution y O
lyl + Czyz + + Cnyn is the same for

X yW + Xtf*-1) + + Xny = and P y<"> -f P^fr -D + + Pny = 0,

two linear equations of the nth order, show that y satisfies the equation

/ = o

of the (n l)st order
;
and hence infer, from the fact that y contains 71 arbitrary

constants corresponding to n arbitrary initial conditions, the important theorem:

If two linear equations of the nth order have the same general solution, the corre-

sponding coefficients are proportional.



(a) (1 + x2
)y"

- 2 xy' + 2 y - 0, ((3) xy" + (I
-

x) y'
- y = 0,

(7) (ax &x2
)?/' ay' -\-2by = 0, (8) \y" + xy' (x + 2)y = 0,

x8 x2
/ \x

2 x

6. If
j/,

is a known solution of the equation y" + Py' + Qy = R of the seconi

order, show that the general solution may be written as

7. Integrate:

(a) xy"-(2x+l)y' + (x + l)y = x2 -a -1,

(/3) ?/'
- x2j/' + X?/ = x, (7) 3Z/" + (1

-
x) y'

- y = 6*,

(8) y" xy' H- (x V)y = E, (e) /'sin
2
x-l- y'sinxcosx ]/

= x sinx,

8. After writing down the integral of the reduced equation by inspection, appl

the method of the variation of constants to these equations :

(a) (D
z + l)y = tan x, (/3) (D

2 + 1) y = sec2 x, (7) (D -l)2
y = e(l - x)~

'

(5) (i-x)y" + Xy'-y = (l-x)*, () (1- 2x + x2
)(2/"'- 1)- xV'+2xj/'-y = ]

9. Integrate the following equations of the second order:

(a) 4zV + 4xy + (x
2 + l)

2
y = 0, (ft y" - 2 y' tan x - (a

2 + 1) y = 0,

(7) xy" + 2y' xy *=2ex
, (5) j/"sinx + 2y'cosx + Sysinx = ez ,

(e) y" + y' tan x + y cos2 x = 0, () (1 x2
) y" xy' + 4 y = 0,

(17) y" + (2 6* - 1) y' + e2 *2/ = e**, (0) x*y" + 3 xc
y' -f y = z- 2

.

10. Show that if -3T y" + X^' + JS"2j/
= R may be written in factors as

(JT D2 + Jr.D + JT
2) y = (PlD + ?1) (p2D + <jr,) y = E,

where the factors are not commutative inasmuch as the differentiation in on

factor is applied to the variable coefficients of the succeeding factor as well 8

to D, then the solution is obtainable in terms of quadratures. Show that

9iP2 -1- PiPz +PA = x
\

and ?i78 + Pi?s
= ^2

In this manner integrate the following equations, choosing pl
and p2 as factors (

JT and determining Q'j
and. g2 by inspection or by assuming them in some form an

applying the method of undetermined coefficients :

(a) xy" + (1
- x)/ - y = e*

((8)
3x2

?/' + (2
- Gx2)^ - 4 = 0,

(7) 3xV+(2 + 6x-6x2
)j/'-4y = 0, (5) (x

z ~l)y"- (3x + l)y'-x(x-l)y =<

(f) axy" + (8o + &x) y' + 3 by = 0, (f) xy"- 2x(l + x)j/' + 2(1 + x)y = x8
.

11. Integrate these equations in any manner :
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(?) V" + y'ianx + ycoe?x = 0, (8) y"-2(n--\yf+ /n2-2 W=e*

() (1- x*)y"
- xy

f - c2y = 0, (f) (a?
-

x*)y" -8xy'- I2y = 0,

() y" + 2x~V - n2
^ = 0, (K) y" - 4a^' + (4z

2 -
3)s/ = e*2

,

(\) y" + 2 ny
7
cot nz + (m

2 - n2
) y = 0, (0) y" + 2 (a;-

1 + Bx~*) y' + Ax~*y = 0.

12. If y-L
and y2

are solutions of y" + Py' + B = 0, show by eliminating Q and

integrating that
r

Vi/a
~

2/2/1
= Cfc-J^

What if (7 = 0? If 0^0, note that yl and
j/j

cannot vanish together ;
and if

y^a) = yv (b)
=

0, vise the relation (y2yi) tt
: (^1)5 = fc>0 to show that as y{a and

y'lb have opposite signs, y2a and |/2 6 have opposite signs and hence j/2() = where

a< < 6. Hence the theorem : Between any two roots of a solution of an equation

of the second order there is one root of every solution independent of the given
solution. "What conditions of continuity for y and y' are tacitly assumed here ?

107. The cylinder functions. Suppose that Cn(x) is a function of x

which is different for different values of n and which satisfies the two

equations

CU(*) - <?(*) = 2
j-x

Cn(x\ Cn_,(x} + C. +1 (x)
=^ ?(;). (29)

Such a function is called a cylinder function and the index n is called

the order of the function and may have any real value. The two equa-

tions are supposed to hold for all values of n and for all values of x.

They do not completely determine the functions but from them follow

the chief rules of operation with the functions. For instance, by addi-

tion and subtraction,

C'n(x)
= Cn_,(x)

-
I <?(*)

=
I
Cn(x)

- Cn+1(x). (30)
*L> *k

Other relations which are easily deduced are

DJ[arCn(ax)-] = a&C^ax), Dx\x-Cn(ax)-\
= - carCn (x), (31)

Dj^cJ^Kf\ = i V^x^Cn _,(VS), (32)

C"
(a?)
= -

C.Caj), C_ n(x)
= (- !)(?(;), n integral, (33)

Cm(x)lZ(x)
- C'n(x)Kn(x) = C. +1 (x) Z,(a!)

- Cn(x)Km+l (x')
= , (34)

(/

where C* and ^T denote any two cylinder functions.

The proof of these relations is simple, hut will be given to show the use of (29).

In the first case differentiate directly and substitute from (29}.
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The second of (81) is proved similarly. For (32), differentiate.

Next (33) is obtained 1 by substituting for n in both equations (29).

C_i(!c)-C1 () = 2C /

(x) 1 CU(x) + C,(x) = 0, hence C '(x) = - C,(x) ;

and 2 by substituting successive values for n in the second of (29) written in tl

form xCn _i 4- xCn -t-i
= 2 nCn . Then

xC_i + !cC
1
= 0, xC_ 3 + xC = 2C_i, xC + xC.2 = 2Cl ,

xC-s + xCU = -4C_2, xCj +xC8
= 4C

2 ,

xC_4 + xC_ 2 = ~6C8 ,
xC

2 +xC4
= 6C8 ,

and so on. The first gives C_i= Cr Subtract the next two and use C_i + C
t
=

Then G'_2 C
2
= or C_ 2 = ( 1)

2C2 . Add the next two and use the relatioi

already found. Then CY_ 8 4- C8
= or 0_ 8 = ( 1)

3C8 . Subtract the next frw

and so on. For the last of the relations, a very important one, note first that tl

two expressions become equivalent by virtue of (29) ;
for

QnK-n CnKn = - G,,JTn GnKn +1 -- CnKn + Cn +iKn
x x

NOW [X (On +l^n
~ CSKn +j)] = Cn +1Kn - CHKn+l + xKn Cn -

OX

n +i/- A'n jRTn +1 \ - XJEC +1
^-

Cn - Cn

Hence x((7re+iITn Cre
lTn+i)

= const. = A, and the relation is proved.

The cylinder functions of a given order n satisfy a linear different!

equation of the second order. This may be obtained by differentiatir

the first of (29) and combining with (30).

vr \n-l ^ ^ n >

-
(Cn _, + C.+0

- i
(Cn _,

- Cn+1) - 2 Cn .

>v iX/

This equation is known as BesseVs equation; the functions Cn(x), whi<
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By a change of the independent variable, the Bessel equation may
take on several other forms. The easiest way to find them is to operate

directly with the relations (31), (32). Thus

Dx [_x-Cn(x)-] = - x~Cn+1
= -x- x-"- 1

?^,

Hence g + - + y = 0, y-a-C.G*). (36)

Also y" + (H-n)y' + y = 0, y = x~*Cn 2). (38)

And xy
" + (1

-
n) y

' + y = 0, y = x* Cn(2 V^). (39)

In all these differential equations it is well to restrict x to positive values
n n

inasmuch as, if n is not specialized, the powers of x, as xn
,
x~ n

, x*, x
5
,
are

not always real.

108. The fact that n occurs only squared in (35) shows that both

Cn(x) and C_ n(x) are solutions, so that if these functions are inde-

pendent, the complete solution is y = aCn + bC_ n . In like manner the

equations (36), (37) form a pair which differ only in the sign of n.

Hence if Hn and H_ n denote particular integrals of the first and second

respectively, the complete integrals are respectively

y = aHn + lH_ nx~
Zn and y = cuH_ n -f- bHnx* n

;

and similarly the respective integrals of (38), (39) are

y = aln + bl_ nx~
n and y al_ n -f blnx

n
,

where In and !_ denote particular integrals of these two equations. It

should be noted that these forms are the complete solutions only when

the two integrals are independent. Note that

In(x) = x-**Cn(2 V^), (*)
= a^I.CJaf). (40)

As it has been seen that Cn
=

( l)
nC_ n when n is integral, it follows

that in this case the above forms do not give the complete solution.

A particular solution of (38) may readily be obtained in series by the

method of undetermined coefficients ( 88). It is



from a certain point on, the coefficients a{
have zeros in the denominator.

The determination of a series for the second independent solution when

n is integral will be omitted. The solutions of (35), (36) corresponding

to In(x) are, by (40) and (41),

(42')

where the factor n \ has been introduced in the denominator merely to

conform to usage.* The chief cylinder function Cn(x) is Jn(x) and it

always carries the name of Bessel.

To derive the series for In (x) write

2 a2x + 3 a
s
x2 + + (

h2 a,

= [a + o
t (n + 1)] + x [G! + a

2
2 (n + 2)] + x2 [a2 + a

s
3 (n + 3)]

+ + &-l
\ak-i + ajtfc (n + k)] + .

Hence a + 04(71 + 1)
= 0, 04 + a

2
2 (n + 2)

= 0, , a/t-i + a*fc (n + k) = 0,

an

a, = *-?, az
i

n+l -
2(n + 2)~2!(n + l)(n + 2)'

* 1 (n + 1) (n + ft)

If now the choice a = 1 is made, the series for In(x) is as given in (41).

The famous differential equation of the first order

xy' ay + by* = cx, (43)

known as EiccalVs equation, may be integrated in terms of cylinder functions.

Note that if n = or c = 0, the variables are separable ;
and if & = 0, the equation

is linear. As these cases are immediately integrable, assume ben ^0. By a suitable

change of variable, the equation takes the form

A comparison of this with (39) shows that the solution is

1}
= AI_ a (- 6C{) + BIa(- &*) (- &C) ,

* n

which in terms of Bessel functions J becomes, by (40),

* Tf io r.nf Jnt-Drrrol Vinfh > I ntirl C J. A I miiot V.o



* rt
__

, Ja
i
(2x

2 V-6c/n)-4 t7_ a(2x2V-6c/Ti)

71 - 1 * '

Ja(2x
f V &c/n) + -AJ_a(2aj

2V te/n)
n n

where A denotes the one arbitrary constant of integration.

It is noteworthy that the cylinder functions are sometimes expressible in terms

of trigonometric functions. For when n = \ the equation (35) has the integrals

y = Asinx + Bcosx and y = x2[ACi(x) + J3C7 i(x)].

Hence it is permissible to write the relations

x I Ci (x)
= sin x, x^^-\ (x)

= cos ^i (45)

where C is a suitably chosen cylinder function of order \. From these equations

by application of (29) the cylinder functions of order p + ,
where p is any integer,

may be found.

Now if Riccati's equation is such that 6 and c have opposite signs and a/n is

of the form p + ^, the integral (44) can be expressed in terms of trigonometric

functions by using the values of the functions C
p +

, just found in place of the /'s.

Moreover if b and c have the same sign, the trigonometric solution will still hold

formally and may be converted into exponential or hyperbolic form. Thus Riccati's

equation is integrable in terms of the elementary functions when a/n = p + no

matter what the sign of be is.

EXERCISES

1. Prove the following relations:

(ex) 4 C = Cn _ 2
- 2 Cn + C + 2, (/3)

xCn = 2(n + 1) <7n +i - xCn+ 2,

(y )
2sC" - Cn - 8

- 3 Cn -i + 3 Cn +1 - Cn + 8 , generalize,

(8) xCn = 2(n + 1) Cn +i 2(n + 3) Cn + s + 2(n + 5) (7n + 5 x(7n +6-

2. Study the functions defined by the pair of relations

d _ . 2 _, . .

dx"' n "
x

especially to find results analogous to (30)-(35).

3. Use Ex. 12, p. 247, to obtain (34) and the corresponding relation in Ex. 2.

4. Show that the solution of (38) is y = AIn C + BIn -

5. Write out five terms in the expansions of I
, Ij^, J_ i ,

T
, J^.

/2 1
6. Show from the expansion (42) that $ ! */ - <7i (x)

= - sin x.

7. From (45), (29) obtain the following :

sinx i _ . . /3 _\ . 3
= cos x, x2C 5 (x) = (

1 } smx cos x,
x

' T '

\x
2

/ x

cosx i 3 /3 \= sinx
, xzC R(X) = -sinz + ( 1) cossc.

x ~2 a; \z
2

/



8. Prove by integration by parts: f dx = + 6 + 6 8 f.J a? x8 x* J xs

9. Suppose CB(x) and -K"n (x) so chosen that A 1 in (84). Show that

y = ACn(x) + BKn(x) + L \Kn(x) f^^ dx - Cn(x) f ^& dx]
\_

J Xs / Xs J

is the integral of the differential equation x2y" + xy' + (a;
2 n2)y = ix- 3

.

10. Note that the solution of Riccati's equation has the form

' and show that ^ + P(x)y + Q(x)y
2
=B(x)

OX

will be the form of the equation which has such an expression for its integral.

11. Integrate these equations in terms of cylinder functions and reduce the

results whenever possible by means of Ex, 7 :

(a) xy'
- 5y + y

2 + x2 = 0, (0) xy' - 3 y + y
2 = x2

,

(7) y" + ye
z * = 0, (5) xV + nxj/' + (6 + ex") y = 0.

12. Identify the functions of Ex. 2 with the cylinder functions of ix.

13. Let (x
2 -

1) P; = (n + 1) (Pn +1 - fcPn), P; +1
= xP; + (n + 1) Pn (46)

be taken as defining the Legendre functions Pn(x) of order n. Prove

(a) (X*
-

1) P; = n (xP - Pn -a), 0) (2 n + 1) xPn = (n + 1) P, +1 + nP .1 ,

(7) (2n + l)P7l
= P/

n+l -P'B _1 , (8) (l-x2
)P;'

14. Show that Pn Q; - P;QU = --- and PQ+i -
2

.. _ /1^,,1,^-A /TA.-'C/l . -f
*

, 1 n-f 1

where P and Q are any two ^Legendre functions. Express the general solution of

the differential equation of Ex. 13 (5) analogously to Ex. 4.

15. Let u = x2 1 and let D denote differentiation by x. Show

j>+iun+i _ D+i(uW )
= !>+% + 2(n + IJxDnu" + n(n + 1) D-IU,

J) +iun +1 = X)J>ii'1 +1 = 2 (n + 1) J>(xu
n
)
= 2 (n + 1) X!>M + 2 n (n + 1) _Z> -IM.

Hence show that the derivative of the second equation and the eliminanfc of J>- IM

between the two equations give two equations which reduce to (46) if

p.._ 1 ^n /2_i\n CWhen n is integral these are

2n n ! da;"
'

16. Determine the solutions of Ex. 13 (8) in series for the initial conditions

(a) Pn(0) = 1, P;(0) = 0, (/3)
Pn (0)

= 0, P;(0) = 1.

17. Take P = 1 and P
l
= x. Show that these are solutions of (46) and compute

P2 ,
P8 ,

P
4 from Ex. 13

(/3).
If x = cos 0, show

P
4
=

18. Write Ex. 13 (8) as [(1
- x2

) Pi] + n(n + 1) Pn = and show
ax



f PBPmdx = 0, if njtm.
J _i

19. By successive integration by parts and by reduction formulas ahow

+!
and

/.

/ Pdx = ---
, n integral.

/_i 2n + 1

/> +1 /> +1 (Ma;2 ]>
20. Show / xmPnda;= I as"1 1

-;
-- = 0, if m<n.

J-i J-\ dxn

Determine the value of the integral when m = n. Cannot the results of Exs. 18, 19

for m and n integral be obtained simply from these results ?

21. Consider (38) and its solution I = l x +~-
-^-

+^ ... when

n = 0. Assume a solution of the form y I v + w so that

d*w dw
. .

_ <*!(* n ., d2
,

du A
x- r + + w) + 2x ^ = 0, if x - + = 0,
dz2 dx dx dx dx* dx

is the equation for w if v satisfies the equation xv" + v' 0. Show

A , T>1 '/ , ' , O
fl =4 + BlOX, XW" + W' + W = 2

By assuming to = a^x + a2x
a + ,

determine tlie a's and hence obtain

and (J. + Blog*)ro + to is then the complete solution containing two constants.

As AI is one solution, JBlog 7 + w is another. From this second solution for

n = 0, the second solution for any integral value of n may be obtained by differ-

entiation
;
the work, however, is long and the result is somewhat complicated.
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109. Total differential equations. An equation of the form

P(x, y, z)dx -f Q(x, y, z)dy + R (x, y, )d =
0, (1)

involving the differentials of three variables is called a total differen-

tial equation. A similar equation in any number of variables would

also be called total; but the discussion here will be restricted to the

case of three. If definite values be assigned to x, y, z, say a, b, c, the

equation becomes

Adx + Bdy + Cdz = A (x
~

a) -f B(y b) -f- C(z c)
= 0, (2)

where x
} y, z are supposed to be restricted to values near a, b, c, and

represents a small portion of a plane passing through (a, b, c).
From

the analogy to the lineal element ( 85), such a portion of a plane may
he called a planar elemerit. The differential equation therefore repre-

sents an infinite number of planar elements, one passing through each

point of space.

Now any family of surfaces F(x, y, z)
= C also represents an infinity

of planar elements, namely, the portions of the tangent planes at every

point of all the surfaces in the neighborhood of their respective points

of tangency. In fact

dF = F'xdx + F'
ydy + F'.dz = (3)

is an equation similar to
(1). If the planar elements represented by

(1) and (3) are to be the same, the equations cannot differ by more

than a factor fi(x, y, ). Hence

If a function F(x, y, z)
= C can be found which satisfies these condi-

tions, it is said to be the integral of (1), and the factor /w (x, y, ) by
which the equations (1) and (3) differ is called an integrating factor

of
(1). Compare 91.

It may happen that /*
= 1 and that (1) is thus an exact differential.

In this case the conditions

254



Moreover if these conditions are satisfied, the equation (1) will be

an exact equation and the integral is given by

= P(x,y,z)dx+ I Q(x ,y,*)dy+ (
JX Jy J

where cc
, y ,

# may be chosen so as to render the integration as simple
as possible. The proof of this is so similar to that given in the case of

two variables ( 92) as to be omitted. In many cases which arise in

practice the equation, though not exact, may be made so by an obvious

integrating factor.

As an example take zxdy yzdx + xzdz = 0. Here the conditions (4) are not

fulfilled but the integrating factor l/jc
2z is suggested. Then

xdy ydx dz

,

~cT~
== FO, = R o h (*>

dz ** v

is at once perceived to be an exact differential and the integral is y/x + log z = G.

It appears therefore that in this simple case neither the renewed application of the

conditions (4) nor the general formula for the integral was necessary. It often

happens that both the integrating factor and the integral can be recognized at once

as above.

If the equation does not suggest an integrating factor, the question

arises, Is there any integrating factor ? In the case of two variables

( 94) there always was an integrating factor. In the case of three

variables there may be none. For

Pi,, An
,

Q.

If these equations be multiplied by R, P, Q, and added and if the result

be simplified, the condition

dR\ /8R 8P\
O I T" Q I "o

~"
"a I T" **

I Q O

oy) \B / \fy ;

is found to be imposed on P, Q, R if there is to be an integrating fac-

tor. This is called the condition of integrability. For it may be shown

conversely that if the condition (5) is satisfied, the equation may be

integrated.

Suppose an attempt to integrate (1) be made as follows : First assume

that one of the variables is constant (naturally, that one which wilJ
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make the resulting equation simplest to integrate), say z. Then

Pdx + Q,dy = 0. Now integrate this simplified equation with an inte-

grating factor or otherwise, and let F(x, y, z)
= $(z) be the integral,

where the constant C is taken as a function < of z. Next try to deter-

mine
<J>

so that the integral F(x, y, *)
=

<j>(z)
will satisfy (1). To do

this, differentiate
;

F'xdx 4- F'ydy

Compare this equation with (1). Then the equations*

must hold. The third equation (F'z \R~) dz = d<f> may be integrated

provided the coefficient S = F'z \R of dz is a function of z and <,

that is, of z and F alone. This is so in case the condition (5) holds. It

therefore appears that the integration of the equation (1) for which (5)

holds reduces to the succession of two integrations of the type discussed

in Chap. VIII.

As an example take (2x
2 + 2xy -f 2 xz2 + l)dz + dy + 2zdz = 0. The condition

(2z
2 + 2xy + 2zz2 + 1)0 + 1(- 4zz) 4- 2z(2z) =

of integrability is satisfied. The greatest simplification will be had by making a

constant. Then dy + 2 zdz and y + z2 = <

(&). Compare

d0 and (2x
2 + 2xy + 2zz2 + l)dx + dy + 2z<fe = 0.

Then X = l,
- (2x

2 + 2xy + 2xz2 + l)dx = d<j> ;

or (2x
2 + l + 2x0)cfec= d</ or cty + 2 K0d!x = (2 x

2 + 1) dz.

This is the linear type with the integrating factor e*
2
. Then

e*\d$ + 2 x<f>dx,)
= - e^(2 x

z + 1) dx, or e^<f> = f ^(2 afl + 1) dx + C.

Hence y + z2 + e-^ fe
a?
(2

8 + l)dx= Cc-^ or e^(y + z2
) +JV(2a;

2 + l)dz = C

is the solution. It may be noted that e 312 is the integrating factor for the original

equation :

e*
2

[(2x
2 + 2xy + 2xz2 + l)dx + dy + 2 zdz] = dfe*

2

^ + z2
) + /V(2a;

2

To complete the proof that the equation (1) is integrable if (5) is satisfied, it is

necessary to show that when the condition is satisfied the coefficient 5 = F'
g

\E

is a function of z and F alone. Let it be regarded as a function of z, F, z instead

of z, y, z. It is necessary to prove that the derivative ot 8 by z when F and z are

constant is zero. By the formulas for change of variable

/3S\
__

/as\ /as\ SF /ss\ _ / es \ eF

W, ~
\aa;/R. Wv Sa;

'

W/*.~ W/*. Sy
'



Now (^ = 1 (2* _XB\ =*_!** = _!**
\dx/ y<e 8x\8z ) dzdx. dx dz dx

Hence
dz dx/ dz dx

and
dy

-23)1- [_*52 /J L to 5?y

(2*_^ +JB /2_2?i
\sy dz) \8x oy

dx

where a term has been added in the first bracket and subtracted in the second.

Now as X is an integrating factor for Pdx + Qdy, it follows that (XQ)^ = (\P)'V
and

only the first bracket remains. By the condition of integrability this, too, vanishes

and hence S as a function of x, F, z does not contain x but is a function of F and
z alone, as was to be proved.

110. It has been seen that if the equation. (1) is integrable, there is

an integrating factor and the condition (5) is satisfied
;
also that con-

versely if the condition is satisfied the equation may be integrated.

Geometrically this means that the infinity of planar elements defined

oy the equation can be grouped upon a family of surfaces F
(x, y, z)

= C
to which they are tangent. If the condition of integrability is not satis-

fied, the planar elements cannot be thus grouped into surfaces. Never-

theless if a surface G(x, y, z)
= be given, the planar element of (1)

which passes through any point (XQ , y^ ) of the surface will cut the

surface G = in a certain lineal element of the surface. Thus upon the

surface G (x, y, z) there will be an infinity of lineal elements, one

through each point, which satisfy the given equation (1). And these

elements may be grouped into curves lying upon the surface. If the

equation (1) is integrable, these curves will of course be the intersections

of the given surface G with the surfaces F = C defined by the

integral of (1).

The method of obtaining the curves upon G (x, yt z)
= which are

the integrals of
(1), in case (5) does not possess an integral of the form

F
(x) V) %) C, is as follows. Consider the two equations

Pdx + Qdy + Rda = 0, G'xdx + G'
ydy -f- Cf,d ~ 0,

of which the first is the given differential equation and the second is

the differential equation of the given surface. From these equations
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one of the differentials, say d%, may be eliminated, and the correspond-

ing variable z may also be eliminated by substituting its value obtained

by solving G (x, y, z) 0. Thus there is obtained a differential equa-

tion Mdx + Nd'ij
= connecting the other two variables x and y. The

integral of this, F(x, y] C, consists of a family of cylinders which cut

the given surface G in the curves which satisfy (1).

Consider the equation ydx + xdy (x + y + z) dz = 0. This does not satisfy the

condition (5) and hence is not completely integrable ;
but a set of integral curves

may be found on any assigned surface. If the surface be the plane z x + y, then

ydx + xdy (x + y + z) dz = and dz = dx + dy

give (x + z)dx + (y + z)dy = or (2x + y)dx + (2,y + x)dy =

by eliminating dz and z. The resulting equation is exact. Hence

oc
2 + xy + y

2 = and z = x + y

give the curves which satisfy the equation and lie in the plane.

If the equation (1) were integrable, the integral curves may be used to obtain

the integral surfaces and thus to accomplish the complete integration of the equa-

tion by Mayer's method. For suppose that F(x, y,z) = C were the integral surfaces

and that
JF'(a;, y, z)

= F(Q, 0, z )
were that particular surface cutting the z-axis at z .

The family of planes y = Xa; through the z-axis would cut the surface in a series

of curves which would be integral curves, and the surface could be regarded as

generated by these curves as the plane turned about the axis. To reverse these

considerations let y = Xa; and dy = \dx by these relations eliminate dy and y from

(1) and thus obtain the differential equation Mdx + Ndz = of the intersections

of the planes with the solutions of (1). Integrate the equation as/(cc, z, X)
= G and

determine the constant so that /(a, z, X) =/(0, z
, X). Tor any value of X this gives

the intersection of F(x, y, z) = F(Q, 0, 2 ) with y = X. Now if X be eliminated by
the relation X = y/x, the result will be the surface

/(*,* |) =/(o,o, |),
equivalent to F(x, y, z) = JP-(0, 0, z

),

which is the integral of (1) and passes through (0, 0, z ). As ZQ is arbitrary, the

solution contains an arbitrary constant and is the general solution.

It is clear that instead of using planes through the z-axis, planes through either

of the other axes might have been used, or indeed planes or cylinders through any
line parallel to any of the axes. Such modifications are frequently necessary owing
to the fact that the substitution /(O, 2

, X) introduces a division by or a log or

some other impossibility. For instance consider

y*dx + zdy ydz = 0, y Xa, dy = X&e, \2x2dx + \zdx \xdz = 0.

Then Xdz +
zda? ~ xdz = o, and Xx - - =/(x, z, X) .

xz x



(1 + Xx)
2 '

1 + Xx
" x ' ' '

Hence x = z or x = z = 0,

is the solution. The same result could have been obtained with x= Xz or y = X (x a)

In the latter case, however, care should be taken to use/(x, z, X) =/(a, z
, X).

EXERCISES

1. Test these equations for exactness
;

if exact, integrate ;
if not exact, find an

integrating factor by inspection and integrate :

(a) (y + z)dx + (z + x)dy + (x + y) dz = 0, (/3) y*dx + zdy ydz - 0,

(y) xdx -f ydy - Va2 x2 y2dz = 0, (5) 2 z (dx dy) + (x
~

y) dz = 0,

(e ) (2 x + y* + 2 xz) dx + 2 xydy + x'*dz = 0, (f) zydx = zxdy + y
2d,

(7,) x(y - 1) (z
- l)dx + y (z

-
1) (x- l)dy + z(x- 1) (y

-
l)dz = 0.

2. Apply the test of integrability and integrate these:

(a) (x
2

y
2 z2

)
dx + 2 xj/dj/ + 2 xzcfe = 0,

() (x + j/
2 + z2 + 1) dx + 2ydy + 2zdz = 0,

(7) (y + )
2dx + zdy = (y + a) dz,

( S\ ^1 --' 3$ - 2 ?y^2\ c&z 2 X2(x -4- 2 wzficLi/

(f )
z (xdx + ydy + zdz)

2 =
(z

2 x2 y2
) (xdx + ydy + zdz)dz.

3. If the equation is homogeneous, the substitution x = z, y = z, frequently

shortens the work. Show that if the given equation satisfies the condition of inte-

grability, the new equation will satisfy the corresponding condition in the new
variables and may be rendered exact by an obvious integrating factor. Integrate :

(a) (y
2 + yz) dx + (xz + z2) dy + (y

2 -
xy) dz = 0,

(/3) (x
2y - y* - y*z) dx + (xy*

- x2z - x8
) dy + (xy* + x*y) dz - 0,

(7) (y
2 + yz + z2)dx + (x

2 + xz + z*)dy + (x
2 + xy + y2

)dz = 0.

4. Show that (5) does not hold
; integrate subject to the relation imposed :

(a) ydx -f xdy (x + y + z) dz = Q, x + y + z = k or y = kx,

(/3) c (xdy + ydy) + Vl - a2x2 &2y
2dz = 0, a2x2 + &V + c2z2 = 1,

(7) dz = aydx + My, y = kx or x2 + y
2 + z2 = 1 or y=f(x).

5. Show that if an equation is integrable, it remains integrable after any change
of variables from x, j/, z to u, v, w.

6. Apply Mayer's method to sundry of Exs. 2 and 3.

7. Find the conditions of exactness for an equation in four variables and write

the formula for the integration. Integrate with or without a factor :

(a) (2x + y2 + 2xz)dx + 2xydy + x2dz + du = 0,

(j3) yzudx + xzudy + xyudz + xyzdu =0,

(7) (y + z + u) dx + (x + z + u) dy + (x + y + u) dz + (* + V + z) du = 0,

(8) u(y + z)dx + u(y + z + l)dy + udz (y + z)dw = 0.

8. If an equation in four variables is integrable, it must be so when any one of

the variables is held constant. Hence the four conditions of integrability obtained

by writing (5) for each set of three coefficients must hold. Show that the conditions



remaining terms and determining the constant of integration as a function of th(

fourth in such a way as to satisfy the equations.

(a) z (y -f z) dx + z (M z) dy + y (x u) dz + V (y + z) du = 0,

(|3) uyzdx + uzx log xdy + uxy log xdz xdu = 0.

9. Try to extend the method of Mayer to such as the above in Ex. 8.

10. If G(x, y, z)
= a and H"(x, y, z)

= b are two families of surfaces defining i

family of curves as their intersections, show that the equation

G'H dz = o

is the equation of the planar elements perpendicular to the curves at every poin

of the curves. Find the conditions on G and If that there shall be a family of sur

faces which cut all these curves orthogonally. Determine whether the curves belov

have orthogonal trajectories (surfaces) ;
and if they have, find the surfaces :

(a) y = x + a, z x + &, (/3) y = ax + 1, z = 6z,

(7) x2 + 2/

2 = a2
,
z = b, (S) xy = a, xz = 6,

(e) x2 + y
2 + z2 = a2

, xy = &, (f) cc
2 + 2y2 + 3z2 = a, zy + z = &,

(r?) log a;?/ = az, x + y 4- 2 = &, (0) 2/ = 2 ax + a2
,
z = 2 to + &2 .

11. Extend the work of proposition 3, 94, and Ex. 11, p. 234, to find the norma

derivative of the solution of equation (1) and to show that the singular solution maj
be looked for among the factors of /x,-

1 = 0.

12. If F = Pi 4- Qj H- Ek be formed, show that (1) becomes F.dr = 0. Shov

that the condition of exactness is VxF = by expanding VxF as the formal vecto:

product of the operator V and the vector F (see 78). Show further that the condi

tion of integrability is F(VxF) = by similar formal expansion.

13. In Ex. 10 consider V6? and VH. Show these vectors are normal to the sur

faces G = a, H = b, and hence infer that (V(?)x(Vfl") is the direction of the inter

section. Finally explain why dr(VGxV.H" )
= is the differential equation of th<

orthogonal family if there be such a family. Show that this vector form of the familj

reduces to the form above given.

111. Systems of simultaneous equations. The two equations

in the two dependent variables y and z and the independent variable a

constitute a set of simultaneous equations of the first order. It is mow

customary to write these equations in the form

d& __ dy __ dz ,

*(*. y, *)

~~

Y(x, y, z}

~
Z(x, y,x)'

which is symmetric in the differentials and where X : Y-. Z = 1 :/: ff

At any assigned point x
, y ,

of space the ratios dx:dy:d of the

differentials are determined by substitution in (7). Hence the equations
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fix a definite direction at each point of space, that is, they determine a

lineal element through each point. The problem of integration is to

combine these lineal elements into a family of curves F(x, y, K)
= C

l}

G (x> ?/i -)
= C

2 > depending on two parameters C
l
and C

2 ,
one curve pass-

ing through each point of space and having at that point the direction

determined by the equations.

For the formal integration there are several allied methods of pro<

cedure. In the first place it may happen that two of

dx _ dy dy _&z dx _ dz

T~T' ~Y~~Z' ~X
=

~Z

are of such a form as to contain only the variables whose differentials

enter. In this case these two may be integrated and the two solutions

taken together give the family of carves. Or it may happen that one

and only one of these equations can be integrated. Let it be the first

and suppose that F(x, y)
=

C^ is the integral. By means of this inte-

gral the variable x may be eliminated from the second of the equations

or the variable y from the third. In the respective cases there arises

an equation which may be integrated in the form G (y, , C,)
= C.2 or

G(x, is, F) = C
Z ,
and this result taken with F(x, y)

= C
l
will determine

the family of curves.

Consider the example = ^-^ Here the two equations
yz xz y

xdx ydy , xdx ,= S-2- and = dz
y x z

are integrable with the results x8 ya = C
t ,

x2 z2 =
2 ,
and these two integrals

constitute the solution. The solution might, of course, appear in veiy different

form
;
for there are an indefinite number of pairs of equations F(x, y, z, C

1)
=

0,

G (x, #, 2, C2)
= which will intersect in the curves of intersection of 8

y* = Ct ,

and a2 - z2 = C
z . In fact (y

s + C,)
2 =

(z
2 + C2)

8
is clearly a solution and could

replace either of those found above.

_ . , . .
,

dx dy dz TT
Consider the example = ^- = Here

a;2_ &,2_ 2;2 2xy 2xz

= , with the integral y = C,z,
y z

is the only equation the integral of which can be obtained directly. If y be elimi-

nated by means of this first integral, there results tire equation

Z2_ (02+1)22 2X2

This is homogeneous and may be integrated with a factor to give

rr.2 4- fa? 4- ^ *2 a.x nr r.2 4- ?/2 4- z2 = C,Z.



possible so to choose them that the last expression, taken -with one c

the first three, gives an equation which may be integrated. With th:

first integral a second may be obtained as before. Or it may be tht

two different choices of X, /A, v can be made so as to give the two desire

integrals. Or it may be possible so to select two sets of multipliers ths

the equation obtained by setting the two expressions equal may I

solved for a first integral. Or it may be possible to choose X, p.,
v f.

that the denominator \X + /*F+ vZ 0, and so that the numerate

(which must vanish if the denominator does) shall give an equation

\dx + p>dy + vdz = ((

which satisfies the condition (5) of integrability and may be integrate

by the methods of 109.

Consider the equations --- =--- =-- Here take X, p.
x* + y*xz (x + y)z

as 1, 1, 1
; then X-3T 4- /xF + vZ and dx dy dz = is integrable i

x y z = C| . This may be used to obtain another integral. But another choii

of X, /, v as x, y, 0, combined with the last expression, gives

xdx + ydx dz

Hence x y z = C
l

and a;
2 + y

2 = C2z
2

will serve as solutions. This is shorter than the method of elimination.

It will be noted that these equations just solved are homogeneous. The subsl

tution x = wz, y = vz might be tried. Then

udz + zdu vdz + zdv dz zdu zdv

or

Ua + P2 + V tt
2 + V2 U U + V V2 UV + V U2 Ml) U

du _ dv _ dz

Vs UV + 13 M2 UV U Z

Now the first equations do not contain z and may be solved. This always happe:
in the homogeneous case and may be employed if no shorter method suggests itsel

It need hardly be mentioned that all these methods apply equally 1

the case where there are more than three equations. The geometr

picture, however, fails, although the geometric language may be eonti:

ued if one wishes to deal with higher dimensions than three. In son

cases the introduction of a fourth variable, as

dx dy dz dt dt >

== = == or = ' 1<



three variables. This is particularly true when X, Y, Z are linear with

constant coefficients, in which case the methods of 98 may be applied
with t as independent variable.

112. Simultaneous differential equations of higher order, as

cPx _, / dx di/\ d?y __ / dx dy= X
(
x. y. , -f- }

>
-~ = Y (x, y. , -^

at \ dt dt/ air \ dt dt

cZV_
d?

especially those of the second order like these, are of constant occur-

rence in mechanics
;

for the acceleration requires second derivatives

with respect to the time for its expression, and the forces are expressed
in terms of the coordinates and velocities. The complete integration of

such equations requires the expression of the dependent variables as

functions of the independent variable, generally the time, with a num-

ber of constants of integration equal to the sum of the orders of the

equations. Frequently even when the complete integrals cannot be

found, it is possible to carry out some integrations and replace the

given system of equations by fewer equations or equations of lower

order containing some constants of integration.

No special or general rules will be laid down for the integration of

systems of higher order. In each case some particular combinations of

the equations may suggest themselves which will enable an integration

to be performed.* In problems in mechanics the principles of energy,

momentum, and moment of momentum frequently suggest combinations

leading to integrations. Thus if

where accents denote differentiation with respect to the time, be multi-

plied by dx, dy, dz and added, the result

x"dx + y"dy + "d* = Xdx + Ydy + Zdz (11)

contains an exact differential on the left
;
then if the expression, on the

right is an exact differential, the integration

j (a* + y
* + s'2)

= Cxdx + Ydy +Zdz + C (11')

* It is possible to differentiate the given equations repeatedly and eliminate all the

dependent variables except one. The resulting differential equation, say in * and t, may
then be treated by the methods of previous chapters ;

but this is rarely successful except
when the equation is linear.



If two of the equations are multiplied by the chief variable of the other

and subtracted, the result is

yx" ~ xy" = yX - xY (12)

and the expression on the left is again an exact differential; if the

right-hand side reduces to a constant or a function of t, then

y*b
~~"~"

^2/
*""""

is an integral of the equations. This is the principle of moment of
momentum. If the equations can be multiplied by constants as

to" + my" -f n" = IX + m Y + nZ, (13)

so that the expression on the right reduces to a function of
t, an inte-

gration may be performed. This is the principle of momentum. These
three are the most commonly usable devices.

As an example : Let a particle move in a plane subject to forces attracting it

toward the axes by an amount proportional to the mass and to the distance from
the axes

; discuss the motion. Here the equations of motion are merely

d?x d2y d2x d?y

dt dt dt d^2

Then <&-T| + <fy -Jf
= - & (

x<& + V^V) and
\-r. )

+ (- )
= -* (z

2 + y
2
) + C.

at2 a*-* \dt/ \dt/

In this case the two principles of energy and moment of momentum give two

integrals and the equations are reduced to two of the first order. But as it happens,
the original equations could be integrated directly as

d2^ , ^
dx=-kxdx,

The constants C2 and JT2 of integration have been written as squares because they
are necessarily positive. The complete integration gives

Vte = C sin (Vkt + C\), Vky = Ksin(Vkt+ 1T
Z).

As another example : A particle, attracted toward a point by a force equal to

r/ma + W/t* per unit mass, where m is the mass and A is the double areal velocity
and r is the distance from the point, is projected perpendicularly to the radius vec-

tor at the distance VmA
; discuss the motion. In polar coSrdinates the equations

of motion are

r dt



1~J-VJL.C1._L->JLJJ

The second integrates directly as r*d<f>/dt = h where the constant of integration ft

is twice the areal velocity. Now substitute in the first to eliminate
<f>.

dPr /t
2 r 7t

2 d2
** } /d?*\ 2 r2

di?~?*~~~rn?~r*
^

di? in2
r

\d7/ "m2
'

Now as the particle is projected perpendicularly to the radius, dr/dt at the

start when r = Vmfi. Hence the constant C is h/m. Then

dr

- =
4, + C or - -- =Hence

\r2
/i r2 km mh

Now if it be assumed that
<f>
= at the start when r = Vmft, we find (7 = ft

Hence r2 =- is the orbit

To find the relation between
<f>
and the time,

rzd<t> = hdt or - = dt or i =
1+0

if the time be taken as t = when <t>
= 0. Thus the orbit is found, the expression

of ^ ag a function of the time is found, and the expression of r as a function of the

time is obtainable. The problem is completely solved. It will be noted that the

constants of integration have been determined after each integration by the initial

conditions. This simplifies the subsequent integrations which might in fact be

impossible in terms of elementary functions without this simplification.

EXERCISES

1. Integrate these equations :

dx _ dy _ dz . dx _ dy _ dz
(a ~~' ~~'
, , da; dy dz ... dx dy dz
(7) = -^ = , (s)- = =-,

xz yz xy yz xz x + y

dx _ dy _ dz . . dx _ dy __ dz

2. Integrate the equations :

dx = dy = dz

z2 + y2 2xy xz + yz y + z x + z x + y

. . dx _ dy _ dz dx _ dy

y
sx 2 x* 2 y* xsy

~
z (x

a y9
) x(y z) y(z x) z(x y)

. . dx _ dy __
dz

(^ dx __ dy __ jg^



of the family of surfaces *T

(x, j/, z) (J are ox : ay : cte = J>'x : F
y

: v\ . Jbind the curv

which cut the following families of surfaces orthogonally :

(a) aV + by + c^8 = 0, (/3) xyz = C, (7) y* = Cxz,

(a) y = x tan (z + C), (e) y = tan Cz, (f) z = Cxy.

4. Show that the solution of dx : dy : dz X : Y : Z, where X, F, Z are line;

expressions in sc, y, z, can always "be found provided a certain cubic equation c

be solved.

5. Show that the solutions of the two equations

where T, r
i?
T2 are functions of i, may be obtained by adding the equation as

~
(x + ly) + \r(a; + ty)

= r
a + ZT

2
u

after multiplying one by Z,
and by determining X as a root of

X2 _ (a + &') \ + aV - a'b - 0.

6. Solve: (a) t~ + 2(x- y) = ,
f + a; + 5y = 2

,

at ai

(/3) Wic = (
-

2x) d, tdy = (tx + ty + 2x- t)dt,

. . Ma/ mdy ndz dt
/ *y I ^_ - _ - - ~.-.._ ___ _^_ ____ ,

mn(y 2) ni (2 x) Im (x y) t

7. A particle moves in vacuo in a vertical plane under the force of gravity alon

Integrate. Determine the constants if the particle starts from the origin with

velocity V and at an angle of or degrees with the horizontal and at the time t =

8. Same problem as in Ex. 7 except that the particle moves in a medium whi<

resists proportionately to the velocity of the particle.

9. A particle moves in a plane about a center of force which attracts proportio:

ally to the distance from the center and to the mass of the particle.

10. Same as Ex. 9 but with a repulsive force instead of an attracting force.

11. A particle is projected parallel to a line toward which it is attracted wil

a force proportional to the distance from the line.

12. Same as Ex. 11 except that the force is inversely proportional to the squai

of the distance and only the path of the particle is wanted.

13. A particle is attracted toward a center by a force proportional to the squa:

of the distance. Tind the orbit.

14. A particle is placed at a point which repels with a constant force und<

which the particle moves away to a distance a where it strikes a peg and

deflected off at a right angle with undiminished velocity. Find the orbit of tl

subsequent motion.

15. Show that equations (7) may be written in the form drxP = 0. Find tl

condition on F or on X, F, Z that the integral curves have orthogonal surfaces.
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113. Introduction to partial differential equations. An equation
which contains a dependent variable, two or more independent varia-

bles, and one or more partial derivatives of the dependent variable

with respect to the independent variables is called a partial differential

equation. The equation

is clearly a linear partial differential equation of the first order in one

dependent and two independent variables. The discussion of this equa-
tion preliminary to its integration may be carried on by means of the

concept of planar elements, and the discussion will immediately suggest
the method of integration.

When any point (x , y ,
z

)
of space is given, the coefficients P, Q, E

in the equation take on definite values and the derivatives p and q
are connected by a linear relation. Now any planar element through

(x , T/
O , ) may be considered as specified by the two slopes p and q ;

for

it is an infinitesimal portion of the plane & % =p (x x
) + y (y yQ)

in the neighborhood of the point. This plane contains the line or lineal

element whose direction is

dx:dy:dz = P:Q,:R, (15)

because the substitution of P, Q, R for dx = x X
Q , dy = y y^,

dz-= # in the plane gives the original equation Pp + Q,q
= R.

Hence it appears that the planar elements defined by (14), of which

there are an infinity through each point of space, are so related that all

which pass through a given point of space pass through a certain line

through that point, namely the line (15).

Now the problem of integrating the equation (14) is that of grouping
the planar elements which satisfy it into surfaces. As at each point

they are already grouped in a certain way by the lineal elements through
which they pass, it is first advisable to group these lineal elements into

curves by integrating the simultaneous equations (15). The integrals

of these equations are the curves defined by two families of surfaces

F(x, y, K)
=

Cj_
and G (x, y, z)

= C
2

. These curves are called the charac-

teristic curves or merely the characteristics of the equation (14). Through
each lineal element of these curves there pass an infinity of the planar ele-

ments which satisfy (14). It is therefore clear that if these curves be in



on two parameters C
lf
C

2
into a surface, it is merely necessary to inti

duce some functional relation C'
2 =/(C1)

between the parameters

that when one of them, as C
1?

is given, the other is determined, ai

thus a particular curve of the family is fixed by one parameter alo:

and will sweep out a surface as the parameter varies. Hence to Integra

(14), first integrate (15) and then write

G
(x, y, )

=
[JP(x, y, )] or *(F, Cf)

=
0, (1

where <J> denotes any arbitrary function. This will be the integral

(14) and will contain an arbitrary function $.

As an example, integrate (y z)p + (x x) q = x y. Here the equations

give a? + y + z ==C
lll

y z z x x y

as the two integrals. Hence the solution of the given equation is

S + 2/ + x = $(x
2 + y2 + z2) or *(x

2 + y2 + z2
,
* + y + 2) = 0,

where * denotes an arbitrary function. The arbitrary function allows a soluti

to be determined which shall pass through any desired curve
;
for if the curve

/(x, y, z) = 0, gr(x, y, z) = 0, the elimination of x, y, z from the four simultanec

equations

F(x,y,z)=Cl , G(x, y, z)
= C

a , /(x, y, 2) = 0, g(x,y,2) =

will express the condition that the four surfaces meet in a point, that is, that 1

curve given by the first two will cut that given by the second two
;
and this elii

nation will determine a relation between the two parameters Cj and C2
-which v

be precisely the relation to express the fact that the integral curves cut the gh
curve and that consequently the surface of integral curves passes through the gh
curve. Thus in the particular case here considered, suppose the solution were

pass through the curve y = cc
2

,
z = x ;

then

x2 + y2 + z2 = Ov x + y + z = C,, y = xa
,

z = z

give 2za + x* = C
1 ,

xa + 2x = C2 ,

whence (C| + 2 C
2
- CJ* + 8 C

2
2 - 24 C\

- 16 C^, = 0.

The substitution of C1 x? -f y2
-f z2 and <7

2
= x + y -f 2 in this equation v

give the solution of (y z)p + (z x) q x y which passes through the parab

y = a;
2 z = x.

114. It will be recalled that the integral of an ordinary diff

ential equation f(x, y, y', , t/
00

)
= of the nth order contains n c<

stants, and that conversely if a system of curves in the plane, s

F(x, y, Cj, ,
CB)

= 0, contains n constants, the constants may
eliminated from the equation and its first n derivatives with resp<

to x. It has now been seen that the integral of a certain part

differential equation contains an arbitrary function, and it might



se to a partial differential equation of the first order. To show

lis, suppose F(x, y, )
= *[(? (x, y, )]. Then

K + F',P = *' ' (G + G*P), F'
y + F(l = *' '

(G'v + G'.q)

)llow from partial differentiation with respect to x and y ;
and

(F'Z G'V
- Ffflp + (F'XG'Z

- F&)q =F& - F'XG'V

a partial differential equation arising from the elimination of $'.

[ore generally, the elimination of n arbitrary functions will give rise

> an equation of the rath order
; conversely it may be believed that

le integration of such an equation would introduce n arbitrary func-

ons in the general solution.

As an example, eliminate from z = * (xy) + * (x + y) the two arbitrary func-

ons * and &. The first differentiation gives

# = *'# + *', q = *' x + SK, p - q = (y x) *'.

22z 82z 52zow differentiate again and let r = , s =- / = . Then6
dy*

r s = <t>' + (y x) *" y, s i = $' + (y )*" x.

hese two equations with p q (y x) $' make three from which

,
,

.

, , x + y. . d*z
,

. 82z a22 x + yfdz 8z\"
(x + y) s + yt =: ^-^- (p q) or x -

(x -\-y)
---

l-y
- = -!-^(

--- 1v '

x-2/ 8x2 dxdy
y
8y* x-y\Sx dy/

lay be obtained as a partial differential equation of the second order free from

and *. The general integral of this equation would be z = $ (xy) -f * (x + y).

A partial differential equation may represent a certain definite type
f surface. For instance by definition a conoidal surface is a surface

enerated by a line which moves parallel to a given plane, the director

lane, and cuts a given line, the directrix. If the director plane be taken

s 3 = and the directrix be the 2-axis, the equations of any line of

tie surface are

* = C'
1, y = C& with C

1
= *(C2)

s the relation which picks out a definite family of the lines to form a

articular conoidal surface. Hence z = $(y/%) may be regarded as the

eneral equation of a conoidal surface of which = is the director

lane and the -axis the directrix. The elimination of 4> givespx+ qy=
s the differential equation of any such conoidal surface.

Partial differentiation may be used not only to eliminate arbitrary func-

Lons, but to eliminate constants. Tor if an equation /(cc, y, z, Cv C
2)
=

ontained two constants, the equation and its first derivatives with respect

o x and y would yield three equations from which the constants could
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be eliminated, leaving a partial differential equation F(x, y, z, p, q)

of the first order. If there had been five constants, the equation v

its two first derivatives and its three second derivatives with res]

to x and y would give a set of six equations from which the constE

could be eliminated, leaving a differential equation of the second or

And so on. As the differential equation is obtained by eliminating

constants, the original equation will be a solution of the resulting

ferential equation.

For example, eliminate from z = Ay? + 2 Bxy + Cyz + Dx + Ey the five

stants. The two first and three second derivatives are

p = 2Ax + 2By + D, q = 2Bx -f 2 Cy + E, r = 2A, s = 2B, t = 2

Hence z = \ rx2 \ ty
2

sxy + px + 9V

is the differential equation of the family of surfaces. The family of surface

not constitute the general solution of the equation, for that would contain

arbitrary functions, but they give what is called a complete solution. If there

been only three or four constants, the elimination would have led to a differei

equation of the second order which need have contained only one or two oi

second derivatives instead of all three
;
it would also have been possible to find t

or two sinmltaneouspartial differential equations by differentiating in different vi

115. If f(x, y, z, Cv eg = and F(x, y, *,p,q) = Q I

are two equations of which the second is obtained by the eliminatio

the two constants from the first, the first is said to be the complete &

tion of the second. That is, any equation which contains two dist

arbitrary constants and which satisfies a partial differential equatio:

the first order is said to be a complete solution of the differential ei

tion. A complete solution has an interesting geometric interpretat

The differential equation F = defines a series of planar elemi

through each point of space. So does f(x, y, z, Cv C
2)
= 0. For

tangent plane is given by

dx

f(x , T/O , ol
Cv C

2)
=

as the condition that C
l
and C

z
shall be so related that the sur

passes through (x , yQ ,
2

fl).
As there is only this one relation beta

the two arbitrary constants, there is a whole series of planar elemi

through the point. As f(x, y, 2, Cv C2)
= satisfies the differential e<

J-.J2___3 1___ -i. ___ J.T____ J...C
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Prom the idea of a solution of a partial differential equation of the
rst order as a surface pieced together from planar elements which

itisfy the equation, it appears that the envelope (p. 140) of any family
f solutions will itself be a solution

;
for each point of the envelope is

point of tangency with some one of the solutions of the family, and
le planar element of the envelope at that point is identical with the
lanar element of the solution and hence satisfies the differential equa-
.on. This observation allows the general solution to be determined from
ny complete solution. For if in f(x, y, z, Cv C

2)
= any relation

^
= ^(C\) is introduced between the two arbitrary constants, there

rises a family depending on one parameter, and the envelope of the

imily is found by eliminating C^ from the three equations

', = (<?,>, IJ
+l^-o. /-a (is)

.s the relation C
2
=

$(C.j) contains an arbitrary function
<E>, the result

E the elimination may be considered as containing an arbitrary func-

on even though it is generally impossible to carry out the elimination

scept in the case where <& has been assigned and is therefore no longer

rbitrary.

A family of surfaces f(x, y, z, Cv C^)
= depending on two param-

cers may also have an envelope (p. 139). This is found by eliminat-

ig Cj and C
z
from the three equations

/(*, y, z, C,, C
2)
=

0,
=

0,
= 0.

'1

his surface is tangent to all the surfaces in the complete solution,

his envelope is called the singular solution of the partial differential

juation. As in the case of ordinary differential equations ( 101), the

.ngular solution may be obtained directly from the equation ;

* it is

lerely necessary to eliminate p and q from the three equations

dp
'

dq

he last two equations express the fact that F(p, g)
= regarded as

function of p and q should have a double point ( 57). A reference

) 67 will bring out another point, namely, that not only are all the

irfaces represented by the complete solution tangent to the singular

)lution, but so is any surface which is represented by the general



1. Integrate these linear equations:

(a) xzp + yzq = xy, (0) a (p + q) = z, (7) x2p + y*q =

(8) yp + xq + 1 + z2 = 0, (e) j/p
- xq = x2 - y\ (li)(x + z)p = y

(ij) x2p - xyq + j/
2 = 0, (0) (a,-:e)p + (o-3/)g = c-z,

(t) p tan x + q tany = tan z, (K) (y
2 + z* xz

)p 2xyq + 2xz = Q.

'I, Determine the integrals of the preceding equations to pass through the cur

for (a) x2 + y* = 1, z = 0, for
(/3) j/

= 0, x = z,

for (7) y = 2aj, Z = 1, for (e) a; = z, y = z.

3. Show analytically that if ^(x, y, z) = C^ is a solution of (15), it is a solu

of (14). State precisely what is meant by a solution of a partial differential e<

tion, that is, by the statement that F(x, y, z) = C
t
satisfies the equation. Show

ttie equations

P*> + Q* = B and P^+Q^+fl^O
to dj/ dx, dy 8z

are equivalent and state what this means. Show that if F= C
t
and G = 2

two solutions, then .F = * (G) is a solution, and show conversely that a functi<

relation must exist between any two solutions (see 62).

4. Generalize the work in the text along the analytic lines of Ex. 3 to es

lish the rules for integrating a linear equation in one dependent and four <

independent variables. In particular show that the integral of

8z
, .

3z ,, , , dx, dxn dzP +... + P =pn+i dependson _i = . . . = _^ = __,
OX\ OXn f

t
Pn Pn+\

and that if F
l
= Cv ,

Fn = Cn are n integrals of the simultaneous system,

Integral of the partial differential equation is *(-F\, ,
Fn) 0.

K , . . . 8u . du du
5. Integrate : (a) x--1- y--(- z = xyz.

dx dy 8z

(,3) (y + z + u)~ + (z + M + x)^ + (u + x + y)^ = x + y
ox oy oz

6. Interpret the general equation of the first order F(sc, y, z, p, q)
= as de

mining at each point (x , y ,
z )

of space a series of planar elements tangent
certain cone, namely, the cone found by eliminating p and q from the three sii

taneous equations

-
o
_-_ _ = .

7. Eliminate the arbitrary functions :

(a) x + y + z = *(x
2 + y

2 + ), (^ 4>(x
z + y^ z

(7) z = *(x + 2/) + *-(-y), (5) z = ez'*(

(e) * = y2 + 2*(x-i + logy), (f)



(a) cylinders with generators parallel to the line x az, y =
(/3) conical surfaces with vertex at (a, 6, c),

(7 )
surfaces of revolution about the line x : y : z = a : b : c.

9. Eliminate the constants from these equations:

(a) z = (x + a.) (y + &), Q3) a (x
2 + y

2
) + &*2 = 1,

(7) (
_

ft)
2 + (y

_
&)2 + (z

_ C)2
=

1? (
3
) (a>_a) + (y -&)*+(

(e) ^ix2 + J3xy + Cy* + Lxz + Eyz = z2 .

10 Show geometrically and analytically that F(x, y, z) + a(?(x, y, 2) = 6 is a

complete solution of the linear equation.

11. How many constants occur in the complete solution of the equation of the

third, fourth, or nth order ?

12. Discuss the complete, general, and singular solutions of an equation of the

first order F(x, y, z, u, ux ,
u
y ,

uz )
= with three independent variables.

13. Show that ths planes z ax + by + C, where a and 6 are connected by the

relation P(a, b)
=

0, are complete solutions of the equation F (p, q) = 0. Integrate :

(a) pq = 1, (/3) q = p2 + 1, (7) p2 + g
2 = m,

(8)pq = k, (e) fclog?+p = 0, (f) 3p2 -2g2 = 4^,

and determine also the singular solutions.

14. Note that a simple change of variable will often reduce an equation to the

type of Ex. 13. Thus the equations

with z = e2', a; = ex', z = e2', x = e*', y = e"',

take a simpler form. Integrate and determine the singular solutions :

(a) q = z + px, 08) Z2
j>

2 + ytq* = z2
, (7) z = p?,

(8) g = 2yp2, (e) (p
-

y) + (g
-

a;)
2 = 1, (f) ^jp^.

15. What is the obvious complete solution of the extended Clairaut equation

z = xp + yq + /(p, q) ? Discuss the singular solution. Integrate the equations :

(a) z = xp + yq + Vp2
-f q

2 + 1, (/3)
z = xp + yq + (p + g}

2
,

(7) z = xp + yq + pq, (S) z = xp -f yq 2 Vp<jr.

116. Types of partial differential equations. In addition to the

linear equation and the types of Exs. 13~15 above, there are several

types which should be mentioned. Of these the first is the general

equation of the first order. If F (x, y, z, p, <?)
= is the given equation

and if a second equation $ (x, y, z, p, q, a)
=

0, which holds simultane-

ously with the first and contains an arbitrary constant can be found.

the two equations may be solved together for the values ofp and q, and

the results may be substituted in the relation dz = pdx -f- qdy to give a

total differential equation of which the integral will contain the con-

stant and a second constant of integration b. This integral will then



with respect to x and y and use the relation that dz be exact.

*
do;

" dP 4- 7?'
^ A

; 4-F
? -~o,

, dp ,&<!._
o,

*;

F'ib' (b'F'a^p ^V P

Multiply by the quantities on the right and add. Then

Now this is a linear equation for $ and is equivalent to

dp___^ ___dx___d/y____dz
~

, .= ~"
( }

Any integral of this system containing p or q and a will do for $, and
the simplest integral will naturally be chosen.

As an example take zp(x + y) + p(q p) zz = 0. Then Charpit's equa-
tions are

d$ _ dq _ fa

zp - 2zq + pq(x
dy _ dz

- q - z(x + y)
- zp + jp

a
(z

p 2p2
2pq pz(x+ y)

How to combine these so as to get a solution is not very clear. Suppose the sub
stitution z e*', p = ez'p', q = e"'q' be made in the equation. Then

p'(a + y} + p'(tf
-

p')
- I =

is the new equation. Tor this Charpit's simultaneous system is

dp _ d<f _ cte _ dy _ dz

p' p' 2p' q
f

(x + y) p' 2p'
2

%pq p' (x + y)

The first two equations give at once the solution dp' = dq' or g' = p' + a. Solving

1 ,1
p' =

y



is a complete solution of the given equation. This will determine the general

integral by eliminating a between the three equations

zsew+^o + aj + y), 6 =/(), = (y + f'(a))(a + x + y) + 1,

where /(a) denotes an arbitrary function. The rules for determining the singular
solution give z = ;

but it is clear that the surfaces in the complete solution can-

not be tangent to the plane 2 = and hence the result z = must be not a singula-

solution but an extraneous factor. There is no singular solution.

The method of solving a partial differential equation of higher order

than the first is to reduce it first to an equation of the first order and

then to complete the integration. Frequently the form of the equation

will suggest some method easily applied. For instance, if the deriva-

tives of lower order corresponding to one of the independent variables

are absent, an integration may be performed as if the equation were

an ordinary equation with that variable constant, and the constant of

integration may be taken as a function of that variable. Sometimes a

change of variable or an interchange of one of the independent variables

with the dependent variable will simplify the equation. In general the

solver is left mainly to his own devices. Two special methods will be

mentioned below.

117. If the equation is linear with constant coefficients and all the

derivatives are of the same order, the equation is

z> + a^-1^ + + a-i-w1 + <v;) = R (*> y}- (
22

)

Methods like those of 95 may be applied. Factor the equation.

a (D,
-

o^,) (D.
-

aJD,) (D.
- anDv)

* = R(x, y). (22)

Then the equation is reduced to a succession of equations

>x?
-

"DyZ
- R (x, y),

each of which is linear of the first order (and with constant coefficients).

Short cuts analogous to those previously given may be developed, but

will not be given. If the derivatives are not all of the same order but

the polynomial can be factored into linear factors, the same method will

apply. For those interested, the several exercises given below will serve

as a synopsis for dealing with these types of equation.

There is one equation of the second order,* namely

* This is one of the important differential equations of physics ;
other important equ&

tions and methods of treating them are discussed in Chap. XX.



fore the name of the wave equation. The solution may be written dowr

by inspection. For try the form

u (x, ?/, g, <)
= F(ax -f by + cz Vt) + G (ax + by + cz + Ftf). (24'

Substitution in the equation shows that this is a solution if the relation

a* + i
2 + c

2 = 1 holds, no matter what functions F and G may be. Not*

that the equation

ax + % + cz Vt - 0, a2 + i
a + c

2 =
1,

is the equation of a plane at a perpendicular distance Vt from the origii

along the direction whose cosines are a, b, c. If t denotes the time am
if the plane moves away from the origin with a velocity V, the function

F(ax -f by + cz Vf)
=

.F(O) remains constant
;
and if G = 0, the valui

of u will remain constant. Thus u = F represents a phenomenon whicl

is constant over a plane and retreats with a velocity V, that is, a plain

wave. In a similar manner u = G represents a plane wave approaching

the origin. The general solution of (23) therefore represents the supei

position of an advancing and a retreating plane wave.

To Monge is due a method sometimes useful in treating differential equation

of the second order linear in the derivatives r, s, t
;
it is known as Mange's method

Let Er + Ss + Tt = V (26

be the equation, where jR, S, T, V are functions of the variables and the derivative

p and q. From the given equation and

dp = rdx + sdy, dq = sdx + tdy,

the elimination of r and t gives the equation

s (Edy
2 - Sdxdy + Tdx2

)
- (Rdydp + Tdxdq - Vdxdy) = 0,

and this will surely be satisfied if the two equations

Rdy2 Sdxdy + Tdx* = 0, Rdydp + Tdxdq Vdxdy = (25'

can be satisfied simultaneously. The first may be factored as

dy-fl (x, y, 2,JJ, q)dx = Q, dy - /2 (x, y, z, p, q) dx = 0. (2

The problem then is reduced to integrating the system consisting of one of these fac

tors with (25') and dz=pdx+ qdy, that is, a system of three total differential equations

If two independent solutions of this system can be found, as

i (x, V, *, J>, q)
= Clt 2 (z, y, 2, p, q)

= Cg ,

then
t
= * ( 2)

is a first or intermediary integral of the given equation, the genen

integral of which may be found by integrating this equation of the first order. 1

the two factors are distinct, it may happen that the two systems which arise ma
both be integrated. Then two first integrals jtx

= * (uz) and i^
= * (v2) will be founc

and instead of integrating one of these equations it may be better to solve both fc

p and q and to substitute in the expression dz = pdx + qdy and integrate^ Whei

however, it is not possible to find even one first integral, Monge's method fails.



(x + y) dy* (x + y)dx*^Q or dy dx = 0, dy + c& =
and (x + y) dydp (x + y) dxdq + 4pdxdy = 0. (A)

Now the equation dy dx = may be integrated at once to give y == x + C
1

, Tho
second equation (A) then takes the form

2xdp + 4pdx 2xdq + C^dp dq) = ;

but as dz = pdx + qdy = (p + q) dx in this case, we have by combination

2 (xdp + pdx) 2 (xdq + qdx) + C
t (dp dq) + 2 dz =

or (2 x + C
a) (p g) + 2 2 = C

2
or (x + y)(p q) + 2z = C2 .

Hence (x + y) (p q) + 2 a = *
(?y x) (27)

is a first integral. This is linear and may be integrated by

dx dy dz dx dz
~-TT;. -; IT.

or X + V=KI, -F-
^- 2x) -2z

This equation is an ordinary linear equation in z and x. The integration gives

2s

*!

- 2 a) Ac +
"

9 .

/

= /

2j ^ 2x

e'; +i' I e JfHence (x + y)ze'
; +i' I e Jf^(Kl 2x)dx = K, - *(X" t)

= V(x + y)

is the general integral of the given equation when Kl
has been replaced by x + y

after integration, an integration which cannot be performed until * is given.

The other method of solution would be to use also the second system containing

dy + dx = instead of dy dx = 0. Thus in addition to the first integral (27) a

second intermediary integral might be sought. The substitution of dy + dx = 0,

y + x = Cj in (A) gives Cl (dp + dq) + 4pdx = 0. This equation is not integrable,

because dp + dq is a perfect differential and pdx is not. The combination with

dz = pdx + qdy = (p q) dx does not improve matters. Hence it is impossible to

determine a second intermediary integral, and the method of completing the

solution by integrating (27) is the only available method.

Take the equation ps qr = 0. Here S =p, B = $, T = F = 0. Then

qdy
2

pdxdy = or dy = 0, pdx + qdy = and qdydp =

are the equations to work with. The system dy = 0, qdydp = 0, dz = pdx + qdy,

and the system pdx + qdy = 0, qdydp = 0, dz = pdx + qdy are not very satisfactory

for obtaining an intermediary integral ux
= $ (u2), although p $ (z) is an obvious

solution of the first set. It is better to use a method adapted to this special

equation. Note that

ives
p

a M
Ps^r, and

8 M =
Sx\pJ pz dx\p/

By (11), p. 124, *=-(?); then ^ = -/(
P W/ 8y

and x =_ //() <fy + * (2)
= * (y) + * ()



(a) p* + ? = 2 05, (/3) (p
2 + g

2
)
s = j, (7) (p + 9) (jw + w) = 1,

(5) pg = px H- gy, (e) p2 + g
2 = * + y, (f) ap

2 2 zp + xy = 0,

U) 9
2 = z2 (p-<7), (0) <?(p

2z + <?*)= 1, (OP(l+<Z2
)
= <?(z-c),

( K) xp (1 + g) = 52, (X) y
2
(p

2 -
1)
= z2p2

, M z2 (p
2 + g

2 + 1)
= c

2
,

(v) p =

2. Show that the rule for the type of Ex. 13, p. 273, can be deduced by Charpit'

method. How about the generalized Clairaut form of Ex. 16 ?

3. (a) For the solution of the type/1 (x, p) =/2 (y, <?),
the rule is: Set

/i(a:,P)=/2 (y, 2) = a,

and solve for p and q as p = gr^x, a), 3 = p2 (y, a) ;
the complete solution is

6.

(|3)
For the type F(z, jp, g)

= the rule is : Set X = x + ay, solve

dz dz \ , dz
,

. . , .
,

/ d ...

JiF '
a T?) for

J1F
= * (

2
'
a)' and let

I 77
-

\
=/(*' a

;

a^i a-<i / a2T ^
(z, a)

the complete solution is x + ay + 6 =/(z, a). Discuss these rules in the light o

Charpit's method. Establish a rule for the type F(x + y, p, q)
= 0. Is there an;

advantage in using the rules over the use of the general method ? Assort the exan

pies of Ex. 1 according to these rules as far as possible.

4. What is obtainable for partial differential equations out of any characteristic

of homogeneity that may be present ?

5. By differentiating p =f(x, y, z, q) successively with respect to x and y shoi

that the expansion of the solution by Taylor's Formula about the point (x , j/ ,
z

{

may be found if the successive derivatives with respect to y alone,

L ^L
By' Sy

2
'

3y
8

' '

9y"'

are assigned arbitrary values at that point. Note that this arbitrariness allows th

solution to be passed through any curve through (x , y ,
z )

in the plane x = x .

6. Show that F(x, y, z, p, q) = satisfies Charpit's equations

du ^ ** = <*y = dz = dp = dq

~ FP -* -0^+^) jT + pF', F'
y + qF'z

where u is an auxiliary variable introduced for symmetry. Show that the fin

three equations are the differential equations of the lineal elements of the cones c

Ex. 6, p. 272. The integrals of (28) therefore define a system of curves which ha~v

a planar element of the equation F = passing through each of their lineal tax

gential elements. If the equations be integrated and the results be solved for th

variables, and if the constants be so determined as to specify one particular curv

with the initial conditions x
, y ,

2
, p , g ,

then



just mentioned must no upon a aeveiopaoie suriace containing tne curve ( oi). ine
curve and the planar elements along it are called a characteristic and a characteristic

strip of the given differential equation. In the case of the linear equation the

characteristic curves afforded the integration and any planar element through
their lineal tangential elements satisfied the equation ;

but here it is only those

planar elements which constitute the characteristic strip that satisfy the equation.

What the complete integral does is to piece the characteristic strips into a family
of surfaces dependent on two parameters.

7. By simple devices integrate the equations. Check the answers :

. . 82z ,. . /0 . 8nz _ . . 82z x
,

(a) ^ =/(X) ' (/S) ^ =
' (7) ^ + <I'

(5) s + pf(x) = g(y), (e) ar = xy, (f) xr = (n-l)p.

3. Integrate these equations by the method of factoring:

(a) (D
-

a*D%) z = 0, (|8) (A, - D,) z = 0, (7) (VJ% - D) z = 0,

(S) (2 + 8DxD1,+ 2JD) i8 = x + y, (e) (D
-

JD^D,
- 6 Z>2

)
z = ay,

(f) (D2_D2_ 3 J>K + 3Dy)z
= 0, () (D8-DJ + 2 Ik + !)

= .

9. Prove the operational equations :

(a) e*Dv <t> (y)
= (1 + ora;Z>j, + } a2

a;
2i2 + . .

.) $ (y)
=

<fi (y + ax),

(/9) ^
*

_ = e^-Oy ^-
= e (y)

= ^ (y + ax),
JJX <XlJy J->x

(7) -ri- B(x, y) = e

10. Prove that if [(D* a^)^ (Dx - akDy)
mlf

] 2 = 0, then

where the *'s are all arbitrary functions. This gives the solution of the reduced equa-

tion in the simplest case. What terms would correspond to (Dz aDv p)
m z = ?

11. Write the solutions of the equations (or equations reduced) of Ex. 8.

12. State the rule of Ex. 9 (7) as : Integrate E(x,y ax) with respect to x and

in the result change y to y + ax. Apply this to obtaining particular solutions of

Ex. 8 (3), (), (ij)
with the aid of any short cuts that are analogous to those of

Chap. VIII.

13. Integrate the following equations:

(a) (D-D^ + I>y -l)z= cos(x + 2y) + e, (ft x?r2 + 2 xys + yW - x2 + y\

(7) (Z^+Day + J y -l) 2 = sin(x + 2j/), (S) r-t-Sp + 3q~
(0 (JD

- 2 D^DJ + BJ)
= -, (f) r-< + j) + 3(?-2 2 = e^-y

(/>) (Dl-DxDy
- 2D2

, + 2 J>x + 2Dy)z = e2 * + 8y+ sin(2x + y) 4- xy.

14. Try Monge's method on these equations of the second order :

(a) q*r
- 2pqs+pH = 0, (0) r- a2f = 0, (7) r + s = -p,

() g(l + g)r-(p + ? + 2p9)s+p(l+p) = 0, (e) a;
2r

(f) (b + cg)
2r - 2 (6 + eg) (a + cp)s + (a + cp)

2
t = 0, (T;)

r + Aa2i = 2as.

If any simpler method is available, state what it is and apply it also.



15. Show that an equation of the form Br -f Ss + Tt + U(rt s2
)
= V neces*

sarily arises from the elimination of the arbitrary function from

ufa y, z, p, g) =/[u2 (x, y, z, p, g)].

Note that only such an equation can have an intermediary integral.

16. Treat the more general equation of Ex. 15 by the methods of the text and

thus show that an intermediary integral may be sought by solving one of the systems

Udy + X
t
Tdx + \ Udp = 0, Udx + \Rdy + \ Udq - 0,

Udx + \Edy + \Udq = 0, Udy + X
2 Tdte + \Udp = 0,

dz = pdx + gcfy, dz = pdx + qdy,

where \ and \ are roots of the equation \2(RT + U"r),+ XJ7S + U" 2 = 0.

17. Solve the equations : (a) s2 - rt = 0, (/3)
s2 ri = a2

,

(7) ar + 6s + ct + e (rt a3) = h, (S) xqr + ypt + xy (s
2

rt) = pq,



PAKT III. INTEGBAL CALCULUS

CHAPTER XI

ON SIMPLE INTEGRALS

118. Integrals containing a parameter. Consider

f /(as, a) dx, (1)

a definite integral which contains in the integrand a parameter a. If

the indefinite integral is known, as in the case

cos axdx = - sin ax, cos axdx = - sin ax
a

it is seen that the indefinite integral is a function of x and a, and that

the definite integral is a function of a alone because the variable x

disappears on the substitution of the limits. If the limits themselves

depend on a, as in the case

f cos axdx = - sin ax = -
(sin a

2
sin 1),

the integral is still a function of a.

In many instances the indefinite integral

in
(1) cannot be found explicitly and it then

becomes necessary to discuss the conti-

nuity, differentiation, and integration of the

function < (a) defined by the integral with-

out having recourse to the actual evaluation

of the integral; in fact these discussions

may be required in order to effect that

evaluation. Let the limits X
Q
and x

l
be taken

as constants independent of a. Consider the range of values # S x 3? x
l

for x, and let a
Q
^ a^ a

l
be the range of values over which the func-

tion
<f> (a) is to be discussed. The function /(x, a) may be plotted as

the surface z =f(x, a) over the rectangle of values for (x, a). The
281
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value <
(<zf)

of the function when a = or
f
is then the area of the section

of this surface made by the plane a = a
f
. If the surface f(x, a) is con-

tinuous, it is tolerably clear that the area
</> (a) will be continuous in a.

The function <ft (a) is continuous iff(x, a) is continuous in the two varies

bles (x, a)

To discuss the continuity of (or) form the difference

* (a + Act)
-

<j> (a) = (
Xl

[/(x, a + Aa) - /(x, a)] dx. (2)
''o

Now
</> (a) will be continuous if the difference

<j> (a + Acr) (or) can be made as

small as desired by taking Act sufficiently small. If /(a;, y) is a continuous func-

tion of (x, y), it is possible to take Ax and Ay so small that the difference

|/(x + Ax, J/ + Ay) -/(, y)\ < e, [Ax| < 5, |Ay |
< 5

for all points (x, y) of the region over which /(x, y) is continuous (Ex. 8, p. 92).

Hence in particular if /(x, a) be continuous in (x, a) over the rectangle, it is pos-

sible to take Aa so small that

|/(x, + Act) -/(a, a)|<, |Aar|<5

for all values of x and a:. Hence, by (66), p. 25,

It is therefore proved that the function <f>(a) is continuous provided /(x, a) is con-

tinuous in the two variables (, or) ;
for e (x1 x

) may be made as small as desired

if e may be made as small as desired.

As an illustration of a case where the condition for continuity is violated, take

, , . i*
1 adx

, ,
x

* (
a

)
=

I. -5-n? = tan~ -
a

if a & 0, and

Here the integrand fails to be continuous for (0, 0); it becomes infinite when

(*, a) == (0, 0) along any curve that is not tangent to a = 0. The function tj> (a) is

defined for all values of 0, is equal to cot~la when a ^ 0, and should there-

fore be equal to TT when a = if it is to be continuous, whereas it is equal to 0.

The importance of the imposition of the condition that /(a;, <x) be continuous is

clear. It should not be inferred, however, that the function <t>(a) will necessarily

be discontinuous when/(x, a) fails of continuity. For instance

r l

*()=/
-

t/O -,

This function is continuous in a for all values a^Q; yet the integrand is dis-

continuous and indeed becomes infinite at (0, 0). The condition of continuity

imposed on /(x, a) in the theorem is sufficient to insure the continuity of
<f> (a)

but by no means necessary ; when the condition is not satisfied some closer exami-
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the function
<j> (a) will surely be continuous if f(x, a) is continuous

over the region bounded by the lines a = a
Q ,

a = a
l
and the curves

03 = g (a), #!
=

g^O*), and if the functions gQ(a) and ^(a) are continuous,

For In this case

Aor) <f> (a) /(x, a + Aor) dx

J f(x, a)dx=C /(x, a-

+ C
ffl

"

[/(x, a + Aa) /(x, a)] dx.

The absolute values may be taken and the inte- AJ

grais reduced by (65), (65'), p. 25.
'

where ^ and fj are values of x between gQ and <7 + Ap ,
and g and grt -f Agfx . By

taking Act small enough, g^(a + Aor) g^a) and sf (a + Aa) g (a) may be made
as small as desired, and hence A0 may be made as small as desired.

119. To find the derivative of a function <(<*) defined by an integral

containing a parameter, form the quotient

Aft _ <f> (a. + Ao:) <j> (a)

Act: Aft

/fft Ca) *1

~
I /(* )<*

^fl- w J

Aa
f(x, a

A

The transformation is made by (63), p. 25. A further reduction, may
be made in the last two integrals by (65'), p. 25, which is the Theorem

of the Mean for integrals, and the integrand of the first integral may be

modified by the Theorem of the Mean for derivatives (p. 7, and Ex. 14,

p. 10). Then

Aa;

and

(*> <* + Oba) dx -/ft, a + Acr) +/<, a + Act)



in (x, a) and y (a), g^ (a) are differentiable. In the particular case that

the limits gQ
and

ffl
are constants, (4) reduces to Leibniz's Rule

which states that the derivative of a, function defined by an integral

with fixed limits may be obtained by differentiating under the sign of

integration. The additional two terms in (4), when the limits are varia.-

ble, may be considered as arising from (66), p. 27, and Ex. 11, p. 30.

This process of differentiating under the sign of integration is of

frequent use in evaluating the function tf> (a) in cases where the indefi-

nite integral of f(oc, a) cannot be found, but the indefinite integral of

f'a can be found. For if

*() = f A*, )**, then ^ = Pfadx = f(a).
Jx,

aa
J*,

Now an integration with respect to a will give <f>
as a function of a

with a constant of integration which may be determined by the usual

method of giving a some special value. Thus

But 0(0) = /
Orfx = and

</>(0)
= logl + C7.

Jo

f^
xa_ J

-~^- dx = log (a + 1).

In the way of comment upon this evaluation it may be remarked that the func-
tions (x" I)/ log x and xa are continuous functions of (x, a) for all values of x in

the interval Osgassil of integration and all positive values of a: less than any
assigned value, that is, ^ a.^ K. The conditions which permit the differen-

tiation under the sign of integration are therefore satisfied. This is not true for

negative values of a. When a <0 the derivative xa becomes infinite at (0, 0). The
method of evaluation cannot therefore be applied without further examination.

As a matter of fact 4>(a) = log(a + l) is defined for a> 1, and it would be
natural to think that some method could be found to justify the above formal

evaluation of the integral when lrsjr (see Chap. XIII).
To illustrate the application of the rule for differentiation when the limits are

functions of or, let it be required to differentiate

,. . /** 1, d<f> ?* ^ a2 " 1 a? I
()= I i

- dx. ~= I xdx+-- a-:!- ,



or -^ -_ oru-rii +- a*" - a* - a + 1 .

da a +11 J logaL J

This formal result is only good subject to the conditions of continuity. Clearly a
must be greater than zero. This, however, is the only restriction. It might seem at

first as though the value x = 1 with logx = in the denominator of (x
a

l)/log x

would cause difficulty ;
but when x = 0, this fraction is of the form 0/0 and has a

finite value which pieces on continuously with the neighboring values.

120. The next problem would be to find the integral of a function

defined by an integral containing a parameter. The attention will be

restricted to the case where the limits X
Q
and x

1
are constants. Consider

the integrals

I < () da = I -I f(x, a) dx da,
Jan

J Jx

where a may be any point of the interval o; ^ a
l
of values over

which <f>(a) is treated. Let

r*i r a

$(a)= I I f(x, a~)da-dx.
Jx Ja

X*i
d c a

r*1

o- I /(, )
da- dx = I f(x, a)dx = $()

. -A, J
*o

by (4'),
and by (66), p. 27 ;

and the differentiation is legitimate if f(x} a)

be assumed continuous in (x, a). Now integrate with respect to a. Then

'() = ()-*()=: f +(ai)d<z.

Jo

But *( )
= 0. Hence, on substitution,

/tfj /> /** f a ftxi

*(;)= I . / f(x} a)da-dx= I *f>(a)da= I I f(x,a)dx-dcc. (5)
./> u/ar c/a c/ff i/a;

Hence appears the rule for integration, namely, integrate under the

sign of integration. The rule has here been obtained by a trick from

the previous rule of differentiation; it could be proved directly by

considering the integral as the limit of a sum.

It is interesting to note the interpretation of this integration on the

figure, p. 281. As <(o:) is the area of a section of the surface, the

product (f> (a) da is the infinitesimal volume under the surface and

included between two neighboring planes. The integral of <() is

therefore the volume * under the surface and boxed in by the four

* For the " volume of a solid with parallel bases and variable cross section
" see

Ex. 10, p. 10, and 35 with Exs. 20, 23 thereunder.



is in this case merely that the volume may be regarded as generated

by a cross section moving parallel to the ga-plane, or by one moving

parallel to the <?x-plane, and that the evaluation of the volume may
be made by either method. If the limits X

Q
and x

: depend on a, the

integral of </() cannot be found by the simple rule of integration

under the sign of integration. It should be remarked that integration

under the sign may serve to evaluate functions denned by integrals.

As an illustration of integration under the sign in a case where the method leads

to a function which may be considered as evaluated by the method, consider

/o / 1 / 6 /* 1 3*" & s=b f\ 1 o6 __ yd
But / <t>(a)da=l I xda-dx=l ~ dx=l dx.

Ja Jo Ja Jo logX a=a / lOgX
n 1 %b jjo J)

J. 1
Hence

f
dx = log = \l/(a,b). a i= 0, 6 g= 0.

Jo logx a + 1
rv '" ' ~

In this case the integrand contains two parameters a, &, and the function defined

is a function of the two. If a = 0, the function reduces to one previously found.

It would be possible to repeat the integration. Thus

= log (a + 1), | log (a + 1) da = (a + 1) log (a + 1) a.

log X

.,
/>1 xa: 1 alogx ,da-dx= --- --/>

=/Joo logx Jo (logx)
2

This is a new form. If here a be set equal to any number, say 1, then

(logs)
2

In this way there has been evaluated a definite integral which depends on no

parameter and which might have been difficult to evaluate directly. The introduc-

tion of a parameter and its subsequent equation to a particular value is offrequent use

in evaluating definite integrals.

EXERCISES

1. Evaluate directly and discuss for continuity, =s a == 1 :

r
1

Jo

2. If /(x, a, /3)
is a function containing two parameters and is continuous in

the three variables (x, a, |3)
when x S= x ^ x1 ,

a s a s ar^ /3 g j3 ^ /S^ show

/ ai

/ /(x, a, /3)
dx =

<f> (or, ^) is continuous in (cr, )3).
"Z
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3. Differentiate and hence evaluate and state the valid range for a :

(a) C"log(l
Jo 2

' =
(0) flog (1

- 2 a cosx + )
dx = {^f

*'
/0 ^U, CC S I

4. Find the derivatives without previously integrating :

n Bin"** 1 n arz
y> pax

~ h^
(a) / -tanaxdx, (/3) |

tan-1
dec, (7) I e ^ dx.

/tun" 1* W t/0 CC
J

/-<ra

5. Extend the assumptions and the work of Ex. 2 to find the partial deriva-

tives <j>'a and
<f>'p

and the total differential d</> if x and x
l
are constants.

6. Prove the rule for integrating under the sign of integration by the direct

method of treating the integral as the limit of a sum.

7. From Ex. 6 derive the rule for differentiating under the sign. Can the com-

plete rule including the case of variable limits be obtained this way ?

f*g(x, a)
8. Note that the integral / /(cc, a) dx will be a function of (z, a). Derive

J
*o

formulas for the partial derivatives with respect to x and a.

8 f"tx d r\fx
9. Differentiate : (a) I sin (x + a) dx, (/3)

/ x2dx.
' da Jo dec Jo

10. Integrate under the sign and hence evaluate by subsequent differentiation :

7T

(a) I x*log-xdx, (/3) I

2
x sin axdx, (7) |

xseca oxdx.
Jo Jo Jo

11. Integrate or differentiate both sides of these equations :

/! 1 /! fi\

(a) I x"<3x =- to show / x<* (log xV'dtc = ( 1)"-'--
,v '

Jo a+l Jo
^ ' '

(a+l)+i*
../ dx IT . , /" dx TT 1 3 5 (2 n 1)
(g\ f - =- to show i - =-----. ,^'

Jo xa + a 2V^ Jo (*
2 + )"

+ 1 22.4.6-..2n.an+ i

n oo Q. x. oo g ax g 0a; J /2
_j_ m2\

(7) / e- fla: cos?na;dcc = --- to show / - dx = -log [!- 5),v '
JQ a2 + m? Jo xsecmx 2 W + m2

/

/*o 771 /*

(IS) I e- aai sin7ixdx =-- to show /

Jo a2 + m2 Jo

" ~~ **

dx = tan~ 1 tan-i-
x esc mx m m

,./"> dx TT , , r v dx c v
^

& cosx
e) I - =

_

......- - to find I- , / log
-

,

Jo a-~ cosx Va2 1 t' (a cosx)
2 Jo a cosx

... /-"x^-idx TT , _ , /" x^-ilogxdx />* x*- 1 x"-1
,

( f) /
- =- to find

I
---

I
- ic-

^o 1 + x sirnra Jo 1 + x Jo (l + x)logx

Note that in (/3)-(5) the integrals extend to infinity and that, as the rules of



(a) (Vo - x2 cos-i - dy, = a2 / + -}^ '

Jo a \10 47

iff) p log (1 + cos cosx)^^ 1/71-2
a,

Jo cosx 2\4
IT

(7) f 2

log (a
2 cos4 x + p2 sin2 x) dx = TT log

^
Jo 2

/. <x> Q.2_ fl2

(5) 1 xe - ax cos Sxda; =--
,* '

Jo ora 322o

a + & sin x etcT ? i
a + sn x etc .

,/log- ---
:

= 7rsm- 1 -,
Jo a ftsinxsina; a

/^s r i

(f) I

Jo coex

f
1

log/(a-fx)cZx= r
a+1

log/(x)ete= f
a

iog
/(" + 1} da + f

^o J Jo /a Jo/(a)

121. Curvilinear or line integrals. It is familiar that

X&

/&

yrfcc
=

I
f(x) dx

i/a

is the area between the curve y =f(x), tlie x-axis, and the ordinate

x a, x = b. The formula may be used to evaluate more complicate*

areas. For instance, the area between the parabola y
z x and the semi

cubical parabola y
2 = a8

is

A = I x*dx I x*dx = I ydx I ydx,
Jo Jo pJo sJo

where in the second expression the subscripts P and 5 denote that th

integrals are evaluated for the parabola and semicubical parabola. A
a change in the order of the limits changes the sign of

the integral, the area may be written

n\ >() /0 />!

A I ydx + I ydx = / ydx I ydx,
pJo sJ\ pJi sJo

and is the area bounded by the closed curve formed
of the portions of the parabola and semicubical parabola from to 1

In considering the area bounded by a closed curve it is convenient fr

arrange the limits of the different integrals so that they follow the curv

in a definite order. Thus if one advances along P from to 1 and re

turns along S from 1 to 0, the entire closed curve has been describe*

in a uniform direction and the inclosed area has been constantly on. th

right-hand sidej whereas if one advanced along from to 1 an<



in the opposite direction and the area would have been constantly
on the left-hand side. Similar considerations apply to more general
closed curves and lead to the definition: If a closed curve which

nowhere crosses itself is described in such a direction as to keep the

inclosed area always upon the left, the area is considered as positive ;

whereas if the description were such as to leave the area on the right,

it would be taken as negative. It is clear that to a person standing in the

inclosure and watching the description of the boundary, the descrip-

tion would appear counterclockwise or positive in the first case ( 76).

In the case above, the area when positive is

=
I ydx -f I ydx = I ydx,

LsJo pJi J Jo
(6)

where in the last integral the symbol O denotes that the integral is to

be evaluated around the closed curve by describing the

curve in the positive direction. That the formula holds

for the ordinary case of area under a curve may be

verified at once. Here the circuit consists of the con-

tour ABB'A'A. Then

I ydx = I ydx + I ydx -f- I ydx + I ydx.
Jo JA Je JB' JA'

The first integral vanishes because y = 0, the second and fourth vanish

because x is constant and dx 0. Hence

I ydx = I ydx = I ydx.
/O JB' JA'

It is readily seen that the two new formulas

A = I xdy and A % I (xdy ydx) (7)
Jo Jo

also give the area of the closed curve. The first is proved as (6) was

proved and the second arises from the addition of the two. Any one

of the three may be used to compute the area of the closed curve
;
the

last has the advantage of symmetry and is particularly useful in finding

the area of a sector, because along the lines issuing from the origin

y : x = dy : dx and xdy ydx ;
the previous form with the integrand

xdy is advantageous when part of the contour consists of lines parallel

to the oxixis so that dy = ;
the first form, has similar advantages

when parts of the contour are parallel to the
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The connection of the third formula with the vector expression for
1

the area is noteworthy. For (p. 175)

= \ I

Jo
dA = rxcfr A

o

and if r = cci 4- y] :
di ~ idx + ]dyr

then A =
|

rxr/r = k I (xdy ydx).
Jo Jo

The unit vector k merely calls attention to the fact that the area lies

in the x?/-plane perpendicular to the s-axis and is described so as to

appear positive.

These formulas for the area as a curvilinear integral taken around

the boundary have been derived from a simple figure whose contour

was cut in only two points by a line parallel to the axes. The exten-

sion to more complicated contours is easy. In the first place note that

if two closed areas are contiguous over a part of their contours, the inte-

gral around the total area following both contours, but omitting the part

in common, is equal to the sum of the integrals. For

PQRP JPR JRSP JPQR JHP J QRSP

since the first and last integrals of the four are in oppo-

site directions along the same line and must cancel. But

the total area is also the sum of the individual areas and hence the

integral around the contour PQRSP must be the total area. The for-

mulas for determining the area of a closed curve are therefore applicable

to such areas as may be composed of a finite number of areas each

bounded by an oval curve.

If the contour bounding an area be expressed in parametric form as x =/(0
y = 0(t), the area may be evaluated as

ff(W(t)
dt=-

JV(t)/'()
dt = if [f(t)<t>'(t)

-
4, ()/'()] df, (7*)

where the limits for t are the value of t corresponding to any point of the contour

and the value of t corresponding to the same point after the curve has been

described once in the positive direction. Thus in the case of the strophoid

CL *-"~ 35

y
z = x2-

, the line y te
a + x

cuts the curve in the double point at the origin and in only one other point ;
the



*7 J ^" J J V*V

from the point (ft, &) to (x, y). It is possible to eliminate y by the rela-

tion y =f(x) and write

[P (x, /(x)) + Q (x, /(*))/'(*)] <fe. (9)

The integral then becomes an ordinary integral in x alone. If the curve

had been given in the form x =/(?/), it would have been better to eon-

vert the line integral into an integral in y alone. The, method of evaluat-

ing the integral is therefore defined. The differential of the integral

may be written as
/"a:, y

(10)

/"a:, y

d I (Pdx + Qdy) = Pdx + Qdy,
Ja,T>

where either x and dx or y and dy may be eliminated by means of the

equation of the curve C. For further particulars see 123.

To get at the meaning of the line integral, it is necessary to con-

sider it as the limit of a sum (compare 16). Suppose that the curve

C between (a, b) and (x, y} be divided into n parts, that Ax and Ay{

are the increments corresponding to the ith part, and that ( i} i/j)
is

any point in that part. Form the sum

fTiIf, when n becomes infinite so that Aa; and Ay each

approaches as a limit, the sum a approaches a

definite limit independent of how the individual

increments Aa^ and Ay,- approach 0, and of how the

point (, ty)
is chosen in its segment of the curve,

then this limit is defined as the line integral

^>

rf
(0.6) I

toy)

X 6

[P (as, y) dx -f Q (as, y) efy]. (12)

It should be noted that, as in the case of the line integral which gives

the area, any line integral which is to be evaluated along two curves

which have in common a portion described in opposite directions may
be replaced by the integral along so much of the curves as not repeated ;

for the elements of <r corresponding to the common portion are equal

and opposite.
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That cr does approach a limit provided P and Q are continuous functions of
(a;, y)

and provided the curve C is monotonic, that is, that neither Ax nor Ay changes ita

sign, is easy to prove. For the expression for a may be written

ff = [P (e<)

by using the equation y =/() or =/-1
(z/)

of C. Now as

andpp(Ja

are both existent ordinary definite integrals in view of the assumptions as to con-

tinuity, the sum <t must approach their sum as a limit. It may be noted that thit

proof does not require the continuity or existence of /'(*) as does the formula (9)

In practice the added generality is of little use. The restriction to a monotonu

curve may be replaced by the assumption of a curve C which can be regarded a:

made up of a finite number of monotonic parts including perhaps some portions ol

lines parallel to the axes. More general varieties of C are admissible, but are no'

very useful in practice (127).

Further to examine the line integral and appreciate its utility foj

mathematics and physics consider some examples. Let

F(x,y)=X(x,y)+iY(x,y)

be a complex function ( 73). Then

c z=" r x>v

Cv/zcnc C/a, 6 /1V
fx,y f* a;, y \

= I (XdxYdy)+i I (Ydx + Xdy).
CJa, b cJa, b

It is apparent that the integral of the complex function is the sum of tW(

line integrals in the complex plane. The value of the integral can to

computed only by the assumption of some definite path C of integra

tion and will differ for different paths (but see 124).

By definition the work done by a constant force F acting on a particle

which moves a distance s along a straight line inclined at an angle t<

the force, is W = Fs cos 0. If the path were curvilinear and the fore*

were variable, the differential of work would be taken

as dW Fcos Qds, where ds is the infinitesimal arc

and 6 is the angle between the arc and the force.

Hence

//*,
V ftdW= I Fcos0ds= I F.rfr,

*/ a, b Jra



verted into the ordinary form of the line integral. For

F = A'i + Yj, dr = idx + jdy, F-rfr = Xdx + Yc'.y,

Xtf.

v /**,y

F cos $ds = I (Xdx -f- Ydy),
b Uu, l>

where X and Y are the components of the force along the axes. Ifc is

readily seen that any line integral may be given this same inter-

pretation. If

C x ' v

7=1 Pdx + Qdy, form F = Pi + QJ.
i/, b

/>> z/ /> *,

Then / = I Pdx + Q,dy = I F cos Ods.

Ua, b Ja, b

To the principles of momentum and moment of momentum ( 80) may now be

added the principle of work and energy for mechanics. Consider

m = F and m -*dr = Fdr = dW.
at* dts

_. d (I dr dr\ 1 d2r dr I dr d*r dzr dr
TllGIl _

(
_. * I ~ , .! . , ;

_r _ , _.^,

dH \2 cii! ctt/ 2 dl* dt 2 dt dt2 dt* dt

or d(-v*\ =~
2
'dr and d -?m)2\ = dW.

Hence -mv2 --mv2
2 2

In -words : The change of the kinetic energy \ mv
z
of a particle moving under the

action of the resultant force F is equal to the work done by the force, that is, to the line

integral of the force along the path. If there were several mutually interacting

particles in motion, the results for the energy and work would merely he added as

S^mv2 S rm$ = ~S,W, and the total change in kinetic energy is the total work

done by all the forces. The result gains its significance chiefly by the consideration

of what forces may be disregarded in evaluating the work. As dW=Fdr, the

work done will be zero if dr is zero or if F and dr are perpendicular. Hence in

evaluating W, forces whose point of application does not move may be omitted

(for example, forces of support at pivots), and so may forces whose point of appli-

cation moves normal to the force (for example, the normal reactions of smooth curvea

or surfaces). When more than one particle is concerned, the work done by the

mutual actions and reactions may be evaluated as follows. Let r
lt

r
2
be the vectors

to the particles and r
t

r2 the vector joining them. The forces of action and re-

action may be written as c
(r,

r
2),

as they are equal and opposite and in the line

joining the particles. Hence

dW= &Wi + dWz
= c(rt

-
!,).<&!

-
o(rj

- r2).dra

= c (ra
- r3).d (rt

-
r,)
= * cd [(r,

- r
a).(rj

- r2)]
= \ cdr?2T

where r12 is the distance between the particles. Now dW vanishes whei and only

when drJ2 vanishes, that is, when and only when the distance between the particles



are the energy, pressure, volume 01 a gas inclosed in any receptacle, and it aU and

dv are the increments of energy and volume when the amount dH of heat is added

to the gas, then ,,

dH = dU + pdv, and hence H = I dU + pdv

is the total amount of heat added. By taking p and v as the independent variables,

, v)dp + g(p, v)dv].

The amount of heat absorbed by the system will therefore not depend merely or.

the initial and final values of (j>, v) but on the sequence of these values between

those two points, that is, upon the path of integration in the pu-plane.

123. Let there be given a simply connected region (p. 89) bounded by
a closed curve of the type allowed for line integrals, and let P (x, y) and

Q (x, y) be continuous functions of (x, y) over this region. Then if the

line integrals from (a, &) to (x, y) along two paths

f>x
<y s*x<y

I Pdx -f Qdy = I Pdx + Qdy
cJa, b rJa, 6

are equal, the line integral taken around the combined path

s>x, y />,&
f*

I + I
=

I Pdx + Qdy =
C*Ja, b TtJx,y JQ

vanishes. This is a corollary of the fact that if the order of description

of a curve is reversed, the signs of Ax
t
- and Ayf

and hence of the line

integral are also reversed. Also, conversely, if the in-

tegral around the closed circuit is zero, the integrals

from any point (a, b) of the circuit to any other point

(x, y) are equal when evaluated along the two different

parts of the circuit leading from (a, b~)
to (x, y).

The chief value of these observations arises in their application to

the case where P and Q happen to be such functions that the line inte-

gral around any and every closed path lying in the region is zero. In

this case if (a, fy be a fixed point and (x, y) be any point of the region,

the line integral from (a, &) to (x, y) along any two paths lying within

the region will be the same
;
for the two paths may be considered as

forming one closed path, and the integral around that is zero by hy-

pothesis. The value of the integral will therefore not depend at all on



[P (aj, y}dx+Q (x, y) dy] = F (x, y) , (14)

xtended from a fixed lower limit (a, ft)
to a variable upper limit (x, y),

lust be a function of (x, y).

This result may be stated as the theorem : The necessary and suffi-

ient condition that the line integral

Q(x> y)dy]
a,b

efine a single valued function of (x, y) over a simply connected region

5 that the circuit integral taken around any and every closed curve in

ke region shall be zero. This theorem, and in fact all the theorems on

ine integrals, may be immediately extended to the case of line integrals

i space,
f>x,V> *

[P (x, y, z)dv. + Q (x, y, *)dy+R (x, y, z) dz]. (15)

/*!

'Jot, b, c

If the integral about every closed path is zero so that the integral from

fixed lower limit to a variable upper limit

f*x,V

F& y)
=

I
p

(x> y)dx + Q (x, y) dy
Ja,b

efines a function F(x, y), that function has continuous first partial

erivatives and hence a total differential, namely,

j-
= P, j-

=
Q, dF= Pdx + Qdy. (16)

?o prove this statement apply the definition of a derivative.

J
Pdx -f Qdy - I Pdx + Qdy

. c/a. & t/ a, 6= lira = lim

tow as the integral is independent of the path, the integral to

X + &X, y) may follow the same path as that to (x, y), except for

be passage from (x, y) to (x + Ace, y) which may be taken along the

fcraight line joining them. Then Ay = and



value intermediate between x and x -f- As will approach x and P (, y]

will approach the limit P(x, y) by virtue of its continuity. Hence

AF/Ax approaches a limit and that limit is P (x, y) dF/Sx. The othei

derivative is treated in the same way.

If the integrand Pdx -f Qdy of a line integral is the total differenticu

dF of a, single valued function F(x, y), then the integral about any dosea

circuit is zero and

/Z,!/ fX, II

I Pdx + Qdy = I dF= F(x, y)
-

F(a, 6). (17;
*/a, ft \J a, b

If equation (17) holds, it is clear that the integral around a closed patli

will be zero provided F(x} y) is single valued; for F(x } y) must come

back to the value F(a, #) when (x, y) returns to (a, b~).
If the functior

were not single valued, the conclusion might not hold.

To prove the relation (17), note that by definition

=
limjj

and AFi = P (&,

where e
t
and e2 are quantities which by the assumptions of continuity for P and ^

may be made uniformly ( 25) less than e for all points of the curve provided Az

and Ay,- are taken small enough. Then

and since SAF,- = F(a;, y) F(a, 6), the sum SPjAx,- + QiAy,- approaches a limit

and that limit is

limV [P,-Axi + Q.-A2/,-]
= f

*'

Vdx + Qdy = F(x, y)
- F(a, &).*^ /a, 6

EXERCISES

1. Find the area of the loop of the strophoid as indicated above.

2. Find, from (6), (7), the three expressions for the integrand of the line inte

grals which give the area of a closed curve in polar coordinates.

3. Given the equation of the ellipse x = o cost, y = b sin t. Find the total area

the area of a segment from the end of the major axis to a line parallel to the mino

axis and cutting the ellipse at a point whose parameter is t, also the area of a sector

4. Find the area of a segment and of a sector for the hyperbola in its parametri

form x = a cosh t,y = b sinh t.

5. Express the folium 8 + y8 = 8 aauy in parametric form and find the area o

the loop.

6. What area is given by the curvilinear integral around the perimeter of th

closed curve r = asin8 $0? What in the case of the lemniscate r* = as cos2i

described as in making the figure 8 or the sign ?
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7. Write for y the analogous form to (9) for x. Show that in curvilinear

cobrdinates x = #(w, v), y = \f/(u, v) the area is

,<
8. Compute these line integrals along the paths assigned :

Xi.i
x2

ycte + y
s
dy, y2 = x or y = x or y

8 = z2
,

i

Xi.

i

(x
2 + 2/)d + (s + j/

2
)dy, j/

2 = x or j/
= x or y8 = a;

2
,

-. o

/e>

1 y
-dx + dy, y = logx or y = and x = e,

_, o *

/ar, y

(8) I x sin j/dx + y cosxdy, y = mx or re = and y = y,
vO,
/l + i

(e) | (x iy)dz, y = x or x = and y~l or y = and x = 1,
t/2=0

/> 2= 1

(f) I (x
2

(1 + i)xy + j/
2
)d, quadrant or straight line.

Jn=\

9. Show that Cpdx + Qdy = fVP2 + Q2 cos ^cla by working directly with the

figure and without the use of vectors.

10. Show that if any circuit is divided into a number of circuits by drawing
lines within it, as in a figure on p. 91, the line integral around the original circuit is

equal to the sum of the integrals around the subcircuits taken in the proper order.

11. Explain the method of evaluating a line integral in space and evaluate :

/i, 1,1

(r) / xdx + 2 ydy + zdz, y
2 = x, z2 = x or y = z = x,

/o, o, o

(P) f
' '

ylogxdx + y*dy + -dz, y x 1, z = z2 or y = logs, z = x.

/I, 0, 1 2

12. Show that fpdx + Qdy -f Edz = fVP2 + Q2 + B2 cos Ms.

13. A bead of mass m strung on a frictionless wire of any shape falls from one

point (x , y , z )
to the point (a^, yt ,

2
X)
on the wire under the influence of gravity.

Show that mg (z zj is the work done by all the forces, namely, gravity and

the normal reaction of the wire.

14. If x =/(*), y = g(t), and/'(i), g'(t) be assumed continuous, show

P'pfc, V)dx + Q(x, y)dy= f'(p~+ ^)^'
/o, b /* \ dt Ctt/

where /( )
= a and

gr (t )
= 6. Note that this proves the statement made on page 290

in regard to the possibility of substituting in a line integral. The theorem is also

naailnX] -Fni. "!? 1 O



arc and (r, n) the angle between the radius produced and the normal to the curve,

is the angle subtended at r = by the element ds. Hence show that

r cos (r. n) , r 1 dr rd log r- I U L ds = I -- ds =
/
-

J r J r dn J dn

where the integrals are line integrals along the curve and dr/dn is the normal

derivative of r, is the angle <f>
subtended by the curve at r = 0. Hence infer that

dn JQ dn Jo dn

according as the point r = is within the curve or outside the curve or upon
the curve at a point where the tangents in the two directions are inclined at the

angle (usually TT). Note that the formula may be applied at any point (, ij)
if

rz = ( x)
2 + (77 ?/)

2 where (x, y) is a point of the curve. What would the inte-

gral give if applied to a space curve ?

17. Are the line integrals of Ex. 16 of the same type CP(X : y)dx + Q(x, y)dy

as those in the text, or are they more intimately associated with the curve ? Of. 156.

/ 0, 1 nO, 1

18. Compute (a) I (x j/)ds, (/3)
/ xyds along a right line, along a quad-

/!., o /
i, o

I'iinfc, along the axes.

124. Independency of the path. It has been seen that in case the

integral around every closed path is zero or in case the integrand

Pdx -f- Qdy is a total differential, the integral is independent of the

path, and conversely. Hence if

F(x. if)
= I Pdx -f- Qdy, then -r = P, -r = Q,
Ja , b

%x dy

d2F dQ d2F dP dP dQ
CLIILL >i r\'~

~ *~~
i~

"
y r\ f\

"""""
ty

) o ""^
~rt

'

?

Cx, oyox oy cy
'

ox

provided the partial derivatives P'
y
and Q'x are continuous function!*.*

It remains to prove the converse, namely, that : If the two partial

derivatives P'
y
and Q'x are continuous and equal, the integral

C
'

Pdx + Qdy with P'
y
= Q'x (18)

Ja, b

is independent of the path, is zero around a closed path, and the quantity

Pdx + Qdy is a total differential.

To show that the integral of Pdx + Qdy around a closed path is zero

if Py = Q'x ,
consider first a region R such that any point (x, y} of it may

* See 52. In particular observe the comments there made relative to differentials



\ ') } *"V *"'

enne the function F(x, ?/)
as

(*, 2/)= f -P(^
Ja

y}dy (19)

3r all points of that region R. Now

dF dF

;ut

d C v

^ /
Q(a, y)dy.

i/h

y dP

'his results from Leibniz's rule (4
f

)
of 119, which may be applied

ince Q,'x is by hypothesis continuous, and from the assumption Q'x = P'
y

.

'hen SF = p(x, l>} + P(x, y) P(x} 1}
= P (x, y).

[ence it follows that, within the region specified, Pdx + Qdy is the

)tal differential of the function F(x, y) denned by (19). Hence along

uy closed circuit within that region R the integral of Pdx -f Qdy is

le integral of dF and vanishes.

It remains to remove the restriction on the type of region within which the

itegral around a closed path vanishes. Consider any closed path C which lies

ithin the region over which P'
y
and Q% are equal continuous functions of (x, y}.

s the path lies wholly within R it is possible to rule It so finely that any little

>ctangle which contains a portion of the path shall lie wholly within R. The

sader may construct his own figure, possibly with reference to that of 128, where

finer ruling would be needed. The path C may thus be surrounded by a zigzag

le which lies within R. Each of the small rectangles within the zigzag line is a

igion of the type above considered and, by the proof above given, the integral

ound any closed curve within the small rectangle must be zero. Now the circuit

may be replaced by the totality of small circuits consisting either of the perim-
ers of small rectangles lying wholly within C or of portions of the curve C and

)rtions of the perimeters of such rectangles as contain parts of C. And if C be so

placed, the integral around C is resolved into the sum of a large number of inte-

als about these small circuits
;
for the integrals along such parts of the small

rcuits as are portions of the perimeters of the rectangles occur in pairs with oppo-

te signs.* Hence the integral around C is zero, where C is any circuit within R.

ence the integral of Pdx + Qdy from (a, b) to (x, y) is independent of the path

id defines a function F(x, y) of which Pdx + Qdy is the total differential. As
is function is continuous, its value for points on the boundary of R may be defined

ithe limit of F(x, y) as (x, y) approaches a point of the boundary, and it may thereby

s seen that the line integral of (18) around the boundary is also without any fur-

.er restriction than that P'
y
and Q^. be equal and continuous within the boundary.

* See Ex. 10 above. It is well, in connection with 123-125, to read carefully the

ark of 44-45 dealing with varieties of regions, reducibility of circuits, etc.



r x<v r* pv
I Pdx + Qdy=l P(x,l))<?x+ I Q(x,y)dy, (19)

x a, b U<i t/b

when Pdx + Q,dy 'is an exact differential, that is, when P'
v
= Qfx) may be

evaluated by the rule given for integrating an exact differential (p. 209),

provided the path along y b and x = x does not go outside the region,

If that path should out out of AJ

,
some other method of evaluation would

he required. It should, however, he home in mind that Pdx -f Qdy
is best integrated by inspection whenever the function. F, of which

Pdx + Qdy is the differential, can be recognized ;
if F is multiple valued,

the consideration of the path may be required to pick out the par-

ticular value which is needed. It may be added that the work may be

extended to line integrals in space without any material modifications.

It was seen ( 73) that the conditions that the complex function

F(x, y}
= X (x, ?/) + iY(x, y}, z = x + iy,

be a function of the complex variable z are

*;=-^and ^=r;. (20)

If these conditions be applied to the expression (13),

/s*x,y
fx,V

F(x, y)
= I Xdx ~ Ydy + i I Ydx + Xdy,

<L/a, b Jet, 6

for the line integral of such a function, it is seen that they are pre-

cisely the conditions (18) that each of the line integrals entering into

the complex line integral shall be independent of the path. Hence

the integral of a function of a complex variable is independent of the

path of integration, in the complex plane, and the integral around a

closed path vanishes. This applies of course only to simply connected

regions of the plane throughout which the derivatives in (20) are equal
and continuous.

If the notations of vectors in three dimensions be adopted,

I Xdx + Ydy + Zdz =
|F.dr,

where F = Xi + Yj + ^k, di = idx + jdy + kdz.

In the particular case where the integrand is an exact -differential and

the integral around a closed path is zero,

Xdx + Ydy + Zdz = F.dr =*dU= dr.VCT,



F _ r,V nr V- V 7J? = V K or A = j > Y = r , Z =
cte 0y ft?

i called the potential function of the force F. The negative of the

lope of the potential function is the force F and the negatives of the

>artlal derivatives are the component forces along the axes.

If the forces are such that they are thus derivable from a potential function,

tiey are said to be conservative. In fact if

nd ' m '

d2r , _ m dr dr
]C

~'2di"dt

Vi or

=-y ri

fo

'bus the sum of the kinetic energy ^mv2 and the potential energy Vis the same

.t all times or positions. This is the principle of the conservation of energy for the

imple case of the motion of a particle when the force is conservative. In case thn

orce is not conservative the integration may still he performed as

rhere W stands for the work done by the force F during the motion. The result is

hat the change in kinetic energy is equal to the work done by the force
;
but dW

3 then not an exact differential and the work must not be regarded as a function

f
(x, y,z), it depends on the path. The generalization to any number of particles

s in 123 is immediate.

125. The conditions that P'
lt
and Q'x be continuous and equal, which

nsures independence of the path for the line integral of Pdx + Qdy}

leed to be examined more closely. Consider two examples :

First fPdx+Qdy= f
~ V

. dx +
X

J J x2
4- y

2
a;
2
4- V2

dy ,

dy (*
2 + y

2
)
2 dx (z

2 + y2)
2

t appears formally that P'
v
=

<&.. If the integral be calculated around a square of

ide 2 a surrounding the origin, the result is

-< adx
. C~ g ady

+ V
2X

+ < + adz /* + ady /-< adx
. C~ g

-a X2 + ^ +
J-a as + J/

2 J+a X2 + a2 J+ a O



the derivatives P'
y
and Q,'x are not defined for (0, 0), and cannot be so defined

to be continuous functions of (x, y) near the origin. As a matter of fact

X2 + y
2 Xz + 2/

2
a, b a,b

and tan-1
(y/x) is not a single valued function

;
it takes on the increment 2 tr wh

one traces a path surrounding the origin ( 45).

Another illustration may be found in the integral

dz _ r dx + idy _
/az

_ r ax + my _ r xax + yay . r

~z

~
J x + iy

~
J x* + y'

2 Vx + iy J x* + y
2 J x2 + j/

2

taken along a path in the complex plane. At the origin z = the integrand ]

becomes infinite and so do the partial derivatives of its real and imaginary par
If the integral be evaluated around a path passing once about the origin, t

result is

f -=rilog (a;
2 + ^) + itan-i^]

aJ>I'

= 27ri. $
JO Z l_2 fcja,b

In this case, as in the previous, the integral would necessarily be zero about a

closed path which did not include the origin ;
for then the con-

ditions for absolute independence of the path would be satisfied.

Moreover the integrals around two different paths each encircling

the origin once would be equal ;
for the paths may be considered

as one single closed circuit by joining them with, a line as in the

device ( 44) for making a multiply connected region simply con-

nected, tlie integral around the complete circuit is zero, the parts

due to the description of the line in the two directions cancel,

and the integrals around the two given circuits taken in opposite directions i

therefore equal and opposite. (Compare this work with the multiple valued nati

of log z, p. 161.)

Suppose in general that P (x, y) and Q (x, y) are single valued fiu

tions which have the first partial derivatives P'y and Q,'x continue

and equal over a region R except at certain points A, B, >. Surrou:

these points with small circuits. The remaining portion of R is su

that P'
v
and Q,'x are everywhere equal and continuous

;
but the regi

is not simply connected, that is, it is possible to draw in the regi

circuits which cannot be shrunk down to a point, owing to the ft

that the circuit may surround one or more of the regions which ha

been cut out. If a circuit can be shrunk down to a point, that is, if

is not inextricably wound about one or more of the deleted portioi

the integral around the circuit will vanish
;
for the previous reason!

will apply. But if the circuit coils about one or more of the delet

regions so that the attempt to shrink it down leads to a circuit wM
consists of the contours of these regions and of lines joining them, t

integral need not vanish
;

it reduces to the sum of a number of integK



can be shrunk into another, the integrals around the two circuits are

equal if the direction of description is the same
;
for a line connecting

the two circuits will give a combined circuit which can be shrunk down
to a point.

The inference from, these various observations is that in a multiply

connected region the integral around a circuit need not be zero and

the integral from a fixed lower limit (a, b~)
to a variable upper limit

(x } y) may not be absolutely independent of the path, but may be dif-

ferent along two paths which are so situated relatively to the excluded

regions that the circuit formed of the two paths from (a, b) to (x, y)

cannot be shrunk down to a point. Hence

*= f
Ja,

+ Qdy, P',
= Q* (generally),

a,b

the function defined by the integral, is not necessarily single valued.

Nevertheless, any two values of F(x} y) for the same end point will

liffer only by a sum of the form

where I
lt
I2) , . . are the values of the integral taken around the con-

tours of the excluded regions and where mu m,a, . . . are positive 01

negative integers which represent the number of times the combined

circuit formed from the two paths will coil around the deleted regions

in one direction or the other.

126. Suppose that f(z) = X(x, y) + iY(x, y) is a single valued func-

tion of & over a region R surrounding the origin (see figure above), and

that over this region the derivative f'(z) is continuous, that is, the

relations z; = - Tx and X'x = Y'
y
are fulfilled at every point so that

no points of R need be cut out. Consider the integral

(22)

over paths lying within R. The function /(*)/ will have a contin-

uous derivative at all points of R except at the origin z = 0, where the

denominator vanishes. If then a small circuit, say a circle, be drawn

about the origin, the function /(*)/* will satisfy the requisite condi-

tions over the region which remains, and the integral (22) taken around

a circuit which does not contain the origin will vanish.

The integral (22) taken around a circuit which coils once and only

once about the origin will be equal to the integral taken around the
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small circle about the origin. Now for the circle,

r/a&= fi3&A=m r^+ r?*,IK I z I x I z
Jo Jo Jo Jo

where the assumed continuity of /() makes |>;()| < e provided th

circle about the origin is taken sufficiently small. Hence by (21)

with 1*1= rid* s f
Jo f~ Jo

= Ztre.

Hence the difference between (22) and 2 7rt/(0) can be made as sma

as desired, and as (22) is a certain constant, the result is

(2

A function /() which has a continuous derivative /'() at ever

point of a region is said to be analytic over that region. Hence if tt

region includes the origin, the value of the analytic function at tfc

origin is given by the formula

dz, (23

where the integral is extended over any circuit lying in the region an

passing just once about the origin. It follows likewise that if z a

any point within the region, then

/<*) z a

where the circuit extends once around the point a and lies wholly with]

the region. This important result is due to Cauchy.
A more convenient form of (24) is obtained by letting t = % repr

sent the value of 2 along the circuit of integration and then writii:

= z and regarding z as variable. Hence Cauchy's Integral :

tSL*. (21

This states that if any circuit be drawn in the reaion over which f(i



oses this is convenient. It may be remarked that when the values of

'() are given along any circuit, the integral

lay be regarded as denning /() for all points

dthin that circuit.

To find the successive derivatives of f(z), it

> merely necessary to differentiate with respect

5 under the sign of integration. The condi-

tons of continuity which are required to justify

tie differentiation are satisfied for all points z

ctually within the circuit and not upon it. Then

LS the differentiations may be performed, these formulas show that an

nalytic function has continuous derivatives of all orders. The definition

f the function only required a continuous first derivative.

Let a be any particular value of (see figure). Then

1 _ 1 1 1

* (t a) (z a)

- a
+

2 TTIJ (i a)
n

g
cc i a

# or

is the variable of integration and z a is a constant with respect

o the integration. Hence

(g
-

)*

(26)

ihis is Taylor's Formula for a function of a complex variable.



1. If P' Q^,, Q'x - R'
v ,

R'x = P'z and if these derivatives are continuous, sho

that Pdx + Qdy + Rdz is a total differential.

2. Show that C*'
V

p(x, y, a)dx + Q(K, y, a)dy, where C is a given curv
C/M

defines a continuous function of or, the derivative of which may be found by diffe

entiating under the sign. What assumptions as to the continuity of P, Q, f
f
tt ,

(

do you make ?

3 If logz = C-=
' X

+^~ *> taken as ta. iogz j i z j^ o ^^ t-
ji>o x2 + y2

definition of log z, draw paths which make log( + \ V 3)
= i^i, 2$Ti, If*

4. Study f -2 with especial reference to closed paths which surround -f

/o z2 1

1, or both. Draw a closed path surrounding both and making the integral vanis

5. If /(z) is analytic for all values of z and if |/(z) |
< K, show that

taken over a circle of large radius, can be made as small as desired. Hence inf

that/(z) must be the constant /(z) =/(0).

6. If G (z)
- a + ajZ H 1- anz is a polynomial, show that/() = l/G (z) mi

be analytic over any region which does not include a root of G (z)
= either with

or on its boundary. Show that the assumption that G (z)
= has no roots at

leads to the conclusion that /(z) is constant and equal to zero. Hence infer tl

an algebraic equation has a root.

7. Show that the absolute value of the remainder in Taylor's Formula is

IP \__\ z a
l"| C f(f)dt ^= 1 i*1 ML

2 TT
I

Jo (t a)
n

(t z) 2 TT p
n
p r

for all points z within a circle of radius r about cr as center, when p is the radi

of the largest circle concentric with a which can be drawn within the circuit abc

which the integral is taken, M is the maximum value of f(t) upon the circuit, a

L is the length of the circuit (figure above).

8. Examine for independence of path and in case of independence integrate

(a) Cx*ydx + xy*dy, (0) Cxysdx + xz
ydy, (y) Cxdy + ydx,

(S) | (x
2 + xy) dx + (y

2 + xy) dy, (e) / y cos xdy + ^ y* sin xdx.
J J

9. Find the conservative forces and the potential :

, Y=
3

(a
2 + y2

)i (x
2 + y2)* (x

2 + y*)*

= -we, T= -
ny, (y) -Z= 1/x, T= y/x.
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jntial of work, and express the condition that the forces jR, $ be conservative.

11. Show that if a particle is acted on by a force R = f(r) directed toward

;he origin and a function of the distance from the origin, the force is conservative.

12. If a force follows the Law of Nature, that is, acts toward a point and varies

nversely as the square r2 of the distance from the point, show that the potential

s k/r.

13. From the results F = VForF= f F.dr = fJTdx + Ydy + Zdz show

,lmt if F
t

is the potential of F
x
and 72 of F

2
then V = V

l + F
2

will be the

potential of F = F
t + F

2 ,
that is, show that for conservative forces the addition of

potentials is equivalent to the parallelogram law for adding forces.

14. If a particle is acted on by a retarding force fcv proportional to the

velocity, show that R = \ kv
2 is a function such that

xt yj
dvv dvz

~ fcv.dr =

3ere E is called the dissipative function
;
show the force is not conservative.

15. Pick out the integrals independent of the path and integrate :

(a) f yzdz + xzdy + xydz, ()3) j
ydx/z + xdy/z xydz/z

2
,

(7) f xyz (dx + dy + dz), (S) C log (xy) dx + xdy -f- ydz.

16. Obtain logarithmic forms for the inverse trigonometric functions, analogous

x> those for the inverse hyperbolic functions, either algebraically or by considering

;he inverse trigonometric functions as defined by integrals as

. r z dz . , f z dz
tan-^z =

|
-

, sm-iz =
/ =>.

Jo 1+z2 Jo Vl z2

17. Integrate these functions of the complex variable directly according to the

rules of integration for reals and determine the values of the integrals by

substitution :

Xl+i

/>2t

ze***dz, (/5)
\ cos S zdz, (j) J

(
r

1^-^,
J -- 2

[n the case of multiple valued functions mark two different paths and give two values.

18. Can the algorism of integration by parts be applied to the definite (or indefi-

nite) integral of a function of a complex variable, it being understood that the

integral must be a line integral in the complex plane? Consider the proof of

Taylor's Formula by integration by parts, p. 57, to ascertain whether the proof is

valid for the complex plane and what the remainder means.



F = VF. The indwcizon or flux of the force F outward across the element d.

a curve in the plane is by definition Fcos(.F, ri)ds. By reference to Ex.

p. 297, show that the total induction or flux of F across the curve is the line intej

(along the curve)

- fFcos(F, n)ds = m f^Mlds = f ds:
J J dn J dn

_ I r> \ r dV
and m = - / Fees'/*

7

, n)ds = f ds,
2 TT /o 2 IT /o dn

where the circuit extends around the point r = 0, is a formula for obtaining

mass m within the circuit from the field of force F which is set up by the mass

20. Suppose a number of masses
?/i, ,

m
2 , , attracting as in Ex. 19, are situa

at points ( t , T^), ( 2 , 7/2), in the plane. Let

be the force and potential at (x, y) due to the masses. Show that

~ l r
Fcos(F, n)da = V f ds =V'm< = Jif,

where S extends over all the masses and 2' over all the masses within the ciri

(none being on the circuit), gives the total mass M within the circuit.

127. Some critical comments. In the discussion of line integr

and in the future discussion of double integrals it is necessary to sp<

frequently of curves. For the usual problem the intuitive concept

of a curve suffices. A curve as ordinarily conceived is continuous, ]

a continuously turning tangent line except perhaps at a finite num
of angular points, and is cut by a line parallel to any given direction

only a finite number of points, except as a portion of the curve ir

coincide with such a line. The ideas of length and area are also ap]

cable. For those, however, who are interested in more than the intuit

presentation of the idea of a curve and some of the matters therew

connected, the following sections are offered.

If <p (t) and
\ff (t) are two single valued real functions of the real variable t defl:

for all values in the interval = t =s tv the pair of equations

will be said to define a curve. If and
\f/

are continuous functions of
t,

the cu

will be called continuous. If
<f> (ta )

=
<j> (t )

and ^ (^) = \f/ (y ,
so that the initial J

end points of the curve coincide, the curve will be called a closed curve provi

it is continuous. If there is no other pair of values t and t' which make t

</> (t)
=

<f) (f) and \f>(t)
=

\f/ (f), the curve will be called simple; in ordinary langui

the curve does not cut itself. If t describes the interval from t to
t^

continuoi

and constantly in the same sense, the point (x, y) will be said to describe the cu

in a given sense
;
the opposite sense can be had by allowing

1

1 to describe the intei

in the opposite direction.



s*,- , A,,t. There will be n corresponding increments for x and y,

A|X, Aw>x, , AftX, and A^, A
2^, , A^y .

i
|
AjX

|

=
AjC,

bvious inequalities. It will be necessary to consider the three sums

.ny division of the interval from t to
t
each of these sums has a definite

ve value. When all possible modes of division are considered for any an'I

value of n, the sums tr
l
will form an infinite set of numbers which may be

1 limited or unlimited above (22). In case the set is limited, the upper
ier of the set is called the variation of x over the curve and the curve is said

of limited variation in x; in case the set is unlimited, the curve is of unlimited

tion in x. Similar observations for the sums <r
2 . It may be remarked that the

stric conception corresponding to the variation in x is the sum of the projec-

of the curve on the x-axis when the sum is evaluated arithmetically and not

raically. Thus the variation in y for the curve y = sinx from to 2 TT is 4.

lurve y = sin (1/z) between these same limits is of unlimited variation in y.

th cases the variation in x is 2 TT.

both the sums <r
1
and o-2 have upper frontiers L^ and i2 ,

the sum a

per frontier L
3 =* Xt + L

2 ;
and conversely if <r8 has an upper f

1 <r
2 will have upper frontiers. If a new point of division is ir>t.nr

im
<TJ

cannot decrease and, moreover, it cannot increas" *

icillation of x in the interval Ait. For if AI,-X -f A2 fX =

I Ai,-x| + |A2l-x| ^ i A,-x|, |Alfx| + |A2l-x|
=

Aiif and Aa,-f are the two intervals into which t

ition in the interval A;. A similar theorem is

that if the interval from ( to ^ is divided sulu

liffer by as little as desired from their frontiers

>f the similar problem of 28. First, the fact thi

some method of division can be found so that L^
f points of division is n. Let it next be assum

then be uniformly continuous ( 25), and hen<

that when A{t < d the oscillation of x is Mi -

id of division for which A,- < 8, and its sum
<r(.

on with n points upon this gives a sum
<r'^

2=
.

i'
<rr Hence L

l a-{'<^e and i
t <r[

< e

ren for (r
2 and i

2
.

treat the sum <rs and its upper frontier Ls
note that hert

additional point of division cannot decrease trs and, as

not increase o-
8 by more than twice the sum of the

iterval At. Hence if the curve is continuous, that is

us, the division of the interval from t to t can be t



For any division of the interval from t to i
t
each of these sums has a definite

positive value. When all possible modes of division are considered for any an'!

every value of n, the sums
o-j

will form an infinite set of numbers which may be

either limited or unlimited above (22). In case the set is limited, the upper

frontier of the set is called the variation of x over the curve and the curve is said

to be of limited variation in x; in case the set is unlimited, the curve is of unlimited

variation in x. Similar observations for the sums <rz . It may be remarked that the

geometric conception corresponding to the variation in x is the sum of the projec-

tions of the curve on the x-axis when the sum is evaluated arithmetically and not

algebraically. Thus the variation in y for the curve y sin x from to 2 TT is 4.

The curve y = sin (1/x) between these same limits is of unlimited variation in y.

In botli cases the variation in x is 2 TT.

If both the sums cr
1
and <rz

have upper frontiers i, and L2 ,
the sum <r

s
will have

an upper frontier L
s =g L t + L2 ;

and conversely if a
s
has an upper frontier, both

<r
l
and <r

2
will have upper frontiers. If a new point of division is intercalated in A,-.

the sum <r
l
cannot decrease and, moreover, it cannot increase by more than twice

the oscillation of x in the interval Ait. For if Ai t-x + A2 iX = At-x, then

I AifX| + |

A2l-x| ^ |A,-x|, | Aitx| + |A2l-x| ^

Here Ant and A2 ,-f are the two intervals into which A(t is divided, andMt
- rm is the

oscillation in the interval Ait. A similar theorem is true for er
2 . It now remains to

show that if the interval from t to ^ is divided sufficiently fine, the sums <r
1
and <r2

will differ by as little as desired from their frontiers i
t
and i2

. The proof is like

that of the similar problem of 28. First, the fact that L t
is the frontier of <r

l
shows

that some method of division can be found so that L
l

<r
l <^f. Suppose the num-

ber of points of division is n. Let it next be assumed that (t)
is continuous ;

it

must then be uniformly continuous ( 25), and hence it is possible to find a 5 so

small that when A < S the oscillation of x is Af,-
- m{ < e/4n. Consider then any

method of division for which Ajt < 5, and its sum <r[.
The superposition of the former

division with n points upon this gives a sum o^' j== y^. But <r{ ff{ < 2 ne/4 n = 2 *,

ando-jSov Hence ix
- <r' < \ e and i

t
-

ff{ < e. A similar demonstration may

be given for <r
2
and L

2
.

To treat the sum <r
8
and its upper frontier Ls

note that here, too, the intercalation

of an additional point of division cannot de-jrease <rs a.nd, as

it cannot increase <r
s by more than twice the sum of the oscillations of x and y m

the interval At. Hence if the curve is continuous, that is, if both x and y are con-

tinuous, the division of the interval from to
t
can be taken so fine that <rs shall



small, in tms case JL
S
= s is caiiea tne length, oj me curve, it is tneretore seen tnat

the necessary and sufficient condition that any continuous curve shall have a, length is

that its Cartesian coordinates x and y shall botfi be of limited variation. It is clear that

if the frontiers -iC
1(0> ^2(^)5 -^s(0 from *o to anv value of * be regarded as functions

of
i, they are continuous and nondecreasing functions of

i,
and that L

s (t)
is an

increasing function of t
;

it would therefore be possible to take s in place of t as

the parameter for any continuous curve having a length. Moreover if the deriva-

tives x' and y' of x and y with respect to t exist and are continuous, the derivative s'

exists, is continuous, and is given by the usual formula s' = Vx' a + j/'
2

. This will

be left as an exercise; so will the extension of these considerations to three

dimensions or more.

In the sum x1 x = 2AjX of the actual, not absolute, values of A,'Z there may
be both positive and negative terms. Let TT be the sum of the positive terms and

v be the sum of the negative terms. Then

Z
l
~ X = V " ff

l
= TT+ V, 2 7T = X

x
XQ + ffv 2v = XQ

X
l + ff

l
.

As a; has an upper frontier Ltwhen x is of limited variation, and as X and x
x
are con-

stants, the sums TT and v have upper frontiers. Let these be II and N. Considered

as functions of t, neither II () nor N(t) can decrease. "Write x(t) = x + n(t) N().
Then the function x

(t)
of limited variation has been resolved into the difference of

two functions each of limited variation and nondecreasing. As a limited non-

decreasing function is integrable (Ex. 7, p. 54), this shows that a function is integrable

over any interval over which it is of limited variation. That the difference x x" xf

of two limited and nondecreasing functions must be a function of limited variation

follows from the fact that
|

Ax
|
=s

|

Ax"
|
+

|

Ax'
|.

Furthermore if

x = x + n-N be written x = [x + H + |x |
+ t- t

] -[N + |x |+ t~ y,
it is seen that a function of limited variation can be regarded as the difference of two

positive functions which are constantly increasing, and that these functions are con-

tinuous if the given function x
(t)

is continuous.

Let the curve C defined by the equations x = </>(), y = ^ (t), t =i t S tv be

continuous. Let P (x, y) be a continuous function of (x, y) . Form the sum

2jP(fc, *)A*B=2jp(fc, ^A^'-^Pfc, ^A,*', (28)

where AjiC, A2x, are the increments corresponding to A
Ti,

A
2 , ,

where (&, in)

is the point on the curve which corresponds to some value of t in Aji, where x is

assumed to be of limited variation, and where x" and x' are two continuous increas-

ing functions whose difference is x. As x" (or x') is a continuous and constantly

increasing function of i, it is true inversely (Ex. 10, p. 45) that t is a continuous and

constantly increasing function of x" (or x'). As P(x, y) is continuous in (x, y), it

is continuous in t and also in x" and x'. Now let Ait = ;
then A,*" = and

A,-x' = 0. Also

iX" = j"^ Pdx" and limV Pt
-

A,-x' = C
^

z

The limits exist and are integrals simply because P is continuous in x" or in xf.

Hence the sum on the left of (28) has a limit and

\~\ f a?, / &" / af
lim> PA,-z = I

Pdx=
/

'Pdx"
/

J

c^x
ff ^' ^^



'he assumption that y is of limited variation and that Q (*, y) is continuous would

3ad to a corresponding line integral. The assumption that both x and y are of limited

ariotion, that is, that the curve is rec$ct&ie, and that P and Q are continuous would

sad to the existence of the line integral

C
v i

P(x,y)dx+Q(x,y)dy.J
Xf Vn

k. considerable theory of line integrals over general rectifiable curves may be con-

tracted. The subject will not be carried further at this point.

128. The question of the area of a curve requires careful consideration. In the

.rst place note that the intuitive closed plane curve which does cut itself is intui-

Lvely believed to divide the plane into two regions, one interior, one exterior to the

urve
;
and these regions have the property that any two points of the same region

nay be connected by a continuous curve which does not cut the given curve,

whereas any continuous curve which connects any point of one region to a point

f the other must cut the given curve. The first question which arises with regard

o the general closed simple curve of page 308 is : Does such a curve divide the plane

uto just two regions with the properties indicated, that is, is there an interior and

xterior to the curve ? The answer is affirmative, but the proof is somewhat difficult

iot because the statement of the problem is involved or the proof replete with

,dvanced mathematics, but rather because the statement is so simple and elemen-

ary that there is little to work with and the proof therefore requires the keenest

aid most tedious logical analysis. The theorem that a closed simple plane curve

las an interior and an exterior will therefore be assumed.

As the functions x(t), y(t) which define the curve are continuous, they are lim-

ted, and it is possible to draw a rectangle with sides x = a, x = &, y = c, y = d so

\s entirely to surround the curve. This rectangle may next be ruled with a num-

>er of lines parallel to its sides, and thus be

livided into smaller rectangles. These little rec-

angles may be divided into three categories, those

>utside the curve, those inside the curve, and

,hose upon the curve. By one upon the curve is

neant one which has so much as a single point

>f its perimeter or interior upon the curve. Let

1, A{, Au ,
Ae denote the area of the large rec-

;angle, the sum of the areas of the small rectan-

gles, which are interior to the curve, the sum of

;he areas of those upon the curve, and the sum of

,hose exterior to it. Of course AAi + Au+Ae .

Sow if all methods of ruling be considered, the

luantities A{ will have an upper frontier L{ ,
the quantities Ae will have an upper

'rentier Le ,
and the quantities Au will have a lower frontier l^. If to any method

rf ruling new rulings be added, the quantities A { and A e become A\ and A'
e
with

;he conditions A'
{

A f ,
A'

e ^ A e ,
and hence A'u ^ Au . From this it follows that

A. = L
( + lu + Le . For let there be three modes of ruling which for the respective

sases Ai, A t , AU make these three quantities differ from their frontiers L^ Le , k

by less than^-e. Then the superposition of the three systems of rulings gives rise

to a ruling for which A\ , A',, A'u must differ from the frontier values by less than



by less than c, and must therefore be equal to it.

It is now possible to define as the (qualified) areas of the curve

Li = inner area, lu = area on the curve, Z-j + In = total area.

In the case of curves of the sort intuitively familiar, the limit lu is zero an

L{ = A Le becomes merely the (unqualified) area bounded by the curve. Th

question arises : Does the same hold for the general curve here under discussion

This time the answer is negative; for there are curves which, though closed an

simple, are still so sinuous and meandering that a finite area lu lies upon the curvi

that is, there is a finite area so bestudded with points of the curve that no part c

it is free from points of the curve. This fact again will be left as a statement witl

out proof. Two further facts may be mentioned.

In the first place there is applicable a theorem like Theorem 21, p. 61, namelj
It is possible to find a number 5 so small that, when the intervals between th

rulings (both sets) are less than 8, the sums Au , Ai, A e differ from their frontiei

by less than 2 e. For there is, as seen above, some method of ruling sucli that the*

sums differ from their frontiers by less than e. Moreover, the adding of a sing]

new ruling cannot change the sums by more than AD, where A is the largest inte:

val and D the largest dimension of the rectangle. Hence if the total number <

intervals (both sets) for the given method is N and if 5 be taken less than e/JVA7

the ruling obtained by superposing the given ruling upon a ruling where the inte:

vals are less than S will be such that the sums differ from the given ones by lei

than e, and hence the ruling with intervals less than 5 can only give rise to sun

which differ from their frontiers by less than 2 e.

In the second place it should be observed that the limits Lt-, { have been obtaine

by means of all possible modes of ruling where the rules were parallel to the x- an

y-axes, and that there is no a priori assurance that these same limits would ha^

been obtained by rulings parallel to two other lines of the plane or by covering il

plane with a network of triangles or hexagons or other figures. In any thoroug
treatment of the subject of area such matters would have to be discussed. Ths

the discussion is not given here is due entirely to the fact that these critical con

ments are given not so much with the desire to establish certain theorems as wit

the aim of showing the reader the sort of questions which come up for consider!

tion in the rigorous treatment of such elementary matters as " the area of a plan

curve," which he may have thought he ff knew all about."

It is a common intuitive conviction that if a region like that formed by a squa.i

be divided into two regions by a continuous curve which runs across the squai
from one point of the boundary to another, the area of the square and the sum c

the areas of the two parts into which it is divided are equal, that is, the curv

(counted twice) and the two portions of the perimeter of the square form tw

simple closed curves, and it is expected that the sum of the areas of the curves :

the area of the square. Now in case the curve is such that the frontiers ,, and i

formed for the two curves are not zero, it is clear that the sum Li + L\ for th

two curves will not give the area of the square but a smaller area, whereas th

sum (Li -f lu) 4- (L'f + Q will give a greater area. Moreover in this case, it is nc

easy to formulate a general definition of area applicable to each of the regions an

such that the sum of the areas shall be equal to the area of the combined regioi

But if / and both vanish, then the sum L> -f L\ does give the combined am



closed curves as have lu = 0, and to say that the quadrature of such curves is possible,

but that the quadrature of curves for which ZK ^ is impossible.

It may be proved that : If a curve is rectifiable or even if one of the functions x (t)

or y (t) is of limited variation, the limit 4 is zero and the quadrature of the curve is

possible. For let the interval t == t s
t^

be divided into intervals A^, A
2t,

in

which the oscillations of x and y are e
t ,

e
2 , , T;U i;2 ,

. Then the portion of

the curve due to the interval A,-i may be inscribed in a rectangle fft){, and that

portion of the curve will lie wholly within a rectangle 2ei-2?/,- concentric with

this one. In this way may be obtained a set of rectangles which entirely contain

the curve. The total area of these rectangles must exceed lu . For if all the sides

of all the rectangles be produced so as to rule the plane, the rectangles which go
to make up Au for this ruling must be contained within the original rectangles,

and as Au > Z, the total area of the original rectangles is greater than 1^. Next

suppose x(t) is of limited variation and is written as x + II
(t) N(t), the differ-

ence of two nondecreasing functions. Then Se{ = II (^) + -^(^), that is, the sum
of the oscillations of x cannot exceed the total variation of x. On the other hand

as y (t)
is continuous, the divisions A,-t could have been taken so small that i?< < ij.

Hence

The quantity may be made as small as desired, since it is the product of a finite

quantity by 17. Hence lu = and the quadrature is possible.

It may be observed that if x (t)
or y (t)

or both are of limited variation, one or

all of the three curvilinear integrals

fydx, fxdy,

may be defined, and that it should be expected that in this case the value of the

integral or integrals would give the area of the curve. In fact if one desired to

deal only with rectifiable curves, it would be possible to take one or all of these

integrals as the definition of area, and thus to obviate the discussions of the pres-

ent article. It seems, however, advisable at least to point out the problem of

quadrature in all its generality, especially as the treatment of the problem is very

similar to that usually adopted for double integrals ( 132). From the present

viewpoint, therefore, it would be a proposition for demonstration that the curvi-

linear integrals in the cases where they are applicable do give the value of the

area as here defined, but the demonstration will not be undertaken.

EXERCISES

1. For the continuous curve (27) prove the following properties:

(a) Lines x a, x b may be drawn such that the curve lies entirely between

them, has at least one point on each line, and cuts every line x = ,
ct< < b, in at

least one point ; similarly for y.

(/9) From p = x cos a. + y sin a, the normal equation of a line, prove the prop-

ositions like those of (a) for lines parallel to any direction.

(7) If ( , if)
is any point of the xj/-plane, show that the distance of (, 17)

from

the curve has a minimum and a maximum value.



(6) ii m^t, i\)
ana JM^, ri) are tne minimum ana maximum aistances or (,

from the curve, the functions m (, rj)
and 3f (, 17) are continuous functions of (, ij

Are the coordinates x(, 17), y (f, i?)
of the points on the curve which are at mil

mum (or maximum) distance from
( , q) continuous functions of (, 17)

?

(t) If. t', i", , <*>, are an infinite set of values of t in the interval t s ( s
and if t is a point of condensation of the set, then x = (), y =

i/' (<) 'is a poi:

of condensation of the set of points (x', y'), (x", y"), , (xW, y(*)),
... corr

sponding to the set of values
',

t"
,
f<*>, .

(f) Conversely to (e) show that if (x', y'), (
x"> 2/")>

' ' '

i (
x(k\ 2/

a'

}
)>

are J

infinite set of points on the curve and have a point of condensation (x, j/), th<

the point (x, y) is also on the curve.

(T;) From (f) show that if a line x = cuts the curve in a set of points #', y",

then this suite of j/'s contains its upper and lower frontiers and has a maximum
minimum.

2. Define and discuss rectifiable curves in space.

3. Are y = x2 sin - and y = Vx sin - rectifiable between x = 0, x = 1 ?
x x

4. If x
(i)

in (27) is of total variation II
(ij) + N

((j), show that

f
XlP (x, y) dx < M[IL (tj + N ft)],

C/a;

where 3f is the maximum value of P (x, y) on the curve.

5. Consider the function 9 (f, TJ, t)
= tan- 1 ^ ~ ' '

which is the inclination
f x

(t)

the line joining a point (, TJ)
not on the curve to a point (x, y) on the curve. "Wi

the notations of Ex. 1 (8) show that

,
t + A)- 0fc , t)\<

where 5 >
|

Ax
|

and S >
|
Ay j may be made as small as desired by taking At sufficient

small and where it is assumed that m 0.

6. From Ex. 5 infer that Q (f , 17, t) is of limited variation when t describes tl

interval t S= t S i
t defining the curve. Show that (, TJ, i)

is continuous in (f ,

through any region for which m > 0.

7. Let the parameter t vary from t to f
t
and suppose the curve (27) is closed

that (x, y) returns to its initial value. Show that the initial and final values

6 (1, 17, f) differ by an integral multiple of 2 IT. Hence infer that this difference

constant over any region for which m > 0. In particular show that the constant

over all distant regions of the plane. It may be remarked that, by the study
this change of as t describes the curve, a proof may be given of the theorem th

the closed continuous curve divides the plane into two regions, one interior, 01

exterior.

8. Extend the last theorem of 128 to rectifiable curves.



ON MULTIPLE INTEGRALS

129. Double sums and double integrals. Suppose that a body of

matter is so thin and flat that it can be considered to lie in a plane.
If any small portion of the body surrounding a given point P (x, y) be

considered, and if its mass be denoted by Am and its area by A4, the

average (surface) density of the portion is the quotient Avra/AJ., and the

actual density at the point P is defined as the limit of this quotient
when &A = 0, that is, ^mD (x, y) = lim -

V >yj
AX = oA,4

The density may vary from point to point. Now conversely suppose
that the density D (x, y) of the body is a known function of (x, y) and

that it be required to find the total mass of the

body. Let the body be considered as divided

up into a large number of pieces each of which

is small in every direction, and let A^4
f be the

area of any piece. If
(,-, 17,-)

be any point in

&A
i} the density at that point is

>(,-, /,)
and

the amount of matter in the piece is approxi-

mately -D(i, T7t)A^4 t
- provided the density be regarded as continuous,

that is, as not varying much over so small an area. Then the sum

extended over all the pieces, is an approximation to the total mass,

and may be sufficient for practical purposes if the pieces be taken

tolerably small.

The process of dividing a body up into a large number of small pieces

of which it is regarded as the sum is a device often resorted to
;
for the

properties of the small pieces may be known approximately, so that

the corresponding property for the whole body can be obtained approx-

imately by summation. Thus by definition the moment of inertia of a

small particle of matter relative to an axis is mr2

,
where m, is the mass

of the particle and r its distance from the axis. If therefore the

moment of inertia of a plane body with respect to an axis perpendicular
315



to its plane were required, the body would be divided into a largi

number of small portions as above. The mass of each portion woul(

be approximately D( i} ly^A^j and the distance of the portion fron

the axis might be considered as approximately the distance ?, fron

the point where the axis cut the plane to the point (,-, iyf)
in the poi

tion. The moment of inertia would be

or nearly this, where the sum is extended over all the pieces.

These sums may be called double sums because they extend over tw

dimensions. To pass from the approximate to the actual values of th

mass or moment of inertia or whatever else might be desired, th

underlying idea of a division into parts and a subsequent summatio:

is kept, but there is added to this the idea of passing to a limit. Con"

pare 16-17. Thus

)A^ and

would be taken as the total mass or inertia, where the sum over

divisions is replaced by the limit of that sum as the number c

divisions becomes infinite and each becomes small in every directior

The limits are indicated by a sign of integration, as

The use of the limit is of course dependent on the fact that the lim:

is actually approached, and for practical purposes it is further depenc

ent on the invention of some way of evaluating the limit. Both thes

questions have been treated when the sum is a simple sum (16-1'
28-30, 35) ; they must now be treated for the case of a double sum lik

those above.

130. Consider again the problem of finding the mass and let Dt
t

used briefly for !>(, 77,-).
Let M

{ be the maximum value of the densit

in the piece A/i and let m
{ be the minimum value. Then

In this way any approximate expression D^Af for the mass is shut i

between two values, of which one is surely not greater than the tru

mass and the other surely not less. Form the sums

s =
2)
mAA

i = 2J AA4, ^V Mi&A {
= 5

extended over all the elements A^l,-. Now if the sums s and 5 approac



term .D
t-AA- is then repre-

sented by the volume of a

small cylinder upon the base

A.4,- and with an altitude equal

to the height of the surface

= D (x, ?/)
above some point

of A/l;. The sum S-DA4 *
of

all these cylinders will be ap-

proximately the volume under

the surface zD (x, y) and

over the total area A = SAvl,.

The term If.-A/l; is represented

by the volume of a small cylin-

der upon the base AA { and cir-

cumscribed about the surface
;

the term m
{
A.4 by a cylinder

inscribed in the surface. When the number of elements A4 {
is increased

without limit so that each becomes indefinitely small, the three sums s,

S, and 2Df
A^

t
. all approach as their limit the volume under the surface

and over the area A. Thus the notion of volume does for the double

sum the same service as the notion of area for a simple sum.

Let the notion of the integral be applied to find the formula for the center of

gravity of a plane lamina. Assume that the rectangular coordinates of the center

of gravity are (x, y). Consider the body as divided into small areas &A { . If (&, 171)

is any point in the area AA,-, the approximate moment of

the approximate massDi&A { in that area with respect to

the line x = x is the product (& x) D,-A^L,- of the mass

by its distance from the line. The total exact moment
would therefore be

=
(x - *>D (

x
' V) dA =

and must vanish if the center of gravity lies on the line

x = x as assumed. Then ^

JxD (x, y) dA - CxD (x, y) dA = or
J*xDdA

= xJJ> (x, y) dA.

These formal operations presuppose the facts that the difference of two integrals is

the integral of the difference and that the integral of a constant x times a function J)



;-SJL8 JJM T-UljrJttAJj UA1AJUJUUQ

is the product of the constant by the integral of the function. It should be imme-

diately apparent that as these rules are applicable to sums, they must be applicable

to the limits of the sums. The equation may now be solved for x. Then

I xDdA Cxdm CyDdA \ ydm/m r m
DdA JDdA

where m stands for the mass of the body and dm for LdA, just as A?n,- might replace

0,-A/li ;
the result for y may be written down from symmetry.

As another example let the kinetic energy of a lamina moving in its plane be cal-

culated. The use of vectors is advantageous. Let r be the

vector from a fixed origin to a point which is fixed in the

body, and let TI be the vector from this point to any other

point of the body so that Ly

dif dto di\t
fi = TO + rji,

- = + or v,- = YO + YI ,-.

dt dt dt

The kinetic energy is 2 u
2
A?n, or better the integral of -J-^dwi. Now

i>
a = V/.Y,- ~ Vo'Vo H- VifVi,- + 2 VO-YI,- = v

2 + r^w
2 + 2 YO-VIJ.

That Vii-Vit = r*
{
w2

,
where rlt

- =
|rjf |

and w is the angular velocity of the body
about the point r

,
follows from the fact that TU is a vector of constant length ru

and hence |dri,-|
= rudd, where d9 is the angle that TU turns through, and conse-

quently w = d6/dt. Next integrate over the body.

C^v^dm = j|i>
2dm + j^r^dm + fvo'

= i v*M + | wz fr?dm + yc . fVidm ; (2)

for
-u,

2 and w2 are constants relative to the integration over -tfie body. Note that

V fv^m = if YO = or if fv^m = f r,dm = [Ydm = 0.
/ J J dt dt J

But v = holds only when the point r is at rest, and fr^m = is the condition

that r be the center of gravity. In the last case

T =
Ji v2dm = | v*M + i w2

!, I = Cr 2dm.

As I is the integral which has been called the moment of inertia relative to an axis

through the point r perpendicular to the plane of the body, the kinetic energy is

seen to be the sum of \ Mv\, which would be the kinetic energy if all the mass were

concentrated at the center of gravity, and of | Iw
2

,
which is the kinetic energy of

rotation about the center of gravity ;
in case r indicated a point at rest (even if

only instantaneously as in 39) the whole kinetic energy would reduce to the

kinetic energy of rotation i Iw2
. In case rn indicated neither the center of gravity
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131. To evaluate the double integral in case the region is a rectangle

parallel to the axes of coordinates, let the division be made into small

rectangles by drawing lines parallel to the

axes. Let there be m equal divisions on one
P]
m columns i=*i

,
2. . .

,
m

side and n on the other. There will then be

mn small pieces. It will be convenient to in-

troduce a double index and denote by A^ the

area of the rectangle in the ith column and/fch
row. Let ( y , r/6-) be any point, say the mid-

dle point in the area A4 y
= Ao^A^. Then the sum may be written

a;2Ayn H-----f- Dmn&xm&yn .

Now the terms in the first row are the sum of the contributions to

fiJ
- of the rectangles in the first row, and so on. But

= f 'z>(x, ^)tto + $
LJz J

and Ay

That is to say, by taking m sufficiently large so that the individual

increments Aa-,- are sufficiently small, the sum can be made to differ

from the integral by as little as desired because the integral is by
definition the limit of the sum. In fact

l&l = 2) \

Mv
~ ma\*xi = <*!

-
*o)

i

if e be the maximum variation of D (x, y) over one of the little rectangles.

After thus summing up according to rows, sum up the rows. Then

y
= f \D(*, yjdx^ + f
Jx J*

\\\
=

I^Ay, + 2Ay2 f - - +fnAyn
|

^ (*
-^^ Ay = c(*

- x
Q)

r x
i

If / D(x,y)dx = <l>(i/),
Jx

then Z^ D,,Avl,, = AfyiAA?/. -1- d.r'ri^ A-//. -I---- -4- <4 (TJ..^ At/_ -I- X



=
I i/ct^i

It is seen that the double integral is equal to the result obtained ty

first integrating with respect to x, regarding y as a parameter, and then

after substituting the limits, integrating with respect to y. If the sum

niation had been first according to columns and second according t<

rows, then by symmetry

(3'

rvi f x
i r x

i r"i

DdA= I I D(x,y)dxdy=l I D(x t y)dydx.
A> ^x

o J^v *A>

This is really nothing but an integration under the

sign ( 120).

If the region over which the summation is extended

is not a rectangle parallel to the axes, the method

could still "be applied. But after summing or rather

integrating according to rows, the limits would not

be constants as X
Q
and x

lt
but would be those func-

tions x = <
(//)

and x =
/> t (y) of y which represent the left-hand am

right-hand curves which bound the region. Thus

//*
tfj.

/ 4>i (V')

DAA- I I D(x,y)dxdy. (3"
t/7/P

y </> (y)

And if the summation or integration had been first

with respect to columns, the limits would not have

been the constants ?/ and yv but the functions

y = ^ (ai)
and y = ^(a?) which represent the lower

and upper bounding curves of the region. Thus

//*!
/*"'t(a;)

DdA= I \

Jx, J*MX)
D(x,y}dydx.

dx Xi_2

(3'"

The order of the integrations cannot be inverted without making th

corresponding changes in the limits, the first set of limits being sue'

functions (of the variable with regard to which the second integration i

to be performed) as to sum up according to strips reaching from one sid

of the region to the other, and the second set of limits being constant

which determine the extreme limits of the second variable so as to sur

up all the strips. Although the results (3") and (3'") are equal, it frt

quently happens that one of them is decidedly easier to evaluate than th

other. Moreover, it has clearly been assumed that a line parallel to th

* The result may also be obtained as in Ex. 8 below.
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axis of the first integration cuts the bounding curve in only two points ;

if this condition is not fulfilled, the area must be divided into subareas
for which it is fulfilled, and the results of integrating over these smaller
areas must be added algebraically to find the complete value.

To apply these rules for evaluating a double integral, consider the problem of

finding the moment of inertia of a rectangle of constant density with respect to

one vertex. Here

I = fDr*dA = D C(jc* + ?/
2
)
dA = D f

*

f
*

(x
2 + y*}dxdy

*J \J /n / ft

az + &*).

If the problem had been to find the moment of inertia of an ellipse of uniform

density with respect to the center, then

(x* + y*)dA = Df C
+
a
B L!LJV + y) dxdy

J~h J
j-
v&2

j/
2

f + n f + -' V rt- - .r-= Dl I
, (x* +J a J V a'- x-

Either of these forms might be evaluated, but the moment of inertia of the whole

ellipse is clearly four times that of a quadrant, and hence the simpler results

) dydx = ~
4

It is highly advisable to make use of symmetry, wherever possible, to reduce the

region over which the integration is extended.

132. With regard to the more careful consideration of the limits involved in the

definition of a double integral a few observations will be sufficient. Consider the

sums S and s and let M^Ai be any term of the first and m,-AJ.i the corresponding
term of the second. Suppose the area AA{ divided into two parts AAu and AA 2 i,

and let Jtfi t-,
Jlf2t

- be the maxima in the parts and mii, m%i the minima. Then since

the maximum in the whole area A4f cannot be less than that in either part, and

the minimum in the whole cannot be greater than that in either part, it follows

that mi,- g m,-, mzi ^ m^ Jflt- s= Jlff ,
M2 i ~=* MI, and

miAAi s m^-A^Ut + m2iAJ. 2 i, MuAA-u -f Jf2 ,-AJ. 2 t = Mi&Ai.

Hence when one of the pieces AAi is subdivided the sum S cannot increase nor the

sum s decrease Then continued inequalities may be written as

mA S miAAi s Vl>,-, w &A;S M{AAi ^ MA,



only the sums S and s due to some particular mode of subdivision, but consider all

such sums due to all possible modes of subdivision. As the sums S are limited1

below by mA they must have a lower frontier
,
and as the sums s are limited

above by MA they must have an upper frontier 1. It must be shown that I L
To see this consider any pair of sums S and s corresponding to one division and

any other pair of sums S' and s' corresponding to another method of division
;
alsc

the sums S" and s" corresponding to the division obtained by combining, that is

by superposing the two methods. Now

S' ^ ti" S s" 5 s, S^ S" ^ s" ^ s', S^ L, S' ^ X, s ^ J,
s' S L

It therefore is seen that any S is greater than any 8, whether these sums correspond

to the same or to different methods of subdivision. Now if L < /, some S would

have to be less than some s
;
for as L is the frontier for the sums S, there must b<

some such sums which differ by as little as desired from L
;
and in like mannei

there must be some sums s which differ by as little as desired from I, Hence as n(

S can be less than any s, the supposition L < I is untrue and L^l.
Now if for any method of division the limit of the difference

lim (S
-

s)
= lim (M{

-
mi)AA = lim Ot-AA f =

of the two sums corresponding to that method is zero, the frontiers L and I mxist b<

the same and both S and s approach that common value as their limit
;
and if th<

difference S s approaches zero for every method of division, the sums S am
s will approach the same limit L = I for all methods of division, and the sun

IiDiAAi will approach that limit independently of the method of division as wel

as independently of the selection of
(,-, >;,).

This result follows from the fact tha

L I S-S s, S L ^ S s,
I s ^ S s, and hence if the limit of S s ii

zero, then L = I and S and s must approach the limit L I. One case, whicl

covers those arising in practice, in which these results are true is that in whicl

JD(x, y) is continuous over the area A except perhaps upon, a finite number o:

curves, each of which may be inclosed in a strip of area as small as desired anc

upon which I) (at, y) remains finite though it be discontinuous. For let the curve;

over which D (x, y) is discontinuous be inclosed in strips of total area a. The con

tribution of these areas to the difference 8 s cannot exceed (M m)a. Apar
from these areas, the function D (x, y) is continuous, and it is possible to take thi

divisions A-4,- so small that the oscillation of the function over any one of then

is less than an assigned number e. Hence the contribution to S s is less thai

e (A a) for the remaining undeleted regions. The total value of S s is there

fore less than (M m) a + e (A a) and can certainly be made as small as desired

The proof of the existence and uniqueness of the limit of SD,-AJ. t
- is therefor

obtained in case D is continuous over the region A except for points along a that

number of curves where it may be discontinuous provided it remains finite

Throughout the discussion the term " area " has been applied ;
this is justified by th<

previous work ( 128). Instead of dividing the area A into elements AA, one ma;

rule the area with lines parallel to the axes, as done in 128, and consider the sum

SJfAzAy, SmAxAy, SZ>AxAy, where the first sum is extended over all the rectan

gles which lie within or upon the curve, where the second sum is extended ove

all the rectangles within the curve, and where the last extends over all rectangle



way of rigorous analysis than to treat the simpler questions and to indicate the

need of corresponding treatment for other questions.

The justification for the method of evaluating a definite double integral as given
above offers some difficulties in case the function D(x, y) is discontinuous. The

proof of the rule may be obtained by a careful consideration of the integration of

a function defined by an integral containing a parameter. Consider

* (y) = f
*

1D (x, y) dx, f\ (y) dy = f
*l

f *'.D (x, y) dxdy. (4)Jx
O

J
Vo

J H J:r
d

It was seen ( 118) that <f>(y) is a continuous function of y if jD(x, y) is a con-

tinuous function of (x, y). Suppose that D(x, y) were discontinuous, but remained

finite, on a finite number of curves each of which is cut by a line parallel to the

x-axis in only a finite number of points. Form A0 as before. Cut out the short

intervals in which discontinuities may occur. As the number of such intervals is

finite and as each can be taken as short as desired, their total contribution to <p (y)

or <f>(y + Ai/) can be made as small as desired. For the remaining portions of the

interval x g x == x
l
the previous reasoning applies. Hence the difference A0 can

still be made as small as desired and
<j> (y) is continuous. If D (x, y) be discontinuous

along a line y = /3 parallel to the x-axis, then <j> (y) might not be defined and might

have a discontinuity for the value y = p. But there can be only a finite num-

ber of .such values if Z>(x, y) satisfies the conditions imposed upon it in considering

the double integral above. Hence
<t> (y) would still be integrable from y to yv Hence

XV,
f^x.

I
D (x, y) dxdy exists

-0 ^o

and m (xt
- x

) (y^ -y )^ f
"*

f^D (x, y) dxdy ^ M(xt
-

) (y-i
- y )

J
VQ ^^o

under the conditions imposed for the double integral.

Now let the rectangle x ^ x =
a^, y =g y = y\ be divided up as befors. Then

f V + A jU f<x+ AfE
myAxjAj/j^ I

I I)(x,y)dxdy^M1jA, ix&jy.
Jy Jx

Add : V mvAxiAyj ^^ C"
+ *JV C

X+^D (^ y) dxdy ^
IBIf ^W vy Jx

and V C'*** r +
^Dfr tfdxdy = ^ f^***i Jy Jx Jy 'a;,,

Now if the number of divisions is multiplied indefinitely, the limit is

f
Vl

f*
l

D(x, y)dxdy = limy m^-AAy = liraVM^Ay =
fl>(x, y)dA.

Jy Jx ** *-< J

Thus the previous rule for the rectangle is proved with proper allowance for pos-

sible discontinuities. In case the area A did not form a rectangle, a rectangle

could be described about it and the function J>(x, y) could be defined for the

whole rectangle as follows: For points within A the value of D(x, y) is already



allowable for either integral in (4), and the integration when applied to the rec

tangle would then clearly give merely the integral over A. The limits could thei

be adjusted so that

/ v, r x
\ rv\ r x = 4>t(v'> r

\

l

D(x, y)dxdy = D(z, y)dxdy = / D(z, y)dA.
Z/Q

J *o J
t> Jx-^V) J

The rule for evaluating the double integral by repeated integration is therefor*

proved.

EXERCISES

1. The sum of the moments of inertia of a plane lamina about two perpendicula:

lines in its plane is equal to the moment of inertia about an axis perpendicular t<

the plane and passing through their point of intersection.

2. The moment of inertia of a plane lamina about any point is equal to the sun

of the moment of inertia about the center of gravity and the product of the tota

mass by the square of the distance of the point from the center of gravity.

3. If upon every line issuing from a point of a lamina there is laid off a die

tance OP such that OP is inversely proportional to the square root of the moment o

inertia of the lamina about the line OP, the locus of P is an ellipse with center at

4. Find the moments of inertia of these uniform laminas:

(a) segment of a circle about the center of the circle,

(/3) rectangle about the center and about either side,

(7) parabolic segment bounded by the latus rectum about the vertex or diametei

(d) right triangle about the right-angled vertex and about the hypotenuse.

5. Find by double integration the following areas:

(a) quadrantal segment of the ellipse, (/3)
between y2 = x8 and y = x,

(y) between Syz = 26 x and 5x2 = 9y,

(5 ) between x2 + y2 2 x = 0, xz + y
z 2 y = 0,

(e) between y
2 = 4oa; + 4o2

, y
2 = 46x + 462

,

(f ) within (y
- x 2)

2 = 4 - z2
,

(17) between x2 - 4 ay, y(x
2 + 4 a2) = 8 a8

,

(0) y
z = ax, x* + yz 2ax = Q.

G. Find the center of gravity of the areas in Ex. 5 (a), (/3), (7), (5), and

(a) quadrant of a4y
2 = a2*4 a6

, (y3) quadrant of xf + yf = a*,

(y) between x 2 = y% + a a, x + y ~ a, (5) segment of a circle.

7. Find the volumes under the surfaces and over the areas given :

(a) sphere z = Va2 x* y2 and square inscribed in x2 + y
z = a2

,

(/3) sphere z Va2 g2
y
2 and circle 2 + V2 ax = 0,

(7) cylinder z = V4a2
y
2 and circle x2 + y2 2 CKC = 0,

(3) paraboloid 2 = fccy and rectangle 0==* = a, OSy=i&,
( e ) paraboloid 2 = fcxy and circle x2 + y2 2 ax 2 ay = 0,

( f) plane x/a + y/& + z/c = 1 and triangle xy (x/o 4- V/& 1) = 0,

(T?) paraboloid z = 1 x2/4 2/
2
/9 above the plane 2 = 0,

(9) paraboloid z = (x + y)
2 and circle x2 + y

2 = a2 .



ON MULTIPLE INTEGRALS

8. Instead of choosing (&, ry) as particular points, namely the middle points, of

the rectangles and evaluating 2Z>(&, iy) AXjAyy subject to errors X, K which vanish in

the limit, assume the function D (x, y) continuous and resolve the double integral

into a double sum by repeated use of the Theorem of the Mean, as

f
tfo

$ (y)
= C

1D (x,y)dx=^?D (&, y) Ax, ,
's properly chosen,

Jx

- =V D (fc, v) AAy.

9. Consider the generalization of Osgood's Theorem ( 35) to apply to double

integrals and sums, namely : If ay
- are infinitesimals such that

where fy
- is uniformly an infinitesimal, then

"^"\
/

lim 2. ay I D(x, y)dA =
i^J

Discuss the statement and the result in detail in view of 34.

10. Mark the region of the xy-plane over which the integration extends :
*

(a) C" C*Ddydx, (ft)
C

2

C
x2

Ddydx, (y) f
1

f'Ddxdy,Jo /0 /l Jx " " V
19^ ^Dd^dr.

11. The density of a rectangle varies as the square of the distance from one

vertex. Find the moment of inertia about that vertex, and about a side through

the vertex.

12. Tind the mass and center of gravity in Ex. 11.

13. Show that the moments of momentum ( 80) of a lamina about the origin

and about the point at the extremity of the vector r satisfy

frxvdm = r x fvdm + JVxvdm,

or the difference between the moments of momentum about P and Q is the moment

about P of the total momentum considered as applied at Q.

14. Show that the formulas (1) for the center of gravity reduce to

f "xyDdx C "i yyDdx f
''

x fot
- y )Ddx

* = ^3_ , y = ^- or X = ^ST
- .

f
a

yDdx CyDdx f
*

l

(yi
-

yo) J*&
Jo J J*

f \y\
-

'a-.



diameter of the sphere. Find the volume cut out. Discuss the problem by double

integration and also as a solid with parallel bases.

16. Show that the moment of momentum of a plane lamina about a fixed point

or about the instantaneous center is lu, where w is the angular velocity and I the

moment of inertia. Is this true for the center of gravity (not necessarily fixed) ?

Is it true for other points of the lamina ?

17. Invert the order of integration in Ex. 10 and in / / "_ Ddydx./
l r v 8 y

I

-i-VT^
18. In these integrals cut down the region over which the integral must be

extended to the smallest possible by using symmetry, and evaluate if possible :

(a) the integral of Ex. 17 with D = y* 2x2
y,

(/3) the integral of Ex. 17 with D=(x~2 Vs)V or D = (x
- 2 Vs) y\

(y) the integral of Ex. 10 (e) with D = r (1 + cos
<j>)

or D = sin
<f> cos <f>.

19. The curve y=f(x) between x = a and x = b is constantly increasing.

Express the volume obtained by revolving the curve about the se-axis as

7r[/(a)]
2
(& a) plus a double integral, in rectangular and in polar coordinates.

20. Express the area of the cardioid r = a (1 cos
<f>) by means of double inte-

gration in rectangular coordinates with the limits for both orders of integration.

133. Triple integrals and change of variable. In the extension from

double to triple and higher integrals there is little to cause difficulty.

For the discussion of the triple integral the same foundation of mass

and density may be made fundamental. If D (x, y, z) is the density of

a body at any point, the mass of a small volume of the body surround-

ing the point (, ^, ) will be approximately D(&, rji} &)AFf ,
and will

surely lie between the limits Jlf
f
AF

f and w,t
AF

f ,
where M

{
and m

{
are

the maximum and minimum values of the density in the element of

volume AFf
. The total mass of the body would be taken as

lim
APt=

= CD(X, y, )dV, (5)
J

where the sum is extended over the whole body. That the limit of the

sum exists and is independent of the method of choice of the points

(,., T)i} ,-)
and of the method of division of the total volume into elements

AF,-, provided D(x, y, z) is continuous and the elements AFf approach
zero in such a manner that they become small in every direction, is

tolerably apparent.



tion is the immediate generalization of the method used for the double

integral. If the region over which the integration takes place is a rec-

tangular parallelepiped with its edges parallel to the axes, the integral is

CD (x, y, z) dV = T
'

f
l

i
J Jxa Jyn

Jxa

y, *
(5')

The integration with respect to x adds up the mass of the elements in

the column upon the base dydz, the integration with respect to y then

adds these columns together into a lamina of thickness dz, and the

integration with respect to z finally adds

together the laminas and obtains the mass

in the entire parallelepiped. This could

be done in other orders
;
in fact the inte-

gration might be performed first with re-

gard to any of the three variables, second

with either of the others, and finally with

the last. There are, therefore, six equiva-

lent methods of integration.

If the region over which the integration

is desired is not a rectangular parallele-

piped, the only modification which must be introduced is to adjust the

limits in the successive integrations so as to cover the entire region.

Thus if the first integration is with respect to x and the region is

bounded by a surface x = ^ (y, z) on the side nearer the ys-plane and

by a surface x = ^ (?/, s) on the remoter side, the integration

I
=^,(//, z)

D
(x, y, z) dxdydz = Q (y, z) dydz

add up the mass in elements of the column which has the cross

section dydz and is intercepted between the two surfaces. The problem

of adding up the columns is merely one in double integration over the

region of the ys-plane upon which they stand
;
this region is the pro-

jection of the given volume upon the ys-plane. The value of the

integral is then

\VdV= f f"

l

to dydz = f f f Ddxdydz. (5")
J l/Z tyj/=^ (2) /2 /0ft (z) J<fl9 (X,t)

Here again the integrations may be performed in any order, provided

the limits of the integrals are carefully adjusted to correspond to that

order. The method may best be learned by example.



volume of the cylinder x2 + y'
2 2 ax, which lies in the first octant and undei

paraboloid x2 -f y
z = a, if the density be assumed constant. The integrals to eval-

uate are : ///
ixdm iydm Czdm

x = --
, j/

= --
, z = --

, (6)x '

Iz =

The consideration of how the figure looks shows that the limits for z are 2 = and

2 = (x
2 + y

z
)/a if the first integration be with respect to z

;
then the double integral

in x and y has to be evaluated over a semi-

circle, and the first integration is more simple

if made with respect to y with limits y =
and y V2 ox x2

,
and final limits x =

and x = 2 a for x. If the attempt were made
to integrate first with respect to y, there

would be difficulty because a line parallel to

the j/-axis will give different limits according
as it cuts both the paraboloid and cylinder or

the xz-plane and cylinder ;
the total integral

would be the sum of two integrals. There

would be a similar difficulty with respect

to an initial integration by x. The order of

integration should therefore be z, y, x.

rnx

/2a rtVZasr-ar1 n

^JLoX.o J,

D r za r=
I U

a Jo L

= J>a8 C
\ (I

- cos 0)
2 sin2 9 + - sin*

i/o L 3

= C
a

C
"* x

r * a

xdzdydx = DC C

=^ r'T*a Jo

pi a n
= DC f

*/a;=0'y

x = a (1 cos tf)

V2az x2 = a sin 6

dx = a sin 0cZ#

Hence x = 4 a/3. The computation of the other integrals may be left as an exercise.

134. Sometimes the region over which a multiple integral is to be

evaluated is such that the evaluation is relatively simple in one kind

of coordinates but entirely impracticable in another kind. In addition

to the rectangular cobrdinates the most useful systems are polar coor-

dinates in the plane (for double integrals) and polar and cylindrical

coordinates in space (for triple integrals). It has been seen ( 40) that

the element of area or of volume in these cases is

dA = rdrd$, dV r1 sin QdrdBd^, dV = rdrd<j>dz, (7)



substituted in the double or triple integral and the evaluation may be

made by successive integration. The proof that the substitution can

be made is entirely similar to that given in 34-35. The proof that

the integral may still be evaluated by successive integration, with a

proper choice of the limits so as to cover the region, is contained in

the statement that the formal work of evaluating a multiple integral

by repeated integration is independent of what the coordinates actually

represent, for the reason that they could be interpreted if desired as

representing rectangular coordinates.

Find the area of the part of one loop of the lemniscate rz = 2 a2 cos 2 $ which is

exterior to the circle r = a
;
also the center of gravity and the moment of inertia rela-

tive to the origin under the assumption of constant density. Here the integrals are

A= CdA, Ax = CxdA, Ay = I ydA, 1 =

The integrations may be performed first with respect

to r so as to add up the elements in the little radial

sectors, and then with regard to
<f>

so as to add the

sectors
;
or first with regard to $ so as to combine the

elements of the little circular strips, and then with re-

gard to r so as to add up the strips. Thus

Ax = 2 f fJ = ()Jr=

_ 2
,
r

-a I

O t/n

rdrd<(> = - f 6
(2 V a8 cosi 2 - a8) cosfcty

8i/o

?[2 V5 (1
- 2 Bin'*)* d sin <f>

- cos tfxty] = J a8 = .393 a8 .

8

Hence x = 3ira/(l2 Vs 4ir) = 1.15 a. The sym-

metry of the figure shows that y = 0. The calcula-

tion of I may be left as an exercise.

Given a sphere of which the density varies as the

distance from some point of the surface
; required the

mass and the center of gravity. If polar coordinates

with the origin at the given point and the polar axis

along the diameter through that point be assumed,

the equation of the sphere reduces to r Za cos 9

where a is the radius. The center of gravity from

reasons of symmetry will fall on the diameter. To
cover the volume of the sphere r must vary from r =
at the origin to r = 2aco*0 upon the sphere. The

polar angle must range from 9 = to 9 = \ TT, and the

longitudinal angle from <f>
= to

<f>
= 2 TT. Then



_ r'2w rz r
/ / /

/-27T -

\
I

J<>=o /0=o

r 2 a cos 9

kr r cos r2 sin ffdrdffdfa

8irfca*

.

cos 6 sm 0d0dtf> =
=o t/0=o 5

The center of gravity is therefore z 8 a/7.

36 35

Sometimes it is necessary to make a change of variable

in a double or a triple integral. The element of area or of volume haf

been seen to be ( 63, and Ex. 7, p. 135)

Hence

and

\u, v

y,

dudv or dV = 7*,y.*\
\U, V, W/

dudvdw,. (8^

dudv (8";

dudvdw.

It should be noted that the Jacobian may be either positive or negative

but should not vanish
;
the difference between the case of positive anc

the case of negative values is of the same nature as the difference

between an area or volume and the reflection of the area or volume

As the elements of area or volume are considered as positive wher

the increments of the variables are positive, the absolute value of tht

Jacobian is taken. ;

EXERCISES

1. Show that (6) are the formulas for the center of gravity of a solid body.

. 2. Show that Ix =((V
Z + z2 ) dm, Iy = f(x

2 + z*) dm, Iz = f(x
2 + V*)drn are th

formulas for the moment of inertia of a solid about the axes.

3. Prove that the difference between the moments of inertia of a solid aboui

any line and about a parallel line through the center of gravity is the product of th<

mass of the body by the square of the perpendicular distance between the lines.

4. Find the moment of inertia of a body about a line through the origin in th

direction determined by the cosines
I, m, n, and show that if a distance OP be laid

off along this line inversely proportional to the square root of the moment ol

inertia, the locus of P is an ellipsoid with as center.



(a) trirectangular tetrahedron between xyz = and x/a + y/b + z/c = 1,

(fi) solid bounded by the surfaces y2 + z2 = 4 ox, i/
2 = oa, x = 3 a,

(7) solid common to the two equal perpendicular cylinders x2 + y
2 a2

,
z2 + 22 = a*.

( O0tent of

7. Find the center of gravity in Ex. 5 (5), Ex. 6 (or), (0), (5), (e), density uniform.

8. Find the area in these cases : (a) between r = a sin 2
<f>
and r =

-J
a.

(/3)
between r2 = 2 a2 cos 2 < and r = 3^ a, (7) between r = a sin and r = & Cos 0,

(5) r2 = 2 a2 cos 2 0, r cos
<t>
= \ Vs a, (e) r = a (1 + cos #), r = a.

9. Find the moments of inertia about the pole for the cases in Ex. 8, density

uniform.

10. Assuming uniform density, find the center of gravity of the area of one loop :

(a) r* = 2 o2 cos 20, (/3)
r = a (1 cos 0), (7) r = a sin 2 0,

(5) r = a sin8 ^ (small loop), (e) circular sector of angle 2 a.

11. Find the moments of inertia of the areas in Ex. 10 (a), (0), (7) about the

initial line.

12. If the density of a sphere decreases uniformly from D at the center to D,
at the surface, find the mass and the moment of inertia about a diameter.

13. Find the total volume of :

(a) (x
2 + V2 + z2)

2 = axyz, (0) (a;
2 + ya + z2)

8 = 27 a*xyz.

14. A spherical sector is bounded by a cone of revolution; find the center of

gravity and the moment of inertia about the axis of revolution if the density

varies as the nth power of the distance from the center.

15. If a cylinder of liquid rotates about the axis, the shape of the surface is a

paraboloid of revolution. Find the kinetic energy.

16. Compute jY^Y jY^lliiY J (Zlb-Z} and hence verify (7).

\r, 0/ \r, 0, z/ \r, 0, 9)

17. Sketch the region of integration aud the curves w = const., v = const. ;

hence show:

(a-) C
C C X

f(x, y\ dxdy = C f f(u MO, wo) ududv, ifu = y + x,y
t/O /y=,0 t/0 t/u=0

(?) f* f* f(x,y)dxdyVQ t/y= ()

UV \ V ,,.,
,

-

)
-- dvdu if y = xu, x =

X.

V/a/l /* 2a /> 3

(7)or=f / /-E dudv- C f a /
Jo Ju=0 1 tt

2 Ja J = i
tt)

2 a = i (1 + M)

dudv.



tllC JJlOtiLlG ft - V*

19. Same as Ex. 18 for cylinder r* = 2 a2 cos 2 <f> ;
and find the moment

inertia about r = if the density varies as the distance from r = 0.

20. Assuming the law of the inverse square of the distance, show that t

attraction of a homogeneous sphere at a point outside the sphere is as though !

the mass were concentrated at the center.

21. Find the attraction of a right circular cone for a particle at the vertex.

22. Find the attraction of (a) a solid cylinder, (/3)
a cylindrical shell upon

point on its axis
;
assume homogeneity.

23. Find the potentials, along the axes only, in Ex. 22. The potential may
defined as "r- ldm or as the integral of the force.

24. Obtain the formulas for the center of gravity of a sectorial area as

1 _ 1
,

-r sn <(><t>,
3 A J^g

3

and explain how they could be derived from the fact that the center of gravity

a uniform triangle is at the intersection of the medians.

25. Find the total illumination upon a circle of radius a, owing to alight al

distance ft above the center. The illumination varies inversely as the square of t

distance and directly as the cosine of the angle between the ray and the nornr

to the surface.

26. Write the limits for the examples worked in 188 and 134 when the im

grations are performed in various other orders.

27. A theorem of Pappus. If a closed plane curve be revolved about an a]

which does not cut it, the volume generated is equal to the product of the area

the curve by the distance traversed by the center of gravity of the area. Pro

either analytically or by infinitesimal analysis. Apply to various figures in whi

two of the three quantities, volume, area, position of center of gravity, are know

to find the third. Compare Ex. 3, p. 346.

135. Average values and higher integrals. The value of some speci

interpretation of integrals and other mathematical entities lies in tl

concreteness and suggestiveness which would be lacking in a pure'

analytical handling of the subject. For the simple integral |/(X)<

the curve y =f(x) was plotted and the integral was interpreted
an area; it would have been possible to remain in one dimension 1

interpreting f(x) as the density of a rod and the integral as the maf

In the case of the double integral I f(x, y)dA the conception of de

sity and mass of a lamina was made fundamental
;
as was pointed 01

it is possible to go into three dimensions and plot the surface % =/(, :



and interpret the integral as a volume. In the treatment of the triple

integral I f(x, y, z)dV the density and mass of a body in space were

made fundamental
;
here it would not be possible to plot u =/(#, y, z)

as there are only three dimensions available for plotting.

Another important interpretation of an integral is found in the con-

ception of average value. If qv qs , , qn are n numbers, the average of

the numbers is the quotient of their sum by n.

If a set of numbers is formed of w
l
numbers ql}

and w
2
numbers

q2, ,
and wn numbers qn) so that the total number of the numbers

is
iVj^-i-

w
2 -\

---- -f wn ,
the average is

The coefficients w^ ic
2 , ,

wn ,
or any set ot numbers which are pro-

portional to them, are called the u'eiyhts of
ijv </. , qn . These defi-

nitions of average will not apply to finding the average of an infinite

number of numbers because the denominator n would not be an arith-

metical number. Hence it would not be possible to apply the definition

to finding the average of a function /(a-) in an interval a; S % = x^-

A slight change in the point of view will, however, lead to a defi-

nition for the average value of a function. Suppose that the interval

x S x s x
1

is divided into a number of intervals Ax{ ,
and that it be

imagined that the number of values of y f(x) in the interval Aa*
f

is proportional to the length of the interval. Then the quantities

Aa-,- would be taken as the weights of the values /(&) and the average

would be

or better = -
(10)

dx

by passing to the limit as the Acc/s approach zero. Then

or (10')

In like manner if s =f(x, }/)
be a function of two variables or



ff(x,y,z)dV
and u =^--- (10

f

idA=A C

It should be particularly noticed that the value of the average is d\

fined with reference to the variables of which the function averaged is

function j a change of variable will in general bring about a change i

the value of the average. For
i /^i

J y
, __

f(g>\ fi (y-\ = I f(x) dx '

1 l/3*A

1 /"l

but if y = /(^(0) yOO = / /(<KO)^5
tf,

-~~ t /
1 v tn

and there is no reason for assuming that these very different expre:

sions have the same numerical value. Thus let

y = x2
, S x =

1, x sin t
} g t S ^ TT,

IT

1 /" l
1 1 /"a 1

y(x)
=

iJo ^^s' K*)== F^J
Sill2^=2*

The average values of x and y over a plane area are

- l r JA - i c j*O1' " I TV/ yl i/ ~ r- L I i// yf~~
j I t^tv^l

j
V "

^^ I VCv/l

^J ^J
when the weights are taken proportional to the elements of area; bti

if the area be occupied by a lamina and the weights be assigned a

proportional to the elements of mass, then

x = I xdm, y = I ydm,mj mJ y

and the average values of x and y are the coordinates of the center o

gravity. These two averages cannot be expected to be equal unless th

density is constant. The first would be called an area-average of x an

y; the second, a mass-average of x and y. The mass average of th

square of the distance from a point to the different points of a lamin

would be _ *\ r
^ = tf =

|
r*dm = I/M, (11

and is defined as the radius of gyration of the lamina about that point

it is the quotient of the moment of inertia by the mass.



proper fraction
;
also the average value of a proper fraction subject to the condi-

tion that it be one of two proper fractions of which the sum shall be less than or

equal to 1. Let x be the proper fraction. Then in the first case

1 r 1 1
x = -

I xdx = -
1 Jo 2

In the second case let y be the other fraction so that x, + y ^ 1. Now if
(a;, y) be

taken as coSrdinates in a plane, the range is over a triangle, the number of points

(x, y) in the element dxdy would naturally be taken as proportional to the area of

the element, and the average of x over the region would be

CxdA C C
V

xdxdy C (1
- 2 y + y*)dy

x _ -
_

~
1

~*

//^l/il
y /*! o

dA II dxdy 2 I (1 y) dy

Now if x were one of four proper fractions whose sum was not greater than 1, the

problem would be to average x over all sets of values (x, y, z, u) subject to the

relation x + y + z + u=sl. From the analogy with the above problems, the result

would be _
f f T r xdxdydzdu

1-- 1-- 1 -
r

1

-/-
1--

r
Jz= Q J y=Q Jx

The evaluation of the quadruple integral gives x ~ 1/5.

136. The foregoing problem and other problems which may arise

lead to the consideration of integrals of greater multiplicity than three.

It will be sufficient to mention the case of a quadruple integral. In the

first place let the four variables be

ojjSasSas,, yQ^y^ylt
Sz^z

lt
u ^uStiv (12)

included in intervals with constant limits. This is analogous to the

case of a rectangle or rectangular parallelepiped for double or triple

integrals. The range of values of x, y, z, it in (12) may be spoken of

as a rectangular volume in four dimensions, if it be desired to use geo-

metrical as well as analytical analogy. Then the product AajfA^A^.-A?^

would be an element of the region. If

x
{
s ^ x

{ -+- Ax , Ui S 6i S Mi + A?^-,

the point (, ^ &, 6
f) would be said to lie in the element of the region.

The formation of a quadruple sum

could be carried out in a manner similar to that of double and triple

sums, and the sum could readily be shown to have a limit when



this sum could be evaluated by iterated integration

f(x > V> K
>

_ /

^
where the order of the integrations is immaterial.

It is possible to define regions other than by means of inequalit.ii

such as arose above. Consider

F(x, y, , 11)
= and F(x, y, *, w)S 0,

where it may be assumed that when three of the four variables ai

given the solution of 7*
1 = gives not more than two values for tl

fourth. The values of x, y, z, u which make F < are separated fro

those which make F > by the values which make F = 0. If the sig

of F is so chosen that large values of x, y, z, u make F positive, tl

values which give F > will be said to be outside the region and tho;

which give F < will be said to be inside the region. The value of tl

integral of f(x, ?/, z, ?/.)
over the region F^Q could be found as

X
Z
l /^V~<l>^!r) /**=l^i(W. V) S*V=Ul(X,y, Z)

I I I f(x,y,z,u)dudzdydx,
J\! = <j>n(x) Jz = <lin(x, y) Ju = <an (.x, y, z)

where u = ^(x, y, z')
and u = w

(a;, y, z) are the two solutions of F=
for u in terms of x, y, z, and where the triple integral remaining afti

the first integration must be evaluated over the range of all possib

values for
(cc, y, z). By first solving for one of the other variables, tl

integrations could be arranged in another order with properly change

limits.

If a change of variable is effected such as

x = 0(x',l/',2
/

,M
/

), y =f(
/

,j/',z',M
/

), z = x(x',y',z',"), u = u(x',y',z',u') (1

the integrals in the new and old variables are related by

The result may be accepted as a fact in view of its analogy with the results (8) f >

the simpler cases. A proof, however, may be given which will serve equally w<

as another way of establishing those results, a, way which does not depend on tl

somewhat loose treatment of infinitesimals and may therefore be considered

more satisfactory. In the first place note that from the relation (33) of p. li

involving Jacobians, and from its generalization to several variables, it appea

that if the change (14) is possible for each of two transformations, it is possib

for the succession of the two. Now for the simple transformation

z - x', y=*y', z = z', u = u (x', y', z', u') = u (, y, z, u'), (U



J /(x, y, z, u)du = ff(x, V, z, u') ^ du' =
J"/(x',

y', z', u') du',

and each side may be integrated with respect to x, y, z. Hence (14) is true in this

case. For the transformation

x = <*> (x', ?/, z', u'), y = f (x', y', z', u'), z = x (*', y', e", w'), u = u', (13")

which involves only three variables, J (
x

' y ' z ' w \ = j (
a

' V> s \ and
VB', y', z', u') \x', y', z'/

ffff(
x

> y, z, u)dxdydz
=ffff(<t>, Vs X, ) I

</
I dx'dy'dz'

and each .side may be integrated with respect to u. The rule therefore holds in

this case. It remains therefore merely to show that any transformation (13) may
be resolved into the succession of two such as (18'), (13"). Let

KI = *', Vi
= y', t

= z/
' ,

= w
(a:', ?/, z', w')

= w (x yt , z
l5 u').

Solve the equation tt
t
= w(xt , j/ t ,

z
t , w') for u' = w, (x t , y t ,

z
t , M^ and write

x = ^>(xt , yt ,
z

t ,
w

t ), y = ^(x t , 2/r z
t , w,), 2 = x (i, Vi, n MI), u = ur

Now by virtue of the value of w,, this is of the type (13"), and the substitution of

ic
t , 7/ l5

zv u
i
in it gives the original transformation.

EXERCISES

1. Determine the average values of these functions over the intervals:

(a) x2
,
s x s 10, (/3)

sin x, g x g | TT,

(7) x", s x 7i, (5) cos^c, g x ^ | TT.

2. Determine the average values as indicated :

(a) ordinate in a semicircle x2 + y2 = a2
, y > 0, with x as variable,

(/3) ordinate in a semicircle, with the arc as variable,

(7) ordinate in semiellipse x = a cos 0, y = 6 sin #, with < as variable,

(S) focal radius of ellipse, with equiangular spacing about focus,

(
e

) focal radius of ellipse, with equal spacing along the major axis,

(f ) chord of a circle (with the most natural assumption).

3. Find the average height of so much of these surfaces as lies above the xy-plane :

(a) x2 +y* + z2 = a2
, (/3) z = a4 - p2x2 - q*y*, (y) & = 4 - x2 - J/

2
.

4. If a man's height is the average height of a conical tent, on how much of the

floor space can he stand erect ?

5. Obtain the average values of the following :

(a) distance of a point in a square from the center, (/3)
ditto from vertex,

(y) distance of a point in a circle from the center, (8) ditto for sphere,

(
e ) distance of a point in a sphere from a fixed point on the surface.

6. Erom the S.W. corner of a township persons start in random directions

between N. and E. to walk across the township. What is their average walk ?

Which has it ?



joining them is drawn. Show that the average of the area of the square on tt

line is the square on the hypotenuse of the triangle.

8. A line joins two points on opposite sides of a square of side a. What is t

ratio of the average square on the line to the given square ?

9. Find the average value of the sum of the squares of two proper fractior

What are the results for three and for four fractions ?

10. If the sum of n proper fractions cannot exceed 1, show that the avera

value of any one of the fractions is l/(n + 1).

11. The average value of the product of k proper fractions is 2-*.

12. Two points are selected at random within a circle. Find the ratio of t

average area of the circle described on the line joining them as diameter to t

area of the circle.

13. Show that J rs sin2 sin <p for the transformation

x = r cos #, y r sin B cos
,

z = r sin sin
<f> cos ^, u = r sin sin sin ^,

and prove that all values of x, y, z, u defined by x2 + y2 + z2 + w2
S=i a2 are cover

by the range =i r ^= a, =g S TT, == < =i TT, Si f g= 2 TT. What range w
cover all positive values of x, y, z, u?

14. The sum of the squares of two proper fractions cannot exceed 1. Find t

average value of one of the fractions.

15. The same as Ex. 14 where three or four fractions are involved.

16. Note that the solution, of u
x
= u(x^ j^, z

1? u') for w' = w
1 (x 1 , j/j,

z
t ,

i

requires that 5w/9w' shall not vanish. Show that the hypothesis that / does not va

ish in the region, is sufficient to show that at and in the neighborhood of each poi

(z, y, z, u) there must be at least one of the 16 derivatives of #, \f/ , x, w by x, y, z.

which does not vanish
;
and thus complete the proof of the text that in case J ^

and the 16 derivatives exist and are continuous the change of variable is as give

17. The intensity of light varies inversely as the square of the distance. Fii

the average intensity of illumination in a hemispherical dome lighted by a Ian

at the top.

18. If the data be as in Ex. 12, p. 331, find the average density.

137. Surfaces and surface integrals. Consider a surface which k;

at each point a tangent plane that changes contin-

uously from point to point of the surface. Consider

also the projection of the surface upon a plane, say
the cc^-plane, and assume that a line perpendicular
to the plane cuts the surface in only one point.

Over any element dA of the projection there will / \jj0dA

be a small portion of the surface. If this small

portion were plane and if its normal made an angle y with the -axi

the area of the surface (p. 167) would be to its projection as 1 is



cos y ana -would oe sec yaA. Tne value or cos y may be read from (9)
on page 96. This suggests that the quantity

/ s

be taken as the definition of the area of the surface, where the double

integral is extended over the projection of the surface
;
and this defi-

nition will be adopted. This definition is really dependent on the.

particular plane upon which the surface is projected ;
that the value oi

the area of the surface would turn, out to be the same no matter what

plane was used for projection is tolerably apparent, but will be proved

later.

Let the area cut out of a hemisphere by a cylinder upon the radius of the

hemisphere as diameter be evaluated. Here (or by geometry directly)

dx

/ I/ :

: dydx.

This integral may be evaluated directly, but it is better to transform it to polar

coordinates in the plane. Then

-

=
(ir
-

2) o.

It is clear that the half area which lies in the first octant could be projected upon

the xz-plane and thus evaluated. The region over which the integration would

extend is that between as
2 + z2 = o2 and the projection

z2 + ax = a2 of the curve of intersection of the sphere

and cylinder. The projection could also be made on the

yz-plane. If the area of the cylinder between z = and

the sphere were desired, projection on z = would be

useless, projection on x = would be involved owing to

the overlapping of the projection on itself, but projection

on y = would be entirely feasible.

To show that the definition of area does not depend,

except apparently, upon the plane of projection consider

any second plane which makes an angle 6 with the first. Let the line of intersec-

tion be the y-axis ;
then from a figure the new coordinate *' is

and
(*y)

ac' ,, ,

82= cos G -\

dx Sx

dx'dys _ rrdxdy _ rr (x, y) dx'dy _ rr dx'dy~
J J cos 7

~~
J J (', y) cos 7

~
J J cos 7 (cos 9 + p sin 6)

It remains to show that the denominator 0037 (cos 9 +p sin 6)
= cosy'- Referred

to the original axes the direction cosines of the normal are p : q : 1, and of



, p sin & + + cos V p sin + cos v
cos 7 = -- = -- = cos 7 (cos 6 + p sin p).

Vl + jj + ^ ^c 7

Hence the new form of the area is the integral of sec y'dA' and equals the old forr

The integrand dS = sec yd/1 is called the element of surface. The]

are other forms such as dS SGO (r, n) r2 sin 6ddd<f> }
where (V, n) is tl~

single between, the radius vector and the normal
;
Imt they are use

comparatively little. The possession of an expression for the elemei

of surface affords a means of computing <>(>,ragf>,s
nuc.r surfaces. For

u = u(x, i/, z) be any function of (x, ?/, ?j),
and z =

/(.'<", y/) any surfac

tlie integral

=
~s J *) ds =

will be the average of u over the surface S. Thus the average heigl

of a hemisphere is (for the surface average)

-JLJ^s.-JL
whereas the average height over the diametral plane would be 2/',

This illustrates again the fact that the value of an average depenc
on the assumption made as to the weights.

138. If a surface z =f(r, ?/)
be divided into elements AS,-, and tli

function u
(y., ?/, x) be formed for any point (., rji} &) of the elemen

and the sum Sw<ASf be extended over all the elements, the limit c

the sum as the elements become small in every direction is define

as the surface integral of the function over the surface and may I

evaluated as

7* I/
:*' !/>

-//
That the sum approaches a limit independently of how (, 17,, CO ^

chosen in AS,- and how A5
t
- approaches zero follows from the fact tha

the element u( i} i}i} ^.)A,Sf
of the sum differs uniformly from th

integrand of the double integral by an infinitesimal of higher orde:

provided u (x, y, z\ be assumed continuous in
(a;, y, z) for points nea

the surface and Vl +/J
2
-}-/y

' 2 be continuous in (x, y) over the surfac<

For many purposes it is more convenient to take as the norms

form of the integrand of a surface integral, instead of udS, th



on the surface, dS is a positive quantity, but cosy
is positive or negative according as the normal is

drawn on the upper or lower side of the surface.

The value of the integral over the surface will be dA

I R (x, y, z) cos yds = II Rdxdy or -II Rdxdy (18)

according as the evaluation is made over the upper or lower side. If

the function R (x, y, z) is continuous over the surface, these integrands
will be finite even when the surface becomes perpendicular to the

^y-plane, which might not be the case with

a.ii integrand of the form u (x, y, z) dS.

An integral of this sort may be evaluated

over a closed surface. Let it be assumed

that the surface is cut by a line parallel to

the 2-axis in a finite number of points, and

for convenience let that number be two. Let

the normal to the surface be taken con-

stantly as the exterior normal (some take

the interior normal with a resulting change
of sign in some formulas), so that for the

upper part of the surface cos y > and for

the lower part cos y < 0. Let z =fl (x, y)

and K =f (x, y) be the upper and lower values of on the surface. Then

the exterior integral over the closed surface will have the forin

ydS =jjE [a, y,fi (x, y)-] dxdy -f(*R [x, y,fQ(x, y)] dxdy, (18')cos

where the double integrals are extended over the area of the projection

of the surface on the ay-plane.

From this form of the surface integral over a closed surface

it appears that a surface integral over a closed surface may be ex-

pressed as a volume integral over the volume inclosed by the surface.*

* Certain restrictions upon the functions and derivatives, as regards their becoming
infinite and the like, must hold upon and within the surface. It -will be quite sufficient

if the functions and derivatives remain finite and continuous, but such extreme conditions

ure by no means necessary.



For by the rule for integration,

z =/j(a;, v) o n /">/* * =/,(. 10

/ / O M

Hence { J? cos yf/6
y = I -r- dV

J J *

.. d9)
or

if the symbol O be used to designate a closed surface, and if the double

integral on the left of (19) be understood to stand for either side of

the equality (18'). In a similar manner

/ P cos adS = \\Pdmlz = I I f ^ dxdydz = \ dV,
J JJo JJJ ** J fa

(lg()

CQ, cos pas = ff dxd* = r/rY ^^^ = r Y w-

Then f(P cos a + Q cos B + ^ cos v) rf5 = f^ 4- 1^ +^ rfF
/o I \ox oil dzJo J \ J I

//

|
Ior

follows immediately by merely adding the three equalities. Any one of

these equalities (19), (20) is sometimes called Gauss's Formula, some-

times Green's Isemma, sometimes the divergence formula owing to the

interpretation below.

The interpretation of Gauss's Formula (20) by vectors is important.

From the viewpoint of vectors the element of surface is a vector <S
directed along the exterior normal to the surface ( 76). Construct the

vector function

(x, y, )
= iP(x, y, z) +]Q,(x, yt *) -f- k# (*, y, *).

Let dS = (i cos a + j cos ft + k cos y) dS = idSx -f jdSy + \idSz ,

where dSx ,
dS

y , dS., are the projections of dS on the coordinate planes.

Then P cos adS + Q cos /3dS + R cos ydS = F-^S

and
II (Pdydz -f- Qdxdz + Rdxdy) = |

F.^S,

where dSx ,
dS

y , dS, have been replaced by the elements dydz, dxdz, dxdy,
wVlinll wrnnlrl V\ neorl fr> a-tralno-ha fVio ir4-ir-nf1o in r.Q^4-.ii->rTi1o. fi^/vtvU-na-l-nc'
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without at all implying that the projections dSx ,
dS

a ,
dSz are actually

rectangular. The combination of partial derivatives

ap SQ

dx dy

,

4.
ox

V.F (21)

where V.F is the symbolic scalar product of V and F (Ex. 9 below), is

called the divergence of F. Hence (20) becomes

f divF<7 = fv.FdF= f (20')

Now the function F (z, j/, z) is such that at each point (x, y, z) of space a vector

is defined. Such a function is seen in the velocity in a moving fluid such as air or

water. The picture of a scalar function u
(a;, y, z) was by means of the surfaces

u = const.; the picture of a vector function F
(a:, y, 2) may he found in the system

of curves tangent to the vector, the stream lines in the fluid ,~

if F be the velocity. For the immediate purposes it is better

to consider the function F
(a;, y, z) as the flux Z>v, the prod-

uct of the density in the fluid by the velocity. With this

interpretation the rate at which the fluid flows through an

element of surface dS is Dv-dS = F-dS. For in the time

dt the fluid will advance along a stream line by the amount

vdt and the volume of the cylindrical volume of fluid which advances through the

surface will be vdSd. Hence SDv-dS will be the rate of diminution of the amount

of fluid within the closed surface.

As the amount of fluid in an element of volume dV is DdV, the rate of diminution

of the fluid in the element of volume is dD/8t where dD/dt is the rate of increase

of the density D at a point within the element. The total rate of diminution of the

amount of fluid within the whole volume is therefore 2dD/dtdV. Hence, by
virtue of the principle of the indestructibility of matter,

f F.dS = f JDv.dS = - f dV.
i/o /o J 81

(20")

Now if DX , DJ,,
vz be the components of v so that P = .Ztoan Q = -Oc

j/
^ = ^B* are

the components of F, a comparison of (21), (20'), (20") shows that the integrals of

and div F are always equal, and hence the integrands,

__ ^_
dt

~
dx dy dz

~
fa

,

dy dz

are equal ;
that is, the sum f'x + Qy + E'z represents the rate of diminution of

density when if + jQ + kB is the flux vector; thifi combination is called the

divergence of the vector, no matter what the vector F really represents.



with the simple case of a line integral in a plane, note that by fcl

same reasoning as above

dp

dy
dxdy, dxdy,

(2!

This is sometimes called Green's Lemma for the plane in distinctic

to the general Green's Lemma for space. The oppo-
site signs must be taken to preserve the direction

of the line integral about the contour. This result

may be used to establish the rule for transforming a
double integral by the change of variable x=

<j>(u, v),

y </<w, v). For

ty

(The double signs have to be introduced at first to allow for the cas
where J is

negative.) The element of area dA=\J\ dudv is therefor
established.

To obtain the formula for the conversion of a
line integral in space to a surface integral, let

P (> V, *) be given and let z =f(x, y) be a surface

spanning the closed curve O. Then by virtue of
~ =/(* y}, the function P (x, y, )

=
P*(x, y} and

/X

.
jfjf-

where O' denotes the projection of O on the ccy-plane. Now the fina
double integral may be transformed by the introduction of the cosines
of the normal direction to & f(x, y).

cos 8: cos v = //. 1



JJ (frj
+q

^) dxdy
^JJ (to

dxd* -
fy

dxdy
)

f this result and those obtained by permuting the letters be added,

/ (Pdx + Qdy + Rdz)

MSR
8Q\

, ; ,

/dp dR\ , , /SQ dp\ 1

^-fe)^+(^-^)+(^-^cfa^. (23)

'his is known as fitoffes'x Formula and is of especial importance in

ydromechanios and the theory of electromagnetism. Kote that the
ne integral is carried around the rim of the surface in the direction
-hich appears positive to one standing upon that side of the surface
ver which the surface integral is extended.

Again the vector interpretation of the result is valuable. Let

F(a, y, z)
= iP(x, y, z} + jQ(x, y, z) + kR (x, y, *),

_.
(24)ox dy]
^ }

hen / F.rfr = I curl F.^S =
|
V^F.^S, (23

1

)

here VxF is the symbolic vector product of V and F (Ex. 9, below),
the form of Stokes 's Formula

;
that is, the line integral of a vector

ound a closed curve is equal to the surface integral of the curl of the

jctor, as defined by (24), around any surface which spans the curve.

: the line integral is zero about every closed curve, the surface inte-

al must vanish over every surface. It follows that curl F = 0. For
the vector curl F failed to vanish at any point, a small plane sur-

ce dS perpendicular to the vector might be taken at that point and
.e integral over the surface would be approximately |curl F|^S and
ould fail to vanish, thus contradicting the hypothesis. Now the

wishing of the vector curl F requires the vanishing

T?;-Q; = O, p^-^ = o, Q^-P^O
each of its components. Thus may be derived the condition that

Ix + Qdy + Rdz be an exact differential.

If F be interpreted as the velocity v in a fluid, the integral

j
y.dr = I Vyflx + v^dy + zdfe

the component of the velocity along a curve, -whether open or closed, is called
j circulation of the fluid along the curve; it might be more natural to define



me convention. JLNUW 11 tiic velocity u ui<u uue iu imuiiiuii wiui LUH cuiguiiu vciu

ity a about a line through the origin, the circulation in a closed curve is readi

computed. For

v = axr, fv-dr = |
axr-dr = f a.rxdr = a.

j
rxdr = 2a.A.

i/o wo Jo *o

The circulation is therefore the product of twice the angular velocity and the ar

of the surface inclosed by the curve. If the circuit be taken indefinitely small, t'

integral is 2 adS and a comparison with (23') shows that curl v = 2 a; that is,
tl

curl of the velocity due to rotation about an axis is twice the angular velocity ai

is constant in magnitude and direction all over space. The general motion of

fluid is not one of uniform rotation about any axis
;
in fact if a small element

fluid be considered and an interval of time dt be allowed to elapse, the eleine

will have moved into a new position, will have been somewhat deformed owing
the motion of the fluid, and will have been somewhat rotated. The vector curl

as defined in (24), may be shown to give twice the instantaneous angular veloci

of the element at each point of space.

EXERCISES

1. Find the areas of the following surfaces :

(a) cylinder x2 + y* ax = included by the sphere
2 + j/

2 + z2 = a2
,

(/3) x/a -t- y/b + z/c = I in first octant, (7) x2 + y
2 + z2 = a? above r = a cos n

(S) sphere x2 + y2 + z2 = a2 above a square \x\ S 6, \y\ g &, & < \ V2a,
(e) z = xy over a2 + y* = a2

, (f) 2az = xz
y
2 over r2 = a2 cos0,

(17) z2 + (x cos a + y sin a)
2 = a2 in first octant, (0) z = xy over rz = cos 2

(
i

) cylinder z2 + y2 = a2 intercepted by equal cylinder y2 + 2 = a2 .

2. Compute the following superficial averages-.

(a) latitude of places north of the equator, Ana. 32^
() ordinate in a right circular cone 7i

2
(x

2 + y
z
) o?(z h)

z = 0,

(7) illumination of a hollow spherical surface by a light at a point of it,

(8) illumination of a hemispherical surface by a distant light,

(e) rectilinear distance of points north of equator from north pole.

3. A theorem of Pappus: If a closed or open plane curve be revolved about \

axis in its plane, the area of the surface generated is equal to the product of t:

length of the curve by the distance described by the center of gravity of the cur\

The curve shall not cut the axis. Prove either analytically or by infinitesim

analysis. Apply to various figures in wliich two of the three quantities, length

curve, area of surface, position of center of gravity, are known, to find the thir

Compare Ex. 27, p. 332.

4. The surface integrals are to be evaluated over the closed surfaces by exprei

ing them as volume integrals. Try also direct calculation :

(a) JJ (x*dydz + xydxdy -f xzdxdz) over the spherical surface a;
2 + yz + z2 = a2

,

(|3) ff (x
2
dydz + y*dxdz -f z*dxdy), cylindrical surface x2 + y

1 = a2
,

z = 6



(5) ffxdydz
= ffydxdz = ffzdxdy = $ ff(xdydz + ydxdz + zdxdy) = F,

(e) Calculate the line integrals of Ex. 8, p. 297, around a closed path formed by
two paths there given, by applying Green's Lemma (22) and evaluating the result-

ing double integrals.

5. If x = ^(w, v), y = 2 (u, i)),
z =

<j>s (u, v) are the parametric equations of a

surface, the direction ratios of the normal are (see Ex. 15, p. 135)

cos a : cos /? : cos 7 = J^ : J
2

: J3
if J,- = J I

rLl2_rl5
j

g

Show 1 that the area of a surface may be written as

ff
Jl

dxdy = jf + J2
2 + J% dudv

where *=
,

8u/ *1 \8B - Su

and ds2 = Edu" + 2 JHwcZi? + Gdv2
.

Show 2 that the surface integral of the first type becomes merely

, z) secydxdy =

and determine the integrand in the case ot the developable surface of Ex. 17, p. 143.

Show 3 that if x =/t(, >?, f), y =/2 (f, 1, ft, z =/8(, ^^ f) is a transformation of

space which transforms the above surface into a new surface = ^ 1(, i>), i\
= ^2 (w, u),

f=^,(tt, ),
then

, 1J/ \U, \i,,f/ ,B/ \f,

Show 4 that the surface integral of the second type becomes

(H)\c> w
where the integration is now in terms of the new variables

, 17, f in place of x, y, z.

Show 5 that when R z the double integral above may be transformed by

Green's Lemma in such a manner as to establish the formula for change of variables

in triple integrals.

6. Show that for vector surface integrals f UdS = C

7. Solid angle as a surface integral. The area cut out from the unit sphere by a

cone with its vertex at the center of the sphere is called the solid angle w subtended

at the vertex of the cone. The solid angle may also be defined as the ratio of the

area cut out upon any sphere concentric with the vertex of the cone, to the square

of the radius of the sphere (compare the definition of the angle between two lines



produced and the outward normal to the surface. Hence show

cos(r, n)^ g /r.dS / 1 dr rdl
' -

r8

/ 1 dr rdl C=
/

<M> = !
- ct6 = I

J r2 dn J dn r J

where the integrals extend over a. surface, is the solid angle subtended at the origi

by that surface. Infer further that

/* d 1 ,., . r d 1 ,., r d 1 ,., a_
|
-- d$ = 4it or

/
-- dS = or

/
-- dti =

/o dn F /o dn r /o dn *

according as the point r = is within the closed surface or outside it or upon

at a point where the tangent planes envelop a cone of solid angle d (usually 2 TT

Note that the formula may be applied at any point (, rj, f) if

r2 = (f
-

x)
2

-J- (77
-

y)
2 + (f

-
2)

2

where (x, y, z) is a point of the surface.

8. Gauss's Integral. Suppose that at r = there is a particle of mass 1

which attracts according to the Newtonian Law F = m/r2 . Show that tli

potential is F= m/r so that F= VF. The induction or flux (see Ex. II

p. 308) of the force F outward across the element dS of a surface is by deflnitio

Faos(F, n)dS Y'dS. Show that the total induction or flux of F across

surface is the surface integral

fF.dS=- TdS.VF = - Cd8 = m fdS-v!;J J J dn J r

and m = ( F.dS = f dS.VV = f -dS,
4 TT t/o 4 n- /o 4 TT /o dn r

where the surface integral extends over a surface surrounding a point r = 0, i8 th

formula for obtaining the mass m within the surface from the field of force '.

which is set up by the mass. If there are several masses m
t ,
m

2 ,
situated

points ft, 77t , fx), ( i,S) j-8),
.

., let

F = F1 + F
2 + ..., F=F

t +F2 + ...,

Ft = - m [(ft
-

Xf) + (ni
-

7/,-)

2 + (f,-
- 2t-)

2
]- 1

be the force and potential at (a, y, 2) due to the masses. Show that

fF.dS = fdS.VF = - V f -dS=^'mt = M, (21
47T ^o 4w^o 4 TT *4 JQ dn n **f

where S extends over all the masses and S' over all the masses within the surfac

(none being on it), gives the total mass Jlf within the surface. The integral (2f

which gives the mass within a surface as a surface integral is known as Gauss'

Integral. If the force "were repulsive (as in electricity and magnetism) instead c

attracting (as in gravitation), the results would be F = m/r and

4 TT /o 4 TT JQ 4 ir ^ /o dn



dz

dx By sz \dy dz \az dx/ \dx

by formal operation on F = Pi + Qj + Kk. Show further that

Vx(VxF) = V (V-F)
-

(V-V) F (write the Cartesian form).

Show that (V-V) U = V.(Vt7). If u is a constant unit vector, show

(u.V) F = - cos a +
d

cos /3 +
8- cos 7 =

dx dy Sz ds

fs the directional derivative of F in the direction u. Show (dr-v) F = dF.

10. Green's Formula (space). Let F(x, y, z) and G(x, y, z) be two functions

so that VF and VG become two vector functions and FVG and GVF two other

vector functions. Show

V.(FVG) = VF.VG + JFV.VG, V.(GVF) =

dx\ 8x' dy\ dy/ <dz\ dz/

dx dx dy dy dz dz

and the similar expressions which are the Cartesian equivalents of the above vector

. Apply Green's Lemma or Gauss's Formula to show

(26)

f GVF-dS = CvF'VGdV + CGV.VFdV, (26')

C(FVG- GVF)-dS = f(FV.VG - GV.VF) d F, (26")

= r^^ + ^?f ^a^
,
F/^ a^ ^o dn J \dx 8x dy 8y dz dz/ J {dx2 dy* dz*/

dn dn _ dx* dy* to* W Sz2

The formulas (26), (26'), (26") are known as Green's Formulas; in particular the first

two are asymmetric and the third symmetric. The ordinary Cartesian forms of

(26) and (26") are given. The expression d*F/dx
2 + d*F/dys + d*F/8z

z is often

written as AF for brevity ; the vector form is V-V.F.

11. From the fact that the integral of Fdr has opposite values when the curve

is traced in opposite directions, show that the integral of VxF over a closed surface

vanishes and that the integral of V-VxF over a volume vanishes. Infer that

V.VxF = 0.



instead of dr.

14. If in F = Pi + Qj + Rk, the functions P, Q depend only on x, y and tl

function R = 0, apply Gauss's Formula to a cylinder of unit height upon tl

zj/-plane to show that

Cv-FdV = fF-dS becomes ffl +
)
dxdy = fF-dn,

where dn has the meaning given in Ex. 13. Show that numerically Fdn and Fxi

are equal, and thus obtain Green's Lemma for the plane (22) as a special case of (2C

Derive Green's Formula (Ex. 10) for the plane.

15. If fF.<Jr = fc.dS, show that f(G VxF)-dS =0. Hence infer that

these relations hold for every surface and its bounding curve, then G = Vx!

Ampere's Law states that the integral of the magnetic force H about any circuit

equal to 4 IT times the flux of the electric current C through the circuit, that i

through any surface spanning the circuit. Faraday's Law states that the integr

of the electromotive force E around any circuit is the negative of the time ra

of flux of the magnetic induction B through the circuit. Phrase these laws

integrals and convert into the form

4 rrC = curl H, B = curl E.

16. By formal expansion prove'V-(ExH) = H'VxE E'VxH. Assume VxE=
and VxH = E and establish Poynting's Theorem that

J"(ExH)-dS
= -j f- (E.E -f H.H)dF.

17. The "
equation of continuity

" for fluid motion is

dt Sx Sy dz dt \dx dy Sz

where JD is the density, v = ivx + }vv + kv., is the velocity, dD/dt is the rate

change of the density at a point, and dD/dt is the rate of change of density as o

moves with the fluid (Ex. 14, p. 101). Explain the meaning of the equation in vi<

of the work of the text. Show that for fluids of constant density yv = 0.

18. If f denotes the acceleration of the particles of a fluid, and if F is t

external force acting per unit mass upon the elements of fluid, and if p denol

the pressure in the fluid, show that the equation of motion for the fluid within a:

surface may be written as

VfDdF=VFI>dF- VpdS or CfDdV = fvDdV- CpdS,



face and the pressures (except those acting on the bounding surface inward) may
be disregarded. (See the first half of 80.)

19. By the aid of Ex. 6 transform the surface integral in Kx. 18 and find

fDfdV= C(DF-Vp)dV or ^E = F_i Vj>
I J at* 1)

as the equations of motion for a fluid, where r is the vector to any particle. Prove

"S=M + <">- +1^
^ dv jdr , d2r

20. If F is derivable from a potential, so that F = Vl/, and if the density is a

function of the pressure, so that dp/D = dP, show that the equations of motion are

- vxvxv = ~ v
ct

after multiplication by dr. The first form is Helmholtz's, the second is Kelvin's.

Show

X,U,Z(J (I nx,y,z I" 1 ~l x, y, z /-
(v.dr) .=

- f v.dr = - \U + P - - r>
2 and f v-dr = const.

:,b,c dt dtJa,b,c ]_ 2 Ja,b, e /O

In particular explain that as the differentiation d/dt follows the particles in their

motion (in contrast to d/dt, which is executed at a single point of space), the

integral must do so if the order of differentiation and integration is to be inter-

changeable. Interpret the final equation as stating that the circulation in a curve

which moves with the fluid is constant.

ft , r<.B*U d2U 8ZU r\~idU\z /8U\2
/<

21. If f- 1 =0, show I ( ) +( ) +(-
dx2

T
dy

2
^

dz2
'

JLVac/ \8y/ \

22. Show that, apart from the proper restrictions as to continuity and differen.

tiability, the necessary and sufficient condition that the surface integral

CCPdydz + Qdzdx + Rdxdy
- C pdx + qdy + rdz

depends only on the curve bounding the surface w that P'x + Qy + ^ = 0. Show

further that in this case the surface integral reduces to the line integral given above,

provided p, g, r are such functions that r'
y q'., P, p'a r's = Q, q^p'y = R-

Show finally that these differential equations for p, g, r may be satisfied by

p = f'Qdz
- CR(x, y, z )dy, q =- C*Pdz, r = 0;

J
*o

J J
*o

and determine by inspection alternative values of p, q, r.



CHAPTER XIII

ON INFINITE INTEGRALS

140. Convergence and divergence. The definite integral, and henc

for theoretical purposes the indefinite integral, has been defined,

C f(x)dx, F(x)= C*f(x)dx,
/o i/a

when the function /(x) is limited in the interval a to b, or a to x
;
tl

proofs of various propositions have depended essentially on the fai

that the integrand remained finite over the finite interval of integratic

( 16-17, 28-30). Nevertheless problems which call for the determini

tion of the area between a curve and its asymptote, say the area und<

the witch or cissoid,

.
2

_ Q=4 ira?, 2 I . :
= STTC

. . _ x x= 4 a2 tan
*

have arisen and have been treated as a matter of course.* The int

grals of this sort require some special attention.

When the integrand of a definite integral becomes infinite within \

at the extremities of the interval of integration, or when one or both c

the limits of integration become infinite, the integral is called an infini

integral and is defined, not as the limit of a sum, but as the limit of c

integral with a variable limit, that is, as the limit of a function- Thi

I f(x) dx = lini F(x) = I f(x)dx ,
infinite upper limit,

Jo, I=L / J

C f(x) dx = lim F(x) = C f(x) dx , integrand f(b)
= oo.

These definitions may be illustrated by figures which show the conne

tion with the idea of area between a curve and its asymptote. Simili

definitions would be given if the lower limit were oo or if the int

grand became infinite at x = a. If the integrand were infinite at son

intermediate point of the interval, the interval would be subdivid<

into two intervals and the definition would be applied to each part.

* Here and below the construction of figures is left to the reader.

852
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Now the behavior of F(x) as x approaches a definite value or becomes
infinite may be of three distinct sorts

;
for F(x) may approach a definite

finite quantity, or it may become infinite, or it may oscillate without

approaching any finite quantity or becoming definitely infinite. The

examples

Sa'rfs
"

*
Sa'dx

r'fa .. r r'tjx . 1
I

= Jim I
= Jog a;

, becomes infinite, no limit,
J\ x r ='*\_Ji

a '

J

/cos
xdx = lim I cos xdx = sin x

, oscillates, no limit,x=x \_Jo J

illustrate the three modes of behavior in the case of an infinite upper
limit. In the first case, where the limit exists, the infinite integral is

said to converge; in the other two cases, where the limit does not exist,

the integral is said to diverge.

If the indefinite integral can be found as above, the question of the

convergence or divergence of an infinite integral may be determined

and the value of the integral may be obtained in the case of convergence.
If the indefinite integral cannot be found, it is of prime importance to

know whether the definite infinite integral converges or diverges j
for

there is little use trying to compute the value of the integral if it does

not converge. As the infinite limits or the points where the integrand

becomes infinite are the essentials in the discussion of infinite integrals,

the integrals will be written with only one limit, as

ff(x)dx, ff(x)dx.

To discuss a more complicated combination, one would write

/*
e~ xdx _ /"f r l rs r x e~ xdx

V^loga; J Jf Ji J
and treat all four of the infinite integrals

e~ xdx r e~ xdx e~
xdxer*dx r 1 e~ xdx r e~ xdx f

, Vo*logo3 J Va?log Jx Vx*loga J



where /(#) may be assumed to remain positive for large values of

and E
(a;) approaches a positive limit as x becomes infinite. Then if

be taken sufficiently large, both f(x) and E
(a;)

have become and w
remain positive and finite. By the Theorem of the Mean (Ex. 5, p. 2

TO f f(x)dx < f f(x)E(x)dx < M f f(x}dx,
JK JK JK

x> K.

where m and M are the minimum and maximum values of E (x) betwe

K and oo. Now let x become infinite. As the integrands are positr

the integrals must increase with x. Hence (p. 35)

if

JK
converge

if

converges, I f(x)E(x)dx < M
JK JK

XXf(x) E (x) dx converges,
.

/ oo -i r> oo

I /(x) dx < I /(x) E (x) rfx converges ;

JK m JK
and divergence may be treated in the same way. Hence the integri

(1) converge or diverge together. The same treatment could be giv

for the case the integrand became infinite and for all the variety

hypotheses which could arise under the theorem.

This theorem is one of the most useful and most easily applied for deteraini

the convergence or divergence of an infinite integral with an integrand wh

does not change sign. Thus consider the case

r xdx = rr g2 i
1
^. J(a)s r x2

i*. r^=_i
J

(gg. + a2)|
J [_ax+ x2J x2 LOX + x2J J x2 x

Here a simple rearrangement of the integrand throws it into the product of afu

tion E (x), which approaches the limit 1 as x becomes infinite, and a function I/

the integration of which is possible. Hence by the theorem the original integ

converges. This could have been seen by integrating the original integral ;
1

the integration is not altogether short. Another case, in which the integratior

not possible, is
/* do; _ /-i

Vl SB*
""

E(x) =



r_^ =Jo2 J
(2-x)4

= _JL

141. The interpretation of a definite integral as an area will suggest
another form of test for convergence or divergence in case the inte-

grand does not change sign. Consider two functions f(x) and
\j/(x)

both of which are, say, positive for large values of x or in the neigh^

borhood of a value of x for which they become infinite. If the curve

y = *f/(x)
remains above y = f(x), the integral off(x) must converge if

the integral of if/ (x) converges, and the integral of $ (x) must diverge if

the integral off(x~) diverges. This may be proved from the definition.

For /(a) < \l/(x)
and

f*X r*X

I f(x)dx<l \l>(x)dx or F(x) < *(*).
JK J K

Now as x approaches b or oo, the functions F(x) and ^(V) both increase.

If *(#) approaches a limit, so must F(x) ;
and if F(x) increases -with-

out limit, so must ty(x).

As the relative behavior of f(x) and
i^(cc)

is consequential only near

particular values of x or when x is very great, the conditions may be

expressed in terms of limits, namely : If \lr(x)
does not change sign and

if the ratio f(x~)/\j/(x) approaches a finite limit (or zero], the integral of

f(x) will converge if the integral of $(%) converges; and if the ratio

f(x)/\lr(x) approaches a finite limit (not zero] or 'becomes infinite, the

integral off(x) will diverge if the integral of ^(x) diverges. For in the

first case it is possible to take x so near its limit or so large, as the

case may be, that the ratio f(x)/\J/(x) shall be less than any assigned

number Q greater than its limit
;
then the functions /(x) and G\jf (x)

satisfy the conditions established above, namely/ < G\fr,
and the inte-

gral of f(x) converges if that of ^(x) does. In like manner in the second

case it is possible to proceed so far that the ratio /(o;)/i/'(x)
shall have

become to remain greater than any assigned number g less than its

limit ;
then/ > g\j/,

and the result above may be applied to show that

the integral of f(x) diverges if that of ^ (x) does.

3Tor an infinite upper limit a direct integration shows that

/
dx __

x
or log x

converges if k > 1,

diverges if k ^ 1.
(2)

Now if the test function ^(x) be chosen as l/o;
fc = ar*, the ratio

f(x)/<l>(x) becomes */(), and if the limit of the product */() exists



is an mnmtesimai 01 oruer nigner

becomes infinite, but will diverge if /(x) is an infinitesimal of the first

or lower order. In like manner

dx . ,
i converges if &<1, /tt

.

or -log (6 x) ,
,. ..,_- (3)bv

'l
diverges if 7c^l,

'

and. it may be stated that: The integral of
t/'(x) to b will converge if

f(x) is an infinite of order less than the first relative to (b x)~
l as x

approaches b, but will diverge if f(x) is an infinite of the first or higner
order. The proof is left as an exercise. See also Ex. 3 below.

/> 00

As an example, let the integral \ x"e~ xdx be tested for convergence or diver-
Jo

geuce. If n > 0, the integrand never becomes infinite, and the only integral to

examine is that to infinity ;
but if n < the integral from has also to be consid-

ered. Now the function e~ x for large values of x is an infinitesimal of infinite

order, that is, the limit of xk + nc~ x is zero for any value of k and n. Hence the

integrand xne~ x is an infinitesimal of order higher than the first and the integral

to infinity converges under all circumstances. For x = 0, the function e~x is finite

and equal to 1
;
the order of the infinite xne~x will therefore be precisely the order

n. Hence the integral from converges when n > 1 and diverges when n ^ 1.

Hence the function

I (a) = f xa ~ le- !X

dx, a > 0,
/ o

defined by the integral containing the parameter or, will be defined for all positive

values of the parameter, but not for negative values nor for 0.

Thus far tests have been established only for integrals in which the

integrand does not change sign. There is a general test, not particularly

useful for practical purposes, but highly useful in obtaining theoretical

results. It will be treated merely for the case of an infinite limit. Let

r* x n x"

EYA I /WW-r J?(r"\ BY'r'N I ff^\fJ^ f' f" *> K (&\
\ /

"~~
I </ \ /

M'1
*'} F \" ) -F

v*' /
"

I J \ J toXj Jj
,
X ^^ .n.. ^*/

JK Jx'

Now (Ex. 3, p. 44) the necessary and sufficient condition that F(x)

approach a limit as x becomes infinite is that JF(x") F(x') shall

approach the limit when x' and cc", regarded as independent varia-

bles, become infinite; by the definition, then, this is the necessary
and sufficient condition that the integral of f(x) to infinity shall

converge. Furthermore
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/
x

| /(a) |

da: converges, then I f(x)dx (5)

must converge and is said to be absolutely convergent. The proof of this

important theorem is contained in the above and in

f f(x)dxs r
'

\

Jx' Jx>

To see whether an integral is absolutely convergent, the tests estab-

lished for the convergence of an integral with a positive integrand

may be applied to the integral of the absolute value, or some obvious

direct method of comparison may be employed ;
for example,

/"
cosxc&e f" Icfcc . . .

~T~i 2 f ~T~, Q which converges,a + x J & + x

and it therefore appears that the integral on the left converges abso-

lutely. When the convergence is not absolute, the question of con-

vergence may sometimes be settled by integration by parts. For

suppose that the integral may be written as

f /(as)daj
= f ^(x^(x-)dx= U(x) C<f,(x)dx\

X

- fV(X>

by separating the integrand into two factors and integrating by parts.

Now if, when x becomes infinite, each of the right-hand terms approaches
a limit, then

I f(x)dx = lim <(:) f$(x)dx - lim f +'(x) i

and the integral of f(x) to infinity converges.

4 , ., A, . rxcosxdx r* xlcosxldx
As an example consider the convergence of I Here /

-~ 4r~& J a2 + a;
2 J a2 + x2

does not appear to be convergent ; for, apart from the factor
|
cos x\ which oscillates

between and 1, the integrand is an infinitesimal of only the first order and the

integral of such an integrand does not converge ;
the original integral is therefore

apparently not absolutely convergent. However, an integration by parts gives

/
x
xcosxdx_ zsinz x r x x2 a

a2 + x2
~
^T^ ~J (z

2 + a

* x2 -a2

(z + a)

lim =
J



1. Establish the convergence or divergence of these infinite integrals:

dfx

x VI + x2

(5) |
xa ~ l

(\ x)P-*dx (to have an infinite integral, a must be less than 1),
Jo

2. Point out the peculiarities which make these integrals infinite integrals, an

test the integrals for convergence or divergence :

/* 1 / T\** /* ^ lO^iC
(a) I I log-) dx, conv. if n > 1, div. if n == 1, (ft) I dx,

Jo \ xj Jo I x
it

(7) f ( logx)dx, (S) fMogsinxdx, (e) fJo J o / o

3. Point out the similarities and differences of the method of .E'-functions an

of test functions. Compare also with the work of this section the remark that th

determination of the order of an infinitesimal or infinite is a problem in indetei

minate forms (p. 63). State also whether it is necessary that /(x)/y- (x) or x*/(a

should approach a limit, or whether it is sufficient that the quantity remain finitt

Distinguish "of order higher" (p. 356) from "of higher order" (p. 63); see Ex. 8, p. 6(

4. Discuss the convergence of these integrals and prove the convergence i

absolute in all cases where possible :

. f*sinx, .... /* ,, . . /" cosVz ,

(<x) J -^-fa, (^ J
cosx2

dx, (7) J



Q

_

(X) f
Jo

oo /;., coss^, w /;,, (f
+ ), w j .

5. If /^x) and /2 (x) are two limited functions integrable (in the sense of

28-30) over the integral a S x ^ 6, show that their product /(x) =/1 (a:)/2 (ic)
is integrable over the interval. Note that in any interval

5,-, the relations
m,:vm2i s m,- ^ _M, s JJflt-Jtf2l

- and JlflfJlf2i
- mlfm2 f

= 3fi,-Jf2t
- - Mlim2i +

3flfTO2f OTiiOT2 = -M"i;O2t- + mafOj,- hold. Show further that

= lim

/(x) (to = lim

/(x) do; =/1 (^1 ) f /2(x)cZx + limV [/,(&) -/s (ft_ a)] f /8 (x)dc.a / a ^ T */x.
t

6. TAe Second Theorem of the Mean. lif(x) and 0(z) are two limited functions

integrable in the interval a ^ x s &, and if (x) is positive, nondecreasing, and
less than JT, then

f * (*)/() dx = KC "f(x) dz, a g | s 6.
'a i/

And, more generally, if
(x) satisfies oo<fc^0(a;)^:B:<a> and is either

nondecreasing or nonincreasing throughout the interval, then

f <t> (x)/(x) dx = kf *f(x) dx + K C /(x) dx, a g { ^ 6.
va >/a /f

In the first case the proof follows from Ex, 5 by noting that the integral of

^>(x)/(x) may be regarded as the limit of the sum

where the restrictions on
(x) make the coefficients of the integrals all positive or

zero, and where the sum raay consequently be written as

if /t be a properly chosen mean value of the integrals which multiply these coeffi-

cients
;
as the integrals are of the form f f(x) dx where = a, xu ,

x
rt ,

it follows
Jt



I. II <p(X) is a. luiiciiKHi varying iuways in ui Kiiine sense sum appruauimig

/<*> </>(x)f(x)dx will converge i

I /(a) dx converges. Consider

f
X

'0 ()/() *c = <t> (x') f V(z) dx + </. (x") f
^

/(x) dz.
vxf JX' Jt

8. If <f)(x) is a function varying always in the same sense and approaching a

a limit when x oo, and if the integral F(x) of f(x) remains finite when x = oc

/CO (x)f(x) dx is convergent. Consider

</> (x)/(x) dx = tj> (x')

/CO () sin xd

where
<j> (x) constantly decreases or increases toward the limit when x = oo

;
al

these integrals converge.

142. The evaluation of infinite integrals. After an infinite integra

has been proved to converge, the problem of calculating its value sti]

remains. No general method is to be had, and for each integral soin

special device has to be discovered which will lead to the desirei

result. This may frequently be accomplished by choosing a function

F(z~) of the com/plex variable s = x + iy and integrating the functio;

around some closed path in the z-plane. It is known that if the point

where F(z) = X(x, y) + iY(x, y) ceases to have a derivative F'(&^

that is, where X(x, y) and Y(x, y) cease to have continuous first pai

tial derivatives satisfying the relations X'x = Y'
y
and X'

y
= F^, are cu

out of the plane, the integral of F(z) around

any closed path which does not include any of

the excised points is zero ( 124). It is some-

times possible to select such a function F(z) dz+idy dz^idy
and such a path of integration that part of

the integral of the complex function reduces

to the given infinite integral while the rest of

the integral of the complex function may be computed. Thus ther

arises an equation -which determines the value of the infinite integral.

Consider the integral \ dx which is known to converge. Now

/"*> sin x , c ete e~ *
, r eix r n e~ to

f dx={ dx= I
(

- dx
/o x Jo 2ix Jo Zix Jo 2fx

suggests at once that the function eiz/z be examined. This function has a deflnit

derivative at every point except 2 = 0, and the origin is therefore the only poin
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which has to be cut out of the plane. The integral of &*/z around any path such

as that marked in the figure
* is therefore zero. Then if a is small and A is large,

Xoiz
/> A eix n B giA y /

-dz=C -dx+f -
A -idy+C

j z Ja x J o A + iy JA
dx

+ iy JA x + IB

+ j : idy + |
dx + / dz.

JjB A + iy J-A x J-a z

But
I

dx I dx =
|

and
j

dz =
\J-A X J-a X Ja X J-a Z J-a

! + ?

dz;

the first by the ordinary rules of integration and the second hy Maclaurin's

Formula. Hence

/ e13 c " &x 6~ *x p~r a nz0=1 dz = I hi h four other integrals.
JQ Z Ja X J-a Z

It will now be shown that by taking the rectangle sufficiently large and the

semicircle about the origin sufficiently small each of the four integrals may be

made as small as desired. The method is to replace each integral by a larger one

which may be evaluated.

A + iy o
|

A + iy
\

\i\dy< C e-*dy<-.
iy\ Jo A A

These changes involve the facts that the integral of the absolute value is as great

as the absolute value of the integral and that &A - v = eiAe- v, \

&A
\

= 1,
|

A + iy
\

> A,

e~v<l. For the relations |e''^|
= l and \A + iy\>A, the interpretation of the

quantities as vectors suffices ( 71-74) ;
that the integral of the absolute value is

as great as the absolute value of the integral follows from the same fact for a sum

(p. 164). The absolute value of a fraction is enlarged if that of its numerator is

enlarged or that of its denominator diminished. In a similar manner

\L
-A eix-B

i x + iB
dx

Q-iA-y

>, A + iy

B

Furthermore

a dzr + a 02 _ r

J-a z JIT re**'

_,, . r &z
, r A a .sinx, .

,Then =
/ dz = I 2i dx TTI + E,
JQ z Ja x

where e is the greatest value of
|i;|

on the semicircle. Now let the rectangle be

so chosen that A = JBei
B

;
then \R\ < e~%B + TT. By taking B sufficiently large

2~ +2e-* +An



small, e may be made as small as desired. This amounts to saying that, for A BV

ciently large and for a sufficiently small, R is negligible. In other words, by tak:

A large enough and a small enough | may be made to differ from
<J ft X U

as little as desired. As the integral from zero to infinity converges and may
regarded as the limit of the integral from a to A (is so defined, in fact), the integ

from zero to infinity must also differ from \ TT by as little as desired. But if t

constants differ from each other by as little as desired, they must be equal. Hei

/'Jo

sin a;

As a second example consider what may be had by integrating e isi

/(z
z + k2

)
o^

an appropriate path. The denominator will vanish when z ik and there i

two points to exclude in the z-plane. Let the integral

be extended over the closed path as indicated. There is

no need of integrating back and forth along the double

line a, because the function takes on the same values / t5 zik
and the integrals destroy each other. Along the large

semicircle z = Ee'* and dz Ete'*d0. Moreover -R

r
eixdx

X-x
elxdx _ r a e

x2 + k2 Jo x

s e-^dx

TP by elementary rules.

TTHence \.
C JL i_ = r ! iJ! dx = 2 C . -

c

?.

os
.

aL dx.
Jo x2 + k2 Jo x2 + k* Jo x2 + i3

j n C 6fe , o C R COSE , r v &Be Ri&^dd> fand 0=1 dz = 2
/ da; + I + /

Jo z2 4- &2 Jo 2 + Jfc
2 Jo E2e2 '* + A;

2 Joa'<

Now = I e'-R(cos <(> + sin <f>) I I g- R sin < et'.R co I = g R sin ^ >

Moreover
|

JB2e2t'* + t2
1

cannot possibly exceed E2 kz and can equal it only wh
= TT. Hence

UT
eiReq'ftiei

<l>d<j>

J3Se2iiJ> ^. ^2

i

fc
2 Jo7?2 _ WXt/ ~~

n/

Now by Ex. 28, p. 11, sin $ > 2 </7r. Hence the integral may be further increase

*

'fJo fc
2 .(-*-!).

Moreover,
.

/ tf-az = /. _*__!*_ = r /*-*
,

\ a*

Joa'o 22 + fc
2 Jaa'a 2 + i/fc 3 ifc Joa'a \2 fcl / Z ik

where
ij

is uniformly infinitesimal with the radius of the small circle. But

eizdzdz . , r eizdz 27re-*= 27T&, and I =
\- f,a'Z-ik Jaa'a Z2 + &8 2 A

'



= 2
r^cosz

Jo x* +
*

+ k* k ^ ''

By taking the small circle small enough and the large circle large enough, the last

two terms may be made as near zero as desired. Hence

fJo
cos a; , ire~ k- ax =- .

z + k* 2k

It may be noted that, by the work of 126, f
Jaa'a

= 2 TTI is exact
2 + ki Z ki 2 ki

and not merely approximate, and remains exact for any closed curve about z = ki

which does not include z = ki. That it is approximate in the small circle follows

immediately from the continuity of &*/(z + ki)
= e~ k

/2ki + y and a direct inte-

gration about the circle.
n 00

yet 1

As a third example of the method let / - dz be evaluated. This integral

will converge if < a < 1, because the infinity at the origin is then of order less

than the first and the integrand is an infinitesi-

mal of order higher than the first for large values

of x. The function 2ar ~ 1
/(l + z) becomes infinite

at z = and z = 1, and these points must be

excluded. The path marked in the figure is a

closed path which does not contain them. Now
here the integral back and forth along the line

aA cannot be neglected ;
for the function has a

fractional or irrational power z"- 1 in the nu-

merator and is therefore not single valued. In

fact, when z is given, the function z*- 1 is deter-

mined as far as its absolute value is concerned, but its angle may take on any
addition of the fonn 2 irk (a 1) with k integral. Whatever value of the. function

is assumed at one point of the path, the values at the other points must be such

as to piece on continuously when the path is followed. Thus the values along the

line aA outward will differ by 2 ir (a 1) from those along Aa inward because

the turn has been made about the origin and the angle of z has increased by 2 IT.

The double line be and c6, however, may be disregarded because no turn about the

origin is made in describing cdc. Hence, remembering that e7"' =
1,

- = 2*- 1
_,

/. ,-tf-le(-!)** /.X^-l ^ ..- dz = /
- d (re*

1

)
=

/
- dr + - idtj>

l + z Jo 1+re*1 Ja 1 + r Jo'o l + AeP*

z-i

1+2
dz.



Jcdc 1 + 2 / 1+2

. /*
Heno< = (i

_ *"*)* ~^dr + 2vie + f, |f|<
+ r

If A be taken sufficiently large and a sufficiently small, f may be made as sm

as desired. Then by the same reasoning as before it follows that

= (i _ R2TT<rA f dr + 2 Trie* or = sin ira
\

dr + TT.

Jo 1 +r Jo 1 + r

X*
a
-

1

a;"- 1

+ x sin rr

/*
e~^dx. The eva

<

ation may be made by a device which is rarely useful. Write

f0-*\7sc=
I <r x*dx I e-^dy =

J
/ e-*~*dxdy

\_Jo Jo ] \_Jn Jo J

The passage from the product of two integrals to the double integ

may be made because neither the limits nor the integrands of eitl

integral depend on the variable in the other. Now transform to po
coordinates and integrate over a quadrant of radius A .

r
A
c
A

j_ 2 r^ C
A

i

Jo Jo c/0 Jo

where R denotes the integral over the area between the quadrant a

square, an area less than 4- A* over which <?~
r*

Si e~ A*. Then

.( / A
"! * *

7T
I /

e-^-^lxdy
Jo JQ

-A*

Now A may be taken so large that the double integral differs from \

by as little as desired, and hence for sufficiently large values of A 1

simple integral will differ from $ VTT by as little as desired. Hence

S* C

I

Jo
= VTT.

* It should be noticed that the proof just given does not require the theory ol in&
double integrals nor of change of variable

;
the whole proof consists merely in find

a number i V^ from which the integral may be shown to differ by as little as desh
This was also true of the proofs in 142

;
no theory had to be developed and no limit

processes were used. In fact the evaluations that have been performed show of th<

selves that the infinite integrals converge. For when it has been shown that an intej

with a large enough upper limit and a small enough lower limit can be made to di

from a certain constant by as little as desired, it has thereby been proved that i

integral from zero to infinity must converge to the value of that constant.
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ined from them Toy various operations, such, as integration by parts

change of variable. It should, however, be borne in mind that the

s for operating with definite integrals were established only for

"* 2

integrals and must be reestablished for infinite integrals. From
lirect application, of the definition it follows that the integral of

, :iotion times a constant is the product of the constant by the

4ttd of the function, and that the sum of the integrals of two

"ions taken between the same limits is the integral of the sum
'.." functions. But it cannot be inferred conversely that an integral

be resolved into a sum as

/-ft Xfc /"

/ [/()+()]<&= / f(x)dx+ I

tj a *J a tJa

ii one of the limits is infinite or one of the functions becomes

Tjit-e in the interval. For, the fact that the integral on the left

-vrges is no guarantee that either integral upon the right will

v^rge; all that can be stated is that if one of the integrals o/i the

*
con-veryex, the other will, and the equation will be true. The

' remark applies to integration by parts,

- f /'(*)*(
*^

in the process of taking the limit which is required in the defi-

s:t of infinite integrals, two of the three terms in the equation

pi-sich limits, the third will approach a limit, and the equation will

??tie for the infinite integrals.

lie formula for the change of variable is

xii-=<K/; f*r
\ /(*)&= I

l/.T=(/) Jt

-> ?H it is assumed that the derivative <'(/) is continuous and does

"

vanish, in the interval from t to T (although either of these con-

ns may be violated at the extremities of the interval). As these

quantities are equal, they will approach equal limits, provided

-v approach, limits at all, when the limit

X
iired in the definition of an infinite integral is taken, where one of

four limits a, b, t& ^ is infinite or one of the integrands becomes



of convergence was examined.

1 sin xf* Sill Xi TT
As an example of the change of variable consider / -- dx = - and take x ax,'.

,
sin <*' , , /

- sin ax' , ., , .

dx =
\
- dx or = / - cfcc' = /

- dx
,' r

i x' Jx'=o x' Jxf =o x' Jjc'=o x'

according as a is positive or negative. Hence the results

f
Smaa?

dx = + if a > and - - if a < 0. (10)
Jo x 2 2

Sometimes changes of variable or integrations by parts will lead back to a given

integral in such a way that its value may be found. For instance take

- w

I = f
2
log sin xdx = f log cos ydy = f 2

log cos ydy, y = - x.
/0 t/ir /0 2

2

Then 2Z= f 5
(log sin a; + logcosx)dx = plog^J^dz

/o Jo 2

= - f log sin xdx -
log 2 = f 2

logsina;dx -Iog2.2 /o 2 Jo 2
IT

Hence I = f 2
logsinaxte = - -

log 2. (11)

Here the first change was y = \ tr x. The new integral and the original one
were then added together (the variable indicated under the sign of a definite inte-

gral is immaterial, p. 26), and the sum led back to the original integral by virtue

of the substitution y 2 x and the fact that the curve y = log sin x is symmetrical
with respect to x = \ v. This gave an equation which could be solved for I.

EXERCISES

1. Integrate o

ze"
, as for the case of (7), to show f"

X8inx
dx = -e-*.

z2 +k2 v " J x2
-(- ik

2 2

2. By direct integration show that C e-(- 60*cfe converges to (a 6i)
-1

,
when

t/o

a > and the integral is extended along the line y = 0. Thus prove the relations

a f b
> | e~ <** sin bxdx = , a > 0.

a2 -f 62 Jo a2 + b2

Along what lines issuing from the origin would the given integral converge ?



/v< Xa"^dX (1 _ Ct^TT
3. Show I ~ =

.

* To Integrate about * = - 1 use the binomial
'O 11 ~f- X^ Sill CcTT

expansion z"-i = [- 1 + 1 + Z]-i = (- l)-i[i + (1
- a)(i 4 z

) + ,(i + z)],
TJ small.

4. Integrate e-*
2 around a circular sector with vertex at z = and bounded by

the real axis and a line inclined to it at n angle of \it. Hence show

^ wi C (cos r2 i sin r2) dr = C e~ *?dx = ,

Jo Jo 2

XOO

/> J C.

cosK2d =
/ sinx2dx =--./.
^o 2 \2

5. Integrate e~ z2 around a rectangle y = 0, y = B,x=: A, and show

f e- a;2 cos2oa;dx = | VTre- ",
C e-**sm2axdx = Q.

</0 / 00

6. Integrate 2 flr - 1e- z
,

< a, along a sector of angle g < \ v to show

/>

secag |
a;

a;- 1e- a:cos
cos(a;sing')dlx

/o
/100 />00

= cscag I x<t ~ 1e- !CCO
'9sin(a;sm5)dx= j

xa ~ le- xdx.
Jo Jo

7. Establish the following results by the proper change of variable :

. . f" cos ax , ire- ak n .. r M xa- 1dK Tr^*- 1 . A
(a) |
- dx =- , a > 0, (B)

- = -t--
, fl > 0,^ '

Jo x* + W 2k 'Jo
ft + x sin cnr

'

(7) ("e-^dx = VTT, (5) f"e- Ard = A /-,
^0 2 a A> -/. \Ct

/""cos*, /"sinx, 7T .... r 1 logxdx ir,
/ <&= dx^iJ-, (0) I

*
=--log2.

Jo - Jo - \ 2 v' 2 2l x2

8. By integration by parts or other devices show the following :

/ IT 1 /i oo eiri2

(a) f xlogsinxdx=--7T2
log2, (ft /

f

Jo 2 Jo x2

da; = .

f _ 1<a<;l)0rifa=1)0r0if
Jo X 2 4

(5) f x^-^dx =~, (e) rVe
Jo 4 a*

v '
Jo

(f)r(a + l)
= ar(a)if T(a)= TV-ie-to, (T,)

C * sinxd*
== ^. t'

Jo
' w/

Jo l + cos2 x 4

rao

/
1\ dx

loglx + -)--- = 7rlog2, by virtue of x = tany.



J. cmypuoa I j \J
/a X

Show

TTHence

//a*)-/M ,, = lim r /-/(m) -/(g) to = /"/- r<
Jo x a = o|_J x J;> 'a*

r-/0")-/(g) a, = lim f"<V(z)
^ =/(0) log

*
.

Jo X a==0 Jpa X J>

, v
/" sin x sin wx , . .. r*>e.-i>*-- e-i* , , q

(a) I
-- dx = 0, (j3) I

---- dx = log
-

,

Jo x Jo x p

/-ix''- 1 a?*- 1 . . o .... f* cos x cos ox , ,

(V) I
-

:
- c?x = log-i, (5) /- dx = loga.

Jo logx p Jo x

10. If /(x) and/'(x) are continuous, show by integration by parts that

/> f> /> ci Sill JfclC TT
lirn I /(x) sin kxdx = 0. Hence prove lim / /(x)

- dte = -/(0).
yt==t) Jo fc= QO JO X 2

PITT -i. C
a

-e, v sin te. , ...... /*
a sin kx , r

Write
| /(x)- dx =/(0) I

- dx + /

L Jo x Jo x Joo x o x o x

Apply Ex. 0, p. 359, to prove these formulas under general hypotheses.

11. Show that lim f /(x)
^-dx = if b > a > 0. Hence note that

=oo Ja X

r i- r b
fi .sinfcc ,. .. r b

,. . sin fee , ,. Ahm hm I /(x)
-- dx ^ lim hm / /(x)

-
dx, unless /(O) = 0.

i= oo a==0 J X as=0 X.-= > Ja !B

144. Functions defined by infinite integrals. If the integrand of

integral contains a parameter ( 118), the integral defines a fnnctioi

the parameter for every value of the parameter for which it converj

The continuity and the differentiability and integrability of the ft

tion have to be treated. Consider first the case of an infinite limit

XOO

S*SC f\ GO

f(x, a)dx = I f(x, a)dx + R (x, a), R= I f(x, a)dx.
J a, J-x

If this integral is to converge for a given value a = a
,
it is necessary t

the remainder R (x, ) can be made as small as desired by taking x la

enough, and shall remain so for all larger values of x. In like manne

the integrand becomes infinite for the value x = J, the condition th:

X&

/; nb

f(x, a)dx= I f(x, a)dx + R(x, a), R = I f(x, a)dx
i/a <Jx

converge is that R (x, # ) can be made as small as desired by takin

near enough to b, and shall remain so for nearer values.

Now for different values of a, the least values of x which will m
\R(x,a)\s c, when c is assigned, will probably differ. The infinite i]

grals are said to converge uniformly for a range of values of a sucl



I

R (x, a) |

< e holds (and continues to hold for all larger values, or values

nearer b) simultaneously for all values of a in the range a
Q
^ a s a

The most useful test for uniform convergence is contained in the

theorem: If a positive function </>(x) can Ie found such that

f <f>(x)dx converges and <f>(x)^\f(x, a) I

for all large values ofx and for all values of a in the interval a =S a =g a ,

the integral of f(x, a) to infinity converges uniformly (and absolutely}

for the range of values in a. The proof is contained in the relation

XOO

/190

f(x, a) dx Si I fj> (x) d;

\J X

ix < e,

which holds for all values of a, in the range. There is clearly a similar

theorem for the case of an infinite integrand. See also Ex. 18 below.

Fundamental theorems ate :
* Over any interval a

Q
& cc ^ o^ where

an infinite integral converges uniformly the integral defines a con-

tinuous function of a. This function may be integrated over any finite

interval where the convergence is uniform by integrating with respect

to a under the sign of integration with respect to x. The function may
be differentiated at any point a$ of the interval a

g
== a ^

cc^ by differ-

entiating with respect to a under the sign of integration with respect
to x provided the integral obtained by this differentiation converges

uniformly for values of a in the neighborhood of
$

. Proofs of these

theorems are given immediately below, t

To prove that the function is continuous if the convergence is uniform let

/100 f\ X

\f/ (a) = I f(x, a) dx = I fix. a) dx + R (x, cr), a Si = ,,
i/a </a

f (a + Aa) = f*f(x, a + Aa)dx + E(x, a + Aa),
v d

/(x, a)]dx -f
|

JB (z, a

* It is of course assumed that/(a;, a) is continuous in (x, a) for all values of x and a
under consideration, and in the theorem on differentiation it is further assumed that

f'a (x, cr) is continuous.

t It should he noticed, however, that although the conditions which have been

imposed are sufficient to establish the theorems, they are not necessary ; that is, it may
happen that the function will be continuous and that its derivative and integral may be
obtained by operating under the sign although the convergence is not uniform. In this

case a special investigation would have to be undertaken
;
and if no process for justifying

the continuity, integration, or differentiation could be devised, it might be necessary in

the case of an integral occurring in some application to assume that the formal work led

to the right result if the result looked reasonable from the point of view of the problem
under discussion, the chance of getting an erroneous result would be tolerably small.
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Now let x be taken so large that |fi|<e for all a's and for all larger values of x

the condition of uniformity. Then the finite integral ( 118)

pX f>X

I /(a;, a)dx is continuous in a and hence I [/(x, a + Aa) /(x, a)] eta

t/a "O

can be made less than e by taking Acr small enough. Hence |Af |<3e; that is, by

taking Ao: small enough the quantity |Af| may be made less than any assigned

number 3e. The continuity is therefore proved.

To prove the integrability under the sign a like use is made of the condition of

uniformity and of the earlier proof for a finite integral ( 120).

Xa.
/> a. fX f> a. nx r>a.

V(<*)da= I I /(IB, <x)dxda + I Rdx =/ / /(x, a)dadx + f.

-o ''S ^ a '"o c/a ''"o

Now let x become infinite. The quantity f can approach no other limit than 0;

for by taking x large enough R < e and |f |

< e (o^ a
Q) independently of a. Hence

as x becomes infinite, the integral converges to the constant expression on the

left and

I V(tf)da=l / /(x, cr) dadx.
/ar Ja /

Moreover if the integration be to a variable limit for a, then

<e(a-a ).Also F(x, a)dx C C"f(x,a)dadx
Jx J

Hence it appears that the remainder for the new integral is less than (, or )

for all values of a
;
the convergence is therefore uniform and a second integration

may be performed if desired. Thus if an wfinite integral converges uniformly, iL may
be integrated as many times as desired under the sign. It should be noticed that the

proof fails to cover the case of integration to an infinite upper limit for a.

For the case of differentiation it is necessary to show that

/*<*> />ao

I /'(x, (Xtfdx = tt>'(<Xt). Consider
| f'(x,a)d = w(a).

^a t/a

As the infinite integral is assumed to converge uniformly by the statement of the

theorem, it is possible to integrate with respect to a under the sign. Then

f</a> x, or)-/(x, a
f

>

The integral on the left may be differentiated with respect to a-, and hence

0(a) must be differentiate. The differentiation gives w(a)= <t>'(ct)
and hence

w(cr^)
=

<j>'(a). The theorem is therefore proved. This theorem and the two
above could be proved in analogous ways in the case of an infinite integral due
to the fact that the integrand /(*, a) became infinite at the ends of (or within)
the interval of integration with respect to x

;
the proofs need not be given here.

145. The method of integrating or differentiating under the sign of

integration may be applied to evaluate infinite integrals when the condi-



the question of the uniformity of convergence did not arise ( 119-120).
The examples given below will serve to illustrate how the method works
and in particular to show how readily the test for uniformity may be
applied in some cases. Some of the examples are purposely chosen iden-
tical with some which have previously been treated by other methods.

Consider first an integral which may be found by direct integration, namely,

I
e- x coBbxdx = -^ . Compare f V*cfcc = i.Jo a2 + o2 J a

The integrand e-"* is a positive quantity greater than or equal to e- ax cosbx
for all values of b. Hence, by the general test, the first integral regarded as a
function of b converges uniformly for all values of b, defines a continuous func-
tion, and may be integrated between any limits, say from to b. Then

/*bfta> /too * b

I I e~ ax cos bxdxdb = I I e- ax cosbxdbdxJo Jo Jo Jo
sin bx , c b adb hf" sin ox , r b= I e-* dx = I

Jo x Jo a
= tan- 1 -.

a

Integrate again. T fV-^dH* = fV- 1 -
JoJo x Jo x

= b tan-i - -
J log (a

2 + bz
).

andCompare /""--
1 ~ c

Jo a;
2

Now as the second integral has a positive integrand which is never less than the i

grand of the first for any positive value of a, the first integral converges uniformly
for all positive values of a including 0, is a continuous function of a, and the value
of the integral for a = may be found by setting a equal to in the integrand. Then

=LcoSJ!

x
dx = lim

r
tan_1 6_a !

(fl2 + &2) ]
_

|6|
5 e

x2
a = o|_ a 2 'J

'

'2

The change of the variable to x' = \ x and an integration by parts give respectively

/sin
2
fa; TT rsin&x, v TT

Jo -^~ da:=:
2

|6i '

Jo ~^ <*C:=+
I

r
~f'

as 6>0 or

This last result might be obtained formally by taking the limit

after the first integration ;
but such a process would be unjustifiable without first

showing that the integral was a continuous function of a for small positive values of a
andforO. In this case Ix-ie-^sinbxjSI*-

1 sin x|, but as the integral of |z-i sin bx\
does not converge, the test for uniformity fails to apply. Hence the limit would not
be justified without special investigation. Here the limit does give the right result,
but a simple case where the integral of the limit is not the limit of the integral is

i. /""sinte /
I. I. ^~ da; = lim(



'(a) = A f
da Jo x/x

To justify the differentiation this last integral must be shown to converge uni

formly. In the first place note that the integrand does not become infinite at th

origin, although one of its factors does. Hence the integral is infinite only by vir

tue of its infinite limit. Suppose a ==
;
then for large values of x

-(x--Y I a\ r
e \ x} M \ zE* e 2ae -x and I e-^dx converges ( 143).

Hence the convergence is uniform when a ==
0, and the differentiation is justified

But, by the change of variable x' = a/a;, when a > 0,

Jo x2 Jo Jo

Hence the derivative above found is zero
; <p' (a) and

r _Cz_2y /.

#(a) = I e \ x '

dx = const. = I e-^dx = A vir;
Jo JQ

for the integral converges uniformly when a^ and its constant value may b

obtained by setting a = 0. As the convergence is uniform for any range of value

of a, the function is everywhere continuous and equal to J VTT.

As a third example calculate the integral 0(6) = |
e-^cosfodz. Now

Jo

- =
/ xe~ <&>? sin bxdx = er ^^ sin bx C e~ a

*x* cos bxdx.
db Jo 2az L Jo 2 a2 Jo

The second step is obtained by integration by parts. The previous differentiatio:

is justified by the fact that the integral of xe- a*x
*, which is greater than the inte

grand of the derived integral, converges. The differential equation may be solved

i . /- -r-.
Hence ^(&) = 0(0)e ** = f e-^cosbxdx = -^ 1.

/o 2 a

In determining the constant O, the function 0(6) is assumed continuous, as th

integral for $ (b) obviously converges uniformly for all values of b.

146. The question of the integration under the sign is naturall;

connected with the question of infinite double integrals. The doubl

integral I f(x, y) dA over an area A is said to be an infinite Integra

if that area extends out indefinitely in any direction or if the functioi

f(Xf y) becomes infinite at any point of the area. The definition o
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convergence is analogous to that given before in the case of infinite

simple integrals. If the area A is infinite, it is replaced by a finite

area A 1 which is allowed to expand so as to cover more and more of

the area A. If the function f(x, ?/)
becomes infinite at a point or along

a line in the area A
,
the area A is replaced by an area A ' from which the

singularities off(x, y) are excluded, and again the area A' is allowed to

expand and approach coincidence with A. If then the double integral

extended over A' approaches a definite limit which is independent of

how A' approaches A, the double integral is said to converge. As

cc re /'

\ \ f(x > y} dxdtJ =11 J
(

JJ JJ \

where x =
<f> (u, v>), y = ^ (u, v), is the rule for the change of variable

and is applicable to .4', it is clear that if either side of the equality

approaches a limit which is independent of how A' approaches A, the

other side must approach the same limit.

The theory of infinite double integrals presents numerous difficulties,

the solution of which is beyond the scope of this work. It will be suffi-

cient to point out in a simple case the questions that arise, and then

state without proof a theorem which covers the cases which arise in

practice. Suppose the region of integration is a complete quadrant so

that the limits for x and y are and oo. The first question is, If the

double integral converges, may it be evaluated by successive integra-

tion as

Cf(x, y}dA = f f f(x, y)dydx = f f f(
J /ar= i/y=0 i/#= *J x=

And conversely, if one of the iterated integrals converges so that it may
be evaluated, does the other one, and does the double integral, converge
to the same value ? A part of this question also arises in the case of a

function defined by an infinite integral. !For let

OO y** GO /** OO /* GO

f(x,y)dy and I

4>(V)cfa;=j
I f(x,y)dydxt

, =0 tJx= c/a;=0 *sy=

it being assumed that
</> (x) converges except possibly for certain values

of x, and that the integral of < (x) from to oo converges. The question

arises, May the integral of
<j> (x) be evaluated by integration under the

sign ? The proofs given in 144 for uniformly convergent integrals inte-

grated over a finite region do not apply to this case of an infinite inte-

gral. In any particular given integral special methods may possibly be



number of lines parallel to the axes of x and y, then the three integrals

lf(x,y)d
A

, I I f(x,y}dydx, I \ f(x,y)dxdy, (12)
J JxzaQ Jy= Q yy = Ux=0

cannot lead to different determinate results ; that is, if any two of them

lead to definite results, those results are equal.* The chief use of the

theorem, is to establish the equality of the two iterated integrals when

each is known to converge ;
the application requires no test for uni-

formity and is very simple.

As an example of the use of the theorem consider the evaluation of

n 00 n 00

/ = I e~ x ox = I <x<r

/o /o

Multiply by e"*2 and integrate from to oo with respect to a.

Ie~ at = C ae-^+^dx, iC e-*da = Z 2 = C f ae-*-(l+^dxd(x.
Jo Jo Jo Jo

Now the integrand of the iterated integral is positive and the integral, being equal

to I 2
,
has a definite value. If the order of integrations is changed, the integral

s* oo ft co / oo ^ ^G 1 77*

I / cn; *2
(i+**) dccdx = I = -tan~ 1 oo = --

Jo Jo Jo 1 + x2 2 2 4

is seen also to lead to a definite value. Hence the values I 2 and ^ TT are equal.

EXERCISES

1. Note that the two integrands are continuous functions of (x, a) in the whoh

region ^ a < co, ;g x < co and that for each value of a the integrals converge

Establish the forms given to the remainders and from them show that it is not pos-

sible to take x so large that for all values of a the relation \R (x, a) \
< e is satisfied

but may be satisfied for all a's such that Q < a == a. Hence infer that the conver-

gence is nonuniform about a = 0, but uniform elsewhere. Note that the functions

defined are not continuous at a: = 0, but are continuous for all other values.

(a) f ae~ x
dx, E(z, a)=f ae~*x dx = e~ ax

1,
Jo Ja

,^ r" sin ax, _ . . />cc sinax, r^smx,
(/3)

/ dx, E (x, a) = /
dx =

/
dx.

Jo X Jx X J ax X

2. Repeat in detail the proofs relative to continuity, integration, and differ

entiation in case the integral is infinite owing to an infinite integrand at x = b.

* The theorem may be generalized by allowing /(a:, y) to be discontinuous over ;

finite number of curves each of which is cut in only a finite limited number of poinb

by lines parallel to the axis. Moreover, the function may clearly be allowed to changi

sign to a certain extent, as in the case where / > when x > a, and / < when < a; < a

etc., where the integral over the whole region may be resolved into the sum of a finiti

number of integrals. Finally, if the integrals are absolutely convergent and the integral

pf |/(, y)\ lead to definite results, so will the integrals of/(x, y).



.no aence aenve tae results mat are given :

a) I e- axt dx = -
A JL, a>0, J

x 2ne~
Jo 2\ a Jo

f\ 00 1 / OO

6) / xe- ^dx = , cr > f x 2 '1 "'" 1

Jo 2 a Jo

/_dx_ = 7r_l^ ) fc

/"
'

Jo x2 + i 2 Vfc Jo

2a"+ 1

dx _Tl.3...(
4 n+1 2 2

/ J 1 f 1

S) I xdx = , n> 1, I x"( logx)
m da; = -

/0 71 + 1 Jfl (/I

f l r OJXi ^* ' v ^ (X ^ J.^
I

_______-_____^ ^^
Jo 1 + x sin air Jo 1 + x cos2 cor 1

ir2 cos air

4. Establish the right to integrate and hence evaluate these :

f>
no n oo g era g bi 5

a) f
e- aa:

d!x, < a S a-, /
- da; = log-, &, aScr .

Jo t/o x a

, ^ r 1
, , fix b

, . a+l . ^_
j5) / x'Ae, -Kcr <ar, / -- dx = log , &, a s cr

,

Jo Jo logx o+l

/ T ^
oo e-az_ e-te I 62 + m2

[7) I e- az cosmxdx, < a: ^ a, |

- cos mxdx = -
log ,

/0 vOX *0t+ 771

/>> nao gax g ba_ h a

(S) I e-txsinmxdx, 0re ga:. I
- sin wxdx = tan-i-- tan-1

^ '

Jo
"

Jo x m m

-V/~00 -V - --
) f"e- 2a:t dx = -> 0<or ^a, f e"^ - e~ x'- dx = (b

- a
Jo 2a Jo

5. Evaluate: (a) fV
t/O

sin2crx;; , ^ r ,sn2crx,
cr
2

, (7) I e~^
2- dx,

t/o x

6. If < a < 6, obtain from T e- ra;2dx = - * /- and justify the relations :

t/o 2 \ *"

2 f. / e- az2x2dx . , /"e- 6a;*x8dx= = sm a |
-- sm 6

f
-r

V?rL Jo 1 + x* Jo 1 + x*

r =o e
-
ax'fJx f e

- &*2
dx1+ COS - -

7
-- COS 6 I

--
Jo 1 + x* Jo l + x*J

/"sinr. /TT 2 P. r e~ '^Vdx f" e-^dx"!I - dr=-k/--- smr I
--

j + cosr I
---

Jo Vr ^ 2 V^L Jo 1+x* Jo l + x*J



, . .. ,
r r co8r. fir 2f r x e-"f* 2dx . r e~ ra: dx1

Similarly, I dr=-\/- -- cosr ---- sinrl ---
Jo Vr * 2 T L Jo 1 + x4 Jo l + x*J

/"*> sinr , / cosr ,
& /"".TO, /"" "", 1

Aico I
- dr =

I
- ^r =A/77' I

sin r2dr = f
cos-r2ar = H -

Also Jo Jo \2 Jo 2 Jo 2 2

7. Given that- = 2 f ae-^U + ^da, show that
1 + x2 Jo

/"*> 1 + COB 7?IX , 7T . /"*> COS7AIX 7T

I
-

TT dx = - (1+ e- "') and
/
-- dx = - e~ m

,
m > 0.

Jo 1 + x2 2
'

Jo 1 + x2 2

8. Express R (x, a) = |
-::
-

^ ^i ^y integration by parts and also by substi-
Jx 1 -\- X

tuting x' for nrx, in such a form that the uniform convergence for a such that

< cr ^= a is shown. Hence from Ex. 7 prove

/"xsinorx, TT _ .. .

I
-- dx = e-*, a > (by differentiation).

/o 1 + a; 2

Show that this integral does not satisfy the test for uniformity given in the text;

also that for a. = the convergence is not uniform and that the integral is also

discontinuous.

9. If /(x, or, /3) is continuous in (x, a, /3)
for Si x < oo and for all points (cr, 0)

/I 00

of a region in the o:/3-plane, and if the integral 0(, /3)
=

| /(x, r, /3)dx con-
t/O

verges uniformly for said values of (a, /3),
show that $ (or, /3)

is continuous in (a, /3).

Show further that ifftt (x, a, /?)
and /^ (x, or, /3) are continuous and their integrals

converge uniformly for said values of (cc, /3), then

;(x, a, j8)
dx = ^, /p' (x, a, /3) dx = ^,

/0

and <^, 0g are continuous in (a, |3).
The proof in the text holds almost verbatim.

10. If /(x, 7) =/(x, a + i/3)
is a function of x and the complex variable

7 = cc + i/3 which is continuous in (x, or, /3), that is, in (x, 7) over a region of the

7-plane, etc., as in Ex. 9, and if
/y(x, y) satisfies the same conditions, show that

/"=
f /(x, y)dx defines an analytic function of 7 in said region.

i/O

f\
QO

11. Show that I e-v^dx, 7 = a + i/S, a == a > 0, defines an analytic func-
t/O

tion of 7 over the whole 7-plane to the right of the vertical a a . Hence infer

,. 1 ITT - a 4- Vrr2 4- S2



" x * r <*>

to show that the convergence is uniform at a = 0. Hence find
f

cos Sx2dx.
Jo

/+> /> + =
fijj.

n + 00

13. From
J

cosxadx =
f

cos (x + )

2dx = -y/-
=

|
sin (x + a)

2
<fx, withV 00 / 00 2 ** OO

X+00

/. -f 00

cos x2 sin 2 crxdx = / sin x2 sin 2 crxdx = due to the fact that
-oo J~an

sin x is an odd function, establish the relations

J cos x'2 cos 2 axdx = cos( a2
), | sin x2 cos 2 arxdx = sin I a2

!.
Jo 2 \4 / Jo 2 \4 /

14. Calculate: (a) |
e~ a"xi cosh 6xdx, (/3) |

xe- aa; cos 6xdx,
/ o / o

/* /z2 a2
\

and (together) (7) I cos I
-

}

Jo \ 2 2

7T

- f" f
W

7T t/0 / o

15. In continuation of Exs. 10-11, p. 368, prove at least formally the relations:

i- C s, .sinfcc, TT ,.-. .. 1 r a
, . . sin kx , ,...

Inn I /(x)- dx = -/(0), hm-/ /(x)
-

(fe=/(0),
k=y>J-a X 2 t=oo7rt/-a X

ft h n a na f*k /<i Fsin A"iK

I I /(x) cos kxdxdk = [ I /(z) cos ludkfa =
f / (x)~

-1-

/0 /- J- a Jo J-a

^/ x smfcc ,

/(x)
- dx =

X

=/(0), - f" f
1T /0 / oo

The last form is known as Fourier's Integral ;
it repre

double infinite integral containing a parameter.

steps after placing sufficient restrictions on/(x).

/* QO 1 / co a CUC ,_^- Q
16. From I e- x dy = - prove / -

Jo x /o x

C x n - le- x dx C x-ie- x
(kK,

Jo Jo
7T

= 2 r
C

r2n + 2m - 2e--
1!

dr!! C 2
(

Jo Jo

17. Treat the integrals (12) by polar coordinates and

TT

(x, y)dA-j
>2

j
t

"f(r cos
<f>,

r sin

will converge if
|/ 1

< r~ 2 - * as r becomes infinite. If /(a
origin, but |/|<7

2 +
*, the integral converges as r app*

these results to triple integrals and polar coordinates in spaoo ,
u

is that 2 becomes 3.

18. As in Exs. 1, 8, 12, uniformity of convergence may often 1

without the test of page 369
; treat the integrand x~ le~ * sin bx <

that test failed.



CHAPTER XIV

SPECIAL FUNCTIONS DEFINED BY INTEGRALS

147. The Gamma and Beta functions. The two integrals

f*t> />!

F(n)= I
x"- l ?- x

dx, B(m, n)
= I xm -\l - x)

n ~ldx (1]

Jo Jo

converge when n > and m > 0, and hence define functions of th<

parameters n or n and m for all positive values, zero not included

Other forms may he obtained by changes of variable. Thus

Y(n) = 2 f yt^e-^dy, by x = y\ (2;

Jo

r (n)
=
jf (log

i

J W, by
- * =

y, (3

B(m, ri)= I y
n
~^(l

-
y}

m
~^dy = B (n, m), by a; = 1 - y, (4

i/O

B(w, TI)
= 2

|
^in2 "1 - 1

^. cos
zn

-*<t>d<j>, by a; = sin2

0. (6
Jo

If the original form of T (n) be integrated by parts, then

r x
i 1* i r x

ir<= cc'
l - 1e- x^ = -cne- a: +- I xne- xdx = -T(n + l.\

Jo Jo Jo
V

The resulting relation T(n + 1) = ?&r(tt) shows that the values of th

r-fvmction for n -f- 1 may be obtained from those for
rc,,

and that con

sequently the values of the function will all be determined if the value

over a unit interval are known. Furthermore

l) .

K)
^

is found by successive reduction, where k is any integer less than i

If in particular n is an integer and k = n 1, then

378



gral values ofn the T-function is the factorial ; and for other than integral
values it may be regarded as a sort of generalization of the factorial.

Both the r- and B-functions are continuous for all values of the

parameters greater than, but not including, zero. To prove this it is

sufficient to show that the convergence is uniform. Let n be any value

in the interval < n
Q
s n ^ N; then

/ /> / /oo

/ xn -^e- xdx ^ I xn*- le- x
dx, I xK

-le~ xdx s I xN- le~xdx.

The two integrals converge and the general test for uniformity ( 144)
therefore applies ;

the application at the lower limit is not necessary

except when n < 1. Similar tests apply to B (ra, n). Integration with

respect to the parameter may therefore be carried under the sign. The

derivatives /^iv^ r n

(9)

may also be had by differentiating under the sign ;
for these derived

integrals may likewise be shown to converge uniformly.

By multiplying two T-functions expressed as in (2), treating the

product as an iterated or double integral extended over a whole quad-

rant, and evaluating by transformation to polar coordinates (all of

which is justifiable by 146, since the integrands are positive and

the processes lead to a determinate result), the B-function may be

expressed in terms of the T-function.

/oo f*a>

t(?i)r(m)
= 4/ x^e-^dx I fm-*

Jo Jo
IT

/100 S*

_ 4 / ^n + am-ig-r^ / sin2"- 1

^ cos2"- 1^^ = T (n -f- m)B(w, w).
Jo Jo

Hence B (m, n)
= ) = B (n> m) . (10)

The result is symmetric in m and n, as must be the case inasmuch

as the B-function has been seen by (4) to be symmetric.

That T () = VTT follows from (9) of 143 after setting n = in (2) ;

it may also be deduced from a relation of importance which is obtained

from (10) and (5), and from (8) of 142, namely, if n < 1,

w)r(i-i) , . . C y ^
/-IN :;

= B (, 1 n) = I
~- dy

T(l) = l v ' ; J l + y
y

s

7T

or r(n)r(l-n)=-r^ (UJv / v ' smmr v J



interval < 1 n < may then be found.

148. By suitable changes of variable a great many integrals may
be reduced to B- and F-integrals and thus expressed in terms of

P-functions. Many of these types are given in the exercises below;

a few of the most important ones will be taken up here. By y = ax,

fx
m - 1

(a x)
n ~ ldx = a 1"-*-"- 1

J
y
m ~ l

(L y)"~^y = am+ "~ 1
B(m, )

Jo

or r^-ifa-xy-ifa^ar + n-il&llttl, a>0. (12)J ^ '
r(m + n)

"

Next let it be required to evaluate the triple integral

xl- l

if
n - lzn

- l

dxdydK, x + y + z ^ 1,

over the volume bounded by the coordinate planes and x -\- y -f-
=

1,

that is, over all positive values of x, y, z such that x -f y -f- * ^ 1. Then

nl
a; r*l x-u

I rf-^-^-
C/O

= - C C
X

x l

-*,f>-\l-x-n Jo Jo

By (12)

'

Then

(l + m + n + 1)

This result may be simplified by (7) and by cancellation. Then

T .

There are simple modifications and generalizations of these results which are

sometimes useful. For instance if it were desired to evaluate I over the range

of positive values such that x/a -f y/b + z/c =s
A, the change x ah, y = MIJ,

2 = ch{ gives
r r r
J J J fZ-l-m-l^n-l
J J J



r (1 + m + n)

fence if the integrand contained a function /(A), the reduction would be

v '

the integration be extended over all values x/a, + y/b + z/c g H.
Another modification is to the case of the integral extended over a volume

w
hich is the octant of the surface (x/a)p + (y/b)i + (z/c)

r = h. The reduction to

t m n i+
TO
+ 2

, m

pqr J J J '

made by /t =
{-

1
, 77/1

=
J-J , f/i = (- j ,

dx = -fifi-l'
,

.

a'6c \p/ W W _.
-_ . ftp

pqr / 1 m n \

\P q r }

his integral is of importance because the bounding surface here occurring is of a

rpe tolerably familiar and frequently arising ;
it includes the ellipsoid, the surface

* 4- y? + z$ = a^, the surface x& + y% + z% = of. By taking I = m = n 1 the

ilumes of the octants are expressed in terms of the T-function
; by taking first

= 3, m n = 1, and then m = 3, I = n ~ 1, and adding the results, the moments
: inertia about the z-axis are found.

Although the case of a triple integral has been treated, the results for a double

itegral or a quadruple integral or integral of higher multiplicity are made obvious,

or example,

(Cxi -lym
-

JJ



pgrs r I + +
\p q r

12 n 1
149. If the product (11) be formed for each of - >

-
> > > and

the results be multiplied and reduced by Ex. 19 below, then

r(!) r
(2)...

r(^)= =f:.W W \ n I Vra

The logarithms may be taken and the result be divided by n.

1 logn

Now if w be allowed to become infinite, the sum on the left is that

formed in computing an integral if dx = 1/n. Hence

l V
n " a>

r 1

log T (a;,-)
AJC = / log T (*) dx = log V2~^. (15)

Jo

/Ilog T(a + x)dx = a (log a
-

1) -f logV2^ (15')
.

may be evaluated by differentiating under the sign (Ex. 12 (0), p. 288).

By the use of differentiation and integration under the sign, the

expressions for the first and second logarithmic derivatives of T(n)
and for log T(n) itself may be found as definite integrals. By (9)

and the expression of Ex. 4 (a), p. 375, for log x,

/*" /*<"> /*

T'(n) I xn ~ le- x logxdx= | a"- 1
*?-* {

Jo Jo Jo

_ B
~ ax

dadx.

If the iterated integral be regarded as a double integral, the order of

the integrations may be inverted
;
for the integrand maintains a posi-

tive sign in the region l<x<oo, 0<o;<oo, and a negative sign in

the region < cc < 1, Q < cc < <x>, and the integral from to co in x

may be considered as the sum of the integrals from to 1 and from

1 to cc, to each of which, the inversion is applicable ( 146) because

the integrand does not change sign and the results (to be obtained)

are definite. Then by Ex. l(a),

r
f"" ga Q x /* / 1
I xn~ 1e~ x dxda = T (n) I \e~"

a
-r.

I rv \ / I \ /1 _l_/1 I - fr\H / n-



This value may be simplified by subtracting from it the particular
value - y = F(l)/r(l)= F(l) found for n = 1. Then

r'(n)

J
The change of 1 + a to I/a or to e

a
gives

,72

Differentiate : -7-5<m

/*
/r/J-*"

log r (n)
= / _ g da. (18)
Jo * 6

To find log P () integrate (16) from n = 1 to n = n. Then

= f [( -IK- il

Jo L
V ^

o;

since r(l) = 1 and log r(l) = 0. As r(2) = 1,

j i T,/ N
- + )-

x -
(i + a)~and log r(.) =

by subtracting from (19) the quantity (n 1) log T(2) = 0. Finally

log !<) = f -
(n
-

1) * (19')

if 1 -f- a be changed to e~ a
. The details of the reductions and the justi-

fication of the differentiation and integration will be left as exercises.

An approximate expression or, better, an asymptotic expression,

that is, an expression with small percentage error, may be found for

T(n + 1) when n is large. Choose the form (2) and note that the inte-

grand y
2" +1'e-* rises from to a maximum at the point y

2 = n + and

falls away again to 0. Make the change of variable y = Vet -f- w, where

# n -f- ,
so as to bring the origin under the maximum. Then

/o

Now 2 or loff I 1 -1- -^L I 2 Vfl-v; s 0. "\/ <T <T oo.



384 INTEGRAL CALCULUS

The integrand is therefore always less than e~ w\ except when w =
and the integrand becomes 1. Moreover, as w increases, the inte-

grand falls off very rapidly, and the chief part of the value of the

integral may be obtained by integrating between rather narrow

limits for w, say from 3 to 4- 3. As a is large by hypothesis,

the value of log(l -f-vo/Va) may be obtained for small values of w
from Maclaurin's Formula. Then

T(n 4-
1)
= 2 at"e-" I <r'

2to^ l -^dw
\J c

is an approximate form for T(n-\- 1), where the quantity c is about

w/Va and where the limits c of the integral are small relative to V:.

But as the integrand falls off so rapidly, there will be little error made

in extending the limits to oo after dropping e. Hence approximately

T(n + 1)
= 2 cfe- a C e~ 2w*dw = -V&irafe-",

\s oo

or F(> -f 1)
= V27r(u + |)"

+ 2
~ (n+i)

(l 4- *;), (20]

where
17

is a small quantity approaching as ?i becomes infinite.

EXERCISES

1. Establish the following formulas by changes of variable.

,._.. /"", , r? l/nll\
(a) r (n) = a" I xn ~*e-~ axcix. a > 0, (8) I smn xdx = - B I

- + -
,
- 1 ,

/o Jo 2 \2 2 2/

/ v I
*C

\^-
"""""

*^) j ** v^^i ^) 1 1^ \^^) * \^M *^ V

Jo (x + a)'
+

~
a(l + a)'"

~~
B
(1 + a)

w T(m + n)' x + a
~
1+a

talccg _' ~

/o [ox 4- 6(1 z)]i+

( ) f
l x"1 -1

(!
~

^)"
-1<to _ B OK-, n)

,^v
r 1 xdx _Vffr(^n+^)^

Jo (6 4- cx)
+ n

~
6n(J + c)m

'
( > J ^/flT^

~
2 T (| n + 1)

'

(., /W 1'*=.iB(+i,=i). W f
1-* =25-1^.'o n \ / 'o Vl x n r

(
n~ + ^)

2. From r (1) = 1 and r () = VTT make a table of the values for every integer

and half integer from to 6 and plot the curve y = T (x) from them.

3. By the aid of (10) and Ex. 1 (7) prove the relations

. n\ 92a in tf,\ r i



(a) I
2
sinn xdx = f 2

cosn xdx =
Jo Jo

__
1 3 5 (n

-
1) TT 2 4 6 (n

-
1)

2.4.6---W 2 1-3- 5-- -?i

as n is even or odd.

x2 "dx _ 1-3- 5-.. (2n-l) TT /"ix2 + ldte _ 2- 4-6-.. 2 ft

f* 1 fJ'T /* 1 4 7 P

(f) Find
|
__ to four decimals, (77)

Find / - --
J(> VI -x* Jl>

Vl-xT
6. Find the areas of the quadrants of these curves :

(a) x + yl = a*, (/3) xf + yf = at, (7) x2 + yi = 1,

(5) x2/a2 + 2/V>
2 =

1, () the evolute (ax)t + (?></)!
= (a

2 -
&8)f .

7. Find centers of gravity and moments of inertia about the axes in Ex. 6.

8. Find volumes, centers of gravity, and moments of inertia of the octants of

(a) X? + y% + z% = 2, (/3)
z' + ?yt + 2f = a

, (7) x2 + ?/ + 2 = 1.

9. (or) The sum of four proper fractions does not exceed unity ;
find the average

value of their product. (/3)
The same if the sum of the squares does not exceed

unity. (7) What are the results iu the case of k proper fractions ?

10. Average e-wP-bv* under the supposition ox2 + Z/2 S H.

11. Evaluate the definite integral (15') by differentiation under the sign.

12. From (18) and 1 < 2 - < 1 + a show that the magnitude of J>2 log T (n)

is about 1/K. for large values of n.

13. From Ex. 12, and Ex. 23, p. 76, show that the error in taking

/ 1\ / + ! 1 / 1\

logr(n + -l for
| logT(x)dx is about --

logr(n. + -).
\ 2/ Jn 24 n +12 \ 2/

XH-M
f>\

log T (x) dx = I log r (n + x) dx and hence compare (15'),
</o

(20), and Ex. 13 to show that the small quantity 17 is about (24 n + 12)- 1.

15. Use a four-place table to find the logarithms of 5 ! and 10 ! . Find the

logarithms of the approximate values by (20), and determine the percentage errors.

16. Assume n = 11 in (17) and evaluate the first integral. Take the logarithmic

derivative of (20) to find an approximate expression for T'(n)/r (?i),
and in partic-

ular compute the value for n = 11. Combine the results to find 7 = 0.578. By more

accurate methods it may be shown that Euler's Constant 7 = 0.577,215,665

17. Integrate (19') from n to n + 1 to find a definite integral for (15'). Subtract

J n gan _ ga (j[{f

the integrals and add - log n = I
-- Hence find8

2
b J- 2 a

. i />o r i 1 11 da
logr(n)-n(log7i-l)-logV2ir + -logn= |

--- + - e*"
2 J-*,\_ea 1 a 2J a



ing it with the one already found or by applying the method of the text, with the

substitution x = n + VsJny, to the original form (1) of r (n + 1).

, .

*=-l
. fcTp . 7T . 27T . (tl 1) 7T 71 ,

19. The relation TT sin = sin sin --- -sm--' -- may be
k=i n n n n 2"- 1

G_2*IT(\e n / ,

x'i-1 t = -i( _afari\ *=-i e"7r g
01 " 1^ i

n=lim--- = TT U-e j, TT = -- = -^T
a ii-l *=i *Li 2t (2i)-i 2-i

150. The error function. Suppose that measurements to determine

the magnitude of a certain object be made, and let m^ m2, ,
mn be a

set of n determinations each made independently of the other and each

worthy of the same weight. Then the quantities

2l
= m

i
~ m

> 22 m
2
- m

> '"} ? = mn
- m

>

which are the differences between the observed values and the assumed

value m, are the errors committed
;
their sum is

It will be taken as a fundamental axiom that on the average the errors

in excess, the positive errors, and the errors in defect, the negative

errors, are evenly balanced so that their sum is zero. In other words it

will be assumed that the mean value

urn. m^ + m2 -\
----

-f- mn or m ~
(m1 + m2 H

-----
1- ran) (21)

fb

is the most probable value for m as determined from ra
a ,
w

2 , ,
mn .

Note that the average value m is that which makes the sum of the

squares of the errors a minimum
;
hence the term "

least squares."

Before any observations have been taken, the chance that any par-

ticular error 5 should be made is 0, and the chance that aa error lie

within infinitesimal limits, say between q and q + dq, is infinitesimal j

let the chance be assumed to be a function of the size of the error, and

write
<f> (q) dq as the chance that an error lie between q and q + dq. It

may be seen that
</ (q) may be expected to decrease as q increases ; for,

under the reasonable hypothesis that an observer is not so likely to be

far wrong as to be somewhere near ri^ht, the chance of making an

error between 8.0 and 8.1 would be less than that of making an error

between 1.0 and 1.1. The function
<f>(q) is called the error function,

It will be said that the chance of making an error q {
is <(&); to Pu^ ^

more precisely, this means simply that <
(q,] dq is the chance of making

an error which lies between q{ and <?< + dq.
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It is a fundamental principle of the theory of chance that the

chance that several independent events take place is the product of

the chances for each separate event. The probability, then, that the

errors qv 2 , , qn be made is the product

- m
) <Kmn

-
m). (22)

The fundamental axiom (21) is that this probability is a maximum
when m is the arithmetic mean of the measurements ra^ ra

2 , ,
mn ;

for the errors, measured from the mean value, are on the whole less

than if measured from some other value.* If the probability is a maxi-

mum, so is its logarithm ;
and the derivative of the logarithm of (22)

with respect to m is

2
-

_____ n
- _

< (m1 ra) $ (m2 m) < (mn ra)

when q1 + ^ H-----h ? =
(w^ m) + (w2

- m) -\
-----

\-(mn m) = 0.

It remains to determine
</>
from these relations.

For brevity let F(q) be the function F <'/< which is the ratio

of
(f>'(q)

to
<j>(q).

Then the conditions become

F(^ + f(q^) + --' + F(qn)
= Q when ?1 + ?2 + ... + ?n = 0.

In particular if there are only two observations, then

^tei) + F(& = and ^ + ^ = or q^-^
Then *(?,)+*(- ^ = or F(-y)=-F(?).

Next if there are three observations, the results are

^(21) + ^(?2) + *T

('/8)
= <> and ^ + ^ + ^ = 0.

Hence F(?1) + F(?2)
= - Ffa = F(- y8)

= Ffa + ?2).

Now from F(x) + F(?/)
= F(x + ?/)

the function F may be determined (Ex. 9, p. 45) as F(a;)
= Cx. Then

*<?)
=^ =^ log <^ fa = ~ C^

2 + * ,

and

This determination of < contains two arbitrary constants which may
be further determined. In the first place, note that C is negative, for

</> (q) decreases as q increases. Let C 7c
2

. In the second place, the



all possible values. Hence

/-t-

/-.+, ^
<j!) (y) <fy

=
1, (>' I fi~

AJ
''^/=l. (23)

J-x,

For the chance that an error lie between
17
and y + dq is ^e/j, and if

an interval .==(/==/> be given, the chance of an error in it is

6 >> s*b

V <
(</) cfy or, better, KmV <

(//) dq= I
<f> (y) dy,

a a ^

and finally the chance that oo < q < + oo represents a certainty and

is denoted by 1. The integral (23) may be evaluated ( 143). Then

G VTT//C = 1 and G - &/VTT. Hence *

The remaining constant 7c is essential
;

it measures the accuracy of

the observer. If k is large, the function
<f> (</)

falls very rapidly from

the large value 7c/ VTT for ^ = to very small values, and it appears

that the observer is far more likely to make a small error than a large

one
; _but if 7c is small, the function < falls very slowly from its value

A-/
VTT for q = and denotes that the observer is almost as likely to

make reasonably large errors as small ones.

151. If only the numerical value be considered, the probability that

the error lie numerically between y and q -f- dfj is

2k 2k C*
j=e- k*v

2

d<f, and 7= I e- k
*<?dq

VTT V7rJ

is the chance that an error be numerically less than Now

2k C* 2 /**= =
\ e-Wd<i = f= I e-<*fa (25)vV Jo VTrJ,,

is a function defined by an integral with a variable upper limit, and the

problem of computing the value of the function for any given value of

reduces to the problem of computing the integral. The integrand may
be expanded by Maclaurin's Formula

r
J[

* The reader may now verify the fact that, with
<j, as in (24), the product (32) is a

maximum if the sum of the squares of the errors is a minimum as demanded by (21).



vcuues UL x i/aia series is satisiaccory ;
lor X == 1C will be

accurate to five decimals.

The probable error is the technical term used to denote that error

which makes i/r()
=

|; that is, the error such that the chance of a

smaller error is and the chance of a larger error is also . This is

found by solving for x the equation

. . .44311
=jf

V-* -+*- + L

The first term alone indicates that the root is near x .45, and a trial

with the first three terms in the series indicates the root as between

03 = .47 and x = .48. With such a close approximation it is easy to fix

the root to four places as

x = k$ = 0.4769 or = 0.4769 Ar1
. (27)

That the probable error should depend on k is obvious.

For large values of x = k the method of expansion by Maclaurin's

Formula is a very poor one for calculating i/f() ;
too many terms are

required. It is therefore important to obtain an expansion according

to descending powers of x. Now

/& Cvx/ - \ > Cv\K ~""
I & C*-tJC

~ 7T" ' "* ~*""~
I v Cf/tK

Jo Jx Jx

and
f e~ x*dx = I xe-^dx=\ - -

I
-

Jx Jx X
|_ J* /*

The limits may be substituted in the first term and the method of in-

tegration by parts may be applied again. Thus

J.

1-3N 1-3-5

2x\ 2x* 2*x* 28

and so on indefinitely. It should be noticed, however, that the term

,
1-3. 5- ..(2-l)e-

t-- - as w =

In fact although the denominator is multiplied by 2 a;
3 at each step, the

numerator is multiplied by 2 n 1, and hence after the integrations by
parts have been applied so many times that n > xz the terms in the

parenthesis begin to increase. It is worse than useless to carry the

integrations further. The integral which remains is (Ex. 5, p. 29)



J\J x
Thus the integral is less than the last term of the parenthesis, and it

is possible to write the asymptotic series

C*
J

e

with the assurance that the value obtained by using the series will differ

from the true value by less than the last term which is used in the series,

This kind of series is of frequent occurrence.

In addition to the probable error, the average numerical error and the

mean square error, that is, the average of the square of the error, are

important. In finding the averages the probability <f> (//) dfj may be taken

as the weight ;
in fact the probability is in a certain sense the simplest

weight because the sum of the weights, that is, the sum of the prob-

abilities, is 1 if an average over the whole range of possible values is

desired. For the average numerical error and mean square error

.I 27c /"" _^2 , 1 0.5643
IS'I

~~~ '

7""~
*

f tf&

V-TTJo

9 It- /*"

= 4 /

VTI-JO

7T k

= 0.7071

It is seen that the average error is greater than the probable error, anc

that the square root of the mean square error is still larger. In th

case of a given set of n observations the averages may actually bt

computed as

ui-|gil + lgil + -+|g,| i
7,y -== ) K ~

Moreover, TT
j q \

= 2 q
2
-.

It cannot be expected that the two values of 7c thus found will be pre

cisely equal or that the last relation will be exactly fulfilled
;
but S(

well does the theory of errors represent what actually arises in prao
tice that unless the two values of k are nearly equal and the relatior

nearly satisfied there are fair reasons for suspecting that the observa

tions are not bona fide.

152. Consider the question of the application of these theories t<

the errors made in rifle nractice on a target. Here there are twx



of the central vertical, the other to their falling above or below the
central horizontal. In other words, each of the coordinates (x, y) of

the position of a shot will be regarded as subject to the law of errors

independently of the other. Then

-

V TT

will be the probabilities that a shot fall in the vertical strip between
x and x -{- dx, in the horizontal strip between y and y + dy, or in the

small rectangle common to the two strips. Moreover it will be assumed
that the accuracy is the same with respect to horizontal and vertical

deviations, so that 7c = k'.

These assumptions may appear too special to be reasonable. In particular it

might seem as though the accuracies in the two directions would be very different,

owing to the possibility that the marksman's aim should tremble more to the right
and left than up and down, or vice versa, so that kjtkf. In this case the shots would
not tend to lie at equal distances in all directions from the center of the target,
but would dispose themselves in an elliptical fashion. Moreover as the shooting is

done from the right shoulder it might seem as though there would be some inclined

line through the center of the target along which the accuracy would be least, and
a line perpendicular to it along which the accuracy would be greatest, so that the

disposition of the shots would not only be elliptical but inclined. To cover this

general assumption the probability would be taken as

Ge
- ****- 2 A*y - kVfady, with G C

+
fe-*'**

- AW- *'Vdxdy = 1

as the condition that the shots lie somewhere. See the exercises below.

With the special assumptions, it is best to transform to polar coor-

dinates. The important quantities to determine are the average distance

of the shots from the center, the mean square distance, the probable

distance, and the most probable distance. It is necessary to distinguish

carefully between the probable distance, which is by definition the dis-

tance such that half the shots fall nearer the center and half fall farther

away, and the most probable distance, which by definition is that dis-

tance which occurs most frequently, that is, the distance of the ring
between r and r + dr in which most shots fall.

The probability that the shot lies in the element rdrd<f is

kz

e-^rdrd^ and 2k2
e~^rdr,

obtained by integrating with respect to </, is the probability that the

shot lies in the ring from r to r -f dr. The most probable distance r is



-0-*VV) = or r
;)

= -^T =^f^. (30)

ce a

r= f 2fcV*!'W/' =
Jo ** ft

The mean distance and the mean square distance are respectively

- '8862

r r A;

The probable distance r is found by solving the equation

! _ e -,,| , ,,
.^ = *M26.

(30 )

_ /C /C

Hence rp < r^ < ? < v r2.

The chief importance of these considerations lies in the fact that

owing to Maxwell's assumption, analogous considerations maybe applied

to the velocities of the molecules of a gas. Let u, v, w be the compo
nent velocities of a molecule in three perpendicular directions so thai

F = (u* -f v2 -f w2

)s is the actual velocity. The assumption is made thai

the individual components u, v, w obey the law of errors. The proba

bility that the components lie between the respective limits u and u + du

v p,nd v -f- dv, w and w + dw is

and - = e- *2 v* F 2
sin* & M/W/W/l/W/W/

,
C&1JIL r

TTVTT TTVTT

is the corresponding expression in polar coordinates. There will ther

be a most probable, a probable, a mean, and a mean square velocity

Of these, the last corresponds to the mean kinetic energy and is subjecl

to measurement.

EXERCISES

1. If k = 0.04476, find to three places the probability of an error < 12.

2. Compute f e-*'efo to three places for (a) x = 0.2, () x = 0.8.
Jo

3. State how many terms of (28) should be taken to obtain the best value foi

the integral to x = 2 and obtain that value.

4. How accurately will (28) determine f e-^cfce | Vir? Compute.
Jo

5. Obtain these asymptotic expansions and extend them to find the general law

Show that the error introduced by omitting the integral is less than the last tern

retained in the series. Show further that the general term diverges when 71 be

comes infinite.



(a) |
cos x*dx = - \ - H-----1

-- I cosx2
,^ '

Jo 2 \2 2x 22x8 22 Jx SB*

/o\ C
x

-M I ITT cosx2 sinx2
,

1 - 3 /"*> . ,dx
(/3) I smxadx = --\/-------- I smx2

iVP;
Jo 2\2 2x 22z 22 J* x*

. /-^sinx , , ... /
x
/sinx\

a
, .

(T) I
- dx

>
* lar e

i (
5
) I
-

) <&> large./ox Jo \ x /

6. (ct) Find the value of the average of any odd power 2n + I of the error;

also for the average of any even power ; (7) also for any power.

7. The observations 195, 225*, 190, 210, 205, 180*, 170*, 190, 200, 210, 210, 220*,

i*, 192 were obtained for deflections of a galvanometer. Compute A; from the

ian error and mean square error and compare the results. Suppose the observa--

ns marked *, which show great deviations, were discarded
; compute k by the

o methods and note whether the agreement is so good.

8. Find the average value of the product qq' of two errors selected at random

d the average of the product |g| \q'\ of numerical values.

1 1 OR7R
9. Show that the various velocities for a gas are Vp -

, Vf = - ,

2 1.1284 = \/8 1.2247
k k-

;

-
>

k

10. For oxygen (at 0C. and 76cm. Hg.) the square root of the mean square

locity is 462.2 meters per second. Find k and show that only about 18 or 14

Jecules to the thousand are moving as slow as 100 m./sec. What speed is most

Dbable ?

11. Under the general assumption of ellipticity and inclination in the distri-

tion of the shots show that the area of the ellipse fc
ax2 + 2 Xxy + kf2y* = H is

x2)" i, and the probability may be written Ge~ 1I
ir(k

zkflt \2
)

i _________
12. From Ex. 11 establish the relations (a) G = - V fc

2
fc'

2 X2
,

IT

- X2)
'

2 (WV* - X2
)

' '

2
(fc

2*^ - X2
)

13. Find Hp, Hf
= 0.693, 3, H? in the above problem.

14. Take 20 measurements of some object. Determine fc by the two methods

d compare the results. Test other points of the theory.

153. Bessel functions. The use of a definite integral to define func-

HIS which satisfy a given differential equation may be illustrated by
e treatment of xy

"
-f- (2 n + 1) y' -f- xy = 0, which at the same time

ill afford a new investigation of some functions which have pre-

ously been briefly discussed ( 107-108). To obtain a solution of

is equation, or of any equation, in the form of a definite integral, some

lecial type of integrand is assumed in part and the remainder of the
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integrand and the limits for the integral are then determined so that

the equation is satisfied. In this case try the form

y(x)
= CeP'Tdt, y'

=
jite^Tdt, y" =

J

-

where y is a function of t, and the derivatives are found by differen-

tiating under the sign. Integrate y and y" by parts and substitute in

the equation^ Then

- C = 0,

where the bracket after the first term means that the difference of the

values for the upper and lower limit of the integral are to be taken:

these limits and the form of T remain to be determined so that the

expression shall really be zero.

The integral may be made to vanish by so choosing T that the

bracket vanishes
;
this calls for the integration of a simple differentia'

equation. The result then is

T = (1
-

#)
n ~

*, (1
- *

2

)"
+
V*] = 0.

The integral vanishes, and the integrated term will vanish, provided

t = 1 or e"* = 0. If x be assumed to be real and positive, the expo
nential will approach when t = 1 -f- iK and K becomes infinite. Henc<

y(x)=f ete (l
-

t*)

n
~$dt and z(x)

= f
'"

e
to

(l
- t

z

)

n
~^dt (31

J-i J+i

are solutions of the differential equation. In the first the integral is ai

infinite integral when n < -f- and fails to converge when n^ \

The solution is therefore defined only when n > \. The second in

tegral is always an infinite integral because one limit is infinite. Th<

examination of the integrals for uniformity is found below.

Consider
/

el
'

a
'(l t

z
)

n
~idt with n < i so that the integral is infinite.

J \

f e^'(l
- <T~ ^ dt = C

+1

(1
-

t")
n - 1 cosxtdt + i C

+
\1 - i

2
)"
-
* sin Mt.

Ji J i t/i

From considerations of symmetry the second integral vanishes. Then

U
+
V'(l- 2

)

n -idt =1 r
+1

(l-f2)-i COSZfc& S f
+
V -")*-* dt.

i |/-i J-i



ble. The second integral (31) may be written with t = 1 + iu, as

i f" e<Xi+ *)(! _T+1u
2

)
n
-*zdu] fV*(4w2 + u*)i

n-ldu.
Ju =

I i/O

iis integral converges for all values of x>0 and w> |. Hence the given inte-

il converges uniformly for all values of x 2= x > 0, and defines a continuous

notion
;
when z = it is readily seen that the integral diverges and could not

fine a continuous function. It is easy to justify the differentiations as before.

The first form of the solution may be expanded in series.

T fl
i r +l

i

(or)
= e

ixt

(l
- i

2
)"

"
* dt = I (1

- i
2

)"

~
* cos xtdt

J-i J-i

r l
i= 2 / (l-t

z

)

n
-*Gosxtdt (32)

Jo
T2/2 <rV* T8/6 r8

/
8\

+ - +'*' <ll< 1 -

he expansion may be carried to as many terms as desired. Each of

le terms separately may be integrated by B- or T-functions.

f*
1

JT
(i
-

_
r(2 A + i)r( + /c + 1)

"
2* kr(k + i)r(n -j- A + 1)

i then taken as the definition of the special function Jn(x), where the

xpansion may be carried as far as desired, with the coefficient for

le last term. If n is an integer, the F-functions may be written as

ictorials.

154. The second solution of the differential equation, namely

tyt

/>l + ioo

(x) =J
- 2 e<*(l

-
ff-idt, (31')

rhere the coefficient 2 has been inserted for convenience, is for some

imposes more useful than the first. It is complex, and, as the equation

3 real a,nd a; is taken as real, it affords two solutions, namely its real part

nd its pure imaginary part, each of which must satisfy the equation. As

'(x) converges for # = and &(x) diverges for jc = 0, so that y^x) or



yz(x) diverges, it follows that y(x) and y^x) or y(x) and yz(x) must be

independent ;
and as the equation can have but two independent solu-

tions, one of the pairs of solutions must constitute a coiu- op
plete solution. It will now be shown that y^x) = y(x)
and that Atj(x) + #//2(-'') is therefore the complete solu-

tion of xy" + (2 n + 1) //' 4- xy = 0.

Consider the line integral around the contour 0, 1
,

1 4- ei, 1 + oo i, oo t, 0, or OPQRS. As the integrand has a

continuous derivative at every point on or within the

contour, the integral is zero ( 124). The integrals along

the little quadrant PQ, and the unit line RS at infinity may be made af

small as desired by taking the quadrant small enough and the line fai

enough away. The integral along SO is pure imaginary, namely, wit!

t =

f
^/.fO

=2 ifJo

The integral along OP is complex, namely

c p
2 n -\ . r*

Jo Jo

Hence = - 2 f (1
-

t*)

n ~ * cos arfd* -21 f (1
-

?;

2

)

n ~ ^ sin juifrf* 4-

t^O ^/O

+ f - 2 ew(l
-

<)
n-^ 4- ^ + 2 i f 6-^(1 + n*)ld

J Q Jo

where ^ and ^2
are small. Equate real and imaginary parts to zer<

separately after taking the limit.

f (1
-

it

9

)"
"4 cos xtdt = ?/0) = /^

r
i +'-

/I

XQO

(1
_

<>)

-
i sin a;^ _ 2 I

-

*/o

-H

1 + 10

The signs /^ and j? are used to denote respectively real and imaginary

parts. The identity of y (x) and y^(x) is established and the new solu

ti (-v\ is -frmnrJ na ft f f.-



It is now possible to obtain the important expansion of the solutions

E) and yz (x) in descending powers of x. For

>.. *,

_2eto
(l-*

2

)"-*cft
= I -2ie*-**(u*
Jo

ice x =/= 0, the transformation ?^a; = v is permissible and gives

"*(_. i)-
+ i c<vi fYv-l/l + V-*rfw

Jo \ 2x
/

=2- +v-v'[>-H)3 fYV
c/O

x
c/O

,!Lzii (
re ~ i)(*

-
_i_-=

/)/ i-ii-i-
e expansion by the binomial theorem may be carried as far as de-

ed; but as the integration is subsequently to be performed, the

ues of v must be allowed a range from to oo and the use of

ylor's Formula with a remainder is required the series would not

iverge. The result of the integration is

], (3*)

ere Q (x)
==: ~

o i /o vi ^~
' ' '

?a X O . (u Xj

2!(2:r)
2

ke real and imaginary parts and divide by 2nx~ n
~VTrT(n + ^). Then

)]

s two independent Bessel functions which satisfy the equation (35)

107. If n + is an integer, P and Q terminate and the solutions

s expressed in terms of elementary functions ( 108) ;
but if n -f-

not an integer, P and Q are merely asymptotic expressions which do

k terminate of themselves, but must be cut short with a remainder

m because of their tendency to diverge after a certain point; for

erably large values of x and small values of n the values of Jn(x)

i Kn(x) may, however, be computed with great accuracy by using



./o

The factors previous to T (n + ^) combine with n
,
n $,, n /c H- 1, whic

occur in the fcth term of the binomial expansion and'give the numerators of tl

terms in P and Q. The remainder term must, however, be discussed. The integri

form (p. 67) will be used.

r
==

1Joo (k 1)1

Let it be supposed that the expansion has been carried so far that n fc <

Then (1 + vi/2x)
n ~ k~ z is numerically greatest when v = and is then equal to

Hence

\R,\ < C tk
~ l

\(n
1 '

Jo (fc-l)l (2 z)* fc! (2cc)*

|

and

It therefore appears that when k > n I the error made in neglecting the retnai:

der is less than the last term kept, and for the maximum accuracy the series fi

P + iQ should be "broken off between the least term and the term just following,

EXERCISES

1. Solve v,y" -f (2n + l)y' xy = by trying Te?* as integrand.

A
f- (

1 -*V~*ertd* + 3/~V-:i)
n
~*ertat

l x>0( n>_j.

2. Expand the first solution in Ex. 1 into series
; compare with y(ix) above.

3. Try T(l -tx)m on x(l x)y" + [y- (a + /3 + l)x]y'- a/3y = 0.

/.a

One solution is I W -1(1 t)v -^-i(l te)~
a
di, /3 > 0, y 3, Ixl < 1,

/o

4. Expand the solution in Ex. 3 into the series, called hypergeometric,

1

J1-2. 37(7 + 1) (7 + 2)

5. Establish these results for Bessel's /-functions :

(a) Jn(x) =- *- f sin2 "
<#> cos (x cos <f>) d<j>, n> J,

2ViiT(n + ^)'
/0

(/) eTntx)
= -

^-
- C sin2 ^ cos (* cos 0) d0, n = 0, 1, 2,

7T O (55 n 1) t/o



7. Find the equation of the second order satisfied- by |(1 2
)

n ~ i sin xtdt.
Jo

3-4 ~6 vS 0.10

8. n J

(2!)
2

(3!)
2

(4!)
2

(5!)
2

9. Compute /(!) = 0.7652
;
J (2)

= 0.2239
;
J (2.405) = 0.0000.

10. Prove, from the integrals, JQ(X) = J^x) and [x~ "/"]' = x- n/n +i.

11. Show that four terms in the asymptotic expansion of P + iQ when n =

give the best result when x = 2 and that the error may be about 0.002.

12. From the asymptotic expansions compute <7 (3) as accurately as may be.

13. Show that for large values of x the solutions of Jn(x) = are nearly of the

form for TT + -J-
mr and the solutions of En(x)

= of the form kir + i IT + ^mr.

14. Sketch the graphs of y = / (x) and y = Jj(x) by using the series of ascend-

ing powers for small values and the asymptotic expressions for large values of x

r v
15. From JJx) = \ cos(xcos<f>)dtt> show -

Va2 + 6*

f\
00

16. Show
j

er ^J^x) dx converges uniformly when a ^ 0.

Jo
n 00

17. Evaluate the following integrals : (a) I J (bx)dx = b- J
-,

Jo

(8) C^sincKcJJbx)^- = -or sin~i^ as a>6>0orb>a>0,^'
Jo x 2 6

(7) C sin axJQ(bx) dx =
1

or as a2 > 62 or &2 > a2
,

/o Va2 62

(8) rcosax Jo(6x)dx =
*

or as 62 > a- or a2 > 62 .

' ov

18. If u = VxJn(ax), show^ + (a
2 - ^^)M = 0. If v = Vi~Jn (&x),

dx2 \ x2
/

ft,
*f _ u T= (i

2 - a2
) (

l

xJn(ax)Jn(l)x)dx.
L dx dxjo ^o

19. With the aid of Ex. 18 establish the relations :

(a) WB(a)j; +1 (&)
- aj;(6)j; + i(a) = (6

2 - a2
) f
*/o

/.I

|^) aJ,(a) = a2
/
Jo

on 01 T , K 2
20. Show jr/z) ~ -



CHAPTER XV

THE CALCULUS OF VARIATIONS

155. The treatment of the simplest case. The integral

r*B /> R

I = I F(x,y, y')dx
= I *(ac, y, dx, dy), (1

cJ A cJjt

where <J> is homogeneous of the first degree in dx and dy, may be evalu

ated along any curve C between the limits A and B by reduction to ai

ordinary integral. For if C is given by y f(x),

/B y^X,

cJ*
'

J*

and if C is given by x = </>(), y ^(t),

C
B

f' 1

I = I < (x, y. dx, dy) = I <& (<f>, tfs, <{> , \f>)
dt.

CJA Jt,

The ordinary line integral ( 122) is merely the special case in whic

<I> = Pdx -f Qdy and F = P + Qy'. In general the value of 7 will depen

on the path C of integration ;
the problem of the calculus of variation

is to find that path which will make I a maximum or minimum felatii

to neighboring paths.

If a second path C
t
be y =f(x) + 17(2;),

where
77 (x) is a small qua]

tity which vanishes at x and x
lt
a whole family of paths is given by

y f(x} + ar
i (x}>

i a = i "t (xo)
= ^ (

x
i)
^ ^

and the value of the integral

I (a) = C
*F(x,/+ ar,,f + ar,

1

) dx, (!')
Jx

a

taken along the different paths of the family, be-

comes a function of a; in particular 7(0) and 7(1)
are the values along C and Cr Under appropriate assumptions as 1

the continuity of F and its partial derivatives F'x , Fy, F'
u,,

the functic

7 (a) will be continuous and have a continuous derivative which ma



/ '(0)
= I [,/?;(*, y, ?/) + VF;(*, y, y ')]

<fe o
; (2)

^o

and if C is to make / a maximum or minimum relative to all neighboring

curves, it is necessary that (2) shall hold for any function y (x) which is

small. It is more usual and more suggestive to write
77 (x)

=
8y, and to

say that Sy is the variation of y in passing from the curve C or y f(x)
to the neighboring curve C' or y = f(x) + 17 (cr).

Erom the relations

y' =/'(*), >/' =/ + V(), V =
*'(*)

= |>
connecting the slope of C with the slope of Cv it is seen that the variation

of the derivative is the derivative of the variation. In differential nota-

tion this is c% = 8dy, where it should be noted that the sign 8 applies

to changes which occur on passing from one curve C to another curve C
t ,

and the sign d applies to changes taking place along a particular curve.

With these notations the condition (2) becomes

P(F;8y 4- F^Sy') dx = C *8Fdx = 0, (3)
Jx Jx

where 8F is computed from F, By, 8y' by the same rule as the differential

dF is computed from F and the differentials of the variables which it

contains. The condition (3) is not sufficient to distinguish between a

maximum and a minimum or to insure the existence of either
;
neither

is the condition ff'(x)
= in elementary calculus sufficient to answer

these questions relative to a function g (x) ;
in both cases additional con-

ditions are required ( 9). It should be remembered, however, that

these additional conditions were seldom actually applied in discussing

maxima and minima of g(x) in practical problems, because in such oases

the distinction between the two was usually obvious ;
so in this case

the discussion of sufficient conditions will be omitted altogether, as in

58 and 61, and (3) alone will be applied.

An integration by parts will convert (3) into a differential equation

of the second order. In fact

X
r

' r* 1 d f I* r x
i d

FWdx= F'
y,~8ydx=\F'y,8y\

- Sy-
J*<, L _K ^*

Hence P (Ffoj + F;%') dx = P (p'v
- ~ F'\ydx = 0, (3')A J* \

ax
/



integrated term [Fy,8?/] to drop out. Then

/
^v / M

" dx "'
8y

For it must be remembered that the function 8y = y (x~)
is any function

that is small, and if F'
v

F'
y, in

(3') did not vanish at every point

of the interval # g x ^ xv the arbitrary function 8y could be chosen

to agree with it in sign, so that the integral of the product would neces-

sarily be positive instead of zero as the condition demands.

156. The method ofrendering an integral (1) a minimum or maximum,

is therefore to set up the differential equation (4) of the second order

and solve it. The solution will contain two arbitrary constants of inte-

gration which may be so determined that one particular solution shall

pass through the points A and B, which are the initial and final points

of the path C of integration. In this way a path C which connects A
and B and which satisfies (4) is found

;
under ordinary conditions the in-

tegral will then be either a maximum or minimum. An example follows.

Let it be required to render I = \

l - Vl + y'
zdx a maximum or minimum.

J
*o

y

dF = y' 1

W V Vl + y'
2

" = or yV" + y'
2 + 1 =

is the desired equation (4). It is exact and the integration is immediate.

(yy'Y +1 = 0, yy' + x = cv y* + (x
-

c^
2 = cr

The curves are circles with their centers on the x-axis. From this fact it is easy

by a geometrical construction to determine the curve which passes through two

given points A (x , y ) and B (xv yj ;
the analytical determination is not difficult.

The two points A and B must lie on the same side of the x-axis or the integral J
will not converge and the problem will have no meaning. The question of whether

a maximum or a minimum has been determined may be settled by taking a curve

C
l
which lies under the circular arc from A to B and yet has the same length.

The integrand is of the form ds/y and the integral along C7
t

is greater than along
the circle C if y is positive, but less if y is negative. It therefore appears that the

integral is rendered a minimum if A and B are above the axis, but a maximum if

they are below.

For 'many problems it is more convenient not to make the choice of x
or y as independent variable in the first place, but to operate symmetri-

cally with both variables upon the secondform of (1). Suppose that the

integral of the variation of $ be set equal to zero, as in (3).



i

i/^

= U.

Let the rules Sdx = dx and Sdy = dSy be applied and let the terms

which contain dSx and doy be integrated by parts as before.

C 8* = C [(*;
- cte^&c + (*;

- d*;v)8y] + [*;,>
+

*^fy]*
= 0.

As A and B are fixed points, the integrated term disappears. As the

variations Sx and Sij may be arbitrary, reasoning as above gives

rf) __ fi.& i rr^; & ftCl> , r fA.^\^x ^^"wa;
^^

3 y tiy
^"^ Vl1 y" /

If these two equations can be shown to be essentially identical and to

reduce to the condition (4) previously obtained, the justification of the

second method will be complete and either of
(4') may be used to deter-

mine the solution of the problem.

Now the identity $(z, y, dx, dy) = F(x, y, dy/dx)dx gives, on differentiation,

by the ordinary rules for partial derivatives. Substitution in each of (4') gives

:
- F'xdx - Fydy

- F'
y,dy' + Fy,dy' + y'dF'y,

= -F'
y dy + y'dF'y, = - p'

y
- F dy = 0.

Hence each of (4') reduces to the original condition (4), as was to be proved.

Suppose this method be applied to
|

=
J

-- Then

r ds r*is = i o
J J /[ yds

s ,- oy

yds \ yds

where the transformation has been integration by parts, including the discarding

of the integrated term which vanishes at the limits. The two equations are

d^ =
, <^ + ^ = 0; and ^- =

1
yds yds y2

yds c
x

is the obvious first integral of the first. The integration may then be completed to

find the circles as before. The integration of the second equation would not be so

simple. In some instances the advantage of the choice of one of the two equatwns

offered l>y lids method of direct operation is marked.
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EXERCISES

1. The shortest distance. Treat
j (1 + y'

2
)^dx for a minimum.

2. Treat
j
Vclr2 + r'*d<j>

2 for a minimum in polar cobrdinates.

3. T/ie bracMstochrone. If a particle falls along any curve from A to #, the

velocity acquired at a distance h below A is v = ~V'2gh regardless of the path fol-

lowed. Hence the time spent in passing from A to B is T = I dn/v. The path of

quickest descent from A to 2J is called the brachistochrone. Show that the curve

is a cycloid. Take the origin at A.

4. The minimum surface of revolution is found by revolving a catenary.

5. The curve of constant density which joins two points of the plane and has a

minimum moment of inertia with respect to the origin is c^ = sec (3 4> + c
2).

Note

that the two points must subtend an angle of less than 60 at the origin.

6. Upon the sphere the minimum line is the great circle (polar coordinates).

7. Upon the circular cylinder the minimum line is the helix.

8. Find the minimum line on the cone of revolution.

/* ri /dx\ 2 i ~\
9. Minimize the integral j

-ml 1 +-n2x2
\dt.J l_2 \dt/ 2 J

157. Variable limits and constrained minima. This second method

of operation has also the advantage that it suggests the solution of the

problem of making an integral between variable end-points a maximum
or minimum. Thus suppose that the curve C which

shall join some point A of one curve T
O
to some

point B of another curve TV and which shall make
a given integral a minimum or maximum, is desired.

In the first place C must satisfy the condition
(4)

or (4') for fixed end-points because C will not give
a maximum or minimum value as compared with

all other curves unless it does as compared merely with all other curves

which join its end-points. There must, however, be additional condi-

tions which shall serve to determine the points A and B which C con-

nects. These conditions are precisely that the integrated terms,

x8x + S^fy =
0, for A and for B, (5)

which vanish identically when the end-points are fixed, shall vanish at
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^ + dyZFor example, in the case of J =J
^ + dyZ

treated above, the integrated

terms, which were discarded, and the resulting conditions are

dxSx + dy5y"f dxdx l

yds yds A yds
~

'

yds \A~
'

Here dx and dy are differentials along the circle C and Sx and 5y are to be inter-

preted as differentials along the curves T and T^ which respectively pass through
A aud 11. The conditions therefore show that the tangents to C and T at A are

perpendicular, and similarly for C and I\ at B. In other words the curve which
renders the integral a minimum and has its extremities on two fixed curves is the

circle which has its center on the x-axis and cuts both the curves orthogonally.
To prove the rule for finding the conditions at the end points it will be suffi-

cient to prove it for one variable point. Let the equations

determine (7 and C
t
with the common initial point A and different terminal points

B and .#' upon rr As parametric equations of I\, take

x = XB + al (s), y = yK + bm(s); al'(s), = 6m'(s),
oS oS

where s represents the arc along Y
l measured from JS, and the functions l(s) and

m(s) vary from at B to 1 at B'. Next form the family

x = <f>(t) + l (s) f (i), y = f (<) + m (s) 7; ((),

' = 0' + if, y' = ^ + mi;',

which all pass through ^4 for i = and which for t ~ t
l
describe the curve rr

Consider

g (s)
= C '* (x + I (s) f, y + ?7i (s) TJ,

x' + If, y' + mi?') *, (6)
^'o

which is the integral taken from A to T
t along the curves of the family, where

#1 y> K', y' are on the curve C corresponding to s = 0. Differentiate. Then

where the accents mean differentiation with regard to s when upon g, i,
or ?n, but

with regard to t when on sc or y, and partial differentiation when on $, and where

the argument of 4> is as in (6). Now if g(s) has a maximum or minimum when

3 = 0, then

;(, y, ', y') + m'(0)^ + J'(0) f*^ + m'(0) 7,%,] <tt =
;

= o.



(1 )
ana vanisn

; tney coum oe seen to vanisn aiso xor ine reason tnat f ana y an

arbitrary functions of t except at t = t and t = tv and the integrated term is s

constant. There remains the integrated term which must vanish,

,

J
l = = o.

The condition therefore reduces to its appropriate half of (5), provided that, ii

interpreting it, the quantities 8x and dy be regarded not as a = f (tj and 6 = ij (ij

but as the differentials along I\ at B.

158. In many cases one integral is to be made a maximum or minimun

subject to the condition that another integral shall have a fixed value

/ = C*
l

F(x, y, y')dx ^', /= ri

G(x, y, y^dx = const. (7
Jx ' J

X(>

For instance a curve of given length might run from A to 13, and th

form of the curve which would make the area under the curve a maxi

mum or minimum might be desired
;
to make the area a maximum o

minimum without the restriction of constant length of arc would b

useless, because by taking a curve which dropped sharply from. A, ir

closed a large area below the ce-axis, and rose sharply to B the are

could be made as small as desired. Again the curve in which a chai:

would hang might be required. The length of the chain being giver

the form of the curve is that which will make the potential energy

minimum, that is, will bring the center of gravity lowest. The prol

lems in constrained maxima and minima are called isoperimetric prol

lems because it is so frequently the perimeter or length of the curv

which is given as constant.

If the method of determining constrained maxima and minim

by means of undetermined multipliers be recalled ( 58, 61), it wl

appear that the solution of the isoperimetric problem might reasonabl

be sought by rendering the integral

I+ \J= F(x, y, y'} + A<7 (*, y, y
1

)]
dx (*

Jx

a maximum or minimum. The solution of this problem would contai

three constants, namely, \ and two constants cv c
2
of integration. Th

constants c
l}

c
z
could be determined so that the curve should pass throug

A and B and the value of X would still remain to be determined in sue

a manner that the integral J should have the desired value. This :

the method of solution,



r =/(x) ;
consider

V =f(x) + om (x) + ft (x), r;
= ^ = f =

fj
= 0,

i two-parametered family of curves near to C. Then

g (a, /3)
= f

X

V(x, ?y + ttT/ + /Sf, / + ai)'+ jSf) to, ^ (0, 0) = I
^o

7i (cr, /3)
= f

'r
'

G (x, 2/ + 0:77 + j3f, y' + aij' + |8f dx = J = const.

^0

ivoulcl be two functions of the two variables a and ft. The conditions for the mini-

mum or maximum of g (cr, /3)
at (0, 0) subject to the condition that h(<x, ft)

= const.

ire required. Hence

fl(0, 0) + X/C(0, 0) = 0, Ps(0, 0) + X^(0, 0) = 0,

(F; + xcg + v(^;, + xe;,) czx = o,

<ZX = o.

By integration by parts either of these equations gives

(F+XG);-A(F+XG);, = 0; (9j

the rule is justified, and will be applied to an. example.

Required the curve which, when revolved about an axis, will generate a given

volume of revolution bounded by the least surface. The integrals are

r ^i c **"!

I 2 TT I yds, min., J = TT I y2
(c, const.

J
*o ^o

Make ds + \y*dx) min. or f% (|/ds + Xy2dte) = 0.^

=

Hence XcZ(y
2
) + cZ = or ds - 5 + 2 \ydx - 0.

ds ds

The second method of computation has been, used and the vanishing integrated

terms have been discarded. The first equation, ie simplest to integrate.

Vy* - X2 (q y2
)
2

The variables are separated, but the integration cannot be executed in terms of

elementary functions, If, however, one of the end-points is on the ic-axis, the



. , 2 a

VI - \V *

In tliis special case the curve is a circle. The constants c
t
and X may be detei

mined from the other point (Xj, yfi through which the curve passes and from th

value of J = v
;
the equations will also determine the abscissa x of the point o:

the axis. It is simpler to suppose x
()
= and leave x

r
to be determined. With thi

procedure the equations are

<.*
= K-c2)2 + ^=I, ^g-gCxf-Sc^ + B^O,

j>
_ o O U t'l

or xf + Syfo- = 0, c2
=

and x
l
= ir~ i [(3 u + V9v'2 + 7T

2

yf)i' + (3 w
"

EXERCISES

1. Show that (a) the minimum line from one curve to another in the plane

their conunon normal
; (/3) if the ends of the catenary which generates the inin

mum surface of revolution are constrained to lie on two curves, the catenary sha

be perpendicular to the curves
; (7) the brachistochrone from a fixed point to

curve is the cycloid which cuts the curve orthogonally.

2. Generalize to show that if the end-points of the curve which makes any inti

gral of the form
j F(x, y)ds a maximum or a minimum are variable upon tw

curves, the solution shall cut the curves orthogonally.

3. Show that if the integrand <f>(x, y, dx, dy, x
t) depends on the limit a^,

tli

condition for the limit B becomes ^Sx + $'
(/1/
5y + Sx f% 1=0.

4. Show that the cycloid which is the brachistochrone from a point JL, coi

strained to lie on one curve T
,
to another curve I\ must leave r at the point .

where the tangent to T is parallel to the tangent to T
l
at the point of arrival.

5. Prove that the curve of given length which generates the minimum surfac

of revolution is still the catenary.

6. If the area under a curve of given length is to be a maximum or mim'nmn
the curve must be a circular arc connecting the two points.

7. In polar coordinates the sectorial area bounded by a curve of given length
a maximum or minimum when the curve is a circle.

8. A curve of given length generates a maximum or minimum volume (

revolution. The elastic curve



-/;

10. Discuss the reciprocity of I and J, that is, the questions of making I a maxi-

mum or minimum when J is fixed, and of making J a minimum or maximum when
/ is fixed.

11. A solid of revolution of given mass and uniform density exerts a maximum

attraction on a point at its axis. Ans. 2X(x
2 + y

2
)a + x = 0, if the point is at the

origin.

159. Some generalizations. Suppose that an integral

.< B
pli1=1 F(x, y, y', *,',- -}dx

= I $
(a;, dx, y, dy, z, dz, ) (10)

JA JA

(of which the integrand contains two or more dependent variables

?/,, and their derivatives y', %', with respect to the independent

variable x, or in the symmetrical form contains three or more variables

aud their differentials) were to be made a maximum or minimum. In

case there is only one additional variable, the problem still has a geo-

metric interpretation, namely, to find

a curve in space, which will make the value of the integral greater or

less than all neighboring curves. A slight modification of the previous

reasoning will show that necessary conditions are

*-S^- and P*-J^' =

or ^-^^ = 0, *;-^?/

= 0, <f>:-d da,= ,

where of the last three conditions only two are independent. Each of

(11) is a differential equation of the second order, and the solution of

the two simultaneous equations will be a family of curves in space

dependent on four arbitrary constants of integration which may be so

determined that one curve of the family shall pass through the end-

points A and B.

Instead of following the previous method to establish these facts, at

older and perhaps less accurate method will be used. Let the varied

values of y, z, y', ',
be denoted by

y + 8y, z + te, y' + 8y',
' + &', *y' =



= f '[F(x, y + ST/, y' + Sy', + 8,
'

-1- &')
-

F(x, y, y', *, z')]dx
Jx

= C \Fdx = f \Ffiy + ^'V + F.'&s + ^fe') dz + ,

Jx Jx

where F has been expanded by Taylor's Formula* for the four variable!

?/, y', z, z' which are varied, and "
-\
---- "

refers to the remainder or th<

subsequent terms in the development which contain the higher powen
of 8y, By', 8*, cV.

For sufficiently small values of the variations the terms of highe:

order may be neglected. Then if A/ is to be either positive or nega

tive for all small variations, the terms of the first order which changi

in sign when the signs of the variations are reversed must vanish anc

the condition becomes

r*i

+ F^8y' + F& -f J^&B') dx = I 8Fdx = 0. (12
Jx

Integrate by parts and discard the integrated terms. Then

* In the simpler case of 155 this formal development would run as

and with the expansion AI= 8I-\-- 52H-- 58/H -it would appear that
2 ! 3 !

The terms 81, 52/, 587, are called the first, second, third, variations of the integra
I in the case of fixed limits. The condition for a maximum or minimum then hecomei
81= 0, just as dff = is the condition in the case of g (z). In the case of variable limit!

there are some modifications appropriate to the limits. This method of procedure sag
gests the reason that 5x, Sy are frequently to be treated exactly as differentials. It als<

suggests that 52/ > and S2! < would he criteria for distinguishing between maximi
and minima. The same results can be had by differentiating (!') repeatedly under tin

sign and expanding 7 (a) into series; in fact, 51= 7. '(0), 527= 7"(0), . No emphasii

has been laid in the text on the suggestive relations 57= CdFdx for fixed limits o;

51=
j
5$ for variable limits (variable in

, y, but not in t) because only the most ele

mentary results were desired, and the treatment given has some advantages as *

modernity.



As 8y and 8z are arbitrary, either may in particular be taken equal to

while the other is assigned the same sign as its coefficient in the

parenthesis ;
and hence the integral would not vanish unless that coeffi-

cient vanished. Hence the conditions (11) are derived, and it is seen

that there would be precisely similar conditions, one for each variable

y,z, ,
no matter how many variables might occur in the integrand.

Without going at all into the matter of proof it will be stated as a

fact that the condition for the maximum or minimum of

/ 4> (x, dx, y, dy, z, dz, . . .)
is

|
8* = 0,

which may be transformed into the set of differential equations

of which any one may be discarded as dependent on the rest
;
and

&dx8x + *^8y + &dz8z -{
=

0, at A and at B,

where the variations are to be interpreted as differentials along the loci

upon which A and B are constrained to lie.

It frequently happens that the variables in. the integrand of an inte-

gral which is to be made a maximum or minimum are connected by an

equation. For instance

(x, dx, y, dy, z, dz) min., S (x, y, z)
= 0. (14)

It is possible to eliminate one of the variables and its differential by
means of 5 = and proceed as before

;
but it is usually better to

introduce an undetermined multiplier ( 58, 61). From

S(x, y, z)
= follows S'x8x + S'

v8y + S'z8z =

if the variations be treated as differentials. Hence if

no matter what the value of X. Let the value of X be so chosen as to

annul the coefficient of 8z. Then as the two remaining variations are

independent, the same reasoning as above will cause the coefficients of

8x and 8y to vanish and
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.. dxSx + di/Si/ + dz&z C\ ,
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,
d'l * ,

dz 1 ,+ .

Ms = = V I d Sx + d -f 8y -M S*
, (16)

ds J [
flfs <&? f/S

J

. M' = and as = a ' = "'

In the last set of equations X has been eliminated and the equations,

taken with S = 0, may be regarded as the differential equations of the

geodesies. The denominators are proportional to the direction cosines

of the normal to the surface, and the numerators are the components of

the differential of the unit tangent to the curve and are therefore pro-

portional to the direction cosines of the normal to the curve in its oscu-

lating plane. Hence it appears that the osculating 2^ane f a ffaodenu:

curve contains the normal to the surface.

The integrated terms dxdx + dySy -f- dzSz = Oshow that the least geodesic which

connects two curves on the surface will cut both curves orthogonally. These terms

will also suffice to prove a number of interesting theorems which establish an analogy
between geodesies on a surface and straight lines in a plane. For instance : The
locus of points whose geodesic distance from a fixed point is constant (a geodesic

circle) cuts the geodesic lines orthogonally. To see this write

fp f-p rp rp P
I ds = const., A

/
ds = 0, S I ds = Q. I dds = = dxSx + dySy + dzSz .

'JO Jo Jo JO

The integral in (16) drops out because taken along a geodesic. This final equality

establishes the perpendicularity of the lines. The fact also follows from the state-

ment that the geodesic circle and its center can be regarded as two curves between

which the shortest distance is the distance measured along any of the geodesic

radii, and that the radii must therefore be perpendicular to the curve.

160. The most fundamental and important single theorem of mathe-

matical physics is Hamilton's Principle, which is expressed by means

of the calculus of variations and affords a necessary and sufficient con-

dition for studying the elements of this subject. Let T be the kinetic

energy of any dynamical system. Let X
i}
Yi}

Z
{
be the forces which

act at any point xit yi} f
of the system, and let 8^, 8//,-,

8z
{ represent

displacements of that point. Then the work is
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Hamilton's Principle, states tliat the time inter/ml

f \8T + 'oW)at = f '[87' +V (A'&c + FSy + ZSzftdt = (17)J
'o J'o

vanishes for the actual motion of the system. If in particular there is

a potential function V, then 8W = 8 V and

f 'S(r
-

7)cft
= 8 f \T -V)dt= 0, (17')A /

and the time integral of the difference between the kinetic and potential

cnurffu'x if ((, maximum < minimum for the actual motion of the system
as compared with any neighboring motion.

Suppose that the position of a system can be expressed by means of n independ-
ent variables or coordinates q^ q2 , -, qn . Let the kinetic energy be expressed as

a function of the coordinates and their derivatives with respect to the time. Let
the work done by displacing the single coordinate qr be 5W= Qr3<jv, so that the total

work, in view of the independence of the coordinates, is Q1821+ Q2dq^-----j- Qndqn .

Then

+ Qn8qn)dt.

Perform the usual integration by parts and discard the integrated terms which
vanish at the limits t = t and t = tv Then

In view of the independence of the variations Sqv Sq2 , , Sqn ,

i^_^ =0 ^L-^=O i^_!i =0 <i8\
dt Sflj 8gx

Vl '

dt dq2 dqz
^ '

dl dqn dqn
Y"' V '

These are the Lagrangian equations for the motion of a dynamical system.* If

there is a potential function V (q^ g2 , , <?), then by definition

Q =- , Q =-, ... O =-~, =^ = ...=^ =
1

8ffi

' 2
S?2

' ' " ~
3?n

'

9?i 8?2

~
8tf

~

d eL dL d SL dL n d dL 8L . _ _ TrHence ---- = 0,
---- = 0, -. ---- = 0, L= T F.

d 3^ a^j dt dqz dqz dt Sqn dqn

The equations of motion have been expressed in terms of a single function L, which

is the difference between the kinetic enerev T and notential function V. Bv



may be specified by n coordinates, and which has a potential function, may be stated

as the problem of rendering the integral I Ldt a maximum or a minimum
;
both the

kinetic energy T and potential function F may contain the time ( without chang-

ing the results.

For example, let it be required to derive the equations of motion of a lamina

lying in a plane and acted upon by any forces in the plane. Select as coordinates

the ordinary coordinates (x, y) of the center of gravity and the angle <p through

which the lamina may turn about its center of gravity. The kinetic energy of the

lamina (p. 318) will then be the sum |Jfu
2 + ^w2

. Now if the lamina be moved a

distance Sx to the right, the work done by the forces will be X5x, where X de-

notes the sum of all the components of force along the x-axis no matter at what

points they act. In like manner Y8y will be the work for a displacement Sy. Sup-

pose next that the lamina is rotated about its center of gravity through the angle

Sift ;
the actual displacement of any point is rS< where r is its distance from the

center of gravity. The work of any force will then be Rrd</> where R is the com-

ponent of the force perpendicular to the radius r
;
but lir = $ is the moment of

the force about the center of gravity. Hence

T = % 3f(x
2 + 2/

2
) + i /< 2

,
5W = X&x + Ydy + *5^

* = * *-* '3 = *

by substitution in (18), are the desired equations, where X and Y are the total

components along the axis and $ is the total moment about the center of gravity.

A particle glides without friction on the interior of an inverted cone of revo-

lution
;
determine the motion. Choose the distance r of the particle from the ver-

tex and the meridional angle <j> as the two coordinates. If I be the sine of the

angle between the axis of the cone and the elements, then ds2 = dr2 + r2 l
z
d<j>

z and

va = f2 + r2 Z
20. The pressure of the cone against the particle does no work; it is

normal to the motion. For a change 80 gravity does no work
;
for a change Sr it

does work to the amount mg Vl I
2dr. Hence

V =

The remaining integrations cannot all be effected in terms of elementary functions.

161. Suppose the double integral

/* /* * o
/ / . 0% o%

*) \J
'

o& oy

extended over a certain area of the ay-plane were to be made a maxi-

mum, or minimum by a surface * = z(x, y), which shall pass through a

given curve upon the cylinder which stands upon the bounding curve

of the area. This problem is analogous to the problem of 155 with



which z shall satisfy is also analogous. Set

= 0.

Write Sp
~~

> &/
= -~- and integrate by parts.

CC dS* C n CCdF'

JJ F/p^ dxdy =
J
F ** dy

~JJ ~d

The limits A and B for which the first term is taken are points upon
the bounding contour of the area, and 8 = for A and E by virtue of the

assumption that the surface is to pass through a fixed curve above

that contour. The integration of the term in 8q is similar. Hence the

condition becomes

o (20)

- ---
01

0* dxdp dyty~~>

by the familiar reasoning. The total differentiations give

F' _ F" F" F"v F"n F" r 2 F" s F"tf z *
xi>

-1
vi>

*
zpl

j *
zffi

*
i>p'

u
PI 49

v '

The stock illustration introduced at this point is the minimum surface,

that is, the surface which spans a given contour with the least area and

which is physically represented by a soap film. The real use, however,

of the theory is in connection with Hamilton's Principle. To study the

motion of a chain hung up and allowed to vibrate, or of a piano wire

stretched between two points, compute the kinetic and potential energies

and apply Hamilton's Principle. Is the motion of a vibrating elastic

body to be investigated ? Apply Hamilton's Principle. And so in

electrodynamics. In fact, with the very foundations of mechanics some-

times in doubt owing to modern ideas on electricity, the one refuge of

many theorists is Hamilton's Principle. Two problems will be worked

in detail to exhibit the method.

Xet a uniform chain of density p and length I be suspended by one extremity

and caused to execute small oscillations in a vertical plane. At any time the shape

of the curve is y y (a;),
and y = y (x, )

will be taken to represent the shape of the

curve at all times. Let y
f = dy/dx and y = dy/ot. As the oscillations are small,

the chain -will rise only slightly and the main part of the kinetic energy will be in

the whipping motion from side to side
;
the assumption dx = ds may be made and

the kinetic energy may be taken as



j j A /j j ,
2^^ A *~

I I A C I y CtiC

2 XJ 2

Here ds Vl -f- y'
2dx has been expanded and terms higher than y'

2 have been

omitted.

<= x+.f i****
1

Then (T-V>*-*-*'-><>**, (21)

provided X be now replaced in "F by / which differs but slightly from it.

Hamilton's Principle states that (21) must be a maximum or minimum and the

integrand is of precisely the form (19) except for a change of notation. Hence

d f /, vSz/l d/M A ia2
j/ ,. .afy By-- pg(l x\\-- ( p 1=0 or --- =(l x)

- --- .

dxl
wv ;

8aJ dt \ 8t/ at2
V

^a;2 8x

The change of variable I x = u2
,
which brings the origin to the end of the chain

and reverses the direction of the axis, gives the differential equation

d2P
,
IdP 4n2 D A .. _. .

or -
-\
------ P = if y = P (u) cos nt,

du* udu g
v '

As the equation is a partial differential equation the usual device of writing tlu

dependent variable as the product of two functions and trying for a special type

of solution has been used
( 194). The equation in P is a Bessel equation (107]

of which one solution P(u) = AJ (2ng~*u) is finite at the origin u = 0, while the

other is infinite and must be discarded as not representing possible motions. Thus

y (x, t}
= AJ (2 ng~ %u) cos nt, with y (i, t)

= AJ (2 ng~ %d) =

as the condition that the chain shall be tied at the original origin, is a possible

mode of motion for the chain and consists of whipping back and forth in the peri-

odic time 27r/n. The condition J (2 ng~%$) = limits n to one of an infinite sel

of values obtained from the roots of /.
Let there be found the equations for the motion of a medium in which

ct

V =
l**fff(f*

+ 9
2 + >'

2

)
dxdydz

are the kinetic and potential energies, where A and B are constants and

_*?, 4^ = H_5f,
dy oz dz ex.
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jjjj S[\A (? + T,

2 + f
2
)
- JB (/2 + j/2 + tf)] dxdydzdt = (22)

h the expression of Hamilton's Principle. These integrals are more general than

(19), for there are three dependent variables
, it, f and four independent variables

Z, y, z, t of which they are functions. It is therefore necessary to apply the method

of variations directly.

After taking the variations an integration by parts will be applied to the varia-

tion of each derivative and the integrated terms will be discarded.

ffffs |
A (i

2 + iz + f
2
) dxdydzdi = fffj

'

A (5 + TJSr? + fSf) dxdydzdi

= -
ffff

A
(

ffff

r\az ay/ \ax az/

After substitution in (22) the coefficients of S, 8ij, 5f may be severally equated to

zero because 5, 5?;, Sf are each arbitrary. Hence the equations

With the proper determination of A and J5 and the proper interpretation of
, TJ, f,

/, 9, &, these are the equations of electromagnetism for the free ether.

EXERCISES

1. Show that the straight line is the shortest line in space and that the shortest

distance between two curves or surfaces will be normal to both.

2. If at each point of a curve on a surface a geodesic be erected perpendicular

to the curve, the locus of its extremity is perpendicular to the geodesic.

3. With any two points of a surface as foci construct a geodesic ellipse by tak-

ing the distances FP + F'P = 2 a along the geodesies. Show that the tangent to

the ellipse is equally inclined to the two geodesic focal radii.

4. Extend Ex. 2, p. 408, to space. If f F(x, y, z)ds = const., show that the
J o

locus of P is a surface normal to the radii, provided the radii be curves which

make the integral a maximum or minimum.

5. Obtain the polar equations for the motion of a particle in a plane.

6. Find the polar equations for the motion of a particle in space.

7. A particle glides down a helicoid (z = k<j>
in cylindrical coordinates). Find

the equations of motion in (r, #), (r, 2), or (z, </>),
and carry the integration as fax

as possible toward expressing the position as a function of the time.



10. If p and S are the density and tension in a uniform piano wire, show that

the approximate expressions for the kinetic and potential energies are

2 o \Si/ 2 o

Obtain the differential equation of the motion and try for solutions y = P(x) cos nt.

11. If
, 77, f are the displacements in a uniform elastic medium, and

g = +
Sx dv dz \dy to/ \dz dx/ \Sx By

are six combinations of the nine possible first partial derivatives, it is assumed that

V = I I I Fdxdydz, where F is a homogeneous quadratic function of a, &, c, /, g, ?i,

with constant coefficients. Establish the equations of the motion of the medium.

^,-^I.A.^LA.^IL &Z-.WL &F d*F
P ~

dydh dzdg
' P

3i2
""

dxdh dydb Szdf
'

^_&j^,&W_ &F
P

dl*

~
dxdg dydf 8z3c

'

12. Establish the conditions (11) by the method of the text in 165.

13. By the method of 169 and footnote establish the conditions at the end

points for a minimum of
jF(x, y, y')dx in terms of F instead of $.

14. Prove Stokes's Formula I = fF-dr = CCVxF-dS of p. 345 by the calculus

of variations along the following lines : First compute the variation of I on pass-

ing from one closed curve to a, neighboring (larger) one.

87 = 5 f F.dr = f <5F-dr
-

dF.r) + f d(F.3r) = f (VxFWSrxdr),J o JQ </o 'o

where the integral of d(F.5r) vanishes. Second interpret the last expression as

the integral of VxF.dS over the ring formed by one position of the closed curve

and a neighboring position. Finally sum up the variations 81 which thus arise on

passing through a succession of closed curves expanding from a point to final coin-

cidence with the given closed curve.

15. In case the integrand contains y" show by successive integrations by

parts that

where F = , F' = ( Y=
By civ' dp



PAKT IV. THEOEY OF FUNCTIONS

CHAPTER XVI

INFINITE SERIES

162. Convergence or divergence of series.* Let a series

u = MO + MI + MS -i
-----

1- WB _I + wn H---- , (1)

the terms of which are constant but infinite in number, be given. Let the

sum of the first n terms of the series be written

Sn = M + M
i + W

2 + ' ' ' + u -i = 2J (2)

Then S
15
S
a ,
S
t,..-,SM Sn+l ,

form a definite suite of numbers which may approach a definite limit

lira Sn S when n becomes infinite. In this case the series is said to

converge to the value S, and S, which is the limit of the sum of the first

n terms, is called the sum, of the series. Or Sn may not approach a limit

when n becomes infinite, either because the values of Sn become infinite

or because, though remaining finite, they oscillate about and fail to

settle down and remain in the vicinity of a definite value. In these

cases the series is said to diverge.

The necessary and sufficient condition that a series converge is that a

value of n may be found so large that the numerical value of Sn+p SH

nl/<(fl be less than any assigned value for every value of p. (See 21,

Theorem 3, and compare p. 356.) A sufficient condition that a series

diverge is that the terms un do not approach the limit when n becomes

infinite. For if there are always terms numerically as great as some

number r no matter how far one goes out in the series, there must

always be successive values of Sn which, differ by as much as r no

matter how large n, and hence the values of Sn cannot possibly settle

down and remain in the vicinity of some definite limiting value S.

*It will be useful to read over Chap. II, 18-22, and Exercises. It is also advisable

to compare many of the results for infinite series with the corresponding results foe

infinite integrals (Chap. XIII).

419



called an alternating series. An alternating series in which the terms

approach as a limit when n becomes infinite, each term being less than

its predecessor, will converge and the difference between the sum S of the

series and the sum Sn of the first n terms is less than the next term un .

This follows (p. 39, Ex. 3) from the fact that] Sn+p Sn
\

< un and un 0.

For example, consider the alternating series

1 - xz + 2x* - 3 x + + (- l)
nnx* + -

.

If
|a;| = 1, the individual terms in the series do not approach as n becomes infinite

and the series diverges. If
|a;| < 1, the individual terms do approach ;

for

lim nz2 " = lim = lim = 0.

Anil for sufficiently large* values of n the successive terms decrease in magnitude
since _ 1

.

rue2 " <(n l)x
2"- 2

gives > xz or n>
n 1 x-

Hence the series is seen to converge for any value of x numerically less than unity

and to diverge for all other values.

THK COMPARISON TEST. If the, terms ofa series are all positive (or all

negative) and each term is numerically less than the corresponding term

of a series of positive terms which 'is known to converge, the seriek con-

verges and the difference S Sn is less than the corresponding difference

for the series known to converge. (Of. p. 355.) Let

and u ' + u't + u'2 J-----\-un _ v + u'n -\
----

be respectively the given series and the series known to converge.

Since the terms of the first are less than those of the second,

Sn + p
Sn = '" H---- -f V-n + ,,-1 < < H-----H <+-! = K+j,

-
&*'

Now as the second quantity S'n+1,
S'H can be made as small as desired,

so can the first quantity Sn+p SH ,
which is less

;
and the series must

converge. The remainders

n+l = u

Rn = ^ S'n = Un -f- < +1 -\
---- =^ U

n

* It should be remarked that the behavior of a series near its beginning is of no con-

sequence in regard to its convergence or divergence ; the first N terms may be added
and considered as a finite sum SN and the series may be written as SN+ uN+ Uy+1 H---- ;

it is the properties of My+ uy+l H---- which are important, that is, the ultimate behavior
of the .series,



frequently used for comparison with a given series is the geometric,

Q/r**

a + ar + ar* + ar* -\ ,
Rn
= ~

> < r < 1, (3)

which is known to converge for all values of r less than 1.

For example, consider the series

. . - . 1
. 1

and 22.22-2-2

Here, after the first two terms of the first and the first term of the second, each

term of the second is greater than the corresponding term of the first. Hence the

first series converges and the remainder after the term 1/n 1 is less than

1

A better estimate of the remainder after the term 1/n ! may be had by comparing1.1. 1 1 . 1

n!n(n + 1)! (n + 2)!

with
(n '!( + !)

\
N&
n,

163. As the convergence and divergence of a series are of vital im-

portance, it is advisable to have a number of tests for the convergence,

or divergence of a given series. The test

by comparison with a series known to con-

verge requires that at least a few types of

convergent series be known. For the estab-

lishment of such types and for the test

of many series, the terms of which are

positive, Candiy's integral test is useful.

Suppose that the terms of the series are

decreasing and that a function f(ri) which decreases can be found such

that un
=

f(ri).
Now if the terms un be plotted at unit intervals along

the 7&-axis, the value of the terms may be interpreted as the area of

certain rectangles. The curve y=f(ri) lies above the rectangles and

t.he area under the curve is

If

f(n)dn -\ f- (4)

Hence if the integral converges (which in practice means that if

Cf(n)dn = F(n), then f /() = JP(OO)
-

F(V) is
finite),



it follows that the series must converge. For instance, if

T'
+ 5 + & + - + * + -

be given, then un
= f(n) = l/n

p
,
and from the integral test

!+!+...< r dn =
2P
^

3p-T- ^ wp OP

provided p > 1. Hence the series converges if ^? > 1. This series is

also very useful for comparison with others
;

it diverges if p s 1

(see Ex. 8).

THE EATIO TEST. If the ratio of two successive terms in a series ofposi-
tive terms approaches a limit which is less than 1, the series converges j

if the ratio approaches a limit which is greater than one or if the ratio

becomes infinite, the series diverges. That is

if lira -^ = y < 1, the series converges,
n=oo U

Of

if lira -^ =
y' > 1, the series diverges.

n= oo

For in the first case, as the ratio approaches a limit less than 1, it must be pos-
sible to go so far in the series that the ratio shall be as near to y < 1 as desired,
and hence shall be less than r if r is an assigned number between y and 1. Then

and B+I

1 T

The proof of the divergence when MB-H/M becomes infinite or approaches a limit

greater than 1 consists in noting that the individual terms cannot approach 0. Note
that if the limit of the ratio is 1, no information relative to the convergence or

divergence is furnished by this test.

If the series of numerical or absolute values

KI + KI + KI + ----T-KI + .--

of the terms of a series which contains positive and negative terms

converges, the series converges and is said to converge absolutely. For
consider the two sums

Sn+P -Sn = UK + --' + un+p _ l and \un \
+ - +|wn+p _ 1 |.

The first is surely not numerically greater than the second; as the

second can be made as small as desired, so can the first. It follows



of absolute values converges, is not true.

As an example on convergence consider the binomial series

., m(m 1) m(m l)(m 2) m(m 1)... (m n
1 + mx + ; 2 M -^ 8 . i--i ^- -

1 i JL A ' O 1

|u + i| |m n|
where ' = !-

\x ,
lira

' ' .

|tt.|

It is therefore seen that the limit of the quotient of two successive terms in the

series of absolute values is
|a;|.

This is less than 1 for values of x numerically lesa

than 1, and hence for such values the series converges and converges absolutely.

(That the series converges for positive values of x less than 1 follows from the fact

that for values of n greater than m + I the series alternates and the terms approach

;
the proof above holds equally for negative values.) For values of x iiumerically

greater than 1 the series does not converge absolutely. As a matter of fact when

|x| > 1, the series does not converge at all
;
for as the ratio of successive terms ap-

proaches a limit greater than unity, the individual terms cannot approach 0. For

the values x = 1 the test fails to give information. The conclusions are there-

fore that for values of jx|<l the binomial series converges absolutely, for values

of |x|> 1 it diverges, and for |x|
= 1 the question remains doubtful.

A word about series with, complex terms. Let

MO + MJ + w
a -\

-----h _! + H----

== o + MI 4- wj H-----h <_i -f K H----

-f {(< + < 4- < + ----h n-i + < -\
----

)

be a series of complex terms. The sum to n terms is Sn = S'n -f iS%

The series is said to converge if Sn approaches a limit when n become:

infinite. If the complex number Sn is to approach a limit, both its rea.

part S'n and the coefficient S'^ of its imaginary part must approach limits,

and hence the series of real parts and the series of imaginary parts

must converge. It will then be possible to take n so large that for any
value of p the simultaneous inequalities

\S'n+1>
- S'n\<^ t and K+;) -S;|<e,

vrhere e is any assigned number, hold Therefore

\sn+P
- sn

\ |s;1+7,

- s'n
\
H- \is%+p

-
is;;\

< e.

Hence if the series converges, the same condition holds as for a series

of real terms. Now conversely the condition

|Sn+p -SB|<e implies |S; +P
-

S;| < e, \S'^p
-

S^\ < e.

Hence if the condition holds, the two real series converge and the com-

plex series will then converge.



the ratio test fails when the limit of the ratio is 1, other sharper tests for conver-

gence or divergence are sometimes needed, as in the case of the binomial series

when x = 1. Let there be given two series of positive terms

of which the first is to be tested and the second is known to converge (or diverge).

// the ratio of two succemtive terms un + i/un ultimately becomes and remains less (or

ijreater) than the ratio ,, + i/o n ,
the first series is also convergent (or divergent). For if

Hence if ?< = pvn ,
tnen u + 1 < /

u + 1 1 Hn + 2 < Pn + 2,

As the v-series is known to converge, the pu-series serves as a comparison series

for the u-series which must then converge. If M + \/un > vn + i/vn and the u-series

diverges, similar reasoning would show that the it-series diverges.

This theorem serves to establish the useful lest due to Raabe, which is

if Hm n (J^L. _l\>l,Sn converges; if \irnn (-^-
-

\]
< 1, Sn diverges.

n = \Un +l / = \u + l /

Again, if the limit is 1, no information is given. This test need never be tried

except when the ratio test gives a limit 1 and fails. The proof is simple. For

r dn_ =-l *
1 "fa finite

J n(logri)
l+ a a(logn)"J

r dn ~\
"

and |
- = log log n is infinite,

J n log n J

are respectively convergent and divergent by Cauchy's integral test. Let these be

taken as the t-series with which to compare the u-series. Then

n \ logn / \
'

n/\ logn

l\log(l + n)
and

,logn

in the two respective cases. Next consider Raabe's expression. If first

-I\>1, then ultimately n(
-

/ \U + 1

and

Now lim ;=1 andultimately
logn
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of which the first, is to be tested and the second is known to converge (or diverge)

// the ratio of two successive terms wn + I/un ultimately becomes and remains less (01

(jreater) than the ratio vn + i/ M ,
the first series is also convergent (or divergent). For ii

Hence if un = pvn ,
then wK + 1 < />u,1 + 1 ,

wn + 2 < /oun + 2 , ,

and wn + un + i + un + 2 H---- </3( n + n + i + n + 2 + )

As the u-series is known to converge, the py-series serves as a comparison seriei

for the u-series which must then converge. If u,, + i/un > B + I/B and the D-serie:

diverges, similar reasoning would show that the u-series diverges.
This theorem serves to establish the useful Lest due to Raabe, which is

if lim n(~-- 1
)
> 1, Sn converges ;

if lim n
(

-- 1
)
< 1, Sn diverges.= \Wn + l / n = 30 \U,, + i /

Again, if the limit is 1, no information is given. This test need never be triei

except when the ratio test gives a limit 1 and fails. The proof is simple. For

r - dn 11 1". _ .

I ~vi = 1S finite
J

rj(logn)
1 -*-* ^(logn^J

and
I

- = log log n is infinite,
/ nlogn J

hence h---H (- and + ...4. i 1-...

2(log2)
1+* n^ogn)^* 2 (log 2) n(logn)

are respectively convergent and divergent by Cauchy's integral test. Let these b<

taken as the u-series with which to compare the u-series. Then

Pn _ n + 1 /log(n + l)\
1 +'t

^ L 1\ /log(l + n

Vn+i n \ logn / \ n/\ logn

and
Vn+i n/ logn

in the two respective cases. Next consider Raabe's expression. If first

lim n
(

-- 1
J
> 1, then ultimately n

(
-- 1

) > y > 1 and -^- > 1+ ~-

= \Un+i ] \U* + i I U+i n

Now lim=1 and ultimately
logn
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where e is arbitrarily small. Hence ultimately if 7 > 1,

n/ \ logn / ?i ri
a n

or vn/vn + 1 < wn/wn + ! or un + i/un < v + i/ n,

and the u-series converges. In like manner, secondly, if

lim n I 1
)
< 1, then ultimately -^- < 1 + 1

, y<l-,

and 1 + -

n/ logn un + i un+ i un v

Hence as the v-series now diverges, the w-series must diverge.

Suppose this test applied to the binomial series for x = 1. Then

M,,+I n m
lira n( 1

J
= lim

n=oo \n m / n= x

m + 1 = m + 1.

It follows that the series will converge if m > 0, but diverge if m < 0. If ? = + 1,

the binomial series becomes alternating for n > in + 1. If the series of absolute

values be considered, the ratio of successive terms |u/Mn+i| is still (n -f l)/(n m)
and the binomial series converges absolutely if m > ;

but when m< the series

of absolute values diverges and it remains an open question whether the alternat-

ing series diverges or converges. Consider therefore the alternating series

1
[ m |

- - -.-
.

This will converge if the limit of un is 0, but otherwise it will diverge. Now if

m 5S 1, the successive terms are multiplied by a factor [m n + 1 [/n, ^ 1 and

they cannot approach 0. When 1 < m< 0, let 1 + m = 6, a fraction. Then the

nth term in the series is

and -
log| Wn |

=- log(l
- 0)- logfl

-
^
-----

log^l-
~

Each successive factor diminishes the term but diminishes it by so little that it may
not approach 0. The logarithm of the term is a series. Now apply Cauchy's test.

J- log (l --\dn = l~- nlog/1 - -W 6 log(n
-

0)1 = oo.

The series of logarithms therefore diverees and limlunl= e- = 0. Hence the



'
3 2 32 3 38 4 3*

'

2 2 22 3 28 4 24

(7) 1-1 + J-1+..., (S)
-L- - -L. +

2 3 4 v '

Iog2 Iog3 Iog4

(0 l-^ + ^~
- + ', (f) e-i-2 e~2 + 3e-3-4e-< + ....

2. Find the values of x for which these alternating series converge or diverge:11 a-2 r* T*

(cr) 1 - x2 + ia> - -a;6 + , (|8) 1 - + - + .

..,v
2 3

v;
2 ! 4 ! 6 1

x a + 1 + 2 + 3 x + 1 x + 2 x + 3

3. Show that these series converge and estimate the error after n terms :

From the estimate of error state how many terms are required to compute the

series accurate to two decimals and make the computation, carrying three figures.

Test for convergence or divergence :

4. Apply Cauchy's integral to determine the convergence or divergence :

(er)l + + -
5
- + 1

_ + ..., (/j)H.___ + ___ + ____



00
i

00 -

*4 n log n log log n
'

4 n log n (log log n)p
'

*
+.x" '

22 + 1
'

32 + 2 42 + 3

5. Apply the ratio test to determine convergence or divergence :

(a) - - - - IB\

,,21.81.41.51. ,. '2
2

.
3s

. 44

2io 310 410

(e) Ex. 8 (a), (jS), (7), (5) ;
Ex. 4(a), (fl, (f)

_ +_ +_

6. Where the ratio test fails, discuss the above exercises by any method.

7. Prove that if a series of decreasing positive terms converges, lim nun = 0.

8. Formulate the Cauchy integral test for divergence and check the statement

on page 422. The test has been used in the text and in Ex. 4. Prove the test.

9. Show that if the ratio test indicates the divergence of the series of absolute

values, the series diverges no matter what the distribution of signs may be.

10. Show that if vVi approaches a limit less than 1, the series (of positive

terms) converges ;
but if vVj approaches a limit greater than 1, it diverges.

11. If the terms of a convergent series w + u
t + w

2 + of positive terms be

multiplied respectively by a set of positive numbers a
,
a
t ,

az ,- all of which are

less than some number 6?, the resulting series a u + a,i -f a
2
w2 + converges.

State the corresponding theorem for divergent series. What if the given series haa

terms of opposite signs, but converges absolutely ?

10 OTL. XT. sin sin2x sin3x sin4x .

12. Show that the series -------
1

------ H---- converges abso-

lutely for any value of
a;,
and that the series 1 + x sin 6 + x2 sin 2 6 + x8 sin 3 9 +

converges absolutely for any x numerically less than 1, no matter what 6 maybe.

13. If ct ,
av av are any suite of numbers such that V^On] approaches a

limit less than or equal to 1, show that the series a + a
x
x + a2x

2 + converges

absolutely for any value of x numerically less than 1. Apply this to show that the

following series converge absolutely when |x| < 1
;

(a) l + Ix2 + ~x4 +
ll|^x6

+ ..., (ft l-2x + 3x2-4x-8 + ...,



and remains less than 7 < 1 without approaching a limit, and sufficient for diver-

gence if there are an infinity of values for n such that -\/un > 1. Note a similar

generalization in Ex. 13 and state it.

15. If a power series a + a,x + a2x
2 + a8x

8 + converges for x = X>0, it

converges absolutely for any x such that |x| < X, and the series

a x + | etjX
2

-f- a
z
x8 + and a

l + 2 a.
z
x + 8 n,

A
x2 + ,

obtained by integrating and differentiating term by term, also converge absolutely

for any value of x such that || < A". The same result, by the same proof, holds if

the terms a
, ci^Y, tt2AT

2
,

remain less than a fixed value (1.

16. If the ratio of the successive terms in a series of positive terras be regarded

as a function of 1/n and may be expanded by Maclaurin's Formula to give

= a + /?- + -
(
-

) ,
u. remaining finite as - == 0,

Mn + i n 2 \n/ n

the series converges if a > 1 or a = 1, /3 > 1, but diverges if a < 1 or a = 1, ftS 1.

This test covers most of the series of positive terms which arise in practice. Apply
it to various instances in the text and previous exercises. Why are there series to

which this test is inapplicable ?

17. If p , / 1 ,p8,-" is a decreasing suite of positive numbers approaching a

limit X and S
, S17

S
2 ,- is any limited suite of numbers, that is, numbers such

that
|(SB |

=s
C?, show that the series

(Po
~

Pi) so + (Pi
-

Pz) si + (P2
-

Pa) S2 + ' ' ' converges absolutely,

and

18. Apply Ex. 17 to show that, /> , /DI , /t>2 , being a decreasing suite, if

uo + u
i + M

2 H---- converges, /JO
MO + px

u
1 + /o2

w
2 + will converge also.

N.B. p + PlUl + + pnw = /,& + pl (S2
-

Sj) + + pn (SB + i
- S)

19. Apply Ex. 18 to prove Ex. 15 after showing that p u -f pjU, + must

converge absolutely if p + p l + ... converges.

20. If t
lt a2 ,

a
3 , , On are n positive numbers less than 1, show that

(1 + 0^(1 + 2). -(I + o) > 1 + 04 + a2 + + an

and (1- <h) (1
-

a,). (1
-

a,) > 1 - d!
-

Oj a,,

by induction or any other method. Then since 1 + a
t < 1/(1 a

v)
show that

1 - (a T7T
> (1 + i) (1 + 03) (1 + On) > 1 + (i + fife + + ") f

> (1
-

Cj) (1
-

Oj)
. . .

(1
-

a,,) > 1 -K + a2 + - + On),

(ff, + 2
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if
t + a2 -f + a < 1. Or if TT be the symbol for a product,

("
\-l >' / 71 \-l 71

i-S" >TT(l + a)>l + Va, (l+Va) > lt(l - a) > 1 - V a.

7* / i TXT/ 1 T
21. Let TT (1 + %) (1 + 2)

' ' '

I
1 +") (! + w + i)

' be an infinite product and

let P,, be the product of the first n factors. Show that \Pn+p Pn \<eis the neces-

sary and sufficient condition that Pn approach a limit when n becomes infinite.

Show that un must approach as a limit if Pn approaches a limit.

22. In case Pn approaches a limit different from 0, show that if e be assigned,

a value of n can be found so large that for any value of p

n + /> n + p

TT (l + Wi) l < e or TT
71+1

Conversely show that if this relation holds, Pn must approach a limit other than 0.

The infinite product is said to converge when Pn approaches a limit other than
;
in

all other cases it is said to diverge, including the case where lim Pn = 0.

23. By combining Exs. 20 and 22 show that the necessary and sufficient con-

dition that

Pn = (1 + aj (1 + a,) (1 + On) and ft,
=

(1
-

04) (1
-

a,) (1
-

a,,)

converge as n becomes infinite is that the series ax + a2 + + On 4- shall con-

verge. Note that Pn is increasing and Qn decreasing. Show that in case So diverges,

Pn diverges to QO and QH to (provided ultimately a,- < 1).

24. Define absolute convergence for infinite products and show that if a product

converges absolutely it converges in its original form.

25. Test these products for convergence, divergence, or absolute convergence :

26. Given or - uz < u log (1 + u) < -w2 or according as u is a posi-
l +w2 ev '2 1 + u

tive or negative fraction (see Ex. 29, p. 11). Prove that if Sw converges, then

+ Un +p log (1 + Mn + i) (1 + MH + 2 ) (1 +U n +p)



3/\ 4/\ 6/
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28. Suppose the integrand/(x) of an infinite integral oscillates as x becomes in-

finite. What test might be applicable from the construction of an alternating series ?

165. Series of functions. If the terms of a series

o / \ / N I / \ I I / \ I S&\
V /

"""""
n \. / "i ^i \ y ~T"

' " '

~"t~
'

n \ ) *~
' * *

v y

are functions of x, the series defines a function S(x) of x for every
value of x for which it converges. If the individual terms of the series

are continuous functions of x over some interval a ^ x =i b, the sum
Sn (x) of 7i terms will of course be a continuous function over that interval.

Suppose that the series converges for all points of the interval. Will it

then be true that S(x), the limit of Sn (x~),
is also a continuous function

over the interval ? Will it be true that the integral term by term,

/ u (x)dx-i- I u^xjdx -\ , converges to / S(x)dx?
*J a, <J a xo

Will it be true that the derivative term by term,

u
o (
x
) + u i 0*0 + > converges to S' (x) ?

There is no a priori reason why any of these things should be true
;
for

the proofs which were given in the case of finite sums will not apply
to the case of a limit of a sum of an infinite number of terms (cf. 144).

These questions may readily be thrown into the form of questions concerning
the possibility of inverting the order of two limits (see 44).

nb nb
For integration : Is I lim Sn (x) dx = lim I Sn (x) dx ?

v a n= oo n=soo'<i

For differentiation : Is lim Sn (x)
= lim Sn (x) ?

For continuity : Is lim lim Sn (*)
= lim lini Sn (x) ?

As derivatives and definite integrals are themselves defined as limits, the existence

of a double limit is clear. That all three of the questions must be answered in the

negative unless some restriction is placed on the way in which Sn (*) converges to

S (x) is clear from some examples. Let ^ x == 1 and

Sn (x)
= xnze~ "*, tbeu lim Sn (x) = 0, or S (x)

= 0.

n=o

No matter what the value of x, the limit of Sn (x) is 0. The limiting function is

therefore continuous in this case
;
but from the manner in which Sn (x) converges
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uous. The area under the limit S ^x)
= from to 1 is of course

;
but the

lit of the area-under Sn (x) is

a C xnze- cdx= lim re-
oouO = oo

^ 1.

e derivative of the limit at the point x = is

course
;
but the limit,

limTA^-
n = oo \_dx

lim n2er*(l - nx)\ lim n2 =
oo,

~0 1 X

the derivative is infinite. Hence in this case two of the questions have negative
swers and one of them a positive answer.

If a suite of functions such as S
1 (x), S

2 (x), ,
Sn (x),

-

converge to a

ait S(x) over an interval a S x S b, the conception of a limit requires
at when c is assigned and x is assumed it must be possible to take n

large that \Rn(x )\
= \S(x ) Sn (xQ)\< e for this and any larger n.

le suite is said to converge uniformly toward its limit, if this condition

n be satisfied simultaneously for all values of x in the interval, that is,

when c is assigned it is possible to take n so large that \Rn (x)\< e

i
1

every value of x in the interval and for this and any larger n. In

e above example the convergence was not uniform
;
the figure shows

at no matter how great n, there are always values of x between and

for which Sn (a;) departs by a large amount from its limit 0.

The uniform convergence of a continuous function Sn (x) to its limit is

fficient to insure the continuity of the limit S(x~). To show that S(x) is

ntinuous it is merely necessary to show that when e is assigned it

possible to find a Ace so small that \S(x + Ax) S(x~)\ < e. But

(x + Az)
-

S(x~)\
=

\Sn (x + Ace)
- Sn (x) + Rn (x + Ace)

- Rn (x)\;
and

by hypothesis Rn converges uniformly to 0, it is possible to take n

large that
\

Rn (x + Ace) \

and
\

Rn (x) \

are less than $ e irrespective of x.

oreover, as Sn (x) is continuous it is possible to take A# so small that

(x -f Asc) Sn (x~) \

< $ irrespective of x. Hence
\

S (x+ AK) S (x) \

< ,

id the theorem is proved. Although the uniform convergence of Sn to S

a sufficient condition for the continuity of S, it is not a necessary con-

tion, as the above example shows.

The uniform convergence of Sn (x) to its limit insures that

s*b /&

lim / Sn (x)dx=l S(x)dx.
n= > Ja Jn



" r b r b r b
c.

S(x)dx I fSH (x)dx = I Rn (x)dx < I
-- dx = e,

a Ja Jo. Ja V ~ a

and the result is proved. Similarly if S'n (x) is continuous and converges

uniformly to a limit T(x), then T(x) S' (x). For by the above result

on integrals,

C T(x)dx = lim f S'n (x)dx = lim
S,,(.r)

-
,S,,(a)

= S(x)
- S (a).

Ja =t/a .=
>[ J

Hence r(a;)
=

5'(x). It should be noted that this proves incidentally

that if S'n (x) is continuous and converges uniformly to a limit, then

S(x~) actually has a derivative, namely T(x).
In order to apply these results to a series, it is necessary to have a

test for the uniformity of the, convergence of the series ; that is, for the

uniform convergence of Sn (x) to S(x~). One such test is Weierstrass's

M-test : The series

M
(a:) + !(*) + + M.(X) + (7)

will converge uniformly provided a convergent series

M + M1 +. .. + .*/ + (8)

ofpositive terms may be found such that ultimately |w,-(x)| S M{ . The

proof is immediate. For

and as the Af-series converges, its remainder can be made as small as

desired by taking n sufficiently large. Hence any series of continuous

functions defines a continuous function and may be integrated term by
term to find the integral of that function provided an M-test series may
be found

;
and the derivative of that function is the derivative of the

series term by term if this derivative series admits an Af-test.

To apply the work to an example consider whether the series

. . cosx cos2a; cosSa; cosnx /TXV

defines a continuous function and may be integrated and differentiated term by
term as . .

/** sma; sm2 sm3x
, ,

smnx
, ,-,.

I o(x) = - H --
1

-- --
1

-----
1

-- H---- (7 )
Jo I8 28 38 n8

, d sinx sin2x sinSx sin TJX ,-
and o (x) =------- .---

. ( ' /
dx

V ;

1 2 3 n
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an Jf-series for S (x) . Hence S (x) is a continuous function of x for all real values
of

,
and the integral of /S (x) may be taken as the limit of the integral of Sn (z),

that is, as the integral of the series term by term as written. On the other hand,
an jY-series for (T") cannot be found, for the series 1 + J + % + is not conver-

gent. It therefore appears that S' (x) may not be identical with the term-by-term
derivative of S (x) ;

it does not follow that it will not be, merely that it may not be.

166. Of series with variable terms, the power series

is perhaps the most important. Here
, a, and the coefficients a

t may
be either real or complex numbers. This series may be written more

simply by setting x = z a
;
then

f(x + a)
=

4>(z)
= a -f ajOJ + a

z
x2 + + ^.nx

n + (9')

is a series which surely converges for x = 0. It may or may not con-

verge for other values of x, but from Ex. 15 or 19 above it is seen

that if the series converges for X, it converges absolutely for any x

of smaller absolute value
;
that is, if a circle of radius X be drawn

around the origin in the complex plane for x or about

the point a in the complex plane for 2, the series (9)

and (9') respectively will converge absolutely for all

complex numbers which lie within these circles.

Three cases should be distinguished. First the

series may converge for any value x no matter how

great its absolute value. The circle may then have

an indefinitely large radius
;
the series converge for all values of x or

and the function defined by them is finite (whether real or complex)
for all values of the argument. Such a function is called an integral

function of the complex variable z or x. Secondly, the series may con-

verge for no other value than x = or z cc and therefore cannot define

any function. Thirdly, there may be a definite largest value for the

radius, say R, such that for any point within the respective circles of

radius R the series converge and define a function, whereas for any point

outside the circles the series diverge. The circle of radius R is called

the circle of convergence of the series.

As the matter of the radius and circle of convergence is important, it will be

well to go over the whole matter in detail. Consider the suite of numbers

Kit

Let them be imagined to be located as points with coordinates between and 4-

on a line. Three possibilities as to the distribution of the .points arise. First they



of numbers which increase without limit. Secondly, the numbers may converge to

the limit 0. Thirdly, neither of these suppositions is true and the numbers from

to + oo may be divided into two classes such that every number in the first class is

less than an infinity of numbers of the suite, whereas any number of the second

class is surpassed by only a finite number of the numbers in the suite. The two

classes will then have a frontier number which will be represented by l/K

(see19ff.).
In the first case no matter what x may be it is possible to pick out members

from the suite such that the set vj_at-|, ffiffl/j, MO*]I i
with i <j < k

,
increases

without limit. Hence the set V|Of ||x|, V | a/ 1 |x|,
will increase without limit

;
the

terms a,-x* o/x-7, of the series (9') do not approach as their limit, and the series

diverges for all values of x other tban 0. In the second case the series converges
for any value of x. For let e be any number less than l/|x| . It is possible to go so

far in the suite that all subsequent numbers of it shall be less than this assigned .

Then
n +J> and ex+ e" +1 z n+H ez<l

serves as a comparison series to insure the absolute convergence of (9'). In the

third case the series converges for any x such that |x| < R but diverges for any
x such that |x| > R. For if

|

x
|
< B, take e < B |x| so that |x |

< R e. Now proceed
in the suite so far that all the subseqxient numbers shall be less than l/(R e),

which is greater than 1/R. Then

|X|"
+ P Jl\ |x|"+^

*C 1. and >

will do as a comparison series. If |x| > R, it is easy to show the terms of (9') do not

approach the limit 0.

Let a circle of radius r less than R be drawn concentric with the

circle of convergence. Then within the circle of radius r < R the power
series (9') converges uniformly and defines a continuous function ; th<s

integral of the function may be had by integrating the series term by

term,

/*
11 i

<j>(x)dx = a x + -a
]
x> + -=a<p

s
-i
-----

\- -an _ l
xn + ;" " "

and the series of derivatives converges uniformly and represents the

derivative of the function,

^'(x)
= a

:
+ 2 a^ + 3 a

8
e
2
H-----H nanx

n~ l
-\
----

.

To prove these theorems it is merely necessary to set up an M-series

for the series itself and for the series of derivatives. Let X be any
number between r and R. Then



radius r. Moreover as
\x\ < X,

I n-l| _ I

n
\nanx M*,-^

holds for sufficiently large values of n and for any x such that
jx| s r.

Hence (10) serves as an Af-series for the given series and the series of

derivatives
;
and the theorems are proved. It should be noticed that it

is incorrect to say that the convergence is uniform over the circle of

radius R, although the statement is true of any circle within that circle

no matter how small R r. For an apparently slight but none the

less important extension to include, in some cases, some points upon
the circle of convergence see Ex. 5.

An immediate corollary of the above theorems is that a.ny power
series (9) in the complex variable which converges for other values than

& = a, and hence has a finite circle of convergence or converges all over

the complex plane, defines an analytic function f(z) of z in the sense of

73, 126; for the series is differentiable within any circle within the

circle of convergence and thus the function has a definite finite and

continuous derivative.

167. It is now possible to extend Taylor's and Maclaurin's Formulas,

which developed a function of a real variable x into a polynomial plus

a remainder, to infinite series known as Taylor's and Maclaurin's Series,

which, express the function as a power series, provided the remainder

after n terms converges uniformly toward as n becomes infinite. It

will be sufficient to treat one case. Let

lirn Rn (x)
= uniformly in some interval h^x-Sh,

n= oo

where the first line is Maolaurin's Formula, the second gives diffei-net

forms of the remainder, and the third expresses the condition that the

remainder converges to 0. Then the series



sists merely in noting that f(x) Rn (x)
= Sn(x~) is the sum of the first

n terms of the series and that
|

Rn(x) \

< e.

In the case of the exponential function & the nth derivative is e*, and the re-

mainder, taken in the first form, becomes

En (z)
= -ie0*x, \Rn (x)\<eh, \x\^h.

As n becomes infinite, Rn clearly approaches zero no matter what the value of h ;

and
-

is the infinite series for the exponential function. The series converges for all

values of x real or complex and may be taken as the definition of e1 for complex
values. This definition may be shown to coincide with that obtained otherwise ( 74).

For the expansion of (1 + x)
m the remainder may be taken in the second form.

m (m 1) (m n + 1) hn (l

Hence when h < I the limit of En (x) is zero and the infinite expansion

/i , \ 1 .

(1 + x)
m = 1 + mx , ,

sc
2

-j

m(m l)(m 2)^-i-i-'-

is valid for (1 + x)
m for all values of x numerically less than unity.

If in the binomial expansion x be replaced by xa and m by J,

This series converges for all values of x numerically less than 1, and hence con-

verges uniformly whenever \x\
s h < 1. It may therefore be integrated term by

.232- 462-4. 672-4- 6. 89
This series is valid for all values of x numerically less than unity. The series also

converges for x = 1
,
and hence by Ex. 6 is uniformly convergent when 1 S x^ 1 .

But Taylor's and Maclaurin's series may also be extended directly to

functions f(z) of a complex variable. If /() is single valued and has

a definite continuous derivative /' () at every point of a region and on

the boundary, the expansion



for all points 2 within the circle of radius r (Ex. 7, p. 306). As n becomes

infinite, Rn approaches zero uniformly, and hence the infinite series

'

(12)

i.s valid at all points within the circle of radius r and upon its circum-

ference. The expansion is therefore convergent and valid for any z

actually within the circle of radius p.

Even for real expansions (11) the significance of this result is great

Ixjoause, except in the simplest cases, it is impossible to compute /(n)
(x)

and establish the convergence of Taylor's series for real variables. The

result just found shows that if the values of the function be considered

for complex values z in addition to real values x, the circle of conver-

gence will extend out to the nearest point where the conditions imposed
on /() break down, that is, to the nearest point at which /() becomes

infinite or otherwise ceases to have a definite continuous derivative /'().
For example, there is nothing in the behavior of the function

/-I i %\- 1 1 -y-2
i 4 ^6 i 8 ...

^JL -f- Jj j
J- / ~r *> "

\
*'

5

as far as real values are concerned, which should indicate why the expan-
sion holds only when

|cc| < 1
;
but in the complex domain the function

(1 -f g
2

)-
1 becomes infinite at z = i, and hence the greatest circle

about = in which the series could be expected to converge has a unit

radius Hence by considering (1 -f z
2

)"
1 for complex values, it can be

predicted without the examination of the nth derivative that the Mac-

laiuin development of (1 + x2

)"
1 will converge when and only when x

is a proper fraction.

EXERCISES

1.
(cr) Doesx + x (1 x) + x (1 x)'* -) converge uniformly when S z g 1 ?

i
j 1^ (l jfcWl 2k)

(/3) Does the series (1 + k)k = l + 1 4- j-
i ^ '-

-\ converge uni-
2i ! o !

formly for small values of k ? Can the derivation of the limit e of 4 thus be made

rigorous and the value be found by setting fc = in the series ?

2. Test these series for uniform convergence ;
also the series of derivatives .

(a) 1 + x sin 6 4- x2 sin 2 6 + x8 sin 3 6 -\ , |xj ^ X < 1,

,, , sinx sin2 x sin8 ! .
sin4 x . ...

- 1



'tOO JL JTLJilW J.\ i \JJC J? U JX \J JL iV/JL^ O

3. Determine the radius of convergence and draw the circle. Note that in prai

tice the test ratio is more convenient than the theoretical method of the text:

(e) jz-(} + b)x
2 + (} +

(ij) 1 - Z + Z4 - Zc + Z8 - Z9 + Z12 - Z18 + ,

(6) (z
-

I)*
- |(z - I)

2 + $ (z
-

I)
8 -

J (z
-

I)
4 + ,

(m - 1) (m + 2) , . (TO- 1) (m - 3) (m + 2) (m + 4) ^
v'J *

3~i
""

K~;
x -"'"i

u 1 I

12

|

5! +"A ""
"(ro + 2) 2.3!(m + l)(m + 2)(m + 3)

--
2/26(3 1)

2
\1 2 3/ 2(4 !)

2
\1 2 3

( u) 1 + K
3; j. V ' 'irW T 'I

yp i \
~

*/ V"- i "/ H \H
~

-i; VH T */
j.g

i
. , .

1-7 1.2.7(7 + !) 1.2. 3- 7(7 + 1) (7 + 2)

4. Establish the Maclaurin expansions for the elementary functions:

(a) log(l-z), (0) sinz, (7) cosz, (3) coshz,

() a1
, (f) tan-^z, (17) sinh- 1

^, (0) tanh-ix.

5. AbeVs Theorem. If the infinite series a + ap + a
z
x* + a

s
xs + converge

for the value X, it converges uniformly in the interval =s z g X. Prove this b

showing that (see Exs. 17-19, p. 428)

n+i
!

^ j
|an an+p ^

when j? is rightly chosen. Apply this to extending the interval over which th

series is uniformly convergent to extreme values of the interval of converges
wherever possible in Exs. 4 (a), (f), (0).

6. Examine sundry of the series of Ex. 3 in regard to their convergence at es

treme points of the interval of convergence or at various other points of the circuffi

ference of their circle of convergence. Note the significance in view of Ex. 5.

_2_
7. Show that/(z) = e *", /(O) =0, cannot be expanded into an infinite Mac

laurin series by showing that Rn = e~3, and hence that En does not converg

uniformly toward (see Ex. 9, p. 66). Show this also from the consideration
o

complex values of z.

8. Prom the consideration of complex values determine the interval of con

vergence of the Maclaurin series for



. onow uiai u twu sumiai- muaiue power series represent wiu same lunction

in any interval the coefficients in the series must be equal (cf . 32).

(gkc\

/ g Kr\

1 + )(l +- )

r I \ r 1

I r2 r8 \
prove log (1 -f 2 r cos x + r2

)
= 2

(r
cos x -- cos 2x + cos Bx ----

I
,

\ 2 3 /

r,x / r2 r3 \
{ log(l + 2r cosx -f r2)dx = 2(rsinx

--- sin 2 x + rj sin 3 x ---- 1
;

Jo \ 22 32
/

,. n ,
/cosx cos2x

,
cosSx \

and log(l + 2r cosx + r2) = 21ogr + 2
(

---___ + __-----
j

,

sin x sin 2 x sin 3 x----^ +__

f
:B

log(l + sinacosx)dx = 2 x log cos ^ + 2
(tan ^ sin x tan2- --"

g
-f

)

Jo 2 \ 2 & ti I

11U.

o

1-3 1-3.5

12. Evaluate these integrals by expansion into series (see Ex. 23, p. 452)

v '
x q 3 \q/ 5 \q/ q

r *
log (1 + k cos x) . _ . _ik

, . r" a: sing ^ __
v2

^'
Jo cosx

-ITS i
,

j^ i + cos2 x
"~

4*

(5) f V 2*2

cos2/3xd = -e~W, (e) f log (1 4- 2 r cos x + rz
)
dx.

^ '

Jo 2 a Jo

13. By formal multiplication ( 168) show that

= 1 + 2 or cos x + 2 a2 cos 2 a; H ,

1 2 or cos x + a2

asinx = a sin x + a2 sin 2 x -f-

1 2 a cos x +

14. Evaluate, by use of Ex. 13, these definite, integrals, m an integer :

/ ff cos mxdx _ -net"1 . . r ff ^ sin xckc
_ _ TT

(
'
Jo 1 2acosx + cr

2
"

1 a2
'

Jo l-2acosx + a2

f" sin x sin mxdx __
if m _l

Jo 1 2 a cos x + a2 2

sin2 xdx/*

Jo l_2a a2
)(l-2/3cosx-f

15. In Ex. 14 (7) let a = 1 - h/m and x = z/m. Obtain by a limiting process,

and by a similar method exercised upon Ex. 14 (a) :

/ 2; sin zdz _ TT
_^ h

f" cos zdz _ TT

Jo A2 + 22 ~2*~ '

o

Can the use of these limiting processes be readily justified ?



Obtain therefrom the following expansions by differentiation :

\f*
=

h

Hence establish the given identities and consequent relations :

,p fo

/;= P
1 + ^(2P2) + ... + *

1 * X " '
Jb

ft

/t(2x)

Hence xP; = P'n+l
-

(n + l)Pn and (x
2 - 1)P; = n(xPn - Pn _i).

Compare the results with Exs. 13 and 17, p. 252, to identify the functions with the

Legendre polynomials. Write

1 1 1

(1
_ 2 xh + hrf (l-2hc,os>9 + A2)* (1

- fte)i (1
- her )*

=
(l + -htf + A2e2' + A

(l + i/ie-*"* + a2e-2f9 + . . A,\A ^5*4 / \ A <&* /

and show Pn(cos tf)
= 2

1 ' 8 " '

^
2n ~ ^ /cosn^ +- cos(u- 2)0 + }^Tt''A?l 1 1' ^ Tl - 1) J

168. Manipulation of series. If an infinite series

S =
itQ + u

l + u
a -\

-----h un -i + un -\
----

(13)

converges, the series obtained by grouping the terms in parentheses witJi-

out altering their order will also converge. Let

S'=tf +t71 + ...+ tfn,_ 1 + /, + .. (130

and S(, S,.- -,,$;,,.

be the new series and the sums of its first n' terms. These sums are

merely particular ones of the set S
1}
S

2 , , $,-, and as n' < n it

follows that n becomes infinite when n' does if n be so chosen that

sn
= sn" -A-8 sn approaches a limit, S, must approach the same limit.

As a corollary it appears that if the series obtained by removing paren.'

theses in a given series converges, the value of the series is not affected

by removing the parentheses.



and r =

converge to the limit \S -f- /tT, and wiW converge absolutelyprovided
both the given series converge absolutely. The proof is left to the reader.

If a given series converges absolutely, the seriesformed by rearranging
the terms in any order without omitting any terms will converge to the

same value. Let the two arrangements be

S = 11
Q + Mj + U

t + .--+*tn _ l +UH + ...

and S = ^l , +uy + u^-\
-----h n/-i + / H----

As 5 converges absolutely, w may be taken so large that

and as the terms in S' are identical with those in S except for their

order, n' may be taken so large that 3^, shall contain all the terms in

Sn . The other terms in S'n, will be found among the terms UM Mnf 1} .

Hence \& o i ^ u i j_ L i i

|

Sn'- Sn!< |Wn| + |Mn + i|-|-
' < fc

As
1

5 5n |

< e,
it follows that) 5 S'n,\ < 2 c. Hence S'n, approaches 5

as a limit when n' becomes infinite. It may easily be shown that 5" also

converges absolutely.

The theorem is still true if the rearrangement of Sis into a series some

of whose terms are themselves infinite series of terms selected from S.

Thus let
s r = ^ + ^ + y

2 + .. . + /n/ _ i + Un> + ..
<}

where Z7
{ may be any aggregate of terms selected from S. If U

t be an

infinite series of terms selected from S, as

U
{
= uio + a + w

i2 + ----h win H---- ,

the absolute convergence of Z7t
. follows from that of S (cf. Ex. 22 below).

It is possible to take n' so large that every term in Sn shall occur in one

of the terms Z7
,
Uv ---, Un,_ r Then if from

S-U^-U^ ----- Un,_, (14)

there be canceled all the terms of Sn ,
the terms which remain will be

found among %, a + 1 , ,
and (14) will be less than e. Hence as n'

becomes infinite, the difference (14) approaches zero as a limit and the

theorem is proved that

5= C7^-... 7- /_+ i7 / + ... = '.



tive and tne number or negative terms is infinite, the series or positive terms ana

the series of negative terms diverge, and the given series may be so rearranged as

to comport itself in any desired manner. That the number of terms of each sign

cannot be finite follows from the fact that if it were, it would be possible to go so

far in the series that al] subsequent terms would have the same sign and the series

would therefore converge absolutely if at all. Consider next the sum Sn PI Nm ,

I + m = n, of n terms of the series, where PI is the sum of the positive terms and

Nm that of the negative terms. If both PI and Nm converged, then PI + Nm would

also converge and the series would converge absolutely; if only one of the sums

PI or Nm diverged, then S would diverge. Hence both sums must diverge. The

series may now be rearranged to approach any desired limit, to become positively

or negatively infinite, or to oscillate as desired. For suppose an arrangement tn

approach L as a limit were desired. First take enough positive terms to make the

sum exceed Z-, then enough negative terms to make it less than i, then enough

positive terms to bring it again in excess of L, and so on. But as the given series

converges, its terms approach as a limit
;
and as the new arrangement gives a

sum which never differs from L by more than the last term in it, the difference

between the sum and L is approaching and L is the limit of the sum. In a similar

way it could be shown that an arrangement which would comport itself in any of

the other ways mentioned would be possible.

If two absolutely convergent series lie 'multiplied, as

5 = + w1 + t
s H-----h wn H---- ,

T=Vo + v1 + v
t + ... + vn + ...,

and W = ?; + %?; + u2v H-----1- unv -]
----

-f ?v;
i + Wii + aVi + ----h *Vi H----

+ .......
+ U Vn + UjVn + WjVn -\

-----h UnVn -\
----

-I-
.......

and if the terms in W be arranged in a simple series as

or in any other manner whatsoever, the series is absolutely convergent

and converges to the value of the product ST.

In the particular arrangement above, S^T^ S
2
T

2 ,
SnTn is the sum of

the first, the first two, the first n terms of the series of parentheses. As

lim SnTn = ST, the series of parentheses converges to ST. As S and T

are absolutely convergent the same reasoning could be applied to the

series of absolute values and

Klkl +WW + NKH-KIKI + KIKH---
would be seen to converge. Hence the convergence of the series



Moreover, any other arrangement, such in particular as

would give a series converging absolutely to ST.

The equivalence of a function and its Taylor or Maclaurin infinite

series (wherever the series converges) lends importance to the operations

of multiplication, division, and so on, which may be performed on the

series. Thus if

f(x) = a + ap + a#? -\- a,jP H---- , \x\ < R
lt

g (X)
= b

Q + ^S +^2 + &
8
03

8 + ' '

', \X\< R
2 ,

the multiplication may be performed and the series arranged as

f(x) g (a)
= a b

Q
+ (a^ + a^ a; -f &

2 + a,^ + a/ ) a;
2 +

according to ascending powers of x whenever x is numerically less than

the smaller of the two radii of convergence RI}
R

2)
because both series

will then converge absolutely. Moreover, Ex. 5 above shows that this

form of the product may still be applied at the extremities of its inter*

val of convergence for real values of x provided the series converges

for those values.

As an example in the multiplication of series let the product sin x cos z be found

sina; = x-- x8 + x6 ----
,

cosx = 1 2 + x*

The product will contain only odd powers of . The first few terms are

"-
(rr

+fr +GV*i +r> -
(r,

+
si ,

The law of formation of the coefficients gives as the coefficient of x2*+ 1

*~ 1)fc

|_(2fc + l)!
+

(2ft- 1)12 I

+
(2ft- 8) 14 I

+ ' ' ' +
81(2fc-2)l

+
^1J

=

(-1)* fi . (2fc + l)2fc , (2fc + l)(2ft)(2fc-l)(2fc^2) J _ . (2 ft + 1)1
+ + "'^"

(2ft + l)l 2! H 1!

But 2"-" = (1 + l)*+i = 1 + (2 ft + 1) +
v

T",
7 + . . . + (2 ft + 1) + 1.

l \

Hence it is seen that the coefficient of x* k+l takes every other term in this symmel

rical sum of an even number of terms and must therefore be equal to half the sum.

The product may then be written as the series

sinxcosx = - 2x ~ + - =-sin2x.



169. If a function /(x) be expanded into a power series

f(x) = a 4-
,

4- / 4- / + ' ' '

|x| < R, (15)

and if x = a is any point within the circle of convergence, it may be

desired to transform the series into one which proceeds according to ^powers

of (x a) and converges in a circle about the point x = a. Let t = x a.

Then x = a + t and hence

xz = a2
-f- 2 at 4- *

2

,
z8= 8 + 3 2

4-

/(x) = a 4- ,( 4- 4- a2 2
4- 2 (rf + ?) H---- . (15')

Since || < 72, the relation
|or|

4- 1#|
< R will hold for small values of t,

and the series (15') will converge for x \a\ 4- \t\.
Since

+ i(M + I'D + i(ll' + 2 MIl + !*!') +
is absolutely convergent for small values of t, the parentheses in (15')

may be removed and the terms collected as

f(x) = < 00 = (a 4-
! 4- aa

a + 8

8
4- ) + K 4- 2 2 4- 3 a

a
;
2

-f-
- -

.)
t

4- (aa 4- 3 a
s
<x 4- )

t
2 +K 4- ) t* 4- ,

or /(x) = $ (oj
-

a)
= 4 4- ^(as

-
a) 4- 4 8 (aJ

-
a)

2

4-^ 8(*-)
8
4----, (16)

where A
Q ,
AV A

2 ,--- are infinite series
;
in fact

The series (16) in a; a will surely converge within a circle of radius

R
|

a
|

about x = a
; but it may converge in a larger circle. As a matter

of fact it will converge within the largest circle whose center is at a and
within which the function has a definite continuous derivative. Thus
Maclaurin's expansion for (1 + x2

)"
1 has a unit radius of convergence ;

but the expansion about x = \ into powers of x ^ will have a radius
of convergence equal to V5, which is the distance from x = ^ to either

of the points x = i. If the function had originally been defined by
its development about x = 0, the definition would have been valid only
over the unit circle. The new development about x = % will therefore
extend the definition to a considerable region outside the original

domain, and by repeating the process the region of definition may be
extended further. As the function is at each step defined by a power



f(x)-= -f

and let
|/> |

< R
l
so that, for sufficiently small values of y, the point x

will still lie within the circle 7?r By the theorem on multiplication, the

series for x may be squared, cubed, ,
and the series for a;

2
,

a;
8
, may

be arranged according to powers of y. These results may then be sub-

stituted in the series for f(x) and the result may be ordered according

to powers of y. Hence the expansion for /[<(?/)] is obtained. That

the expansion is valid at least for small values of y may be seen by

considering

which are series of positive terms. The radius of convergence of the

series for/[(j)] may be found by discussing that function.

For example consider the problem of expanding e0061 to five terms.

..., y = COS* ~ 1 - \ Ofl + & X* + -
-,

-
(J + 4 +

+ )*

It should be noted that the coefficients in this series for e608 * are really infinite

series and the final values here given are only the approximate values found by

taking the first few terms of each series. This will always be the case when

y = & + Z>
t
jc H---- begins with 6 jt ;

it is also true in the expansion about a new

origin, as in a previous paragraph. In the latter case the difficulty cannot be

avoided, but in the case of the expansion of a function of a function it is some-

times possible to make a preliminary change which materially simplifies the final

result in that the coefficients become finite series. Thus here

ecoa; gH- a ~eez
,

Z ~ COS X 1 = \ X
2 + -fa X* 7^ X6 + ,

..., 28 =-iX6 + -.-, Z4
,
2G ,

26 = + ,

gcoaa = ee z = e (l ^x
2 + ^ X

4

The coefficients are now exact and the computation to x6 turns out to be easier

than to x2 by the previous method ;
the advantage introduced by the change would

be even greater if the expansion were to be carried several teraa farther.



The quotient of two power series f(x) by g(x), if ^(0)
=

0, may be

obtained by the ordinary algorism of division as

f(x) (i
n 4- <hx + <*&^ =

'

,
. *

,
7 , n

,
, 7 ,i8.- = c 4- <V 4- cX 4---- ,

b = 0.

g-(aj)
i 4- JVB 4- l>

2
% H----

*

For iu the first place as y (0)
=

0, the quotient is analytic in the neigh-

borhood of x = and may be developed into a power series. It there-

fore merely remains to show that the coefficients c
,
c
1?

c
2 ,

are those

that would be obtained by division. Multiply

(. + !* 4- a#? 4----)
=

(c 4- cp 4- c,^
2
H----) (6 + 6^ + &

2
z2

-\
----

)

= Vo + (&A + Vi) * + (Vo + *A +W^ + ' ' '

and then equate coefficients of equal powers of x. Then

is a set of equations to be solved for c
, Cj,

c
2 ,

. The terms in/(x) and

<7(cr,) beyond xn have no effect upon the values of c^ c
1? ,

cn ,
and hence

these would be the same if 4n+1 ,
^n + 2 ,

were replaced by 0, 0, ,
and

tf'n+i, o, + a, -,
a2n; a2n+1 ,-.. by such values < +1 ,a'n + 2 , ,' j-"

as would make the division come out even
;
the coefficients c

,
c
1? ,

cn

are therefore precisely those obtained in dividing the series.

If y is developed into a power series in x as

y =f(x) = a -f ! + aj? + -, ^ =
0, (17)

then a? may be developed into a power series in y a
Q
as

Por since a
:

=^= 0, the function /() has a nonvanishing derivative for

x = and hence the inverse function/-
1^ )

is analytic near x =
or y = a and can be developed (p. 477). The method of undetermined

coefficients may be used to find &
1 ,

#
2 ,---. This process of finding

(18) from (17) is called the reversion of (17). For the actual work it is

simpler to replace (y a^)/a1 by t so that

t = x + ao52 + fl'^B
8 + a&* H---- ,

a'
{
= ty/a^

and a; = * + J^ + ft^ + ftJ^H---- , 6J
= &X-

Let the assumed value of x be substituted in the series for tf
; rearrange

the terms according to powers of t and equate the corresponding coef-

ficients. Thus ,-.,,,
t = t + (b'z + 4K + $ + 2 JJcri + oj)*

8

4- (^ 4- 2 &X 4- 52
2a2 4- 3 ^oj + tt

;)
<* +



170. For some few purposes, which are tolerably important, a, formal
operational method of treating series is so useful as to be almost indis-

pensable. If the series be taken in the form

2!* """S!' n\

with the factorials which occur in Maclaurin's development and with

unity as the initial term, the series may be written as

1 , i i

a
2 ,

a
s , ,

"

= 1 + a:x + a;
2 + x8

-i h :

* ! o ! n \

provided that a} be interpreted as the formal equivalent of ct
{

. The

product of two series would then formally suggest

e^e6* = e(
a + 6)* = 1 _j_ (a _|_ ^)

JX -j- (a, 4- Vfx
2

-f- , (19)

and if the coefficients be transformed by setting alb5 =
a,-^-,

then

2 ft^ + ^>2- x "i

This as a matter of fact is the formula for the product of two series

and hence justifies the suggestion contained in (19).

Tor example suppose that the development of

T -1 I *-*i*> I O f ' O I '

e 1 l
i\ o !

were desired. As the development begins with 1, the formal method

may be applied and the result is found to be

= e", x = ev" n '"* eSxy (^^)

(5 + 1)2
_ 52 = 0) (5 + 1)8

_^ = 0, , (5 + l)
fc - B* = 0, ,

or 2 Bj + 1 = 0, 3^+3^ + 1 = 0, 4^
B+ 65,4- 4Bt

+ 1 = 0, -,

OT^D i x? 1 D . f\ 73 -i
. J *

JL> ^n -i-. -^o ^^ c i -^ ^^ vj -^4 ~~" "~"*^

''^ ty?

The formal method leads to a set of equations from which the suc-

cessive #8 may quickly be determined. Note that

x
,

x x e
x + 1 x . , x x , I x\ /00 .

Z-.r +0 = -~~7 = o COth 7;
= - o coth -

o (
22

)
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is an even function of .r,
and that consequently all the 's with odd

indices except B
l
are zero. This will facilitate the calculation. Thn

first eight even B's are respectively

The numbers B, or their absolute values, are called the Jierrutnltiun

numbers. An independent justification for the method of formal cal-

culation may readily be given. For observe that eFe** = e (7J+1)a; of (20)

is true when B is regarded as an independent variable. Hence if this

identity be arranged according to powers of B, the coefficient of eao.h

power must vanish. It will therefore not disturb the identity if any

numbers whatsoever are substituted for B1

,
B2

,
Bs

, ;
the particular

set B
,
B

2 ,
B

, may therefore be substituted
;
the series may be roar-

ranged according to powers of x, and the coefficients of like powers of

x may be equated to 0, as in (21) to get the desired equations.

If an infinite series be written without the factorials as

-\
---- -f anx

n
-\

a possible symbolic expression for the series is

-- = 1 -|- ofa + aV + asx* -f- ,

1 ax

If the substitution y x/(i -f- x) or x = y/(l y) be made,

1 1 = 1-y
1 ~ aaj

1 .,
y i-(i + a)y" (24)

j. u- .

1-y
Now if the left-hand and right-hand expressions be expanded and a be

regarded as an independent variable restricted to values which, make

\ax\ < 1, the series obtained will both converge absolutely and may he

arranged according to powers of a. Corresponding coefficients will then

be equal and the identity will therefore not be disturbed if % replaces
a*. Hence

1 + a? + a^ + . =
(1
-

y) [1 + (1 + a) y + (1 -f- a)V H----],

provided that both series converge absolutely for f
= a*. Then

1 + 0^ + a^j* + a
8
a8 + = 1 -f ay + a (1 -f- a) </* -h a (1 -f a)"V H----

= 1 + a
ty + K-f- a

2)^/
2 + (^ + 2

2 -f a,) y
8
-f . . .

,
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This transformation is known as Eider's transformation. Its great

.vantage for computation lies in the fact that sometimes the second
lies converges much more rapidly than the first. This is especially
ne when the coefficients of the first series are such as to make the

efficients in the new series small. Thus from (25)

log (1 + x)
= x - x1 + $ xa - xi + x6 ~ x* + -

3 compute log 2 to three decimals from the first series would require
veral hundred terms

; eight terms are enough with the second series.

a additional advantage of the new series is that it may continue to

nverge after the original series has ceased to converge. In this case

.e two series can hardly be said to be equal ;
but the second series of

urse remains equal to the (continuation of the) function defined by
e first. Thus log 3 may be computed to three decimals with about a

>zen terms of the second series, but cannot be computed from the first.

EXERCISES

1. By the multiplication of series prove the following relations:

(a) (1 + x + x + x8 + -)
a = (1 + 2x + 3x* + 4x8 + )

= (1
- x)-,

(/S) cos2 x + sin8 x = 1, (7) e*ev = e*+v, (S) 2 sin2 x = 1 - cos 2 x.

2. Find the Maclaurin development to terms in x8 for the functions :

(a) escosx, () e^sinx, (7) (1 + a;)log(l + x), (5) cos a; sin- 1*.

3. Group the terms of the expansion of cos* in two different ways to show that

si > and cos 2 < 0. Why does it then follow that cos { = where 1< < 2 ?

4. Establish the developments (Peirce's Nos. 785-789) of the functions:

(a) e lna;
, (/3)_

e' na:
, (7) e ta

~
la!

, () eUa
~

la:
.

5. Show that if g(x) = bmxm + 6m+1z">+ 1 + and/(0) ^ 0, Aen

f(x) __ q + of + a2x2 + . . . _ c_ m c- m+t + +
Q-I + g g

&OTxm + 6TO ixm + 1
H---- a;"

1 z1"- 1 a;

id the development of the quotient has negative powers of x.

6. Develop to terms in x6 the following functions :

(a) sin
(fc sins), (/3) log cos x, (7) Vcosx, (8) (1 fc

z sinsx)~i



u. jciiiu nio oiuiiiicnu luuu ui nicac oc.iicn uy

1 r x 111
(a) - ~ I e~ x dx x x8

-\ x5 x7 + ,V '

2 Jo 3315 3 ! 7
'

1 f* "** 1 /* ** UX

4~Jo
COSJ: X

' 7 10~J V(l-x2)(l-^x2
)'

9. By the formal method obtain the general equations for the coefficients in the

developments of these functions and compute the first Jive that do not vanish:

sin x 2 ex x8

10. Obtain the general expressions for the following developments:

, , ., 1 x x8 2xc
2 (2x)

2 "

(a) coth x = - H + ^- '-

,'

x 8 45 945 (2n)!x
'

x 3 46 045 (2n)!x

/ \ i i
*2 x* x

,

. ..

(7) log sin x = logx------- ----h ( 1)"V ' & ^ V ; ,

6 180 2835 2n-(2n)l

/,v ,
. - , *2 x* x B2n (2x) 2

(5) logsmhx = logx H-----1

------ H ^ '------
.' 8

6 180 2835 2rj-(27i)!

11. The Eulerian numbers JSZn are the coefficients in the expansion of sechx.

Establish the defining equations and compute the first four as 1, 5, 61, 1385.

12. Write the expansions for sec x and log tan (%ir + \ x).121
13. Prom the identity--- =- derive the expansions:*

(v) tanhs =(- 1)2=5, + (V

j.8 2 x" 1 7 X^
(5)

( )
lt w7 "

2 12 45

(f) 1(
' " "

'

3
'

60
'

1 / 35 uC\ T y
(rj) cscx = - (cot- + tan-} = - H2\2 2/x3!
(9} log cosh

a;, (<)logtanhx,
"

(
K
) cschx, (X) sec2 x.



>bserve that the Bernoullian numbers afford a general development for all the

rigonometric and hyperbolic functions and their logarithms with the exception of

he sine and cosine (which have known developments) and the secant (which re-

juires the Eulerian numbers). The importance of these numbers is therefore

ipparent.

14. The coefficients P^y), P9 (y), , P(tf) in the development

e^l = y + P
1 (i/)x + Pt(y)x* + + P(v)s +

ex 1

are called Bernoulli's polynomials. Show that (n + 1) 1 P(v) = (B + y)
n+l - ^n+l

and thus compute the first six polynomials in y.

15. If y = N is a positive integer, the quotient in Ex. 14 is simple. Hence

n ! Pn(JV)
= 1 + 2 + 3 + + (N- 1)"

is easily shown. With the aid of the polynomials found above compute:

(a) l + 2*+3* + .. - + 10*, <

11 1 f
1 1-

16. Interpret^-^^-^
=^^^7^-^IT^-y a -6

17. From f'e-d- *)'* = - establish formally
Jo 1 ax

where 2?"(u)
= 1+ OjU + ^a,^

+ -a,u + -.

Show that the integral will converge when < x < 1 provided |o,-| S 1.

18. If in a series the coefficients ,-
=

j^
*/(*). show

r
1
A*)

1 + a
x
x + 2

x2 + a
8
x + =

J Q fZlS

19. Note that Exs. 17 and 18 convert a series into an integral. Show

d* by
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20. In case the coefficients in a series are alternately positive and negative show

that Euler's transformed series may be written

where Aa1
= a1 -a2 ,

A2
Oi = Ai - Aa2 = ai - 2 2 + ,- are the successive

first, second, differences of the numerical coefficients.

21. Compute the values of these series by the method of Ex. 20 with x = 1, y = $.

Add the first few terms and apply the method of differences to the next few as

indicated:

(
a) \~.- + _ -+... = 0.69815, add 8 terms and take 7 more,

4 fj ^t

ift\ i __L. ^
___----

|-
. . . = 0.6049, add 6 terms and take 7 more,

\/2 V V4

iy\ ?r = i_I-f.l_l + ... = 0.78639813, add 10 and take 11 more,
v '

4 857
(5) i- ' '

3?
'

4P

and compute for p = 1.01 with the aid of five-place tables.

22. If an infinite series converges absolutely, show that any infinite series the

terms of which are selected from the terms of the given series must also converge.

What if the given series converged, but not absolutely ?

23. Note that the proof concerning term-by-term integration (p. 432) would not

hold if the interval were infinite. Discuss this case with especial references to

justifying if possible the formal evaluations of Exs. 12 (a), (5), p. 439.

24. Check the formula of Ex. 17 by termwise integration. Evaluate

1 /
-

I
x /o

oo _
e x

2 !

by the inverse transformation. See Exs. 8 and 15, p. 399.



CHAPTER XVII

SPECIAL INFINITE DEVELOPMENTS

171. The trigonometric functions. If m is an odd integer, say
in. = 2 n -f- 1, De Moivre's Theorem ( 72) gives

sin m<i>
,

(m 1) (m 2) . ,-rS- = COS2 "
d>

--
r;
-^ COS2"~ 2

<4 Sin2
d> -|

----
. (1)m sin < 3 !

where by virtue of the relation cos
2

< = 1 sin
2

<j>
the right-hand mem-

ber is a polynomial of degree n in sin
2

<f>.
From the left-hand side it is

seen that the value of the polynomial is 1 when sin < = and that the

n roots of the polynomials are

sin2 7r/m, sin2 27r/m, ,
sin2

7wr/m.

Hence the polynomial may be factored in the form

2sn _
sin2

7T/m/\ sin
2

27r/ra

If the substitutions = x/m and
<f>
= ia/m be made,

sin a; _ / _ sin2 a;/m\ / _ sin
2

a:/??t \ L
__

sinz x/m\
^

m sin at/ra

"~

\

~~

sin2 ir/m) \ sin2 2 TT/W/

' '

\ sin2 mr/m)
' ^ ^

sinhx _ / sinh^/WX / sinh2

a;/w\ A sinh2

g;/m\
_

7n,sinha;/m~~ \ sin2 7T/??i/\ sin
2

27T/m/ \ sirfmr/m)
^'

Now if m be allowed to become infinite, passing through successive

odd integers, these equations remain true and it would appear that the

limiting relations would hold :

,. w ,.

since hm r = Inn

^( )Hm 6 \ m /



00 / yS \ 00 / y$ \

sill x = a: 7T ( 1 77- )> sinh a; = x TT
( 1 -f T-T 5 ) (5)

i \ /cV2

/ i \ /cVy
v /

would be found. As the theorem that the limit of a product is the prod-

uct of the limits holds in general only for finite products, the process

here followed must be justified in detail.

For the justification the consideration of sinh x, which involves only positive

quantities, is simpler. Take the logarithm and split the sum into two parts

x\

*\ /
Binh-

,
sinh x "V"* i I i m

I v^ i I i
m

log- = > log I 1 +- \+7 log 1 +-6
. . x 4* I .for -Ti 1

*m sinh i
\ sin2

/
P + I

\
sin2

m \ m / \ m

As log (1 -t- a) < ,
th second sum may be further transformed to

(x
\ zr

8inh2 -\ sinh2

1. OT
I ^ m 19 X 'O 1

1 +-._ < > -_ = sinh2 - > - .

. n kir] ~4
. n ktr m*-<. . a kir

sin2 /
*+i sin2 P + isin2

m/ m m

Now as n < m, the angle kir/m is less than | TT, and sin f > 2 f/^ for < \ TT, by
Ex. 28, p. 11. Hence

73 vo * >T* mZ m2 i o * "O 1 m2
. , / dfcE<smh2 > = sinh2 > < sinh2 ImiW 4 mfc" 4 mJP ft

TT i
smhx -sj-\ I . ml m2

. , x
Hence log > 1 H < sinh2 .

x ~4
\ kit I 4r m

Twsmh i
\ sm2

/m \ m /

Now let m become infinite. As the sum on the left is a finite, the limit is simply

sinh x

then follows easily by letting p become infinite. Hence the justification of (4')

By the differentiation of the series of logarithms of (5),

. sin x A . xz \ . sinh x .

the expressions of cot x and coth a in series of fractions

2x ., 1
, ^ 2x ,.-

z
> coth x = - + X 75-5-; , (7)a

a; A;V2 + a;



uniformly. For the hyperbolic function the uniformity of the conver-

gence follows from the Af-test

o
,

s < 77-5 > and V-T- converges.2 + -x. Ictr ^/cV2

The accuracy of the series for cot x may then be inferred by the substi-

tution of ix for x instead of by direct examination. As

7C
2
7T

2 - X*
~

X - 7C7T
^

X + kTT
'

X~kTT ^
In this expansion, however, it is necessary still to associate the terms

for k = + n and 7c = n
;
for each of the series for 7c > and for

k < diverges.

172. In the series for cotha; replace x by %x. Then, by (22), p. 447,

- fv, - 1 j-V 2 a;
2

__ . ^ a?
2 "

..QVCOtn ^
J- ~T" ^ , A 7.2 2 i -.2 i" ^j -2n o ~, I \ /

tf the first series can be arranged according to powers of x, an expres-

sion for jB2n -will be found. Consider the identity

which is derived by division and in which 6 is a proper fraction if t is

po-sitive. Substitute t = a;
2

/4 ^2<7r2
5
then

- - *'

4A;V

Let

* The ^ is still a proper fraction since each k is. The interchange of the order of

summation is legitimate because the series would still converge if all signs were positive,

since 2fc~ 2y is convergent.



- *>2
;M- i)'

- =
>,.

Hence = (- 1)"
-' ^

and

The desired expression for B.ln is thus found, and it is further seen

that the expansion for x coth \ x can be broken off at any term with

an error less than the first term omitted. This did not appear from the

formal work of 170. Further it may be noted that for large values of

n the numbers BZn are very large.

It was seen in treating the T-function that (Ex. 17, p. 385)

log T (n)
= (n ^) log n n + log V2 TT -f- w (n),

r /x x \ dx
I -coth- 1 }e

nx
;

As

<)= (i*hf-i)

r _ c
I x i>e

nxdx = I

J as c/0

the substitution of (12), and the integration gives the result

For large values of n this development starts to converge very rapidly,
and by taking a few terms a very good value of <o (n) can be obtained ;

but too many terms must not be taken. Compare 151, 154.

, _
1. Prove cos x =

EXERCISES

sin 2 a: / 4 X2 \= TTIl-- \

\ (2A; + 1)%2/

2. On the assumption that the product for sinhx may be multiplied out and
collected according to powers of x, show that



457

3. By aid of Ex. 21 (8), p. 452, show : (a) I + ~ + L _L 1 . _ 's

22 ^32
I"

42
+--,

i n v i .
*

.
^ 1 7T* 1 T 1 n

4. Prove: (a) /

>

,!l = _!f
! w /-

1

lo5 (te _ *"
J 1-* 6

w
J, 1 + *

'

/ i
+1X1

5. From tan x = - cot
(
x - - TT )

= -V _J___
^ 2 / r^-(& + i)7r

show cscx = -
foot- + tan -} =V (

~ ^' = !
, V

2\ 2 2/ x-fc7r x^

6 -

X rTx
^ =2 7"^I

' and comPute for a = 1 by Ex. 21, p. 452.

7. If a is a proper fraction so that 1 - a is a proper fraction, show

8. When n is large Ba, = (- l)-i 4
VTO( )'" approximately (Ex. 13).

XTTo/

9. Expand the terms of
|
coth = 1 + by dlvlllion whan x < 2

and rearrange according to powers of x. Is it easy to justify this derivation of (11) ?

10. Find '(n) by differentiating under the sign and substituting. Hence get

_._
F(n) 2n 2n2

,, _, r'(n) /! 1 ~ tt-n-1
roin

i>)
+ 7 =

Jo TI^T da: of 149 show that
'

if n is Iutesral 1

and 7 = -~ = 0.6772156649...

by taking n = 10 and using the necessary number of terms of Ex. 10.

12. Prove log r (n + i) = n (log n - 1) + log V2^ + BI (n), where
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13. Shown! =V2^e or V^ 22
. NotethatW \ c

results of 149 are now obtained rigorously.

n-l
i_ Mr

71 I

_(n _i) r

14 . From = ^ er kjf + 'V c~ ** + (9 ,
and the fornn

le-x ** I-K-* ** x

of 149, prove the expansions

^ 1

,

T(n + l)

173. Trigonometric or Fourier series. If the series

f(x) % a
ft +2 (

a* cos 'cx + ^* s *n 'ffl:
)

c= ^ a
fl
+

cij
cos x + a

2
cos 2 x + a

g
cos 3 x ^

v

+ i
x
sin x + #

2
s^n 2 x -f- 6

g
sin 3 x +

converges over an interval of length 2 TT in x, say ^ x < 2 TT

TT < x ^ TT, the series will converge for all values of x and will

fine a periodic function /(x + 2
TT)
=

/(x) of period 2 TT. As

J
7

.
7 7 ^ , /^

2ir
cos 7cx cos Ix 7 A /

cos kx sin fccdx = and I . . dx = or TT
(.

J sm 7cx sm te

according as k =f= I or k =
,
the coefficients in (14) may be determii

formally by multiplying /(x) and the series by

1 = cos x, cos x, sin x, cos 2 x, sin 2 x,

successively and integrating from to 2 TT. By virtue of (15)
each

the integrals vanishes except one, and from that one

1 /* 27r
i pi*

ak
= ~

I f(x) cos kxdx, bk = I /(x) sin kxdx. (

Jo 7r Jo

Conversely if /(x) be a function which is defined in an interval

length 2 TT, and which is continuous except at a finite number of poi

in the interval, the numbers ak and bk may be computed according

(16) and the series (14) may then be constructed. If this series c

verges to the value of /(x), there has been found an expansion of/

over the intp.rva.l frnm A frv 9, ; o .*.. ,* Wnii.rifir sent



assumed that the function may be represented by the series, that the

series may be integrated, and that it may be differentiated if the differ-

entiated series converges.

For example let e* be developed in the interval from to 2 -JT. Here

*
, ,

1 /*
27rfc r , \

e* /ksiny + cosy\ I

e* cos kxdx =
j & cos ydy = (

^ \

kirJo j_7r\ &2 + l /Jo

a aiesir-i, a =ie2^-^ - 1 J

7T 7T 7T ifc
2

_{_ 1

1 r Zn 1 & Ifc
and bk = -( ex sinkxdx = e

IT Jo 7T

ire31 11 1
Hence = +

12 + 1
-----

2

This expansion is valid only in the interval from to 2 TT
;
outside that interval the

series automatically repeats that portion of the function which lies in the interval.

It may be remarked that the expansion does not hold for or 2 TT but gives the

point midway in the break. Note further that if the series were differentiated the

coefficient of the cosine terms would be 1 + 1/fc
2 and would not approach when

fc became infinite, so that the series would apparently oscillate. Integration from

to x would give

*) *
...

l
sina;+

1 sin2x 1 sin3x~

-f
- cos x ]

-- cos 2 x + - cos 3 +,
12 + 1 22 + l 32 + l

and the term j x may be replaced by its Fourier series if desired.

As the relations (15) hold not only when the integration is from

to 2 TT but also when it is over any interval of 2 TT from a to <x -\- 2 TT,

the function may be expanded into series in the interval from a to

a 4- 2 TT by using these values instead of and 2 TT as limits in the

formulas (16) for the coefficients. It may be shown that a function

may be expanded in only one way into a trigonometric series (14) valid

for an interval of length 2 TT
;
but the proof is somewhat intricate and

will not be given here. If, however, the expansion of the function is

desired for an interval a < x < ft less than 2 TT, there ar.3 an infinite

number of developments (14) which will answer . for if $ (x) be a
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function which coincides with f(x) during the interval a: < x < $
over which the expansion of /(.*) is desired, and which has any value

whatsoever over the remainder of the interval ft < x < <x -f- 2 TT, the

expansion of < (x) from a to a + 2 TT will converge to /'('
T
)
over ^n(i

interval a < x < /3.

In practice it is frequently desirable to restrict the interval over

which /(a-) is expanded to a length TT, say from to TT, and to seek an

expansion in terms of sines or cosines alone. Thus suppose that iu the

interval < x < TT the function <(>) be identical with f(x), and that

in the interval TT < x < it be equal to f( x) ;
that is, the func-

tion <(a) is an even function, </>(V)
=

<j!> ( a), which is equal to /(.r)

in the interval from to TT. Then

/
+ T /ITT /-TT

</> (sc)
cos /m/cr = 21 $ (x) cos /cxc&c = 2 I / (x) cos kxdx,

TT v/0 t/0

X
+ W /'IT /^TT

<^> (o;)
sin kxdx I

<}>(x) sin /cicrfx I < (x) sin 7ca;d!jj = 0.
" 1^0 Jo

Hence for the expansion of $(x) from TT to + TT the coefficients bk all

vanish and the expansion is in terms of cosines alone. As /(^) coin-

cides with <
(a;)

from to TT, the expansion

2 C n

f(x) =2\ak coskx, ak = I f(x)Goskxdx (17)
o

7r Jo

of f(x) in terms of cosines alone, and valid over the interval from to

TT, has been found. In like manner the expansion

o />7r

k==
~

I f(x) sin kxdx (18)"^ Jo
'

in term of sines alone may be found by taking <f>(x) equal to/(.r;) from
to TT and equal to /( x) from to TT.

Let a; be developed into a series of sines and into a series of cosines valid over
the interval from to TT. For the series of sines

V *

(A)

2 /!. 2 /.! [0,fceveni
7 2 /! TO, fcevi

-Kto = -, fc
= ~

/ -zco8tedx=J 2
ii 2 7T^02

I
,

[_
irfc

Also a = _



x2 = 1 - cos x - J (1
- cos 2x) + \ (1

- cos 3x)
- ^ (1

- oos 4x) + . . .

TT 2 1" . sin3x cos5z 1= - x sin x -{ 1 + . .

4 7I-L 3 5 J38 53

These are not yet Fourier series because of the terms \TTX and the various 1's. For

TTX its sine series may be substituted and the terms 1

lected by Ex. 3, p. 457. Hence

(-TT.TT)

may be col-

- x2 = cos x + - cos 2 x - cos 3 x + cos 4 (A')

or -x2 = -
( Ijsinx

sin2x + (
JsinSx

~ sin 4x + . (B')

The differentiation of the series (A) of sines will give a series in which the individual

terms do not approach ;
the differentiation of the series (B) of cosines gives

| TT = sin x +
-|-
sin 3 x + sin 5 x + } sin 7 x +

and that this is the series for ?r/4 may be verified by direct calculation. The differ-

ence of the two series (A) and (B) is a Fourier series

cos3x .

f(
. TT 2T

x) =' '

4 TrL
cosx +

32

sin 2w
1 sin x 1- (C)

which defines a function that vanishes when < x < TT but is equal to x when

> z > IT.

174. For discussing the convergence of the trigonometric series as formally

calculated, the sum of the first 2n + 1 terms may be written as

Snn =- C "\-+ cos(t x) + cos2(i
TrJo 2

x)
J

= 1 f
!

IT /0

sin (2 ?r + 1)

t x

2 sin
t x



definite integrals (16) by t to avoid confusion, then summing by the formula of

Ex.9, p. 30, and finally changing the variable to u = \(t x). The sum Sn is

therefore represented as a definite integral whose limit must be evaluated as n

becomes infinite.

Let the restriction be imposed upon /(x) that it shall be of limited variation in

the interval < x < 2 IT. As the function /(x) is of limited variation, it may be

regarded as the difference P(x) N(x) of two positive limited functions which

are constantly increasing and which will be continuous wherever /(x) is continu-

ous ( 127). If /(x) is discontinuous at x ~ x
,

it is still true that/(x) approaches

a limit, which will be denoted by /(x 0) when x approaches x from below
;
for

each of the functions P(x) and 2f(x) is increasing and limited and hence each

must approach a limit, and /(x) will therefore approach the difference of the limits.

In like manner /(x) will approach a limit /(x + 0) as x approaches x from above.

Furthermore as /(x) is of limited variation the integrals required for Sn , a*, bk will

all exist and there will be no difficulty from that source. It will now be shown that

x
g

HmSn (x )
= lim i fI~ V(z + 2u)

S1" (2
.

n + l)u du =
\ [/(x + 0)-/(x -

0)].
11 = 00 n= oo7T/ -2 Sill It A-

This will show that the series converges to the function wherever the function is con-

tinuous and to the mid-point of the break wherever the function is discontinuous.

, sin (2 n + 1) u , , u sin (2 n + 1) u , , sin ku
Let / (x + 2 u)

-
' =/ (x + 2 u) = F (u) i

sin it sinu u u

,, _ , . 1 /*
1r
~"2

!

-n , v sinfeu , 1 r b _ . . sinfcu ,
then Sn (x )

= - I x
2

F(u) du = - I F(u) du,
- TT < a<0< &< TT.

TT J U 7T Ja U

As /(x) is of limited variation provided 7r<a=iii=l&<7r, so must /(x + 2 u)

be of limited variation and also F(u) = uf/sinu. Then F(u) may be regarded as

the difference of two constantly increasing positive functions, or, if preferable, of

two constantly decreasing positive functions
;
and it will be sufficient to investigate

the integral of F(u)u- l sinku under the hypothesis that F(u) is constantly de-

creasing. Let n be the number of times 2 ir/k is contained in 6.

As F(u) is a decreasing function, so is u~ 1
F(u/k) 1

and hence each of the integrals

which extends over a complete period 2 TT will be positive because the negative ele-

ments are smaller than the corresponding positive elements. The integral from

2nir/k to 6 approaches zero as k becomes infinite. Hence for large values of k,

/* ^ sin Jcu /* ^ P^ /T/\ sin i/

I F(u) du > / JF" I - ) du, p fixed and less than n.
Jo u Jo \k/ u



f b
-r,, . si n iii , /"" r s 'n />57r

Again, | F(u) du =
/ +/ +/

J _U Jo Jir Jsn

/%(2 "- 1 >'r

r,/u\
sinu r b siniv.

J(2-3)7r \kj U J C2"- 1 )^
t

IIt:re all the terms except the first and last are negative because the negative ele-

jiiunta of the integrals are larger than the positive elements. Hence for k large,

sin ku./<>_. . sin /e, /(^-^ Tr

E,/u\sinu
i F (u) du < |

F [-} du, p fixed and less than n.
Jo u Jo W u

In the inequalities thus established let k become infinite. Then u/k= from

above and F(u/k) == F(+ 0). It therefore follows that

/.(2j)-i)tr Smu , ,. / 6 _ /v smfcu, . ... /"^""si-.w,
0)1 du < Inn I F(u) du>F(+Q)l du.
Jo U k=x Jo U /0 ^t

Although p is fixed, there is no limit to the size of the number at which it is fixed.

Hence the inequality may be transformed into an equality

lim rV(M)^
-=, Jo u

= F(- 0)

0) + *(- 0)]

lim 1 P"
n oo 7T ^ ^r

V(x + 2 u)
S " n U

du = [/(x 4- 0) +/(x -
0)].

Hence for every point x in the interval < * < 2 TT the series converges to the

function where continuous, and to the mid-point of the break where discontinuous.

As the function /(x) has the period 2Tr, it is natural to suppose that the con-

vergence at x = and x = 2 IT will not differ materially from that at any other

value, namely, that it will be to the value [/(+ ) +/(27r - )1- This

shown by a transformation. If k is an odd integer, 2 n + 1,

sin(2n + 1) u = sin(2n + 1) (TT
-

u) = sin(2n + l)w',

Hence limim f V(u)
Sin (2n + 1U du = lim /"+ f'

r

=|[F(+ 0) + F(vr
-

0)].
=Jo M = '0 ^i *

Now for x = or x = 2 TT the sum S = - Cf(2 u)
sm

( + ) ^ and the ]imit
TT Jo sin u

will therefore be \ [/(+ 0) +/(27r 0)] as predicted above.

The convergence may be examined more closely. In fact

1 />*-;; u sinfcu , 1 r 6(a

SB (x) = i C 2
f(x + 2u)--- du = - I

u sinfcu , 1 r 6(a:)
T-i/ .sinfcu ,

du.



2TT/K is contained in TT j /3. Then tor all values or x in a s x = P,

^(2;)-!) TT / u\ sinw />h(a
'

) T,, sin tot ,

I Fix,- du + c <
/ F(x, u) aw

Jo \ k/ u Jo u

X
2 i>"

'

f u\ sinu
,F x,

- du + 17, p <, n,
\ A/ u

where and ij are the integrals over partial periods neglected above and are uni-

formly small for all X'R of a ^ x S /3 since F(x, u) is everywhere finite. This

shows that the, number p may be chosen uniformly for all x's in the interval ami

yet ultimately may bi- allowed to become infinite. If it be now assumed that /(x) is

continuous for a g jr ^ p\ then F(x, u) will be continuous and hence uniformly

continuous in (x, u) for the region defined by a g x g /3 and IX^W^TT J
z.

Hence F(, w/fc) wi" converge uniformly to F(x, + 0) as ft becomes infinite. Hence

F
(X, + o) r

x H
-!n.

tt

rtM + e
- < r"

f;

"V(x, )
^^ < F (X, + o) r ^du + v

Jo u Jo u Jo u

where, if 5 > is gi von, K may be taken so large that
|

e'
|

< 5 and
|
if

\

< 5 for k >K ;

with a similar relation for the integration from a (x) to 0. Hence in any interval

0<aszs0<27r over which /(x) is continuous Sn (x) converges uniformly

toward its limit /(x). Over such an interval the series may be integrated term by

term. If /(x) has a finite number of discontinuities, the series may still be inte-

grated term by term throughout the interval ^ x s 2?r because Sn (x) remains

always finite and limited and such discontinuities may be disregarded in integration.

EXERCISES

1. Obtain the expansions over the indicated intervals. Integrate the series.

Also discuss the differentiated series. Make graphs.

-cos2x-- cosSx +-
2sinh7r 225 10 17

7T tO123 4
+ - sin x -- sin 2 x H-- sin 3 x-- sin 4 x + ,

2 5 10 17

(|3) TT, as sine series, to TT, (7) rr, as cosine series, to TT,

(e) cosx, as sine series, to ir, (f) e*, as cosine series, to ir,

(ij) X SinX, 7T tO 7T, (0) X COSX, 7T tO 7T, (t)
7T + X, TT tO 7T,

(K) sin&c, IT to TT, fractional, (X) cos to, ir to ?r, fractional,

(o) log (2 sin -)= cos x 4- - cos 2 x + - cos 3 x + - cos 4 x + -, to IT,

\ 2/ 234



lor an odd function tor which /(x) =J(TT x) ? lor an even function for which

f(x)=f(ir -/)<>

3. Show that /(x) = V\sin-^- with &fc
= - C /(x) sin -^ dx is the trigo-~T c c /o c

nometric sine series for/(x) over the interval 0<x<c and that the function thus

defined is odd and of period 2 c. Write the corresponding results for the cosine

series and for the general Fourier series.

4. Obtain Nos. 808-812 of Peirce's Tables. Graph the sum of Nos. 809 and 810.

5. Let e (x)
= /(x) \ a 04 cos x ---- an cos ru 6

t
sin x --- bn sin )ix

be the error made by taking for/(x) the first 2 n + 1 terms of a trigonometric series.

1 / + *

The mean value of the square of e(x) is / [e(x)]
2 dx and is a function

2 7T / JT

F(a ,
a
x , ,

on ,
6
15 ,

bn) of the coefficients. Show that if this mean square

error is to be as small as possible, the constants <z
,
alf ,

are ,
&17 ,

& must be

precisely those given by (16) ;
that is, show that (16) is equivalent to

6. By using the variable X in place of x in (16) deduce the equations

= C*
V

f(\)
2 IT /0

- C
2 IT /0 7T ~l /0

i -\ f Zir
. ,. i ^ , r 271^/ %-_LV

|
/(X)e=

fc *<A- z>'cZX = - y,e^
te

j /(x)e

_j ^ / 2 TT

and hence infer /(x) =V o-fce* te', a* = -
I /(x)e

*"/ ^STT t/O

7. Without attempting rigorous analysis show formally that

<j>(a)da= lim [ + <(- n.Aa)Aor+ 0( n + l-Aa)Aa + + <f>( l-Acr)Aa
Aa =

+ 0(0- Aar)AaH- 0(1

= lim V0(fe- Aa-)Aa:= lim

is the expansion of /(x) by Fourier series from c to c. Hence inter that

= lim



8. Assume the possibility ot expanding / (x) between J. aim -t- i on a, BUI tea uj.

Legendre polynomials (Exs. 13-20, p. 252, Ex. 16, p.440) in the form

f(x) = a P (x) + a^ (x) + a
2
P2 (x) + + aPn (x) + .

2k + 1 r 1

By the aid of Ex. 19, p. 253, determine the coefficients as ak -
J^ /(#) P*(x) dx,

For this expansion, form e (x) as in Ex. 5 and show that the determination of the

coefficients en so as to give a least mean square error agrees with the determi-

nation here found.

9. Note that the expansion of Ex. 8 represents a function f(x) between the

limits 1 as a polynomial of the nth degree in x, plus a remainder. It may be

shown that precisely this polynomial of degree n gives a smaller mean square error

over the interval than any ether polynomial of degree n. For suppose

ff*(x)
= c + CjX + + cnx = 6 + b1P1 + ----

1- bnl\

be any polynomial of degree n and its equivalent expansion, in terms of Legendre

polynomials. Now if the c's are so determined that the mean value of [/(x) f/n()]
s

is a minimum, so are the 6's, which are linear homogeneous functions of the c's.

Hence the 6's must be identical with the a's above. Note that whereas the Maclaurin

expansion replaces /(x) by a polynomial in x which is a very good approximation
near x = 0, the Legendre expansion replaces /(x) by a polynomial -which is the

best expansion when the whole interval from 1 to + 1 is considered.

10. Compute (of. Ex. 17, p. 252) the polynomials Px
= x, P2

= \ + f x
2
,

P = - a5 + x<> P = --a;2 + * = *-
r 1 2 / 6 \ 2

Compute I xi sin trxdx = 0,
-

(
1--

), 0, -, wheni = 4, 3, 2, 1, 0. Hence show
/-! 7T \ IT3 1 7T

that the polynomial of the fourth degree which best represents sin TTX from 1

to + 1 reduces to degree three, and is

sininc - -x - -
( = lW-x8 - -x\ = 2.69x 2.89x.

Sho-iv that the mean square error is 0.004 and compare with that due to Maclaurin'^

expansion if the term in x* is retained or if the term in 8 is retained.

11. Expand sin^Tra = ^Pl
-~ (^ - i\ p

g
- 1.653* 0.562x.

2 ir3 TT YTT" /

12. Expand from 1 to + 1, as far as indicated, these functions :

(g) COSTIX toP
4 , (j3)

& toP
5 , (-V) log(l + x) toP4 ,

(S) Vl-x* toP4 , (
e
) cos-ix toP

4 , (f) tan-ix toP6 ,

1
toP8' . ,,

-

VI + x VI x2 Vl +
What simplifications occur if /(x) is odd or if it is even ?



period 2 TT may be expanded into a trigonometric series
;
that if the

function is odd, the series contains only sines; and if, furthermore,
the function is symmetric with respect to x % TT, the odd multiples
of the angle will alone occur. In this case let

/(*) = 2
["'o

sin x a
v
sin 3 x H-----(- ( 1)" an sin (2 n + 1) x H---- ].

As 2 sin nx = i (e e- nri

),
the series may be written

/(*) = 22 (- !)X sin (2 n + l)x = - iV (- l)Xe (2n+1);a
', a_ s

=
_,.

This exponential form is very convenient for many purposes. Let i

be added to x. The general term of the series is then

Hence if the coefficients of the series satisfy an _ie~ Znp = an) the new

general term is identical with the succeeding term, in the given series

multiplied by epe~ 2xi
. Hence

f(x + ip)
= - eoe-**

1

f(x) if an _^ = ane
Zn

?.

The recurrent relation between the coefficients -will determine them
in terms of a . For let q = e~ p

. Then

The new relation on the coefficients is thus compatible with the original

relation a_ M
= an _ r If =

-*, the series thus becomes

The function thus defined formally has important properties.

In the first place it is important to discuss the convergence of the

series. Apply the test ratio to the exponential form.

Por any x this ratio will approach the limit if q is numerically less

than 1. Hence the series converges for all values of x provided \y\< 1.

Moreover if
\x\ < ^G, the absolute value of the ratio is less than

\q\
2n

e
G

.

which approaches as n becomes infinite. The terms of the series

therefore ultimately become less than those of anj assigned geometric



By a change of variable and notation let

7/00 = 2 7
* sin 2$

-
2,,* sin + 2yV sin -

-. (20)A A / /v ,6 A

The function //(), called eta of u, has therefore the properties

II (u + 2 /f) = - J/(w), ff(w + 2 iA")
= - q^e'^H^i), (21)

inTr

#( + 2m7f + 2 m&") = (- l)
m + n

<1
- ne"wUH(u), m, n integers.

The quantities 2 K and 2 iK 1 are called thejpmocfe of the function. They
are not true periods in the sense that 2 TT is a period off(x) ;

for when
2 K is added to u, the function does not return to its original value, but

is changed in sign ;
and when 2 iK 1

is added to u, the function takes

the multiplier written above.

Three new functions will be formed by adding to u the quantity K
or IK' or K + iK', that is, the halfperiods, and making slight changes

suggested by the results. First let H^ (u)
= H(u -f- K). By substitution

in the series (20),

v / \ o 1 7ru
, n ? 3 7TM

, rt 2j> 5 7T?<
, /nox

^(w) = 2 ?* cos + 2 2
* cos + 2 ?

Y Cos -^ + ' ' '

(
22)

By using the properties of H, corresponding properties of Hv

HI (u + 2 K) = - HI (it),
H

t (ic + 2 iK') =+ q-V?X (tt), (23)

are found. Second let iA*' be added to M in #w. Then

is the general term in the exponential development of H(u + iK')

apart from the coefficient i. Hence



00

The development of (u) and further properties are evidently

\ / 1 n jf
> -i o V- J. 9 V ' ' '

' \ /

(u + 2 #) = (
w

), (w -f 2 i#')
= -

(T
le~

u

(u). (25)

finally instead of adding K + iK' to w in H(ic), add .K in ().

o / \ -1,0 2 7TO
4

4 7TM I09 6 ITU

a(w)
= 1-f- 2 ? cos --r + 2

!?
cos " + 2 q COS + " '

' ^ ^

^w + 2
J5T)
=

,(), ](w + 2i^') = 4-<Z-V 1(M). (27)

For a tabulation of properties of the four functions see Ex. 1 helow.

176. As H(u~) vanishes for u = and is reproduced except for a

finite multiplier when 2 mK + 2 niK' is added to u, the table

H(u) = Q for % = 2 mJf + 2 niK',

H^u) = for M = (2 TO 4- 1) K + 2 niK',

(w)
= for w = 2 m^ + (2 n -f 1) i/f',

j(w)
= for w = (2 m + 1) K + (2 u -f 1) iJfiT',

contains the known vanishing points of the four functions. Now it is

possible to form infinite products which vanish for these values. From

such products it may be seen that the functions have no other vanish-

ing points. Moreover the products themselves are useful.

It will be most convenient to use the function ^w). Now

^VmK+K+tniK' + iK') _ _
^(Sn+I^

- 00 < W < 00 .

Hence e%
u
+ !?

-<2 "+ 1 > and e~*
u + q-^

n+1
\ n m 0,

are two expressions of which the second vanishes for all the roots of

,(M) for which n ^ 0, and the first for all roots with n < 0. Hence

* / ire \ /
TT = C IT U + (f~

n+le'K
u
) (I 4- f n

is an infinite product which vanishes for all the roots of
x(M).

The

product is readily seen to converge absolutely and uniformly. In par-

ticular it does not diverge to and consequently has no other roots

than those of
^(u) above given. It remains to show that the product

is identical with
1(u) with a proper determination of C.



= ei (it)
= 1 + q(z +

1)
+

q*(z*
+
i)

+ - + f/

2

(z
+
i)

+ -,

= C-iTT(u) = (1+ gz) (I + g"z)(l + 9
G
z). (! + g-iz).

a\ I o&\ I o6\

2) (1 + ?-) (1 + 2.).
z/ \ z/ \ z/

A direct substitution will show that
<f> (<?

2
z)
= q- lz~ l

(f> (z) and ^ (</
2
z)
= q~ lz~ ty (z).

In fact this substitution is equivalent to replacing u by u + 2iK' in Qt . Next con-

sider the first 2n terms of ^(z) written above, and let this finite product be ^M (z)-

Then by substitution

Now
i//n (z) is reciprocal in z in such a way that, if multiplied out,

MS) = <*<> + a
i(

2 +
^

Then (g2^ + ?z)
V (n(<pW + r/-s'z-) = (1 + r/

2 + iZ
)
V a,-(z' + z-<),

o <f

aud the expansion and equation of coefficients of z* gives the relation

From <tn =

Now if n be allowed to become infinite, each coefficient a,- approaches the limit

lim a, = q~
,

C = ft (1
-

<Z

2
)
= (1

-
<Z

2
) (1

-
9
4
) (1

-
(Z

6
)

o i

Hence et (u)
= ft(l - f/

n
) -11(1 + g

2 " + 1e*"")(l + g2
+ ie~*~"),

i o

provided the limit of ^n (z) may be found by taking the series of the limits of the

terms. The justification of this process would be similar to that of 171.

The products for
,
Hv H may be obtained from that for

l by sub-

tracting K, iK', K+ iK' from u and making the needful slight altera-

tions to conform with the definitions. The products may be converted

into trigonometric form by multiplying. Then

H(u) = C 2 2* sin ft (l
- 2 ?

2 cos |~ + ff*'X (28)
i K. i /A



VIJUV/J. iTJLJJiX'l JL

TTU " /

ffju) = C 2 ?
J cos TT

(1
+ 2 f* cos ^ + <^ (29)

(30)v '

!() = C it
(l + 2 ?

2 +i cos~ + j*-+ (31)v 'o \ Z .K.

C = TT(l-r/) = (l- ?
2

)(l- !?

4

)(l-!?
6

)---> (32)

1^(0) = C 2 0* TT (1 4- <f")
2

, (0)
= C TT (1

-
?
s "+ 1

)
2

,

1

ff'(O)
= C 2 2

*^ TT (1
-

r/)
2

, 0^0) = C TT (1+ gr-+i)

The value of //''(O)
is found by dividing H(u) by w and letting u = 0.

Then

H'W^HW^^ (33)

follows by direct substitution and cancellation or combination.

177. Other functions may be built from the theta functions. Let

/0 ..

(34)

(36)v '

The functions sn w, en u, dn % are called elliptic functions* of u. As H
is the only odd theta function, sn u is odd but en u and dn u are even.

All three functions have two actual periods in the same sense that sin x

and cos x have the period 2 TT. Thus du w has the periods 2 JK" and 4 i/
'

by (25), (27); and snw has the periods 4tf and 2iK' by (25), (21).

That en u has 4 K and 2 Jff -f- 2 iff' as periods is also easily verified.

The values of u which make the functions vanish are known
; they are

those which make the numerators vanish. In like manner the values

of u for which the three functions become infinite are the known roots

of
(tt).

If q is known, the values of V& and "Vk 1

may be found from their

definitions. Conversely the expression for V&',

2 ? + 2 ?*- 2 g
9

+.--, (36)
2^ + 2 y

4 + 2 .f + ..- ^ J
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is readily solved for q by reversion. If powers of q higher than the

first are neglected, the approximate value of
>/

is fouud by solution, as

1 1 - VP
<i 4- y 4- 6 ,

,
,' '

<f 4- 5 ?
9
4- -

.

Hence g = n

* 1 4- v/c' 1 * ? H

2 A - v^v is /i --= "
/ "oo /

1 4- VAV 2 \1 + V/c

is the series for q. For values of k' near 1 this series converges with

great rapidity; in fact if k'
2 ^ \, k 1 > 0.7, A/A? > 0.82, the second terra

of the expansion amounts to less than 1/10
8 and may be disregarded

in work involving four or five figures. The first two terms here given

are sufficient for eleven figures.

Let i? denote any one of the four theta series //, 7/p 0, r Then

t\u) = < () = JP &*, z = e~ ^
"

(38)

may be taken as the form of development of >'/
2

;
this is merely the

Fourier series for a function with period 2 K. But all the theta func-

tions take the same multiplier, except for sign, when 2 iK' is added to n
;

hence the squares of the functions take the same multiplier, and in par-

ticular
</>(<?V) = <7~

2 ~ 2

4>(s). Apply this relation.

It then is seen that a recurrent relation between the coefficients is found

which will determine all the even coefficients in terms of b and all the

odd in terms of br Hence

&(u} = bfi (*) + &!*(*), 6
,
bv constants, (38')

is the expansion of any #2 or of any function which may be developed
as (38) and satisfies

</>(<7

2

)
= q~

2z~
' 2

<(). Moreover $ and * are iden-

tical for all such functions, and the only difference is in the values of

the constants b
, b^

As any three theta functions satisfy (38') with different values of the

constants, the functions $ and * may be eliminated and

*!() + 0*J(M) + y*,
2

() = 0,

where a, ft, y are constants. In words, the squares of any three theta

functions satisfy a linear homogeneous equation with constant coeffi-

cients. The constants may be determined by assigning particular values



'2A~ // 2
(w) ,

2

JFK ^00
+ ^o 0)

= or sn '" + cn M "

treating //, ];
in a similar manner may be proved

/;- sn3 u + dn2 u = 1 and fc
2 +F = 1. (40)

'In; function ft (n) ft (ic
-

a), where a is a constant, satisfies the rela-

i < (y
a
s)
= ij~~z~-C<^ (.-)

if log (7 = iira/K. Reasoning like that used

treating &'
2 then shows that between any three such expressions

is a linear relation. Hence

//() //(7
-

) + PH^QH^U -
ft)
=

y ()((4
-

a),

= 0, ^ (0) Hl (a)
=

-y (0) (a),

u = K, aH^H^a) = 7iWi(a
)

^ Ta II (u*) H (u a)
2 ^ (u) H^ (u-a)_ 0_ gig

;"

J/fO a (it) O -
) HfO (it) (u

-
a) ^0 a

'

dn a sn u sn (%-) + en u en
(it a)

= en a. (41)

!n this relation replace a by - v. Then there results

en ?^cn(M + v) 4- snwdnv sn(w + v)
= cnv,

en v en (M 4- v) + sn v dn u sn (w + v)
= en w,

symmetry and by solution. The fraction may be reduced by multiply-

r numerator and denominator by the denominator with the middle

n changed, and by noting that

na
y cii

2
76 dn2 u - sn2 w cn2

t> dn2 ^ = (sn
2

?;
- sn2 ^) (1

- &2 sn
2 sn

2

i>).

sn u en v dn v + sn v cn u ^n ^
C43")

ten 811(7* + .;)= i_A;2 sn2 M sn2 v
' V '

sn ?f cn v dn T; sn v cn M dn .

sn , = g cn dn
?/,, g =



The periods 2K,2iK' have been independent up to this point. It will,

however, be a convenience to have g = 1 and thus simplify the formula

for differentiating sn u. Hence let

1 (0)
= l + 2? + 2/ + .., (46)

Now of the five quantities K, K 1

, k, k\ y only one is independent.

If
<i

is known, then 7c' and K may be computed by (36), (46); k is de-

termined by kz + 7c'
2 =

1, and K' by w#'/tf = - log q of (19). If, on the

other hand, 7c' is given, q may be computed by (37) and then the other

quantities may be determined as before.

EXERCISES

i --"Lie _J:IM
1. With the notations X = q~*e ZK

, n = q-^e
x establish:

jff(- u) =- ff(u), H(u + 2 K)=-H(u), H(u + 2 UP) =-

e
1 (-u)=+e1 (u), e

1

H(u + K) = + flj (M), 7f(w + i/C')
= i\0 (u), J2"( + K + IK"')

= + X0j. (),

H! (u + JK")
=-

T(M), 1^ (u + iK') - + \Q
t (u), H

: (u +K+ iK') =- i\Q (u),

0(u + J^s+O^u), (u + iJEP)
=

iXJ5r(u), 6(u + JT + iJ5T') =4- XS~i(),

0! (u + Jf) = + (u), 9,. (u + t^O = + Xffx (it),
e

x (u + JET + iJf')
= + t\H(u).

2. Show that if u is real and q =g ^ the first two trigonometric terms in the

series for H, Hv 9, Qv give four-place accuracy. Show that with q 0.1 these

terms give about six-place accuracy.

3. Use ---- = q sin a + q
2 sin 2 a + ?

8 sin 3 a + to prove* *

TTU . 27TW . STTW

<*

free^-OW-M- ""*
,

q in ^"
,

"*"

4. Prove the double periodicity of cnu and show that :

. _ en u . ._,. 1 x _ _ dnu
sn (u + A) = -

, sn (u + iK') = , sn (w + JKT + iJT')
=

dnu v ' 7

Jfcanu
^ 7 ftcnu

cn(u + g)=~:
n
"", cn(u + ^Q =

~ idnM
, cn(u + A' + UT) = =^->dnu fcsnu fccnu

dn(ti + Jr) = -^-, dn(u + iS:')=-i^^, dn(u + jr + UP) = **'5^-
an u sn w en u



6. Compute k' and kz for q = \ and q = 0.1. Hence shew that two trigonometric
terms in the theta series give four-place accuracy if fc' S }.

en u en v sn u sn u dn u dn u
7. Prove en (u + v) =

and dn (u

1 k2 sn2 w sn2 TJ

) fc
2 sn u sn i; en u en e

1 fc
2 sn2 u sn2 v

8. Prove cnw= snwdnu, dnw = fc
2 snw.cn u,

dw, du

nU (Jy
9. Prove sn-^w = /

- from (45) with g = 1.

Jo - 2 - 2

10. If 7 = 1, compute fc, fc', IT, JBT', for g = 0.1 and g = 0.01.

11. If g = 1, compute fr', q, If, K', for fc
2 = J, f, .

12. In Exs. 10, 11 write the trigonometric expressions which give snw, en w, dnu
with four-place accuracy.

13. Find sn 2 w, en 2 u, dn 2 u, and hence sn \ u, en \ u, dn w, and show

14. Prove it jsn u dn
= log (dn u + fc en u) ;

also

62
(0)H (u + a)H (u

-
a)
= 62

(a)H* (w)
- H2

(a) 62
(u),

82
(0)6(u + a)9(w- a)

= 02(w)e
s
(a)



CHAPTER XVIII

FUNCTIONS OF A COMPLEX VARIABLE

178. General theorems. The complex function u
(.r, ?/) 4- ia

(.r, y),

where tr (x, y) and v
(x, y) are single valued real functions continuous

and dift'erentiable partially with respect to x and y, has been defined

as a function of the complex variable z = x + iy when and only when

the relations u'x =.v'
v
and i('

v
= - v'x are satisfied (73). In this case

the function has a derivative with respect to z which is independent

of the way in which A# approaches the limit zero. Let w = f(z) be a

function of a complex variable. Owing to the existence of the deriva-

tive the function is necessarily continuous, that is, if e is an arbitrarily

small positive number, a number 8 may be found so small that

and moreover this relation holds uniformly for all points of the

region over which the function is defined, provided the region includes

its bounding curve (see Ex. 3, p. 92).

It is further assumed that the derivatives ?4, uv ,
v'x ,

v'
y
are continuous

and that therefore the derivative /' (2) is continuous.* The function

is then said to be an analytic function ( 126). All the functions of a

complex variable here to be dealt with are analytic in general, although

they may be allowed to fail of being analytic at certain specified points

called singular points. The adjective "analytic" may therefore usually

be omitted. The equations

w = /(*) or u = u (x, y), v = v (x, y)

define a transformation of the cey-plane into the w-plane, or, briefer, of

the -plane into the w-plane; to each point of the former corresponds

one and only one point of the latter ( 63). If the Jacobian

* It may be proved that, in the case of functions of a complex variable, the

continuity of the derivative follows from its existence, but the proof will not b

given here.
Aid



be. solved in the neighborhood of that point, and hence to each point
of the second plane corresponds only one of the first:

or z $(w).

Therefore it is semi tliut if w =/(?:) is analytic in the neighborhood

ofz = Q ,
and if t/ie derivative /'(* )

does not vanish, the function may be

wived <>s K = <#>('), where < is the inverse function of /, and is like-

wise analytic, in the neighborhood of the point w = W
Q

. It may readily
be, shown that, as in the case of real functions, the derivatives/'^) and

<'(K') are reciprocals. Moreover, it may be seen that the transforma-
tion is conform i, that is, that the angle between any two curves is

unchanged by the transformation ( 63). For consider the increments

* =
[/(*o) + C^ =/'(*o) [1 + //'(*)] ** /'(*o) * 0-

As As and A?# are the chords of the curves before and after transforma-

tion, the geometrical interpretation of the equation, apart from the infin-

itesimal
,
is that the chords &z are magnified in the ratio |/'( )|

to 1

and turned through the angle of /' ( )
to obtain the chords kw ( 72) .

In the limit it follows that the tangents to the w-curves are inclined at

an angle equal to the angle of the corresponding s-curves plus the angle
of /'() The angle between two curves is therefore unchanged.

The existence of an inverse function and of the geometric interpre-

tation of the transformation as conformal both become illusory at points

for which, the derivative /'() vanishes. Points where /'() = are

called critical points of the function
( 183).

It has further been seen that the integral of a function which is ana-

lytic over any simply connected region is independent of the path and

is zero around any closed path ( 124) ;
if the region be not simply con-

nected but the function is analytic, the integral about any closed path
which may be shrunk to nothing is zero and the integrals about any
two closed paths which may be shrunk into each other are equal ( 125).

Furthermore Cauchy's result that the value

dt (3)v/

of a function, which is analytic upon and within a closed path, may be

found by integration around the path has been derived ( 126). By a

transformation the Taylor development of the function has been found

whether in the finite form with a remainder ( 126) or as an infinite

aeries ( 167). It has also been seen that any infinite power series



wmcn converges is amereiraaDie ana nence aennes an analytic luncuon

within its circle of convergence ( 166).

It has also been shown that the sum, difference, product, and quotient

of any two functions will be analytic for all points at which both func-

tions are analytic, except at the points at which the denominator, in the

case of a quotient, may vanish (Ex. 9, p. 163). The result is evidently

extensible to the case of any rational function of any number of analytic

functions.

From the possibility of development in series follows that if two

functions are analytic in the neighborhood of a point and have identical

values upon any curve drawn through that point, or even upon any set

of points which approach, that point as a limit, then the functions are

identically equal within their common circle of convergence and over all

regions which can be reached by ( 169) continuing the functions analyti-

cally. The reason is that a set of points converging to a limiting point

is all that is needed to prove that two power series are identical pro-

vided they have identical values over the set of points (Ex. 9, p. 439).
This theorem is of great importance because it shows that if a function

is denned for a dense set of real values, any one extension of the defi-

nition, which yields a function that is analytic for those values and for

complex values in their vicinity, must be equivalent to any other such

extension. It is also useful in discussing the principle ofpermanence of

form; for if the two sides of an equation are identical for a set of

values which possess a point of condensation, say, for all real rational

values in a given interval, and if each side is an analytic function, then

the equation must be true for all values which may be reached by ana-

lytic continuation.

For example, the equation sin x = cos ( IT x) is known to hold for the -values

x == \ TT. Moreover the functions sinz and cos z are analytic for all values of z

whether the definition be given as in 74 or whether the functions he considered

as defined by their power series. Hence the equation must hold for all real or

complex values of cc. In like manner from the equation &&> = &*+" which holds

for real rational exponents, the equation && = e* + w holding for all real and im-

aginary exponents may be deduced. For if y be given any rational value, the

functions of x on each side of the sign are analytic for all values of x real or com-

plex, as may be seen most easily by considering the exponential as defined by its

power series. Hence the equation holds when x has any complex value. Next
consider x as fixed at any desired complex value and let the two sides be con-

sidered as functions of y regarded as complex. It follows that the equation must
hold for any value of y. The equation is therefore true for any value of 2 and w.

179. Suppose that a function is analytic in all points of a region ex-

cept at some one point within the region, and let it be assumed that



continuous. The discontinuity may be either finite or infinite. In case

the discontinuity is finite let
| /())< G in the neighborhood of the

point 2 = a of discontinuity. Cut the point out

with a small circle and apply Cauchy's Integral to

a ring surrounding the point. The integral is appli-

cable because at all points on and within the ring

the function is analytic. If the small circle be

replaced by a smaller circle into which it may be

shrunk, the value of the integral will not be changed.

Now the integral about yt
- which is constant can be made as small

as desired by taking the circle small enough ;
for

| /() ]

< G and

\t z\ > \a |

?,-,
where r

i
is the radius of the circle yi

and hence

the integral is less than 2 irr
i G/\\'S, a\ r{\.

As the integral is con-

stant, it must therefore be and may be omitted. The remaining inte-

gral about C, however, defines a function which is analytic at z = a.

Hence if f(a) be chosen as defined by this integral instead of the

original definition, the discontinuity disappears. Finite discontinuities

may therefore be considered as due to bad judgment in defining a,

function at some point; and may therefore be disregarded.

In the case of infinite discontinuities, the function may either become

infinite for all methods of approach to the point of discontinuity, or it

may become infinite for some methods of approach and remain finite for

other methods. In the first case the function is said to have & pole at.

the point = a of discontinuity; in the second case it is said to have

Jin essential singularity. In the case of a pole consider the reciprocal

function

The function F(z) is analytic at all points near z = a and remains

finite, in fact approaches 0, as approaches a. As F(a) = 0, it is seen

that F(z) has no finite discontinuity at s = a and is analytic also at

2 = a,. Hence the Taylor expansion

is proper. If E denotes a function neither zero nor infinite at =
a,

the following transformations may be made.
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In other -words, a function which has a pole at z = a may be written

as the product of some power (z a)-"
1

by an E-function; and as the

/^-function may be expanded, the function may be expanded into a

power series which contains a certain number of negative powers of

(z o). The order m of the highest negative power is called the order

of the pole. Compare Ex. 5, p. 449.

If the function /(s) be integrated around a closed curve lying within

the circle of convergence of the series C
Q -f (?,( a) H---- ,

then

f [C + C
x (
-

a) + -]te
= 2iriC.u

Jo

; (4)

for the first m 1 terms may be integrated and vanish, the term

C^ t /( a) leads to the logarithm CLjlog ( a) which is multiple

valued and takes on the increment 2vriC'_ 1 ,
and the last term vanishes

because it is the integral of an analytic function. The total value of

the integral of f(z) about a small circuit surrounding a pole is there-

fore 2 7rLC_ l . The value of the integral about any larger circuit within

which the function is analytic except at z = a, and which may be shrunk

into the small circuit, will also be the same quantity. The coefficient

C'_ 1
of the term (z a)-

1
is called the residue of the pole; it cannot

vanish if the pole is of the first order, but may if the pole is of higher

order.

The discussion of the behavior of a function /() when becomes

infinite may be carried on by making a transformation. Let

To large values of z correspond small values of z' : if /(*) is analytic



be used. If F(z') does not remain finite but has a pole at
' =

0, then

f(z) is said to have a pole of the same order at g = oo; and if F(z')
has an essential singularity at ' =

0, then /() is said to have an essen-

tial singularity at z oo. Clearly if f(z) has a pole at z = oo, the value

of f(z) must become indefinitely great no matter how % becomes infi-

nite; but if /() has an essential singularity at z <x>, there will be

some -ways in which z may become infinite so that f(z) remains finite,

while there are other ways so that f(z) becomes infinite.

Strictly speaking there is no point of the 2-plane which corresponds
to s f = 0. Nevertheless it is convenient to speak as if there were such

a point, to call it the point at infinity, and to designate it as % ~ oo. If

then jF(') is analytic for ' = so that /() may be said to be analytic

at infinity, the expansions

F(z
t

)
= C + C/ + Cf* + + *'" + =

are valid
;
the function f(z) has been expanded about the point at infin-

ity into a descending power series in z, and the series will converge for

all points z outside a circle ||
= R. For a pole of order m at infinity

/(*) = c_jr + c_ m+l*r-
1 + + c^z + c +^ + ~f + .

^ &

Simply because it is convenient to introduce the concept of the point

at infinity for the reason that in many ways the totality of large values

for z does not differ from the totality of values in the neighborhood of

a finite point, it should not be inferred that the point at infinity has

all the properties of finite points.

EXERCISES

1. Discuss sin (x + y) = sin z cos y + cos x sin y for permanence of form.

2. If /(z) has an essential singularity at z = a, show that I//(z) has an essential

singularity at z = a. Hence infer that there is some method of approach to z = a

such that /(z) = 0.

3. By treating /(z) c and [/(z) c]-
1 show that at an essential singularity a

function may be made to approach any assigned value c by a suitable method of

approaching the singular point z = a.

4. Find the order of the poles of these functions at the origin :

(a) cotz, (/3)
esc2 z log (1 z), (7) z (sin z tan a)-

1
.
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the residue 1 or n. Show that if /(z) has a pole of the mth order at z = a, the

quotient has the residue m.

6. From Ex. 6 prove the important theorem that : If /(z) is analytic and does

not vanish upon a closed curve and has no singularities other than poles within

the curve, then

1 r f'(z\

7T~- I -?H dz = n
i + ns + ' ' ' + *

- m
i
- m

2
----- mi = N- M,Am i/o / (2)

where JV is the total number of roots of /(z) = within the curve and Jf is the

sum of the orders of the poles.

7. Apply Ex. 6 to l/P(z) to show that a polynomial P(z) of the nth order has

just n roots within a sufficiently large curve.

8. Prove that e* cannot vanish for any finite value of z.

9. Consider the residue of z/'(z)//(z) at a pole or vanishing point of f(z). In

particular prove that if /(z) is analytic and does not vanish upon a closed curve

and has no singularities but poles within the curve, then

1 r-
: Iin J

~dz =
7404 + 2a2 + ' ' '

o / \z)

where Oj, a
2 , , a* and n

lt
n2 , , H* are the positions and orders of the roots,

and bj, 6
2 , , bi and m15

m
2 , , mj of the poles of /(z).

10. Prove that
x (z), p. 469, has only one root within a rectangle 2K by 2127'.

11. State the behavior (analytic, pole, or essential singularity) at z = oo for :

(a) z* + 2 z, (|8) e*, (7) */(! + z), (5) z/(z
8 + 1).

12. Show that if /(z) = (z
-

a)*E(z) with 1< k < 0, the integral of /(z) about

an infinitesimal contour surrounding z = a is infinitesimal. What analogous theo-

rem holds for an infinite contour ?

180. Characterization of some functions. The study of the limita-

tions which are put upon a function when certain of its properties are

known is important. For example, a function which is analytic for all

values of z including also z = <x> is a constant. To show this, note that

as the function nowhere becomes infinite,
| f(z) \

< G. Consider the dif-

ference /() /(O) between the value at any point = * and at the

origin. Take a circle concentric with z = and of radius R >
| |.

Then by Cauchy's Integral

or

By taking R large enough the difference, which is constant, may be

made as small as desired and hence must be zero; hence f(z) =/(0).



nnity of order equal to the difference of those degrees. Conversely it

may be shown that any function which has no oilier singularity than a

pole of the mth order at infinity must be a polynomial of the mth order;

that if the only singularities are a finite number ofpoles, whether at in~

finity or at other points, the function is a rational function; and finally

that the knowledge of the zeros and poles with the multiplicity or order

of each is sufficient to determine the function except for a constant

multiplier.

For, in the first place, if f(z) is analytic except for a pole of the mth order at

infinity, the function may be expanded as

/(z) = a- mzm + + -iZ + + a^"1 + a
2
3
~~ 2 H----

or /() - i>-mZ
m + + OL-IZ]

= a + ajar* + a2z-
2 + .

The function on the right is analytic at infinity, and so must its equal on the left

be. The function on the left is the difference of a function which is analytic for

all finite values of z and a polynomial which is also analytic for finite values.

Hence the function on the left or its equal on the right is analytic for all values

of z including z = oo, and is a constant, namely o . Hence

f(z) = + a_j2 + +a_ 7n2"
1 is a polynomial of order m.

In the second place let z, z
2 , , 2*,, oo be poles of /(z) of the respective orders

m
15
m2 , , wifc, m. The function

(Z)
= (Z- ZJ*(Z - 32r '<*- **)**/(*)

will then have no singularity but a pole of order m
1 + wig + + m* + m

at infinity; it will therefore be a polynomial, and /(z) is rational. As the

numerator <f>(z) of the fraction cannot vanish at zv z
a , , z*, but must have

m
i + m2 + + m* + m r ts, the knowledge of these roots will determine the

numerator
<j> (z) and hence /(z) except for a constant multiplier. It should be

noted that if /() has not a pole at infinity but has a zero of order m, the above

reasoning holds on changing m to m.

When /() has a pole at z = a pf the mth order, the expansion of

/() about the pole contains certain negative powers

and the difference /() P(z a) is analytic at z=a. The terms

P (z a) are called the principal part of the function /() at the pole a*



If the function has only a finite number of finite poles and the prin-

cipal parts corresponding to each pole are known,

is a function which is everywhere analytic for finite values of and

behaves at = oo just as /() behaves there, since P
I}
Pv ,

Pk all

vanish at z = oo. If /() is analytic at z = oo, then
<f>(z)

is a constant;

if f(z) has a pole at s = oo, then <() is a polynomial in z and all of

the polynomial except the constant term is the principal part of the

pole at infinity. Hence if a function has no singularities except a, finite

number of poles, and the principal parts at these poles are known, the

function is determined except for an additive constant.

From the above considerations it appears that if a function has no

other singularities than a finite number of poles, the function is ra-

tional
;
and that, moreover, the function is determined in factored form,

except for a constant multiplier, when the positions and orders of the

finite poles and zeros are known
;
or is determined, except for an addi-

tive constant, in a development into partial fractions if the positions

and principal parts of the poles are known. All single valued functions

other than rational functions must therefore have either an infinite

number of poles or some essential singularities.

181. The exponential function e
z e

x
(cos y -f t'sin y) has no finite

singularities and its singularity at infinity is necessarily essential. The

function is periodic ( 74) with the period 2 iri, and hence will take on

all the different values which it can have, if
,
instead of being allowed

all values, is restricted to have its pure imagi-

nary part y between two limits y ^ y < 7/ +27r;
that is, to consider the values of e* it is merely

-

necessary to consider the values in a strip of

the 2-plane parallel to the axis of reals and of breadth 2 TT (but lacking

one edge). For convenience the strip may be taken immediately above

the axis of reals. The function ez becomes infinite as z moves out

toward the right, and zero as z moves out toward the left in the strip.

If c = a + bi is any number other than 0, there is one and only one

point in the strip at which e
z = c. ,For

j ... a . . b
and cos y }- ^ sin y =

have only one solution for x and only one for y if y be restricted to an
lnfoitrol O ! All rf-i4-Vo-n f\rviv*4-a -P/M T*rVirtV **K - n Votrr* 4-V* anma iralTio "FrkT*



will also have the period 2 irL When s moves off to the left in the

atrip, R(e*) will approach Can/bm if bm =jt and will become infinite if

lm
~

0. When a moves off to the right, li(e~} must become infinite if

n > m, approach C if n m, and approach if n < m. The denomi-
nator may be factored into terms of the form

(e* a)
fc

,
and if the frac-

tion is in its lowest terms each such factor will represent a pole of the
/i'th order in the strip because e* a = has just one simple root in

the strip. Conversely it may be shown that : Any function /(,-) which
has the period 2 TTI, which further has no singularities but a finite
number of poles in each strip, and which either becomes infinite or ap-

proaches a finite limit as z moves off to the right or to the left, must be,

f(z) = #
(e*),

a rational function of ex .

The proof of this theorem requires several steps. Let it first be assumed that/(z)
remains finite at the ends of the strip and has no poles. Then/(z) is finite over all

values of z, including z =
,
and must be merely constant. Next let /(z) remain

finite at the ends of the strip but let it have poles at some points in the strip. It will

be shown that a rational function R(ef) may be constructed such that/(z) R(e?)
remains finite all over the strip, including the portions at infinity, and that there-

fore /(z) = R (e*) + (7. For let the principal part of f(z) at any pole z = c be

P (z c) = -

C~*
4-

c~*+ l
i

.
C-l

then

is a rational function of ez which remains finite at both ends of the strip and is

such that the difference between it and P(z c) or /(z) has a pole of not more
than the (k l)st order at z = c. By subtracting a number of such terms from

/(z) the pole at z c may be eliminated without introducing any new pole.

Thus all the poles may be eliminated, and the result is proved.
Next consider the case where /(z) becomes infinite at one or at both ends of the

strip. If /(z) happens to approach at one end, consider /(z) + C, which cannot

approach at either end of the strip. Now if f(z) or /(z) + C, as the case may be,

had an infinite number of zeros in the strip, these zeros would be confined within

finite limits and would have a point of condensation and the function would vanish

identically. It must therefore be that the function has only a finite number of

zeros
; its reciprocal will therefore have only a finite number of poles in the strip

and will remain finite at the ends of the strips. Hence the reciprocal and conse-

quently the function itself is a rational function of e*. The theorem is completely

demonstrated.

If the relation, /(z + w
)
= /() is satisfied by a function, the func-

tion. is said to have the period w. The function /(2 iriz/ta) will then

have the period 2 iri. Hence it follows that if'/(#) has the period o>,

becomes infinite, or remains finite at the ends of a strip of vector breadth



case with sin z and cos z
;
and if the period is

TT, the function is rational in e'
V2

,
as is tan z.

It thus appears that the single valued elemen-

tary functions, namely, rational functions, and
rational functions of the exponential or trigonometric functions, have

simple general properties which are characteristic of these classes of

functions.

182. Suppose a function /() has two independent periods so that

f(z + to)
=

/(*), f(z + a/)
= /().

The function then has the same value at z and at any point of the

form z + m<o + rua', where m and n are positive or negative integers.
The function takes on all the values of which it is capable in a parallel-

ogram constructed on the vectors <a and w'. Such ,

. . z+w + w'
a function is called doubly periodic. As the values

of the function are the same on opposite sides of

the parallelogram, only two sides and the one in-

cluded vertex are supposed to belong to the figure.

It has been seen that some doubly periodic func-

tions exist
( 177); but without reference to these

special functions many important theorems concerning doubly periodic
functions may be proved, subject to a subsequent demonstration that
the functions do exist.

If a, doubly periodic function has no singularities in the parallelogram,
it must be constant; for the function will then have no singularities at

all. If two periodic functions have the same periods and have the same
poles and zeros (each to the same order) in the parallelogram, the quo-
tient of the functions is a constant; if they have the same poles and the
same principal parts at the poles, their difference is a constant. In these

theorems (and all those following) it is assumed that the functions

have no essential singularity in the parallelogram. The proof of the

theorems is left to the reader. If f(z) is doubly periodic, /'() is also

doubly periodic. The integral of a doubly periodic function taken
around any parallelogram equal and parallel to the parallelogram of

periods is zero; for the function repeats itself on opposite sides of the

figure while the differential dz changes sign. Hecce in particular

fJ
m d, =0,

rza* a



The first integral shows that the sum of the residues of the pahs in the

paraUeloynun is zero ; the second, that the number of zeros is equal to

the number <>f poles provided multiplicities are taken into account; the

third, that the number of xeros off(z) C is the same us the number of
ncros orpoles off(z), because the poles off(is) and/() C are the same.

The common number in of poles of /(.?) or of zeros of /() or of roots

of
/(,-=;)

= C in any one parallelogram is called the order of the doubly

periodic function. As the sum of the residues vanishes, it is impossible
that there should be a single pole of the first order in. the parallelogram.
Hence there can be no functions of the first order and the simplest

possible functions would be of the second order with the expansions

in the neighborhood of a single pole at = a of the second order or of

the two poles of the first order at z a
v
and K = a

2
. Let it be assumed

that when the periods to, w' are given, a doubly periodic function g (z, a)

with these periods and with a double pole at z = a exists, and similarly

that h(z, av 2)
with simple poles at

a,^
and a

2
exists.

Any doubly periodic function f(z) with the periods <a,
<a' may be ex-

pressed as a polynomial in the functions g(z, a) and h(z, av a
2) of the

second order. For in the first place if the function f(z) has a pole of

even order 2 k at z = a, then f(z) C
\_g (z, a)]

fc

,
where C is properly

chosen, will have a pole of order less than 2 k at z = a and will have

no other poles than /(). Hence the order of f(z) C\_g(z, a)~\
k

is less

than that of f(z). And if /() has a pole of odd order 2 k + 1 at =
a,

the function /(s) C[<j(z, a}~]
k
h(K, a, b),

with the proper choice of C,

will have a pole of order 2 k or less at z = a and will gain a simple

pole at z = b. Thus although / Cg
kh will generally not be of lower

order than /, it will have a complex pole of odd order split into a pole

of even order and a pole of the first order; the order of the former

may be reduced as before and pairs of the latter may be removed. By
repeated applications of the process a function may be obtained which

has no poles and must be constant. The theorem is therefore proved.

With the aid of series it is possible to write down some doubly peri-

odic functions. In particular consider the series

\ (z
- mo -LV

and W/V = _ 9.V
W) 2

j
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where the second 5 denotes summation extended over all values oi

in., n, whether positive or negative or zero, and 2' denotes summation

extended over all these values except the pair m = n = 0. As the sum-

mations extend over all possible values for in, n, the series constructed

for K -f- < and for s -f w' must have the same terms as those for
?,-,

the

only difference being a different arrangement of the terms. If, there-

fore, the series are absolutely convergent so that the order of the terms

is immaterial, the functions must have the periods >,
w f

.

Consider first the convergence of the series j)'(z). For z = mw + nw', that is,
at

the vertices of the net of parallelograms one term of the series becomes infinite

and the series cannot converge. But if z be restricted to a finite region R about

z = 0, there will be only a finite number of terms

which can become infinite. Let a parallelogram P
large enough to surround the region be drawn, and
consider only the vertices which lie outside this par-

allelogram. For convenience of computation let the

points z = TOW 4- no/ outside P be considered as ar-

ranged on successive parallelograms P
15
P

2 , ,

PA,-, . If the number of vertices on P be v, the

number on P
x

is v + 8 and on PA. is v + 8fc. The
shortest vector z mu nu' from z to any vertex of P

l
is longer than a, where

a is the least altitude of the parallelogram of periods. The total contribution of

P! to p'(z) is therefore less than (v + 8)a~
8 and the value contributed by all the

vertices on successive parallelograms will be less than

S = 4- _i_
**

'

'

I
. . .

i

~R in ~\ft '
. n \o '

' * "
"I

(2a) ^a)
'

(fco)

This series of positive terms converges. Hence the infinite series for p'(z),
when

the first terms corresponding to the vertices within P
l
are disregarded, converges

absolutely and even uniformly so that it represents an analytic function. The

whole series for p'(z) therefore represents a doubly periodic function of the third

order analytic everywhere except at the vertices of the parallelograms
where it

has a pole of the third order. As the part of the series p'(z) contributed by ver-

tices outside P is uniformly convergent, it may be integrated from to z to give

the corresponding terms in p (z) which will also be absolutely convergent because

the terms, grouped as for p'(z), will be less than the terms of IS where I is the

length of the path of integration from to z. The other terms of p'(z),
<*us far

disregarded, may be integrated at sight to obtain the corresponding terms of #(2).

Hence p'(z) is really the derivative of p (z) ;
and as p (z) converges absolutely ex-

cept for the vertices of the parallelograms, it is clearly doubly periodic
of the

second order -with the periods w, w', for the same reason that p'(z) is periodic.

It has therefore been shown that doubly periodic functions exist,



periods w, w' ana lias no otner singularities tnan poles may be expressed
as a rational function of p(z) and #'(2), or as an irrational function of

p(z~) alone, the only irrationalities being square roots. Thus by em-

ploying only the general methods of the theory of functions of a

complex variable an entirely new category of functions has been char-

acterized and its essential properties have been proved.

EXERCISES

1. Find the principal parts at z = for the functions of Ex. 4, p. 481.

2. Prove by Ex. 6, p. 482, that e* c = has only one root in the strip.

3. How does e^ behave as z becomes infinite in the strip?

4. If the values It (e
z
) approaches when z "becomes infinite in the strip are called

exceptional values, show that B(e
z
)
takes on every value other than the excep-

tional values k times in the strip, k being the greater of the two numbers n, m.

5. Show by Ex. 9, p. 482, that in any parallelogram of periods the sum of the

positions of the roots less the sum of the positions of the poles of a doubly peri-

odic function is mw + nw', where m and n are integers.

6. Show that the terms of p'(z) may be associated in such a way as to prove

thatp'( 2) = P'(z)i an(i nence infer that the expansions are

p'(z) = 2 z~ 8 + 2 CjZ + 4 c22
8 + , only odd powers,

a,nd p (z)
= z- 2 + CjZ

2 + c
2
z* + , only even powers.

7. Examine the series (6) forj/(z) to show thatp'(| w) =$'(\ to") ~1p'(\ w + 1 w') = 0.

Why can p'(z) not vanish for any other points in the parallelogram ?

8. Let p ( w) = e, p ( /) = e', p (
w + w')

= e". Prove the identity of the

doubly periodic functions |>'(z)]
2 and 4 \_p (z) e] [p (z) e'] [p (z) e"].

9. By examining the series defining p(z) show that any two points z a and

z = a' such that p (a) = p (a') are symmetrically situated in the parallelogram with

respect to the center z = % (w + w') . How could this be inferred from Ex. 6 ?

10. With the notations 0(2, a) and h(z, a
t ,

a2 )
of the text show:

jp(2)-;p(a2)

'Ch)

11. Demonstrate the final theorem of the text of 182.



[ p'(z)]
2 - 4

[ p (z)]
8 + 20 Cj p (z) + 28 c2

= A z2 -f higher powers.

Hence infer that the right-hand side must be identically zero.

13. Combine Ex. 12 with Ex. 8 to prove e + e' + e" = 0.

14. With the notations y2
= 20

Cj
and ys = 28 c

2 show

= <fe.

j7
,.

15. If f(z) be defined by f(z)=p(2)
or f (z)

= - I p(z)te, show that
dz J

f (2 + w) (z) and f( + w') f (z) must be merely constants ij and T;'.

183. Conformal representation. The transformation ( 178)

w = /(*) or M + tw = it (x, y) + it;
(as, y)

is conformal between the planes of % and ?^ at all points a at which

/'(-') =t= 0. The correspondence between the planes may be represented

by ruling the 2-plane and drawing the corresponding rulings in the

w-plane. If in particular the rulings in the -plane be the lines x= const.,

y = const., parallel to the axes, those in the w-plane must be two sets

of curves which are also orthogonal; in like manner if the 2-plane be

ruled by circles concentric with the origin and rays issuing from the

origin, the w-plane must also be ruled orthogonally ;
for in both cases

the angles between curves must be preserved. It is usually most

convenient to consider the w-plane as ruled with the lines u = const.,

v = const., and hence to have a set of rulings u
(x, y)

= c
a ,

v (x, y) = c
2

in the s-plane.' The figures represent several different cases arising from

the functions

i'

v)-plane (1) z-plane to-plane (2) z-~plane

u = v =(1) w = oz = (ax
+ a

a ) (a? + iy),

(2) w = log log Vz2 + if -i- i tan~ l -) u = log Vxs + y
2
,
v = tan-1

x

Consider w = z2
,
and apply polar coordinates so that

w =. R (cos* + *' sin
4>)
= ^(cos 2 ^ + sin 2 ^), 7? = ^, * = 2
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w-plane ;
circles about s = become circles about w = and rays is-

suing from z = become rays issuing from w at twice the angle.

(A figure to scale should be supplied by the reader.) The derivative

w 1 = 2 z vanishes at x = only. The transformation is conformal for

all points except z 0. At z = it is clear that the angle between

two curves in the -plane is doubled on passing to the corresponding-

curves in the w-plane ;
hence at K the transformation is not eon-

formal. Similar results would be obtained from w = zm except that the

angle between rays issuing from w = would be m times the angle

between the rays at a = 0.

A point in the neighborhood of which a function w = /() is ana-

lytic but has a vanishing derivative f'(z) is called a critical point of

/() ;
if the derivative /'() has a root of multiplicity 7c at any point,

that point is called a critical, point of order 7c. Let z % be a critical

point of order k. Expand /'() as

then /(*) =/(*,) +^ (*
-

o)*
+1 + ff$(*- *o)*+

2 +

or w = w + (*-*o)*
+1
^(*) or w - w =

(*
-

where E is a function that does not vanish at z . The point % goes

into w wy For a sufficiently small region about the transforma-

tion (7) is sufficiently represented as

On comparison with the case w zm
,
it appears that the angle between

two curves meeting at Z
Q
will be multiplied by A; + 1 on passing to the

corresponding curves meeting at w
tf

Hence at a critical point of the

kth order the transformation is not conformal but angles are multiplied

by k + 1 on passing from, the z-plane to the w-plane.

Consider the transformation w = 2 more in detail. To each point &

corresponds one and only one point w. To the points z in the first

quadrant correspond the points of the first two quadrants in the -

plane, and to the upper half of the z-plane corresponds the whole w-plane.

In like manner the lower half of the 2-plane will be mapped upon thft

whole w-plane. Thus in finding the points in the w-plane which cor-

respond to all the points of the 2-plane, the w-plane is covered twice.

This double counting of the ?y-plane may be obviated by a simple de-.

vice. Instead of having one sheet of paper to represent the w-plane,



upper half of the 2-plane be considered as in the upper sheet, while

those, corresponding to the lower half are considered as in the lower

sheet. Now consider the path traced upon the double w-plane when K

trac.es a path in the z-plane. Every time z crosses from the second to

i
w surface z plane

the third quadrant, w passes from the fourth quadrant of the upper
sheet into the first of the lower. When K passes from the fourth to

the first quadrants, w comes from the fourth quadrant of the lower

sheet into the first of the upper.
It is convenient to join the two sheets into a single surface so that

a continuous path on the -plane is pictured as a continuous path on
the w-surface. This may be done (as indicated at the right of the

middle figure) by regarding the lower half of the upper sheet as con-

nected to the upper half of the lower, and the lower half of the lower

as connected to the upper half of the upper. The surface therefore

cuts through itself along the positive axis of reals, as in the sketch on

the left*; the line is called the junction line of the surface. The point
10 = which corresponds to the critical point z = is called the branch

point of the surface. Now not only does one point of the si-plane go
over into a single point of the t<;-surface, but to each point of the sur-

face corresponds a single point z; although any two points of the w-

surface which are superposed have the same value of w, they correspond
to different values of except iu the case of the branch point.

184. The w-surface, which has been obtained as a mere convenience

in mapping the a-plane on the -wvplane, is of particular value in study-

ing the inverse function z VV For Vw is a multiple valued func-

tion and to each value of w correspond two values of
;
but if w be

*
Practically this may be accomplished for two sheets of paper by pasting gummed

strips to the sheets which are to be connected across the cut.



only one value of s corresponding to a point w upon the surface. Thus
the function \iv which is double valued over the w-plane becomes single

valued over the w-surface. The ?-surface is called the Riemann surface
of the function z = ~vw. The construction of Riemann surfaces is im-

portant in the study of multiple valued functions because the surface

keeps the different values apart, so that to each point of the surface

corresponds only one value of the function. Consider some surfaces.

(The student should make a paper model by following the steps as

indicated.)

Let w z8 3 z and plot the w-surface. First solve /'(z) = to find the critical

points 2 and substitute to find the branch points w. Now if the branch points be

considered as removed from the w-plane, the plane is no longer simply connected.

It must be made simply connected by drawing proper lines in the figure. This may
be accomplished by drawing a line from each branch point to infinity or by con-

necting the successive branch points to each other and connecting the last one to

the point at infinity. These lines are the junction lines. In this particular case the

critical points are z = + 1, 1 and the branch points are w 2, + 2, and the

junction lines may be taken as the straight lines joining w = 2 and w = + 2 to

i ,
ii

, in

i n ni inrn

/

rn'in'

/'

w-surface -plane

infinity and lying along the axis of reals as in the figure. Next spread the requi-

site number of sheets over the w-plane and cut them along the junction lines. As

10 = z8 3 z is a cubic in z, and to each value of to, except the branch values, there

correspond three values of z, three sheets are needed. Now find in the z-plane the

image of the junction lines. The junction lines are represented by 1> =
;
but

u = 3 x~y y8 3 y, and hence the line y = and the hyperbola 3 aj
2 y1 = 3 will

be the images desired. The 2-plane is divided into six pieces which will be seen to

correspond to the six half sheets over the w-plane.

Next z will be made to trace out the images of the junction lines and to turn

about the critical points so that w will trace out the junction lines and turn about

the branch points in such a manner that the connections between the different

sheets may be made. It will be convenient to regard z and w as persons walking

their respective paths so that the terms "right" and "left" have a meaning.



at 70 = and moves back to w = - 2. Moreover it z turns to Tine rigni, UH ^ *
,

must w turn to the right through the same angle, owing to the confonnal property.

Thus it appears that not only is OA mapped on oa, but the region 1' just above OA

is mapped on the region I' just below oa; in like manner O.K JH mapped on ob.

As 6 is not a junction line and the sheets have not been cut through along it, Urn

regions 1, 1' should be assumed to be mapped on the same slieet, Hay, the upper-

most, I, I'. As any point Q in the whole infinite region 1' may "be reached from

without crossing any image of ab, it is clear that the whole infinite region 1' should

be considered as mapped on 1'
;
and similarly 1 on I. The converse is also evident,

for the same reason.

If, on reaching A, the point z turns to the left through 90 and. moves along A V,

then 10 will make a turn to the left of 180, that is, will keep straight along o;

a turn as at R into 1' will correspond to a turn as at r into I'. This checks with

the statement that all 1' is mapped on all I'. Suppose that # described a HiualJ

circuit about + 1. When z reaches D, w reaches d
;
when z reaches E, w reaches e.

But when w crossed ac, it could not have crossed into I, and when it reaches e it

cannot be in I
;
for the points of I are already accounted for as corresponding to

points in 1. Hence in crossing ac, w must drop into one of the lower sheets, say

the middle, II
;
and on reaching e it is still in II. It is thus seen that II corre-

sponds to 2. Let 2 continue around its circuit
;
then II' and 2' correspond. When

z crosses AC' from 2' and moves into 1, the point w crosses ac' and moves from II'

up into I. In fact the upper two sheets are connected along- etc just as the two

sheets of the surface for w = & were connected along their junction.
In like manner suppose that z moves from to 1 and takes a turn about B so

that w moves from to 2 and takes a turn about b. When z crosses BF from 1' to 3,

w crosses 6/from I' into the upper half of some sheet, and this must be III for the

reason that I and II are already mapped on 1 and 2. Hence I" and III are con-

nected, and so are I and III'. This leaves II which has been cut along &/, and III

cut along ac, which may be reconnected as if they had never been cut. The reason

for this appears forcibly if all the points z which correspond to the branch points
are added to the diagram. When w = 2, the values of z are the critical value 1

(double) and the ordinary value z = 2
; similarly, w = 2 corresponds to z 2.

Hence if z describe the half circuit AE so that w gets around, to e in II, then if z

moves out to z = 2, w will move out to w = 2, passing by w = O in the sheet II as

z passes through z = A/3
;
but as z = 2 is not a critical point, 10 = 2 in II cannot

be a branch point, and the cut in II may be reconnected.

The w-surface thus constructed for w = /(z) = z* 3z is the Riemann surface

for the inverse function z=/-i(u>), of which the explicit form cannot be given
without solving a cubic. To each point of the surface corresponds one value of z,

and to the three superposed values of w correspond three different values of z ex-

cept at the branch points where two of the sheets come together and give only
one value of z while the third sheet gives one other. The Hiemann surface could

equally well have been constructed by joining the two branch points and then

connecting one of them to oo. The image of v = would not have been changed.
The connections of the sheets could be established as before, but would be dif-

ferent. If the junction line be 2, 2, + oo, the point w = 2 has two junctions
running into it, and the connections of the sheets on opposite sides of the point are
not independent. It is advisable to arrange the work so that the first branch point
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which is encircled shall have only one junction running from it. This may be done
by taking a very large circuit in z so that w will describe a large circuit and hence
cut only one junction line, namely, from 2 to oo, or by taking a small circuit about
z 1 so that w will take a small turn about w = 2. Let the latter method be
chosen. Let z start from z = at and move to z = 1 at A

;
then w starts at w =

and moves to w = 2. The correspondence between 1' and I' is thus established.

Let z turn about A
;
then w turns about w = 2 at a. As the line 2 to oo or ac

is not now a junction line, w moves from I'

into the upper half I, and the region across

AC from 1' should be labeled 1 to corre-

spond. Then 2', 2 and II', II may be filled

in. The connections of I-II' and II-I' are

indicated and Ill-Ill' is reconnected, as the w surface
'

zrilane
branch point is of the first order and only two

sheets are involved. Now let z move from 2 = 0to = 1 and take a turn about

B
;
then w moves from w = to w 2 and takes a turn about b. The region next

1'is marked 3 and 1' is connected to III. Passing from 3 to 3' for z is equivalent

to passing from III to III' for w between and b where these sheets are connected.

Prom 3' into 2 for z indicates III' to II across the junction from w = 2 to oo. This

leaves I and II' to be connected across this junction. The connections are com-

plete. They may be checked by allowing z to describe a large circuit so that the

regions 1, 1', 3, 3', 2, 2', 1 are successively traversed. That I, I', III, III', II, II', I

is the corresponding succession of sheets is clear from the connections between

w = 2 and oo and the fact that from w = 2 to oo there is no junction.

Consider the function w = 6 3 z* -f 3 z2 . The critical points are 2 = 0, 1, 1,

1, 1 and the corresponding branch points are w = 0, 1, 1, 1, 1. Draw the junc-

tion lines from w to oo and from w = 1 to + oo along the axis of reals. To
find the image of v = on the z-plane, polar coordinates may be used.

z r (cos + i sin 0), w = u + iv = r6e6<t 3 r*e*** -f 3r2 e2<K

v = = r2 [r* sin 6 3 r2 sin 40 + 3 sin 2 0]

= r2 sin 2 0[r*(3 4 sin 20) 6r2 cos0 + 3].

The equation v = therefore breaks up into the equation sin 20 = and

3cos20 V3sin20_ Vi sin(6020) v/3

3-4sin2 20 2 sin (60 + 2 0) sin (60
- 2 0) 2 sin (60 20)

Hence the axes = and = 90 and the two rectangular hyperbolas inclined at

angles of 15 are the images of v = 0. The z-plane is thus divided into six por-

tions. The function w is of the sixth order and six sheets must be spread over the

w-plane and cut along the junction lines.

To connect up the sheets it is merely necessary to get a start. The line w =
to w = 1 is not a junction line and the sheets have not been cut through along it.

But when z is small, real, and increasing, w is also small, real, and increasing.

Hence to OA corresponds oa in any sheet desired. Moreover the region above OA
will correspond to the upper half of the sheet and the region below OA to the
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z turns about the critical point z = 0, w turns about w 0, but as anglos are doubled

it must go around twice and the connections III-IV, IV-III' must be made. Fill

in more numbers about the critical point z = 1 of the second order where angles are

tripled. On the w-sur-

face there will be a

triple connection III'- I VI
II, Il'-l, I'-III. In

gj,

'

like manner the criti- \\'777 "77777
II

II. 1 '

cal point z 1 may II

be treated. The sur- TT

face is complete except

for reconnecting sheets

I,II,V,VIalongw> =
*TA

to w = oo as if they
had never been cut. w surface x plane

EXERCISES

1. Plot the corresponding lines for : (a) w = (1 + 2 i) z, (/3) w = (1 $ i) z.

2. Solve for x and y in (1) and (2) of the text and plot the corresponding lines.

3. Plot the corresponding orthogonal systems of curves in these cases:

(a) w> = -
, (/3) w = 1 + z2

, (7) w; = cos z.

4. Study the correspondence between z and w near the critical points:

(a) w = z8
, (j3) w = 1 z2

, (7) 10 = sin z.

5. Upon the iw-surface for w = z2
plot the points corresponding to z = 1, 1 + i,

2i \ 4- \ v3i,- j, 1 \/3_ i, _ i, $ \i. And in the 2-plane plot the

points corresponding to w = V2 + V2 i, i, 4, V i, 1 i, whether in

the upper or lower sheet.

6. Construct the lo-surface for these functions :

(O) W = Z8
, (0) W - 2-2, (7) W = 1 + 22, (5) M) = (2

-
I)

8
.

In
(/3)

the singular point z = should be joined by a cut to 2 = w.

7. Construct the Riemann surfaces for these functions :

(a) w = z4 - 2z2
, (j8) w = - z4 + 4z, (7) w = 2z6 - 6 2

,

1
2

! - x8

z
' +

^2
' W w ~

77(5) w =

185. Integrals and their inversion. Consider the function

i i i
]n 1<; w _ In-lg

r dw=1 -
Jl W

defined by an. integral, and let the methods of the theorv of functions



w = ox The integral is then a single valued function of w provided
the path of integration does not cross the cut. Moreover, it is analytic

except at w 0, where the derivative, which is the integrand 1/w,
ceases to be continuous. Let the w-plane as cut he mapped on the

#-plane by allowing w to trace the path labcdefghil, by computing the
value of z sufficiently to

draw the image, and by

applying the principles of

conforinal representation.

When w starts from w = 1

and traces 1 a, starts from

# = and becomes nega-

tively very large. When w
turns to the left to trace ab, zvlane
x will turn also through 90

to the left. As the integrand along ab is
id<f), % must be changing by an

amount which is pure imaginary and must reach B when w reaches b.

When w traces bo, both w and dw are negative and must be increasing

by real positive quantities, that is, z must trace EC, When w moves along

cdefy the same reasoning as for the path ab will show that % moves along
CDEFG. The remainder of the path may be completed by the reader.

It is now clear that the whole w-plane lying between the infinitesimal

and infinite circles and bounded by the two edges of the cut is mapped
on a strip of width 2 iri bounded upon the right and left by two infi-

nitely distant vertical lines. If w had made a complete turn in the posi-

tive direction about w = and returned to its starting point, would

have received the increment 2 tri. That is to say, the values of & which

correspond to the same point w reached by a direct path and by a path
which makes k turns about w will differ by 2 k-rri Hence when w
is regarded inversely as a function of

,
the function will be periodic

with the period ZTT'I. It has been seen from the correspondence of

cdefff to CDEFG that w becomes infinite when z moves off indefinitely

to the right in the strip, and from the correspondence of BAIff with

laih that w becomes when * moves off to the left. Hence w must be

a rational function of e
z

. As w neither becomes infinite nor vanishes

for any finite point of the strip, it must reduce merely to Ce** with 7c

integral. As w has no smaller period than 2 tri, it follows that k = 1.

To determine C, compare the derivative dw/d& = Cez at = with its

reciprocal ds/dw = w~ l at the corresponding point w 1; then C = 1
The inverse function In" 1^ is therefore completely determined as ef.
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In like manner consider the integral

dw

XVI 1 +

B AK

Here the points w = i must be eliminated from the w-plane and the plane ren-

dered simply connected by the proper cuts, say, as in the figure. The tracing of

the figure may be left to the reader. The

chief difficulty may be to show that the

integrals along oa and be are so nearly equal

that C lies close to the real axis
;
no com-

putation is really necessary inasmuch as the

integral along oc' would be real and hence

C' must lie on the axis. The image of the

cut w-plane is a strip of width IT. Circuits

around either + i or i add TT to z, and

hence w as a function of z has the period ir.

At the ends of the strip, w approaches the

finite values -(- i and i. The function

10 = 0(z) has a simple zero when z = and

has no other zero in the strip. At the two points z = \ TT, the function w becomes

infinite, but only one of these points should be considered as in the strip. As the

function has only one zero, the point z = \ TT must be a pole of the first order.

The function is therefore completely determined except for a constant factor which,

may be fixed by examining the derivative of the function at the origin. Thus

E F G
z plane w plane

-! I e = tan z, z = tan-%.

186. As a third example consider the integral

dw , ,- r
"Jo

(8)

Here the integrand is double valued in w and consequently there is

liable to be confusion of the two values in attempting to follow a path
in the i^-plane. Hence a two-leaved surface for the integrand will be

constructed and the path of integration will be considered to be on the

surface. Then to each point of the path there will correspond only one

value of the integrand, although to each value of w there correspond
two superimposed points in the two sheets of the surface.

As the radical Vl w8 vanishes at w = 1 and takes on only the single value

instead of two equal and opposite values, the points w = 1 are branch points on

the surface and they are the only finite branch points. Spread two sheets over the

ui-plane, mark the branch points to = 1, and draw the junction line between them
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been separate, though crossed, over 1, and the branch point would
have disappeared. It is noteworthy that if w describes a large
circuit including both branch points, the values of Vl w2 are

not interchanged ;
the circuit closes in each sheet without pass-

ing into the other. This could be expressed by saying that w = oo 'I

IK not a branch point of the function.

Now let w trace out various paths on the surface in the attempt to map the sur-

face on the z-plane by aid of the integral (8). To avoid any difficulties in the way
of double or multiple values for z which might arise if w turned about a branch

point w = 1, let the surface be marked in each sheet over the axis of reals from

oo to + 1. Let each of the four half planes be treated separately. Let w start

at w in the upper half plane of the upper sheet and let the value of Vl w2

at this point be + 1
;
the values of Vl to

2 near w = in II' will then be near

+ 1 and will be sharply distinguished from the values near 1 which are supposed
to correspond to points in I', II. As w traces oa, the integral z increases from to

a definite positive number a. The value of the integral from a to b is infinitesimal.

Inasmuch as w = 1 is a branch point where two sheets connect, it is natural to

assume that as w passes 1 and leaves it on the right, z will turn throua1

' 1 '>n! Q

straight angle. In other words the integral from 6 to c is naturally piv

a large pure imaginary affected

with a positive sign. (This fact -2 2 Q D

may easily be checked by exam-

ining the change in Vl w2

when w describes a small circle

about 10 = 1. In fact if the E-

function Vl + w be discarded

and if 1 w be written as re*1
',

then Vre^* 1

is that value of the

radical which is positive when
1 w is positive. Now when w
describes the small semicircle,

$ changes from to 180 and hence the value of the radical along 6c becomes

iVr and the integrand is a positive pure imaginary.) Hence when w traces

6c, z traces BC. At c there is a right-angle turn to the left, and as the value of

the integral over the infinite quadrant cc' is \ TT, the point z will move back through

the distance \ TT. That the point C' thus reached must lie on the pure imaginary

axis is seen by noting that the integral taken directly along oc' would be pure imagi-

nary. This shows that a = \ ir without any necessity of computing the integral

over the interval oa. The rest of the map of I may be filled in at once by symmetry.

To map the rest of the w-surface is now relatively simple. For I' let w trace

cc"d'; then z will start at C and trace CD' = TT. When w comes in along the lower

side of the cut d'e' in the upper sheet I', the value of the integrand is identical with

the value when this line de regarded as belonging to the upper half plane was de-

scribed, for the line is not a junction line of the surface. The trace of z is there-

fore D'E'. When w traces fo' it must be remembered that I' joins on to II and

hence that the values of the integrand are the negative of those along fo. This

z plane w surface



the straight angle at the branch point 1. It is further noteworthy that when w
returns to o' on I', z does not return to but takes the value TT. This is no contra-

diction
;
the one-to-one correspondence which is being established by the integral

is between points on the w-surface and points in a certain region of the z-plane, and

as there are two points on the surface to each value of MJ, there will be two points

z to each w. Thus far the sheet I has been mapped on the z-plane. To map II let

the point w start at o' and drop into the lower sheet and then trace in this sheet

the path which lies directly under the path it has traced in I. The integrand, now
takes on values which are the negatives of those it had previously, and the image
on the z-plane is readily sketched in. The figure is self-explanatory. Thus the

complete surface is mapped on a strip of width 2 TT.

To treat the different values which z may have for the same value of w, and in

particular to determine the periods of w as the inverse function of z, it is necessary

to study the value of the integral along different sorts of paths on the surface.

Paths on the surface may be divided into two classes, closed paths and those not

closed. A closed path is one which returns to the same point on the surface from

which it started
;
it is not sufficient that it return to the same value of w. Of paths

which are not closed on the surface, those which close in M>, that is, which return

to a point superimposed upon the starting point but in a different sheet, are the

most important. These paths, on the particular surface here studied, may be fur-

ther classified. A path which closes on the surface may either include neither

branch point, or may include both branch points or may wind twice around one

of the points. A path which closes in w but not on the surface may wind once

about one of the branch points. Each of these types will be discussed.

If a closed path contains neither branch point, there is no danger of confusing
the two values of the function, the projection of the path on the to-plane gives a

region over which the integrand may be considered as single valued and analytic,

and hence the value of the circuit integral is 0. If the path surrounds both branch

points, there is again no danger of confusing the values of the function, but the

projection of the path on the to-plane gives a region at two points of which, namely,
the branch points, the integrand ceases to be analytic. The inference is that the

value of the integral may not be zero and in fact will not be zero unless the in-

tegral around a circuit shrunk close up to the branch points or expanded out to

infinity is zero. The integral around cc'dc"c is here equal to 2rr; the value of the

integral around any path which incloses both branch

points once and only once is therefore 2 TT or 2 TT ac-

cording as the path lies in the upper or lower sheet
;

if

the path surrounded the points k times, the value of

the integral would be 2 for. It thus appears that w re-

garded as a function of z has a period 2 TT. If a path
closes in w but not on the surface, let the point where it

crosses the junction line be held fast (figure) while the path is shrunk down to

wbaa'b'w. The value of the integral will not change during this shrinking of the

path, for the new and old paths may together be regarded as closed and of the

first case considered. Along the paths wba and a'b'w the integrand bas opposite

signs, but so has dw
;
around the small circuit the value of the integral is infini-

tesimal. Hence the value of the integral around the path which closes in w is 21

or 2 1 if I is the value from the point a where the path crosses the junction line



shrink down around the other branch point. Thus far the possibilities for z corre-

sponding to any given w are z + 2 for and 2m7r z. Suppose finally that a path
turns twice around one of the branch points and closes on the surface. By shrink-

ing the path, a new equivalent path is formed along which the integral cancels out

term for term except for the small double circuit aroiind 1 along which the

value of the integral is infinitesimal. Hence the values z + 2kir and 2 WITT z are

the only values z can have for any given value of w if z be a particular possible
value. This makes two and only two values of z in each strip for each value of w,
and the function is of the second order.

It thus appears that w, as a function of 2, has the period 2 TT, is single valued,
becomes infinite at both ends of the strip, has no singularities within the strip, and
has two simple zeros at z = and z = IT, Hence w; is a rational function of e z with

the numerator e2 '* 1 and the denominator e2 '2
-f 1. In fact

n
e- lz i e !

'

z + e- '

The function, as in the previous cases, has been wholly determined by the general

methods of the theory of functions without even computing a.

One more function will be studied in brief. Let

dw

(a w) Vi
a>0,

C

Here the Riemann surface has a branch point at to = awl in addition, there is the

singular point 10 = a of the integrand which must be cut out of both sheets. Let

the surface be drawn with a junction line from w = 0toiw = oo and with a cut

in each sheet from w = a to w <x>. The

map on the 2-plane now becomes as indi-

cated in the figure. The different values

of z for the same value of w are readily

seen to arise when w turns about the

point w a in either sheet or when a

path closes in w but not on the surface.

These values of z are 2 + 2 fciri/Va and

2 WITH/Va _ 2. Hence w as a function of z plane w surface

z has the period 2 ida~ i
,
has a zero at

2 = and a pole at z = in/Va, and approaches the finite value w a at both ends

of the strip. It must be noted, however, that the zero and pole are both neces-

sarily double, for to any ordinary value of w correspond two values of z in the

atrip. The function is therefore again of the second order, and indeed

(e Vo__ 1)2 I
=: a - ' = a tanh3 - z Va,

Va

The success of this method of determining the function z = /(no) defined by an

integral, or the inverse w =/-1
(2)
= <(z), has been dependent first upon the ease

with which the integral may be used to map the w-plane or ic-surface upon the

z-plane, and second upon the simplicity of the map, which was such as to indi-

oaie that the inverse function was a single valued periodic function, It should be
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realized that if an attempt were made to apply the methods to "integrands which

appear equally simple, say to

z =
J

A/a2 - w'zdw, z= C (a
-

w) dw/Vw,

the method would lead only with great difficulty, if at all, to (.lie relation between
2 and w

;
for the functional relation between z and w is indeed not simple. There

is, however, one class of integrals of great importance, namely,

._ r dw

V(w - a
t)(u>

-
a,) (to

- aB)

for which this treatment is suggestive and useful.

EXERCISES

1. Discuss by the method of the theory of functions these integrals and inverses :

(a\ C Wdw
W 2dw w dw

(a)
J, 2

Jo

'2 aw

The results may be checked in each case by actual integration.

2. Discuss
j^

and
J""

dw
( 182, and Ex. 10, p. 489)



CHAPTER XIX

ELLIPTIC FUNCTIONS AND INTEGRALS

187. Legendre's integral I and its inversion. Consider

- f
'Jo

dw

V(l - w'2) (1
- < k < 1. (I)

The Riemann surface for the integrand* lias branch points at w 1

and l//c and is of two sheets. Junction lines may be drawn between

-f 1, -f l//c and 1, l//c. For very large values of w, the radical

V(l w2

) (1 kW) is approximately kw2 and hence there is no

danger of confusing the values of the function. Across the junction

lines the surface may be connected as indicated, so that in the neigh-

borhood of w = 1 and w = 1/k it looks like the surface for Vw.

Let -|- 1 be the value of the integrand at w = in the upper sheet.

Further let

dw
- w2

) (1
-

fcV) V(l - w2

) (1
-

/cV)
(1)

Let the changes of the integral be followed so as to map the surface

on the s-plane. As w moves from o to a, the integral (I) increases

by K, and moves

from to A . A.SW

continues straight

011,2 makes a right-

angle turn and in-

creases by pure

imaginary incre-

ments to the total

amount iK' when
w reaches 6. As w
continues there is

z plane w surface

another right-angle turn in z, the integrand again becomes real, and

3 moves down to C. (That z reaches C follows from the facts that the

* The reader unfamiliar with Riemann surfaces ( 184) may proceed at once to identify

(I) and (2) by Ex. 9, p. 475 and may take (1) and other necessary statements for granted.



integral irom U to ice would be pure imaginary like aw.) it w is allowed

to continue, it is clear that the map of I will be a rectangle 2 K by K'

on the 2-plane. The image of all four half planes of the surface is as

indicated. The conclusion is reasonably apparent that w as the inverse

function of z is doubly periodic with periods 4 K and 2 iK'.

The periodicity may be examined more carefully by considering different possi-

bilities for paths upon the surface. A path surrounding the pairs of branch points

1 and k~ l or 1 and A;- 1 will close on the surface, but as the integrand has oppo-
site signs on opposite sides of the junction lines, the value of the integral is 2iK'.

A path surrounding 1, + 1 will also close
;
the small circuit integrals about 1

or + 1 vanish and the integral along the whole path, in view of the opposite values

of the integrand along fa in I and II, is twice the integral from/ to a or is 4JK".

Any path which closes on the surface may be resolved into certain multiples of

these paths. In addition to paths which close on the surface, paths which close in

w may be considered. Such paths may be resolved into those already mentioned

and paths running directly between and w in the two sheets. All possible values

of 2 for any w are therefore 4mK + 2niK' z. The function 10(2) has the periods
4 A~ and 2tA'', is an odd function of z as w( z)

=
10(2), and is of the second order.

The details of the discussion of various paths is left to the reader.

Let w =f(z). The function f(z) vanishes, as may be seen by the

map, at the two points z = 0, 2 K of the rectangle of periods, and at

no other points. These zeros of w are simple, as /'() does not vanish.

The function is therefore of the second order. There are poles at

* = iK', 2 K + iK 1

,
which must be simple poles. Finally /(/Q = 1. The

position of the zeros and poles determines the function except for a con-

stant multiplier, and that will be fixed by f(K) 1
;

the function is

wholly determined. The function f(z) may now be identified with sn z

of 177 and in particular with the special case for which K and K' are

so related that the multiplier g 1.

For the quotient of the theta functions has simple zeros at 0, 2 K,
where the numerator vanishes, and simple poles at iK', 2 K -j- iK', where

the denominator vanishes
;
the quotient is 1 at = K

;
and the deriva-

tive of sn z at z = is g en dn = g 1, whereas /'(O)
= 1 is also 1.

The imposition of the condition g 1 was seen to impose a relation

between K, K', k,k',q by virtue of which only one of the five remained

independent. The definition of K and K' as definite integrals also makes
them functions K(K) and K'(K) of k. But
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dw-i

if w = (1 k'^w^Y and k2 + k = 1. Heuce it appears that K may be

computed from k' as A' from k. This is very useful in practice when
fc
2
is near 1 and k'

2 near 0. Thus let

-* = , = I *- ^ 1 /i _ VAJV
f _

2 A'' A"'=
, (0, q ')

= 1 + 2 y
' + 2 ^ 4- ,

A = - ~ log q
'

;

and compare with (37) of p. 472. Now either k or k' is greater than 0.7,

and hence either q or q
1

may be obtained to five places with only one

term in its expansion and with a relative error of only about 0.01 per
cent. Moreover either q or q' will be less than 1/20 and hence a single

term 1 + 2 q or 1 -j- 2 q' gives K or K 1

to four places.

188. As in the relation between the Riemann surface and the s-plane

the whole real axis of K corresponds periodically to the part of the real

axis of w between 1 and -f 1, the function sn x, for real x, is real.

The graph of y = sn x has roots at x 2mK
}
maxima or minima alter-

nately at (2m -f 1) K, inflections inclined at the angle 45 at the roots,

and in general looks like y sin (Trcc/2/C). Examined more closely,

sn % K = (1 -f 7c')~
z > 2~ ^ = sin TT

;
it is seen that the curve sn x has

ordinates numerically greater than sin (irx/2 A").
As

en x = Vl sn2
x, dn x Vl 7c

2 sn2

x, (5)

the curves y = en x, y = dn x, may readily be sketched in. It may be

noted that as sn (x -f- A') =f= en x, the curves for sn x and en a; cannot

be superposed as in the case of the trigonometric functions.

The segment 0, iK' of the pure imaginary axis for corresponds to

the whole upper half of the pure imaginary axis for w. Hence sn ix

with x real is pure imaginary and i sn ix is real and positive for

S x < K' and becomes infinite for x ~ K'. Hence i sn ix looks in

general like tan (irx/2 A''). By (5) it is seen that the curves for y en ix,

y dn ix look much like sec (jrx/2 K'")
and that en ice lies above dn ix.

These functions are real for pure imaginary values.

It was seen that when k and k' interchanged, A' and K' also inter-

changed. It is therefore natural to look for a relation between the ellip-

tic functions su (X k}, en (K, k), dn (#, k) formed with the modulus k



Consider sn (iz} 7c).
This function is periodic with the periods 4 A' and

2 IK '

if i be the variable, and hence with periods 4 iK and 2 A'
'

if be

the variable. With & as variable it has zeros at 0, 2iK, and poles at

A.'',
2 iK + A"'. These are precisely the positions of the zeros and poles

of the quotient H(z, q'J/H^z, q'), where the theta functions are con-

structed with q' instead of q. As this quotient and sn (i, k) are of the

second order and have the same periods,

/. T, H(z.q'} sn (Z, k')
sn (iz, 7c)

= C
)

} y
/.
=

C, ^-7^'

Hfa q
1

)
l cn 0, A-.')

The constant C^ may be determined as C
l
= i by comparing the deriva-

tives of the two sides at = 0. The other five relations may be proved
in the same way or by transformation.

The theta series converge with extreme rapidity if q is tolerably

small, but if q is somewhat larger, they converge rather poorly. The

relations just obtained allow the series with q to be replaced by series

with q' and one of these quantities is surely less than 1/20.
In fact if v = Trx/2 K and v

' =
Trx/2 K', then

f , N A/? 2 sin v - 2 g
2 sin 3 v -f 2 7

8 sin 5 v
sn IT A1

1 = - -
^' '>

V^l-2(?cos2v-f-2^cos4v-2 ?
9
cos6v-|

_ 1 sinhv'- g
'2 sinh3v' + ?'

6 sinh5v'

V^ cosn v
' + <?'

2
cosh 3 v' + 2

1
'6 cosh 5 v' +

The second series has the disadvantage that the hyperbolic functions

increase rapidly, and hence if the convergence is to be as good as for

the first series, the value of q' must be considerably less than that of

q, that is, K' must be considerably less than K. This can readily be

arranged for work to four or five places. For

6 /
Snx Swx

\

q'
= e K

', cosh 5 v' = | (e**' + e
2K

') ,
=i x = K',

where owing to the periodicity of the functions it is never necessary

to take x > A"'. The term in q
m

is therefore less than ^ ?'
8
i If the term
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of k corresponding to this critical value of q is about k = 0.85.

Another form of the integral under consideration is

* d9 rv dw

sin < = y = sn x, <j>
= am x, cos < = Vl sn2 x cna;.

A< = Vl - k2f = Vl - k2
sin2 < = dn

a;, 7c'
2 = 1 - 7c

2
,

x = sn- 1

^, 7c)
= cn-^Vl-?/, ft)

= dn-^Vl _ /cy, /c
).

The angle < is called the amplitude of a;
;
the functions sn x, en a;,

dn x are the sine-amplitude, cosine-amplitiide, delta-amplitude of x. The

half periods are then

= r
J

and are known as the complete elliptic integrals of the first kind.

189. The elliptic functions and integrals often arise in. problems

that call for a numerical answer. Here k2
is given and the complete

integral K or the value of the elliptic functions or of the elliptic inte-

gral F(<j>, 7c)
are desired for some assigned argument. The values of

K and F
(<f>, 7c)

in terms of sin-17c are found in tables (B. 0. Peirce,

pp. 117-119), and may be obtained therefrom. The tables may be

used by inversion to find the values of the function sn x, en cc, dn x

when x is given ;
for sn x = sn F(<f>, Jc)

= sin <, and if x = F is given,

< may be found in the table, and then sn x = sin <. It is, however,

easy to compute the desired values directly, owing to the extreme

rapidity of the convergence of the series. Thus

^U(O),

(9)

V-21ogg' (1+2 g + ..A



The elliptic functions are computed from (6) or analogous ser:

To compute the value of the elliptic integral F (<, 7c), note that if

_ dn x _ 1 + 2 y cos 2 v -f- 2 (jf
cos 4 v -}-

.

CO U A / ^ * jf-k rt.fhA j J (

1 2 y cos 2 v -f- 2 y
4
cos 4 v H

v

__ cot X 1 _ cos 2 v + fj

8 cos 6 v -j
----

and tan (-] TT X) = 2 y cos 2 v or tan (1 TT X) = --~
T
-~

V4 ' V4 y 1 + 2y/cos4v
v

are two approximate equations from which cos 2 v may be obtaini

the first neglects y* and is generally sufficient, but the second negle

only y
8

. If /c
2

is near 1, the proper approximations are

1 dn
(as, 7c) _ dn (fe, 7c') _ 1 + 2f/cosh2v' -j

----
,.~

en (x, k)

~
V^

~
1- 2

tan (1 TT X) = 2 </' cosh 2 v' or tan (1 TT X) = --^ r:
-

r~r~,v x \4 / 1 -f- 2'4 cosh4v-f-

Here y'
8 cosh 8 v' < y'

4
is neglected in the second, but q'* cosh 4 v' <

in the first, which is not always sufficient for four-place work. Of CPU

if < with sn x sin
<f>

or if y = sn x is given, dn x = Vl 7c
2 sn2

a; a

en x = Vl sn2 x are readily computed.

/.</>

As an example take
J

,
.

== and find Jf, sn f -K", F($ TT, j). As i'
2

:

and Vfc' > 0.9, the first term of (37), p. 472, gives q accurately to five pla<

Compute in the form : (Lg = Iog10)

Lg A:'
2 = 9.87506 Lg (l

- VF) = 8.84136 Lg 2 IT = 0.7982

Lg VAF = 9.96876 Lg (l + VP) = 0.28569 2 Lg (l + VP) = 0.5714

VP = 9. 93060 Lg 2 9 = 8. 55567 Lg# = 0.2268

1-V*? = 0.06940 27 = 0.03595 Z = 1.688

1 + Vr = 1.93060 q = 0.01797 Check with table.

3 -y^ 1 2 COS | 7T +

2 V6\/g I Lg 6 = 0.88908 Lg sn | JT = 9.9450

3
~

1.01797 JLg q = 9.56366 sn 1 5" = 0.8810.

-Lg 1.018 = 9.99226



- Lg V*' = 0.03124 2 v - 42 12' Check with table.

Lg cot X = 0.02314 180 x = K (42.20)

As a second example consider a pendulum of length a oscillating through an

arc of 300. Find the period, the time when the pendulum is horizontal, and its

position after dropping for a third of the time required for the whole descent.

Let x2 + j/
2 = 2 ay be the equation of the path and h = a (l + V) the greatest

height. When y = k, the energy is wholly potential and equals mgh; and mgy is

the general value of the potential energy. The kinetic energy is

ma2-
2\dt} 2ay-y*\dt

y ,

)
and

is the equation of motion by the principle of energy. Hence

f>V

t=fJo 2a

y = -,*),V0/a = sn~ 1
(to, fc), w = sn (Vp/at, k),

are the integrated results. The quarter period, from highest to lowest point, is

K Va/0 ;
the horizontal position is y = a, at which t is desired; and the position

for Vgr/at = f If is the third thing required.

A;
2 = 0.93301, 2 q' =

1- Vfc

1+ Vfc'

K = log q' =

Lg Vfe = 9.99247

Vfc = 0.98280

1- Vk = 0.01720

1+ Vfc = 1.98280

Lg (l
-

Vfc) = 8.23553

-Lg(l+ Vfc) = 9. 70272

-Lg 2 = 9.69897

Lg q'
= 7.63722

o' = 0.00434

Lg 2 = 0.3010

?'-i = 0.3734

LgAf = 0.3622

-2Lg(l+ Vfc) = 9.4034

Lg K = 0.4420.

Hence JK" = 2.768 and the complete periodic time is 4 IT Va/g.

= a,

a
w* = -

>

I dnio

V* enw
= A:;*

a = cotX, tan

Lg 4 = 0.60206

-Lg 3 = 9. 52288

Lg cot* X = 0.09482

'

cosh 2

X = 43 26' 12"

Lg tan = 8.43603

Lg 2 q' = 9.93825

2 / = TTlC lff

JT' \ a JT*

Lg cot X = 0.02370 Lg cosh 2 / = 0. 49778

2 / = 1.813

Lg 2 v' = 0.2584

- Lg2
<?'-! = 9.6266

LgJlf =9.6378

? -4 = 9.5228.



Hence the time for y = a is t = 0.8833 K Vo/p = \ whole time of ascent.

.
2 if/

2 la h/mn}\vK/8K'-q^K(n\ivK/K\ 9

y = h sn-2 \ - -A /- = -.
(
-----'. \

Y a 3 \g k \cosli 7rA73 A" + 2 cosli irKK'\cosli 7rA73 A" +

, 2 ak

+ ?' + 97

' = 9.21241 <?'i = 0.1631
, /5.9645\

2

y = 2 ate I- 1 .

-
} Lg q' = 0.78759 q~1 = 6.1319 \6.2993/

This gives y = 1.732 a, which is very near the top at h = 1.866 a. In fact starting
at 30 from the vertical the pendulum reaches 43 in a third and 90 in another

third of the total time of descent. As sn
\ K is (1 + fc')~i it is easy to calculate

the position of the pendulum at half the total time of descent.

EXERCISES

1. Discuss these integrals by the method of mapping :

r ^ tiw? h

(a) z - I =========== , a > b > 0, w = b sn az, k = -
,

/o 2 - 2 * 2 a

2. Establish these Maclaurin developments with the aid of 177:

(or) sn = z _(1 + A:2)~ + (1
ol

(7) dn z = 1 - ft + F(4 + fc2)
- Jfc216 + 44 i2 + k*

3. Prove f*-*==l /*
Jo -22 ^o

4. Carry out the computations in these cases :

() /**.
d<? = to find JT, S

Jo 2 3

to find JT,, ,
o Vl - 0.9 sin2 6 3

'

5. A pendulum oscillates through an angle of (a) 180, (/3) 90, (7) 840. Find



horizontal through the ends of the rope, and the y-axis vertical through one end.

Remember that "centrifugal force" varies as the distance from the axis of rotation.

The first and second integrations give

, - ~y /,-,> 4-
dx =

,
, y = V62 - a2 su

'

10. Express J
* a > 1, in terms of elliptic functions.

v -v/r< nrvE

11. A ladder stands on a smooth floor and rests at an angle of 30 against a

smooth wall. Discuss the descent of the ladder after its release from this position.

Find the time which elapses before the ladder leaves the wall.

12. A rod is placed in a smooth hemispherical howl and reaches from the bot-

tom of the bowl to the edge. Find the time of oscillation when the rod is released.

190. Legendre's Integrals II and III. The treatment of

r Vl - 7cV
,

r (1
-

fcW) dw
I dw = -. A -r---. ...

^ ^^^r:: (11}
/ /"I 2 / -\//"1 2\ /""I 7 2 2\

by the method of confonnal mapping to determine the function and its

inverse does not give satisfactory results, for the map of the Riemaun

surface on the s-plane is not a simple region. But the integral may be

treated by a change of variable and be reduced to the integral of an

elliptic function. For with w = sn u, u sn."
1
w,

r w
(i-kwidw r v

,, 72 a
. ,

I - ^ .
*

. =| (1 7c
2 sn2

M) du
Jo V(l-w2

)(l-7cV) Jo (12)
r u

= u 7c
2

I sn2 udu,
Jo

The problem thus becomes that of integrating sn2
u. To effect the in-

tegration, sn2 u will be expressed as a derivative.

The function sn2
is doubly periodic with periods 2 K, 2iK', and

with a pole of the second order at u = iK'. But now

(w + 2 Jf
)
=

(?)> (u

7 Tf

log (u + 2 A")
= log (u}, log ( + 2 iK 1

}
= log (u) --J

u ~ loS (- ?)



Jb U JN IJTIUJN

It then appears fcbat the second derivative of log (w) also has fch

periods 2 A", 2 IK '. Introduce the zeta function

v ' du b v '

(w)
v '

f/?/, (%)
v

The expansion of
'(?*)

shows that '(M)
= at u = m/sT. About u = i

the expansions of Z'(M) and sn2 M are

Hence k* sn2u-- Z'(w) + Z'(0), Z'(0)
=

"(0)/0(0),

and 7c
2

J
sn2 u du = Z (u) + wZ'(O),

Jo

f (l-&
2 sn2 M)dw = M(l-Z'(0)) + Z(w). (14

Jo

The derivation of the expansions of Z'(w) and sn2 u about w = iK' are easy.

8(u)= CTT(l-f/2n+1 e ^"), log0(u) =V
((7T

V

1 qe
* "

j + function analytitc near u =

___

e(u) / _'T,A / r u

K\ex -
q)

IT

(u)
= e^

" = /(ilCO + (u
-

iK')f'(iK') + . . . = 7 + (u
- UTO?

.+
0(u) u-i^T' duQ(u) (u-iK')*

sn(u + iK') = l , Sn2
(u + iJT') = i -i-

.

A;snu
v 7 Fsn2 M

/(M) = snu = u/'(0) + ^M
8
/'"(0) + = u + cw8 + ,

In a similar manner may be treated the integral

f_,*? f"
^

.

(Ill
Jo (t

2 -
a) V(1

- w2

) (1
- ft

2 2

) J sn2 w - a

Let a be so chosen that sn2 a = a. The integral becomes
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The integrand is a function with periods 2K, 2iK' and with simple
poles at u = a. To find the residues at these poles note

v u -F & ,. 1 +1lim
2

r- = Inn = i-i
= a sn?t sn a ===* 2 sn wen wdnw 2snacua.dna

The coefficient of (w q= a)-
1 in expanding about a is therefore 1.

Such a function may be written down. In fact

2 sn q, en q. dn a _ H'(u a) H'(u + a)
sn2 w - sn s a

~
//(tt

-
a)

~
7/(w + a)

+ C

= Z^w a) Z
t(w + .) -f C.

if Zj = ^'///. The verification is as above. To determine C let u = 0.

rm, 2 en dn a, .,.., 1 7/f?AThen C = 1- 2 Z.(a). but sn ii =
sn a,

1V /J

j ^i en w dn ?* . .

and log sn u - = Z.(w) Z (w).du * snw 1V x ^ '

Hence C* reduces to 2 Z
(a.)

and the integral is

The integrals here treated by the substitution w = sn u and thus reduced to the

integrals of elliptic^functions are but special cases of the integration of any rational

function Jf?(w, V W) of w and the radical of the biquadratic W = (1 w>2)(l Jfc
2w 2

).

The use of the substitution is analogous to the use of w = sin w in converting an

integral of R(W, Vl yP) into an integral of trigonometric functions. Any ra-

tional function U(iw, V^) may be written, by rationalization, as

R(w) + R(w)VW

Vw
where JB means not always the same function. The integral of R(w^VW} is

thus reduced to the integral of #
t (io)

which is a rational fraction, plus the inte-

gral of wB^w^/^/W which by the substitution w?a = u reduces to an integral of

R (w, V(l u)(l /c
2
u) and may be considered as belonging to elementary calculus,

plus finally

rRi(wz
) r

I
* dw = I J28(sn

2
w) du. w = sn u.

j J

By the method of partial fractions Bg may be resolved and//*sn2 du nSO, I

J (sn
2 w

n>0
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the first type n may be lowered if positive and raised if negative until the integral

is expressed in terms of the integrals of sn2 x and sn x = 1, of which the first is

integrated above. The second type for any value of n may be obtained from the

integral for n -
1 given above by differentiating with respect to a under_the sign

of integration. Hence the whole problem of the integration of R(W, Vw) may
be regarded as solved.

191. With the substitution w = sin <, the integral II becomes

vrr/* - r w

= I Vl - /c
2 sin 2 6dO = I

Jo Jo
dw

w

>, k}.

In particular E(\ir, /c)
is called the complete integral of the second kind

and is generally denoted by E. When
<f>
=

\ TT, the integral u = F($, k}

becomes the complete integral K. Then

E = K (1
-

Z'(0))-+ Z(/Q = K(l - Z'(0)), (18)

and E (<, k)
=

EF(<f>, k)/K + Z (u). (19)

The problem of computing E(<j>, A) thus reduces to that of computing

J{, JB, F(<j>, 7c)
= u, and Z(M). The methods of obtaining K and F(<j>, /)

have been given. The series for Z(w) converges rapidly. The value

of E may be found by computing A'(l Z'(0)).

For the convenience of logarithmic computation note that

K-E "Q TT 2ir

or K - E =
4.

IT -

(2w//f)?(1- 4 <f + ) (
20

)

Also z^^g^^^g;
sin2v-2 g sin4v + ...

v ;
(t*)

^C l-2ycos2v + 2^
4 cos4v ---- v '

where v = 7nt/2 A". These series neglect only terms in q
B

,
which will

barely affect the fifth place when 7c g sin 82 or k2 ^ 0.98. The series

as written therefore cover most of the cases arising in practice. For in-

stance in the problem which gives the name to the elliptic functions

and integrals, the problem of finding the arc of the ellipse x = a sin <,

y = b cos
<f>,

ds = Va2 cos2 + i
2 sin2

<}>d<f>
= a Vl - e

2 sin2



the series in q and take an additional term or two. As k = 0.9, k"2 = 0.19.

Lg
fc^

= 9.27875 Lg (l
- VP) = 9.53120 5 diff . = 6.55515

Lg vV = 9.81969 Lg (l + VP) = 0.22017 Lg 16 = 1.20412

Vk' = 0.66022 diff. = 9.31103 Lg term 2= 5.35103

1 -VP = 0.33978 Lg 2 = 0.30103 term 1 = 0.10233

1 + VP = 1 .66022 Lg term 1 = 9.01000 term 2 = .00002

q = 0.10236.

Lg? = 9.0101 Lg2?r = 0.7982 Lg^7r/VP = 0.3764.

3 Lg q = 7.0303 - 2 Lg (l + VP) = 9.5597 f Iog2 ir/K = 0.6603

4 Lg q = 6.0404 Lg (1 + 2 g
4
)
= 0.0001 Lgg = 9.0101

9
8 = 0.0011 LglT = 0.3580 Lg(l-4?8

)
= 9.9981

5* = 0.0001 K = 2.280 Lg (K -E) = 0.0449.

Hence KE = 1.109 and E = 1.171. The quadrant is 1.1 71 a. The point cor-

responding to x = | a is given by < = 30. Then dn F = Vl 0.2025.

LgdnJF= 9.9509 JTT X = 8 31' cos 2 c = 0.7323

Lg VP = 9.8197 Lg tan = 9.1758 Hence 4 v near 90

Lg cot X = 0.1312 Lg2q = 9.3111 1+ 2 5* cos 4 = 1.0000

X = 36 28-J-' Lg cos 2 v = 9.8647 2 v = 42 55'.

Now 180 F = K (42.92). The computation for F, Z, E(ITT) is then

LgK = 0,3580 Lg 2 ir/K = 0.4402 Lg jyjr = 9. 7106

Lg 42.92 = 1.6326 Lg? = 9.0101 LgF= 9.7353

- Lg 180 = 7.7447 Lg sin 2 * = 9.8331 EF/E = 0.2792

LgF = 9.7353 - Lg (1
- 2 q cos 2 v)

= 0.0705 Z = 0.2256*

F = 0.5436 Lg Z = 9.3539 E (J v) = 0.5048.

The value of Z marked * is corrected for the term 2?8 sin 4*. The part of-the

quadrant over the first half of the axis is therefore 0.5048 a and 0.666 a over the

second half. To insure complete four-figure accuracy in the result, five places

should have been carried in the work, but the values here found check with the

table except for one or two units in the last place.

EXERCISES

1. Prove the following relations for Z(u) and Zj(w).

Z(-w) = -Z(w),

If Zu =

= - Zl( ) + UZ'(0),

. . _ . . d . cnudnu .-.

^u) Z(w) = logsnu =- , Z
1(0)

=
{tu sn w



2. An elliptic function with periods 2 K, 2 iK' and simple poles at au a
a , ,

with residues c
t ,

c
z , , c,,, 2c = 0, may be written

f(u) = CjZ^it
-

a,) + c
2Z,(u

- a2 ) + + cBZ,(u
- an) + const.

fe
2
Sna Cnadna Sn 2 U

;=
l 1

M
l-fc2 sn 2 asn2 u 2

V '
2

v ' w '

T " s 2 M dn 1 . 9 (a w) _, . .

A;
2 sn a en a dn a I - = -

log + wZ' a).
Jo 1 k2 sn2 a sn2 u 2 9 (a + w)

v
/ \du , . ... /- r r- \ /r en V\M dn VXu

. (a)
/ _ = \7/(0) - VXZ (V\M) VX + C
J sn2 Vxu sn vXu

. /- \ /- en Vxw dn VXu
.
~

= sin- 1 sn VXM) VX 1- G,
sn vXw

, snucnu
^dn2 u ^ dnu dnw

sn2 udn2 u snwdnu

5. Find the length of the quadrant and of the portion of it cut off by the latus

rectum in ellipses of eccentricity e = 0.1, 0.5, 0.75, 0.95.

6. If e is the eccentricity of the hyperbola x2/a2 y2
/b

z =
1, show that

bz r* secz cfd<t> , ae . 1
s = I

-
, where y = tan

<f>,
k = -

,

aeJo Vl fc
2 sin2 rf>

b

-
.

F(<p, k) aeE (0, k) + ae tan <j>
Vl fc

2 sin2 0.
ae

7. Find the arc of the hyperbola cut off by the latus rectum if e = 1.2, 2, 3.

8. Show that the length of the jumping rope (Ex. 9, p. 511) is

9. A flexible trough is filled with water. Find the expression of the shape of

a cross section of the trough in terms of F(</>, k) and -"(#, k).

10. If an ellipsoid has the axes a > b > c, find the area of one octant.

.

4 4sintf>_a
2 a2

11. Compute the area of the ellipsoid with axes 3, 2, 1.

12. A hole of radius b is bored through a cylinder of radius o > b centrally and

perpendicularly to the axis. Find the volume cut out.

13. Find the area of a right elliptic cone, and compute the area if the altitude
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192. Weierstrass's integral and its inversion. In studying the

general theory of doubly periodic functions ( 182), the two special
functions p(it), p'(it) were constructed and discussed. It was seen that

dw

-.-,' "-*w> "PW-
(22)

dw

where the fixed limit oo has been added to the integral to make w == oo

and K = correspond and where the roots have been called cv e
z ,

e .

Conversely this integral could be studied in detail by the method of

mapping ;
but the method to be followed is to make only cursory use

of the conformal map sufficient to give a hint as to how the function

p (z) may be expressed in terms of the functions sn K and en z. The
discussion will be restricted to the

case which arises in practice, namely,
when <?2

and gB
are real quantities.

There are two cases to consider, one

when all three roots are real, the other when one is real and the other

two are conjugate imaginary. The root ^ will be taken as the largest

real root, and e
2
as the smallest root if all three are real. Note that the

sum of the three is zero.

In the case of three real roots the Kiemann surface may be drawn

with junction lines e
z ,

<?
8 ,
and ev oo. The details of the map may readily

be filled in, but the observation is sufficient that there are only two

essentially different paths closed on the surface, namely, about e
2 ,

#
a

(which by deformation is equivalent to one about e
1} oo) and about e

8 ,
e
l

(which is equivalent to one about ev oo). The integral about e
2 ,

e
s
is

real and will be denoted by 2 a>v that about <?
8 ,

e
l
is pure imaginary and

will be denoted by 2 w
2

. If the function p (z) be constructed as in 182

with u> = 2
u>j,

w' = 2 u>
2
the function will have as always a double pole

at * = 0. As the periods are real and pure imaginary, it is natural to

try to express p (z) in terms of sn z. As p (z) depends on two constants

<7a , <78 ,
whereas sn z depends on only the one k, the function p (z) will

be expressed in terms of sn (VX, k), where the two constants X, k are

to be determined so as to fulfill the identity p
12 = p

s

y^p g^ In



A. = e
l

e
2 > o, wjVx = K, w

2
VA = t'/c'.

In the case of one real and two conjugate imaginary roots, the

Riemann surface may be drawn in a similar manner. There are again

two independent closed paths, one about e
2 ,

e
a
and another about e

a ,
ev

Let the integrals about these paths be respectively 2 Wj and 2 o>
2

. That

2 Wj is real may be seen by deforming the path until it consists of a

very distant portion along which the integral is infinitesimal and a path
in and out along e^oo, which gives a real value to the integral. As
2 w

2
is not known to be pure imaginary and may indeed be shown to be

complex, it is natural to try to express p (z) in terms of en of which

one period is real and the other complex. Try

cn k)

This form surely gives a double pole at = with the expansion
The determination is relegated to the small text. The result is

( \ 4-
1 -f ca (2 V/*3, k) g _ 1 _ 3j?j

1 en (2 Vfi, A;)
2 4 /*

'

A ^*"~ *"""

2 / \ / \ / ^^ TT"

To verify these determinations, substitute in p'
2 = 4pa

g2p

l/
a
.

(23')

P'(z)
=

, k) dn

sn6 sn2

Equate coefficients of corresponding powers of sn2 . Hence the equations

4.4.3 - g,A - j/8
= 0, 4X2

fc
a = 12 A2 -

g,X,
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The first shows that 4 is a root e. Let 4 = e
2

. Note - gz
= e^ + e^ + e e

8 .

X Xfc
2 = 8 e

2
2 + 6^2 + gjgg + e2e3

=
(e1

e2)(eg
- e

2),

X + Xfc
2 = 3 e

2
=

e! e2 + e
s e,2 ,

by virtue of the relation e
t + e

2 + es
= 0. The solution is immediate as given.

To verify the second determination, the substitution is similar.

1 + en 2 VMZ ,
4 /J sn dn

p (z)
= A + M

1 en 2 Vfj.z

]
= 16 M<<

^ v/
(l-cn)

= 4M8
[
8 + 2(l-2A;

2
)i

2 + <]

where t = (1 + cn)/(l en). The identity p'
2 = ip8

gzp gs is therefore

4/*
8

[i
8 + 2 (1

- 2 *) ;
2 + t}

= 4(^8 + 34V + 3 4^ + /x^
3
) -y2

4 -^
4AB-gzA-gs

= 0, 4^ = l2A2 -g2 , 2/t(l- 2ft2
)
= 34.

Here let 4 = e
t

. The solution then appears at once from the forms

V* = 3 ef + e,e2 + e^ + ezez
=

(e,
-

e^e,
-

e,), M (1

The expression of the function p in terms of the functions already

studied permits the determination of the value of the function, and by
inversion permits the solution of the equation p (z)

= c. The function

p(z) may readily be expressed directly in terms of the theta series.

In fact the periodic properties of the function and the corresponding

properties of the quotients of theta series allow such a representation

*J

2e
1
+2a)

!1
2 cos 2oai+260g

P'<0

-oo<jp^O o<p'x

to be made from the work of 175, provided the series be allowed com-

plex values for q. But for practical purposes it is desirable to have the

expression in terms of real quantities only, and this is the reason for a

different expression in the two different cases here treated.*

The values of z for which p (z)
is real may be read off from (23) and

(23 ')
or from the correspondence between the w-surface and the 2-plane.

They are indicated on the figures. The functions p and p' may be used

to express parametrically the curve
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The figures indicate in the two cases the shape of the curves and the

range of values of the parameter. As the function p is of the second

order, tho equation jf;(.*)
= e has just two roots in the parallelogram,

and as p (2) is an even function, they will be of the form = a and

&='2<o
l
+ 2 <i>

2
a and be symmetri-

cally situated with respect to the cen-

ter of the figure except in case a lies

on the sides of the parallelogram so

that 2
w, -H 2 w

a
- a would lie on one

of the excluded sides. The value of

the odd function p' at these two points

is equal and opposite. This corresponds precisely to the fact that to

one value x = a of x there are two equal and opposite values of y on

the curve y
2 = 4 x8

gp y3
. Conversely to each point of the parallelo-

gram corresponds one point of the curve and to points symmetrically
situated with respect to the center correspond points of the curve sym-

metrically situated with respect to the re-axis. Unless z is such as to

make both ^(2) and _?/() real, the point on the curve will be imaginary.

193. The curve j/
2 = 4x8

gzx gs may be studied by means of the properties
of doubly periodic functions. For instance

Ax + By + C = Ap'(z) + Bp(z) + C =

is the condition that the parameter z should be such that its representative point
shall He on the line Ax + By + C = 0. But the function Ap'(z) + Bp (z) -f C is

doubly periodic with a pole of the third order
;
the function is therefore of the

third order and there are just three points z
1?

2
2 , 28 in the parallelogram for which

the function vanishes. These values of 2 correspond to the three intersections of

the line with the cubic curve. Now the roots of the doubly periodic function sat-

isfy the relation

2
t + z2 + z-

8 3 x = 2m
1
w
1 + 2m

2
w
2

.

It may be observed that neither m
l
nor m

z
can be as great as 8. If conversely 2

lt
za ,

zg

are three values of z which satisfy the relation z
v + z2 + z8 = 2?n

1
w

1 + 2m2w2 ,
the

three corresponding points of the cubic will lie on a line. For if 2g be the point in

which a line through zv zz cuts the curve,

z
l + 2

2 + 4 = 2 m[u l + 2 mjWg, zs 28 = 2 (m^ 7%) Wj + 2
(?n2 m^) w2 ,

and hence 23 ,
z's are identical except for the addition of periods and must therefore

be the same point on the parallelogram.
One application of this condition is to find the tangents to the curve from any

point of the curve. Let 2 be the point from which and z' that to which the tangent
is drawn. The condition then is z + 2 2' = 2m

1
w
1 + 2m2w2 ,

and hence



merely reproduce one of the four points except for the addition of complete periods.
Hence there are four tangents to the curve from any point of the curve. The

question of the reality of these tangents may readily be treated. Suppose z denotes

a veal point of the curve. If the point lies on the infinite portion, < z < 2 wp and
the first two points z' will also satisfy the conditions < z' < 2 wj except for the

possible addition of 2 Wj . Hence there are always two real tangents to the curve

from any point of the infinite branch. In case the roots ev e2 ,
e
s
are all real, the

last two points z' will correspond to real points of the oval portion and all four

tangents are real
;
in the case of two imaginary roots these values of z' give imag-

inary points of the curve and there are only two real tangents. If the three roots

are real and z corresponds to a point of the oval, z is of the form w
2 + u and all

four values of z' are complex,

and none of the tangents can be real. The discussion is complete.

As an inflection point is a point at which a line may cut a curve in three coin-

cident points, the condition 3z = Zm
l
<>}

l + 2m2
w
2 holds for the parameter z of such

points. The possible different combinations for z are nine :

Of these nine inflections only the three in the first column are real. When any
two inflections are given a third can be found so that z^ + z2 + z8 is a complete

period, and hence the inflections lie three by three on twelve lines.

If p and p' be substituted in Axz + Bxy + Cyz + Dx + Ey + F, the resuU is a

doubly periodic function of order 6 with a pole of the 6th order at the origin.

The function then has 6 zeros in the parallelogram connected by the relation

Z
; + Z2 + Z

3 + 24 + 2
5 + Z6 = 2 Jn

l
w

l + 2%w2i

and this is the condition which connects the parameters of the 6 points in which

the cubic is cut by the conic Ax2 + Bxy + Cyz + Dx + Ey 4- F = 0. One applica-

tion of interest is to the discussion of the conies which may be tangent to the cubic at

three points Zj, ?2 , zs . The condition then reduces to z
t
+ 2

2 -f z
3
= m

i
u

l
+ m2w2

.

If
Jttj,

?n2 are or any even numbers, this condition expresses the fact that the

three points lie on a line and is therefore of little interest. The other possibilities,

apart from the addition of complete periods, are

In any of the three cases two points may be chosen at random on the cubic and

the third point is then fixed. Hence there are three conies which are tangent to

the cubic at any two assigned points and at some other point. Another application

of interest is to the conies which have contact of the 6tb order with the cubic.

The condition is then 6z = 2m
lu^ + 2m2

w2
. As m

l:
wi

2 may have any of the 6

values from to 5, there are 36 points on the cubic at which a conic may have

contact of the 5th order. Among these points, however, are the nine inflections

obtained by giving mv m2
even values, and these are of little interest because the

conic reduces to the inflectional tangent taken twice. There remain 27 points at



Show by Ex. 4, p. 516, that the value of f in the two cases is

r- en Vxz dn Vxz

sn VXz

f (z)
= -

(M + e
t) + 2 JFfo, *) + VM- " MZ

(2dn V^z - l),
sn V/*zdn V/z

where X = e
v

- e
2 ,

fc
2 =

(c,
-

62)7(6!
- e

2), tf>
= sin-i sn Vxz,

and /t
= V(Cl

~
CjXej

- e
8),

fc
2 =

}
- 3 e

a/4 M, tf>
= sin-i sn V^z.

2. In case the three roots are real show that p (z) e,- is a square.

cnVxz /
- Vx /~T\

-
/T-dnVXz

-, -g -p-,
-

8

sn Vxz sn VXz sn VX

What happens in case there is only one real root ?

3. Letp (z ; fif2 , gs)
denote the function p corresponding to the radical

Computep(i; 1, 0), p(J; 0, 1), p(|; 13, 6). Solve p(z; 1, 0) = 2, p

j9(z; 13, 6)
= 10.

4. If 6 of the 9 points in which a cubic cuts y2 = 4x8
gr2a; 8

are on a conic,

the other three are in a straight line.

5. If a conic has contact of the second order with the cubic at two points, the

points of contact lie on a line through one of the inflections.

6. How many of the points at which a conic may have contact of the 5th order

with the cubic are real ? Locate the points at least roughly.

7. If a conic cuts the cubic in four fixed and two variable points, the line join-

ing the latter two passes through a fixed point of the cubic.

8. Consider the space curve * = sn, y = cn, z = dnt. Show that to each

point of the rectangle 4 K by 4 iK' corresponds one point of the curve and con-

versely. Show that the curve is the intersection of the cylinders *2 4- 2/
2 = 1 and

Jfc
2x2 + z2 = 1. Show that a plane cuts the curve in 4 points and determine the

relation between the parameters of the points.

9. How many osculating planes may be drawn to the curve of Ex. 8 from any

point on it? At how many points may a plane have contact of the 3d order with

the curve and where are the points ?

10. In case the roots are real show that f (z) has the form

f(z) SB 2i z + , jwi Vx



jrience log <r (z)
= I

~
-i

li..
or

<r(z)
= Ce z

>

11. By general methods like those of 190 prove that

1 1_
p (z) -p(a)~ p'(a)

and f p(z)-p(a) p'(a) o-(z-a) p'(a)

12. Let the functions 6 be defined by these relations :

._x

with 7 = e **i . Show that the ^-series converge if w
t
is real and w2 is pure imagi-

nary or complex with its imaginary part positive. Show more generally that the

series converge if the angle from W
T
to w

2
is positive and less than 180.

13.Let .

1'rove <r(z + 2wj) = e 2T) i(* + w
i)er(s) and similar relations for <ra(z).

W_ 2w
1
w Tri Tri

. Let 2 u, = " - --
, or *;, >/&>,,

=
Wj u>,

'2
Prove er(2 + 2 w

2)
= e 2l)s^ + wz)r (z) and similar relations for <ra(z).

15. Show that <>( z)
=

<r(z) and develop <r(z) as

16. With the determination of 7j t
as in Ex. 16 prove that

d d?~
log a- (z)

= f (z),
-:

log <r (z)
= - f(2) = p (z)

by showing that p(z) as here defined is doubly periodic with periods 2w
1T
2w2 ,

with a pole 1/2
2 of the second order at z = and with no constant term in its

development. State why this identifies p (z) with the function of the text.



CHAPTER XX

FUNCTIONS OF REAL VARIABLES

194. Partial differential equations of physics. In the solution of

physical problems partial differential equations of higher order, partic-

ularly the second, frequently arise. With very few exceptions these

equations are linear, and if they are solved at all, are solved by assum-

ing the solution as a product of functions each of which contains only
one of the variables. The determination of such a solution offers only
a particular solution of the problem, but the combination of different

particular solutions often suffices to give a suitably general solution.

For instance

&V dt*V_ &V 1 dV 1 d*V _
a? %2

r
~w + r~fc

+
7*d<t>*-

() w
is Laplace's equation in rectangular and polar coordinates. For a solu-

tion in rectangular coordinates the assumption V = X (x) Y(y) would be

made, and the assumption V = R (?) $(</>) for a solution in polar coor-

dinates. The equations would then become

v" V" r*R" R' <fc"

Now each equation as written is a sum of functions of a single variable.

But a function of x cannot equal a function of y and a function of ?

cannot equal a function of
</> unless the functions, are constant and have

the same value. Hence

X"
2 *"= -m2
,

=-m2
,

or (2')
Y"

2
r*R" R'

2

V

T =+w*,
__H._ = + m2.

These are ordinary equations of the second order and may be solved

as such. The second case will be treated in detail.

The solution corresponding to any value of m is

<D = am cos m$ -f bm sin m^ t
R A ,?'" + Bmr~ -

and V = J?cb = ( 4



"hat any number of solutions corresponding to different values of m
lay be added together to give another solution is due to the linearity
f the given equation ( 96). It way be that a single term will suffice

s a solution of a given problem. But it may be seen in general that :

L. solution for V may be found in the form of a Fourier series which
hall give V any assigned values on a unit circle and either be conver-

ent for all values within the circle or be convergent for all values

utsicle the circle. In fact let /(<) be the values of V on the unit circle.

Expand /(<) into its Fourier series

w cos m< + lm sin ra<).

'hen V = a + ^ rm (am cos m</> + l>m sin m$) (3')
m

all be a solution of the equation which reduces to /(<) on the circle

nd, as it is a power series in r, converges at every point within the

ircle. In like manner a solution convergent outside the circle is

V = \ o + 2J
''"

'"

Ki cos m<l> + bm sin m). (3")
m

The infinite series for V have been called solutions of Laplace's equation. As a

latter of fact they have not been proved to be solutions. The finite sum obtained

y taking any number of terms of the series would surely be a solution
;
but the

mit of that sum when the series becomes infinite is not thereby proved to be a solu-

on even if the series is convergent. For theoretical purposes it would be necessary

) give the proof, but the matter will be passed over here as having a negligible

earing on the practical solution of many problems. For in practice the values of

(<t>)
on the circle could not be exactly known and could therefore be adequately

^presented by a finite and in general not very large number of terms of the de-

elopment of /(<), and these terms would give only a finite series for the desired

motion V.

In some problems it is better to keep the particular solutions sepa-

ite, discuss each possible particular solution, and then imagine them

ompounded physically. Thus in the motion of a drumhead, the most

eneral solution obtainable is not so instructive as the particular solution

orresponding to particular notes
;
and in the motion of the surface of

lie ocean it is preferable to discuss individual types of waves and com-

ound them according to the law of superposition of small vibrations

p. 226). For example if

T



_ f sin ax, y __ fain (3x, ~ _ fsin c Vet2 + {Pt

Xcos ax, Xcos /Jr, Xcos c Vc? + /J
2
*

are particular solutions which may be combined in any way desired

A.S the edges of the drumhead are supposed to be fixed at all times,

2 = if x = 0, x a, y = 0, y = b, t = anything,

where the dimensions of the head are a. by b. Then the solution

. mjrx . mry lmz
,

n1
...

K XYT sin sin ~ cos CTT\ r + 75 * (4)
a 6 Xa2

b*
x '

is a possible type of vibration satisfying the given conditions at the

perimeter of the head for any integral values of m, n. The solution is

periodic in t and represents a particular note which may be omitted.

A sum of such expressions multiplied by any constants would also be

a solution and would represent a possible mode of motion, but would

not be periodic in t and would represent no note.

195. For three dimensions Laplace's equation becomes

d (^ V\ ,

1 & V
,

1 $ / A d V\ A /KN
3- (r

2

-5- ) + -r-j7 5^5 + -r-s 53 sin -^ }- (5)
dr\ drj sitfOdtj** s>mOdO\ 30 /

in polar coordinates. Substitute V = R (r)(0)<t>(<) ;
then

irf/^fix i ^/
in ^@\

Rdr\ dr/ sin9dB\ dO/ Q sin* dtf

Here the first term involves r alone and no other term involves r

Hence the first term must be a constant, say, n(n + 1). Then

d
__ Q ft

_.
^[7.1 I

$r i "v- -V-- >

Next consider the last term after multiplying through by sin
2
6. It ap

pears that <&- a
<i>" is a constant, say, m2

. Hence

$" = mz
$, $ = am cos m< + bm sin wi/>.

Moreover the equation for now reduces to the simple form

-r-^-2 [(1
- cos3

0) -^1 + L ( + 1)
-

.

w8
,

.1 = 0.
rfcos0 x y rfcos^ v ' 1 cos

2
^

L- _1 I_ J

The problem is now separated into that of the integration of three

differential equations of which the first two are readily integrable. The
third equation is a generalization of Legendre's (Exs. 13-17, p. 252),



terms of polynomials P
n< m (cos 0) in cos 9. Any expression

^ (/!'" + 'V~"~ J

)(a cos m< + &m sin
4>)
P

BiBl (cos

is therefore a solution of Laplace's equation, and it may be shown that

by combining such solutions into infinite series, a solution may be

obtained which takes on any desired values on the unit sphere and

converges for all points within or outside.

Of particular simplicity and importance is the case in which V is sup-

posed independent of < so that m = and the equation for is soluble

in terms of Legendre's polynomials Pn (cos 0) if n is integral. As the

potential V of any distribution of matter attracting according to the in-

verse square of the distance satisfies Laplace's equation at all points

exterior to the mass ( 201), the potential of any mass symmetric with

respect to revolution about the polar axis 0=0 may be expressed if

its expression for points on the axis is known. For instance, the poten-

tial of a mass M distributed along a circular wire of radius # is

_ M

at a point distant r from the center of the wire along a perpendicular

to the plane of the wire. The two series

'Ml 1 r* n ,

l-3r 1-3- 5_ Ip --- p j___ p+ '

] ~

are then precisely of the form S/1,,7
1*/5

,,, S^^""""
1/5

,,
admissible for

solutions of Laplace's equation and reduce to the known value of V

along the axis 0=0 since Pn (T) 1. They give the values of V at all

points of space.

To this point the method of combining solutions of the given differ-

ential equations was to add them into a finite or infinite series. It is

also possible to combine them by integration and to obtain a solution

as a definite integral instead of as an infinite series. It should be noted

in this case, too, that a limit of a sum has replaced a sum and that it

would theoretically be necessary to demonstrate that the limit of the

sum was really a solution of the given equation. It will be sufficient

at t'uis point to illustrate the method without any rigorous attempt to



re.

X, Fare

x" y"-~~ m^ 7,3^ A" = am cos mx + /^ sin mar, F= A me
my + J5me~ '"",A F

where F may be expressed in terms of hyperbolic functions. Now

Xm,
e~ '""

[a (w) cos mx -f- b (m) sin mx] dm

(6)
= lim 'V e~ m i

y
[a (wf)

cos

is the limit of a sum of terms each of which is a solution of the given

equation ;
for a

(m,-)
and b (m,) are constants for any given value m = m

if

no matter what functions a (in) and b (m) are of m. It may be assumed

that F is a solution of the given equation. Another solution could be

found by replacing e~ my
by emy.

It is sometimes possible to determine a (m), b (m) so that V shall

reduce to assigned values on certain lines. In fact (p. 466)

/(x)
= - T T /(X) cos m(\-x) d\dm. (T)

""i/O / -

Hence if the limits for m be and oo and if the choice

-^
/4 i / +

a, (m)
= I /(X) cos m\d\, b (m)

= -
I /(\) sin mXrfX

*Jv> \J<a

is taken for a (m), b (m), the expression (6) for V becomes

V = -
I I

e
- m

f(X) cos m (\
-

x) dXdm (8)
c/O x oo

and reduces to f(x) when y = 0. Hence a solution F is found which

takes on any assigned values f(x) along the o>axis. This solution clearly

becomes zero when y becomes infinite. When f(x) is given it is some-

times possible to perform one or more of the integrations and thus

simplify the expression for V.

For instance if

/(*) = 1 when x > and f(x) = when z < 0,

the integral from oo to drops out and

V-- r f*e-''.l-cosm(X aj)dXdm = - f* f
a

e- m*f cosm(\-
1T/0 Jo 7T/0 JO

X)
2

7T\2



value as found in the equation and see that V^. + Vyy
= 0, and to check the fact

that V reduces to f(x) when y = 0. It may perhaps be superfluous to state that

the proved correctness of an answer does not show the justification of the steps by
which that answer is found; but on. the other hand as those steps were taken

solely to obtain the answer, there is no practical need of justifying them if the

answer is clearly right.

EXERCISES

1. Find the indicated particular solutions of these equations :

(a) c 2 = -
1 V = "V Ame~ m2'

(am cos cmx, + bm sin cmx),
St dX* ^

%
' V ~ ^L (Am cos cmt + Bm sin cmt)(am cos mx + bm sin ma),

Ou C*X
'

"""*

,
v '

8t 3x2 8j/
2

\coscorx, \cosc/3j/,

2. Determine the solutions of Laplace's equation in the plane that have F = 1

for < < v and V 1 for TT < < < 2 ?r on a unit circle.

3. If V = |TT 0| on the unit circle, find the expansion for V.

4. Show that F = SOroSinnMrx/Z coscmTri/i is the solution of Ex. 1 (/3) which

vanishes at x = and x = I. Determine the coefficients am so that for t = the

value of V shall be an assigned function /(z). This is the problem of the violin

string started from any assigned configuration.

5. If the string of Ex. 4 is started with any assigned velocity BV/dt =/() when

t = 0, show that the solution is 2am sin mirx/l sin cmirt/l and make the proper deter-

mination of the constants am .

6. If the drumhead is started with the shape z =/(, y), show that

4 ~a /> 6 7Hirx . mry , ,Am , n
-

I I /(x, z/) an- sm - %da;.
ab t/ o t/ o o o

7. In hydrodynamics it is shown that \ -
(
to

)
is the differential equa-

dt2 b ax \ 5x/

tion for the surface of the sea in an estuary or on a beach of breadth b and depth

ft measured perpendicularly to the x-axis which is supposed to run seaward. Find

(a) y = AJ (kx) cos nt, &2 = n?/gh, (|3) y = AJ (% VfcaT) cos nt, k = v?/gm,

as particular solutions of the equation when (a) the depth is uniform but the

breadth is proportional to the distance out to sea, and when (/3) the breadth is uni-

form but the depth is mx. Discuss the shape of the waves that may thus stand on

the surface of the estuary or beach.



O. JU <l senus ui parallel waves uii cui uueo/u ui ouiii/<*iJi/ ucpi/u /. 10 uui/ ^cij^cn-

dicularly by the xy-plane with the axes horizontal and vertical so that y = h is

the ocean bed, the equations for the velocity potential < are known to be

** + **-o r^i -o
ax*

+ w ~ U)
L0J. *~

'

Find and combine particular solutions to show that < may have the form

<t>
= A cosh fc(2/ + h) cos (fcc ni), n2 = #fc tanh fc/i.

9. Obtain the solutions or types of solutions for these equations.

,
. d*V 5 2V 1 dV 1 dzV A . ... r cos 7/101 T .. .

(a\ --1---------- = 0, Ans. e* hz
-{ . }-Jm(kr).^ '

Bz* 8r2 r Sr r2
8$* \m m<j>j

mx h

d2 V I dV I d 2 V ^
(ft) 5- + - -r- + ~5 TT + T7

" = 0, ^TW. > (am cosm0 + bM su\m<f>)Jm(r) t

OT* T OT T* 0<f>
*"'

(7)
?!! +

3_!I + 5!T + F = o, ^n,.
'-^^i w p-(cos ^) x

5:c 82/ 8z
(anim cos7n0 + 6B ,m sinm0),

. j-2
8-^- 1 = 4-~ -I-

( '

at* dt

~
da;

2
' ^ e)

c 2 81*

~
dx* dy

2 dz*
'

10. Find the potential of a homogeneous circular disk as (Ex. 22, p. 68
;

Ex. 23, p. 332)

2_ria_lJ_la8 +LU E! P 1 ' 1 ' 3 ' 5 ffl? P+

_2Jlf[r lr2 1.1 r* Ll-3 r6~ V[ a
J 2^ 2 ~2T4^^ + 2TT^^^~

where the negative sign before P
t
holds for & < | TT and the positive for ^ > ^ ir.

11. Find the potential of a homogeneous hemispherical shell.

12. Find the potential of (a) a homogeneous hemisphere at all points outside

the hemisphere, and
(/8)

a homogeneous circular cylinder at all external points.

a;
2 a2

13. Assume cos- 1-- is the potential at a point of the axis of a conduct-
2a xz + az

v F

ing disk of radius a charged with Q units of electricity. Find the potential anywhere.

196. Harmonic functions; general theorems. A function which

satisfies Laplace's equation V'^. + V'
y

'

y
= or V"^. + V'^ + K = 0, whether

in the plane or in space, is called a harmonic function. It is assumed

that the first and second partial derivatives of a harmonic function are

continuous except at specified points called singular points. There are

many similarities between harmonic functions in the plane and har-

monic functions in space, and some differences. The fundamental theo-

rem is that: If a function is harmonic and has no singularities upon
or within a simple closed curve (or surface), the line integral of its nor-

mal derivative along the curve (respectively, surface) vanishes ;
and con-

versely if afunction V(x, y), or V(x, y, z), has continuous first and second



closed curve (or surface) in a region vanishes, the function is harmonic.
For by Green's Formula, in the respective cases of plane and space

(Ex. 10, p. 349),

C dv
7 C dv i dv i

I ds = I -z-dy dx =
J dn Jo 8x dv

I
--dS= CdS.VV

dxdy,

(9)

Now if the function is harmonic, the right-hand side vanishes and so

must the left; and conversely if the left-hand side vanishes for all

closed curves (or surfaces), the right-hand side must vanish for every

region, and hence the integrand must vanish.

If in particular the curve or surface be taken as a circle or sphere of

radius a and polar coordinates be taken at the center, the normal de-

rivative becomes d V/dr and the result is

/-2TT o -IT /-27T r*tr f>Tf

I -T-
d<J3

= or I I -r- sin ed6dA = 0.

Jo d>- Jo Jo 3 >*

where the constant a or a2 has been discarded from the element of arc

ad<$> or the element of surface a2 sin 6d6d<f>. If these equations be inte-

grated with respect to r from to a, the integrals may be evaluated by

reversing the order of integration. Thus

/ia /->27T Q rr /i2jr />a O -IT /->2;r

0= / dr
\ g-rf*= I

I g"^^= / (Va ~ F )^,
JQ Jo Jo Jo Jo

and f Va<ty=K f ^, or Va = F
, (10)

t/O c/O

where Fa is the value of F on the circle of radius a and F is the value

at the center and Va is the average value along the perimeter of the

circle. Similar analysis would hold in space. The result states the

important theorem : The average value of a harmonic function over a

fiircle (or sphere) is equal to the value at the center.

This theorem has immediate corollaries of importance. A harmonic

function which has no singularities within a region cannot become maxi-

mum or 'minimum at any point within the region. For if the function

were a maximum at any point, that point could be surrounded by a

circle or sphere so small that the value of the function at every point

of the contour would be less than at the assumed maximum and hence

the average value on the contour could not be the value at the cente.r



532 THEORY OF FUNCTIONS

A harmonic function which, has no singularities within a region and is

constant on the boundary is constant throughout the region. For the

maximum and minimum values must be on the boundary, and if these

have the same value, the function must have that same value through-

out the included region. Two harmonic functions which have identical

values upon a closed contour and have no singularities within, are iden-

tical throughout the included region. For their difference is harmonic

and has the constant value on the boundary and hence throughout

the region. These theorems are equally true if the region is allowed to

grow until it is infinite, provided the values which the function takes

on at infinity are taken into consideration. Thus, if two harmonic

functions have no singularities in a certain infinite region, take on the

same values at all points of the boundary of the region, and approach
the same values as the point (x, T/)

or (x, y, )
in any manner recedes

indefinitely in the region, the two functions are identical.

If Green's Formula be applied to a product Ud V/dn, then

f
Jo dy

or UdS.VV=uV'VVdv+vU.VVdv (11)

in the plane or in space. In this relation let V be harmonic without

singularities within and upon the contour, and let U V. The first inte-

gral on the right vanishes and the second is necessarily positive unless

the relations V'x = V'
v or V'x = V'

y
= V'z 0, which is equivalent

to V V = 0, are fulfilled at all points of the included region. Suppose
further that the normal derivative dV/dn is zero over the entire bound-

ary. The integral on the left will then vanish and that on the right

must vanish. Hence V contains none of the variables and is constant.

If the normal derivative of a function harmonic and devoid of singular-

ities at all points on and within a given contour vanishes identically

upon the contour, the function is constant. As a corollary : If two

functions are harmonic and devoid of singularities upon and within a

given contour, and if their normal derivatives are identically equal

upon the contour, the functions differ at most by an additive constant.



electricity in a conducting body. The physical law is that heat flows along the

direction of most rapid decrease of temperature T, and that the amount of the flow

is proportional to the rate of decrease. As VT gives the direction and magni-
tude of the most rapid decrease of temperature, the flow of heat may be represented

by frVT, where A; is a constant. The rate of flow in any direction is the compo-
nent of this vector in that direction. The rate of flow across any boundary is

therefore the integral along the boundary of the normal derivative of T. Now the

flow is said to be steady if there is no increase or decrease of heat within any closed

boundary, that is .,

k / dS-Vr= or Tis harmonic.
^0

Hence the problem of the distribution of the temperature in a body supporting
a steady flow of heat is the problem of integrating Laplace's equation. In like

manner, the laws of the flow of electricity being identical with those for the flow

of heat except that the potential V replaces the temperature T, the problem of the

distribution of potential in a body supporting a steady flow of electricity will also

be that of solving Laplace's equation.

Another problem which gives rise to Laplace's equation is that of the irrotational

motion of an incompressible fluid. If v is the velocity of the fluid, the motion is

called irrotational when Vxv = 0, that is, when the line integral of the velocity

about any closed curve is zero. In this case the negative of the line integral from

a fixed limit to a variable limit defines a function $ (x, y, z) called the velocity

potential, and the velocity may be expressed as v = V*. As the fluid is incom

pressible, the flow across any closed boundary is necessarily zero. Hence

C dS-V* = or Cv.V$dv = or V.V<t> = 0,

and the velocity potential 4? is a harmonic function. Both these problems may be

stated without vector notation by carrying out the ideas involved with the aid of

ordinary coordinates. The problems may also be solved for the plane instead of

for space in a precisely analogous manner.

197. The conception of the flow of electricity will be advantageous

in discussing the singularities of harmonic functions and a more gen-

eral conception of steady flow. Suppose
an electrode is set down on a sheet of zinc

of which the perimeter is grounded. The

equipotential lines and the lines of flow

which are orthogonal to them may be

sketched in. Electricity passes steadily

from the electrode to the rim of the sheet

and off to the ground. Across any circuit

which does not surround the electrode the

flow of electricity is zero as the flow is steady, but across any circuit

surrounding the electrode there will be a certain definite flow; the

circuit integral of the normal derivative of the potential V around such
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sheet is no longer simply connected, and the comparison would then

l>e with a circuit which could not be shrunk to nothing. Concerning

this latter interpretation little need be said
;
the facts are readily seen.

It is the former conception which is interesting.

For mathematical purposes the electrode will be idealized by assum-

ing its diameter to shrink down to a point. It is physically clear that

the smaller the electrode, the higher must be the potential at the elec-

trode to force a given flow of electricity into the plate. Indeed it may
be seen that V must become infinite as C log ?, where r is the distance

from the point electrode. For note in the first place that log r is a solu-

tion of Laplace's equation in the plane ;
and let U V -\- C log r or

V = V C log r, where U is a harmonic function which remains finite

at the electrode. The flow across any small circle concentric witb the

electrode is r Zl*dv-
y-nty=

txO

and is finite. The constant C is called the strength of the source situ-

ated at the point electrode. A similar discussion for space would show

that the potential in the neighborhood of a source would become infinite

a.3 Cjr. The particular solutions log r and !/> of Laplace's equation

in the respective cases may be called the fundamental solutions.

The physical analogy will also suggest a method of obtaining higher singular-

ities by combining fundamental singularities. For suppose that a powerful positive

electrode is placed near an equally powerful negative electrode, that is, suppose a

strong source and a strong sink near together. The greater part of the flow will be

nearly in a straight line from the source to the sink, but some part of it will spread

out over the sheet. The value of V obtained by adding together the two values for

source and sink is

+ P-Zrlcosj) + ] <71og(r
2 + /

2 + 2 rl cos <)

%t7~

2 1C , . , M= --cos^ + higher powers = cos< + .

r r

Thus if the strength C be allowed to become infinite as the distance 2 1 becomes

zero, and if M denote the limit of the product 2 1C, the limiting form of V is

Mr- l cos
<t>
and is itself a solution of the equation, becoming infinite more strongly

than logr. In space the corresponding solution would be Jfr 2 cos #.



within a given contour was determined by its values on the contour and
determined except for an additive constant by the values of its normal

derivative upon the contour. If now there be actually within the contour

certain singularities at which the function becomes infinite as certain

particular solutions V
1}
F

2 , ,
the function U = V V

l
F

2 is har-

monic without singularities and may be determined as before. Moreover,
the values of F

7 ,
V

z ,
or their normal derivatives may be considered as

known upon the contour inasmuch as these are definite particular solu-

tions. Hence it appears, as before, that the harmonic function V is deter-

mined by its values on the boundary of the region or (exceptfor an additive

constant) by the values of its normal derivative on the boundary, provided

the singularities are specified inposition and their mode of becoming infin-

ite is given in each case as some particular solution of Laplace's equation.

Consider again the conducting sheet with its perimeter grounded and

with a single electrode of strength unity at some interior point of the

sheet. The potential thus set up has the properties that : 1 the poten-

tial is zero along the perimeter because the perimeter is grounded ;
2 at

the position P of the electrode the potential becomes infinite as log r
;

and 3 at any other point of the sheet the potential is regular and sat-

isfies Laplace's equation. This particular distribution of potential is

denoted by G (P) and is called the Green Function of the sheet relative

to P, In space the Green Function of a region would still satisfy 1 and

3, but in 2 the fundamental solution log r would have to be replaced

by the corresponding fundamental solution I//*.
It should be noted

that the Green Function is really a function

G (P)
= G (a, b

; a, y) or G(P}=G (a, b,c; x, y, )

of four or six variables if the position P(a, b) or P (a, b, c) of the elec-

trode is considered as variable. The function is considered as known

only when it is known for any position of P.

If now the symmetrical form of Green's Formula

- CC (uAt;
- vAt*) dxdy + C(u ^-v~\ds = 0, (12)

where A denotes the sum of the second derivatives, be applied to the

entire sheet with the exception of a small circle concentric with P and

if the choice u = G and v = V be made, then as G and V are harmonic

the double integral drops out and

_ ,<?*- f
<* J,
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Now let the radius r of the small circle approach 0. Under the assump-
tion that V is devoid of singularities and that G becomes infinite as

log >; the middle integral approaches because its integrand does,

and the final integral approaches 2?rK(P). Hence

This formula expresses the values of V at any interior point of the sheet

in terms of the values of V upon the contour and of the normal deriva-

tive of G along the contour. It appears, therefore, that the determination

of the value of a harmonic function devoid of singularities within and

upon a contour may be made in terms of the values on the contour pro-

vided the Green Function of the region is known. Hence the particular

importance of the problem of determining the Green Function for a

given region. This theorem is analogous to Cauchy's Integral ( 126).

EXERCISES

1. Show that any linear function ax + by + cz + d = is harmonic. Find the

conditions that a quadratic function be harmonic.

2. Show that the real and imaginary parts of any function of a complex vari-

able are each harmonic functions of (x, y).

3. Why is the sum or difference of any two harmonic functions multiplied by
any constants itself harmonic ? Is the power of a harmonic function harmonic ?

4. Show that the product UV of two harmonic functions is harmonic when
and only when 'U'X V'3. + U'

v
V'
v
= or VJ7.VF = 0. In this case the two functions

are called conjugate or orthogonal. What is the significance of this condition

geometrically ?

5. Prove the average value theorem for space as for the plane.

6. Show for the plane that if V is harmonic, then

TT C dv i C *V j W ..U = I ds = I dy - dx
J dn J 8x dy

is independent of the path and is the conjugate or orthogonal function to T7
,
and

that U is devoid of singularities over any region over which V is devoid of them.

Show that V + iU is a function of z ~ x + iy.

7. State the problems of the steady flow of heat or electricity in terms of ordi-

nary coordinates for the case of the plane.



10. Discuss the problem of the small magnet or the electric doublet in view of

Ex. 9. Note that as the attraction is inversely as the square of the distance, the

potential of the force satisfies Laplace's equation in space.

11. Let equal infinite sources and sinks be located alternately at the vertices
of an infinitesimal square. Find the corresponding particular solution (a) in the
case of the plane, and

(/3)
in the case of space. What combination of magnets does

this represent if the point of view of Ex. 10 be taken, and for what purpose is the

combination used ?

12. Express V(P) in terms of G(P) and the boundary values of V in space.

13. If an analytic function has no singularities within or on a contour, Cauchy's
Integral gives the value at any interior point. If there are within the contour cer-

tain poles, what must be known in addition to the boundary values to determine

the function ? Compare with the analogous theorem for harmonic functions.

14. "Why were the solutions in 194 as series the only possible solutions

provided they were really solutions ? Is there any difficulty in making the same
inference relative to the problem of the potential of a circular wire in 195 ?

15. Let G(P) and G(Q) be the Green Functions for the same sheet but relative

to two different points P and Q. Apply Green's symmetric theorem to the sheet

from which two small circles about P and Q have been removed, making the choice

= (?(P) and v = <?(Q). Hence show that G(P) at Q, is equal to G(Q) at P. This

may be written as

G(a, b; x, y) = G(x, y; a, 6) or <?(a, &, c; x, y, z) = G(z, y, z; a, 6, c).

1ft. Test these functions for the harmonic property, determine the conjugate
functions and the allied functions of a complex variable :

(a) xy, (/3) v*y ~ \ 2/8, (7) i log (x
2 + 2/

2
),

(5) ex sinx, (e) sin x cosh ?/, (f) tan-^cotxtanhy).

198. Harmonic functions ; special theorems. For the purposes of

the next paragraphs it is necessary to study the properties of the geo-

metric transformation known as inversion. The definition of inversion

will be given so as to be applicable either to space or to the plane.

The transformation which replaces each point P by a point P 1 such

that OP OP' = k* where is a given fixed point, k a constant, and P'

is on the line OP, is called inversion with the center and the radius k.

Note that if P is thus carried into P 1

,
then P' will be carried into P

;

and hence if any geometrical configuration is carried into another, that

other will be carried into the first. Points very near to are carried

off to a great distance; for the point itself the definition breaks

down and corresponds to no point of space. If desired, one may add

to space a fictitious point called the point at infinity and may then say

that the center of the inversion corresponds to the point at infinity

(p. 481). A pair of points P, P
1 which go over into each other, and another



it is seen that T = TT T' or T' = TT T. An immediate extension of

the argument will show that the magnitude
of the angle between two intersecting curves

will be unchanged by the transformation; the

transformation is therefore, conformed. (In

the plane where it is possible to distinguish between positive and neg-

ative angles, the sign of the angle is reversed by the transformation.)

If polar coordinates relative to the point be introduced, the equations

of the transformation are simply ??' = k2 with the understanding that

the angle < in the plane or the angles </>,
6 in space are unchanged. The

locus r k, which is a circle in the plane or a sphere in space, becomes

r' = k and is therefore unchanged. This is called the circle or the sphere

of inversion. Relative to this locus a simple construction for a pair of

inverse points P and /-" may be made as indicated in the figure. The locus

r2

-j- k
2 = 2 Va2

-\- k*r cos
</> becomes 7c

2 + rn = 2 Va'2 + /c'V cos $>

and is therefore unchanged as a whole. This locus represents a circle

or a sphere of radius a orthogonal to the circle or sphere of inversion.

A construction may now be made for finding an inversion which car-

ries a given circle into itself and

the center P of the circle into any

assigned point P' of the circle
;
the

construction holds for space by re-

voMng the figure about the line OP.

To find what figure a line in the plane or a plane in space becomes

on inversion, let the polar axis < = or = be taken perpendicular
to the line or plane as the case may be. Then

r = p sec
<j>,

r 1

sec
</>
=

Jc?/p or r = p sec 0, r' sec 6 kz

/p
are the equations of the line or plane and the inverse locus. The locus

is seen to be a circle or sphere through the center of inversion. This

may also be seen directly by applying the geometric definition of in-

version. In a similar manner, or analytically, it may be shown that

any circle in the plane or any sphere in space inverts into a circle or

into a sphere, unless it passes through the center of inversion and

becomes a line or a plane.



JP trom the center is A; d, the distance of P' from the center is k-/(k d), and
from the circle or sphere it is d' = dk/(k - d). Now if the radius k is very large
in comparison with d, the ratio k/(k

-
d) is nearly 1 and d' is nearly equal to d.

If k is allowed to become infinite so that the center of in-version recedes indefinitely
and the circle or sphere of inversion approaches a line or plane, the distance d'

approaches d as a limit. As the transformation which replaces each point by a

point equidistant from a given line or plane and perpendicularly opposite to the

point is the ordinary inversion or reflection in the line or plane such as is familiar

in optics, it appears that reflection in a line or plane may be regarded as the limit-

ing case of inversion in a circle or sphere.

The importance of inversion in the study of harmonic functions lies

in two theorems applicable respectively to the plane and to space.

First, if V is harmonic over any region of the plane and if that region

be inverted in any circle, the function F'(P')
= F(P) formed l>y assign-

ing the same value at P' in the new region as the function had at the

point P which inverted into P' is also harmonic. Second, if V is har-

monic over any region in space, and if that region be inverted in a sphere

of radius k, the function F'(P')
=

JfeF(P)/r' formed by assigning at P'

the value the function had at P miiltiplied by k and divided by the dis-

tance OP' = r' of P' from the center of inversion is also harmonic. The

significance of these theorems lies in the fact that if one distribution

of potential is known, another may be derived from it by inversion
;

and conversely it is often possible to determine a distribution of poten-

tial by inverting an unknown case into one that is known. The proof

of the theorems consists merely in making the changes of variable

r = k*/r' or r 1 =
k*/r, <' = <, 0' = 6

in the polar forms of Laplace's equation (Exs. 21, 22, p. 112).

The method of using inversion to determine distribution of potential in electro-

statics is often called the method of electric images. As a charge e located at a

point exerts on other point charges a force proportional to the inverse square of

the distance, the potential due to e is as l/p, where p is the distance from the

charge (with the proper units it may be taken as e/p), and satisfies Laplace's

equation. The potential due to any number of point charges is the sum of the

individual potentials due to the charges. Thus far the theory is essentially the

same as if the charges were attracting particles of matter. In electricity, however,
the question of the distribution of potential is further complicated when there are

in the neighborhood of the charges certain conducting surfaces. For 1 a conduct-

ing surface in an electrostatic field must everywhere be at a constant potential or

there would be a component force along the surface and the electricity upon it

would move, and 2 there is the phenomenon of induced electricity whereby a

variable surface charge is induced upon the conductor by other charges in the

neighborhood. If the potential V(F) due to any distribution of charges be

inverted in any sphere, the new potential is kV(P)/r
f

. As the potential F(P)



infinite at the inverted positions of the charges. As the ratio ds' : ds of the in-

verted and original elements of length is r'2/k
2

,
the potential kV(P)/r' will become

infinite as k/r' c/p' r"2/k'
2

,
that is, as r'e/kp'. Hence it appears that the charge e

inverts into a charge e' = r'e/k ; the charge e' is called the electric image of e.

As the new potential is kV(P)/r' instead of F(P), it appears that an equipoten-

tial surface 1

T = const, will not invert into an equipotential surface F'(P') = const,

unless V = or ?' is constant. Bat if to the inverted system there be added the

charge e = kV at the center O o'f inversion, the inverted equipotential surface

becomes a surface of zero potential.

With these preliminaries, consider the question of the distribution of potential

due to an external charge e at a distance r from the center of a conducting spheri-

cal surface of radius k which has been grounded so as to be maintained at zero

potential. If the system be inverted with respect to the sphere of radius A, the

potential of the spherical surface remains zero and the charge e goes over into a

charge c' r'e/k at the inverse point. Now if p, p' are the distances from e, &" to

the sphere, it is a fact of elementary geometry that p : p' = const. = /:/<;. Hence

the potential

v e e
'

(^
r
'

\ k/'
~ r'p

p p' \p kp'l kpp'

due to the charge e and to its image e', actually vanishes upon the sphere ; and.

as it is harmonic and has only the singularity c/p outside the sphere (which is the

same as the singularity due to e), this value of V throughout all space must be

precisely the value due to the charge and the grounded sphere. The distribution

of potential in the given system is therefore determined. The potential outside

the sphere is as if the sphere were removed and the two charges e, e' left alone.

By Gauss's Integral (Ex. 8, p. 348) the charge within any region may be evaluated

by a surface integral around the region. This integral over a surface surrounding
the sphere is the same as if over a surface shrunk down around the charge e',

and hence the total charge induced on the sphere is e" = r'e/k.

199. Inversion will transform the average value theorem

KrZ</> into F'(P') = ^

a form applicable to determine the value of V at any point of a circle

in terms of the value upon the circumference. For suppose the circle

with center at 7' and with the set

of radii spaced at angles d<j), as

implied in the computation of the

average value, be inverted upon an

orthogonal circle so chosen that P
shall go over into P'. The given

circle goes over into itself and the series of lines goes over into a series

of circles through P 1 and the center of inversion. (The figures are

drawn separately instead of superposed.) From the conformal property



tween tne radii, and the circles cut the given circle orthogonally just
as the radii did Let V along the arcs 1', 2', 3', be equal to V along
the corresponding arcs 1,2,3,--- and let F(P) = F'(P') as required by
the theorem on inversion of harmonic functions. Then the two inte-

grals are equal element for element and their values F(P) and F'(P')
are equal. Hence the desired form follows from the given form as

stated. (It may be observed that d^ and cty, strictly speaking, have

opposite signs, but in determining the average value F'(P'), <fy is taken

positively.) The derived form of integral may be written

a 7.

"'fX 04')

as a line integral along the arc of the circle. If P' is at the distance r

from the center, and if a be the radius, the center of inversion O is at

the distance a2

/?
1 from the center of the circle, and the value of k is

seen to be 7c
2 = (a

2

r^a
2

/?-

2
. Then, if Q and Q' be points on the circle,

Now dif//ds' may be obtained, because of the equality of
d\j/ and d<f>, and

ds' may be written as ad<j>. Hence

-rz

d<j>'-a? 2 ar cos <' 4- r2

Finally the primes may be dropped from V' and P', the position of P'

may be expressed in terms of its coordinates
(?, <), and

is the expression of V in terms of its boundary values.

The integral (15) is called Poisson's Integral. It should be noted par-

ticularly that the form of Poisson's Integral first obtained by inversion

represents the average value of V along the circumference, provided that

average be computed for each point by considering the values along the

circumference as distributed relative to the angle ^ as independent vari-

able. That V as defined by the integral actually approaches the value on

the circumference when the point approaches the circumference is clear

from the figure, which shows that all except an infinitesimal fraction of

the orthogonal circles cut the circle within infinitesimal limits when the

point is infinitely near to the circumference. Poisson's Integral may be
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relative to the circle, the equation of the circle may be written as

p/p'
= const. = r/a, and G (P)

= log p -f- log p' + log (r/a) (16)

is then the Green Function of the circular sheet because it vanishes along

the circumference, is harmonic owing to the fact that the logarithm of the

distance from a point is a solution of Laplace's equation, and becomes

infinite at P as log p. Hence

It is not difficult to reduce this form of the integral to (15).

If a harmonic function is defined in a region abutting upon a segment
of a straight line or an arc of a circle, and if the function vanishes along

the segment or arc, the function may be extended across the segment
or arc by assigning to the inverse point P' the value K(P') = F(P),
which is the negative of the value at P; the conjugate function

/dv
r 8 V 8V

~<fo+C= I ~dy~-fdx+C (17)dn J dx J
dy

^ J

takes on the same values at P and P'. It will be sufficient to prove
this theorem in the case of the straight line because, by the theorem on

inversion, the arc may be inverted into a line by taking the center of

inversion at any point of the arc or the arc produced. As the Laplace

operator D% -f- D$ is independent of the axes (Ex. 25, p. 112), the line

may be taken as the cc-axis without restricting the conclusion.

Now the extended function V(P
/

) satisfies Laplace's equation since

Therefore V(P
r
)
is harmonic. By the definition V(P') = V(P) and the assumption

that V vanishes along the segment it appears that the function V on the two sides

of the line pieces on to itself in a continuous manner, and it remains merely to show

that it pieces on to itself in a harmonic manner, that is, that the function V and

its extension form a function harmonic at points of the line. This follows from

Poisson's Integral applied to a circle centered on the line. For let

H(x, y)= C Vcty ;
then H(x, 0)

=
/o

because V takes on equal and opposite values on the upper and lower semicircum-

ferences. Hence H = V(P) = F(P') = along the axis. But H = V(P) along the

upper arc and H = V(P') along the lower arc because Poisson's Integral takes on

the boundary values as a limit when the point approaches the boundary. Now as

H is harmonic and agrees with V(P) upon the whole perimeter of the upper semi-

circle it must be identical with V(P) throughout that semicircle. In like manner



and F(P') are identical with the single harmonic function T, they must piece
together harmonically across the axis. The theorem is thus completely proved.
The statement about the conjugate function may be verified by taking the integral
along paths symmetric with respect to the axis.

200. If a function w =/() = u + w of a complex variable, becomes

real, along the segment of a line or the arc of a circle, the function may
be extended analytically across the segment or arc by assigning to the

inverse point P' the value w u iv conjugate to that at P. This is

merely a corollary of the preceding theorem. For if w be real, the

harmonic function v vanishes on the line and may be assigned equal
and opposite values on the opposite sides of the line

;
the conjugate

function u then takes on equal values on the opposite sides of the

line. The case of the circular arc would again follow from inversion

as before.

The method employed to identify functions in 185-187 was to

map the halves of the w-plane, or rather the several repetitions of these

halves which were required to complete the map of the w-surface, on a

region of the -plane. By virtue of the theorem just obtained the con-

verse process may often be carried out and the function w = /()
which maps a given region of the s-plane upon the half of the w-plane

may be obtained. The method will apply only to regions of the 2-plane

which are bounded by rectilinear segments and circular arcs
;
for it is

only for such that the theorems on inversion and the theorem on the

extension of harmonic functions have been proved. To identify the

function it is necessary to extend the given region of the s-plane by
inversions across its boundaries until the w>-surface is completed. The

method is not satisfactory if the successive extensions of the region in

the s-plane result in overlapping.

The method will be applied to determining the function (a) which

maps the first quadrant of the unit circle in. the -plane upon tlie upper
half of the w-plane, and

(/3)
which maps a 30-60-90 triangle upon the

upper half of the w-plane. Sup-

pose the sector ABC mapped on

the w-half-plane so that the perim-

eter ABC corresponds to the .. a b c 0" fa)

real axis abc. When the perime-

ter is described in the order written and the interior is on the left,

the real axis must, by the principle of conformality, be described in

such an order that the upper half-plane which is to correspond to the

interior shall also lie on the left. The points a, b, c correspond to points



.1, B, (.'. At these points the correspondence required is such that the

eonformality must break down. As angles are doubled, each of the

points A, B, C must be a critical point of the first order for w=f(z')
and a, l>,

c must be branch points. To map the triangle, similar con-

siderations apply except that whereas C' is a critical point of the first

order, the points A', />'' are critical of orders 5, 2 respectively. Each

case may now be treated separately in detail.

Let it be assumed that the three vertices yt, JB, C of the sector go into the

points* w 0, 1, oo. As the perimeter of the sector is mapped on the real axis,

the function w = /(z) takes on real values for points z along the perimeter.

Hence if the sector be inverted over any of its sides, the point P' which corre-

sponds to P may be given a value conjugate to w at

P, and the image of P' in the to-plane is symmetrical

to the image of P with respect to the real axis. The

three regions 1', 2', 3' of the z-plane correspond to

the lower half of the to-plane ;
and the perimeters

of these regions correspond also to the real axis.

These regions may now be inverted across their

boundaries and give rise to the regions 2, 3, 4 which

must correspond to the upper half of the m-plane.

Finally by inversion from one of these regions the

region 4' may be obtained as corresponding to the

lower half of the to-plane. In this manner the inver-

sion has been carried on until the entire z-plane is covered. Moreover there is no

overlapping of the regions and the figure may be inverted in any of its lines with-

out producing any overlapping ;
it will merely invert into itself. If a Riemarin sur-

face were to be constructed over the w-plane, it would clearly require four sheets.

The surface could be connected up by studying the correspondence ;
but this is not

necessary. Note merely that the function /(z) becomes infinite at C when z = i

by hypothesis and at 6" when z = i by inversion
;
and at no other point. The

values 'i will therefore be taken as poles of /(z) and as poles of the second order

because angles are doubled. Note again that the function /(z) vanishes at A when
z = by hypothesis and at z = oo by inversion. These will be assumed to be zeros of

the second order because the points are critical points at which angles are doubled.

The function
w = /(z) = Cz2

(z
-

i)"
2
(2 + *)~

2 = Cz2
(z

a + I)"
2

has the above zeros and poles and must be identical with the desired function when
the constant C is properly chosen. As the correspondence is such that /(I) = 1 by

hypothesis, the constant C is 4. The determination of the function is complete as

given.

Consider next the case of the triangle. The same process of inversion and re-

peated inversion may be followed, and never results in overlapping except as one

* It may be observed that the linear transformation (yio 4- d) w' = e.nv + /3 (Ex. 15,

p. 157) has three arbitrary constants a : /3 : 7 : S, and that by such a transformation any
three poiuts of the w-plane may be carried into any three points of the wAplane. It is

therefore a proper and trivial restriction to assume that 0, 1, w are the points of the



region falls into absolute coincidence with one previously obtained. To cover the
whole z-plane the inversion would have to be continued indefinitely ;

but it may
be observed that the rectangle inclosed by the heavy line

is repeated indefinitely. Hence w = /(z) is a doubly periodic
function with the periods 2 A', 2iK' if 2K, 2K' be the

length and breadth of the rectangle. The function has a

pole of the second order at C or z = and at the points,
marked with circles, into which the origin is carried by
the successive inversions. As there are six poles of the

second order, the function is of order twelve. When z = K
at A or z = iK' at A' the function vanishes and each of

these zeros is of the sixth order because angles are increased

6-fold. Again it appears that the function is of order 12.

It is very simple to write the function down in terms of

the theta functions constructed with the periods 2 A*", 2 iK' .

w=f(z) = C-
H2

(z) 6f(z) H*(z
-

a) Q?(z
-

a) H2
(z
-

For this function is really doubly periodic, it vanishes to the sixth order at K, iK',

and has poles of the second order at the points

0, K + iK', a = 4 K + | iK', a + K + iK', p = 2K a, /3 + K + iK'.

As /9
= 2K a the reduction H2

(z
-

/3)
= H2

(z + a), Q
t (z /3)

= e
t (z + a) may

be made.

to=/(z) = H2
(z) eftz) H z

(z
-

a) H*(z + a -a)e?(z + a)

The constant C may be determined, and the expression for /(z) may be reduced

further by means of identities
;

it might be expressed in terms of sn (z, k) and

en (z, k), with properly chosen k, or in terms of p (z) and p'(z). For the purposes of

computations that might be involved in carrying out the details of the map, it

would probably be better to leave the expression of f(z) in terms of the theta

functions, as the value of q is about 0.01.

EXERCISES

1. Show geometrically that a plane inverts into a sphere through the center of

inversion, and a line into a circle through the center of inversion.

2. Show geometrically or analytically that in the plane a circle inverts into a

circle and that in space a sphere inverts into a sphere.

3. Show that in the plane angles are reversed in sign by inversion. Show that

in space the magnitude of an angle between two curves is unchanged.

4. If ds, dS, dv are elements of arc, surface, and volume, show that

r, , r' r'*,
70 ._- rrfi /78

r'S r'0

dv" = dv = dv.

Note that in the plane an area and its inverted area are of opposite sign, and that

t.hp. Kn.mP is t.rnp nf vnliiinps in snaf.fi-



tne inverted position or tne circle it tne circle oe inverted in any manner, in par-

ticular show that if a circle be inverted with respect to an orthogonal circle, its cen-

ter is carried into the point which is inverse with respect to the center of inversion.

6- Obtain Pomson's Integral (15) from the form (16'). Note that

,2 - 2 , aa_2aow>sfo rt <*(?__
cos (p, n) COB (//, n) _ a? - r*

r_p+a ^apw>8tp,n),
dn

~
p p

, -^
7. From tlie equation p/p' = const. = r/a of the sphere obtain

1 al v _ I r V(a*-i*)dS
lr ^f- j

_ -
, y _- I-

,

p rp 4-raJ
[
a + ^ _ 2 or cos (r, a)]*

the Green Function and Poisson's Integral for the sphere.

8. Obtain Poisson's Integral in space by the method of inversion.

9. Find the potential due to an insulated spherical conductor and an external

charge (by placing at the center of the sphere a charge equal to the negative of

that induced on the grounded sphere).

10. If two spheres intersect at right angles, and charges proportional to the

diameters are placed at their centers with an opposite charge proportional t the

diameter of the common circle at the center of the circle, then tbe potential over

the two spheres is constant. Hence determine the effect throughout external space

cf two orthogonal conducting spheres maintained at a given potential.

11. A charge is placed at a distance h from an infinite conducting plane.

Determine the potential on the supposition that the plane is insulated with no

charge or maintained at zero potential.

12. Map the quadrantal sector on the upper half-plane so that the vertices

0, A, B correspond to 1, co, 0.

13. Determine the constant C occurring in the map of the triangle on the plane.

Find the point into which the median point of the triangle is carried.

14. With various selections of correspondences of the vertices to the three points

0, 1, oo of the w-plane, map the following configurations upon the upper half-plane :

(a) a sector of 60, () an isosceles right triangle,

(7) a sector of 45, (5) an equilateral triangle.

201. The potential integrals. If p(x, y, z) is a function defined at

different points of a region of space, the integral

- CCC
-JJJ

evaluated over that region is called the potential of p at the point

(, j), ).
The significance of the integral may be seen by considering

the attraction and the potential energy at the point (, 17, )
due to a



If
/u,

l>e a mass at (, rj, )
and m a mass at

(33, y, z), the component
forces exerted by m upon /x are

uanx
A = C 5r r

and

are respectively the total force on p and the potential energy of the

two masses. The potential energy may be considered as the work done

by F or X, Y, Z on p in bringing the

mass
/u,

from a fixed point to the

point (, /, )
under the action of m

at (x, y, K) or it may be regarded
as the function such that the nega-

tive of the derivatives of V by x, y, 2

give the forces A', Y, Z, or in vector
IT

notation F = V V. Hence if the

units be so chosen that c = l, and if

the forces and potential at (, rj, )

be measured per unit mass by dividing by /A, the results are (after dis-

regarding the arbitrary constant C)

ma- my-7; _ m * -
~~2

"~
' * ~~

a } J!J J

Now if there be a region of matter of density p (x, y

potential energy at (, rj, )
measured per unit mass

be obtained by summation or integration and are

v _ i
|

I P(X} y, z)(x yy ?_..
f y _

=///, -y)
a
4- (-*>']*.

It therefore appears that the potential /" defined by (1^^

of the potential energy V due to the distribution of matter.* JN ore JLIU--

ther that in evaluating the integrals to determine X, Y, Z, and U = V,

the variables x, ?/,
z with respect to which the integrations are per-

formed will drop out on substituting the limits which determine the

region, and will therefore leave X, Y, Z, U as functions of the param-

eters
, rj,

which appear in the integrand. And finally

x = ^~, Y
=-/->

Z==
JF (

20
)

*In electric and magnetic theory, -where like repels like, the potential and potential

energy have the same sign.



or of integrating the expressions (19') for X, Y, Z expressed in terms of

the derivatives of //, over the whole region.

THKORKM. Tlie potential integral U satisfies the equations

known respectively as Laplace's and Poisson's Equations, according as

the point (, y, )
lies outside or within the body of density p (x, y, K).

In case (, r), )
lies outside the body, the proof is very simple. For

the second derivatives of U may be obtained by differentiating with

respect to
, i),

under the sign of integration, and the sum of the

results is then zero. In case (, vj, )
lies within the body, the value

for ? vanishes when (, 17, ) coincides with (x, y, z) during the integra-

tion, and hence the integrals for U, X, Y, Z become infinite integrals

for which differentiation under the sign is not permissible without jus-

tification. Suppose therefore that a small sphere of radius r concentric

with (, TJ, ) be cut out of the body, and the contributions F' of this

sphere and F* of the remainder of the body to the force F be considered

separately. For convenience suppose the origin moved up to the point

(*, ,, 0- Then

'= f
J

Now as the sphere is small and the density p is supposed continuous,

the attraction F' of the sphere at any point of its surface may be taken

as *- Tr^/r
2
,
the quotient of the mass by the square of the distance to the

center, where pQ is the density at the center. The force F' then reduces

to J 7Tp r in magnitude and direction. Hence

V.F = V-W = V-F* + VF' = pV.V - dv + V.F'.
' = f pV.V -

J, '

The integral vanishes as in the first case, and VF' = 4
TT/)O

. Hence
if the suffix be now dropped, V.Vf/ = 4 irp, and Poisson's Equation
is proved. Gauss's Integral (p. 348) affords a similar proof.

A rigorous treatment of the potential U and the forces X, Y, Z and their de-

rivatives requires the discussion of convergence and allied topics. A detailed treat-

ment will not be given, but a few of the most important facts may be pointed out.

Consider the ordinary case where the volume density p remains finite and the body
itself does not extend to infinity. The integrand p/r becomes infinite when r = 0.

But as dv is an infinitesimal of the third order around the point where r = 0, the

term pdv/r in the integral U will be infinitesimal, may be disregarded, and the

integral U converges. In like manner the integrals for JT, T, Z will converge



J du = JJJ r *
sili dntydtf, etc.,

as expressed in polar coordinates with origin at r = 0, are seen to diverge. Hence
the derivatives of the forces and the second derivatives of the potential, as ob-

tained by differentiating under the sign, are valueless.

Consider therefore the following device :

fL
1 ---8- 1 iH_ C s l

,1 - f S1
d r dx r' 5 J of r

~~

J dx r
'

of r J r
dx r

d_P__dl d_l
dx r dx r dx r'

r 81, fl8p, r S p ,

IP -- cto = I --t-d "civ.
J dx r J r dx J dx r

The last integral may be transformed into a surface integral so that

W=f
l
-

d
-?dv- fP COS adS = fff 1 ^dxdydz- ffPdjfr. (22)

8f J r dx J r J J J r dx JJr

It should be remembered, however, that if r = within the body, the transforma-

tion can only be made after cutting out the singularity r = 0, and the surface inte-

gral must extend over the surface of the excised region as well as over the surface

of the body. But in tin's case, as dS is of the second order of infinitesimals while r

is of the first order, the integral over the surface of the excised region vanishes

when r = and the equation is valid for the whole region. In vectors

VU= C^-dv- C?dS. (22')J r J r

It is noteworthy that the first integral gives the potential of Vp, that is, the inte-

gral is formed for Vp just as (18) was from p. As Vp is a vector, the summation

is vector addition. It is further noteworthy that in Vp the differentiation is witli

respect to x, j/, z, whereas in VU it is with respect to
, TJ, f. Now differentiate

(22) under the sign. (Distinguish V as formed for
, TJ, f and x, y, z by V^ and V^.)

HE= rli5e dB _ TpcosaAldS or V^tf= f V
1

v>ft- />^<IS,
8 2 J d{rSx J * 8r s * J s

r
^ J f

r

or again V
f
.V

fU=-fvx
- .Vxpdv + J pVx - -dS. (23)

This result is valid for the whole region. Now by Green's Formula (Ex. 10, p. 349)

.

Here the small region about r = must again be excised and the surface integral

must extend over its surface. If the region be taken as a sphere, the normal dn,

being exterior to the body, is directed along dr. Thus for the sphere

( p j-
- dS = CC p -z r

2 sin 8d<t>dO = CC p sin Bd^dO = 4
TTJO,



and V'Vr- 1 be set equal to zero, Green s Formula reduces to

f V.,.

}

-V, pilv = f pVx
- .dS + 4 irp,

J r J T

where the volume integrals extend over the whole volume and the surface integral

extends like that of (28) over the surface of the body but not over the small sphere.

Hence (23) reduces to V.V[7 = 4 irp.

Throughout this discussion it has been assumed that p and its derivatives are

continuous throughout the body. In practice it frequently happens that a body

consists really of several, say two, bodies of different nature (separated by a bound-

ing surface S 12)
in each of which p and its derivatives are continuous. Let the

suffixes 1, 2 serve to distinguish the bodies. Then

The discontinuity in p along a surface S12
does not affect a triple integral.

Here the first surface integral extends over the boundary of the region 1 which

includes the surface 5
12

between the regions. For the interface S12
the direction

of dS is from 1 into 2 in the first case, but from 2 into 1 in the second. Hence

It may be noted that the first and second surface integrals are entirely analogous

because the first may be regarded as extended over the surface separating a body

of density p from one of density 0. Now V-VJ7 may be found, and if the proper

modifications be introduced in Green's Formula, it is seen that VVJ7= 4rrp

still holds provided the point lies entirely within either body. The fact that p
comes from the average value /> upon the surface of an infinitesimal sphere shows

that if the point lies on the interface S12
at a regular point, V-VU = 4 TT

( p^ + } p2) .

The application of Green's Formula in its symmetric form (Ex. 10, p. 349) to

the two functions r~l and U", and the calculation of the integral over the infini-

tesimal sphere about r = 0, gives

J \r r) J \r dn dn r)

.dn/i Vdn/2

-2./X-
I.di.. (24)

where 2 extends over all the surfaces of discontinuity, including the boundary of

the whole body where the density changes to 0. Now VVC/"= 4 irp and if th

definitions be given that

/dU\ /dU\ . TT TT- _ =_47r<r, t/
1
-U2

\ dn /i \ dn /2



then Z7= f ?dv + f -dS + C T ^~-dS, (25)
./ r / r </ <Zn r v '

where the surface integrals extend over all surfaces of discontinuity. This form of

U appears more general than the initial form (18), and indeed it is more general,
for it takes into account the discontinuities of U and its derivative, which cannot

arise when p is an ordinary continuous function representing a volume distribution

of matter. The two surface integrals may be interpreted as due to surface distribu-

tions. For suppose that along some surface there is a surface density <r of matter.

Then the first surface integral represents the potential of the matter in the surface.

Strictly speaking, a surface distribution of matter with a- units of matter per unit

murface is a physical impossibility, but it is none the less a convenient mathemati-

cal fiction when dealing with thin sheets of matter or with the charge of electricity

upon a conducting sxirface. The surface distribution may be regarded as a limit-

ing case of volume distribution where p becomes infinite and the volume through-
out which it is spread becomes infinitely thin. In fact if dn be the thickness of

the sheet of matter pdndS = <rdS. The second surface integral may likewise be

regarded as a limit. For suppose that there are two surfaces infinitely near to-

gether upon one of which there is a surface density <r, and upon the other a surface

density <r. The potential due to the two equal superimposed elements dS is the

ffldSl +^& = erdS (-- ~\ = ffdS ~- dn = <rdn -dS.
r r

z \rz ry dnr dnr

Hence if cdn = T, the potential takes the form rdr~1/dndS. Just this sort of dis-

tribution of magnetism arises in the case of a magnetic shell, that is, a surface

covered on one side with positive poles and on the other with negative poles. The

three integrals in (25) are known respectively as volume potential, surface poten-

tial, and double surface potential.

202. The potentials may be used to obtain particular integrals of

some differential equations. In the first place the equation

as its solution, when the integral is extended over the region through-

out which / is denned. To this particular solution for U may be added

any solution of Laplace's equation, but the particular solution is fre-

quently precisely that particular solution which is desired. If the

functions U and f were vector functions so that U = it/j + j/72 -f k/8 ,

and f =
i/j + i/2 + k/8J the results would be

a2u
,

a2u
,

aau ., . , TT
-

&? + V+ a?
=

*<*''''*> a U = I

where the integration denotes vector summation, as may be seen by

adding the results for V.VC^ =/a ,
V-VC/

2 =/2 , V.VUg =/8
after multi-

plication by i, j,
k. If it is desired to indicate the vectorial nature of



does not make its effect felt instantly at (, rj, )
but is propagated

toward (, 77, )
from (x, y, is]

at a velocity I/a, so as to arrive at the time

(t + ,?).
The potential and the forces at (, rj, )

as calculated by (18)

will then be those there transpiring at the time t + ar instead of at the

time t. To obtain the effect at the time t it would therefore be necessary

to calculate the potential from the distribution p (x, y, z, t ar) at the

time t ar. The potential

(a, y, ,
t ar)dxdydz= r

-/
where for brevity the variables x, y, z have been dropped in the second

form, is called a retarded potential as the time has been set back from

t to t ar. The retarded potential satisfies the -equation

Q2 / T O2 f T

or

according as
(^, >/, )

tte within or outside the distribution p. There is

really no need of the alternative statements because if (, 17, )
is out-

side, p vanishes. Hence a solution of the equation

47r

The proof of the equation (27) is relatively simple. For in vector notation,

TT IT T7- rr /* P (0 T r, r, r P(t OW) P (t) ,V v U vv I C-i-i du + V V I ^ ^-^ du
J r J r

The first reduction is made by Poisson's Equation. The second expression may
fee evaluated by differentiation under the sign. For it should be remarked that

p(t ar)~p (t) vanishes when r = 0, and hence the order of the infinite in the

integrand before and after differentiation is less by unity than it was in the cor-

responding steps of 201. Then



v>.v> '~^ =ef j r J \ r

/

f + [p(t- ar)

JJut Vj = Vx and Vr = r/r and Vr- 1 = r/r
3 and V.Vr- 1 = 0.

Hence V^r.V^r
=

1, V^r-V^r-
* = r~ 2

,
V-Vr = 2 r- 1

,= rg!
J r f

2 Si2

It was seen (p. 345) that if F is a vector function with no curl, that

is, if V*F = 0, then Fc?r is an exact differential d$ ;
and F may be ex-

pressed as the gradient of <, that is, as F = V<. This problem may also

be solved by potentials. For suppose

F = V<, then V-F = V-V0, $ =^ |
dv. (28)4 TT J r

It appears therefore that
cj> may be expressed as a potential. This solu-

tion for < is less general than the former because it depends on the

fact that the potential integral of VF shall converge. Moreover as

the value of < thus found is only a particular solution of VF = VV<,
it should be proved that for this < the relation F = V< is actually sat-

isfied. The proof will be given below. A similar method may now be

employed to show that if F is a vector function with no divergence,

that is, if VF = 0, then F may be written as the curl of a vector

function G, that is, as F = V*G. For suppose

F = V*G, then VxF = V*VxG = VV-G V-VG.

As G is to be determined, let it be supposed that VG = 0.

Then
i r V*F

F = V*G gives G = / ^-d-o. (29)

Here again the solution is valid only when the vector potential integral

of V XF converges, and it is further necessary to show that F = V*G.

The conditions of convergence are, however, satisfied for th.6 functions

that usually arise in physics.

To amplify the treatment of (28) and (29), let it be shown that

1 r VP 1 f VxF
V0 = - V

\
-eto = F, VxG=~Vx

I
-dv = Y.

4ir J r 47T J r

By use of (22) it is possible to pass the differentiations under the sign of integra-

tion and apply them to the functions V.F and VxF, instead of to l/r as would be

required by Leibniz's Rule
( 119). Then

1 r VV.F , 1 r V.F JCT
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The surface integral extends over the surfaces of discontinuity of VF, over a large

(infinite) .surface, and over an infinitesimal sphere surrounding r = 0. It will be

assumed that VF is such that the surface integral is infinitesimal. Now as VxF = 0,

VxVxF = and VV-F = V.VF. Hence if F and its derivatives are continuous, a

reference to (24) shows that

1 r V-VF
VA = __ i efo = F.r

4?r J r

In like manner
_ _ 1 fVxVxF,, 1 rVxF ._ -1 /-V.VF. _
VxG = | dv I xdS = I dv = F.

1 TT / r 4tir J r 4ir J r

Questions of continuity and the significance of the vanishing of the neglected sur-

face integrals will not be further examined. The elementary facts concerning

potentials are necessary knowledge for students of physics (especially electro-

magnetism) ;
the detailed discussion of the subject, whether from its physical or

mathematical side, may well be left to special treatises.

EXERCISES

1. Discuss the potential U and its derivative VU for the case of a uniform

sphere, both at external and internal points, and upon the surface.

2. Discuss the second derivatives of the potential, that is, the derivatives of the

forces, at a surface of discontinuity of density.

3. If a distribution of matter is external to a sphere, the average value of the

potential on the spherical surface is the value at the center
;

if it is internal, the

average value is the value obtained by concentrating all the mass at the center.

4. What density of distribution is indicated by the potential e~ r* ? What den-

sity of distribution gives a potential proportional to itself ?

5. In a space free of matter the determination of a potential which shall take

assigned values on the boundary is equivalent to the problem of minimizing

dJL\ + (^E\
2

+ (?E}
2

~\dxdydz = - CvU'VUdv.
8x / \ 8y I \ dz I J 2 J

6. For Laplace's equation in the plane and for the logarithmic potential log r,

develop the theory of potential integrals analogously to the work of 201 for

Laplace's equation in space and for the fundamental solution 1/r.
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BOOK LIST

A short list of typical books with brief comments is given to aid the

ident of this text in selecting material for collateral reading or for

Dre advanced study.

1. Some standard elementary differential and integral calculus.

For reference the book with which the student is familiar is probably preferable,

may be added that if the student has had the misfortune to take his calculus under

eacher who has not led him to acquire an easy formal knowledge of the subject,

will save a great deal of time in the long run if he makes up the deficiency soon

i thoroughly ; practice on the exercises in Granville's Calculus (Ginn and Cona-

ny), or Osborne's Calculus (Heath & Co.), is especially recommended.

2. B. 0. PEIRCE, Table of Integrals (new edition). Ginn and Company.
This table is frequently cited in the text and is well-nigh, indispensable to the

ident for constant reference.

3. JAHNKE-EMDE, Funktionentafeln mit Formeln und Kuruen.

subner.

A very useful table for any one who has numerical results to obtain from the

a,lysis of advanced calculus. There is very little duplication between this table

d the previous one.

4. WOODS and BAILEY, Course in Mathematics. Ginn and Company.
5. BYERLY, Differential Calculus and Integral Calculus. Ginn and

tmpany.
6 TODHUNTEB, Differential Calculus and Integral Calculus. Mac-

Han.

7. WILLIAMSON, Differential Calculus and Integral Calculus. Long-

ins.

These are standard works in two volumes on elementary and advanced calculus,

sources for additional problems and for comparison with the methods of the

:t they will prove useful for reference.

8. C. J. DE LA VALLEE-POUSSIN, Cours d' analyse. Gauthier-Villats.

There are a few books which inspire a positive affection for their style and

mty in addition to respect for their contents, and this is one of those few.

r Advanced Calculus is necessarily under considerable obligation to de la Valle'e-

ussin's Cours d' analyse, because I taught the subject out of that book for several



9. GounsAT, Court, (V analyse. Gauthier-Villars.

10. GOIJKSAT-HRDRICK, Mathematical Analysis. Ginn and Company.
The latter is a translation of the first of the two volumes of the former. These,

like the preceding five works, will be useful for collateral reading.

11. 1)KUTUANP, C'alaul differential and Calcul inter/rat,.

This older French work marks in a certain sense the acme of calculus as a

means of obtaining formal and numerical results. Methods of calculation are not

now so prominent, and methods of the theory of functions are coming more to the

fore. Whether this tendency lasts or does not, Bertrand's Calculus will remain an

inspiration to all who consult it.

12. FORSYTH, Treatise on Differential Equations. Macraillan.

As a text on the solution of differential equations Forsyth's is probably the

best. It may be used for work complementary and supplementary to Chapters
VIII-X of this text.

13. PIERPONT, Theory of Functions of Real Variables. Ginn and

Company.
In some parts very advanced and difficult, but in others quite elementary and

readable, this work on rigorous analysis will be found useful in connection with

Chapter II and other theoretical portions of our text.

14. GIBBS-WILSON, Vector Analysis. Scribners.

Herein will be found a detailed and connected treatment of vector methods

mentioned here and there in this text and of fundamental importance to the

mathematical physicist.

15. B. 0. PEIRCE, Newtonian Potential Function. Ginn and Company.
A text on the use of the potential in a wide range of physical problems. Like

the following two works, it is adapted, and practically indispensable, to all who

study higher mathematics for the use they may make of it in practical problems.

16. BYERLY, Fourier Series and Spherical Harmonics. Ginn and

Company.
Of international repute, this book presents the methods of analysis employed

in the solution of the differential equations of physics. Like the foregoing, it gives

an extended development of some questions briefly treated in our Chapter XX.

17. WHITTAKER, Modern Analysis. Cambridge University Press.

This is probably the only book in any language which develops and applies the

methods of the theory of functions for the purpose of deriving and studying the

formal properties of the most important functions other than elementary which

occur in analysis directed toward the needs of the applied mathematician.

J 8. ()sooor>, Le.hrlnt.eh der Funktionentheorie. Teubner.
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a- a*, 4, 46, 162

Abel's theorem on uniformity, 438

Absolute convergence, of integrals, 367,
369

;
of series, 422, 441

Absolute value, of complex numbers,
164

;
of reals, 35

;
sum of, 36

Acceleration, in a line, 13; in general,
174

; problems on, 186

Addition, of complex numbers, 154; of

operators, 151
;
of vectors, 154, 163

Adjoint equation, 240

Algebra, fundamental theorem of, 159,

306, 482
;
laws of, 153

Alternating series, 39, 420, 452

am = sin- 1
sn, 507

Ampere's Law, 350

Amplitude, function, 507; of complex
numbers, 154; of harmonic motion,
188

Analytic continuation, 444, 543

Analytic function, 304, 435. See Func-
tions of a complex variable

Angle, as a line integral, 297, 308; at

critical points, 491; between curves,
9

;
in space, 81

;
of a complex number,

154
; solid, 347

Aji^xJar velocity, 178, 346

Approximate formulas, 60, 77, 101, 383

Approximations, 59, 195; successive, 198.

See Computation
Arc, differential of, 78, 80, 131; of ellipse,

77, 514
;
of hyperbola, 516. See Length

Area, 8, 10, 25, 67, 77; as a line integral,

288; by double integration, 324, 329;
directed, 167; element of, 80, 131, 175,

340, 342; general idea, 311; of a sur-

face, 339
Areal velocity, 175

Argument of a complex number, 154

Associative law, of addition, 153, 163 ;
of

multiplication, 150, 153

Asymptotic expansion, 390, 397, 456

Asymptotic expression for n!, 383

Asymptotic lines and directions, 144

Asymptotic series, 390

Attraction, 31, 68, 308, 332, 348, 547;
Law of Nature, 31, 307; motion under,
190, 264. See Central Force and Po-

tential

Average value, 333
;
of functions, 333

of a harmonic function, 531; over a

surface, 840

Axes, right- or left-handed, 84, 167
Axiom of continuity, 34

B. See Bernoulli numbers, Beta function
Bernoulli's equation, 205, 210
Bernoulli's numbers, 448, 456
Bernoulli's polynomials, 461
Bessel's equation, 248
Bessel's functions, 248, 393
Beta function, 378
Binomial theorem, finite remainder iu,
60

; infinite series, 423, 425

Binormal, 83

Boundary of a region, 87, 308, 311

Boundary values, 304, 541

Brachistochrone, 404
Branch of a function, of one variable,

40; of two variables, 90; of a com-
plex variable, 492

Branch point, 492

Cn . See Cylinder functions
Calculation. See Computation, Evalua-

tion, etc.

Calculus of variations, 400-418
Cartesian expression of vectors, 167

Catenary, 78, 190 ; revolved, 404, 408

Cauchy's Formula, 30, 49, 61

Cauchy's Integral, 304, 477

Cauchy's Integral test, 421, 427

Caufftc, 142

Center, instantaneous, 74, 178; of in-

version, 538

Center of gravity or mass, motion of the,
176

;
of areas or laminas, 317, 324

;
of

points or masses, 168
;
of volumes, 328

Central force, 175, 264

Centrode, fixed or moving, 74

Chain, equilibrium of, 185, 190, 409;
motion of, 415

Change of variable, in derivatives, 12,

14, 67, 98, 103, 100; in differential

equations, 204, 235, 245
;
in integrals,

16, 21, 54, 65, 328, 330
Characteristic curves, 140, 267

Characteristic strip, '279



Charge, electric, 639

Charpit's method, 274

Circle, of curvature, 72
;
of convergence,

433, 437; of inversion, 538

Circuit, 80
; equivalent, irreducible, re-

ducible, 91

Circuit integrals, 294

Circulation, 345
Clairaut's equation, 230; extended, 273

Closed curve, 308; area of, 289, 311;

integral about a, 295, 344, 360, 477,
536

;
Stokes's formula, 345

Closed surface, exterior normal is posi-

tive, 167, 341; Gauss's formula, 342;
Green's formula,349, 531; integral over

a, 341, 536
;
vector area vanishes, 167

en, 471, 505, 518

Commutative law, 149, 165

Comparison test, for integrals, 357
;
for

series, 420

Complanarity, condition of, 169

Complementary function, 218, 243

Complete elliptic integral, 507, 514, 77

Complete equation, 240

Complete solution, 270

Complex function, 157, 292

Complex numbers, 153

Complex plane, 157, 302, 360, 433

Complex variable. See Functions of a

Components, 163, 167, 174, 301, 342, 507

Computation, 59
;
of a definite integral,

77; of Bernoulli's numbers, 447; of

elliptic functions and integrals, 475,

507, 514, 522; of logarithms, 59; of

the solution of a differential equation,
195. See Approximations, Errors, etc

oncave, up or down, 12, 143
ondensation point, 38, 40

Condition, for an exact differential, 105 ;

of complanarity, 169
;
of integrability,

255
;
of parallelism, 166

;
of perpendic-

ularity, 81, 165. See Initial

Conformal representation, 490

Conformal transformation, 132, 477, 538

Congruence of curves, 141

Conjugate functions, 536

Conjugate imaginaries, 156, 543

Connected, simply or multiply, 89
Consecutive points, 72

Conservation of energy, 301

Conservative force or system, 224, 307

Constant, Euler's, 385
Constant function, 482

Constants, of integration, 15, 183; phys-
ical, 183

;
variation of, 243

Constrained maxima and minima, 120,
404

Contact, of curves, 71
;
order of, 72

;
of

conies with cubic, 521
;
of plane and

curve, 82

Continuation, 444, 478, 542

Continuity, axiom of, 34; equation of,
350

; generalized, 44
;
of functions, 41,

88, 476; of integrals, 52, 281, 308; of

series, 430; uniform, 42, 92, 476
Contour line or surface, 87

Convergence, absolute, 357, 422, 429;

asymptotic, 456; circle of, 433, 437;
of infinite integrals, 352

;
of products,

429; of series, 419; of .suites of num-
bers, 39; of suites of functions, 430;
nonuniform, 431

;
radius of, 433

;
uni-

form, 308, 431

Coordinates, curvilinear, 131
; cylindri-

cal, 79; polar, 14; spherical, 79

cos, cos- 1
, 155, 161, 393, 456

cosh, cosh-i, 5, 6, 16, 22

Cosine amplitude, 507. See en

Cosines, direction, 81, 109
;
series of, 460

cot, coth, 447, 450, 454
Critical points, 477, 491

;
order of, 491

esc, 550, 557
Cubic curves, 519

Curl, Vx, 345, 349, 418, 553
Curvature of a curve, 82

;
as a vector,

171; circle and radius of, 73, 198;
problems on, 181

Curvature of asurface, 144
; lines of, 146 ;

mean and total, 148; principal radii,
144

Curve, 308
;
area of, 311 ;

intrinsic equa-
tion of, 240

;
of limited variation, 309

;

quadrature of, 313
; rectifiable, 311.

See Curvature, Length, Torsion, etc.,
and various special curves

Curvilinear coordinates, 131

Curvilinear integral. See Line

Cuspidal edge, 142

Cuts, 90, 302, 362, 497

Cycloid, 76, 404

Cylinder functions, 247. See Bessel

Cylindrical coordinates, 79, 328

D, symbolic use, 152, 214, 279
Darboux's Theorem, 51

Definite integrals, 24, 52
; change of

variable, 54, 65 ; computation of, 77
;

Duharnel's Theorem, 63
;
for a series,

451
; infinite, 352

; Osgood's Theorem,
54, 65

;
Theorem of the Mean, 25, 29,

52, 359. See Double, etc., Functions,
Infinite, Cauchy's, etc.

Degree of differential equations, 228

Del, V, 172, 260, 343, 345, 349
Delta amplitude, 507. See dn
De Moivre's Theorem, 155
Dense set, 39, 44, 50

Density, linear, 28
; surface, 315 ;

vol-

ume, 110, 326

Dependence, functional, 129; linear, 245

Derivative, directional, 97, 172
; geo-

metric properties of. 7 : infinite. 46:



of higher order, 11, 67, 102, 197; of

integrals, 27, 52, 283, 370 ;
of products,

11, 14, 48
;
of series term by term, 430

;

of vectors, 170; ordinary, 1, 45, 158;
partial, 93, 99

; right or left, 46; The-
orem of the Mean, 8, 10, 46, 94. See

Change of variable, Functions, etc.

Derived units, 109

Determinants, functional, 129; Wron-
skian, 241

Developable surface, 141, 143, 148, 279

Differences, 49, 462
Differentiable function, 45

Differential, 17, 64
; exact, 106, 254, 300

;

of arc, 70, 80, 131
;
of area, 80, 131

;

of heat, 107, 294
;
of higher order, 67,

104; of surface, 340; of volume, 81,

330; of work, 107, 292; partial, 95,
104

; total, 95, 98, 105, 208, 295
;
vec-

tor, 171, 293, 342
Differential equations, 180, 267

; degree
of, 228; order of, 180; solution or

integration of, 180
; complete solution,

270
; general solution, 201, 230, 269

;

infinite solution, 230
; particular solu-

tion, 230; singular solution, 231, 271.

See Ordinary, Partial, etc.

Differential equations, of electric cir-

cuits, 222, 226 ;
of mechanics, 186, 263

;

Hamilton's, 112
; Lagrange's, 112, 224,

413
;
of media, 417

;
of physics, 624

;

of strings, 185
Differential geometry, 78, 131, 143, 412

Differentiation, 1
; logarithmic, 5

;
of

implicit functions, 117
;
of integrals,

27, 283 ; partial, 93
; total, 95

;
under

the sign, 281
; vector, 170

Dimensions, higher, 335; physical, 109
Direction cosines, 81, 169

;
of a line, 81

;

of a normal, 83
;
of a tangent, 81

Directional derivative, 97, 172

Discontinuity, amount of, 41, 462
;
finite

or infinite, 479

Dissipative function, 225, 307

Distance, shortest, 404, 414
Distributive law, 151, 165

Divergence, formula of, 342
;
of an inte-

gral, 352 ;
of a series, 419 ;

of a vector,

343, 553
Double integrals, 80, 131, 313, 315, 372
Double integration, 32, 285, 319
Double limits, 89, 430
Double points, 119
Double sums, 315
Double surface potential, 551

Doubly periodic functions, 417, 486,

504, 517; order of, 487. See p, sn,

en, dn
Duhamers Theorem, 28, 63

Pupin's indicatrix, 145

J?, complete elliptic integral, 77, 514

^-function, 62, 353, 479
E (0, A), second elliptic integral, 514
e* e*, 4, 160, 447, 484, 497

Edge, cuspidal, 142

Elastic medium, 418
Electric currents, 222, 226, 533
Electric images, 539

Electromagnetic theory, 350, 417

Element, lineal, 191, 231
;

of arc, 70,
80 ;

of area, 80, 131, 344
;
of surface,

340
;
of volume, 80, 330

; planar, 254,
267

Elementary functions, 162
;

character-

ized, 482, 497
; developed, 450

Elimination, of constants, 183, 267
;
of

functions, 269

Ellipse, arc of, 77, 514

Elliptic functions, 471, 504, 507, 511, 517

Elliptic integrals, 503, 507, 511, 512, 517

Energy, conservation of, 301
;
dimen-

sions of, 110
; kinetic, 13, 101, 112,

178, 224, 413
;
of a gas, 106, 294, 392

;

of a lamina, 318
; potential, 107, 224,

301, 413, 547
; principle of, 264

;
work

and, 293, 301

Entropy, 106, 294

Envelopes, of curves, 135, 141, 231 ; of

lineal elements, 192; of planar ele-

ments, 254, 267
;
of planes, 140, 142

;

of surfaces, 139, 140, 271

Equation, adjoint, 240] algebraic, 159,

306,482; Bernoulli's, 205, 210
;
Clair-

aut's, 230, 273
; complete, 240

;
intrin-

sic, 240 ; Laplace's, 524
;
of continuity,

350; Poisson's, 548; reduced, 240;

Riccati's, 250; wave, 276

Equations, Hamilton's, 112
; Lagrange's,

112, 225, 413. See Differential equa-

tions, Ordinary, Partial, etc.

Equicrescent variable, 48

Equilibrium of strings, 185, 190, 400

Equipotential line or surface, 87, 533

Equivalent circuits, 91

Error, average, 390; functions, ^, 388;
mean square, 390, 465; in target

practice, 390; probable, 389; proba-

bility of an, 386

Errors, of observation, 386
; small, 101

Essential singularity, 479, 481

Euler's Constant, 385, 457

Euler's Formula, 108, 159

Euler's numbers, 450
Euler's transformation, 449

Evaluation of integrals, 284, 286, 360,

371. See Computation, etc.

Even function, 30

Evolute, 142, 234
Exact differential, 106, 254, 300

Exact differential equation, 207, 237, 254
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Expansion, asymptotic, 390, 397, 456;

by Taylor's or Maclaurin's Formula,
57, 305

; by Taylor's or Maclaurin's

Series, 435, 477
;
in ascending powers,

483, 479
;
in descending powers, 390,

397, 450, 481; in exponentials, 405,

467; in Legend re's polynomials, 406;
in trigonometric functions, 458, 405

;

of .solutions of differential equations,

198, 250, 525. See special functions

and Series

Exponential development, 405, 467

Exponential function. See ax
,
e?

jf, complete elliptic integral, 507, 514

F(<j>, k) = sn- 1 sin 0, 507, 514

Factor, integrating, 207, 240, 254

Factorial, 379

Family, of curves, 135, 192, 228
;
of sur-

faces, 139, 140. See Envelope
Faraday's Law, 350
Finite discontinuity, 41, 462, 479

Flow, of electricity, 553
; steady, 553

Fluid differentiation, 101

Fluid motion, circulation, 345 ; curl, 346 ;

divergence, 343 ; dynamical equations,
351

; equation of continuity, 350
;

ir-

rotational, 533
; velocity potential,

533; waves, 529
Fluid pressure, 28

Flux, of force, 308, 348
;
of fluid, 343

Focal point and surface, 141

Force, 13, 263; as a vector, 173, 301;

central, 175; generalized, 224; prob-
lems on, 186, 264. See Attraction

'orm, indeterminate, 61, 89; perma-
nence of, 2, 478; quadratic, 115,
145

Fourier's Integral, 377, 466, 528
Fourier's series, 458, 465, 525

Fractions, partial, 20, 66. See Rational
Free maxima and minima, 120

Frenet's formulas, 84

Frontier, 34. See Boundary
Function, average value of, 333; ana-

lytic, 304
; complementary, 218, 243

;

complex, 157, 292; conjugate, 636;
dissipative, 225, 307

; doubly periodic,
486

;
E-iunction, 62

; even, 30
; Green,

535; harmonic, 530; integral, 433;
odd, 30

;
of a complex variable, 157

;

periodic, 458, 485
; potential, 301. See

also most of these entries themselves,
and others under Functions

Functional dependence, 129
Functional determinant, 129
Functional equation, 45, 247, 252, 387
Functional independence, 129
T?ntir.Mnna.l ruin firm 190

see under their names or symbols ;
for

special types see below
Functions denned by functional equa-

tions, cylinder or Bessel's, 247
;

ex-

ponential, 46, 387
; Legendre's, 262

Functions defined by integrals, contain-

ing a parameter, 281, 368, 376; their

continuity, 281, 30!); differentiation,

283, 370; integration, 285, 370, 373;
evaluation, 284, 280, 371

; Cauchy's
integral, 304; Fourier's integral, 377,

466; Poisson's integral, 541, 546; po-
tential integrals, 546; with variable

limit, 27, 53, 209, 255, 295, 298; by
inversion, 496, 503, 517; conjugate
function, 530, 54'2

; special functions,

Bessel's, 394, 398
;
Beta and Gamma,

378; error, i//.
388

;
E (0, k), 51 4

; F(<, k),

507
; logarithm, 302, 30(5, 497

; p-func-

tion, 517; sin-i, 307, 498; sn-i, 435,

503; tan- 1
, 307, 498

Functions defined by mapping, 543
Functions defined by properties, con-

stant, 482; doubly periodic, 486; ra-

tional fraction, 483
; periodic or

exponential, 484
Functions defined by series, p-f unction,

487 ;
Theta functions, 467

Functions of a complex variable, 158,

163; analytic, 304, 435; angle of,

159 ;
branch point, 492

;
center of

gravity of poles and roots, 482
;

Cauchy's integral, 304, 477
;

con-

formal representation, 490
; continu-

ation of, 444, 478, 542
; continuity,

158, 476 ;
critical points, 477, 491

;
de-

fines conformal transformation, 476
;

derivative of, 158, 476
; derivatives of

all orders, 305 ;
determines harmonic

functions, 536; determines orthogonal
trajectories, 194

; doubly periodic, 486 ;

elementary, 162
;
essential singularity,

479, 481; expansible in series, 436;

expansion at infinity, 481 ; finite dis-

continuity, 479 ; integral, 433
; integral

of, 300, 360; if constant, 482; if ra-

tional, 483
;
inverse function, 477

;
in-

version of, 543 ; logarithmic derivative,
482

; multiple valued, 492
;
number of

roots and poles, 482; periodic, 485;

poles of, 480 ; principal part, 483
;
resi-

dues, 480
;
residues of logarithmic de-

rivative, 482; Kiemann's surfaces,

493; roots of, 158, 482; singularities

of, 476, 479; Taylor's Formula, 305;

uniformly continuous, 476
; vanishes,

158. See various special functions

and topics
1?mir>tiimu f\f (-.no viinl vcivial-iln Aft-
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41
; continuous over dense sets, 44

;

Darboux's Theorem, 51
; derivative of

,

45
; differentiable, 45 ; differential, 64,

<!7
; discontinuity, 41, 462

; expansion
by Fourier's series, 462

; expansion by
Legendre's polynomials, 460; expan-
sion by Taylor's Formula, 49, 55;
expansion by Taylor's Series, 435 ;

ex-

pression as Fourier's Integral, 377,
466; increasing, 7, 45, 310, 462; in-

linite, 41
;
infinite derivative, 46

;
inte-

rable, 52, 54, 310; integral of, 15, 24,
52; inverse of, 45; limited, 40; limit

of, 41
,
44

;
lower sum, 51

;
maxima and

minima, 7, 9, 10, 12, 40, 43, 46, 75;
multiple valued, 40; not decreasing,
54, 310; of limited variation, 54, 309,

462; oscillation, 40, 50
;
Rolle's Theo-

rem, 8, 46
; right-hand or left-hand

derivative or limit, 41, 46, 49, 462;

single valued, 40
;
theorems of the

mean, 8, 25, 29, 46, 51, 62, 359
;
uni-

formly continuous, 42
; unlimited, 40

;

upper sum, 51
;
variation of, 309, 401,

410. See various special topics and
functions

Functions of several real variables, 87;

average value of, 334, 340; branch

of, 90
; continuity, 88

;
contour lines

and surfaces, 87; differentiation, 93,

117; directional derivative, 97; double

limits, 89, 430
; expansion by Taylor's

Formula, 113; gradient, 172; harmonic,
530; homogeneous, 107

; implicit, 177
;

integral of, 315, 326, 335, 340; inte-

gration, 319, 327; inverse, 124; maxima
and minima, 114, 118, 120, 125; mini-

max, 115; multiple-valued, 90 ;
normal

derivative, 97
;
over various regions,

91; potential, 547; single-valued, 87;
solution of, 117; space derivative, 172;
total differential, 95

;
transformation

by, 131; Theorem of the Mean, 94;

uniformly continuous, 91; variation

of, 90
Fundamental solution, 534
Fundamental theorem of algebra, 159,
306

Fundamental units, 109

Gamma function, 378; as a product,
458

; asymptotic expression, 883, 456 ;

beta functions, 379
; integrals in terms

of, 380
; logarithm of, 383

; Stirling's

Formula, 386

Gas, air, 189; molecules of a, 392
Gauss's Formula, 342

Geometric addition, 163
Geometric language, 33, 335
Geometric series, 421

Geometry. See Curve, Differential, and
all special topics

Gradient, v, 172, 301. See Del
Gravitation. See Attraction

Gravity. See Center
Green Function, 535, 542
Green's Formula, 349, 531
Green's Lemma, 342, 344
Gudermannian function, 6, 16, 450

Gyration, radius of, 334

Half periods of theta functions, 468
Hamilton's equations, 112
Hamilton's principle, 412
Harmonic functions, 530; average value,

531; conjugate functions, 536; exten-
sion of, 542; fundamental solutions,
534

;
Green Function, 535

; identity

of, 534
;
inversion of, 539

;
maximum

and minimum, 531, 554; Poisson's In-

tegral, 541, 546; potential, 548; sin-

gularities, 534

Helicoid, 418

Helix, 177, 404

Helmholtz, 351

Higher dimensions, 335

Higher order, differentials, 67, 104
;
in-

finitesimals, 64, 356
; infinites, 66

Homogeneity, physical, 109; order of,

107

Homogeneous differential equations,

204, 210, 230, 236, 259, 262, 278

Homogeneous functions, 107; Euler's

Formula, 108, 152
Hooke's law, 187

Hydrodynamics. See Fluid

Hyperbolic functions, 5. See cosh, sinh,
etc.

Hypergeometric series, 398

Imaginary, 153, 216
; conjugate, 156

Imaginary powers, 161

Implicit functions, 117-135. See Max-
ima and Minima, Minimax, etc.

Indefinite integral, 15, 53. See Functions

Independence, functional, 129
; linear,

245
;
of path, 298

Indeterminate forms, 61
; L'Hospital's

Rule, 61
;
in two variables, 298

Indicatrix, Dupin's, 145

Indices, law of, 150

Induction, 308, 348

Inequalities, 36
Inertia. See Moment
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Infinite series, 39, 419
Infinite solution, 230

Infinitesimal, 63
;
order of, 63

; higher
order, 64

;
order higher, 356

Infinitesimal analysis, 68

Infinity, point at, 481

Inflection point, 12, 75
;
of cubic, 521

Instantaneous center, 74, 178

Integrability, condition of, 255 ;
of func-

tions, 52, 368

Integral, Cauchy's, 304
; containing a

parameter, 281, 305; definite, 24, 51
;

double, 315; elliptic, 503; Fourier's,
377

; Gauss's, 348
; higher, 335

;
in-

definite, 15, 53; infinite, 352; inver-

sion of, 496; line, 288, 311, 400;
Poissou's, 541

; potential, 546
;

sur-

face, 340
; triple, 326. See Definite,

Functions, etc.

Integral functions, 433

Integral test, 421

Integrating factor, 207, 240, 254

Integration, 15
; along a curve, 291, 400

;

by parts, 19, 307
; by substitution, 21

;

constants of, 15, 183
; double, 32, 320

;

of functions of a complex variable,
307

;
of radicals of a biquadratic, 513

;

of radicals of a quadratic, 22
;
of ra-

tional fractions, 20; over a surface,
840

;
term by term, 430

;
under the

sign, 285, 370. See Differential equa-
tions, Ordinary, Partial, etc.

Intrinsic equation, 240
Inverse function, 45, 477

;
derivative of,

2, 14
Inverse operator, 150, 214

Inversion, 537; of integrals, 496

Involute, 234
Irrational numbers, 2, 36
Irreducible circuits, 91, 302, 500

Isoperimetric problem, 406
Iterated integration, 327

Jacobian, 129, 330, 336, 476

Jumping rope, 511

Junction line, 492

Kelvin, 351

Kinematics, 73, 178
Kinetic energy, of a chain, 415; of a

lamina, 318; of a medium, 416
;
of a

particle, 13, 101
;
of a rigid body, 293

;

of systems, 112, 225, 413

Lagrange's equations, 112, 225, 413
Tia.rrrn.no'p.'s va.rin.t.irm nf rwnKt.nnt.H 9.4.51

Laplace's equation, 104, 110, 526, 530,

533, 548

Law, Ampere's, 350
; associative, 150,

165; commutative, 149, 165; distrib-

utive, 150, 165; Faraday's, 350;

Hooke's, 187; of indices, 150; of

Nature, 307
; parallelogram, 154, 163,

307
;
of the Mean, see Theorem

Laws, of algebra, 153
;
of motion, 13,

173, 264
Left-hand derivative, 46
Left-handed axes, 84, 167

Legendre's elliptic integrals, 503, 511

Legendre's equation, 252 (Ex. 13 5) ; gen-

eralized, 626

Legendre's functions, 252

Legendre's polynomials, 252, 440, 466
;

generalized, 527
Leibniz's Rule, 284
Leibniz's Theorem, 11, 14, 48

Length of arc, 69, 78, 131, 310

Limit, 35; double, 89; of a quotient,

1, 45
;
of a rational fraction, 37

;
of a

sum, 16, 50, 291

Limited set or suite, 38
Limited variation, 54, 309, 462

Line, direction of, 81, 169; tangent,

81; normal, 96; perpendicular, 81,
165

Line integral, 288, 298, 311, 400
;
about a

closed circuit, 295, 344 ; Cauchy's, 304 ;

differential of, 291
;
for angle, 297 :

for area, 289
;
for work, 293

;
in the

complex plane, 360, 497
; independent

of path, 298
;
on a Riemann's surface,

499, 603
Lineal element, 191, 228, 231, 261

Linear dependence or independence,
245

Linear differential equations, 240 ;

Bessel's, 248; first order, 205, 207;

Legendre's, 252
;
of physics, 524

; par-

tial, 267, 275, 524; second order, 244;

simultaneous, 223
;
variation of con-

stants, 243
;
with constant coefficients,

214, 223, 275
Linear operators, 151
Lines of curvature, 146

log, 4, 11, 161, 302, 449, 497; log cos, log

sin, log tan, 450
; log r, 535

Logarithmic differentiation and deriv-

ative, 5
;

of functions of a complex
variable, 482

;
of gamma function,

382
;
of theta functions, 474, 512

Logarithms, computation of, 59



28
;

ot .solid, 32(5
; potential of a,

308, 348, 527. See Center of gravity
Maxima and minima, constrained, 120,

404
; free, 120

;
of functions of one vari-

able, 7, 9, 10, 12, 40, 43, 46, 75
;
of func-

tions of several variables, 114, 118, 120,
125

;
of harmonic functions, 531

;
of

implicit functions, 118, 120, 125; of

integrals, 400, 404, 409 ;
of sets of num-

bers, 38 ; relative, 120

Maxwell's assumption for gases, 390

Mayer's method, 258

Mean. See Theorem of the Mean
Mean curvature, 148

Mean error, 390
Mean square error, 390
Mean value, 333, 340

Mean velocity, 392

Mechanics. See Equilibrium, Motion,
etc.

Medium, elastic, 418
; ether, 417. See

Fluid
Meusnier's Theorem, 145

Minima. See Maxima and minima

Minimax, 115, 119

Minimum surface, 415, 418

Modulus, of complex number, 154; of

elliptic functions, fc, &', 505

Molecular velocities, 392

Moment, 176; of momentum, 176, 264,
325

Moment of inertia, curve of minimum,
404

;
of a lamina, 32, 315, 324

;
of a

particle, 31
;
of a solid, 328, 381

Momentum, 13, 173; moment of, 176,

264, 325
; principle of, 264

Monge's method, 276

Motion, central, 175, 264; Hamilton's

equations, 112; Hamilton's Principle,
412

;
in a plane, 264 ; Lagrange's equa-

tions, 112, 225, 413
;
of a chain, 415 ;

of a drumhead, 526
;
of a dynamical

system, 413
;
of a lamina, 78, 178, 414

;

of a medium, 416
;
of the simple pen-

dulum, 509; of systems of particles,
175

; rectilinear, 186
; simple harmonic,

188. See Fluid, Small vibrations, etc.

Multiple-valued functions, 40, 90, 492

Multiplication, by complex numbers,
155

;
of series, 442

;
of vectors, 164

Multiplier, 474
; undetermined, 411

Multipliers, method of, 120, 126, 406,
411

Multiply connected regions, 89

Newton's Second Law of Motion, 13, 173,
186

Normal, principal, 83 ;
to a closed sur-

face, 167, 341
Normal derivative, 97, 137, 172

Normal plane, 181

Numbers, Bernoulli's, 448; complex,
153

; Euler's, 450
; frontier, 34

;
inter-

val of, 34
; irrational, 2, 36; real, 33;

sets or suites of, 38

Observation, errors of, 386; small er-

rors, 101
Odd function, 30

Operation, 149

Operational methods, 214, 223, 275, 447

Operator, 149, 155, 172
;
distributive or

linear, 161
; inverse, 150, 214

;
invol-

utory, 152 ; vector-differentiating, 172,

260, 343, 345, 349

Order, of critical point, 491
; of deriv-

atives, 11
;

of differentials, 67
;

of

differential equations, 180; of doubly-
periodic function, 487

;
of homogene-

ity, 107; of infinitesimals, 63; of

infinites, 66
;
of pole, 480

Ordinary differential equations, 203;
approximate solutions, 195, 197; aris-

ing from partial, 534; Bernoulli's, 205,

210; Clairaut's, 230; exact, 207, 237;

homogeneous, 204, 210, 230, 236
;
inte-

grating factor for, 207; lineal element

of, 191
; linear, see Linear

; of higher
degree, 228; of higher order, 234; prob-
lems involving, 179; Riccati's, 250;
systems of, 223, 260; variables sepa-
rable, 203. See Solution

Orthogonal trajectories, plane, 194, 234,
266 ; space, 260

Orthogonal transformation, 100

Osculating circle, 73

Osculating plane, 82, 140, 145, 171, 412

Osgood's Theorem, 54, 65, 325

p-function, 487, 517

Pappus's Theorem, 332, 346

Parallelepiped, volume of, 169

Parallelism, condition of, 166

Parallelogram, law of addition, 154, 163,

307; of periods, 486; vector area of,
165

Parameter, 135
; integrals with a, 281

Partial derivatives, 93
; higher order,

102
Partial differentials, 95, 104
Partial differential equations, 267; char-

acteristics of, 267, 279
; Charpit's

method, 274; for types of surfaces,
269

; Laplace's, 626
; linear, 267, 275,

524; Monge's method, 276; of physics,
524

; Poisson's, 548
Partial differentiation, 93, 102

; change
of variable, 98, 103

Partial fractions, 20, 66
Particular solutions, 230, 524



Pat.h, indiipo.ndoncy. of, 298

Pudal curvo, 9

Period, halt', 4(>8
;
of elliptic f unctions,

471, 486; of exponential function, 161;
of Uiota functions, 408

Pc.riodic functions, 161, 458, 484
Permanence of form, 2, 478

Physics, differential equations of, 524

Planar element, 254, 267

Plane, normal, 81; tangent, 90; oscu-

lating, 82, 140, 145, 171, 412

Points, at infinity, 481
; consecutive, 72;

inflection, 12, 75, 521
;
of condensation,

38, 40 ; sets or suites of, 380 ; singular,

119, 476
Poisson's equation, 548
Poisson's Integral, 541

Polar coordinates, 14, 79

Pole, 479; order of, 480 ;
residue of, 480

;

principal part of, 483

Polynomials, Bernoulli's, 451
; Legen-

dre's, 252, 440, 466, 527
;
root of, 159,

482

Potential, 308, 332, 348, 627, 530, 539,
547 ; double surface, 551

Potential energy, 107, 224, 301, 413

Potential function, 301, 547

Potential integrals, 546 ; retarded, 512
;

surface, 551

Power series, 428, 433, 477
; descending,

389, 397, 481

Powers of complex numbers, 161

Pressure, 28

Principal normal, 83

Principal part, 483

Principal radii and sections, 144

Principle, Hamilton's, 412
;
of energy,

264
;
of momentum, 264

;
of moment

of momentum, 264; of permanence
of form, 2, 478 ;

of work and energy,
293

Probability, 387

Probable error, 389

Product, scalar, 164; vector, 165; of

complex numbers, 155
;
of operators,

149
;
of series, 442

Products, derivative of, 11, 14, 48; in-

finite, 429

Projection, 164, 167

Quadratic form, 115, 145

Quadrature, 313. See Integration
Quadruple integrals, 335

Quotient, limit of, 145; of differences,

30, 61; of differentials, 64, 67; of power
series, 446; of theta functions, 471

Raabe's test, 424

Radius, of convergence, 433, 437; of cur-

vature, 72, 82, 181; of gyration, 334;
of torsion, 83

Kates, 184

Ratio test, 422
Rational fractions, characterization of,

488; decomposition of, 20, 66; inte-

gration of, 20; limit of, 37

Real variable, 35. <S'ee Functions

Rearrangement of series, 441

Rectifiable curves, 311

Reduced equation, 240

Reducibility of circuits, 91

Regions, varieties of, 89

Relation, functional, 129

Relative maxima and mimima, 120

Remainder, in asymptotic expansions.

390, 398, 456; in Taylor's or Mac-
laurin's Formula, 55, 306, 398

Residues, 480, 487
;

of logarithmic de-

rivatives, 482

Resultant, 154, 178; moment, 178

Retarded potential, 552

Reversion of series, 446

Revolution, of areas, 346
;
of curves,

332
;
volume of, 10

Rhumb line, 84
Riccati's equation, 250
Riemann's surfaces, 493

Right-hand derivative, 46

Right-handed axes, 84, 167

Rigid body, energy of a, 293
;
with a

fixed point, 76
Rolle's Theorem, 8, 46

Roots, of complex numbers, 155 ; of

polynomials, 156, 159, 306, 412; of

unity, 156
Ruled surface, 140

Saddle-shaped surface, 143
Scalar product, 164, 168, 343
Scale of numbers, 33

Series, as an integral, 451
; asymptotic,

390, 397, 456; binomial, 423, 425;
Fourier's, 415; infinite, 39, 41!); ma-
nipulation of, 440 ;

of complex terms,
423

;
of functions, 430

; Taylor's and

Maclaurin's, 197, 435, 477; theta,
467. See various special functions

Set or suite, 38, 478
; dense, 39, 44, 50

Shortest distance, 404, 412

Sigma functions, <r, <ra ,
523

Simple harmonic motion, 188

Simple pendulum, 509

Simply connected region, 89, 294

Simpson's Rule, 77

Simultaneous differential equations, 223,
260

sin, sin- 1
, 3, 11, 21, 155, 161, 307, 436,

453, 499
Sine amplitude, 507. See ,sn

Single-valued function. 40, 87, 295

Singular points, 119, 476

Singular solutions, 230, 271



Singularities, of functions of a complex
yariable, 476, 479; of harmonic func-

tions, 534

sinh, sinh- 1
, 5, 453

Slope, of a curve, 1
;
of a function, 301

Small errors, 101

Small vibrations, 224, 415

sn, sn-i, 471, 475, 503, 507, 511, 517
Solid angle, 347
Solution of differential equations, com-

plete, 270
; general, 269

; infinite, 230 ;

particular, 230,'524; singular, 230, 271
Solution of implicit functions, 117, 133

Speed, 178

Spherical coordinates, 79

Sterling's approximation, 380, 458

Stokes's Formula, 345, 418

Strings, equilibrium of, 185
Subnormal and subtangent, 8
Substitution. See Change of variable

Successive approximations, 198

Successive differences, 49

Suite, of numbers or points, 38
;
of func-

tions, 430 ; uniform convergence, 431

Sum, limit of a, 36, 24, 51, 419; of a

series, 419. See Addition, Definite in-

tegral, Series, etc.

Superposition of small vibrations, 226,
525

Surface, area of, 67, 339; closed, 167,

341; curvature of, 144; developable,

141, 143, 148, 279
;
element of, 340

;

geodesies on, 412; minimum, 404, 415
;

normal to, 96, 341; Riemann's, 493;
ruled, 140

; tangent plane, 96
; types

of, 209; vector, 167; M>-, 492
Surface integral, 340, 347

Symbolic methods, 172, 214, 223, 260,

275, 447

Systems, conservative, 301; dynamical,
413

Systems of differential equations, 223,
260

tan, tan- 1
, 3, 21, 307, 450, 457, 498

Tangent line, 8, 81, 84

Tangent plane, 96, 170

tanh, tanh-i, 5, 6, 450, 501

Taylors Formula, 55, 112, 152, 305, 477

Taylor's Series, 197, 435, 477

Taylor's Theorem, 49

Test, Cauchy's, 421; comparison, 420;

Raabe's, 424; ratio, 422; Weierstrass's

M-, 432, 455
Test function, 355
Theorem of the Mean, for derivatives,

8, 10, 46, 94; for integrals, 25, 29, 52

359

Thermodynamics, 106, 294
Theta functions, H, ff,

, 9, 0^ as Fourier's

elliptic functions, 471, 504; logarith-
mic derivative, 474, 512

; periods and
half periods, 468

; relations between
squares, 472

; small thetas, 8, a ,
523

;

zeros, 469

Torsion, 83
; radius of, 83, 175

Total curvature, 148
Total differential, 95, 98, 105, 209,

295
.11

Total differential equation, 254
Total differentiation, 99

Trajectory, 196; orthogonal, 194, 234,
260

Transformation, conformal, 132, 476;
Euler's, 449; of inversion, 537; orthog-
onal, 100; of a plane, 131; to polars,

14, 79

Trigonometric functions, 3, 161, 453

Trigonometric series, 458, 465, 525

Triple integrals, 326 ; element of, 80

Umbilic, 148
Undetermined coefficients, 199
Undetermined multiplier, 120, 126, 406,

411
Uniform continuity, 42, 92, 476
Uniform convergence, 369, 431

Units, fundamental and derived, 109;
dimensions of, 109

Unity, roots of, 156
Unlimited set or suite, 38

Vallee-Poussin, de la, 373, 555
Value. See Absolute, Average, Mean
Variable, complex, 157; equicrescent,

48
; real, 35. See Change of, Functions

Variable limits for integrals, 27, 404

Variables, separable, 179, 203. See

Functions

Variation, 179
;
of a function, 3, 10, 64;

limited, 54, 309
;
of constants, 243

Variations, calculus of, 401 ;
of integrals,

401, 410

Vector, 154, 163; acceleration, 174; area,

167, 290
; components of a, 163, 167,

174, 342; curvature, 171; moment,
176; moment of momentum, 176;

momentum, 173; torsion, 83, 171;

velocity, 173
Vector addition, 154, 163
Vector differentiation, 170, 260, 342, 345 ;

force, 173
Vector functions, 260, 293, 300, 342, 345,

551
Vector operator v, see Del
Vector product, 165, 168, 345

Vectors, addition of, 154, 163; corn-

planar, 169 ; multiplication of, 155,
163

; parallel, 166 ; perpendicular, 105
;

products of, 164, 165, 168, 345
; pro-



Velocity, 13, 173; angular, 346; areal,
175

;
of molecules, 392

Vibrations, small, 224, 520
; superposi-

tion of, 226, 524

Volume, center of gravity of, 328
;
ele-

ment of, 80
;
of parallelepiped, 169

;

of revolution, 10
;
under surfaces, 32,

317, 381
;
with parallel bases, 10

Volume integral, 341

Wave equation, 276
Waves on water, 529

Weierstrass s integral, 517
Weierstrass 1

s Jtf-test, 432

Weights, 333

Work, 107, 224, 202, 301
;
and energy,

293, 412
Wronskian determinant, 241

z-plane, 157, 302, 360, 433; mapping
the, 490, 497, 503, 517, 543

Zeta functions, Z, 512
; f, 522

Zonal harmonies. See Legendre's poly-
nomials
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;ky; how are shadows formed? Prof. Minnaert of U, of Utrecht answers these and similar
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T61 Paperbound ?1.60

FHE EVOLUTION OF SCIENTIFIC THOUGHT FROM NEWTON TO EINSTEIN, A. d'Abro. Einstein's
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scientist alike," R. T. Birge, Prof. Emeritus of Physics, Univ. of Calif; Former Pres.,
Amer. Physical Soc, x + 365pp. 53/e x 8. T394 Paperbound $1.50
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Lorentz, etc. iii + 147pp. 5% x 8. S469 Paperbound $1.35
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of thermodynamics, other problems posed by discarding of Laplacean determinism. 285pp.
5% x 8. T480 Paperbound $1.65

THE PRINCIPLES OF SCIENCE, A TREATISE ON LOGIC AND THE SCIENTIFIC METHOD, W. S.

Jevons. Milestone in development of symbolic logic remains stimulating contribution to in-
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number, probability, limits of scientific method; significantly advances Boole's logic, con-
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everyday affairs, etc. In introduction, Ernest Nagel of Columbia U. says, "[Jevons] continues
to be of interest as an attempt to articulate the logic of scientific inquiry." lili + 786pp.
5% x 8. S446 Paperbound $2.98

A HISTORY OF ASTRONOMY FROM THALES TO KEPLER, J. L. E. Dreyer. Only work in English
to give complete history of cosmological views from prehistoric times to Kepler. Partial
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Euxodus, Epicycles, Ptolemaic system, Medieval cosmology, Copernicus, Kepler, much more.
"Especially useful to teachers and students of the history of science . . . unsurpassed in

its field," Isis. Formerly "A History of Planetary Systems from Thales to Kepler." Revised
foreword by W. H. Stahl. xvii + 430pp. 5% x 8. S79 Paperbound $1.98

A CONCISE HISTORY OF MATHEMATICS, D. Struik. Lucid study of development of ideas,

techniques, from Ancient Near East, Greece, Islamic science, Middle Ages, Renaissance,
modern times. Important mathematicians described in detail. Treatment not anecdotal, but

analytical development of ideas. Non-technical no math training needed. *Rich in con-

tent, thoughtful in interpretations," U.S. Quarterly Booklist. 60 illustrations including

Greek, Egyptian manuscripts, portraits of 31 mathematicians, 2nd edition, xix H- 299pp.
53/8 x 8. S255 Paperbound $1.75

THE PHILOSOPHICAL WRITINGS OF PEIRCE, edited by Justus Buchler. A carefully balanced

expositon of Peirce's complete system, written by Peirce himself. It covers such matters
as scientific method, pure chance vs. law, symbolic logic, theory of signs, pragmatism,
experiment, and other topics. "Excellent selection . . , gives more than adequate evidence
of the range and greatness," Personalist. Formerly entitled "The Philosophy of Peirce."

xvi + 368pp. T217 Paperbound $1.95

SCIENCE AND METHOD, Henri Poincare". Procedure of scientific discovery, methodology, ex-

periment, idea-germination processes by which discoveries come into being. Most signifi-
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Cantor, the new mechanics, etc. 288pp. 5% x 8. S222 Paperbound ?1.35

SCIENCE AND HYPOTHESIS, Henri Poincare. Creative psychology in science. How such con-

cepts as number, magnitude, space, force, classical mechanics developed, how modern
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Introduction by Sir James Larmor. "Few mathematicians have had the breadth of vision

of Poincare', and none is his superior in the gift of clear exposition," E. T. Bell. 272pp.
53/8 x 8. S221 Paperbound $1:35

ESSAYS ^EXPERIMENTAL LOGIC, John Dewey. Stimulating series of essays by one of most
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wide range of subjects. Partial contents: Relationship between inquiry and experience;

dependence of knowledge upon thought; character logic; judgments of practice, data, and

meanings; stimuli of thought, etc. viii + 444pp. 5% x 8. T73 Paperbound $1.95

WHAT IS SCIENCE, Norman Campbell. Excellent introduction explains scientific method, role

of mathematics, types of scientific laws. Contents- 2 aspects of science, science and

nature, laws of chance, discovery of laws, explanation of laws, measurement and numerical

laws, applications of science. 192pp. 5% x 8. S43 Paperbound $1.25



FROM EUCLID TO EDDINGTON: A STUDY OF THE CONCEPTIONS OF THE EXTERNAL WORLD, Sir

Edmund Whittaker. Foremost British scientist traces development of theories of natural phi-

losophy from western rediscovery of Euclid to Eddington, Einstein, Dirac, etc. 5 major
divisions: Space, Time and Movement; Concepts of Classical Physics; Concepts of Quantum

Mechanics; Eddington Universe. Contrasts inadequacy of classical physics to understand

physical world with present day attempts of relativity, non-Euclidean geometry, space

curvature, etc. 212pp. 5% x 8. T491 Paperbound $1.35

THE ANALYSIS OF MATTER, Bertrand Russell. How do our senses accord with the new
physics? This volume covers such topics as logical analysis of physics, prerelativity

physics, causality, scientific inference, physics and perception, special and general rela-

tivity, Weyl's theory, tensors, invariants and their physical interpretation, periodicity and

qualitative series. "The most thorough treatment of the subject that has yet been pub-

lished," The Nation. Introduction by L. E. Denonn. 422pp. 5% x 8. T231 Paperbound $1.95

LANGUAGE, TRUTH, AND LOGIC, A. Ayer. A clear introduction to the Vienna and Cambridge
schools of Logical Positivism. Specific tests to evaluate validity of ideas, etc. Contents;

function of philosophy, elimination of metaphysics, nature of analysis, a priori, truth and

probability, etc. 10th printing. "I should like to have written it myself," Bertrand Russell.

160pp. 5% x 8. T10 Paperbound $1.25

THE PSYCHOLOGY OF INVENTION IN THE MATHEMATICAL FIELD, J. Hadamard. Where do ideas
come from? What role does the unconscious play? Are ideas best developed by mathematical

reasoning, word reasoning, visualization? What are the methods used by Einstein. Poincare,

Galton, Riemann? How can these techniques be applied by others? One of the world's

leading mathematicians discusses these and other questions, xiii + 145pp. 5 3/e x 8.

T107 Paperbound ?1.25

GUIDE TO PHILOSOPHY, C. E. M. Joad. By one of the ablest expositors of all time, this is

not simply a history or a typological survey, but an examination of central problems in

terms of answers afforded by the greatest thinkers: Plato, Aristotle, Scholastics, Leibniz,

Kant, Whitehead, Russell, and many others. Especially valuable to persons in the physical

sciences; over 100 pages devoted to Jeans, Eddington, and others, the philosophy of

modern physics, scientific materialism, pragmatism, etc. Classified bibliography. 592pp.
5% x 8. T50 Paperbound $2.00

SUBSTANCE AND FUNCTION, and EINSTEIN'S THEORY OF RELATIVITY, Ernst Cassirer. Two
books bound as one. Cassirer establishes a philosophy of the exact sciences that takes Into

consideration new developments in mathematics, shows historical connections. Partial

contents: Aristotelian logic, Mill's analysis, Helmholtz and Kronecker, Russell and cardinal

numbers, Euclidean vs. non-Euclidean geometry, Einstein's relativity. Bibliography. Index,

xxi + 464pp. 5% x 8. T50 Paperbound $2.00

FOUNDATIONS OF GEOMETRY, Bertrand Russell. Nobel laureate analyzes basic problems in

the overlap area between mathematics and philosophy: the nature of geometrical knowledge,
the nature of geometry, and the applications of geometry to space. Covers history of non-
Euclidean geometry, philosophic interpretations of geometry, especially Kant, projective
and metrical geometry. Most interesting as the solution offered in 1897 by a great mind
to a problem still current. New introduction by Prof. Morris Kline, N.Y. University. "Ad-

mirably clear, precise, and elegantly reasoned analysis," International Math. News, xii +
201pp. 53/8 x 8. S233 Paperbound $1.60

THE NATURE OF PHYSICAL THEORY, P. W. Bridgman. How modern physics looks to a highly
unorthodox physicist a Nobel laureate. Pointing out many absurdities of science, demon-
strating inadequacies of various physical theories, weighs and analyzes contributions of

Einstein, Bohr, Heisenberg, many others. A non-technical consideration of correlation of

science and reality, xi + 138pp. 5% x 8. S33 Paperbound $1.25

EXPERIMENT AND THEORY IN PHYSICS, Max Born. A Nobel laureate examines the nature
and value of the counterclaims of experiment and theory in physics. Synthetic versus

analytical scientific advances are analyzed in works of Einstein, Bohr, Heisenberg, Planck,

Eddington, Milne, others, by a fellow scientist. 44pp. 5% x 8. S308 Paperbound 600

A SHORT HISTORY OF ANATOMY AND PHYSIOLOGY FROM THE GREEKS TO HARVEY, Charles

Singer. Corrected edition of "The Evolution of Anatomy." Classic traces anatomy, phys-
iology from prescientific times through Greek, Roman periods, dark ages, Renaissance, to

beginning of modern concepts. Centers on individuals, movements, that definitely advanced
anatomical knowledge. Plato, Diodes, Erasistratus, Galen, da Vinci, etc. Special section
on Vesalius. 20 plates. 270 extremely interesting illustrations of ancient, Medieval, Renais-

sance, Oriental origin, xii + 209pp. 5% x 8. T389 Paperbound $1.75

SPACE -TIME -MATTER, Hermann Weyl. "The standard treatise on the general theory of

relativity," (Nature), by world renowned scientist. Deep, clear discussion of logical coher-
ence of general theory, introducing all needed tools: Maxwell, analytical geometry, non-
Euclidean geometry, tensor calculus, etc. Basis is classical space-time, before absorption
of relativity. Contents: Euclidean space, mathematical form, metrical continuum, general

theory, etc. 15 diagrams, xviii + 330pp. 5% x 8. S267 Paperbound $1.75



ucies, proceeds gradually to physical systems beyond complete analysis; motion, force
properties of centre of mass of material system; work, energy, gravitation, etc. Written
with all Maxwell's original insights and clarity. Notes by E. Larmor. 17 diagrams. 178pp.5% x 8. S188 Paperbound $1.25

PRINCIPLES OF MECHANICS, Heinrich Hertz. Last work by the great 19th century physicist
is not only a classic, but of great interest in the logic of science. Creating a new system
of mechanics based upon space, time, and mass, it returns to axiomatic analysis, under-

standing of the formal or structural aspects of science, taking into account logic, observa-
tion, a priori elements. Of great historical importance to Poincar, Carnap, Einstein, Milne.
A 20 page introduction by R. S. Cohen, Wesleyan University, analyzes the implications of

Hertz's thought and the logic of science. 13 page introduction by Helmholtz. xlii + 274pp.
53/8 x 8. S316 Clothbound $3.50

S317 Paperbound $1.75

FROM MAGIC TO SCIENCE, Charles Singer. A great historian examines aspects of science
from Roman Empire through Renaissance. Includes perhaps best discussion of early herbals,

penetrating physiological interpretation of "The Visions of Hiidegarde of Bingen." Also

examines Arabian, Galenic influences; Pythagoras' sphere, Paracelsus; reawakening of

science under Leonardo da Vinci, Ves^lius; Lorica of Gildas the Briton; etc. Frequent
quotations with translations from contemporary manuscripts. Unabridged, corrected edi-

tion. 158 unusual illustrations from Classical, Medieval sources, xxvii + 365pp. 5% x 8.

T390 Paperbound ?2.00

A HISTORY OF THE CALCULUS, AND ITS CONCEPTUAL DEVELOPMENT, Carl B. Boyer. Provides

laymen, mathematicians a detailed history of the development of the calculus, from begin-

nings in antiquity to final elaboration as mathematical abstraction. Gives a sense of

mathematics not as technique, but as habit of mind, in progression of ideas of Zeno, Plato,

Pythagoras, Eudoxus, Arabic and Scholastic mathematicians, Newton, Leibniz, Taylor, Des-

cartes, Euler, Lagrange, Cantor, Weierstrass, and others. This first comprehensive, critical

history of the calculus was originally entitled "The Concepts of the Calculus." Foreword

by R. Courant. 22 figures. 25 page bibliography, v + 364pp. SVa x 8.

S509 Paperbound $2.00

A DIDEROT PICTORIAL ENCYCLOPEDIA OF TRADES AND INDUSTRY, Manufacturing and the

Technical Arts in Plates Selected from "L'Encyclopedie ou Dictionnaire Raisonne des

Sciences, des Arts, et des Metiers" of Denis Diderot. Edited with text by C. Gillispie. First

modern selection of plates from high-point of 18th century French engraving. Storehouse

of technological information to historian of arts and science. Over 2,000 illustrations on

485 full page plates, most of them original size, show trades, industries of fascinating

era in such great detail that modern reconstructions might be made of them. Plates teem

with men, women, children performing thousands of operations; show sequence, general

operations, closeups, details of machinery. Illustrates such important, interesting trades,

industries as sowing, harvesting, beekeeping, tobacco processing, fishing, arts of war,

mining, smelting, casting iron, extracting mercury, making gunpowder, cannons, bells,

shoeing horses, tanning, papermaking, printing, dying, over 45 more categories. Professor

Gillispie of Princeton supplies full commentary on all plates, identifies operations, tools,

processes, etc. Material is presented in lively, lucid fashion. Of great interest to all

studying history of science, technology. Heavy library cloth. 920pp. 9 x 12.

T421 2 volume set $18.50

DE MAGNETE, William Gilbert. Classic work on magnetism, founded new science. Gilbert

was first to use word "electricity," to recognize mass as distinct from weight, to discover

effect of heat on magnetic bodies; invented an electroscope, differentiated between static

electricity and magnetism, conceived of earth as magnet. This lively work, by first great

experimental scientist, is not only a valuable historical landmark, but a delightfully easy

to follow record of a searching, ingenious mind. Translated by P. F. Mottelay. 25 page

biographical memoir. 90 figures, lix + 368pp. 5% x 8. S470 Paperbound $2.00

HISTORY OF MATHEMATICS, D. E. Smith. Most comprehensive, non-technical history of math

in English. Discusses lives and works of over a thousand major, minor figures, with foot-

notes giving technical information outside book's scheme, and indicating disputed matters.

Vol. I: A chronological examination, from primitive concepts through Egypt, Babylonia,

Greece, the Orient, Rome, the Middle Ages, The Renaissance, and to 1900. Vol. I : The

development of ideas in specific fields and problems, up through elementary calculus.

"Marks an epoch . . . will modify the entire teaching of the history of science, George

Sarton. 2 volumes, total of 510 illustrations, 1355pp. 5Va x 8. Set boxed in attractive

container. T429, 430 Paperbound, the set $5.00

THE PHILOSOPHY OF SPACE AND TIME, H. Reichenbacn. An important landmark in develop-

ment of empiricist conception of geometry, covering foundations of geometry, time theory,

consequences of Einstein's relativity, including: relations between theory and observations;

coordinate definitions; relations between topological and metrical properties ot space;

psychological problem of visual intuition of non-Euclidean structures; many more topics

important to modern science and philosophy. Majority of ideas require only knowledge
or

intermediate math. "Still the best book in the field," Rudolf Carnap. lntr duct'" Py

R. Carnap. 49 figures, xviii + 296pp. 53/8 x 8. S443 Paperbound $2.00



FOUNDATIONS Of SCIENCE: THE PHILOSOPHY OF THEORY AND EXPERIMENT, N. Campbell.
A critique of the most fundamental concepts of science, particularly physics. Examines why
certain propositions are accepted without question, demarcates science from philosophy,
etc. Part I analyzes presuppositions of scientific thought: existence of material world,

nature of laws, probability, etc; part 2 covers nature of experiment and applications of

mathematics: conditions for measurement, relations between numerical laws and theories,

error, etc. An appendix covers problems arising from relativity, force, motion, space,
time. A classic in its field. "A real grasp of what science is," Higher Educational Journal,

xiii + 565pp. 5 5/8 x 83/s. S372 Paperbound $2.95

THE STUDY OF THE HISTORY OF MATHEMATICS and THE STUDY OF THE HISTORY OF SCIENCE,
G. Sarton. Excellent introductions, orientation, for beginning or mature worker. Describes

duty of mathematical historian, incessant efforts and genius of previous generations. Ex-

plains how today's discipline differs from previous methods. 200 item bibliography with

critical evaluations, best available biographies of modern mathematicians, best treatises

on historical methods is especially valuable. 10 illustrations. 2 volumes bound as one.

113pp. + 75pp. 5% x 8. T240 Paperbound $1.25

MATHEMATICAL PUZZLES
MATHEMATICAL PUZZLES OF SAM LOYD, selected and edited by Martin Gardner. 117 choice

puzzles by greatest American puzzle creator and innovator, from his famous "Cyclopedia
of Puzzles." All unique style, historical flavor of originals. Based on arithmetic, algebra,

probability, game theory, route tracing, topology, sliding block, operations research, geo-
metrical dissection. Includes famous "14-15" puzzle which was national craze, "Horse of

a Different Color" which sold millions of copies. 120 line drawings, diagrams. Solutions.

xx + 167pp. 5% x 8. T498 Paperbound $1.00

SYMBOLIC LOGIC and THE GAME OF LOGIC, Lewis Carroll. "Symbolic Logic" is not concerned
with modern symbolic logic, but is instead a collection of over 380 problems posed with

"~'n, using the syllogism, and a fascinating diagrammatic method of

In "The Game of Logic" Carroll's whimsical imagination devises a

with 2 diagrams and counters (included) to manipulate hundreds of

final section, "Hit or Miss" is a lagniappe of 101 additional puzzles
........ ill manner. Until this reprint edition, both of these books were rarities

costing up to $15 each. Symbolic Logic: Index, xxxi + 199pp. The Game of Logic: 96pp.
2 vols. bound as one. 5% x 8. T492 Paperbound $1.50

PILLOW PROBLEMS and A TANGLED TALE, Lewis Carroll. One of the rarest of all Carroll's

works, "Pillow Problems" contains 72 original math puzzles, all typically ingenious. Particu-

larly fascinating are Carroll's answers which remain exactly as he thought them out,

reflecting his actual mental process. The problems in "A Tangled Tale" are in story form,
originally appearing as a monthly magazine serial. Carroll not only gives the solutions, but
uses answers sent in by readers to discuss wrong approaches and misleading paths, and
grades them for insight. Both of these books were rarities until this edition, "Pillow
Problems" costing up to $25, and "A Tangled Tale" $15. Pillow Problems: Preface and
Introduction by Lewis Carroll, xx + 109pp. A Tangled Tale: 6 illustrations. 152pp. Two vols.

bound as one. 53/8 x 8. T493 Paperbound $1.50

NEW WORD PUZZLES, G. L. Kaufman. 100 brand new challenging puzzles on words, com-
binations, never before published. Most are new types invented by author, for beginners
and experts both. Squares of letters follow chess moves to build words; symmetrical
designs made of synonyms; rhymed crostics; double word squares; syllable puzzles where
you fill in missing syllables instead of missing letter; many other types, all new. Solutions.

"Excellent," Recreation. 100 puzzles. 196 figures, vi + 122pp. 53/s x 8.

T344 Paperbound $1.00

MATHEMATICAL EXCURSIONS, H. A. Merrill. Fun, recreation, insights into elementary prob-
lem solving. Math expert guides you on by-paths not generally travelled in elementary math
courses divide by inspection, Russian peasant multiplication; memory systems for pi; odd,
even magic squares; dyadic systems; square roots by geometry; Tchebichev's machine;
dozens more. Solutions to more difficult ones. "Brain stirring stuff ... a classic," Genie.
50 illustrations. 145pp. 5% x 8. T350 Paperbound $1.00

THE BOOK OF MODERN PUZZLES, G. L. Kaufman. Over 150 puzzles, absolutely all new mate-
rial based on same appeal as crosswords, deduction puzzles, but with different principles,
techniques. 2-minute teasers, word labyrinths, design, pattern, logic, observation puzzles,
puzzles testing ability to apply general knowledge to peculiar situations, many others.
Solutions. 116 illustrations. 192pp. 5% x 8. T143 Paperbound $1.00

MATHEMAGIC, MAGIC PUZZLES, AND GAMES WITH NUMBERS, R. V. Heath. Over 60 puzzles,

stunts, on properties of numbers. Easy techniques for multiplying large numbers mentally,

identifying unknown numbers, finding date of any day in any year. Includes The Lost Digit,

3 Acrobats, Psychic Bridge, magic squares, trjangles, cubes, others not easily found else-



DOVER SCIENCE BOOKS
PUZZLE QUIZ AND STUNT FUN J. Meyer. 238 high-priority puzzles, stunts, tricks-math
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r CarPenter, Atom Bomb, Please Help Alice; mysteries, deductions

like The Bridge of Sighs, Secret Code; observation puzzlers like The American Flag, Playing
Cards, Telephone Dial; over 200 others with magic squares, tongue twisters, puns ana-
grams. Solutions. Revised, enlarged edition of "Fun-To-Do." Over 100 illustrations 238
puzzles, stunts, tricks. 256pp. 5% x 8. T337 Paperbound '$1.00

101 PUZZLES IN THOUGHT AND LOGIC, C. R. Wylie, Jr. For readers who enjoy challengestimulation of logical puzzles without specialized math or scientific knowledge Problems
entirely new, range from relatively easy to brainteasers for hours of subtle entertainment
Detective puzzles, find the lying fisherman, how a blind man identifies color by logic many
more. Easy-to-understand introduction to logic of puzzle solving and general scientific
method. 128pp. 5% x 8. T367 Paperbound $1.00

CRYPTANALYSIS, H. f. Gaines. Standard elementary, intermediate text for serious students
Not just old material, but much not generally known, except to experts. Concealment
Transposition, Substitution ciphers; Vigenere, Kasiski, Playfair, multafid, dozens of other
techniques. Formerly "Elementary Cryptanalysis." Appendix with sequence charts, letter
frequencies in English, 5 other languages, English word frequencies Bibliography 167
codes. New to this edition: solutions to codes, vi + 230pp. 5% x 8%.

T97 Paperbound $1.95

CRYPTOGRAPY, L. D. Smith. Excellent elementary introduction to enciphering, deciphering
secret writing. Explains transposition, substitution ciphers; codes; solutions; geometrical
patterns, route transcription, columnar transposition, other methods. Mixed cipher systems;
single, polyalphabetical substitutions; mechanical devices"; Vigenere; etc. Enciphering Jap-
anese; explanation of Baconian biliteral cipher; frequency tables. Over 150 problems Bib-

liography. Index. 164pp. 5% x 8. T247 Paperbound $1.00

MATHEMATICS, MAGIC AND MYSTERY, M. Gardner. Card tricks, metal mathematics, stage
mind-reading, other "magic" explained as applications of probability, sets, number theory,
etc. Creative examination of laws, applications. Scores of new tricks, insights. 115 sections
on cards, dice, coins; vanishing tricks, many others. No sleight of hand math guarantees
success. "Could hardly get more entertainment . . . easy to follow," Mathematics Teacher
115 illustrations, xii + 174pp. 5% x 8. T335 Paperbound $1.00

AMUSEMENTS IN MATHEMATICS, H. E. Dudeney. Foremost British originator of math puzzles,
always witty, intriguing, paradoxical in this classic. One of largest collections. More than
430 puzzles, problems, paradoxes. Mazes, games, problems on number manipulations,
unicursal, other route problems, puzzles on measuring, weighing, packing, age, kinship,
chessboards, joiners', crossing river, plane figure dissection, many others. Solutions. More
than 450 illustrations, viii + 258pp. 5?a x 8. T473 Paperbound $1.25

THE CANTERBURY PUZZLES H. E. Dudeney. Chaucer's pilgrims set one another problems in

story form. Also Adventures of the Puzzle Club, the Strange Escape of the King's Jester,
the Monks of Riddlewell, the Squire's Christmas Puzzle Party, others. All puzzles are

original, based on dissecting plane figures, arithmetic, algebra, elementary calculus, other
branches of mathematics, and purely logical ingenuity. "The limit of ingenuity and in-

tricacy," The Observer. Over 110 puzzles, full solutions. 150 illustrations, viii + 225 pp.
5% x 8. T474 Paperbound $1.25

MATHEMATICAL PUZZLES FOR BEGINNERS AND ENTHUSIASTS, G. Mott-Smith. 188 puzzles to

test mental agility. Inference, interpretation, algebra, dissection of plane figures, geometry,
properties of numbers, decimation, permutations, probability, all are in these delightful

problems. Includes the Odic Force, How to Draw an Ellipse, Spider's Cousin, more than 180
others. Detailed solutions. Appendix with square roots, triangular numbers, primes, etc.

135 illustrations. 2nd revised edition. 248pp. SVs x 8. T198 Paperbound $1.00

MATHEMATICAL RECREATIONS, M. Kraitchik. Some 250 puzzles, problems, demonstrations of

recreation mathematics on relatively advanced level. Unusual historical problems trorn

Greek, Medieval, Arabic, Hindu sources; modern problems on "mathematics without num-

bers," geometry, topology, arithmetic, etc. Pastimes derived from figurative, Mersenne,
Fermat numbers: fairy chess; latruncles: reversi; etc. Full solutions. Excellent insights
into special fields of math. "Strongly recommended to all who are interested in the

lighter side of mathematics," Mathematical Gaz. 181 illustrations. 330pp. 5% x 8.

T163 Paperbound $1.75

FICTION

FLATLAND, E. A. Abbott. A perennially popular science-fiction classic about life in a 2-

dimensional world, and the impingement of higher dimensions. Political, satiric, humorous,



SEVEN SCIENCE FICTION NOVELS OP H. u. WELLS, uompiete texts, unaDnogea, or seven or

Wells' greatest novels; The War of the Worlds, The Invisible Man, The Island of Dr. Moreau,
The Food of the Gods, First Men in the Moon, In the Days of the Comet, The Time Machine.

Still considered by many experts to be the best science-fiction ever written, they will offer

amusements and instruction to the scientific minded reader. "The great master," Sky and

Telescope. 1051pp. 5% x 8. T264 Clothbound $3.95

28 SCIENCE FICTION STORIES OF H. C. WELLS. Unabridged! This enormous omnibus contains

2 full length novels Men Like Gods, Star Begotten plus 26 short stories of space, time,

invention, biology, etc. The Crystal Egg, The Country of the Blind, Empire of the Ants,

The Man Who Could Work Miracles, Aepyornis Island, A Story of the Days to Come, and
20 others "A master ... not surpassed by ... writers of today," The English Journal.

915pp. 5 3/8 x 8. T265 Clothbound $3.95

FIVE ADVENTURE NOVELS OF H. RIDER HAGGARD. All the mystery and adventure of darkest
Africa captured accurately by a man who lived among Zulus for years, who knew African

ethnology, folkways as did few of his contemporaries. They have been regarded as examples
of the very best high adventure by such critics as Orwell, Andrew Lang, Kipling. Contents:

She, King Solomon's Mines, Allan Quatermain, Allan's Wife, Maiwa's Revenge. "Could spin
a yarn so full of suspense and color that you couldn't put the story down," Sat. Review.

821pp. 53/8 x 8. T108 Clothbound $3.95

CHESS AND CHECKERS

LEARN CHESS FROM THE MASTERS, Fred Reinfeld. Easiest, most instructive way to im-

prove your game play 10 games against such masters as Marshall, Znosko-Borovsky, Bron-

stein, Najdorf, etc., with each move graded by easy system. Includes ratings for alternate

moves possible. Games selected for interest, clarity, easily isolated principles. Covers

Ruy Lopez, Dutch Defense, Vienna Game openings; subtle, intricate middle game variations;

all-important end game. Full annotations. Formerly "Chess by Yourself." 91 diagrams, viii

+ 144pp. 53/s x 8. T362 Paperbound $1.00

REINFELD ON THE END GAME IN CHESS, Fred Reinfeld. Analyzes 62 end games by Alekhine,
Flohr, Tarrasch, Morphy, Capablanca, Rubinstein, Lasker, Reshevsky, other masters. Only
1st rate book with extensive coverage of error tell exactly what is wrong with each move
you might have made. Centers around transitions from middle play to end play. King and
pawn, minor pieces, queen endings; blockage, weak, passed pawns, etc. "Excellent ... a

boon," Chess Life. Formerly "Practical End Play." 62 figures, vi + 177pp. 53/8 x 8.

T417 Paperbound $1.25

HYPERMODERN CHESS as developed in the games of its greatest exponent, ARON NIMZO-
VICH, edited by Fred Reinfeld. An intensely original player, analyst, Nimzovich's approaches
startled, often angered the chess world. This volume, designed for the average player,
shows how his iconoclastic methods won him victories over Alekhine, Lasker, Marshall,
Rubinstein, Spielmann, others, and infused new life into the game. Use his methods to

startle opponents, invigorate play. "Annotations and introductions to each game . . . are

excellent," Times (London). 180 diagrams, viii + 220pp. 5% x 8. T448 Paperbound ?1.35

THE ADVENTURE OF CHESS, Edward Lasker. Lively reader, by one of America's finest chess
masters, including: history of chess, from ancient Indian 4-handed game of Chaturanga
to great players of today; such delights and oddities as Maelzel's chess-playing automaton
that beat Napoleon 3 times; etc. One of most valuable features is author's personal recollec-
tions of men he has played against Nimzovich, Emanuel Lasker, Capablanca, Alekhine,
etc. Discussion of chess-playing machines (newly revised). 5 page chess primer. 11 illus-

trations. 53 diagrams. 296pp. 53/s x 8. S510 Paperbound $1.45

THE ART OF CHESS, James Mason. Unabridged reprinting of latest revised edition of most
famous general study ever written. Mason, early 20th century master, teaches beginning,
intermediate player over 90 openings; middle game, end game, to see more moves ahead,
to plan purposefully, attack, sacrifice, defend, exchange, govern general strategy. "Classic
... one of the clearest and best developed studies," Publishers Weekly. Also included, a

complete supplement by F. Reinfeld, "How Do You Play Chess?", invaluable to beginners
for its lively question-and-answer method. 448 diagrams. 1947 Reinfeld-Bernstein text.

Bibliography, xvi + 340pp. 5% x 8. T463 Paperbound $1.85

MORPHY'S GAMES OF CHESS, edited by P. W. Sergeant. Put boldness into your game by
flowing brilliant, forceful moves of the greatest chess player of all time. 300 of Morphy's
best games, carefully annotated to reveal principles. 54 classics against masters like

Anderssen, Harrwitz, Bird, Paulsen, and others. 52 games at odds; 54 blindfold games; plus
over 100 others. Follow his interpretation of Dutch Defense, Evans Gambit, Giuoco Piano,
Ruy Lopez, many more. Unabridged reissue of latest revised edition. New introduction by
F. Reinfeld. Annotations, introduction by Sergeant. 235 diagrams, x + 352pp. 53/a x 8.

T386 Paperbound $1.75



onampion discusses principles of game, expert's shots, traps, problems for beginner, stand-
ard openings, locating best move, end game, opening "blitzkrieg" moves to draw when
behind, etc. Over 100 detailed questions, answers anticipate problems. Appendix. 75 prob-
lems with solutions, diagrams. 79 figures, xi + 107pp. 5% x 8. T363 Paperbound $1.00

HOW TO FORCE CHECKMATE, Fred Reinfeld. If you have trouble finishing off your opponent
here is a collection of lightning strokes and combinations from actual tournament play'
Starts with 1-move checkmates, works up to 3-move mates. Develops ability to lock ahead
gain new insights into combinations, complex or deceptive positions; ways to estimate weak-
nesses, strengths of you and your opponent. "A good deal of amusement and instruction

"

Times, (London). 300 diagrams. Solutions to all positions. Formerly "Challenge to Chess
Players." lllpp. 53/8 x 8. T417 Paperbound $1.25

A TREASURY OF CHESS LORE, edited by Fred Reinfeld. Delightful collection of anecdotes,
short stories, aphorisms by, about masters; poems, accounts of games, tournaments, photo-
graphs; hundreds of humorous, pithy, satirical, wise, historical episodes, comments, word
portraits. Fascinating "must" for chess players; revealing and perhaps seductive to those
who wonder what their friends see in game. 49 photographs (14 full page plates). 12
diagrams, xi + 306pp. 53/8 x 8. - T458 Paperbound $1.75

WIN AT CHESS, Fred Reinfeld. 300 practical chess situations, to sharpen your eye, test skill

against masters. Start with simple examples, progress at own pace to complexities. This
selected series of crucial moments in chess will stimulate imagination, develop stronger,
more versatile game. Simple grading system enables you to judge progress. "Extensive use
of diagrams is a great attraction," Chess. 300 diagrams. Notes, solutions to every situation.

Formerly "Chess Quiz." vi + 120pp. 5% x 8. T433 Paperbound $1.00

MATHEMATICS :

ELEMENTARY TO INTERMEDIATE

HOW TO CALCULATE QUICKLY, H. Sticker. Tried and true method to help mathematics of

everyday life. Awakens "number sense" ability to see relationships betw.een numbers as

whole quantities. A serious course of over 9000 problems and their solutions through

techniques not taught in schools: left-to-right multiplications, new fast division, etc. 10

minutes a day will double or triple calculation speed. Excellent for scientist at home in

higher math, but dissatisfied with speed and accuracy in lower math. 256pp. 5 x 7V4.

Paperbound $1.00

FAMOUS PROBLEMS OF ELEMENTARY GEOMETRY, Felix Klein. Expanded version of 1894

Easter lectures at Gb'ttingen. 3 problems of classical geometry: squaring the circle, trisect-

ing angle, doubling cube, considered with full modern implications: transcendental num-

bers, pi, etc. "A modern classic ... no knowledge of higher mathematics is required,"

Scientia. Notes by R. Archibald. 16 figures, xi + 92pp. 5% x 8. T298 Paperbound $1.00

HIGHER MATHEMATICS FOR STUDENTS OF CHEMISTRY AND PHYSICS, J. W. Mellor. Practical,

not abstract, building problems out of familiar laboratory material. Covers differential cal-

culus, coordinate, analytical geometry, functions, integral calculus, infinite series, numerical

equations, differentia] equations, Fourier's theorem probability, theory of errors, calculus

of variations, determinants. "If the reader is not familiar with this book, it will repay

him to examine it," Chem. and Engineering News. 800 problems. 189 figures, xxi + 641pp.

53/8 x 8. S193 Paperbound $2.25

TRIGONOMETRY REFRESHER FOR TECHNICAL MEN, A. A. Klaf. 913 detailed questions, answers

cover most important aspects of plane, spherical trigonometry particularly useful in clearing

up difficulties in special areas. Part I: plane trig, angles, quadrants, functions, graphical repre-

sentation, interpolation, equations, logs, solution of triangle, use of slide rule, etc. Next

188 pages discuss applications to navigation, surveying, elasticity, architecture, other

special fields. Part 3: spherical trig, applications to terrestrial, astronomical problems.

Methods of time-saving, simplification of principal angles, make book most useful. 913

questions answered. 1738 problems, answers to odd numbers. 494 figures, 24 pages of for-

mulas, functions, x + 629pp. SVa x 8. T371 Paperbound $2.00

CALCULUS REFRESHER FOR TECHNICAL MEN, A. A. Klaf. 756 questions examine most im-

portant aspects of integral, differential calculus. Part I: simple differential calculus, con-

stants, variables, functions, increments, logs, curves, etc. Part 2: fundamental ideas of

integrations, inspection, substitution, areas, volumes, mean value, double, triple integration,

etc. Practical aspects stressed. 50 pages illustrate applications to specific problems of civil,

nautical engineering, electricity, stress, strain, elasticity, similar fields. 756 questions

answered. 566 problems, mostly answered. 36pp. of useful constants, formulas, v + 431pp.

5% x 8. T370 Paperbound $2.00
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fundamental propositions of algebra, algebraic equations, functions, calculus, theory of

numbers, etc. Each monograph gives proofs of important results, and descriptions of lead-

ing methods, to provide wide coverage. "Of high merit," Scientific American. New intro-

duction by Prof. M. Kline, N.Y. Univ. 100 diagrams, xvi 4- 416pp. 6Va x 9V4.
S289 Paperbound $2.00

MATHEMATICS IN ACTION, 0. G. Sutton. Excellent middle level application of mathematics
to study of universe, demonstrates how math is applied to ballistics, theory of computing
machines, waves, wave-like phenomena, theory of fluid flow, meteorological problems,
statistics, flight, similar phenomena. No knowledge of advanced math required. Differential

equations, Fourier series, group concepts, Eigentunctions, Planck's constant, airfoil theory,
and similar topics explained so clearly in everyday language that almost anyone can derive

benefit from reading this even if much of high-school math is forgotten. 2nd edition. 88

figures, viii + 236pp. 53/a x 8. T450 Clothbound $3.50

ELEMENTARY MATHEMATICS FROM AN ADVANCED STANDPOINT, Felix Klein. Classic text,

an outgrowth of Klein's famous integration and survey course at Gb'ttingen. Using one field

to interpret, adjust another, it covers basic topics in each area, with extensive analysis.

Especially valuable in areas of modern mathematics. "A great mathematician, inspiring

teacher, . . . deep insight," Bui., Amer. Math Soc.

Vol. I. ARITHMETIC, ALGEBRA, ANALYSIS. Introduces concept of function immediately, en-

livens discussion with graphical, geometric methods. Partial contents: natural numbers,
special properties, complex numbers. Real equations with real unknowns, complex quan-
tities. Logarithmic, exponential functions, infinitesimal calculus. Transcendence of e and pi,

theory of assemblages. Index. 125 figures, ix -I- 274pp. 5% x 8. S151 Paperbound $1.75

Vol. II. GEOMETRY. Comprehensive view, accompanies space perception inherent in geom-
etry with analytic formulas which facilitate precise formulation. Partial contents: Simplest
geometric manifold; line segments, Grassman determinant principles, classication of con-

figurations of space. Geometric transformations: affine, projective, higher point transforma-

tions, theory of the imaginary. Systematic discussion of geometry and its foundations. 141
" *-"+ns. ix 4- 214pp. 5% X 8. S151 Paperbound $1.75

ADVANCED TRIGONOMETRY, E. W. Hobson. Extraordinarily wide
I college level, one of few works covering advanced trig in

sitor with unerring anticipation of potentially difficult points,

ixpansion of functions of multiple angle; trig tables; relations

iangles; complex numbers; etc. Many problems fully solved,

ct," Nature. Formerly entitled "A Treatise on Plane Trigonom-
es. xvi + 383pp. 5% x 8. S353 Paperbound $1.95

NON-EUCLIDEAN GEOMETRY, Roberto Bonola. The standard coverage of non-Euclidean geom-
etry. Examines from both a historical and mathematical point of view geometries which
have arisen from a study of Euclid's 5th postulate on parallel lines. Also included are

complete texts, translated, of Bolyai's "Theory of Absolute Space," Lobachevsky's "Theory
of Parallels." 180 diagrams. 431pp. 5Vs x 8. S27 Paperbound $1.95

GEOMETRY OF FOUR DIMENSIONS, H. P. Manning. Unique in English as a clear, concise intro-

duction. Treatment is synthetic, mostly Euclidean, though in hyperplanes and hyperspheres
at infinity, non-Euclidean geometry is used. Historical introduction. Foundations of 4-dimen-
sional geometry. Perpendicularity, simple angles. Angles of planes, higher order. Symmetry,
order, motion; hyperpyramids, hypercones, hyperspneres; figures with parallel elements;
volume, hypervolume in space; regular polyhedroids. Glossary. 78 figures, ix + 348pp.
5% x 8. S182 Paperbound $1.95

MATHEMATICS: INTERMEDIATE TO ADVANCED

GEOMETRY (EUCLIDEAN AND NON-EUCLIDEAN)

THE GEOMETRY OF RENE" DESCARTES. With this book, Descartes founded analytical geometry.
Original French text, with Oescartes's own diagrams, and excellent Smith-Latham transla-

tion. Contains: Problems the Construction of Which Requires only Straight Lines and Circles;
On the Nature of Curved Lines; On the Construction of Solid or Supersolid Problems. Dia-

grams. 258pp. 5% x 8. S68 Paperbound $1.50

m



THE WORKS OF ARCHIMEDES, edited by T. L. Heath. All the known works of the great Greek
mathematician, including the recently discovered Method 9f Archimedes. Contains: On
Sphere and Cylinder, Measurement of a Circle, Spirals, Conoids, Spheroids, etc. Definitive
edition of greatest mathematical intellect of ancient world. 186 page study by Heath dis-

cusses Archimedes and history of Greek mathematics. 563pp. 5% x 8. S9 Paperbound $2.00

COLLECTED WORKS OF BERNARD RIEMANN. Important sourcebook, first to contain complete
text of 1892 "Werke" and the 1902 supplement, unabridged. 31 monographs, 3 complete
lecture courses, 15 miscellaneous papers which have been of enormous importance in

relativity, topology, theory of complex variables, other areas of mathematics. Edited by
R. Dedekind, H. Weber, M. Noether, W. Wirtinger. German text; English introduction by
Hans Lewy. 690pp. 5% x 8. S226 Paperbound $2.85

THE THIRTEEN BOOKS OF EUCLID'S ELEMENTS, edited by Sir Thomas Heath. Definitive edition
of one of very greatest classics of Western world. Complete translation of Heiberg text,

plus spurious Book XIV. 150 page introduction on Greek, Medieval mathematics, Euclid,

texts, commentators, etc. Elaborate ciitical apparatus parallels text, analyzing each defini-

tion, postulate, proposition, covering textual matters, refutations, supports, extrapolations,
etc. This is the full Euclid. Unabridged reproduction of Cambridge U. 2nd edition. 3 vol-

umes. 995 figures. 1426pp. 53/8 x 8. S88, 89, 90, 3 volume set, paperbound $6.00

AN INTRODUCTION TO GEOMETRY OF N DIMENSIONS, D. M. Y. Sommerville. Presupposes no
previous knowledge of field. Only book in English devoted exclusively to higher dimensional
geometry. Discusses fundamental ideas of incidence, parallelism, perpendicularity, angles
between linear space, enumerative geometry, analytical geometry from projective and metric

views, polytopes, elementary ideas in analysis situs, content of hyperspacial figures. 60
diagrams. 196pp. 5% x 8. S494 Paperbound $1.50

ELEMENTS OF NON-EUCLIDEAN GEOMETRY, D. M. Y. Sommerville. Unique in proceeding step-

by-step. Requires only good knowledge of high-school geometry and algebra, to grasp ele-

mentary hyperbolic, elliptic, analytic non-Euclidean Geometries; space curvature and its

implications; radical axes; homopethic centres and systems of circles; parataxy and parallel-

ism; Gauss' proof of defect area theorem; much more, with exceptional clarity. 126 prob-
lems at chapter ends. 133 figures, xvi + 274pp. 53/8 x 8. S460 Paperbound $1.50

THE FOUNDATIONS OF EUCLIDEAN GEOMETRY, H. G. Forder. First connected, rigorous ac-

count in light of modern analysis, establishing propositions without recourse to empiricism,
without multiplying hypotheses. Based on tools of 19th and 20th century mathematicians,
who made it possible to remedy gaps and complexities, recognize problems not earlier

discerned. Begins with important relationship of number systems in geometrical figures.
Considers classes, relations, linear order, natural numbers, axioms for magnitudes, groups,
quasi-fields, fields, non-Archimedian systems, the axiom system (at length), particular axioms

(two chapters on the Parallel Axioms), constructions, congruence, similarity, etc. Lists:

axioms employed, constructions, symbols in frequent use. 295pp. 5% x 8.

S481 Paperbound $2.00

CALCULUS, FUNCTION THEORY (REAL AND COMPLEX),

FOURIER THEORY

FIVE VOLUME "THEORY OF FUNCTIONS" SET BY KONRAD KNOPP. Provides complete, readily

followed account of theory of functions. Proofs given concisely, yet without sacrifice of

completeness or rigor. These volumes used as texts by such universities as M.I.T., Chicago,
N.Y. City College, many others. "Excellent introduction . . . remarkably readable, concise,

clear, rigorous," J. of the American Statistical Association.

ELEMENTS OF THE THEORY OF FUNCTIONS, Konrad Knopp. Provides background for further

volumes in this set, or texts on similar level. Partial contents: Foundations, system of com-

plex numbers and Gaussian plane of numbers, Riemann sphere of numbers, mapping by
linear functions, normal forms, the logarithm, cyclometric functions, binomial series. "Not

only for the young student, but also for the student who knows all about what is in it,"

Mathematical Journal. 140pp. 53/8 x 8. S154 Paperbound $1.35

THEORY OF FUNCTIONS, PART I, Konrad Knopp. With volume II, provides coverage of basic

concepts and theorems. Partial contents: numbers and points, functions of a complex
variable integral of a continuous function, Cauchy's intergral theorem, Cauchy's integral

formulae, series with variable terms, expansion and analytic function in a power series,

analytic continuation and complete definition of analytic '-Actions, Laurent expansion, types

of singularities, vii + 146pp. 53/8 x 8. S156 Paperbound $1.35

THEORY OF FUNCTIONS, PART II, Konrad Knopp. Application and further development of

general theory, special topics. Single valued functions, entire, Weierstrass. Meromorphic
functions: Mittag-Leffler. Periodic functions. Multiple valued functions. Riemann surfaces.

Algebraic functions. Analytical configurations. Riemann surface, x -I- 150pp. 5% x 8.



according to increasing difficulty. Fundamental concepts, sequences of numbers and infinite

series, complex variable, integral theorems, development in series, conformal mapping.
Answers, viii + 126pp. 53/8 x 8. S 158 Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME II, Konrad Knopp. Advanced theory
of functions, to be used with Knopp's "Theory of Functions," or comparable text. Singular-

ities, entire and meromorphic functions, periodic, analytic, continuation, multiple-valued
functions, Riemann surfaces, conformal mapping. Includes section of elementary problems.
"The difficult task of selecting . . . problems just within the reach of the beginner is

here masterfully accomplished," AM. MATH. SOC. Answers. 138pp. 53/a x 8.

S159 Paperbound $1.35

ADVANCED CALCULUS, E. B. Wilson. Still recognized as one of most comprehensive, useful

texts. Immense amount of well-represented, fundamental material, including chapters on

vector functions, ordinary differential equations, special functions, calculus of variations,

etc., which are excellent introductions to these areas. Requires only one year of calculus.

Over 1300 exercises cover both pure math and applications to engineering and physical

problems. Ideal reference, refresher. 54 page introductory review, ix + 566pp. 5% x 8.

S504 Paperbound $2.45

LECTURES ON THE THEORY OF ELLIPTIC FUNCTIONS, H. Hancock. Reissue of only booK in

English with so extensive a coverage, especially of Abel, Jacobi, Legendre, Weierstrass,

Hermite, Liouville, and Riemann. Unusual fullness of treatment, plus applications as well as

theory in discussing universe of elliptic integrals, originating in works of Abel and
Jacobi. Use is made of Riemann to provide most general theory. 40-page table of formulas.
76 figures, xxiii + 498pp. 5% x 8. S483 Paperbound $2.55

THEORY OF FUNCTIONALS AND OF INTEGRAL AND INTEGRO-DIFFERENTIAL EQUATIONS, Vito

Volterra. Unabridged republication of only English translation, General theory of functions

depending on continuous set of values of another function. Based on author's concept of

transition from finite number of variables to a continually infinite number. Includes much
material on calculus of variations. Begins with fundamentals, examines generalization of

analytic functions, functional derivative equations, applications, other directions of theory,
etc. New introduction by G. C. Evans. Biography, criticism of Volterra's work by E. Whit-
taker, xxxx + 226pp. 5% x 8. S502 Paperbound $1.75

AN INTRODUCTION TO FOURIER METHODS AND THE LAPLACE TRANSFORMATION, Philip
Franklin. Concentrates on essentials, gives broad view, suitable for most applications. Re-

quires only knowledge of calculus. Covers complex qualities with methods of computing ele-

mentary functions for complex values of argument and finding approximations by charts;
Fourier series; harmonic anaylsis; much more. Methods are related to physical problems
of heat flow, vibrations, electrical transmission, electromagnetic radiation, etc. 828 prob-

lems, answers. Formerly entitled "Fourier Methods." x + 289pp. 53/8 x 8.

S452 Paperbound $1.75

THE ANALYTICAL THEORY OF HEAT, Joseph Fourier. This book, which revolutionized mathe-
matical physics, has been used by generations of mathematicians and physicists interested
in heat or application of Fourier integral. Covers cause and reflection of rays of heat,
radiant heating, heating of closed spaces, use of trigonometric series in theory of heat,
Fourier integral, etc. Translated by Alexander Freeman. 20 figures, xxii + 466pp. 53/b x 8.

S93 Paperbound $2.00

ELLIPTIC INTEGRALS, H. Hancock. Invaluable in work involving differential equations with

cubics, quatrics under root sign, where elementary calculus methods are inadequate. Prac-

tical solutions to problems in mathematics, engineering, physics; differential equations re-

quiring integration of Lamp's, Briot's, or Bouquet's equations; determination of arc of

ellipse, hyperbola, lemiscate; solutions of problems in elastics; motion of a projectile under
resistance varying as the cube of the velocity; pendulums; more. Exposition in accordance
with Legendre-Jacobi theory. Rigorous discussion of Legendre transformations. 20 figures.
5 place table. 104pp. 5% x 8. S484 Paperbound $1.25

THE TAYLOR SERIES, AN INTRODUCTION TO THE THEORY OF FUNCTIONS OF A COMPLEX
VARIABLE, P. Dienes. Uses Taylor series to approach theory of functions, using ordinary
calculus only, except in last 2 chapters. Starts with introduction to real variable and com-

plex algebra, derives properties of infinite series, complex differentiation, integration, etc.

Covers biuniform mapping, overconvergence and gap theorems, Taylor series on its circle

of convergence, etc. Unabridged corrected reissue of first edition. 186 examples, many
fully worked out. 67 figures, xii + 555pp. 5% x 8. S391 Paperbound $2.75

LINEAR INTEGRAL EQUATIONS, W. V. Lovitt. Systematic survey of general theory, with some
application to differential equations, calculus of variations, problems of math, physics.
Includes: integral equation of 2nd kind by successive substitutions; Fredholm's equation
as ratio of 2 integral series in lambda, applications of the Fredholm theory, Hilbert-Schmidt

theory of symmetric kernels, application, etc. Neumann, Dirichlet, vibratory problems,
ix + 253pp. 5 3/s x 8. S175 Clothbound $3.50

S176 Paperbound $1.60



DICTIONARY OF CONFORMAL REPRESENTATIONS, H. Kober. Developed by British Admiralty to
solve Laplace's equation in 2 dimensions. Scores of geometrical forms and transformations
for electrical engineers, Joukowski aerofoil for aerodynamics, Schwartz-Christoffel trans-
formations for hydro-dynamics, transcendental functions. Contents classified according to

analytical functions describing transformations with corresponding regions. Glossary. Topo-
logical index. 447 diagrams. 6Ve x 91/4. -S160 Paperbound $2.00

ELEMENTS OF THE THEORY OF REAL FUNCTIONS, J. E. Littlewood. Based on lectures at
Trinity College, Cambridge, this book has proved extremely successful in introducing graduate
students to modern theory of functions. Offers full and concise coverage of classes and
cardinal numbers, well ordered series, other types of series, and elements of the theory
of sets of points. 3rd revised edition, vii + 71pp. 5% x 8. S171 Clothbound $2.85

S172 Paperbound $1.25

INFINITE SEQUENCES AND SERIES, Konrad Knopp. 1st publication in any language. Excellent
introduction to 2 topics of modern mathematics, designed to give student background to

penetrate further alone. Sequences and sets, real and complex numbers, etc. Functions of
a real and complex variable. Sequences and series. Infinite series. Convergent power series.

Expansion of elementary functions. Numerical evaluation of series, v + 186pp. 5% x 8.

5152 Clothbound ?3.50
5153 Paperbound $1.75

THE THEORY AND FUNCTIONS OF A REAL VARIABLE AND THE THEORY OF FOURIER'S SERIES,
E. W .Hobson. One of the best introductions to set theory and various aspects of functions
and Fourier's series. Requires only a good background in calculus. Exhaustive .coverage of:

metric and descriptive properties of sets of points; transfinite numbers and order types;
functions of a real variable; the Riemann and Lebesgue integrals; sequences and series
of numbers; power-series; functions representable by series sequences of continuous func-

tions; trigonometrical series; representation of functions by Fourier's series; and much
more. "The best possible guide," Nature. Vol. I: 88 detailed examples, 10 figures. Index,

xv + 736pp. Vol. II: 117 detailed examples, 13 figures, x + 780pp. 6Vs x 9%.
Vol. I: S387 Paperbound $3.00
Vol. II: S388 Paperbound $3.00

ALMOST PERIODIC FUNCTIONS, A. S. Besicovitch. Unique and important summary by a well

known mathematician covers in detail the two stages of development in Bohr's theory
of almost periodic functions: (1) as a generalization of pure periodicity, with results and

proofs; (2) the work done by Stepanof, Wiener, Weyl, and Bohr in generalizing the theory.
xi + 180pp. 53/8 x 8. S18 Paperbound ?1.75

INTRODUCTION TO THE THEORY OF FOURIER'S SERIES AND INTEGRALS, H. S. Carslaw. 3rd

revised edition, an outgrowth of author's courses at Carnridge. Historical introduction,

rational, irrational numbers, infinite sequences and series, functions of a single variable,
definite integral, Fourier series, and similar topics. Appendices discuss practical harmonic

analysis, periodogram analysis, Lebesgue's theory. 84 examples, xiii 4- 368pp. 5% x 8.

S48 Paperbound $2.00

SYMBOLIC LOGIC

THE ELEMENTS OF MATHEMATICAL LOGIC, Paul Rosenblpom. First publication in any lan-

guage. For mathematically mature readers with no training in symbolic, logic. Development
of lectures given at Lund Univ., Sweden, 1948. Partial contents: Logic of classes, funda-
mental theorems, Boolean algebra, logic of propositions, of prepositional functions, expres-
sive languages, combinatory logics, development of math within an object language, para-

doxes, theorems of Post, Goedel, Church, and similar topics, iv + 214pp. 5% x 8.

S227 Paperbound $1.45

INTRODUCTION TO SYMBOLIC LOGIC AND ITS APPLICATION, R. Carnap. Clear, comprehensive,
rigorous, by perhaps greatest living master. Symbolic languages analyzed, one constructed.

Applications to math (axiom systems for set theory, real, natural numbers), topology

(Dedekind, Cantor continuity explanations), physics (general analysis of determination, cau-

sality, space-time topology), biology (axiom system for basic concepts). "A masterpiece,"
Zentralblatt fur Mathematik und Ihre Grenzgebiete. Over 300 exercises. 5 figures, xvi +
241pp. 5% X 8. S453 Paperbound $1.85

AN INTRODUCTION TO SYMBOLIC LOGIC, Susanne K. Langer. Probably clearest book for the

philosopher, scientist, layman no special knowledge of math required. Starts with simplest

symbols, goes on to give remarkable grasp of Boole-Schroeder, Russell-Whitehead systems,

clearly, quickly. Partial Contents: Forms, Generalization, Classes, Deductive System of

Classes, Algebra of Logic, Assumptions of Principle Mathematica, Logistics, Proofs of

Theorems, etc. "Clearest . . . simplest introduction .'. . the intelligent non-mathematician
should have no difficulty," MATHEMATICS GAZETTE. Revised, expanded 2nd edition. Truth-

value tables. 368pp. 5% 8. S164 Paperbound $1.75



adequate descriptions of summability of Fourier series, proximation theory, conjugate series,

convergence, divergence of Fourier series. Especially valuable for Russian, Eastern Euro-

pean coverage. 329pp. 5% x 8. S290 Paperbound $1.50

THE LAWS OF THOUGHT, George Boole. This book founded symbolic logic some 100 years
ago. It is the 1st significant attempt to apply logic to all aspects of human endeavour.
Partial contents: derivation of laws, signs and laws, interpretations, eliminations, condi-

tions of a perfect method, analysis, Aristotelian logic, probability, and similar topics,
xvii + 424pp. 53/8 x 8. S28 Paperbound $2.00

SYMBOLIC LOGIC, C. I. Lewis, C. H. Langford. 2nd revised edition of probably most cited

book in symbolic logic. Wide coverage of entire field; one of fullest treatments of paradoxes;
plus much material not available elsewhere. Basic to volume is distinction between logic
of extensions and intensions. Considerable emphasis on converse substitution, while matrix

system presents supposition of variety of non-Aristotelian logics. Especially valuable sec-

tions on strict limitations, existence theorems. Partial contents: Boole-Schroeder algebra;
truth value systems, the matrix method; implication and deducibility; general theory of

propositions; etc. "Most valuable," Times, London. 506pp. 5% x 8, S170 Paperbound $2.00

GROUP THEORY AND LINEAR ALGEBRA, SETS, ETC.

LECTURES ON THE ICOSAHEDRON AND THE SOLUTION OF EQUATIONS OF THE FIFTH DEGREE,
Felix Klein. Solution of quintics in terms of rotations of regular icosahedron around its

axes of symmetry. A classic, indispensable source for those interested in higher algebra,
geometry, crystallography. Considerable explanatory material included. 230 footnotes, mostly
bibliography. "Classical monograph . . . detailed, readable book," Math. Gazette. 2nd edi-

tion, xvi + 289pp. 53/8 x 8. S314 Paperbound $1.85

INTRODUCTION TO THE THEORY OF GROUPS OF FINITE ORDER, R. Carmichael. Examines
fundamental theorems and their applications. Beginning with sets, systems, permutations,
etc., progresses in easy stages through important types of groups: Abelian, prime power,
permutation, etc. Except 1 chapter where matrices are desirable, no higher math is needed.
783 exercises, problems, xvi + 447pp. 5% x 8. S299 Clothbound $3.95

S300 Paperbound $2.00

THEORY OF GROUPS OF FINITE ORDER, W. Burnside. First published some 40 years ago,
still one of clearest introductions. Partial contents: permutations, groups independent of

representation, composition series of a group, isomorphism of a group with itself, Abelian

groups, prime power groups, permutation groups, invariants of groups of linear substitu-

tion, graphical representation, etc. "Clear and detailed discussion . . . numerous problems
which are instructive," Design News, xxiv + 512pp. 53/8 x 8. S38 Paperbound $2.45

COMPUTATIONAL METHODS OF LINEAR ALGEBRA, V. N. Faddeeva, translated by C. D. Benster.
1st English translation of unique, valuable work, only one in English presenting systematic
exposition of most important methods of linear algebra classical, contemporary. Details

of deriving numerical solutions of problems in mathematical physics. Theory and practice.
Includes survey of necessary background, most important methods of solution, '.for exact,
iterative groups. One of most valuable features is 23 tables, triple checked for accuracy,
unavailable elsewhere. Translator's note, x + 252pp. 5% x 8. S424 Paperbound $1.95

THE CONTINUUM AND OTHER TYPES OF SERIAL ORDER, E. V. Huntington. This famous book
gives a systematic elementary account of the modern theory of the continuum as a type
of serial order. Based on the Cantor-Dedekind ordinal theory, which requires no technical

knowledge of higher mathematics, it offers an easily followed analysis of ordered classes,
discrete and dense series, continuous series, Cantor's traCnsfinite numbers. "Admirable
introduction to the rigorous theory of the continuum . . . reading easy," Science Progress.
2nd edition, viii + 82pp. 5 3/s x 8. S129 Clothbound $2.75

S130 Paperbound $1.00

THEORY OF SETS, E. Kamke. Clearest, amplest introduction in English, well suited for inde-

pendent study. Subdivisions of main theory, such as theory of sets of points, are discussed,
but emphasis is on general theory. Partial contents: rudiments of set theory, arbitrary sets,
their cardinal numbers, ordered sets, their order types, well-ordered sets, their cardinal

numbers, vii + 144pp. 5% x 8. S141 Paperbound $1.35

CONTRIBUTIONS TO THE FOUNDING OF THE THEORY OF TRANSFINITE NUMBERS, Georg Cantor.
These papers founded a new branch of mathematics. The famous articles of 1895-7 are

translated, with an 82-page introduction by P. E. B. Jourdain dealing with Cantor, the

background of his discoveries, their results, future possibilities, ix + 211pp. 53/8 x 8.

S45 Paperbound $1.25
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JACOBIAN ELLIPTIC FUNCTION TABLES, L. M. Milne-Thomson. Easy-to-fol low, practical, not

only useful numerical tables, but complete elementary sketch of application of elliptic
functions. Covers description of principle properties; complete elljptic integrals; Fourier

series, expansions; periods, zeros, poles, residues, formulas for special values of argument;
cubic, quartic polynomials; pendulum problem; etc. Tables, graphs form body of book:

Graph, 5 figure table of elliptic function sn (u m); en (u m); dn (u m). 8 figure table of

complete elliptic integrals K, K', E, E', nome q. 7 figure table of Jacobian zeta-function

Z(u). 3 figures, xi + 123pp. SVa x 8. 3194 Paperbound $1.35

TABLES OF FUNCTIONS WITH FORMULAE AND CURVES, E. Jahnke,F. Emde. Most comprehensive
1-volume English text collection of tables, formulae, curves of transcendent functions. 4th
corrected edition, new 76-page section giving tables, formulae for elementary functions not

in other English editions. Partial contents: sine, cosine, logarithmic integral; error integral;

elliptic integrals; theta functions; Legendre, Bessel, Riemann, Mathieu, hypergeometric
functions; etc. "Out-of-the-way functions for which we know no other source." Scientific

Computing Service, Ltd. 212 figures. 400pp. .5% x 8%. S133 Paperbound $2.00

MATHEMATICAL TABLES, H. B. Dwight. Covers in one volume almost every function of im-

portance in applied mathematics, engineering, physical sciences. Three extremely fine

tables of the three trig functions, inverses, to 1000th of radian; natural, common logs;

squares, cubes; hyperbolic functions, inverses; (a- + b2
) exp. Vaa; complete elliptical in-

tegrals of 1st, 2nd kind; sine, cosine integrals; exponential integrals; Ei(x) and Ei( x);

binomial coefficients; factorials to 250; surface zonal harmonics, first derivatives; Bernoulli,
Euler numbers, their logs to base of 10; Gamma function; normal probability integral; over

60pp. Bessel functions; Riemann zeta function. Each table with formulae generally used,
sources of more extensive tables, interpolation data, etc. Over half have columns of

differences, to facilitate interpolation, viii + 231pp. 5% x 8. S445 Paperbound $1.75

PRACTICAL ANALYSIS, GRAPHICAL AND NUMERICAL METHODS, f. A. WiJIers. Immensely prac-
tical hand-book for engineers. How to interpolate, use various methods of numerical differ-
entiation and integration, determine roots of a single algebraic equation, system of linear

equations, use empirical formulas, integrate differential equations, etc. Hundreds of short-
cuts for arriving at numerical solutions. Special section on American calculating machines,
by T. W. Simpson. Translation by R. T. Beyer. 132 illustrations. 422pp. 5% x 8.

S273 Paperbound $2.00

NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS, H. Levy, E. A. Baggott. Comprehensive
collection of methods for solving ordinary differential equations of first and higher order.
2 requirements: practical, easy to grasp; more rapid than school methods. Partial contents:

graphical integration of differential equations, graphical methods for detailed solution.
Numerical solution. Simultaneous equations and equations of 2nd and higher orders.
"Should be in the hands of all in research and applied mathematics, teaching," Nature.
21 figures, viii + 238pp. 5% x 8. S168 Paperbound $1.75

NUMERICAL INTEGRATION OF DIFFERENTIAL EQUATIONS, Bennet, Milne, Bateman. Unabridged
republication of original prepared for National Research Council. New methods of integration
by 3 leading mathematicians: "The Interpolational Polynomial," "Successive Approximation,"
A. A. Bennett, "Step-by-step Methods of Integration," W. W. Milne. "Methods for Partial

Differential Equations," H. Bateman. Methods for partial differential equations, solution
of differential equations to non-integral values of a parameter will interest mathematicians,
physicists. 288 footnotes, mostly bibliographical. 235 item classified bibliography. 108pp.
5% x 8. S305 Paperbound $1.35

Write for free catalogs!
Indicate your field of interest. Dover publishes books on physics, earth

sciences, mathematics, engineering, chemistry, astronomy, anthropol-
ogy, biology, psychology, philosophy, religion, history, literature, math-
ematical recreations, languages, crafts, art, graphic arts, etc.
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Dover Publications, Inc.
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$2.00
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Mathematical Tables, H. K. Dwigh.t $1.75

Continuous Groups of Transformations^ L. P. Eisenhart $1.85



LID

By Edwin Bidwell Wilson

It is a tribute to Edwin Wilson's judgment and industry that, in spite of newer books in

the field, most educators still regard "Advanced Calculus" as one of the most compre-
hensive and useful texts in its subject. It contains an immense amount of material, all of

which .is fundamental and well-presented. It can be used by students with the equivalent
of only one year's study xrf calculus, and many chapters, such as the chapters on vector

functions, ordinary differential equations, special functions, the calc,ulus of variations,

elliptic functions, and partial differential equations are excellent as introductions to

these various branches of higher mathematics.

Throughout, a due level of mathematical rigor is maintained; but the book is also

expressly designed as a text or reference for physicists, engineers, and others who need
a sound working knowledge of advanced calculus. More than 1300 separately numbered
exercises (hundreds of them are multiple-part exercises) are included in small groups
placed in juxtaposition to the sections in the text to which they are -related, This vast

QUffiber of exercises is intended not only to facilitate the reader's ability to handle the
mathematical tools of advanced calculus, but to give him abundant and varied practice in

the s of these teote oa the types of problems to which advanced calculus is applicable.

COBlPfe. JBtoductory Seview: Review of Fundamental Rules,- Review of Fundamental
fteify. Part | Mfemfal Caiwtos, Taylor's Foflnata and Allied Topics; Partial Differentia-

Partial Mefentiattojv-lrapl'icit Functions; Complex Numbers
fl-eatt! Equations: General Jntroductibn to Differential Equations;
Differential iqaatJoras,- Additional Types of Ordinary Equations;

> l, Hare than Two Variables. Part III: Integral Calculus: Qn Simple
'} integrate* On tofWte Integrals! Special Functions DefiBed by

olf Variations. Part IV: Theory of Functions: Infinite Series; Special"
netfofis of a CompJex Variable) Elliptic Functions and Integrals?
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Paperbound $2.45
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THIS DOVER EDITION IS DESIGNED FOR YEARS OF USE

Mjafeaty tit same qjiajfty as yov would find in books prided $5.00 or

* does ft* dj$mfot m lenonm brittle with age. Not artificially bulked, either;
an unabridged full-length book, but is still easy to handle.
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Tleie toefci pen flat for easy reading and reference. Pages
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