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PREFACE

It is probable that almost every teacher of advanced calculus feels the
need of a text suited to present conditions and adaptable to his use. To
write such a book is extremely difficult, for the attainments of students
who enter a second course in calculus are different, their needs are not
uniform, and the viewpoint of their teachers is no less varied. Yet in
view of the cost of time and money involved in producing an Advanced
Calculus, in proportion to the small number of students who will use it,
it seems that few teachers can afford the luxury of having their own
text; and that it consequently devolves upon an author to take as un-
selfish and unprejudiced a view of the subject as possible, and, so far as
in him lies, to produce a book which shall have the maximum flexibility
and adaptability. It was the recognition of this duty that has kept the
present work in a perpetual state of growth and modification during
five or six years of composition. Every attempt has been made to write
in such a manner that the individual teacher may feel the minimum
embarrassment in picking and choosing what seems to him best to meet
the needs of any particular class.

As the aim of the book is to be a working text or laboratory manual
for classroomn use rather than an artistic treatise on analysis, especial
attention has been given to the preparation of numerous exercises which
should range all the way from those which require nothing but substi-
tution in certain formulas to those which embody important results
withheld from the text for the purpose of leaving the student some
vital bits of mathematics to develop. It has been fully recognized that
for the student of nathematics the work on advanced calculus falls in
a period of transition, — of adolescence, — in which he must grow from
close reliance upon his book to a large reliance upon himself. More-
over, as a course in advanced calculus is the wltima Thule of the
mathematical voyages of most students of physics and engineering, it
is appropriate that the text placed in the hands of those who seek that
goal should by its method cultivate in them the attitude of courageous



expiorers, and 1n 1ts extent supply not only their 1mmediate needs, out
much that may be useful for later reference and independent study.

With the large necessities of the physicist and the growing require-
ments of the engineer, it is inevitable that the great majority of our
students of calculus should need to use their mathematics readily and
vigorously rather than with hesitation and rigor. Hence, although due
attention has been paid to modern questions of rigor, the chief desire
has been to confirm and to extend the student’s working knowledge of
those great algorisms of mathematics which are naturally associated
with the caleulus. That the compositor should have set ‘“vigor” where
“rigor” was written, might appear more amusing were it not for the
suggested antithesis that there may be many who set rigor where vigor
should be.

As I have had practically no assistance with either the manuscript
or the proofs, I cannot expect that so large a work shall be free from
errors; I can only have faith that such errors as occur may not prove
seriously troublesome. To spend upon this book so much time and
energy which could have been reserved with keener pleasure for vari-
ous fields of research would have been too great a sacrifice, had it not
been for the hope that I might accomplish something which should be
of material assistance in solving one of the most difficult problems of
mathematical instruction, — that of advanced calculus.

EDWIN BIDWELL WILSON
MassacnuseTTs INsTITUTE OF TBCHNOLOGY
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ADVANCED CALCULUS
INTRODUCTORY REVIEW

CHAPTER 1
REVIEW OF FUNDAMENTAL RULES

1. On differentiation. If the function f(x) is interpreted as the
curve y=f(x),* the quotient of the increments Ay and Az of the
dependent and independent variables measured from (n;, y,) is

Y= _ Ay Af(x) S, + A7) — flw) 1
e ) ™

z—x, TaxT Az
and represents the slope of the secant through the points P (z,, y,) and
P'(x,+ Az, y,+ Ay) on the curve. The limit approached by the quo-
tient Ay/Az when P remains fixed and Az =0 is the slope of the
tangent to the curve at the point P. Zhis limit,
Ay

lim = = lim
2220 AT Az=o

LC0+ 29 21 _ priay, @

is called the derivative of f(x) for the value z ==, As the derivative
may be computed for different points of the curve, it is customary to
speak of the derivative as itself a function of « and write

Ay x4 Ax) — f(x)
= i TR ) @

There are numerous notations for the derivative, for instance
df (x
1@ =YY _pjpy=y=r=Dy

* Here and throughout the work, where figures are not given, the reader should draw
graphs to illustrate the statements. Training in making one’s own illustrations, whether
graphical or analytic, is of great value.
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1. Carry through the derivation of (7) when n = p/g, and review the proofs of
typical formulas selected from the list (5)-(17). Note that the formulas are often
given as Dyu* = nur—1Dyu, Dysinu = cosu Dyu, - .-, and may be derived in this
form directly from the definition (3).

2. Derive the two limits necessary for the differentiation of sinz.

3. Draw graphs of the inverse trigonometric functions and label the portions
of the curves which correspond to quadrants I, II, III, IV. Verify the sign in
(12)-(17) from the slope of the curves.

4. Find D tanz and D cot® by applying the definition (3) directly.

5. Find Dsinz by the identity sinu — sinv = 2 cos E%——v sil\yf;;v‘

6. Find D tan—1z by the identity tan—1u — tan-1v = tan—1 Iu:'ui and (3).
v
7. Differentiate the following expressions:
(@) esc2z —cot 2z, (8) }tan’z —tanz +x, () @ cos~lox—V1—2a?,

1 : (4 ; ]
(3) sec! » () sin—1 ) sViE =@ 4 a2sin-12,
Vi—a? V1+a? a
(n) uverrlz—v‘zaz—wz, (&) cot—1 2”, —2tan1Z.
o a? — a? a

‘What trigonometric identities are suggested by the answers for the following :
1 1
—_ €& —»
Vi—g @ 1+a?

8. In B.O0. Peirce’s **Short Table of Integrals’ (revised edition) differentiate the
right-hand members to confirm the formulas: Nos. 81, 45-47, 91-97, 125, 127-128,
131-135, 161-163, 214-216, 220, 260-269, 204-298, 300, 380-381, 386-394.

9. If x is measured in degrees, what is Dsinz ?

(@) seca, (%) @) o2

4. The logarithmic, exponential, and hyperbolic functions. The
next set of formulas to be cited are
1 log,¢
Dlog,z= o Dlog,x = - (19)
De* =¢7, Du* = u* log,a.t (20)
It may be recalled that the procedure for differentiating the logarithm is

@

Alog,z _ loga (z + AzZ) — log, 1 T+ Ay 1 Az\Az

—_— R e = T ==1 =)
Az Az AJ;O“ T xOg“(1+:c)

* The student should keep on file his solutions of at least the important exercises;
many and iderable portions of the text depend on previous
exercises.

1 As is customary, the subscript ¢ will hereafter be omitted and the symbol log will
denote the logarithm to the base ¢; any base other than ¢ must be specially designated
as such. This observation is particularly necessary with reference to the common base
10 used in computation.
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h
lim (1 " /1) = e=2.71828. .. % Joggoe = 0.434204 - @1
h=wo ,

and hence if e be chosen as the base of the system, D logz takes the simple form
1/x. The exponential functions e* and a®may be regarded as the inverse functions
of log x and loga« in deducing (21). Further it should be noted that it is frequently
useful to take the logarithm of an expression before differentiating. This is known
as logarithmic differentiation and is used for prodnets and complicated powers and
roots. Thus

if ¥ = a7, then logy = zlogz,
and %1/’ =1+logz or ¥ = 2*(1 + log z).

It is the expression ¢’/y which is called the logarithmic derivative of y. An especially
noteworthy property of the function y = Ce* is that the function and its derivative
are equal, ¥’ =y ; and more generally the function y = Cek* is proportional to ils
derivative, ¥y’ = ky.

5. The hyperbolic functions are the hyperbolic sine and cosine,

@ gt -z

sinhz = 3:2"_, cosha = ;c”_j:ze_s (22)
and the related functions tanhz, coth, secha, eschz, derived from
them by the same ratios as those by which the corresponding trigono-
metric functions are derived from sinz and cosz. From these defini-
tions in terms of exponentials follow the formulas :

cosh?z — sinh®z =1, tanh?z + sech’z =1, (23)
sinh (z + y) = sinh« coshy 4 cosh sinh y, (24)
cosh (@ + ) = coshz coshy + sinh sinhy, (25)

cosh§=+1 @-;ll; sinh%::l:-\ c_o_s}%—_l’ (26)
D sinhz = coshz, D cosh z = sinh x, @27
D tanh % = sech’z, D coth z = — csch?z, (28)

D sech® = — sech tanh, D cscha=—cscha cothe. (29)

The inverse functions are expressible in terms of logarithms. Thus

o —1
y=sinh—x z=sinhy=——")
y N A 2ev
¢ —2uxe —1=0, o=+ Va'+1.

* The treatment of this limit is far from complete in the majority of texts. Reference
for a careful presentation may, however, be made to Granville’s '* Caleulus,” pp. 31-34,
and Osgood’s * Calculus,” pp. 78-82. See also Ex. 1, (8), in § 165 below.
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sinh= 2 = log(z + Va® +1), any a, (30)

cosh™iz = log (= + Va?—1), z>1, (1)
tanh-lz = %log i+ z 2<1, 62)
z +1

coth~'z = -l a?>1, (33)

\J: ) z <1, (34)
\ji,- > any =, (35)

sech~'x = log

cschlz = (
+

Dsinh~'a = \/-__I’ Dcosh™'x = \/::2_1_1’ (36)

Dtanh~'e = 7—— = Deoth'z = == 37)

Dsech—'x = ;/j;—i—: Desch™'z = ;%oi (38)
EXERCISES

1. Show by logarithmic differentiation that
woov o w
D(unw<~)_(i+?+;+ ---)(uuw-~~),
and hence derive the rule: To differentiate a product differentiate each factor
alone and add all the results thus obtained.
2. Sketch the graphs of the hyperbolic functions, interpret the graphs as those
of the inverse functions, and verify the range of values assigned to x in (30)-(35).
3. Prove sundry of formulas (23)-(29) from the definitions (22).
4. Prove sundry of (30)-(88), checking the signs with care. In cases where
double signs remain, state when each applies. Note that in (81) and (34) the

double sign may be placed before the log for the reason that the two expressions
are reciprocals.

5. Derive a formula for sinhu + sinhv by applying (24) ; find a formula for
tanh } ¢ analogous to the trigonometric formula tan } = = sinx/(1 + cosx).
6. The gudermannian. The function ¢ = gdz, defined by the relations
sinhz = tan¢, ¢ =gdx =tan-lsinhz, —ir<¢ <+im
is called the gudermannian of z. Prove the set of formulas:
coshe =secd, tashz=sing, cschz = cote, etc.:
Dgdz =sechz, ©=gd~1¢p=logtan(}¢ -+ }7), Dgd—1¢ =sece.
7. Substitute the functions of ¢ in Ex. 6 for their hyperbolic equivalents in
23), (26), (27), and reduce to simple known trigonometric formulas,
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(@) @+1)*@+2)~3@+3)-4  (B) zloez, ) lagz(z +1),
() =+ logcos(z — } ), (¢) 2tan-le=, (f) ©— tanhz,
(n) ztavh=iz + }log(1—a?), () fﬂf"—m"f—;;’;”ﬂ—"@

9. Check sundry formulas of Peirce’s **Table,” pp. 1-61, 81-82.

6. Geometric properties of the derivative. As the quotient (1) and
its limit (2) give the slope of a secant and of the tangent, it appears
from graphical considerations that when the derivative is positive the
function is increasing with z, but decreasing when the derivative is
negative.* Hence to determine the regions in which a function is in-
creasing or decreasing, one may find the derivative and determine the
regions in which it is positive or megative.

One must, however, be careful not to apply this rule too blindly; for in so
simple a case as f(¢) = logx it is seen that f/(z) = 1/x is positive when z > 0 and
negative when « < 0, and yet log x has no graph when « < 0 and is not considered
as decreasing. Thus the formal derivative may be real when the function is not
real, and it is therefore best to make a rough sketch of the function to corroborate
the evidence furnished by the examination of /().

If , is a value of z such that immediatelyt upon one side of z =,
the function f(x) is increasing whereas immediately upon the other
side it is decreasing, the ordinate y,=f(x,) will be a maximum or
minimum or f(z) will become positively or negatively infinite at .
If the case where f(x) becomes infinite be ruled out, one may say that
the function will have a minimum or maximum at x, according as tlm
derivative changes from negative to positive or from positive to
when x, moving in the positive direction, passes through the value z,
Hence the usual rule for determining maxima and minime is to ﬁ'ml
the roots of f'(x) =0.

This rule, again, must not be applied blindly. For first, /*(z) may vanish where
there is no maximum or minimum as in the case ¥ = 2% at & = 0 where the deriva~
tive does not change sign ; or second, f’(x) may change sign by becoming infinite
as in the case ¥ = 2% at & = 0 where the curve has a vertical cusp, point down, and
a minimum ; or third, the function /(x) may be restricted to a given range of values
a =z = for z and then the values f(a) and f(b) of the function at the ends of the
interval will in general be maxima or minima without implying that the deriva-
tive vanish. Thus although the derivative is highly useful in determining maxima
and minima, it should not be trusted to the complete exclusion of the corroborative
evidence furnished by a rough sketch of the curve ¥ = f(z).

* The construction of illustrative figures is again left to the reader.

1 The word *immediately " is necessary because the maxima or minima may be
merely relative; in the case of several maxima and minima in an interval, some of
the maxima may actually be less than some of the minima.
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7. The derivative may be used to express the equations of the tangent
and normal, the values of the subtangent and subnormal, and so on.

Equation of tangent, y—y, =y (z—z), (39)
Equation of normal, (y —y,)¥s+ (x —z,) =0, (40)
TM = subtangent =y, /y;, MN =subnormal =y, y;, (41)
OT = z-intercept of tangent =, — ¥,/y,, ete. (42)

The derivation of these results is sufficiently evi-
dent from the figure. It may be noted that the
subtangent, subnormal, ete., are numerical values
for a given point of the curve but may be regarded
as functions of « like the derivative.

In geometrical and physical problems it is frequently necessary to
apply the definition of the derivative to finding the derivative of an
unknown function. For instance if 4 denote the
area under a curve and measured from a fixed
ordinate to a variable ordinate, A4 is surely a func-
tion A(z) of the abscissa « of the variable ordinate.
If the curve is rising, as in the figure, then

MPQ'M' < AA < MQP'M', or yAx < Ad < (y + Ay) Ax.

Divide by Ax and take the limit when Az = 0. There results

A4
lim y=lim ==l Ay).
Aixéua y Aiuélo Az Aiglo w+ ?/)
. AA_d4
Hence Ali!ilﬂz; ==V (43)

Rolle's Theorem and the Theorem of the Mean are two important
theorems on derivatives which will be treated in the next chapter but
may here be stated as evident from their geometric interpretation.
Rolle’s Theorem states that: If a function has a derivative at every

Y] Y]
D N
4 B 4 B 4, B
a x 9 B X 0| x
Fie. 1 Fic. 2 F16. 8

point of an interval and if the function vanishes at the ends of the in-

fornrn] thoem there e mnt lommet ame snimt amatham tho antormnal ot anhinh 41 a
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in the interval such that the tangent to the curve y = f () is purallel to
the chord of the interval. This is illustrated in Fig. 2 in which there
is only one such point.

Again care must be exercised. In Fig. 3 the funotion vanishes at 4 and B but
there is no point at which the slope of the tangent is zero. This is not an excep-
tion or contradiction to Rolle’s Theorem for the reason that the function does not
satisfy the conditions of the theorem. In fact at the point P, although there is a
tangent to the curve, there isno derivative ; the quotient (1) formed for the point P
becomes negatively infinite as Az =0 from one side, positively infinite as Az =0
from the other side, and therefore does not approach a definite limit as is required
in the definition of a derivative. The hypothesis of the theorem is not satisfied and
there is no reason that the conclusion should hold.

EXERCISES

1. Determine the regions in which the following functions are increasing or
decreasing, sketch the graphs, and find the maxima and minima :

(@32—22+2 (B @+DHi@E—5), () log(z* — 4),
3) @—2)Va—~1, () —@+2)VIZ—2? () @ +oz+b.

2. The ellipse is r =Va? + 92 = e(d + x) referred to an origin at the focus.
Find the maxima and minima of the focal radius r, and state why Dyr = 0 does
not give the solutions while Dyr =0 does [the polar form of the ellipse being
r=1k(l—ecos¢)-1].

3. Take the ellipse as 22/a? 4 y2/b% == 1 and discuss the maxima and minima of
the central radius » =Va? 4 y2. Why does D,r = 0 give half the result when r is
expressed as a function of x, and why will Dyr =0 give the whole result when
@ =acos\, ¥y =bsin\ and the ellipse is thus expressed in terms of the eccentric
angle ?

4. If y = P (z) is a polynomial in z such that the equation P (z) = 0 has multiple
roots, show that P’ (x) = 0 for each multiple root. What more complete relationship
can be stated and proved ?

5. Show that the triple relation 27 b2 + 4 a® = 0 determines completely the nature
of the roots of 28 + ax + b = 0, and state what corresponds to each possibility.

6. Define the angle § between two indersecting curves. Show that
tand = [f'(xg) — g’ @) ] + [1 +.1" (%) ¢’ (2o)]
if y =f(x) and y = g () cut at the point (z, ¥,).
7. Find the subnormal and subtangent of the three curves
(@) ¥* =4pz, (B) «* = 4dpy, ) @ +yt=at
8. The pedal curve. The locus of the foot of the perpendicular dropped from
a fixed point to a variable tangent of a given curve is called the pedal of the given

curve with respect to the given point. Show that if the fixed point is the origin,
the pedal of ¥ = f(x) may be obtained by eliminating z,, ¥, ¥6 from the equations

Y=Y =Y @— ) wWotz=0, y=S(%), %=1z



a

volume of revolution thus generated when ineasured from a fixed plane perpen-
dicular to the axis out to a variable plane perpendicular to the axis, show that
DV =my.

10. More generally if A (z) denote the area of the section cut from a solid by
a plane perpendicular to the z-axis, show that D,V = 4 ().

11, If A (4) denote the sectorial area of a plane curve r = f(p) and be measured
from a fixed radius to a variable radius, show that Ded = } 2.

12. 1f p, &, p are the deusity, height, pressure in a vertical column of air, show
that dp/dh =— p. 1f p = kp, show p = Ce~*%,

13. Draw a graph to i an apparent ion to the Theorem of the
Mean analogous to the apparent exception to Rolle’s Theorem, and discuss.

14, ‘Show that the analytic statement of the Theorem of the Mean for f(z) is

that a value z = { intermediate to @ and b may be found such that
FO) = Fl@)=F & @ —o0), . a<E<b.

15. Show that the semiaxis of an ellipse is a mean proportional between the
z-intercept of the tangent and the abscissa of the point of contact.

16. Find the values of the length of the tangent (@) from the point of tangency
o the z-axis, (8) to the y-axis, (y) the total length intercepted between the axes.
Consider the same problems for the normal (figure on page 8).

17. Find the angle of intersection of (a) y®=2mz and o2+ 2 = 02,

3 z? v® for 0<A<b

™ prary] +

B) 2 =4ay and y = N m=1 and b<r<a.

24 4a2
18. A constant length is laid off along the normal to a parabola. Find the locus.
19. The length of the tangent to 2t 4yt = ot intercepted by the axes is constant.
20. The triangle formed by the asymptotes and any tangent to a hyperbola has

constant area.

21. Find the length PT of the tangent to & =+/¢cf — y2 4 ¢ sech—1 /c).

22, Find the greatest right cylinder inscribed in a given right cone.

23. Find the cylinder of greatest lateral surface inscribed in a sphere.

24. From a given circular sheet of metal cut out a sector that will form a cone
(without base) of maximum volume.

25, Join two points 4, B in the same side of a line to a point P of the line in
such a way that the distance P4 + PB shall be least.

26. Obtain the formula for the distance from a point to a line as the minimum
distance.

27, Test for maximum or minimum. (@) If f(z) vanishes at the ends of an inter-
val and is positive within the interval and if f/(z) = 0 has only one root in the
mterval, that root indicates a maximum. Prove this by Rolle’s Theorem. Apply
it in Exs. 22-24. (B) If f(x) becomes indefinitely great at the ends of an interval
and f’(z) = 0 has only one root in the interval, that root indicates a minimum.



nicatlons oi them generaily sullicé 1n practical probiems tO distinguish Delweei
maxima and minima without examining either the changes in sign of the first
derivative or the sign of the second derivative ; for generally there is only one
root of f’(z) = 0 in the region considered.

28. Show that z-lsinz fromz=0tox =} steadily decreases from 1 to 2/x.
?9. If 0 < z < 1, show (@) 0<z-1og(1+:c)< z“ (ﬂ) <:c——10g(1+fc)
L i
. - = -1 Pr e
30. If0>z>—1, showchs.tzz <z ug(l+m)<l+z
8. Derivatives of higher order. The derivative of the derivative

(regarded as itself a function of «) is the second derivative, and so on
to the nth derivative. Customary notations are:

2. 2,
Fray =0 Ty prpm pry =y = pir =,
dy dy  dm
FU@) FI@, o FO@) T g g
The nth derivative of the sum or difference is the sum or difference of
the nth derivatives. For the nth derivative of the product there is a
special formula known as Leibniz's Theorem. It is

D*(uv) =D - v—l—nD""uDv-l—ﬂy—;—T—l)D"‘“uD% +o o+ uDw. (44)
This result may be written in symbolic form as

Leibniz’s Theorem D" (wv) = (Du + Dv)", (44")
where it is to be understood that in expanding (Du + Dv)* the term
(Du)t is to be replaced by Dfw and (Dw)’ by Du=wu. In other words
the powers refer to repeated differentiations.

A proof of (44) by induction will be found in §27. The following proof is

interesting on account of its ingenuity. Note first that from
D (w) = uDv + vDu, D?(uv) =D (uDv) + D (vDu),
and 50 on, it appears that D? (uv) consists of a sum of terms, in each of which there
are two differentiations, with numerical coefficients independent of w and ». In like
manner it is clear that
Dr(uv) = CoDru - v + O, D" ~1uDv + - -« + Cy—y DuDr=1v + CruDmw

is a sum of terms, in each of which there are n diff iati with cc i C
independent of « and v. To determine the C’s any suitable functions u and v, say,

u=e%, v=ew, uy=el+ta)z, Dreax = gkeax,
may be d. If the ion be made and e(1+®= be canceled,
e Q+azDnuw) = (1+ay = Cy + Cia+ -+ + Cpyan-1 + Cram,
and bence the (s are the coefficients in the binomial expansion of (1 + a)».
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and (5). For if » and y be expressed in terms of known functions
of new variables % and v, it is always possible to obtain the deriva-
tives Dy, Diy, ---in terms of D, D2y, ---, and thus any expression
F(, 9 v, v - ) may be changed into an equivalent expression
®(u, v, v', v, ---) in the new variables. In each case that arises the
transformations should be carried out by repeated application of (4)
and (5) rather than by substitution in any general formulas.

The following typical cases are illustrative of the method of change of variable.
Suppose only the dependent variable y is to be changed to z defined asy=f(z). Then

ﬁy_ (dy) d (dz dJ) %z dy + d_z(i (l_y)
dz?  de\de)  de \dz dz dz? dz  dz \dz dz
d2z dy dz (d dy dz> d__zz dy (dz)"’ dzy

rr de? dz ' \da) a2

dx \dz dz dz,

As the derivatives of y = f(z) are known, the derivative d%/dz? has been expressed
in terms of z and derivatives of z with respect to z. The third derivative would be
found by repeating the process. If the problem were to change the independent
variable z to 2, defined by = = f(2),

dy _dydz _dy (dz) -1 %y _d [(ly <d:c)—1:|

dx dzde &z \d a2 dz|dz \dz
ay _ &y dz (‘“)"-EZ (%)“’ dz diz [dz’/ do_ d’zdy] (dz\®
@ A w\dz) " a\&z) @R i@ @ a) T \@

The change is thus made as far as derivatives of the second order are concerned. If
the change of both dependent and independent variables was to be inade, the work
would be similar. Particularly useful changes are to find the derivatives of ¥ by «
when y and x are expressed parametrically as functions of ¢, or when both are ex-
pressed in terms of new variables r, ¢ asz =7 cos ¢, ¥y =rsing. For these cases
see the exercises,

9. The concavity of a curve y = f(x) is given by the table:

if j"(x) >0, the curve is concave up at =,

it f"(x,) <0, the curve is concave down at @ ==,

it f(x,) =9, an inflection point at & =z,. (?)
Hence the eriterion for distinguishing bet ima and

if f'(z) =0 and f"(z;)>0, a minimum at @ =,

it f'(x)=0 and f"(z) <0, a maximum ab & =,

if f'(x)=0 and f"(z,) =0, neither max. nor min. (?)



FUNDAMENTAL RULES 13

The question points are necessary in the third line because the state-
ments are not always true unless /""(z,) % 0 (see Ex. 7 under § 39).

It may be recalled that the reason that the curve is concave up in case /*/(zo) > 0
is because the derivative f”(x) is then an increasing function in the neighborhood
of z=t,; whereas if f(x,) < 0, the derivative f’(x) is a decreasing function and
the curve is convex up. It should be noted that concave up is not the same as
concave toward the z-axis, except when the curve is below the axis. With regard
to the use of the second derivative as a criterion for distinguishing between maxima
and minima, it should be stated that in practical examples the criterion is of rela-
tively small value. It isusually shorter to discuss the change of sign of /() directly,
— and indeed in most cases either a rough graph of f(x) or the physical conditions
of the problem which calls for the determination of a maximum or minimum will
immediately serve to distinguish between them (see Ex. 27 above).

The second derivative is fundamental in dynamics. By definition the
werage velocity v of a particle is the ratio of the space traversed to the
time consumed, v =s/¢. The actual velocity v at any time is the limit
of this ratio when the interval of time is diminished and approaches
zero as its limit. Thus

5=£ and v=lim—A~s ds

At atcoAE dE (45)

In like manner if a particle describes a straight line, say the x-axis, the
average acceleration f is the ratio of the increment of velocity to the
increment of time, and the actual acceleration f at any time is the limit
of this ratio as A¢ = 0. Thus

= Av L Ay dv d

Iem MmN T T W S

By Newton’s Second Law of Motion, the force acting on the particle is

equal to the rate of change of momentum with the time, momentum
being defined as the product of the mass and velocity. Thus

2,
F=ﬂ%l=m%=mf=m%; “n

where it has been assumed in differentiating that the mass is constant,
as is usually the case. Hence (47) appears as the fundamental equa-
tion for rectilinear motion (see also §§ 79, 84). It may be noted that

Adn A /1 \N AT



3. Write the nth derivatives of the following functions, of which the last three
thould first be simplified by division or separation into partial fractions.

(@) vz +1, (8) log (az + ), 1 @+D@+1)73
(8) cosaz, (€) e*sinz, ) A—2)/1+2),
1 B4z+l az 4 1\2
m 5 @ Zred, o (&)
4. If y and  are each functions of ¢, show that
dody dy &'z
Ay _dar dldf _ay’ -y’
AT
@)
@y _ @y — ) = 38wy — v

a* %6
5. Find the inflection points of the curve x =4 ¢ — 2sin¢, y = 4 — 2 cosp.

6. Prove (47). Hence infer that the force which is the time-derivative of the
momentum mv by (47) is also the space-derivative of the kinetic energy.
7. If A denote the area under a curve, as in (48), find dA/df for the curves
(@) y=a(l—cosf), z=a(f —sinf), (8) x=acosd, y=>bsind.
8. Make the indicated change of variable in the following equations:
d%y 2z dy Y

= - dZ]/ =
(a)d:c’+l+.z’dz+(1+—zz)2_0’ % =tanz. Au'd_z”+y_0'
d* 1 /dy\? d; N
() (1—29) [EZ -7 (d._Z) ] - zd—z +y=0, y=e’, x=sinu. .
Ans. —+1=0.
du?
9. Transformation to polar codrdinates. Suppose thatx =7 cos¢,y=rsiné. Then
ar . dj dr .
B g e E%: d~;sm¢ + 7 cose,

2 __ 2
and so on for higher derivatives. ¥ind @ and ﬂ = TM»
dx?  (cos ¢ Dyr — 7 sin ¢)8
10. Generalize formula (5) for the differentiation of an inverse function. Find
d%z/dy? and d%/dy®. Note that these may also be found from Ex. 4.

11. A point describes a circle with constant speed. Find the velocity and
acceleration of the projection of the point on any fixed diameter.

N d%y dv\-1 d2y [dv\~3 ,
12. Prove P 2uv® 4 4ot <a) —f < ) fx

1
e \au =5 y=un



indefinite integral. To integrate a function f(z) is to find
F(x) the derivative of which is f(x). The integral F(x) is
y determined by the integrand f(x); for any two functions
r merely by an additive constant have the same derivative,
‘ormulas for integration the constant may be omitted and
; but in applications of integration to actual problems it
ays be inserted and must usually be determined to fit the
ts of special conditions imposed upon the problem and
the initial conditions.

tbe thought that the constant of integration always appears added to the
). Itmay be combined with F'(x) so as to be somewhat disguised. Thus

logz, logz+C, logCz, log(x/C)

rals of 1/2, and all except the first have the constant of integration C,

¥ in the second does it appear as formally additive. To illustrate the
m of the Dby initial conditi ider the problem of finding

ler the curve ¥ = cosz. By (43)

D,4 =y=cosz andhence A=sinz+C.
s to be measured from the ordinate @ = 0, then 4 = 0 whenz = 0, and
bstitution it is seen that C= 0. Hence 4 = sinz. But if the area be
om z=~}m, then A=0 when ¢=—}= and C =1. Hence A=1+sinz.
area under a curve is not definite until the ordinate from which it is
i specified, and the constant is needed to allow the integral to fit this

tion,

> fundamental formulas of integration are as follows:

=logw, fa:":nilx" if n=—1, (48)
&, fa“’: */log a, (49)
inx=—cosu, . fcos z=sinz, (50)
anz = —log cos z, fcot z =log sinz, (51)
ec’z = tanx, . fcse’a: =—cotx, (52)
anx secx = secw, fcot X eSCx = — CSC T, (53)

aulas similar to (50)-(53) for the hyperbolic functions. Also

ﬁ = tan~'x or — cot™'z, fl 1x5=tanh“m or coth~z, (64)
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13 or —osC~ 1 _ - ;
=sec™lz or —cse e, oy i F sechx, (66)
S = + cosh™lz, 1 _ F esch™lz, (57)
Vi —1 ’ zV14-a?

L s —gdlp = 1.
fm—vers x, fsecac—-gd ac-—logtan<4+2> (568)

For the integrals expressed in terms of the inverse hyperbolic functions, the
logarithmic equivalents are sometimes preferable. This is not the case, however,
in the many instances in which the problem calls for immediate solution with
regard to @, Thusif y =f(1 + @2)~% =sinh~11 4 C, then z =sinh (y —C), and the
solution is effected and may be translated into exponentials. This is not so easily
accomplished from the form y =log (z +V1+«?) 4+ C. For this reason and
because the inverse hyperbolic functions are briefer and offer striking analogies
with the inverse trigonometric functions, it has been thought better to use them
in the text and allow the reader to make the necessary substitutions from the table
(30)~(36) in case the logarithmic form is desired.

12. In addition to these special integrals, which are consequences
of the corresponding formulas for differentiation, there are the general
rules of integration which arise from (4) and (6).

dedy  (de
dyds ) du

f(u+v—'w)=fu+fv—fw, (60)
ww =fuv’+fu’-v. (61)

Of these rules the second needs no comment and the third will be treated later.
Especial attention should be given to the first. For instance suppose it were re-
quired to integrate 2 logz/x. This does not fall under any of the given types; but

2 (59)

Here (logx)? takes the place of z and logx takes the place of y. The integral is
therefore (logx)? as may be verified by differentiation. In general, it may be
possible to see that a given integrand is separable into two factors, of which ene
is integrable when considered as a function of some function of x, while the other
is the derivative of that function. Then (59) applies. Other examples are:

f esinz cog g, f tan—1z/(1 + 2%), f 22 sin (2%).



integrable and as y = tan-1z, ¥’ = (1 + 2?)~1; in the third z = siny is integrable
and as y = 2%, ¥’ = 3% The results are

esin } (tan—1z)2, — } cos (z8).
This method of integration at sight covers such a large percentage of the cases
that arise in geometry and physics that it must be thoroughly mastered.*

EXERCISES

1. Verify the fundamental integrals (48)-(58) and give the hyperbolic analogues
of (50)-(53).

2._Tabulate the integrals here expressed in terms of inverse hyperbolic func-
tions by means of the corresponding logarithmic equivalents.

3. Write the integrals of the following integrands at sight:

() sin uz, (B) cot(azx + ), (y) tanh 8z,
1 1
O == ”, ©) e
1 & z

(n) mg—:c’ () =’ (4) mr
(x) ®Vaz? + b, (A) tanz sec’z, (4) cotx logsinz,
B (:Ac—l—l)5 © tanh ‘:: () 2t lose 2+ In"x

q}+einz cos 7, G g, T) ————— .
@ ® Veosz ® V1—a?sin-lz

4. Integrate after making appropriate changes such as sin?z =} —} cos2z
or sec?x =1+ tan?x, division of denominator into numerator, resolution of the

product of trig ic f ions into a sum, pleting the square, and so on.
(a) cos?2z, (B) sintz. (v) tantz,
1 2z 41 1—sinz
8) ———» s —=,
( )zz+3z+26 @ z+2 (e
z+38 €% 4 e
— g , —_—
™ 422 — 5z +1 @ ez 41 ()\/2a,z+z“
(k) sinbxzcos2x +1, (N) sinhmg sinh nx, (u) cosz cos 2 cos 3z,
cx +d gm—=1
() secbz tanm —V2z, (o) Fra il (m) — m}.

* The use of differentials (§ 35) is perhaps more familiar than the use of derivatives.

dz dz dy
z@)_fdzdz_fdy d::d fd ay =zly @]
Then f-f;logxdz-f2 logx dlog = = (log z)2.

The use of this notation is left optional with the reader; it has some advantages ana
some d)sadva.ntages The essential thing is to keep cleurly in mind the fact that the
problem is to be inspected with a view to detecting the function which will differentiate
into the given integrand.



(@) sinmz cognz, m or n odd, or m and n even,
(B) tannz or cotrx when n is an integer,
() secnx or csc”x when n is even,
(8) tanmz secrz or cot™x cscrx, n even,
6. Explain the alternative forms in (64)-(56) with all detail possible.
7. Find (a) the area under the parabola y? =4 pz fromz =0toz =a; also
(B) the corresponding volume of revolution, Find (v) the total voluine of an ellip-
so0id of revolutlon (see Ex. 9, p. 10).
8. Show that the area under y = sin mx sinn® or ¥ = cosmx cosnx from' z = 0
to z = 7 is zero if m and h are unequal integers but } 7 if they are equal.
9. Find the sectorial area of r = @ tan ¢ between the radii ¢ = 0 and ¢ = } .
10. Find the area of the (a) lemniscate r2=a? cos 2 ¢ and (B) cardioid r=1—cos¢.
11, By Ex. 10, p. 10, find the volumes of these solids. Be cdreful to choose the
parallel planes so that 4 (z) may be found easily.
(a) The part cut off from a right circular cylinder by a plane through a diameter
of one base and tangent to the other. Ans. 2/3 7 of the whole volume.
(8) How much is cut off from a right circular cylinder by a plane tangent to its
lower base and inclined at an angle 6 to the plane of the base ?
(y) A circle of radius b < a is revolved, about a line in its plane at a distance a
from its center, to generate a ring. The volums of the ring is 2 w2ab?,
(8) The axes of two equal cylinders of revolution of radins r i at right
anglés. The volume common to the cylinders is 1673/3.

12. If the cross section of a solid is 4 (z) = a@® + a,2? + a,z + a4, & cubic in z,
the volume of the solid between two parallel planes is 3% (B + 4 M + B’) where k
is the altitude and B.and B’ are the bases and M is'the middle section.
z+c

13. Show thas [ ﬁ: tan-1 22

13. Aids to integ-ation. The majority of cases of integration which
arise in simple applications of caleulus may be treated by the method
of §12. Of the remaining cases a large number cannot be integrated
at all in terms of the functions which have been treated up to this

point. Thus it is impossible to express ——v—1—= in terms
N

?) (1 ﬁ 2)
of elementary functions. One of the chief reasons for introducing a
variety of new functions in higher analysis is to have means for effect-
ing the integrations called for by important applications. The dis-
cussion of this matter cannot be taken up here. The problem of
integration from an elementary point of view calls for the tabula-
tion of some devices which will accomplish the integration for a
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The devices which will be tréated are :
Integration by parts, Resolution into partial fractions,
Various substitutions, Reference to tables of integrals.

Integration by parts is an application of (61) when written as
fuv’ =uy— /‘u’u. (61)

That ig, it may happen that the integrand can be written as the product uv” of two
factors, where v’ is integrable and where u’ is also integrable. Then uv’ is integrable.
For instance, logz is not integrated by the fundamental formulas; but

floga;=flogz«1=mloga:-fz/z=x]ogz—:c.

Here log « is taken as » and 1 as v’, 50 that v is z, w’is 1/z, and w’v =1 is immedi-
ately integrable. This method applies to the inverse trigonometric and hyperbolic
functions. Another example is

fxsinac:—zcosz +fcosac=sinz—zcosz.

Here if 2 = w and sinz = o', both v’ and w*» =— cosx are integrable. If the choice
sinz=u and z=v" had been made, v would have been integrable but w'v=422 cos
would have been less simple to integrate than the original integrand. Hence in
applying integration by parts it is necessary to look akead far enough to see that
both v and v are integrable, or at any rate that v” is integrable and the integral
of w'v is simpler than the original integral.*

Frequently integration by parts has to be applied several timesinsuccession. Thus

fa;’et:a:ﬂez-f‘zzet if u=2?, v=e2,
=x2e=—2[ze=—fel] ifu=g, v=e
= 2% — 2" + 2%,

Sometimes it may be applied in such a way as to lead back to the given integral
and thus afford an equation from which that integral can be obtained by solution.
For example,

fﬁcosz:e’cosz +fe=sinx if u=cosz, v =e%,
=enosx+[e'sin:c—fetcosz] if w=sinz, v=e*
=et(cosz+sinz)—fe=cosz.

Hence fet cos® = § e (cosz + sinw).

* The method of differentials may again be introduced if desired.



nomials in z, the fraction is first resolved into partial fractions. This is accom-
plished as follows. Firstif f is not of lower degree than F, divide F into f until the
remainder is of lower degree than F. The fraction f/F is thus resolved into the
swmn of a polynomial (the quotient) and a fraction (the remainder divided by F)
of which the numerator is of lower degree than the denominator. As the polyno-
mial is integrable, it is merely necessary to consider fractions f/F where f is of
lower degree than F. Next it is a fundamental theorem of algebra that a poly-
nomial F may be resolved into linear and quadratic factors
F@)y=k(@—a)*@—0)B@—c)Y - (2% + mz + n)r (@* 4+ pr + g)- - -,

where a, b, - are the real roots of the equation F(z)= 0 and are of the respec-
tive multiplicities @, £, v, - - -, and where the quadratic factors when set equal to
zero give the pairs of eonjugate imaginary roots of F = 0, the multiplicities of the
imnaginary roots being g, », - --. It is then a further theorem of algebra that the
fraction f/F may be written as

J@) _ 4, de | B Bg
F(x) z +(1——a)" +(x—u)ﬂ+z—b+ +(n:—b)ﬂ+
Moty Mz + N, Mz + N,
Zrms+n (@ + m+ n)? (2 4 mz 4R ’

where there is for each irreducible factor of F' a term corresponding to the highest
power to which that factor occurs in F' and also a term corresponding to every
lesser power. The coefficients 4, B, ..., M, N, ... may be obtained by clearing
of fractions and equating coefficients of like powers of x, and solving the equations ;
or they may be obtained by clearing of fractions, substituting for z as many dif-
ferent values as the degree of F, and solving the resulting equations,

‘When f/F has thus been resolved into partial fractions, the problem has been
:duced to the integration of each fraction, and this does not present serious
fficulty. The following two examples will illustrate the method of resolution
nto partial fractions and of integration. Let it be required to integrate

x? 41 2z 4+ 6
and .
fz(z—l)(x—2) @rzrn N f(a:—-l)z(z—3)"
The first fraction is expansible into partial fractions in the form
2?4+ 1 A B C Dz + E
—*Lz— A4, B, C |  DotE
zE—)E-2)@+e+1) 2 x—1 z—2 22+z+1
Hence 2?+1=4A@—-)(@-2)@®+2+1)+Bz(@@—2)@+2z+1)
+Cr@—1) (@ +2+ 1)+ (Dz + E)z(x—1)(z—2).
tather than multiply out and equate coefficients, let 0, 1, 2, — 1, — 2 be substi-
tuted. Then

1=24, 2=—8B, 6=14C, D—~E=1/21, E—2D=1/1,

22 41 _rt_ 5 _ 4z 46
fx(a: 1)(@ 2)(z’+a:+1)—f29: fa(z 1)+f14(;—2) 21(x* + 2 +1)
2z 41

V3

2
= logx —_ lug(z 1) + — log(a: 2)-— = log(:x2 2 4-1)— ——=tan-1
2 Y



The substitution of 1, 3, 0, 2, 4 gives the equations
8=—8B, 60=4E, 9A4+8C—-D+12=0,
A—C+D+6=0, A+4+8C+38D=0.
The solutions are — 9/4, — 1, + 9/4, — 3/2, 15, and the integral becomes

207 4 6 9 1
__Lr Ty Y —
e i L
15

toe—9 2@—9
The importance of the fact that the method of partial fractions shows that any
rational fraction may be integrated and, moreover, that the integral may at most con-
sist of a rational part plus the logarithm of a rational fraction plus the inverse
tangent of a rational fraction should not be overlooked. Taken with the method
of substitution it establishes very wide categories of integrands which are inte-
grable in terms of elementary functions, and effects their integration even though
by a somewhat laborious method.
15. The method of substitution depends on the identity

[ra=[romE it z=sw), 59)

which is allied to (59). To show that the integral on the right with respect to y
is the integral of f(x) with respect to & it is merely necessary to show that its
derivative with respect to  is f(z). By definition of integration,

d dz de
@ fy Fle g, =I5

and 2 [T E =T g =l ]
by (4). The identity is therefore proved. The method of integration by substitu-
tion is in fact seen to be merely such a systematization of the method based on
(59) and set forth in § 12 as will make it practicable for more complicated problems.
Again, differentials may be used if preferred.

Let R denote a rational function, To effect the integration of

+Jl0g@—9)

fsin:c R (sin%z, cosx), let cosz =y, then f— R(1—12%7y);
v
fcos:c R (cos?z, sinx), let sinz=y, then fR 1=9%57);
sin &
fR( z) fR (tanz), let tanz =y, then f R@)

1’
z 2y 1— y’i 2
R (sinz, cosa) Jet tan- = then fR(

f( , COBZ), =W ik fwwr s
The last substitution renders any rational function of sin x and cos ¢ rational in
the variable y; it should not be used, however, if the previous ones are applicable
— it is almost certain to give a more difficult final rational fraction to integrate.




and in sgme one of the radicals Va® + a%, Va? —a?, V22 — g®. These may be con-
verted into trigonometric or hyperbolic integrands by the following substitutions :

fR(z a? —a? z =asiny, fR(asiny,acosy)acosy;
v

T =atany, fR(u tany, a secy) @ sec?y
fR(:c, Va? + z) 4

% = a sinhy, fR(a sinh y, @ coshy) a coshy;
L v

@ = asecy, fR (wsecy, atany)asecy tany
fR (z, Va? — a?) v

© = a coshy, fR (@ cosh y, asinhy)asinhy.
v

It frequently turns out that the integrals on the right are easily obtained by
methods already given; otherwise they can be treated by the substitutions above.

In addition to these substitutions there are a large number of others which are
applied under specific conditions. Many of them will be found among the exer-
cises. Moreover, it frequently happens that an integrand, which does not come
under any of the standard types for which substitutions are indicated, is none the
less integrable by some substitution which the form of the integrand will suggest.

Tables of integrals, giving the integrals of a large number of integrands, have
been constructed by using various methods of integration. B. O. Peirce’s ** Short
Table of Integrals ** may be cited. If the particular integrand which is desired does
not oceur in the Table, it may be possible to devise some substitution which will
reduce it to a tabulated form. In the Table are also given a large number of
reduction formulas (for the most part deduced by means of integration by parts)
which accomplish the successive simplification of integrands which could perhaps
be treated by other methods, but only with an excessive amount of labor. Several
of these reduction formulas are cited among the exercises. Although the Table is
useful in performing integrations and indeed iakes it to a large extent unneces-
sary to learn the various methods of integration, the exercises immediately below,
Which are constructed for the purpose of illustrating methods of integration, should
be done without the aid of a Table.

EXERCISES
1. Integrate the following by parts:
(a) f 2 coshz, (8) f tan—lz, ®) f am logx,
sin—1g 1
k) —_— —_—_—
© =5 © [ Sl Py

2. If P(x) is a polynomial and P'(z), P”(z), - - - its derivatives, show
—_— 1 L pogy—.
@ [P@)e —-ae”[P(x) SP@+ 5P ]

(ﬁ)fP(z)cosm::isinax]:P(z)—lP"(m)-(.. lPiv(z)—.H]

+1cosu:cl: z)——P’”(zc)+ P'(x)-...]

and (v) derive a similar result for the integrand P (z) sin az.
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3. By successive integration by parts and subsequent solution, show
(@) fe‘”‘ sinbs = €% (g sin bz — b cos bz)
) at 4 b2
€= (bsin bz 4 a cos bz)
e ¢0s b = ——— 7
# .f a? 4 b?
() f:ce% CO8Z = 4k e2*[Bx (sinx + 2 cosx) — 4sinw — § cosz].

'S

. Prove by integration by parts the reduction formulas

(a) fsin"'z CoshE =

sinm+1g3 cogn =11 —1 .
S fsm"'z cosn—2z,

m4n m+n
tann -1z secry

m = -2 "

(ﬁ)fmu T secny P ft«m" x secr i,
. 1 1
= 2n—38 —,

” -/‘(z2 +a?) 2(n— 1){17[(952 + a?)r—t +@n—3) f(x“ + aﬂ)"—l:'

am am+1 m+1 Zm

(@)

(log z)» = (n—1) (log z)n—1 + n—1 (Iog:c)"—l.

5. Integrate by decomposition into partial fractions :

z?—8x 48 1 1
()f(z—l)(z~2) (ﬁ)fm—z*’ (7)f1+a:"
z? 422 —8z 41 1
”)f(z+2)’(x+1)’ ©f PR mfx(lw“)"
6. Integrate by tri ric or hyperbolic sub: :
(@ [Va=a, ) f Ve = a, &) f V& ¥ o,
vVt — a? (u%‘ - a:§)§
) —_— —_— . T
()f(a_m o [ 0[5
7. Find the areas of these curves and their volumes of revolution :
(@) 28 + v} = b, (6) aty? = ot — af, ™ <§>z+ (%)*: 1.

8. Integrate by converting to a rational algebraic fraction:
sin 8z cos3x sin2z
{ )fa’cosﬂzi-b’sm‘z @ fa’cos’a:+b95in“:c' (7)faﬂcos’x+bﬂsinzz’
1 1— cosx
H) — B
( )fa+bcos:c' (e)fa+bcosz+csinx (nfl+sinz

9. Show that f R (%, Va + bz + cz?) may be treated by trigonometric substitu-
tion; distinguish between b% — 4 ac = 0.

10. Show that fR <m, A a2+ b) is made rational by y» = ::—I—g Hence infer

r—f8

P~ e




11. Show that fli [z, (‘:::3)’“; (?:13)”, . ~:|, where the exponents m, n,

. b
-+ . are rational, is rationalized by y* = Z:-‘:-d

integers.

if & is so chosen that km, kn, - - - are

12. Show that f(u + by)Py? may be rationalized if p or g or p + ¢ is an integer.
By setting @7 = y show that fz'" (@ + bz»)? may be reduced to the above type and

m+ 1 m+1
or p or
n n

hence is integrable when + p is integral.

13. If the roots of @ + bz + cz? = 0 are imaginary, fli (2, Va + br + cz?) nay
be rationalized by y =Va + bx + 2 Fz Ve.

14. Integrate the following.

28 1+\'/a_: z
@[ — w)fu%v W’fm’
Qe at !
(ﬂ)fﬁ’ (°)f\/(1_zz)« (r)f(z—d)\/«ﬁbxwr?’
L N T 28 V1i=g?
U brwgeet Of= OF=

15. In view of Ex. 12 discuss the integrability of :

- = al
(@) fsin"'.t cosr g, let sinz:\/y, (8) fz—m let o= ay?,

Vaz -z O Var—z?=zy.

16. Apply the reduction formulas, Table, p. 66, to show that the final integral for

f o is f 1 or f L or f _1__.
V1iza? Vi=2? ViZa? zV1I—a?
according as m is even or odd and positive or odd and negative.

17. Prove sundry of the formulas of Peirce’s Table,

18. Show that if R (z, Va? — #?) contains & only to odd powers, the substitu-
tion z =Va? —a? will rationalize the expression. Use Exs. 1 ({) and 6 (¢) to

compare the labor of this algebraic substitution with that of the trigonometric or
hyperbolic.

16. Definite integrals. If an interval from 2 =a to 2 =0» be divided
into n successive intervals Aw, Az, .-, Az, and the value f(£) of a
function f'(x) be computed from some point ¢; in each interval Az; and
be multiplied by Az, then the limit of the sum

m [AE) Ay + £ (&) Ava -+ + f&) Az, = [ F@)dn,  (62)



a broken line, and it is clear Y|
that the limit of the sum, that
is, the integral, will be repre-
sented by the area under the
curve y=jf(x) and between
the ordinates z=a and z=10.
Thus the definite integral, de-
fined arithmetically by (62), o
may be connected with a geo-
metric concept which can serve to suggest properties of the integral
much as the interpretation of the derivative as the slope of the tan-
gent served as a useful geometric representation of the arithmetical
definition (2).

For instance, if a, b, ¢ are successive values of x, then

[r@ i+ [ Fayie= Fe)d (63)

is the equivalent of the fact that the area from a to ¢ is equal to the
sum of the areas from @ to b and b to ¢. Again, if Az be considered
positive when « moves from e to J, it must be considered negative
when & moves from & to @ and hence from (62)

[r@ie=—[re)dn (64

Finally, if M be the maximum of f(x) in the interval, the area under
the curve will be less than that under the line y=Af through the
highest point of the curve; and if m be the minimum of f(z), the
area under the curve is greater than that under y =m. Hence

P S,

i
|
!
i
3

|
3 X

1 il i n

m(b—a) < [ f@)dn < M@ —a). (65)

There is, then, some intermediate value m < p < M such that the inte-
gral is equal to u(b—a); and if the line y = p cuts the curve in a
point whose abscissa is § intermediate between a and b, then

L@ de=p0—ay=@—ar@. (65"

This is the fundamental Theorem of the Mean for definite integrals.



The definition (62) may be applied directly to the evaluation of the definite in-
tegrals of the simplest functions. Consider first 1/z and let a, b be positive with a
less than b, Let the interval from a to d be divided into n intervals Ax; which are
in geometrical progression in the ratio r so that @y =a, &2 =ar, - -+, Tnyy = @

and Ay =a(r—1), Arg=ar(r—1), Azg=ar?(r—1), .-, Ay =arm-l(r—1);
‘whence b—a=Az; + Azg + -+ + Az, =a(m—1) and r=b/a.

Choose the points £ in the intervals Az; as the initial points of the intervals. Then

Ay Sy g fm sl oD Dy,
0 & £ a ar arn
But Vija or n=log (b/a) + logr.
Azy b r—=1 b h
Aty ATy mr—T)=logo. " o jog 2. |
Hence " + 21 '+ £ nir—1)=log a logr Oga log (1 + %)

Now if n becomes infinite, » approaches 1, and % approaches 0. But the limit of
log (1+ h)/h as h=0 is by definition the derivative of log (1 + z) when z =0 and
is 1. Hence

bdr _ .. Ay | Axy AT, b
=1 jumad I React ST il S — =1 — 1
L z ng‘:o[fx + & oot En] 8 ogh —log .

As another illustration let it be required to evaluate the integral of cos®z from
0 to . Here let the intervals Az; be equal and their number odd. Choose the §'s
as the initial points of their intervals. The sum of which the limit is desired is
¢ =cos?0. Az + uos’Az An 4 cos?2Ar - Ap + -
+ cos? (n— 2) Az - Az+ cos? (n — 1) Ax - Ax.
But nAr=3m and (n—1)Az=}7 — Az, (n—2)Ar=}r— 242, -,

and cos(}7—y)=siny and sin?y+4 cos?y =1.

Hence o = Ax[cos? 0 + cos? Az + cos?2 Az + - - - +sin®2 Az + sin? Az]

x
Hence fu * ot zde = Jim [hnaz+ §42) = lim (b7 + a9 = .
: v

Indications for finding the integrals of other functions are given in the exercises.
It should be noticed that the variable z which appears in the expression of the
definite integral really has nothing to do with the value of the integral but merely
serves as a symbol useful in forming the sum in (62). What is of importance is
the function f and the limits a, b of the interval over which the integral is taken.

f (@) do = ff(t)dt ff(y)dy ff

Tha variahle in the & A tm +Tha b

PR IR DT
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17. If the lower limit of the integral be fixed, the value

[r@i=e0

of the integral is a function of the upper limit regarded as variable
To find the derivative ®' (%), form the quotient (2),

B0+ A —tb(b)_[ f(m)d”*[f(m)d”
Ab a Ab

By applying (63) and (65"), this takes the simpler form

b+ ab

OL

Y3 IVRACLL
where ¢ is intermediate between & and o+ Ab. Let Ap==0. Then ¢
approaches b and f(€) approaches f(3). Hence

20y =g [ 1@d=s0). (66)
If preferred, the variable o may be written as z, and
26)= [e)a  v@=7 [few=re. @)

This equation will establish the relation between the definite integral
and the indefinite integral. For by definition, the indefinite integral
F(x) of f(x) is any function such that F'(z) equals f'(x). As ®'(x) =f(z)

it follows that z . .
f f(z)de = F(z)+ C. (67)

Hence except for an additive constant, the indefinite integral of f is
the definite integral of f from a fixed lower limit to a variable upper
limit. As the definite integral vanishes when the upper limit coincides
with the lower, the constant C is — F(«) and

@+ A —2 () _f
Ab -

[ 12 =5~ reo (o1

Hence, the definite integral of f(x) from a to b is the difference between
the values of any indefinite integral F(x) taken for the upper and lower



curve cannot in the first instance be evaluated ; but if only that portion
of the curve which lies over a small interval Az be considered and the
rectangle corresponding to the ordinate f(¢) be drawn, it is clear that
the area of the rectangle is f(£) Az, that the area of all the rectangles is
the sum 3f(¢) Az taken from  to d, that when the intervals Az approach
zero the limit of their sum is the area under the curve ; and hence that
area may be written as the definite integral of f(x) from a to b.*

In like manner consider the mass of a rod of variable density and suppose the
rod to lie along the z-axis so that the density may be taken as a function of x.
In any small length Az of the rod the density is nearly constant and the mass of
that part is approximately equal to the product pAz of the density p(z) at the
initial point of that part times the length Ax of the part., In fact it is clear that
the mass will be intermediate between the products mAz and MAz, where m and
M are the minimum and maximum densities in the interval Az. In other words
the mass of the section Az will be exactly equal to p(£) Az where ¢ is some value of
x in the interval Az. The mass of the whole rod is therefore the sum Zp(f)Ax
taken from one end of the rod to the other, and if the intervals be allowed to
approach zero, the mass may be written as the integral of p(z) from one end of
the rod to the other.t

Another problem that may be treated by these methods is that of finding the
total pressure on a vertical area submerged in a liquid, say, in water. Let w be the
weight of a column of water of cross section 1 sq. unit and
of height 1 unit. (If the unit is a foot, w = 62.5 1b.) Ata
point % units below the surface of the water the pressure is
wh and upon a small area near that depth the pressure is
approximately whd if 4 be the area. The pressure on the
area 4 is exactly equal to wid if £ is some depth interme-
diate between that of the top and that of the bottom of
the area, Now let the finite area be ruled into strips of height Ak. Consider the
product whb (%) Ak where b(h) = f (k) is the breadth of the area at the depth 2. This

* The ¢'s may evidently be so chosen that the finite sum Zf (£) Az is exactly equal to
the area under the curve ; but still it is necessary to let the intervals approach zero and
thus replace the sum by an integral because the values of § which make the sum equal
to the area are unknown.

1 This and similar problems, here treated by using the Theorem of the Mean for
integrals, may be treated from the point of view of differentiation as in § 7 or from that
of Duhamel’s or Osgood’s Theorem as in §§ 34, 35. It should be needless to state that in
any particular problem some one of the three methods is likely to be somewhat preferable
to either of the others. The reason for laying such emphasis upon the Theorem of the
Mean here and in the exercises belov is that the theorem is in itself very important and
needs to be thoroughly mastered.
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multiplied by the approximate area of the strip. Then wkb (§) Ak, where £ is some
value between 2 and & + Ah, is the actual pressure on the strip. (It is sufficient to
write the pressure as approximately whb (k) Ak and not trouble with the £) The
total pressure is then Zwgb (£) Ak or better the limit of that sum. Then

P=lim zwsb(e) dh = f b Gy i,

where a is the depth of the top of the area and b that of the bottom. To evaluate
the pressure it is merely necessary to find the breadth b as a function of % and
integrate.

EXERCISES

3 ®
1. If k is a constant, show f kf(@)de = Icf [ (z)dz.
a a
3 3 v
2. Sh h = dz .
Sowtat‘[;(uiv)dz fa‘u ij;v

3. If, from a to b, ¢ (@) < /() < ¢ (z), showfahw @ dz <j;bf(x)dz <fﬂ°¢ @)dz.

4. Suppose that the minimum and maximum of the quotient Q (x) =f(z)/¢ (z)
of two functions in the interval from a to b are m and M, and let ¢ (z) be positive
s0 that

I(@)
# ()

are true relations. Show by Exs. 3 and 1 that

m< Q@)= <M and m¢ () <f(z) < Mg (z)

faf(")‘“ nd ff"’d‘_ﬁw iCY
f e [owan )

where £ is some value of  between a and b.

5. If m and M are the minimum and maximum of f(z) between a and b and if
¢ (z) is always positive in the interval, show that

mj;b¢(ac)dz<£bf(x)¢(x)dx<M‘f;b¢(x)i'c
and [rap@a=s[s@a=r@ [ 0w

Note that the integrals of [M — f(z)] ¢ (z) and [f(z) — m]¢(x) are positive and
apply Ex. 2.

6. Evaluate the following by the direct application of (62) :
b b — a? b
=, eody = & — eo,
(@ [ wi=—3 o f

Take equal intervals and use the rules for arithmetic and g ic prog!

b
7. Evaluate (@) sz"'da: = nT'i—l Erer—amtt), (g [ odr= H{c(cb — o).

In the first the intervals should be taken in geometric progression with 7 = b/a.
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. Show directly that (x) Jv sin“zdr = 4%, (P) Jo cosrzar = VU, 11 n 18 odd.

©

. With the aid of the trigonometric formulas
cos2 + ¢0s2T ++ -+ + €08 (n~ 1)z = } [sinrz cot } £ — 1~ cosnz],
sinz 4+ sin2% + -+« + sin (n — 1) & = } [(1 — cos nx) cot } & ~ sin nx],

show (a) fhcasacdz =sinb — sing, (8) f hsina‘«lz = cosa — cosD.
10. A function is said to be even if f(~ z) =f(x) and odd if f(~ 2) = —1(z),
Show (@) [ @i =2 S F@z, feven, (@) [ @ dz =0, fodd.
- A s ) - )

11. Show that if an integral is regarded as a function of the lower limit, the
upper limit being fixed, then

d rb b
(@) = — == if = de,
¥a)=1 [J@w==r@, ite@=[7e
12, Use the relation between definite and indefinite integrals to compare
f F@ydz=0—a)f(¢) and F@O)—F(a)=0—a)I'F)
the Theorem of the Mean for derivatives and for definite integrals
13. From consideration of Exs. 12 and 4 establish Cauchy's Fo:mnula
AF_F(O) = F(@) _ )
AD . B(0)—d(a) (E)
which states that the quotient of the increments AF and A® of two functions, in
any interval in which the derivative &(z) does not vanish, is equal to the quotient
of the derivatives of the functions for some interior point of the interval. What
would the application of the Theorem oi the Mean for derivatives to numerator

and denominator of the left-hand fraction give, and wherein does it differ from
Cauchy’s Formula ?

a<t<Dh,

14. Discuss the volume of revolution of ¥ = f(z) as the limit of the sumn of thin
cylinders and compare the results with those found in Ex. 9, p. 10.

15. Show that the mass of arod running from « to b along the z-axis is
1 k(0® ~ o?) if the density varies as the distance from the origin (k is a factor of
proportionality).

16. Show (a) that the mass in a rod running from a to b is the same as the area
under the curve y = p (z) between the ordinates = = ¢ and ¢ = b, and explain why
this should be seen intuitively to be so. Show (8) that if the density in a plane slab
bounded by the z-axis, the curve y = f(x), and the ordinates z =@ and = b isa

b
function p (x) of = alone, the mass of the slab is f yp () dz ; also (y) that the mass
of the corresponding volume of revolution is f wy2p () de.

a

17. An isosceles triangle has the altitude a and the base 2b. Find (a) the mass
on the assumption that the density varies as the distance from the vertex (meas-
ured along the altitude). Find (8) the mass of the cone of revolution formed by
revolving the triangle about its altitude if the law of density is the same.



18. In a plane, the moment of inertia I of a particle of mass m with respect to a
point is defined as the product mr? of the mass by the square of its distance from the
point. Extend this definition from particles to bodies.

(@) Show that the moments of inertla of a rod running from a to b and of a
circular slab of radius ¢ are respectively

1= "otz and I= [ "2 he densi
_j’: a%p (z) and _f; p (r)dr, p the density,

if the point of reference for the rod is the origin and for the slab is the center.

(8) Show that for a rod of length 21 and of uniform density, I =} ME with
respect to the center and I = § MI? with respect to the end, M being the total mass
of the rod.

() For a uniform circular slab with respect to the center I = 4 Ma?2.

(8) For a uniform rod of length 21 with respect to a point at a distance d from
its center is I = M (} {2 4 d?). Take the rod along the axis and let the point be
(a, B) with d? = a® 4 2.

19. A rectangular gate holds in check the water in a reservoir. If the gate is
submerged over a vertical distance H and has a breadth B and the top of the
gate is @ units below the surface of the water, find the pressure on the gate. At
what depth in the water is the point where the pressure is the mean pressure
over the gate ?

20. A dam is in the form of an isosceles trapezoid 100 ft. along the top (which
is at the water level) and 60 ft. along the bottom and 80 ft. high. Find the pres-
sure in tons.

21. Find the pressure on a circular gate in a water main if the radius of the
circle is r and the depth of the center of the circle below the water level is d=r.

22. In space, moments of inertia are defined relative o an axis and in the for-
mula I ==mr?, for a single particle, » is the perpendicular distance from the
particle to the axis.

(a) Show that if the density in a solid of revolution generated by y = f(x) varies
only with the distance along the axis, the moment of inertia about the axis of

b
revolution is I = f 3 wy*p (z)dx. Apply Ex. 18 after dividing the solid into disks.
a

(8) Find the moment of inertia of a sphere about a diameter in case the density
is constant ; I = ¢ Ma? = s wpal.

(7) Apply the result to find the moment of inertia of a spherical shell with
external and internal radii @ and b; I=% M(a®— b%)/(a® — 1%). Let b=a and
thus find I = § Ma? as the moment of inertia of a spherical surface (shell of negli-
gible thickness).

(3) For a cone of revolution I = f; Ma® where a is the radius of the base.

23. If the force of attraction exerted by amassm upon a point is kmf(r) where
 is the distance from the mass to the point, show that the attraction exerted at
the origin by a rod of density p (z) running from a to b along the z-axis is

A= fbkf(z)p(z) dx, andthat A =kM/ab, M=p@b-a),
a

is the attraction of a uniform rod if the law is the Law of Nature, that is



both z and >1/. Show that the mass of a small slice over the interval Az; would be
of the form

v=r§ b b v=/()
= = d;
Ar j; p(z, y)dy = @ (¢) Az and that ‘f; ¢ (z) Ax j; [fo Pz, y) y]dz

would be the expression for the total mass and would require an integration with
respect to y in which z was held constant, a substitution of the limits f(z) and 0
for v, and then an integration with respect to = from a to b.

25. Apply the considerations of Ex. 24 to finding moments of inertia of
(@) a uniform triangle y = mz, ¥ = 0, * = a with respect to the origin,
(8) auniform rectangle with respect to the center,

(v) auniform ellipse with respect to the center.

26. Compare Exs. 24 and 16 to treat the volume under the surface z = p (z, )
and over the area bounded by y = f(z), ¥ = 0, £ = @, z = b. Find the volume
(a) under z = zy and over 2 = 4pz, ¥y = 0,2 =0,z =b,
(B) under z=a? + y?and overz? + y* =’ y =0, x=0,2 = Q,
P

z2
der —
(v) under pr + ”

22 22 0
+§_1€mdover§+b~2=1,1/_0,2_0,a:-n,.

27. Discuss sectorial area %f"zdd? in polar cosrdinates as the limit of the sum
of small sectors running out from the pole.
28. Show that the moment of inertia of a uniform cireular sector of angle a
a,
and radivns u is } parat. Hence infer I = }pf I7"cl‘iz in polar codrdinates.
@
29. Find the moment of inertia of a uniform () lemniscate 12 = a® cos®2 ¢

and () cardioid » = @ (1 — cos ¢) with respect to the pole. Also of (y) the circle
T =2acos¢ and (3) the rose r = a sin 2 ¢ and (¢) the rose r = a sin 8 ¢.



CHAPTER 1II
REVIEW OF FUNDAMENTAL THEORY *

18. Numbers and limits. The concept and theory of real number
integral, rational, and irrational, will not be set forth in detail here.
Some matters, however, which are necessary to the proper understand-
ing of rigorous methods in analysis must be mentioned ; and numerous
points of view which are adopted in the study of irrational number
will be suggested in the text or exercises.

1t is taken for granted that by his earlier work the reader has become familiar
with the use of real numbers. In particular it is assumed that he is accustomed
to represent numbers as a scale, that is, by points on a straight line, and that he
knows that when a line is given and an origin chosen upon it and a unit of measure
and a positive direction have been chosen, then to each point of the line corre-
sponds one and only one real number, and conversely. Owing to this correspond-
ence, that is, owing to the conception of a scale, it is possible to interchange
statements about numbers with statements about points and hence to obtain a
more vivid and graphic or a more abstract and arithmetic phraseology as may be
desired. Thus instead of saying that the numbers ,, &, - - - are increasing algebra-~
ically, one may say that the points (whose codrdinates are) ,, &, - - - are moving
in the positive direction or to the right ; with a similar correlation of a decreasing
suite of numbers with points moving in the negative direction or to the left. It
should be remembered, however, that whether a statement is couched in geometric
or algebraic terms, it is always a statement concerning numbers when one has in
mind the point of view of pure analysis.t

It may be recalled that arithmetic begins with the integers, including 0, and
with addition and multiplication. That second, the rational numbers of the
form p/q are introduced with the operation of division and the negative rational
numbers with the operation of subtraction. Finally, the irrational numbers are
introduced by various processes. Thus V2 occurs in geometry through the
necessity of expressing the length of the diagonal of a square, and V3 for the
diagonal of a cube. Again, 7 is needed for the ratio of circumference to diameter
in a circle, In algebra any equation of odd degree has at least one real root and
hence may be regarded as defining a number. But there is an essential difference
between rational and irrational numbers in that any rational number is of the

* The object of this chapter is to set forth systemahcally, w1th attentxon to precision
of statement and accuracy of proof, those fund and which
lie at the basis of calculus and which have been given in the previous chapter from an




form + p/g with ¢ 5 0 and can therefore be written down explicitly ; whereas
the irrational numbers arise by a variety of processes and, although they may be
represented to any desired accuracy by a decimal, they cannot all be written
down explicitly. It is therefore necessary to have some definite axioms regulating
the essential properties of irrational numbers. The particular axiom upon which
stress will here be laid is the axiom of continuity, the use of which is essential
to the proof of elementary theorems on limits.

19. Axrom or Conminuvrry. If all the points of a line are divided into
two classes such that every point of the first class precedes every point of
the second class, there must be a point C such that any point preceding
C' is in the first class and any point succeeding C is in the second cluss.
This principle may be stated in terme of numbers, as: If all real num-
bers be assorted into two classes such that every nwmber of the first cluss
is algebroically less than every number of the second class, there must be
a number N such that any number less than N is in the first class and
any number greuter than N is in the second. The number N (or point C)
is called the frontier number (or point), or simply the frontier of the
two classes, and in particular it is the wpper frontier for the first class
and the Jower frontier for the second.

To consider a particular case, let all the negative numbers and zero constitute
the first class and all the positive numbers the second, or let the negative numbers
alone be the first class and the positive numbers with zero the second. In either
case it is clear that the classes satisfy the conditions of the axiom and that zero is
the frontier number such that any lesser number is in the first class and any
greater in the second. If,1 , one were to ider the system of all positive
and negative numbers but without zero, it is clear that there would be no number
N which would satisfy the conditions demanded by the axiom when the two
classes were the negative and positive numbers ; for no matter how small a posi-
tive number were taken as N, there would be smaller numbers which would also
be positive and would not belong to the first class; and similarly in case it were
attempted to find a negative N. Thus the axiom insures the presence of zero in
the system, and in like manner insures the presence of every other number — a
matter which is of importance because there is no way of writing all (irrational)
numbers in explicit form.,

Further to appreciate the continuity of the number scale, consider the four
significations attributable to the phrase ‘‘the interval from a to b.” They are

a=r =D, a<T =D, a=x<bh a<z<b

That Is to say, both end points or either or neither may belong to the interval. In
the case a is absent, the interval has no first point ; and if b is absent, there is no
last point. Thus if zero is not counted as a positive number, there is no least
positive number ; for if any least number were named, half of it would surely be
less, and hence the absurdity. The axiom of continuity shows that if all numbers
be divided into two classes as required, there must be either a greatest in the first
class or a least in the sernnd —— the frantier — bt nek heth 19nlose ha frandior ja



20. DeriNiTION OF A LamiT. If 2 is a variable which takes on succes-
sive values x,, &, -+, Ty ay, -+, the variable x is said to approach the con-
stant { us a limit if the numerical difference between x and ! ultimately
becomes, and for all succeeding values of x remains,
less than any preassigned number no matter how
small. The numerical difference between x and !
is denoted by [x— | or [l—w|and is called the absolute walue of the
difference. The fact of the approach to a limit may be stated as

€€
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|z —1|<e forall 2’s subsequent to some z
or =1+, |[9|<e forall 2’s subsequent to some x,

where e is a positive number which may be assigned at pleasure and
must be assigned before the attempt be made to find an « such that
for all subsequent #’s the relation |« — | < e holds.

So long as the conditions required in the definition of a limit are satisfied there
is no need of bothering about how the variable approaches its limit, whether from
one side or alternately fron one side and the other, whether discontinuously as in
the case of the area of the polygons used for computing the area of a circle or
continuously as in the case of a train brought to rest by its brakes. To speak
geometrically, a point  which changes its position upon a line approaches the
point I as a limit if the point x ultimately comes into and remains in an assigned
interval, no matter how small, surrounding I.

A variable is said to become infinite if the numerical value of the
variable ultimately becomes and remains greater than any preassigned
number K, no matter how large.* The notation is 2 = oo, but had best
be read * z becomes infinite,” not ** z equals infinity.”

Tueorem 1. If a variable is always increasing, it either becomes
infinite or approaches a limit.

That the variable may increase indefinitely is apparent. But if it does not
become infinite, there must be numbers I’ which are greater than any value of
the variable. Then any number must satisfy one of two conditions: either there
are values of the variable which are greater than it or there are no values of the
variable greater than it. Moreover all numbers that satisfy the first condition are
less than any number which satisfies the second. All numbers are therefore
divided into two classes fulfilling the requirements of the axiom of continuity, and
there must be a number N such that there are values of the variable greater than
any number N — e which is less than N. Hence if ¢ be assigned, there is a value of
the variable which lies in the interval N — e <z = N, and as the variable is alwayg
increasing, all subsequent values must lie in this interval. Therefore the variable
approaches N as a limit,

* This definition means what it says, and no more. Later, additional or different
meanines mav he assiened to infinitv. but not now. Loose and extraneous ~oncents in



1. If @y, Ta, -+ Tny %y Tu g py - - 18 @ Suite approaching a limit, apply the defi-
nition of a limit to show that when e is given it must be possible to find a value of
n $0 great that [T, 4, — Ta| <e for all values of p.

2. If @y, &g, - - i8 & suite approaching a limit and if 1, ya, - - - is any suite such
that |y, — 2| approaches zero when n becomes infinite, show that the y’s approach
a limit which is identical with the limit of the z’s.

3. As the definition of a limit is phrased in terms of inequalities and absolute
values, note the following rules of operation :

(@) If a>0 and ¢>b, then E>2 and %<4,
e a c b
@) latd+ct | =la|+[ol+el+ -, () labe---]=[a]|b]-[c]--

where the equality sign in (8) holds only if the numbers a, b, ¢, - - - have the same
sign. By these relations and the definition of a limit prove the fundamental

=X and limy =Y, then lim (x4 7%) =X+ Y and limay = XY.

eorem 1 when restated in the slightly changed form: If a variable

's and never exceeds X, then @ approaches a limit N and N = K.

~e-+- and prove the corresponding theorem for the case of a
|3

Wy Y2, + + - are two suites of which the first never decreases

‘reases, all the ’s being greater than any of the @, and if

wravas© 10 aomguou wit 7o can be found such that y, — @, <e, show that the limits
of the suites are identical.

6. Ifa), @), -+ - and 1, ya, - + - are two suites which never decrease, show by Ex. 4
(not by Ex. 8) that the suites @) + y1, @2+ ¥a, -+ - and x,y), Tays, -+ - approach
limits, Note that two infinite decimals are precisely two suites which never de-
crease as more and more figures are taken. They do not always increase,for some
of the figures may be 0.

7. If the word "*all” in the hypothesis of the axiom of continuity be assumed to
refer only to rational numbers so that the statement becomes: If all rational
numbers be divided into two classes. .., there shall be a number N (not neces-
sarily rational) such that -..; then the conclusion may be taken as defining a
number as the frontier of a sequence of rational numbers. Show that if two num-
bers X, ¥ be defined by two such sequences, and if the sum of the numbers be
defined as the number defined by the sequence of the sums of corresponding terms
as in Ex, 6, and if the product of the numbers be defined as the number defined by
the sequence of the products as in Ex. 6, then the fundamental rules

X+Y=Y+X, XY =YX, (X + Y)Z=XZ+Y2Z
of arithmetic hold for the numbers X, Y, Z defined by sequences. In this way a
plete theory of irrationals may be built up from the properties of rationals
combined with the principle of continuity, namely, 1° by defining irrationals as
frontiers of sequences of rationals, 2° by defining the operations of addition, multi-
plication, - - . a8 operations upon the rational numbers in the sequences, 8° by
showing that the fundamental rules of arithmetic still hold for the irrationals,




Such tlial w* = 2, 10 U0 Lhls It 3hould be shownl that the rauonals are dlvisibie
into two classes, those whose square is less than 2 and those whose square is not
less than 2; and that these classes satisfy the requirements of the axiom of conti-
nuivy. In like manner if a is any positive number and n is any positive integer,
show that there is an 2 sucli that z* = a.

21. Theorems on limits and on sets of points. The theorem on
limits which is of fundamental algebraic importance is

TuroreM 2. If R(z,y, #,---) beany rational function of the variables
«, 3, %, -+, and if these variables are approaching limits X, ¥, Z, -.-
then the value of 2 approaches a limit and the limit is 2(X, ¥, 7, ---),
provided there is no division by zero.

As any rational expression is made up from its elements by combinations of
addition, subtraction, multiplication, and division, it is sufficient to prove the
theorem for these four operations. All except the last have been indicated in the
above Ex. 3. As multiplication has been cared for, division need be cousidered
only in the simple case of a reciprocal 1/z. It must be proved that if limz = X,
then lim (1/z) = 1/X. Now

11

11 _lz—X|
z X

=T, by Ex. 3 (v) above.
T ] {

This quantity must be shown to be less than any assigned e. AS the quantity is
complicated it will be replaced by a simpler one which is greater, owing to an
increase in the denominator. Since z = X, z — X may be made numerically as
small as desired, say less than ¢, for all z’s subsequent to some particularz. Hence
if ¢ be taken at least as small as 3] X |, it appears that |z} must be greater than
11X |. Then

\z—Xl<|z—-X[__ ¢

=X HXP ~HEP

by Ex. 8 (a) above,

and if ¢ be restricted to being less than }| X |%, the difference is less than e and
the theorem that lim (1/x) = 1/X is proved, and also Theorem 2. The necessity
for the restriction X 3 0 and the corresponding restriction in the statement of
the theorem is obvious.

Tueorem 3. If when e is given, no matter how small, it is possible
to find a value of n so great that the difference [, ,,— z,| between x,
and every subsequent term z,,, in the suite 2, 2,, -+, 2,, --- is less
than ¢, the suite approaches a limit, and conversely.

The converse part has already been given as Ex. 1 above. The theorem itself is
a consequence of the axiom of continuity. First note that as |Tn4, —2a|< e for
4ll 2's subsequent to z,, the 's cannot become infinite. Suppose 1° that there
is some number [ such that no matter how remote 2, is in the suite, there are
always subsequent values of # which are greater than I and others which are less
than l. As all the z’s after x, lie in the interval 2 ¢ and as ! is less than some 2’s
and greater than others, ! must lie in that interval. Hence (I —p4p| <2 e for all




@’s subsequent to 2,. But now 2 e can be made as small as desired because ¢ can be
taken as small as desired. Hence the definition of a limit applies and the £'s
approach ! as a limit.

Suppose 2° that there is no such number l. Then every number k is such that
either it is possible to go so far in the suite that all subsequent numbers x are
as great as k or it is possible to go so far that all subsequent z’s are less than k.
Hence all numbers k are divided into two classes which satisfy the requirements of
the axiom of continuity, and there must be a nunber NV such that the z’s ultimately
come to lie between N — ¢ and N + ¢, no matter how small ¢’ is. Hence the z’s
approach N as a limit. Thus under either supposition the suite approaches a limit
and the theorem is proved. It may be noted that under the second supposition the
z's ultimately lie entirely upon one side of the point N and that the condition
|€n+p — %a| < ¢ i8 not used except to show that the &’s remain finite.

22. Consider next a set of points (or their correlative numbers)
without any implication that they form a suite, that is, that one may
be said to be subsequent to another. If there is only a finite number
of points in the set, there is a point farthest to the right and one
farthest to the left. If there is an infinity of points in the set, two
possibilities arise. Either 1° it is not possible to assign a point K so
far to the right that no point of the set is farther to the right —in
which case the set is said to be wnlimited above there is a
point K such that no point of the set is beyond K —and the set is
said to be limited above. Similarly, a set may be limited below or un-
limited below. If a set is limited above and below so that it is entirely
contained in a finite interval, it is said merely to be limited. If there
is a point C such that in any interval, no matter how small, surround-
ing C there are points of the set, then C is called a point of condensa-
tion of the set (C itself may or may not belong to the set).

TueoreM 4. Any infinite set of points which is limited has an
upper frontier (maximum ?), a lower frontier (minimum?), and at
least one point of condensation.

Before proving this theorem, consider three infinite sets as illustrations :
(@) 1, 1.9, 1.99, 1.999, ..., B) =2y —1.99, —1.9,~ 1,
M -L-bh=bhbhhl

In (a) the element 1 is the minimum and serves also as the lower frontier ; it is
clearly not a point of condensation, but is isolated. There is no maximum ; but 2
is the upper frontier and also a point of condensation. In (g) there is a maximum
—1 and a minimum — 2 (for — 2 has been incorporated with the set), In (y) there
is a maximum and minimum ; the point of condensation is 0. If one could be sure
that an infinite set had a maximum and minimum, as is the case with finite
sets, there would be no need of considering upper and lower frontiers. It is clear
that if the upper or lower frontler belongs to the set, there is a maximum or

e e b s Lem.




e corresponaing. exireme point 18 missing.

To prove that there is an upper frontier, divide the points of the line into two
classes, one consisting of points which are to the left of some point of the set, the
other of points which are not to the left of any point of the set —then apply the
axiom. Similarly for the lower frontier. To show the existence of a point of con-
densation, note that as there is an infinity of elements in the set, any point p is such
that either there is an infinity of points of the set to the right of it or there is not.
Hence the two classes into which all poinis are to be assorted are suggested, and
the application of the axiom offers no difficulty.

EXERCISES
1. In a manner analogous to the proof of Theorem 2, show that
z—1_1 . 8z~ 5 R
lim == lim == lim =—1
@ 2=y Ol o Jim
2. Given an infinite series S = u; + ug + ug + .- .. Construct the suite

Si=ui, Se=wr+up Ss=ur+ustug ooy Si=w+us - Fug -0y
where S; is the sum of the first ¢ terms. Show that Theorem 3 gives: The neces-
sary and sufficient condition that the series S converge is that it is possible to find
an n 80 large that | S, 4+, — Su[ shall be less than an assigned e for all values of p.
It is to be understood that a series converges when the suite of S’s approaches a limit,
and conversely.

3. If in a series u; — ug + us — ug + - - - the terms approach the limit 0, are
alternately positive and negative, and each term is less than the preceding, the
serivs converges. Consider the suites Sy, Sg, Ss, - - - and Sz, S¢, Sg, -« -.

4. Given three infinite suites of numbers

X1y Tgy ooy Tmy v o0f YL Yoyt Uny oovi Ray Zayt ey Zny vt
of which the first never decreases, the second never increases, and the terms of the
third lie between corresponding terms of the first two, Zn = 2z, = y». Show that
the suite of z's has a point of cond atork the limits app hed by
the z’s and by the ¢’s; and that if lim 2 = lim ¥ = I, then the 2’s approach ! as a
limit,

5. Restate the definitions and theorems on sets of points in arithmetic terms.

6. Give the details of the proof of Theorem 4. Show that the proof as outlined
gives the least point of condensation. How would the proof be worded so as to give
the greatest point of condensation? Show that if a set is limited above,it has an
upper frontier but need not have a lower frontier.

7. If a set of points is such that between any two there is a third, the set is said
to be dense. Show that the rationals form a dense set ; also the irrationals. Show
that any point of a dense set is a point of condensation for the set.

8. Show that the rationals p/g where ¢ < K do not form a dense set — in fact
are a finite set in any limited interval. Hence in regarding any irrational as the
limit of a set of rationals it is 'y that the d and also the numer-
ators should become infinite,




9. Show that 11 an Iniinite set oi pomts lies 1n a limited region of the plane,
say in the rectangle a =z = b, ¢ = y = d, there must be at least one point of
condensation of the set. Give the necessary definitions and apply the axiom
of continuity successively to the abscissas and ordinates.

23. Real functions of a real variable. Jf' a be « variable which
takes on a certain set of values of which the totality may be denoted
by [x] and if y is « second variable the value of which is uniquely
determined for cach o of the set [a], then y is said to be a function of
« defined over the set [2]. The terms  limited,” ** unlimited,” ** limited
above,” “unlimited below,” .- are applied to a function if they are
applicable to the set [y] of values of the function. Hence Theorem 4
has the corollary :

Turorem 5. If a function is limited over the set [x], it has an
upper frontier M and a lower frontier m for that set.

If the function takes on its upper frontier A, that is, if there is a
value 2 in the set [«] such that f(x,) = M, the function has the abso-
lute mamimum M at x,; and similarly with respect to the lower
frontier. In any case, the difference M —m between the upper and
lower frontiers is called the oscillation of the function for the set [z].
The set [x] is generally an interval.

Consider some illustrations of functions and sets over which they are defined.
‘The reciprocal 1/x is defined for all values of 2 save 0. In the neighborhood of 0
the function is unlimited above for positive 's and unlimited below for negative z's.
It should be noted that the funetion is not limited in the interval 0 <z = @ but is
limited in the interval ¢ = z = a where e is any assigned positive number. The
function + vz is defined for all positive z’s including 0 and is limited below. It
is not limited above for the totality of all positive numbers ; but if K is assigned,
the function is limited in the interval 0 = = K. The factorial function 2! is de-
fined only for positive integers, is Jimited below by the value 1, but is not limited
above unless the set [z] is limited above. The function E (%) denoting the integer
not greater than z or “*the integral part of £ is defined for all positive numbers
-—for instance E(3) = B (r) = 8. This function is not expressed, like the elemen-
tary functions of calculus, as a ** formula ' ; it is defined by a definite law, however,
and is just as much of a function as 2? 4 8% + 2 or }sin22z + logz. Indeed it
should be noted that the elementary functions themselves are in the first instance
defined by definite laws and that it is not until after they have been made the
subject of considerable study and have been largely developed along analytic lines
that they appear as formulas. The ideas of function and formula are essentially
distinet and the latter is essentially secondary to the former.

The definition of function as given above excludes the so-called multiple-valued
functions such as vz and sin-1z where to a given value of z correspond more than
nme value of the function. It is usual, however, in treating multiple-valued func-
tions to resolve the functions into different parts or branches so that each branch
is a single-valued function. Thus +\/E is one branch and — /z the other branch



of Vz;in fact when z is positive the symbol Vi is usnally restricted to mean
merely + vz and thus becomes a single-valued symbol. One branch of sin-1z con-
sists of the values between — }a and + }r, other branches give values between
jmand §7 or — }m and — §, and so on. Hence the term ** function ™ will be
restricted in this chapter to the single-valued functions allowed by the definition,

24. If v =a is any point of an interval over which f(x) is defined,
the function f(x) is said to be continuous at the point = a if’

lim f(x) = f(@), no matter how x = a.

The function is said to be continuous in the interval if it is continuous
at every point of the interval. If the function is not continuous at the
point a, it is said to be discontinuous at a; and if it fails to be con.
tinuous at any one point of an interval, it is said to be discontinuous
in the interval.

TreoreM 6. If any finite number of functions are continuous (at a
point or over an interval), any rational expression formed of those
functions is continuous (at the point or over the interval) provided ne
division by zero is called for.

Turorem 7. If y=f(x) is continuous at x, and takes the value
¥, =/f(x,) and if z=¢(y) is a continuous function of y at y =y, then
2= ¢[f()] will be a continuous function of » at

In regard to the definition of continuity note that a function cannot be con-
tinuous at a point unless it is defined at that point. Thus e~1/2* is not continuous
atz = 0 because division by 0 is impossible and the function is undefined. If, how-
ever, the function be defined at 0 as f(0) = 0, the function becomes continuous at
2 = 0. In like manner the function 1/x is not continuous at the origin, and in this
case it is impossible to assign to f(0) any value which will render the function
continuous ; the function becomes infinite at the origin and the very idea of be-
coming infinite precludes the possibility of approach to a definite limit. Again, the
function E (z) is in general continuous, but is discontinuous for integral values
of x. When a function is discontinuous at x = a, the amount of the discontinuity is
the limit of the oscillation M — m of the function in the interval a —§ <z <a + 3
surrounding the point @ when & approaches zero as its limit. The discontinuity
of E (z) at each integral value of z is clearly 1; that of 1/x at the origin is infi-
nite no matter what value is assigned to f(0).

In case the interval over which f(z) is defined has end points, say a =z =b,
the question of continuity at @ = a must of course be decided by allowing z to
approach & from the right-hand side only ; and similarly it is a question of left-
handed approach to b. In general, if for any reason it is desired to restrict the
approach of a varfable to its limit to being one-sided, the notations % = a+ and
2 = b~ respectively are used to denote approach through greater values (right-
handed) and through lesser values (left-handed). It is not necessary to make this
specification in the case of the ends of an interval : for it is understood that z
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‘I'he proof of Theorem 6 is an immediate corollary application of Theorem 2. For

lim R [f(x), ¢ (@) - -] = R (lim f{x), lim ¢ (z), - - -] = R{f(limz), ¢ (lima), -],
and the proof of Theorem 7 is equally simple.

Tusorrm 8. If f(x) is continuous at @ = «, then for any positive
¢ which lhas been assigned, no matter how simall, there may be found a
number § such that | f(x) — f(a)|<e in the interval |z— a| <38, and
hence in this interval the oscillation of f(x) is less than 2e And
conversely, if these conditions hold, the function is continuous.

This theorem is in reality nothing but a restatement of the definition of conti-
nuity combined with the definition of a limit. For **lim f(z) =f(a) when z = a,
no matter how  means that the difference between f'(z) and f(a) can be made as
small as desired by taking @ sufficiently near to @ ; and conversely. The reason
for this restatement is that the present formn is more sinenable to analytic opera-
tions. It also suggests the geometric picture which corre-
sponds to the usual idea of continuity in graphs. For the ~
theorem states that if the two lines ¥ = f(a) + ¢ be drawn, €
the graph of the function remains between them for at least e
the short distance & on each side of & = a; and as ¢ may be /,6
assigned a value as small as desived, the graph cannot exhibit
breaks. On the other hand it should be noted that the actual
physical graph is not a curve but a band, a two-dimensional region of greater or
less breadth, and that a function could be discontinuous at every point of an
interval and yet lie entirely within the limits of any given physical graph.

It is clear that 5, which has to be determined subsequently to ¢, is in general
more and more restricted as e is taken smaller and that for different points it is
more restricted as the graph rises more rapidly. Thus if f (z) = 1/z and e = 1/1000,
§ can be nearly 1/10 if zp = 100, but must be slightly less than 1/1000 if 2o =1, and
something less than 109 if & is 10-3. Indeed, if z be allowed to approach zero, the
value & for any assigned e also approaches zero; and although the function
f(x) =1/x is continuous in the interval 0 <z =1 and for any given 2o and € a
number 5 may be found such that [f(x) — f(zo)| < ¢ When |& — 2| < 8, yet it is not
possible to assign a number § which shall serve uniformly for all values of @o.

¥
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25. Turorrm 9. If a function f(x) is continuous in an interval
¢=z=b with end points, it is possible to find a 8 such that
| @) — f (wo)| < € when [@ —mz,| < § for all points ,; and the function
is said to be uniformly continuous.

The proof is conducted by the method of reductio ad absurdum. Suppose e
Is assigned. Consider the suite of values }, 4, 4, -, or any other suite which
approaches zero as a limit. Suppose that no one of these values will serve as a 3
for all points of the interval. Then there must be at least one point for which §
will not serve, at least one for which } will not serve, at least one for which § will
uot serve, and so on indefinitely. This infinite set of points must have at least one



e
whmh 2~% will not serve as 3, no ma.tber how large k. But now by hypothesis f(x)
is continnous at C and hence a number & can be found such that | f(z) — f(0)|< ] e
when |z — x| < 23. The oscillation of f(x) in the whole interval 43 is less than e.
Now if o be any point in the middle half of this interval, [zo— C|< &; and if z
satisfies the relation [& — @o| < 3, it must still lie in the interval 43 and the differ-
ence | f(z) — f(2o) | <¢; being surely not greater than the oscillation of fin the whole
interval. Hence it is possible to surround C with an interval so small that the
same & will serve for any point of the interval. This contradicts the former con-
clusion, and hence the hypothesis upon which that conclusion was based must have
been false and it must have been possible to find a & which would serve for all
points of the interval. The reason why the proof would not apply to a function
like 1/z defined in the interval 0 <z =1 lacking an end point is precisely that
the point of condensation ¢ would be 0, and at 0 the function is not continuous
and |f(z) —f(C)] < }¢, |2 — C| <235 could not be satisfied.

Turorem 10. If a function is continuous in a region which includes
its end points, the function is limited.

TreoreM 11. If a function is continuous in an interval which includes
its end points, the function takes on its upper frontier and has a maxi-
mum M; similarly it has a minimum 7.

These are successive corollaries of Theorem 9. For let e be assigned and let &
be determined so as to serve uniformly for all points of the interval. Divide the
interval b — a into n successive intervals of length & or less. Then in each such
interval f cannot increase by more than e nor decrease by more than e. Hence f
will be contained between the values f(a) + ne and f(¢) — ne, and is limited. And
f(x) has an upper and a lower frontier in the interval. Next consider the rational
function 1/(M — f) of f. By Theorem 6 this is continuous in the interval unless
the denominator vanishes, and if continuous it is limited. This, however, is impos-~
sible for the reason that, as M is a frontier of values of f the difference M —f
may be made as small as desired. Hence 1/(M — f) is not continuous and there
must be some value of z for which f = M,

TrroreM 12. If f(z) is continuous in the interval ¢ = z= b with end
points and if f(a) and f(b) have opposite signs, there is at least one
point ¢ a < £ < ¥, in the interval for which the function vanishes.
And whether f(«) and f(b) have opposite signs or not, there is a point
¢, o < ¢ <D, such that f(£) = p, where u is any value intermediate be-
tween the maximum and minimum of £ in the interval.

For convenience suppose that f(a) < 0. Then in the neighborhood of z = a the
function will remain negative on account of its continuity ; and in the neighbor-
hood of b it will remain positive. Let # be the lower frontier of values of & which
make f(x) positive. Suppose that f(§) were either positive or negative. Then as
f is continuous, an interval could be chosen surrounding f and so0 small that f re-
mained positive or negative in that interval. In neither case could £ be the lower
frontier of positive values Hence the contradiction, and f(# must be zero. To



prove the second part of the theorem, let ¢ and d be the values of z which make
f a minimum and maximum. Then the function f —u has opposite signs at ¢ and
d, and must vanish at some point of the interval between ¢ and d; and hence a
fortiori at some point of the interval from a to b.

EXERCISES

1. Note that z is a continuous function of %, and that consequently it follows
from Theorem 6 that any rational fraction P (x)/Q(z), where P and @ are poly-
nomials in , must be continuous for all 2's except roots of @ (z) = 0.

2. Graph the function z — E (z) for = = 0 and show that it is continuous except
for integral values of . Show that it is limited, has a minimum 0, an upper fron-
tier 1, but no maximum.

3. Suppose that f(z) is defined for an infinite set [z] of which ¢ = a is a point
of condensation (not necessarily itself a point of the set). Suppose

lim /@) @] =0 or |7@)=S@)I<e &' ~al<ala~ al<d,

when 2’ and " regarded as independent variables approach a as a limit (passing
only over values of the set [z], of course). Show that f(z) approaches a limit as
z = . By considering the set of values of f(z), the method of Theorem 8 applies
almost verbatim. Show that there is no essential change in the proof if it be
assumed that @’ and z” become infinite, the set [#] being unlimited instead of
having a point of condensation a.

4, Fromn the formula sin ¢ <z and the formulas for sinu — sinv and cos w — cos v
show that A sinz and A cosa are numerically less than 2|Az|; hence infer that sinz
and cosz are continuous functions of z for all values of z.

5. What are the intervals of continuity for tanz and escz? If e = 10~%, what
are approximately the largest available values of 3 that will make |f(2) —f(zo)|<e
when g, = 1°, 80°, 60°, 89° for each ? Use a four-place table.

6. Let f(z) be defined in the interval from 0 to 1 as equal to 0 when g is irra-
tional and equal to 1/g when z is rational and expressed as a fraction p/g in lowest
terms. Show that f is continuous for irrational values and discontinuous for
rational values. Ex. 8, p. 89, will be of assistance in treating the irrational values.

7. Note that in the definition of continuity a generalization may be introduced
by allowing the set [¢] over which f is defined to be any set each point of which
is a point of condensation of the set, and that hence continuity over a dense set
(Ex. 7 above), say the rationals or irrationals, may be defined. This is important
because many functions are in the first instance defined only for rationals and are
subsequently defined for irrationals by interpolation. Note that if a function is
continuous over a dense set (say, the rationals), it does not follow that it is uni-
formly continuous over the set. For the point of condensation C' which was used
in the proof of Theorem 9 may not be a point of the set (may be irrational), and
the proof would fall through for the same reason that it would in the case of 1/z
in the interval 0 <z = 1, namely, because it could not be affirmed that the function
was continuous at C. Show that if a function is defined and is uniformly continu-
ous over & dense set, the value f(z) will approach a limit when x approaches any



function will remain continuous. Ex. 3 may be used to advantage.

8. By factoring (z + Az)* — z%, show for integral values of n that when
0=z = K, then A (z") <nK»-1 Az for small Az’s and consequently z~ is uniformly
continuous in the interval 0=z = K. If it be assumed that z» has been defined
only for rational z's, it follows from Ex. 7 that the definition may be extended
to all 2’8 and that the lting 2 will be \

9. Suppose () that f(z) +/(y) = (x + ) for any numbers z and y. Show that
F(n) =n/(1) and nf(1/n) =f(1), and hence infer that f(z) = zf(1) = Cz, where
C =f(1), for all rational 's. From Ex. 7 it follows that if f(z) is continuous,
f(@) = Cz for all z’s. Consider (g) the function f(z) such that f(z) f(y) =S (@ + ¥).
Show that it is Cer = az,

10. Show by Theorem 12 that if y = f(z) is a inuou ly i ing
function in the interval a = z = b, then to each value of y corresponds a single value
of z so that the function z =f~1(y) exists and is single-valued ; show also that
it is i and ly i ing. State the corresponding theorem if
() is constantly decreasing, The function f~(y) is called the inverse function
to f(@).

11. Apply Ex. 10 to discuss y = V;, where n is integral, z is positive, and only
positive roots are taken into consideration.

12. In arithmetic it may readily be shown that the equations
amgn = gm+n, (am)n = qmn, arbr = (ab)®,
are true when ¢ and b are rational and positive and when m and n are any positive
and negative integers or zero. (a) Can it be inferred that they hold when a
and b are positive irrationals? (8) How about the extension of the fundamental

inequalities
zn>1, when z>1, zr<1, when 0Sz<1
to all rational values of n and the proof of the inequalities
gm>gr if m>n and ®>1, gn<ar if m>n and O<z<l1.

(v) Next consider @ as held constant and the exponent  as variable. Discuss the
exponential function a< from this relation, and Exs. 10, 11, and other theorems that
may seem necessary. Treat the logarithm as the inverse of the exponential.

26. The derivative. If @ =« is a point of an interval over which
f(x) is defined and if the quotient

é,f=f(d+h2—‘f('l)’ b= Az
Az h ’

approaches a limit when h approaches zero, no matter how, the function
S(x) is said to be differentiable at x = a and the value of the limit of
the quotient is the derivative f'(a) of f at x = a. 1In the case of differ-
entiability, the definition of a limit gives

LCERZID 2 iy 4y o flat ) —f@)= W@+ (1)

where lim 5 = 0 when lim 2 = 0, no matter how.
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If the limit of the quotient exists when % = 0 through positive values only
function has a right-hand derivative which may be denoted by f7 (u+) and sim
for the left-hand derivative f”(a—). At the end points of an intorval the derty
is always considered as one-handed ; but for interior points the right-hand and
hand derivatives must be equal if the function is to have a derivative (unguali
The funection is said to have an infinite derivative at ¢ if the guotient becomes
nite as & = 0; but if @ is an interior point, the quotient must become posi
infinite or negatively infinite for all manners of approach and not positively in
for some and nogatively infinite for others. Geometrically this allows a ve
tangent with an inflection point, but not with a cusp as in Fig. 8, p. 8. If in
derivatives are allowed, the function may have a derivativo and yet be dise
nous, as is suggested by any figure where f(a) is any value between lim f(z)

z = g+ and lim f(z) when ¢ = g,

Turorem 13. If a function takes on its maximum (or minimu
an interior point of the interval of definition and if it is different
ab that point, the derivative is zero.

TruroreM 14. Rolle's Theorem. If a function f(z) is continuous
an interval ¢ = z = b with end points and vanishes at the ends an
a derivative at each interior point « < a < 0, there is some poi
a < & < b, such that f'(¢)=0.

TrEOREM 15. Theorem of the Mean. If a function is continuous
an interval ¢ = « = b and has a derivative at each interior point,
is some point ¢ such that

O=S@O _ pgy o LHotM=f() W=D = pa s om,

where % = § — o* and 0 is a proper fraction, 0 < § < 1.

To prove the first theorem, note that if f(a) = M, the difference f(a + %) -
vannot be positive for any value of % and the quotient Af/% cannot be P
when % >0 and cannot be negative when k< 0. Hence the right-hand deri
cammot be positive and the left-hand derivative cannot be negative. As thes
must be equal if the function has a derivative, it follows that they must be
and the derivative is zero. The second theovem is an immediate corollary. |
the tunction is continuous it must have a maximum and a minimum (Theore
both of which cannot be zero unless the function is always zero in the int
Now if the function is identically zero, the derivative is identically zero a1
theorem is true ; whereas if the function is not identically zero, either the max
or minimum must be at an interior point, and at that point the derivative will v

* T}!a.t the theorem is true for any part of the interval from a to b if it is true
whole mte}'va! follows from the fact that the conditions, namely, that f be cont
and that /7 exist, hold for any part of the interval if they hold for the whole.
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To prove the last theorem construet the auxiliary function

o =70 -f@-e-o 010, g pe - LO=T0,
As y(a) =y (b) = 0, Rolle’s Theorem shows that there is some point for which
¥ (§) = 0, and if this value be substituted in the expression for y’(z) the solution
for f7 () gives the result demanded by the theoremn. The proof, however, requires
the use of the function y (z) and its derivative and is not complete until it is shown
that ¥ (z) really satisfies the conditions of Rolle’s Theorem, namely, is continuous
in the interval a =« =0 and has a derivative for every point a <@ <b. The con-
tinuity is a consequence of Theorem 6 ; that the derivative exists follows from the
direct application of the definition combined with the assumption that the deriva-
tive of f exists.

27. Turorem 16. If a function has a derivative which is identically
zero in the interval ¢ = = = 0, the function is constant; and if two
functions have derivatives equal throughout the interval, the functions
differ by a constant.

Tueorem 17. If f(x) is differentiable and becomes infinite when
x = a, the derivative cannot remain finite as « = a.

Trrorem 18. If the derivative f'(x) of a function exists and is a
continuous function of z in the interval @ = x = 0, the quotient Af/%
converges uniformly toward its limit ' (z).

These theorems are consequences of the Theorem of the Mean. For the first
fla+My—rf@)=h'(a+60)=0, if A=b—a, or fla+h) =r(a).

Hence f(z) is constant. And in case of two functionsfand ¢ with equal derivativos,
the difference y (z) = f(z) — ¢ (z) will have a derivative that is zero and the differ-
ence will be constant. For the second, let z, be a fixed value near a and suppose that
in the interval from z, to @ the derivative remained finite, say less than K. Then

1/ @0 + )= (o) | = |1f (0 + 61) | || K.

Now let ©, + h approach a and note that the left-hand term becomes infinite and
the supposition that f* ined finite is dicted. For the third, note that f”,
being continuous, must be uniformly continuous (Theorem 9), and hence that if ¢ is
given, a § may be found such that

LE3 DT _ pio|=ire+ - r@i<e

when |2]< § and for all z's in the interval ; and the theorem is proved.
Concemmg denvmves of higher ordel ‘10 special remarks are necessary. Each

e v o e
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contribute to the term DiuDa+1-% in the formula for the (n + 1)st derivative of
wp are the terms

n(n—1).- (n—t+2)D'—luD"+1—'u an—1)---(n i+l)])"uDﬂ—‘v
1.2...(i—1) 1-2.4 !

in which the first factor is to be differentiated in the first and the second in the
second. The sum of the coeflicients obtained by differentiating is
nn—1)-(—i+2) , nin—=10).---a—i+H_@+Hn---m—i+2)
1.2 (i—1) 1.2.04 - 1.2.-4

which is precisely the proper coeflicient for the term DéuDr+1~1 in the expansion
of the (n -+ 1) st derivative of uv by Leibniz’s Theorem.

With regard to this rule and the other elementary rules of operation (4)-(7) of
the previous chapter it should be remarked that a theorem as well as a ruleis in-
volved —thus : If two functions » and v are differentiable at x,, then the product
uy is differentiable at z,, and the value of the derivative is u (zy) v’ (o) + v’ (Tp) ¥ (o).
And similar theorems arise in connection with the other rules. As a matter of fact
the ordinary proof needs only to be gone over with care in order to convert it into
a rigorous demonstration. But care does need to be exercised both in stating the
theorem and in looking to the proof. For instance, the above theorem concerning
a product is not true if infinite derivatives are allowed. Forlet ube —1,0,0r + 1
according as « is negative, 0, or positive, and let v = z. Now v has always a deriva-
tive which is 1 and » has always a derivative which is 0, + o, or 0 according as =
is negative, 0, or positive. The product uv is |z}, of which the derivative is — 1 for
negative 2s, + 1 for positive «'s, and nonezxistent for 0. Here the product has no
derivative at 0, although each factor has a derivative, and it would be useless to have
a formula for pting to evaluate sc hing that did not exist.

EXERCISES

1. Show that if at a point the derivative of a function exists and is positive, the
function must be increasing at that point.

2. Suppose that the derivatives 7“(a) and f*(b) exist and are not zero. Show
that f(a) and f(b) are relative maxima or minima of f in the interval ¢ =z =0, and
determine the precise criteria in terms of the signs of the derivatives f*(a) and f*(b).

3. Show that if a continuous function has a positive right-hand derivative at
every point of the interval a =w =b, then f(b) is the maximum value of f. Simi-
larly, if the right-hand derivative is negative, show that f(b) is the minimum of f.

4. Apply the Theorem of the Mean to show that if f*(x) is continuous at a, then
lim (“7 f @)

at, a=a

=s"(a),

o' and @ being regarded as xndependent

P




which are called the second differences ; in like manner there are third differences
Alf=f(a+38h)~8f(a+2h)+3f(a+hr)—rfla),--
and so on. Apply the Law of the Mean to all the differences and show that
A= 12f(a 4 O+ O,h), AP =IF (a4 Oyh Ok + Byh), - -
Hence show that if the first n derivatives of f are continuous at a, then

) _J_’ oy i A ) e
(@)= hm f (u).-}luéno—huv, ceey J¢ )(u)._inina

8. Cauchy's Theorem. 1f f(z) and ¢ (z) are continuous over ¢ =z =0b, have
derivatives at each interior point, and if ¢’ (z) does not vanish in the interval,
O —r@ _JE . feth)—Sfl) _ flatéh)
s~ 9@ @ @+t —¢@  ¢latdn
Prove that this follows from the application of Rolle’s Theorem to the function
70)—1(a)
V@) =7@) - F (@) — [6(0) — ¢(a)] 2L
) [¢(e)— ¢(@)] s @
7. One application of Ex, 6 is to the theory of indeterminate forms. Show that
if f(a) = ¢ (a) = 0 and if f*(z)/¢’(x) approaches a limit when & = a, then f(z)/¢ (z)
will approach the same limit.
8. Taylor's Theorem. Note that the form f(b) =f(a) + (b — @) f/(¢) is one way
of writing the Theorem of the Mean. By the application of Rolle’s Theorem to

plO =/ @=0=0) S
bo—ap ’

Y@ =0 —s@) - 0-af k) -

show IO =1@+b—ar o)+ ﬂ;ﬂf”(a,
and to ¥(@) =10 = 10— 6= 07 @-L5 L0~ - O r0ny
-E=E[r0-r@-0-ar@
e AR LT
show  SO)=/@)+ O— @+ Mf”(ﬂ) +o
+ 8 ren@+ Lot s,

‘What are the restrictions that must be impgsed on the function and its derivatives ?

9. If a continuous function over a = = b has a right-hand derivative at each
point of the interval which is zero, show that the function is constant. Apply Ex. 2
to the functions f(x) + ¢ (z — a) and f(z) — e(® — @) to show that the maximum
difference between the functions is 2 e (b — @) and that f must therefore be constant.
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derivative f/(z) must take on every value intermediate between any two of its values.
To show this, take first the case where f*(a) and f*(b) have opposite signs and show,
by the continuity of f and by Theorem 18 and Ex. 2, that f/(f) = 0. Next if
(@) < w <S*(b) without any restrictions on f“(a) and f*(b), consider the function
J(@)— px and its derivative f’(x) — u. Finally, prove the complete theorem. It
should be noted that the continuity of f*(z) is not assumed, nor is it proved; for
there ars functions which take every value intermediate between two given values
and yet are not continuous,

28. Summation and integration. Let f(z) be defined and limited
over the interval e =« =b and let M, m, and 0 =M —m be the
upper frontier, lower fron- x
tier, and oscillation of f(z) Y| t M
in the interval. Let n —1 ]
points of division be intro-
duced in the interval divid-
ing it into = consecutive
intervals 8, &, -, 8, of J
which the largest has the {J 2
length A and let M;, m;, O,
and f(£) be the upper and lower frontiers, the oscillation, and any
value of the function in the interval §. Then the inequalities

md = md; = f(6)8 = M5, = MY,
will hold, and if these terms pe summed up for all » intervals,

me—a) = I md = fEE=J M= Mb—a) ()

will also hold. Let s = 3m., o = 37(¢)8;, and S = 3M3, From (4)
it is clear that the difference § — s does not exceed
M—=myb—a)=0(b— a),

the product of the length of the interval by the oscillation in it. The
values of the sums S, s, o will evidently depend on the number of parts
into which the interval is divided and on the way in which it is divided
into that number of parts.

Tarorem 19. If »' additional points of division be introduced into
the interval, the sum §' constructed for the » + ' — 1 points of division

oo

N X



cannot be greater than § and cannot be less than § by more than
n'0A. Similarly, s' cannot be less than s and cannot exceed s by more
than 2'0A.

Tueorem 20. There exists a lower frontier Z for all possible methods
of constructing the sum § and an upper frontier / for s.

Tugorem 21. Darboux’s Theorem. When e is assigned it is possible
to find a A so small that for all methods of division for which § = 4,
the sums § and s shall differ from their frontier values L and ¢ by less
than any preassigned e

To prove the first theorem note that although (4) is written for the whole inter-
val from a to b and for the sums constructed on it, yet it applies equally to any
part of the interval and to the sums constructed on that part. Hence if S; = M3; be
the part of S due to the interval 5; and if S; be the part of 8’ due to this interval
after the introduction of some of the additional points into it, m8; = S: = 8= M.
Hence S; is not greater than S; (and as this is true for each interval &;, 8’ is not
greater than S) and, moreover, S;— §; is not greater than O;5; and a fortiori not
greater than OA. As there are only »” new points, not more than »’ of the intervalg
&; can be affected, and hence the total decrease S — 8’ in S cannot be more than
wOA. The treatment of s is analogous.

Inasmuch as (4) shows that the sums S and s are limited, it follows from Theo-
rem 4 that they possess the frontiers required in Theorem 20. To prove Theorem 21
note first that as L is a frontier for all the sums S, there is some particular sum S
which differs from L by as little as desired, say 3 e. For this S let = be the number
of divisions. Now consider §" as any sum for which each ; is less than A = } ¢/n0.
If the sum S” be constructed by adding the n points of division for 8 to the points
of division for §’, §” cannot be greater than S and hence cannot differ from L by
so much as je. Also S” cannot be greater than S’ and cannot be less than § by
more than nOA, which is }e. As 8” differs from L by less than } e and 8 differs
from §” by less than } ¢, 8 cannot differ from L by more than ¢, which was to be
proved. The treatment of s and ! is analogous.

29. If indices are introduced to indicate the interval for which the
frontiers Z and { are calculated and if B lies in the interval from a to 0,
then L# and /£ will be functions of 8.

TreoreM 22. The equations L}=Li+ L}, a<e<b; L)=—L;
L= p(b— a), m = w= M, hold for L, and similar equations for I. As
functions of 8, Lf and # are continuous, and if f(x) is continuous,
they are differentiable and have the common derivative f(8).

To prove that L} = LS + L&, consider ¢ as one of the points of division of the
interval from a to b. Then the sums § will satisfy 8¢ = S¢ 4 S, and as the limit
of a sum is the sum of the limits, the corresponding relation must hold for the
frontier L. To show that L} =— LJ it is merely necessary to note that S2 =— 85
because in passing from b to a the intervals §; must be taken with the sign opposite
to that which they have when the direction is from a to b. From (4) it appears
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LE+* LB =L+ L+ — Lf = LP+* = uh, |ul< K,
LBt _If=LP-P—Lf—Lf ,=—Lf_,=—uh [KI<K.

Hence if ¢ is assigned, a § may be found, namely 3 < e/K, so that|Lf ** — Lf|<e
when # < 8 and LJ is therefore continuous. Finally consider the quotients

nfth— L Ig-r 1

= 2 =px and =u

h & —h #

where u is some number b the i and mini of f(z) in the inter-

val 8 =z = g+ h and, if f is continuous, is some value f(§) of fin that interval
and where ' =f(¢) is some value of f in the interval g—h=z=p. Now let
h =0, As thefunction f is continuous, lim £ () = f(8) and lim f(§) = f(B). Hence
the right-hand and left-hand derivatives exist and are equal and the function Lf
has the derivative £(g). The treatment of ! is analogous.

Treorem 23. For a given interval and function f; the quantities
and I satisfy the relation I = L; and the necessary and sufficient con-
dition that L =11is that there shall be some division of the interval
which shall make 3(M; — m;) 8= 20,8; < e

If L2 =12, the function £ is said to be integrable over the interval

2]
from @ to b and the integral f f(z)da is defined as the common value
0

Lb=172. Thus the definite integral is defined.
TagorEm 24. If a function is integrable over an interval, it is inte-
grable over any part of the interval and the equations

[r@y+ [ 1@ [ 1,
[r@iu=- 10 [ r@u=pso-0

B
hold; moreover, | f(x)dx = F(B)is a continuous function of 8; and
if f(x) is continuous, the derivative F'(8) will exist and be f(8).

By (4) the sums S and 8 constructed for the same division of the interval satisfy
the relation § — $=0. By Darboux’s Theorem the sums § and s will approach the
values L and ! when the divisions are indefinitely decreased. Hence L —1Z=0.
Now if L =1and a A be found so that when 3; < A the inequalities S ~ L < } e and
1—8<je hold, then 8 — 3= 2 (M; — m;) 5; = £0:3; < 1; and hence the condition
20:3; < eisseen to be necessary. Conversely if there is any method of division such
that 20:5; <e¢, then S — 3 <e and the lesser quantity L — ! must also be less than e.
But if the difference two ities can be made less than ¢,

q
where ¢ is arbi y assigned, the ities are equal ; and hence the




oondilion 18 séen to be also sullicient. 10 show that i1 a function 18 Integrable over
an interval, it is integrable over any part of the interval, it is merely necessary to
show that if L2 = 12, then L8 = If where « and 8 are two points of the interval.
Here the condition 2£0;3; <e applies; for if Z0;8; can be made less than e for the
whole interval, its value for any part of the interval, being less than for the whole,
must be less than e. The rest of Theorem 24 is a corollary of Theorem 22.

30. Turorem 25. A function is integrable over the interval a = x =0
if it is continuous in that interval.

Trrorem 26. If the interval e =a =0 over which f(z) is defined
and limited contains only a finite number of points at which f is dis-
continuous or if it contains an infinite number of points at which f is
discontinuous but these points have only a finite number of points of
condensation, the function is integrable.

Treorem 27. If f(x) is integrable over the interval « =z =1, the

b
sum o= 3/(¢)8; will approach the limit f J(x)dz when the indi-

vidual intervals §; approach the limit zero, it being immaterial how
they approach that limit or how the points ¢ are selected in their
respective intervals §.

Turorem 28. If f(x) is continuous in an interval a =2 =15, then

Jf(«) has an indefinite integral, namely f J(x)dzx, in the interval.

Theorem 25 may be reduced to Theorem 23. For as the function is continuous,
it is possible to find a A so small that the oscillation of the function in any interval
of length A shall be as small as desired (Theorem 9). Suppose A be chosen so that
the oscillation is less than ¢/(b — a). Then Z0; <e when 8; <A ; and the function
is integrable. To prove Theorem 26, take first the case of a finite number of discon-
tinuities. Cut out the discontinuities surrounding each value of x at which f is dis-
continuous by an interval of length 3. As the oscillation in each of these intervals
is not greater than O, the contribution of these intervals to the sum Z0;3; is not
greater than Ond, where » is the number of the discontinuities. By taking & small
enough this may be made 2s small as desired, say less than }e. Now in each of the
remaining parts of the interval ¢ =« =0, the function f is continuous and hence
integrable, and consequently the value of Z0;3; for these portions may be made as
small as desired, say 4 e. Thus the sum Z0;3; for the whole interval can be made
as small as desired and f(z) is integrable. When there are points of condensation
they may be treated just as the isolated points of discontinuity were treated. After
they have been surrounded by intervals, there will remain over only a finite num-
ber of discontinuities. Further details will be left to the reader.

For the proof of Theorem 27, appeal may be taken to the fundamental relation
(4) which shows that 3 =¢=2S. Now let the number of divisions increase indefi-
nitely and each division become indefinitely small. As the function is integrable,

b
8 and 8 approach the same limit f(x)dz, and consequently ¢ which is included
Y2 A s

between them must approach that limit. Theorem 28 is a corollary of Theorem 24



nition, the indefinite integral ie any function whose derivative is the integrand.
z

Hence f (%) dx is an indefinite integral of 7(x), and any other may be obtained
a

by adding to this an arbitrary constant (Theorem 16). Thus it is seen that the

proof of the existence of the indefinite integral for any given continuous function
is made to depend on the theory of definite integrals.

EXERCISES
1, Rework some of the proofs in the text with I replacing L.

2. Show that the L obtained from Cf (z), where C'is a constant, is C times the L
abtained from f. Also if u, v, w are all limited in the interval a =z =0, the L for
the combination u + v — w will be L () + L (v) — L (w), where L (u) denotes the L
for u, etc. State and prove the corresponding theorems for definite integrals and
Lience the cor ding th for indefinite integrals.

3. Show that 20;3; can be made less than an assigned e in the case of the fune-
tion of Ex. 6, p. 44. Note thatl = 0, and hence infer that the function is integrable
and the integral is zero. The proof may be made to depend on the fact that there
are ouly a finite number of values of the function greater than any assigned value.

4. State with care and prove the results of Exs. 8 and 5, p. 20. What restric-
tion is to be placed on f(z) if f(£) may veplace u ?

5. State with care and prove the results of Ex. 4, p. 20, and Ex. 13, p. 30.

6. If a function is limited in the interval @ = =0b and never decreases, show
that the funetion is integrable. This follows from the fact that Z0; = 0 is finite.

7. More generaliy, let f(z) be such a function that Z0; remains less than some
number X, no matter how the interval be divided. Show that f is integrable. Such
a function is called a function of limited variation (§ 127).

8. Change of variable. "Let f(x) be continuous over a =z =). Change the
variable to & = ¢ (f), where it is supposed that a = ¢ (t,) and b= ¢ (t,), and that
#(t), #'(t), and f¢ ()] are continuous in ¢ over ¢, =t =t,. Show that

b s
[r@m= [ nemeoa o [*s@aw= [ o010 0w

Do this by showing that the derivatives of the two sides of the last equation with
respect to ¢ exist and are equal over t, =t =1,, that the two sides vanish when
t=t, and are equal, and hence that they must be equal throughout the interval.

9. Osgood's Theorem. Let ; be a set of quantities which differ uniformly from
F(4) 3 by an amount {3;, that is, suppose

& =f(§) 0+ (%, where [{i|<e and a=E=b.
Prove that if f is integrable, the sum Za; approaches a limit when §; = 0 and that
the limit of the sum is f F(@)da.
a

10. Apply Ex. 9 to the cago Af =f'Ax + {Az where f’ is continuous to show
directly that /(%) — f(a) = f J'(@)dx. Also by regarding Az = ¢' (f) At + AL, apply
o
te Ex. 8'to prove the rule for change of variable.



PART 1. DIFFERENTIAL CALCULUS

CHAPTER III
TAYLOR'S FORMULA AND ALLIED TOPICS

31. Taylor’s Formula. The object of Taylor’s Formula is to express
the value of a function f(x) in terms of the values of the function and
its derivatives at some one point z =a. Thus

7@ =F@+@—ar@+C5 T @ 4o

+ E pen@y+ - @

Such an expansion is necessarily true because the remainder R may be
considered as defined by the equation; the real significance of the
formula must therefore lie in the possibility of finding a simple ex-
pression for R, and there are several.

Tueorem. On the hypothesis that f(x) and its first n derivatives
exist and are continuous over the interval a = =, the function may
be expanded in that interval into a polynomial in z — a,

7@ =@+ @—a @+ 5L @+

z =)' umny
e L OR ®
with the remainder R expressible in any one of the forms
_ (aa - a)" (n) —_ ﬁ"(l - 0)‘ - (n)
R = poge) = L=

=Zn_—lﬁf PO h—tydt, (2

where h=2—a and ¢ < ¢ <z or §=a + 6k where 0 < § <1.



1ve y'(T) 18 merely

vl =— E=T s @) 4 n G — [r0-r@-0-ar@
Ot
—— ﬁj( 1) (a)]

By Rolle’s Theorem y’(§) = 0. Hence if ¢ be substituted above, the result is

b—a -
FO=F(@)+ O = @)+t (—(—l)“ s+ L= o e,
after striking out the factor — () — §)» =1, multiplying by (b — @)*/n, and transposing
f(b). The theorem is therefore proved with the first form of the remainder. This
proof does not require the continuity of the nth derivative nor its existence at a and at b.

‘The second form of the remainder may be found by applying Rolle’s Theorem to

b—
¥ =70 ~10 = 0= ar@) - = L=EZ e 0o P,
where P is determined so that B=(b— a) P. Note that (b)) =0 and that by
Taylor's Formula y (@) = 0. Now

w(z)-—‘b‘”

O sy 4P or P=rore) E=O 0 Gnee yig =o.
1 =11

Hence if £ be written §=a+ 64 where h=>b—a, then b—¢=b—a—6h=(b—a)(1—0).

p=ay-1d—g=1_ . p—apl—g-l
B/ = TTRA S

And R=(o—0) P=(0—0) S o

The second form of R is thus found. In this work as before, the result is proved
for ¢ = b, the end point of the interval a =<z =0. But as the interval could be

considered as terminating at any of its points, the proof clearly applies to any
in the interval.

A second proof of Taylor's Formula, and the easiest to remember, consists in
integrating the nth derivative n times from a to z. The successive results are

[ "o () ds = fn—l(:c)]:= FO=1 (z) — F=D (),
j:f:f(n) @dst = [ oD@z [Fo-D @)z
=76=9 @) = =D a) = (& = )7 -D o).
fn : L ? j; ) (@) e = f 0= 8 (@) — SO (g) — (& — @) fn=D) () (_"’_‘2’!_“)3 fo-D(a).

z z
[ frm@aer=re@-ro-@-ore
_&—a?,, @@—ar-t
21 7@ (n—1)!
The formula is therefore proved with R in the form .. f : J®(x)den, To trans-
form this to the ordinary form, the Law of the Mean m';y be ;pplied ((65), §16). For

m(z—a)<f:f<">(m)dz<M(m-a), m(—z—'ﬁl‘<f1~..f?(n)(x)dzn<M(i"%m,
a ! o Ve

f=1)(a).



some intermediate value f(™(f) = u such that
[o [ rowan = E=D e,

This proof requires that the nth derivative be continuous and is less general,
The third proof is obtained by applying successive integrations by parts to the

obvious identity f(a + &) — f(a)= j; f’(a 4+ h~ t)dt to make the integrand contain
higher derivatives.

Fla+h)—f(@) =f""ff(a +h—t)di=tf(a+h— t)]:+£hnf”(u+ h—t)dt
=If(a) + 3 B (a + h— z)] L f "yt h—

@y
=hfl@)+ /@) et _—

( Y (u)(a, +h—tydt

This, however, is precisely Taylor's Formula with the third form of remainder.
If the point o about which the function is expanded is =0, the
expansion will take the form known as Maclaurin’s Formula :

@)= f(0)+zf'(°)+2|f”(0)+ o O +E G)

(" 1) !
R= ‘f(" (bx) = (n 1)1 A—=6)y1f ™ (bx)= (n jl) gf;"—lf(")(m"t) dt.

32. Both Taylor’s Formula and its special case, Maclaurin’s, express
a function as a polynomial in % =z — a, of which all the coefficients
except the last are constants while the last is not constant but depends
on % both explicitly and through the unknown fraction @ which itself is
a function of k. If, however, the nth derivative is continuous, the coeffi-
cient f®(a -+ 6k)/n! must remain finite, and if the form of the deriva~
tive is known, it may be possible actually to assign limits between
which f™(a+ 6k)/n! lies. This is of great importance in making
approximate calculations as in Exs. 8 ff. below; for it sets a limit to
the value of R for any value of n.

Treorem. There is only one possible expansion of a function into
a polynomial in % = — & of which all the coefficients except the last
are constant and the last finite; and hence if such an expansion is
found in any manner, it must be Taylor’s (or Maclaurin’s).

To prove this theorem consider two polynomials of the nth order
ot bt ek 4t eaghn-1 4 cpin = Cy+ C\h+ Coh + - -+ 4 Cpghn=1 4 Cph,

which represent the same function and hence are equal for all values of 4 from 0
to b~ a. It follows that the coefficients must be equal. For let & approach O.



The terms contalning 2 will approach 0 and henco ¢, and (7, may be made as
nearly equal as desired ; and as they are constants, they must be equal. Strike
them out from the equation and divide by A. Tho new equation must hold for all
values of 4 from 0 to b — @ with the possible exception of 0. Again let 2 = 0 and
now it follows that ¢, = Cp. And so on, with all the coeflicients. The two devel-
opments are seen to be identical, and hence identical with Taylor’s.

To illustrate the application of the theorem, fev iv be required to find the expan-
sion of tanx about 0 when the expansions of sinz and cosz about 0 are given.

sinz = — Jab + plyaf + Pat, cos® = 1—}a? + Jpat + Quf,

where £ and Q remain finite in the neighborhood of = = 0. In the first place note
that tanz clearly has an expausion ; for the function and its derivatives (which

are combinations of tan o and sec x) ave finite and continuous until x approaches «.
By division,

4 1ot 4 25
132 4 ot + QYo — bad + 1}g a0 + Pt

g=3a'+ ot Qo
M" ¥ i+ (P—Q)a
264 Ll 4} Qe®
T 2

9
Hence tanz =z + 3 2% + fp 2 + i—x’, where S is the remainder in the division
cosT

and is an expression containing P, @, and powers of z; it must remain finite if P
and Q remain finite. The quotient S/cos x which s the coefficient of z7 therefore
remains finite near & = 0, and the expression for tan z is the Maclaurin expansion
up to terms of the sixth order, plus a remainder.

In the case of functions compounded from simple functions of which the expan-
sion is known, this method of obtaining the expansion by algebraic processes upon
the known expansions treated as polynomials is generally shorter than to obtain
the result by differentiation. The computation may be abridged by omitting the
last terms and work such as follows the dotted line in the example above ; but if
this is done, care must be exercised against carrying the algebraic operations too
far or not far enough. In Ex. 5 below, the last terms should be put in and carried
far enough to insure that the desired expansion has neither more nor fewer terms
than the circumstances warrant.

EXERCISES

W (1— g)n—*
1. Assume R = (b— a)*P; show R = —— L "7 (z).
(- ayP; ety
2. Apply Ex. 5, p. 20, to compare the third form of remainder with the first.

3. Obtain, by diff iation and substi in (1), three nonvanishing terms:
(a) sin-1z, 4 =0, (B) tanha, a =0, (v) tanz, @ =},
(0) csca, a=}mw, (e) etz a=0, (¢) logsinz, a =4 .

4. Find the nth derivatives in the following cases and write the expansion:
(a) sln:c,a—O B) sinx, @ ==, () ta=
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(@) secz, (8) tanhg, () —Vi=gt,
(8) e=sinz, (¢) Mog(1—2)1%, () + Veosha,
(n) coine, (6) log cos, (¢) log V1 + 22,

The expansions needed in this work may be found by differentiation or taken
from B. O. Peirce’s ““Tables.”” In (y) and () apply the binomial theorem of Ex.
4($). In (7) let y = sin z, expand ev, and substitute for y the expansion of sin z.
In (6) let cosz =1—y. In all cases show that the coefficient of the tcrm in zf
really remains finite when z = 0.

6. If f(a + h) = co + i + Coh% + + 4 Cuo1 h—1 + c,ln, show that in
r c [2 ¢ &
Bydh = cgh + 2R 4 ZhF 4 .00 4 2D i
j;f(a—rn) °0+2 +8 + + nh +j;chdh

the last term may really be put in the form Ph»+1 with P finite. Apply Ex. 5, p.20.

7. Apply Ex. 6 to sin-1x = A i 1di = , etc., to find developments of
(a) sin -1z, (B) tan—lz, (v) sinh-1g,
1 a: z Z sin
(0) tog 712 @ [lona @) [T

In all these cases the results may be found if desired to n terms.

8. Show that the remainder in the Maclaurin development of e= is less than
aner/n ! ; and hence that the error introduced by disregarding the remainder in com-
puting e is less than z#e*/n!. How many terms will suffice to compute e to four
decimals ? How many for ¢f and for %! ?

9. Show that the error introduced by disregarding the remainder in comput-
ing log (1+ ) is not greater than z/n if >0. How many terms are required for
the computation of log 1} to four places? of log1.2? Compute the latter.

10. The hypotenuse of a triangle is 20 and one angle is 81°. Find the sides by
expanding sin and cosz about @ = } m as linear functions of & — } w. Examine
the term in (z—3w)? to find a maximum value to the error introduced by
neglecting it.

11. Compute to 6 places: () ai, (8) log 1.1, () sin 30", (8) cos80". During
the computation one place more than the desired number should be carried along
in the arithmetic work for safety.

12. Show that the remainder for log (1 + ) is less than zn/n(1 4 z)» if £ <0.
Compute () log 0.9 to 5 places, (8) log 0.8 to 4 places.

13. Show that the remainder for tan-1z is less than 2»/n where n may always
be taken as odd. Compute to 4 places tan—1 §.

14. The relation } = tan—11 = 4 tan-1 } — tan—1 ,}; enables } to be found
easily from the series for tan-1%. Find } to 7 places (intermediate work carried
to 8 places).

15. Computation of logarithms. (a) If a = log 3, b = log 3}, ¢ = log 3, then

log2=Ta—2b+8¢c, log8=1la—38b+5c, logh=16a—4b+Tec.




and hence log 2, log 5, .10g b may be found. Carry the calculations ol a;, 9, ¢ L0
10 places and deduce the logarithms of 2, 8, 5, 10, retalning only 8 places. Com-
pare Peirce’s ** Tables,” p, 100,
. »
+z is less than _ﬂ_ Com-
-z n(l—z)
pute log 2 corresponding to = = } to 4 places, log 1% to & places, log 1% to 6 places.
1(p—4¢ 1 (p—gy"!
Show lo 2_2[1’ + = ( )+ o — + Ryt |
o s p+a 8\p+a 2n=1\p+g "
give an estimate of Bgn .41, and compute to 10 figures log 8 and log 7 from log 2
and log & of Peirce's ** Tables ” and from

() Show that the error in the series for logi

410g3—410g2—1035=1og%, 4log 7T — 51052—10g3—210g5=10gﬂ

16. Compute Ex. 7 (¢) to 4 places for = 1 and to 6 places for x = §.
17. Compute sin-10.1 to seconds and sin—1} to minutes.
18. Show that in the expansion of (1 + )* the remainder; as x is > or <0, is
[ e RS e P Rn<!k (k=1)--(k—n+1) an
- 1.2.m 1-2..in T+ap-t
Hence compute to b figures V108, \/9—, V28, /250, 0, ¥/1000.

19, Sometimes the remainder cannot be readily found but the terms of the
expansion appear to be diminishing so rapidly that all after a certain point appear

negligible. Thus use Peirce’s ** Tables,” Nos, 774-789, to compute to four places
(estimated) the values of tan 6°, log cos 10°, csc 8°, sec 2°,

R, <

20. Find to within 1% the area under cos (z*) and sin (¢?) from 0 to } .

21. A unit magnetic pole is placed at a distance L from the center of a magnet
of pole strength M and length 2!, where I/L is small. Find the force on the -pole

if (@) the pole is in the line of the magnet and if (8) it is in the perpendicular
bisector.

Ans. (a) %(l-n) with e about 2(%)’. @2 (1-:) with e about 2 (')2

22. The formula for the distance of the horizon is D =\/§—h where D is the
distance in miles and 4 is the altitude of the observer in feet. Prove the formula
and show that the error is about 3% for heights up to a few miles. Take the radius
of the earth as 3960 miles.

23. Find an approximate formula for the dip of the horizon in minutes below
the horizontal if % in feet is the height of the observer.

24. If 8 is a circular arc and C its chord and ¢ the chord of half the arc, prove
8=}(@Bc— C)(1+¢) where ¢ is about $4/7680 R* if R is the radius.

25. If two quantities differ from each other by a small fraction e of their value,
show that their geometric mean will differ from their arithmetic mean by about
3¢ of its value.

26. The algebraic method may be applied to finding expansions of some func-
tions which become infinite. (Thus if the series for cosz and sinz be divided to
find cot «, the initial term is 1/z and becomes infinite at z = 0 just as cot does.



The function cotx would, however, h&ve'a Maclaurin developiuent and the
expansion found for cotz is this development divided by x.) Find the develop-
ments about & = 0 to terms in x4 for
(@) cotx, (B) cot?*w, (v) cscx, () csebe,
(¢) cotxecscz, (¢) 1/(tan-1z)2, (1) (sinz — tangx)-1

27. Obtain the expansions:

(a) logsinz =logz— 32— ylgat + R, (B) logtanz=logz + }2® + Hat+ .-,
(v) likewise for log versz.

33. Indeterminate forms, infinitesimals, infinites. If two functions
f(z) and ¢ (z) are defined for = a and if ¢ (a) # 0, the quotient f/¢ is
defined for x =a. But if ¢ (a) = 0, the quotient f/¢ is not defined for a.
If in this case f and ¢ are defined and continuous in the neighborhood
of a and f(a) # 0, the quotient will become infinite as z = a; whereas
if f(a) =0, the behavior of the quotient f'/¢ is not immediately appar-
ent but gives rise to the indeterminate form 0/0. In like manner if f
and ¢ become infinite at a, the quotient f/¢ is not defined, as neither
its numerator nor its denominator is defined ; thus arises the indeter-
minate form oo /0. The question of determining or evaluating an
indeterminate form is merely the question of finding out whether the
quotient f/¢ approaches a limit (and if so, what limit) or becomes
positively or negatively infinite when @ approaches a.

Taeorem. L’ Hospitals Rule. If the functions f(z) and ¢ (), which
give rise to the indeterminate form 0/0 or /w0 when & = a, are con-
tinuous and differentiable in the interval ¢ <« = & and if & can be
taken so near to o that ¢'(z) does not vanish in the interval and if the
quotient f'/¢' of the derivatives approaches a limit or becomes posi-
tively or negatively infinite as x = a, then the quotient /¢ will ap-.
proach that limit or become positively or negatively infinite as the case
may be. Hence an indeterminate form 0/0 or oo /o0 may be replaced by
the quotient of the derivatives of numerator and denominator.

Case L f(a) = ¢ (@) = 0. The proof follows from Cauchy’s Formula, Ex. 6, p. 49.
1@ _ 1@ -r@ 1@
6@ ¢@—9¢@ ¢¢)

Now if z = a, so must £, which lies between = and a. Hence if the quotient on the
right approaches a limit or becomes positively or negatively infinite, the same is
true of that on the left. The necessity of inserting the restrictions that f and ¢
shall be continuous and differentiable and that ¢’ shall not have a root indefinitery
near to a is apparent from the fact that Cauchy’s Formula is proved only for func-
tions that satisfy these conditions. If the derived form f/¢’ should also be inde-
terminate, the rule could again be applied and the quotient f*//¢” would replace
f'/¢’ with the understanding that proper restrictions were satisfied by f*, ¢’, and ¢”.

For a<é<a.




J@)=s0) _S@) 1=SO/i@ @) a<z<b,

s@—00) @ I-o0)/sE #E) s<t<h,
where the middle expression is merely a different way of writing the first. Now
suppose that f7()/¢’(x) approaches a limit when z = a. It must then be possible to
take b 0 near to « that f*(¢)/¢’(f) differs from that limit by as little as desired, no
matter what value £ may have besween ¢ and b, Now as f and ¢ become infinite
when x = ¢, it is possible to take  so near to « that f(b)//f(x) and ¢ (b)/¢ () are
as near zero as desired. The second equation above then shows that f(z)/# (z).
multiplied by a yuantity which differs from 1 by as little as desived, is equal to
a quantity f/(£)/¢’(£) which differs from the limit of f”(x)/¢’(x) as ¢ = a by as little
as desired. Hence f/¢ must approach the same limit as f//¢’. Similar reasoning
would apply to the supposition that f’/¢’ became positively or negatively infinite,
and the theorem is proved. It may be noted that, by Theorem 16 of § 27, the form
J'/¢' is sure to be indeterminate. The advantage of being able to differentiate
therefore lies wholly in the possibility that the new form be more amenable to
algebraic transformation than the old.

The other indeterminate forms 0w, 07, 1°, o, o — co may be reduced to the

foregoing by various devices which may be indicated as follows:

()
0~~>=T:T, 00 = ¢log 0 = 0log0 = g0+, ..., oo—oco=loge—= =log

S%

0

The case where the variable becomes infinite instead of approaching a finite value
@ is ccvered in Ex. 1 below. The theory is therefore completed.

Two methods which frequently may be used to shorten the work of evaluating
an indeterminate forin are the method of E-functions and the application of Taylor's
Formula. By definition an E-function for the point x = a i3 any conlinuous function
which approaches a finite limit other than 0 when x = a. Suppese then that f(x) or
#(z) or both may be written as the products E,f, and E,¢,. Then the method of
treating indeterminate forms need be applied only to f,/¢, and the result multiplied
vylim E,/E,. For example,

tim 2 lim (@ + 62+ %) lim I8 o 3alim-2T% —3q.

z=a8in(z — a) ~asin (z— a) z<aSin (T — @)

81

Again, suppose that in the form 0/0 both numerator and denominator may be de-
veloped about % = & by Taylor’s Formula. The valuation is immediate. Thus

tanz —sinz _ (@ + 32 + Paf) — (z — L a® + Qaf) _it@- Q)
atlog(l + @) 2% (& — 92 + Rad) “T—jz+ R’
and now if « = 0, the limit is at once shown to be simply §.
Vhen the functions become infinite at z = a, the conditions requisite for Taylor's
Formula are not present and there is no Taylor expansion. Nevertheless an expan-
sion may sometimes be obtained by the algebraic method (§ 82) and may frequently

be used to advantage. To illustrate, let it be required to evaluate cot 2 — 1/z which
is of the form oo — co when z = 0. Here

_cosx 1+3ef+Pel 11—3s?4 Pt 1

1
covr = 1, A
sinz  z— 328+ @b si-ic+ ot z(l 31 +Sz),




lim <cotz—--l—> = lim(l—lz-h?z“— 1): lim(—lz+Sz3>=0.
x, 3 x, 3

r0 z=0\& T20

34. An infinitesimal is a variable whick is wltimately to approach the
Limit zero ; an infinite is a variable which is to become either positively
or negatively infinite. Thus the increments Ay and Az are finite quan-
tities, but when they are to serve in the definition of a derivative they
must ultimately approach zero and hence may be called infinitesimals.
The form 0/0 represents the quotient of two infinitesimals ; * the form
/o, the quotient of two infinites; and 0. oo, the product of an infin-
itesimal by an infinite. If any infinitesimal « is chosen as the primary
infinitesimal, a second infinitesimal B is said to be of the same order as
@ if the limit of the quotient B/a exists and is not zero when a = 0;
whereas if the quotient 8/a becomes zero, B is said to be an infinites-
imal of higher order than &, but of lower order if the quotient becomes
infinite. If in particular the limit 8/a" exists and is not zero when
@ =0, then B is said to be of the nth order relative to @. The deter-
mination of the order of one infinitesimal relative to another is there-
fore essentially a problem in indeterminate forms. Similar definitions
may be given in regard to infinites.

TueoreM. If the quotient B/a of two infinitesimals approaches a
limit or becomes infinite when @ = 0, the quotient B'/a' of two infin-
itesimals which differ respectively from 8 and « by infinitesimals of
higher order will approach the same limit or become infinite.

TugoreM. Duhamel's Theorem 1f the sum Za;=eo +a,+-- -+ ¢,
of n positive infinitesimals approaches a limit when their number #
becomes infinite, the sum 38, = B8, + 8,4 -+ B,, where each ; differs
uniformly from the corresponding «; by an infinitesimal of higher
order, will approach the same limit.

As a’ — a is of higher order than a and 8’ — 8 of higher order than g,

imE=%=0, imf=F=0 o =144 E-14g
a B a B

where » and { are infinitesimals. Now a = a(1+ 7) and 8 = g8(1 + {). Hence

B _Bl+s g 8
T+n

and lim~— =lim=,
a a a

provided g/« approaches a limit ; whereas if 8/a becomes infinite, so will g’/a".
In a more complex fraction such as (8 — ¥)/a it is not permissible to replace 8

* It cannot be emphasized too strongly that in the symbol 0/0 the 0’s are merely sym-
bolie for a mode of variation just as % is; they are not actual 0’s and some other nota-
tion would be far preferable, likewise for 0+ o, 09, ete.



relative to @ although tan« and sin z are only of the first order. To replace
and sin z by infinitesimals which differ from them by those of the second ord
even of the third order would generally alter the limit of the ratio of tanz —
to «® when & = 0.
To prove Duhamel’s Theorem the §'s may be written in the form
Bi= ai(l+ mi), i=1,2 -y m, [nil<e

‘where the »'s are infinitesimals and where all the #'s simultaneously may be
less than the assigned e owing to the uniformity required in the theorem. T!
Bt Byt e+ 80— (@t @yt oo+ aw) | = [may + may + o mada| <
Hence the sum of the 8’s may be made to differ from the sum of the a’s b
than e2a, a quantity as small as desired, and as Za approaches a limit by hy
esis, 50 =8 must approach the same limit. The theorem may clearly be exte
to the case where the a’s are not all positive provided the sum Z|a;| of the
lute values of the a’s approaches a limit.

35. If y = f(z), the differential of y is defined as
dy = f'(x) Az, and hence de=1.Az.
From this definition of dy and dz it appears that dy/da = f'(z),
the quotient dy/dx is the quotient of two finite quantities of whic
may he assigned at pleasure. This is true if z is the indeper
variable. If « and y are both expressed in terms of ¢,
x =2 (1), y=y(), dx = Dadt, dy=Dydt;
dy _ Dy

and é = D"T; =Dy,
From this appears the important theorem: The quotient dy/dx 1
derivative of y with respect to & no matter what the independent vas
may be. 1t is this theorem which really justifies writing the deriv
as a fraction and treating the component differentials according t
rules of ordinary fractions. For higher derivatives this is not
may be seen by reference to Ex. 10.

As Ay and Az are regarded as infinitesimals in defining the de
tive, it is natural to regard dy and dw as infinitesimals. The diffe
Ay — dy may be put in the form

Ay —dy= [ﬂ%@fj@ -f’(m)] Az,

wherein it appears that, when Az = 0, the bracket approaches
Hence arises the theorem: Ifx is the independent variable and
and dy are regarded as infinitesimals, the difference Ay — dy is an
itesimal of higher ovder tham Ax. This has an application f

by virtue of (4)



then dw= ¢'(£)dt, and apparently
b I
[ r@a= s

where ¢(¢)=0u and ¢(¢,) =10, so that ¢ ranges from ¢, to ¢, when =
ranges from o to J.

But this substitution is too hasty ; for the dz written in the integrand
is really Az, which differs from dz by an infinitesimal of higher order
when  is not the independent variable. The true condition may be
seen by comparing the two sums

Sif@yav, L FIe]s @A, At=dt

the limits of which are the two integrals above. Now as Az differs
from du = ¢'(t)dt by an infinitesimal of higher order, so f(x) Az will
differ from f[$(¢)]¢'(t)d¢ by an infinitesimal of higher order, and
with the proper assumptions as to continuity the difference will be uni-
form. Hence if the infinitesimals f(x) Az be all positive, Duhamel’s
Theorem may be applied to justify the formula for change of variable.
To avoid the restriction to positive infinitesimals it is well to replace
Dubamel’s Theorem by the new

TueoreM. Osgood’s Theorem. Let @, @, ---, @, be n infinitesimals
and let @; differ uniformly by infinitesimals of higher order than Az
from the elements f(z;)Aw; of the integrand of a definite integral

b

S M K44

f(x)dx, where f is continuous ; then the sum Se =a, +a,+ -+ @,

a;proaehes the value of the definite integral as a limit when the num-
ber n becomes infinite.

Let a; = f(x;) Axi+ $iAx;, where | &;| <e owing to the uniformity demanded.

Then [ Sai— Ef(z,—)Ax;l:[ > iihzi|< e A = (0 ).

But as f is continuous, the definite integral exists and one can make

|2 ream— [, "f@yae S [ 1@

It therefore appears that Za; may be made to differ from the integral by as little
as desired, and Za; must then approach the integral as a limit. Now if this theo-
rem be applied to the case of the change of variable and if it be assumed that
f[# ()] and ¢(t) are continuous, the infinitesimals Az; and dx; = ¢’(t;)dt; will
differ uniformly (compare Theorem 18 of § 27 and the above theorem on Ay — dy)
by an infinitesimal of higher order, and so will the infinitesimals f(z:) Ax; and
¢ (t)]) ¢’ (t) dt.. Hence the change of variable suggested by the hasty substitution
is justified.

<e, and hence <e(b—a+l).




1. Show that 1’Hospital’s Rule applies to evalnating the indeterminate form
f(@)/¢ (x) when = becomes infinite and both f and ¢ either become zero or infinite.

R. Bveluuie the following forms by differentiati Examine the quotient
for left-hand and for right-hand approach ; sketch the graphs in the neighborhood
of the points.

& — 2 1 -1
@ == © dn T ) linsloge,
1
(3) linze-3, (¢) Hy; (cot z)sus ) hm z1==
r=w z

3. Evaluate the following forms by the method of expansions :

(1 . — etanx log:c
= — lmn ——— li
(@) llftln (:cz eot z), ) a:;:c—- tanz’ ™ z:r:l —z’
. . @sin (ging) — sin’z . eT—e=T—2%
ha — 1 1
@ ,lvlr’) (eschz — csoa),  (e) zl:‘no £ Y c"sno' z— 8inx
4, Evaluate by any method : 1
. rﬁ—e—“‘+2s‘mz—4z tan z\@
1 — llm (—)
(o g S, o 1 ()
Sy — — sin-13 g2 —
@) “ zcosbx — log (1 -:— ) — sin 1}1 @ lim log (z }1r)
z e Pore x

1\ "
(e) mli::[z (l+5) ~ ex?log (l + 5)]
8. Give definitions for order as applied to infinites, noting that higher order
would mean becoming infinite to a greater degree just as it means becoming zero
to a greater degree for infinitesimals. State and prove the theorem relative to quo-

tients of Infinites analugous to that given in the text for infinitesimals. State and
prove an analog for the product of an infinitesimal and infinite,

6. Note that if the quotient of two infinites has the limit 1, the difference of
the infinites is an infinite of lower order. Apply this to the proof of the resolution
in partial fractions of the quotient f'(z)/F (x) of two polynomials in case the roota
of the denominator are all real. For if F(z) = (z — a)¢F, (z), the quotient is an
infinite of order k in the neighborhood of z = @ ; but the difference of the quotient
and f(a)/(z — a)*F, (@) will be of lower integral order — and so on.

7. Show that when z =+, the function e* is an infinite of higher order
than z» no matter how large n. Hence show that if P(z) is any polynomial,
lim P(z)e~== 0 when z =+ oo.
z=wm

8, Show that (log )™ when = is infinite is a weaker infinite than z» no matter
how large m or how small n, supposed positive, may be. What is the graphical
interpretation ?

1
9. If P is a polynomial, show that lim P(:%)e-a =0, Hence show that the
z&=0

Maclaurin development of ¢ # is f(z) = ¢ & = “—" F@(Gz) if £ (0) is defined as 0.
RN



as the independent variable. Show that dkz = 0 for k> 1 if z is the independent
variable. Show that the higher derivatives D2, D}y, ... are not the quotients
d?y/dz?, d¥y/ds?, - - - if  and y are expressed in terms of a third variable, but that
the relations are

Pyds — dad
ny:y—dza—-U, DYy =

dz (dxd®y — dyd®z) — 3 d% (dzd?y — dyd®z)

dx® !
The fact that the quotient dvy/den, n > 1, is not the derivative when z and y are
expressed parametrically inilitates against the usefulness of the higher differentials
and emphasizes the advantage of working with derivatives. The notatiun dwy/dzn
is, however, used for the derivative. Nevertheless, as indicated in Exs. 16-19,
higher differentials may be used if proper care is exercised.

11. Compare the conception of higher differentials with the work of Ex. 5, p. 48.

12. Show that in a circle the difference between an infinitesimal arc and its
chord is of the third order relative to either arc or chord.

13. Show that if 8 is of the nth order with respect to @, and « is of the first
order with respect to a, then 8 is of the nth order with respect to v.

14. Show that the order of a product of infinitesimals is equal to the sum of the
orders of the infinitesimals when all are referred to the same primary infinitesimal
a. Infer that in a product each infinitesimal may be replaced by one which differs
from it by an infinitesimal of higher order than it without affecting the order of the
product.

15. Let 4 and B be two points of a unit circle and let the angle 4 OB subtended
at the center be the primary infinitesimal. Let the tangents at 4 and B meet at
T, and OT cut the chord AB in M and the arc 4B in C. Find the trigonometric
expression for the infinitesimal difference T'C — CM and determine its order.

16. Compute d2(z sinz) = (2 cosz — = sinz)de? + (sin & + = cos ) d%x by taking
the differential of the differential. Thus find the second derivative of © sinz if © is
the independent variable and the second derivative with respect to ¢ if & =1 + 2.

17. Compute the first, second, and third differentials, d% # 0.

(a) «* cosa, B) Y1—zlog(l—xz), (7) xe2=sinz.

18. In Ex. 10 take y as the independent variable and hence express D2y, D2y
in terms of Dy, Dje. Cf. Ex. 10, p. 14.

19. Make the changes of variable in Exs. 8, 9, 12, p. 14, by the method of
differentials, that is, by replacing the derivatives by the corresponding differentie.
expressions where  is not assumed as independent variable and by replacing these
differentials by their values in terms of the new variables where the higher diffor-
entials of the new independent variable are set equal to 0.

20. Reconsider some of the exercises at the end of Chap. I, say, 17-19, 22, 23,
27, from the point of view of Osgood’s Theorem instead of the Theorem of the Mean.

21. Find the areas of the bounding surfaces of the solids of Ex, 11, p. 18.
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(@) o circular wire of radius a and of mass M on a particle m at a distance r from
the center of the wire along a perpendicular to its plane;  Ans. kMmr (a® + r’)"i,

(8) o circular disk, etc., as in (a) ; Ans. 2kMing=2(1 —r/ V¥ & &®),

(7) @ semicireular wire on a particle at its center ; Ans. 2 kMm/wa?.

(8) a finite rod upon a particle not in the line of the rod. The answer should
be expressed in terms of the angle the rod subtends at the particle.

(€) two parallel equal vods, forming the opposite sides of a rectangle, on each
other.

23. Compare the method of derivatives (§ 7), the method of the Theorem of the
Mean (§ 17), and the method of infinitesimals above as applied to obtaining the for-
mulas for (@) area in polar codrdinates, (8) mass of a rod of variable density, (y) pres-
sure on a vertical submerged bulkhead, (3) attraction of a rod on a particle. Obtain
the results by each method and state which method seems preferable for each case.

24. Is the substitution dz = ¢’(t) d¢ in the indefinite integral f (%) dz to obtain
the indefinite integral f So ()] ¢'(t)d¢ justifiable immediately ?

36. Infinitesimal analysis. To work rapidly in the applications of
calculus to problems in geometry and physics and to follow readily the
books written on those subjects, it is necessary to have some familiarity
with working directly with infinitesimals. It is possible by making use
of the Theorem of the Mean and allied theorems to retain in every ex-
pression its complete exact value; but if that expression is an infini-
tesimal which is ultimately to enter into a quotient or a limit of a sum,
any infinitesimal which is of higher order than that which is ultimately
kept will not influence the result and may be discarded at any stage of
the work if the work may thereby be simplified. A few theorems
worked through by the infinitesimal method will serve partly to show
how the method is used and partly to establish results which may be
of use in further work. The theorems which will be chosen are:

1. The increment Az and the differential dz of a variable differ by
an infinitesimal of higher order than either.

2. If a tangent is drawn to a curve, the perpendicular from the curve
to the tangent is of higher order than the distance from the foot of the
perpendicular to the point of tangency.

3. An infinitesimal arc differs from its chord by an infinitesimal of
higher order relative to the arc.

4. If one angle of a triangle, none of whose angles are infinitesimal,
differs infinitesimally from a right angle and if % is the side opposite
and if ¢ is another angle of the triangle, then the side opposite ¢ is
h sin ¢ except for an infinitesimal of the second order and the adjacent
side is % cos ¢ except for an infinitesimal of the first order.



It and from the idea of tangency. Kor take the z-aXis cotncident with the tangent
or parallel toit. Then the perpendicular is Ay and the distance from its foot to the
point of tangency is Az. The quotient Ay/Ax approaches 0 as its limit because the
tangent is horizontal ; and the theorem is proved. The theorem would remain true
if the perpendicular were replaced by a line making a constant angle with the tangent
and the distance from the point of tangency to the fool of the perpendicular were re-
placed by the distance to the foot of the oblique line. Forif Z PMN =,

PM __ PNoscf _ PN __ oscf 7
TM_TN—PNcotﬂ_TNl_P_Ncow
TN T N

and therefore when P approaches T with 6 constant, PM/TM approaches zero and
PM is of higher order than TM.

The third theorem follows without difficulty from the assumption or theorem
that the arc hag a length intermediate between that of the chord and that of the
sum of the two tangents at the ends of the chord. Let 4, and ¢, be the angles
between the chord and the tangents. Then

s—AB AT+ TB— AB__AM(sect, —1) 4+ MB(secl,—1)

= 6
AM + MB AM + MB AM+ MB ©

Now as AB approaches 0, both sec§;, —1 and sec §, — 1 approach 0 and their
coefficients remain necessarily finite. Hence the difference between the arc and
the chord is an infinitesimal of higher order than the chord. As

T
the arc and chord are therefore of the same order, the difference
is of higher order than the arc. This result enables one to replace
the arc by its chord and vice versa in discussing infinitesimals of T >

the first order, and for such purposes to consider an infinitesimal
arc as straight. In discussing infinitesimals of the second order, this substitution
would not be permissible except in view of the further theorem given below in
§ 87, and even then the substitution will hold only as far as the lengths of arcs are
concerned and not in regard to directions.

For the fourth theorem let § be the angle by which C departs from 90° and with
the perpendicular BM as radius strike an arc cutting BC. Then by trigonometry

AC =AM + MC = hcos¢ + BM tan 6, B
BC = hsing + BM (secd — 1).

Now tan # is an infinitesimal of the first order with respect to ;
fow its Maclaurin development begins with 6. And secd —1
is an infinitesimal of the second order; for its development
begins with a term in 62. The theorem is therefore proved.
This theorem is freq ly applied to infinitesimal triangles, 4 MO
that is, triangles in which 4 is to approach 0.

87. As a further discussion of the third theorem it may be recalled that by defi-
nition the length of the arc of a curve is the Iimit of the length of an inscribed
polygon, namely,

o= lm (VAz? + Ayf + VAck + Ay2 + -+ + VAzE + dy2)
Prapes
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AZ? + AP — dat — dy?
Now  VAz? + A2 -V + A= ————————
b VazT+ &y + Vaa + ay?
_ (Ax— do) (Az 4 dx) + (A — dy) {Ay + d)
VAT 4 Ay + Vaa? + dy?

i VAL ¥ A — Vi + @ _ (Ax — dx) Az + dz
VAz? + Ay? VAT + A VAZ + Ay + Vaa? + dy?
(Ay — dy) Ay + dy

VAz? 4 Ay VA + Ay? +Via? + dy?
But Az — dz and Ay — dy are infinitesimals of higher order than Az and Ay.
Hence the right-hand side must approach zero as its limit and hence VAR + AP
differs from Vda? + dy? + dy? by an infinitesimal of higher order and may replace it in
the sum

5= lim 3 Vaz? + ayf = lim ) Vi § =f”‘~/1+1ﬂdz.
hard nmw s

The length of the arc measured from a fixed point to a variable point is a funo-
tion of the upper limit and the differential of arc is

ts=d [ VIt 7l =VIT Vil =Var 1 P
2

To find the order of the difference between the arc and its chord let the origin
be taken at the initial point and the z-axis tangent to the curve at that point.
The expansion of the arc by Maclaurin’s Formula gives

3(z) = 8(0) + z(0) + §2%"(0) + 3 2% (6z),
where  8(0)=0, &(0)=V1+y2|,=1

o)=L | —o.
Vit
Owing to the choice of axes, the expansion of the curve reduces to
y=f(@@)=y(0) + 2y (0) + } *"(fz) = { 2% (62),
and hence the chord of the curve is

c@=Va+y* =2 VIt ;oY (0a)] = z (L + 2°P),

where P is a complicated expression arising in the expansion of the radical by
Maclaurin’s Formula, The difference

5(@) — (@) =& + § 2% (62)] — [2 (1 + 22P)] = 2* (} 5"/ (62) — P).

This is an infinitesimal of at least the third order relative to . Now as both s (z)
and ¢(z) are of the first order relative to z, it follows that the difference 8 (z) — ¢ (z)
must also be of the third order relative to either s(z) or ¢(z). Note that the proof
assumes that y” is finite at the point conmsidered. This result, which has been
found analytically, follows more simply though perhaps less rigorously from the

fact that sec §, — 1 and sec §, — 1 in (6) are infinitesimals of the second order with
9, and 6,.

38. The theorv of contact of nlane curves mav be treated bv means
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= (n — 1 M oy (0
Y= 96) =50 O 4+ g O 4 50 4o
If these developments agree up to but not including the term in z”, the

difference between the ordinates of the curves is
1
F@)—=g@ =2 [FO0) — g0+ FP0)* g(0),

and is an infinitesimal of the nth order with respect to z. The curves
are then said to have contact of order n —1 at their point of tangency.
In general when two curves are tangent, the derivatives /''(0) and ¢"(0)
are unequal and the curves have simple contact or contace of the first
order.

The problem may be stated differently. Let PM be a line which
makes a constant angle  with the z-axis. Then, when P approaches 7,
if RQ be regarded as straight, the proportion

lim (PR : PQ) = lim (sin £ PQR:si L PRQ) =sin 0: 1

shows that PR and PQ are of the same order. Clearly also the lines
TM and TN are of the same order. Hence if

lim (TN)"#:O o, then lim (TM)"*O ®.

Hence if two curves have contact of the (n —1)st =F N
order, the segment of a line intercepted between ~3
the two curves is of the nth order with respect to
the distance from the point of tangency to its foot. It would also be
of the nth order with respect to the perpendicular TF from the point
of tangency to the line.

In view of these results it is not necessary to assume that the two
curves have a special relation to the axis. Let two curves y = f(z) and
y = g (x) intersect when « = @, and assume that the tangents at that point
are not parallel to the y-axis. Then

v=v0+ @@+ + EZLT poon@+ E=D o

v =0+ @—0) g0+ + GZIT poente) + LS o) -
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nth order with respect to @ — o which is the perpendicular from the
point of tangency to the ordinate, then the Taylor developments must
agree up to but not including the terms in z*. This is the condition for
contaet of order n —1.

As the difference between the ordinates is

f@)—g@)= ;,1‘ @ = Lf™) — (@] + s

the difference will change sign or keep its sign when « passes through
a aceording as » is odd or even, because for values sufficiently near to
2 the higher terms may be neglected. Hence the curves will cross each
other if the order of contact is even, but will not cross each other if the
order of contact s odd. If the values of the ordinates are equated to find
the points of intersection of the two curves, the result is

0=4 &= apiLr o — (@] 44

and shows that #=a is a root of multiplicity ». Hence it is said that
two curves have in common as many coincident points as the order of
their contact plus one. This fact is usually stated more graphically
by saying that the curves have n ive points in It may
be remarked that what Taylor’s development carried to » terms does, is
to give a polynomial which has contact of order » —1 with the function
that is developed by it.

As a problem on contact consider the determination of the circle which shall

have contact of the second order with a curve at a given point (a, yo). Let
Y=%+ (@ — a)f (@) + F @ — @)’ S (@) + -+
be the development of the curve and let ¥’ = f’(a) = tanr be the slope. If the
circle is to have contact with the eurve, its center must be at some point of the
normal. Then if R denotes the assumed radius, the equation of the circle may be
‘written as
@—a)?+2RsinT(z—a)+ (¥ — ¥0)? — 2R cos 7 (¥ — %) = 0,

where it remains to determine R so that the development of the circle will coincide
with that of the curve as far as written, Differentiate the equation of tbe circle.

dy Rsint4 (z—a) dy’ _ "
dz Reost—(y—yq) (‘h)a'"_tanr._f(a),
ay - [Reost—(y —y)])2 + [BsinT + (z— a)]? («_1111) 1
dz? [ReosT — (¥ — )] ! 42%/sy,  RoOBT
and V=Yt @ — O)F (@) + = Ao e

Rcos®t
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is the development of the circle. The equation of the coefficients of (x — a)?,
1
— = f" i R="r_ =1L W,
Roomr =) (@ gives 7@ 77a)
This is the well known formula for the radius of curvature and shows that the cir-

cle of curvature has contact of at least the second order with the curve. The circle
is sometines called the osculating circle instead of the circle of curvature.

39. Three theorems, one in geometry and two in kinematies, will
now be proved to illustrate the direct application of the infinitesimal
methods to such problems. The choice will be:

1. The tangent to the ellipse is equally inclined to the focal radii
drawn to the point of contact.

2. The displacement of any rigid body in a plane may be regarded
at any instant as a rotation through an infinitesimal angle about some
point unless the body is moving parallel to itself.

3. The motion of a rigid body in a plane may be regarded as'the
olling of one curve upon another.

For the first problem consider a secant PP’ which may be converted into a

tangent T'7” by letting the two points approach until they coincide. Draw the
focal radii to P and P’ and strike arcs with F and F’ as

centers.” As F'P 4 PF = F'P’'+ P'F =2a, it follows '
that NP = MP’. Now consider the two triangles PP'M P
and P’PN nearly right-angled at M and N. The sides
PP’, PM, PN, P’M, P'N are all infinitesimals of the
same order and of the same order as the angles at F and P2
F’. By proposition 4 of § 86 F
| MP'=PP'cos LZPPM4e,  NP=PPcosZPPN+e,

where e, and e, are infinitesimals relative to MP’ and NP or PP’. Therefore

lim [cos £ PP'M — cos £ P'PN] = cos £ TPF — cos £ T"PF’ = lim 4= ,ez =0,

PP

and the two angles TPF” and T"PF are proved to be equal as desired.

To prove the second theorem note first that if a body is rigid, Its position is com:
pletely determined when the position A B of any rectilinear segment of the body
is known. Let the points A and B of the body be de-
scribing curves AA’ and BB’ so that, in an infinitesimal
interval of time, the line A B takes the neighboring posi-
tion 4’B’. Erect the perpendicular bisectors of the lines
AA'and BB and let them intersect at O, Then the tri-
angles 40B and A’OB’ have the three sides of the one
equal to the three sides of the other and are equal, and
the second mav be obtained from the first by a mere rotation about O through the

Q -




the normaly to the avcs 44" and BB at 4 and B, and the point O will approach
the intersection of those normals,

The theorem may then be stated that: Al any instant of time the motion of a
rigid body in u plane may be considered as a rotation through an infinitesimal angle
about the intersection of the normals to the paths of any two of ils points at thal in-
stant ; the amount of the rotetion will be the distunce ds that any point moves divided
by the distance of that point from the instuntuneous cenler of rotation; the angular
velocily aboul the inslontaneous cenler will be this amount of rotation divided by the
interval of time di, that is, it will be v/r, where v is the velocity of uny point of the body
and r 48 il8 dist Srom the instant: cenler of rotation. It is therefore seen
that not only is the desired theorem proved, but numerous other details are found.
As has been stated, the point about which the body is rotating at a given instant
is called the instantaneous center for that instant.

As time goes on, the position of the instantaneouns center will generally change.
If at each instant of time the position of the center is marked on the moving plane
or body, there results a locus which is called the moving centrode or body centrode;
if at each instant the position of the center is also marked on a fixed plane over
which the moving plane may be consiclered to glide, there results another locus which
is called the fixed centrode or the space centrode. From these definitions it follows
that at each instant of time the body centrode and the space centrode intersect at
the instantaneous center for that instant, Cousider a series of
positions of the instantaneous center as P_oP_ PP, P, marked
in space and Q-2Q-1QQ,Q, warked in the body. At a given
instant two of the points, say P and @, coincide ; an instant
later the body will have moved so as to bring @, into coin-
cidence with P, ; at an earlier instant Q_; was coincident with
P_,. Now as the motion at the instant when P and @ are together is one of
rotation through an infinitesimal angle about that point, the angle between PP,
and QQ, is infinitesimal and the lengths PP, and QQ, are equal; for it is by the
rotation about P and’ @ that @, is to be brought into coincidence with P,. Hence
it follows 1° that the two centrodes are tangent and 2° that the distances PP, = Q@
which the point of contact moves along the two curves during an infinitesimal inter-
val of time are the same, and this means that the two curves roll on one another
without slipping — because the very idea of slipping implies that the point of con-
tact of the two curves should move by different amounts along the two curves,
the difference in the amounts being the amount of the slip. The third theorem
is therefore proved.

EXERCISES

1. 1f a finite parallelogram is nearly rectangled, what is the order of infinites-
imals neglected by taking the area as the product of the two sides ? What if the
figure were an isosceles trapezoid ? What if it were any rectilinear quadrilateral
all of whose angles differ from right angles by infinitesimals of the same order ?

2. On a sphere of radius r the area of the zone between the parallels of latitude
Aand N 4 d\ is taken as 277 cos - rd), the perimeter of the base times the slant
height. Of what order relative to dA is the infinitesimal neglected ? What if the
perimeter of the middle latitude were taken so that 22 cos(\ + } d\)d\ were

acsnmod 9



volume of a hollow sphere of interior radius » and thickness dr ? What if the mean
radius were taken instead of the interior radius ? Would any particular radius be
best ?

4. Discuss the length of a space curve y =f(z), 2= g () analytically as the
length of the plane curve was discussed in the text.

5. Disouss pr ition 2, p. 68, by Maclaurin’s Formula and in particular show
that if the second derivative is continuous at the point of tangency, the infinites-
imal in question is of the second order at least. How about the case of the tractrix

o« a—Va?—g?

y=ologe—— " — % 4 Val—a?
2 ga+-\/az_z2 ’

and its tangent at the vertex z = ¢ ? How about s(z) — ¢ () of § 87 ?

6. Show that if two curves have contact of order n —1, their derivatives will
have contact of order n — 2. What is the order of contact of the kth derivatives
k<n—17?

7. State the conditions for maxima, minima, and points of inflection in the
neighborhood of a point where f(a) is the first derivative that does not vanish.

8. Determine the order of contact of these curves at their intersections :
V2@ + P+ 2)=8(@+y) (ﬁ)rz=a2cos2¢ ®Byyi=y

ba?—Bay + by? =8, y=%a(a—g), 8+ Y8 = ay.

9. Show that at points where the radius of curvature is a maximum or mini-

mum the contact of the osculating circle with the curve must be of at least the
third order and must always be of odd order.

(@) ™)

10. Let PN be a normal to a curve and P’V a neighboring normal. If O is the
center of the osculating circle at P, show with the aid of Ex. 6 that ordinarily the
perpendicular from O to P’N is of the second order relative to the arc PP’ and that
the distance ON is of the first order. Hence interpret the statement: Consecutive
normals to & curve meet at the center of the osculating circle.

11. Does the osculating circle cross the curve at the point of osculation ? Will
the osculating circles at neighboring points of the curve intersect in real points ?

12. In the hyperbola the focal radii drawn to any point make equal angles with
the tangent. Prove this and state and prove the corresponding theorem for the
parabola.

13. Given an infinitesimal arc 4 B cut at C by the perpendicular bisector of its
chord AB. What is the order of the difference 4C — BC ?

14. Of what order is the area of the segment included b an itesimal
arc and its chord compared with the square on the chord ?

15. Two sides AB, AC of a triangle are finite and differ infinitesimally ; the
angle @ at 4 is an infinitesimal of the same order and the side BC is either recti-
linear or curvilinear. What is the order of the neglected infimitesimal if the area
is assumed as § AB°9? What if the assumption is } AB- AC-6?



a straight line. Show that the tangent and normal to the cycloid pass through tl
highest and lowest points of the rolling circle at each of its instantaneous position

17. Show that the increment of arc As in the cycloid differs from 2 a sin} 6¢
by an infinitesimal of higher order and that the increment of area (between tv
consecutive normals) differs from 8 @2 sin? } #d# by an infinitesimal of higher orde
ence show that the total length and area are 8a and 3wa?. Here a is the radil
of the generating circle and 4 is the angle subtended at the center by the lowe
point and the fixed point which traces the cycloid.

-18, Show that the radius of curvature of the cycloid Is bisected at the lowe
point of the generating circle and hence is 4 a sin } 6.

19. A triangle ABC is circumscribed about any oval curve. Show that if ¢
side BC is isected at the point of contact, the area of the triangle will be chang
by an infinitesimal of the second order when BC is replaced by a neighboring ta
gent JC’, but that if BC be not bisected, the change will be of the first orde
Hence infer that the minimum -triangle circumseribed about an oval will have
thiee sides bisected at the points of contact.

20. If a string is wrapped about a circle of radius a and then unwound so th
its end describes a curve, show that the length of the curve and the area betwe
the curve, thie circle, and the string are

0 0
= = 262
s fu afdé, A jﬂ‘ } a26°d6,
where 6 is the angle that the unwinding string has turned through.

21. Show that the motion in space of a rigid body one point of which is fia
may be regarded as an instantaneous rotation about some axis throdgh the giv
point. To do this examine the displacements of & unit sphere surrounding the fix
point as center.

22. Suppose a fiuid of variable density D (z) is flowing at a given instant throv
a tube surrounding the z-axis, Let the velocity of the fluid be a function v(z) of
Show that during the infinitesimal time 3¢ the diminution of the amount of |
fluid which lies betweenz =aand z =a + h is

S[v(a + k) D(a + B)3t — v(a) D () bt),

where § s the cross section of the tube. Hence show that D(z)v(z) = const. is
condition that the flow of the finid shall not change the density at any point.

23. Consider the curve y = f(z) and three equally spaced ordinates at ¢ = a -
z=a, x=a+ 3 Inscribe a trapezoid by joining the ends of the ordinates
% =a + & and circumscribe a trapezoid by drawing the tangent at the end of
ordinate at z = a and producing to meet the other ordinates. Show that

=2, s=20s@+ 570+ Sorow |

si=20[7@+ 5@ + 5o |
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are the areas of the circumscribed trapezoid, the curve, the inscribed trapezoid.
Hence infer that to compute the area under the curve from the inseribed or ecir-
cumseribed trapezoids introduces a relative error of the order 8%, but that to com-
pute from the relation S = }(2 S, + 8)) introduces an error of only the order of 3.

24. Let the interval from a to b be divided into an even number 2n of equal
parts 3 and let the 2 n + 1 ordinates yo, ¥y, - * *, Y2 at the extremities of the inter-
vals be drawn to the curve y =f(x). Inscribe trapezoids by joining the ends of
cevery other ordinate beginning with y,, ¥,, and going to y2,. Circumscribe trape-
zoids by drawing tangents at the ends of every other ordinate ¥y, yg, -« *, ¥2n-1.
Compute the area under the curve as

+ U4+ v2n-1)

+ 2o+ Y+ F V2] —Yp—V2n] + B

by using the work of Ex. 28 and infer that the error R is less than (b—a) 8*f@¥)(£)/45.
This method of computation is known as Simpson's Rule. It usually gives accu-
racy sufficient for work to four or even five figures when 8 = 0.1and b — a = 1; for
Jv)(z) usually is small.

25. Compute these integrals by Simpson’s Rule. Take 27 = 10 equal intervals.
Carry numerical work to six figures except where tables must be used to find f () :

2dz 1 de 1
Z= =0. 2 —tan-ll=-w=0.
(a)jl' ~ = log 2 = 0.69815, ®) f T = i1 = g = 078535,
&‘l’ N 2
) f sinzdz = 1.00000, @) _]; logye 2dz = 2log,g@ — M = 0.16776,
1 1
(e) f ]°g (1 + ‘) dz = 0.21220, © f log (142} 4, — 0.82247.
o z
The answers here given are the trae values of the integrals to five places.
26. Show that the quadrant of the ellipse z = asing, y =bcosé is
1
s= a,fh\/I— e”sin%dq;:imzf V(2 — €2) + } € cos wu du.
0 0

Compute to four figures by Simpson's Rule with six divlsions the quadrants of
the ellipses :

(@) e=}V3, s=1211q, ) e=3V2, s=136la.
27. Expand s in Ex. 28 into a series and discuss the remainder.

1 (1)1 (1.3%‘ (1.3-5)%0 1.8 (2n-1))'= e2n ]
== (Ve (S) Lty (2 f R -1
¢ 2’"‘[1 ok 2.4) 3 7185 ( 2. 4...2n J2a—i "
1 1.8... (2n+1))’e’"+

4 e —

R, < SeeEx.18, p.60,and Peirce’s **Tables,” p.62.




pended between two points at the same level and at a distance  nearly equal to
L, find the first approximation connecting L, I, and d, where d is the dip of the
wire at its lowest point below the level of support.

30. At its middle point the parabolic cable of a suspension bridge 1000 ft. long
between the supports sags 50 ft. below the level of the ends. Find the length of
the cable correct to inches.

40. Some differential geometry. Suppose that hetween the incre-
ments of a set of variables all of which depend on a single variable ¢
there exists an equation which is true except for infinitesimals of higher
order than At = d¢, then the equation will be exactly true for the differ-
entials of the variables. Thus if

fox+ gy + bz 4 IAE - e 4o+ =0
is an equation of the sort mentioned and if the coefficients are any func-

tions of the variables and if e, ¢,,--- are infinitesimals of higher order
than d#, the limit of

R R L ERRE TS

dy

is fdt+y +h-—-—+l_

or fdx + gdy + hdz + ldt = 0;

and the statement is proved. This result is very useful in writing
down various differential formulas of geometry where the approximate
relation between the increments is obvious and where the true relation
between the differentials can therefore be found.

For instance in the case of the differential of arc in rectangular codr-
dinates, if the increment of arc is known to differ from its chord by an
infinitesimal of higher order, the Pythagorean theorem shows that the

equation AS=Az?+ Ay or As= Ax® 4 Ayt + A )
is true except for infinitesimals of higher order; and hence
ds* =da* +dy* or ds*=da’+ dy?+d2: (™

In the case of plane polar coordinates, the triangle PP'N (see Fig.)
has two curvilinear sides PP' and PN and is right-
angled at N. The Pythagorean theorem may be
applied to a curvilinear triangle, or the triangle may
be replaced by the rectilinear triangle PP'N with
the angle at N no longer a right angle but nearly so. In either way of
looking at the figure, it is easily seen that the equation As® = Ar* |- 7°A¢?
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which the figure suggests differs from a true equation by an infinitesi-
mal of higher order; and hence the inference that in polar codrdinates
ds* = dr* + r*d >

The two most used systems of codrdinates
other than rectangular in space are the polar
or spherical and the cylindrical. In the first
the distance »= OP from the pole or center,
the longitude or meridional angle ¢, and the
colatitude or polar angle 6 are chosen as coor-
dinates; in the second, ordinary polar codrdinates r=0M and ¢ in
the ay-plane are combined with the ordinary rectangular = for distance
from that plane. The formulas of transformation are

z=7cos0, r="Val+ 1yt +2H

z
y=rsin05in b, 6 =cos™! _\/m, (8)
2 =17 sin 6 cos ¢, ¢=tan“£,

for polar coordinates, and for eylindrical cotrdinates they are
2=z, y=rsing, z=rcos¢, r=Val+y, o= tan-"%- )

Formulas such as that z
for the differential of
arc may be obtained for
these new codrdinates by
mere transformation of
(7" according to the rules
for change of variable.
In both these cases,
however, the value of
ds may be found readily
by direct inspection of
the figure. The small
parallelepiped (figure
for polar case) of which
As is the diagonal has
some of its edges and
faces curved instead of
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or ds?=di? +1*sin’fdg* +%dF and ds*=dr + 1%’ +d (10")
To make the proof complete, it would be necessary to show that noth-
ing but infinitesimals of higher order have been neglected and it might
actually be easier to transform Vda®+ dy’ +dz* rather than give a
rigorous demonstration of this fact. Indeed the infinitesimal method is
seldom used rigorously; its great use is to make the facts so clear to the
rapid worker that he is willing to take the evidence and omit the proof.

In the plane for rectangular codrdinates with rulings parallel to the
y-axis and for polar cosrdinates with rulings issuing from the pole the
increments of area differ from

dA=ydx and dA=}rd¢ (11)
respectively by infinitesimals of higher order, and
x &
A::f . A=,}f b ar
EN bo

are therefore the formulas for the area under a curve and between two
ordinates, and for the area between the curve and two radii. If the plane
is ruled by lines parallel to both axes or by lines issuing from the pole
and by circles concentric with the pole, as is customary for double inte-
gration (§§ 131, 134), the increments of area differ respectively by
infinitesimals of higher order from

dA =dxdy and d4 =rdrde, 12)

and the formulas for the area in the two cases are

A=l ad= f f id = f dudy, a2)
A=limYad= f f dd = ﬁdrd¢,

where the double integrals are extended over the area desired.

The elements of volume which are required for triple integration
(§8 133, 134) over a volume in space may readily be written down for
the three cases of rectangular, polar, and eylindrical coérdinates. In the
first case space is supposed to be divided up by planes z=a, y =10,
2z = ¢ perpendicular to the axes and spaced at infinitesimal intervals; in
the second case the division is made by the spheres 7 =a concentric
with the pole, the planes ¢ =& through the polar axis, and the cones
0= ¢ of revolution about the polar axis; in the third case by the cylin-
ders 7= a, the planes ¢ =15, and the planes z=¢. The infinitesimal



@y = axrayaz, V=7 3N Varaeav, = &V =Taraeaz (19)

respectively b}; infinitesimals of higher order, and

f f f dadyds, f f 22 sin Odrdgdd, f f fmzrdwz 13y

are the formulas for the volumes.
41. The direction of a line in space is represented by the three angles
which the line makes with the positive directions of the axes or by the
cosines of those angles, the direction cosines of the line. From the defi-
nition and figure it appears that
l=cosa¢=%§, m=cosﬂ=d—‘z, n—_‘cosy:g—: (14)
are the direction cosines of the tangent to the arc at the point; of the
tangent and hot of the chord for the reason
that the increments are replaced by the differ-
entials. Hence it is seen that for the direc-
tion cosines of the tangent the proportion

lim:n=dz:dy:dz (14"
holds. The equations of a space curve are
e=f@), y=g@), ==k

in terms of a variable parameter ¢.* At the point (x, y, 2, where
# =1, the equations of the tangent lines would then be -

=%y _Y—Y 2% ToZy Y=Y R, (15)
As the cosine of the angle § between the two directions given by the
direction cosines !, m, n and ', m/, n' is
cos@=1U'+mm'+nn', so U-4mm'+nn' =0 (16)
is the condition for the perpendicularity of the lines. Now if (z, y, 2)
lies in the plane normal to the curve at z, y,, 2, the lines determined
by the ratios @ —a,:y —¥,:2 — 2, and (dz),: (dy),: (dz), will be per-
pendicular. Hence the equation of the normal plane is
@ — @) (@), + (¥ — ¥9) (), + (= — 2,)(d2), = 0
or Fi(t)@ —m) +9'(t) (Y — v + 2 (E) (2 — ) = 0. an

* For the sake of lity the ric form in ¢ is d; ina particularcasea
simplification might be made by taking one of the variables as ¢ and one of the functions
S’y g’y ¥ would then be 1. Thus in Ex. 8 (¢), ¥ should be taken as ¢.
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There is one particular tangent plane, called the osculuting plune,which
is of especial importance. Let

z—ay=ft)T+ 1"t T+ @, =it t,<E<4,

with similar expansions for ¥ and #z, be the Taylor developments of
@, y, # about the point of tangency. When these are substituted in the
equation of the plane, the result is

[f_ﬁt_ozﬂw.n) arnk 2! (t)

=0.

ORI f_j” o .
RS '(f)"a”)h'(t)]

This expression is of course proportional to the distance from any point
a, y, # of the curve to the tangent plane and is seen to be in general of
the second order with respect to = or ds. It is, however, possible to
choose for X that value which makes the first bracket vanish. The tan-
gent plane thus selected has the property that the distance of the curve
JSrom it in the neighborhood of the point of tangency is of the third order
and is called the osculating plane. The substitution of the value of X gives
T Y=y, 7, T—T, Y=Y, Z—7
£y ey ey (@), (), (@), |=0 (18)
) 9"t () (@), (&), (P9,
or (dydz — dzd’y) (& — @) + (dedx — dad’%)(y — y,)

+ (dad?y — dydax) (z —2) =0
as the equation of the osculating plane. In case f"'(t)=g"(t,)=~"(t)=0,
this equation of the osculating plane vanishes identically and it is neces-
sary to push the development further (Ex. 11).

42. For the case of plane curves the curvature is defined as the rate
at which the tangent turns compared with the description of arc, that
is, as d¢ /ds if d¢ denotes the differential of the angle through which
the tangent turns when the point of tangency advances along the curve
by ds. The radius of curvature R is the reciprocal of the curvature,
that is, it is ds/d¢. Then

d¢ _de da

it ¥ v [1+J]i
B W T @d [y Co 1 (19)

=0 or




Hence dl* + dm* 4 dn* = 2 — 2 cos d¢ = (2 sin } d¢)?,
2 " H 2 2 2
Lo (8] [Len ]y

R \ds ds ds*

where accents denote differentiation with respect to s.

The torsion of a space curve is defined as the rate of turning of the
osculating plane compared with the increase of arc (that is, dy/ds, where
dy is the differential angle the normal to the osculating plane turns
through), and may clearly be calculated by the same formula as the
curvature provided the direction cosines L, M, N of the normal to the
plane take the places of the direction cosines 7, m, » of the tangent line.
Hence the torsion is

2 2 2 2
Lo (W= ALY e o)
and the radius of torsion R is defined as the reciprocal of the torsion,
where from the equation of the osculating plane

i3 _ M N
dyd’z — dedly ~ dedx — dad’z dedy — dydx

Vsum of squares '

The actual computation of these quantities is somewhat tedious.

(20)

The vectorial discussion of curvature and torsion (§ 77) gives a better insight
into the principal directions connected with a space curve. These are the direction
of the {angent, that of the normal in the osculating plane and directed towards
the concave side of the curve and called the principal normal, and that of the
normal to the osculating plane drawn upon that side which makes the three direc-
tions form a right-handed system and called the binormal. In the notations there
given, combined with those above,

r=xit+yi+zk, t=UH+mj+nk, c=N+pj+rk, n=Lit+ Mj+ Nk,
where A, u, v are taken as the direction cosines of the principal normal. Now dt
is parallel to ¢ and dn is parallel to — c. Hence the results

a_m_an_o
A" « v R
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dax L dp m M dy n N

A__ L L ke m M b N 29)
Hence 2=~ %*R H-TRTR & TrTR @

Formulas (22) are known as Frenet’s Formulas; they are usually written with — R
in the place of R because a left-handed system of axes is used and the torsion, being
an odd function, changes its sign when all the axes are reversed. If accents denote
differentiation by s,

v v 7 ¢ v oz
oy 2 &y 2
ir gt g g1 e

above formulas, 1l v 2 » usual formulas, 1B v &) (28)

righthanded R #7HV+Z7 0 loghondea R TPV

EXERCISES

1. Show that in polar cotrdinates in the plane, the tangent of the inclination
of the curve to the radius vector is rdg/dr.

2. Verify (10), (10") by direct transformation of codrdinates.

3. Fill in the steps omitted in the text in regard to the proof of (10), (10') by
the method of infinitesimal analysis.

4. A rhumb line on a sphere is a line which cuts all the meridians at a constant
angle, say a. Show that for a rhumb line sin #d¢ = tan add and ds = rsec adf.
Hence find the equation of the line, show that it coils indefinitely around the
poles of the sphere, and that its total length is 7 sec a.

5. Show that the surfaces represented by F(¢, §) = 0 and F(r, 6) = 0 in polar
codrdinates in space are respectively cones and surfaces of revolution about the
polar axis. What sort of surface would the equation F(r, ¢) = O represent ?

6. Show accurately that the expression given for the differential of area in
polar codrdinates in the plane and for the differentials of volume in polar and
cylindrical codrdinates in space differ from the corresponding increments by in-
finitesimals of higher order.

7. Show that gsr' rZ—a, r8in 6 dﬁ are the direction cosines of the tangent to a

space curve relative to the ra,dlus, meridian, and parallel of latitude.
8. Find the tangent line and normal plane of these curves.
(@ayz=1, Y=g at (1,1,1), (8) z=cost, y=sint, z=K,
() 2ay =22, Ba%% = a?, (8) € =tcost, y=tsint, z=ke,
(y=2 2=1—y, ) 2+ +22 =0 22+ 92 + 202 =0,
9. Find the equation of the osculating plane in the examples of Ex. 8. Note
that if z is the independent variable, the equation of the plane is

(- e e (50 w1+ () e-=0



z = 0 as its osculating plane at the origin. Show that
B RO+ Y=E0O e, 2= FORIO) + oo
will be the form of its Maclaurin development if ¢t = 0 givesz =y =2 =0.
11. If the 2d, 84, - -+, (n — 1)st derivatives of /, g, & vanish for ¢ = ¢, but not
all the nth derivatives vanish, show that there is a plane from which the curve
departs by an infinitesimal of the (n + 1)st order and with which it therefore

has contact of order n. Such a plane is called a hyperosculating plane. Find its
equation.

12. At what points if any do the curves (8), (¥), (¢), (¢), Ex. 8 have hyperoscu-
lating planes and what is the degree of contact in each case ?

13. Show that the expression for the radius of curvature is

1_ gy es o W = K 4 6 = PR+ (= gV
2+ g2+ w2k

where in the first case accents denote differentiation by s, in the second by ¢.

14. Show that the radius of curvature of a space curve is the radius of curva-
ture of its projection on the osculating plane at the point in question.
15. From Frenet's Formulas show that the successive derivatives of z are
A N AR 3 R L
' =, === T mm e = e = N o
' R’ R B B 'mteR

where accents denote differentiation by s. Show that the results for y and z are
the same except that m, x, M or n, », N take the places of I, \, L. Hence infer
that for the nth derivatives the results are

) = 1P, + NP, + LPy, y™ =mP, + pPy + MP;, 2™ =uP, + vP, + NP,

where P,, P,, P; are rational functions of R and R and their derivatives by s.
16. Apply the foregoing to the expansion of Ex. 10 to show that

® s

6 R? 8 RR

where R and R are the values at the arigin where $ =0, ! =pu = N =1, and the

other six direction cosines m, n, \, », L, M vanish. Find s and write the expan-
sion of the curve of Ex. 8 () in this form.

1, 82
z:s—ms 4oy y=ﬁ~ Sty 2z ey,

17. Note that the distance of a point on the curve as expanded in Ex. 16 from
the sphere through the origin and with center at the point (0, R, R'R) is

Va? + (y— R)? + (z— BR)? = VE? + ROR?
_ (#® 4+ y? — 2Ry + 2 — 2 R'Rz)
= ’
Va? + (y — R+ (e — R'R]* + VE? + RR?
and consequently is of the fourth order. The curve therefore has contact of the

third order with this sphere. Can the equation of this sphere be derived by a
limiting process like that of Ex, 18 as applied to the osculating plane *




consecutive points of the curve; in fact it is easily shown that

T Y z 1
lim
o din 8z o o 2
axbuse T +8 Yty z+dz 1
Ty + AT Yy t+ Ay 2z, + Az 1

T—Ty Y—Y, 2%
(de),  (Av)y  (d2),
(@) (@y)y (@),

=0.

19. Express the radius of torsion in terms of the derivatives of @, y, z by ¢
(Ex. 10, p. 67).

20. Find the direction, curvature, osculating plane, torsion, and osculating
sphere (Bx. 17) of the conical helix & = tcost, y =tsint, z = ktati=2m.

21. Upon a plane diagram which shows As, Ax, Ay, exhibit the lines which
represent ds, dz, dy under the different hypotheses that &, y, or s is the independ-
ent variable,



CHAPTER IV
PARTIAL DIFFERENTIATION; EXPLICIT FUNCTIONS

43. Functions of two or more variables. The definitions and theo-
rems about functions of more than one independent variable are to a
large extent similar to those given in Chap. IT for functions of a single
variable, and the changes and difficulties which occur are for the most
part amply illustrated by the case of two variables. The work in the
text will therefore be confined largely to this case and the generaliza-
tions to functions involving more than two variables may be left as
exercises.

If the value of a variable # is uniquely determined when the values
(, y) of two variables are known, z is said to be a function z = f(z, v)
of the two variables. The set of values [(x, )] or of points P (z, y) of
the ay-plane for which # is defined may be any set, but usually consists
of all the points in a certain area or region of the plane bounded by
a curve which may or may not belong to the region, just as the end
points of an interval may or may not belong to it. Thus the function
1/V1 — x* — 3 is defined for all points within the circle 2* 4 3 =1,
but not for points on the perimeter of the circle. For most purposes it
is sufficient to think of the boundary of the region of definition as a
polygon whose sides are straight lines or such curves as the geometric
intuition naturally suggests.

The first way of representing the function # = f(x, ) geometrically
is by the surface z = f(x, ), just as y = f(x) was represented by a curve.
This method is not available for « = f(x, y, ), a function of three vari-
ables, or for functions of a greater number of variables; for space has
only three dimensions. A second method of representing the function
z=f(x, y) is by its contour lines in the wy-plane, that is, the curves
f(#, ) = const. are plotted and to each curve is attached the value of
the constant. This is the method employed on maps in marking heights
above sea level or depths of the ocean below sea ievel. It is evident that
these contour lines are nothing but the projections on the wy-plane
of the curves in which the surface z =jf(w, ) is cut by the planes
z = const. This method is applicable to functions » = f(z, g, #) of
three variables. The contour surfaces w = const. which are thus obtained
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are frequently called equipotentiul surfaces. If the fuuction is single
valued, the contour lines or surfaces cannot intersect one another.

The function x = f(x, y) is continuous for (a,b) when either of the
following equivalent conditions is satisfied :

1°  limf(z, y) =f(e, b)) or limf(z, y) =F(ima, lim y),
no matter how the variable point P (x, y) approaches (u, ).

2°. If for any assigned e, o number 8 may be found so that

1f@ y) —fa, b)|<e when |z—a|<8 |y—0<d

Geometrically this means that if a square with («, 4) as center and
with sides of length 23 parallel to the axes be drawn, Fagbie
the portion of the surface z = f(x, y) above the Y] =
square will lie between the two planes z= f'(«,0) £e |28 §
Or if contour lines are used, no line f(x, y) = const. (a,b)
where the constant differs from f(«, ) by so much (e,
as ¢ will cut into the square. It is clear that in place Ol % X
of a square surrounding (a, 0) a circle of radius 8 or any other figure
which lay within the square might be used.

44. Continuity examined. From the definition of continuity just given and
from the corresponding definition in § 24, it follows that if f(z, ¥) is a continuous
function of « and y for (a, b), then f(z, b) is a continnous function of « forz =a
and f(a, %) is a continuous function of ¥ for y =b. That is, if £ is continuous in
= and y jointly, it is continuous in & and y severally. It might be thought that
conversely if f(z, b) is continuous for « = a and f(a, %) for y =10, f(z, y) would
be continuous in (%, y) for (a, b). That is, if f is continuous in & and y severally,
it would be continuous in  and y
jointly. A simple example will show
that this is not necessarily true. Con-
sider the case

-1 -2 o

2 2
e=fle =S5 ¥
0,0=0 -

and examine z for continuity at
(0, 0). The functions f(z, 0)===,
and f(0, %) =y are surely continuous
in their respective variables. But the surface z = f(z, ¥) is a conical surface (except
for the points of the z-axis other than the origin) and it is clear that P (g, y) may
approach the origin in such a manner that z shall approach any desired value.
Moreover, a glance at the contour lines shows that they all enter any circle ot
square. no matter how small. concentric with the origin. If P anoroaches the oriein

X/
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Double limits. There often arise for consideration expressions like
lim [ lim f(z lim [ lim f(z, 1
llﬂ[ﬁﬂf( 0]l [vmff W] @)

where the limits exist whether « first approaches its limit, and then y its limit, or
vice versa, and where the question arises as to whether the two limits thus obtained
are equal, that is, whether the order of taking the limits in the double limit may
be interchanged. It is clear that if the function f(z, y) is continuous at (a, ), the
limits approached by the two expressions will be equal; for the limit of f(z, ) is
/S (¢, b)) no matter how (c, y) approaches (a, b). If fis discontinuons at (a, b), it
may still happen that the order of the limits in the double limit may be inter-
changed, as was true in the case above where the value in either order was zero;
but this cannot be affirmed in general, and special considerations must be applied
to each case when f is discontinnous.

Varieties of regions.* For both pure mathematics and physics the classification
of regions according to their connectivity is important. Consider a finite region R
bounded by a curve which nowhere cuts itself. (For the present
purposes it is not necessary to enter upon the subtleties of the
meaning of ‘““curve’’ (see §§ 127-128); ordinary intuition will p
suffice.) It is clear that if any closed curve drawn in this region
had an unlimited tendency to contract, it could draw together
to a point and disappear. On the other hand, if R’ be a region
like R except that a portion has been removed so that R’ is
bounded by two curves one within the other, it is clear that g
some closed curves, namely those which did not encircle the
portion removed, could shrink away to a point, whereas other
closed curves, namely those which encircled that portion, could
at most shrink down into coincidence with the boundary of that
portion. Again, if two portions are removed so as to give rise R’
to the region R”, there are circuits around each of the portions
which at most can only shrink down to the boundaries of those
portions and circuits around both portions which can shrink down to the bounda~
ries and a line joining them. A region like R, where any closed curve or circuit
may be shrunk away to nothing is called a simply connected region; whereas regions
in which there are circuits which cannot be shrunk away to nothing are called
multiply connected regions.

A multiply connected region may be made simply connected by a simple device
and convention. For suppose that in R’ a line were drawn connecting the two
bounding curves and it were agreed that no curve or circuit, drawn within R’ should
cross this line. Then the entire region would be surrounded by a
single boundary, part of which would be counted twice. The figure
indicates the situation. In like manner if two lines were drawn in %)

R” connecting both interior boundaries to the exterior or connecting
the two interior boundaries together and either of them to the outer
boundary, the region would be rendered simply connected. The entire region
would have a single boundary of which parts would be counted twice, and any
circuit which did not cross the lines could be shrunk away to nothing. The lines




90 DIFFERENTIAL CALCULUS

thus drawn in the region to make it simply connected are called cuts. There is
need that the region be finite ; it might extend off indefinitely in some directi
like the region between twa, parallel lines or between the sides of an angle, orl
the entire half of the zy-plane for which y is positive. In such cases the cuts n
be drawn either to the boundary or off indefinitely in such a way as not to m
the boundary.

45. Multiple valued functions. 1f more than one value of z corresponds to
pair of values (z, %), the function 2z is multiple valued, and there are some n
worthy differences between multiple valued functions of ouc variable and of seve
variables. It was stated (§ 28) that multiple
valued functions were divided into branches Y] ¥
each of which was single valued. There are
two cases to consider when there is one vari-
able, and they are illustrated in the figure.
Either there is no value of & in the interval
for which the different values of the function
are equal and there is consequently a number
D which gives the least value of the difference
between any two branches, or there is a value of z for which different branc
have the same value. Now in the first case, if x changes its value continuously
if f(x) be constrained also to change continuously, there is no possibility of pas
from one branch of the function to another ; but in the second case such chang
possible for, when z passes through the value for which the branches have the s:
value, the function while constrained to change its value continuously may turr
onto the other branch, although it need not do so.

In the case of a function z = f(z, ¥) of two variables, it is not true that if
values of the function nowhere become equal in or on the boundary of the re
over which the function is defined, then it is impossible to pass continuously £
one branch to another, and if P(z, y) describes any
continuous closed curve or circuit in the region, the
value of f(z, y) changing continuously must return to
its original value when P has completed the descrip-
tion of the circuit. For suppose the function z be a
helicoidal surface z = a tan—1(y/z), or rather the por-
tion of that surface between two cylindrical surfaces
concentric with the axis of the helicoid, as is the case
of the surface of the screw of a jack, and the circuit
be taken around the inner cylinder. The multiple num-
bering of the contour lines indicates the fact that the
function is multiple valued. Clearly, each time that i
the circuit is described, the value of z is increased by the amount between the
cessive branches or leaves of the surface (or decreased by that amount if the ci
is deseribed in the opposite direction). The region here dealt with is not sir
connected and the circuit cannot be shrunk to nothing — which is the key to
situation.

Tueorem. If the difference between the different values of a continuous
tinle valned fuinetion 1@ never lece than a €nita ymimhbhar D far any cat (¢ 9

X O
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Now owing to the continuity of f throughout the region, it is possible to find a
number 3 so that | f(z, ¥) — f (2, ¥')|<e When |z — z’|< 5 and |y — ¥’|< no matter
what points of the region (z, y) and (z’, ¥’) may be. Hence the values of f at any
two points of a small region which lies within any circle of radius } & cannot differ
by so much as the amount D. If, then, the circuit is so small
that it may be inclosed within such a circle, there is no possi- g
bility of passing from one value of f to another when the circnit e‘)
is described and f must return to its initial value. Next let l
there be given any circuit such that the value of f starting from
a given value f(z, ¥) returns to that value when the circuit has 4
been letely described. Sup that a ification were
introduced in the circuit by enlarging or diminishing the inclosed area by a small
area lying wholly within a circle of radius 8. Consider the circuit ABCDEA and
the modified circuit ABC"DEA. As these circuits coincide except for the arcs BCD
and BC’D, it is only necessary to show that f takes on the same value at D whether
D is reached from B by the way of C or by the way of C’. But this is necessarily
so for the reason that both arcs are within a circle of radius 3.

Then the value of f must still return to its initial value f(z, v)

when the modified circuit is described. Now to complete the

proof of the theorem, it suffices to note that any circnit which

can be shrunk to nothing can be made up by piecing together a

number of small circuits as shown in the figure. Then as the

change in f around any one of the small circuits is zero, the change must be zero
around 2, 3, 4, - - adjacent circuits, and thus finally around the complete large
circuit.

Reducibility of circuits. If a circuit can be shrunk away to nothing, it is said to
be reducible; if it cannot, it is said to be érreducible. In a simply connected region
all circuits are reducible ; in a multiply connected region there are an infinity of
irreducible circuits. Two circuits are said to be eguivalent or reducible to each
other when either can be expanded or shrunk into the other. The change in the
value of f on passing around two equivalent circuits from 4 to A
is the same, provided the circuits are described in the same direc-
tion. For consider the figure and the equivalent circuits 4CA
and 40’4 described as indicated by the large arrows. It is clear
that either may be modified little by little, as indicated in the _A
proof above, until it has been changed into the other. Hence the
change in the value of f around the two circuits is the same. Or, as another proof,
it may be observed that the combined circuit .4CAC’4, where the second is
described as indicated by the small arrows, may be regarded as a reducible circuit
which touches itself at A, Then the change of f around the circuit is zero and f
must lose as much on passing from 4 to 4 by ¢’ as it gains in passing from 4 to
A by C. Hence on passing from 4 to 4 by ¢’ in the direction of the large arrows
the gain in f must be the same as on passing by C.

Tt is now possible to see that any circuit ABC may be reduced to circuils around
the portions cut out of the region combined with lines going to and from A and the
doundaries. The figure shows this; for the circuit ABC"BAD(”DA is clearly




f on passing around the-irreducible circuit BC"B. One of the
cases which arises most frequently in practice is that in
which the successive branches of f(z, y) differ by a constant
amount as in the casé z = tan—1(y/z) where 2 is the differ-
ence between successive values of z for the same values of the
vasiables. If now a circuit such as ABC’BA be considered, where it is imagined
that the origin lies within BC'B, it is clear that the values of z along AB an
along BA differ by 2, and whatever z gains on passing from A to A
B will be lost on passing from B to A, although the valnes through

which z changes will be different in the two cases by the amount 7" B/p
2. Hence the circuit ABC’BA gives the same changes for z as
the simpler circuit BC’B. In other words the result is obtained
that if the different values of a multiple valued function for the sume
values of the variables differ by a constant independent of the valucs of
the variables, any circuit may be reduced to circuits about the bound-
aries of the portions removed; in this case the lines going from the point 4 to th
boundaries and back may be discarded.

EXERCISES
1. Draw the contour lines and sketch the surfaces corresponding to
_T+y - P
(a)z_x_y, z(0,0)=0, (ﬂ)z_:c+1/' 2(0, 0) = 0.

Note that here and in the text only one of the contour lines passes through th
origin although an infinite number have it as a frontier point between two part
of the same contour line. Discuss the double limits lim lim z, lim lim z.
Z20y20 | y=0 a0
2. Draw the contour lines and sketch the surfaces corresponding to
2 4yt1 2 249221
— (,g)z=7/_, (-Y)zzf‘_i_;v_..
] z 222 42— 1
Examine pa'mcula.x.'ly the behavior of the function in the neighborhood of t
apparent points of intersection of different contour lines, Why apparent ?

(@) z=

) 3. State and prove for functions of two independent variables the gencraliz
tions of Tht?urems 6-11 of Chap. IL - Note that the theorem on uniformity is prove
for two variables by the application of Ex. 9, p. 40, in almost the identical manu
as for the case of one variable,

4. Outline definitions and th for functi
ular indicate the contour surfaces of the functions

of three variables. In parti

(a)u=1+v+2z (ﬂ)u=z"+y’+z"

’ —zy
- T—y—2z T+y+z M u=2
and discuss the triple limits as , ,

6. Letz=P(z,4)/Q(@, 1),
tion of z and y.

# In different orders approach the origin.
where P and Q are polynomials, be a rational fun
Show that if the curves P =0 and @ = 0 i i i

. X = = 0 intersect in any poin
all the contour lines of z will converge toward these points ; and conversely she



that if two different contour lines of z apparently cut in some point, all the contour
lines will converge toward that point, P and Q will there vanish, and z will be
undefined.

6. 1f D is the minimuin difference between different values of a multiple valued
function, as in the text, and if the function returns to its initial value plus D= D
when P describes a circuit, show that it will return to its initial value plus D’= D
when P deseribes the new circuit formed by piecing on to the given circuit a sivall
region which lies within a circle of radius § 5.

7. Study the function z = tan~1!(y/z), noting especially the relation between
contour lines and the surface. To eliminate the origin at which the function is not
defined draw a small eircle about the point (0, 0) and observe that the region of
the whole xy-plane outside this circle is not simply connected but may be made s¢
by drawing a cut from the circumference off to an infinite distance. Study the
variation of the function as P describes various circuits.

8. Study the contour lines and the surfaces due to the functions

1—g?
(a) z=tan"lzy, (B z=tam~l1_;°Z

» (7)) z=sin"l(z—1y).

Cat out the points where the functions are not defined and follow the changes in
the functions about such circuits as indicated in the figures of the text. How may
the region of definitlon be made simply connected ?

9. Consider the function z = tan—1(P/Q) where P and Q are polynomials and
where the curves P = 0 and @ = 0 intersect in n points (a,, b,), (@g, by), * + =, (@ny bn)
but are not tangent (the polynomials have common solutions which are not mul~
tiple roots). Show that the value of the function will change by 2kw if (z, y)
describes a circuit which includes % of the points. Illustrate by taking for P/Q
the fractions in Ex. 2.

10. Consider regions or volumes in space. Show that there are regions in which
some circuits cannot be shrunk away to nothing ; also regions in which all circuits
may be shrunk away but not all closed surfaces.

46. First partial derivatives. Let z =f(z, ) be a single valued
function, or one branch of a multiple valued function, defined for (a, 4)
and for all points in the neighborhood. If 7 be given the value 4,
then # becomes a function f(x, b) of « alone, and if that function has a
derivative for = a, that derivative is called the partial derivative of
z = f(x, y) with respect to z at (a, b). Similarly, if @ is he'd fast and
equal to @ and if f(a, ) has a derivative when y = b, that derivative is
called the partial derivative of # with respect to-y at (a, ). To obtain
these derivatives formally in the case of a given function f(z, ¥) it is
merely necessary to differentiate the function by the ordinary rules,
treating y as a constant when finding the derivative with respect to a
and « as a constant for the derivative with respect to . Notations are

of o0 S /dz\




derivatives are the limits of the quotients
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k=0 k

@

h=0

provided those limits exist. The application of the Theorem of the
Mean to the functions f(x, ) and f(a, y) gives

fla+ ny by — fla, b) = hfi(a+6/,0), 0<6, <1, @
S(a, b+ k) —f(a, b) = kf)/(a, b+ 6f), 0<6,<1,
under the proper but evident restrictions (see § 26).

Two comments may be made. First, some writers denote the partial derivatives
by the same symbols dz/dz and dz/dy as if z were a function of only one variable
and were differentiated with respect to that variable; and if they desire especially
to call attention to the other variables which are held constant, they affix them as
subscripts as shown in the last symbol given (p. 93). This notation is particularly
prevalent in thermodynamics. As a matter of fact, it would probably be impos-
sible to devise a simple notation for partial derivatives which should be satisfac-
tory for all purposes. The only safe rule to adopt is to use a notation which is
sufficiently explicit for the purposes in hand, and at all times to pay careful atten-
tion to what the derivative actually means in each case. Second, it should be noted
that for points on the boundary of the region of definition of f(z, ) there may be
merely right-hand or left-hand partial derivatives or perhaps none at all. For it
i8 necessary that the lines y = b and = = @ cut into the region on one side or the
other in the neighborhood of (@, b) if there is to be a derivative even one-sided;
and at a corner of the boundary it may happen that neither of these lines cuts
into the region.

TaroreM. If f(x,y) and its derivatives f; and f; are continuous func-
tions of (z, ) in the neighborhood of (, ), the increment Af may be
written in any of the three forms

Af=f(a+ hy b+ k) — f(a, b)
= hfi(@+ 0.7, b) + Xfy(a + h, b+ k) o
= hf(a+ Ok, b + 0k) + kfy(a + 6k, b + 6k)
= hfz(a, b) + kfy(a, ) + &b + L,
where the §'s are proper fractions, the ¢’s infinitesimals.
To prove the first form, add and subtract f(a + k, b) ; then
Af=[fla+h ) —Sa )]+ [fla+hb+k)—Fa+h )]
=hfi(@+ 0.k, b) + kS, (@ + h, b+ 6,%)
by the application of the Theorem of the Mean for functions of a single variable
(§§ 7, 26). The application may be made because the function is continuous and

the indicated derivatives exist. Now if the derivatives are also continuous, they
may be expressed as

S+ 00 =L@+,  F@thb+ =1+,



Hence ti1e zhird form follows from the first. The second form, which is symmetric
in the increments A, k, may be obtained by writing ¢ = a + th and y = b + tk.
Then f(z, ¥) = ®(f). Asfis continuous in (z, y), the function ¢ is continuous in ¢
and its increment is

AP = f(a+ 1+ Ath, b+t + Atk) — f(a + th, b + tk).

This may be regarded as the increment of f taken from the point (z, y) with At . A
and At-k as increments in z and y. Hence Ad may be written as

AP = AL hf](a + th, b+ th) + Atk fy (@ + th, b+ th) + ALk + HAL- k.
Now if AP be divided by At and At be allowed to approach zero, it is seen that
Iim%=hf,'(a + thy b+ tk) + kf, (@ + th, b+uc)=%.

The Theorem of the Mean may now be applied to ® to give (1) — ¢ (0) =1- ¥(f),
and hence

() —2(0)=rf(a+h b+ k) —f(a,b)
=Af=hfj(@+ Ok, b+ OK) + kS, (a + 6k, b + 6K).

47. The partial differentials of f may be defined as
d.f = f:Az, sothat dax= Az, M=21:

da ox ( )
d,f=f,Ay, so that dy = A _1[ = _.i-f
fiAy, Y Y5 y y,

where the indices « and y introduced in d,f and d,f indicate that = and
y respectively are alone allowed to vary in forming the corresponding
partial differentials. The total differential
[ 9
af=def+df=Ldn+ Lay, ®
which is the sum of the partial differentials, may be defined as that
sum; but it is better defined as that part of the increment

Af= Am+af Ay + { Az + LAy )

which is obtained by neglectmg the terms {Ax + {Ay, which are of
higher order than Az and Ay. The total differential may therefore be
computed by finding the partial derivatives, multiplying them respec-
tively by dx and dy, and adding.

The total differential of z = f(x, y) may be formed for (x, y,) as

== (L) @) +(Z) 0w, ®

where the values x — z, and y — y, are given to the independent differ-
entials dx and dy, and df = d is written as # —#, This, however, is




Af — df which measures the distance from the plane to the surface
along a parallel to the z-axis is of higher order than VAa* 4 Ay?; for

Af —df (:A$+g
‘VAz’-{-Ay Ax? + Ay

Hence the plane (8) will be defined as the tungent plane at (%, ¥y, )
to the surface z = f'(z, ). The normal to the plane is

<[G]+]&]=0.

TR YN TR, ®
G, G~

which will be defined as the normal to the surfuce at (z, ¥, #,). The
tangent plane will cut the planes y = y, and @ =2, in lines of which
the slope is fy, and f;. The surface will cut these planes in curves
which are tangent to the lines.

In the figure, PQSR is a portion of the “\'1 R
surface z = f(z, y) and PT'TT" is a cor- /%T”
responding portion of its tangent plane A7
ab P(x, ¥, 2,). Now the various values N,

Heo

PU
may be read off. ,/ 3
PP' = Az, PQ= A, P ol
PT/PP' =f;,  PT' =dpf, / ¥
PP" = Ay, P'R=A,f, i
I’"T”/PP” =f, pUTH — d”f, /,M

PT'+P'T"=N'T, N'S=Af,
N'T = df = df + d, f.
48..If the variables x and y are expressed as = = ¢ (¢) and y = ¢ (t)
so that f(x, y) becomes a function of ¢, the derivative of f with respect
to ¢ is found from the expression for the increment of f.

AF _ofac by

war Toyar T t. + Z;
. s _df _ifie i
o }}Lno At ox dt ~ Oy dt 0

The conclusion requires that « and y should have finite derivatives with
respect to ¢. The differential of f as a function of ¢ is
af of de of dy or 3f
df = dt—'aaa 7 dt+aJdtdt dz+ d? (11)
and hence it appears that the differential has the same fm~m as the total
differential. This result will be generalized later.
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d, of dx | Of dy .
and (—}§=£$+0—‘ij—:‘-f'ww+/"smr. (13)
The derivative (13) is called the directional derivative of f in the direc-
tion of the line. The partial derivatives f, f, are the particular direc-
tional derivatives along the directions of the z-axis and y-axis. The
directional derivative of f in any direction is the rate of increase of
Jf along that direction ; if # = f(x, ) be inter-
preted as a surface, the directional derivative is
the slope of the curve in which a plane through
the line (12) and perpendicular to the zy-plane
cuts the surface. If f(x, y) be represented by
its contour lines, the derivative at a point
(=, ) in any direction is the limit of the ratio
Af/As = AC/As of the increase of £, from one contour line to a neigh-
boring one, to the distance between the lines in that direction. It is
therefore evident that the derivative along any contour line is zero and
that the derivative along the normal to the contour line is greater than
in any other direction because the element dn of the normal is less than
ds in any other direction. In fact, apart fiom infinitesimals of higher

order,
‘Z = d—f-' €08 . 14)

5:—:: = ¢os ), %[ Af cos ¥,
Hence it is seen that the derivative along any direction may be found
by multiplying the derivative along the normal by the cosine of the angle
between that direction and the normal. The derivative along the normal
to a contour line is called the normal derivative of f and is, of course,
a function of (z, ).

49. Next suppose that « = f(x,y, 2,---) is a function of any number
of variables. The reasoning of the foregoing paragraphs may be
repeated without change except for the additional number of variables.
The increment of  will take any of the forms

sf=fla+hb+ke+l,--)—f(abe--)
=hfg(a+ 04,0, ¢ - )+ kfy(a+ Ry b+ 6, ¢, --0)
U@t h b Ty et O] ) e
=[hE A+ + 1+ Jaconssonera...
=R+ 4+ F L+ L+ G+




af = g'id +g');d7 +gfd#+ (16)

and finally if 2, y, #, - -+ be functions of ¢, it follows that
df of de | Ofdy | of d= . an
Twdt  oydt  Oedt
and the differential of  as a function of ¢ is still (16).

If the variables , y, z, --- were expressed in terms of several new
variables 7, s, -+ -, the function f would become a function of those vari-
ables. To find the partial derivative of f with respect to one of those
variables, say 7, the remaining ones, s, ---, would be held constant and
f would for the moment become a function of r alone, and so would «,
¥, #,+--. Hence (17) may be applied to obtain the partial derivatives
of _ofox  8fdy , OF O
Y _Uw U ol
or  omor  oyor ' oxor 18
o o orey z%+
0s 0z 0s ' 0Oy Os az s
These are the formulas for change of variable analogous to (4) of § 2.
1f these equations be multiplied by Ar, As, .- and added,

g—{m+%§m+. af<a’”m+ As+- ) 2f<a/A+ >+

and

or
or df = aidw-i-afd‘/—é- fdr+

for when 7, s, ... are the mdependent variables, the parentheses above
are dw, dy, dz, --- and the expression on the left is df.

Turorem. The expression of the total differential of a function of
x, Yy 7, -+ 88 df = fodxe + fydy + fidz + - - is the same whether z, y,
, -+ are the independent variables or functions of other independent
variables 7, s, - -; it being assumed that all the derivatives which occur,
whether of f by @, , #,--- or of @, y, 2, --- by », s, -+, are continuous
functions.

By the same reasoning or by virtue of this theorem the rules

d(ou) = cdu, d(u—+v—w)=du+ dv— dw,

d(wv) = udv + vdu, d(g) = ”d“_;ﬂ'ﬁil’ , 19)

of the differential calculus will apply to calculate the total differential

of combinations or functions of several variables. If by this means, or
any other, there is obtained an expression
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For in the equation df = Rdr+ Sds+ Tdt 4 - = fldr+ fids + fldt + - - -,
the variables », s, ¢, - -+, being independent, may be assigned increments
absolutely at pleasure and if the particular choice dr=1, ds=dt=-..=0,
be made, it follows that R = f;; and so on. The single equation (20) is
thus equivalent to the equations (21) in number equal to the number of
the independent variables.

As an example, consider the case of the function tan—1(y/z). By the rules (19)

gl = L0/ dy/s= e/ _ly—yis
w1+ (y/z)? 1+ @/2)? >+’
2 Y Y [J ¥ z
Ztan-1¥= Y, Zpanr¥=_T vy (20)-(21).
Then P o Erha b ¥ (20)-(21).

If y and = were expressed as y = sinh rst and & = cosh rst, then
1V _zdy —yde _ [stdr 4 rtds + rsdt][cosh?rst — sinh?rst)

dtan= z B+ cosh2rst 4 sinh?rst
and of _ st of _ of __ rs
or  cosh2rsl’ s cosh2rst’ o~ cosh2rsl
EXERCISES
1. Find the partial derivatives £, f; or 1/, f,, f, of these functions :

ar Ty 0 S Ty T

(a) log(z’ +v%), ®) e"cowsin 3 () 2%+ Say + 97,

(%) z + 7 (&) =—— o + ri (§) log (sin + sin%y + sin’2),

' _ zy + yz + zz\b
(n) sin=12, ©) 59" (+) tanh ‘\/-(,—_H/Tﬁ) .

2. Apply the definition (2) directly to the following to find the partial deriva-
tives at the indicated points :

(@) 7
OF
3. Find the partial derivatives and hence the total differential of :
@ g () sl ) V==,
(3) e-=siny, (e) e*sinhay, (%) log ta,n(z + Iy)'

3 3 )
o (¢ o L © log(y—:+ 1+2%).

S (LD, (8) 2+ Bay+7°at (0, 0), and () at (1, 1),

7 Yat (0, 0); also try differentiating and substituting (0, 0).




surfaces and find tho equations of the plane and line for the indicated (zq, ) :

(@) the helicoid z = k tan—1 (y/z), 1, 0), (1, = 1), (0, 1),

(B) the paraboloid 4 pz = (x* + ¥?), 0, ), 2p, 0), (D, — D), _

(y) the hemisphere z = Va? — 2% — 32, ©, —%a), (}a, 1a), } V3 a, 0),
(3) the cubic zyz =1, 1,1,1),(-4%—-449, 419,

5. Find the derivative with respect to ¢ in these cases by (10):

(@) f=2?+y? = =acost, y =bsint, (B) tan—l\/g, y = cosh i, © = sinh{,

() sin=1(@—y), x =8¢, y =418, (8) cos2azy, x =tan—1¢, y = cot~1¢.

6. Find the dlrectional derivative in the direction indicated and obtain its
numerical value at the points indicated :

(@) aty, T =45, (1, 2), (8) sinzy, T = 60°, (V3, —2).

7. (a) Determine the maximum value of df/ds from (13) by regarding 7 as

variable and applying the ordinary rules. Show that the direction that gives the

maximum is ,
Ju af (af )2 (af )’
7=tan-1-% and then —= = =)
i - V) &
(8) Show that the sum of the squares of the derivatives along any two perpen-
dicular directions is the same and Is the square of the normal derivative.

8. Show that (f + ¥'f;) /V1+ v and (v —f”’)/\/l + y’% are the deriva-

tves of f along the curve y = ¢ (z) and normal to the curve.
9. If df/dn is defined by the work of Ex. 7 (a), prove (14) as a consequence.

10. Apply the formulas for the change of variable to the following cases:

2 2
(@) r=v:c”+1/“,¢=tan*1£. Find — f f. (a;f) + .
(B) x=7rcos¢p, ¥y =rsing. Find ai:, af (b/) (
(1) 8=2r—8s+7,y=—r+8s—9. Find a—u=4:1:+2y if u=at— g2
z=2a cosa—y sina, of of of\?, [of\
(3 {y:x’si)\a+ll'cusa'. Shorw (a ) (By) (Bz’) +(B_y7)'

(¢) Prove f+_f—o it f, ) =fz—vy—2).

(§) Letz = ax’ + by +c,y=a% +Vy +¢2,z2=a"% + Yy +c’2, where
a, b, ¢, &, V', ¢, a”, b”, ¢”” are the direction cosines of new rectangular axes with
respect to the old, This transformation is called an orthogonal trangformation. Show

of 3, 2_ (9 2 2
G G G = G+ ('« G- G-
11, Define directional derivative in space ; also normal derivative and estab-
lish (14) for this case. Find the normal derivative of f = zyz at (1, 2, 8).
12. Find the total differential and hence the partial derivatives in Exs. 1, 8, and
(@) log@@®+y2 +2%),  (B) v/z,  (v) yev’,  (3) zyzlogayz,
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codrdinates and f, g are any two functions.

=— a—i if r, ¢ are polar

14. If p(z,y, 2, t) is the pressure in a fluid, or p(z,y, 2, ?) is the density, depend-
ing on the position in the fluid and on the time, and if u, v, w are the velocities of
the particles of the fluid along the axes,

%~1L—+v@+w@+@ and i’:—u~+ a“’+ a’°+ '°

Explain the meaning of each derivative and prove the Iormula.

15. If z = zy, interpret 2 as the area of a rectangle and mark d,z, A,z, Az on the
figure. Consider likewise u = zyz as the volume of a rectangular parallelepiped.

16. Small errors. If f(z, y) be a quantity determined by measurements on
and y, the error in f due to small errors dx, dy in « and y may be estimated as
af = fidz +f;d1/ and the relative error may be taken as df +f=dlogf. Why
is this ?

(a) Suppose S = } absin C be the area of a triangle with @ = 10, b = 20, C = 30°.
Find the error and the relative error if a is subject to an error of 0.1. Ans. 0.5,1%.

(8) In (a) suppose C were liable to an error of 10’ of arc. Ans. 0.27, 1%.

() If @, b, C are liable to errors of 1%, the combined error in S may be 3.1%.

(8) The radius r of a capillary tube is determined from 13.8 71 = w by find-
ing the weight w of a column of mercury of length l. If w =1 gram with an error
of 10-3 gr. and | =10 em. with an error of 0.2 cm., determine the possible error
and relative error in 7. Ans. 1.06%, 5 x 10—+, mostly due to error in L

(€) The formula ¢ = a? + b — 2abcos C is used to determine ¢ where a = 20,
b = 20, C = 80° with possible errors of 0.1 in @ and b and 30"in C. Find the possible
absolute and relative errors in c. Ans. 3, 13%.

(¢) The possible percentage error of a product is the sum of the percentage
errors of the factors.

(n) The constant g of gravity is determined from g = 2 st~2 by observing a body
fall, If s is set at 4 ft. and ¢ determined at about } sec., show that the error in g
is almost wholly due to the error in ¢, that is, that s can be set very much more
accurately than ¢ can be determined. For example, find thie error in ¢ which would
make the same error in g as an error of } inch in s.

(6) The constant g is determined by gi* = #%l with a pendulum of length I and
period ¢. Suppose ¢ is determined by taking the time 100 sec. of 100 beats of the
pendulum with a stop watch that measures to 4 sec. and that [ may be measured
as 100 cm. accurate to } millimeter. Discuss the errors in g.

17. Let the cotrdinate z of a particle be 2 = (g, ¢,) and depend on two inda-
dovdent variables ¢,, g, Show that the velocity and kinetic energy are

day

. a . o
% +fq,71%, T=}mo? = aynif + 20000 + 09l

v=fq"



Show 5"1 = -;i. i =1, 2, and similarly for any number of variables q.
s ‘g
18. The helix £ = acost, y = asint, z = ai tan « cuts the sphere 22 + % + 2% =
a®sec? at sin=1(sin csin g).

19. Apply the Theorem of the Meau to prove that f(x, ¥, 2) is a constant if
£ :fl; =f; =0 is truc for all values of @, y, z. Compare Theorem 18 (§ 27) and
make the statement accurate.

a

20. Transform — =
cobrdinates (§ 40).

(af) to (a) cylindrical and (8) polar

21, Find the angle of intersection of the helix & = 2 cost, ¥ = 2sint, z = ¢ and
the surface zyz = 1 at their first intersection, that is, with V<t <} .

22. Let f, g, h be three functions of (z, ¥, 2). In cylindrical cotrdinates (§ 40)
form the combinations F = fcos ¢ + gsin ¢, G =— fsing + gcos¢, H = h. Trans-

form
of ch oh 9y o _of
@Z+2:% @o-L wZ-Z
to cylindrical codrdinates and express in terms of F, @, H in simplest form.
23. Given the functions = and (z¢)* and 2. Find the total differentials and
hence obtain the derivatives of 2= and (z7)* and (=,

50. Derivatives of higher order. If the first derivatives be again
differentiated, there arise four derivatives fr, fu, fre fyy Of the second
order, where the first subscript denotes the ficst differentiation. These
may also be written

5 o O . 9F .

e e fo= ayaa; ‘f;"_gi?y’ fu= dy’
where the derivative of 3f/dy with respect to z is written 8f/0x0y
with the variables in the same order as required in D_D,f and opposite
to the order of the subscripts in f,;. This matter of order is usually of
no importance owing to the theorem: If the derivatives fi, f, have
derivatives fo, fr. which are continuous in (z, y) in the neighborhood
of any point (x, y,), the derivatives fu, and [, are equal, that is,
£ o (zvl %) =‘f;’;(910, Yo)-

The theorem may be proved by repeatea application of the Theorem of the
Mean. For

[F @ + 2y Yo + &)~ f @0y Yo + B)]—[F (@ + By 40) =1 (%0 U0)]=[8 (W + ¥)— $(¥c)]
=[S @0+ by Yo+ W)= f(@o + by Yo) ]~ [f @or Yo+ K)—F (@, Ue)]=[¥(@o + 1) —¥(z))]
;;here ¢ (v) stands for f(z, + k, ¥)— S (@, ¥) and ¥ (2) for f(z, ¥, + k) — (=, ¥o)-

ow
B (o + &) ~ ¢ (o) = ko’ (Wo + OF) = k[f; (%o + by Yo + Ok) = F; (@or ¥o + 6R)],
¥ @+ k)= ¥ (@o) = hy! (o + OK) = RLL (2o + 0y vo + k) = F2 (2o + O, )]



single variable and then substituting. The results obtained are necessarily equal
to each other ; but each of these is in form for another application of the theorem.

KLy (@ + Ry Yo + k) = F, (20, Yo + OK)] = kS, (g + nhy Yo + OK),

Al Sz @o + O'hy v + k) — £ (o + 6'Ry yo)] = Rk (g + 0Ny v + 1)
Hence Sye@y + nhy yo + OK) = fr (2o + Ok, yo + 0'K).
As the derivatives f,,’;, f;;, are supposed to exist and be continuous in the variables
(z, ¥) at and in the neighborhood of (z,, y,), the limit of each side of the equation
exists as & = 0, k = 0 and the equation is true in the limit. Hence

fr: (o ¥o) =/z’r; (g Yo)-

The differentiation of the three derivatives fy., fr = Jfin) foy Will give
six derivatives of the third order. Consider f7, and f;.. These may
be written as (f;),, and (f;),. and are equal by the theorem just proved
(provided the restrictions as to continuity and existence are satisfied).
A similar conclusion holds for f,. and f; the number of distinct
derivatives of the third order reduces from six to four, just as the
number of the second order reduces from four to three. In like manner
for derivatives of any order, the valie of the derivative depends not on
the order in which the individual differentiations with respect to x and
y are performed, but only on the total number of differentiations with
respect to each, and the result may be written with the differentiations
collected as n
DrDyf = azma jf'.‘ =fan"s ete. (22)
Analogous results hold for functions of any number of variables. If
several derivatives are to be found and added together, a symbolic
form of writing is frequently advantageous. For example,

s O
(DG?DVD + Da)f azﬂayaz! + 31
or (Da+D)'f = (D4 2D.D, + D)) f=faa+ 215y + Fovr

51. It is sometimes necessary to change the variable in higher deriv-
atives, particularly in those of the second order. This is done by a
repeated application of (18). Thus £ would be found by differentiat-
ing the first equation with respect to », and f}, by differentiating the
first by s or the second by », and so on. Compare p.12. The exercise
below illustrates the method. It may be remarked that the use of Aigher
differentials is often of advantage, although these differentials, like the
higher differentials of functions of a single variable (Exs. 10, 16-19,
p- 67), have the disadvantage that their form depends on what the
independent variables are. This is also illustrated below. It should be
particularly borne in mind that the great value of the first differential
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by applying (18) directly with , y taking the place of r, s, ..+ and 7, ¢ the place
of #, 9, 2, - - . These expressions may be rednced so that
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The differentiations of z/r and — y/72 may be performed as indicated with respect to
r, ¢, remembering that, as r, ¢ are independent, the derivative of » by ¢ is 0. Then
v _z20% | ylov oy iﬂu 2y y2 a’v
W o PSar  Porag g rogh
In like manner &®v/ay? may be found, and the sum of the two derivatives reduces
to the desired expression. This method is long and tedious though straightforward.
It is considerably shorter to start with the expression in polar cobrdinates and
transform by the same method to the one in rectangular codrdinates. Thus

v _ovor | way _ v _ 1w
womar yer axc5¢+ june = (1+ y)
i(r@) <E—vcos¢+-——sm¢)z+( cos¢+ smqs) + Y cos + smda
o\ o was ey PR Mg '
_wow  owoy o
ik e o i axrsnn¢+—rcos¢ ——V+EI’
—l—aev—(zﬂ—vsinqa-—a—-com») +(—ﬁsm¢+—cos¢)
ret ot P Y %0,
'@cos'ﬁ———sin«ﬁ
o ay .
o v\ K 1d% _ (e  o%
The —(r=)+-—=={—=+—
n 67(Tar)+ra¢’ (az’+ay3)r

(28
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The definitions dif = £ da?, dudyf = 1, dudy, d}f = f,,dy? would naturally be
given for partial differentials of the second order, ea.ch of which would vanish if f
reduced to either of the independent variables x, ¥ or to any linear function of
them. Thus the second differentials of the independent variables are zero. The
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owdy

The last two terms vanish and the total differential reduces to the first three terms
if z and y are the independent variables ; and in this case the second derivatives,
Tis T Fyp e the coefficients of da?, 2 dedy, dy?, which enables those derivatives
to be found by an extension of the method of finding the first derivatives (§ 49).
The method is particularly nseful when all the second derivatives are needed.

The problem of the clmnge of variable may now be treated. Let

i = dz2+2 dwd?/+ d’
a:/

@dﬂ+2 6

v
drd, g dz
= = ¢+a¢ 9+ = '+ad2“”

P
where &, y are the independent variables-and », ¢ other variables dependent on
them — in this case, defined by the relations for polar cosrdinates. Then

dr = cos ¢pdr — rsin pdg, dy = sin ¢dr + 7 cos ¢pde
or dr = cos ¢pdz + sin ¢dy, rdg = — sin ¢dx + cos pdy. (26)
Then d¥r = (— sin gdz + cos ¢pdy) dp = rdpde = rde¢?,
drdg + rd?*p = — (cos ¢pdx + sin ¢pdy) dp = — drde,

where the differentials of dr and rd¢ have been found subject to d2x = d2% = 0.
Hence d¥ = rd¢? and rd?¢ = — 2drdp. These may be substituted in d?» which
becomes
2
m:gdﬂw(ﬂ_l@)dm +(

dg®.
ordp 7 og, T )¢

o¢?
Next the values of dr?, drdgp, dg® may be substituted from (25) and
0% 2/ 1o % ov\ sin%¢
a% =| — cos?p — —( — — —A) sin ( —) ]dz”
? [ ¢ (anw ey R A A P

% 10v\cos?p —sinZy 2% cos¢sin ¢]
b s I\ SIS OV I P g
+ [br’ cosgsing + (an% - a‘?) - e P y

% ., o 1o av> cos%]
— (= _= dy.
+ [a sing + (ara¢ r a¢) cosgeing + (aqﬂ o)

Thus finally the derivatives v.;, v,;, v, are the three brackets which are the
coefficients of dz?, 2dzdy, dy®. The value of v, + vy',; is as found before.

52. The condition f;;, = f,. which subsists in accordance with the

fundamental theorem of § 50 gives the condition that

M(z, y)de + N(x, y)dy = —‘fdm-i‘;h dy = df
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The second form, where the variables which are constant during th

differentiation are explicitly indicated as subscripts, is more common i

works on thermodynamics. It will be proved later that conversely i

this relation (26) holds, the expression Mdx + Ndy is the total differ

ential of some function, and the method of finding the function wil

also be given (§§ 92, 124). In case Mdx + Ndy is the differential o

some function f(x, y) it is usually called an exact differential.

The application of the condition for an exact differential may b
made in connection with a problem in thermodynainics. Let S and I
e the entropy and energy of a gas or vapor inclosed in a receptacle o
volume v and subjected to the pressure p at the temperature 7. Th
fundamental equation of thermodynamics, connecting the differential
of energy, entropy, and volume, is

QU = TdS—pdv;  and <‘fl—’:> - (Z—Z) @
is the condition that dU be a total differential. Now, any two of th
five quantities U, S, v, T, p may be taken as independent variables. In

(27) the choice is S, v; if the equation were solved for dS, the choic

would be U, v; and U, S if solved for dv. In each case the cross differ

entiation to express the condition (26) would give rise to a relatior
between the derivatives.

If p, T were desired as independent variables, the change of variable
dS ds
as = d; drT, dv = )
(p) p+(dr) L =) e +(dT>dT
. s’ ) as dv
o a0 [2(E) (8 Joro () -+(5)
a)e P\a) ) ® | P\az), P aT), 4T
should be made. The expression of the condition is then

(@)@}~ GGG 1

as 25 o @5  [dv N
or g 7.9 _p, 9 _p 95 _ (%) _ v
(dp)r+ 5Top PaTop~  apoT (dT), Popat’

where the differentiation on the left is made with p constant and that on the righ
with T constant and where the subscripts have been dropped from the secon
derivatives and the usual notation adopted. Everything cancels except two term
which give
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The importance of the test for an exact differential lies not only in the relations
obtained between the derivatives as above, but also in the fact that in applied
mathematics a great many expressions are written as differentials which are not
the total differentials of any functions and which must be distinguished from exact
differentials. For instance if dH denote the infinitesimal portion of heat added
to the gas or vapor above considered, the fundamental equation is expressed as
dH = dU + pdv. That is to say, the amount of heat added is equal to the increase
in the energy plus the work done by the gas in expanding. Now dH is not the dif-
ferential of any function H (U, v) ; it is dS = dH/T which is the differential, and
this is one reason for introducing the entropy S. Again if the forces X, ¥ act on a
particle, the work done during the displacement through the arc ds = Vdz? + dy?
Is written dW = Xdx 4 Ydy. It may happen that this is the total differential of
some function ; indeed, if

AW =—dV (2, ¥), Xde+ Ydy=—4dV, X=—%Z, Y:—aa—y!{v

where the negative sign is Introduced in accordance with custom, the function V is
called the polential energy of the particle. In general, however, there is no poten-
tial energy function V, and d W is not an exact differential ; this is always true
when part of the work is due to forces of friction. A notation which should dis-
tinguish between exact differentials and those which are not exact is much more
needed than a notation to distinguish between partial and ordinary derivatives;
but there appears to be none.

Many of the physical magnitudes of thermodynamics are expressed as deriva-
tives and such relations as (26) establish relations between the magnitudes. Some
definitions :

H
specific heat at constant volume is C, = (d—) = T(ﬁ) ,
v a7 /v
specific heat at constant pressure is Cp= (g) = T(d—s) s
» dT/p
d
latent heat of expansion is Ly= (E = T(j) )
/7
" . N . 1/dv
coefficient of cubic expansion is ap=- (~—~ ,
P

modulus of elasticity (isothermal) is Er=— v(—%)r,

modulus of elasticity (adiabatic) is Es=—ov (_”)S.

53. A polynomial is said to be homogeneous when each of its terms
s of the same order when all the variables are considered. A defini-
bion of homogeneity which includes this case and is applicable to more
general cases is: A function f(z, y, 2, -+ ) of any number of variables is
ralled homog s if the function is multiplied by some power of X when
ull the variables are multiplied by A; and the power of A which factors
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out is called the order of homogeneity of the function. In symbols
condition for homogeneity of order = is
FOx Ay, Az, o) = Nf (@, g, 2,
Al B, 1
Thus zer ko 3t tan’ ol iy (
are homogeneous functions of order 1, 0, — 1 respectively. To te
function for homogeneity it is merely necessary to replace all the
ables by X times the variables and see if A factors out completely.
homogeneity may usually be seen without the test.
If the identity (29) be differentiated with respect to A, with z'=\z,

) a
( P +Jﬂ e w -~)f(z\w, Ay M2y - ) = NPT (@ 1y 20

A second differentiation with respect to A would give

&
( Y iy 0. ’Q/ +a?8‘x’d~ +e )f+<‘/m31 o' +‘/25J +yz5‘/’3z i+
0 7 I
+( awazv+z/a~,a/+z :z+' : ')f"‘ e=n(n=1) N f (@, y, 2

lajv+fajm+ > =n@-1)N" f(2, 9 2
Now if A be set equal to 1 in these equations, then #' = and

o, o, of
zo —f-‘/aj-&-za + -

gf,+29:g/azaJ+faJ +2xz*f~+ c=a(n—=1)f(y%-
In words, these equations state that the sum of the partial deriva
each multiplied by the variable with respect to which the differe
tion is performed is » times the function if the function is homogen
of order n; and that the sum of the second derivatives each multi
by the variables involved and by 1 or 2, according as the variab
repeated or mot, is n(n — 1) times the function. The general for
obtained by differentiating any number of times with respect to A
be expressed symbolically in the convenient form

(@D, + yD, 4+ 2D, + - Yf=n(n—1).--(n — k +1)f.
This is known as Buler’s Formula on homogeneous functions.

il
or (:L"‘a ,2+21Jax

c=nf(@ Yz 0),

It is worth while noting that in a certain sense every equation which repr
a geometric or physical relation is homogeneous. For instance, in geometr
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lengths, areas to areas, etc. The fundamental unil is taken as length. The units of
area, volume, and angle are derived therefrom. Thus the area of a rectangle or
the volume of a rectangular parallelepiped is

A=aft. xbft. =abft.2=absqft., V=aft. xdft. xcft. = abcft.?=abecu, ft.,

and the units sq. ft., cu. ft. are denoted as ft.2, ft.% just as if the simple unit ft.
had been treated as a literal quantity and included in the multiplication. An area
or volumne is therefore considered as a compound quantity consisting of a number
which gives its magnitude and a unit which gives its quality or dimensions. If L
denote length and [L] denote **of the dimensions of length,”” and if similar nota-
tions be introduced for area and volume, the equations [4] = [L]? and {V]=[L]?
state that the dimensions of area are squares of length, and of volumes, cubes of
lengths. If it be recalled that for purposes of analysisan angle is measured by the
ratio of the arc subtended to the radius of the circle, the dimensions of angle are
seen to be nil, as the definition involves the ratio of like magnitudes and must
therefore be a pure number.

‘When geometric facts are represented analytically, either of two alternatives is
open: 1° the equations may be regarded as existing between mere numbers; or
2°, as between actual magnitudes. Sometines one method is preferable, sometimes
the other. Thus the equation 2% + y2 = 72 of a circle may be interpreted as 1°, the
sum of the squares of the codrdinates (numbers) is constant ; or 22, the sum of the
squares on the legs of a right triangle is equal to the square on the hypotenuse
(Pythagorean Theorem). The second interpretation better sets forth the true
inwardness of the equation. Consider in like manuer the parabola ¥2 = 4 pz. Gen-
erally ¥ and ¢ are regarded as mere numbers, but they may equally be looked
upon as lengths and then the statement is that the square upon the ordinate equals
the rectangle upon the abscissa and the constant length 4p ; this may be inter-
preted into an actual construction for the parabola, because a square equivalent
to a rectangle may be constructed.

In the last interpretation the constant p was assigned the dimensions of length
s0 as to render the equation homogeneous in dimensions, with each term of the
dimensions of area or [L]2. It will be recalled, however, that in the definition of
the parabola, the quantity p actnally has the dimensions of length, being half the
distance from the fixed point to the fixed line (focus and directrix). This is merely
another corroboration of the initial statement that the equations which actually
arise in considering geometric problems are homogeneous in their dimensions, and
must be so for the reason that in stating the first equation like magnitudes must
be compared with like magnitudes.

The question of dimensions may be carried along through such processes as
differentiation and integration. For let y have the dimensions [¥] and z the dimen-
sions [2]. Then Ay, the difference of two y's, must still have the dimensions [y]
and Az the dimensions [z]. The quotient Ay/Az then has the dimensions [y]/[x].
For example the relations for area and for voluine of revolution,

aa__ av_ Al (4] av_[V]_
S T e [R]=Eem [T =

and the dimensions of the left-hand side check with those of the right-hand side.
As'integration is the Jimit of a sum, the dimensions of an integral are the product
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Thus if
y= fa’+x‘__mnl +c¢

were an integral arising in actual practice, the very fact that a? and z* are
would show that they must have the same dimensions. If the dimension

be [L], then <
[jo‘ m] [a“+aﬂ1[ 1= [le zr = [ =

and this checks with the dimensions on the right which are [L]-!, since an
no dimensions. As a rule, the theory of dimensions is neglected in pure !
matics ; but it can nevertheless be made exceedingly useful and instructive.

In mechanics the fundamental units are length, mass, and time ; and are d
by [L], [M], [T]. The following table contains some derived units:

velocity {—% ’ acceleration t[-r-]]n force [—]E%][:‘—]
areal velocity %. density %Z{ i momentum U{;‘[]L]
angular velocity [—1—‘j moment [_]![_]T[]% , energy %?

With the aid of a table like this it is easy to convert magnitudes in one
units as ft., Ib., sec., to another system, say cm., gm., sec. All that is neces
to substitute for each individual unit its value in the new system. Thus

ft.
=82} —, 1 ft. = 80.48 cm. 82 0. 48 —= ==
g H sec.? om,  g=382}x3 980} se

EXERCISES
1. Obtain the derivatives £, foy, fres Jyy and verify f7) =7,
«?
@sils @ 0gPEE ) oY)+ vian.
2. Compute %/ az/l in polar coordlnates by the straightforward method.
)

3. Show that a’a 5 E ifo=rf(z+ at) + ¢ (z — al).
4. Show that this equation is unchanged in form by the transformation
& f af

+2«w- 2(y —v“}%+z"y“‘f=0; u=ay, v=1/y.

5. In polar cobrdinates z = r cos §, & = rsin § cos ¢, y = rsinfsin ¢ in s

a’_n v 112 2&1}) 1 0% 1
ax’+ay"+af_w[ar<r ar +sm¢95‘}3+uuaay<“’€aa)—|

The work of transformation may be shortened by substituting successively
r=rcos¢, y=rsing, and z=rcosd, r=rsing.

6. Let @, y, 2, ¢ be four independent variables and z = r cos ¢, ¥ = r sin.
the equations for transforming z, y, 2 to cylindrical cosrdinates. Let
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111
2. )2, 2 )2,
x=- oy W W W
awe Zyoz at oyt 2yt azat
shew Z=}%9, Xcos¢+Ysin¢=—laQ
”or

—, Fsing— Gcosgp =~ BQ
r oz
where r~1Q = gf/or. (Of importance for the Hertz oscillator.) Take &f/8¢ = 0.
7. Apply the test for an exact differential to each of the following, and write
by inspection the functi [ ! ling to the exact differentials:
(@) 3zdz +y'dy,  (B) Bayde + 2hdy,
adz + ydy @de — ydy
) ————» =y
® © 6]
(n) (42 + 32% +y%)dz + (2% + 22y + 84%) dy,

(v) 2yde + yidy,
ydx — zdy
Pty
(6) =22 (dz + dy).
8. Express the conditions that P(z, ¥, z)dz + Q(®, ¥, 2)dy + R(z, ¥, 2)dz be
an exact differential dF (2, y, ). Apply these conditions to the differentials
(a) 3a2y2zdz + 2a8yzdy + x3y%dz,

9. Obtain (:1; ) (‘;‘:)Tand (g%) (u:i;‘) from (27) with proper variables.

10. If three functions (called thermodynamic potentials) be defined as
y=U-TS§, x =U + pv, ¢=U—T8 + pv,
show dy = — 8dT — pdv, dx = TdS + vdp, df=— SdT + vdp,
and express the conditions that dy, dx, df be exact. Compare with Ex. 9.

(B) @ +2)de + ( +2)dy + (= + y)dz.

11. State in words the definitions corresponding to the defining formulas, p. 107

12. If the sum (Mdz + Ndy) + (Pdz + Qdy) of two differentials is exact and one
of the differentials is exact, the other is. Prove this.

13. Apply Euler’s Formula (81), for the simple case k = 1, to the three func-
tions (29) and verify the formula. Apply it for k = 2 to the first function.
14, Verify the h

ity of these f and determine their order:

amyn TYz
(a) v*/z +z(logz —logy), () ——= e (e srarapel
= _ V- ¥y,
(3) zye? + 22, (€) Vacot 1;. () i

15, State the dimensions of moment of inertia and convert a unit of moment of
inertia in ft.-1b, into its equivalent in cm.-gm

16. Discuss for dimensions Peirce’s formulas Nos. 93, 124-125, 220, 300.

dox _ ov daT g aT
17. Conti Ex. 17, h d —-— =
ontinue Ex. p. 101, to show — 7 bq = T m aq‘

S
te w. 0T .

PP —
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19. If (z,, %) and {g,, ¥,) ave the covrdinates of two moving particles and
de, - d2y, dX d%y,
™ L= X, m—2 dt =Y, sz:;z—sz 7"271232'=Y2
are the equations of motion, and if z,, ¥,, z,, ¥, are expressible as
© =000 @ )y % =00 G G)y 3 =Sl 90 %) Ve = 02(% T2 G6)
in terms of three independent variables q,, gy, g5, show that

Q= .‘.az,_‘.ylay,_‘_xazﬂ_l_ By, _daT _oT

oq, " teq, " toq B
where T'=} (myv? + mgd) = T(qy, Ggy 95 1y G @) 20d is homogeneous of the
second degree in ¢y, ¢y, ¢;. The work may be carried on as a generalization of
Bx. 17, p. 101, and Ex. 17 above. It may be further extended to any number of
particles whose positions in space depend on a number of variables g.

20, In Ex. 19 if p; = Z~_[', generalize Ex. 18 to obtain
i

oI 91" aT d; T
- Q= pl. + T

fi=s—r ——=—

p; a{Ii 9g;
The equations Q; = 4 ﬂ ——and Q= dp; + —— are respectively the Lagran-
dt ogi aqi qi

gian and Hamiltonian equations of monon.
2L If ' = k? and ¢’ = ¢ and v’ (", ¢’) =v(r, ¢), show
o lavy | 1 oW (a"n low 1 6“\))

R ot

o ror riagd)
. I n' =k ¢’ =¢, =6, and v(, ¢, §) = ?;v(r, ¢, §), show that the

expression of Ex. 5 in the primed letters is kr2/7"® of its value for the unprimed
letters. (Useful in § 198.)

2
23. Ifz2= (E) (2) h 2 2% oxy 22 2% _
2z z¢z+¢m,sowz +Wa:zay+yay’ 0.
24. Make the indicated changes of variable :
v oV 2V

v .
(@) — o +Tvz__e <—a—IF +W)1fm =e%cosy, y = e*sinv,

FV BV _ (B V[ Gof
o G+ 5= (G T G+ G ]
- - o 2 o__ W
z= (), ¥=¢@u0), W me o
25, For an orthogonal transformation (Ex. 10 ({), p. 100)



b () — @ (0) = t2'(0) + <I>”(0) + - +

1
) 0 D(0) + 5 (8.

'he expressions for tb'(t) and @'(0) may be found as follows by (IOj:
) =2+, @O =0+ e
hen  @U(t) = h(hf+ KD RO R
= WYL + 2 hAfL, + If) = (hD, + kD,)%,
¥ = (hD, + 1D)' S, ¥O0) = [(ADs+ D) f Lz
And f(a+ 1, b+ k) — f(a, b) = Af = &(1) —&(0) = (hD, +kD”)f(a )

21, (WD + DY F( 8) o+ gy 1 37 (42 B0 (0, 0)
+ E (hD, + kDY f(a + Ok, & + 0). (32)

In this expansion, the increments % and % may be replaced, if de-
ired, by # — @ and y — b and then f(x, ) will be expressed in terms
f its value and the values of its derivatives at (e, ) in a manner
ntirely analogous to the case of a single variable. In particular if the
oint (e, b) about which the development takes place be (0, 0) the
levelopment becomes Maclaurin’s Formula for f(z, #).

(@ 9) f (0,0) + Dz +yD,).f (0, 0) + 33 (WD +yD,)'f (0,04

(n 1)‘ (@D, +yD,)" £ (0, 0) + '(xD +yD,)y"f (b, 0y). (32"

Vhether in Maclaurin’s or Taylor’s Formula, the successive terms are
omogeneous polynomials of the 1st, 2d, - -+, (» — 1)st order in x, y or
na — a,y —b. The formulas are unique as in § 32.

Suppose V1 — a2 — 2 is to be developed about (0, 0). The successive deriva-
ives are

. - " -y " _ v _
L= ey F00=0 S0.0=
1= =1+9 Ty L f= —1+a2
(-z—yt T a—2opyt M a-z-h
= =9y f;;,:u“—%y“—y' .
-z—pt -zt

nd VI—aF—2=14 (02 + 0y)+ }(— a2+ Oay — y’)+&(0m“ DL XEEH

LIS gy ) 1/’ 1— }(=® + 9*) + terms of fourth order + -

n this case the expansion may be found by treating 22 + ? as a single term and
ding by the bi ial th The result would be




Z1hat the development thus obtained 18 1aentical with the iaclaurin developmen
that might be had by the method above, follows from the uniqueness of the deve!
ppment. Some such short cut is usually available.

55. The condition that a function z = f(z, y) have a minimum o
maximum at («, b) is that Af >0 or AFf <0 for all values of 7 =A
and % = Ay which are sufficiently small. From either geometrical o
analytic considerations it is seen that if the surface z = f(z, y) has
minimum or maximum at («, b), the curves in which the planes y =
wnd 2 = @ cut the surface have minima or maxima at © = ¢ and y
respectively. Hence the partial derivatives f; and f, must both vanis:
1t (a, b), provided, of course, that exceptions like those mentioned o
page 7 be made. The two simultaneous equations

fi=0 f=0 (33
corresponding to f'(z) = 0 in the case of a function of a single varis
ble, may then be solved to find the positions (x, ) of the minim
and maxima. Frequently the geometric or physical interpretation o
z = f(x, ) or some special device will then determine whether ther
is a maximum or a minimum or neither at each of these points.

For example let it be required to find the maximum rectangular parallelepipe
which has three faces in the codrdinate planes and one vertex in the plan
/e 4+ ¥/b+ z/c = 1. The volume is

V:zyz:czy(l—%_l_/)

b
v c c v
2l 2 = o S =
P amu bI/ +ecy=0 7 2bxy S +cx=0.

The solution of these equations is ¢ = } a, y = }b. The corresponding z is }¢ an
the volume V is therefore abe/27 or 4 of the volume cut off from the first octant b
the plane. It is evident that this solution is a maximum. There are other solutior
of V; =V, = 0 which have been discarded because they give V' = 0.

The conditions f,,’ =f’ = 0 may be established analytically. For
=(fi+ A2+ (f + L)y,

Now as ¢, ¢, are mﬁmtemmals, the sigrs ol the parentheses are dete
mined by the signs of /7, f; unless these derivatives vanish; and henc
unless f; = 0, the sign of Af for Az sufficiently small and positive an
Ay = 0 would be opposite to the sign of Af for Az sufficiently small an
negative and Ay = 0. Therefore for a minimum or maximum f; = (
and in like manner f, = 0. Considerations like these will serve f
establish a criterion for distinguishing between maxima and minim



by Taylor’s Formula to two terms. Now if the second derivatives are
continuous functions of (z, y) in the neighborhood of (a, 5), each deriv-
ative at (« 4 0%, b 4 6k) may be written as its value at (@, 0) plus an
infinitesimal. Hence

Af =y (BfL + 20ty + Koy am + 5 (W4 + 2 hkE, + K°L,).
Now the sign of Af for sufficiently small values of %, % must be the

same as the sign of the first parenthesis provided that parenthesis does
not vanish. Hence if the quantity

2p0 o 2pm > 0 for every (%, k), a minimum
(et ZHEfoy + Bf ey < 0 for every (%, k), a maximum.

As the derivatives are taken at the point (a, b), they have certain constaut
values, say 4, B, C. The question of distinguishing between minima and maxima
therefore reduces to the discussion of the possible signs of a quadratic form
AR2 + 2 Bhk 4 Ck? for different values of 4 and k. The examples

W24 k2, —hE—KE, RE—RE, & (h—K)?

show that a quadratic form may be: either 1°, positive for every (k, k) except (0, 0);
or 2°, negative for every (&, k) except (0, 0); or 8°, positive for some values (k, k)
and negative for others and zero for others; or finally 4°, zero for values other than
(0, 0), but either never negative or never positive. Moreover, the four possibilities
here mentioned are the only cases conceivable except 5% that A = B= C =0 and
the form always is 0. In the first case the form is called a definite positive form, in
the second a definite negative form, in the third an indefinite form, and in the fourth
and fifth a singular form. The first case assures a minimum, the second a maxi-
mum, the third neither a minimum nor a maximum (sometimes called a minimax) ;
but the case of a singular form leaves the question entirely undecided just as the
condition f” (z) = 0 did.

The conditions which distinguish between the different possibilities may be ex-
pressed in terms of the coefficients 4, B, C.

1° pos. def., B?< AC, 4,C>0; 8 indef., B*>AC;
2°neg. def., B2< AC, 4,0<0; 4°sing., B*=A4C.

The conditions for distinguishi maxima and minima are :

fi=0 S p g Siar Jyy > 0 minimum ;
fy=0 [ T TR fry < O maximum

S > Ty minimax ;S8 =100 ().
1t may be noted that in applying these conditions to the case of a definite form it

is sufficient to show that either £ or f,, is positive or negative because they neces-
sarily have the same sign.

34
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1. White at length, without symbolic shortening, the expansion of f(z, y) by
Taylor's Formula to and including the terms of the third order in z —a, ¥ — b.
Write the formula also with the terms of the third order as the remainder.

2. Write by analogy the proper form of Taylor's Formula for f(z, y, 2) and
prove it. Indicate the result for any number of variables.

3. Obtain the quadratic and lower terms in the development
(@) of xy? + sinay at (1, }w) and (B) of tan—? (y/x) at (1, 1),

4. A rectangular parallelepiped with one vertex at the origin and three faces
in the codrdinate planes has the opposite vertex upon the ellipsoid

22/a? + y?/b% + 22/c =1,
Find the maximum volume,

5. Find the point within a triangle such that the sum of the squares of its
distances to the vertices shall be a minimum. Note that the point is the intersec-
tion of the medians. Is it obvious that & minimum and not a maximum is present. ?

6. A floating anchorage is to be made with a cylindrical body and equal coni-
cal ends. Find the dimensions that make the surface least for a given volume.

7. A cylindrical tent has a conical roof. Find the best dimensions.

8. Apply the test by second derivatives to the problem in the text and to any
of Exs. 4-7. Discuss for maxima or minima the following functions :

(@) aty +ay* —z, @) o + 77— PP — 1@ + 1),
M 2E+*+rat+, (8) $9° — 2y + 2%y — =,
(€) @ + 1 — 9wy + 27, () @t + vt — 227 + 4oy — 27%
9. State the conditions on the first derivatives for a maximum or minimum of
function of three or any number of variables.. Prove in the case of three variables.

10. A wall tent with rectangular body and gable roof is to be so constructed as
to use the least amount of tenting for a given volume. Find the dimensions.

11. Given any number of masses m,, m,, - - -, My situated at (@, ), @o, Uy), +* *»
(@1, ). Show that the point about which their moment of inertia is least is their

center of gravity., If the points were (z,, ¥, 2,), ++ - in space, what point would
make Tmr? a minimum ?

12. A test for maximum or minimum analogous to that of Ex. 27, p. 10, may
be given for a function f(z, y) of two variables, namely : If a function is positive
all over a region and vanishes upon the contour of the region, it must have a max-
imum within the region at the point for which f; = f; = 0. If a function is finite
all over a region and becomes infinite over the contour of the region, it must have
a minimum within the region at the point for which f =f; =0, These tests are
subject to the proviso that f; = f; = 0 has ouly a single solution. Comment on the
test and apply it to exercises above.

13. If g, b, ¢,  are the sides of a given triangle and the radius of the inscribed

circle, the pyramid of altitude % constructed on the triangle as base will have it
maximum surface when the surface is } (@ + b + ¢) V72 + h2,



CHAPTER V
PARTIAL DIFFERENTIATION; IMPLICIT FUNCTIONS

56. The simplest case; F(x, y) =0. The total differential
dF = Fide + Fydy=d0 =0

dy _ F; de _ F,/

P A T % @
as the derivative of y by x, or of = by y, where y is defined as a function
of z, or x as a function of y, by the relation F(x,y)=0; and this method
of obtaining a derivative of an implicit function without solving expli-
citly for the function has probably been familiar long before the notion
of a partial derivative was obtained. The relation F(z, ) = 0 is pictured
as a curve, and the function y = ¢ (), which would be obtained by solu-
tion, is considered as multiple valued or as restricted to some definite
portion or branch of the curve F(x, y)=0. If the results (1) are to
be applied to find the derivative at some point
(%5, 7,) of the curve F(z, y)=0, it is necessary
that at that point the denominator F, or F; should
not vanish.

These pictorial and somewhat vague notions
may be stated precisely as a theorem susceptible
of proof, namely: Let x, be any real value of z
such that 1°, the equation F(x;, /) = 0 has a real solution y,; and 2°, the
function F(z, y) regarded as a function of two independent variables
(z, y) is continuous and has continuous first partial derivatives Fy, F, in
the neighborhood of (z,, y,); and 3°, the derivative F, (x,, 7,) # 0 does
not vanish for (z, %) ; then F(z, y)=0 may be solved (theoretically)
as y=¢(z) in the vicinity of z==, and in such. a manner that
Y= ¢ (z,), that ¢ () is continuous in x, and that ¢ (z) has a derivative
¢'(x) = — F,/F,; and the solution is unique. Thisis the fundamental
theorem on implicit functions for the simple case, and the proof follows.

indicates

F(a,y)=0

)
ot q"

O X

By the conditions on F;, Fy, the Theorem of the Mean is applicable. Hence

F (e, y) — F (2o, ¥o) = F (2, ¥) = (AF; + EFy)zg + on, vo-+ ok @
Furthermore, in any square |k|<3, |k|<8 surrounding (%), %,) and sufficiently
small, the continuity of F insures | F;|< M and the continuity of F, taken with

117
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the fact that Fy (x, ¥,) = 0 insures | F;|>m. Consider the range of z as further
restricted to values such that |x — x| <md/M if m < M. Now consider the value
of F(z, ) for any z in the permissible interval

and for y =y, + § or y =y, — 8. As |kF,[>ms Y]

but |(z~a:o)F |<m5 it follows from (2) that N / 15
F(z, ¥, + 8) has the sign of 5F, and F(z, y,— 8) 5 ; Y
has the sign of — §F, ; and as the sign of I‘ does !

not change, F(z, ¥, + 8) and F(x,y,— ﬁ) have LA

opposite signs. Hence by Ex. 10, p. 45, there is Y—8
one and only one value of y between y, — § and
Y, + & such that F(z,y) = 0. Thus for cach & in
the interval there is one and only one y such O 25% X
that F'(z, ¥) = 0. The equation F(z, ¥) =0 has a

anique solution near (zg, ¥o). Let y = ¢ (z) denote the solution. The solution is
continuous at & = z, because |y — ¥,|<3. If (x, y) are restricted to values y = ¢ (x)
such that I'(z, y) = 0, equation (2) gives at once

}j_y_y_A_y__F’(aH-dh 1/+0k) ay _F(zn,yo)

L z—=, Az F,(@+0hy+ok) do Fy (@0, vo)
As F, F,are continuous and F; s 0, the fraction k/h approaches a limit and the
derivative ¢(z,) exists and is given by (1). The same reasoning would apply to
any point z in the interval. The theorem is completely proved. It may be added
that the expression for ¢’(z) is such as to show that ¢/(z) itself is continuous.

The values of higher derivatives of implicit functions are obtainakle
by successive total differentiation as

F{+ Fy' =0,
FL+2Fy' + Foy'*+ Fyy' =0, @

ete. It is noteworthy that these successive equations may be solved for
the derivative of highest order by dividing by F; which has been assumed
not to vanish. The question of whether the function y = ¢ (x) defined
implicitly by F(z, y) = 0 has derivatives of order higher than the first
may be seen by these equations to depend on whether F(z, ) has
higher partial derivatives which are continuous in (z, y).

57. To find the mazima and minima of y = ¢ (x), that is, to find the
points where the tangent to F (x, ) = 0 is parallel to the z-axis, observe
that at such points y'= 0. Equations (3) give

Fi=0, FL+Fy"=0. @



3@ —ay)+ 3@ —az)y’ =0, §=—;2:Z,
2 alzy
W —ax)

d
6z —Bay’ + Byy? + 8(y* — ax)y” =0, dn_zl;:_

To find the maxima or minima of y as a function of z, solve
F,=0=2a%—ay, F=0=x'+y%—8azy, F,=0.

The real solutions of F = 0 and F =0 are (0, 0) and (V2a, ¥4a) of which the
first must be discarded because F, (0, 0)=0. At (V2a, V4a) the derivatives
F, and Fy, are positive; and the point is a maximum. The curve F=0 is the
folium of Descartes.

The rdle of the variables 2 and y may be interchanged if F; # 0 and
the equation F(z, ) = 0 may be solved for z = ¢ (y), the functions ¢
and ¢ being inverse. In this way the vertical tangents to the curve
F = 0 may be discussed. For the points of F = 0at which both F; =0
and F, = 0, the equation cannot he solved in the sense here defined.
Such points are called singular points of the curve. The questions of
the singnlar points of F = 0 and of maxima, minima, or minimax (§ 55)
of the surface z = F(x, y) are related. For if F; = F, = 0, the surface
has a tangent plane parallel to z = 0, and if the condition z = F =0 is
also satisfied, the surface is tangent to the xy-plane. Now if z = F(x, »)
has a maximum or minimum at its point of tangency with z = 0, the
surface lies entirely on one side of the plane and the point of tangency
is an isolated point of F(, y) = 0; whereas if the surface has a mini-
max it cuts through the plane # = 0 and the point of tangency is not
an isolated point of F(z, y) = 0. The shape of the curve F =0 in the
neighborhood of a singular point is discussed by developing F(z, )
about that point by Taylor’s Formula.

For example, consider the curve F(z, y) = @8 4 y® — 2%? — } (2? + »?) = 0 and

the surface z = F(x, ). The common real solutions of
Fi=8x—2xy?~2=0, F =38y)2-2a%—y=0, Fxy)=0
are the singular points. The real solutions of F; =0, F, =0 are (0, 0), (1, 1),
(3, 1) and of these the first two satisfy F(x, ¥) =0 but the last does not. The
singular points of the curve are therefore (0, 0) and (1, 1). The test (34) of § 55
shows that (0, 0) is a maximum for z = F(z, ) and hence an isolated point of
F(z,y)=0. The test also shows that (1, 1) is a minimax. To discuss the curve
F(z, y) = 0 near (1, 1) apply Taylor's Formula.
0=F(z,y)=$(8A — 81k + 3k2) + } (6 A8 — 12 4%k — 12 hk? + 6 k%) + remainder
=3}(8cos?¢p — 8sing cos¢ + 3sin?¢)
4 r(cos®¢ — 2cos? ¢ sing — 2008 ¢ sin ¢ + sin® @) + - - -,
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if polar cordinates h =7 cos¢, k = rsing be introduced at (1, 1) and r? be can-
celed. Now for very small values of », the equation can be satisfied only when
the first parenthesis is very small. Hence the solutions of

3—4sin2¢=0, sin2¢=4, or ¢=24217), 05°42),
and ¢ + , are the directions of the tangents to F(z, y)=0. The equation F=0is

0= (1} — 25in2¢) + 7 (cos ¢ + sing) (1 — 1} sin2 ¢)

if only the first two terms are kept, and this will serve to sketch F(z, y) = 0 for
very smsll values of », that is, for ¢ very near to the tangent directions.

58, Tt is important to obtain conditions for the maximum or minimum
of a function z = f(z, y) where the variables z, y are connected by a
relation F'(z, ) = 0 so that z really becomes a function of « alone or y
alone. For it is not always possible, and frequently it is inconvenient,
to solve I'(x, 77) = 0 for either variable and thus eliminate that variable
from z = f(x, y) by substitution. When the variables x, y in = = f(x, 7)
are thus connected, the minimum or maximum is called a constrained
minimum or maximwm ; when there is no equation F(«, ) = 0 between
them the minimum or maximum is called free if any designation is
needed.* The conditions are obtained by differentiating z = f(z, »)
and F(z,y)= 0 totally with respect to x. Thus

de _of [ ofdy_o  d0_0F_ iFdy
]

@t s prial i v sl
o OF  Of OF _ % _
and az@—gé—ﬁ_o, 3?20, F=0, &)

where the first equation arises from the two above by eliminating dy/dx
and the second is added to insure a minimum or maximum, are the con-
ditions desired. Note that all singular points of F(x, y) = 0 satisfy the
first condition identically, but that the process by means of which it
was obtained excludes such points, and that the rule cannot be expected
to apply to them.

Another method of treating the problem of constrained maxima and
minima is to introduce a multiplier and form the function

2= @, y) = f(, y) + AF (z, ), A a multiplier. (6)
Now if this function 2 is to have a free maximum or minimum, then
O =fi+AF,=0, & =f, +\F,=0. @)

These two equations taken with F = 0 constitute a set of three from
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B . A A
method also rejects the singular points. That this method really deter-
nines the constrained maxima and minima of f(z, y) subject to the
onstraint F(z, y) = 0 is seen from the fact that if A be eliminated from
7) the condition f; F, — f, F; = 0 of (5) is obtained. The new method
s therefore identical with the former, and its introduction is more a
natter of convenience than necessity. It is possible to show directly
hat the new method gives the constrained maxima and minima. For
he conditions (7) are those of a free extreme for the function @ (z,y)
which depends on two independent variables (x, ). Now if the equa-
ions (7) be solved for (, y), it appears that the position of the maximum
or minimum will be expressed in terms of A as a parameter and that
onsequently the point (z(X), ¥(\)) cannot in general lie on the curve
F(x, y) = 0; but if X be so determined that the point shall lie on this
urve, the function @ (z, y) has a free extreme at a point for which
F =0 and hence in particular must have a constrained extreme for the
particular values for which F(z, y) = 0. In speaking of (T) as the con-
litions for an extreme, the conditions which should be imposed on
he second derivative have been disregarded.

For example, suppose the maximum radius vector from the origin to the folium
f Descartes were desired. The problem is to render f(z, ¥) = 2? + ¥* maximum
ubject to the condition F(z, ) = 2° + 3 — 8acy = 0. Hence

20+ 8A@2—ay)=0, 2y+38r(P—ax)=0, 2*+y*—3axy=0

T 22-8(y*—ax) —2y-3(@2*~ay)=0, 2+ —B8axy=0

ire the conditions in the two cases. These equations may be solved for (0, 0),
1} a, 1} a), and some imaginary values. The value (0, 0) is singular and A cannot
e determined, but the point is evidently a minimum of 2 + y2 by inspection. The
point (13 @, 1} @) gives A = — 13 a. That the point is a (relative constrained) maxi-
mum of z? 4 y2 is also seen by inspection. There is no need to examine d?f. In
most practical problems the examination of the conditions of the second order
nay be waived. This example is one which may be treated in polar codrdinates
0y the ordinary methods ; but it is noteworthy that if it could not be treated that
way, the method of solution by eliminating one of the variables by solving the
subic F(z, y) = 0 would be unavailable and the methods of constrained maxima
vould be required.

EXERCISES
1. By total differentiation and division obtain dy/dx in these cases. Do not
substitute in (1), but use the method by which it was derived.
@) a2 + 2bay + P —1=0, (8) &t + 74 =4ay, (v) (cosa) — (siny)==0,
8) @+ 92 =a? (22~ 9%, (¢) e+er=2ay, (§) 2~ %2 = tan~lay.
2. Obtain the second derivative d?y/dz? in Ex. 1(a), (8), (¢), (¢) by differen
inting the value of dy/dz obtained above. Compare with use of (3). =
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3. Prove Z—:Zl—; =—

4. Find the radius of curvature of these curves:
(@) et +vi=al, R=38@)}, () +yi=ad, R=2Viztp)a,
{v) Va2 + eyt = o2, () m=a2(a—2z), (9 (a@?+ Gp)f=1

5. Find ¢, ¥”, ¥ in case 28 4 % — Saxy = 0.
6. Txtend equations (3) to obtain ¥ and reduce by Ex. 3.
7. Find tangents parallel to the z-axis for (z2 + y2)? = 242 (22 — 32).
8. Find tangents parallel to the y-axis for (2? + y? + az)® = a®(z® + ¥%).
9. If ¥ <ac in ax® 4 2bxy + cy? 4+ fr + gy + h =0, circumscribe about the
curve a rectangle parallel to the axes. Check algebraically.
10. Sketch #3 + 3% = %2 + } (2% + ¥?) near the singular point (1, 1).
11. Find the singular points and discuss the curves near them :
(a) a* + ¢* = Baay, (8) (2% + %) =24 (2* — ¢),
M Eri=2@—9), Q) P2l =o 4yt
12, Make these functions maxima or minima subject to the given conditions,
Discuss the work both with and without a multiplier:

(@) d + b , atanz 4 btany =c. Ans. sf—n£= x,
U COBZ D COBY siny v
(B) 2 + 3% ax? 4+ 2bay 4+ =1f. Find axes of conic.

(y) Find the shortest distance from a point to a line (in a plane).

13. Write the second and third total differentials of F(z, y) = 0 and compare
with (3) and Ex. 5. Try this method of calculating in Ex. 2.

14, Show that F/de + Fydy =0 does and should give the tangent line to
F(z, y) = 0 at the points (z, y) if dv =§— 2 and dy = 9y — y, where §, 7 are the
codrdinates of points other than (z, %) on the tangent line. Why is the equation
inapplicable at singular points of the curve ?

59. More general cases of implicit functions. The problem of
implicit functions may be generalized in two ways. In the first place
a greater number of variables may occur in the function, as

F(z,y, 2) =0, Fx, y, 2, u)=0;
and the question may be to solve the equation for one of the variables
in terms of the others and to determine the partial derivatives of the
chosen dependent variable. In the second place there may be several
equations connecting the variables and it may be required to solve the
equations for some of the variables in terms of the others and tc
determine the martial derivatives of the chosen devendent variables



differentiation and attempted formal solution of the equations for the
derivatives will indicate the results and the theorem under which the
solution is proper.

Consider the case F(x, y, z) = 0 and form the differential.

dF (z, y, #) = Fydx + Fydy 4+ F;dz = 0. ®)

If z is to be the dependent variable, the partial derivative of # by = is
found by setting dy = 0 so that y is constant. Thus

0z _ (dz\ _ Fy 9z (dz\ F

(@)% = 5-@)-F ©
are obtained by ordinary division after setting dy = 0 and de = 0 re-
spectively. If this division is to be legitimate, F, must not vanish at
the point considered. The immediate suggestion is the theorem: If,
when real values (z,, y,) are chosen and a real value z is obtained
from F(z, z,, y,) = 0 by solution, the function F(z, y, z) regarded as
a function of three independent variables (z, y, 2) is continuous at
and near (z,, ¥,, #,) and has continuous first partial derivatives and
Fl (2, Yy 2p)+~ 0, then F(x, y, 2) =0 may be solved uniquely for
z= ¢ (z, y) and ¢ («, ) will be continuous and have partial derivatives
(9) for values of (z, y) sufficiently near to (x,, ¥,)-

The theorem is again proved by the Law of the Mean, and in a similar manner.
F(z, 4, 2) = F (%, Yo, 20) = F (@ ¥, 2) = ("Fy + kF) + U )ey  oh o + 68, 20+ 61

As F;, F,, F, are continuous and Fy(z,, ¥o, %) # 0, it is possible to take 5 so
small ebac when|h|<s |k|<3,[l<3, t.haderlvanve[F |>m and | Fy [<m |Fy|<n
Now it is desired so to restrict , k that o 3F, shall determine the sign of the
parenthesis. Let

[&—zo|<3md/u,  |y—yo|<imd/u, then |AF,+kF,|<mb

and the signs of the parenthesis for (z, ¥, z, + 8) and (%, ¥, 2, — 8) Will be opposite

since | F;|>m. Hence if (¢, y) be held fixed, there is one and only one value of z

for which the parenthesis vanishes between z, + § and 2z, — 5. Thus zis defined asa

single valued function of (z, y) for sufficiently small values of h =& — 2o, k =y — o.
1 F[ (2, + Oh, y, + Ok, zo+0l) i Fj)

Also =20 e =L
h F; (2o + Oh, y, + Ok, %+ 0) & F(-+)

when k and % respectively are assigned the values 0. The limits exist when k = 0 or
k=0. But in the first case l = Az = A,z is the increment of z when z alone varies,
and in the second case I = Az =A,z. The limits are therefore the desired partial
derivatives of z by = and y. The proof for any number of variables would be
similar.,



may be solved for any one of the Vavl'iables, and formulas like v('9)l will
express the partial derivatives. It then appears that

dz\ (dz\ _Oz0x F, F,
(Ef)(d_>= o E R (10)
de\ (do\ (dy) _ 0z lady _
o <E>y<dz/>,<dz>f ey i 1

in like manner. The first equation is in this case identical with (4)
of § 2 because if y is constant the relation F(x, y, z) = 0 reduces to
G (z, #) = 0. The second equation is new. By virtue of (10) and simi-
lar relations, the derivatives in (11) may be inverted and transformed
to the right side of the equation. As it is assumed in thermodynamics
that the pressure, volume, and temperature of a given simple substance
are connected by an equation F(p, v, T) = 0, called the characteristic
equation of the substance, a relation between different thermodynamic
magnitudes is furnished by (11).
60. In the next place suppose there are two equations

F(x, y, u, v) =0, Gz, y,u,v)=0 12)
between four variables. Let each equation be differentiated.

dF = 0 = Fydx + F,dy + Fidu + F,dv,

4G =0 = Gidx + G,dy + G.du + G)dv. 13)

If it be desired to consider , v as the dependent variables and w, y as
independent, it would be natural to solve these equations for the differ-
entials du and dv in terms of dz and dy; for example,

g (FeGL— FyG)) da o (Jyia — FuGip) dy
FiG, — F,G,

D)

The differential dv would have a different numerator but the same de-
nominator. The solution requires F, &, — F; G, # 0. This suggests the
desired theorem : If (uo, v,) are solutions of F = 0, G = 0 corresponding
to (z,, 3,) and if F,G; — F,G; does not vanish for the values (z,, y,, %, %)
the equations F = 0, G'= 0 may be solved for v = ¢(z, ¥), v = ¢ (@, ¥)
and the solution is unique and valid for (x, ) sufficiently near (z,, ¥,)
— it being assumed that Fand @ regarded as functions in four variables
are continuous and have continuous first partial derivatives at and near
(@ Yy % V) ; moreover, the total differentials du, dv are given by @13)
and a similar equation,



ou(z, y ou (z, v 0z (u, v oz (u

e s s
of by « or of x by » will naturally depend on whether the solution
for u is in terms of (x, y) or of (=, v), and the solution for & is in (u, v)
or (u, y). Moreover, it must not be assumed that du/dx and dx/0u are
reciprocals no matter which meaning is attached to each. In obtaining
relations between the derivatives analogous to (10), (11), the values of
the derivatives in terms of the derivatives of F and G may be found or
the equations (12) may first be considered as solved.

Thus if u=¢(z,¥), du = ¢ dz + ¢,dy,
v=y (), dv =y 0z + y,dy.
Then POk R Wk bk
by — by¥a bo¥y — By¥a
and 2:—;,&,", iz:/—:‘¢”—”, ete.
g, — b D Gy — b
Hence uor ooz =1, (16)
oT du  ow v

as may be seen by direct substitution. Here u, v are expressed in terms of z, y for
the derivatives u., v, ; and «, y are considered as expressed in terms of , v for the
derivatives z,, z,.

61. The questions of free or constrained maxima and minima, at any
rate in so far as the determination of the conditions of the first order is
concerned, may now be treated. If F(z, y, #) = 0 is given and the max-
ima and minima of 2 as a function of (x, ) are wanted,

Fy(z,y,2)=0, Fy(x,y,2)=0, Flz,y,2)=0 (16)
are three equations which may be solved for z, y, . If for any of these
solutions the derivative F does not vanish, the surface z = ¢ (z, y) has
at that point a tangent plane parallel to z = 0 and there is a maximum,
minimum, or minimax. To distinguish between the possibilities further
investigation must be made if necessary ; the details of such an investi-
gation will not be outlined for the reason that special methods are
usually available. The conditions for an extreme of « as a function of
(z, y) defined implicitly by the equations (13") are seen to be

F,G, -~ F,G,=0, F,G,—F,G,=0, F=0, G=0. an
The four equations may be solved for «, ¥, , v or merely for x, y.
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ject either to one equation F(z, y, ) = 0 or two equations F(z,y, z)=0,
G(z, y, #) = 0 of constraint are desired. Note that if only one equation
of constraint is imposed, the function u = f(, y, z) becomes a function
of two variables ; whereas if two equations are imposed, the function
really contains only one variable and the question of a minimax does
not arise. The method of multipliers is again employed. Consider

@@, y,2)=Ff+AF or &= 4+AF+puG (18)
as the case may be. The conditions for a free extreme of ® are
@, =0, @, =0, o, =0. 19)

These three equations may be solved for the codrdinates z, y,  which
will then be expressed as functions of X or of A and u according to the
case. If then X or A and u be determined so that (z, y, 2) satisfy F= 0
or F=0 and & = 0, the constrained extremes of u =j'(z, y, #) will be
found except for the examination of the conditions of higher order.

As a problem in constrained maxima and minima let the axes of the section of
an ellipsoid by a plane through the origin be determined. Form the function

22yt

2
q>=z2+z/’+zﬂ+x(ﬁ+b,+§;—l)+u(b+mv+nz)

by adding to 2 + »* + 22, which is to be made extreme, the equations of the ellipsoid
and plane, which are the equations of constraint. Then apply (19). Hence

T B Y K z_ »
4+ ll= A=+-—m= -t —n=
Ethgtg 0 viAg+gm=0, ZtAgHon 0

taken with the equations of ellipsoid and plane will determine z, y, 2, \, u. If the
equations are multiplied by z, ¥, z and reduced by the equations of plane and

ellipsoid, the solution for X is N =— 72 =— (z?+ y2 + 2%). The three equations
then become
1 pla? 1 umb? 1 unc? N
—_ i, == == t] = 0.
T sr—a v Fleperd z PRy with l& 4+ my + nz= 0.
Ba? m2b* n2c? .
Hence Foataoptpoa- 0 determines r2, (20)

The two roots for 7 are the major and minor axes of the ellipse in which the plane
cuts the ellipsoid. The substitution of z, ¥, z above in the ellipsoid determines

2 al \* m \? cn \? a? oyt 2
S+ () + () e S50 e

Now when (20) is solved for any particular root » and the value of x is found by
(21), the actual cobrdinates z, ¥, z of the extremities of the axes may be found.



1. Obtain the partial derivatives of z by z and y directly from (8) and not by
substitution in (9) Where does the solution fail ?
22 1

a + ==1, x Zz=—

( ) + ®) z+v+ P

[€)) (z’ y’ + z¢)z = a%z? + b2 + c%22, (3) zyz=c.
2. Find the second derivatives in Ex. 1 (a), (8), (3) by repeated differentiation.
3. State and prove the theorem on the solution of F(z, y, 2, ) =0

4. Show that the product a,E7 of the coefficient of expansion by the modulus
of elasticity (§ 52) is equal to the rate of rise of pressure with the temperature if
the volume is constant.

5. Establish the proportion Eg: Er= Cp: Cy (see § 52).

ou 0% oy 0z ou ox
6. IF =0, show HBUWZ _, uom_
@ 2,71 =0, sho ooy ozou | owou

7. Write the equations of tangent plane and normal line to F(z, y, z) = 0 and
find the tangent planes and normal lines to Ex. 1(8), §) atz =1,y =1.
8. Find, by using (18), the indicated derivatives on the assumption that either
, y or u, v are dependent and the other pair independent :
(@ W4vP+af—8y=0, wW+P+PP+82=0, ), u,ul 7
B s+y+utv=a, 24yt tud4ri=0, Ty Ugy V) Vpy
() Find dy in both cases if z, v are independent variables.
9. Prove a—7'“3—y+@?!_0if Flz, y,u, v) =0, G(z, ¥, ©, v) = 0.
ox v
10. Find du and the derivatives ug, u,, u, in case
22 2 + 22 = w, 2y =u? + v 4 w?, TYz = uvw.
11. If F (2, y, 2) = 0, Q(z, ¥, 2) = 0 define a curve, show that
T — 2 _ Y~ z2—2,
@el-Fe,), (Fe-Fe), (76— Fsz’ o
is the tangent line to the curve at (z,, ¥,, 2,). Write the normal plane.

12. Formulate the problem of implicit functions occurring in Ex. 11.
13. Find the perpendicular distance from a point to a plane.

14, The sum of three positive numbers is ¢ +  + z = N, where N is given.
Determine %, ¥, # 80 that the product zryez- shall be maximum if p, g, r are given.
Ans, z:y:z:N=p:q:r:(p+qg+7).

15. The sum of three positive numbers and the sum of their squares are both
given. Make the product a maximum or minimum.

16. The surface (224 y2+22)2=ax?+ by?+c2? is cut by the plane g+ my+nz=0.

Find the maximum or minimum radius of the section,




128 DIFFERENTIAL CALCULUS
17. In case F(z, y, u, v) = 0, G (, ¥, u, v) = 0 consider the differentials

o oz o
ds —dz —d dec = — d —d dj —d dv.
=TT ou u+av o V=™ e ™

Substitute in the first from the last two and obtain relations like (15) and Ex. 9.

18. If f(z, y, 2) is to be maximum or minimun subject to the constraint
F(z,y, 2) =0, show that the conditions are that dx:dy:dz = 0:0:0 are indeter-
minate when their solution is attempted from

Fie 4+ fjly + fdz=0 and Fldz 4+ Fjdy + Fldz=0.

From what geometrical considerations should this be obvious ? Discuss in connec-
tion with the problem of inscribing the maximum rectangular parallelepiped in
the ellipsoid. These equations,

@i dy:dz =Sy F] — B, [ By — [T fiFy — f;Fy=0:0:0,
may sometimes be used to advantage for such problems.

19. Given the curve F(z,y, z) = 0, G(x, ¥, z) = 0. Discuss the conditions for
the highest or lJowest points, or more generally the points where the tangent is
parallel to z =0, by treating u = f(z, ¥, 2) = z as a maximum or minimum sub-
ject to the two constraining equations F =0, @ =0. Show that the condition
F,G, = F,G, which is thus obtained is equivalent to setting dz = 0 in

Fle + Fjiy + F{dz=0 and Gdz + Gydy + Gldz = 0.
20. Find the highest and lowest points of these curves:
(@) @2+ 12=224+1, 24y +22=0, (ﬂ) +z_2_1 o+ my + nz=0.

21, Show that Fydz + F,dy + Fdz=0, withde=§— gz, dy=9—y, dz={—2,
is the tangent plane to the surface F(z, y, z) = 0 at (z, ¥, 2). Apply to Ex. 1.

22, Given F(z, Y, u,0) =0, G, v, u, v) 0. Obtain the equations

oF oFou 0F% _ o oFou oF & _ o
az oz ovom ay uey  woy
3, 0w B 26 Gm WGw_,

o wow oy  ouoy ovoy

and explain their significance as a sort of partial-total differentiation of F =0
and @ = 0. Find u; from them and compare with (13"). Write similar equations
where , ¥ are considered as functions of («, v). Hence prove, and compare with
(15) and Ex. 9,

udy | way _ uer  wow

you  oyov wou waw

23. Show that the differentiation with respect to ¢ and y of the four equations

irnder T'v 09 loade +n ct bt amivatinme Frmrm ol ath $ha ot ot Aot aro +f e
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and will not be mentioned again. Suppose that there were a relation
F(u, v) = 0 or F(¢,y) =0 between the-functions. Then

F(g,9)=0, Fi;+Fye=0, Fub,+ Fy,=0. (29)

The last two equations arise on differentiating the first with respect to
z and y. The elimination of 77, and F; from these gives

. i i _ 0w v) wW>o 24
by — b = é; ¥ oz, y) x Y ’ @

The determinant is merely another way of writing the first expression ;
the next form is the customary short way of writing the determinant
and denotes that the elements of the determinant are the first deriva-
tives of u and » with respect to x and y. This determinant is called the

tional determinant or Jacobian of the functions w, v or ¢, ¢ with
1espect to the variables x, ¥ and is denoted by J. It is seen that: If'
there is a functional relation F($, y) =0 between two functions, the
Jacobian of the functions vanishes identically, that is, vanishes for all
values of the variables (», ) under consideration.

Conversely, if the Jucobiun vanishes identically over @ two-dimensional
region for (x, y), the functions are connected by a functional relation.
For, the functions %, v may be assumed not to reduce to mere constants
and hence there may be assumed to be points for which at least one of
the partial derivatives ¢y, ¢;, y;, ¥, does not vanish. Let ¢; be the
derivative which does not vanish at some particular point of the region.
Then u = ¢ (x, y) may be solved as = x(u, ¥) in the vicinity of that
point and the result may be substituted in v.

9
v=9(x ) = m&+m~%&+%
ox Ou 0z 61/ PRI
But 5= dytu and Fri ‘#—; (b — Vi) (24

by (11) and substitution. Thus dv/dy = J/¢;; and if J =0, then
ov/0y = 0. This relation holds at least throughout the region for which
¢, # 0, and for points in this region dv /@y vanishes identically. Hence
v does not depend on y but becomes a function of u alone. This es-
tablishes the fact that v and w are functionally connected.



W=y, v=g@un,  w=x@upe). (%)
If there is a functional relation F(w, v, w) = 0, differentiate it.

Fipi + Fip + Fuxe = 0, bs Yo Xe
Fipy+ Fiy+ Fixy =0, |4, ¥, x|=0, (26)
Fip, + Fip! + Fox: = 0, b ¥ X
or 3(4’: ¥, }2 9(u, v, wz J=0.
o, y,2) (w9 2)

The result is obtained by eliminating Fy, F,, F,, from the three equations.
The assumption is made, here as above, that F,, F,, F,, do not all vanish;
for if they did, the three equations would not imply J= 0. On the
other hand their vanishing would imply that F did not contain «, v, w,
—as it must if there is really a relation between them. And now con-
versely it may be shown that if J vanishes identically, there is a func-
tional relation between u, », w. Hence again the necessary and sufficient
conditions that the three functions (25) be functionally connected is that
their Jacobian vanish.

The proof of the converse part is about as before. It may be assumed that at
least one of the derivatives of u, v, w or ¢, ¢, x by @, ¥, z does not vanish. Let
¢, 7 0 be that derivative. Then u = ¢ (x, 7, 2) may be solved as = = w(u, ¥, )
and the result may be substituted in v and w as

v=y(@ v )=y, w=x@v2)=x1 2.
Next the Jacobian of v and w relative to ¥ and z may be written as

o ow ;0 ,Bx
W B s&, + ¥ ay +xy
wn wl |, a:: Py .
% % ‘#za + V. Xz + Xz
Vo ¢,,/¢, ¥ —9/9z
=00 T+ + X .
Vo xi| Clmea/el x| Tlve —el/es
if ¥ x,§ x, ¢, ¢ W |1_J
==z . LR 24 MR A ERd RAARA A B R
%[ A "Ixe @2 ¢ vl e
As J vanishes identically, the Jacobian of v and w expressed as functions of y, z,
also vanishes. Hence by the case previously di d there is a functional rela-
tion F (v, w) = 0 independent of y, z; and as v, w now contain u, this relation may
be idered as a f ional relation b n u, v, w.

63. If in (22) the variables w, v be assigned constant values, the
equations define two curves, and if «, v be assigned a series of such
values, the equations (22) define a neftwork of curves in some part of the



for which « is constant; the set of v-curves coincides with the set of
u-curves and no true network is formed. This
case is uninteresting. Let it be assumed that
the Jacobian does not vanish identically and
even that it does not vanish for any point (z, )
of a certain region of the xy-plane. The indi-
cations of § 60 are that the equations (22) may
then be solved for «, y in terms of u, v at any
point of the region and that there is a pair of
the curves through each point. It is then proper to consider (u, v) as
the coordinates of the points in the region. To any point there corre-
spond not only the rectangular codrdinates (x, y) but also the curvi-
linear cobrdinates (u, v).

The equations connecting the rectangular and curvilinear cotrdinates
may be taken in either of the two forms

u=$@y), v=y@y) o a=fluv), y=g(uv), (@2)
each of which are the solutions of the other. The Jacobians
J(M> . J(“—-”) =1 @n
%Y, Uy ©,
(@+dy, y+dyy)
are reciprocal each to each ; and this rela- Y| (ZL.?J oy

tion may be regarded as the analogy of
the relation (4) of § 2 for the case of

(PERESES S SRS NN SRR

(z+dz, y+dy)
(utdu, v+dv)
v4dv

the function y = ¢ () and the solution ¢, (@+duz, v+duy)
x = f(y) = ¢~(y) in the case of a single (1" ) wia{et I
variable. The differential of arc is 0] X
ds? = da® + dy* = Edu? + 2 Fdudv + Gdv?, (28)
G\t O\ dela dydy (), (%
E_<3u>+<5_u)’ F=i Tauae  “=\aa) T\50)

The differential of area included between two neighboring u-curves and
two neighboring v-curves may be written in the form

a4 = J(U> dudv = dudy + J(Eﬂ) (29)
Uy v & ¥,

These statements will now be proved in detail.




J(M)J(Lv)_ o oz| |ou du
ay) " \uo) T o 2| | W
aw oyl |ov
owow  woz way  ww| g g
_|oxdu  owov dxrou 0w ov|_ -1
= = =1
ouem | mwae duxy  ww|T|y

you eyov dyou oy

where the rule for multiplying determinants has been applied and the reduction
has been made by (15), Ex. 9 above, and similar formulas. If the rule for multi-
plying determinants is unfamiliar, the Jacobians may be written and muitiplied
without that notation and the reduction may be made by the same formulas as
before.

To establish the formula for the differential of arc it is only necessary to write
the total differentials of dz and dy, to square and add, and then collect. To obtain
the differential area between four adjacent curves consider the triangle determined
by (u, v), (w + du, v), (¥, v + dv), which is half that area, and double the result.
The determinantal form of the area of a triangle is the best to use.

1 dax dy a—zdu a—ydu = L2
dd=2.1 T T L L P
Haw ay| (2o Tw| |2 Y

ov n v o

The subscripts on the differentials indicate which variable changes; thus d,z, d
are the codrdinates of (u + du, v) relative to (x, v). This method is easily extended
to determine the analogous quantities in three dimensions or more. It may be
noticed that the triangle does not look as if it were half the area (except for infin-
itesimals of higher order) in the figure ; but see Ex. 12 below.

It should be remarked that as the differential of arvea d4 is usually
considered positive when dv and dv are positive, it is usually better to
replace J in (29) by its absolute value. Instead of regarding (v, v) as
cwvilinear codrdinates in the ay-plane, it is possible to plot them in
their own wuv-plane and thus to establish by (22") a transformation of
the zy-plane over onto the wv-plane. A small area in the xy-plane then
becomes a small area in the ww-plane. If J > 0, the transformation is
called direct; but if J < 0, the transformation is called perverted. The
significance of the distinction can be made clear only when the ques-
tion of the signs of areas has been treated. The transformation is called
conformal when elements of arc in the neighborhood of a point in the
zy-plane are proportional to the elements of arc in the neighborhood of
the corresponding point in the uv-plane, that is, when

A8 = da? + dyf = Fo (du? + dv®) = kdo®, 30



mation. That the transformation be conformal requires that F = 0 and
E = G. It is not necessary that E = G =k be constants; the ratio of
similitude may be different for different points.

64. There remains outstanding the proof that equations may be solved
in the neighborhood of a point at which the Jacobian does not vanish.
The fact was indicated in § 60 and used in § 63.

TuroreM. Let p equations in n 4 p variables be given, say,

By oy ma) =0,  F=0.,F,=0 (1)

Let the p functions be soluble for z,, ,, ---, , when a particular set
T(pi1s s Lt g OF the other n variables are given. Let the functions
and their first derivatives be continuous in all the n + p variables in the

neighborhood of (2., ,, -, (4 p,)- Let the Jacobian of the functions
with respect to x,, x,, - -+, @,
e '1 1
J(—l——i’ ,;v,>= S EY ) 2
ox, amp Zygr ** "y Tt pYo

fail to vanish for the particular set mentioned. Then the p equations
may be solved for the p variables «,, 2, - -, x,, and the solutions will be
continuous, unique, and differentiable with continuous first partial
derivatives for all values of w,., -, ,,, sufficiently near to the
values 2,41, s Tntpye

TureoreM. The necessary and sufficient condition that a functional
relation exist between p functions of p variables is that the Jacobian
of the functions with respect to the variables shall vanish identically,
that is, for all values of the variables.

The proofs of these theorems will naturally be given by mathematical induction.
Each of the theorems has been proved in the simplest cases and it remains only to
show that the theorems are true for p functions in case they are for p — 1. Expand
the determinant J.

oF, oF, oF, .
J=J,aTl+J15‘+-..+JP£:. Jyy +++, Jp, minoxs,
1 2
For the first theorem J 7 0 and hence at least one of the minors J, « - -, Jp Mmust,

“ail to vanish. Let that one be J;, which is the Jacobian of F,, ..., F, with respect
t0 2y, + -+, zp. By the assumption that the theorem holds for the case p — 1, these
» — 1 equations may be solved for @,, -+, 2, in terms of the n+ 1 variables z,,




Tp 41y ** ) Tutp, a0d the results may be substituted in F;. It remains to show that
F, = 0 is soluble for z;. Now

dF, _oF, A oF, o, oF, oz,
ot WSSt O M Y 2 L =J/J, %0, 2’
do, ~ oz, + oz, ox, + oz, oz, I @)
For the derivatives of x,, - -+, zp With respect to «; are obtained from the equations
0= 2o PR g 3y 2R, Wy
o, o, ox, oy, ox, ow, | om, ox, ax, o3,
resulting from the differentiation of F, =0, ..., F,, =0 with respect to z,. The

derivative oxi/dz, is therefore merely J;/J;, and hence dFy/dz, = J/J; and does
not vanish. The equation therefore may be solved for z, in terms of x,41,-,
T, 4 py and this result may be substituted in the solutions above found for z,, - -+, 2,.
Hence the equations have been solved for z,, x,, «+ +, &, in terms of @, 41, «++, Tn4p
and the theorem is proved.

For the second theorem the procedure is analogous to that previously followed.

If there is a relation F'(u,, -, %) = 0 between the p functions
Up =y (Byy ey Tp)y oty Up =y (B, s ),
differentiation with respect to @, - - -, &, gives p equations from which the deriva-
tives of F by w, «+ -, u, may be elimi ’andJ(:"”"g =0b the con-
1

dition desired. If conversely this Jacobian vanishes identically and it be assumed
that one of the derivatives of u; by @y, say 8u,/éx,, does not vanish, then the solution
Z, = w(Uy, &y, -+, &) May be effected and the result may be substituted in u,,
+++y Up. The Jacobian of u,, - -+, u, With respect to «,, - -+, z, will then turn out
to be J + ou,/dx, and will vanish because J vanishes. Now, however, only p — 1
functions are involved, and hence if the theorem is true for p — 1 functions it must
be true for p functions.
EXERCISES

1. I u=ar+by+c and v=az + by + ¢’ are functionally dependent, the
lines u = 0 and » = 0 are parallel ; and conversely.

2. Prove w + ¥ + 2, @Y + ¥z + 22, 2% + Y2 4 22 functionally dependent.
3. Mfu=ar+by+cz+d, v=ac+dy+cz+d, w=a"2+by+c24+d’
are functionally dependent, the pianes u = 0, v = 0, w = 0 are parallel to a line.
4. In what senses are Z—Zand ¥, of (24) and %g! and gj of (32) partial or total
1

L
derivatives ? Are not the two sets completely analogous ?

5. Given (26), suppose ‘\t’ﬁ Xfl # 0. Solve v =y and w = x for ¥ and 2, substi-
. P
tute in u = ¢, and prove du/ox = J + ‘Pf X;: .
Vi X
6. Hu=u(,v),v="1(@,1v),andz=2( ),y =y n), prove
J(L”) J(M) = J(“_’E) 27
2, ¥/ \E, & én

State the extension to any number of variables. How may (27°) be used to prove
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u, v, W,

, %, y, 2/
volume in space with curvilinear codrdinates u, v, w = consts.

8. In what parts of the plane can u =22 + 2%, v =y not be used as curvi-
linear codrdinates ? Ixpress ds? for these codrdinates.

9. Prove that 2u = z% — y2, v = zy is a conformal transformation.

10. Prove that z = v is a conformal transformation.

u v
Wt U@t

11. Define conformal transformation in space. If the transformation

z=au+ b + cw, y=au+bv+ cw, z=a"u+ b+ c"w

la conformal, is it orthogonal ? See Ex. 10 (¢), p. 100.

12. Show that the areas of the triangles whose vertices are

(uy v), (u + du, v), (u, v+ dv) and (u+ du, v+ dv), (u + du, v), (4, v + dv)
are infinitesimals of the same order, as suggested in § 63.

13. Would the condition F = 0 in (28) mean that the set of curves u = const.
were perpendicular to the set v = const. ?

14. Express E, F, G in (28) in terms of the derivatives of u, v by , y.

15. If =9, t), y=y (s ?), 2=x(s, t) are the parametric equations of a
surface (from which s, ¢ could be eliminated to obtain the equation between

z, ¥, 2), show
%=J<U) +J("i‘-”) and find 2.
o st st oy
65. Envelopes of curves and surfaces. Let the equation F(z,y,a) =0
be considered as representing a family of curves where the different
curves of the family are obtained by assigning different values to the
parameter @. Such families are illustrated by
@—a)l+y*=1 and ax+y/a=1, (33)
which are circles of unit radius centered on the x-axis and lines which
cut off the area } o® from the first quadrant. As & changes, the circles
remain always tangent to the two lines y = + 1 and
the point of tangency traces those lines. Again, as
« changes, the lines (33) remain tangent to the hyper-
bola xy = %, owing to the property of the hyperbola
that a tangent forms a triangle of constant area with
the asymptotes. The lines y = + 1 are called the
envelope of the system of circles and the hyperbola
ry =k the envelope of the set of lines. In general, ifthere s a curve
to which the curves of a family F(x, y, @) = 0 are tangent and if the
point of tangency describes that curve as a varies, the curve is called
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the envelope (or part of the envelope if there are several such curves)
of the family F(x, y, «) = 0. Thus any curve may be regarded as the
envelope of its tangents or as the envelope of its circles of curvature.

To find the equations of the envelope note that by definition the
enveloping curves of the family 77 (ir, 7, ) = 0 are tangent to the envelope
and that the point of tangency moves along the envelope as @ varies.
The equation of the envelope may therefore be written

z = ¢(a), y=y(&) with F(¢,¢, )=0, (34)

where the first equations express the dependence of the points on the
envelope upon the parameter ¢ and the last equation states that each
point of the envelope lies also on some curve of the family F(z, y, @)= 0.
Differentiate (34) with respect to @. Then

F'(@) + Fpyp'(a) + Fa=0. (35)
Jow if the point of contact of the envelope with the curve F = 0 is an
ordinary point of that curve, the tangent to the curve is

i —xy) + Fy(y —y) =0; and F¢'+ Fy'=0,
since the tangent direction dy:dxz = y': ¢' along the envelope is by
definition identical with that along the enveloping curve; and if the
point of contact is a singular point for the enveloping curve, F; = Fy = 0.
Hence in either case F,= 0.
Thus for points on the envelope the two equations

F(z, y, @)= 0, Fiz, y,@)=0 (36)

are satisfied and the equation of the envelope of the family F = 0 may
be found by solving (36) to find the parametric equations x = ¢(a),
y =y (x) of the lope or by eliminating a bet (86) to find the
equation of the envelope tn the form ®(z,y) = 0. It should be remarked
that the locus found by this process may contain other curves than the
envelope. For instance if the curves of the family F = 0 have singular
points and if z = ¢ (), y = ¢ () be the locus of the singular points
as @ varies, equations (34), (35) still hold and hence (36) also. The
tule for finding the envelope therefore finds also the locus of singular
points. Other extraneous factors may also be introduced in performing
the elimination. It is therefore important to test graphically or analyt-
ically the solution obtained by applying the rule.




but as a second example consider ar + y/«a = 1. Here
Fr,y,q)=az+y/a—1=0, Fi=z—y/a®=0.

The solution is ¥ = a/2, & = 1/2«, which gives 2y = }. This is the envelope; it could
not be a locus of singular points of F = 0 as there are none. Suppose the elimina-
tion of a be made by Sylvester’s method as

—y/a® +0/¢ +34+0a=0 -y 0 =z 0
0/a® —y/a +0+za=0 0—y 0 =)
v —1jc¢ +otoa=0 Y| 4y o1 5 o=%
0/ +y/ax —14za=0 0 y—-1 2

the reduction of the determinant gives zy (4zy — 1) = 0 as the eliminant, and con-
tains not only the envelope 4xy = 1, but the factors z = 0 and y = 0 which are
obviously extraneous.
As a third problem find the envelope of a line of which the length intercepted
between the axes is constant. The necessary equations are
Ziloy, a2+@=K, Zda+ldg=0, ada+pas=0.
a B a? B
I'wo parameters a, 8 connected by a relation have been introduced; both equations
have been differentiated totally with respeet to the parameters; and the problemw
s to eliminate «, B, da, dB from the equations. In this case it is simpler to carry
both parameters than to introduce the radicals which would be required if only
one parameter were used. The elimination of da, dg from the last two equations
gives 31y = ad: B8 or Va :\'/; = a: 8. From this and the first equation,
1 1 1_ 1
~= y == ,
a et +yh) Byt +48)

66. Consider two neighboring curves of F(z, y, @) = 0. Let (=, y,)
be an ordinary point of @ = @ and (x, + ax, y, + dy) of @, + da. Then

F(wn + dw, y, + dy, @, + da) — F(mo: Yo “0)
= Fyda + Fjdy + Feda =0 @7

and hence  z¥ + yﬁ‘ =Kt

holds except for infinitesimals of higher order. The distance from the
point on & + de to the tangent to a, at (x,, ¥,) is

Fydw + Fydy _ + Fide —dn (38)

+VEF+ T} NTR+FP
xcept for infinitesimals of higher order. This distance is of the first
order with de, and the normal derivative da/dn of § 48 is finite except
when F,=0. The distance is of higher order than da, and da/dn is
nfinite or dn/de is zero when F;= 0. It appears therefore that tie
mvelope is the locus of points at which the distance between two neigh-
yoring curves is of higher order than de. This is also apparent geomet-
rically from the fact that the distance from a point on a curve to the




curves ot the family and 18 not an envelope but an extraneous iact
in exceptional cases this locus is an envelope.

If two neighboring curves F(z, y, @) =0, F(z, y, @ + Aa) = 0 in
sect, their point of intersection satisfies both of the equations, and he:
also the equation

1 ,
[P (@, 3, @+ 82) — F (@, 3, @)1= Fi(s, 3, @ + 6a0) =

If the limit be taken for A == 0, the limiting position of the inter:
tion satisfies F7; = 0 and hence may lie on the envelope, and will lie
the envelope if the common point of intersection is remote from singt
points of the curves F(z, y, &) = 0. This idea of an envelope as

limit of points in which neighboring curves of the fomily intersect
valuable. It is sometimes taken as the definition of the envelope. I
unless imaginary points of intersection are considered, it is an ina
quate definition; for otherwise y = (x — @)® would have no envel
according to the definition (whereas y = 0 is obviously an envelope) :
a curve could not be regarded as the envelope of its osculating eircl

Care must be used in applying the rule for finding an envelope. Otherwise
only may extraneous solutions be mistaken for the envelope, but the envelope
be missed entirely, Consider

y—sinar=0 or a—x-lsin-1y=0,

where the second form is obtained by solution and contains a multiple val
function. These two families of curves are identical, and it is g ically ¢
that they have an envelope, namely y = 4 1. This is precisely what would
found on applying the rule to the first of (89); but if the rule be applied to
second of (30), it is seen that F}, = 1, which does not vanish and hence indicate:
envelope. The whole matter should be examined carefully in the light of imp!
functions.

Hence let F (2, ¥, @) = 0 be a continuous single valued function of the tl
variables (z, 7, a) and let its derivatives ¥, F,, F; exist and be continuous. ¢
sider the behavior of the curves of the ia.mi]y naar a point (x,, ¥,) of the curve
@ = a, provided that (:to, ) is an ordinary (nonsingular) point of the curve
that the derivative F(zy, ¥,, a,) does not vanish. As F, 3 0 and either F,
or Fy 3 0 for (2y, ¥y, &), it is possible to surround (z, yo) with a region 80 &1
that F(z, ¥, @) = 0 may be solved for a = f(z, ¥) which will be single valued
differentiable; and the region may further be taken so small that F; or F, rem
different from 0 throughout the region. Then through every point of t.he e
there is one and only one curve a = f(z, %) and the curves have no singular po
within the region. In particular no two curves of the family can be tangen
each other within the region.




TAVEerses the region be T = ¢ (1), ¥ = y(i). 1hen
a®=7M¥0), CO=LEO+LPO.

Along any curve a =f(z, y) the equation f;dz +f,dy = 0 holds, and if = = ¢ (¢),
/ = ¢ ({) be tangent to this curve, dy = dx =y’ :¢" and a’(f) =0 or a = const.
Hence the only curve which has at each point the direction of the curve of the
‘amily through that point is a curve which coincides throughout with some curve
of the family and is tangent to no other member of the family. Hence there is no
envelope. The result is that an envelope can be present only when F,, = 0 or when
F, = F, =0, and this latter case has been seen to be included in the condition
F. = 0. If F(z,y, @) were not single valued but the branches were separable, the
same conclusion would hold. Hence in case F(z, ¥, a) is not single valued the loci
over which two or more values become inseparable must be added to those over
vhich F = 0 in order to insure that all the loci which may be envelopes are taken
nto account.

67. The preceding considerations apply with so little change to other
ases of envelopes that the facts will merely be stated without proof.
Jonsider a family of surfaces F(, y, #, @, B) = 0 depending on two
arameters. The envelope may be defined by the property of tangency
s in § 65; and the conditions for an envelope would be

F(x, y, % B)=0, F,=0, Fg=0. (40)
[hese three equations may be solved to express the envelope as

z=¢(a, B), y=y(= B), z=x(a B)
arametrically in terms of @, 3; or the two parameters may be elimi-
ated and the envelope may be found as ®(z, y, #) = 0. In any case
xtraneous loci may be introduced and the results of the work should
herefore be tested, which generally may be done at sight.

It is also possible to determine the distance from the tangent plane
f one surface to the neighboring surfaces as

Fydn + Fydy + Fidz _ _ Fida + FydB
VEZ+FR+F?  VFIHFR+F?

= dn, (41)

nd to define the envelope as the locus of points such that this distance
s of higher order than [da|+ [dB| The equations (40) would then also
ollow. This definition would apply only to ordinary points of the sur-
aces of the family, that is, to points for which not all the derivatives
"es Fyy F; vanish. But as the elimination of &, B from (40) would give
n equation which included the loci of these singular points, there
vould be no danger of losing such loci in the rare instances where they,
00, happened to be tangent to the surfaces of the family.




and would show thal No envelope COW Calby 1l I'eglOlls WoLe LU silligtial P
occurred and where either I/ or I'; failed to vanish. This work could be &
either on the first definition involving tangency directly or on the second defin
which involves tangency indirectly in the statements concerning infinitesima
higher order. It may be added that if F(z, y, 2, a, f) = 0 were not single val
the surfaces over which two values of the function become inseparable shoul
added as possible envelopes.

A family of surfaces I (w, y, #, @) = 0 depending on a single pa

eter may have an envelope, and the envelope is found from
I,y 2 @)=0, Iz, y,2a6)=0

by the elimination of the single parameter. The details of the deduc
of the rule will be omitted. If two neighboring surfaces intersect;
limiting position of the curve of intersection lies on the envelope
the envelope is the surface generated by this curve as « varies.
surfaces of the family touch the envelope not at a point merely
along these curves. The curves are called characteristics of the fa
In the case where consecutive surfaces of the family do not inte:
in a real curve it is necessary to fall back on the conception of in
naries or on the definition of an envelope in terms of tangenc
infinitesimals ; the characteristic curves are still the curves a
which the surfaces of the family are in contact with the envelope
along which two consecutive surfaces of the family are distant
each other by an infinitesimal of higher order than da.

A particular case of importance is the envelope of a plane w
depends on one parameter. The equations (42) are then

Ax + By + Cz+ D=0, Az + By + C'z 4+ D' =0,

where 4, B, C, D are functions of the parameter and differenti:
with respect to it is denoted by accents. The case where the f
moves parallel to itself or turns about a line may be excluded as tri
As the intersection of two planes is a line, the characteristics of
system are straight lines, the envelope is a ruled surface, and o g
tangent to the surface at one point of the lines is tangent to the su
throughout the whole extent of the line. Cones and cylinders are e
ples of this sort of surface. Another example is the surface envel
by the osculating planes of a curve in space; for the osculating ]
depends on only one parameter. As the osculating plane (§ 41) m:
regarded as passing through three consecutive points of the curve,
consecutive osculating planes may be considered as having two con
tive points of the curve in common and hence the characteristic



lane which depends on a single parameter are called developable .;urfucw
A family of curves dependent on two parameters as

Iy zepf)=0 G@myzeB)=0 (44)
8 called a congruence of curves. The curves may have an envelope, that
s, there may be a surface to which the curves are tangent and which
nay be regarded as the locus of their points of tangency. The envelope
s obtained by eliminating «, B from the equations
F=0, G=0, F,Gy— FaG;=0. (45)
T'o see this, suppose that the third condition is not fulfilled. The equa-
ions (44) may then be solved as a = f'(x, ¥, #), 8 = ¢ (=, ¥, 2). ReasoL-
ng like that of § 66 now shows that there cannot possibly be an
nvelope in the region for which the solution is valid. It may therefore
e inferred that the only possibilities for an envelope are contained in
he equations (45). As various extraneous loci might be introduced in
he elimination of @, B from (45) and as the solutions should therefore
e tested individually, it is hardly necessary to examine the general
juestion further. The envelope of a congruence of curves is called the
focal surface of the congruence and the points of contact of the curves
with the envelope are called the focal poinis on the curves.

EXERCISES
1. Find the envelopes of these families of curves. In each case test the answer
or its individual factors and check the results by a sketch :
(@) y=20az + a, @ vi=a@—a), (1 yv=ax+k/a
() a@tap=a, (Jy=a@+ay, () 1F=a@—ap
2. Find the envelope of the ellipses z2/a? + y2/0% = 1 under the condition thut
(@) the sum of the axes is constant or (g) the area is constant,
3. Find the envelope of the circles whose center is on a given parabola and
which pass through the vertex of the parabola.
4. Circles pass through the origin and have their centers on 22 — y? = ¢2. Find
heir envelope, Ans. A lemniscate.
5. Find the envelopes in these cases:
(a) = + zya = sin—1ay, (B) z+4 a=vers=ly + V2y — 37,
M yv+a=Vi-1/z.
6. Find the envelopes in these cases:
z z
(@ az+py+ape=1 (B Z+i+—2—
22 gt 22 a B l-a—p
= 4+ L 4+ =1 with aBy=1#.
) &t & + poi By
7. Find the enveloves in Ex. 6 (a), (R) if a =gorif a =—8.

=1,




ihe whole characierisiic by showing thdt the norial Lo (e, y, 2, @) = U ald
eliminant of F = 0, F, = 0 are the same, namely
, . ox o, 2a s 0a
B Py B and Fy+ Fi2n:Fy+ F,;%:F;+ o
where a (z, y, 2) is the function obtained by solving F; = 0. Consider the prol
also from the point of view of infinitesimals and the normal derivative.

9. If there is a curve = ¢ (a), ¥ = y(a), z = x(a) tangent to the curve
the family defined by F(z, v, 2, a) =0, G (g, ¥, 2, @) = 0 in space, then that c
is called the envelope of the family. Show, by the same reasoning as in § 6
the case of the plane, that the four conditions F =0, =0, F;=0,6;=0
be satisfied for an envelope ; and hence infer that ordinarily a family of curv
space dependent on a single parameter has no envelope.

10. Show that the family F(z, y, z, a) =0, F, (%, ¥, 2, @) = 0 of curves w
are the characteristics of a family of surfaces has in general an envelope give
the three equations F =0, Fz = 0, Fi;, = 0.

11. Derive the condition (46) for the envelope of a two-parametered fami
curves from the idea of tangency, as in the case of one parameter.

12, Find the envelope of the normals to a plane curve ¥ = f(z) and show
the envelope is the locus of the center of curvature.

13. The locus of Ex. 12 is called the evolute of the curve y = f(z). In these
find the evolute as an envelope :

(a) y =22, (8) = = asint, y =beost, (v) 22y =
(3) ¥*=2ma, (€) x=a(@—sinf), y = a(l— cosé), (¢) ¥ = cosh

14. Given a surface z = f(z, y). Construct the family of normal lines and
their envelope.

15. If rays of light issuing from a point in a plane are reflected from a cur
the plane, the angle of reflection being equal to the angle of incidence, the enve
of the reflected rays is called the caustic of the curve with respect to the p
Show that the caustic of a circle with respect to a point on its circumference
cardioid.

16. The curve which is the envelope of the characteristic lines, that is, of
rulings, on the developable surface (43) is called the cuspidal edge of the sur:
Show that the equations of this curve may be found parametrically in terms o
parameter of (43) by solving simultaneounsly

Av+By+Cz2+D=0,Ac+By+Cz+ D =0,A"s+ By + 02+ D"
forz, y, z. Consider the exceptional cases of cones and cylinders.

17. The term ** developable » signifies that a developable surface may be deve
or mapped on a plane in such a way that lengths of arcs on the surface become
lengths in the plane, that is, the map may be made without distortion of si:
shape. In the case of cones or cylinders this map may be made by slitting the
or cylinder along an element and rolling it out upon a plane. What is the ana
statement in this case? In the case of any developable surface with a cus
edge, the developable surface being the locus of all tangents to the cuspidal ¢
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wces for which the radius of curvature R of the cuspidal edge is the same funection
f 8 without regard to the torsion; in particular the torsion may be zero and the
evelopable may reduce to a plane.

18. Let the line z = az + b, ¥ = ¢z + d depend on one parameter 8o as to gen-
rate a ruled surface. By identifying this form of the line with (43) obtain by
1bstitution the conditions

Aa+ Bc+0=0, A'a+Bc+C =0 or Ada’ 4+ B’ =0 or a’c’~0
Ab+ Bd+ D=0, Ab+ Bd+D =0 AY + Bd'=0 ¥l
s the condition that the line a developable surface.
68. More differential geometry. The representation
F(@,y,2)=0, or z=f(x,9) (46)

r x = ¢(u, v), y =y (u, v), z = x(u, v)
f a surface may be taken in the unsolved, the solved, or the parametric
orm. The parametric form is equivalent to the solved form provided
, v be taken as «, . The notation
0z 0 _ 0% _ 0% _ %
p=5;: q=@: =%’ s—m—: t~-—@2
yadopted for the derivatives of z with respect to x and y. The applica-
on of Taylor’s Formula to the solved form gives
Az = ph + gk + §(rk* + 2 shk + tk*) + - -- 47
ith % = Az, k' = Ay. The linear terms pk + ¢k constitute the differ-
ntial dz and represent that part of the increment of z which would be
btained by replacing the surface by its tangent plane. Apart from
finitesimals of the third order, the distance from the tangent plane up
r down to the surface along a parallel to the z-axis is given by the
uadratic terms  (rh* + 2 shk + t&%).

Hence if the quadratic terms at any point are a positive definite form
y 55), the surface lies above its tangent plane and is concave up; but
' the form is negative definite, the surface lies below its tangent plane
nd is concave down or convex up. If the form is indefinite but not
ngular, the surface lies partly above and partly below its tangent
lane and may be called concavo-convex, that is, it is saddle-shaped. If
re form is singular nothing can be definitely stated. These statements




tangent plane is parallel to the zy-plane. It will be assumed in the
further work of these articles that at least one of the derivatives r,s, ¢
is not 0.

To examine more closely the behavior of a surface in the vicinity of
a particular point upon it, let the xy-plane be taken in coincidence with
the tangent plane at the point and let the point be taken as origin.
Then Maclaurin’s Formula is available.

z = § (ra’ + 2 szy + ty*) + terms of higher order 48
=} p?(rcos® § + 25 sin 6 cos @ + ¢ sin® f) + higher terms, 9

where (p, 6) are polar codrdinates in the zy-plane. Then

2
%=rcos’6+235£n€cos0+tsiu"’0=§§—:—[1+<%E>]% (49)
is the curvature of a normal section of the surface. The sum of the
curvatures in two normal sections which are in perpendicular planes
may be obtained by giving @ the values  and 6+ }m. This sum
reduces to » + ¢ and is therefore independent of 6.

As the sum of the curvatures in two perpendicular normal planes is
constant, the maximum and minimum values of the curvature will be
found in perpendicular planes. These values of the curvature are called
the principal values and their reciprocals are the principal radii of
ourvature and the sections in which they lie are the principal sections.
If s = 0, the principal sections are § = 0 and § = } 7; and conversely
if the axes of & and y had been chosen in the tangent plane so as to be
tangent to the principal sections, the derivative s would have vanished
The equation of the surface would then have taken the simple form

# = } (r@® + ty*) + higher terms. (560)

The principal curvatures would be merely » and ¢, and the curvature
in any normal section would have had the form

1_cos'y  sin'f

R™ R, TR,

= rcos®§ + ¢ sin? 6.

If the two principal curvatures have opposite signs, that is, if the
signs of » and ¢ in (50) are opposite, the surface is saddle-shaped.
There are then two directions for which the curvature of a normal sec-
tion vanishes, mamely the directions of the lines

0=ttan'V—R,/R, or |rle =+ \/|?]y

These are called the asymptotic directions. Along-these directions the
swface departs from its tangent plane by infinitesimals of the third
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order, or higher order. If a curve is drawn on 2 surface so that at each
point of the curve the tangent to the curve is along one of the asymp-
totic directions, the curve is called an asymptotic curve or line of the
surface. As the surface departs from its tangent plane by infinitesimals
of higher order than the second along an asymptotic line, the tangent
plane to a surface at any point of an asymptotic line must be the oscu-
Jating plane of the asymptotic line.

The character of a point upon & surface is indicated by the Dupin
indicatria of the point. The indicatrix is the conice

8P
T +L=1, of. z = 3 (2 + ty)s (51)
R. R,

which has the principal directions as the directions of its axes and the
square roots of the absolute values of the principal radii of curvature
as the magnitudes of its axes. The conic may be regarded as gimilar to
the conic in which a plane infinitely near the tangent plane cuts the
surface when infinitesimals of order higher than the second are neg-
lected. In case the surface is concavo-convex the jndicatrix is a hyper-
bola and should be considered as either or both of the two conjnoate
hyperbolas that would arise from giving # positive or negative I

in (51). The point on the surface is called elliptic, Typerbolic, or
parabolic according as the indicatrix is an ellipse, & hyperbola, or a pair
of lines, as happens when one of the principal curvatures vanishes.
These classes of points correspond to the distinctions definite, indefinite,
and singular applied to the quadratic form rh? + 2 shk + K%

Two further results are noteworthy. Any curve drawn on the surface
differs from the section of its osculating plane with the surface by
infinitesimals of higher order than the second. For as the osculating
plane passes through three congecutive points of the curve, its inter-
section with the surface passes through the same three consecutive
points and the two curves have contact of the second order. It follows
that the radius of curvature of any curve on the surface is identical
with that of the eurve in which its osculating plane cuts the surface.
The other result is Meusnier's Theorem ! The radius of curvature of an
oblique section of the surface at any point is the projection upon the
plane of that section of the radius of curvature of the normal section
which passes through the same tangent line. In other words, if the
radius of curvature of a normal section is known, that of the oblique
sections through the same tangent line may be obtained by multiplying
sections through Ba8 BT “F L een the plane normal to the surface



z-axi8 In the tangent plane be taken along the intersection with the oblique pla
Neglect infinitesimals of higher order than the second. Then

¥ = ¢(z) = Lax?, z=}(ra® + 2y + ty?) = }ra? (¢

will be the equations of the curve. The plane of the section is az — ry =0, as n
he seen by inspection. The radius of curvature of the curve in this plane may
found at once. For if u denote distance in the plane and perpendicular to
z-axis and if » be the angle between the normal plane and the oblique pl:
az—1ry =0,

u=2zseCy =y c8Cy =} rsecy-a? =pacscy- 2.
The form u = } rsec» - z? gives the curvature as rsecv. But the curvature in
normal section is r by (48”). As the curvature in the oblique section is sec tir
that in the normal section, the radius of curvature in the oblique section is ¢
times that of the normal section. Meusnier’s Theorem is thus proved.

89. These investigations with a special choice of axes give geometric proj
ties of the surface, but do not express those properties in a convenient anal]
form ; for if a surface z = f(z, y) is given, the transformation to the special a
is difficult. The idea of the indicatrix or its similar conic as the section of
surface by a plane near the tangent plane and parallel to it will, however, de
mine the general conditions readily. If in the expansion

Az — dz = } (rh® + 2 shk + tk?) = const. 1

the quadratic terms be set equal to a constant, the conic obtained is the project
of the indicatrix on the xy-plane, or if (52) be regarded as a cylinder upon
zy-plane, the indicatrix (or similar conic) is the intersection of the cylinder v
the tangent plane. As the character of the conic is unchanged by the project
the point on the surface is elliptic if 8* < rt, hyperbolic if s* > rt, and paraboli
&% = rt. Moreover if the indicatrix is hyperbolic, its asymptotes must project into
asymptotes of the conic (52), and hence if dx and dy replace & and k, the equal

rda? + 2 sdady + tdy? =0 |

may be regarded as the differential equation of the projection of the ic &
on the zy-plane. If 7, s, ¢ be expressed as functions £y, /oy, Sy, Of (%, ¥) and (53
factored, the integration of the two equations M (z, y)dx + N (x, ) dy thus fo
will give the finite equations of the projections of the asymptotic lines and, ta
with the equation z = f(x, y), will give the curves on the surface.

To find the lines of curvature is not quite so simple ; for it is necessary to de
mine the directions which are the projections of the axes of the indicatrix,
these are not the axes of the projected conic. Any radius of the indicatrix 1
be regarded as the intersection of the tangent plane and a plane perpendicula
the zy-plane through the radius of the projected conic. Hence

2=%=pE@—2)+qW—v) @—2)k=@E—v)h
are the two planes which intersect in the radius that projects along the direc
determined by k. k. The direction cosines
hik:ph + gk

———————— and h:k:0
B+ K3+ (ph + gk)?



y VHELILIOIE LHE square Ot tie corresponaing radius in the indicatrix. 1o deter-
ine the axes of the indicatrix, this radius is to be made a maximum or minimum
1bject to (62). With a multiplier ),

R+ ph+ gk +N(rh+sk) =0,  k+ph+ gk + A(sh + th) =0
re the conditions required, and the elimination of  gives

R (s (1+ p?) — par] + R [t (1 + p%) — r(1+ ¢%)] — K [L(1 + ¢*) — pgt] = 0
s the equation that determines the projection of the axes. Or

(1 +p")dr + pedy _ pedz + (1+ ¢*)dy
rdz + sdy sdx + tdy
 the differential equation of the projected lines of curvature.
In addition to the asymptotic lines and lines of curvature the geodesic or shortest
nes on the surface are important. These, however, are better left for the methods
E the calculus of variations (§ 159). The attention may therefore be turned to
nding the value of the radius of curvature in any normal section of the surface.
A reference to (48) and (40) shows that the curvature is
1 _ 2z _ rh® + 2shk + tk? _ rh% + 2shk + th?
R pt™ P - )
| the special case. But in the general case the normal distance to the surface is
\z — dz) cos 7, with sec y = V1 + p* + ¢, instead of the 2 z of the special case, and
e radius p? of the special case becomes p?sec?¢ = A? + k% + (ph + gk)? in the
ngent plane. Hence
1 2(Az —dz)cosy i 4+ 2slm + tm?

B R+¥+(ph+d Vitpag
here the direction cosines I, m of a radius in the tangent plane have been intro-
1ced from (54), is the general expression for the curvature of a normal section.
he form

(85)

(56)

1 rh®4 2shk + tk? 1 (66)
B R+E+ (0 + 0 Vit + ¢
here the direction A, k of the projected radius remains, is frequently more con-
nient than (56) which contains the direction cosines I, m of the original direction
the tangent plane. Meusnier’s Theorem may now be written in the form

cosy ri2 4 28lm 4 tm? )

R iiprd
here » is the angle between an oblique section and the tangent plane and where
m are the direction cosines of the intersection of the planes.

The work here given has depended for its relative simplicity of statement upon
e assumption of the surface (46) in solved form. It is merely a problem in
iplicit partial differentiation to pass from p, ¢, 7, 8, ¢ to their equivalents in terms

F,, F,, F, or the derivatives of ¢, ¥, x by a, 8.
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1. In (49) show %: Tt

maximum and minimum R. If R, and R, are the maximum and minimum values
of R, show

t cos2@ +ssin2 6 and find the directions of

1 1 11

—+4+—=r+¢ and S =rt—3%

‘Rl + R2 + Rl Rﬂ
Half of the sum of the curvatures is called the mean cwrvature; the product of the
curvatures is called the total curvature.

2. Find the mean curvature, the total curvature, and therefrom (by construct-
ing and solving a quadratic equation) the principal radii of curvature at the origin:
(@ z=zy, ) z=2"+ay+1y’ ()z=2@+y).

3. In the surfaces (@) z =y and (8) z = 2%? + ¥ find at (0, 0) the radius of
curvature in the sections made by the planes
(@) x4+ y =0, B ety+z=0, Me+y+22=0,
() z—2y=0, (e)z—2y+2=0, ) z+2y+4z=0
The oblique sections are to be treated by applying Meusnier’s Theorem.
4. Find the asymptotic directions at (0, 0) in Exs. 2 and 8.
5. Show that a developable surface i3 everywhere parabolic, that is, that 7t — s2 = 0
at every point; and conversely. To do this consider the surface as the envelope of

its tangent plane 2 — pyx — qgy = 2, — D%y — Go¥o, Where D, g, Tg, ¥, 2, are func-
tions of a single parameter a. Hence show

J(g:—::—" =0=(t—s), and J(p——-b——————"’ B P ‘1°”°) =g (62 —rl)y.
‘The first result proves the statement ; the second, its converse.

6. Find the differential equations of the asymptotic lines and lines of curvature
on these surfaces :

(a) z=uy, (8) z=tan-1(y/x), (v) 22 + y% = coshx, @) ayz=1.

7. Show that the mean curvature and total curvature are
L T, T 120
2\R, R, 2(1+ p? + q’)i RE,  (1+2*+¢%

8. Find the principal radii of curvature at (1, 1) in Ex. 6.

9. An umbilic is a point of a surface at which the principal radii of curvature
(and bence all radii of curvature for normal sections) are equal. Show that the
8
1 + P opg 1 +
the ellipsoid with semiaxes a, b, c.

conditions are —— —— for an umbilic, and determine the umbilics of



CHAPTER VI
COMPLEX NUMBERS AND VECTORS

70. Operators and operations. If an entity  is changed into an
entity v by some law, the change may be regarded as an operation per-
formed upon u, the operand, to convert it into v; and if # be introduced
as the symbol of the operation, the result may be written as v = fu.
For brevity the symbol f is often called an operator. Various sorts
of operand, operator, and result are familiar. Thus if » is a positive
number n, the application of the operator ~/ gives the square root; if w
represents a range of values of a variable x, the expression f(z) or f
denotes a function of x; if  be a function of =, the operation of dif-
ferentiation may be symbolized by D and the result Du is the deriva-

b
tive; the symbol of definite integration | (¥)dx converts a function

% (x) into a number; and so on in great va,;iety.

The reason for making a short study of operators is that a consider-
able number of the concepts and rules of arithmetic and algebra may
be so defined for operators themselves as to lead to a caleulus of opera-
tions which is of frequent use in mathematics ; the single application to
the integration of certain differential equations (§ 95) is in itself highly
valuable. The fundamental concept is that of a product: If w is oper-
ated upon by f to give fu=v and if v is operated upon by g to give gv =w,
PHE L fumv pegu=w, gu=w, ®
then the operation indicated as gf which converts u directly into w is
called the product of f by g. If the functional symbols sin and log be
regarded as operators, the symbol log sin could be regarded as the
product. The transformations of turning the xy-plane over on the
z-axis, so that ' = z, y' = — y, and over the y-axis, so that z' = —z,
y' =y, may be regarded as operations; the combination of these opera-
tions gives the transformation a' = — x, y' = — y, which is equivalent
to rotating the plane through 180° about the origin.

The products of arithmetic and algebra satisfy the commutative law
9f = fy, that is, the products of ¢ by fand of f by g are equal. This
is not true of operators in general, as may be seen from the fact that

- A
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is immaterial, as in the case of the transformations just considered, the
operators are said to be commutative. Another law of arithmetic and
algebra is that when there are three or more factors in a product, the
factors may be grouped at pleasure without altering the result, that is,

b(gr) = (hg)f = haf. @
This is known as the associative low and operators which obey it are
called associative. Only associative operators are considered in the
work here given.
For the repetition of an operator several times

H=F HE=1 PP=r @
the usual notation of powers is used. The law of indices clearly holds;
for fm+" means that f is applied m + n times successively, whereas
fmf» means that it is applied n times and then m times more. Not
applying the operator f at all would naturally be denoted by f°, so that
f°u =« and the operator /° would be equivalent to multiplication by 1;
the notation f° =1 is adopted.

If for a given operation f there can be found an operation g such
that the product fy =f° =1 is equivalent to no operation, then g is
called the inverse of f and notations such as

S W
fo=1, g=f 7 i ff 1 ©)

are regularly borrowed from arithmetic and algebra. Thus the inverse
of the square is the square root, the inverse of sin is sin~? the inverse

of the logarithm is the exponential, the inverse of Dis [. Some oper-

ations have no inverse; multiplication by 0 is a case, and so is the
square when applied to a negative number if only real numbers are
considered. Other operations have more than one inverse; integra-
tion, the inverse of D, involves an arbitrary additive constant, and the
inverse sine is a multiple valued function. It is therefore not always
true that /~'f =1, but it is customary to mean by ;- that particular
inverse of f' for which f~!f = ff~'=1. Higher negative powers are
defined by the equation f~"= (f-"" and it readily follows that
Jof~"=1, as may be seen by the example
I =BG F S =P = =1

The law of indices f™f* = f™*" also holds for negative indices, except

in so far as £~ may not be equal to 1 and may be required in the
reduction of f™f™ to fm+n,



If u, v, and u + v are operands for the operator £ and if

F(u+v)=fu+fo, %)
that the operator applied to the sum gives the same result as the
m of the results of operating on each operand, then the operator
is called linear or distributive. If f denotes a function such that
© + ) =f(x) + f(y), it has been seen (Ex. 9, p. 45) that # must he
uivalent to multiplication by a constant and fr = Cz. For a less
ecialized interpretation this is not so; for

D(u+v)=Du+ Dv and f(u—f—v): u+fv

e two of the fundamental formulas of calculus and show operators
ich are distributive and not equivalent to multiplication by a constant.
svertheless it does follow by the same reasoning as used before (Ex. 9,
45), that fauw = nfu if f is distributive and if » is a rational number.
Some operators have also the property of addition. Suppose that =
an operand and f, g are operators such that fu and gu are things that
1y be added together as fu + gu, then the sum of the operators, £+ g,
defined by the equation (f+ g)u =fu+ gu. If furthermore the
erators f, g, b are distributive, then

M+ =hf+hg and (f+gh=[fl+gh ®)
d the multiplication of the operators becomes itself distributive. To
ove this fact, it is merely necessary to consider that

MG+ g)u] = h(fu + gu) = hfi + hyu
d (f + 9) (ou) = fhu + ghu.
Operators which are Lty we, distributive, and which
mit addition may be treated algebmwally, in so far as palynomwls are
ncerned, by the ordinary algorisms of algebra ; for it is by means
the associative, commutative, and distributive laws, and the law of
dices that ordinary algebraic polynomials are rearranged, multiplied
t, and factored. Now the operations of multiplication by constants
d of differentiation or partial differentiation as applied to a function
one or more variables @, y, #, - -- do satisfy these laws. For instance
¢(Du) =D (ew), D,Du=D,Du, (D,+ D,)Du=DDu~+D,Du. (T)
ence, for example, if y be a function of z, the expression
Dy +a D"ty + - + a, 1Dy + a3,

rere the coefficients @ are constants, may be written as

P . B L PN




Where a, «,, -, @, are the roots oI the algebralc polynomial
4agr 4 ta,_xta,=0

EXERCISES

1. Show that (fyh)~1 = h~1g~1f-1, that is, that the reciprocal of a produc
operations is the product of the reciprocals in inverse order.

2. By deflnition the operator gfy—1 is called the transform of f by g. Sl
that (a) the transform of a product is the product of the transformns of the fac
taken in the same order, and (8) the transform of the inverse is the inverse of
transform.

3. If 3% 1 but $2 = 1, the op s is by definition said to be involutory. SI
that (a) an involutory operator is equal to its own inverse; and conversely (f
an operator and its inverse are equal, the operator is involutory ; and (v) if
product of two involutory operators is commutative, the product is itself inv
tory ; and conversely (3) if the product of two involutory operators is involut:
the operators are commutative.

4. If f and ¢ are both distributive, so are the products fy and gf.
5. If fis distributive and n rational, show fnu = nfu.

6. Expand the following operators first by ordinary formal multiplication
second by applying the operators successively as indicated, and show the res
are identical by translating both into familiar forms.

dy o dy
@ @=1)(D—2)y, Ans. 2 —8-"+2v,

) @—-1)D(D+ 1)y, ) DD —2)(D+1)(D+3)y.
7. Show that (D — a) [e“ f e—“Xd:c] = X, where X is a function of =,
hence infer that ex= f e~ax(x) dx is the inverse of the operator (D — a) (x).
8. Show that D (e*y) = e2=(D + a)y and hence generalize to show tha
P (D) denote any polynomial in D with constant coefficients, then
P (D) ey = <P (D + a)y.
Apply this to the following and check the results.
(@) (D3 —38D + 2)etey = 2%(D? 4 Dyy = e2= % ¥ %),
(B) (D*—~8D—2)ey,  (v) (D°— 8D+ 2)exy.
9. If y is a function of z and = = ¢’ show that
Doy = e~ Dy, Dy = e~ 2¢D¢(Dy— 1)y, - -+, D2y = e~ PDe(De—1) -+ - (De—p +

10. Is the expression (ADs + kD,)» which occurs in Taylor's Formula (§
the nth power of the operator AD; + kD, or is it merely a conventional sym]
The same question relative to (zD; + y.D,)* occurring in Euler’s Formula (§ 5!



tions for the equality, addition, and multiplication of complex num-

bers are a+4bi=c+di ifandonlyif a=¢ b=d,

[a+bi]+[c+di]=(+)+0+d)i )
L@+ bi][c + di] = (ne — bd) + (ad + be) i.
It readily follows that ¢the commutative, associative, and distributive
laws hold in the domain of complex numbers, namely,

e+ B=p+a @+B)+y=a+(B+y)
aB = fa, (@B) y = & (By), 10
a(B+vy)=aB+ay, (+B)y=ay+ By,

where Greek letters have been used to denote complex numbers.
Division is accomplished by the method of rationalization.

a+bL:=a+bz:c—dL:=1ac+bd +(Z/c—a§ i. a1
cH+di c4dic—di 4 d?

This is always possible except when ¢* + @* = 0, that is, when both ¢
and d are 0. A complex number is defined as 0 when and only when
its real and pure imaginary parts are both zero. With this definition 0
has the ordinary properties that @ + 0 = @ and @0 = 0 and that «/0 is
impossible. Furthermore if a product afB vanishes, either « or B vanishes.
For suppose
[a + bi] [c + di] = (ac — bd) + (ad + be) i = 0.

Then ac—bd =0 and ad+bc=0, 12)

from which it follows that either a =& =0 or ¢ =d=0. From the
fact that a product cannot vanish unless one of its factors vanishes
follow the ordinary laws of cancellation. In brief, all the elementary
laws of real algebra hold also for the algebra of complew mumbers.

By assuming a set of Cartesian codrdinates in the «y-plane and asso-
ciating the number @ + &: to the point (a, 0), a graphical representation
is obtained which is the counterpart of the number scale for real num-
bers. The point (a, 4) alone or the directed line from the origin to the
point (a, ) may be considered as representing the number a + bi.
If 0P and 0Q are two directed lines representing the two numbers
@ +biand ¢ 4 di, a reference to the figure shows that the line which




magnitude, the length 4B, and direction, the
direction of the line 4B from 4 to B. 4
quantity which has magnitude and direction is
called a vector; and the parallelogram law s
ealled the law of vector addition. Complex num- g
bers may therefore be regarded as vectors.

From the figure it also appears that 0Q and PR have the same mag-
nitude and direction, so that as vectors they are equal although they
start from different points. As OP + PR will be regarded as equal to
OP + 0Q, the definition of addition may be given as the triangle law
instead of as the parallelogram law; namely, from the terminal end P
of the first vector lay off the second vector PR and close the triangle
by joining the initial end O of the first vector to the terminal end R of
the second. The absolute value of a complex number a + bi is the
magnitude of its vector OP and is equal to Va? + 0% the square root of
the sumn of the squares of its real part and of the coefficient of its pure
imaginary part. The absolute value is denoted by |a + 4i|as in the case
of reals. If @and B are two complex numbers, the rule|e|+|8]| = |« + 8|
is a consequence of the fact that one side of a triangle is less than the
sum of the other two. If the absolute value is given and the initial end
of the vector is fixed, the terminal end is thereby constrained to lie
upon a circle concentric with the initial end.

72. When the complex numbers are laid off from the origin, polar
cobrdinates may be used in place of Cartesian. Then

R

(a+c,b+d)

r=Val+ 0, $=tan'0/a¥, a=rcos¢, b=rsing 1
and a + ib =r(cos ¢ + ¢ sin ¢). 3
The absolute value r is often called the modulus or magnitude of the
complex number; the angle ¢ is called the angle or argument of the
number and suffers a certain indetermination in that 2 nar, where n is
a positive or negative integer, may be added to ¢ without affecting the
number. This polar representation is particularly useful in discussing
products and quotients. For if

@ =r (cos ¢, + i8in ¢), B =r,(cos ¢, + isin ¢)),
then aB =ryr,[cos (¢, + b,) + isin (b, + ¢,)],

* As both cos ¢ and sin ¢ are known, the quadrant of this angle is determined

14)
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magnitude of « product is the product of the magnitudes of the factors,
and the angle of « product is the sum of the angles of the fuctors; the
general rule being proved by induction.

The interpretation of multiplication by a complex number as an oper-
ation is illuminating. Let B8 be the multiplicand and @ the multiplier.
As the product @B has a magnitude equal to the product of the magni-
tudes and an angle equal to the sum of the angles, the factor & used as
a multiplier may be interpreted as effecting the rotation of 8 through
the angle of @ and the stretching of B in the ratio |@|:1. From the
geometric viewpoint, therefore, ltiplication by a complex number is
an operation of rotation and stretching in the plame. In the case of
@=c0s ¢ + isin ¢ with =1, the operation is only of rotation and
hence the factor cos ¢ + @sin ¢ is often called a cyclic factor or versor.
In particular the number i = V/— 1 will effect a rotation through 90°
when used as a multiplier and is known as a quadrantal versor. The
series of powers i, @ = —1, * = — 4, ¢* =1 give rotations through 90°,
180°, 270°, 360°. This fact is often given as the reason for laying off
pure imaginary numbers b¢ along an axis at right angles to the axis
of redls.

As a particular product, the nth power of a complex number is

" = (a 4 )" = [r(cos ¢ + ¢ sin ¢)]" = r*(cos ne + 1 sinne); (15)
and (cos ¢ + ©5in ¢)* = o8 np + % sin n¢, 15"

which is a special case, is known as De Moivre's Theorem and is of use
in evaluating the functions of n¢; for the binomial theorem may be
applied and the real and imaginary parts of the expansion may be
equated to cos n¢ and sinn¢p. Hence

€08 g = cOs"p — "'"ZJ_"LQ cos"~%¢ sin’p
+ n—l(n4—'2 n—3 cos" 4 sintep — -+ (16)
8in ng = n cos™~ ¢ sin ¢ — M——x,n——:—zlcos"—% sin$ +---.

As the nth root Va of @ must be a number which when raised to the
nth power gives a, the nth root may be written as

\7¢;=\"/;(cos $/n + isin /n). aan
The angle ¢, however, may have any of the set of values
d bA42mr dldr ... dd2(n — 1N



A =

®, 3§+_Lf_7r, 92_,_4_"", . i‘,{,M. (18)
n n n n

S = halndag

n n n

Hence there may be found just » different nth roots of any given com-
plex number (including, of cowrse, the reals).

‘The roots of unity deserve mention. The equation «» = 1 has in the real domain
one or two roots according as n is odd or even. But if 1 be regarded as a complex
number of which the pure imaginary part is zero, it mnay be represented by a point
at a unit distance froin the origin upon the axis of reals; the magnitude of 1is 1
and the angle of 1is 0, 2, .., 2(n — 1) 7. The nth roots of 1 will therefore have
the magnitude 1and one of the angles 0, 27 /n, - -+, 2(n — I)7/n. The nnth roots
are therefore

1, a= cos%’-r+ isinzT"r, a? = coasé—7r+ isinﬂr, seey

-1 COS2(n~ Hr + isin 2(n-—1)1r
n

and may be evaluated with a table of natural functions. Now 2 — 1 =0 is factor~

able as (z — 1)(an—! 4 2n—=2 4 ... 4+ £ + 1) = 0, and it therefore follows that the

nth roots other than 1 must all satisfy the equation formed by setting the second

factor equal to 0. As a in particular satisfies this equation and the other roots are

a?, ..., an=1, it follows that the sum of the n nth roots of unity is zero.

EXERCISES
1. Prove the distributive law of multiplication for complex numbers.

2. By definition the pair of imaginaries a + bi and a — bi are called conjugate
imaginaries. Prove that (@) the sum and the product of two conjugate imaginaries
are real ; and conversely () if the sum and the product of two imaginaries are both
real, the imaginaries are conjugate.

3. Show that if P(z, ) is a symmetric polynomial in z and y with real coeffi-
cients so that P(z, y) = P(y, ), then if conjugate imaginaries be substituted for &
and y, the value of the polynomial will be real.

4. Show that if @ + bi is a root of an algebraic equation P(z) =0 with real
coefficients, then a — bi is also a root of the equation.

5. Carry out the indicated operations algebraically and make a graphical repre.
sentation for every number concerned and for the answer :

@@+ @ Q+V3Ya-9), () G+V=2)([E+V=5),
5

141 1+1V3
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6. Plot and find the modulus and angle in the following cases:

(@ —2 (B —2V=1, (y)8+4i, (5)1—iV—8



8. Sarry out the indicated operations trigonometrically and plot:

(o) The examples of Ex. b, @ Vitivici, (nV-2+2V31,

(5 (Viti+Viziy, (0 VVz+ V=2, () V2+2V3i
(n) V16(cos200° + ¢sin200°,  (§) V1, (1) VB
9. Find the equations of analytic geometry which represent the transforma~
tion equivalent to multiplication by & = —1+ vV —3.

10. Show that |z — a|=r, where z is a variable and « a fixed complex number,
is the equation of the circle (z — )% + (y — b)? =12,

11. Find cos 5z and cos8% in terms of cosz, and sin 6 and sin 7= in terms of
sinz.

12. Obtain to four decimal places the five roots V1.

13. If z =2 + iy and 2’ =2’ + ', show that 2’ = (cos¢ — isin¢)z~— a is the
formula for shifting the axes through the vector distance a = a + ib to the new
origin (@, b) and turning them through the angle ¢. Deduce the ordinary equa-
tions of transformation.

14. Show that |z — a|= k|z — 8|, where k is real, is the equation of a circle ;
specify the position of the circle carefully. Use the theorem: The locus of points
whose distances to two fixed points are in a constant ratio is a circle the diameter
of which is divided internally and externally in the same ratio by the fixed points,

15. The transformation 2’ = :: + Z, where a, b, ¢, d are complex and ad — be # 0,

is called the general linear transformation of z into z’. Show that
ca+d
ef+d
Hence infer that the transformation carries circles into circles, and points which
divide a diameter internally and externally in the same ratio into points which
divide some diameter of the new circle similarly, but generally with a different ratio.

|# — «’| =k]z’ — | becomes |z—a|=k

Jz—8l.

73. Functions of a complex variable. Let # =2 + ¢y be a complex
variable representable geometrically as a variable point in the zy-plane,
which may be called the complex plane. As z determines the two real
numbers « and y, any function F(x, y) which is the sum of two single
valued real functions in the form

F(z, y) = X (2, y) + ¥ (x, y) = R(cos & + ¢ sin @) 19)
will be completely determined in value if z is given. Such a function
is called a complex function (and not a function of the complex variable,

for reasons that will appear later). The magnitude and angle of the
function are determined by

B=VETT, ocse=2 sne=1i. o)



additive 2 n-n:) unless R = 0, in which case X and Y also vanish and the
expression for ® involves an indeterminate form in two variables and
is generally neither determinate nor continuous (§ 44).

If the derivative of F with respect to z were sought for the value
2z = a + i, the procedure would be entirely analogous to that in the
case of a real function of a real variable. The increment Az = Az 4 iAy
would be assumed for # and AF would be computed and the quotient
AF/Az would be formed. Thus by the Theorem of the Mean (§ 46),

AF _AX 4 iAY _ (X{+14¥) Az + (X, + 1Y) Ay

Az Az + Ay Az + 1Ay +4 @

where the derivatives are formed for (a, 5) and where ¢ is an infinitesi-
mal complex number. When Az approaches 0, both Az and Ay must
approach 0 without any implied relation between them. In general the
limit of AF/Az is a double limit (§ 44) and may therefore depend on
the way in which Az and Ay approach their limit 0.

Now if first Ay = 0 and then subsequently Az = 0, the value of the
limit of AF/Az is X+ <Y, taken at the point (a, b); whereas if first
Az = 0 and then Ay = 0, the value is — X, 4 ¥,. Hence if the limit
of AF/Az is to be independent of the way in which Az approaches 0, it
is surely necessary that

oXx 0¥ _ _ .9X  O¥

P z—a—m-———za—y-+—a7/~;
X 9y X A g
or -5;—'37 and -5;——5; (22)

And ovnversely if these relations are satisfied, then

AF 0X | .0Y Yy .0X

a=(@rim) -G -5)
and the limit is X7 4 ¢¥; = ¥; — iX, taken at the point (a, 5), and is
independent of the way in which Az approaches zero. The desirability
of having at least the ordinary functions differentiable suggests the
definition: 4 complex function F(m, y) = X (%, y) + i¥(x, y) s con~
sidered as a function of the complex variable z = x + iy when and only
when X and ¥ are in general differentiable and satisfy the relations (22).
In this case ¢he derivative is



oy < AE X 0¥ 0¥ _ox.
F(z>_dz—5x+13x_ay ’Li)y @)

These conditions may also be expressed in polar cosrdinates (Ex. 2).

A few words about the function & (z, y). This is a multiple valued function of
the variables (z, %), and the difference between two neighboring branches is the con-
stant 2. The application of the discussion of § 45 to this case shows at once that,
in any simply d region of the lex plane which contains no point (a, b)
such that R (a, b) = 0, the different branches of ¢ (z, ¥) may be entirely separated
50 that the value of & must return to its initial value when any closed curve is de-
scribed by the point (z, ¥). If, however, the region is multiply connected or contains
points for which R = 0 (which makes the region multiply connected because these
points must be cat out), it may happen that there will be circuits for which &,
although changing continuously, will not return to its initial value. Indeed if it can
be shown that ¢ does not return to its initial value when changing continuously as
(x, ) describes the boundary of a region simply connected except for the excised
points, it may be inferred that there must be points in the region for which B =0

An application of these results may be made to give a very simple demonstration
of the fundamental theorem of algebra that every equation of the nth degree has at least
one root. Comsider the function

F@)=zr+ a2~ 4o+ auiz + aw = X (3, y) + 1Y (2, 9),
where X and Y are found by writing z as ¢ 4 iy and expanding and rearranging.
The functions X and ¥ will be polynomials in (z, ¥) and will therefore be every-
where finite and continuous in (x, ¥). Consider the angle & of F. Then
- - ) L A P
& =ang. of F = ang. of z* 1+; E +F+z—“ =ang. of 22 + ang. of (1 +---).
Next draw about the origin a circle of radius r so large that

Op 1

-1

al, ... af_lal . el o]
2|+t B Pl el R e wle

Then for all points z upon the circumference the angle of F is
& =ang. of F=n(ang. of 2) + ang. of 1 4+ 9), [n]<e

Now let the point (x, ¥) describe the circumference. The angle of z will change by
2 for the complete circuit. Hence & must change by 2 nar and does not return to
its initial value. Hence there is within the circle at least one point (a, b) for which
R(a, b) = 0 and consequently for which X (a, b) = 0 and ¥ (a, b) = 0 and F(a, b)=0.
Thus if a = a + ib, then F(a)=0 and the equation F(z) = 0 is seen to bave at
least the one root a. It follows thatz — a is a factor of F(2) ; and hence by induc-
tion it may be seen that F'(z) = 0 has just n roots.

74. The discussion of the algebra of complex numbers showed how
the sum, difference, product, quotient, real powers, and real roots of
such numbers could be found, and hence made it possible to compute
the value of anv given algebraic expression or function of z for a given



really a function of » in the sense that it has a derivative with respect
to #, and to find the derivative. Now the differentiation of an algebraic
function of the variable « was made to depend upon the formulas of dif-
ferentiation, (6) and (7) of § 2. A glance at the methods of derivation
of these formulas shows that they were proved by ordinary algebraic
manipulations such as have been seen to be equally possible with imagi-
naries as with reals. It therefore may be concluded that an alyebraic
expression in z has a derivative with respect {o z and that derivative
may be found just as if z were @ renl variable.

The case of the elementary functions ¢?, logz, sinz, cosz, --- other
than algebraic is different; for these functions have not been defined
for complex variables. Now in seeking to define these functions when =
is complex, an effort should be made to define in such a way that: 1°
when z is real, the new and the old definitions become identical ; and
2° the rules of operation with the function shall be as nearly as possi-
ble the same for the complex domain as for the real. Thus it would be
desirable that De* =¢* and ¢*** = ¢%“, when z and w are complex.
With these ideas in mind one may proceed to define the elementary
functions for complex arguments. Let

¢ = R(x, y)[cos ®(x, y)+ isin@(z, y)]- (24)
The derivative of this function is, by the first rule of (23),

2 .0 .
De* = a?C(Rcos tb)+z-a—9-0(R sin @)
= (R;co8 ® — Rsin®- ®;) + i (R;sin ® + R cos & - ®)),
and if this is to be identical with ¢* above, the equations
R/cos ® — R®;sin ® = R cos & o R,=R
N . )4
R;sin @ + RP, cos ® = Rsin @ @, =0

must hold, where the second pair is obtained by solving the first. If
the second form of the derivative in (23) had been used, the results
would have been R; =0, &, =1. It therefore appears that if the
derivative of ¢, however computed, is to be ¢, then

R;=R, Rj=0, =0, & =1
are four conditions 1mposed upon R and ® These conditions will ba
satisfied if R = ¢* and ® = y.* Hence define

¢ =&tV = ¢ (cosy + isiny). (25)
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exponential law ¢ +* = e%* holds.
For the special values } 7ri, mi, 2 7 of z the value of ¢ is

A= =1, o=
Hence it appears that if 2 nmri be added to 2, ¢ is unchanged ;
e +2mm = 3 period 2 i, (26)

Thus in the complex domain ¢ has the period 2 ari, just as cos « and
sin @ have the real period 2. This relation is inherent; for
' =cosy+isiny, e =cosy— isiny,
Ll er — eVt
g siny=——p

The trigonometric functions of a real variable 7 may be expressed in
terms of the exponentials of y: and — yi. As the exponential has been
defined for all complex values of #, it is natural to use (27) to define
the trigonometric functions for complex values as

and cos y =

@n

o - =3t . ot — gmat
€08 z = _{2 ) sine=—0p 2

With these definitions the ordinary formulas for cos (z + w), Dsinz, ---
may be obtained and be seen to hold for complex arguments, just as the
corresponding formulas were derived for the hyperbolic funetions (§ 5).
As in the case of reals, the logarithm log # will be defined for com-
plex numbers as the inverse of the exponential. Thus
if e =w, then logw ==z+ 2nmi, (28)
where the periodicity of the function ¢* shows that the logarithm. is not
uniquely determined but admits the addition of 2 i to any one of its
values, just as tan~!z admits the addition of nar. If w is written as a
complex number % + 7 with modulus » = V? + +* and with the angle
#, it follows that

w =1+ w =17(coS ¢ + isin p) = re? = gler+; (29)
and log w = log » + ¢i = log Vu? + v* 4 ¢ tan= (v/u)

is the expression for the logarithm of w in terms of the modulus and
angle of w; the 2nwi may be added if desired.

To this point the expression of a power a’, where the exponent 4 is
imaginary, has had no definition. The definition may now be given in
terms of exponentials and logarithms. Let

@ =" or loga® =0bloga



-0 LAIS Way the problem ol computing a” 13 reduced to one already
solved. From the very definition it is seen that the logarithm of a
power is the product of the exponent by the logarithm of the base, as
in the case of reals. To indicate the path that has been followed in
defining functions, a sort of family tree may be made.

real numbers, z real angles,
real powers and real trigonometric functions,
roots of reals, o cosz, sinz, tan—1z, ...
L 1 : )
exponentials, logarithms real powers and roots
of reals, e, logx of imaginaries, z»

exponentials of imaginaries, ez

1 of i inaries, log z tri] ic 11
o of imaginaries
imaginary powers, 2%

EXERCISES

1. Show that the following complex functions satisfy the conditions (22) and
are therefore functions of the complex variable 2. Find F” (2):

(@) «* — 2 + 2ixy, (B) 2° — 8(zp% + 22 — 3%) + i (32% — y° ~ Bay),
z ¥ /2?4 72 4 itan—1Y

(y)m—lm, (8) log Va? + 2 + itan 15,

(€) ercosy + iezsiny, (§) sinzsinhy + icosz coshy.

2. Show that in polar cordinates the conditions for the existence of F’(z) are
96"_: = %% % = ;% with P (z) =(2§ ¥ ig)(cos.p— isin g,
3. Use the conditions of Ex. 2 to show from D logz=2-1 that logz = logr + ¢i.
4. From the definitions given above prove the formulas
(a) sin(z + i) = sinz coshy + icosxsinh Yy
(B) cos(z + iy) = cosx coshy — isinzsinhy,

. 8in 22 + isinh 2y
tan (z = .
™ &+ ) €082z + cosh2y

5. Find to three decimals the pl bers which express the values of ;
(@ &, ® ¢ ) AV ) 1=,
(e) sindari, (1) cosi, (n) sin(3+3V=8), (6 tan(—1—1),
() log(=1), () logi,  (3) log(3 +31V=8), () log(—1—1).

6. Owing to the fact that log a is multiple valued, a® is multiple valued in such
a manner that any one value may be multiplied by e2»7%, Find one value of each
of the following and several values of one of them :

3
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8. Show that (a)c = a’¢; and fill in such other steps as may be snggested by
the work in the text, which for the most part has merely been sketched in a broad
way.

9. Show that if f(z) and g(z) are two functions of a complex variable, then
f(2) £ 9(2), af(z) with @ a complex constant, f(z) g (2), f(2)/g(2) are also func-
tions of z.

10. Obtain logarithmic expressions for the inverse trigonometric functions.
Find sin—1i.

75. Vector sums and products. Asstated in § 71, a vector is a quan-
tity which has magnitude and direction. If the magnitudes of two
vectors are equal and the directions of the two vectors are the same,
the vectors are said to be equal irrespective of the
position which they occupy in space. The vector
— @ i8 by definition a vector which has the same
magnitude as @ but the opposite direction. The
vector me is a vector which has the same direction
as « (or the opposite) and is m (or —m) times as
long. The law of vector or geometric addition is
the parallelogram or triangle law (§ 71) and is still
applicable when the vectors do not lie in a plane
but have any directions in space; for any two vec-
tors brought end to end determine a plane in which the construction
may be carried out. Vectors will be designated by Greek small letters
or by letters in heavy type. The relations of equality or similarity
between triangles establish the rules

Gt B=B+a at(B+y)=(+B) +y, mle+p)=mat+mB (30)

as true for vectors as well as for numbers whether real or complex. A
vector is said to be zero when its magnitude is zero, and it is writ-
ten 0. From the definition of addition it follows that
@+ 0=a. In fact as far as addition, subtraction, and
multiplication by numbers are concerned, vectors obey
the same formal laws as numbers.

A vector p may be resolved into components par-
allel to any three given vectors @, 8, y which are not
parallel to any one plane. For let a parallelepiped
be constructed with its edges parallel to the three
given vectors and with its diagonal equal to the vector whose compo-
nents are desired. The edges of the parallelepiped are then certain




of p. The veetor p may be written as
p=uwa+ yB + zy* (31)
It is clear that two equal vectors would necessarily have the same
components along three given directions and that the components of a.
zero vector would all be zero. Just as the equality of two complex
numbers involved the two equalities of the respective real and imagi-
nary parts, so the equality of two vectors as
p=aa+ yB+ry=ac+yB+zy=p (81

9 =y = !
yy=yhe=3\

involves the three equations @ =

As a problem in the use of vectors let there be given the three vectors a, 8, v
from an assumed origin O to three vertices of a parallelogra.n ; required the vector
to the otlier vertex, the vector expressions for the sides and diagonals of the paral-
lelogram, and the proof of the fact that the diagonals bisect
each other. Consider the figure, The side AB is, by the
triangle law, that vector which when added to 04 =
gives OB = B, and hence it must be that AB =8~ «.
In like manner AC =y — a. Now 0D is the sumn of 7
and CD,and CD = AB; hence OD = v + § — . The 4, - r)
onal AD is the difference of the vectors O and 04. ‘"
is therefore v + 8 — 2 a. The diagonal BC is y — B. Y- * tae ve o from O to the
middle point of BC may be found by adding to OB one half of 1C. Hence this
veetor is 8 + § (v — B) or (8 + 7). In like manner the vector to the middle point of
ADisseentobe @ + } (v + 8 — 2 ) or } (v + B), which i~ identical with the former.
The two middle points therefore coincide and the diagonals bisect each other.

Let @ and B be any two vectors, || and |B] their respective lengths,
and £ (&, B) the angle between them. For convenience the vectors may
e considered to be laid off from the same origin. The product of the
lengths of the vectors by the cosine of the angle between the vectors
is called the scalar product,

scalar product = a«8 = ||| 8| cos £ (2, B), (32)
of the two vectors and is denoted by placing a dot between the letters.
This combination, called the scalar product, is a number, not a vector.
As |B|cos £ (&, B) is the projection of B upon the direction of a, the
scalar product may be stated to be equal to the product of the length
of either vector by the length of the projection of the other upon it.
In particular if either vector were of unit length, the scalar product
would be the projection of the other upon it, with proper regard for

*The numbers %, ¥, 2 are the oblique codrdinates of the terminal end of p (if the

initial end be at the origin) referred to a set of axes which are parallel to , 8, v and
upon which the unit lengths are taken as the lengths of a, 8, v respectively.



of the angle between them.

The scalar product, from its definition, is commautative so that @« f=pea.
Moreover (ma)eB = a«(mfB) = m (a+8), thus allowing a nwmerical factor
n to be combined with either factor of the product. Furthernore the
Listributive b

a(B+y) =B+ ay or (@+ B)y=awy+ By (33)
s satisfied as in the case of numbers. For if a be written as the product
w, of its length « by a vector @, of unit length in the direction of e,
he first equation becomes

aap(B+vy) =aapB+axey or @ (B+7y)=a B+ ap-y.

And now ¢ +(8 + y) is the projection of the sum B8+ y upon the direc-
ion of @, and @+ + @,y is the sum of the projections of B and y upon
this direction ; by the law of projections these are equal and hence the
listributive law is proved.

The associative law does not hold for scalar products; for (ag)y
means that the vector y is multiplied by the number a.8, whereas
v (B+y) means that e is multiplied by (B+y), a very different matter.
The laws of cancellation cannot hold; for if

a3 =0, then |a|/B]cosZL(a B)=0, (34)
and the vanishing of the scalar product e« implies either that one of
the factors is O or that the two vectors are perpendicular. In fact
w3 = 0 is called the condition of perpendicularity. It should be noted,
however, that if a vector p satisfies

pa=0, pB=0, pry=0, (35)
three conditions of perpendicularity with three vectors @, 8, y not

parallel to the same plane, the inference is that p = 0.

76. Another product of two vectors is the vector product,

vector product = axg = v|a||B8|sin £ (a, B), (36)

where » represents a vector of unit length normal to the plane of &
and B upon that side on which rotation from e to
B through an angle of less than 180° appears posi- axg
bive or counterclockwise. Thus the vector product
s itself a vector of which the direction is perpen-
dicular to each factor, and of which the magni- a
bude is the product of the magnitudes into the
sine of the included angle. The magnitude is therefore equal to the
area of the parallelogram of which the vectors @ and 8 are the sides.

v




As rotation from B to @ is the opposite of that from « to B, it follows
from the definition of the vector product that

Bra = — axB, not «axf= Pxa, 37)

and the product is not commutative, the order of the factors must be
carefully observed. Furthermore the equation

wxf = v|al[B]sin £ (@ §) = 0 @8
implies either that one of the factors vanishes or that the vectors aand
B are parallel. Indeed the condition @xf = 0 is called the condition of
parallelism. The laws of cancellation do not hold. The associative law
also does not hold ; for (axB)xy is a vector perpendicular to axf and y,
and since axg is perpendicular to the plane of @ and S, the vector (axB)xy
perpendicular to it must lie in the plane of @ and B; whereas the vec-
tor @x(Bxy), by similar reasoning, must lie in the plane of 8 and y; and
hence the two vectors cannot be equal except in the very special case
where each was parallel to 8 which is common to the two planes.

But the operation (ma)xB = ax(mf) = m(axf), which consists in
allowing the transference of a numerical factor to any position in the
product, does hold ; and so does the distributive law

ax(B+y)=axB+axy and (a4 B)xy=axy+Bxy, (39)
the proof of which will be given below. In expanding according to
the distributive law care must be exercised to keep the order of the
factors in each vector product the same on both sides of the equation,
owing to the failure of the commutative law; an interchange of the
order of the factors changes the sign. It might seem as if any algebraic
operations where so many of the laws of elementary algebra fail as in
the case of vector products would be too restricted to be very useful;
that this is not so is due to the astonishingly great number of problems
in which the analysis can be carried on with only the laws of addition
and the distributive law of multiplication combined with the possibility
of transferring a numerical factor from one position to another in a
product; in addition to these laws, the scalar product a.8 is commuta-
tiveand the vector product axg is commutative except for change of sign.

In addition to segments of lines, plane areas may be regarded as
wvector guantities ; for a plane area has magnitude (the amount of the
area) and direction (the direction of the normal to its plane). To specify
on which side of the plane the normal lies, some convention must be
made. If the area is part of a surface inclosing a portion of space, the



plane, its positive side is determined only in connection with some
assigned direction of description of its bounding curve; the rule is: If
a person is assumed to walk along the boundary of an area in an
assigned direction and upon that side of the plane which

causes the inclosed area to lie upon his left, he is said 4

to be upon the positive side (for the assigned direction

of description of the boundary), and the vector which

represents the area is the normal to that side. It has

been mentioned that the vector product represented

an area.

That the projection of a plane area upon a given plane gives an area
which is the original area multiplied by the cosine of the angle between
the two planes is a fundamental fact of projection, following from the
simple fact that lines parallel to the intersection of the two planes are
unchanged in length whereas lines perpendicular to the intersection
are multiplied by the cosine of the angle between the planes. As the
angle between the normals is the same as that between the planes, /e
projection of an area upon a plane and the projection of the vector rep-
resenting the area wupon the normal to the plane are equivalent. The
projection of a closed area upon a plane is zero; for the area in the
projection is covered twice (or an even number of times) with opposite
signs and the total algebraic sum is therefore 0.

To prove the law ax(8 + y) = axB + axy and illustrate the use of
the vector interpretation of areas, construct a triangular prism with the
triangle on B, y, and B+ y as base and « as lateral edge. The total
vector expression for the surface of this prism is

Bra + yxa + ax(B+y) + §(Bxy) — $ Bxy =0,
and vanishes because the surface is closed. A cancel-
lation of the equal and opposite terms (the two
bases) and a simple transposition combined with the
rule Bxa = — ax@ gives the result

@x(B+y) = — fxa — yxa = axf + axy.

A system of vectors of reference which is particularly useful consists
of three vectors i, j, k of unit length directed along the axes X, ¥, Z
drawn so that rotation from X to ¥ appears positive from the side of
the zy-plane upon which Z lies. The components of any vector r drawn
from the origin to the point (z, y, #) are

zi, yj, 2k, and r=uai+ yj+ 2k
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ixj=—jxi=k, jxk=—k«j=1i kd=—ixk=j

By means of these products and the distributive laws for scalar an
vector products, any given products may be expanded. Thus if

@ =ai+ aj+ak and B=0bi+0,j+ bk,
then @f = “1]’1 + ah, + ahy, (41

axf = (ap, — ap)i + (ah, — ab) i+ (a0, — a )k,

by direct multiplication. In this way a passage may be made froi
vector formulas to Cartesian formulas whenever desired.

EXERCISES
1. Prove geometrically that @ + (8 + v) = (@ + ) + v and m(a + g) = ma + m

2. If « and B are the vectors from an assumed origin to 4 and B and if
divides 4 B in the ratio m : n, show that the vector to C is v = (na + mg)/(mn + n

3. In the parallelogram ABCD show that the line BE connecting the vertex |
the middle point of the opposite side CD is trisected by the diagonal 4D an
trisects it.

4. Show that the medians of a triangle meet in a point and are trisected.

5. If m, and m, are two masses situated at P, and P,, the center of gravity
center of mass of m, and m, is defined as that point G on the line P, P, whic
divides P, P, inversely as the masses. Moreover if @, is the center of mass of
number of masses of which the total mass is M, and if G, is the center of mass
a number of other masses whose total mass is M,, the same rule applied to M, an
M, and G, and @, gives the center of gravity G of the total number of masse
Show that

myIy + myl, and F= M1 + Mply + « o 4 MuTy _ Zmx

my +m, My + Mg+ F M m’
where T denotes the vector to the center of gravity. Resolve into components |
show

Zmz . Zmy
Zm' YT Im

==
Zm

6. If a and g are two fixed vectors and p a variable vector, all being laid ¢
from the same origin, show that (p — g).a == 0 is the equation of a plane throu
the end of 8 perpendicular to a.

7. Let a, B, v be the vectors to the vertices 4, B, C of a triangle. Write tl
three equations of the planes through the vertices perpendicular to the opposi
sides. Show that the third of these can be derived as a combination of the oth
two ; and hence infer that the three planes have a line in common and that t]
perpendiculars from the vertices of a triangle meet in a point,



8. Solve the problem analogous to Ex. 7 for the perpendicular bisectors of the
sides,

9. Note that the length of a vector is Vaea. If @, 8, and vy = 8 — a are the
three sides of a triangle, expand ysy = (8 — @)+(8 — a) to obtain the law of cosines.

10. Show that the snm of the squares of the diagonals of a parallelogram equals
the sum of the squares of the sides. What does the difference of the squares of the
diagonals equal ?

11. Show t.lmt B a and (axp)xa are the components of 8 parallel and perpen-
aa

dicular to a by showmg 1° that these vectors have the right direction, and 2° that
they have the right magnitude.

12. If a, B, v are the three edges of a parallelepiped which start from the same
vertex, show that (@xB)y is the volume of the parallelepiped, the volume being
considered positive if y lies on the same side of the plane of a and g with the
vector axp.

13, Show by Ex. 12 that (axg)sy = a+(8xv) and (axg)sy = (Bxy)-a; and hence
infer that in a product of three vectors with cross and dot, the position of the crdss
and dot may be interchanged and the order of the factors may be permuted cyc-
lically without altering the value. Show that the vanishing of (axg)«y or any of
its equivalent expressions denotes that a, g, y are parallel to the same plane ; the
condition axBe«y = 0 is called the condition of complanarity.

14. Assuming @ = a;i + o + agk, B ="bji+bj + bk, v=ci+ cof + gk,
expand asy, a8, and ax(Bxy) in terms of the coefficients to show
ax(Bxy) = (a+y) 8 — (@+B)y; and hence (axB)xy = (a-7)p— (v a.

15. The formulas of Ex. 14 for expanding a product with two crosses and the
rule of Ex. 18 that a dot and a cross may be interchanged may be applied to expand
(axP)x(yx8) = (awyxd) B — (Boyxd) @ = (axPed)y — (@xB+7) 8

and (axB)e(yx8) = (@) (8-3) — (B7) (a+3).
16. If a and B are two unit vectors in the zy-plane inclined at angles § and ¢
to the z-axis, show that
a@=1icosf + jsinf, B=icos¢ + jsing;
and from the fact that a«8 = cos(¢ — 6) and axg = ksin (¢ — ) obtain by multi-
plication the trigonometric formulas for sin (¢ — 6) and cos(¢ — 6).

17, If I, m, n are direction cosines, the vector li 4 mj + nk is a vector of unit
length in the direction for which I, m, n are direction cosines. Show that the
condition for perpendicularity of two directions (I, m, ») and (¥, m’, n) is
W+ mm’ 4 nn’ =0,

18. With the same notations as in Ex. 14 show that
ij k
ar=a2dal+ a2 and axB=la a a. ! and axBey= b, b, b.
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20. Find the areas of the parallelograms defined by the pairs of vectors in
Ex. 19. Find also the sine and cosine of the angles between the vectors.

21. Prove ax[Bx(yxd)] = (@-yx3) B — a:Byxs = Bed axy — Boy ax3.

22. What is the area of the triangle (1, 1, 1), (0, 2, 8), (0, 0, — 1) ?

77. Vector differentiation. As the fundamental rules of differentia.
tion depend on the laws of subtraction, multiplication by a number,
the distributive law, and the rules permitting rearrangement, it follows
that the rules must be applicable to expressions containing vectors
without any changes except those implied by the fact that axg8 # Bxa.
As an illustration consider the application of the definition of differen-
tiation to the vector product uxv of two vectors which are supposed
to be functions of a numerical variable, say . Then

A (uxv) = (1 + Au)x(V 4 AV) — uxv
= UxAV 4 Auxv 4 AuxAv,

A (uxv) - uxﬂ + A_uxv + AuxAv,
Az Az

Az Ax
d(uxv) . A(uxv) av | du
de Al:;no Ar Vet "

Here the ordinary rule for a product is seen to hold, except that
the order of the factors must not be interchanged.

The interpretation of the derivative is important. Let the variable
vector 1 be regarded as a function of some variable, say , and suppose
r islaid off from an assumed origin so that, as « varies,
the terminal point of r describes a curve. The incre-
ment Ar of r corresponding to Az is a vector quantity
and in fact is the chord of the curve as indicated.
The derivative

L 1im 2L, Z—Z:lim:—::t “2)
is therefore o vector tangent to the curve; in particular if
the variable @ were the arc s, the derivative would have
the magnitude unity and would be a unit vector tangent to the curve.

The derivative or differential of a vector of constant length is per-
pendicular to the vector. This follows from the fact that the vectov
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hen describes a circle concentric with the origin. It may also be seen
nalytically from the equation

d(T-1) = dr+1 + redf = 21.dr = d const. = 0. (43)
f the vector of constant length is of length unity, the increment Ar is
he chord in a unit circle and, apart from infinitesimals of higher
rder, it is equal in magnitude to the angle subtended at the center.
Jonsider then the derivative of the unit tangent t to a curve with
espect to the arc s. The magnitude of dt is the angle the tangent turns
hrough and the direction of dt is normal to t and hence to the curve.

[he vector quantity, it dr

curvature C= T g
herefore has the magnitude of the curvature (by the definition in § 42)
nd the direction of the interior normal to the curve.

(49

This work holds equally for plane or space curves. In the case of a space curve
he plane which contains the tangent t and the curvature C is called the osculating
lane (§ 41). By definition (§ 42) the torsion of @ space curve is the rate of turning
f the osculating plane with the arc, that is, dy/ds. To find the torsion by vector
nethods let ¢ be a unit vector C/vVC.C along C. Then as t and ¢ are perpendicular,
L = txc is a unit vector perpendicular to the osculating plane and dn will equal dy
n magnitude. Hence as a vector quantity the torsion is

dn __d(txc) dt de de
=—= = — = tx— 45)
T=% ds PR Y txds ! 9
vhere (since dt/ds = C, and ¢ is parallel to C) the first term c

rops out. Next note that dn is perpendicular to n because it

s the differential of a unit vector, and is perpendicular to t
ecause dn = d (txc) = txdc and te(txdc) =0 since t, t, dc are
ecessarily complanar (Ex. 12, p. 169). Hence T is parallel

o ¢. Itis convenient to consider the torsion as positive when g
he osculating plane seems to turn in the positive direction when
iewed from the side of the normal plane upon which t lies. An inspection of the
igure shows that in this case dn has the direction — ¢ and not 4 c. Ascis a unit
ector, the numerical value of the torsion is therefore — c-T. Then

de d C
T'= —cT = — Cotx— = — Cotxm ———
cT 2 txds [ txds W
ar 1 d 1 &Pr 1
= — Cetx +C = —Cetxr —— (467
[ ] ds* \/c.C

vhere differentiation with respect to 8 is denoted by accents.
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change of F along the normal to the surfaces and
is written dF/dn. The rate of change of F along N vF
the normal to the surface F = C is more rapid than b
along any other direction; for the chaige in F be-
tween the two surfaces i8 dF = dC and is constant,
whereas the distance dn between the two surfaces is
least (apart from infinitesimals of higher crder) along the normal. In
fact if dr denote the distance alung any other direction, the relations
shown by the figure are

dr _dr

dr = secfdn and o= dm o8 0. (46)

c+ag
C

If now n denote a vector of unit length normal to the surface, the
product ndl/dn will be a vector quantity which has both the magnitude
and the direction of most rapid increase of F. Let

dF
n%—VF—gladF 7
be the symbolic expressions for this vector, where VF is read as “del 7’
and grad F is read as “ the gradient of F.” If dr be the vector of which
dr is the length, the scalar product n.dr is precisely cos 6dr, and hence
it follows that ar
dreVF=dF and r.VF= a’ 48)
where 1, is a unit vector in the direction dr. The second of the equa-
tions shows that the directional derivative in any direction is the com-~
ponent or projection of the gradient in that direction.

From this fact the expression of the gradient may be found in terms
of its components along the axes. For the derivatives of F along the
axes are 0I'/ox, 0F /0y, 0F/0z, and as these are the components of VI
along the directions i, j, k, the result is

VF:gradF=i£+j-a—li+ka—li-
ox oy 0z
5 (49)

L0, .0
Hence V—1$+]—a;+k5;

may be regarded as a symbolic vector-differentiating operator which
when applied to F gives the gradient of . The product

0 2 ?
dr.VF = (dac P + dy % + dz 5;>F =dF (60)



orm of grad F it does not appear that the gradient of a function is
ndependent of the choice of axes, but from the manner of derivation
f VF first given it does appear that grad F is a definite vector quan-
ity independent of the choice of axes.

In the case of any given function F the gradient may be found by
he application of the formula (49); but in many instances it may also
e found by means of the important relation dr«VF = dF of (48). For
nstance to prove the formula V(FG) = FVG 4 GVF, the relation may
»e applied as follows :

At V(FG) = d(FG) = FAG + GdF
= Fdr.VG + Gdr.VF = dr+(FVG + GVF).
Now as these equations hold for any direction dr, the dr may be can
eled by (35), p. 165, and the desired result is obtained.

The use of vector notations for treating assigned practical problems involving
omputation is not great, but for handling the general theory of such parts of
hysics as are essentially concerned with direct quantities, mechanies, hydro-
nechanics, electromagnetic theories, etc., the actual use of the vector algorisms
onsiderably shortens the formulas and has the added advantage of operating
lirectly upon the magnitudes involved. At this point some of the elements of
nechanics will be developed.

79. According to Newton’s Second Law, when a force acts upon a
varticle of mass m, the rate of change of momentum is equal to the
force acting, and takes place in the direction of the force. It therefore
ippears that the rate of change of momentum and momentum itself
re to be regarded as vector or directed magnitudes in the application
f the Second Law. Now if the vector r, laid off from a fixed origin
o the point at which the moving mass m is situated at any instant of
ime ¢, be differentiated with respect to the time ¢, the derivative dr/ds
s a vector, tangent to the curve in which the particle is moving and ot
nagnitude equal to ds/d¢ or v, the velocity of motion. As vectors¥,
hen, the velocity v and the momentuir and the force may be written ax

T d
V= mv, =% (mv). o
donce Femem@oms it g=2 =791,
dt ae dt ar

From the equations it appears that the force F is the product of the
nass m by a vector f which is the rate of change of the velocity regarded

~ In applications, it is usual to denote vectors by heavy type and to denote the magni~
uder of those vertors by corresponding italic letters.




fused with the rate ol change av/ar Or a's/al” Ol the speed Or magnitude
of the velocity. The components f,, f,, f. of the acceleration along the
axes are the projections of f along the directions i, j, k and may be
written as f«i, f.j, f-k. Then by the laws of differentiation it follows

that
- _, a@d) _ dv,
fe=fd=gpi=—0m= dt ’
oy _ gr-lz
or fo=1fdi= dtz'l = oltz
&z dz
Hence f"=d—t” f;,=#; f‘:—(il_”

and it is seen that the components of the acceleration are the acceler-
ations of the components. If X, ¥, Z are the components of the force,
the equations of motion in rectangular codrdinates are
d"v/ %
=Y, mos=2 (52)
Instead of resolving the acceleration, force, and displacement along
the axes, it may be convenient to resolve them along the tangent and
normal to the curve. The velocity v may be written as vt, where v is
the magnitude of the velocity and t is a unit vector tangent to the

curve. Then _dv_d(t) _dv,  dt

&
mE=%  mge

% e @t tUE
dt _dtds v
But a—aﬁz—Cv—En, (83)
where R is the radius of curvature and n is a unit normal. Hence
d"’.s d?s »?
=75t n, fi=gm  heR (63"

It therefore is seen that the component of the acceleration along the
tangent is d%/d¢, or the rate of change of the velocity regarded as a
number, and the component normal to the curve is v*/R. If T and N
are the components of the force along the tangent and normal to the
curve of motion, the equations are
,Uﬂ
T =mnf, = m~—y N =mf,=m —-
R
It is noteworthy that the force must lie in the osculating plane.
If r and r 4 Ar are two positions of the radius vector, the area of
the sector included by them is (except for infinitesimals of higher order)
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dA Ar dr

i lim } v 3 D= Lrxv. (54)
(he projections of the areal velocities on the codrdinate planes, whici
re the same as the areal velocities of the projection of the motion on
hose planes, are (Ex. 11 below)

1 de  dy\  1(dn_ de\ 10 dy_ de) o
Z(ydt ’dt) 2( dt"””d:) 2( at E)' (54
If the force F acting on the mass m passes through the origin, then

and F lie along the same direction and rxF = 0. The equation of
notion may then be integrated at sight.

dv dv

m;ﬁ»—l"‘ mrx%—er=0,
av_d

o= (rxv) =0, rxv = const.

t is seen that in this case the rate of description of area is a constant
ector, which means that the rate is not only constant in magnitude
ut is constant in direction, that is, the path of the particle m must lie
1 a plane through the origin. When the force passes through a fixed
oint, as in this case, the force is said to be central. Therefore when a
article moves under the action of a central force, the motion takes place
1 a plane passing through the center and the rate of description of
reas, or the areal velocity, is constant.

80, If there are several particles, say n, in motion, each has its own equation
f motion. These equations may be combined by addition and subsequent reduction.
d*ry,

dzr, d?r,
mxﬁ=Fu me‘2=Fm My =

a2, @,

d 1 2 =F F,.
n m1dt,+m9dt,+ +m..dt" +F 4+ +Fy
‘ dr, ar, d’r,
. m, dt;-{-m2 dt‘;+ -{-m,‘d‘2 —dﬂ(mlr‘+mzrg+ « o+ Mply).
et MLy + MTy koo b MLy = (my My oo F M) E=M T
: £ Ty gy s

m,+m2+~ tm, I M

hen Md—ﬂ-_.Fl+F2+. .+F,,=§;F‘ (55)
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mass or center of gravity of the particles (Ex. 5, p. 168). The result (55) states, on
comparison with (51), that the center of gravity of the n masses moves as if ali the
mass M were concentrated at it and all the forces applied there.

The force F; acting on the ith mass may be wholly or partly due to attractions,
repulsions, pressures, or other actions exerted on that mass by one or more of the
other masses of the system of n particles. In fact let F; be written as

Fi=Fyo+Fu+Fat- - +Fun,

where Fy is the force exerted on m; by m; and Fy, is the force due to some agency
external to the n masses which form the system. Now by Newton’s Third Law,
when one particle acts upon a second, the second reacts upon the first with a
force which is equal in magnitude and opposite in direction. Hence to Fy above
there will correspond a force Fj; =— F; exerted by m; on m;. In the sum ZF; all
these equal and opposite actions and reactions will drop out and ZF; may be re-
placed by ZFy, the sum of the external forces. Hence the important theorem that :
The motion of the center of mass of a set of particles is as if all the mass were concen-
trated there and all the exiernal forces were applied there (the internal forces, that is,
the forces of mutual action and reaction between the particles being entirely
neglected).

The moment of a force about a given point is defined as the product of the force
by the perpendicular distance of the force from the point. If r is the vector from
the point as origin to any point in the line of the force, the moment is therefore
1xF when considered as a vector quantity, and is perpendicular to the plane of the
line of the force and the origin. The equations of n moving masses may now be
combined in a different way and reduced. Multiply the equations by r,, rp, -+, Iy
and add. Then

dv, av, v,
myT,x EA + myryx d—: 4o 4 muLx F =1,xF} + 1,xF, + -+ + xF,

or m %tlwl + mg‘%r,xv, 4+t m,.%r,.xv,. =1,xF; + 1,xFy + -« - 4 ,xF,
or %(mlrlxvl + MIXVy + -+ ¢+ MylyxVy) = SrxF, (66)

This equation shows that if the areal velocities of the different masses are multiplied
by those masses, and all added together, the derivative of the sum obtained is equal
to the moment of all the forces about the origin, the moments of the different forces
being added as vector quantities.

This result may be simplified and put in a different form. Consider again the
resolution of F;into the sum Fyo + Fiy + - - - + Fy,, and In particular consider the
action Fy and the reaction Fj, = — F;; between two particles. Let it be assumed
that the action and reaction are not only equal and opposite, but lie along the line
connecting the two particles. Then the perpendicular distances from the origin to
the action and reaction are equal and the moments of the action and reaction are
equal and opposite, and may be dropped from the sum Zr;xF;, which then reduces
to Zr;xFyo. On the other hand a term like m;r;xv; may be written as r;x(m;v;). This
product is formed from the momentum in exactly the same way that the moment
is formed from the force, and it is called the moment of momentum, Hence the
equation (66) becomes
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Tence the result that, as vector quantities: The rate of change of the moment of
nomentum of a system of particles is equal to the moment of the external forces (the
orces between the masses being entirely neglected under the ption that action
:nd reaction lie along the line connecting the masses).

EXERCISES
1. Apply the definition of differentiation to prove
a) d(uev) = wdv + vedu, (B) d[us(vxw)] = du(vxw) 4 ue(dvxw) + ue(vxdw).

2. Differentiate under the assumption that vectors denoted by early letters of
he alphabet are constant and those designated by the later letters are variable :

(a) ux(vxw), (B) acost+ bsint, () (uwu)uy,

2
(%) uxj—:, (e) n.(';_:x%zl;). (&) claw).
. dr s —rs”
3. Apply the rules for change of variable to show that e R where
8

ccents denote differentiation with respect to z. In case r =zi + yj show that
|/ V/C.C takes the usual form for the radius of curvature of a plane curve.

4. The equation of the helix is 7 = ia cos ¢ + ja sin ¢ + kbg with s =Val+Bg;
how that the radius of curvature is (a? + b2)/a.
5. Find the torsion of the helix. It isb/(a? + b?).
6. Change the variable from s to some other variable ¢ in the formula for torsion.
7. Inthe following cases find the gradient either by applying the formula which
ontains the partial derivatives, or by using the relation dr.VF = dF, or both:
(@) rr=a4y2+2%  (B) logr, (7) r=Vrr,
(3) log(z? + y?) = log[r-r — (ke1)?],  (€) (rxa)«(rxb).
8. Prove these laws of operation with the symbol V :
(@) V(F+G)=VF+ VG, (B G*V(F/G)=GVF~— FVG.

9. Ifr, ¢ are polar codrdinates in a plane and r, is a unit vector along the radius
ector, show that dr,/dt = ndg/dt where n is a unit vector perpendicular to the
adius. Thus differentiate r = rr, twice and separate the result into components
long the radius vector and perpendicular to it so that

d2r dg\? ¢ dpdr 14 ( d¢)
=27 (%2 =rE2 4222 o 22 (22F).
f=Ga T(dt) 7 R ¥ T A
10. Prove conversely to the text that if the vector rate of description of area is
onstant, the force must be central, that is, rxF = 0.

11. Note that rxvei, rxvej, rxv-k are the projections of the areal velocities upon
he planes © = 0, ¥ = 0, z = 0. Hence derive (54') of the texs
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12. Show that the Cartesian expressions for the magnitude of the velocity and
of the acceleration and for the rate of change of the speed dv/dt are

S by e
=Y TR,
Vol 1yt 22

where accents denote differentiation with respect to the time.

v= Va4 yt 4 2% f=Vaityt+ 2%, v

13. Suppose that a body which is rigid is rotating about an axis with the
angular velocity w = dg/dt. Represent the angular velocity by a vector a drawn
along the axis and of magnitude equal to w. Show that the velocity of any point
in space is v = axr, where r is the vector drawn to that point from any point of
the axis as origin. Show that the acceleration of the point determined byr is in a
plane through the point and perpendicular to the axis, and that the components are

ax(axr) = (a.r)a — w’r toward the axis, (da/dt)xr perpendicular to the axis,

under the assumption that the axis of rotation is invariable.

14. Let T denote the center of gravity of a system of particles and r; denote the
vector drawn from the center of gravity to the ith particle so that r; = ¥ + r{ and
v, =¥+ v{. The kinetic energy of the ith particle is by definition

ymplf = ymvievi = mi (V4 v))+(F + v)).

Swn up for all particies and simplify by using the fact Zmr; = 0, which is due to
the assumption that the origin for the vectors r{ is at the center of gravity. Hence
prove the important theorem : The total kinetic energy of a system is equal to the
kinetic energy which the total mass would have if moving with the center of gravity
plus the energy compuled from the motion relative to the center of gravity as origin,
that is,

T = } Smpf = § M + } Smo.

15. Consider a rigid body moving in a plane, which may be taken as the xy-
plane. Let any point 1, o1 the body be marked and other points be denoted rela~
tive to it by . The motion of any point 1’ is compounded from the motion of r,
and from the angular velocity a = kw of the body about the point r,. In tact the
velocity v of any point is v = v, + axr’. Show that the velocity of the point denoted
by 1’ = kxV,/wis zero. This point is known as the instantaneous center of rotation
(§ 39). Show that the codrdinates of the instantaneous center referred to axes at
the origin of the vectors r are

z:r-i:zo—%%@, =r-j=yo+§ddit°.

16. If several forces F,, F,, --+, F,, act on a body, the sum R = ZF; is called
the resultant and the sum Zr;xF;, where r; is drawn from an origin O to a point
in the line of the force F;, is called the resultant moment about O. Show that the



PART II. DIFFERENTIAL EQUATIONS

CHAPTER VII
GENERAL INTRODUCTION TO DIFFERENTIAL EQUATIONS

81. Some geometric problems. The application of the differential

aleulus to plane curves has given a mmeans of determining some
eometric properties of the curves. For instance, the length of the
ubnormal of a curve (§ 7) is ydy/dx, which in the case of the parabola
=4 px is 2p, that is, the subnormal is constant. Suppose now it
ere desired conversely to find all curves for which the subnormal is
given constant m. The statement of this problem is evidently con-
ined in the equation

y%:m or yy'=m or ydy=mde.

gain, the radius of curvature of the lemniscate 7* = a? cos 2 ¢ is found
) be R = a?/3 r, that is, the radius of curvature varies inversely as the
wdius. If conversely it were desired to find all curves for which the
idius of curvature varies inversely as the radius of the curve, the state-
ent of the problem would be the equation

dr\* ¢
[*(DE)] _k

T dr\t

PRy (2 e
de? de

here £ is a constant called a factor of proportionality.*

Equations like these are unlike ordinary algebraic equations because,
» addition to the variables x, y or », ¢ and certain constants m or k&,
ey contain also derivatives, as dy/dz or dr/d¢ and d'r/d4*, of one of
1e variables with respect to the other. An equation which contains

* Many problems in geometry, mechanics, and physics are stated in terms of varia-
on. For purposes of analysis the statement* varies as ¥, or x «c y/, is written ase =.k7/,
troducing a constant % called a factor of proportionality to convert the variation into
) equation. In like manner the statement % varies inversely as ¥, or 2 « 1/y, becomes
= k/y, and 2 varies jointly with y and z becomes x = kyz.

179
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derivatives is called a differential equation. The order of the differential
equation is the order of the highest derivative it contains. The equa-
tions above are respectively of the first and second orders. A differen-
tial equation of the first order may be symbolized as ® (z, y, ¥") = 0,
and one of the second order as @(z, , ', y") = 0. A function y = f (=)
given explicitly or defined implicitly by the relation F(z, y)= 0 is
said to be a solution of a given differential equation if the equation is
true for all values of the independent variable  when the expressions
for y and its derivatives are substituted in the equation.

Thus to show that (1o matter what the value of a is) the relation
day —a? + 2a?logr =0

gives a solution of the differential equation of the second order

dy\2 d2y\2
(1 (2 o

it is merely necessary to form the derivatives
dy a? d2y a?
2a—=2~— —=14—
Edz z o 2a Fx +
and substitute them in the given equation together with y to see that
dy\? LA 1 a¥ z* 2a%  af\
@) () e G ~fa(+ 3+ 5)=0

is clearly satisfled for all values of z. Itappears therefore that the given relation
for y is a solution of the given equation.

To integrate or solve a differential equation is to find all the functions
which satisfy the equation. Geometrically speaking, it is to find all the
curves which have the property expressed by the equation. In mechan-
ics it is to find all possible motions arising from the given forces. The
method of integrating or solving a differential equation depends largely
upon the ingenuity of the solver. In many cases, however, some method
is immediately obvious. For instance if it be possible to separate the
variables, so that the differential dy is multiplied by a function of y
alone and de by a function of « alone, as in the equation

2@ =y@ s e [o@)iy=[y@are @
will clearly be the integral or solution of the differential equation.

As an example, let the curves of constant subnormal be determined. Here
ydy =mdz and y?=2mz+ C.



curve whose subnormal was m and which passed through the origin, it would
nerely be necessary to substitute (0, 0) in the equation %2 = 2mz + C to ascertain
what partictiar value must be assigned to C in order that the curve pass through
(0, 0). The value is ¢ = 0.

Another example might be to determine the curves for which the z-intercept
varies as the abscissa of the point of tangency. As the expression (§ 7) for the
r-intercept is  — ydr/dy, the statement is

z—yd—z=lcm or (1—k)a:=yg‘}.
dy dy
Hence (I—k)d—yzdj and (1 -k)logy =loge + C.
y oz
f desired, this expression may be changed to another form by using each side of
he equality as au exponent with the base e. Then
A-K)logy = glogz+C  or yl-k = ¢Cr = C'z.

As C is an arbitrary constant, the constant ¢’ = eCis also arbitrary and the solution
nay simply be written as yl—* = Cz, where the accent has been omitted from the

onstant. If it were desired to pick out that particular curve which passed through
he point (1, 1), it would merely be necessary to determine ¢ from the equation

11-4#=C1, andlence C=1.

As a third example let the curves whose tangent is constant and equal to « be
letermined. The length of the tangent is y V1 + y"2/y” and hence the equation is

Rv4 2 2 Vv
y_lj:_y=a or 1/21+17/ =a or 1=-2
Y v*?
lhe variables are therefore separable and the results are
Va2 — 2 e Va2 — 92
dz:—u—dy and z+0='\/a2—y5—alogg¥~
Y

f it be desired that the tangent at the origin be vertical so that the curve passes
hrough (0, &), the constant C is 0. The curve is the tractrix or ** curve of pursuit’
s described by a calf dragged at the end of a rope by a person walking along
v straight line.

82. Problems which involve the radius of curvature will lead to differ-
ntial equations of the second order. The method of solving such
oroblems is to reduce the equation, if possible, to one of the first order.
for the second derivative may be written as
!

dy' _ di
y =2 Fid )
nd p=@tydt_a+yt a+ynt @)
Y dy' Y

dw Yoy




is the expression for the radius of curvature. If 1t be given that the
radius of curvature is of the form f(x) ¢ (¥") or /(%) ¢ (),

G e o et

dac Yoy dy
the variables = and y' or ¥ and y' are immediately separable, and an
integration may be performed. This will lead to an equation of the
first order; and if the variables are again separable, the solution may
be completed by the methods of the above examples.

=5 ¢, @®

1In the first place consider curves whose radius of curvature is constant. Then

LSRR ‘A
o a+y?yt @
dx

where the constant of integration has been written as — C/a for future conven-
ience. The equation may now be solved for 3’ and the variables become separated
with the results p
v = -0 or dy= @-0
—(@—0C)? % — (z — C)?

Hence y—C =—vVal—(x—C) or (z—C)P+ (y— Cy=a

The curves, as should be anticipated, are circles of radins ¢ and with any arbi-
trary point (C, C") as center. Itshould be noted that, as the solution has required
two successive integrations, there are two arbitrary constants C and C’ of integra-
tion in the result.

As a second example consider the curves whose radius of curvature is double
the normal. As the length of the normal is ¥ V1 + ¥2, the equation becomes

2% S
(1+1/) =2y ViFyh o Loy
1/— -4

dy

where the double sign has been introduced when the radical is removed by cancel-
lation. This is necessary ; for before the cancellation the signs were ambiguous
and there is no reason to assume that the ambiguity disappears. In fact, if the
curve is concave up, the second derivative is positive and the radius of curvature
is reckoned as positive, whereas the normal is positive or negative according as
the curve is above or below the axis of «; similarly, if the curve is concave down.
Let the negative sign be chosen. This corresponds to a curve above the axis and
concave down. or below the axis and concave up, that is, the normal and the radius
of curvature have the same direction. Then

dy __ 2ydy

v T+t
where the constant has been given the form log 2 C for convenicnce. This expres-
sion mav he thrown inta alaeliraie farm hv evnanentiating colvad far 2/ and +then

and logy = —log(l + %) + log2C,



gy Ty ) =Y YVio¥y o =

¥ Vacy—-®
Hence z— C' = Cvers—l%-vz Cy — 3.

The curves are cycloids of which the generating circle has an arbitrary radius ¢
and of which the cusps are upon the z-axis at the points C” 4 2kwC. If the posi-
tive sign had been taken in the equation, the curves would have been entirely
different ; see Ex. 5 (a).

The number of arbitrary constants of integration which enter into
the solution of a differential equation depends on the number of inte-
grations which are performed and is equal to the order of the equation.
This results in giving a family of curves, dependent on one or more
parameters, as the solution of the equation. To pick out any particular
member of the family, additional conditions must be given. Thus, if
there is only one constant of integration, the curve may be required
to pass through a given point; if there are two constants, the curve
may be required to pass through a given point and have a given slope
at that point, or to pass through two given points. These additional
conditions are called initial conditions. In mechanics the initial condi-
tions are very important ; for the point reached by a particle describing
a curve under the action of assigned forces depends not only on the
forces, but on the point at which the particle started and the velocity
with which it started. In all cases the distinetion between the constants
of integration and the given constants of the problem (in the foregoing
examples, the distinction between C, C' and m, %, @) should be kept
clearly in mind

EXERCISES

1. Verify the solutions of the differential equations:

(@) ay+4a?=C, y+ 42y =0, ®) 2} (3e+ O)=1, zy'+y+ztyter=0,

() (1+2?)y?=1, 2z=Cer—C-le-v, (3) y+ay =aty? ay=C%4+ C,

() ¥ +y/z=0,y=Cloga+ C, () y=Ce+ Cye2%, ¥ +2y=3v,

zV3 . zV38
5 4-C,xsm———2 —

() v~y =4 y=Oe + e 7( 0, cos

2. Determine the curves which have the following properties :

(a) The subtangent is constant ; y» = Cez, If through (2, 2), y" = 2mes—2,

() The right triangle formed by the tangent, subtangent, and ordinate has the
constant area k/2 ; the hyperbolas zy 4 Cy 4 k = 0. Show that if the curve passes
through (1, 2) and (2, 1), the arbitrary constant C is 0 and the given k is — 2.

(7) The normal is constant in length ; the circles (@ — C)2 + 3% = k2.

(8) The normal varies as the square of the ordinate ; catenaries ky=cosh k(z—C).
If in particular the curve is perpendicular to the y-axis, C = 0.

(¢) The area of the right triangle formed by the tangent, normal, and z-axis is
inversely proportional to the slope ; the circles (z — C)? + y* = &.



3. Determine the curves which have the following properties:

(@) The angle between the radius vector and tangent is constant; spirals
r = Ceté,

(8) The angle between the radius vector and tangent is half that between the
radius and initial line ; cardioids r = C (1 — cos ¢).

() The perpendicular from the pole to a tangent is constant ; r cos (¢ — C) = k.

(6) The tangent is equally inclined to the radius vector and to the initial line;

the two sets of parabolas r = C/(1 £ cos ¢).
(e) The radius is equally inclined to the normal and to the initial line; cireles

r=Ccos¢ orlines rcos ¢ = C.

4. The arc 8 of a curve is proportional to the area A, where in rectangular
codrdinates 4 is the area under the curve and in polar codrdinates ii is the area
included by the curve and the radius vectors. From the equation ds =dA show
that the curves which satisfy the condition are catenaries for rectangular codrdi-
nates and lines for polar covrdinates.

5. Determine the curves for which the radius of ecurvature

(@) is twice the normal and oppositely directed ; parabolas (z — C)? =C'(2y — C’)
(B) Is equal to the normal and in same direction ; circles (z — C)* + 32 = C’2,
(y) is equal to the normal and in opposite direction ; catenaries.

(8) varies as the cube of the normal ; conics kCy? — C?(z + C')* =k.

(€) projected on the z-axis equals the abscissa ; catenaries.

(¢) projected on the z-axis is the negative of the abscissa ; circles.

(n) projected on the z-axis is twice the abscissa.

() is proportional to the slope of the tangent or of the normal.

83. Problems in mechanics and physics. In many physical problems
the statement involves an equation between the rate of change of some
quantity and the value of that quantity. In this way the solution of
the problem is made to depend on the integration of a differential equa-~
tion of the first order. If @ denotes any quantity, the rate of increase
in z is dz/dt and the rate of decrease in « is — da/d¢; and consequently
when the rate of change of @ is a function of =, the variables are
immediately separated and the integration may be performed. The
constant of integration has to be determined from the initial conditions ;
the constants inherent in the problem may be given in advance or their
values may be determined by comparing  and ¢ at some subsequent
tine. The exercises offered below will exemplify the treatment of
such problems.

In other physical problems the statement of the question as a differ-
ential equation is not so direct and is carried out by an examination of
the problem with a view to stating a relation between the increments
or differentials of the dependent and independent variables, as in some
geometric relations already discusted (§ 40), and in the problem of the



ential equations of the curve of equilibrium of a flexible string or
chain. Let p be the density of the chain so that pAs is the mass of
the length As; let X and Y be the components
of the force (estimated per unit mass) acting on
the elements of the chain. Let T denote the
tension in the chain, and r the inclination of
the element of chain. From the figure it then
appears that the components of all the forces
acting on As are

(T 4+ AT)cos (1 + Ar) — T cos T + XpAs =0,
(T + AT)sin (r + Ar) — T'sint + YpAs = 0;

for these must be zero if the element is to be in a position of equi-
librium. The equations may be written in the form

A(T cos r)+ XpAs =0, A(Tsint)+ YpAs=0;
and if they now be divided by As and if As be allowed to approach
zero, the result is the two equations of equilibrium

d [ dx d d‘l/
ds( >+pX—-0 £< >+PY 0, (O]

where cos r and sin r are replaced by their values da/ds and dy/ds.

If the string is acted on only by forces parallel to a given direction, let the
y-axis be taken as parallel to that direction. Then the component X will be zero
and the first equation may be integrated. The result is

d [ dz dz ds

—=(1T=) == —= T=0C—.

ds (T ds) ? T ds G dz
This value of 7 may be substituted in the second equation. There is thus obtained
a differential equation of the second order

d

ds(cdy>+pY 0 or C——=——+pY=0. @)

\/ +v?
If this equation can be integrated, the form of the curve
of equilibrium may be found.

Another problem of a different nature in strings is to T+
consider the variation of the tension in a rope wound around
a cylinder without overlapping. The forces acting on the
element As of the rope are the tensions T and T 4 AT, the
normal pressure or reaction R of the cylinder, and the force
of friction which is proportional to the pressure. It will
be assumed that the normal reaction lies in the angle Ag and that the coefficient
of friction is 4 so that the force of friction is uR. The components along the radius
and along the tangent are




(T + AT) sin Ap — R cos (fA¢) — ul sin (fA¢) = 0, 0<o<1,

(T + AT) cos Ap + R sin (fAp) — pR cos (fA¢) — T'=0.
Now discard all infinitesimals except those of the first order. It must be borne in
mind that the pressure R is the reaction on the infinitesimal arc As and hence is
itself infinitesimal. The substitutions are therefore Tdg for (T + AT)sin Ag, B for
R cos GA¢, O for R sin §A¢, and T'+ dT for (T + AT') cos Ap. The equations there-
fore reduce to two simple equations

Tdp— R =0, dT — uR =0,
from which the unknown R may be eliminated with the result
AT =uTdy or 1'=Ce+d or T = Tyerd,

where T, is the tension when ¢ is 0. The tension therefore runs ap exponentially
and affords ample explanation of why a man, by winding a rope about a post, can
readily hold a ship or other object exerting a great force at the other end of the
rope. If pis 1/8, three turns about the post will hold a force 535 Ty, or over 2h
tons, if the man exerts a force of a hundredweight.

84, If a constant mass m is moving along a line under the influence
of a force I acting along the line, Newton’s Second Law of Motion (p. 13)
states the problem of the motion as the differential equation

mf=F or 1nd2—::=F (5)
dt
of the second order ; and it therefore appears that the complete solution
of a problem in rectilinear motion requires the integration of this equa-~
tion. The acceleration may be written as

pody_dods_ v
T a4t
and hence the equation of motion takes either of the forms

m%:F or mvj—;=l~‘. 5"
It now appears that there are several cases in which the first integration
may be performed. For if the force is a function of the velocity or of
the time or a product of two such functions, the variables are separated
in the first form of the equation; whereas if the force is a function of
the velocity or of the codrdinate  or a product of two such functions,
the variables are separated in the second formn of the equation.

When the first integration is performed according to either of these
wethods, there will arise an equation between the velocity and either
the time ¢ or the codrdinate z. In this equation will be contained a
constant of integration which may be determined by the initial condi-



to solve the equation and express the velocity as a function of the time
t or of the position z, as the case may be, and integrate a second time.
The carrying through in practice of this sketch of the work will be
exemplified in the following two examples.

Suppose a particle of massm is projected vertically upward with the velocity V.
Solve the problem of the motion under the assumption that the resistance of the
air varies as the velocity of the particle. Let the distance be measured vertically
npward. The forces acting on the particle are two, — the force of gravity which i
the weight W = myg, and the resistance of the air which is kv. Both these forces
are negative because they are directed toward diminishing values of z. Hence

mf =— mg—Ikv or m%:—mg—kv,

where the first form of the equation of motion has been chosen, although in this
case the second form would be equally available. Then integrate.

LU dat and log(g +£v> = _Et + C.
I m m
g+=v
m
As by the initial conditions v = ¥ when t = 0, the constant C is found from
k
k k Itk
lag<g+ aV):——;O-{—C; hence ——— =¢ ™
g+-=-V
m
is the relation between v and ¢ found by substituting the value of C. The solution
for v gives .
dz m ~=t m
V= — = |- V)e m ——g.
@ (k gt ) i
k
m (m -Zt m
=——(= m T A
Hence @ k(kg—f-V)e kgt+6’

If the particle starts from the origin © = 0, the constant C is found to be

k
=mm = e m) ™

C= k(kg+ V) and = k(k”+ V)(l e ) kgtA

Hence the position of the particle is expressed in terms of the time and the prob-
lem is solved. If it be desired to find the time which elapses before the particle
comes to rest and starts to drop back, it is merely necessary to substitute v = 0 in
the relation connecting the velocity and the time, and solve for the time t = T';
and if this value of ¢ be substituted in the expression for @, the total distance X
covered in the ascent will be found. The results are

2
T mlog(l + lv), X= (ﬂ) [f V- glog (1+i17)].
mg k/ [m mg
As a second example consider the motion of a particle vibrating up and down
at the end of an elastic string held in the field of gravity. By Hooke'’s Law for




e ;o A - - - o
the string over its natural length, that is, ¥ = kAl. Let ! be the length of the string,
Ayl the extension of the string just sufficient to hold the weight W = mg at rest so
that Ayl = mg, and let = measured downward be the additional extension of the
string at any instant of the motion. The force of gravity mg is positive and the
force of elasticity — k(A,l + @) is negative. The second form of the equation of
motion is to be chosen. Hence

mv%:mg—k(Aol+a;) or va—E:——lat, since mg = kAl
Then mudy = — kede or mv? = — ka? 4+ C.

Suppose that @ = a is the amplitude of the motion, so that when z = a the velocity
» = 0 and the particle stops and starts back. Then ¢ = ka?. Hence

=\/£\/a“ 2 or
i1 m

and sin—ﬁ:JEt-fC or z:asin(ﬁt-{- C).
a m m

Now let the time be measured from the instant when the particle passes through
the position z = 0. Then C satisfies the equation 0 = ¢ sin C and may be taken as
zero. The motion is therefore given by the equation z = asin Vk/mt and Is
periodic. While ¢ changes by 27 Vm/k the particle completes an entire oscilla-
tion, The time T = 2w V'm/k is called the periodic time. The motion considered
in this example is characterized by the fact that the total force — kx is propor-
tional to the displacement from a certain origin and is directed toward the origin.
Motion of this sort is called simple harmonic motion (briefly 8. H. M.) and is of
great importance in mechanics and physics.

|&
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EXERCISES

1. The sum of $100 is put at interest at 4 per cent per annum under the condition
that the interest shall be compounded at each instant. Show that the sum will
amount to $200 in 17 yr. 4 mo., and to $1000 in 57} yr.

2. Given that the rate of decomposition of an amount z of a given substance is
proportional to the amount of the substance remaining undecomposed. Solve the
problem of the position and d ine the of i ion and the
physical constant of proportionality if # = 5.11 when ¢ =0 and z = 1.48 when

t =40 min. Ans. k= .0800.

3. A substance is undergoing transformation into another at a rate which Is
assumed to be proportional to the amount of the substance still remaining untrans-
formed. If that amount is 85.8 when ¢ =1 hr. and 18.8 when ¢ = 4 hr., determine
the amount at the start when ¢ = 0 and the constant of proportionality and find
how many hours will elapse before only one-thousandth of the original amount
will remain.

4. If the activity 4 of a radioactive deposit is proportional to its rate of
diminution and is found to decrease to } its initial value in 4 days, show that 4
satisfies the equation A/4, = e-0.173¢



« TedCLlOn 10 WillLil vile vElotlLy 01 Lb1diS10TINaUON b/ de 15 PTOPoTtional Lo Lh€ proa-
uct (@ — @) (b~ ) of the amounts remaining untransformed. Integrate on the
supposition that a = b.

ba—a t l[a—z|b—2
log 22 ) _ (a—bykt; andif 308 |0.4506|0.2342
a(b—=) 1265(0.88790.1854

determine the product & (@ — b).

6. Integrate the equation of Ex. 6 if a = b, and determine a and k if z = 9.87
when ¢ = 15 and @ = 13.69 when ¢t = 5.

7. If the velocity of a chemical reaction in which three substances are involved
is proportional to the continued product of the amounts of the substances remaining,
show that the equation between z and the time is

() o) )T
@-He—o@c—a

8. Solve Ex. 7 if a =b#c; also when a=b=c. Note the very different
lorms of the solution in the three cases.

z=0
=—kt, where {c —o.

9. The rate at which water runs out of a tank through a small pipe issuing
horizontally near the bottom of the tank is proportional to the square root of the
height of the surface of the water above the pipe. If the tank is cylindrical and
half empties in 80 min., show that it will completely empty in about 100 min.

10. Discuss Ex. 9 in case the tank were a right cone or frustum of a cone.

11. Consider a vertical column of air and assume that the pressure at any level
is due to the weight of the air above. Show that p = p,e—*h gives the pressure at
any height &, if Boyle’s Law that the density of a gas varies as the pressure be used.

12. Work Ex. 11 under the assumption that the adiabatic law pccpl# repre-
sents the conditions in the atmosphere. Show that in this case the pressure would
become zero at a finite height. (If the proper numerical data are inserted, the
height turns out to be about 20 miles. The adiabatic law Beems to correspond
better to the facts than Boyle's Law.)

13. Let I be the natural length of an elastic string, let Al be the extension, and
assume Hooke’s Law that the force is proportional to the extension in the form
Al=KiF. Let the string be held in a vertical pobition so as to elongate under its
own weight W. Show that the elongation is $kW1.

14. The density of water under a pressure of p atmospheres is p = 1 + 0.00004 p.
Show that the surface of an ocean six miles deep is about 600 ft. below the position
it would have if water were incompressible.

15. Show that the equations of the curve of equilibrium of a string or chain are

d [ dr d [, rd¢'

— — R =0, - —_ =

da(Tda)+P ' ds( ds)'”'" 0

In polar cotrdinates, where R and & are the components of the force along the
radius vector and perpendicular to it.



vinm of a string if R is the radius of curvature and S and NV are the tangential a
normal components of the forces.

17.% Show that when a uniform chain is supported at two points and hangs do
between the points under its own weight, the curve of equilibriuin is the catena

18. Suppose the mass dm of the element ds of a chain is proportional to the p
jection dr of ds on the g-axis, and that the chain hangs in the field of gravi
Show that the curve is a parabola. (This is essentially the problem of the sh
of the cables in a suspension bridge when the roadbed is of uniforin linear densi
for the weight of the cables is negligible compared to that of the roadbed.)

19. It is desired to string upon a cord a great many uniform heavy rods
rarying lengths so that when the cord is hung up with the rods dangling fron
the rods will be equally spaced along the horizontal and have their lower ends
the same level. Required the shape the cord will take. (It should be noted t
the shape must be known beforce the rods can be cut in the proper lengths to he
as desired.) The weight of the cord may be neglected.

20. A masonry arch carries a horizontal roadbed. On the assumption that
material between the arch and the roadbed is of uniform density and that e
element of the arch supports the weight of the material above it, find the shape
the arch.

21. In equations (4') the integration may be carried through in terms of quad
tures if pY is a function of ¥ alone ; and similarly in Ex. 15 the integration may
carried through if ® = 0 and pR is a function of r alone so that the field is cent
Show that the results of thus carrying through the integration are the formulas

e (Ol (O
V(SpYdy) -~ C V(JpRar)'—

22. A particle falls from rest through the air, which is assumed to offer a res
ance proportional to the velocity. Solve the problem with the initial conditi
v=0,2=0,¢=0. Show that as the particle falls, the velocity does not incre
indefinitely, but approaches a definite limit V" = mg/k.

23. Solve Ex. 22 with the initial conditions v = vy @ =0, t =0, where v,
greater than the limiting velocity 7. Show that the particle slows down as it fa

24. A particle rises through the air, which is assumed to resist proportionall;
the square of the velocity. Solve the motion,

25. Solve the problem analogous to Lx. 24 for a falling particle. Show t|
there is a limiting velocity 77 = ~/mg/k. 1f the particle were projected down w
an initial velocity greater than V/, it would siow down as in Ex. 28.

26. A particle falls towards a point which attracts it inversely as the square of
distance and directly as its mass. Find the relation between x and ¢ and determ
the total time 7' taken to reach the center. Initial conditionsv =0,z =a,t=

8
\“’ =Ecos_12—x—ﬂ+\/wz——a:2, T=7rk_;-'(il>‘.
a 2 2,

a

*Exercises 17-20 should be worked ab initio by the method by which (4) were deriv
not by applying (4) directly.



#0. dolve LuX. 27 under the assumption that the resistance varies as Vv,

29. A particle falls toward a point which attracts inversely as the cube of the
listance and directly as the mass. The initial conditions are c = a, v=0, t =0.
Show that 22 = a2 — kt?/a? and the total time of descent is T = a2/Vk.

30. A cylindrical spar buoy stands vertically in the water. The buoy is pressed
lown a little and released. Show that, if the resistance of the water and air be
neglected, the motion is simple harmonic. Integrate and determine the constants
rom the initial conditions z = 0, v = V, t = 0, where & measures the displacement
‘rom the position of equilibrium.

31. A particle slides down a rough inclined plane. Determine the motion. Note
hat uf the force of gravity only the component mgsini acts down the plane,
vhereas the component mg cos ¢ acts perpendicularly to the plane and develops the
orce wmg cosi of friction. Here ¢ is the inclination of the plane and u is the
oefficient of friction.

32. A bead is free to move upon a frictionless wire in the form of an inverted
sycloid {vertex down). Show that the component of the weight along the tangent
0 the cycloid is proportional to the distance of the particle from the vertex. Hence
letermine the motion as simple harmonic and fix the constants of integration by
he initial conditions that the particle starts from rest at the top of the cycloid.

33. Two equal weights are hanging at the end of an elastic string. One drops
off. Determine completely the motion of the particle remaining.

34. One end of an elastic spring (such as is used in a spring balance) is attached
igidly to a point on a horizontal table. To the other end a particle is attached.
[ the particle be held at such a point that the spring is elongated by the amcunt
1 and then released, determine the motion on the ion that the coeffici
f friction between the particle and the table is u; and discuss the possibility of
lifferent cases according as the force of friction is small or large relative to the
orce exerted by the spring.

85. Lineal element and differential equation. The idea of a curve
s made up of the points upon it is familiar. Points, however, have no
xtension and therefore must be regarded not as pieces of a curve but
nerely as positions on it. Strictly speaking, the pieces of a curve are
he elements As of arc; but for many purposes it is convenient to re-
lace the complicated element As by a piece of the tangent to the curve
b some point of the are As,and from this point of view a curve is made
1p of an infinite number of infinitesimal elements tangent to it. This
s analogous to the point of view by which a curve is regarded as made




A point on a curve taken with an infimtesimal portion of the tangent
to the curve at that point is called a lineal element of the curve. These
concepts and definitions are clearly equally available in two or three
dimensions. For the present the curves under dis-

cussion will be plane curves and the lineal elements /_\
will therefore all lie in a plane. m

To specify any particular lineal element three
codrdinates %, y, p will be used, of which the two (z, ) determine the
point through which the element passes and of which the third p is
the slope of the element. If a curve f(x, y)= 0 is given, the slope at
any point may be found by differentiation,

d f /9
p==-Z/ L ®

and hence the third cosrdinate p of the lineal elements of this particular
curve is expressed in terms of the other two. If in place of one curve
f(z, y) =0 the whole family of curves f(z, y) = C, where C is an
arbitrary constant, had been given, the slope » would still be found
from (6), and it therefore appears that the third codrdinate of the lineal
elements of such a family of curves is expressible in terms of » and .

In the more general case where the family of curves is given in the
ungolved form F(x,y, C) = 0, the slope p is found by the same formuly
but it now depends apparently on C in addition to on x and y. If, how-
ever, the constant C be eliminated from the two equations

oF  OF
F(r,y, C)=0 and —a;-l-—@p:O, (]

there will arise an equation @ (x, , p) = 0 which connects the slope p
of any curve of the family with the cotrdinates (x, y) of any point
through which a curve of the family passes and at which the slope of
that curve is . Hence it appears that the three codrdinates (z, y, p) of
the lineal elements of all the curves of a family are connected by an equa~
tion @ (z, y, p) = 0, just as the codrdinates (=, y, z) of the points of a
surface are connected by an equation ®(z, y, ) = 0. As the equation
®(z, ¥, z) =0 is called the equation of the surface, so the equation
@(, ¥, p) = 0 is called the equation of the family of curves; it is, how-
ever, not the finite equation F(z, 7, ') = 0 but the differential equation
of the family, because it involves the derivative p = dy/dx of y by @
instead of the parameter C.



y?=Cx or y¥/z=C.
The differentiation of the equation in the second form gives at once
— y2/z? + 2yp/r =0 or y=2zp
as the differential equation of the family. In the unsolved form the work is
2yp = C, 2 = 2ypx, ¥ =2zp.
The result is, of course, the same in either case. For the family here treated it
makes little difference which method is followed. As a general rule it is perhaps
best to solve for the constant if the solution is simple and leads to a simple form
of the function f(x, v) ; whereas if the solution is not simple or the form of the
function is complicated, it is best to differentiate first because the differentiated
equation may be simpler to solve for the constant than the original equation, or
becanse the elimination of the betw the two i can be con-
ducted advantageously.

If an equation @ (x, %, p) = 0 connecting the three cosrdinates of the
lineal element be given, the elements which satisfy the equation may
be plotted much as a surface is plotted; that is,a pair of values (x, y)
may be assumed and substituted in the equation, the equation may then
be solved for one or more values of p, and lineal elements with these
values of p may be drawn through the point (z,y). In this manner the
elements through as many points as desired may be found. The de-
tached elements are of interest and significance chiefly from the fact
that they can be assembled into curves, —in fact, into the curves of a
family F(z,y, C) = 0 of which the equation & (z,y, p) = 0 is the differ-
ential equation. This is the converse of the problem treated above and
requires the integration of the differential equation @ (x, y, p) = 0 for its
solution. In some simple cases the assembling may be accomplished
intuitively from the geometric properties implied in the equation, in
other cases it follows from the integration of the equation by analytic
means, in other cases it can be done only approximately and by methods
of computation.

As an example of intuitively assembling the lineal elements into curves, take

®@, v, p)=yP2+ Yt —~12=0 or p=4

2

The quantity V72 — y2 may be interpreted as one leg of a right triangle of which
¥ is the other leg and r the hypotenuse. The slope of the hypotenuse is then
+ ¥/ V2 — y? according to the position of the figure, and the differential equation
®(z, y, p) = 0 states that the codrdinate p of the lineal element which satisfies it
is the negative reciprocal of this slope. Hence the lineal element is perpendicular
to the hypotenuse. It therefore appears that the lineal elements are tangent to cir-
cles of radiusr described about points of the z-axis. The equation of these circles is



1'ne correciness o this Integral may De cheéckea Dy direct integraiion. Xor

p=@=i—’ﬂ—:—?‘é or —v_cw_ﬁ_:d.z or m::—C.
dz v Vi — 2

86. In geometric problems which relate the slope of the tangent
curve to other lines in the figure, it is clear that not the tangent |
the lineal element is the vital thing. Among such problems that of |
orthogonal trajectories (or trajectories under any angle) of a given fam
of curves is of especial importance. If two families of curves are
related that the angle at which any curve of one of the families ¢
any curve of the other family is a right angle, then the curves of eit.
family are said to be the orthogonal trajectories of the curves of
other family. Hence at any point (z, ¥) at which two curves belong
to the different families intersect, there are two lineal elements, ¢
belonging to each curve, which are perpendicular. As the slopes of t
perpendicular lines are the negative reciprocals of each other, it foll
that if the codrdinates of one lineal element are (z, y, p) the codrdina
of the other are (z, ¥, —1/p); and if the coérdinates of the lineal
ment (z, , p) satisfy the equation @ (z, 7, p) = 0, the cosrdinates of
orthogonal lineal element must satisfy ®(z, y, —1/p) = 0. Theref
the rule for finding the orthogonal trajectories of the curves F(z, y, C)-
is to find first the differential equation ®(z,y, p) = 0 of the family, t
to replace p by —1/p to find the differential equation of the orthogo
SJamily, and finally to integrate this equation to find the family. It u
be noted that if F(z) = X (z, y) + i¥(z, y) is a function of z =z +
(8 73), the families X (z, ¥) = C and Y (z, y) = K are orthogonal.

As a problem in orthogonal trajectories find the trajectories of the semicub
parabolas (z — C)® = 2, The differential equation of this family is found as

S@—Of=2mw, o—O=@wh Gwi=¢ or p=4b

This is the differential equation of the given family. Beplace p by — 1/p
integrate :

2 3 3 9
—3—1;=1/§ or 1+§py§=0 or dz+§1/}dy=0, and z+§y§=0.

Thus the differential equation and finite equation of the orthogonal family are fou
The curves look something like parabolas with axis horizontal and vertex tow
the right.

Given a differential equation ®(x, y, p)=0 or, in solved fo
P =¢ (=, y); the lineal element affords a means for obtaining graphice
and numerically an approximation to the solution which passes thro



an assigned point P (%, y,). For the value p, of p at this point may be
computed from the equation and a lineal element P P, may be drawn,
the length being taken small. As the lineal element is tangent to the
curve, its end point will not lie upon the curve but will depart from it
by an infinitesimal of higher order. Next the slope p, of the lineal
element which satisfies the equation and passes
through P, may be found and the element PP,

may be drawn. This element will not be tangent /
to the desired solution but to a solution lying near

that one. Next the element PP, may be drawn,
and so on. The broken line PP PP, .- is clearly
an approximation to the solution and will be a better approximation
the shorter the elements P;P;,; are taken. If the radius of curvature
of the solution at P, is not great, the curve will be bending rapidly and
the elements must be taken fairly short in order to get a fair approx-
imation ; but if the radius of curvature is great, the elements need not
be taken so small. (This method of approximate graphical solution
indicates a method which is of value in proving by the method of
limits that the equation p = ¢ (z, ¥) actually has a solution; but that
matter will not be treated here.)

Po(os Yor Po)

Let it be required to plot approximately that solution of yp + @ =0 which
passes through (0, 1) and thus to find the ordinate for # = 0.5, and the area under
the curve and the length of the curve to this point. Instead of assuming the lengths
of the successive lineal el let the
lengths of successive increments &z of | ;| 5z oy % | w s
@ be taken as 3z = 0.1. At the start
T =0, %, =1, and from p = —a/y it
follows that p, = 0. The increment 3y
of y acquired in moving along the tan-
gent is &y = pdz = 0. Hence the new
point of departure (z,, ¥,) is (0.1,1) and
the new slope is p; = — 2, /y; = — 0.1.
The results of the work, as it is contin-
ued, may be grouped in the table. Hence it appears that the final ordinate is
y = 0.90. By adding up the ids the area is puted as 0.48, and by find-
ing the elements &8 = V322 4 y® the length is found as 0.51. Now the particular
equation here treated can be integrated.

e e 0. | 1.00 0.
0.1 0. 0.1 1.00 | —0.1
01(—0.0102(09 |—02
0.1 |—0.02 | 03] 097 |—0.31
0.1 | —0.03 | 0.4 0.94 | — 0.43
0.1]—0.04 | 0.5 | 0.90 s

o N N ]

yp+ =0, ydy + ade =0, 22 4+y2=0C, and hence 2*+92=1

is the solution which passes through (0, 1). The ordinate, area, and length found
from the curve are therefore 0.87, 0.48, 0.52 respectively. The errors in the
approximate results to two places are therefore respectively 3, 0, 2 per cent. If 8z
had been chosen as 0.01 and four vplaces had been kept in the computations, the



EXERCISES

1. In the following cases eliminate the constant C to find the differential equa~
tion of the family given:

(@) 22 =2Cj + C°, ) v=Ca+Vi- G,
() 22— 92 =0, (8) y==tan @ + ),

22 P dy (za_yz)_(az_b‘z)d_y 1e
) —5+ma—g=" Am( ) e 1=t

2. Plot the lineal elements and intuitively assemble them into the solution:
= - 9% _
(@ y+z=0 (B ap-y=0, (r-=L

Check the results by direct integration of the differential equations.

3. Lines drawn from the points (= ¢, 0) to the lineal element are equally in-
clined to it. Show that the differential equation is that of Ex. 1 (¢). What are the
curves ?

4. The trapezoidal area under the lineal element equals the sectorial area formed
by joining the origin to the extremities of the element (disregarding infinitesimals
of higher order). (a) Find the di i ion and i (B) Solve the
same problem where the areas are equal in magnitude but opposite in sign. What
are the curves ?

5. Find the orthogonal trajectories of the following families. Sketch the curven

() parabolas y? =2 Cz, Ans. ellipses 222 + 32 = C.
(B) exponentials y = Cek=, Ans. parabolas } ky? + ¢ = C.
(v) circles (z — C)% + % = a?, Ans. tractrices.

® #—2=0% () Or=a, (@) at+id=ch
6. Show from the answer to Ex. 1 (e) that the family is self-orthogonal and
illustrate with a sketch. From the fact that the lineal element of a parabola makes
equal angles with the axis and with the line drawn to the focus, derive the differ-
ential equation of all coaxial confocal parabolas and show that the family is self-
orthogonal.

7. If & (z, y, p) = 0 is the differential equation of a family, show
m
<1>(x, Yy i p) =0 and §(z, YUy f+mp)=o

are the differential equations of the family whose curves cut those of the given
family at tan~1m. What is the difference between these two cases ?

8. Show that the differential equations
dr ds
‘P»(E;, , ¢)=0 and @(—r’-di, A ¢)=o

define orthogonal families in polar codrdinates, and write the equation of the family
which cuts the first of these at the constant angle tan—1m.

9 Find the orthogonal trajectories of the following families. Sketch.

o o ere o e e e e
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11. Plot the approximate solution of p = ay between (1, 1) and the y-axis. Take
oz = — 0.2, Find the ordinate, area, and length, Check by integration and
comparison.

12. Plot the approximate solution of p = — x through (1, 1), taking &z = 0.1 and
following the curve to its intersection with the z-axis. Find also the area and the
length,

13. Plot the solution of p = Va2 + y? from the point (0, 1) to its intersection
with the z-axis. Take éz = — 0.2 and find the area and length.

14. Plot the solution of p = s which starts from the origin into the first quad-
tant (8 is the length of the arc). Take 8z = 0.1 and carry the work for five steps
to find the final ordinate, the area, and thelength. Compare with the true integral.

87. The higher derivatives ; analytic approximations. Althougha
differential equation ®(z, y, y")=0 does not determine the relation
between x and y without the application of some process equivalent to
integration, it does afford a means of computing the higher derivatives
simply by differentiation. Thus

de _ 0% 0@ .

PRt w4 + '?/

is an equation which may be solved for y" as a function of z, ¥, ¥';
and y" may therefore be expressed in terms of « and y by means of
®(x, y, ') = 0. A further differentiation gives the equation

e P *e o’ 3’<I>

d aac’+2d:cayy+26w3y'y +"y2y y‘/y
e 6 0%
+21nyﬂﬁ+a ./“+ IYI=0’

which may be solved for 3" in terms of x, y, ¥, ¥"; and hence, by the
preceding results, 3" is expressible as a function of @ and y; and so
on to all the higher derivatives. In this way any property of the inte-
grals of & (z, y, y') = 0 which, like the radius of curvature, is expressi-
ble in terms of the derivatives, may be found as a function of z and y.

As the differential equation ®(, 7, ¥') = 0 defines ' and all the
higher derivatives as functions of @, y, it is clear that the values of the
derivatives may be found as y;, ¥, ¥, -+ at any given point (z,, 3,)-
Hence it is possible to write the series

y=y+%n@—z)+ % @—a)l +ig @—a) '+ 8

If this power series in # — z, converges, it defines y as a function of
% for values of @ near m,; it is indeed the Taylor development of the



Y=Yty @—x)+ g% @—%) + -

It may be shown that the function y defined by the series actually
satisfies the differential equation ® (2, ¥, #') = 0, that is, that

@) =2 y,+ v @—a) + §ui (@—2)"'+ 1o+ w (r—z) +-]=0
for all values of z near z, To prove this accurately, however, is beyond
the scope of the present discussion; the fact may be taken for granted.
Hence an analytic expansion for the integral of a differential equa~
tion has been found.

As an example of computation with higher derivatives let it be required to deter-
mine the radius of curvature of that solution of ¥ = tan (y/x) which passes through
(1, 1). Here the slope VEL 1y at (1, 1) is tan 1 = 1.557. The second derivative is

dy _d_ vy ey —y
"= —— = —tanZ =sec? = ——-—.
v ds  dz x z 2

From these data the radius of curvature is found to be

2% 2
=0 ¥ T Ry =secl — = 3.260.
v’ zay —y tanl—1

The equation of the circle of curvature may also be found. Foras y(j ,, is positive,
the curve is concave up. Hence (1 — 8.250sin1, 1 + 3.250 cos 1) is the center of
curvature ; and the circle is

(@ + 1.785) + (y — 2.757)2 = (3.250)2.

As a second example let four terms of the expansion of that integral of
ztany’ = y which passes through (2, 1) be found. The differential equation may
be solved ; then

2, f—
gy =ta,n—l(%). Py _w -y

a da? &ty
@y _ (@ +)e—-1)y + B2 — )y —2ayy” + 2ay
dzd @ + y?)?

Now it must be noted that the problem is not wholly determinate ; for ¢ is multi-
ple valued and any one of the values for tan—1} may be taken as the slope of a
solution through (2, 1). Suppose that the angle be taken in the first quadrant ; then
tan-1} = 0.462. Substituting this in ", we find y{;, ;) =— 0.0152 ; and hence may
be found yz;:,) =0.110. The series for y to four terms is therefore

¥ =14 0.462 (£ — 2) — 0.0076 (x — 2)2 + 0.018 (z — 2)%.

It may be noted that it is generally simpler not to express the higher derivatives in
terms of z and y, but to compute each one ively from the p ding ones.

88. Picard has given a method for the integration of the equation
¥' = ¢ (x, y) by successive approzximations which, although of the highest
theoretic value and importance, is not particularly suitable to analytie



equation y' = ¢ (x, y) be given in solved form, and suppose (z,, y,) is
the point through which the solution is to pass. To find the first
approximation let y be held constant and equal to 7, and integrate the
equation y' = ¢ (x, y,). Thus

dy =@ y)de;  y=y,+ f (@, Y,) Iz = fi(®), ®

where it will be noticed that the constant of integration has been chosen
so that the curve passes through (x,, y,). For the second approximation
let y have the value just found, substitute this in ¢ (z, ), and integrate
again. Then

y=u+[ ¢[w n+ [ o %)dz]dx =A@ @

With this new value for y continue as before. The successive deter-
minations of y as a function of x actually converge toward a limiting
function which is a solution of the equation and which passes through
(4 ¥,)- It may be noted that at each step of the work an integration
is required. The difficulty of actually performing this integration in
formal practice limits the usefulness of the method in such cases. It is
clear, however, that with an integrating machine such as the integraph
the method could be applied as rapidly as the curves ¢ (z, fi(x)) could
be plotted.

To see how the method works, consider the integration of ¥’ = + ¥ to find the
integral through (1, 1). For the first approximation y = 1. Then
dy=(@+1)ds, y=}2+e+0, y=}a2+2—}=£()
From this value of y the next approximation may be found, and then still another:
y=[z+@2* +z—§)dz, y=}P+—}u+1=5@)
dy = [z + f,(x)] dz, y=q et + 328+ §2 4 Jo+ A
In this case there are no difficulties which would prevent any number of appli-

cations of the method. In fact it is evident thatif ¢ is a polynomial in ¢ and y, the
result of any number of applications of the method will be a polynomial in .

The method of wndetermined cogfficients may often be employed to
advantage to develop the solution of a differential equation into a
series. The result is of course identical with that obtained by the
application of successive differentiation and Taylor’s series as above;
the work is sometimes shorter. Let the equation be in the form
¥' = ¢ (2, y) and assume an integral in the form

UESOR ENCEENE INCEEN S ENCIENE T 10)



(@ y) = Ay + A, (& — xp) + Ay (2 — 2)" + 4, (2 — 7)o
But by differentiating the asswmed form for y we have
¥ =0+ 2a,(zr —x)+ 3a(x — ) +4a (@ —x) + .

Thus there arise two different expressions as series in x — x for the
funetion y', and therefore the corresponding coefficients must be equal.
The resulting set of equations

o, =4Ay, 2a,=4,, 3a,=4, 4a, =4, - (11)

may be solved successively for the undetermined coefficients a,, a,, a,,
@,,--- which enter into the assumed expansion. This method is partic-
ularly useful when the form of the differential equation is such that
some of the terms may be omitted from the assumed expansion (see
Ex. 14).

As an example in the use of undetermined coefficients consider that solution of
the equation 3’ = V? + 8% which passes through (1, 1). The expansion will pro-
ceed according to powers of ¢ — 1, and for convenience the variable may be changed
to l =z — 150 that

%:V(t+l)“+31/“, Y=14ap+ al® + a5t + att+ .o

are the equation and the d e: i One ex ion for y’ is

Y=a,+2at+8a? + da P+ -,

To find the other it is necessary to expand into a series in ¢ the expression

Y=V + 1)+ 81+ ayf + 0, + atd)e.

If this had to be done by Maclaurin's series, nothing would be gained over the
method of § 87; but in this and many other cases algebraic methods and known
expansions may be applied (§ 82). First square y and retain only terms up to the
third power. Hence

¥ =2V14+ 30 +8a)t+3(1+ 60, + 8a)) 0+ § (a0 + ag) 5
Now let the quantity under the radical be called 1 + & and expand so that
Y =2VI+h=2(1+3h—} 1%+ 3 2¥).
Finally raise % to the indicated powers and collect in powers of ¢. Then

t # I
V=8+11+30a)|+1(1+6a,+80])|+ §aya, + a5)
~fo(l+8ay? ~ fs(1+3a)(1+60;+30))
+‘\x(1+8a,)'



The methods of developmg a solution by Taylor’s series or by un
determined coefficients apply equally well to equations of higher order
For example consider an equation of the second order in solved form

= ¢ (x, y, y") and its derivatives

9 o
J'”—a'i+ajJ+ 4’,/
v.__i’ ¢ ) i
v +23a:3y‘/ +2dx?1 v of‘/ +2 5/31'yy
a:l/?;‘/”" '/'Y+g¢ "l

Evidently the higher derivatives of y may be obtained in terms of x,
% ¥'; and y itself may be written in the expanded form

VAR ACEENE R YACEENE S VACEENY (12)

o —a) '+
where any desired values may be attributed to the ordinate y, at which
the curve cuts the line = = x,, and to the slope y; of the curve at that
point. Moreover the coefficients 7, y;”, - - - are determined in such a way
that they depend on the assumed values of y, and y;. It therefore is
seen that the solution (12) of the differential equation of the second
order really involves two arbitrary constants, and the justification of
writing it as F(z, y, €, C)) = 0 is clear.
In following out the method of undetermined coefficients a solution

of the equation would be assumed in the form

=Y+ Vi@ — x) + 0, — x)* + g (x — )’ + a, (& — ) + -+, (13)
flom which y' and " would be obtained by differentiation. Then if the
series for y and y' be substituted in y"= ¢(x, 3, ') and the result
arranged as a series, a second expression for 3" is obtained and the
comparison of the coefficients in the two series will afford a set of equa-
tions from which the successive coefficients may be found in terms of
¥, 2nd g, by solution. These results may clearly be generalized to the
case of differential equations of the uth order, whereof the solutions
will depend on n arbitrary constants, namely, the values assumed for
y and its first # — 1 derivatives when » =,




1. Find the radii and circles of curvature of the solutions of the following equa-
tions at the points indicated :

(@ v =VaF+ 7k at (0, 1), (B) v/ + &= 08t (2, %)

2. Find 5y = (6 V2 — 2)/4 if ¢ = VaZ + 2.

3. Given the equation y?y’® + zyy® — yy’ + 2 = 0 of the third degree in y” so
that there will be thiree solutions with different slopes through any ordinary point
(z, ¥). Find the radii of curvature of the three solutions through (0, 1).

4. Find three terms in the expansion of the solution of y* = e= about (2, }).

5. Find four terms in the expansion of the solution of y=log sin zy about (} , 1).

6. Expand the solution of y” = ay about (1, %,) to five terms.

7. Expand the solution of y’ = tan (y/x) about (1, 0) to four terms. Note that
here x should be expanded in terms of ¥, not y in terms of z.

8. Expand two of the solutions of y2y” + xyy”? — yy’ + 22 = 0 about (— 2, 1)
to four terms.

9. Obtain four successive approximations to the integral of y’ =zy through (1, 1).

10. Find four successive approximations to the integral of ¥’ =z 4 ¥ through
0, %o)-

11. Show by successive approximations that the integral of 3" = y through (0, y,)
is the well-known y = ye=.

12. Carry the approximations to the solution of 3’ = — z/y through (0, 1) as
far as you can integrate, and plot each approximation on the same figure with the
exact integral.

13. Find by the method of undetermined coefficients the number of terms indi-
cated in the expansions of the solutions of these differential equations about the
points given :

(a) ¥’ =V + y, five terms, (0, 1), {(B) ¥’ = Vz + y, four terms, (1, 3),
(v) ¥ =2 + y, n terms, (0, y,), (8) ¥’ =Va? + v, four terms, (}, §).

14. If the solution of an equation is to be expanded about (0, o) and if the
change of z into —  and 3’ into — y’ does not alter the equation, the solution is
necessarily symmetric with respect to the y-axis and the expansion may be assumed
to contain only even powers of z. thé solution is to be expanded about (0, 0)
and a change of z into — « and y into — ¥ does not alter the equation, the solution
is symmetric with respect to the origin and the expansion may be assumed in odd
powers, Obtain the expansions to four terms in the following cases and compare
the labor involved in the method of undetermined coefficients with that which
would be involved in performing the requisite six or seven differentiations for the
application of Maclaurin's series :

x

(@) v = T+1; about (0, 2), (8) ¥ = sinzy about (0, 1),
(v) ¥ = e about (0, 0), (3) ¥’ = 23y + xy® about (0, 0).

15. Expand to and including the term x4 :
(@) ¥ =y? + ay about z, = 0, ¥, = a,, ¥, = a, (by both methods),
(B) zy” + ¥'+ y = 0 about 2, = 0, ¥, = @y, ¥, = — a, (by und. coefis.).



CHAPTER VIII
THE COMMONER ORDINARY DIFFERENTIAL EQUATIONS

89. Integration by separating the variables. If a differential equa-
tion of the first order may be solved for y' so that

y'=¢(@y) or M y)de+ Nz, y)dy=0 (€))

(where the functions ¢, M, N are single valued or where only one spe-
cific branch of each function is selected in case the solution leads to
multiple valued functions), the differential equation involves only the
first power of the derivative and is said to be of the first degree. If,
furthermore, it so happens that the functions ¢, M, N are products of
functions of « and functions of y so that the equation (1) takes the form

Y'=$@) b)) or M@)My)de+ Ny@) Ny)dy =0, (2)

it is clear that the variables may be separated in the manner

Wy M(’”)x NG 4 :
¢2(y)~¢‘( Ydx or I—V:@d +1—”‘i@d?/ 0, (¢))]

and the integration is then immediately performed by integrating each
side of the equation. It was in this way that the numerous problems
considered in Chap. VII were solved.

As an example consider the equation yy’ + 2y? = . Here
ydy
-1
and log(¥*—1)+42*=C or (y*—1)e*=C.

The second form of the solution is found by taking the exponential of both sides
of the first form after multiplying by 2.

ydy + 2 (¥?—1)de =0 or + zdx =0,

In some differential equations (1) in which the variables are not
immediately separable as above, the introduction of some change of
variable, whether of the dependent or independent variable or both,
may lead to a differential equation in which the new variables are sepa-
rated and the integration may be accomplished. The selection of the
proper change of variable is in general a matter for the exercise of
ingenuity; succeeding paragraphs, however, will point out some special



types of equations for which a definite type of substitution is k
to accomplish the separation.
As an example consider the equation zdy — ydz = x V2? + y? dz, where the

bles are clearly not le without su i The of
suggests a change to polar codrdinates, The work of finding the solution is:

z=rcosd, y=rsinf, dz=-cosfdr— rsinfddf, dy = sinfdr+ rcos
then ody — ydz =109, = Va + P de = r? cos 6d (r cos 6),
Hence the differential equation may be written In the form
7200 =12 cos fd (rcos ) or sec fdf = d (r cos f),

and logtan (}6 + 4m) =rcosf + C or logl—:_l(f;l—€=z+0.
V2 2
Hence w =Ce*  (on substitution for §).

Another change of variable which works, is to let y = vz. Then the worl
2 (vdz + zdv) — vede = 2 V1 + v*dz or dv = V1 + vidz.
dv
Then —= -1y = =g 8i .
Vira dz, slnh-lv=2+C, y=zwxsinh(z+ C)

This solution turns out to be shorter and the answer appears in neater forr
before obtained. The great difference of form that may arise in the answe!
different methods of integration are employed, is s noteworthy fact, and re
set of answers practically worthless ; two solvers may frequently waste mo:
in trying to get their answers reduced to & common form than each would 8]
solving the problem in two ways.

90. If in the equation 3' = ¢(, ) the function ¢ turns oub
é(y/x), a function of y/z alone, that is, if the functions M and
honllogeneous functions of z, y and of the same order (§ 53), the
ential equation is said to be homogeneous and the change of va
y=vx or z=vy will always result in separating the variables
statement may be tabulated as ;

. d; =
if E—Z = ¢<§/_> ,  substitute y=e

x or & = vy.
A sort of corollary case is given in Ex. 6 below.

2 z
. Aaha.n example ta,kg v(l + e;)dz + ¢ (y — z)dy = 0, of which the homo
perhaps somewhat disguised, Here it is better to choose = = vy. Then

1+ e)dz+e(1—v)dy =0 and do =vdy + ydv.

Ct+e)dyty(+eydv=0 or W 15 o
¥y v4e

Hence



If the differential equation wmay be arranged so that
dy " dz
A X@y=X@Hy o ot hmE=Yme, @

where the second form differs from the first only through the inter-
cthange of « and y and where X, and X, are functions of « alone and
Y, and Y, functions of y, the equation is called a Bernoulli equation ; and
in particular if # = 0, so that the dependent variable does not occur on
the right-hand side, the equation is called linear. The substitution
which separates the variables in the respective cases is

y=veSu@E op g =g Tend, ®)

To show that the separation is really accomplished and to find a general
formula for the solution of any Bernoulli or linear equation, the sab-
stitution may be carried out formally. For

WY _ W e L
Pl Jxda vXe .
The substitution of this value in the equation gives
v oS Xz Xg'v'"e‘ wfXdz o @ = X,0-» [ iz g
x i

Hence v=r= (1 — n) f Xpa-m[his gy when n % 1%

or yr= (1 — n) e/ Mz[ f X g~ """’dz] . (®)

There is an analogous form for the second form of the equation.

The equation (22y® + zy) dy = dz may be treated by this method by writing it as

E—1/.'z:=y”z“ sothat ¥,=—9, ¥, =95 n=2

dy
Then let o= ve'/“""" vt
Then :—; —ye = :v e"ﬂ + uye yveh dv e*”’
and %; ei v ySv2e® or %v = yl¢ yldy
and —%:(y’—z)e*y 4+C or —=2—92+Ce i".

This result could have been obtained by direct substitution in the formula
== méeo o] [roonfrog],

but actually to carry the method through is far more instructive.



EXERCISES

1. Solve the equations (variables immediately separable) :

(@) A+ 2)y+ Q1 —y)zy =0, Ans. zy = Cev-—=,
(B) a(xdy + 2ydz) = zydy, (v) V1—2?dy +V1—y2dz =0,

@) G +vde— @+ VIity)d +olay=o.

2. By various ingenious changes of variable, solve :

(a) @+ )% =a? Ans. x4y = atan(y/a + C).
(B) (@ —y?)dz + 2aydy = 0, (v) zdy — ydz = («* + 3?) dz,
@) y=c~y, (&) w+v¥+z+1=0.

3. Solve these homogeneous equations:
(@) @Vay—a)y +y =0, Ans. Vayy +logy = C.

y

(B) ve*+y—ay =0, 4ns. y + xloglog C/z = 0.
() (a® + v?)dy = ayde, (@) 2y’ —y =Val 2

4. Solve these Bernoulli or linear equations :
(@) ¥ +y/z =197 Ans. zylog Cz +1=0,
(B) ¥ —yecscx =cosx—1, dns. y =sinz + Ctanjz.
() 2y’ + y =y*loga, Ans. y=logz+ 1+ Ca.
(8) (1+ %) de = (tan~1y —z)dy,  (¢) ydz + (ax?ym — 22)dy =0,
() w—ay=ga+1, (m) ¥¥' + 3 9% = cosz.

5. Show that the substitution y = vz always separates the variables in the
homogeneous equation 3’ = ¢ (y/x) and derive the general formula for the integral,

6. Let a differential equation be reducible to the form

dy - ¢(a,m + b0y + c,) , ayby — azby 0,

do " \a@ + byy + ¢y or ayb, — agby = 0.

In case @b, — agby 0, the two lines ¢,z + by +¢, =0 and az + by + ¢, = 0
will meet in a point. Show that a transformation to this point as origin makes
the new equation homogeneous and hence soluble. In case a,b, — ayd, = 0, the
two lines are parallel and the substitution z=a + by or z=az + by will
separate the variables.

7. By the method of Ex. 6 solve the equations:

(@) (By—Tz+T)dz+(Ty— 8z +8)dy=0, Ans. (y—z+ 102y +2—1)=C.
(B) 22+8y—6)y' +(B2+2y—5)=0, (y) (4a+3y+1)dz+(zs+y+1)dy=0,
(3) @z +9)=v'dz+ 2y —1) () i”:(ﬂif.

! dr~ \2x—2y +1

8. Show that if the equation may be written as yf(zy)ds + g (xy)dy = 0,
where fand ¢ are functions of the product ay, the substitution v = zy will sepa-
rate the variables.

9. By virtue of Ex. 8 integrate the equations:

(@) (¥ + 22y — x2y8)dz + 222ydy = O, Ans. z 4+ 22y = C(1 — 79}
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method is appllcab]e, state what methods, and any apparent reasons for choos-
ing one:

(@) ¥’ + y cosz = yn sin 2z, (B) (22% + 8% dx = (2 + 2zy?) dy,
() @e+2y -y +2c+y+1=0, (3) w +:l=ug,
(¢) ¥'siny + sinzcosy = sinz, ) Va2 +22(1—y)=2+y,

(1) @° + 29 +ay + 1)y + @Y — 2 — oy + Day',  (0) ¥ =sin(@—vy),
4
(v) zydy — y?de = (z + y)?e =dz, (x) (1 =y de = azy (v + 1)dy.

91. Integrating factors. If the equation Mdx 4 Ndy = 0 by a suita-
ble rearrangement of the terms can be put in the form of a sum of total
differentials of certain functions «, v,---, say

du+dv+-.--=0, then utv4...=C ()

is surely the solution of the equation. In this case the equation is called
an exact differential equation. It frequently happens that although the
equation cannot itself be so arranged, yet the equation obtained from
it by multiplying through with a certain factor w(z,y) may be so
arranged. The factor u(w, %) is then called an integrating factor of the
given equation. Thus in the case of variables separable, an integrating
factor is 1/M,N,; for

1 M=) N
= DY) e+ 22 gy = 04
T (MM, dx + N,N,dy] = SO + M) dy=0; ©)]
and the integration is immediate. Again, the linear equation may be
treated by an integrating factor. Let

dy + Xyde = Xgdo and = ef s, )
then eJ = gy 4 X of Mty = o 1= X oy 10)

o d[yef ] = ofT0e X dz, and  yeSTee = f ef e X dn.  (11)

In the case of variables separable the use of an integrating factor is
therefore implied in the process of separating the variables. In the
case of the linear equation the use of the integrating factor is somewhat
shorter than the use of the substitution for separating the variables.
In general it is not possible to hit upon an infegrating factor by inspec-
tion and not practicable to obtain an integrating factor by analysis, but
the integration of an equation is so simple when the factor is known,
and the equations which arise in practice so frequently do have simple
integrating factors, that it is worth while to examine the equation to
see if the factor cannot be determined by inspection and trial. To aid
in the work, the differentials of the simpler functions such as
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duwy = xdy + yda, (@ + o) = ada + ydy,
y _ ady — ydw L% _ yde — xdy 2
= ——m d tan v Frg 12)

should be borne in mind.

Consider the equation (zle* — 2 may?)de 4 2mapdy = 0. Here the first term
@terdz will be a differential of a function of @ no matter what function of z may be
nssumed as & trial x. With g = 1/x* the equation takes the form

etdz+2m(yd” ”dz) de=+md7’ =0,

The integral is therefore seen to be e* + my2/z2 = C without more ado. It may
be noticed that this equation is of the Bernoulli type and that an integration by
that method would be considerably longer and more tedious than this use of an
integrating factor.

Again, consider (z + y)dz — (z — ¥)dy = 0 and let it be written as

adz + ydy + yde —ady = 0; try u =1/(z% +9?2);

ade + ydy | yde — xdy

then p F

=0 or ;dlog(m’ + )+ dtan-1% =0,

v
and the integral is log Vz? + ¢2 + tan—2(z/y) = C. Here the terms zde + ydy
strongly suggested #% + y? and the known form of the differential of tan—1(z/y)
corroborated the idea. This equation comes under the homogeneous type, but the
use of the integrating factor considerably shortens the work of integration.

92. The attempt has been to write Mdx + Ndy or w(Mdx + Ndy)
as the sum of total differentials du + dv + - - -, that is, as the differential
dF of the function u + v + .., so that the solution of the equation
Mdx 4 Ndy =0 could be obtained as F= C. When the expressions
are complicated, the attempt may fail in practice even where it theoreti-
cally should succeed. It is therefore of importance to establish condi-
tions under which a differential expression like Pdz + Qdy shall be the
total differential dF of some function, and to find a means of obtaining
F when the conditions are satisfied. This will now be done.

Suppose Pde + Qdy =dF = g-— dx + oF dy; 13)
_OF oF opP 9Q__ °F
then P-—aw: Q_-; a_y__a.; P

Hencg if Pdz + Qdy is a total differential dF, it follows (as in § 52) that



Y, v
where the fixed value , or , will naturally be so chosen as to simplify
the integrations as much as possible.

To show that these expressions may be taken as F it is merely neces-
sary to compute their derivatives for identification with P and Q. Now

31‘ a
= P(w,y>dw+—fe<ma,y)dy P, 1),

or . _ 0
@:@L P(w, y)de +Z/fQ(a:n, y)dy—-anyda;-i-Q(zo, y)-

These differentiations, applied to the first form of F, require only the
fact that the derivative of an integral is the integrand. The first turns
out satisfactorily. The second must be simplified by interchanging the
order of differentiation by y and integration by x (Leibniz’s Rule,
§119) and by use of the fundamental hypothesis that P, = @;.

0 e g
@f%PdH 2, y>=f% ot (e, v)

=30
= [ Raota@ =
%o
The identity of P and Q with the derivatives of F is therefore estab-
lished. The second form of F would be treated similarly.

+ Q@ )=Q y)-

Show that (22 + log ¥) dz + @/ydy = 0 is an exact differential equation and obtain
the solution. Here it is first necessary to apply the test P, = @, . Now

oz _ 1
—z’-’+101/_.— and —-=2.
( 2 Y) privia

Hence the test is satisfled and the integral is obtained by applying the formula :

z 0 1

2+ 1 —dy=zab+axlogy=0C
fD(Z+asy)dar+fyv 3% +ology

vz 2 = 1s—
or fl' ;dy+f(x +log)dn =z logy + 328 = C.
It should be noticed that the choice of &, = 0 simplifies the integration in the first
case because the substitution of the lower limit 0 is easy and because the second

integral vanishes. The choice of y, =11 d corresponding simplifications in
the second case.




rato u/v 18 either constant or a soluvion of the equation; and taeé prod-
uet of u by any function of a solution, as u®(F), is an integrating fac-
tor of the equation.

3. The normal derivative dF/dn of a solution obtained from the
factor p is the product u V.M + N? (see § 48).

It has already been seen that if an integrating factor u is known, the corre-
sponding solution F' = C may be found by (14). Now if the solution is known, the
equation

AF = Fjde + Fjdy = p(Mdz + Ndy) gives F;=uM, F,=uN;

and hence p may be found from either of these equatmns as the quotient of a
derivative of F by a fici of the di i i The 1is
therefore proved. It may be remarked that the dxscussmn of approximate solutions
to differential equations (§§ 86-88), combined with the theory of limits (beyond the
scope of this text), affords a dem ion that any equation Mdz + Ndy = 0,
where M and N satisfy certain restrictive conditions, has a solution ; and hence it
may be inferred that such an equation has an integrating factor.

If 4 be eliminated from the relations ¥y, = uM, F,; = uNN found above, it is seen
that

MF,— NF,=0, andsimilaly, M@,— NG =0, (16)

are the conditions that F and @ should be solutions of the differential equation.,
Now these are two simultaneous homogeneous equations of the first degree in M
and N. If M and N are eliminated from them, there results the equation

z v - i
o |=TE G =0, 189

Fje-F,G;=0 or | *
z v

which shows (§ 62) that F and G are functionally related as required. To show
that any function ® (F) is a solution, consider the equation

M, — N, = (MF, — NF)) &.

As F is asolution, the expression MF,— NF, vanishes by (16), and hence M®;— N&_
also vanishes, and & is a solution of the equation as is desired. The first half of 2
is proved.

Next, if 4 and » are two integrating factors, equation (15") gives

Malogl;d Nalogp = Malogv _ Nalogv or Malogp,/y_ Nalogu/y= o

&y oz oy ox oy 2

On comparing with (16) it then appears that log (u/») must be a solution of the
equation and hence u/» itself must be a solution. The inference, however, would

not hold if u/» reduced to a constant. Finally if u is an integrating factor leading
to the solution F'= C, then

dF = u(Mdx + Ndy), and hence ud(F)(Mdz + Ndy) = df¢ (FydF.

It therefore appears that the factor u® (F) makes the equation an exact differen-
tial and must be an integrating factor. Statement 2 is therefore wholly proved.
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The third proposition is proved simply by differentiation and substituti For

dF _oFdx oF dy dz dy
e o QTR o N Y gn O
dn o dn+ ay dn 'L dn+“ dn

And if 7 denotes the inclination of the curve F = €, it follows that

dy M d N dz M

=¥ ok, sinr== L, _esr=o M
\an'r_dz_ w sinT an MZ+N2' cosT = STy
Hence dF/dn = p VM2 4+ N? and the proposition is proved.

EXERCISES
1. Find the integrating factor by inspection and integrate :

(@) wdy — ydo = (@ + v*) de, B) (4" —ay)ds + 2’dy =0,

(v) ydz — ady 4 logzdx = 0, (%) v (@2ay + e)dx — exdy =0,

() (1+azy)yde + (1—zy)edy =0, () (@—y?)de + 2aydy =0,

(1) (@y* + y)de — ady =0, (6) a(ady + 2ydz) = zydy,

() @ +97) (@dz + ydy) + V1+ @* + %) (yde — 2dy) =0,

(¥) 22yde— @ + yH)dy =0, () ady — ydz = o Va¥ —2dy.

2. Integrate these linear equations with an integrating factor :
(@) ¥’ + ay = sinbz, (B) ¥ + ycotz =secw,
(™ @+HY-2y=(@+D4 (6) (L +2) ¥ +y = etr-ts,

and (8), (), (¢) of Ex. 4, p. 206,
3. Show that the expression given under II, p. 210, is an integrating factor for
the Bernoulli equation, and integrate the following equations by that method :

(@) ¥’ —ytanz = yseca, ® Svw + P =2 —1,
(v) ¥ + ycosz =yrsin2z, (8) do + 2zydy = 2 azbydy,
and (@), (7), (e), (n) of Ex. 4, p. 206.

4. Show the following are exact differential equations and integrate :
(a) (Ba*+8zy?)de+(622y+41%)dy=0, (B) sinzcosyds + cosz sinydy =0,
(™ (Bo—2y+1)dz+@y—25—3)dy=0, (3) (& + Bz} + (UF + Baky)dy =0,
» z
(© 2_"7’?/_“‘3@.;.1’_;2_“’.1;/:0, 6} (1+e'7)dx+e;(l—§)d?l=07
(n) (@ + 9y +22)de + 2yecdy =0, @) (ysinz — 1)de + (y — cosz)dy = 0.
5. Show that (Mx — Ny)-1is an integrating factor for type III. Determine
the integrating factors of the following equations, thus render them exact, and
integrate :
(@) (v + z)dz + zdy =0, B) @2— ay)de + z?dy =0,
() (@ + 3% de — 22ydy = 0, (8) (@22 + 2y) ydo + (222 — Vady = 0,
(e) (Vay—1)zdy— (Vay +ydz =0, (5) z%dz + Bz%y + 2% dy =0,
and Exs. 8 and 9, p. 206.



(a) @ +29)da+ @ + 204 — 4z)dy =0,  (B) (@2 + 92 + 1) dz— 2aydy = O,
(v) (32 + 6xy + 3y?)dz + (22 + 3xy)dy =0, () (2242 + ¥)— (zPy — Bx)y" =0,
(€) (2% — 3y dz + (32 + 22y")dy =0,
(5) @—y)sin(@x—2y)+ ¥ sin(@—2y)=0.

8. By virtue of proposition 2 above, it follows that if an equation is exact and
homogeneous, or exact and has the variables separable, or homogeneous and under
types IV-VII, so that two different integrating factors may be obtained, the solu-
tion of the equation may be obtained without integration. Apply this to finding
the solutions of Ex. 4 (8), (3), (v); Bx. 5 (), ().

9. Discuss the apparent exceptions to the rules for types I, III, VII, that is,
when Mz + Ny = 0 or Mz — Ny =0orgm—pn=0.

10. Consider this rule for integrating Mdz + Ndy=0 when the equation is known
t0 be exact : Integrate Mdx regarding y as constant, differentiate the result regard-
ing y as variable, and subtract from N; then integrate the difference with respect
to . In symbols,

0:f(Mdz+Ndy)=fMda:+f(N—%fMdz)dy.

Apply this instead of (14) to Ex. 4. Observe that in no case should either this
formula or (14) be applied when the integral is obtainable by inspection.

95. Linear equations with constant coefficients. The type

d,. dﬂ—l. d
W T ta B ray—x@  an

of differential equation of the nth order which is of the first degree in
y and its derivatives is called a linear equation. For the present only
the case where the coefficients «,, a,, -+, a,_,, @, are constant will be
treated, and for convenience it will be assumed that the equation has
been divided through by a, so that the coefficient of the highest deriva~
tive is 1. Then if differentiation be denoted by D, the equation may Le
written symbolically as

D"+ a D 4wy D+ a)y = X, a7
where the symbol D combined with constants follows many of the laws
of ordinary algebraic quantities (see § 70).

The simplest equation would be of the first order. Here

% —ay=X and y=¢ f e~ = Xdw, (18)

as may be seen by reference to (11) or (6). Now if D — g, be treated
as an algebraic symbol, the solution may be indicated as

(P-a)yy=x and y=>1-x, as)




where the operator (D — a,)~ is the inverse of D — a,. The solution
which has just been obtained shows that the interpretation which must
he assigned to the inverse operator is

T (= e [ @)

where () denotes the function of x upon which it operates. That the
integrating operator iz the inverse of D — @, may be proved by direct
differentiation (see Ex. 7, p. 152).
This operational method may at once be extended to obtain the solu-
tion of equations of higher order. For consider
dy

da?

ay

+alﬂ+a¢,=x or (D*+aD+a)y=X (20)

Let @ and @, be the roots of the equation D*+ a,D + a,= 0 so that
the differential equation may be written in the form
[D*— (e, +a) D+ aw]y=X or D—a)(D—a)y=X (20)

The solution may now be evaluated by a succession of steps as

1 o
(D—way=p_a,x=”"“f”' e
1 1 _ oo [ e [ mae
y—p_a,[p—alx]—e fe " G‘fe e jde
or y= enﬁvfg(‘x—”l?l[fe’”l’”de]liz. (20”)

The solution of the equation is thus reduced to quadratures.
The extension of the method to an equation of any order is immediate.
The first step in the solution is to solve the equation

D4 aD 4ot a, D+a,=0
50 that the differential equation may be written in the form
DP—a)(D—a) - (D—a_)(D—a)y=X; an)

whereupon the solution is comprised in the formula

y= eﬂn;:fe(nn_.,—an)zf.‘_fe(a,—d,)zfe-—a‘wx(dx)n’ @y

where the successive integrations are to be performed by beginning
upon the extreme right and working toward the left. Moreover, it
appears that if the operators D) — .. D — @ +.+++. D — a.. D — @, were
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required, there will occur n arbitrary constants of integration i
answer for .

As an )! ider the jon (D% — 4 D)y = 2*. Here the roots
algebraic equat1011 DP—-4D=0 are 0, 2, — 2, and the solution for y is

1 1 1
= x 2xg-2x | g2ap2(dx)B
y= DD—2D+2$ feﬂfz—e feﬂm(da:)

T'he successive integrations are very simple by means of a table. Then

fe“a“dz: }2%2m — j2e2= 4 Je2e 4 C,,

f”-ufez%zuz)e = f@ 2%e-2% — }ze=2% 4 } e=2% 4 Ce=4%)da
= — }xfe-2x— e 4 Ce4% 4 C,,
y= fez"fc—“’fe“zz(dz)“ = f(- 12—} + Cpe27 4 Cyet)da
= — o — ja+ Cre-2x 4 Cpezt Oy
This is the solution. It may be noted that in integrating a term like C e~
result may be written as C,e~4%, for the reason that C, is arbitrary anyhow
moreover, if the integration had introduced any terms such as 2 e~ 2%, } €22, b,
could be combined with the terms C,e~2%, C,e?=, C; to simplify the fo
the results,
In case the roots are imaginary the procedure is the same. Cousider

12
%H,:sinz or (D*41)y=sinz or (D+i)(D—iy=snz

Then y=D1—1,D:- sm:c__e‘”fe"‘“”fe'—”sm:a:(tiac)2

The formula for | esin bxdx, as given in the tables, is not applicable

a? 4 b? = 0, as is the case here, because the denominator vanishes. It therefc
comes expedient to write sin ¢ in terms of exponentials. Then

Y= eilfe—“‘fe‘“ﬁe‘z;:—w(dz)ﬂ; for sinz =—-—eh;:_&.
Now %e@fe—“lf(e“z—— 1) (dz)? =El—ie"xfe—m[§1-ie"z— z4 Cl]dx
= %eiz[z_liz + él_ie—zizx_ie-ztz + Cye-2 4 Cz]
= ;—”@;if + O 4 O,
Now Cye=i@ 4 Cyeiv = (Cy + C)L“+(C,—Cl)z:—e:.

Hence this expression may be written as C, cos ¢ + C, 8inz, and then
Yy =—4}xcosz + C,cosx + Cpsinz.

The solution of such equations as these gives excellent opportnnity to cultiva
art of manipulating trig ig f ions through exp ials (§ 74).
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96. The general method of solution given above may be considerably
simplified in case the function X (z) has certain special forms. In the
first place suppose X = 0, and let the equation be P(D)y = 0, where
P (D) denotes the symbolic polynomial of the nth degree in D. Suppose
the roots of P(D) = 0 are @, a,, - -, @, and their respective multiplicities
ATe My, My, - -, My, 5O that

- @) D — aa)m'(D - al)m‘:'/ =0~

is the form of the differential equation. Now, as above, if

1
D —a)my=0, then y=ED_—al)m0=e"ﬂf--~f0(dx)"“.

Hence y=e=(C,+Cp + Ca’+.--+ Cpam-)

is annihilated by the application of the operator (D — )™, and there-
fore by the application of the whole operator P (D), and must be a solu-
tion of the equation. As the factors in P (D) may be written so that
any one of them, as (D — a;)™, comes last, it follows that to each factor
(D — a;)m will correspond a solution

Y= " (Cy + Co + -+ + Cimax™~7), P(D)y;=0,
of the equation. Moreover the sum of all these solutions,

i=k

y= 2, €F(Co+ Cot + -+ Cin™i), (21)
i=1

will be a solution of the equation; for in applying P(D) to y,
P(D)y=P(D)y,+ P(D)y,+++P(D)y=0.

Hence the general rule may be stated that: The solution of the dif-
Serential equation P(D)y = 0 of the nth order maoy be found by multiply-
ing each e** by a polynomial of (m — 1)st degree in x (where a is a root of
the equation P (D)= 0 of multiplicity m and where the coefficients of the
polynomial are arbitrary) and adding the results. Two observations
may be made. First, the solution thus found contains » arbitrary con-
stants and may therefore be considered as the general solution; and
second, if there are imaginary roots for P (D) = 0, the exponentials aris-
ing from the pure imaginary parts of the roots may be converted into
rigonometric functions.

As an example take (D* — 28 + D?)y = 0. Therootsare 1,1,0,0. Hence the
solution is
y=e(C, + C2) + (G + Cj2).

Acain I F/1TH L A\or — 0 +hoe varbo 2 TH 1t A —Dova L 1 1 2 and tha anlntion e



where y and 4, 4 and 5, are arblirary constants. ror

01 C? :.
Cycosw + Cpsinz = VOE+ 02)[\/0%+C}mhz*—\/()fﬂ}-c’gm“z]’
and if 'y=tan—1(—%2), then Clcosz—)-Czsin:c:\/Cf+czzcos(x+ 7).
1

Next if X is not zero but if any one solution I can be found so that
P(DYyI=X, then a solution containing n wrbitrary constants may be
Jound by adding to I the solution of P(D)y = 0. For if

P(D)I=X and P(D)y=0, then P(D)(I+y)=X.

It therefore remains to devise means for finding one solution Z. This
solution I may be found by the long method of (17""), where the inte-
gration may be shortened by omitting the constants of integration since
only one, and not the general, value of the solution is needed. In the
most important cases which arise in practice there are, however, some
very short cuts to the solution 7. The solution I of P(D)y =X is
called the particular integral of the equation and the general solu-
tion of P(D)y = 0 is called the complementary function for the equa-
tion P(D) y = X.

Suppose that X is a polynomial in x. Solve symbolically, arrange
P (D) in ascending powers of D, and divide out to powers of D equal to
the order of the polynomial X. Then

P(D)I=1, z=;(%x=[a(u)+§§(%] x, @

where the remainder R (D) is of Aigher order in D than X ina. Then
P(D)I=P(D)Q(D)X +R(D)X, R(D)X=0.

Hence Q(D)x may be taken as I, since P(D)Q(D) X = P(D)I=X. By
this method the solution I may be found, when X is a polynomial, as
rapidly as P (D) can be divided into 1; the solution of P(D)y = 0 may
be written down by (21); and the sum of 7 and this will be the required
solution of P (D)y = X containing » constants.

As an example consider (D® + 4 D? 4+ 8 D)y = 2. The work is as follows:
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I=QD)at == - —-D+ D)2 =08 — “a2 + Lyg.
Hence (D)« D(3 30+5 )x 5P 5%+ 5
For D® 4 4 D% 4 3D = 0 the rootsare 9, — 1, — 8 and the complementary function
or solution of P(D)y =0 would be C) + Cpe~= + Cye=3=, Hence the solution of
the equation P(D)y = a2 is

y =0+ Cpe== + Cye=3= + a8 — 422 + §§o.

It should be noted that in this example D is a factor of P (D) and has been taken out
before dividing ; this shortens the work. Furthermore note that, in interpreting
1/D as integration, the constant may be omitted because any one value of I will do.

97. Next suppose that X = Ce™, Now De® = ae™, Dte* = gke=,

and P(D) e =P(a)e™; hence P(D) [;—% e"“] = Ce™=,
ax p— C az
But P(D)I=Ce™, andhence I= @ ¢ (23)

is clearly a solution of the equation, provided a is not a root of P (D) = 0.
If P(a) = 0, the division by P () is impossible and the quest for 7 has
to be directed more carefully. Let @ be a root of multiplicity 7 so that
P(D)=(D —a)"P (D). Then

P(D)(D—a)"I=Ce=, (D—a)"I= Pfa) o,
C n e
and I=me ff(dz) =P@mi (23

For in the integration the constants may be omitted. It follows that
when X = Ce*, the solution I may be found by direct substitution.

Now if X broke up into the sum of terms X=X +X,+ and if
solutions I, I, - - - were determined for each of the equations P(D)I,= X,,
P(D)I,=X,---, the solution I corresponding to X would be the sum
I+ 1,4 ... Thus it is seen that the above short methods apply to
equations in which X is a sum of terms of the form Ca™ or Ce*.

As an example consider (D* — 2D+ 1)y = e= The roots are 1, 1, —1, —1,
and @ = 1. Hence the solution for I is written as

(D+1)2(D~12T=¢=, (D~1PI=}er, I=}ems

Then Y =¢e%(0y + C2) + e==(Cy + C2) + } ex?,

Again consider (D? — 5.D 4 6)y = 4 ¢mz, To find the I, corresponding to %
divide.

1 1,6 1 5
L= g=(=4— e je=2 —.
Ry (+86D+ )” CRANT
To find the I, cor ding to em=, substi There are three cases,
1

T e
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according as m is neither 2 nor 8, or is 3, or is 2. Hence for the complete solution,
y=Ceb® + Ce?=+la:+856+m emx,

when m is neither 2 nor 8 ; but in these special cases the results are

y = 0,682 + Cpe?® + Jx + ff — we?%, Y= Cie3= + C,e?= 4 3z + 5 + xed=,

The next case to consider is where X is of the form cos Bx or sin Bx.
If these trigonometric functions be expressed in terms of exponentials,
the solution may be conducted by the method above; and this is per-
haps the best method when + i are roots of the equation P (D)= 0.
It may be noted that this method would apply also to the case where
X might be of the form ¢**cos Bz or ¢+*sin Bx. Instead of splitting the
trigonometric functions into two exponentials, it is possible to combine
two trigonometric functions into an exponential. Thus, consider the
equations

P (D)y = e**cos Bz, P(D)y = ¢ sin Bz,

and P(D)y = e* (cos Bz + ¢ sin fr) = @+ A=, (24)
The solution I of this last equation may be found and split into its
real and imaginary parts, of which the real part is the solution of the
equation involving the cosine, and the imaginary part the sine.

‘When X has the form cos Bz or sin Bz and + B¢ are not roots of the
equation P(D) = 0, there is a very short method of finding I. For

D*cos Br= — BPcos Bz and D?sin Bx = — B%sin Br.

Hence if P(D) be written as P(D* + DPZ(D’) by collecting the even
terms and the odd terms so that P, and P, are both even in D, the
solution may be carried out symbolically as

1 1

I= P(D)cosau _———(D"‘)+DP(D"') cosz:P——Ml(_M+DP’(_mcmz,
) Py(~ f)— DP(~ B)

o ==+ P AT " @)

By this device of substitution and of rationalization as if D were a surd,
the differentiation is transferred to the numerator and can be performed.
This method of procedure may be justified directly, or it may be made
to depend upon that of the paragraph above.

Consider the example (D? 4 1)y = cosx. Here gi =1 i8 a Toot of D? 4+ 1= 0,
As an operator D? is equivalent to — 1, and the rationalization method will not

work, If the first solution be followed, the method of so!ution is
1 = 1 e 1 e= 1 e

—— = —— s e == Ze® — go— iz ___ 1
izt Es1 2 D-idi D¥i 41 [ 1= jesinz

1=
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Now I=2ii(cosa:+ialnz):%zsinz—%izcos’x.
Hence I=jzsinz  for (D*+1)I=cosz,
and I=—}zcose for (D? +'ﬁI=sinz.

The complete solutionis  y = C, cosz + C,sinz + } xsinz,
and for (I + 1)y =sing, y = C,cosz + Cpsinz — } x cosz.

As another example take (D? — 8D + 2)y = cosx. The roots are 1, 2, neither
is equal to + Bi = + i, and the method of rationalization is practicable. Then

_ 1 _ 1 _ 148D 1 Cau
[~1)“—3D+2c°sx_——3Dwu— 0 CoBZ = (cosz 3sinx).
The complete solution is v = o} e--f+ Che= 2% 4 Pg(cosx — Ssmz) The extreme
licity of this substi: lization method is thy.
EXERCISES
1. By the general method solve the equations :
é
(a)%+4ay+8y=2e“, (ﬂ)z’;—s‘m+s——y &,
(v) (PA—4D+2)y =z, @) (DP+D2—4D -4y =2,
(¢) (D*+5D2+ 6D)y =2, () (P4 D + 1)y =zer,
(n) (D*+ D+ 1)y =sin2z, ) (B—Yy =2+ &=
(¢) (D34 8D+ 2)y =2 + cosz, (x) (D —4D%)y = 1—sing,
() (D2 4+ 1)y = cosz, (») (D® + 1)y =secw, (v) (D?+ 1)y =tanz.
2. By the rule write the solutions of these equations :
(@) (D +8D+2)y=0, B) (D*+8D2+D—5)y=0,
(v) (D —1)by =0, @) (42D 41)y =0,
(¢) (DP—8DP 4 &)y =0, @) (=D —9DB—11D—4)y=0,
(7) (D* =612+ 9D)y =0, (6) (D*—4D8 +8D*~8D 44)y=0,
(1) (D* —2D* + DYy =0, (x) (D*— D2 + D)y =0,
O) (Dt =1py =0, () (DF —18D% 4 262 4 82D 4+ 104)y =0.
3. By the short method solve (v), (3), (¢) of Ex. 1, and also:
(@) (DA=1)y =2, B) (P—8D24+11D—6)y =g,
(v) (D*+ 8D 4 2D)y =3, () (DP~8D2—6D +8)y =g,
() (PP +8y=2*+2z+1, (&) (DP~8D8— D+ 8)y=2a%,
(1) (D' =218 + DAy ==, (8) (DA+2D°4+8D%+2D4+ ) y=1+24+42
()@ =1y=2, (x) (DA—2D% 4 DYy =1,
4. By the short method solve (a), (8), (6) of Ex. 1, and also:
(@) (2 —8D+2)y =e7, (B) (Dt—D*—3D2+ 5D —2)y =¢x,
() (DF- 2D+ Iy =ex, ¢) (@-3D+ y=eis,
() (DM +l)y=2es+a*—2, @) DP+)y =8+ e =+ 563,
(n) (D422 + 1)y =e*+4, @) (PP+8D24+8D+1)y=26"%
(1) (D2—2D)y =e2= 4 1, ) (DP+2D2 + D)y =tz 4 28 + 3,

() (D= a)y = o= 4 o2, o) D"=2aD+ )y =est 1.
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? e 0
= e*sing, (o) (D2+ 4)y =sin8x + e* 4 x2,

(m) (D% +1)y =sinjasinkz, () (D* + 1)y = e2=sinz + eisina%g,
(7) (D2 + 4)y = sinta, (7) (D*+82 D + 48)y =ze—2= 4 e2zcos 28z
1

6. If X has the form ewX,, show that I = e X =

er — X,
P(D) P D+ a)
This enables the solution of equations where X, is a polynomial to be obtained by
a short method ; it also gives a way of treating equations where X is e cos Sz o»
e sin Bz, but is not an improvement on (24) ; finally, combined with the second
suggestion of (24), it covers the case where X is the product of a sine or cosine by
a polynomial. Solve by this method, or partly by this method, (¢) of Ex. 1; (x), (A),
(), (p), (r) of Ex. 5; and also

@ (F—2D 4+ 1)y =a%d=, ®
(1) (D + n?)y = ates, (
() (P—TD—Gy=e=(l+a), (
() (D—1)’y =z — 2’67, (
(
(
(

) (D% +8D24 3D + Iy = (2 — a¥)e—%,
) (Dt—2D% — 3D% 4 4D + 4)y = 2%,
) (D —1)% = e + cos + a7,

) (D% + 2)y = 2%e3% 4 €% cos 2,

k) (D*=1)y =zsinz + (1 + z?) €=,

w (D +2D% 4+ 1)y =a?cos ax,_

o) (D2— 2D + 4)% = ze= cos V3.

(¢) (D8 —1)y = ze= + cos?z,
(A) (D* + 4)y =z sina,
() (I + 9y = (esinz)?,

7. Show that the substitution z = ¢, Ex. 9, p. 152, changes equations of the type
anDry + azn=1Dm=1y 4« 4 Gy 18Dy + tny = X (%) (20)

into equations with constant coefficients ; also that ax + b = et would make a simi-
lar simplification for eqnations whose coefficients were powers of az + b. Hence
integrate :

(@) (@2D? —zD + 2)y =z loga, B) (@®D*—22D? 422D — 2)y =2° + 3x,
() [@2—1)8D%4 (25—1) D—2]y=0, (3) (@2D%+3aD + 1)y = (1—a)-?,

() @D% + 2D —1)y =z loga, (¢) [[@+1)2D*— 4@ +1)D + 6]y ==,
(n) (2®D® + 43D+ 2)y = =, (6) @*D2—322D+x)y=1logzsinlogs +1,

(¢) (x*D* + 623D 4 422D% — 22D — 4)y = a2 + 2coslogx.

8. If L be self-induction, R resistance, C capacity, i current, ¢ charge upon the
plates of a condenser, and f(t) the electromotive force, then the differential equa-~
tions for the circuit are

d%q  Rdgq q da% Rdi i 1
— =T A —_— === f().
@ F TatIc wtiatic /@
Solve (@) when f(¢) = e~a¢sin bt and (8) when f(f) = sin bf. Reducethe trigonometrio
part of the particular solution to the form K sin (b¢ + v). Show that if R is small
and b is nearly equal to 1/V LC, the amplitude X is large.

1
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there be given two (or in general =) linear equations with constant
coeficients in two (ur in general ) dependent variables and one inde-
pendent variable ¢, the symbolic method of solution may still be used
to advantage. Let the equations be

(D" 4 D7 o)z B LD A B y =B (1),

(@D? + oD ko) a4 (D D ) y = (0,
when there are two variables and where D denotes differentiation by ¢.
The equations may also be written more briefly as

P(Dyx+ Q(D)y=R and P(D)x+ QD)y =S8.
The ordinary algebraic process of solution for # and y may be employed
because it depends only on such laws as are satisfied equally by the
symbols D, P(D), Q,(D), and so on.
Hence the solution for z and y is found by multiplying by the ap-
propriate coefficients and adding the equations.
QD) =P (D) P D)z +@(D)y =R,
— D) P(D) PyD)x + Q(D)y = 5.
Then  [A(D) Q)= P(D) QD)2 =D E=Q(D)S, o,
[Py(D) (D) — Py(D) Q(D)]y = P,(D) § — F(D) R.

It will be noticed that the coefficients by which the equations are multi-
plied (written on the Jeft) are so chosen as to make the coefficients of
2 and  in the solved form the same in sign as in other respects. It may
also be noted that the order of P and Q in the symbolic products is im-
material. By expanding the operator P,(D) QD) — P,(D) Q,(D) a certain
polynomial in D is obtained and by applying the operators to R and §
as indicated certain functions of ¢ are obtained. Each equation, whether
in # or in y, is quite of the form that has been treated in §§ 95-97.

@n

As an example consider the solution for ¢ and y in the case of

%—%-49;:22, 2%?4-4%’—-81/:0;
or @D —4)z— Dy =24, 2Dz 4+ (4D—8)y =0.
Solve 41)—3’ -2 (@D — 4)z— Dy =2t

D |eD2—4| 2Dr4+@4D-38)y=0.
Then [(4D—38)(@D?— 4) + 2 D%z = (4D — 8)21,

[2D? + (2D%— 4)(4 D — 8)]y = — (2 D) 2¢,
or 4(2D'—D*—4D+8)z=8-6t, 4@D—-D2—4D+8)y=—4

The roots of the polynomial in D are 1, 1, — 1} ; and the particular solution I, for
% is — } ¢, and I, for y is — }. Hence the solutions have the form

= (Ci+ Clyer + CoeH— 31, y=(B, + Epf)et + Kpet0 - 3.



and y are not independent nor are they identical. T%e solutions must
be substituted into one of the equations to establish the y relations
between the constants. It will be noticed that in general the order of the
equation in D for @ and for y is the sum of the orders of the highest
derivatives which occur in the two equations, — in this case, 3 =2 +1.
The order may be diminished by cancellations which occur in the formal
algebraic solutions for # and y. In fact it is conceivable that the coeffi-
cient P,Q, —P,Q, of @ and y in the solved equations should vanish and
the solution become illusory. This case is of so little consequence in
practice that it mmay be dismissed with the statement that the solution
is then either impossible or indeterminate; that is, either there are no
functions « and y of ¢ which satisfy the two given differential equations,
or there are an infinite number in each of which other things than the
constants of integration are arbitrary.

To finish the example above and determine one set of arbitrary constants in
terns of the other, substitute in the second differential equation. Then

2(Cyet + Cyet + Cylet — § Coe™ 3 — §) + 4 (Kot + Kot + Kytet — § Ko™ 1)
—3(Kyet + Kptet + Kpem 1t — §) =0,
or 20, + 20, + I, + Ky) + 1642 Cy+ Kyp) — 86840y + 81 = 0.

As the terms e, tef, e it are independent, the linear relation between them can
liold only if each of the coefficients vanishes. Hence

Oy +38K;=0, 2C,+K,=0, 20, +2C, + K, + K,=0,
and C=—-8K;, 2C,=-K, 20 =-K,.
Hence &= (C, + Cyf)et— 8Epe 30— §1, y=—2(C, + Cp)er+ Koot —
are the finished solutions, where C;, C,, K; are three arbitrary constants of inte-
gration and might equally well be denoted by C,, C,, Cy, or K, K,, K,.

99. One of the most important applications of the theory of simultaneous equa~
tions with constant coefficients is to the theory of small vibrations about o state of
equilibrium in a conservative* dynamical system. If q,, gy, ++ -, ¢, are n codrdinates
(see Exs, 19-20, p. 112) which specify the position of the system measured relatively

* The potential energy V is defined as — dV = dW = Q,dg; + deqg + o+ + Qndgn,

‘where o 2
G=X P+ n e B RSt SRR

This is the immediate extension of @ as given in Ex. 19, p. 112. Here dW denotes the
differential of work and dW = ZFdr; = 3 (Xydai + Yidy; + Zidz). To find Q; it is
generally quickest to compute & W from this relation with d;, dy;, dzi expressed in terms
of the differentials dg, , - -+, dgn. The generalized forces Q; are then the coefficients of
dg;. If there is to be & potential V, the differential d W must be exact. It is frequently
easy to find V directly in terms of ¢y, ---, g, rather than through the mediation of
Qp,++*, Qu; when this is not so, it is usually better to leave the equations in the form



Vi@ @as o0 @)= Vot Val@us Gy -y @) + Val@ys Qoo o vy @) + -+

where the first term is constant, the second is linear, and the third is quadratic, and
where the supposition that the ¢’s take on only small values, owing to the restriction
to small vibrations, shows that each term is infinitesimal with respect to the preced-
ing. Now the constant term may be neglected in any expression of potential energy.
As the position when all the ¢’s are 0 is assumed to be one of equilibrium, the forces
oV (24 av
Ql— aq" QZ" aqzl il m = E
must all vanish when the ¢’s are 0. This shows that the coefficients, (07 /2g:)o = 0,
of the linear expression are all zero. Hence the first term in the expansion is the
quadratic term, and relative to it the higher terms may be disregarded. As the
position of equilibrium is stable, the system will tend to return to the position
where all the g’s are 0 when it is slightly displaced from that position. It follows
that the quadratic expression must be definitely positive.

The kinetic energy is always a quadratic function of the velocities g1, ¢y, -+, ¢n
with coefficients which may be functionsof the ¢’s. If each coefficient be expanded
by the Maclaurin Formula and only the first or constant term be retained, the
kinetic energy becomes a quadratic function with constant coefficients. Hence the
Lagrangian function (cf. § 160)

L=T=V=T(@1 % &)= V@ 92 @)y
when substituted in the formulas for the motion of the system, gives

doL oL _ aoL oL _, 4oL oL _
atdg, o, dtag, o9, ' dtdd. oga
a set of equations of the second order with coefficients. The ti

moreover involve the operator D only through its square, and the roots of the equa-~
tion in D must be either real or pure imaginary. The pure imaginary roots intro-
duce trigonometric functions in the solution and represent vibrations. If there were
real roots, which would have to occur in pairs, the positive root would represent
a term of exponential form which would increase indefinitely with the time, —a
result which is at variance both with the assumption of stable equilibrium and
with the fact that the energy of the system is constant.

‘When there is friction in the system, the forces of friction are supposed to vary
with the velocities for small vibrations. In this case there exists a dissipative func-
tion F(dy, @s» ** *» n) Which is quadratic in the velocities and may be assumed to
have constant coefficients, The equations of motion of the system then become

doL oL  oF doeL oL A oF

F o, ..., LEE_&

@ey,  og o © oG On  OGn

which are still linear with constant coefficients but involve first powers of the
operator 2. It is physically obvious that the roots of the equation in D must be
negative if real, and must have their real parts negative if the roots are complex ;
for otherwise the energy of the motion would increase indefinitely with the time,
whereas it is known to be steadily dissipating its initial energy. It may be added
that if, in addition to the internal forces arising from the potential 7" and the



impressed on the system, these forces would remain to be inserted upon the right-
hand side of the equations of motion just given.

The fact that the equations for small vibrations lead to equations with constant
coefficients by neglecting the higher powers of the variables gives the important
physical theorem of the superposition of simall vibrations. The theoremis: If with
a certain set of initial conditions, a system executes a certain motion ; and if with
a different sct of initial conditions taken at the same initial time, the system
executes a second motion ; then the system may execute the motion which consists
of merely adding or superposing these motions at each instant of time; and in
particular this combined motion will be that which the systemn would execute under
initial conditions which are found by simnply adding the corresponding values in
the two sets of initial conditions. This theorem is of course a mere corollary of the
linearity of the equations.

EXERCISES

1. Integrate the following systems of equations :
(a) Dz — Dy + @ = cost, D% — Dy + 8z — y = €2,
(B) 8Dz + 3z + 2y =¢, 43Dy + 3y =34,
(7)D“J;—-3z—4'y.=0, Dy +z+y=0,

—dy dz dy
8 =——— =d, —l = —— = —
2y o -—7:0 2¢ + 6y ! () 3w+ 4y 2z+5y’
({)tDz+2(m—1/)=1, Dy 4+ by=t,
(1) Dz =ny —mz, Dy = lz — na, Dz =mx —ly,
(§) Dx— 8z —4y +8=0, DY +x—8y+5=0,

() Dio— 4D + 4 D% — 2 =0, Dy—4D%+4Dy—y=0.

2. A particle vibrates without friction upon the inner surface of an ellipsoid,
Discuss the motion. Take the ellipsoid as

. =9t ; then = Csin —@H—C , y=Ksin ﬂt+K 5
[ c2 a 1 3 1

3. Same as Ex. 2 when friction varies with the velocity.

4. Two heavy particles of equal mass are attached to a light string, one at the
middle, one at one end, and are suspended by attaching the other end of the string
to a fixed point. If the particles are slightly displaced and the oscillations take
place without friction in a vertical plane containing the fixed point, discuss the
motion,

5. If there be given two electric cireuits without capacity, the equations are

dzl diy

Lia 2a

where 4,, i, are the currents in the circuits, L,, L, are the coefficients of self-

induction, R,, R, are the resistances, and M is the coefficient of mutual induction,

(@) Integrate the equations when the impressed electromotive forces E,, E, are

rero in both circuits. (8) Also when E, =0 but E, = sin pt is a periodic force,

(7) Discuss the cases of loose coupling, that is, where M2/L,L, is small; and the

case of close coupling, that is, where M2/L, L, is nearly unity, What values for p
are especially noteworthy when the damping is small ?

d .
+M LR =F, I +Mdd—7:+R2i2=Ez,



charges on the condensers so that i, = dg,/dl, i, = dg,/dt are the currents, the
equations are

&g, @, gy , g &g G dgy , g

—J 4 M2+ R -4 L=F Ly—2+M—1+4R,-:4+2=F,.
T dL’+’dL+C, v i da+“dt+c, *
Integrate when the resistances are negligible and Ey= E,=0. If T, =27V C, L,
and T, = 2-rr\/{,',L2 are the periods of the individual separate circuits and
& =2xMVC0C, and if T)= T,, show that VT? + 63 and VT? — 2 are the
independent periods in the coupled circuits.

L

7. A uniform beam of weight 6 1b. and length 2 ft. is placed orthogonally
across & rough horizontal cylinder 1 ft. in diameter. To each end of the beam is
suspended a weight of 1 1b. upon a string 1 ft. long. Solve the motion produced
by giving one of the weights a slight horizontal velocity. Note that in finding the
kinetic energy of the beam, the beam may be considersd as rotating about its
middle point (§ 89).




CHAPTER IX
ADDITIONAL TYPES OF ORDINARY EQUATIONS

100. Equations of the first order and higher degree. The degree of
a differential equation is defined as the degree of the derivative of
lighest order which enters .n the equation. In the case of the equation
¥ (x, y, ¥)=0 of the first order, the degree will be the degree of the
equation in y'. From the idea of the lineal element (§ 85) it appears
that if the degree of ¥ in y'is =, there will be z lineal elements through
each point (x, ). Hence it is seen that there are n curves, which are
compounded of these elements, passing through each point. It may be
pointed out that equations such as y' =z V1 + 3% which are apparently
of the first degree in g, are really of higher degree if the multiple value
of the functions, such as V1 4 ¢ which enter in the equation, is taken
into consideration ; the equation above is replaceable by y” = a? + %7
which is of the second degree and without any multiple valued function.*

First suppose that the differentiul equation

¥ (@) =1 — @ ) < [ =z )] =0 ®
may be solved for y'. It then becomes equivalent to the set
Y@ N=0 Y=y =0,.- )

of equations each of the first order, and each of these may be treated
by the methods of Chap. VIII. Thus a set of integrals t

iz, y, €)=0, Fyz, y, €)=0, ... (&9}
may be obtained, and the product of these separate integrals
F(x,y, C)=Fy(x,y, C)-Fyw,y, C)++- =0 @)

is the complete solution of the original equation. Geometrically speak-
ing, each integral Fi(x, y, C) = 0 represents a family of curves and the
product represents all the families simultaneously.

* 1t js therefore apparent that the idea of degree as applied in practice is somewhat
indefinite.

t The same constant C' or any desired function of ¢ may be used in the different
solutions because C'is an arbitrary and no i introduced by ite
repeated use in this way. '

OOR




¥2+ 2y’ycotx + y2cot?e = y%(1 + cot?x) = y2 esclz,

and (' + yeotx — yesex)(y' + yeotx + ycscx) = 0.
These equations both come under the type of variables scparable. Integrate
d; - S
_11=1 .cnsa; = — d cosx , v(1 + cosm) = C,
Y sinx 14 cosx N
and @=—wdx= deosa »  y(l—cosx)=C.
Y sinx 1—cosz
llence [y(1 4 coszx) + C)[y(l —cosx)+ C]=0

is the solution. It may be put in a different form by multiplying out. Then
y?sin?z 4+ 2Cy + C2= 0.

If the equation cannot be solved for y' or if the equations resulting
from the solution cannot be integrated, this first method fails. In that
case it may be possible to solve for y or for x and treat the equation by
differentiation. Let y' =p. Then if

= dy_, U U
y=r@p) itk i &)
The equation thus found by differentiation is a differential equation of
the first order in dp/dz and it may be solved by the methods of Chap.
VIII to find F(p, z, C) = 0. The two equations

y=f(xp) and F(p,=z C)=0 @39
may be regarded as defining = and y parametrically in terms of p, or p
may be eliminated between them to determine the solution in the form
0 (x, y, C)=0if this is more convenient. If the given differential equa-
tion had been solved for z, then
- d= _1_ o ¥dp
z=f(y,p) and dy_;—9y+3p ay “4)
The resulting equation on the right is an equation of the first order in
dp/dy and may be treated in the same way.

As an example take xp? — 2yp + az = 0 and solve for y. Then

az dy dp axdp 6 a

2y = =, 2-==2p= po Qi g R

y :cp+p i » p+xdz p’dz+p’

or E[p—g]‘i—p-{-(ﬂ—p):o, or «dp — pde = 0.
P pldz " \p

The solution of this equation is = Op. The solution of the given equation is
2y =2ap+ a’f . z=0p
when expressed parametrically in terms of p. If p be eliminated, then

2y = z_(: +aC parabolas.
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As another example take p2y + 2px = y and solve for ©. Then

1 2 1 1\,
2z =y(i— 22 1 4,4 (-——1)
“ V(p ) o s P ay’

p
or 1—’;+p+y<;z+] “2_0, or ydp+pdy=0.

The solution of this is py = C and " e solution of the given equation is
Ex:y(l—- ), ry=0C, or y2=2Cx+ C%
4

Two special types of equation may be mentioned in addition, although
their method of solution is a mere corollary of the methods already
given in general. They are the equation homogeneous in (z, y) and
Cluiraut's equation. The general form of the homogeneous equation is
¥(p, y/x)=0. This equation may be solved as

p=v (ﬁ) ovas L=rp),  y=af(0); ()

and in the first case is treated by the methods of Chap. VIII, and in
the second by the methods of this article. Which method is chosen
rests with the solver. The Clairaut type of equation is

y=pz+f(p) (6
and comes directly under the methods of this article. It is especially
noteworthy, however, that on differentiating with respect to x the result-
ing equation is F P
e+ (»IE=0 a L=o (6)

Hence the solution for p is p = C, and thus y = Cx + f(C) is the solu-
tion for the Clairaut equation and represents a family of straight lines.
The rule is merely to substitute C in place of p. This type occurs very
frequently in geometric applications either directly or in a disguised
form requiring a preliminary change of variable.

101. To this point the only solution of the differential equation
¥(x, y, p)=0 which has been considered is the gemeral solution
F(z,y, C)=0 containing an arbitrary constant. If a special value,
say 2, is given to C, the solution F(z, y, 2)= 0 is called a particular
solution. It may happen that the arbitrary constant C' enters into the
expression F(z, y, C)= 0in such a way that when C becomes positively
infinite (or negatively infinite) the curve F(w, y, C) = 0 approaches a
definite limiting posmon w};uch is a solution of the differential equatlon,




for the singular solution. That which will be adopted here is: A singu-
lar solution is the envelope of the family of curves defined by the
general solution.

The consideration of the lineal elements (§ 85) will show how it is
that the envelope (§ 65) of the family of particular solutions which
constitute the general solution is itself a solution of the equation. For
consider the figure, which represents the particular solutions broken up
into their lineal elements. Note that the envelope is made up of those
lineal elements, one taken from each particular so-
lution, which are at the points of contact of the envelope
envelope with the curves of the family. It is seen
that the envelope is a curve all of whose lineal
elements satisfy the equation ¥ (=, y, p) = 0 for the
reason that they lie upon solutions of the equation. Now any curve
whose lineal elements satisfy the equation is by definition a solution
of the equation; and so the envelope must be a solution. It might
conceivably happen that the family F(z, y, C)=0 was so constituted
as to envelope one of its own curves. In that case that curve would
be both a particular and a singular solution.

If the general solution F(x, y, )= 0 of a given differential equation
is known, the singular solution may be found according to the rule for
finding envelopes (§ 65) by eliminating C' from

P
Samily

9
F@y C)=0 and 55 F(x,y, C)=0. )

It should be borne in mind that in the eliminant of these two equations
there may occur some factors which do not represent envelopes and
which must be discarded from the singular solution. If only the singu-
lar solution is desired and the gemeral solution is not known, this
method is inconvenient. In the case of Clairaut’s equation, however,
where the solution is known, it gives the result immediately as that
obtained by eliminating C from the two equations
y=Cz+f(C) and 0==x +£'(C). (O]
It may be noted that as p = C, the second of the equations is merely
the factor z 4 () = 0 discarded from (6'). The singular solution may
therefore be found by eliminating p between the given Clairaut equa-
tion and the discarded factor « + f'(p)= 0.
A reéxamination of the figure will suggest a means of finding the
singular solution without integrating the given equation. For it is seen
that wheu two neighboring curves of the family intersect in a point P




near the envelope, then through this point there are two lineal elements
which satisfy the differential equation. These two lineal elements have
nearly the same direction, and indeed the nearer the two neighboring
curves are to each other the nearer will their intersection lie to the
envelope and the nearer will the two lineal elements approach coinei-
dence with each other and with the element upon the envelope at the
point of contact. Hence for all points (z, y) on the envelope the equa-
tion ¥ (z, 7, p)= 0 of the lineal elements must have double roots for p.
Now if an equation has double roots, the derivative of the equation
must have a root. Hence the requirement that the two equations

Vo nn=0 @l Ly nn=0 ©®

have a common solution for p will insure that the first has a double
root for p; and the points (z, ¥) which satisfy these equations simul-
taneously must surely include all the points of the envelope. The rule
for finding the singular solution is therefore: Eliminate p from the
given differential equation and its derivative with respect to p, that is,
from (9). The result should be tested.

If the equation 2p? — 2 yp + ax = 0 treated above be tried for a singular solution,

the elimination of p is required between the two equations
ap?—2yp+ ax =0 and ap—y=0.

‘The result is ¥ = az?, which gives a pair of lines through the origin, The substi-
tution of y = + vz and p=+ Va in the given equation shows at once that
9% = az® satisfies the equation. Thus y? = az? is a singular solution. The same
result is found by finding the envelope of the general solution given above. It is
clear that in this case the singular solution is not a particular solution, as the par-
ticular solutions are parabolas.

If the elimination had been carried on by Sylvester’s method, then

0 z —-v
T — 2y al=—z(y?— az?) =0;
T - ¥y 0

and the eliminant is the product of two factors ¢ = 0 and »% — az? = 0, of which
the second is that just found and the first is the y-axis. As the slope of the y-axis
is infinite, the substitution in the equation is hardly legitimate, and the equation
can hardly be said to be satisfled. The occurrence of these extraneous factors in
the eliminant is the real reason for the necessity of testing the result to see if it
actually represents a singul luti These ext factors may represent
a great variety of conditions. Thus in the case of the equation p? 4 2 yp cot ¢ = y?
previously treated, the elimination gives »2 csc?% = 0, and as csc & cannot vanish,
the result reduces to %2 = 0, or the z-axis. As the slope along the z-axisis 0 and
is 0, the equation is clearly satisfied. Yet the line y = 0 is not the envelope of the
general solution ; for the curvesof the family touch the line only at the points nar.




what may not occur among the extraneous locl and how many times it may occur.
The result is a iderable number of which in their details are either
grossly incomplete or glaringly false or both (cf. §§ 656-67). The rules here given
for finding singular solutions should not be regarded in any other light than as
leading to some expressions which are to be examined, the best way one can, to
find out whether or not they are singular solutions. One curve which may appear in
the elimination of p and which deserves a note is the tac-locus or locus of points of
tangency of the particular solutions with each other. Thusin the system of circles
(z — C)? +9® = r? there may be found two which are tangent to each other at any
assigned point of the z-axis. This Tep two id lineal
elements and hence may be expected to occur in the elimination of p between the
differential equation of the family and its derivative with respect to p ; but not in
the eliminant from (7).

EXERCISES
1. Integrate the following equations by solving for p =y
(@) p?—=6p+5=0, (B) P°*— 2z +17)p*+ (2* — 1* + 2a%) p— (x’ Vr=0,
(M ap?—=2p—2=0, (3 P*@@+2N+30*@+1)+pW+22)=
() *+p=1, () p*—ab =0, () p= a-Z)V1+p‘

2. Integrate the following equations by solving for y or z:
(@ dap*+2ap—y=0, () y=—zp+aip’, () p+2ey-t—9i=0,

(3) 2pe—y +logp=0, (¢) z—yp=ap?, (f) y=2x+ atan-ip,

(n) z=vy+alogp, 6) z2+py@p2+8)=0, (1) a®yp®—22p+y=0,

() p* —4ayp + 892 =0, () z=p+logp, (u) P*(@® + 2az) = a2
3. Integrate these ions [t ituti d in (¢) and (x)] :

(@) = (9* + 2) =2p9® + 2%, (8) (nz + py)? = (14 p?) (4° + na?),

() ¥* + ayp — 2%p? =0, () y=yp* + 2p2,

(¢) ¥ =pz + sin-lp, @) v=p@E—1) +a/p,

(1) y=pz+p(1—p%, (0) 2 —2pay — 1 =p* (1 —2%),

(1) 4e2vp? + 22p—1=0, z2=¢?, () y=2px + ¥?p%, V=2

(N) detup? + 2e7p — €2 = 0, (w) 2*(y — p2) =

4, Treat these equations by the p method (9) to find the singular solutions.
Also solve and treat by the ¢ method (7). Sketch the family of solutions and
examine the signi of the ex factors as well as that of the factor
which gives the singular solution :

@ py+p@—79)—z=0, (B) P cost a — 2pay sinfa + 9% — 2?sin? @ = 0,

(7) 4zp? = (32 — a)?, (3) yp%(x—a) (z — b) = [822 — 22 (a + b) + ab)?,
(e) PP +ap—y =0, (£) 8a(1+p)P=27@+y)(1—pP,
(n) 2°p® + 2%yp + a® = 0, 6) y(8—4y)’* =4(1 —v).

5. Examine sundry of the equations of Exs. 1, 2, 8, for singular solutions.

6. Show that the solution of ¥ = z¢ (p) +.(p) is given parametrically by the
given equation and the solution of the linear equation :

[ ¥ __fo | - 1 i
@t e a-e O @ vSmREROEs)

@ y=c(p+avitp), Me=w+au®, @ y=01+pz+p?



y =ma +f(m) or by the Clairaut equation y = px + f(p). Show that the orthog-
onal trajectories of any family of lines leads to an equation of the type of Ex. 6.
The same is true of the trajectories at any constant angle. Express the equations
of the following systems of lines in the Clairaut form, write the equations of the
orthogonal trajectories, and integrate :

(@) tangents to x? 4+ 92 =1, (B) tangents to y? = 2 ax,
(v) tangents to y? = x5, (8) normals to 2 = 2 az,
(€) normals to 2 = «?, ($) normals to b%2? + a%y? = 2%

8. The cvolute of a given curve is the locus of the center of curvature of the
curve, or, what amounts to the same thing, it is the envelope of the normals of the
given curve, If the Clairant equation of the normals is known, the evolute may be
obtained as its singular solution. Thus find the evolutes of

(@) v’ =4az, ® 23y =at, (1) at+yt=dl,

P 3
(5) +—-—1 () v¥=g—y (Dv=il+e).

9. The involules of a given curve are the curves which cut the tangentsof the
given curve orthogonally, or, what amounts to the same thing, they are the curves
which have the given curve as the locus of their centers of curvature. Find the
involutes of

(a) 2% + 32 = a3, (B) ¥ = 2ma, (v) ¥ = acosh (z/a).

10. As any curve is the envelope of its tangents, it follows that when the curve
is described by a property of its tangents the curve may be regarded as the singu-
lar solution of the Clairaut equation of its tangent lines. Determine thus what
curves have these properties :

(a) length of the tangent intercepted between the axes is I,

(B8) sum of the intercepts of the tangent on the axes is c,

() area between the tangent and axes is the constant 2,

(3) product of perpendiculars from two fixed points to tangent is 43,
() product of ordinates from two points of z-axis to tangent is k2

11. From the relation %1% = u VM2 4+ N?of Proposition 8, p. 212, show that as

the curve F = C is moving tangentially to itself along its envelope, the singular
solution of Mdz + Ndy = 0 may be expected to be found in the equation 1/u = 0
also the infinite solutions. Discuss the equation 1/x = 0 in the following cases :

(@) Vi—iide=VI—aidy, () ade+ ydy = Va?+y2— a3dy.
102. Equations of higher order. In the treatment of special prob-
lems (§ 82) it was seen that the substitutions
dy ﬂ dp d’y _ . dp
=P T a O Py 0
rendered the differential equations integrable by reducing them to in-

tegrable equations of the first order. These substitutions or others like
them are useful in treating certain cases of the differential equation




Y, y, ¥ ¥, -+, ¥™)=0 of the nth order, namely, when one of the
variables and perhaps some of the derivatives of lowest order do not
accur in the equation.

dl“y ditly dry
In case \P(z, ool KLY %> =0, (11)
y and the first ¢ — 1 derivatives being absent, substitute
2y _ dg Al :
i so that \I’(a:, g s ‘> 0. @ar

The original equation is therefore replaced by one of lower order. If
the integral of this be F(x, ¢) = 0, which will of course contain n —¢
arbitrary constants, the solution for ¢ gives

¢=f@ i y= [ f ey a2

The solution has therefore been accomplished. If it were more con-
venient to solve F(x, q) = 0 for 2 = ¢ (g), the integration would be

=f...fg<,zz)f=f~-~fq[d>’(q)dq]‘; az)

and this equation withx = ¢(¢) would give a parametric expression
for the integral of the differential equation.

o ar
In case \1:<y, fl—; dxy“" .,;i—mi{)=o, (18)
« being absent, substitute » and regard p as a function of y. Then
dy _ dﬁ dp d“y d/ dp
=P @ TP W Py\Pay) ,
p dﬁ-—lp (13 )
and W,(.% gy W>=

In this way the order of the equation is lowered by unity. If this equa-
tion can be integrated as F(y, p) = 0, the last step in the solution may
be obtained either directly or parametrically as

=), J%=
or y=4@), o= [%-[HOL. as)

It is no particular simplification in this case to have some of the lower
derivatives of y absent from ¥ = 0, because in general the lower deriva-
tives of » will none the less he introduced bv the substitution that

a4




A dll Caadiplo vulliblel {e=—2 — <351 —\S ) T+
N \Vaet " ae?) T \awd) T '

P dg _ V' E)‘ i =%
which is (zdz q)_(dz +1 if =55

!—‘a
Then q:x%i (%)+1 and ¢=Cg+ VCi+1;

for the equation is & Clalraut type. Hence, finally,
v={{lowsVei+1)ump =} 0a + 122 VOI + 140 + 0y
As another example consider y”” — 2 = y2logy. This becomes
2P a(?)
dy dy
The equation s linear in p* and has the integrating factor e-2v,

1 2y Ze— 2y 1 ]i
—ple=2 = - 20 log yd; — p =| e | y2e—2vlogyd;
2179 f?le 0g ¥ay, \/EP € flle ogYaY |

and —d;/____; =V32z.
[e“ v | y%e=2vlog ydy]

The integration is therefore reduced to quadratures and becomes a proble
ordinary integration.

p*=ytlogy or

—2p%=2y%logy.

If an equation is homogeneous with respect to y and its derivat
that is, if the equation is multiplied by a power of % when y is repl
by ky, the order of the equation may be lowered by the substitu
y = ¢ and by taking z' as the new variable. If the equation is A
gencous with respect to & and dx, that is, if the equation is multi]
by a power of & when « is replaced by Xz, the order of the equs
may be reduced by the substitution # = ¢!, The work may be simpl
(Ex. 9, p. 162) by the use of

Dy = e "D(D,—1)---(D,~ n+1)y.

If the equation is homogencous with respect to x and y and the
Serentials de, dy, d%, - -+, the order may be lowered by the substitu
@ = ¢', y = ¢z, where it may be recalled that

Diy=e"D(D,~1)-- (D, —n+1)y
=¢ " VYD,+1)D,--- (D, — n+ 2)2.
Finally, if the equation is homogencous with respect to x considere
aimensions 1, and y considered of dimensions m, that is, if the equ:
is multiplied by a power of % when kx replaces a and k™y replac
the substitution « = ¢!, y = ™z will lower the degree of the equa
It may be recalled that

Dy = em=mYD, +m)(Dy+m ~1) -+ (D, +m —n+1)z |



sort mentioned. Substitute
y=¢*, Y =e2, Y =e(2+2?).

Then e2= will cancel from the whole equation, leaving merely

a:z”::z'+bzz’2/\/(7'1—-a:“ or M—Z——ldz=—ﬂ—
2?2 7
The equation in the first form is Bernoulli ; in the second form, exact. Then
dz
=0VR@—2+C and dr=-— b .
bVat —z? + C

The variables are separated for the last integration which will determine z = logy
as a function of .
y

Again consider z* (;z_’ = (& + 2ay) :—;’ — 4% If z be replaced by kz and y by

k2 so that y” is replaced by &y’ and y” remains unchanged, the equation is multi-

plied by k* and hence comes under the fourth type mentioned above. Substitute
z=¢, y=etz, Dy=e(D+2)z, Dly=(D+2)(D+1z

Then e4¢ will cancel and leave z” 4 2 (1~ z)2’ =0, if accents denote differentiation

with respect to . This ion lacks the independ variable ¢ and is reduced
by the substitution 2” = 2’dz’/dz. Then
2’ dz dz
—+2(1—2)=0, 2= 1—-2)240, ——m— =
7 tEi-9=0, Pk —H+0

There remains only to perform the quadrature and replace z and ¢ by « and y.

103. If the equation may be obtained by differentiation, as

dy  dy\_de_o oo, 0,
“’(” Ul dm">_ o TVt T ey (16)
it is called an exact equation, and Q(z, y, ¥/, -+, y*~V) = C is an inte-
gral of ¥ = 0. Thus in case the equation is exact, the order may be
lowered by unity. It may be noted that unless the degree of the nth
derivative is 1 the equation cannot be exact. Consider

Y@y Y,y = ‘1’;.7/(")"' (-
where the coefficient of y™ is collected into ¢,. Now integrate ¢,, par-
tially regarding only y("‘” as variable so that

20 0
fqde"‘ v=a, dxﬂ =% Tt eyt ey

Then v — ﬂ—%[ —ty] + 4,

dxr—%

That is, the expression ¥ — Q/ does not contain y™ and may contain
no derivative of order higher than n ~%, and may be collected as



if m = 1, the conclusion is that ¥ was not exact. If m =1, the process
of integration may be continued to obtain @, by integrating partially
with respect to y®~*=Y. And so on until it is shown that ¥ is not exact
or until ¥ is seen to be the derivative of an expression Q, + @, +--- =C.
As an example consider ¥ = a2y’” + zy” + 22y — 1)y’ + y> = 0. Then
o= f:c“dy” =z, ¥ —Q =—ay” + 22y — )y + 7%
nﬂ_—.f—-zdy’:—a:]/', ¥ — Q) — Q= 2ayy’ + ¥ = (w?).
As the expression of the first order is an exact derivative, the result is
V-0 —0;— (@2 =0; and ¥ =% —ay +ayt-C; =0
is the new equation. The method may be tried again.
Q, =fx2a;/ —ay, W — @ =—8ay + % — ).

This is not an exact derivative and the equation ¥, = 0 is not exact. Moreover
the equation ¥, = 0 contains both z and y and is not homogeneous of any type
except when C, = 0. 1t therefore appears as though the further integration of the
equation ¥ = 0 were impossible.

The method is applied with especial ease to the case of

PR i RS

X+ x5 Lt xy-R@=0, (7

‘]d

where the coefficients are functions of a alone. This is known as the
linear equation, the integration of which has been treated only when
the order is 1 or when the coefficients are constants. The application
of successive integration by parts gives

O =Xy, Q= (X, —X)y"D, Q= (X,— X[+ X))y, -

and after » such integrations there is left merely
E— X+ H ()X (D) X)y — R,
which is a derivative only when it is a function of 2. Hence
X Xt (1)K + (1) X, = 0 (18)

is the condition that the linear equation shall be exact, and

Hyfo D (X, = Xy (8, = X + Xy = [ R (19)
is the first solution in case it is exact.

As an example take y” + y” cosx — 2’sinx — y cosx = sin 22, The test

X, — X + X — X" =~ cosm +2cosz — cosz = 0



is satisfled. The integral is therefore y” + y’cosz — ysinz =— }cos2z + C.
This equation still satisfies the test for exactness. Hence it may be integrated
again with the result 3’ 4 y cosz = — }sin2z + C iz + C,. This belongs to the
linear type. The final result is therefore

y= e—smxfenw(c,z + C)dz + Cyemn= 4 § (1 — sina).

EXERCISES
1. Integrate these equations or at least reduce them to quadratures :
(a) 2zy”y” =y — a2, @) 0+2)y” +14y2=0,
(7) ¥+ a%y” =0, @) v —miy” =e=,  (e) Ay +aty” =0
(§) ey =z, (n) oy” +y =0, @) vy =4,
(1) A=)y —ay =2, (x) ¥ =V, [WRAEFION
(#) 2@a—v)y”" =1+v% () W =y =2y =0,
(o) w’ +y2+1=0, (m) 2y" =@, (p) v’y =a.
2. Carry the integration as far as possible in these cases:
(@) 2’ = (maty? + myn)d, (B) mz¥y” = (y — ay)?,
(v) 2" = (y — zy)®, (9) @y’ —2by’ — ay? + 42 = 0,
() =%’ + a4y =}y (2) oy’ + byt = yy(e2 +29) .

3. Carry the integration as far as possible in these cases:

(@) @P+2)y” 4+ 6yyy” + v +2y2=0, (8) ¥’y —ya¥y =2y
(v) «dyy” + 323y + 9x2yy” + 9ay? + 18ayy’ + 812 =0,

(8) ¥+ 82y + 2py° + (2 + 29%)y" =0,

() @z + a%)y” + 4a%? + 22yy’ = 0.

4. Treat these linear equations:

(@) oy’ +2y =2z, B) @ —1)y” +day’ + 2y =24z,
(7) ¥~y cotx + y csc?x = cosz, 3) @—2)y”" + Bz —2)y' +y=0,
(¢) (@—a®)y” + (1 —ba?)y” —2zy’ + 2y =63,

() (@ + 22— 8z + 1)y + (922 + 6z— 0)y” + (18% + 6)y + 6y =13,

(1) @+220" +@+9y" +y' =1, () 2’ + 8y +y=z,

(¢) @—2)y” 4+ 822 —8)y” + 1day’ + 4y =0.

5. Note that Ex. 4 (§) comes under the third homogeneous type, and that Ex. 4
() may be brought under that type by multiplying by (z + 2). Test sundry of Exs.
1, 2, 8 for exactness, Show that any linear equation in which the coefficients are
polynomials of degree less than the order of the derivatives of which they are the
coefficients, is surely exact.

6. S imes, when the dition that an equation be exact is not satisfied, it
is possible to find an integrating factor for the equation so that after multiplication
by the factor the equation becomes exact. For linear equations try #m. Integrate

(@) 28"+ @ut—2)y — 2P =1y =0, (§) @ —a*)y” —a% —2y=0

7. Show that the equation 3 + Py’ + @y’ = 0 may be reduced to quadratures
1° when P and Q are both functions of y, or 2° when both are functions of , or 8°
when P is a function of z and Q is a function of y (integrating factor 1/y). In
each case find the peneral expression for ¥ in terms of quadratures. Integrate




measured froimn some point, the equation & = L (3) or 8 = 8(£) 1s called the nirinsic
equation of the curve. To find the relation between « and y the second equation
may be differentiated as ds = 8’(R)dR, and this equation of the third order may be
solved. Show that if the origin be taken on the curve atthe point s = 0 and if the
z-axis be tangent to the curve, the equations

z:ﬁscos[fal%g]ds, y:f;'sin[j:%]ds

express the curve parametrically. Find the curves whose intrinsic equations are
(@) R=a, B) aR =82+ a?,  (y) R*+s?=16a%

10. Given F=y™m + X ye-D 4 Xy®=D 4 ..o + Xy + X,y = 0. Slow
that if u, a function of z alone, is an integrating factor of the equation, then
& = um) — (Xll‘)(n-l) + (Xpp)e =2 — oo (= 1) (X)) + (— 1) Xu =0
is the equation satisfied by u. Collect the coefficient of u to show that the condition
that the given equation be exact is the condition that this coefficient vanish. The
equation ® = 0 is called the adjoint of the given equation F =0, Any integral ux
of the adjoint equation is an integrating factor of the original equation. Moreover

note that
f}l.Fd.z = Wy (X = W) YED o (= 1)"f1/@dz,

or A[pT — (= 1)y2] = d[py ™D + (wX, — p)y@=D + .. ] =dO.
Hence if pF is an exact differential, so is y®. In other words, any solution y of the
original equation is an integrating factor for the adjoint equation.

104. Linear differential equations. The equations

X D"y + X, D"y + - + X, 1Dy + X,y = R (2), (20)

X D"y + X D"ty 4+ X, Dy + X,y =0
are linear differential equations of the nth order; the first is called the
complete equation and the second the reduced equation. If y,, yg, ¥y -+
are any solutions of the reduced equation, and C,, C,, C;, -+ are any
constants, then y = Cyy, + Cgy, + Cgy, + -+ is also a solution of the
reduced equation. This follows at once from the linearity of the reduced
equation and is proved by direct substitution. Furthermore if 7 is any
solution of the complete equation, then y + I is also a solution of the
complete equation (cf. § 96).

As the equations (20) are of the nth order, they will determine y
and, by differentiation, all higher derivatives in terms of the values of
z,9,y" -, y®~. Hence if the values of the n quantities y,,;, -+, "™
which correspond to the value & = x, be given, all the higher derivatives
are determined (§§ 87-88). Hence there are # and no more than » arbi-
trary conditions that may be imposed as initial conditions. A solution
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y=Cyn +Cy +-+Cy
y=Cyi +Cy - +C, (1)

YO = OO+ gt 4 O,
then y is a solution and y', ..., y®~" are its first » — 1 derivatives. If
@, be substituted on the right and the assumed corresponding initial
values gy, %5, -+, §* ™" be substituted on the left, the above 7 equations
become linear equations in the # unknowns Cyy Cyy +++, Cp5 and if they
are to be soluble for the C’s, the condition

K2 Ya t Yn
W vy =" B (g0 (22)
g0 yp L e

must hold for every value of @ = x,. Conversely if the condition does
hold, the equations will be soluble for the C’s.

The determinant W (y,, ¥, ---, ¥,) is called the Wronskian of the n
functions y,, #,, -+, #,. The result may be stated as: If n functions
Y1 Yy ***5 Y Which are solutions of the reduced equation, and of which
the Wronskian does not vanish, can be found, the general solution of the
reduced equation can be written down. In general no solution of the
equation can be found, whether by a definite process or by inspection;
but in the rare instances in which the » solutions can be seen by inspee-
tion the problem of the solution of the reduced equation is completed.
Frequently one solution may be found by inspection, and it is therefore
important to see how much this contributes toward effecting the solution.

If y, is a solution of the reduced equation, make the substitution
y =yz. The derivatives of y may be obtained by Leibniz’s Theorem
(§8). Asthe formula is linear in the derivatives of 2, it follows that
the result of the substitution will leave the equation linear in the new
variable 2. Moreover, to collect the coefficient of # itself, it is necessary
to take only the first term y{P» in the expansions for the derivative y®.

HEMe (X4 Xy ok X+ X ) 2= 0

is the coefficient of » and vanishes by the assumption that ¥, is a solu
¥ion of the reduced equation. Then the equation for # is

Pp®W 4PtV P, 2"+ P2 =0 @3
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Now if y,, %;, -+, yp Were other solutions, the derived ratios

(U c_ (B L AN
z‘“(%)’ z’_(y.’ A 1) @

would be solutions of the equation in 2'; for by substitution,

Y=Y =UYn Y=Y%=Yy R Y=Y%-1=Y%
are all solutions of the equation in 3. Moreover, if there were a line:
relation Cy2; 4 Cy2y + -+ 4 €, 42, = 0 connecting the solutions z
an integration would give a linear relation

Cy+ Coy+ -+ Cpatta+ Cyy =0
connecting the p solutions y;. Hence if there is no linear relation (
which the coefficients are not all zero) connecting the p solutions y; «
the original equation, there can be none connecting the » — 1 solutior
# of the transformed equation. Hence a knowledge of p solutions ¢
the original reduced equation gives a mew reduced equation of whic
p — 1 solutions are known. And the process of substitution may I
centinued to reduce the order further until the order n — p is reache

Asan 1 ider the ion of the third order
(A =2)y” + (@ = 1)y — '+ 7y = 0.
Here a simple trial shows that £ and e* are two solutions. Substitute
y=e2, y=e@+2), y'=e@E@+22+4+2), Yy =e(z+37482"+7"
Then (1=z)2” + @?—82+2)2" + (@*—8z+ 1)z’ =0
is of the second order in 2’. A known solution is the derived ratio (z/e%)".
2= (e %) =e*(l—z). Letz' =e *(1—2)w.
From this, z” and z”” may be found and the equation takes the form

l—2)w’ +(l+2)(E—2w =0 or d—w:zmda:—il-dz-
w

This is a linear equation of the first order and may be solved.
logw =322 —2loge—1) +C or w=Cyed=(@—1)-1

Hence w= C,fei"(:c— 1)~z + O,,
== ) e of).
z=0,f (ei,)'fe*“’(w—l)—*(dx)u o2+,

EX =Cle’f(§:)’fei "(:: —1)~2(dz)? + O, + Cye*.



The value for y is thus obtained in terms of quadratures. It may be shown that in
case the equation is of the nth degree with p known solutions, the final result will
call for p (n — p) quadratures.

105. Ifthe generalsolutiony=Cy, +Cy,+ -+ C,y, of the reduced
equation has been found (called the complementary function for the
complete equation), the general solution of the complete equation may
always be obtained in terms of quadratures by the important and far-
reaching method of the wariation of constants due to Lagrange. The
question is: Cannot functions of « be found so that the expression

y=C@n+ @+ + @)y (29
shall be the solution of the complete equation ? As there are n of these
functions to be determined, it should be possible to impose n — 1 condi-
tions upon them and still find the functions.

Differentiate ¥ on the supposition that the C’s are variable.

Y =Ci+ i+ + Cnt nCi+ vaCat -+ %l

As one of the conditions on the C’s suppose that

nC + yCat -+ .0 =0.
Differentiate again and impose the new condition

YICL+ % Cit - +4.C=0,
so that y' = Cyy + Coys + -+ + Copn -
The differentiation may be continued to the (» — 1)st condition

YOO, 4 Y IC + - F yPmPC, =0,
and YD = Oy 4 CypD - 4 CoylD.
Then Y = Cryf” + Coyf + -+ + Coy
YOO+ Y g G

Now if the expressions thus found for y, 3!, ", ---, y®™, ¥™ be
substituted in the complete equation, and it be remembered that y,,
Yy » Yn are solutions of the reduced equation and hence give 0 when
substituted in the left-hand side of the equation, the result is

YA DC] + yPIC, 4 o A y$IC, =R,
Hence, in all, there are » linear equations

N +wml e+l =0
%o +uwme 4 +uc =0,

. . . . . (25)
YEIC PO+ YOO =0,



Ior those derivatlves wiich will then be expressed 111 terms OL .
¢’s may then be found by quadrature.
As an example consider the equation with
(D® + D)y =secx with y = C, + Cycosz + Cgsinz

as the solution of the reduced equation. Here the solutions y, , ¥, ¥ may be tak
as 1, cosx, sin & respectively. The conditions on the derivatives of the C's beco
by direct substitution in (25)

Cf 4 coszCy +sinzCy =0, —sinxC; + coszCy =0, — cosxCy — sinxCy = sec
Hence C) =secx, Cy=~—1, C(j=~—tanz

and C,=logtan(}x + }m) +¢;, Cy=—z+cy, Cy =logcosz + ¢4
Hence y=¢, +logtan(}z + }7)+ (¢, — v)cosz + (c3 + log cosz)sinm

is the general solution of the complete equation. This result could not be obtair
by any of the real short methods of §§ 96~97. It could be obtained by the gene
method of § 95, but with little if any advantage over the method of variation
constants here given. The present method is equally available for equations w
variable coefficients.

106. Linear equations of the second order are especially frequent
practical problems. In a number of cases the solution may be four
Thus 1° when the coefficients are constant or may be made constant
a change of variable as in Ex.7, p. 222, the general solution of t
reduced equation may be written down at once. The solution of t
complete equation may then be found by obtaining a particular integ:
I by the methods of §§ 95-97 or by the application of the method
variation of constants. And 2° when the equation is exact, the soluti
may be had by integrating the linear equation (19) of §103 of the fis
order by the ordinary methods. And 3° when one solution of the :
duced equation is known (§104), the reduced equation may be co
pletely solved and the complete equation may then be solved by t
method of variation of constants, or the complete equation may
solved directly by Ex.6 below.

Otherwise, write the differential equation in the form

dy
%’, +rro=nr (2
The substitution y = wz gives the new equation
d’% 2du LlP
o] + (E o -+ P) (u” + Pu' 4 Quyz =— (2¢

If u be determined so that the coefficient of 2 vamshes, then

w=e¢ 4fPde and d,+(Q—;d—£‘-iP2>z=Re}f”*' (2



(47) may be integrated; and o° 11 1t 18 /t/x", the equation may also be
integrated by the method of Ex.7, p.222. The integral of the com-
plete equation may then be found. (In other cases this method may
be useful in that the equation is reduced to a simpler form where solu-
tions of the reduced equation are more evident.)

Again, suppose that the independent variable is changed to z. Then

d%y &'+ Pldy | Q R
7R i A @9

Now 6° if 2”? = 4 Q will make 2" 4+ Pz' = k2" so that the coefficient
of dy/dz becomes a constant %, the equation is integrable. (Trying if
2" = + Q#* will make 2" + Pz' = kz"/z is needless because nothing in
addition to 6° is thereby obtained. It may happen that if z be deter-
mined so as to make 2" 4 Pz' = 0, the equation will be so far simpli-
fied that a solution of the reduced equation becomes evident.)

dy 24
Consider the example E + il
Hence compute @ — 3 P’ — 41’1. T}ns is u“/:c‘ and is neither constant nor propor-
tional to 1/z2. Hence the methods 4° and 6° will not work. From 2’2 = Q = a?/z*

or z’ = a/x? it appears that z” + Pz’ = 0, and 6° works; the new equation is

+ 'y 0. Here no solution is apparent.

d?y . a
~dz—2+y=0 with z_—_—;:.

The solution is therefore seen immediately to be
y=C,cosz— Cysinz or y = C,cos(a/z)+ C,sin (a/z).
1f there had been a right-hand member in the original equation, the solution could

have been found by the method of variation of constants, or by some of the short
methods for finding a particular solution if R had been of the proper form.

EXERCISES
1. If arelation Cyy, + Cy¥, + - - + Cuyn = 0, with constant coefficients not all 0,
exists between n functions y,, ¥,, « - -, ¥» of @ for all values of z, the functions are

by definition said to be linearly dependent; if no such relation exists, they are said
to be linearly independent. Show that the nonvanishing of the Wronskian is a
criterion for linear independence.

2. If the general solution ¥ = Cyy, + Cyyy + + -+ + Ca¥n is the same for

Xy® 4+ Xyo-D4 ... 4 Xy =0 and Py®™+4 Pyye-D4...+ Py=0,
two linear equations of the nth order, show that y satisfies the equation

(XIPO - XQPI) y(ﬂ—x) + et + (X"PO - XUP")y =0

of the (# — 1)st order; and hence infer, from the fact that y contains n arbitrary
constants corresponding to n arbitrary initial conditions, the important theorem:
If two linear equations of the nth order have the same general solution, the corre-
sponding coefficients are proportional.
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(@) (A +at)y”— 20"+ 2y =0, B ay” +(1—2)y' —y =0,

(v) (@@—ta?)y” —ay’ + 2y =0,  (3) 41" +oy — (z+2)y =0,
11,1, 1,1 1\, (1 1 _

() <10g1:+ A=t 5)1/ +(1°EI+;;+ - E)” + (E—E)(V'—W)—Oq

@) yWw—ay+ay —y=0, (n) Ae?—z+ 1)y + 82" —day’ ~8y =

et Y

6. If y, is a known solution of the equation y” + Py’ + Qy = R of the secon
order, show that the general solution may be written as

_ - [Paxdz R fl'de 9
v=0w, +C, f© y?“"fy?e [ (@)>.
7. Integrate:
(@) wy”"— @22+ )y + (x+)y=a2—a~—1,
(B) ¥/ — oy + ey ==, (M @+ (1—2)y —y=e5
By —zy+(@—1)y=R, (e) y”sin?z + ¢/ sinw cost —y =z —sinx
8. After writing down the integral of the reduced equation by inspection, appl
the method of the variation of constants to these equations :
(@ (D4 hy=tanz, (8 (D +Ny=sects, (1) (D—Dy=ex(l—g)~
3) -2y’ + 2y —y=(1—2x)% () (1—2x+a?)(y”—1)—a?y” +22y —y =
9. Integrate the following equations of the second order:

(@) 422" + 4%’ + @ + 1)y =0, (8) y” —2y'tanz — (a? + 1)y =0,

(v) 2y” + 2y — zy =27, (3) y”sing 4+ 29 cosx + Sy sinz = €=
(€) ¥+ y'tanz + yeos?x =0, &) I—=2)y” —ay + 4y =0,

(m) 9" + (26" — 1)y + vy = A=, (8) 28" + 8aSy’ +y =22

10. Show that if Xy + Xy’ + X,y = B may be written in factors as
(XD + XD+ Xy = (9D + q,) (9D + )y = R,
where the factors are not ive i h as the differentiation in or
factor is applied to the variable coefficients of the succeeding factor as well ¢
to D, then the solution is obtainable in terms of quadratures. Show that
QP 0Pyt g =X, and gy +p0p = X,

In this manner integrate the following equations, choosing p, and p, as factors ¢
X, and determining ¢, and g, by inspection or by assuming them in some form ar
applying the method of undetermined coefficients :
(@) @y’ + (1—z)y’ —y =2, (B) 8a%y” + (2 — 6%y’ —4=0,
(v) 8%+ (24 8z~ 62y’ —4dy =0, (8) @—1)y’'— Bz +1)y'—z(x—1)
(€) azy” + Ba + b)Yy + 3by =0, (§) 2y’ — 22 (1 + 2)y + 2(1 + 2)y = .

11. Integrate these equations in any manner :
x4 vz —8

4a?

1 2 2
Q) Y ——y + ¥ =0, ® v -1y 2 o,
@y \/Ey ? )Y z (ll z’)
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(v) ¥ + ¥ tanz + y cos®z = 0, (8) y”—z(n—g) v+ (m-zﬂ);,:eu,
zr
() l—aY)y” —ay’ — 2y =0, (£) (@ —a?)y” — 8ay’ — 12y =0,
. 1 — (2 , 9 4z 6—3z
0 v+ gy =eCrioms), 0 -3y 575 2,
(1) v+ 227ty — iy =0, (x) 1/”—4zy + (422 — 3)1/ =e?,

() ¥+ 2ny’cotnz + (m? —nfy =0,  (u) v’ +2@ 4+ Bo-?)y +dz-ty =0,
12. If ¥, and y, are solutions of y” + Py’ + R = 0, show by eliminating @ and
integrating that
Ve — vty = O~ e,
What if C=0? If O 0, note that y, and y; cannot vanish together; and if
v1(a) = , (b) = 0, use the relation (yy¥1),: (¥a¥} )y = k>0 to show that as ¥}, and
¥, have opposite signs, y24 and y2, have opposite signs and hence y,(§) = 0 where
a<§<b. Hence the theorem: Between any two roots of a solution of an equation
of the second order there is one root of every solution independent of the given
solution. What conditions of continuity for ¥ and y’ are tacitly assumed here ?
107. The cylinder functions. Suppose that C,(z) is a function of 2
which is different for different values of » and which satisfies the two
equations

Cons@) = Cra@) = 2 Col@), Cas@) + Cun(®) = 2 C,(a). (29)

Such a function is called a cylinder function and the index = is called
the order of the function and may have any real value. The two equa-
tions are supposed to hold for all values of » and for all values of .
They do not completely determine the functions but from them follow
the chief rules of operation with the functions. For instance, by addi-
tion and subtraction,

C@=Cra@) — 2@ =2 C@ — Cru@.  (30)
Other relations which are easily deduced are
D,[2"C,(ax)] = ax"C, _,(az), D, (o "C,(ax)] = — az~"C, 4, (x), (31)
D[e, (V)] = 4 Ve T 0, (Vi) (52)
Ci@y=—Cy@), C_,@=(=1)"Cye), nintegral, (33)
C.le) Kif) — Cole) Ko) = Coia(@) Kol = Col@) Kna@) =27 (3)
where C' and K denote any two cylinder functions.

The proof of these relations is simple, but will be given to show the use of (20).
In the first case differentiate directly and substitute from (29).
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The second of (31) is proved similarly. For (32), differentiate.
s 1 %4 21 fa
D.[22Cn(Vaz)] =§mr.2 Co{Vaz) + a2 3V mc.,(\/az)
a-l
=5 Ve T [ = aVa) + ooV -

n(ﬂ

Next (38) is obtained 1° by substituting 0 for n in both equations (29).

Coy(@) — Cy(@) =2 C5 (@), C_a(@) +Cy(@) =0, hence Cj(x)=—Cyx);
and 2° by substituting successive values for n in the second of (29) written in tl
form C,,—1 + £Ch41 = 20nC,. Then

20y +2C, =0, z0_g+2Cy=—2C_1, 2Cy+20,=20,

20 3+ 2Cy=—40C_,, zC, + 20, =40C,,

204+ 2Cg=~00,, 2C,+ «C, = 8Cy,
and so on. The first gives C_;= — €. Subtract the next two and use C_1 + G; =
Then C_p~C,=0or C_y=(—1)2C,. Add the next two and use the relatio;
already found. Then C_g+Cy=0 or C_5=(—1)*C,. Subtract the next tw
and so on. For the last of the relations, a very important one, noté first that tI
two expressi become equival by virtue of (29); for

Cull = O = 2 CulKy = CaF 1 — 2 Oy + Cu i Ko

] - -
Now 2 [6(Ca 43k — Cillnan)] = Op K = OBy + 1 (0 =25

! Cn +I)

+20, H('-” K,— K, “) — oKy ('-‘ o Gasa
v & /

- zC,,(K,. _nt lK,,“) —o.
Hence 2 (Cy 41K, — C,K, 41) = const. = 4, and the relation is proved.

The cylinder functions of a given order n satisfy a linear differenti
equation of the second order. This may be obtained by differentiatir
the first of (29) and combining with (30).

20 =G —Cin=""1c,,

w1
n 1
= ;} (Cn—l + C,..u) - g“c (Cn—l —Cpy)— 2C,.
dy 14 n
Hence dé += = nli <1 — é)y =0, y = C,(). @3

This equation is known as Bessel’s equation ; the functions C,(z), whit
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By a change of the independent variable, the Bessel equation may
take on several other forms. The easiest way to find them is to operate
directly with the relations (31), (82). Thus

D[z "Cp@)]=— 2 "Cppy=—a- 27" 1Cp 4y,
D[z "C,(@)]=—a "I Copy a2 T 0 s
=—a "0+ 2(n+ 1)z "7'C,  — 27"C,.

d% 1+ 22) dy
Hence %+ (—xl Lty=0 y=ac). (36)
. d* 1—2n) dy
Again EJ’ + (_Tl ;lﬁ +y=0, y = a"C,(x}. 37
Also ay"+(1+n)y' +y=0, y=a 2C,(2 \/E) (38)
And ay'+(l—n)y'+y=0, y=22C(2Va) (39)

In all these differential equations it is well to restrict = to positive values

inasmuch as, if # is not specialized, the powers of x, as ", 2~ ", 2%, z  are
not always real.

108. The fact that n occurs only squared in (35) shows that both
C,(x) and C_,(«) are solutions, so that if these functions are inde-
pendent, the complete solution is y = aC, + &C_,. In like manner the
equations (36), (37) form a pair which differ only in the sign of =.
Hence if H, and H_, denote particular integrals of the first and second
respectively, the complete integrals are respectively

y=aH,+bH_,2=*" and y=aH_,+ bHa™";
and similarly the respective integrals of (38), (39) are

y=al,+0I_a " and y=al_,+ bla"

where I, and I_, denote particular integrals of these two equations. It
should be noted that these forms are the complete solutions only when
the two integrals are independent. Note that

L@=o1"c,(2Va),  C@=0GarLGs). @0
As it has been seen that C, = (—1)*C_, when = is integral, it follows
that in this case the above forms do not give the complete solution.

A particular solution of (38) may readily be obtained in series by the
method of undetermined coefficients (§ 88). It is

S (=1
= i =
L@=2 08, &= D

(41)



from a certain point on, the coefficients a; have zeros in the denominator.
The determination of a series for the second independent solution when
n is integral will be omitted. The solutions of (35), (36) corresponding
to Z,(x) are, by (40) and (41),

=53, % @2
) = o LA, )

where the factor n! has been introduced in the denominator merely to
conform to usage.* The chief cylinder function C,(z) is J,(x) and it
always carries the name of Bessel.
To derive the series for I,(z) write
1 |[Li=a+ ax+ X R R Ll T

(1+") 1:.'_'11”'2“2@‘*‘ Bag? 4o+ (k—1)apazk—24 ..o,

2a, +83:2a 4+ -+ (k—1)(k—2)ap_12F-8+.
=[a+ a,(n+1)]+ z[al + a,2(n + 2)] + 27 [a; + a8 (n + 3)]

+- @ ag—1+ ak(n+ )]+

Hence ay+a,(n+1)=0, a1+a,2(n+2)= y oty Gr1d ekt k) =0,
— % - _ G ...
o BETIIT %T3n+y 2i@rhm+2) "
e (=10

o+l m+h)
If now the choice a, =1 is made, the series for I,(z) is as given in (41).
The famous differential equation of the first order

2y’ — ay + by? = can, “3)
known as Riccati’s equation, may be integrated in terms of cylinder functions.
Note that if n = 0 or ¢ = 0, the variables are separable ; and if b = 0, the equation
islinear. As these cases are immediately integrable, assume ben 7 0. By a suitable
change of variable, the equation takes the form

d?*y ) dn 1
— = == =-—2. 48"
sw+( T =0 f=gT v . (439
A comparison of this with (39) shows that the solution is
a
n=AI_a(— bef) + BIy(— bet) - (— bek)?,
H B

which in terms of Bessel functions J becomes, by (40),

7= 68 (A7, VIR + BT (V= BD)].

R TE o 2o meb Irnbarral heth m! and (LA mack ha vanlanad (& 14T he T L 1) and



(2:\/ be/n) — A7, .,(2z%\/—be/n)

SR

where 4 denotes the one arbitrary constant of integration.
It is noteworthy that the cylinder functions are sometimes expressible in terms
of trigonometric functions. For when n = } the equation (85) has the integrals

(€}
Je(zz? V=tc/n) + 4J_«(2 ﬁx/— be/n)

y=Asing 4+ Beosez and y= .’:i[AG*(:c) + BG_i(a:)].
Hence it is permissible to write the relations
aa!Gi(z) =sginz, x”zc‘_i(m) = cos g, (46)
where C is a suitably chosen cylinder function of order }. From these equations
by application of (20) the cylinder functions of order p + }, where p is any integer,
may be found.

Now if Riccati’s equation is such that b and ¢ have opposite signs and a/n is
of the form p + 3, the integral (44) can be expressed in terms of trigonometric
functions by using the values of the functions 0, , 3 just found in place of the J's.
Moreover if b and ¢ have the same sign, the trigonometric solution will still hold
formally and may be converted into exponential or hyperbolic form. Thus Riceati’s
equation is integrable in terms of the elementary functions when a/n =p + } no
matter what the sign of bc is.

EXERCISES

1. Prove the following relations:

(@) 407 = Co—z—2Cu+ Cuya,  (8) 20n =2(n + 1) Cota1 — 5Cus2,
(v) 28C; =Cn3—80Cn_1+38Cy 41— Cnys,  generalize,
(3) 2Ch=2(m+1) Ca1—2(n+ 8)Cn+s + 2(n + 8) Cuy 56— ©Ca+s.

2. Study the functions defined by the pair of relations
Fua@+ Fon@ =22 R0, Far @)= Funn@) =2 Frle)
especially to find results analogous to (30)-(35).

3. Use Ex. 12, p. 247, to obtain (34) and the corresponding relation in Ex. 3.
4. Show that the solution of (88) is y = AI, f pper + BI,.
5. Write out five terms in the expansions of I,, I,, I. 3 P
6. Show from the expansion (42) that } ! @J 3@ = isin .
7. From (45), (29) obtain the following:

Z*Cg(z) = _z__ €os T, :c‘lc%(x) (z__ 1) sinz — 32co:ts z,

1}0_&(;:) = —sing — CO:J, zic_g(z) = ;sinz + (Ea— 1) CO8 2,



8. Prove by integration by parts: f%ﬂu = g + e% +6. sf%‘f.
9. Suppose Cy(x) and K,,(x) so chosen that 4 =1in (34). Show that
Ch() K, (x)
¥ = ACy(@) + BEA@) + L [K,,(z) f —I'(f—)dz — Cul®) f -—:%ldz]

is the integral of the differential equation a%” + 2y’ + (x? — n?)y = Lz~%.
10. Note that the solution of Riccati’s equation has the form
_J@+49@)
F(z) + 4G (@)
will be the form of the equation which has such an expression for its Integral.

and show that % + P@@)y + Q@) ¥ =R (2)

11. Integrate these equations in terms of cylinder functions and reduce the
results whenever possible by means of Ex. 7:

(@) 2y’ =5y + 92 +2? =0, (B) 2y’ — 3y +y? =22
(™) ¥ +yet==0, @) 2% + nay’ + (b + ca?m)y =0.

12. Identify the functions of Ex. 2 with the cylinder functions of iz.
13. Let @2 — 1) Pp=(n+ 1) (Pry1—2Py), Pra=2P,+(@+1)P, (46)
be taken as defining the Legendre functions Pn(z) of order n. Prove

(@ @=)P, =n@Ps—Pa), (8) @n+D)2Py=(n+1)Pun+ P,
() @n+)Pu=Fyp—Phy, () (1—ah) P = 22P, + n(n+1) Py = 0.

14, Show that Pa@y— PaQe = —2— and PpQus1— Pri1@u=—2o,
a?—1 n41

where P and € are any two ‘Legendre functions. Express the general solution of
she differential equation of Ex. 13 (§) analogously to Ex. 4.

15. Let u =x? — 1 and let D denote differentiation by z. Show

Drtlyn +1 = Datl(uun) = uDn+lyn 4 2 (n + 1)2Dun + n(n + 1) Dr-lun,

Drtlyn+1 = DnDunr+l = 2 (n + 1) Do(zur) = 2(n + 1)zDrur + 2n(n 4 1) Dn-lun,
Hence show that the derivative of the second equation and the eliminant of D»—lu»
between the two equations give two equations which reduce to (48) if

1 dn ‘When = is integral these are
= e .
Pyfe) = on. n! dgn @ =1 Legendre's polynomials.
16. Determine the solutions of Ex. 18 (3) in series for the initial conditions
(a) Py(0)=1, P(0)=0, (8) Pa(0) =0, P,(0)=1.

17. Take Py=1and P, =z. Show that these are solutions of (46) and compute
Py, Py, P, from Ex. 18 (8). If ¢ = cos §, show

P,=§cos20 +4, Py=4c0os86+ §cosd, P, =¢fcos46+ $4cos26+ .
18. Write Ex. 18 (3) a.s(;iz[(l—z”)P;] + n(n + 1) P, = 0 and show

[m(m+1)—n(n+1)]_£?1Pandm=_/:TI[PMELj’fl{; g(l——;—zﬁ]d&




+1
fl Py Pudz =0, if nzm.
19. By successive integration by parts and by reduction formulas show

+1 1 +ldn(@? — 1)n dn(z? — 1)» (=1 p4t
Plig = . = a_
-1 " T 222 .L dan dan e 2onlda (@ —lpda

+1 2 .
and j;l Pldz = PPEL n integral.

41 1 dn(z? —
20. Show fx amPde = f zmle)n =0, ifm<n.
- -1

Determine the value of the integral when m = n. Cannot the results of Exs. 18, 19
for m and n integral be obtained simply from these results ?

a? ozt
PIETAT
n=0. Assume a solution of the form y = Iv + w so that

21. Consider (38) and its solution Iy=1—xz+ — ... when

2w | dw dr, dv . v dv
”@*a*‘”“#aﬂ’ if z@+a=o,
is the equation for w if v satisfies the equation zv” 4+ v' = 0. Show
2
v=4 + Blogz, zw"+w’+w=2B—-E&+g£z——w+...,

2! 218! 3141
By assuming w = @,2 + @,%? + -+ -, determine the a's and hence obtain
z? 1 Ll 1.1 at 1,1 1

= - N+ —=(1+z+3)-=(14+Z++)+---|;

w 2B[:c 211(1+2>+81’( +2+8) 4[2( +2+3+4)+ ],

and (4 + Blogz) I, + w is then the let luti ining two

As AI, is one solution, Blog - I, + w is another. From this second solution for
n = 0, the second solution for any integral value of » may be obtained by differ-
entiation ; the work, however, is long and the result is somewhat complicated.
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109. Total differential equations. An equation of the form
Pz, y, #)dz + Q(x, y, 2)dy + R (x, y, 2)dz =0, ®
involving the differentials of three variables is called a total differen-
tial equation. A similar equation in any number of variables would
also be called total; but the discussion here will be restricted to the
case of three. If definite values be assigned to z, ¥, 2, say a, ), ¢, the
equation becomes
Adz+Bdy + Cdz=A(z~a)+Bly—0)+C(z—c)=0, (2)
where z, y, # are supposed to be restricted to values near a, b, ¢, and
represents a small portion of a plane passing through (a, 5, ¢). From
the analogy to the lineal element (§ 85), such a portion of a plane may
be called a planar elemerit. The differential equation therefore repre-
sents an infinite number of planar elements, one passing through each
point of space.

Now any family of surfaces F(z, y, #) = C also represents an infinity
of planar elements, namely, the portions of the tangent planes at every
point of all the surfaces in the neighborhood of their respective points
of tangency. In fact

dF = Fdx + Fydy + F,dz =0 6]
is an equation similar to (1). If the planar elements represented by
(1) and (3) are to be the same, the equations cannot differ by more
than a factor x4 (, y, z). Hence

F, = pP, Fy=pQ, F, = pR.
If a function F(z, y, #) = C can be found which satisfies these condi-
tions, it is said to be the integral of (1), and the factor u (z, ¥, 2) by
which the equations (1) and (3) differ is called an integrating factor
of (1). Compare § 91.

It may happen that u =1 and that (1) is thus an exact differential.
In this case the conditions

Py=Q, Q=R, E=F, @
264



Moreover if these conditions are satisfied, the equation (1) will be
an exact equation and the integral is given by

z v
F(m,y,z):f P(x,y,z)dm-f—f Q(zo,y,z)dy+fR(mD,y0,z)dz=C,
%o Yo

where 2,, ¥,, #, may be chosen so as to render the integration as simple
as possible. The proof of this is so similar to that given in the case of
two variables (§ 92) as to be omitted. In many cases which arise in
practice the equation, though not exact, may be made so by an obvious
integrating factor.

As an example take zzdy — yzdx + 2%z = 0. Here the conditions (4) are not

fulfilled but the integrating factor 1/z% is suggested. Then

ody —

v_zvd_%,E:d(z“og,)

@ z \z

is at once perceived to be an exact differential and the integral is y/z + logz = C.
It appears therefore that in this simple case neither the renewed application of the
conditions (4) nor the general formula for the integral was necessary. It often
happens that both the integrating factor and the integral can be recognized at once
as above.

If the equation does not suggest an integrating factor, the question
arises, Is there any integrating factor? In the case of two variables
(§94) there always was an integrating factor. In the case of three
variables there may be none. For

ou oP_ _, aQ
‘Pa +"a =T ‘Qam+“a "B

Y Q_ ., _oou, R
Fux Qaz+"az Fu=ERj +"a NP

B
F,,_Ra,u_l_“ F,,~P_M+#3,Q
If these equations be multiplied by R, P, Q and added and if the result
be simplified, the condition

9Q OR OR 0P P 9Q

(@-a)re@-5)=E-w- o

is found to be imposed on P, @, R if there is to be an integrating fac-

tor. This is called the condition of integrability. For it may be shown

conversely that if the condition (5) is satisfied, the equation may be
integrated.

Suppose an attempt to integrate (1) be made as follows : First assume

that one of the variables is constant (naturally, that one which will



256 DIFFERENTIAL EQUATIONS

make the resulting equation simplest to integrate), say z Then
Pdx + Qdy = 0. Now integrate this simplified equation with an inte-
grating factor or otherwise, and let F(z, y, 2) = ¢ (=) be the integral,
where the constant C is taken as a function ¢ of 2. Next try to deter-
mine ¢ so that the integral F(x, y, #) = ¢ () will satisfy (1). To do
this, differentiate ;
Fdx + Fydy 4 Fjdz = d¢.

Compare this equation with (1). Then the equations*

F,=\P, F,=AQ, (F.—\R)dz=d¢
must hold. The third equation (F; — AR)dz = d¢ may be integrated
provided the coefficient § = F; — AR of dz is a function of z and ¢,
that is, of z and F alone. This is so in case the condition (5) holds. It
therefore appears that the integration of the equation (1) for which (5)
holds reduces to the succession of two integrations of the type discussed
in Chap. VIIL

As an example take (22? + 2ay + 2222 + 1)dz + dy 4 2zdz = 0. The condition
(22% +2zy + 2222 + 1) 0 + 1(— 422) + 22(22) = 0
of integrability is satisfied. The greatest simplification will be had by making «
constant. Then dy + 22dz = 0 and y + 2% = ¢ (z). Compare
dy +2zdz=d¢ and (22% + 22y + 222 4+ 1)do + dy + 22dz = 0.

Then =1, — (22 + 2zy + 2022 4+ 1)de = d¢;
or — (222 + 1+ 2x¢)de = dp or dp+ 2zpds =— (2a% + 1)dz.
This is the linear type with the integrating factor ¢=*. Then

e*(dg + 2apdz) =— e*(2a% + 1)dn or T =_f (2% + 1)do + C.

Hence y + 22 + e-z‘fez’(zz’ + 1)dz = Ce~= or e2'(y + 27%) +fel’(2:n2 + )ydo=(
is the solution. It may be noted that e=* is the integrating factor for the origina
equation :
e®[(222 + 22y + 222 + 1)da + dy + 22dz] = d[ev”(y +2%) + fef(2x2+ 1)dz]~

To complete the proof that the equation (1) is integrable if (5) is satisfied, it i
necessary to show that when the condition is satisfied the coefficient S = F, — Ak
is a function of z and F alone. Let it be regarded as a function of z, F, z insteac

of @, y, z. It is necessary to prove that the derivative ot S by £ when F and z are
constant is zero. By the formulas for change of variable

@) =@ +@E @ =) Z
o), . \ozx/r . \oF) oz’ ). \aF/)..on



@ /e T \@t/Re

Now (3_5) :E(@_m)zﬂ_ﬂsﬁ_a_@.
or/y,. 0T \oz dz0z o oz oT
Hence (a— =)\(£—2§)+P%—R2)i,
0r/y, » 0z oz oz o
and (a_g) =X(LQ_£‘) Q2 _g2,
Y/ z, = oz oy oz y
88’ 28 P ¢R R  8Q [2 N
Th Z) —P(Z) =nQ(E-L)+P(E_B)|_p| @2 _p2
o 9(5), G G- D (-] -rleg -3
() 9P oR R 0Q 0Q aP)
d —} =\ —_—— P(—-= R(—=—-—)|
an Q(v’ﬂ)n. [Q<5z bac>+ (61/ az>+ (a;c ﬁy}
[axQ axP]
—R|Ex2_2],
& oy

where a term has been added in the first bracket and subtracted in the second.
Now as Nis an integrating factor for Pdz + Qdy, it follows that (\Q);, = (AP), ; and
only the first bracket remains. By the condition of integrability this, too, vanishes
and hence S as a function of z, F, z does not contain = but is a function of F and
z alone, as was to be proved.

110. It has been seen that if the equation (1) is integrable, there is
an integrating factor and the condition (5) is satisfied; also that con-
versely if the condition is satisfied the equation may be integrated.
Geometrically this means that the infinity of planar elements defined
vy the equation can be grouped upon a family of surfaces F(, 7, z) = C
to which they are tangent. If the condition of integrability is not satis-
fied, the planar elements cannot be thus grouped into surfaces. Never-
theless if a surface G (z, y, #) = 0 be given, the planar element of (1)
which passes through any point (w,, y,, #,) of the surface will cut the
surface G = 0 in a certain lineal element of the surface. Thus upon the
surface G'(z, y, #) = 0 there will be an infinity of lineal elements, one
through each point, which satisfy the given equation (1). And these
elements may be grouped into curves lying upon the surface. If the
equation (1) is integrable, these curves will of course be the interseetions
of the given surface G =0 with the surfaces F = C defined by the
integral of (1).

The method of obtaining the curves upon G'(z, y, ) = 0 which are
the integrals of (1), in case (5) does not possess an integral of the form
F(x, y, ) = C, is as follows. Consider the two equations

Pdz + Qdy + Rdz = 0, Goda + Gydy + Gyde =0,

of which the first is the given differential equation and the second is
the differential equation of the given surface. From these equations
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one of the differentials, say dz, may be eliminated, and the correspond-
ing variable # may also be eliminated by substituting its value obtained
by solving G (z, y, #) = 0. Thus there is obtained a differential equa-
tion Mdz + Ndy = O connecting the other two variables z and y. The
integral of this, F(z, ) = C, consists of a family of cylinders which cut
the given surface ¢ = 0 in the curves which satisfy (1).

Consider the equation ydz + xdy — (¢ + ¥ + z)dz = 0. This does not satisfy the
condition (5) and hence is not completely integrable ; but a set of integral curves
may be found on any assigned surface. If the surface be the plane z =& + ¥, then

ydz +2dy — (@ + ¥ +2)dz=0 and dz=dz+dy
give @+2)de+ @ +2)dy=0 or (2z+y)de+ 2y +2)dy =0
by eliminating dz and z. The resulting equation is exact. Hence
?tay+y?*=C and z=x+y
give the curves which satisfy the equation and lie in the plane.

If the equation (1) were integrable, the integral curves may be used to obtain
the integral surfaces and thus to accomplish the complete integration of the equa-
tion by Mayer's method. For suppose that F(z,y,z) = C were the integral surfaces
and that F(z,y,2)= F(0,0,2z,) were that particular surface cutting the z-axis at z,.
The family of planes ¥ = Az through the z-axis would cut the surface in a series
of curves which would be integral curves, and the surface could be regarded as
generated by these curves as the plane turned about the axis. To reverse these
considerations let ¥ = Az and dy = Adz; by these relations eliminate dy and y from
(1) and thus obtain the differential equation Mdx + Ndz = 0 of the intersections
of the planes with the solutions of (1). Integrate the equation as f(z, z,\) = C and
determine the constant so that f(z, z, \) =(0, 2y, \). Forany value of A this gives
the intersection of F(z,y,2) = F (0, 0, 2,) with y = z. Now if A be eliminated by
the relation A = y/z, the result will be the surface

f(x, 2 %) =f(o, Zor 7—;), equivalent to F(z, ¥, 2) = F(0, 0, z),

which is the integral of (1) and passes through (0, 0, z,). As z, is arbitrary, the
solution contains an arbitrary constant and is the general solution.

It is clear that instead of using planes through the z-axis, planes through either
of the other axes might have been used, or indeed planes or cylinders through any
line parallel to any of the axes. Such modifications are frequently necessary owing

to the fact that the itution (0, 2y, A) i d a division by 0 or a log 0 or
some other impossibility. For inst: id

Yz +zdy —ydz =0, y=»M, dy=>»Nz, Nzdz+ Nzdz—\edz=0.
Then m+ii“;—“‘d‘_=o, and ne—Z=7@ 2.
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(—1+ Az)? R T Y

: z
Hence E =—2z OF T—-=—2,=0,
Y

is the solution. Thesame result could have been obtained withz =Mz ory =\ (z—a)
In the latter case, however, care should be taken to use f(z, 2, \) =f(a, 2, \)

EXERCISES

1. Test these equations for exactness; if exact, integrate ; if not exact, find an
integrating factor by inspection and integrate:

(@) W+2de+(z+0)dy + @ +y)de=0, (B) v’de + zdy —ydz =0,

() wde + ydy — Va? — 2% — y2dz = 0, (3) 2z(de—dy) + (z~2)dz =0,

(e) 2z + ¥+ 2xz)de + 2aydy + w¥dz =0, () zyde = zedy + y%dz,

(Me@—-)e—dc+y@z—1)(@—)dy+2@&—-1)(y—1)dz=0.

2. Apply the test of integrability and integrate these:

(@) (@ —y? — 2% de + 2aydy + 2%2dz = 0,

(B) @+y2+ 2%+ 1)de + 2ydy + 22dz2 =0,

(v) W+ a)fde + 2dy = (y + a)dz,

(8) (1— 22— 2y%)dz = 2x2dz 4 2 y2%dy,

(e) 2%dz? + y2dy? — 2%d2® + 2 zydedy = 0,

(¢) z(ede + ydy + 2dz)? = (2% — a? — y?) (zdz + ydy + zdz)dz.

3. If the equation is homogeneous, the substitution & = uz, ¥ = vz, frequently
shortens the work. Show that if the given equation satisfies the condition of inte-
grability, the new equation will satisfy the corresponding condition in the new
variables and may be rendered exact by an obvious integrating factor. Integrate:

(@) (% +y2)da + (32 + 2 dy + (y? —ay)dz =0,
(B) (2% — 93 — y%)dz + (2y? — %2 — @P)dy + (xy? + 2*y) dz =0,
() @2+ vz + ) de + (2% + 2z + 2% dy + (@@ + oy + ¥ dz = 0.
4. Show that (5) does not hold ; integrate subject to the relation imposed :
(a) ydz + xdy — (@ + y + 2)dz =0, c+y+z=k or y=ks
(8) ¢(zdy + ydy) + V1 — ax? — b%3dz =0, a%c? + By 4 22 =1,
(y) dz=ayde +bdy, y=kr or x®+3y2+22=1 or y=rf(x).

5. Show that if an equation is integrable, it remains integrable after any change

of variables from z, y, 2 to u, v, w.

6. Apply Mayer’s method to sundry of Exs. 2 and 8.

7. Find the conditions of exactness for an equation in four variables and write
the formula for the integration. Integrate with or without a factor:
(@) 2z + 92 + 222)dz + 2zydy + xdz + du=0,
(B) yzudzs + wzudy + wyudz + cyzdu =0,
) W+z+wde+@+z+uwdy+ @+y+uwdz+@+y+2)du=0,
(8) u(y +2)de + u(y + 2z + 1) dy + udz — (v + 2)du = 0.
8. If an equation in four variables is integrable, it must be so when any one of
the variables is held constant. Hence the four conditions of integrability obtained
by writing (5) for each set of three coefficients must hold. Show that the conditions
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remaining terms and determining the constant of integration as a function of th
fourth in such a way as to satisfy the equations.
(@) 2y +2)dr +2(u—2)dy +y(@—wydz + y(y + 2)du =0,
(B) uyzde + uzx log zdy + uxy log xdz — xdu = 0.
9. Try to extend the method of Mayer to such as the above in Ex. 8.

10. If G (x,y, 2) = a and H (z, ¥, z) = b are two families of surfaces defining :
family of curves as their intersections, show that the equation

(G H, — G,H,)dx + (G, H, — G H)dy + (6. H, — G H)dz =0
is the equation of the planar elements perpendicular to the curves at every poin
of the curves. Find the conditions on & and H that there shall be a family of sur

faces which cut all these curves orthogonally. Determine whether the curves belov
have orthogonal trajectories (surfaces) ; and if they have, find the surfaces:

(@) y=x+a, z=2+D, B y=ar+l, z=0ba,
(M @ +y?=a% z=0, (@) ay=a, ;z=0,
(e) @+ y2 422 =0 ay =10, (}) @+ 22 +828=a, sy +2=0,

(n) logay =az, z +y+2=b, @) v=2azx + a?, z=20x + 1%,
11. Extend the work of proposition 3, § 94, and Ex. 11, p. 234, to find the norma

derivative of the solution of equation (1) and to show that the singular solution ma;
be looked for among the factors of p~1 = 0.

12. If F = Pi+ Qj + Rk be formed, show that (1) becomes F.dr = 0. Shov
that the condition of exactness is VxF = 0 by expanding VxF as the formal vecto
product of the operator V and the vector F (see § 78). Show further that the condi
tion of integrability is F+(VxF) = 0 by similar formal expansion.

13. In Ex. 10 consider V& and VH. Show these vectors are normal to the sur
faces G = a, H =b, and hence infer that (V@)x(VH) is the direction of the inter
section, Finally explain why dr-(VGxVH) = 0 is the differential equation of th
orthogonal family if there besuch a family. Show that this vector form of the famil,
reduces to the form above given.

111. Systems of simultaneous equations. The two equations

dy dz \

dx =f( v 2), & 9@, ¥, 2) (8

in the two dependent variables  and z and the independent variable s

constitute a set of simultaneous equations of the first order. It is more

customary to write these equations in the form

da _ dy dz

= = s

X@y,2) Y@ y2) Z(@y2)
which is symmetric in the differentials and where X:¥:Z =1:f:g

At any assigned point x,, %,, #, of space the ratios dw:dy:dz of the
differentials are determined by substitution in (7). Hence the equation:

@

.
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fix a definite direction at each point of space, that is, they determine a
lineal element through each point. The problem of integration is to
combine thesc lineal elenients into a family of eurves F(x, y, z)=C,,
G (=, y, ) = C,, depending on two parameters €, and C,, one curve pass-
ing through each point of space and having at that point the direction
determined by the equations.
Tor the formal integration there are several allied methods of pro.

cedure. In the first place it may happen that two of

dz _ dy dy _dz dx _ dz

XY Y zZ' X" Z
are of such a form as to contain only the variables whose differentials
enter. In this case these two may be integrated and the two solutions
taken together give the family of carves. Or it may happen that one
and only one of these equations can be integrated. Let it be the first
and suppose that F(x, ) = C, is the integral. By means of this inte.
gral the variable  may be eliminated from the second of the equations
or the variable y from the third. In the respective cases there arises
an equation which may be integrated in the form G(y, 2, C))=C, or
G (&, #, F) = C,, and this result taken with F(z, y) = €, will determine
the family of curves.

Consider the example oz = vdy = @ Here the two equations
yz 2 Y
2dz = vdy and oz =dz
Y z z

are integrable with the results a® — 33 = C,, % — 22 = C,, and these two integrals
constitute the solution. The solution might, of course, appear in very different
form ; for there are an indefinite number of pairs of equations F(z, ¥, 2, C;) =0,
G (2, ¥, 2, Cy) = 0 which will intersect in the curves of intersection of 28 — ¢ = C;,
and 22 — 22 = C,. In fact (¥° + C,)% = (2% + C,)* is clearly a solution and could
replace either of those found above,

. dx dy dz
onsider the example ————— = — = ——. Here
¢ g péz“—y’—zZ 2zy 2wz
dy _dz

v = 2 with the integral y = C,z,

is the only equation the integral of which can be obtained directly. If y be elimi-
nated by means of this first integral, there results tire equation

&
o —(CP+1)22 2m2
This is homoger.eous and may be integrated with a factor to give

or 2azda + [(COF +1)22 —2?]dz = 0.

w2 (2L 1N\2 (> or 2412422~ (0



possible so to choose them that the last expression, taken with one ¢
the first three, gives an equation which may be integrated. With th
first integral a second may be obtained as before. Or it may be th
two different choices of A, u, v can be made so as to give the two desire
integrals. Or it may be possible so to select two sets of multipliers th:
the equation obtained by setting the two expressions equal may }
solved for a first integral. Or it may be possible to choose A, p, v ¢
that the denominator AX + p¥ +vZ =0, and so that the numerati
(which must vanish if the denominator does) shall give an equation
Mz + pdy + vdz =0 (
which satisfies the condition (5) of integrability and may be integrate
by the methods of § 109.
) & &y
2+ tyr 24 yi-zz @+ Y)z
as 1, —1, —1; then AX 4 uY + »Z =0 and dz— dy — dz = 0 is integrable
z — y — 2 = C,. This may be used to obtain another integral. But another choi
of A, u, v a8 z, y, 0, combined with the last expression, gives

Consider the + Here take \, u.

zde + yda dz
—_— = — " or logx*+ =log22 + C,.
@ide+n Erpz O @S
Hence z—y—2=C; and a?+y?=Cp2?

will serve ag solutions. This is shorter than the method of elimination.
It will be noted that these equations just solved are homogeneous. The subs
tution 2 = uz, y = vz might be tried. Then

udz+zdu _ vdz42dv _ dz  zdu 2dv
WP+ v WtP—u UtV P—wwtv W—uw—u
du v dz

or e e

Now the first equations do not contain z and may be solved. This always happe
in the homogeneous case and may be employed if no shorter method suggests itsel

It need hardly be mentioned that all these methods apply equally
the case where there are more than three equations. The geometr
picture, however, fails, although the geometric language may be conti
ued if one wishes to deal with higher dimensions than three. In son
cages the introduction of a fourth variable, as

’ et



three variables. This is particularly true when X, ¥, Z are linear with
constant coefficients, in which case the methods of § 98 may be applied
with ¢ as independent variable.

112. Simultaneous differential equations of higher order, as

& dx dy &y da dy
dz"X(T’ “a dt>’ dtz'"y<x’ Y dt)

dr d dr d d¢ d
@ (d—f) R( * g %’)’ : dt(’“ dt) ( &5 d—f)
especially those of the second order like these, are of constant oceur-
rence in mechanics; for the acceleration requires second derivatives
with respect to the time for its expression, and the forces are expressed
in terms of the cosérdinates and velocities. The complete integration of
such equations requires the expression of the dependent variables as
functions of the independent variable, generally the time, with a num-
ber of constants of integration equal to the sum of the orders of the
equations. Frequently even when the complete integrals cannot be
found, it is possible to carry out some integrations and replace the
given system of equations by fewer equations or equations of lower

order containing some constants of integration.

No special or general rules will be laid down for the integration of
systems of higher order. In each case some particular combinations of
the equations may suggest themselves which will enable an integration
to be performed.* In problems in mechanics the principles of energy,
momentum, and moment of momentum frequently suggest combinations
leading to integrations. Thus if

2" = X, Y=Y, =12z,
where accents denote differentiation with respect to the time, be multi-
plied by dz, dy, dz and added, the result
2"de + y''dy + 2"dz = Xdw + Ydy + Zdz 11

contains an exact differential on the left ; then if the expression on the
right is an exact differential, the integration

FE 4 g7 4 27 =fXda;+Ydy+Zdz+C’ @

* 1t is possible to differentiate the given equations repeatedly and eliminate all the
dependent variables except one. The resulting differential equation, say in z and ¢, may
then be treated by the methods of previous chapters; but this is rarely successful e&cept
when the equation is linear.



If two gf the equations are mul‘tiplied by ‘i",he ch;gf variable of the other
and subtracted, the result is

yr' —xy'=yX —x¥ 12)
and the expression on the left is again an exact differential; if the
right-hand side reduces to a constant or a function of ¢, then

f fH+c 12"
is an integral of the equations. This is the principle of moment of
momentum. If the equations can be multiplied by constants as

"+ my" +n"=1X+m¥ + 0z, 13)
so that the expression on the right reduces to a function of ¢, an inte-

gration may be performed. This is the principle of momentwum. These
three are the most commonly usable devices.

ya' — ay'

As an example: Let a partlcle move in a plane subject to forces attracting it
toward the axes by an amount proportional to the mass and to the distance from
the axes; discuss the motion. Here the equations of motion are merely

% dy dz ay _
mﬁ=—kmz, mz";_—kmy or m:—ka, ="
Bx Py L ) S
Then dzog+dyzg =—k(dz+ydy) and (dt)+<dt =—k@+1%)+C.
i @y dz dy "
Also vw—:a—z—zo and ya—z;i:o.

In this case the two principles of energy and moment of momentum give two
integrals and the equations are reduced to two of the first order. But as it happens,
the original equations could be integrated directly as

% de\2 dz

—dr =~ &Y ka2 02 = _
‘md@: kxdx, ( ) +C?, = dt
d3y dy\? dy

—dy =— Y == k2 2 —_—
o W == kudy, (au) ¥+ K2, v = = dt.

The constants 0% and K? of integration have been written as squares because they
are necessarily positive. The complete integration gives

Viz =Csin (VEt + ), VEy = Ksin (V& + K,).

As another example : A particle, attracted toward a point by a force equal to
r/m? 4 h%/r® per unit mass, where m is the mass and h is the double areal velocity
and r is the distance from the point, is projected perpendicularly to the radius vec-
tor at the distance \/;L—ﬂ; discuss the motion. In polar codrdinates the equations
of motion are

d2r dg\*] _ , _ _mr mhd md( d\_ .
m[m’ '(dg)]—R_ po R ;a(r’ﬁz)_t_o.
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The second integrates directly as r2d¢/dt = h where the constant of integration &
is twice the areal velocity. Now substitute in the first to eliminate ¢.

dr  h? h? 2
r_B__r W & r (dr) :—i-(-C.
s

dt

Now as the particle is projected perpendicularly to the radius, dr/dt =0 at the
start when » =Vmh. Hence the constant C is k/m. Then

@ AT T T ET .

— ¥ _ @ wma " _a gve M:«w.
* -
m
1 1 1 _(#+0P
H Vanh |5 S
ence mi b ¢+C or AT

Now if it be assumed that ¢ = 0 at the start when r = Vmh, wefind C = Q

Hence 2= _mh_ is the orbit
14 ¢2
To find the relation between ¢ and the time,
72d¢p = hdt or md:z =dt or t=mtan-lg,

if the time be taken as ¢ = O when ¢ = 0. Thus the orbit is found, the expression
of ¢ ag a function of the time is found, and the expression of 7 as a function of the
time is obtainable. The problem is completely solved. It will be noted that the
constants of integration have been determined after each integration by the initial

diti This simpli the subseq integrations which might in fact be
ible in terms of el y £ ions without this simplification.
EXERCISES
1. Integrate these equations:
dz dy dz dz _dy_ dz
@ v %z wy (ﬂ) T2 oy
dz d1/ dz dz dy dz
n2-H_%, DY =A: .
Ty vz 1z 4y
(e _g__z_d_y__dz_ (;).di-_dy——_i..
Yy © 1+2° —1 B8y+4z 2y+62z
" de _ dy _ dz
2. Integrate the equations : (@) [
_dy _ dz de _ dy _ dz
09)a:’+1/“_2:l;1l—z‘~,+yz' (1)y+z_z+z—z+y'
dz d; dz de dj dz
® v (9 =% __

y'z—2z‘=21ﬁ—z’y=z(z“ » =T ve-9 e-n
dz dy dz —dy dz

® Ry TR R

oy —2) - ft’)==(ﬂ=’—y’)
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of the family of suriaces I(z, ¥, 2) = U areax:dy:dz = I,
which cut the following families of surfaces orthogomlly:
(@) a%a? +b%* +c%22 =0, (B) ayz =0, (v) ¥* = Czz,
(3) y=atan(z + C), (¢) y =z tan Cz, () z=Cay.
4. Show that the solution of dz:dy:dz = X :Y:Z, where X, Y, Z are line
expressions in «, ¥, z, can always be found provided a certain cubic equation c
be solved.

X1nd the curv

5. Show that the solutions of the two equations
dz ay ‘5 4 b
H+T(az+by)=1‘l, (—1Z+T(u,z+by)=
where T', T,, T, are functions of ¢, may be obtained by adding the equation as
]
% @+ )+ \T@+ ) =T+ 1T,

after multiplying one by I, and by determining A as a root of
N—(a+ )\ +ab —ab=0.

6. Solve: (a) t%:—+2(m—y)=t, 13—7:+m+6y=t2,
(8) tdz = (t — 22) tdy = (o + ty + 23 — t)di,
™) ldz mdy ndz _th

mn(y—z)=nl(z—-m)=lm(:c—y)_7

7. A particle movesin vacuo in a vertical plane under the force of gravity alon
Integrate. Determine the constants if the particle starts from the origin with
velocity ¥ and at an angle of a degrees with the horizontal and at the time ¢ =

8. Same problem as in Ex. 7 except that the particle moves in a medium whi
resists proportionately to the velocity of the particle.

9. A particle movesina plane about a center of force which attracts proportio
ally to the distance from the center and to the mass of the particle.

10. Same as Ex. 9 but with a repulsive force instead of an attracting force.

11. A particle is projected parallel to a line toward which it is attracted wi
a force proportional to the distance from the line.

12. Same as Ex. 11 except that the force is inversely proportional to the squa
of the distance and only the path of the particle is wanted.

13. A particle is attracted toward a center by a force proportional to the squa;
of the distance. Find the orbit.

14. A particle is placed at a point which repels with a constant force und
which the particle moves away to a distance a where it strikes a peg and
deflected off at a right angle with undiminished velocity. Find the orbit of tl
subsequent motion.

15. Show that equations (7) may be written in the form drxF = 0. Find t}
condition on ¥ or on X, ¥, Z that the integral curves have orthogonal surfaces.
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113. Introduction to partial differential equations. An equation
which contains a dependent variable, two or more independent varia-
bles, and one or more partial derivatives of the dependent variable
with respect to the independent variables is called a partial differential
equation. The equation

Oz oz 0
P(“;%")%'}'Q(”J7./32)5;=R(“3;%”)7 P=5§’ = ??y 14

is clearly a linear partial differential equation of the first order in one
dependent and two independent variables. The discussion of this equa-
tion preliminary to its integration may be carried on by means of the
concept of planar elements, and the discussion will immediately suggest
the method of integration.

‘When any point (z,, y,, #,) of space is given, the coefficients P, Q, R
in the equation take on definite values and the derivatives p and ¢
are connected by a linear relation. Now any planar element through
(%, ¥ #,) May be considered as specified by the two slopes p and ¢ ; for
it is an infinitesimal portion of the plane # — #,= p (& — x) + ¢ (y — ¥,
in the neighborhood of the point. This plane contains the line or lineal
element whose direction is

dr:dy:dze=P:Q:R, 15)
because the substitution of P, @ R for de==z—2, dy=y—y,
dz=7z— z, in the plane gives the original equation Pp + Q¢ =R.
Hence it appears that the planar elements defined by (14), of which
there are an infinity through each point of space, are so related that all
which pass through a given point of space pass through a certain line
through that point, namely the line (15).

Now the problem of integrating the equation (14) is that of grouping
the planar elements which satisfy it into surfaces. As at each point
they are already grouped in a certain way by the lineal elements through
which they pass, it is first advisable to group these lineal elements into
curves by integrating the simultaneous equations (15). The integrals
of these equations are the curves defined by two families of surfaces
F(z, y, #) = C, and G (z, y, #) = C,. These curves are called the charac-
teristic curves or merely the characteristics of the equation (14). Through
each lineal element of these curves there pass an infinity of the planar ele-
ments Wluch satlsfy (14). Itis therefore clear that if these curves be in




on two parameters C,, C, into a surface, it is merely nec‘essary to int
duce some functional relation C,= f(C)) between the parameters
that when one of them, as C,, is given, the other is determined, a
thus a particular curve of the family is fixed by one parameter alo
and will sweep out a surface as the parameter varies. Hence ¢o integre
(14), first integrate (15) and then write

G(z, y, ) =@[F(z, y,2)] or &(F, G)=0, (1
where @ denotes any arbitrary function. This will be the integral
(14) and will contain an arbitrary function @.

As an example, integrate (y — z)p + (z — z)¢ =z — y. Here the equations

O W O g, P+ +22=Cy z4+y+2=0,
Yy~2 z2—2 T~y

ag the two integrals. Hence the solution of the given equation is
z4+y+2=2@+y2+2%) or @+ +2Az+y+2)=0

where ¢ denotes an arbitrary function. The arbitrary function allows a solut:

to be determined which shall pass through any desired curve; for if the curve

f(=,v,2) =0, g(z, ¥, z) = 0, the elimination of x, ¥, z from the four simultane:
equations
Fe,y,9=0, G@v2=0, Sf@&y2=0 @y 2=0

will express the condition that the four surfaces meet in a point, that is, that |
curve given by the first two will cut that given by the second two ; and this eli
nation will determine a relation between the two parameters C, and C, which v
be precisely the relation to express the fact that the integral curves cut the gi
curve and that consequently the surface of integral curves passes through the gi
curve. Thus in the particular case here considered, suppose the solution were
pass through the curve y = 22, z = 2; then

4yt +22=0), z+y+2z=0, y=2) z=2
give 222 + ot =0, 22 + 22 =C,,
whence (C2+2C,— 02 +8CF~24C, —16C,C, =0.

The substitution of C; =22 + 3%+ 2% and C, =z + y + z in this equation ¥
give the solution of (y — 2)p + (¢ — ) ¢ =2 — y which passes through the parab
y=atz=a.

114. It will be recalled that the integral of an ordinary diff
ential equation f(x, ¥, y', -+, ¥™)=10 of the nth order contains 7 c
stants, and that conversely if a system of curves in the plane, s
F(x,y, Cyy +-+, C,) =0, contains » constants, the constants may
eliminated from the equation and its first » derivatives with resp:
to z. It has now been seen that the integral of a certain part
differential equation contains an arbitrary function, and it might



e

se to a partial differential equation of t.he ﬁrst order. To show
lis, suppose ¥ (z, y, #)=®[G(x, y, 2)]. Then
Fi+Fp=9"(G;+Gp), F,+Fq=4%"(G+6i)
llow from partial differentiation with respect to « and »; and
(F.6G, — FyG)p + (F.G; — F,G})q = F,G, — F,G,

a partial differential equation arising from the elimination of &'
[ore generally, the elimination of n arbitrary functions will give rise
 an equation of the mth order; conversely it may be believed that
e integration of such an equation would introduce n arbitrary fune-
ons in the general solution.

As an example, eliminate from z = & (zy) + ¥ (¢ + ) the two arbitrary func-
ons & and ¥. The first differentiation gives

p=¥.y+¥, q=%¥.2+¥, p-g=@F-—-2)¥.
2z 0% %
Pyl s:wytz—a—u—f Then
r—8=—& + (y—2)d” -y, S—t=9+ (y—z)®” -z,
hese two equations with p — ¢ = (¥ — )¢’ make three from which
z+y 0% a:+y(az az)

ow differentiate again and let r =

—@E+y)styt= —(P gq) or Z—-(Z+Il)-am+ ay,—m = o

ay be d as a partial di of the second order free from
and ¥. The general integral of this eqna,tion would be z = & (zy) + ¥ (z + ¥).

b :01

A partial differential equation may represent a certain definite type
f surface. For instance by definition a conoidal surface is a surface
enerated by a line which moves parallel to a given plane, the director
lane, and cuts a given line, the directrix. If the director plane be taken
s =0 and the directrix be the z-axis, the equations of any line of
he surface are

z=C, y=0Cg, with €, =®(C,)
s the relation which picks out a definite family of the lines to form a
articular conoidal surface. Hence # = ®(y/z) may be regarded as the
eneral equation of a conoidal surface of which » =0 is the director
lane and the z-axis the directrix. The elimination of ® gives px+ gy =0
s the differential equation of any such conoidal surface.

Partial differentiation may be used not only to eliminate arbitrary func-
ons, but to eliminate constants. For if an equation f(=, , 2, €, C)) =0
ontained two constants, the equation and its first devivatives with respect
0  and y would yield three equations from which the constants could
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be eliminated, leaving a partial differential equation F(z, y, 2, p, )
of the first order. If there had been five constants, the equation ¥
its two first derivatives and its three second derivatives with res]
to # and y would give a set of six equations from which the const:
could be eliminated, leaving a differential equation of the second or
And so on. As the differential equation is obtained by eliminating
constants, the original equation will be a solution of the resulting
ferential equation.

For example, eliminate from z = Ax? + 2 Bzy + Cy? + Dz + Ey the five
stants. The two first and three second derivatives are
p=2d4x+2By+D, ¢=2Bx+2Cy+E, r=24, s=2B, (=4
Hence ==}l — gt — sy +po+qy
is the differential equation of the family of surfaces. The family of surface
not constitute the general solution of the equation, for that would contain
arbitrary functions, but they give what is called a complete solution. If there
been only three or four constants, the elimination would have led to a differe
equation of the second order which need have contained only one or two of
second derivatives instead of all tl\ree it would also have been possible to find t
or two si partial di ions by differentiating in different v

115. If f(x, 9,2, C, C))=0 and F(x,9,2p,¢)=0 4
are two equations of which the second is obtained by the eliminatio
the two constants from the first, the first is said to be the complete <
tion of the second. That is, any equation which contains two dist
arbitrary constants and which satisfies a partial differential equatio
the first order is said to be a complete solution of the differential e
tion. A complete solution has an interesting geometric interpreta
The differential equation F =0 defines a series of planar elem
through each point of space. So does f(z, y, 2, C;, Cp) =0. For
tangent plane is given by

(z - zo) =

il

fe-a+Z| o-w+¥ az
with S(@> Yo %0 Cy Cg) =
as the condition that C, and C, shall be so related that the sur
passes through (%, ¥,, #,). As there is only this one relation betv

the two arbitrary constants, there is a whole series of planar elem
through the pomh As f(x, y, 2, C,, C,) = 0 satisfies the differential e

ot T O T YLl . AP
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From the idea of a solution of a partial differential equation of the

rst order as a surface pieced together from planar elements which
atisfy the equation, it appears that the envelope (p- 140) of any family
f solutions will itself be a solution; for each point of the envelope is
point of tangency with some one of the solutions of the family, and
1e planar element of the envelope at that point is identical with the
lanar element of the solution and hence satisfies the ditferential equa-
on. This observation allows the general solution to be determined from
ny complete solution. For if in f(z, y, 2, €, €)= 0 any relation
, = ®(C,) is introduced between the two arbitrary comstants, there
rises a family depending on one parameter, and the envelope of the
iily is found by eliminating C, from the three eq\iations

a2 of

?f
C,=2(Cy), ac.50,
1

=0, f=0. (18)
s the relation ¢, = ®(C)) contains an arbitrary function @, the result
f the elimination may be considered as containing an arbitrary func-
on even though it is generally impossible to carry out the elimination
xcept in the case where ® has been assigned and is therefore no longer
rhitrary.

A family of surfaces f(z, y, 2, C,, C)) = 0 depending on two param-
ers may also have an envelope (p. 139). This is found by eliminat-
g C, and C, from the three equations
af =0, o _

oc,
his surface is tangent to all the su:fa.ces in the complete solution.
his envelope is called the singular solution of the partial differential
quation. As in the case of ordinary differential equations (§ 101), the
ngular solution may be obtained directly from the equation;* it is
erely necessary to eliminate p and ¢ from the three equations

Fenap9=0  F=0 =0
he last two equations express the fact that F(p, ¢) = 0 regarded as
function of p and ¢ should have a double point (§ 57). A reference
 § 67 will bring out another point, namely, that not only are all the
irfaces represented by the complete solution tangent to the singular
lution, but so is any surface which is represented by the general

Sf@ y 2 C, C)=0,



LALKUVIOLS
1. Integrate these linear equations:

(@) zzp + y2q = 2y, @) alp+9) =2 () & +v%
(@) —yp+aq+1+22=0, ()yp—ag=2—3% () (@+2)p=
(n) 2?p—zyg + 12 =0, @) @—2)p+ b—y)g=c—z,

(¢) ptanz + gtany =tanz, () (2 +22—2%)p—22yq + 222=0.

2. Determine the integrals of the preceding equations to pass through the cur

for (a) a?+92=1,2=0, for (B) y=0,z=2,
for (y) y=2x,2=1, for () x=zy=2

3. Show analytically that if F(z, ¥, 2) = C, is a solution of (15), it is a solu
of (14). State precisely what is meant by a solution of a partial differential e
tion, that is, by the statement that F (z, y, z) = C, satisfies the equation. Show
the equations

oz oF
P= =R and P —+R—=0
P + Q + Q F»
are equivalent and state what this means, Show that if F = C, and G = C,
two solutions, then F'=& (@) is a solution, and show conversely that a functi
relation must exist between any two solutions (see § 62).

4. Generalize the work in the text along the analytic lines of Ex. 8 to es
lish the rules for integrating a linear equation in one dependent and four
independent variables, In particular show that the integral of

dz. dz, dz
P—— 4P, E P depend: Ao ==,
+ee 4 na n+1 depends on 7, P P
and that if F} =C,, .-, F,, = C, are n integrals of the simultaneous system,

Integral of the partial differential equation is & (F, -+, F,) =0,
5. Integrate: (a) a: + ya/ +z a— = ayz,
® w+zruy (Z+u+z)a—”+(u+1+ VB oty
% A L
6. Interpret the general equation of the first order F(z,y, z, p, g) = 0 as de
mining at each point (2,, ¥,, 2,) Of space a series of planar elements tangent

certain cone, namely, the cone found by eliminating p and ¢ from the three sii
taneous equations

F@n v 200 0=0  @—a)p+ W —¥)g=2—2,
oF oF
2 — ) o — (Y — 1) L = 0.
( o) Y [¢ Yo) »
7. Eliminate the arbitrary functions:

(@ 24y +z=9@"+y"+2), (B) 2@+ 1% z—ay) =0,
) z=2@+y+¥@—y) (3) z=ewd(@—y),

() 5 =17 +26@ 2 +logy), e L) =0



(@) cylinders with generators parallel to the line z = az, y = b,
(B) conical surfaces with vertex at (a, b, c),
(v) surfaces of revolution about thelinez:y:2 =a:b:e.
9. Eliminate the constants from these equations:
(@) 2= (z+a) @y + V), B a@+y?)+02=1,
M @—a+@-0+(E-0*=1 (@) @-a?+F—02+(E~c2=2,
(e) Ax® + Bxy + Cy® + Dz + Eyz = 22,
10 Show geometrically and analytically that F(z, y, 2) + aG(z,y,2) =b is a
complete solution of the linear equation,

11. How many constants occur in the complete solution of the equation of the
third, fourth, or nth order ?
12. Discuss the complete, general, and singular solutions of an equation of the
{lxst order F (z, ¥, 2, %, U, Uy, uy) = O with three independent variables.
13. Show that the planes z = ax + by + C, where a and b are connected by the
relation F(a,b) = 0, are complete solutions of the equation F(p, g) = 0. Integrate:
(@ pg=1 (B ¢=p"+1, () P’ + ¢* =m?,
(8) pg=F,  (e) klogg+p=0, () 3p*—2¢* = dpq,
and determine also the singular solutions.

14. Note that a simple change of variable will often reduce an equation to the
type of Ex.18. Thus the equations

F(l;, ‘zl) =0, Fp,q =0, F(’TF, 7’11) =0,
with z=¢, z=e¥, z=e’,z=¢¥, y=ev,
take a simpler form. Integrate and determine the singular solutions:
(@) g=z+pz, (§) a*p* +yg* =22, () z=pg
(8) 9=29p% (&) P9+ @—2P=1 () z=pmm
15. What is the obvious complete solution of the extended Clairaut equation
z =zp + yg + f(p, ¢) ? Discuss the singular solution. Integrate the equations:
(@) z=2p+yg+ VPP +¢*+1, () z=2p+ya+ (P +0?%
() z=2p +yq + pg, (8) 2 =ap + yg — 2 Vg

116. Types of partial differential equations. In addition to the
linear equation and the types of Exs.13-15 above, there are several
types which should be mentioned. Of these the first is ke general
equation of the first order. If F(, y, 2, p, ¢) = 0 is the given equation
and if a second equation @ (x, ¥, 2, p, ¢, ) = 0, which holds simultane-
ously with the first and contains an arbitrary constant can be found,
the two equations may be solved together for the values of p and ¢, and
the results may be substituted in the relation dz = pdx 4 gdy to give a
total differential equation of which the integral will contain the con-
stant « and a second constant of integration 5. This integral will then



with respect to # and y and use the relation that dz be exact.

P+ Fip+F, p+qu =0, ,
d,
<I>;+<I>;p+tl>pdz+<b =0, —F,
F;+F;Q+F;;Z‘§+F’ =0, %,
- ,dp d .
@+ @lg + 9, dJ+¢,d§ o| -—F,
@ _d e & T
O | - uE
Multiply by the quantities on the right and add. Then
- 0 02 % _
<F+PF’)3 + (¥ +YF’) Faz any (pF;+qF, )az—o' (20)
Now this is a linear equatlon for ® and is equivalent to
dp _ dg _ dz _ dy _ dz _ad®, (1)
F,+pF,  F,+qF, —F, —F, —(pF;+gqF) 0

Any integral of this system containing p or ¢ and e will do for &, and
the simplest integral will naturally be chosen.

As an example take zp(z + y) + p(¢—p)—2>=0. Then Charpit's equa-
tions are
dp _ dg - dz
—w+piE+y) w-20+p@E+y) 20—g—2z(@+Y)
= d
—p 20°—2pg—pz(@+9)
How to combine these 8o as to get a solution is not very clear. Suppose the subk
stitution z = e#, p = e*'p’, ¢ = €*¢’ be made In the equation. Then
PE+y)+r@—p»)-1=0
is the new equa.tion For this Charpit’s simultaneous system is
9 dx _ gy _ dz
p’ P 2 —¢—(@+y) -9 207—2pg—p (+7)
The first two equations give at once the solution dp’ = dg’ or ¢’ = p’ + a. Sclving
e+ +r(@—p)-1=0 and ¢'=p'+a,
1 1 dz + dy)

= ey =_—— 4, 7 = —— 2L
4 atz+y 4 a+z+y+’ ataty

+ ady.



is a complete solution of the given eq This will d ine the general
integral by eliminating a the three

z=evtdatat+y), b=fa), O=@+f@a+z+y+1,
where f(a) denotes an arbitrary function. The rules for determining the singular
solution give z = 0; but it is clear that the surfaces in the complete solution can-

not be tangent to the plane z = 0 and hence the result z = 0 must be not a singula-
solution but an extraneous factor. There is no singular solution,

The method of solving a partial differential equation of higher order
than the first is to reduce it first to an equation of the first order and
then to complete the integration. Frequently the form of the equation
will suggest some method easily applied. For instance, if the deriva-
tives of lower order corresponding to one of the independent variables
are absent, an integration may be performed as if the equation were
an ordinary equation with that variable constant, and the constant of
integration may be taken as a function of that variable. Sometimes a
change of variable or an interchange of one of the independent variables
with the dependent variable will simplify the equation. In general the
solver is left mainly to his own devices. Two special methods will be
mentioned below.

117. If the equation is linear with constant coefficients and all the
derivatives are of the same order, the equation is

(D3 + a, D37 D+ -+ + @,y DD} 4 a, D))z = R (z, y). (22)

Methods like those of § 95 may be applied. Factor the equation.
an(Dz - a)Dv) (Dm - “aDv) o (Dz - wan) #=R (=, :l/)' (22’)
Then the equation is reduced to a succession of equations
D,z — aDpz =R (z, y),
each of which is linear of the first order (and with constant coefficients).
Short cuts analogous to those previously given may be developed, but
will not be given. If the derivatives are not all of the same order but
the polynomial can be factored into linear factors, the same method will
apply. For those interested, the several exercises given below will serve
as a synopsis for dealing with these types of equation.
There is one equation of the second order,* namely

1P _u  Pu  u
R ik i R w 23
V2o oxt ' oyt ' 0
*This is one of the important differential equations of physics; other important equar
tions and methods of treating them are discussed in Chap. XX.



fore the name of the wave equation. The solution may be written dow:
by inspection. For try the form

wu(x, y, 7, ) = F(ax + by + & — V) + G (ax + by + ¢z + V). (24
Substitution in the equation shows that this is a solution if the relatiox
a* 4 3* + ¢ =1 holds, no matter what functions ¥ and G may be. Not
that the equation

aw + by +cz — VE=0, W+ 04t =1,

is the equation of a plane at a perpendicular distance V¢ from the origis
along the direction whose cosines are @, b, ¢. If ¢ denotes the time an
if the plane moves away from the origin with a velocity ¥, the functio:
F(ax + by + cz — Vt) = F(0) remains constant ; and if G =0, the valu
of u will remain constant. Thus » = F represents a phenomenon whicl
is constant over a plane and retreats with a velocity V, that is, a plan
wave. In a similar manner v = G represents a plane wave approachin,
the origin. The general solution of (23) therefore represents the supex
position of an advancing and a retreating plane wave.

To Monge is due a method sometimes useful in treating differential equation
of the second order linear in the derivatives 7, 8, ¢ ; it is known as Monge's method
Let Rr4+ 83+ Tt=V (2¢
be the equation, where R, S, T, V are functions of the variables and the derivative
p and ¢. From the given equation and

dp =rds +sdy,  dg=sdz 4 tdy,
the elimination of r and ¢ gives the equation
3 (Rdy? — Sdzdy + Tda?) ~ (Rdydp + Tdzdg — Vdady) =0,
and this will surely be satisfied if the two equations

Rdy? — Sdedy + Tde? =0,  Rdydp + Tdzdg — Vdzdy =0 (26
can be satisfied simultaneously. The first may be factoréd as
Wy —f@ Y2 9d=0, dy—f&Y 5 )de=0. (2€

‘The problem then is reduced to integrating the system consisting of one of these fac
tors with (26") and dz=pdz + qdy, that is, a system of three total differential equation:
If two independent solutions of this system can be found, as

U@ Y zp)=C, U@ ¥ 5p =0y

then u, = & (u,) is a first or intermediary integral of the given equation, the genexr:
integral of which may be found by integrating this equation of the first order. 1
the two factors are distinct, it may happen that the two systems which arise ma
both be integrated. Then two first integrals #, = & (u,) and v, = ¥ (v,) will be foun
and instead of integrating one of these equations it may be better to solve both fc
p and g and to substitute in the expression dz = pdx + gdy and integrate. Wher
however, it is not possible to find even one first integral, Monge’s method fails.



@+ — @+ y)de® 50 or dy—dz=0, dy+de=0
and (® + y) dydp — (z + y) dadg + 4pdedy = 0. (4)
Now the equation dy — da = 0 may be integrated at once to give y =« + C;. The
second equation (A) then takes the form
2adp + 4 pde — 2adg + €y (dp — dg) = 0;
but as dz = pde + ¢dy = (P + ¢) dz in this case, we have by combination
2 (adp + pda) — 2 (2dg + qdz) + C, (dp — dg) + 2dz =0

or @2z+C)(p~q)+22=Cp or +y)(P—9+22=C,
Hence @+(p—Q+2z=2@y—2) 27)
is a first integral. This is linear and may be integrated by

dz dy dz d dz

i, —=—— or =K —_———
vy sty Py—z—2z =t ¥TRE Cea—2z

This equation is an ordinary linear equation in z and @. The integration gives

2z 2z
Kpeh :feK@(K‘ —22)dz + K,.
2

22
Hence (x4 v)ze" +'/—feﬁ’xd>(K, —20)de=K,=¥(K)=¥(@x+7)

is the general integral of the given equation when K, has been replaced by z + y
after integration, —an integration which cannot be performed until ¢ is given.

The other method of solution would be to use also the second system containing
dy + dx = 0 instead of dy — do = 0. Thus in addition to the first integral (27) a
second intermediary integral might be sought. The substitution of dy + da =0,
¥ + 2 =C, in (A) gives C, (dp + dg) + 4pdx = 0. This equation is not integrable,
because dp + dg is a perfect differential and pde is not. The combination with
dz = pdz + gdy = (p — g) dx does not improve matters. Hence it is impossible to
determine a second intermediary integral, and the method of completing the
solution by integrating (27) is the only available method.

Take the equation ps — ¢gr =0. Here S=p, R=—¢, T=V =0. Then

— qdy? — pdedy =0 or dy=0, pdz+qdy=0 and — gdydp =0

are the equations to work with. The system dy = 0, gdydp = 0, dz = pdz + ¢dy,
and the system pdz + gdy = 0, gdydp = 0, dz = pdx + qdy are not very satisfactory
for obtaining an intermediary integral u, = & (u,), although p = & (z) is an obvious
solution of the first set. It is better to use a method adapted to this speciai
equation. Note that

2 (9\_ps—gr 9 (9\_ ; 9_
5:;(_)_—2 » and 5(1;)_0 gives E—fhl)

P, »
o’ o
By (11), p. 124, 2=_<_)- then &=~
y (11), p. 124, 1> 5 then = J@)

and o=— [f@)iy+¥@=2) + L.



@ptta=20, (B P +Az=pz, () PHQE+@)=1,
(8) pg =px + qv, () P+ =2+, (4) ap® — 22p + 2y =0,
(n) ¢?=22(p—q), () ¢(p*2+¢) =1, () p(l+d)=q(z~0),
() zp(l+) =gz () P@E-D=ap?, (W 2P +F+)=7
() p=G+y9% (0) pz=1+¢% (m)2—p3=0, (p) g=aup+p?

2. Show that the rule for the type of Ex. 13, p. 273, can be deduced by Charpit’
method. How about the generalized Clairaut form of Ex.16?

3. (a) For the solution of the type f,(x, p) =/,(, g), the rule is: Set
S p) = O =0

and solve for p and g as p = ¢, (%, a), ¢ = ¢,(¥, @) ; the complete solution is
z= [ ad+ [ oy, )y +0.
(B) For the type F(z, p, q) = 0 the rule is: Set X = + ay, solve

dz dz
F(z, ' ad_X) for ———¢(z, a), and let f e d =f(z, a);
the complete solution is x + ay + b =f(z, @). Discuss these rules in the light c
Charpit’s method. Establish a rule for the type F(z 4 y, p, ¢) = 0. Is there an
advantage in using the rules over the use of the general method ? Assort the exan
ples of Ex. 1 according to these rules as far as possible.

4. What is obtainable for partial differential equations out of any characteristic
of homogeneity that may be present ?

5. By differentiating p = f(z, v, 2, q) successively with respect to z and y sho-
that the expansion of the solution by Taylor's Formula about the point (zg, ¥y, 2
may be found if the successive derivatives with respect to y alone,

a2 %z 2%z i

EE e 7
are assigned arbitrary values at that point. Note that this arbitrariness allows th
solution to be passed through any curve through (x,, ¥y, 2,) in the plane z =z,.

6. Show that F(z, v, z, p, q) = 0 satisfies Charpit's equations

=% W __ & ___ & __d

—F —F —(0F+eF) Fo+pF, F+F,

where u is an auxiliary variable introduced for symmetry. Show that the firs

three equations are the differential equations of the lineal elements of the cones

Ex. 8,p.272. The integrals of (28) therefore define a system of curves which hav

a planar element of the equation F = 0 passing through each of their lineal tax

gential elements. If the equations be integrated and the results be solved for tk

variables, and if the constants be so determined as to specify one particular curs
with the initial conditions g, ¥4, 25y Do, ¢os then

T=T(Uy By, Yoy 201 Pos o)y Y=Y ( p2=2("), p=p(-) g=q()

(28




JUsSt Inenuioned ust ¢ Upoll 4 dovelopdblie sullaCe CoOLlalning uac curve (S U’l). Ane
curve and the planar elements along it are called a characteristic and a characteristic
sirip of the given differential equation. In the case of the linear equation the
characteristic curves afforded the integration and any planar element through
their lineal tangential elements satisfied the ion ; but here it is only those
planar elements which constitute the characteristic strip that satisfy the equation.
‘What the complete integral does is to piece the characteristic strips into a family
of surfaces dependent on two parameters.

7. By simple devices integrate the equations. Check the answers:

%z oz a_“z _2
(2) 2=/ ) @—0, ™) o y+ a,
(3) stpf@=9@), (¢) ar=ay, (§) er=(—1)p.

8. Integrate these equations by the method of factoring:
(@) (Di=atD2z=0, (B) (De=Dy)Pz=0, (v) (DuDI—DP)z=0,
(8) (P2+8D.Dy+ 2Dz =x+y, () (Di—D:Dy—6D})z =1y,
() (P2—D;—8D;+3Dy)z=0, () (Di—Di+2D;+1)z=e-=
9. Prove the operational equations :
(@) e<Dyg (y) = (1+ awDy + 2Dy + -+ )¢ (V) = ¢ (v + ax),
1

() g5, 0= g0 = 0 =90+ a9
L v

0 =g Be N ==, SR nde= [ R,y + an—ab) @
x v

10, Prove that if [(Dz — @, Dy)™ - - (Dz — axD,)™]z = 0, then
7= 8y + ay@) + 28,V + @) + o+ M By (Y + @) + -0
+ By + ar¥) + Ty + ) + -+ T 1 By (U + 1),
where the ®’sare all arbitrary functions. This gives the solution of the reduced equa~
tion in the simplest case. What terms would correspond to (Dz— aDy— g)"z =0?

11. Write the solutions of the equations (or eguations reduced) of Ex. 8.

12. State the rule of Ex. 9 (y) as: Integrate R (z, ¥ — a%x) with respect to z and
in the result change y to ¥ + ax. Apply this to obtaining particular solutions of
Ex.8 (3), (¢, () with the aid of any short cuts that are analogous to those of
Chap. VIIL

13. Integrate the following equations:
(@) (Di—D%+Dy—1)z=cos(@+2y)+ev, (B) e¥r2+2ays+y2 =a® + 7%,
() (Di+ Do+ Dy — 1)z =sin (z + 2), (0) r—t—8p +8g=ext2y,
() (Dy—2D. D2+ DY)z =2~ () r—t+p+8¢—2z=ex~v~ay,
() (Di— DDy —2D% 4 2D, + 2Dy)z = €2=+3v 4 5in (22 + y) + @.

14. Try Monge’s method on these equations of the second order :
(@) g% — 2pgs + p* =0, B) r—a*t=0, @ r+s=-p,
(3) gL+ g)r— (p+ g+ 2p9)s +p(1+P)t=0, (e) 2%+ 2ays + Y =0,
(8) @+cr—2(0+cq)(a+cp)s+ (@a+cp)2t=0, (1) r+ka®=2as.
If any simpler method is available, state what it is and apply it also.



15. Show that an equation of the form Rr 4 Ss 4+ Tt + U (1t — %) = V neces-
sarily arises from the elimination of the arbitrary function from

(@ ¥ 2 Py @) =S [, ¥y 2 05 @)
Note that only such an equation can have an intermediary integral.

16. Treat the more general equation of Ex. 15 by the methods of the text and
thus show that an intermediary integral may be sought by solving one of the systems

Udy + N Tdz + N\, Udp = 0, Udz + M\ Rdy + N Udg = 0,
Udz 4+ MRdy + \,Udg = 0, Udy + N, Tdz + \Udp = 0,
dz = pdz + qdy, dz = pdz + qdy,

where N, and A, are roots of the equation X((RT + UV) + AUS + U2 =0.

17. Solve the equations: (@) s2—17t=0, (B) 88 —1t=a?,
() ar+bstctte(t—s)=h, (3) agr+ ypt+ ay (¥ — i) = py.



PART III. INTEGRAL CALCULUS

CHAPTER XI
ON SIMPLE INTEGRALS
118. Integrals containing a parameter. Consider

#@= [ fe ®

a definite integral which contains in the integrand a parameter a. If
the indefinite integral is known, as in the case
f 1. f% 1. i 1
cos axdx = - sin ax, cos axdx = = sin ax| ==
a o a 0 a
it is seen that the indefinite integral is a function of = and «, and that
the definite integral is a function of « alone because the variable z
disappears on the substitution of the limits. If the limits themselves
depend on q, as in the case

f“ 1.
€03 axdx = = sin ax
1 a
3
the integral is still a function of a.
In many instances the indefinite integral
in (1) cannot be found explicitly and it then

=1 (sina*~sin1),
1

becomes necessary to discuss the conti- X
nuity, differentiation, and integration of the

function ¢ (@) defined by the integral with- «

out having recourse to the actual evaluation

of the integral; in fact these discussions 1

may be required in order to effect that

evaluation. Let the limits - and «, be taken

as constants independent of «. Consider the range of values z, =z ==,

for z, and let @, = a = a, be the range of values over which the func-

tion ¢ (a) is to be discussed. The function f(z, ) may be plotted as

the surface z = f(z, ) over the rectangle of values for (z, 2). The
281
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value ¢ (a;) of the function when a = «; is then the area of the section
of this surface made by the plane @ = a;. If the surface f(z, @) is con-
tinuous, it is tolerably clear that the area ¢ («) will be continuous in a.
The function ¢ (@) s i s of f(x, @) s continuous in the two varia-
bles (x, @)

To discuss the continuity of ¢ (@) form the difference

e+ sa)= (@) = [ F@ @+ Aw) = f@ @)dz. )
%o

Now ¢ () will be continuous if the difference ¢ (a + Aa) — ¢ (@) can be made as
small as desired by taking A sufficiently small. If f(z, ¥) is a continuous func-
tion of (z, ¥), it is possible to take Az and Ay so small that the difference

[f(e+ Ay + Ay) ~F(@, ¥)|<e  [Ax]|<d, |Ay|<?

for all points (z, y) of the region over which f(x, ¥) is continuous (Ex. 8, p. 92).
Hence in particular if f(z, @) be continuous in (z, @) over the rectangle, it is pos-
sible to take Aa 8o small that

|f(@, @+ Aa) — (2, @)|<e, |Ax]|<?
for all values of z and @. Hence, by (66), p. 25,

[¢(a+ Ac) —¢(a)|=|f:[f(x, @ + Aq)— (=, a)]ds

&
<ro eds = e(z, — ;).

1t is therefore proved that the function ¢ () is continuous provided f(x, a) is con-
tinuous in the two variables (z, @); for e(x, — z,) may be made as small as desired
if e may be made as small as desired.
As an jllustration of a case where the condition for continuity is violated, take
1 o
v =) ar e
Here the integrand fails to be continuous for (0, 0); it becomes infinite when
(@, @)= (0, 0) along any curve that is not tangent to @ = 0. The function ¢ () is
defined for all values of a=0, is equal to cot—Ia when a 3 0, and should there-
fore be equal to $7 when a = 0 if it is to be continuous, whereas it is equal to 0.
The importance of the imposition of the condition that f(z, a) be continuous is
clear. It should not be inferred, however, that the function ¢ (cx) will necessarily
be discontinuous when f(z, «) fails of continuity. For instance

:%(\/a+1~\/z_t), ¢(0)=é‘

=tan—1Z
a

1
=cot-lae if a0, and ¢(0)=0.
0

(@)= [

@) = f ——
‘'Vata

This function is continuous in & for all values a=0; yet the integrand is dis-

continuous and indeed becomes infinite at (0, 0). The condition of continuity

imposed on f(x, @) in the theorem is sufficient to insure the continuity of ¢(a)

but by no means necessary; when the condition is not satisfied some closer exami-




ON SIMPLE INTEGRALS 283

the function ¢ () will surely be continuous if f(z, ) is continuous
over the region bounded by the lines ¢ =, ¢ =a, and the curves
#,= g,(a), , = g,(a), and if the functions g,(«) and g,(«) are continuous.

For in this case

#(a+ Ad)— ¢ () = f "(‘(T 9 te, @ + A)dz
2y . \\\\\
7,(@) o) AN \ §
f S, a)de= f ol + AGS )f(z’ -+ Aa)ds ﬁ%&{\\l -
71(R+Alt) \\
S sae I\

£ WL fla, o + Aa) — £ (@, @))da.

/s

The absolute values may be taken and the inte- 4
grals reduced by (65), (65’), p. 25.
[#(a+ Aa)— & (@) < e|gy(@) — go (@) | + |/ (£, @ + Aa) [|Agy | +] f (Eor @ + Ac) || Agy
where £, and £, are values of & between g, and g, + Ag,, and g, and g, + Ag;. By
taking Aa small enough, g,(@ + Aa) — g,(a) and gy(a + Aa) — g,{a) may be made
ag small as desired, and hence A¢ may be made as small as desired.

119. To find the derivative of a function ¢ (@) defined by an integral
containing a parameter, form the quotient

Ad _p(a+ Aa)— ¢ (a)
Ax Aa

0 (@ + Aa)

(a+Aa) @)

Ad _ "‘(')f@““‘A“) f(@")dx+f”“ f@ e+ ad) .
90+ B0, Aa

Ax
aton £y a4 Ad
+ f e

The transformation is made by (63), p.25. A further reduction may
be made in the last two integrals by (65'), p. 25, which is the Theorem
of the Mean for integrals, and the integrand of the first integral may be
modified by the Theorem of the Mean for derivatives (p.7, and Ex. 14,
P 10) Then

Fol@)

f Fi@ @+ 080 dz — F( @+ A) 52+ £ (&, @+ Ac) ‘;—{;
dq} 7, (@) Bf

_ ‘l%
da = | o Pe dz — f(95 “) +f(9u a) da ()

and



in (x, @) and g, (), g,(@) are differentiable. In the particular case that
the limits g, and g, are constants, (4) reduces to Leibniz’s Rule

)

which states that the derivative of a function defined by an integral
with fized limits may be obtained by differentiating under the sign of
integration. The additional two terms in (4), when the limits are varia-
ble, may be considered as arising from (66), p. 27, and Ex. 11, p. 30.

This process of differentiating under the sign of integration is of
Srequent use in evaluating the function ¢ («) in cases where the indefi-
nite integral of f(z, @) cannot be found, but the indefinite integral of
f+ can be found. For if

o0 = [ f ayde, then = [“raa =y

Now an integration with respect to @ will give ¢ as a function of a
with a constant of integration which may be determined by the usual
method of giving @ some special value. Thus

z° —-1 dé _ x‘logm '
(w)-f logx dy = , logz de fzdz
1
at+1’

1
Hence -i —— gt 1 ¢(a) =log (e +1)+C.
{]

da zz+1

1
But ¢(0)=f Ode =0 and ¢(0)=1logl+4C.
0

et —1
Henc ) = ———dz =1 1).
ence ¢ (z) j; Togz & og (a + 1)

In the way of upon this eval it may be d that the func-
tions (z* —1)/log z and z= are continuous functions of (z, a) for all values of z in
the interval 0 =z =1 of integration and all positive values of a less than any
assigned value, that is, 0 =a = K. The conditions which permit the differen-
tiation under the sign of integration are therefore satisfied. This is not true for
negative values of @. When a <0 the derivative z= becomes infinite at (0, 0). The
method of evaluation cannot therefore be applied without further examination.
As a matter of fact ¢ (@) =log(a +1) is defined for a>—1, and it would be
natural to think that some method could be found to justify the above formal
evaluation of the integral when —1<a =X (see Chap. XIII).

To illustrate the application of the rule for differentiation when the limits are
functions of a, let it be required to differentiate
r"’z'_ldz. d¢ r pedg 4 =1 l ar—1

$(a) =




or d_a—a—-l-ll_m“_l_l“'ml_wa_aa_a-*l_"

‘This formal result is only good subject to the conditions of continuity. Clearly a
must be greater than zero. This, however, is the only restriction. It might seem at
first as though the value =1 with logz = 0 in the denominator of (z«— 1)/log &
would cause difficulty ; but when & = 0, this fraction is of the form 0/0 and has a
finite value which pieces on continuously with the neig] ing values.

120. The next problem would be to find tke integral of a function
defined by an integral containing a parameter. The attention will be
restricted to the case where the limits « and x, are constants. Consider

the integrals « ¢ o
f xj)(u’)t]tt=f f '@, a)dz- da,
ag ) To

where @ may be any point of the interval o, = « = @, of values over
which ¢ () is treated. Let

®(0)= fz " f e, @) da-
Then &'(e)= f "‘% j; *f(, a)yda-dw = f. ", @) o = ¢ (a)

by (4'), and by (66), p. 27; and the differentiation is legitimate if f(x, @)
be assumed continuous in (z, ). Now integrate with respect to . Then

j; 1@'((1) =®(a)— ()= L a¢ (a)da.

But ()= 0. Hence, on substitution,

W)= f' j; b, ayda- du = L “b(@)da = _/,: B fz “f (e, @) de- da. (5)

Hence appears the rule for integration, namely, integrate under the
sign of integration. The rule has here been obtained by a trick from
the previous rule of differentiation; it could be proved directly by
considering the integral as the limit of a sum.

It is interesting to note the interpretation of this integration on the
figure, p. 281. As ¢(«) is the area of a section of the surface, the
product ¢ (a)da is the infinitesimal volume under the surface and
included between two neighboring planes. The integral of ¢(e) is
therefore the volume * under the surface and bozed in by the four

* For the **volume of a solid with parallel bases and variable cross section” see
Ex, 10, p. 10, and § 35 with Exs. 20, 23 thereunder.
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is in this case merely that the volume may be regarded as generated
by a cross section moving parallel to the za-plane, or by one moving
parallel to the za-plane, and that the evaluation of the volume may
be made by either method. If the limits », and », depend on g, the
integral of ¢ () cannot be found by the simple rule of integration
under the sign of integration. It should be remarked that integration
under the sign may serve to evaluate functions defined by integrals.

As an illustration of integration under the sign in a case where the method leads
to a function which may be considered as evaluated by the method, consider

3 b da b+l
= dr = ——, = —_—=log ——.
#(@ fm +1 [ v@ia f i il
b 1 ga 1@_”
But da= " (Tseda.ds= =
. J;d:(a) g fo -/n‘:c da-do o logzje=a f logz
b — ga b1
dx = 1 = = =0.
Hence fn s og Sy =viw, e=0, b0

In this case the integrand contains two parameters a, b, and the function defined
is a function of the two. If a = 0, the function reduces to one previously found.
It would be possible to repeat the integration. Thus

el 1 9 d 11 1
/, ogs @=lg(@+ D [Tlog(a+nda=(@+log(at-a

aga — lge—1— alogz
= de = 1) I 1)—
f f logz f e (a+1)log(a+1)— a
This is a new form. If here « be set equal to any number, say 1, then
1g—1—logz
——=ldr =21 -1
J; (log z)? og 2
In this way there has been evaluated a definite integral which depends on no
parameter and which might have been dn‘ﬁcult to evaluate directly. The introduc-

tion of @ parameter and its subseq q to a parti value i8 of frequent use
in evaluating definite integrals.
EXERCISES
1. Evaluate directly and discuss for continuity, 0 = a = 1:

1 afdy 1 gdr
@ [ (ﬁ)fn—m, (v)fo__-m.

2. If f(z, @, B) is a function containing two parameters and is continuous in
the three variables (z, @, B) when 2, = ¢ = 2,, @, = a = ay, f, = B = B,, show

f [z, a, B)dx = ¢ (a, ) is continuous in (a, B).
2
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3. Differentiate and hence evaluate and state the valid range for a:

V- a2
(a)flog(1+acosm)dz_1rlog1+ 1-

2 o?
(p)ﬁ 1og(1—2acosz+a’)dx={gl‘;%‘;la =1

4. Find the derivatives without previously integrating :
sin~ta ] at z ag =W
=t da, tan-1— dz. ¢ dz.
(a) j‘;n_ld z an azda, ®) j; an 2% ) j:'me a* (g,
5. Extend the assumptions and the work of Ex. 2 to find the partial deriva-
tives ¢, and ¢ and the total differential dg if @, and z, are constants.

6. Prove the rule for integrating undor the sign of integration by the direct
method of treating the integral as the limit of a sum.

7. From Ex. 6 derive the rule for differentiating under the sign. Can the com-
plete rule including the case of variable limits be obtained this way ?
0, @) . . .
8. Note that the integral f f (x, @) dz will be a function of (z, a). Derive

formulas for the partial deriva,twes with respect to  and a.
3 [ra, d ¥
9. Differentiate : — dz, fad
ifferentiate : (a) aa-[o‘ sin (@ + @) dz, (B) d:c-/c;
10. Integrate under the sign and hence evaluate by subsequent differentiation :
E:
1 7 1
(@) ﬂ zzlogzdz,  (B) ‘A‘ trsinazds,  (v) f; @ sec? azdz.
11, Integrate or differentitite both sides of these equations :
1 "
(a) f zedn '—’ﬁ to show f 24 (log @)yde = (— 1) W’

- _m1.3.5...@n=1)
(‘S)f :z;“+a =ova sk f (z’+a)"“ 22.2.6..2n. 2}

n a w g-az_ =Bz 1 ﬁz+mz>
- mads = e P = 2 1og (BT
™ .[4; T o0 a? + m? to showf zsecmT 2 Og(az+ mi)’

e~ b a
to show f =tan-1 E-—- tan-1=
Tgesema m

T m b—cosz
———— to find , lo;
) f a—cosz a? —1 © in f«; (a-—cos:c)“ j; 8 u— cosz

2xlde _w = ga—1log xdx @ gb—1_ga—1
——— to find
] l+.t ~ sinwa © fin f 14z *J (1+ x)logz

() f‘e-nsinmzdz =

m
+m?

()

Note that in (8)-(3) the integrals extend to infinity and that, as the rules of



VB = cos—1 Ldg = at (™ 1)
(a)j;\/oﬂ zcos‘adz_n(w+ ,

4,
glog(1+cosacosz) 5(‘»_ ,)
) f cos® 2\4 «
@) f log(a’coa’:c+ﬁ’sm%)dz_rlog“+ﬂ'
—aw Ikl
(3) f ze cosﬁmlz_‘a2+p2)z.

a+bsinzg de )
1 =wsin~1-, b<a
) f 8 a—-bsmz sinz e a ’

™ log (1 + kcosz) 1
(r)f P dz = wsin-1k,

L _ e fla+l) 1
® [ loc,f(a+ac)dx..‘£ 1ogf(ac)dz.fo log “2 da+fn log f (&) &

121. Curvilinear or line integrals. It is familiar that

A =£bydw=IDj‘(m)dw

is the area between the curve y = f (), the x-axis, and the ordinate
z = a, « = ). The formula may be used to evaluate more complicate
areas. For instance, the area between the parabola y*= 2 and the sem:
cubical parabola y* = a® is

1 1 1 1
4 =f alde —f 2dde = f ydx — f yda,
0 0 rJo sJo

where in the second expression the subseripts P and S denote that th
integrals are evaluated for the parabola and semicubical parabola. A
a change in the order of the limits changes the sign of
the integral, the area may be written

1 0 0 1
4= f ydx + f yda =— f ydx — f ydw,
rJo §J1 rJiu §Jo

and is the area bounded by the closed curve formed
of the portions of the parabola and semicubical parabola from 0 to 1

In considering the area bounded by a closed curve it is convenient ¢
arrange the limits of the different integrals so that they follow the curv
in a definite order. Thus if one advances along P from 0 to 1 and re
turns along S from 1 to 0, the entire closed curve has been describe
in a uniform direction and the inclosed area has been constantly on th
right-hand side; whereas if one advanced along S from 0 to 1 an
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in the opposite direction and the area would have been constantly
on the left-hand side. Similar considerations apply to more general
closed curves and lead to the definition: If a closed curve which
nowhere crosses itself is described in such a direction as to keep the
inclosed area always upon the left, the area is considered as positive;
whereas if the description were such as to leave the area on the right,
it would be taken as negative. It is clear that to a person standing in the
inclosure and watching the description of the boundary, the descrip-
tion would appear eounterclockwise or positive in the first case (§ 76).
In the case above, the area when positive is

1 o
=—-[ f yda + f ;l/dw] =-—fy¢l;xt, (6)
sJo rJ1 o

where in the last integral the symbol O denotes that the integral is to
be evaluated around the closed curve by describing the
curve in the positive direction. That the formula holds
for the ordinary case of area under a curve may be
verified at once. Here the circuit consists of the con-
tour ABB'A'A. Then

B B A A
fydz:f ydz+f ydz + ydac+f yde.
o A B B 4’

The first integral vanishes because y = 0, the second and fourth vanish
because « is constant and de = 0. Hence

& r-4
-—fg/dm=—-f ydx =f yda.
o i v

It is readily seen that the two new formulas

A =j;a:aly and 4= ,}j(;(acdy — ydx) (O]

also give the area of the closed curve. The first is proved as (6) was
proved and the second arises from the addition of the two. Any one
of the three may be used to compute the area of the closed curve; the
last has the advantage of symmetry and is particularly useful in finding
the area of a sector, because along the lines issuing from the origin
y:®=dy:de and zdy — ydx = 0; the previous form with the integrand
xdy is advantageous when part of the contour consists of lines parallel
to the z-axis so that dy = 0; the first form has similar advantages
when parts of the contour are parallel to the y-axis
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The connection of the third formula with the vector expression for
the area is noteworthy. For (p.175)

dA = jredr, A= ;_,fmzr,
o
and if r=aidyl, dr=idy o+ jdy,
then A =frxdr =} kf(acdg/ — ydzx).
o e}

The unit vector k merely calls attention to the fact that the area lies
in the ay-plane perpendicular to the z-axis and is described so as to
appear positive.

These formulas for the area as a curvilinear integral taken around
the boundary have been derived from a simple figure whose contour
was cut in only two points by a line parallel to the axes. The exten-
sion to more complicated contours is easy. In the first place note that
if two closed areas are contiguous over a part of their contours, the inte-
gral around the total area following both contours, but omitting the part
in common, is equal to the sum of the integrals. For s

[ SRR RY N ,
PRSP PQRP PR RSP PQR RP QRSP

since the first and last integrals of the four are in oppo-

site directions along the same line and must cancel. But ¢

the total area is also the sum of the individual areas and hence the
integral around the contour PQRSP must be the total area. The for-
mulas for determining the area of a closed curve are therefore applicable
to such areas as may be composed of a finite number of areas each
bounded by an oval curve.

If the contour bounding an area be expressed in parametric form as  =f(t),
¥ = ¢(t), the area may be evaluated as

[rovma=-fs0roe=1/Oro-s0roa @O
where the limits for ¢ are the value of ¢ corresponding to any point of the contour
and the value of ¢ corresponding to the same point after the curve has been
described once in the positive direction. Thus in the case of the strophaid

yﬂ=m’%, the line y=tx

cuts the curve in the double point at the origin and in only one other point; the



SRARTE an ARAAAn M IR MR RERERRL M BRI MGy TR ARy pive MR e M T T J
from the point («, &) to (2, y). It is possible to eliminate y by tke rela~
tion y = f(x) and write

f P (e, £@) + @@ F@) f(@)]da. ©

The integral then becomes an ordinary integral in z alone. If the curve
had been given in the form x = f(y), it would have been better to con-
vert the line integral into an integral in y alone. The method of evaluat-
ing the integral is therefore defined. The differential of the integral
may be written as

-y
alf (Pdx + Qdy) = Pdx + Qdy, (10)
b

where either « and de or y and dy may be eliminated by means of the
equation of the curve C. For further particulars see §123.

To get at the meaning of the line integral, it is necessary to con-
sider it as the limit of a sum (compare § 16). Suppose that the curve
C between (a, 0) and (z, ) be divided into n parts, that Awx; and Ay,
are the increments corresponding to the ith part, and that (&, %) is
any point in that part. Form the sum

o =3[P (6 m) A + @&, m) Ay an

If, when n becomes infinite so that Az and Ay each
approaches 0 as a limit, the sum o approaches a
definite limit independent of how the individual
increments Az, and Ay; approach 0, and of how the
point (§;, ;) is chosen in its segment of the curve,
then this limit is defined as the line integral

mo = f : 1P @ y)do + A, ¥) dy]: 12)

It should be noted that, as in the case of the line integral which gives
the area, any line integral which is to be evaluated along two curves
which have in common a portion described in opposite directions may
be replaced by the integral along so much of the curves as not repeated ;
for the elements of ¢ corresponding to the common portion are equal
and opposite.

()
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That ¢ does approach a limit provided P and Q are continuous functions of (z, ¥
and provided the curve C is monotonic, that is, that neither Az nor Ay changes its
sign, is easy to prove. For the expression for ¢ may be written

o=, [P (60 £(6) A+ QU (1), 79 Ai]

by using the equation ¥ = f(z) or z =f-1(y) of C. Now as
[P@rana. ma Q1w nay

are both existent ordinary definite integrals in view of the assumptions as to con
tinuity, the sum ¢ must approach their sum as a limit. It may be noted that thi
proof does not require the continuity or existence of f/(x) as does the formula (9)
In practice the added generality is of little use. The restriction to a monotonic
curve may be replaced by the assumption of a curve C which can be regarded a:
made up of a finite number of monotonic parts including perhaps some portions o
lines parallel to the axes. More general varieties of C are admissible, but are no
very useful in practice (§ 127).

Further to examine the line integral and appreciate its utility fo
mathematics and physies consider some examples. Let

F(x, y)=X (%, y)+i¥ (%, v)
be a complex function (§ 73). Then

s=z zy
f F(x, y)dz = f [X (=, )+ i¥ (%, y)][de + idy]
CJz=c cJa b )
&y zy (13
= 7 (xdow — vay)+ i f (¥dz + Xdy).
cJab CcJa b
It is apparent that the integral of the complex function is the sum of tw
line integrals in the complex plame. The value of the integral can by
computed only by the assumption of some definite path C' of integra
tion and will differ for different paths (but see §124).

By definition the work done by a constant force F acting on a particle
which moves a distance s along a straight line inclined at an angle 6 t
the force, is W = Fscos 6. If the path were curvilinear and the fore
were variable, the differential of work would be taken
as dW = F cos ds, where ds is the infinitesimal arc
and @ is the angle between the arc and the force.

Hence
%Y r
W=de=f Fcosﬂds=fF-dr,
@b T,




verted into the ordinary form of the line integrai. For
F =2Xi+ vj, Jdr = idz + jdy, Fedr = Xdx + Y'y,
Ny Yy

and W= Fcos Ods = (Xdw + Ydy),

ab b
where X and Y are the components of the force along the axes. 1t is
readily seen that any line integral may be given this same inter-
pretation, If

Y

I= Pdz + Qdy, form F =Pi+ Q).

@b

Then = Prla: + Qdy _.f F cos 6ds.

To the principl of (§80) may now be
added the principle of work and energy for mechanics. Consider
d’r d?r

m-(E:F and m—-dr—F-dr:dW.
Then g l'gﬁ) lﬂrd_r 1d_r4i_25 gﬁﬂ
@\gat'a) " 2ad R @ dE T @ ad
or d(%v’)_%-dr and d(;mv’)=dW-
T
Hence 1nw’ - —mvg = f Fdr=W,
2 2 %

In words: The change of the kinetic energy } mv® of a particle moving under the
action of the resultant force F is equal to the work done by the force, that is, to the line
integra: of the force along the path. If there were several mutually interacting
particles in motion, the results for the energy and work would merely be added as
2}mv? — Z}ml = ZW, and the total change in kinetic energy is the total work
done by all the forces. The result gains its significance chiefly by the consideration
of what forces may be disregarded in evaluating the work. As dW = F«dr, the
work done will be zero if dr is zero or if F and dr are perpendicular. Hence in
evaluating W, forces whose point of application does not move may be omitted
(for example, forces of support at pivots), and so may forces whose point of appli-
cation moves normal to the force (for ple, the normal reacti f smooth curves
or surfaces). When more than one particle is concerned, the work done by the
mutual actions and reactions may be evaluated as follows. Let r,, T, be the vectors
to the particles and r, — 1, the vector joining them, The forces of action and re-
action may be written as = ¢ (r, — I,), as they are equal and opposite and in the line
joining the particles. Hence
AW = dW, + dW, = ¢ (1, — 1p)dry — ¢ (1) — 1,)ed1,
=c(fy = 1,)ed (1, ~ 1) = ped [(£) — Tp)e(r; — 1)) = fedrd,

where 7y, is the distance between the particles. Now dW vanishes whe and only
when dr,, vanishes, that is, when and only when the distance between the particles




are the energy, pressure, volume ol a gas inclosed 1n any receptacic, an i avU and
dv are the increments of energy and volumne when the amount df of heat is added
to the gas, then
dH = dU + pdv, and hence H = fclU+ pdv
is the total amount of heat added. By taking p and v as the independent variables,
oU U
H= —d — dy|= dj dv].
S5+ G +p)as]= [Lmna + o na

The amount of heat absorbed by the system will therefore not depend merely or
the initial and final values of (p, v) but on the sequence of these values between
those two points, that is, upon the path of integration in the pv-plane.

123. Let there be given a simply connected region (p. 89) bounded by
a closed curve of the type allowed for line integrals, and let P (x, y) and
Q(z, y) be continuous functions of (x, y) over this region. Then if the
line integrals from (a, b) to (z, y) along two paths

5y @y
f Pdx + Qdy = f Pdz + Qdy
ca, rJa,

b b

are equal, the line integral taken around the combined path

Y ab
f + f = [[Pao+azy =0
CcJa, b TJazy o

vanishes. This is a corollary of the fact that if the order of description
of a curve is reversed, the signs of Az; and Ay; and hence of the line
integral are also reversed. Also, conversely, if the in-

tegral around the closed circuit is zero, the integrals

from any point (a, b) of the circuit to any other point

(z, y) are equal when evaluated along the two different

parts of the cireuit leading from (a, b) to (=, y).

The chief value of these observations arises in their application to
the case where P and Q happen to be such functions that the line inte-
gral around any and every closed path lying in the region is zero. In
this case if (a, b) be a fixed point and (z, y) be any point of the region,
the line integral from (a, ) to (z, y) along any two paths lying within
the region will be the same; for the two paths may be considered as
forming one closed path, and the integral around that is zero by hy-
pothesis. The value of the integral will therefore not depend at all on




[ :'”[P (@ 9)do + Qz, y) dy]= F(, 9), (14)

xtended from a fixed lower limit (a, %) to a variable upper limit (z, 7),
wst be a function of (z, y).

This result may be stated as the theorem: The necessary and suffi-
ent condition that the line integral

Y
St e+ e pan
ab
efine a single valued function of (z, y) over a simply connecied region
s that the circuit integral taken around any and every closed curve in
ie region shall be zero. This theorem, and in fact all the theorems on
ne integrals, may be immediately extended to the case of line integrals
1 space,

aue
[P(x, y, 2)dw + Q(x, ¥, ©)dy + R (%, y, 2)dz).  (15)
a,b,c
If the integral about every closed path is zero so that the inteyral from.
Jfixed lower limit to a variable upper limit

£y
F(, ?/)=f P(z, y)dz + Q(=, y)dy
ab

efines a function F(x, y), that function has continuous first partial
erivatives and hence a total differential, namely,
oF oF

= —= = . 6
=D 3 Q,  dF = Pdx+ Qdy (16)

o prove this statement apply the definition of a derivative.
z+ Az, y EXS
f Pdz + Qdy — f Pdx + Qdy
a

b ab

oF

= lim AF lim
T ax20B8%  azeo Az

low as the integral is independent of the path, the integral to
»+ Az, y) may follow the same path as that to (, y), except for
he passage from (z, y) to (x + Az, y) which may be taken along the
iraight line joining them. Then Ay = 0 and

AF 1 z+ Az, y

1
A=), Py, y)de =P 9)Az = P(§ y),



value ¢ intermediate between x and x + Az will approach z and P (¢, )
will approach the limit P(z, y) by virtue of its continuity. Hence
AF/Az approaches a limit and that limit is P (x, y) = 0F/dz. The othe
derivative is treated in the same way.

If the integrand Pdx + Qdy of a line integral is the total differentia
dF of a single valued function F (x, y), then the integral about any closec
cireuit is zero and

&2 &y
f Pdx + Qdy =f dF = F(x, y) — F(a, b). an
ab abd
If equation (17) holds, it is clear that the integral around a closed patl
will be zero provided F(z, y) is single valued; for I*(x, ) must come
back to the value F(a, b) when (z, y) returns to (e, b). If the functior
were not single valued, the conclusion might not hold.

To prove the relation (17), note that by definition

JaF = [Pax + Qay =1im3, [P &, 1) Az + Q& 1) Au

and AF; = P (£, ) Avi + Q& m) Av: + €A% + 43,

where ¢, and ¢, are quantities which by the assumptions of continuity for P and ¢
may be made uniformly (§ 25) less than ¢ for all points of the curve provided Az
and Ay; are taken small enough. Then

Iz(mz.- +Quby) — 3, AR < €3 (1A% + | 4u);

and since ZAF; = F(z,y) — F(a, b), the sum ZP;Azx; + Q:Ay; approaches a limit
and that limit is

Uy (Pida + Qv = [ "Pas + Qay = Fl@, 1) = Fla,b).

EXERCISES

1. Find the area of the loop of the strophoid as indicated above.

2. Find, from (6), (7), the three expressions for the integrand of the line inte
grals which give the area of a closed curve in polar cobrdinates.

3. Given the equation of the ellipse & = ¢ cos¢, y = bsin¢. Find the total ares
the area of a segment from the end of the major axis to a line parallel to the mino
axis and cutting the ellipse at a point whose parameter is ¢, also the area of a sector

4. Find the area of a segment and of a sector for the hyperbola in its parametri
form z = @ cosh ¢, y = bsinh ¢.

5. Express the folium «® 4 y® = 8 aay in parametric form and find the area o
the loop.

6. What area is given by the curvilinear integral around the perimeter of th

closed curve r=asin®}¢ ? What in the case of the lemniscate 72 = a?cos2
described as in making the figure 8 or the sign w?
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7. Write for y the analogous form to (9) for x. Show that in curvilinear
cobrdinates = ¢ (u, v), ¥ = ¥ (u, v) the area is

azl [4:, v ¢ ¥ d,,],

2 P Yu [

8. Compute these line integrals along the paths assigned :

du +

1.1
(a) j; z%ydx + yidy, y2=x or y=2z or y8=gz?
), 0
11
@ fuu @ +y)de+@+9y?)dy, =z or y=z or P=23,
'¢11y
[€7) ‘[1‘0 5dz+dy, y=logz or y=0 and z=e,
"'EvV
(8) j; @ sinydz + y cos zdy, y=mx or t=0 and y=y,
) 0
1+i
(e)f (@—iy)dz, y==% or =0 and y=1 or y=0 and z=1,
z2=0

) j; l:‘(zz — (14 D)2y + v?)dz, quadrant or straight line.

9. Show that f Pdz + Qdy = f V'P? 4 Q2 cosds by working directly with the
figure and without the use of vectors.

10. Show that if any circuit is divided into a number of circuits by drawing
lines within it, as in a figure on p. 91, the line integral around the original circuit is
equal to the sum of the integrals around the subcircuits taken in the proper order.

11, Explain the method of evaluating a line integral in space and evaluate :

1,1,1
(a)f zdz + 2ydy + zdz, =z, 2=z or y=z=a,
0,0,0

LN T

(ﬂ)f ylogzdz + y2dy + ~dz, y=z—1, z=a? or y=logz, z=uz.
1,01 z

12, Show that [ Pds + Qdy + Rdz = [VFPF + @ + B cosfds.

13. A bead of mass m strung on a frictionless wire of any shape falls from one
point (z,, ¥y, Zo) to the point (z,, ¥, ) on the wire under the influence of gravity.
Show that mg(z, — 2z,) is the work done by all the forces, namely, gravity and
the normal reaction of the wire.

14. I 2 =1(t), v = ¢(¢), and f*(%), '(?) be assumed continuous, show
5y t/_dx dll)
= — —=)adt,
[ Pe et e@a=, (pE+e)a
where f(t,) = e and g (¢,) = b. Note that this proves the statement made on page 290

in regard to the possibility of substituting in a line integral. The theorem is also

nanded €ne Tos 1 O




arc and (r, n) the angle between the radius produced and the normal to the curve,
is the angle subtended at r = 0 by the element ds. Hence show that

_ (eos(rym) , _ rldr . _ rdlogr
¢_f r ds_frdndSQ dn o,

where the integrals are line integrals along the curve and dr/dn is the normal
derivative of r, is the angle ¢ subtended by the curve at r = 0. Hence infer that

dlogr dlogr dlogr
—=—ds=2 or [ —=-ds=0 ———ds=
o dn 1r -/; dn * or jc; dn s =0

according as the point r = 0 is within the curve or outside the curve or upon
the curve at a point where the tangents in the two directions are inclined at the
angle @ (usually 7). Note that the formula may be applied at any point (¢, v) if
72 = (¢ — 2)% + (7 — ¥)? where (z, ¥) is a point of the curve. What would the inte-
gral give if applied to a space curve ?

17. Are the line integrals of Ex. 16 of the same cypefP(x, y)dz + Q@ v)dy

as those in the text, or are they more intimately associated with the curve ? Cf.§165.

0,1 0,1
18. Compnute (a) j)‘ . (@ — y)ds, (8) f L ozyda along a right line, along a quad-

rant, along the axes.

124. Independency of the path. It has been seen that in case the
integral around every closed path is zero or in case the integrand
Pdz + Qdy is a total differential, the integral is independent of the
path, and conversely. Hence if

=y OF 2.
F(z, y) =f Pdx + Qdy, then -ag =P, % =Q
a,b

Pr_8q  ®F _oP 0P _0Q

and 2oy ox Oyew By oy 0w

,
provided the partial derivatives P, and Q; are continuous functions.*
It remains to prove the converse, namely, that: If the two partial
derivatives P, and Q; are continuous and equal, the integral
X Y
f Pdx + Qdy with P, =@Q; (18)
ab

is independent of the path, is zero around a closed path, and the quantity
Pdx + Qdy is a totul differential.

To show that the integral of Pdz + Qdy around a closed path is zero
if P, = @, consider first a region R such that any point (z, y) of it may

* See § 52. In particular observe the comments there made relative to differentials
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efine the function 1 (x, y) as

x v
F(=, y)—f P (w, 0)de +f QA y)dy  (19)
a b
r all points of that region R. Now

oF or o [
@=Q(ar,, 7, %=P(z, b)+5;[ Q(z, y)dy.

‘ a v ” aQ lla])
ut = [ Qr, y)dy = I e W= f =@

his results from Leibniz’s rule (4') of §119, which may be applied
nce @; is by hypothesis continuous, and from the assumption @;= P;.
hen

v
b

2_5=P(m, 0)+ P y) = P, 0) =Pz y).

ence it follows that, within the region specified, Pdx + Qdy is the
tal differential of the function F(x, y) defined by (19). Hence along
1y closed circuit within that region R the integral of Pdx 4 Qdy is
e integral of dF and vanishes.

1t remains to remove the restriction on the type of region within which the
tegral around a closed path vanishes. Consider any closed path C which lies
Ithin the region over which P, and @, are equal continuous functions of (z, y).
s the path lies wholly within R it is possible to rule I so finely that any little
ctangle which contains a portion of the path shall lie wholly within R. The
ader may construct his own figure, possibly with reference to that of § 128, where
finer ruling would be needed. The path C may thus be surrounded by a zigzag
1e which lies within R. Each of the small rectangles within the zigzag line is a
gion of the type above considered and, by the proof above given, the integral
ound any closed curve within the small rectangle must be zero. Now the circuit
may be replaced by the totality of small circuits consisting either of the perim-
ers of small rectangles lying wholly within C or of portions of the curve C and
rtions of the perimeters of such rectangles as contain parts of C. And if C be so
placed, the integral around C is resolved into the sum of a large number of inte-
als about these small circuits; for the integrals along such parts of the small
reuits as are portions of the perimeters of the rectangles oceur in pairs with oppo-
e signs.* Hence the integral around C is zero, where C is any circuit within B.
ence the integral of Pdx + Qdy from (a, b) to (z, ) is independent of the path
d defines a function F(z, y) of which Pdx + Qdy is the total differential. As
is function is continuous, its value for points on the boundary of R may be defined
the limit of F(z, y) as (z, y) approaches a point of the boundary, and it may thereby
seen that the line integral of (18) around the boundary is also 0 without any fur-
er restriction than that P; and @ be equal and continuous within the boundary.

*See Ex. 10 above. It is well, in connection with §§123-125, to read carefully the
ork of §§44-45 dealing with varieties of regions, reducibility of circuits, ete.
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5y z v
f Pda: + Qdy =f P(x, b)de +f Q(x, y)dy, (19)
ab @ b

when Pdx + Qdy is an exact differential, that is, when P, = Q;, may be
evaluated by the rule given for integrating an exact differential (p. 209),
provided the path along y =4 and « = x does not go outside the region.
If that path should cut out of 2, some other method of evaluation would
be required. It should, however, be borne in mind that Pdz + Qdy
is best integrated by inspection whenever the function F, of which
Pdz + Qdy is the differential, can be recognized ; if ' is inultiple valued,
the consideration of the path may be required to pick out the par-
ticular value which is needed. It may be added that the work may be
extended to line integrals in space without any material modifications.
It was seen (§ 73) that the conditions that the complex function

F(@, y)=X(, y)+i¥(x,y), z=x+iy,
be a function of the complex variable z are
X,=—1Y, and X; =Y, (20)
If these conditions be applied to the expression (13),

@y ey
fF(a:, Y) =f Xdx — Ydy + zf Ydx + Xdy,
a,b a,b

for the line integral of such a function, it is seen that they are pre-
cisely the conditions (18) that each of the line integrals entering into
the complex line integral shall be independent of the path. Hence
the integral of a function of a complex variable is independent of the
path of integration in the complex plane, and the integral around a
closed path vanishes. This applies of course only to simply connected
regions of the plane throughout which the derivatives in (20) are equal
and continuous.
If the notations of vectors in three dimensions be adopted,

fXd:v + Ydy + Zdz =fF»dr,
where F=Xi+Yj+ Zk, dr = ide + jdy + kdz.

In the particular case where the integrand is an exact differential and
the integral around a closed path is zero,

Xdx + Ydy + Zdz = Fedr = dU = dr.VU,
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