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In a rc; ±it paper' the writer proved a number of results concerning
Fermat's .-st Theorem. In another article2 he gave a number of side-
lights an )mments on the contents of that paper, as well as extensions
of the 'rems therein. In the present paper further results will be
given alcg these lines.
As noted in N, Theorem IV of T is quite complicated and in the former

paper another proof is indicated. I give here, however, a method for
proving the statement which is far simpler than either of those just referred
to. We shall assume the relation (27) of T, that is

w + O _0O (mod ! (1)

omitting the superscripts in w and 0. Hence the relation (27a) of T
takes the form

(W + raoy =_ (¢aW + 0)c (mod $) (2)
a = O,2,3,...,l-2.

Set f(a) = ( + , and g(a) = (acw + 0)c.
Expansion of (2) gives

Xc + C,c-l1a 0 + (c) ,C-2.2a 02 + + ;acoc

acc + Cra(c-i) (Ac-lo + (c) ta(c-2) ,c-202 +

As noted before this is true for a = 0, 2, 3, . . 1 - 2. Noting that
f(l) - g(- 1) = 0(mod 93) we then obtain

-f(-1) + E f(i) -g(l) + E g(i)(mod3.
i=o i=o

Using (ak)'-1 + (¢)l2. .. + 1 = 0 for k 0(mod 1), and noting that
c < 1, this gives

lW -(w + le0)'106 - (rw + 0)c (mod 93)

and using w _- 0 (mod 9 this reduces to

- - (1 - 2)C (mod 93). (4)

In the same way we have
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- A - 1) + Ej F'f(i)
I-1

- r'lg(l) + E~-g(i) (mod 1)
i=0

and this gives lc¢(r-2 -1) (.c-2 _ 1)(1 -t2)c

Now if c P 2 we have Ic - (1 - .2)c(mod 3) and comparison with
(4) gives c - (mod 3, which is impossible.
For c = 2, we obtain from (1) and (2)

r)_02= (¢+1 1)2.

Set a = 2, this gives

v_2= (t-1) (mod 0) (5)
and the plus sign gives

-t + .2 = + 1

and

(21)( + 1) 0 (mod j

which is impossible, since (D + 1) is a unit and (2 -1) is a prime ideal
factor of (1), which is prime to p. The minus sign in (5) gives

(p2 + 1)( -1) eO (mod3),
which is likewise impossible.
Hence we have proved that co + 0 is divisible by p in (26a) of T.
The above proof applies in connection with Theorem IV but not in

connection with the proof of Theorem V of T, since in the latter case the
p we are using is not necessarily less than (-2- 1). The argument for
the proof of 0 + w = O(mod p) which was used in T in connection with
the proof of Theorem IV is necessary to supply a similar step in the proof
of Theorem V of T, since that part of the argument in the proof of Theorem
IV does not depend upon the fact that p is less than (12 - 1).
We now consider the relation

a, + vI + v O(6)
where I is a regular prime; a, j and y are integers in the field k(r) none
zero, and -q is a given unit in this field. Let us assume first that y is
prime to X = (1 - t). Since we may take a and # each in the form
f(mod X2), it follows that al = a(mod X1), v = b(mod X1) and ' =- c
(mod X'), where a, b and c are rational integers. Reducing our equation
(mod X') we obtain,
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a' + bi + ic1 = 0 (mod X).

Since y is prime to X it follows that

c 0O(mod X),
hence we have,

17
a' + b'

(od V)

Hence I is congruent to a rational integer, (mod X'), and hence is primary
Since the field is regular, however,3 it follows by a known result that
is the Ith power of a unit in k(r). Hence our relation (6) becomes

a,t + ,8I + Y11 = o (7)

where 'y is an integer in k(t). This relation is known4 to be impossible,
hence (6) is impossible for y prime to X.

Consider now the case where y is divisible by X in (6). In both the
known4 proofs that

a, + vI + 71=o

is impossible where y is divisible by X; the arguments include a proof
that (6) is impossible for y divisible by 'X. For the first steps in these
arguments take the equation in the general form (6). Hence we may
state the
THEOREM. The equation

a, + v + i7 o= 0

is impossible for a, A and y integers in the field k(r) none zero where tq is
a given unit in this field and I is a regular prime.
So far in connection with known proofs of Fermat's Last Theoremi for

regular primes the discussion has been divided into two quite distinct
parts. The first part is confined to the case where x, y and z are prime
to each other and xyz 0 0 (mod 1), called case I, in the relation

x, +y1 +zt = O. (7a)

The second part of the proof considers the case where one of the integers
is divisible by 1, called case II. The treatments of case II have always
involved some form of Fermat's famous method of infinite descent. The
writer has constructed a proof that (6) is impossible in the special case
where a, B and y belong to the field Q(r + t-') prime to each other, in
which the treatment of case I, that is when a, , and y are prime to X,
also involves the method of infinite descent. In fact, the argument is so
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constructed that the two cases are treated simultaneously during the
descent. The equation is taken in the form

+ Jl + SYI = O. (7b)

For the case 'y prime to X we have

0 +@a= 77a ¢aa a = O, 1, . ,I-1.

We deduce from this by known methods the relation 0 w (mod XI) and
this gives

0 + ,ta = (1 + )aT I

where 'la is a real unit in k(v).
Also by known methods we have for the case where -y is divisible by X

the relation
+ ' I

1 a =1 aPa.

The last two relations may be combined into the statement

1 ra-= 771a(a a = 1,2, . . .,2 - 1. (8)

From this relation we obtain

I 0 + @D 0 + ,r I
a - i

_ aa

where a-a is obtained from 0a by the substitution t/(1. This is con-
sidered (mod fl) where $ is a prime ideal divisor of 0 + wc. Using power
characters we infer as in a former paper by the writer4a

{En}4= 1; 22

Hence
{En} = 1

where
(1-3)/2

En= II (r-2i)?2in
'=0

E (1 - t -( \/

r being a primitive root of 1. By taking the known expressions for power
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characters of units in a cyclotomic field we find after some transformations,
the relation

01, o (mod XI1).
Using (8) we have

0 + @ - (1 0.
X' (0 + w) =

where the exponent t = 0 or (-1), according as y is not or is divisible
by X. Eliminating 0 and X from the last three equations we obtain

Ol 4- af1 = 1o1o

where q' is a unit in k(v). This leads to

0lPa_1~ = (1 t )tara (9)

the ambiguous sign being positive or negative according as 7 is not or
is divisible by X. Using the relation obtained from (9) by substituting
(-a) for a throughout and employing aa 0--a (mod X '), we find
that Wa/ -a is primary, and hence, since the field is regular, it is the Ith
power of a unit in said field. Taking a = 1, -1, in (9) tegether with

Xt (0f1 + aO-) o T7"O
and eliminating a1 and a-, from the three resulting equations we have

Tj + T-1 + 61To = O

Using the fact that t-/ is an Ith power we obtain

O,, + I + ala = O, (10)
which is the same form as (7b), since 01, w, and yj each belong to Q(D + F1)
and are prime to each other. We may now employ the same trans-
formations on (10) as were used in connection with (7b) and we shall
obtain the relation

0 t + + 6272 = 0

Proceeding in this way we find that we get an infinite series of equations
of this type with the successive y's each containing less ideal prime fac-
tors than the preceding, which is impossible unless a certain 7y is a unit
in k(v). But this is easily shown to lead to a contradiction.
An extension of this method leads to the proof of the impossibility of

(7b) where a is replaced by given types of integers in k(v).
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Determination of Some Properly Irregular Cyclotomic Fields.-The
integer h which represents the number of classes of ideals in a cyclotomic
field defined by e2$i/l, where I is an odd prime, can be written in the form
h1h2, where hi and h2 are both integers.10 If h = 0(mod 1) the field is
called irregular. The necessary and sufficient condition that hi be divisi-
ble by I is that one of the first (I - 3)/2 Bernoulli numbers be divisible
by 1. A necessary, but not a sufficient, condition that h2 be divisible by
I is that hi be divisible by 1. A cyclotomic field in which hi is divisible
by 1, but h2 is prime to 1, is called a properly irregular cyclotomic field.

In a former paper I showed that this definition of a properly irregular
cyclotomic field is equivalent to the statement5 that none of the units En
already defined, are Ith powers of units in k(r). In another paper by
Miss Elizabeth T. Stafford and myself6 it was found that all the irregular
fields, defined by primes I < 211, were also properly irregular.

In order to determine if a given cyclotomic field is properly irregular
for an I > 210, it is first necessary to test the same as to regularity. As
noted in another article,7 this test was made by Miss E. M. Badger, for
all primes 1; 210 < I < 269. All were found regular between these limits
except 233, 257 and 263; for each I the only B's divisible by I in the set

BI, Ba, . . ..i By_ 3 '2) (11)
are as follows:

233, B42; 257, B82; 263, B50

These tests were continued by Mr. M. M. Abernathy who examined
the regularity of all primes 1; 268 < I < 307, this work being included in
his M.A. thesis at the University of Texas. All were found regular within
the limits just mentioned except 271, 283 and 293. The Bernoulli num-
bers were congruent to 0 (mod 1) as follows:

271, B42; 283, B,o; 293, B78.

On page 145 of a former article' a method was described for testing the
regularity of the prime I = 127. We depended primarily on the formula

[1/4 1 1 - 31-2a - 41-2a 61-2 )

[ 2 -
1 + (- )aBa (mod 1) p

s = [1/61+ 1 4a

where 2a < (I - 1) and [x] denotes the greatest integer in x. For a
particular s the expressions s2a were computed for the successive values
starting with a = 12. The tests of Mr. Abernathy referred to above
were the same as just indicated, except, in order to apply certain checks
on the accuracy of the computations, the columns were included corre-

sponding to all the integers a = 1,2,... 2 It was then easy to
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show that the sum of the integers that were congruent to S2a-' for a par-
ticular s, gives an integer divisible by 1. Also, after the totals of all
columns were made, the sum of these totals must be congruent to zero.7"
For the cases 271 and 283 the corresponding Bernoulli numbers were
found in Adams' Tables, and the numerators divided by the respective
primes gave remainders of zero in each case.
Having determined that the primes 233, 257, 263, 271, 283 and 293

are all. irregular, each one was tested as to being properly irregular, by
considering the unit E. and the possibility of its being the Ith power of
a unit in k(t) for the values of n corresponding to the subscripts of the
Bernoulli numbers divisible by I in each case. The method used for the
irregular primes < 211 is described on page 148 of another article.6 The
method employed for the primes now under discussion was the same,
aside from the fact that these computations were carried out much more
systematically and a number of new devices for shortening the calcula-
tions were used. If

Ei =61 (lla)

where a is an integer in k(v) let p be the smallest rational prime, such that
p 1 (mod 1). Then p decomposes in k(v) into the product of (I- 1)
distinct ideal factors. Let d be an integer such that d' = 1 (mod p).
Then one of the ideal factors mentioned is $ = (D- d, p), which gives
=- d(mod $). Consider the expression (hla) as a congruence (mod 13);

in view of the fact that = d(mod $) we obtain

E"(d) = c'(mod p)

where c is a rational integer. Our problem is now reduced to determining
if the index for En(d) is divisible by I if we use a table of indices for the
modulus p. In carrying this out, En(d) was written in the following
form

(1-3)/23), _ rI'-1-2n'i

1 r--3
R 1r(1 + r + r2h + + r 2h)

2

hz 1 - 2n.

The exponent R in the first factor reduces immediately, modulo 1, to

r- 1
rl-2n - 1

The computation of the index of dR involves an obvious procedure,
we now consider the determination of the index of the other factor, which
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factor we shall call F. We shall describe the major part of the procedure
in some detail as it is a bit elaborate. As an example take the case I =
271. Here p = 1627 and we take for the primitive root r of 271, the value
269 so that we may employ Jacobi's tables of indices for the prime 271.
Also n = 42. A partial table of indices for the prime 1627 was then
constructed by taking the primitive root 3 and finding the least positive
residues of 3k; k = 1, 2, . ., 271. A companion table giving the indices
corresponding to all the least residues just mentioned, with blank spaces
left for the indices of numbers not appearing in this set, was also made.
Owing to the fact that only the indices reduced modulo I were required
for the numbers involved in F, the partial tables just described readily
yielded this information. For the prime being considered the integer d
was taken as 36; the first ten rows and columns giving the computations
in connection with our prime are exhibited below:

i 0 1 2 3 4 5 6 7 8 9
1 269 4 263 16 239 64 143 256 30

6ri 6 1614 24 1578 96 1434 384 858 1536 180
dri - 1 728 284 819 981 1479 1253 1507 826 1289 369

ind(drt - 1) 39 78 167 154 146 13 138 26 193 118
D(i) 39 89 258 263 138 125 159 167 196 102
r186i 1 166 185 87 79 106 252 98 8 244
186i 0 186 102 18 204 120 36 222 138 54
K(i) 39 140 34 117 62 242 231 106 213 227

Here

D(i) = ind[§-fl

dri+' _ I-gr86iK(i) = ind [dri+' -r186_
The rows and columns are continued up to i = 134 inclusive. The

elements of the second row are obtained from the tables of indices modulo
271. The third row is obtained immediately from the second and the
multiplier 6 is used owing to the fact that d = 36. The elements of the
fourth row are obtained from the partial table of indices modulo 1627, as
well as those of the fifth row. The number in the sixth row are obtained
by an obvious subtraction of certain elements in the preceding row. The
elements in the eighth row are obtained by reducing 186i modulo 270, and
from these numbers the data in the seventh row is obtained using a table
of indices for the prime 271. The corresponding elements in the sixth
and seventh rows are then multiplied together and reduced modulo 271
to give the numbers in the last row, which are then added together and
this total is in turn added to the index for dR to obtain the residue when
the index of En(d) is reduced modulo 271.
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Checks were employed on the accuracy of the computations for each
row excepting the fourth. Summing all the numbers in the first row
and using the fact that they formed a geometric progression, the result
should be congruent to

22 (mod 271).

Similarly we have obvious checks on the second, fifth, sixth and seventh
rows. No check was employed on the fourth row but the accuracy of the
numbers therein was involved in the check employed for the fifth row,
which was more elaborate than the other checks referred to, and depends
on the following transformations:
We have

j) (j-r _ 1)(ry2 _- 1) ..¢r2. )

'-3

A =(-l(t1)Q'-1) ( tr2). . - 1); (12)
then

AB= 1,
where

'-3

B = (v1 - 3)(-r- 1)(-r2- 1).. (--r 2 1)

whence
I-1

B = (-1) 2 thA
I-3

whereh= -1-r. ..-r 2

Now
I-1
r2 -1 2

h - (mod 1),
r-1 r-1

hence (12) gives
2 1-i

.r-_(-1) 2 A2 = 1. (13)

In A set d in place of P. Denote the result by A (d). Then using v
d(mod $) we have from (13), by taking indices

[
2 ind d + 2 1

P
2 + 2 ind A (d) =indl(mod(p - 1))

where the symbol
2

_r-1_
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denotes an integer i such that i(r - 1) = 2(mod 1), and this formula fur-
nishes the check.

The,table below gives the values of n, r, d, p and ? for each irregular
prime 1; 210 < 1 < 307. The last column headed ind E,(d) gives the
residue of this integer mod I in each case.

I n r d p p IndE,,(d)
233 42 10 100 467 10 13
257 82 10 136 1543 10 123
263 50 10 729 1579 3 171
271 42 269 729 1627 3 4
283 10 273 729 1699 3 136
293 78 204 100 587 577 291

As the table shows, the computation established the fact that E"(d)
is not divisible by 1, and hence En(t)- is not the Ith power of a unit in the
filed k(v) for any of the primes mentioned. It follows that the cyclotomic
fields defined by each of these primes are properly irregular cyclotomic fields.

All the calculations of the type just mentioned were carried out by Mr.
M. E. Tittle, Miss B. Bennett and Mr. M. M. Abernathy, with the aid
of funds provided by the University of Texas. In particular, Mr. Tittle
discovered some of the devices employed for shortening the computations.
Application of Properly Irregular Cyclotomic Fields to Fermat's Last

Theorem.-In T I proved a number of theorems concerning Fermat's
last theorem. In the present paper I shall consider the application to
special exponents in the Fermat relation of the following theorems included
in T (numbered as in T).

THEOREM I. Under the follouwng assumptions:
(1) the second factor of the class number of the field k(t) is prime to 1;
(2) none of the Bernoulli numbers B,, n = 1, 2, .. ., (I - 3)/2, is

divisible by 18;
the equation (7a) is impossible in case II.

THEOREM III. If I = 1(mod 4) and all the numbers in (11) which are
divisible by I have even subscripts, then (7a) is impossible in ratipnal integers
none zero, provided8 also that the second factor of the class number of k(r)
is prime to 1.

THEOREM IV. Under the following assumption:
None of the units Ea, a = a,, a2, . ., as, is congruent to the Ith power of

an integer in the field k(r) mod $, where $3 is a prime ideal divisor of p, p
is a prime < (12- 1) of the form 1 mod 1, and a,, a2, . . ., a, are the subscripts
in the Bernoulli numbers in the set (11) which are divisible by 1;

the relation (7a) is impossible in case II.
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THEOREM V. Under the following assumptions:
(1) there exists a rational primne integer p such that the congruence

u1 + v + w1 O(mod p)

has no solution u, v and w all rational integers prime to p, and p 0 1 (mod2);

(2) the relation
{Ea}5a1

holds, where a ranges over the values a,, a2, . . .,, these integers being the
subscripts of Bernoulli numbers in the set (11) which are divisible by 1, and
$ is a prime ideal divisor of p;

the equation (7a) is impossible in rational integers none zero.
In Theorem V the symbol

{fEn}

denotes the Ith power-character of En with respect to the ideal 13.
The proofs of the above-mentioned theorems were more or less different.

In particular, if we substitute the argument given at the beginning of the
present paper in lieu of the argument given on pages 632-635 for the proof
that co + 0 = 0(mod p), the proof of Theorem IV is largely different from
that of Theorem V if we retain the original argument as to w + 0 = 0
(mod p) as part of the proof of Theorem V, as is necessary, since in the
latter case we cannot assume p = 1 + cl with c < ( - 1).

In T, the first three theorems quoted above were applied to the par-
ticular values of I < 211, which were irregular. Here I shall consider
the application of these three theorems to (7a) for 210 < I < 307, and
irregular; and the application of Theorem V to all irregular values of
I < 307.

Concerning Theorem I the first assumption holds for all irregular primes
I, 210 < I < 307, since we have shown that all the cyclotomic fields defined
by these I's are properly irregular. As to the second assumption in
Theorem I, this was shown to hold for the cases I = 233, 257 and 263, as
stated in N, page 303. This assumption was examined by Mr. M. M.
Abernathy for the case l = 271, who found

A42 271-181(mod 2712),
where

1_l)Bxl (22unl_ 1)
- ~22xnl
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The case I = 283 was disposed of by Mr. J. A. Clack, who found,

Alo -283-71(mod 2832)

Hence Theorem I proves the last theorem for all irregular l's, 210 < 1I
< 307, excepting 293, for which latter prime it was not tested.
The first two assumptions mentioned in Theorem III are satisfied only

for I = 233, 257 and 293, within the range mentioned. The third assump-
tion mentioned holds as already shown. Hence Theorem III proves the
last theorem for I = 233, 257 and 293.
As to the application of Theorem IV, the results of the computations in

establishing the fact that the irregular cyclotomic fields defined by the
irregular primes 1, 210 < I < 307 are properly irregular, incidentally show
that the assumptions in Theorem IV holds for all these primes, since the
value of p selected was < (12- 1) for each 1. Hence Theorem IV proves
the last theorem for all irregular I's such that 210 < I < 307.
The application of Theorem V to special exponents has not been men-

tioned in any of my preceding papers. The first assumption in it states
that there exists a rational prime integer p such that the congruence

it' + vi + w- 0(mod p) (14)

has no solution u, v and w all rational integers prime to p, and p 0 1
(mod 12). The congruence mentioned has obvious solutions when p
1(mod 3). Using the results of Dickson,9 we note that the congruence
(14) is impossible for I = 37, p = 149, hence the first assumption of Theorem
V holds for I = 37, the second assumption holds, since 149 is the value of
p used in verifying that

JE161

where I = 37. In a similar way our computations concerning the properly
irregular cyclotomic fields mentioned in T, page 641-642, and in the present
paper, together with Dickson's results concerning the trinomial congru-
ence, proved the last theorem, for

I = 37, 67, 101, 131, 149, 157, 233 and 293.

For the irregular primes < 307 not included in the list just mentioned,
the values of p which were used in our irregular field computations are
in each case of the form 61 + 1; consequently the congruence (14) has
solutions. Hence, in order to test Theorem V for the exceptional values
of I such as 59, 103, etc., it would be necessary to select a value of p such
that p 0 1(mod 3) and not included in Dickson's exceptions. We have
not carried out such computations and the questions as to whether Theorem
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V yields proofs of the last theorem for all irregular primes < 307 remains
open.

In T, page 614 and elsewhere,10 the writer has referred to Kummer's
results on Fermat's last theorem for irregular prime exponents. The
first assumption of the theorem states that the first factor of the class
number of k(v) is divisible by I but not by 12. Hence, under this restric-
tion Kummer's results may be applied to special exponents in the Fermat
relation, since his assumptions II and III are equivalent to those of Theo-
rem I of T. However, owing to assumption I, Kummer's argument, as
corrected by the writer,11 is far simpler than the proof given of Theorem I
in T; the proof of the latter requiring lemma I of T which involves in its
proof Furtwangler's law of reciprocity. Also the proof of the lemma
depending upon the results of Takagi involves the existence of a class-
field. Kummer's proof depends on considerations much simpler than
those involved in the proof of the existence of a class-field or of the law
of reciprocity. Also, in other respects Kummer's argument is different
from that I have given on pages 621-624 of T. Hence we may regard his
work as furnishing more or less different proofs of the last theorem for all
irregular I's < 307, excepting 157, in which case the first factor of the
class number of k(r) is divisible by 1572.
To summarize, we shall now list the irregular primes < 307, together

with the number of different proofs, which have been mentioned in this
paper, in each case:

37,5; 59,3; 67,3; 101,5; 103,3; 131,4; 149,4; 157,3; 233,5; 257,4;
263,3; 271,3; 283,3; 293,4.

Using also the fact that Fermat's last theorem is true for regular prime
exponents, we may then state that the last theorem has been proved for
all exponents < 307.

1 Trans. Am. Math. Soc., 31, 613-642 (1929). This paper will be referred to as T.
2 These PROCEEDINGS, 16, 298-305 (1930). This paper will be referred to as N.
3 Landau, Vorlesungen uiber Zahlentheorie, 3, 240.
4 Kummer, Crelle, 40, 130-138 (1850); Landau, loc. cit., 271-274.
4a Trans. Am. Math. Soc., 31, 633 (1929).
5 These PROCEEDINGS, 16, 743-749 (1930).
8 Ibid., 16, 139-150 (1930).
7 Ibid., 16, 303 (1930).
7a Miss Stafford's previous computations concerning the regularity of the primes

I such that 157 < I < 211, were checked by Mr. Abernathy by the methods just de-
scribed concerning the sums of the rows and columns, and Miss Stafford's conclusion
that all such primes are regular, was confirmed.

8 Cf. errata to Vol. 33 of the Trans. Am. Math. Soc.
9 Messenger of Math., [2], 38, 14-32 (1908).
10 Bull. Nat. Res. Coun., 62, Feb., 1928, 34, 44.
11 Bull. Am. Math. Soc., 28, 400-407 (1922); these PROCEEDINGS, 12,767-772 (1926).
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