AN INTRODUCTION

L O G I C

H. W. B. JOSEPH

AN INTRODUCTION

TO

LOGIC

Ev
H. W. B. JOSEPH

VEIIOE AND TUTOR OF NEW COIADMR

OXFORD
AT THE CLARENDON PRESS

HENEY FROWDE, M.A.

10YDOX. EDINBUEOH
MEW VORE AND TORONTO
J. E. J.

ERRATA

PLoE 48, notes 1 and 2, for Mod M. read Met Z. 90, L 82, for ouproy read egrot
140, note 1, 1. 8, for propietes roed proprietas
201, nole, 1. 5 , for mowaril read monami
215, 1.20 , for converted roed permuted
251, 1. 28, for If all ie P rad If all M is P
256, 1. 20, for aflirmative read particular
256, L 82 , for distribuled read undlatributed
281, 1. 20, omut refrences to note at ond of line
261, note 2, insort af end (10)
972, L 16, for O read B
282, 1.25 , for B fo A read C is A
288, note 1, for Dialect, mad Dislectlo, 291, IL 9, 11, 18, 28, for Barbara road Celarent 298, 1. 32, for Some B read Some C 825 , note 8, 1. 4, for $162^{\circ} 16$ noad $158^{\circ} 16$ 897 , note 2, 1. 18, for $79{ }^{\circ} 20 \mathrm{rada} 79^{\circ} 80$ 850, 1.9 , for the vorb read the pacsilve verb 364, lant Une, for Roman rood Greek 86S, firt line, for Groek raad Roman 891, 1. 27, for aro not related reed are related 401, note, I. t, incert comma after reasoning 414, 1. 18, for concidence read colnoldence 800, L 2, for x rady 618, 1. 11, for attributling it to read attributing to it 6e4, for Zabarolla, Cardinal, raad Zabavelle, Count,

PREFACE

Ir an apology that precedea it could mitigate an offenoe, I should be inclined to convert my prefice into an apology for pablishing this book. Progress, and the hope of progreen, in logical inventigntions, have hin perhape during the last three generations chiefly in two directions, either of analysing more closely tho processes of thought exhibited in the sciences, or of determining what knowledge is, and the relation of the knowing mind to what it knows. Though I have been compelled to deal in some degree with the first of these queations, I am well awne that it demande a acientific knowledge which I do not posseas; the eecond I have not attempted systematically to discoses. The aim of the following book is more modeat. There is a body of what might be called traditional doctrine in Logio, whioh is not only in fact used by itself as an instrament of intellectual discipline, but ought also to be in mome degree mastered by those who would proceed to the higher and abstruser problems. It is of this traditional doctrine that Benjamin Jowett is recorded to have said, that Logic is neither a science, nor an art, bat a dodge. I could perhape best deecribe the motive with which this work was began, as the deaire to expound the traditional Logie in a way that did not deserve this accuastion. The socnention was doubtleas provoked by the attempt to force into a limited number of forms processes of thought, many of which can only with pretence and violence be made to fit them: an attempt, it may be added, at least as aharacteristio of 'Inductive Iogio' as of any other.

In the course of centuries, the tradition has become divergent, and often corrupt. In this difficalty, I have ventured, like one or two other modern writers, to g° beck largely to its eource in Aristotle. Problems of thought cannot in any cace be stadied without careful regard to their terminology, and their terminology
cannot be understood without reference to its history. The terminology of Logic owes more to Aristotle than to any one else; bat there is this further reason for attention to whet he said, that much prevalent faleebood or confusion in the tradition is a corruption of truthe expresed by him. At the same time, I have not pretended to believe in the verbal inspiration of his writings.
I have in particular been anxious to teach nothing to beginners which they abould afterwande have merely to unlearn. They may of courre come to diment from the positione here taken up; bat only, I hope, because they think I have the worst of the argument on a proper isence, and not becanse, as meat for babee, I bave been dogmatically expounding acknowledged fictions
While dealing largely with the more tochnical parta of logical tradition and terminology, I have done my beat to avoid a saperfiuity of technical termas ; and the subjecte discoseed have been for the most part discused in detail, and the principles involved in them debated. The dryneas with which the more formal brachees of Logic are often eharged eprioge, I think, in part from their being preeented in too cat and dried a manner; thowe who go beyond the jejune outlide, and get into an argument, often find the subject then first begin to grow interesting. At any rate I have tried to secure this reand by greater fullinesa, and attention to controversial issaea. In every atudy there mast be comething to learn by heart; but Logic abould appeal as far as posible to the reeson, and not to the memory. Thas such a question as the 'redaction' of ayllogisems hea been dealt with at length, not from any wish to overrate the importance of ayllogistio reseoning, or barden the student with needlem antiquarianism, but becauseo the only thing of any read value in the subject of reduction is just that invertigation of the nature of our procesees of thinking which is involved in asking whether there in any juatification for reducing all ayllogiome to the firat figare.
Topics whose main interest is obviousaly historical or antiquarian have beea either relegated to footnotes or pleced in cloeer type and betwean brackets; and as I have followed the advice to translate what Greek I quote, I do not think that there in anything in these
discussions which a reader need be altogether precluded from following by ignorance of that language. I have also put between brackets in closer type other passages which, for one reason or another, might be omitted without apoiling the argament; among the matters so treated is the fourth figure of syllogism; for I have reverted to the Aristotelian doctrine of three figares, with the moods of the fourth $s e$ indirect moods of the first.

I hope that I have sufficiently acknowledged all detailed obligotions to previons writers in the places where they oecur. But I owe here a more comprehensive acknowledgement both to the published work of Sigwart, Lotze, Mr. F. H. Bradley, and Professor Boasnquet, and to the instraction received in private discussion with various friends. Among these I should like to mention in particular Mr. J. Cook Wilson, Fellow of New College, Wykeham Professor of Logic in the University of Oxford, whose relactance to write is a source to many of serious disappointment and concern; Mr. J. A. Smith, Fellow of Balliol College ; Mr. C. C. J. Webb, Fellow of Magdalen College; Mr. H. H. Joachim, Fellow of Merton College; and Mr. H. A. Prichard, Fellow of Trinity College, Oxford. To the lest three of these, and also to Mr. C. Cannan, Secretary to the Delegates of the Univeraity Press, I am further indebted for the great kindness with which they read large portions of the work in MS. or in proof; without their suggestions and corrections it would be even more imperfect than it is. Laatly, I have to thank my eister, Mias J. M. Joseph, for the help she gave me in reading the whole of the proof-sheets and in undertaking the laborious and ungrateful task of checking the inder.

CONTENTS

anne PAOE
I. Ot teic Gexmal Cbaractir of the Eigutity 1
II. Of Thieg, afid thert Pancipal Dititnctions 12
III. Ot the Catmaonirs 85
IV. Or the Pampicablem 58
V. Or the Rulfa of Difixition aty Diviaiok: Clagai- fication afd Dichotiony 97
VI. Ot the Imtitaion and Exteraion of Theng 121
VII. Or the Propogition on Judagikit 143
VIII. Op the Vabiods Fohis of the Judomentit 154
IX. Oy tei Dibtaibution of Thams in the Judomegit: axd of the Oppogition of Judanmakts 182
X. Or Imondiatz Immaticts 209
XI. Or Sylloomit in Geribal 225
XII. Oy the Moods and Fioures of Byllogign 280
XUIL. Oy the Repoction of the Inperict Syllooletio Fiaubis 264
XIV. On the Painciples of Sylloolotic Infibences 272
XV. Of Hypothitical and Dibjunctive Reaboning 808
XVI. Of Exthymine, Sorites, akd Dilitiga 828
XVII.' Ot tex Fohi and Mattis of Infenencz 888
XVIII. Or Induction 850
XIX. Of the Phmupportions of Inductive Rragonina: the Law of Caubation 870
XX. Oy the Roles ay weich to judaz oy Catabs and Efyicte 892
XXI. Of Oplbations preliminaty to the Application of the Forzoong Rules 422
XXII. Op Nor-azcipbocatimo Cadenl Rekatione 441
XXIII. Of Explanation 468
XXIV. Op Induction by Suppli Enumiration and the Argusient troi Analooy. 488
XXV. Of Matimentical Reheomino. 508
XXVL Or the Mrifodolooy of the Scizncbs 518
XXVII. Appexdiz on Faliactize 525
Impax 559

CHAPTER I

OF THE GENERAL CHARACTER OF THE ENQUIRY

Ir is a common practice to begin a treatise on any science with a dircussion of ite definition. By this means the reader's attention is directed to the proper objects, and to those features of them, with which the acience is concerned; a real advantage, when, as in the case of Logic, those objecte are not apprehended through the senses, and for this reason ordinarily attract little notice. But the same reason which makes a definition of Logic at the outset neeful, makes any controveray about ite definition neelean at auch an early stage. The reader is too anfamiliar with the subject-matter of his acienoe to be able to judge what definition beat indicates ite nature; he cannot expect thoroaghly to understand the definition that is given, antil he has become fumiliar with that which is defined. The definition will at firat guide more than enlighten him; but if, as he proceeds, he finds that it belpe to bring anity into the different enquiries upon which he anocessively enters, it will so far be justified.

Logic is a science, in the sense that it seeks to know the principles of some subject which it stodien. The different sciences differ in the subjeots which they so study; astronomy stadies the movements of the besvenly bodies, botany the structure, growth, history, and habite of plants, geometry the properties of figures in spece; but each attempts to dincover the primeiples anderlying the facts with which it has to deal, and to explain the great variety of facta by the help of one aet of principles. These principlea are often spoken of as lawn; and in the physical sciences that deal with change, as 'laws of nature'. The phrase may ouggent that ' nature' is not the sum of thinges and of eventa in the phymical universe, but a sort of power prescribing to these the rules which they are to follow in their behaviour; an the King in Parliament prescribee rulee of conduct to his people. That, however, is
not what we have to anderstand in acience by a 'law'; a law in science is not, like human laws, a role enjoined but sometimes disregarded; it is a principle illustrated-and existing only in the necesaity of its being illoutrated-in the department of fact to which it belongs. There are therefore no breachee of scientific law, or of a haw of nature ${ }^{1}$; if events are observed which do not conform to what we have hitherto called s law, we conclude not that the law is broken, bat that we were ignorant of the true law; if water, for example, were obsearved to boil on the top of Mont Blase at a lower temperature than 212° Fahr., we should infer not that the law that water boils at 212° Fahr. was broken but that it is not a law of nature that water boils at 212° Fahr.,-that there are other conditions which have to be fulfilled, if water is to boil at that temparatare; and the 'law' is that it ahould boil only when those conditions are fulfilled. Such laws, the general principles to which objects in their properties and their behaviour do actually conform, are what the physical eciencee reek to diecover, eech in ite own department, and if Logic is a science, it must have a depertment of its own, in which it seekes for principles and lawn.

That department is thought, bat thought is alwaye thought about something; and thinhing cannot be stadied in abstraction from anything thought sbout. But yet in the aame wry that we may etudy the lawe of motion, as they are exemplified in the movement of all bodies, withoat stadying all the bodies that ever move, 80 we may stady the laws of thought, as they are exemplified in thinking about all subjects, without stadying all the subjects that are ever thought of. This comparison may be pushed further. Just as we must have experience of moving bodies, before we can investigate the laws of their motion, so we must have experience of thinking sbout things, before we can inveatigate the principles of thinking; only this means, in the case of thinking, that we must ourseloces think about things first, for no one can have experience of thinking except in bis own mind. Again, although, in studying the laws of motion, we do not atady every body that moves, yet we muat always have before our minds some body, which we take as representing all possible bodies like it; and in the same way, when we inveatigate the principles that regulate our thinking, though we do

[^0]not need to study all subjects ever thought of, we must have before our minds some subject thought of, in order to realize in it how we think about it and all poarible subjecta like it. For example, it is a general principle of our thought, that we do not conceive of qualities except as existing in some subject; and that novertheless the asme quality is regarded as existing in many subjeots; grean is a quality, which exista not by itself, but in grase and leeses of trees and so forth; at the ame time, green may axist in many different leaves or bledes of grass. The general principle which is thus illustrated in the case of the quality green is reedily nodenatood to be true of all poesible qualities; but unless we were able to think of some particular quality to illustrate it, we could not understand the general principle at all.

What hes been now said will eerve to remove an objection which Locke brought against the etudy of Logio. 'God,' eaye Locke?', 'hes not been so eparing to men, to make them barely two-legged creatures, and left it to Aristotle to make them rational.' He is urging that men thought rationally, or logically, i. e. in accordance with the principles that Logic diecovers to regulate all wound thought, long before thoee principles were recognized; and that this is atill the caee with each of us ; we do not therefore need Logic to teach us how to think. That is quite true, and would be a pertinent criticiam against any one who pretended that no one coald think rationally without studying Logic; but it is not the object of Logio to make men rational, bat rather to teach them in what their being rational consiste. And this they could never learn, if they were not rational first; just as a man could never study (ay) the principles of voluntary motion, if he was not first accustomed to move his limbs as he willed. Had God made men barely two-legged creatures, Aristotle would in vain have tanght them to be rational, for they would not have understood his teaching.
r Logic, then, is the acience which stadies the general principles in accordance with which we think about things, whatever thinga they may be; and so it presuppoees that we have thought about things. Now our thought about them is expressed partly in the daily conversation of life or musings of our minds; partly and most syatematically in the various sciences. Those eciences are the best eramplee of human thinking, the moat careful, clear, and coherent,

[^1]that exist. In them, therefore, the logician can beat otady the laws of men's thinking; and it is in this sense that wo may accept the old definition of Logic, seientia sciontiarnm. ${ }^{1}$ What 'the courses of the stars' are to antronomy, what figares are to geometry, what planta are to botany, or the calendar of Newgate to the criminologist, that the other sciences are to the logician : they are the material which ho hes to invertigate, the particular facts which are given him, in order that he may discover the principles displayed in them. He has to aak what knowledge is as knowledge, apart -so far as possible-from the question, what it is about; and he must therefore examine divers 'knowledges', and see in what they are alike; and the beat pieces of knowledge that exist, the beat ' knowledges', are the various sciences. But he is not concerned with the detail of any particular science; only with those forms of thinking which are exemplified in all our thinkingg-though not necessarily the same in all-but best exemplified in the sciences.

It is important to understand what is meant by saying that Logic is concerned with forser of thinking; for many logicians who have laid atreas on this, and pointed out that Logic is a formal science, have underatood by that expresion more than seems to be true. There is a sense in which Logic is undoubtedly formal. By forms we mean what is the same in many individuale called materially different-the device, for example, on different coins struak from the same die, or the anatomical etructure of different vertebrates, or the identical mode in which the law requires the different Colleges of the University to publiah their mocounte. And all science is formal, in the sense that it deals with what is common to differont individuals. A scientific man has no interest in a specimen that is exactly similer to one which he has already examined; he wante new types, or fresh details, but the mere multiplication of specimens all alike does not affect him. ${ }^{3}$ So the logician otudies the forms of thinking, such as that involved in referring a quality to a subject possessing it; but when he has once grasped the nature of this act of thought, he is quite uninterested in the thougand different occasions on which it is performed during the day; they difer only materially, as to what quality is

[^2]referred to what subject; formally, eo far as the notion of a quality as existing in a subject is concerned, they are the same; and the forms that run through all our thinking about different mattars are what he otudies.

But those who have insisted most that Logic is a formal science, or the acience of the formal laws of thought, have not merely meant that Logic is in this like other sciences, which all deal with what is formal or universal in their subject-matter. They have meant to exclude from Logic any consideration of forms or modes of thinking which are not alike exemplified in thinking about absolutely every subject. It is as if the botanist were to regard only those laws which are exemplified in every plant, or the geometer were to consider no properties of figures, except what are common to all figures. They have thought that one might abotract entirely from and diaregard all question as to what he thinks about, and still find that there are certain principles in accordance with which, if he is to think about anything, he will think. But the trath is, that we think in different ways about different kinds of subjects, and therefore we must, if we wish to study the principles that regulate our thinking, consider to some extent the differences in the matter about which we think. The distinction between form and matter may as it were be taken at different levela. This is plain in the case of a science that deals with some order of sensible things, like zoology. We may say of all men and all horses that they have severally a common form, that as compared to a man a horse is formally different, bat as compared to one another all horses are formally the same, though each horse in his body is materially different from every other. Or we may consider not the form of horse common to Black Bess and Bucephalus and Rosinente, but the form of vertebrate common to man, horse, eagle, crocodile, \&c.; and now man and horse (as compared with oysters for example) are formally alike. Or we may take the four orders in Cavier's division of the animal kingdom, vertebrata, coelentersta, radiata, and annuloea, and regard them as only different examples of the common form of animal; and from this point of view a horse and an oyster differ materially, bat not formally. When however we have reached this stage, and formed the conception of animal, as something axemplified equally in kinds of animal so different, it is clear that we can only under-
stand what animal nature means by seeing it as it exists in all the different orders of animals; wherens we can understand fairly the nature of a vertebrate animal without seeing it as it existe in every genus of vertebratea; still more can we understand the nature of a horse without familiarity with all horves. The higher the level therefore at which in Zoology the dietinction between form and matter is taken, the less can we study the form in isolation; no example taken from one order of animals, say the starfiah, will enable us to realize what animal means. It is the ame in studying the forms of thought. The most general forms of thought exist diversely modified in thinking about different matters; and they can no more be fully known without attending to the different mattere in which thoy appear differently, than animal nature can be fally known withoat attending to the different orders of animal in which it appears differently. Thus we may take the Proposition, and point out that in every proposition there is a anbject about which something is asid, and a predicate, or something which is mid about it. This is true equally of the propositions, 'A borse is an animal,' ' First-clase railway tickets are white,' and 'Londres is London'. We may if we like, because in all propositions there is formally the same distinction of subject and predicate, take symbols which shall stand for subject and predicate, whatever they are, and amy that all propositions are of the form ' δ is P '. But when we ask for the meaning of this form, and in what sense S is P, it is clear that the meaning varies in different propositions. Londres is just the same es London; but a horse is not just the ame as an snimal ; it may be asid that 'animal' is an attribute of horse, and 'white' of first-clese railway tickets, bat animal is an attribute belonging to horses in quite a different way from that in which white belongs to first-clasa railway tickets; these might as well be any other colour, and atill entitle the holder to travel firat-class by the railway; a horse could not cease to be an animal and atill continue to be a horte. The meaning of the formula S is P cannot possibly be fully known merely by understanding that S and P are some subject and predicate ; it is necessary to underatand what kind of subject and predicate they are, and aloo the relation between them, and in what mense one is the other; and if this eense is different in different cases, just as animal is something different in a dog and a starfish, then the
thorough study of the form of thought involves the consideration of matorial differences in the subjects of thought. But logicians who emphasize the purely formal character of Logic maintain that it can exhaust the form of thought in treating that as one and the same in every possible matter of thought; an impracticable task, becanse the form itself (as in the above instance of the form of thought which we call a proposition) is modified according to the matter in which it appears. On the other hand, and even although the forms of our thought cannot be studied spart from the particalar eort of matter about which we may think, yet Logic is not intersested in the variety of the matters that we think about for their own sake, but only for the aake of the divers forms of thinking involved in them; and so far as the eame form is examplified over and over again in different particular 'bits' of thinking, the stady of the common form alone balongs to Logic.
[The truth that form cannot be studied apart from matter might be otherwise expressed by saying, that the general form can only be studied in connexion with the special forms in which it is manifested; and these special forms can only be illustrated in eramples that are materially different from one another. The proposition 'Londres is London' is a apecial form of proposition equally well exemplified in 'Köln is Cologne'; as Bucephalus is an animal of a special form equally well exemplified in Black Bess. What is important to realize is the need of following the common form out into the differences which it displeys in different matter.]

The foregoing discussion will probably become plainer if it be read again at a leter stage, when the reader is more practised in reflecting on his thoughts. A distinction which is readily seen in material objects, like medals from a common die, is not so easily seen in immaterial objecta, like our thoughts. The natural man thinks much about things, and asks and answers questions about them; but it is by an effort that he comes to see how these things are only known to him in his perceptions of them and his thoughts about them, and so comes to turn his attention inward upon the nature of the acts of perceiving or of thinking. Nor can these new objects of his atudy be presarved and dissected like a material thing; a man cannot catch a thought and bottle it; he must create it by thinking it, if he wishes to think about it; and the task will be found difficult while it is strange.
[Mediaeval logicians sometimes ary that Logic deals with second intentions; by this is meant what has been pointed out in the last paragraph. The mind intends or directe iteelf at first upon material objects; and these are its first intentions; it may afterwards intend or direct itself apon its own modes of thinking as exhibited in its first intentions; and what it then discovers are its mecond intentions. Thus we observe animals, and give them names according to their kind, calling them stag and ox, worm and lobster; and again we obeerve how these kinds agree and differ, and call some vertobrate, and some invertebrate, bat all animals; and all these names, which are names we give to objects, are names of the first intention. But we may also observe how we have been thinking sbout these animals, as having some properties common to all, and some peculiar to the members of each kind; and we may call the members of each kind a species, and the members of the several kinds together a genus; and genus and species are names of the second intention. The unity on the strength of which we call them of one species or of one genus may indeed be something in the animals themselves; and so our names of second intention will signify something real in things. The distinction therefore presents difficulties.]

If now we ask for a definition of Logic, to keep before our minds in the following chapters, perhape it is aimplest and least objectionable to call it the Science, or the Study, of Thought; for to eay of the Formal Principles of Thought might imply both that there were sciences which did not seek for principles, and that the form of thought can be studied without reference to differences in the matter of it; neither of which things is true.

It is sometimes beld that Logic is rather an art than a science, or at any rate that it is an art as well. In considering this question, we must remember that there are two senses of the word art. We may say that a man understands the art of navigation when he is akilful in handling a ship, though he may be unable to explain the principles which he follows; or we may say that he understands it, when he is familiar with the principles of navigation, as a piece of book-work, though he may never have navigated a ship. Thus an art may eitber mean practical skill in doing a thing, or theoretical knowledge of the way it ahould be done. In the latter sense, art presapposes science; the rules of navigation are based upon a knowledge of the motions of the heavens, the laws of hydrostatics, and the build of ships. It is in this sense that Logic is called an art; and hence it is clear that if there is an art of

Logic, there must first be a acience, for the study of the nature of sound thinking must precede the giving of instructions for thinking soundly. And even granting the existence of such an art, it remains distinct from the science ; so that the name Logic would be used of the two in different senses, and we ought rather to asy that Logic means the ecience or the art of thought, than that it is the science and the art thereof. That there is an art of Logic, based on the science of Logic, might be urged on the ground that Logic reveals to us our own ideal of what knowledge about any subject must be, and certain canons of reasoning which no sound argument can violate. But though we may thus preecribe to ourselves the conditions which should be fulfilled in science or in common thought, we are not thereby ensbled to fulfil them; for art, as a theoretical knowledge of what is to be done, does not always bring the art or practical skill of doing it. An art of Logic would therefore be no infallible means of coming to know about all subjects; it is againat that sort of pretension that s protest like Locke's, quoted above, may well be made; and yet the rales and the ideals which the stady of Logic suggesta are not without value in keeping our thoughts about things straight.

We have anid that Logic studiea the way in which we already think about things. But a good deal of our mo-called thinking is incoherent, and breaks down when we criticize it. That we can discover for ourselves without learning Logic; an economist can correct his own or his predecessors' errors in political economy, a mathematician in mathematics; they could no more wait for the logician to correct than to construct these aciences. ${ }^{1}$ Yet the etudy of the thinking, good and bad, which has gone to their construction may give us a more lively consciousness of the difference between what its charscter should be and what it sometimes is, or as the Greeks would have said, between knowledge and opinion. Herein Logic may be compared with Ethics. Ethica investigates haman conduct; it discusses the judgements of right and wrong, of good and evil, that we pass upon men's acts and them ; it tries to determine what we really mean in calling an act wrong, and what

[^3]we really require of a man in eaying be should do what is right. All this would be imposeible uniess men already acted wrongly and rightly, and made moral judgements; Ethics does not teach men to do that. But it does bring into clearer conscionsmese the nature of the ideals which we already have, the grounds of the judgementa / which we already make, the frequent disorepancy between what is done and what we recognize ahould be done. To this extent Ethica tells us what to do, though it does not enable us to do it. Similarly Logio helpe us to realize what knowledge of a subject means : but it does not enable us to bring our opinions on every subject into the form that knowledge requiree. Both Logic and Ethics are thus in some degree practical; but we do not call Rthice an art, and it is not deairable any the more to call Logic $20{ }^{1}$.

It is perhaps from a desire to show the practical value of the study of Logic that men have insisted on viewing it as an arto But it would be a mistake to suppose that its practical value can lie solely in its farnishing rules for ' the conduct of the onderatanding'. The direct help that it can give in this way is not very great. Ita practical value in general education is firstly this: that it demands very csreful and exact thinking about ite own sabjeot-matter, and thus tande to produce a habit of similar carefulness in the etudy of any other subject. In this it only does for the mind what a thorough training in any other acience might do. Secondly, it makes us 2) realize better what the general forms of speeoh that we habitually use really mean, and familiarizee us with the task of examining our reasonings and looking to see whether they are concluaive. In this it has an effect which the stady of some apecial science like botany is not equally calculated to produce. Thirdly, it brings into clearer conscionsness, as aforeasid, our ideal of what knowing is, and so far furniahes us with a sort of negative standard; it makee us more alive to shortcomings in our ordinary opinions. But its chief value

* Lies in ita bearing upon those ultimate problems, concerning the

[^4]nature of reality, and man's place and destiny in the world, from which at first sight it might seem far remote. 'Logic,' ays J. S. Mill, in the Introdaction to his famous work ' ' ' is common ground on which the partigans of Hartley and of Reid, of Locke and of Kant may meet and join hands.' Conecrere manm-it is only in this sense that rival schools join hands on the field of Logic. The dream of a Logic that shall be ' neutralized'like the physical sciencee will not be fulfilled. These may move securely within the limits of certain well-defined sesumptions, which all workers, though they may fight over minor points, agree to respect. Logic, which atudiee the principles of our thought about all things, cannot be content to leave unquestioned the asoumptions within the limita of which it thinks: for it is thoee very asoumptions that it inveatigatee. The history of Mill's own work disprovee his saging, for it is on its metaphysical side that it hae been most vehemently attacked. Into such controversiee, however, it is not the aim of this book to enter. It would be abeurd to pretend that the treatment of many topica in it does not reet upon a metaphysic which some would reject, and of which the rejection would mean the restatement of what is written here. But he would essay a vain tank, who ahould attempt to expound the rudiments of Logic with no metaphysical presuppositions; therefore it is better not to conceal them; but though the points at which they are moet important will be indicated, they will not be discussed as they deserve.

CHAPTER II

OF TERMS, AND THEIR PRINCIPAL DISTINCTIONS

Ws have to study the principles which regulate our thinking about any subject; and these can only be discovered by examining our various particular thoughts. Now the trae unit of thought, the simplest complete act of thought or piece of thinking, is the J_{u} dgement, or Proposition : between which, if a distinction is ever intended, it is that the proposition is the expression in words of a judgement, and onless a judgement were expressed in words, we could not study it. This does not mean that it need be uttered aloud, or written down, though these may be helps to us in fixing our attention; bat we must express it mentally to ourselves in words or in a proposition, if it is not to evade us. The judgement being thas the anit of thought, it might be expected that Logic should begin with a discussion of judgement; but it is more usaal to begin with the elements of judgement, viz. terms. It is, however, only through ita place in a judgement that we can understand what is meant by a term. When that has been explained, it may than be convenient to discuss the doctrine of Terms, before peseng to a fuller consideration of Judgement.

To judge, in the logical sense of the word, is not to aoquit or condemn, but to affirm or deny a predicate of a subject. It is easy, bowever, to see the connexion between the twio uses of the word; for when I judge, in the logical sense, I decide with myself what is, or is happening. 'Vengeance belongeth unto the Lord,' 'Sweet are the uses of adversity,' xalemd rd кa入d, Balbus acdificat, are all judgements. In each I recognize a matter of fact, and what I recognize in each is different. ${ }^{1}$ But in the matter of fact there is a distinction seen when I judge, between the subject and the

[^5]predicate ; for I recognize something in particular as characterizing the object of thought already before ma. ${ }^{1}$ Subject and predicate unite with one another in the object, and we are awrare that because dittinguished they are not separate, as the words that indicate them are in our proposition. Neverthelees, the judgement admits of analyais into those two factors, as has been already said. Subject and predicate ($G \mathrm{r}$. vizoкeluevov and кarmpopoipevov), as the parts into which it is analyred, are called the cerme of the judgament.'

From this it will be clear that s term is not the game as a word; a proposition may contain any number of words; but one judgement never contains more than two terms. Sabject and predicate may be expresed each in a single word, as in the proposition 'Tuetes differ'; more commonly each requires several words, as in 'Dead men tell no tales'; while sometimes, on the other hand, a single word expresses both, Csessers famous meseage of three words, ' Veni, vidi, vici,' containing as many distinot propositions, each of which may be broken ap into the aubject-term ' I ', the same in each, and a predicate-term which is different. Again, some worde are not normally capable of signifying the terms of a judgement at all; they do not indicate by themselvee any object of thought, but are either ueed, like an article, in conjunction with some deecriptive word, to deagigate an objeot, or like an advarb, to qualify what another word expreases, or like conjanctione and prepositione, to indicate a relation between different parta of a com-

[^6]plex object of thought. ${ }^{2}$ Such words are called symedteofremátic (ovyкarпyop \quad uarıad) because only capsble of being used along with others in predication; while words which signify what can by itself be a subject or predicate in thought are called categorematic. These, indeed, while capsble of being used by themselves for terms, may elso enter into a term at one of the words of which it is composed; thus man is a term in the proposition 'Man hath found out many inventions', but not in the proposition 'The beart of man is deceitful' : the sea in the propocition 'The ses shall give up its dead', but not in the line 'She left lonely for ooer the kings of the sea '. In this line the words italicized are eyncategorematic; but sea is not ayncategorematio, because it can stand for a term, though here it doee not do so. Terms composed of word of both kinds have been called 'mixed terms'. It is true thaf syncategorematic words, though signifying nothing about which anything can be aseerted, or which can be easerted of anything, can yet as words be made the subject of linguistio or grammatical discussion, as when we say 'Of is a preposition', or 'is the sign of the genitive case in English': When words which signify no complete object of thought are made objects of our thought themselves as words, it is said to be by a oupporitio materialio. ${ }^{3}$

[^7]Some logicians have preferred to speak of mames, rether than terms, or have been ready to apply to a term Hobbes's wellknown definition of a name. 'A name,' he asys.' is a word taken at plessure to serve for a mark, which may mine. in our minds s thought like to some thought we had before, and which, being prononnced to others, may be a sign to them of what thought the spenker had, or hed not, before in tis mind.'. ${ }^{1}$ This definition adminably expresee the function of a name, though it covers many expreesions that contain more than one word; bat it is not equally appropriate to define a term. For the name not is but signifien the term. A term is properly one of the elemonte into which the object of our thought is anslysed when we break up the jodgement; a name is the mark which serves to fix and recall these elements in the objeot of our thought. The name belonge to the expression of our thought in language; but thought itsalf is not made up of, and is not generally sbout, names. We shall therefore commonly speak of terms, and not of names. Nevertheless, by term will sometimes be meant the mame solich cignifies the term. For oxample, when it whe said that in the proporition 'The heart of man is deceitful' man ontered into the subject-term as one of the worde of which it is composed, it would have been more socurate to say that it entered into the name (or phrase) which signified the subject-term. But we may consult brevity by the other expression without serious risk of confusion; for the name and the object of thought which it aignifies are obvionsly different, and it is easy to know in which sense 'term' is meant in any context. Usage has eanctioned the application of the word 'term' both to the object thought of, and to the verbal expression for it; this usage extends beyond Logic into common apeech; and more difficultiee would probably be caused by departing from then by acquiescing in it. ${ }^{8}$

[^8]A tarm then may most properly be defined as whatever can be thought as the onlject or predicate of a proparition.' But if we mean the name or verbal expression signifying what is thus thought, we may define it as a word or combination of words capable of slanding as the subject or predicate of a proparition. In order to mark the former sense more unambiguously, logicians where the subject or predicate in not an individeal ${ }^{2}$ speak sometimen of concepts instead of tarma, the word 'concept' signifying always an object of thought, and never the name of it. What the logician calls s conoept is oftan in common apeech called a conception; my conception of beaven is what I think of when I speak of heaven. But it is desirable to be able to distinguish between the act of conceiving of heaven, and what I conceive it to be; in popalar speech 'conception' may signify either the act of conceiving or what is conceived, as 'narration' may signify either the sot of narrating or the story narrated, and 'composition' either the act of composing or what is composed; we may my that a man ia engaged in composition, or that he has sent his composition to the printer. The Greek language diotingrimbed these two meanings by different verbal terminations, the act by nouns in -acs (like alodnats and $\begin{gathered}\text { donows), the object or product by nouns in - } \mu \text { (}\end{gathered}$ aloonpa and vornua). It is this distinction which Logic marke, by using the word concept for the object or product of the aot of conception ${ }^{3}$
[It hae been mid that a concept in an object of thought. But it may be urged that the objects of our thought are things themselves; are thinge then the same as concepts? When we make a judgement, it is poasible to distingriah between (i) the object, reality, or matter of fact which we recognize, and (ii) our thought in recognizing it. If I say 'Gibraltar belongs to the Britiah

[^9][Crown', I refer to a rock at the entrance of the Mediterranean, and a fact in its present history. These form the 'first intention' of my mind. But my recognition of this fact about Gibraltar is itself a fact, and the thought in which I recognize it may be considered, and will form the 'second intention' of the mind. If. I consider this recognition, i. a. my judgement, I find it involves a recognition of the union with Gibraltar of this relation to the British Crown. These therefore are the terms of my judgement, and its terms are objecte or realities reeognized; for belonging to the British Crown' is as real as the rock, though not visible or tangible. But I might have thought Gibraitar to belong to the Spanish Crown; and that relation, though real-it is real for example of Algeoiras-is not real of Gibraltar. Again, I might have apoken sbout Atlantis, instead of Gibraltar; and Atlantia never existed except as an object of Plato's or other men's imagination. Inaamuch then as we may think about that which does not exist, or think falsely about that which does exist, it is necessary to distinguieh objects of our thought from objecte existing. Terms therefore are always objects of our thought; but they are not always objects that exist ${ }^{1}$; though in any true jodgement they are both. Hence it is possible to say that a term is some reality, or element in the reality, thought of, and it is possible to say that it is merely something thought of; the objects of our thought need not exist, and even if they do, we need not consider whether they do or not. When concepte, or-more generally-terms as the elemento into which a judgement is broken up, are taken in isolation, we do not ask whether, in thinking of them, we are thinking of an existing object; it is enough that they should be objects of thought; for this purpose, they must not contain elements which cannot be thought of as combined (as in the term 'square circle'); but they may be incapable of being thought of as combining with what really exiata, and yet be objecta of thought just because we are ignoring the question of their combination therewith. A concept then is an object of our thoughtor our thought of an object, if that means what we think it to be, and not the fact of our thinking sbout it-as opposed to an object as existing irreapectively of our thinking about it ; though of an individua, so far as its being goes beyond what thought can .grasp, there is no concept. ${ }^{2}$ Whether any objects exist altogether irrespectively of the knowledge of them is a profound meta-

[^10][phyaical question; holding that they do not, we munt still admit that they exist irreopectively of this or that man's knowledge of them. And existence is not necessarily material existence; the objects of mathematical knowledge exist, though they are not material, like Gibraltar, and no one could mount a battery on them. Bat there are objects thought of which certainly do not exist except as objecte of thought to the iodividuals who think of them; theae have their being only in and for thought, and are concepts which have to be distinguished from 'things themzelves'.]

Having considered what a term is in general, and distinguished a term as an object of thought from a term as the word or worls signifying it, we must now consider the main kinde of lerme that Logic hae to recognize. The ordinary clasifications of terms are claseifications of them as words which signify objecte of thought; bat the diatinctions are based on differences in what we think of, and in our way of thinking about things.

Terme as objecte of thought are divided first of all into pbetract and oonarete: terms verbal ${ }^{1}$ into ebatreot, conorete, and attribative. A concrete term (verbal) is the name of a person por thing, an abstract term the name of a quality or attribute; ∞ that the distinction between the thing and ite qualities, between subetance and attribute, is tho basis of the distinction between concrete and abstract terms. Attributive terms will be explained later.

Our notion of a thing involves two elements, which furnish the basis for a further division of concrete terms into thowe which are angalar and those which are oommon or general. A thing is, first, an individual, having an existence distinct from that of other individuals; the page, for example, on which these lines are printed is a different page from every other in this book. But secondly, a thing has a character, which may be the same in other thinge; just as other pages in this book, though individually different, are equally pages. This character, which belongs alike to many individuals, is called sometimea an wniversal; and they, as so many different cases or examplee of it, are called particulars: partieulars, as we often ay aleo, of a kind.

Now the various particulars of a kind, so far as they have the mane oharacter, may be called by the mame name: eo far as

[^11]
II TERMS, AND THEIR PRINCIPAL DISTINCTIONS 19

they are distinct particalars, they will require different names to distinguish them. Their names as things of a kind are common or general names: for the name is common to all particulars of the Kind, or applies generally to any; soorn, equirrel, file, metal, are gengral namee. Their names as indiéiduals, if they have any, are singular; like London, Zoroaster, the Matterhorn; sach names as theee we call propar names. A general term is thus one that is predicable of any mumber of individmals in the same sence: a singular term one that is prodioable of one individnal only in the same cense. 8mith for example, meaning one who works in metal, is a general term, because I mean the same by calling Dick or Thomas a amith; if I use it as a proper name, numerous as are the persons who bear it, I do not mean the name in each use of it. I may refer to the defender of Acre, or to the witty canon of St. Paul's, or to any of a hundred and one others, and in each case my meaning is different.

We are seldom at a lose for some genaral term by which a particular thing may be denoted; but comparatively few particulara beve singular terms appropristed to them. Many particulars of a kind-for example, new pennies-are not distinguiahable at all to our senses, except by each occupying (when we see them together) a different place; thees will not have each a different neme, for we ahould never succeed in calling each individual alwaya by its own proper name. In other cases, though the particulars of a kind might be tolerably distinguishable-for example, lumpe of chalk of varying ahapes and aizes-we have no occasion to refer to them individually, nor to burden our memory with so many namee. We are content to employ a common or general name, and to specify the particular object (from among all those that bear the name) to which we wish to refer, by pointing, or the use of a demonatrativeor posesesive pronoun, or some periphrasis. Thus we say 'the picture there', and point: or 'this year', or 'my great-coat', or 'the bust of Julins Caesar in the British Museam of which Froude used an engraving for the frontirpiece of his life of. Caesar'. Such expressions are indeed in a manner singular terma, for they serve to designate particular objecta; they are not however proper names, and they have been conveniently christened derignations.

But where particulars of a kind are diatinguishable, and we are interested in them singly and wish to be able to refer individu-
ally to them, we give them 'proper names'. Thus every individual man has a name of his own, and every field in the country is named, becanse the farmer needs to tell his men which particular field to work in; and a railway company names or numbers its various engines and carriagea. Though however many particular things have no proper names, all which have proper names have general names also; the 'four-acre' is a field, the 'Cornishman' is a train, William the Silent is a man; and on the other hand any particular thing might, if it were worth while, be distinguished by a proper name. The proper name and the common name thus recognize reepectively the two elementa in oar notion of a thing noted above : the proper name recogaize ite distinct exiatence, the pommon name its character that it shares with other things: nor could our thought abont things express itself fally without concrete terms of these two kinde.
[This has not indeed been always admitted. Thus James Mill in his Analysis of the Haman Mied (vol. i. ch. viii. p. 260, London, 1869) writee that it is 'obvious, and certain, that men were led to cless solely for the purpose of economizing in the uee of namee. Could the purposes of naming and discourse have been as conveniently managed by a name for every individual, the names of clesses, and the idea of classification, would never have existed. But as the limits of the human memory did not enable men to retain beyond a very limited number of names; and even if it had, as it would have required a most inconvenient portion of time, to run over in discourse as many names of individuala, and of individual qualities, as there is occasion to refer to in discourse, it was necesary to have contrivances of abridgement; that is, to employ namea which marked equally a number of individuals, with all their separate properties; and enabled us to apeak of maltitudea at once'. The position here taken up by Mill is known technically as that of nominaliem, the doctrine that thinge called by the aame name have only the name in common; a doctrine frequently professed, but not often stated with such uncompromising clearness as in this passage. We do not however really call different individuals by the same name, except because they have or are believed to have the ame nalure; nor ia it conceiveble that we could name an iddividaal by a proper name, without at the same time recognizing in it, however vaguely, some character that, as capable of existing equally in other individuals, might be marked by a general name. General names therefore are not a mere means of abbreviating discourse, but their existence arises from a necessary feature in our thought about objects. Aristotle's distinction at the
[beginning of his 'Categories' between $\delta_{\mu}{ }^{\prime} \nu \nu \mu a$, or things called by the eame name having only the name in common, and covivira, or things called by the same name having also what is meant by the name in common, may be mentioned here: the distinction is nowadays embodied from the side of names instead of things in that between equivocal and univocal terms (0. infra, p. 84).]

There are thus two kinds of concrete terms, viz. aingular terms, or namee of individuals, and common or general terms; singular terms can be further distinguished into proper names, i. o. names permanently assigned to one individual, and desigmations, i, e. phrases which by a pronoun or what not serve to indicate an individual otherwise than by a name of its own. Now it has not been stated in the last sentence, what general terms are the names of. (Are they also the names of individuals, or are they names of the character common to many individuals? The former view seems incomplete, for it does not take accoant of their difference from singular terms. The letter view soems inconsiotent with calling them concrete: for the common character of many individuals, regarded by itself, seems like a quality-something considered in abatraction from the things possearing it.

The importance and difficulty of this problem can only be appreciated in a more advanced study of thought than this volume contains. Here the following solution must suffice; bat we shall come upon the same isaue again in other connexions.

A general term, being predicable of any namber of individuals in the same sense, implies that though they are individually different they have something in common; in other words, that there is something the same in different individuals. This common character is only found realized along with the opecial differences that distingrish one individual from anothor ; the common character of man is found in you and me concreto with all that distinguishes one of us from the other; and man is a concrete term. When on the ground of that common character we are called by the same name, the name is concrete; but when the common character is considered by itself, and a name is given to that, without regard to or is abstraction from the individuals who manifeat it, that name is abstract. Thus knmanity ${ }^{2}$ is an abstract term, though it is what

[^12]makes each of us a man. The torm gold, again, is concrete; we may say 'this gold' and 'that gold', and 'the gold in the cellars of the Bank of England'; but if we regard the common character of all theee, in abetraction from any particular parcel of gold, we should call it 'goldnees', which would be an abotreot term. The readiest test whether a term is concrete is furnished by aaking' Do I mean by it some parson or thing (or some assemblage of persons or things), or only a quality or attribate of such ?' Thus animal is a concrete term, but colowr is not; society, when we talk about 's society', is concrete; when we any men live together 'in society', it is abstract, for then we mean by the word not men living together in a certain way, bat only the way in which they live together.
[It was atated above (p. 18) that the distinction between concrete and abstract terms rested on the distinction between substance and attribate; and in the last paragraph it might have been eaid with more precision that the teat whether a term is concrete was furnished by asking whether it coald be used of a substance or assemblage of substances. And the difficulties often felt in determining whether a term is concrete or abstract apring from the dificultien lurking in the distinction of aubetance and attributa. If by enbstance we mean the fully determinate individual, then what we call the attribates of a substance are elements in its boing, and it is not something to which they can be attributed as addends, like an article of clothing; the individual is not substance + attribates, the attributes are rather factors in the subatance. Any of themeattributes, however, can be considered separately or in abetraction from the reast of the nature of the concrete substance, and so considered can be as it were repleced in thought in the concrete whole from which it has been abstracted, or be attributed to it. But while sometimes what we thus consider separataly is only some comparatively simple feature of a thing, as its colour, or size, or price, at other times we consider in one notion or concept indefinitely numerous features, on the strength of which the thing is grouped with others in a 'natural kind' (cf. pp. 41-43 inf.). If we gave a name to these features considered in abstraction from what else characterizes the substance, such name would be abstract; but just because they constitute mo mach of ita being, we give a name only to it as constituted by them, and such a name, like man or gold, is concrete; they are not abstracted from and attributed to the remainder; and therefore we have no name for them considered separately, unless opecial reasons prompt us, as in the case of 'humanity'; but se a rule, where occasion demands abotraction, we use a periphrasis

II] TERMS, AND THEIR PRINCIPAL DISTINCTIONS

[like 'the nature of gold', and have not abstract terms like oldness. It is perfectly justifiable to say one abstract term is less abstract -more concrete-than another, in the sense that though we are considering not any substance, but some part of the full and determinate nature of a mabatance, yet the part we are considering is more, and more determinate, in one case than in another. Thus the properties of figure and number, which can preeminently be studied in isolation from all else about things, are preeminently abstract.

Language, unfortunately, is apt to mislead us in this matter. Many abstract terms are not commonly used in the plural; and When we find a term used in the plume, we are apt to think it concrete, as predicated of divers individuals. But this is not necesscarily the case. Triangle is not really a concrete term because we can talk of triangles ; 'triangles' is indeed concrete if it refers to things of wood or steel, and so is the singular in like case; but 'triangle' often means the triangularity of every individual triangle, and 'triangles' different modes of such triangularity. And colour is not concrete because we can speak of colours. 'Colours' is concrete if I mean certain slabs of pigment; but if I mean blue, green, and yellow, as qualities, it is abstract.

The distinction of concrete and abstract terms is thasefore.only really intelligible if we ask ourselves what we are thinking of. If we took alone to terms verbal, it is impossible to tell whether s name is abstract or concrete; for many names are equivocal, being sometimes one and sometimes the other.]

Abstract terms then are the names of qualities or attributes; but we must understand this definition rather widely. It is not only single sensible qualities, like flavours or odours, whose names are abstract terms; all that goes to make the nature of an object, when it is considered merely as qualifying such object, is abstract, and its name (where it has any) an abstract term. Moreover, the object in question need not be a single thing (or person) such as a stone or an elephant; it may be an assemblage of what we regard as distinct things (or persons), like a forest, or an army; but if there are features belonging to this enesemblage, though they are not qualities of any oneohjoot-in it (as a forest may be extensive and an

pleats.

product army skilfully or anskilfully disposed), these features considered in themselves are abstract, and their names, 'extent 'or 'disposition', abstract also. Hence animality, discipline, civilization, paternity, are all abstract terms, though it iss only by adoubtful extension of language that we could call any of them a quality, like fragrance or sweetness-
[The distinction of singular and general is not applicable to abstract terma The calling a concrete term general rests upon a consideration of the many different individuals who being of the same kind claim the aame name. Bnt an abatract term is the name of that which is common to many individuals, considered without reference to its repetition in them all. It may be thought that abstract terms ought therefore to be called singular; but neither would that be correct. A singular term denotes an individual; but an abstract term denotes something common to many individuals, something therefore which is 'universal'.

It is indeed true that whereas general terms are applied to many distinguishable individuala, certain abstract terms are predicated of many distinguishable attribates. Colour is nsed equally of blue and red and all the ofther colours of the apectrum; disesee, of measles, whooping-cough, bronchitis, and many other ille that flesh is heir to; whereas we do not distinguish different examples of blue by different names ${ }^{1}$, nor different cases of bronchitis. But 'blue' and 'bronchitis' are not for this reason singalar terms; the true analogy of the relation of the terms 'blue' and 'coloar' is the relation of the terme 'man'and 'animal', and not that of 'Socrates' and 'man'. Juatas no one would say that 'man' is a singular term because it is one apecies of animal, so we ought not to say that 'blue' is a singular term because it is one species of colour, nor ' bronchitis' because it is one species of disease; for that would be to confuse the distinction of species and genus with the distinction of individual ${ }^{2}$ and universal. 'Socrates' is a singular term becaure it is the name of an individual having attributes; 'blue' is not a singular term because it in not the name of an iodividual at all, but of an attribute that may belong to many individuals.]

Besides abstract and concrete terms, a kind of terms has been recogaized which cannot well be classed with either-viz. adjectives and adjectival terms. These are called attributive terms, e.g. red, beaten, insolvent. They are not the names of qualities, like redness, defeat, insolvency; on the other hand, it is those qualities which furnish their meaning, and not the nature of the various kinds of object to which the qualities may belong. Thus cloth may be red and so may silk, but we should not explain what is meant by calling them red if we were to explain the nature either of silk or cloth; and a man may be ineolvent and

[^13]30 may a company, but to explain what is meant by calling them insolvent we must explain the nature not of man, nor of a company, but of insolvency. ${ }^{1}$
J. S. Mill held that adjectives are really concrete, on the ground that white is predicated, or is the name, of snow, milk, or linen, and not of their colour; it is an army and not a defeat that is beaten 2. But it is clear that the subjecte of which an adjective may be predicated can as well be abotract as concrete; and if the adjective is concrete because it is predicated of a thing, it should equally be abstract because it is predicated of an attribute; so that if we any that cabbagee are common, oommon will be concrete; while if we eny that indolence is common, it will be abstract. The fact is that the distinction of attribative terms from abotract and conerete corresponds to no further distinction in thought; if terms are objects thought of, attributives are not terms at all; we may attribute a quality to a aubject, but that is an act of jodgement; thing and quality, sobstance and attribute differ as objects thought of ; thing or substance is concrete, quality or attribute abstract, and everything abstract is attributable; but there is no third kind of object thought of to correspond to the attributive term. In language however there are words which, though they can be used as predicates, and therefore satisfy the definition of a term verbal, are not properly name either of a substance or of an attribute. Adjectives are such words; bat so sleo are verbe. Verbs however were overlooked by those who erected for adjectives a third class, along with sbatract and concrete, in the division of terms verbal. For terms are the parta into which a judgerment is resolved; in them, taken singly, the act of predication is not seen; they are as it were deed members, which could only have been taken apert because the life of judgement had fled and no longer bound them together. But in the meaning of the verb this life lingers, even if a verb be taken without its aubject. Hence

[^14]logicians, anxious to effect the resolution of a judgement into its terme, have often preferred to aunder, even in language, the word which expresses the predicate from that which expresees its predication: to take the term as it were out of the varb, and any of Lear not, with the doctor ${ }^{1}$, that he 'sleeps still', but that he 'is still aleeping'. Now in such a case the predicate is often adjectival in form; aithough not always, for the proporition ' He plays cricket' would become, if it were meant that he played habitually, not ' He is playing cricket' bat ' He is a cricketer'. Such an adjectival predicate is one of the parts into which the proposition is resolved ', whereas the verb belonga rather to the unresolved proposition. The whole queation of the separate character of the adjective, or adjectival word, belongs indeed rather to grammar than to logic. But when 'term' meane name, or term verbal, as names are cither eabetantival or adjectival, and concrete and abotract names are both substantival, some plase is wanted for names adjectival, and so they are classed separately as attributive terms. If their form were to be ignored, and they were to be referred either to concrete or to abstract, they should ratber be considered abstract than (a J. S. Mill would have it) concrete; for their invention impliee the consideration of some quality or character in the thing in abstrection from the rest of the thinges nature.

A special clase of terms is constituted by thoee which are called oolleotive. Like the other distinctions of tarme recognized in Logic, this is based on a distinction in things. Individual things or persons may be considered singly: they may also, since there are many of them, be considered in groups; and the names of such groupe are collective terms. Thus a group or collection of books forms a library; a group of human beings related in certain ways forme a family; related in rather different ways, a tribe; in other ways yet, an srmy or a club. Any term that denotes a collection of objects, with certain resemblances or relations among them, is collective. Collective terms may be either singular or general; for we may wish to refer to a group composed of certain specific individuals

[^15]
u] TERMS, AND THEIR PEINCIPAL DISTINCTIONS 27

(as when we eay 'the family of King Henry VIII') or aimply to a group of individuala, no matter who or what, that is compoeed in a certain way, snch a a family or a regiment : bat all colleotive terms are concrete, for they are the names of the individuals taken together, and not of the mode of organixation among them. A general collective torm is said to be used diatributizely of the different groupe that it can meverally denote, and collectively of the individuals in any one group; thus if we speak of Britiah regimenta the term is used distributively of the Guards, the 6oth Rifles, the Sutherland Highlanders, \&c., and collectively of the men in each several regiment.

We may sum up what has been so far mid of the kinds of terms as follows:-Terms an objects of thought are either concrete or abstract; as names or terms verbal, concrete abstract or attribative: concrete terms are either singular, and then either proper names or designations, or else general : abstrect terms, having no reference to individuals, are not conveniently considered as either singular or general, but always signify something univernal; and some of them are not names of one recognized attribute (or atate or quality or relation) only, bat inclade under themselves divers species thereof. It may be added that attributive terma are obviously general.

We peas now to a freab division of terms, made from another point of view. As we may give a name to a group of objecta taken together, which would spply to none of them by itmelf, 00 we may give to an object or quality, when we regard it in its relation to some other object or quality, a name which would not apply to it considered in iteelf. Such terms, ettribating to one object or quality some definite relation to another, are called ralative terms : and in contrast with them, terme that indicate an object or quality considered in iteelf are called absolute. It is clear that if one object or quality stands in relation to another, the lettor must also stand in relation to the first; and the name applied to it to indicate this reverse relation is 'correlative'; or, since each is correlative to the other, the two together are called oorrolativee. Instances of relative terms are equal, greater, sulject, parent: with their correlatives equal, lew, ruler, child ; apple, sound, man are aboolnte terms.

Belative terms are necessarily general ${ }^{1}$, like attributive terms;

[^16]for the same relation may be exemplified in many particular instances, and therefore many objects may stand in that relation which the relative term is used of them to indicate. They have this further resemblance to attributive terms, that though meaning a relation, they are applied to a subject atanding in that relation : as attributive terms are to a subject posessing the attribute which constitutes their meaning; they are not however themselves neceasarily attribative-thus 'contemporary' is relative and attributive, but 'a contemporary' is relative and concrote. The existence of attributive terms is grounded in the fact that the various objects of our thought do possess distinguishable attributes; and that of relative terms in the fact that they do stand in distinguishable relations one to another. It has been contended that all terms are really relative, because every object of thought stands in relation to other objects, and nothing can be abeolute except the totality of existence, beyond which there is nothing for it to stand in relation to. But though it is true that everything stands in relation to other thinge, thinge are sometimes considered rather in themselves, and receive names accordingly; and sometimes they are considered in definite relations to another thing, and receive names that indicate that perticular relation. And this is sufflient ground for the diatinction between absolute and relative terms, though there are cases in which it is hard to say whether a given term is one or the other. Man is clearly abeolute, and falher relative, though mowntain might be disputed; for a mountain is so only by its elevation above the plain, and yet in calling it a moantain we have in mind many featuree beaides this relation.

Terms have been forther divided into pasitive, negative, and privative. A poaitive term is said to imply the presence of a quality (or qualities), e. g. greod, greedy : a mogative term to imply the aboence of a quality, e.g. colowrless, wnft, wifinear : a privative term to imply the absence of a quality where it has been or might be expected to be present, e. g. deaf, deafness, deviceated.

There is a certain difficulty in the notion of a negative term, and in the account of it just given; for no term can be purely negative, and imply merely the absence of a quality. The Irishman's receipt for making a gan, to take a bole and pour iron round it, is not more dificult to execute, than it would be to frame a term whoee meaning consisted aimply in the fact that a particular quality was not
meant. A term must have some positive meaning or content, in order to be a term st all.

It is indeed sometimes said that a negative term inclades in its meaning whatever is not meant by the corresponding positive term. According to this view, there is no positive term to which we may not frame a corresponding negative; to man there corresponds nolman, to book nol-book, to equare not-square, to eobowr mot-colour; molman is everything which is not man, and includes therefore not only the other animal apecies, but plants and mizerals, books and institations, birth and immortality; mot-book includes all these but books, and man besides; and so forth. The two 'contradictory' terms (as they are called) comprise between them all that is; nothing can be conceived, of which one or the other is not predicable; and they divide the universe between them. What the positive term is, does not matter; for whatever it be, the negative term covers everything else; and therefore it may be expressed by a symbol; let A represent any term, and not- α its contradictory; and we may then asy that A and not- A between them make up all that is, or that there is nothing of which one or other may not be predicated. 'Everything is either \boldsymbol{A} or not-4.' ${ }^{1}$

Such negative terms as these do not really figure in our thought; they are 'mere figmente of logic's ; Aristotle long ago pointed out that oús-Loppmasos was not properly a name at all ; and he

[^17]perhape extended his countenance too much to it, when he maid that, if we were to call it anything, we must call it a ' name indeterminste' (δ youa doptoroy) becanse, being the name of nothing positive and in particular, it had a purely indeterminate signification; it was applicable equally to things existent and non-existent. ${ }^{1}$

The invention of such terms however is explained when we remember the relation of a term to judgement. The latter, as we have seen, is the primitive and remains the complete act of thought, and terms are got by abetrmotion from it. Now the affrmative judgement 'All flesh is grass' may be resolved into the terms fleth (the subject) and grase (the predicate affirmed of it); bat the negative judgement 'Man is not a fly' ${ }^{\prime}$ into the terms man (the subject) and fly (the predicate denied of it). Bat since we do therein affirm that man is noi a fly, it seeme poerible to eay that the predicate, mot a fly, is affirmed of man, as well as that the predicate fly is denied of him. This attempt to reduce negative and affirmative judgements to a common affirmative type, by throwing the negative into the predicate, is not really defensible, for the very reason that the negative term not a fly has no mearing; and hence, as we should not take the tronble to afflrm of man nothing in particular, the only point of the judgement must lie in denying of / him something in particular; so that the meaning of the 'infinite' judgement (as it is called) 'Man is not-a-fly' liee in the negative judgement 'Man is-not a fly', and it is clear that we have not resolved the negative into the affirmative form, when such affirmetive can only be understood by restoration to the negative. But it is out of such sttempta that parely negative terms like 'not-fiy' have arisen; and it is only by understanding that the term A has been the predicato of a negative judgement, that we can understand how the term not-A should ever have been formed.

There are however certain negative terms which are not such mere figments of logic as the 'infinite terms' which have been just considered. Where the positive ts not a general concrete term but

[^18]
I] TERMS, AND THEIR PRINCIPAL DISTINCTIONS

is attributive, there the corresponding negative may be quite legitimate; indeed the distinctions of positive, negative, and privetive mort properly apply not to all, bat only stitibulive terms, or to abstract terms founded apon these. ${ }^{1}$ For all attributive terta föply by their very form a subject of whioh they may be predicated, and to which they refer that attribate which constitates their meaning. Therefore even if the term be negative, it still raggeats a anbject which, in the abeence of the attribate which the negative tarm excludes, is poritively conceived a having some other character instead. And here we have a beais of positive meaning to the negative term; for let A be a positive term; then not-A will signify what a subject, whiel might be 4 , will be if it is not A. Thus intemperato signifiee what a man, who might be temperate, will be if he is not that; wneoen anggesta what a line or surface, such as the surface of a road, will be if it is not even; nod-blue suggeste what a thing which might be blue (that is, an objeot which must have some colour) will be if it has not that colour. The definiteness of the positive meaning which a negative term thus conveys will vary greatly, sceording to the range of alternative attributee which we conceive possible to a subject that might conceivably have possessed the attribute denied of it; thue intomperate has a more definite meaning than mot-blue, because when temperance is excluded, though there are many degrees of intemperance, yet they have more affinity with one another as contrasted with temperance than the different colours which remain when we exclude blue; waruffed has a more definite meaning still, for a surface which is not in any way ruffied can only be smooth.'

It has been alleged that 'not-blue' does not necessarily imply 'coloured in some other way than blue', nor 'not-even' a surface of another kind than even; that it is as true to eay of benter that it is not blue as of a buttercup, and that larceny is as much not-even as Lombard Street. But suoh a contention misinterprets our thought. Just as privative terms imply the absence of an attribate from a rabject that ponessed or should have possemsed it, and therefore muat convey a notion of what the subject consequently is without that attribute, so negative terms (at any rate when they are not

[^19]J mere figments of logio) imply the absence of an attribute from a subject that might conceivably have posesesed it, and therefore convey a notion of what the subject is inatead. The attribute which a negative term excludes belongs to a genue of attributea (as blue belongs to the genus colour, or pradence to the genus feature of human character, or square to the ganus figure); and if a subject is unsusceptible of any attribute within that genus, we should not be at pains to deny of it some particular attribate in the genus; since the soul for example has no figare, we should not say that it is not-square; since furnitore has no feature of human character, we should not call a towel-horse imprudent. The negative term is only used of what must have some attribute within ite genus; and this genus furnishes a substratam of poritive meaning to the negative term; mot-blue doen mean 'coloured not with blue' and not-eoen having a surface which is uneven. ${ }^{1}$

The statement that the distinction of terme into positive, negetive, and privative is oaly applicable properly to attribative_or relative terms may seem to be contradicted by the fact that many negative terms, sach as injustice, inequality, non-intervention, are not relative or attributive. Bnt it will be foand that all such terms are sbstracts that presappose the relative or attributive negative term; and are very poaitive in their meaning. Injustice does not mean whatever is not justice (such as 'accidence and aljectives and names of Jewish kinge'), but the quality of being nnjust; inequality means the relation of being unequal; nonintervention the conduct of the not-intervening. Abetract negative terme like not-equality or not-colour are as unreal as concrete negative terms like not-Soorates or not-book.

It may be asked, if all negative terms (and the same is true of

[^20]privative) have a pooitive meaning, what is the use of the distinction between them? The answer is as follows. First, with regard to the distinction of positive and privative terms; there are some states which can only be understood as the privation of a positive state: deafness would have no meaning, but for our knowing what it is to hear; we cannot think of a body as deviccated, except we think of it as having first contained moisture. ${ }^{1}$

Secondly, with regard to the distinction between positive and negative terms: there is a real difference between a term which aignifies one definite attribute, and a term which signifies any attribute within a genus except one; the latter is comparatively indeterminate and uninatructive; e.g. verfebrate signifies a definite anatomical stracture; inverlobrate signifies a structure which is not vertebrate, but faile to characterize it further. Positive terms are positive directly and precisely, negative terms indirectly and for the most part vagrely. This distinction is important, and we are therefore justified in calling attention to it; it will be seen for example presently to be one of the rules of definition to avoid, as far as posible, negative terms; and there is no way in which the point of this instruction could be so well conveyed as by the help of the distinction of negative and positive terme.
[The doctrine about negative terms impugred in the foregoing paragraphs furniahes a good example of the dangers that bevet a purely formal logic. If we regard only the form of a proposition, Δ is not B, (in which the terms are A and B) we may 'permute' it to the form Δ is not- B (in which the terms are A and not- B); and we may formally regard A, B and not- B all equally as terma. But whether the proposition A is not- B, and the 'negative term'

[^21][not-B, have any meaning or none will depend upon the matter of the proposition-upon what kind of a term B was. Looking at the form, B has a corresponding negative not- B; but whether such a form of thought, or notion, as not- B is possible cannot be told by considering the form alone.]

We have still to notice the distinction of anioocal, equipocal, and analogous terms. Univooal terms are terms with only one meaning, so that they are used in the same sense of every subject of which they sre used at all: equivocal (or ambiguous) terms are terms with more than one meaning, so that they may be used of different subjects in different senses-e.g. fair, sa used of a complexion and of a bargain: analogous terms are terms which have more than one meaning, but the meanings have a certain degree of identity or correspondence-a.g. we speak of the foot of a man and the foot of a mountain, meaning different things, but in both cases that on which the object stands. We ought in strictnees to regard this distinction as one not in terms but in the use of terms; for fair is used univocally of all fair complexions, and is only equivocal when we use it at once in different senses. All proper names belonging to more than one individual are used equivocally of such different individuala.
[The history of the words univocal, equivocal, and analogous wih illustrate the tendency to treat Logic from the standpoint of an affair of names. The Aristotelian distinction already alluded to (p. 20) between $\sigma \quad \nu \omega \dot{v} \nu \mu a$ and $\delta \mu \dot{\omega} \nu \mu a$ was one of things. Unioocum and equioocsm are merely tranalations of ouveroynoy and d μ évvioy, and they were defined in the same way (cf. Crackenthorpe's Lagic, Bk. IL. c. i. 'Aequivocs its describuntar: aequivocs sunt quorum nomen solum est commune, ratio vero illius nominis est alis stque alin' c. ii. 'Univoca describuptur in hanc modum: univocs gunt rea vel entis quoram nomen est commune, et ratio illius nominis est una et eadem in omnibus quibus nomen convenit'). Similarly, it would have been not the word 'foot', but the man's and the mountain's foot that would have been called analogous. If we remember that terms are not primarily narnes, hat the objects of thought intended by the names, we might etill say that equivocal terms are different objecta of thought with the same name, rather than the same name with different meanings. But in English usage the distinction of names has really displaced that of things: we do not even retain both, like the Latin, when it was said that 'sequivocs' were either 'sequivocantia, ipsee voces sequivocae', or 'equivocata, res ipsee per illam vocem significatae'.]

CHAPTER III

OF THE CATEGORIES

This distinctions between terms discussed in the last chapter are not primarily grammatical, like the distinction between subetantive and adjective (though here and there, as we asw, the forms of language have affected the mode in which they have been drawn); nor do they belong to any special science, like the distinction in chemistry between names in -une, which signify metals, and names in -gen, which signify gases. They belong to all sciences, and are based on certain features that reveal themselves to reflection about any sabject whatever; and that is why they are logical. But these differences of form in our thought abont things correspond to and involve differences in the manner of being of these things themselves. It is of special importance to remember this in considering the Aristotelian doctrine of Categories, out of which some of the preceding distinctions take their rise. The categories present a logical, but they present aleo a real distinction : i. e. a diatinction in the nature of the reality about which we think, as well as in our manner of thinking about it.

The word category, xar $\eta \gamma o p l a$, means predicate ${ }^{1}$; and the categories may be described as a list of predicates, one or other of which defines the mode of being belonging to everything that exista. In the complete list there are ten, viz.

ขvola	substantia	subetance
mogóv	quantitas	quantity
Totb	qualitar	quality
Tpós 71	relatio	relation
$\boldsymbol{\pi} 0 \hat{\mathrm{v}}$	ubi	place
sord	quando	time
кeîotas	silus	sitastion
[xely	habitw	state
тovễ	aetio	activity
Tdoxetv	passio	passivity (being acted on)

${ }^{1}$ Or predication: bat thedifference is here unimportant, and Aristotle cometimes usee кarmpoppua instesd of marpopia in the present sense: v. Bonits,

Theee Aristotle calle both ' kinde of prodicate ', yeron rîp кarpropeîv, and 'kinds of being', ytop rep δ rrav. We mart examine the latter phrme first, if we wish to understand his doctrine.
We have that propositions may be expremed generally in the form \mathbf{A} is B. Bat the predicate does not seem equally in all creas to declare what the subject in. A man is an animal, and a man is in the kitchen; Tray is a dog, and Tray is happy now; - musician is an artist, and a masicien is breaking my burdygurdy : if we look at theee jodgemente, we ahall admit that the second does not tall us what a man is 80 much as the first; that the third is a fuller answer than the fourth to the question 'What is Tray?'; and that the fifth is a faller anower than the sixth to the queetion ' What is a masicina?'. Now Aristotle would have said that the first third, and fifth of themi declured what their respective subjecte were calt aito, or per κ : the eecond, fourth, and aixth what they were rarà ouplespundf, or per accidens. In other worde, the predicate is in the one caee of the essence of the subject, and the aubject could not exist at all without it being predicable of him ; in the other case it is an accident of the sabject. What in predicated of a sabjeot кaf aird tolls you what it in necomencily, and permanently'; what in prediouted of it aard owißeßpkós telle you indeed something about it, bat comothing lem necomery, and perhape unnecoseary, to its being-something of which it could be diventod, and still remain the thing it is.

The ultimate subject of predication is the concrete iodividual thing-you, Socraten, Bucephalus, or the atone in your signetring ${ }^{1}$; and if you ank of this what it is, you will have to opecify in your answer, come kind of mbelasece ${ }^{2}$; you are a man, Bucophalas is a horse, the stone in your signet-ring is an agate. All

[^22]them-man, borse, agate are mo many different rubatancees; in mying what you, Bucephalas, or the atone in your signet-ring is cenentially, or por se, theee are the answers I must give; their emential being therefore, ie to benompe kind of substranger But if I ank what is a subetanco, I cannot find any more general significant notion under which to bring that, ac 1 bring Bucephalus, in declaring what he is, ander the notion horse, and borse, in deciaring what a bore is, under the notion subetance. Of sobetance I can say that it is a kind of being; for sabotances are one kind of thinge that are; bat it in of no ase to treat mere being as a genus, of which aubetances are a opecies, for to being convidered in iteelf, and not as a determinste way of being (e. g. being a subotance), I can attach no meaning.

On the other hand, there are a great many gubjects, abont which, if asked what cesentially they are, I could not poesibly any that they were substances. Large, loud, blue, heavier, here, yesterday, fever, horizontal, fighting, ranning, defeat, virtae-all these are something, or they coald not enter into true predication : bat what are they? Directly or indirectly they all presappose ouberances; if there were no animale, there would be no fever: if no one fought, no one could be defeated. But they are momething incident to substancea, attributes and not thinga. To say that they are attributes, however, only declares their roletion to something else, their dependence; it doee not dechere what they are in themselver If we ack that, we shall find oureolvee ultimately giving as an anawer some one of the other catogoriee.

Thus I may sey that ' yenterday wie wet': but that doee not tell any one the natare of yesterday in iteolf. Bat if I say' yeoterday is the day before that on which I am now spealing', I explain what yestoriany in iteelf is. And if next I am alked 'What is that?', I should reply that it is a certain date or time; and thare I must atop. The kind of being then which belonge to yesterday in not being a subetance, but being stime. Similarly blue is a oolour, and colour is a quabity; lond aleo is a quality, and virtse; so that their being is being qualities; that is what anentially they are. Large is a aize, i. e. to be large is to be of a certain quantity ; to be heavier is to be in a cortain relation; here is a place; fever in a state of the body, horizontal a cilvalion; fighting and running are activitien, defeat a being acted om.

There is nothing then, according to Aristotle, that existe or can be thought of, which is not either a substance, or a quality, or a quantity, or in some other of the categories. One or other of them is predicable of everything; and they cannot be farther reduced, or brought under any common head. ${ }^{1}$ A quality is not a quantity, a time not a place, to do in not to be dome to, nor any of these a situation: and so forth. It might be thought that atato is hardly distinguighable from quality, nor situation from place. Bat the things are not really the same. A state is comething which characterizes a whole through the condition of its parts. Thus we call a man ahod, becsuse he has shoes on his feet; or healthy, becanse each part of his body is functioning rightly ; bat the healthinees of his body as a whole does not meen that each part of it is qualified alike, nor his being shod that every part of him has shoee on. A quality, on the other hand, is comparatively aimple, and if it characterizes a whole, doen ao through being present in the same way in ite various parta; if a whole surface is blue, that is because the various parts of it exhibit the mame colowr, and if a trader's stock is sweet, that is becanse the things it is composed of are severally sweet. The conception of a state, therefore, is more complex than that of quality; and so it is with aityation and place. 'Upeide down', 'horizontal', 'sitting', 'standing', are in the category of situation-predicates which determine not where a thing is, but its 'lie' or position there. Without plece there could be no situation; but you do not determine a thing's situation by assigning its place.

The categories, therefore, are a list of predicates, one or other of which must in the leat resort be affirmed of any subject, if we

[^23]ask what in itealf it is. They are yív rêy кampopû̀v, kinds of
 we recognize, the kinds (if we may put it so) of what thinge are, In aaying things here, however, we do not mean things as oppoeed to their attributes; we mean enything real, and attributes are as real as the substances to which they belong. Nevertheless, the distinction between substance and attribute is promineat in Aristotle's doctrine; for all the other categorice are called by him incidental to subetance. And terms in the other categories, while they may be subjecte of predication (as when we say that bué is a colour, or that the wise ame few), are not metaphysically subjecta-are not independently existing, but exist in concrete individuals. There is no blue except the blue of the see or the sky, of a larkspur or a gention, \&c.; no wise, except wise men or women. In the category of aubstance come all concrete individual things, and these are substancea in the atrict and fulleat sense. Of these in the hat resort everything is prediosted. But what is predicated of them is partly itself in the categery of substance, and partly in the other categorios. We have here that distinction between first and second substances which once ocenpied so much of the attantion of philosophers and theologiana.

Firut mabetances are individanls like Socrates or Cicero; mecond sabstances are predicates like man, horse, peppermint, parsley, which tell what kind of thing an individual is. The former are never properly predicates at all; Socrates or Cicero is a subject of predication, bat not predicable of anything elee ; for what is predicable is universal, i. e might be predicable of any number of aubjecte; but theee are individuals, and singular. The letter are predicates of the former, and are univermal; but they tell what an individual essentially is, and so are prodicates in the category of substance,

[^24]while all else that is aaid of an individual tells only some quality or state that charoctanizen him, his activity or situation, his relation to others, \&c., and is therefore predicate in one of the remaining categories.

Undoubtedly it is here that the chief difficalty in Aristotle's conception lies. But the difficulties are not sought grataitoualy ; they arise natarally in our reflection upon the netare of things. We naturally incline to think, in considering an individual, that out of all that characterizes it some part is more essential than another, goes more to make it what it-is. This we call its kind, and Aristotle called it also its substance; and langage contains names that are evidence of this, kind-names like man, horse, gold. It is indeed very hard to say exactly what constitates the kind; kind-names, as we shall see later, present apecial obstacles to definition; and a positive account of the substance of an individual seems beyond us. But negatively there is a grest deal which we should say does not belong to the subetance-the place where the individual is, what it momentarily does or suffers, all in fact that we can refer to other categories. All these we tend to think of as attributes which the individual has, but that it can exist irrespectively of them : whereas, irrespectively of its kind, it mould no longer be at all. And yet the kind is universal ; it is predicated of more things than one ; Socratea, Plato, and millions more are men; the lumpe of iron in the world are uncountable. Hence follow two linee of refloction.?

First, because the kind, though universal, is at the same time more sabetantial than the other predicates of an individual aremore concrete, in fact, than they-the kind, or 'second subetance', comes to be thought of a having some special claim to independent eristence. Other modes of being, other predicates, dopend on it; but it is thought of as depending on nothing else for its existence. True that we only find the kind reslized in some concrete individual; neverthelese it is not a mere attribute of the concrete individual, as predicates in other categories are. And some have held that these 'second substances' are real, whether there be any concrete individual of their kind or not: while others have beld that, though only realized in individuals, yet each is one and the eame in all individuals of its kind-man in all men, iron in all iron-and so may be called one substance, in a different way from
\checkmark this or that man or lump of iron, but just as truly. Bech of theee doctrines was called by the echoolmen realiom ${ }^{1}$, as opposed to the mominaliom which denied the realidentity of anything in different individuala bearing the tma kindename.

But secondly, becanee the kind is universal, it is predicated of the concrete individual, as predicater in other categoriee are. And se the individual is something which has them, $\infty 0$ it is something to which its hind is attributed. It cannot be identified with ita kind; for then there would be nothing to distinguish one individual from another. Man is predicated equally of Soarstee and Plato, and if each as an individual substance were just man, Socrates would be the same as Plato. Therafore we muat look elsewhere for what dietinguiahes them. If we find it in the other predicatee of the concrete individual, and my that be is the kind plus all his particular attribates, we resolve the individual into an asemblage of unirerral predientes. If we do not do this, but suppose that his kind and all his particalar attribates as well belong to the individual, we are yet quite unable to say what the individual is, to which they all belong. For in saying what it is, we should merely aseign to it a freah predicate; whereas we want to get not at its predicates bat at that which 'hag' them. This gives rise to a new way of considering the subject of predicstion. Originally it was the concrete individual, Socrates or Plato; bat of what he is, one part whe distingaished as what he is eqsentinlly, and the reat reduced to be attributes ar 'socidenta' of him, not necemary to his being, and not to be included in an account of hia essence. Now, what he is ementially is also reduced to the position of attribute and mere predicate, and the anbject becomea a mere sobject of which as such nothing more can be said except that it exifts and is anique in each individual. This mere subject of predicatè, which cannot in itself be described as specifically of this find or of that, Aristotle called matter. We only know matter in conjunction with form ; bricks and timber are the matter or material of which a house is built, but a brick is in turn clay to which a certain form has been given; clay again is matter of a certain form ; but matter by iteelf-that which is found in various forms, but has no

[^25]form of its own-is unknowable. ${ }^{1}$ It may be questioned whether Aristotle wac justified in his uee of the conception of matter. The material of anything is alwayo something of a quite determinate character. Economiste know in how many ways the producta of one induatry are 'raw material' to another; but the raw material which is rawest, i. e. which has iteelf been least worked up, is still matter of a perfectly definite kind. Timber is the raw material of the carpenter, but trees of the lumberman : pig iron of the ironmester, but iron ore of the amelter; and neither trees nor iron ore are any nearer being formless matter than lumber or pig iron. In the one relation, the matter (or materia) is a concrete thing, in a different state no doubt from that into which it is worked up, but perfectly familiar to us as existing in thast state; in the other, the matter is not a concrete thing at all, is in no state, is quite unfamiliar and indeed incapable of being known to us as anch; and this relation of matter to form bae no real analogy with the relation of matter to what is made ont of it in the arts." It is true that in using the metaphysical analyais of the concrete individual into matter and form in order to find different subjects of the same form in different individuals, I may not at first sight seem to rely upon the conception of a quite indeterminate matter. The matter of a house, eaye Aristotle, is atones and timber; the form-what makes the stones and timber the matter of a houseis 'to be a shelter for men and goods'. Stones and timber are determinate material, and different houses, however olosely otherwise alike, are distinguished by being built of different material Bat if we ask what distinguishes the material used in building one house from that used in building another, and do not find it in the kind of metarial, we shall have either to say that the materials are themselves made out of different material or that they just are different; in the former case we shall be assuming, in order to account for the difference between determinate materials that are the same in kind, other determinate materials the same in kind but individually different; in the latter, any further analysia into matter and form brings us to an indeterminate matter that furnishes different subjects for the same form in different individuals. The

[^26]proper outcome of this line of reflection would seem to be that what makes possible different individuals of the aame kind is the matter of which what they are is predicated; and this at times Aristotle cays ${ }^{1}$, and he admits that in one sease matter is substance. But the corollary, that the nature of Socrates, as predicated of this matter, is something that mey be common to another, and universal, he does not draw; and it would seem to be his considered doctrine in the Melaphycics (however bard to reconcile with some of his other atatementa) that what makes Socrates Socrates is his form, or what ho is, and not the matter in which this form is reslized." This form is his subetance; and it is neither marely the specific form of man, nor does it include all that can be predicated of him; but_we are not tald how.to distinguiah it from predicates in the other categories. We need not pursue the Aristotelian doctrine further; 00 mach has been aaid in order to illustrate the difficulty of determining what is in the category of Substance. We may start with the concrete individual, and draw a distinction, among all the things that can be predicated of him, between that which deciares what he is easentially, and is his substance, or belongs to the category of substance, and that which declares about him something not essential, and belonging to one of the other categories. But predicales in the category of anbatance seem universal, as in any other; and predicates in the other categoriee are not easential; hence the tendency to asy that what individualizes is material subatance, not universal nor capable of figuring as predicate. If, to avoid this, we suppose that there is something about Socrates which makes him Socrates, less than the aum total of all his predicaten, we shall find it imposeible to say what this is. The attempt to dietingaiah what is from what is not easential to the individual leads us to distinguish the individual both from his esence and from his non-esential attribates; the 'first substance' is alternately regarded as the whole concrete individual and as what in essential in him; while the fact that the poseibility of distinguishing the essential seems first possible when we look for the character which belongs to him as of hie kiyg leads to the con-

[^27]ception of an universal essence possessed of a sort of aubstantiality of its own, a sort of 'recond subetance'.

We shall be met liter with the same difficulty, when we consider the doctrine of the Predicablee, and the problem of definition. The metaphysical issue rased is fundamental. But for the present it is enough to have called attention to it. Logical and metaphyrical problems have a common root. We cannot reflect upon the features that characterize our thought about thinga in general, without asking how things can be conceived to exirt; for our most general thoughta about them are just our conception of their manner of existence. And it may readily be shown, with regard to the different categories in particular, that we could not use predicates in them, except so far as we conceived objecte to exist in eertain ways. Thus no predicates in the category of quantity can be used of the mind, because the mind is not extended; if it were, it might have a capecity of 8 or 80 cubic feet, and an area and maximum diameter; since it ia not, we cannot apply such epithets to it at all; and it is only because the exintence of material thinge is existence in spece, that we can call them large or amall, three feet square or four feet long. In the same way, if it were not for the fact that the world is spatial, there could be no predicates in the category of place; and spece also renders possible predication in the category of situstion; for it contains the distinctions of up and down, front and back, right and left; and it allows the parte of a body to alter their relations to certain fized points above and below, behind and before, to the left and right of them, while the whole body remains within the same limits. This is what happens when a man liea on the oofa where he was formerly sitting, or when an hour-glas is inverted on the table. And a perfectly homogeneous sphere, though it may change ita place, can be situated only in one way; and if we are to distingaish a right and wrong way up in it, we must mark or single out some point in the circumference, whereby it ceases to be perfectly homogeneous; and this again illurtrates how the distinction of categories arises out of the distinguishable modes of being in thiggs. For it is becanse it is a figure of a certain kind, that such a sphere does not admit of the same varietien of situstion as a cylinder; and because it does not admit of these, they cannot be predicated of it; and if nothing could be perceived or imagined to admit of them, predicates in the category of situation, and
therefore the category of aituation, would not exist. Again, there are prodicates in moceî and rdoxew because things act one on another; and the two categorie are dirtinguishable because there are two terms, agent and patient, in all canal intersction. And the different tenses of verbs, which make a difference to a predication in time, though it remaing in the anme category of rovin or redoxev, lxew or reiodal ${ }^{1}$, premppose that things exist in time; otherwise, how could we distingaish the meaninge of iynafya and infarey, mapulat and vapulabit, vivit and voit, site and sat? Of that which had no continuous existence through differences of time, predication would be possible oaly for a moment in the present. But reciprocally, as we could not predicate in these categories anlese objects existed in certain ways-as rubstances, with qualities, extended in space, persisting in time, \&c.-so we cannot predicate about objects except in one or other category; in other words, not only are they contained in, but they are necebeng to oar thought of any object. ${ }^{\text {a }}$ That which wren not conceived as a subetance, or a quality, or a state, and $e 0$ forth, would not be conceived at all; and a concrete thing that was no sabotance, had no quality or state, and mo forth, would be just nothing. And therefore the concideration of these distinctione belongs to logic, since they charnoterize our thought aboat objeote in gemoral ; and though logic is not interested in the indofinite variety of existing qualities-blue, green, coar, shrill, soft, de.-(becanse an object, in order to be an object, need not have any one of these qualities in particular, but only one or other) yet it is interested in the cetegory of quality, or in noticing that an object mart have come quality or other: in the category of relation, or in noticing that it must atand in relations to other objects : and so on.

The idea underlying Aristotle's doctrine of Categories may be exprewed thus-to discover the forms of existence which must be realized in some specific way in the actual existence of anything/

[^28]whateoever. His clessification may exbibit defecte, but the importance of his ondertaking must be admitted. And many of the distinctions between terms insisted on by those who attach least importance to the Aristotelian doctrine of Categories express an attempt to solve part of the problem which he was attacking, and are derived from his doctrine. Thoee distinctions, as was pointed out in the last chapter, rest upon certain fundamental featores of the manner in which we conceive things to exist. The distinction between singular and general concrete terms corresponds in the main to that between $\pi \rho$ cir η and devripa oivca ${ }^{1}$; for the most noticeable of general concrete terms are in the category of sobstance, as man, stone, or beast, though some (whieh might be called substantives of an attributive kind) are in other catagoriea, ea, for instance, officer and organist. The distinction between concrete and abstract terms corresponds roughly to the distinction between oivla and the other categories; for abstract terms formed from kind-names are, as we saw, scarce and unnatural. That relative terms are predicates in the category of relation is plain. The attention paid to severally, but what they are in certain groupings or combinations; and the distinction between quality and state involves the same fact.s The logical divisions of terms rest on differences in the being of things, as we apprehend them; this is apt to be overlooked when the subject is approsched from the side of names; Aristotle's doctrine of Categories has this advantage, that throughout it fixes our attention on things.
[The Aristotelian doctrine of Categories bulks large in the history of Logic ; such conceptions are instruments of thought; the instruments forged by one generation are handed on to the next, and affect subeequent thinking. On that account alone therefore it is fair to give some attention to it; bat it is still valuable as eerving to express and distinguish certain important features in our thought about things. That a quality is not a quantity is a trath which those overlook who think that sound can be a wave-length in the vibration of the air; they forget that it is not possible to define terms of one category by another. ${ }^{\text {s }}$ Moreover a conception of cafegoriea not very far removed from that of Aristotle has, through

[^29][Kant and Hegel, become one of the chief doctrines of modern metaphysics.

These admissions do not bind us to consider Aristotle's list as perfect. One important remark on it would perhape hardly bave been regarded by him as a criticiem. The different categories are not all equally distinct or ultimate. Thus the distinction between mov and not (is far more fundamental than that between rocin and ndoxecv. A thing need not have a place becanae it has duration, nor can any one doubt under which category auch predicatee as 'at home' and 'belated' reapectively fall. But to be acted on implies something acting; indeed, if action and reaction are equal and opposite, for a thing to be acted on implies that it acta itself; and it is often difficult to mey to which of thees categories a predicate is to be referred. A ship travels: are we to attribute the motion to the ship, and say that she acts, or to the engines, and any that sho is acted on? or shall we eay that the engines in turn are acted on by steam? Aristotle in a measure recognized the matual implication of these two categories, for in one place he includes them together under the single term kipnots. ${ }^{1}$ Language bears traces of it also, in deponent verbe, which have a passive form with an active meaning, and neuter verbs, which bave an active form with sometimes a passive meaning. We cannot admit, as Trendelenburg and others have maintained, that the distinctions of categories were derived by Aristotle from the grammatical distinctions between parte of speech; but undoubtedly they are reflected (though in an imperfect way) in grammatical forme. Again, as we have seen, the notions of IXecy and кeiotal are deringtive : stats prequpposes the distinction of whole and part, which, in msterial objects at least, implies the citegory of $\pi 0 \sigma \mathrm{O}_{1}$, and it presupposes also the categories of moteiv and náoxcev, and of rowd ; for a whole is in a certain state through the interaction of parts having certain qualities, as when the body is well or ill; or through something done to certain parts of it, as when the body is shod or clad; asituation presupposes the diatinction of whole and part aleo (a point can have place, bat no 'situation'), as well as the categories of $\pi 0$ and $\pi \rho \delta \mathbf{5} \pi$; for when a thing changen its situation, some part that was formerly above another comes to be below it, and so on. On these two derivative categories Aristotle lays least stress; they are only twice included) in his ennmeration. But though derivative, they are pecoliar, and contain sometbing not in the notions from which they are derived; it is quite impossible to trest a state like health as being of the agme nature with a quality like sweetnesg, or place with situation in that place. Kant made it a ground of complaint agañot Aristotle that he had included derivative conceptions in his list along with pure or underivative; but it would probably be a fairer
${ }^{1}$ Nat. 2. iv. $1029^{\circ} 25$.
[criticiem, that he hed not taken account of all the derivative conceptions which call for recognition.

A word may perhapa be added upon Kant's doctrine of Categories, and its relation to that of Aristotle, though it is very difficult to put the matter at once briefly and intelligibly in an elementary treatise. Aristotle had sought to enumerate the kinds of being found in the different things that were; Kant wa interested rather in the quection how there come to be for us objecta having these diverse modes of being. He msintained that in the apprehension of them we are not merely receptive and pasive; on the contrary, all apprehension involves on the part of the mind the relating to one another in various waye of the elemente of what is apprehended; if the elemonts were not so related they would not be elements of one object ; and they cannot be related except the mind at the same time relates them; since relation exists only for consciouseess. Kant called this work of relating a function of synthenis; and he denired to determine what different functions of syrithenis are axhibited in the apprehension, and equally in the existence for us, of objects. He noted in the first place, that the mere perception of anything as extended, or as having duration, involved certain pecaliar ways of relating together in one whole the distinguishable parts of what is axtended or has duration. Theee modes of aynthesis we call epace and time. There could be no permanent objects for me, unless \downarrow I momehow held together pest and future in an unity with the present; I should not be aware of my own existence as parsisting through time, unlees I realized myself as the eame in momenta which I distinguished as different; and I could not do this, unless I had an object which combined manifold succesaive states into the unity of one and the same thing; here then we have one function of agnthesia. It is the aame with any apatial whole. I muat be a ware at once of ite parts as distinct in plece, and yet related together in epace; spece is a system of relations in which what is extended otands. But these two modes of connecting in an anity the parts of what is manifold Kant attributed to sence, for reasonn which we need not now consider ; thinking, the use of general conceptions, did not enter into them ; and therefore he did not include them in his list of categories, which were to be the most general conceptions by which in onderatanding we connect into an unity the manifold parts of an object, and so make it an object for ourselvea. The pereeption of an object involved spece and time; but perception wan not enough. We think of it in certain waye, or conceive it, in spprehending it an an object. Now this conception of an object involved, according to bim, four things: (1) its having quality : and quality can only exist in degrees, each of which is distinguished from and related to the other degrees of the same quality; heat only exista at a given temperature and blue must be of a given
[shade and asturation: (2) ita having quantity, or being a whole composed of parts : (3) that it should be a substance having attributes, one or permanent through its changing and successive states, and that its changes should be determined according to lawe by its relation to other subatances with which it stood in interaction : (4) that every such object conceived to exist should be conceived as connected with every other existing object in a way that knowledge could apprehend, and express in the form of neceasary inference. Thavarious peculiar relations involved in these requirementa Kant called Categories; and be pointed out that, in all the material diversity of concrete objects as we know them, these categories or forms of synthesis exemplify themselves Let momething be prosented to me; if there is nothing which I can call it, or regard it as being (for the queation is one of thought and not of names), it is $s o$ far nothing for me; but if I call it sky-blue, I am thinking of it as qualified; I am asing in a opecific way that conception of quality which is one of the notions by which I relate together what different objects are. Of course it might have a colour unlike any colour I had seen hitherto, which I had no name to indicate; but I should still be recognizing it as coloured in a certain way, though
I could not name the colour, and therein I should be using the conception of quality. If I call it a aky-blue tassel, I am using in a specific form the notion of a whole of parts; for to one who could not connect distinguishable parts in one whole a tassel would not be apprehensible as one thing; I am also using the conception of subatance and attribute, when I regard it as a thing, one of whose qualities it is to be sky-blue. I cannot call it woollen, withont connecting its existence and causality in a definite way with the life of a sheep; and 00 forth: the forms of space and time being presapposed in my appreheneion of it throughout. It is not meant that these notions or categories are abstractly grasped, and guide us consciously in our apprehension and description of objects, as a doctor who had recognized that height, weight, chest measurement, and state of the teeth were important characters in determining the health of children at a given age, might use these headings in 2 statiatical deacription of the children in London achools. We only become aware of the part which these notions play in our apprehension of objects by reflection upon the use we have unconsciously made of them; just as we become aware in the abstract of using certain forms of inference, by reflecting apon the concrete inferences we bave drawn in divers subjects. But as there would be no men if there were no animals, and no circles if there were no figures, so we should recognize no colours if we could not conceive qualities; we should never think that a horse pulled a cart, if we could not conceive as substance to have attributes and to determine changes in another substance; we should never call the movement
[of the cart necessary, if wo could not think of the different real thinge in the world an eo connected that we could infer one thing from another. And in all these different weys, we are relating, or distinguishing and connecting, featares and parts of what we apprehend: we are effecting a synthesis in what would otherwise be a mere chace or confusion of manifold sensations.

Now it will have been seen that Aristotle also noted that what we recognized as existing were sometimes substances with attributes, cometimes attributes of various kinds; we recognize the existence of qualities; of quantities in things that are wholes or parts of such and such a size; of relations and positions in place and time; of what things do and have done to them; of their states and situations. But Aristotle approached the matter from the side of the object; he asked what modes of being we can distingaish in what we recognize to be. Kant approached it from the side of the knowing subject, and anked what were the modes of synthesis on the part of our thought, througb which objects were apprehensible by us as boing the eort of objects they are. If Kant is right in thinking that there could be no objects known to us, except through the mind's activity in relating according to certain principles their manifold differences, then we should expect that when we reflect upon the manner of being which what we recognize to be exhibite, we should find those modes of being which the mind by its synthetio or relating activity makes possible for itself. And if, while this in the main is true, there are certain differences between the two lists of categories, yet they can be readily explained. Aristotle's list wo have seen. Kant reoognized four classes of category, those of Quality, Quantity, Relation and Modality. Now Quality and Quantity appear in Aristotle's list as well (though in Kant's they are each analysed into three sepecte, or 'momenta', which here need not concern us). But in Kant the category of Relation covers the three relations of Substance and Attribute, Cause and Effect, and Interaction (which lant really involves the other two) ; the distinction of sabatance and attribute is present in Aristotle's doctrine, and in moceiv ${ }^{1}$ and ráoxciv we have the recognition of the relstion of canse and effect; but there is nothing in Kant correaponding to the Arintotelian category of $\pi \rho \delta_{s} r^{3}{ }^{3}$. The reason of this is that all predicates in the category of $\pi \rho \delta{ }^{3} \mathrm{rr}^{3}$ really involve some other category as well; larger involves noodo ${ }^{4}$, earlier nor ${ }^{5}$, slave medouy ${ }^{2}$, farthest noi ${ }^{6}$, and londent noud ${ }^{7}$; reciprocally, all categories involve relation, and Kant's whole point is that they are different relational functions To Kant, who was interested in distingainhing these functions epecifically, it would have been abound to treat the function of relating generically e^{0} one of its

[^30][own species ${ }^{1}$; or to sappose that there whe any other kind of relation involved when I say that Socrates was more scrupulous than Crito, or taller than Tom Thumb, than when I aay he was scrupulous or four cubits high. All ecrupulousness mast be of some degree, and all height of aome quantity, so that as far as the function of relating in the way of quantity or degree is concerned, it is equally present whether my term is positive or comparative. But from the side of the object, there are terms which relate it particularly to some definite other object; and these Aristotle pleced under the category of π pós $\tau_{1}{ }^{3}$. It might perhape be objected to him that all terms in the category of após

 were referred to the category of relation not becanse they in volved qualitative or quantítative, spatial, temporal, or cansal relations, but becanse they determined a thing as standing in some special relation (of any one of these kinds) to some other thing, nd beid their being not so much in themselyes as in relation to comethingelelge ${ }^{\text {Ii }}$. Again, terms in $\pi \sigma \sigma \delta \nu$, like 'three-foot' or 'yearlong', involve apace or time as well as the relation of whole and part ; and Kant thought right to distingaish the perceptral syntheses of space and time from the conceptual synthesis of whole and part; hence also he objected to the presence of mov̂ and aord in the Aristotelian list at all. But Aristotle cared only to notice the modes of being that were to be found, the kinds of predicate that concrete thinga had, and wan not interested here to diatingnish the perta whioh senseand thought respectively play in randering the apprehension of them possible. Once more, Aristotle incladed the 'derived' notions of lxess and keĩola with the rest, becanse they certainly are different modes of being; Kant, who thought them to involve only the co-operstion of functions of synthesis already recognized, gave no place to them. The moat considerable difference between the two doctrines in the absence from Aristotle's
${ }^{1}$ The reacon why Kint gave the name of Relation to the three githeves of Bubatance and Attribute, Cause and Effect, and Interaction was historical. He quite recognized that all his categories were really modes of relating a manifold.
Relation.

- Action.
${ }^{-}$Place.
- Panion.
- Time. 'Quality. - quantity.

\author{

- State.
 10 Situation.
}
${ }^{11}$ Td anpore rt are defined firat in Cat. vii. $6^{\circ} 36$ as ' what are called what thoy are of another '-ira aird derep inriv inione alna λ ipurat, and more closely leter in 8882 es that ' for which to be is the meme as to be rolated in come
 of updr ri with come other category is recognized by Aristotle in particular cases, bat not atated generally; of. vi. 6b 11, ix. $11^{\circ} 20-38$, and oup. 87-88,
 aird earrapit $\theta_{\text {mistas }}$ beridees, if the same thing happen to be both related and of anch a quality, there is nothing etrange in ita being counted in both kinds).
[of anything at all corresponding to the Kantian categoriee of modality, i.e. to the notions of actua, posaible, and necessary

as determinations of our thought aboat things; but their absence will not surprise us if we consider that to the queation, what essentially a qubject is, no one would ever answer that it was actial, poesible, or neceseary. Speaking generally, however, we may put the relation of the two doctrine in this why, that wherees Aristotle had claseified the producta, Kant distingrished the processes of that synthesis or relating, through which (as he held) objects in all their manifold variety, however much they may materially differ one from another, are all alike objects of knowledge and to far formally the same. Merely to be, asid Aristotle, is not possible :

- Vóv is not a significant predicate '; what is must be in a particular wey, and thereby fall under one or other of the үivm rôv кarnyopiồ which he enumerated; and all the modes of being characterize in the lest resort some concrete individual thing, which exists in and through them. An object, said Kant, cannot be an object of knowledge, and therefore for us cannot exist, except through being perceived and thought in certain ways: the general ways in which an object is perceived or thought, the forms of perception and conception involved (one or another of them) in every predicate through whioh an object is known, are the 'forms of the senaibility' -viz. spece and time-and the 'categories of the understanding' ${ }^{3}$.]

[^31]
CHAPTER IV

OF THE PREDICABLES

Ter distinctions to which onr attention was directed in the last chaptar are distinctions of terme according to the nature of their meaning; and if we underatand what a term means, we may know to what category to refer it, Fithout waiting to learn the sobject of which it is predicated; large, for example, is in the category of - givintity, whether it be predicated of a triangle or of a gooseberry, and just in the category of quality, whether it be predicated of Aristides or his actions. Such difficulty as may exist in determining the category to which a term is to be referred arises through defect in the list of categories (i. e. of the conceptions under which we are to classify all possible predicates), or through the complexity of meaning in the term iteelf, whereby it involves more than one category at once, like a verb with tense; but not through the fact that we are considering the term by itself and without reference to the subject of which in a particular proposition it may be affirmed or denied. And the Aristotelian trestise called the Categorien indicates this when it puts forward the list of ten categories as a division of terme out of syutas. ${ }^{1}$

In the present chapter we have to consider another division of terms, besed upon the relation in which a predicate may stand to the subject of which it is predicated. Aristotle recognizes four such relations, and one of them he subdivides, obtaining five in all; later logicians give five, but their list is in one important reepect different. According to Ariatotle, in every judgement the predicate must be either the definition ($\delta_{p o s}$), the genue (yivos), the differentia ((81aфopd), a property (Doov), or an accident (ovu β e $\beta \eta$ rós) of the subject. The leter list ${ }^{2}$, losing eight of the principle on which the division was

[^32]made, omite definition, and inclades instead species (etpos), ranning therefore as follows-genut, species, differentia, proprixm, accidone.

The diatinctions are known at the Five Predicables, or more strictly as the Five Heads of Predicablea. The words have paned into the language of ecience and of ordinary convernation; we ask how to define virtue, momentom, air, or a triangle; we say that the pansy is a species of viols, limited monarchy a species of constitution; that one genas contains more speciee than another; that the crab and the lobeter are generically different; that man is differentiated from the lower animale by the poesession of reason; that quinine is a medicine with many valuable properties; that the jary brought in a verdict of accidental death; and so forth. The fact that the employment of the words is not confined to any special science suggesta that the consideration of them may belong to Logic, as expressing featares in our thought sbout all kinds of subject.

A predicable in merely that which can be predicated: viz. that which is universal, not an individual ; all kinds, qualities, states, relations, \&cc, are predicable, and they are universal, as was explained in Chapter II, because they may be exemplified in and belong to more than one individual-subject. All names, therefore, except proper names are clamified under these five heads of predicables; bat proper names are not included here, though they would come in the division of categories as denoting a aubatance. The Parthenon, for example, is not the name of the genus or apecies of anything; nor is it that which differentiates any species from another species; nor is it a property or accident of anything. It is a particular building; and the name denotes that building, with all that it is-a temple, Doric, of Pentelic marble, beautiful by the simplicity of ite proportions and the magnificence of its sculptures, the work of Pheidias and his assistants, the glory of Athens. All these things are predicable aboat it, and they are universals; for might not another building be a temple, in the same style, of Pentelic marble, and so forth? It, however, is not predicable; nothing else can be the Parthenon. We may aak what kind of thing is the Parthenon, but not of what things is it the kind ${ }^{1}$.

[^33]1 dented wee know en meter

The diatinotions which we have to consider, therefore, do not afford a classification of things, but of concepts: and (unlike the catogores) of concepts considered not in themselves but in their relation one tocinother.

But things are known to as through concepts; and an enquiry into the relation of concepts is an enquiry into the nature of things, as we conceive them to be.
The statement that things are known to us through concepts needs a little explanation. It has been frequently pointed out that the English language uses only the one verb, 'mow,' to represent two different acth, which in come languages are distinguished by different verbs ${ }^{1}$: the knowledge of acquaintance with a thing, and the knowledge about it. In Latin, the former is signified by eogmoseore, the latter by sire; French use respectively the cognate words conative and avoir; German the words kennen and wisen. Knowledge of acquaintance does not come barely through concepts; however much may be told me about Napoleon, and however clear a conception I may have been enabled to form of his character, I never know him, and never shall know him, in the sene of being acquainted with him: such knowledge comes only by personal intercourse, and separate intercourse is needed with each individual that is to be known. But knowledge abort a thing comes by concepts; and without this there is no moquaintance, though this by itself does not amount to acquaintance. I may know - great deal about a man, without having ever met him: bat I many in fact once have met him, without knowing who he was or
 anything about him; and I am no more acquainted with him in the letter case than in the former.
Now most of our knowledge is knowledge about things ; things are useful and important to us for the moot part not because they are such particular individuals but because of what they are; this is not equally the cue with persons; and yet with persons too it is very largely the case. 'Wanted, a good coat-hand': it is not Smith, who is taken on, that is wanted, bat only the coat-hand: the master-tailor is astisfied to know that he has engaged a coat-hand, and very often does not desire his acquaintance: if he knows about

[^34]Smith, he can regulate his business accordingly, without knowing Smith.

It will now be understood in what sense we know things through concepts: we are not thereby acquainted with them \checkmark individually, but we know and think and reason about them thereby. And a concept may be aaid to differ from a thing in being universal, not individual : an object of thought and not of sense: fixed and not changing: completely knowable and not partially ${ }^{1}$. Take, for example, the concept of a timepiece: a timepiece is a machine in which the movement of wheels is so stimulated and regulated as to cause a hand or hands to move at an uniform rate (usually twice in twenty-four hours) round a dial, and by pointing to the divisions marked apon the dial to indicate the time of day. That is the concept of a timepiece: it is clearly universal, for it. applies to all timepieces; it is an object of thought, and cannot be seen or felt, like the watch in my pocket; it is fired and unchanging, while my watch wears out or gets broken; and it is completely knowable or intelligible, whereas there ia a great deal about my watch which I do not know or understand : where the metals of which it is made were quarried, and by what series of events they came into the hande of the maker: why it loees $10^{\prime \prime}$ to-dey and gains $18^{\prime \prime}$ to-morrow, and $s 0$ forth. No one knowa the whole history and idiosyncrasy of any particalar timepiece, bat he may have a satiofectory concept of what a timepiece is for all that.

It may be asked, is a concept merely an object of thought, with no existence in things (s it is put, onteide our minds) ? or does it exiat in things ${ }^{\text {? }}$? Much ink, and even much blood, have been spilt in dispating over this question, to which some reference has already been made in speaking of the opposition between Realism and Nominalism ${ }^{3}$. An elementary treatise must be content to be brief and dogmatic. Concepts, it must be maintained, have existence in things, as well as in our minds. The thing which I can pull out of my pocket, and see and feel, and hear ticking, is iteelf a machine wherein the movement of wheels canses hands to

[^35]tell the time of day in the manner set forth in the concept of a timepiece. What I conceive a timepiece to be, that (if my concept is a right concept) every particular timepiece is; what I know about things is the nature of the things; nor would it otherwise be they that my knowledge dealt with. But though concepts have existence in things, as well as in our minds', the manner of their existence in the two cases is different, in an important respect. In our minds, each is to some extent isolated; my knowledge of an individual thing is expressed piecemeal in many predicates about it; each predicate expressing a different concept, or a different feature in the nature of the object. Bat in the thing these features are not isolated. The individual object is at once and together all that can be predicated of it separately and succemively (except as far indeed as predicates are true of it successively). In thinking of my watch, for example, I may think of it as a timepiece, as an heirloom, as being two inches in diameter, and $s 0$ on: between these concepts there is no connexion thought of; they are as it were separate from one another; but they and much besides are united in the thing ${ }^{2}$. The individual object is all that can be predicated of it (and there is no end to what might be predicated, if we knew ite whole history); but one thing that can be predicated of it is not another.

An object comee into the room, which I call Tray: what is Tray? it is a dog, an animal, yelping, at my feet, mine; Tray is all these: but is a dog all these? A dog (that is, any dog) is an animas, and a dog yelps; but I cannot say that a dog (mesning any dog) is mine, or at my feet; and though a dog is an animal it is not equally true thatan animal is a dog, or that what is at my feet is mine, or that what is mine is at my feet.

What, then, is the relation of those various concepts to one another, which can all be predicated of the same individual f Are they united in it like stones in a heap, where the stones together are the heap? or like almonds in a stewed pippin, where the pippin

[^36]is not the almonds? or like links in a coat of mail, where the links indeed are the cost, but only because they are peculiarly looped one into another? It is eacily meen that none of these analogies is appropriate. According to Aristotle they are related in one of five iways. Take any proposition, ' A is B,' where the subject A is not a proper name, bat a general concrete term, or an abotract term. The predicate \boldsymbol{B} must be either definition, genus, differentia, property or accident ${ }^{1}$ of \boldsymbol{A} : one or other of these relations must oubsist between the two concepta A and B, in any individaal characterized by them.

The statement just advanced clearly concerns the nature of our thought about objecte generally : the technical terms have yet to be explained, but it in the aotual procedure of our thought which they profess to indicate. Logic invented the terms, but it dircovered the relations denoted by them.

If we take any tarm that is an universal, and not an individual, and make it the subject of a judgement, then the predicate must be either commengurate with the subject, or not. One term is anid to be commensarate with another, when each can be predicated of everything whereof the other can be predicated ${ }^{2}$; equilateral triangle and equiangular triangle are commenaurate terms, because every equilateral triangle is equiangular, and every equiangalar triangle equilateral; but the term equiangular is not commensurate with equilateral, for there are figures equilateral which are not equiangolar. It may be pointed out (for it is important to bear in mind that we have to deal now with the relation between the different 'univerals' predicable of the same individual, and not the relation between them and the individual of which they are predicated-with the relation of 'animal' and 'mine', \&cc., to 'dog', and not with the relation of these terms to Tray)-it may be pointed out that when the subject of a judgement is an individual, the predicate is hardly ever commensurate ${ }^{3}$: for the predicate is an univeral, predicable of other sabjects besides this individual : mine is predicsble, for example, of other subjects than Tray; whereas

[^37]this individual is predicable of none of thoee: nothing else that I can call mine is Tray. Now where the predicate of a judgement is commensurate with the subject, there it is either the Definition or a Property of it: where it is not commensurate, there it is either part of the Definition, i. a. Genus or Differentia, or an Accident.

The dofnition of anything is the statement of its essence ${ }^{1}$: what make it that, and not eomething else. In the following judgements, the predicate claims to be the definition of the subject: 'An organism is a material body, of which the parts are reciprocally ends and means'; 'a church is a building erected for the service of God acoording to the principles of the Christian religion'; 'momentum is quantity of motion'; 'wealth is that which has value in axchange'; 's triangle is a three-sided rectilinear figure'; 'a line is the limit of a superficies'. The predicate atatee what it is that maken anything an organim, a church, a line, a triangle: what constitutes momentum or wealth, as distinguiahed fromeyerything elee, such as apathy ar-apohibecture. In these judgements it is clear that the predicate, in claiming to be a definition, claims to be commensurate with its subject; if an organiam is a material body of which the parts are reciprocally ends and means, then my dog Tray, being an organism, must be that, and whatever is that must be an organim : for to be such a body is to be an organism. If wealth is that which hae value in exchange, then gold, having value in axchange, is wealth, and so forth.

The conms is that part of the essence of anything which is predicable sleo of other things ${ }^{2}$ differing from it in kind ${ }^{3}$. Fech of the definitions above given begins by declaring the subject something, which other and differant subjects are besidea; an organiam is a material body-so is a machine, or a block of stone; a charch is a building- m is a stable; a triangle is a rectilinear figure- $\infty 0$ is a equare ; a line in a limit-so is a point, but of a line; wealth is that whioh hae value-so is honesty, but not in exchange, for
 may ank the question ri ion;-what is it ?-of an attribute (like momentam) an well as a mbatance (like a man or a lobstor); and the anawer will be a definition. In atrictneas we can define the oivia of an individual, if at all, only en meaning the kind to which it belonga; cf. the previoue ch, Pp. $40-44$.
' 'Thing' here again does not mean a particalar thing.
 ре́puray, Ar. Top. a. V. 1020 81 . The notion of a kind is here preauppoeed. Some diecimion of it will be found below, pp. 77-89.
you cannot transfer it ${ }^{1}$; momentum is quantity-of motion, but not of matter. These (building, rectilincar figure, limit, \&cc.) are the genus, in each case; and the genus, being predicable of other sobjects, is clearly not commensurate ${ }^{2}$. Genus is sometimes explained as a larger class including the class defined within it; figure, for example, as a class including triangle, square, and many other subordinate classes besides: building as a class including churches, stables, barracks, and so forth. This explanation cannot be considered a good one, for reasons to be presently stated ; but it may put some into the way of grasping a better.

The difirsentis is that part of the easence of anything-or, as we may say, of any epecies-which distinguiahes it from other species in the same genus; it is the diferentia of an organism that its parts are reciprocally ends and means-in this it differs from other material bodies; it is the differentis of a charch, to be for the service of God scoording to the principles of the Christian religion in this it difere from other baildings; and so forth. The genus and differentis (or differentiae ${ }^{\text {a }}$) between them constitute the species, or make up the essence of that which is defined. The differentis, like the genus, need not be commensurate with its subject. The Book of Common Prayer is for the service of God in accordance with the principles of the Christian religion, but not being a building, it is not a church. On the other hand the differentia is commensurate with the subject of which it is predicated in cases where no genus except that to which the subject belongs is susceptible of the particalar attribute which serves as differentia; thus a vertebrate is an animal of a perticular structure which cannot exist except in an diamel, so that the differentis of vertebrate is commensurate with it. And it is only where this is the case that the ideal of definition is attained.

Those who speak of the genus as a lerger cleas containing the species or amaller clase within it sometimes explain the differentia as the attribate, the possession of which marks off the amaller from the rest of the larger clase. If equares and rhomboids, triangles and

[^38]pentagons, ecc., are all placed in the class of rectilinear figures because they have that character in common, triangles, on the other hand, are differentiated from the remaining classes included within that of rectilinear figure by posseasing the attribute of being three-ided. Provided it is not supposed thast the differentis is added to the common character of the 'larger clame' in the same extraneons way that sagar is added to tea, there is no fresh harm in this mode of expressing oneself.

A proparty is an attribute common and peculiar to a subject ' (and therefore obviously commensurate with it), but not part of ite esence, and eo not incladed in the definition of it. An organism, for example, is contractile, irritable, assimilates food, reproduces itself after its hind: these are attributes of every organism, and of nothing else, and therefore common and peculiar to the sabject organism; bat they are not in its definition. A triangle, again, has its interior angles equal to two right angles, and is half the ares of the parallelogram on the ame base and between the same parallels; a line is either atraight or crooked (here the alternatives together are common and peculiar) ; and so forth.

All other attributes of any enbject are sooidents. An socident may be defined as a non-commensurate predicate not included in the essence: or as an attribnte which equally may and may not belong to a subject. The latter is the better definition, because it tells us what an accident is, whereas the former only tells us what it is not ${ }^{2}$. It is an accident of an organimen to be nsed for food; for it may be so used, but need not. It is an accident of a church to be a cathedral; some churches are cathedrala, and some are not. It is an accident that a contractor should be an honest man, and an sccident that he should be a rogue; for roguery and boneaty are both compatible with being a contractor.

[^39]The doctrine just illustrated presents many points for consideration, of which the following are perhape the most important :-

1. how to understand the analygis of a definition into genus and differentia;
2. the ground of the distinction between the eseence of anything and its properties;
3. the antithesis between accident on the one hand and all the other beads of predicables on the other.

- It will be most convenient to consider the third of these pointe first.

When we classify the members of a genus or claes, we sometimes, after specifying as many distinct species as we can think of, add another to include anything that does not fall within any of these; I may arrange my booke, for example, into historical, philosophical, philological, scientific, and miscellaneons-the last division being merely added in order to receive any book which does not fall within the others, though the miscellaneous books have no common character that distinguishes them all alike from the rest. Now accident is a head of predicables which includes any predicate that is neither definition, genas, differentis, nor property of its pubject '; but it is not a heading like 'miscellaneons'; there is a very definite and important difference between the relation of those predicates to their subject which are classed as ascidents, and that of thoee which fall under the other heads; the latter belong to their subject necessarily and universally, the former do not.

Of any individaal, as we have seen, an infinity of predicates may be asserted. Some of them are seen to be connected, or (as we may express it) have a conceptual connexion; i.e. if we rightly conceive one predicate, we see how it involves another. Tray, for example, is a dog and an animal; and these predicates are conceptrally connected, because the concept of a dog involvee that of animal. My watch has hands, and there is a conceptaal connexion between having hands and being a watch, since without hands a watch could not fulfil the task of telling the time, which is part of the concept of it as a timepiece. But there are also many predicates which coincide ${ }^{2}$ in one and the same individual, without being conceptually connected. Besides being a dog, Tray is mine,

[^40]and was born at Bishop Auckland; now there is no resson in the nature or the concept of a dog, why it should belong to me, nor in a thing being mine, why it should be born at Bishop Auckland, nor in being born at Bishop Auckland, why it should be mine, or be a dog. No doabt in the case of this particular dog Tray, there is a reason why he is mine and a reason why he was born at Bishop Auckland; but the reason for the first fact (which may be that he was given me) has nothing to do with the remoon for the second (which is that his mother was there at the time); nor has the reason for either anything to do with his being a dog; he would have been a dog atill, if he had never been given to me, or if he had been born at Bishop's Lydeard. Of course with sufficient knowledge the presence of all its attributes in any individual might be explained; bat the explanation would be largely kitorical; we should need to know the history of that individual, in order to see how it was that so many different and apparently unconnected things all came to be predicable of one and the sarne subject. On the other hand, where two predicates are conoeptually connected, there it is not by knowing the history of an individual that we determine whether, if one is predicable of it, the other will be.

We have bere the great difference between acience and hintory: ecience consists in tracing the connexion of universala; history in trecing their coincidence in individuals. The two no doubt utilize one another. It is by noticing how attributes are historically found conjoined or disjoined in divers individuals that we learn which are really connected together ${ }^{\text {' }}$; while again the discovered connexions of attributes, or the 'lawe' which science eatablishes, help to explain the history of individuals, And when the assemblage of historical events is resolved into instances of the connexion between matters which, if we understand their natare, we can see to be involved one in another, bistory becomes scientific.

That the accidental should be opposed to what is necessary and universal conforme to the ueage of common speech. Sir Robert Peel was killed by s fall from his horne, and we aay his death was accidental. Why? he was a man, and for a man it is necessary to die, and for any one who falls in that particular way it may

[^41]be necessary to die; but it is not necessary that a man should fall in that way; that is not predicable univerally of man. We sometimes diepute whether there is such a thing as chance in the world, or whether everything has a canse, and happens necemarily. Few people really believe that anything happens without a canse; but chance is not the negation of cause; it is the coincidence of ettributes in one individual, or events in the same moment, when each has its cause, but not the same cause, and seither helpe to becount for the other.

If we bear in mird this fundsmental contrat between the accidental and the necessary, we shall not be inclined to think that Aristotle was engaged in a trivial pursuit when he attempted to claseify the various relations in which a predicate might stand to its subject. Discussions as to what we mean by cause occapy much spece in many modern treatises. Now the causal relation is also 3 relation between universals: my dog Tray yelps not because be is thin individual Tray, but because be is a dog, and unless any dog yelped, it would not be because he is a dog that Tray does 10 . But when we call one thing ${ }^{1}$ the cause of another, the real relation between them is not always the same; just as when we say that A is B, the relation of B to A is not always the same. It might be supposed that if one thing X is the cause of another Y, then you could not have X without Y, nor Y without having had X. And yet we say that molecular motion is the cause of heat, that the beat of the sun is the cause of growth, that starvation is sometimes the cause of death, that jealousy is a frequent cause of crime. We should in the first case maintain that the cause and effect are reciprocally necessary; no hest without molecular motion, and no molecular motion without heat. In the second, the effect cannot exist without the cause, but the cause may exist without the effect; for the sun shines on the moon, but nothing grows there. In the third, the cause cannot exist without the effect, for starvation must produce death, but the effect may exist withont the canse, since death need not have been produced by starvation. In the fourth case, we can have the cause without the effect, and also the effect without the cause; for jealousy may exist without producing erime, and crime may occur withont the motive of jealousy. It is plain,

[^42]then, that we do not always mean the ame thing by our words, when we say that two things are related as canse and effect; and any one who would clasaify and name the rarious modes in which two things may be causally related would do a great service to clear thinking. Now that is the sort of service that Aristotle aftempted in dirtinguishing the heads of predicables Many predicates are asegerted of the anbjeot-A. Those are secidents, whose cause does not lie in the nature of A as such, or which, when they belong to any individual of the kind A, do not belong to it because it is \boldsymbol{A}. The reat are in some wiy or another connected causally with \mathbf{A}, and are predicable of any individual because it is A. Whether Aristotie's account of the different modes of causal connexion between a subject and a predicate is satisfactory is another quention, involved principally in that of the value of his account of 'property'. But that the theory of predicables is ciosely akin to the question of the varions senses in which one thing can be the cause of another may be meen by this: whenever ecience tries to find the canse not of a particular event, sach se the French Revolu-/ tion (whose canee must be as unique as that event itself is), but of an ovent of a kind, sach as consumption, or commercial crisis, it looks in the last resort for a commenowrate cause. What is that ereot atate or condition of the body, given which it must and without which it cannot be in a consumption? What are those conditions in a commercial commanity, given which there mast and without which there cannot be a commercial crisis?

The kindred nature of the two enquiries will be further seen, by looking at certain cases where it is disputable whether a predicate should be called an accident of ite subject or not; for an exactly parallel difficulty may arise in determining whether one thing shall be called the canse (or effect) of another or not. An sccident is a predicate, the ground for whoee existence in the anbject does not lie in the nature of that subject as such. Hodge drives a plough; and a full knowledge of his history would show me why he drives a plough, and the ground for it therefore lies in the history of the subject Hodge; it is not of him that driving the plough is predicated as an accident. Bat a man drivee a plough. That is an accident ; for the subject now is not Hodge, but man, and it is not in the nature of man as such that the ground or reason of driving a plough lies ; else abould we all be at the plough-
tail. And yet no animal bat man can drive a plough : $\infty 0$ that it is partly because he is a man that Hodge drives it; and therafore, when it is anid that a man may drive a plough, the relation of the predicate to the subject seems not completaly sccidental. Contrast the statement that a cow may be knocked down by s locomotive. There the nature of the sabject, an acow, contributes nothing; it in in no wise necemeary to be a cow, in order to be knocked down by a locomotive ${ }^{1}$; and the relation is purely eccidental.

If we consider these two examples, we see that our socount of an accident, just given, may be interpreted in two ways. A predicate may belong to the arbject of which it is predicated eccidentally either
(1) when the ground for ite existence does not lie completely in the nature of that eubject as such ${ }^{2}$, or
(2) when the ground for ite exintence does not lie at all in the natore of that subject as erach ${ }^{\text {² }}$.

The first interpretation would rank acescidents of a gubject all predicatea that are not either part of ite definition, or else common and peealiar to that anbject, i. e. properties in the atricteat sense; and such, if we take him at his word, is Aristotle's view. But we are then required to ay that it is an accident of money to be valuable, eince it would have no vilue if there were nothing to buy with it: or of coal to burn, aince it world not barn in a vecuam. The second interpretation would refuse the name of accident to anything that could be mid about a subject, however rare and dieconnected the conjunction of circumatances through which it came about, where the natare of the subject as auch ${ }^{2}$ contributed anything at all to the result. Thas we coald hardly call it an accident that an animal ahoold die of overeating itself, rince it must be an animal in order to eat. In practice we make a compromise between these

[^43]extreme interpretations. We call it a property rather than an eccident of belladonna to dilate the pupil, though the revalt depends as much upon the nature of the muscles as on that of belledonna; we cell it an accident rather than a property of the plough to be - favourite sign for coantry inns, though its necessary familiarity to countrymen accounts for ite selection. The further parsuit of these difficalties does not concern us now; but it remains to be shown that they arise in regard to the relation of cause and effect. In the caase of an effect that, given which and without anything besides, the effect follows? in other words, muat it contain the whole ground of the effect? then a apark is never the canse of an explosion, for it will produce no explosion without powder. Is the canse anything, however alight, without which the effect coald not have occurred? in other words, is that the canse which contributes anything whatever to the efflect? then are cooke the canse of health, since there would be littlo health without them.

The antithesis between acoident and the other heads of predieablee needs perhape no forther illustration. We may return to the first of the three pointe enumerated on p. 62, viz. bow to underatand the analyuis of a definition into genus and diflerentia.

It ahould first be noticed that definition is never of an individnal, bat always of what is naiversal, predicable of individuals-whether it be what we call their ' hind', or some atate or attribate of them, or relation in which they atand. For what in defined is thereby marked off and fixed in our thought, so that we have a determinate concept of it ; but the ipdividual is made the individual he (or it) is by an infinity. of attributes; he is as it were the perpetual meeting-place of concepte; we can neither exhanst what is to be said of him, nor make a selection, and declare that this is essential to a true notion of him, and that unessential. Moreover, even if we could, we should atill only have got a notion of what he in fact is, but a second person aleo might be ; for every notion is univeraal. What makes him this individual and not another we should not have defined, nor could we; for there is something which makes me me over and above what can be predicated of me; else, what makes me me might also make you you; for what can be predicated of me might be predicable of another; and then why does the mame character make me me and you you, and not rather make me you and you me, or each of na both?
We can only define then what is nniversal, or a concept. But
we have already said that concepts axprese the nature of things; and therefore in defining concepts, we may define things, $\infty 0$ far as they are of a kind, but not ac individwals. It is sometimes maintained that definitions are not of things, but only of names ${ }^{1}$: that they sot forth the meaning (or, as it is aleo phrseed, the connotation ${ }^{\text { }}$) of a name, but not the nature of a thing. Yet names are only used to convey information about things ; and to explain what the name means, is to explain what the thing is said to be. Definitions then are not really of names; but we shall see later the difficultien which drove men into eaying so.

Now when we define we analyee; and the elements into which we analye that which is defined are called, as we saw, genus and differentia These might be called attributes of the subject: it might be aaid, for example, that reetilinear figure and threo-sided are attributes of a triangle. But the expression is not quite appropriate; for an attribute implies a subject beyond itaelf, to which it belonga ; bat the parts of a definition themselve make a whole, and coalence into the unity to which they belong. This may be beat explained by a contrast. We may take any attributee we like-an far, eour, pink, woft and circular-and we may give one name to the aggregnte of these. But they do not form one notion; they remain obotinately five; nor by considering a thing as far, sour, pink, soft and circular, can we construct the concept of ono thing. If we took a single name to signify the possession of these attributes, we could explain the name as meaning that aavomblage, bat we should feel that in so doing we were merely explaining a name, and not defining anything. But when we analyes into genus and differentin, this is otherwise; then we feel that the two together really make a aingle notion. They have such a connexion in their own nature as makes one fit the other, so that they constitute the cessence of one thing, or state, or quality, or relation. And the reseon for the parts of a definition being one ${ }^{3}$ is this : that they are not attributes independent bat coincident, but the genus is the general type or plan, the differentin the 'specific' mode in which that is realized or developed. Let us take again the

[^44]definition of a triangle. It is a rectilinear figure; but that by itself is an incomplete notion. There cannot be a rectilinear figure without \& definite number of aides, though any definite number will do; and if the number in a triangle is three, then three-sidedness is the opecific mode in which the general plan, or as we may say the potentialities, of rectilinear figure are realized in the triangle. We may eay that the genus and diferentia are one, becanse they were never really two. Three-sidedneas can only be realized in a figure, rectilinear figare can only be realized in a definite number of sides. The genus therefore never could exist independently of a differentia, as soft may of egor: nor the differentia of the genus. It may be asid perhape that though three-sidedneee can only exist as the form of a figure, reotilinear figurehood exists independently of three-sidednees in the square, the pentagon, \&c. But it is not quite the ame thing in the equare or pentagon as it is in the triangle. So intimately one are the differentis and the genus, that though we refer different species to the same genas, yet the genus is not quite the same in each; it is only by abotraotion, by ignoring their differences, that we can call it the same. Triangle and aquare and pentagon are all rectilinear figures; but in the sense in which they aotrally are such, rectilinear figure is not the same in them all. Thus the differentia modifies the genus, and the genus also modifies the differentia. It might be aid that three-sidedness is not confined to the genna figure; for a triangle is a three-sided figure, and N is a three-sided letter. And doubtleas, so far as the genus is the aame in two opecies, the differentia may be the same in the species of two genera. But three-sidednes is plainly different in the figare, where the sides enclose a space, and in the letter, where they do not; and the genus an it were fases with the differentia, so that each infecta the other through and through.

For this reseon the genus is not well deecribed as a larger class inoluding the amaller class or species within it. For the word cless suggents a colleotion, whereas the genus of anything is not a collection to which it belongs but a acheme which it realizes, or a unity connecting it with things different from itself. It may seem at first plain-apeaking, withont any metaphysical nonsense, to say that a genus is a cless of things that all have certain features in common; and that ite species is a smaller class composed of some of those things, which all poseses not only the features commor to the
whole genue, but others not belonging to the other members of it. But what is really meant by being included in a clase ? The phrase is cometimes put forward as if it were simple, and presented no diffioulty; but such is not the case. The words 'to be within', or 'to be inoloded in', have many meanings, and we muat know what meaning they bear in the phrase 'to be included in a clase', before we can know what that phrase signifies. We may distingrish in particular two meaninga, which are quite inapplicable to the relation between a genus and its apeciee; but they are more easy to gresp than the meaning in which the apocies cam be anid to be inoluded in the genus, because they can be in a manner represented to the penses; whereas the relation of genve to species can never be represented to the senses, but only apprehended by thinking. Because one of theee inapplicsble meanings is readily suggented to the mind, when we are told that the genus of a thing is a eleen in which it is included, we fancy that the expreseion helpe us to understand what a genus is; for these inapplicable meanings are easily understood. But as they are inapplicable, they help us not to understand but to misunderstand the logical relation of genus and species. ${ }^{1}$

In the first place, one thing may be included in another as a letter is included or enclosed in an envelope, or
 as Mr. Pickwiok and the wheelbarrow were enclosed in the pound. In this case, all that is inaluded may be removed, yet that in which it was incladed will be left. Sach is clearly not the sense in which apecies are included in a genus; for there would be no geans left if the species vanished. Yet the logical relation is often represented by a diagram, which ineritably suggents this sense. Two circles are drawn, one enclosing the other; the genas being represented by the outer and the species by the inner circje. It is not impossible to use such diagrams without being influenced by their obvious auggestions; yet their obvions suggeations are false, and to avoid them is difficult.

Secondly, a thing may be incladed in an aggregate, which is constituted by that and all the other thinge included along with it.

[^45]In this sense a cannon-ball is included in a heap, and a particular letter in the pile on my table. We do sotually uee the word clem on some occaions to indicate a total formed in this way; in a school, for example, a clese is a cortain number of boys tanght togetber, and when a boy is moved from one clase to another, he is sent to do his work with a different set of boys. Here we have a notion whioh is so far nearar the logical notion ${ }^{1}$, as that the clase would disappear upon the disappearance of what is included in it. Bat a little refiection will show that the logical relation of genus to opecies is no more like that of an aggregate to its members than it is like that of an envelope to its contents.

If Tom Smith is in the first clases in his school, I should look for bim among the boys in a particalar claes-room; but if a trinagle is in the oleenfigare, or a Red Admiral in the cless lepidoptera, that doee not mean that I should look for either in a collection of figures or of lepidopters ; it is true that a collection of these objects would include specimens of the triangle or the Red Admiral ; but they do not belong to their reopective geners becanse they are in the collection; specimens of them are pleced in the collection because they belong to the geners. Were it otherwise, I could not say that a triangle is a figure, or that a Red Admiral is a lepidoptaron, any more than I can say that Tom Smith is the firet class; I could only any that ac Tom Smith is in the firot clave, 00 a triangle is in the clase figure, and a Red Admiral in the claes lepidoptara; whereas it is characteristic of this to be a lepidopteron, and of that to be a figure.

The 'clese' to which species (or individuala) are referred is apt not to be thought of se something realized in ite varions members in a particular way; but the genus is something realized in every apecies (or, if it is preferred, in the individuals of every species) belonging to it, only realized in each in a special way. The differeatis carrien out as it were and completes the genus Individuals are not incladed in one genus because agreeing in certain attribates, and then in one species within the genus because agreeing in certain other attribute that have no connexion with the first; as you

[^46]might include in one island all men who had red hair, and then rail off separately within it those of them who had wooden legs; wooden-legged could not be a differentia of the genus red-haired; it muat be some modification of red hair itself, and not of the men having it, which could eerve as a differentis to that genus. It is therefore a phrase that may mislead, to asy that the differentis arded to the genus makes the species, or makes up the definition. For adding saggests the arbitrary juxtaposition of independent nnite ; bat the differentia is not extraneously atteched to the genus; it is a particular mode in which the genus may exist. And hence, When we ditingiatic the varions epecies of one genus, in what is called a logical division ${ }^{1}$, asiguing to every species the differentia that marks it off from the rest, our several differentios must be themselves homogeneous, variations, as it were, upon one theme and, because each cograte with the same genus, therefore oograte with one another. If triangle, for example, is regarded as a genus, and one species of it is the equilateral, the others will be the isosceles and the scalene: where each differentia specifies certain relations in the length of the sides; if one species is the right-angled, the others will be the obtase- and the acnte-angled : where each differentia specifies certain relations in the magnitude of the angles. The principle that the differentiae must be thus cognste is technically expressed by saying that there must be one fundamentum divipionis; this, however, has ita proper place of discussion in the next chapter.

To define anything then per gense et differentiam is to pat forward firat a relatively vague notion and as it were the leading idee of the thing, and then to render this definite by stating in what way the leading ides is realized or worked out. And the differentive are of the eseence of the things, because they belong to the working out of this leading idea. In the definition of organic species (inorgenic kinds we will consider later) this is what we aim at doing. We start with the general notion of an organized body, and classify ite various forms in such a manner as to show how this scheme is realized in successively more complex ways. Our first division is into unicellalar and multicellular organisms (protozon and metazoa) : the former obvioualy admit of no composite cellular structare; in a multicellular organism there must be a method of constructing the system of parts. Hence we proceed to differentiste ${ }^{1}$ Cf. infra, c. v. p. 101.
these according to the principal modes of structure which they exhibit; on this basis is founded for example the division of the metazo in the animal kingdom into coelentera and coelomata; of coelomate into a number of 'phylg' ($\phi \hat{\lambda} \lambda a)$, the platyhelmia or fat-worme, annelids or worms, arthropods, mollusca, ecbinoderms and chordata; of chordata, eccording to the form which the nervecord aesumes, into hemichords, urochorda, cephalochorda and vertebrata; and of vertebratee, according to the different forms which the general principle of vertebrate stracture may assume, into fish, dipnoi, amphibis, reptiles, birds and mammals. When it is said that we start with the general notion of an organized body, it is not of course meant that historically, in our experience, that is what wo first become acquainted with. We first become acquainted with individual plants and animals; and we are familiar with their various apecies-with horses, dogs, and cattle, oak and apple and elm-long before we have settled with ourselves what is the leeding idea, and how it is developed and worked out in them all, so as to make them the kinds of things they are. The genus is that with which, when we have acquired an insight into the nature of these various kinds, we then atart; it is first in the order of our thought about them when we understand them, not in the order of our sequaintance with them when we pereeive them. According to the
 - poorcopol : first or fundamental in the nature of the thing, and in the order of our thought, but not what strikes un first. And Aristotle also expressed ita function by arying that the genus is, an it were, the matter, $\hat{\lambda} \lambda$, of the species or kind.

In saying that a genus is related to its species as matter to form,

[^47]the relation of matter to form is conceived an that of the less developed to the more developed, the potential to the actual. A word of caution is necessary here. We often compare two particular objects, esay a 'bone-ahaker' and a modern bicycle, and observing that one carries out more completely certain featurea imperfectly present in the other, call them respectively more and less developed. The ame thing may be obeerved in the arrangement of a picture gallery, where the pictures are placed in auch an order as will exhibit the gradual development of an artist's atyle, or of the style of some school of artists : and in a museum, where the development of the art of making flint implements is illuatrated by a succession of apecimens each more perfect than the leat. Now in all these cases, the more and the less developed specimens are all of them concrete individuals: each has an actual existence in apace and time. But with genus and epeciee it is otherwise. They are not individuals, but universals; the genus doee not exint side by side with the apecien, as the bone-ehaker exists side by side with the beat bicycle of the present day; and you cannot exhihit genus and apecies eeparately to the senses. It is our thought which identifiee and apprebends the generic type, eay of vertabrate, in the different species, man and horse and ox; and in thinking of them, we may say that the single type is developed in so many divers ways; but genus and species do not exist in local or temporal succession, the lees devaloped first, and the more developed later, like the specimens which illustrate the development of a type or style. Obvious as these remarks may seem, they are not superfinous, if they help to grand againgt the iden that a genus \geqslant is something independent of ite species.
[It would be travelling too far beyond the limits of an elementary work to enquire into the meaning of arranging individuala in an order of development: whether (like plants and animale) they proceed one from another in a true genealogical series, or are mannfactured independently, like bicycles or arrowheads. A criticism of the conception of development is however of great importance; for the complacent application of the notion to disparate subjecte, under the influence of the biological theory of evolution, by writers like Herbert Spencer has diffused many fallacies. Perhaps it may be suggested that, if we wish to know what we mean when we apply the conception of greater and less development to the relation between individual objecte, we should first examine what we mean
[by the conception in the relation of genus and speciea. We cannot throw any light on the relation of genus and apecies by comparing it with what subsists between individuals at different atages of 'evolution'; but we may get some light upon the conception of erolution from reflection on our conception of the relation of genus to species. For the 'evolution of species' is generally rupposed to be not mere change, but development ; yet it is often supposed also to involve nothing of the nature of parpoee, or denign. Now unlees we find, in considering individual objecte, that there is a plan, parpose, or ides anggested to us in what we call the less developed, but not adequately exhibited there we wonceive it, and that this same plan, purpose, or ides is more adequately exhibited in what we call the more developed objeot, we have no right to call them wore and less devaloped at all. The relation therefore is not between the objecte as individual, but between their charscters; we cannot identify with the lem developed individual the plan, purpose, or idee which is lee developed in it; there is the same plan at different levele of devalopment in each individual; and the evolationary history of individuals must be a manifestation of a plan or of intelligence in them, unlene we are to say that there is no real development in them, bat only change, and that to call this cbange development in to read into things a fancy of our own.]
[In the first chapter, the antitheria of form and matter wae employed in explaining how a common charscter might belong to divers objecte. Two shillings, for example, may be aid to be of the aame form, while the matter in them is different: and two propositions to be of the same form, so far as each asserta a predicate of a subject, while their matter-i.e. the actoal subject and predicate in eacb-varies. But in asying that genus is related to apecies as matter to form, it is implied, as between two opecies, that their common genus, the 'matter', is that in which they agree: while the specific form asomed by this matter in either is the besis of the distinction between them. Indeed, the phrase 'specific differences' implies that their differences constitute their form. It may seem strange that whereas in one sense matter is that which is different in thinga of the ame form, in another it is that which ia the aame in things of different form.

A little consideration will show that the common notion in both these uses of the term matter is the notion of something undeveloped. With regard to the phrnee that calls the genus the matter of the opecies, this point has already been illustrated. And when we contrast, in a shilling, the matter (silver) with the form, this is still the case. We regard a shilling as an object having a certain form (that might aleo be stamped in gold or copper) impresed upon
[a certain matter, silver: and say that both are necessary to its being a shilling. Now the matter here is really silver as of no shape. A disk of silver may be put into the die and stamped: but such disk is not the mere matter of which a shilling is made; it is the matter in a different form : but because the silver may have the form of a shilling, and may have the form of a plain diak, it is possible for us to distingaish between the silver, which is present alike in the diak and in the shilling, and the form which the silver assumes in the minting. The matter of a shilling is thus not silver in another shape, but silver without regard to its shape: the metal ss it is present equally in the disk and in the shilling; now silver does not actually exist except in a particular shape; and in thinking of it in abstraction from its shape, our thought of it is incomplete. As the genus only exists in the species, to the matter, silver, only exists in some form. It is however true that there is no special relevance between the nature of silver and the ahape of a shilling, whereas the specific form of man can only be realized in the genns vertebrate; and hence the conception of development appliee more closely to the relation of genus and species, than to the relation of matter and form in a concrete object.

Many controversies have been waged over what is called the principisss individuationio. What is it that makes one individual distinct from another individual of the same species? Some of the achoolmen held that, being of the same apecies or form, they were distinct in virtue of their matter; and it followed, since angels bave no matter, that every angel is of a different apecies: except their apecies, there is nothing by which they can be dirtinguished from each other. We may be less ready to dogmatize with confidence about angels than were the schoolmen; bat the fashion of deriding their speculations because they were exercised in solving that kind of questions is fortanately in diminished vogue. The problem of the principium individuationis is a serious philosophical problem.

It may throw some further light on what has been said of the antithenis between matter and form, to point out that matter cannot really be the principium individuationis. Two ahillings which have the same form are said to be of different matter. Now their matter is silver : but it is not because it is made of silver that one shilling is different from another shilling. In that respect all shillings agree ; it is because they are made of differont masses or pieces of silver that they are different shillings. But if 80 , it follows that to be of silver is a character common to both pieces (quite apart from their being of the same die); and though we say they differ in matter, we mean that though of the same matter, they are different pieces of it. The problem of the principinm indioiduationis is not therefore solved by the distinction of matter and form ; the ahillings are different, though of the same form, becanse in each that form
[ia stamped upon a different piece of silver; bat the pieces of ailver themselves present the same problem, of a common form (the nature of silver) in different individual objects. Matter is indeed, strictly apeaking, not a particular thing or an aggregate of particular thinga, but a generic conception. We recognize varions species of it, which we call elements: the elements are different forms of matter; and in calling them no, we imply something common to them all, as we imply something common to man and ox in calling them both animals; though we are less able in the former case than in the latter to form any conception of the common or generic character in abatraction from its apecitic differencea.]

It hardly neede now to be pointed out, that where the predicate of a proposition defines the subject, it is related to its subject far otherwise than where it is an accident. We realize (or we should realize, if our definitiona were what we aim to make them) that the genus, modified or developed in the way conceived, is the aubject; the definition and that which is defined ana not two but one. Of course, when a green thing is equare, the same particular thing is both square and green; the green thing and the equare thing are one thing ; bat here the subject is net an universal, and we have only to recognize the coincidence of attributes in the aame individual. Being green and being equare are not one, as being a triangle and being a three-aided rectilinear figare are ${ }^{1}$; there is a conceptual anity between these; between thoee only an accidental.

It follow that there in a conceptaal connexion between any subject and ite genus or differentis ; he who underatands the neture of the subject seee that it must be what is predicated of it as its genus or ite differentia. What belonge to the esence of anything must belong to it; for alee it would not be that kind of thing, but something different.

We may now take up the last of the pointe raised on p .62 -the second in the order in which they were there stated: viz. the ground of the distinction between eesence and property; since the last paragraph suggeste the question, What do we mean by the essence? If the essence of anything be what makes it what it is, of conrse it would be something different, were any element in its essence wanting; but what makes it what it is?

[^48]Those who hold the view, already mentioned, that definition is of names only and not of things, have an answer ready hera, agreeable to that view. They say that we cannot tell what makes anything what it is, but only what makes it what it is callod; and that the world might have been epared much useless controversy, if men hed realized that by the essence of anything they meant no more than the attributes which they agreed should be signified by a general name : or, as Locke called it ${ }^{1}$, the nominal essence. Pushed to its logical concluaion, anch a doctrine makes all the distinctions of predicables arbitrary; for if the nature of the thing denoted by a general name X in not to determine the signification of the name, we can attach to the name what concept we please, and it will reat with us whether the concept shall be one with which a given predicate is conceptually connected or not, and therefore whether it shall be an accident of X, or stand in some other relation to it. And if we were to regard only the definitions of geometry, it would appear a gratuitous paradox to maintain, that men determined arbitrarily what to include in the definition of circle or triangle, and what to omit. Every one recognizen that you declare better what a triangle is by aying that it is a three-sided rectilinear figure than by saying it is a rectilinear figure whose angles are equal to two right angles; or a circle, by saying that it is the figare generated by the revolation of a straight line round one of its extremities remaining fixed, than by saying that it is a figure having s larger ares than any other of equal perimeter. What has led men to suppose that definition is a matter of fixing the meaning of names is the difficulty found in defining natanal lrinds, i. e the various species of animal, plant, or inorgenic element; in despair they have looked to the agnification of the name for the only meaning of the easence of the object. The definition of abstract notions like wealth or crime or liberty has lent come support to the atme viow. In these cases, the object defined cannot be presented to the eenses in an example, as can gold, or the holm-oak, or the buffalo; we cannot be sure therefore that different men intend to define the same thing, when they offer definitions of such notions; and instead of settling first by its appearance that a given act is a crime, or an object wealth, or a state one of liberty, and then

[^49]argaing to its nature from our definition, we have rather to determine whether it is to be called a crime, or wealth, or a state of liberty by considering whether ite nature is such as mankind, or particular writers, have agreed to signify by those namea. Hence it might appear that in the case of abotract terms ${ }^{1}$ at any rate, convention eettles what the eesence of them shall be; in the main it in not really ∞, even with them; for the understanding of facts would not then be facilitated as it is by the aubatitution of 'better' for 'worse' definitions of abstract terms; but the plasibility of the riew here adds weight to the arguments which are drawn, in the manner we must now proceed to show, from the definition of natural kinds.

Suppose that we wiah to define the natural substance dog, or gold. The forms of language recognize a difference between a subatance and its attributes; for we say that Gelert is a dog, but not that he is a faithful; and apeak of a piece of gold, bat not of a piece of heary. Yet when we define a substance we can only enamerate ita qualities or attribates ${ }^{3}$, and leave out of account what it is that has them. What attribates of Gelert then are we to enamerate, to explain what we mean by calling him a dog? or what attribates of a wedding-ring, to explain what we mean by calling it gold? In each case a certain fired nucleus, as it were, of attributes, holding together in repented instances and through great varietiee of circumstance, is included in our concept of an objeot called by such a genersl concreto name. But which attribates are to form this nacleas, and on what principle are we to make our selection? If it be said that we are to include every attribute common to all doge, or all gold, two diffliculties arise. The first is, that we

[^50]should include in oar notion of dog or of gold all the properties, as well as the attributea that are to constitute the definition : for the properties of a kind are the predicaten common and pecaliar to all the individuals of that kind; and hence we should still leck a principle apon which to discriminate between property and easence. The second difficulty is more serions. We are to inolude in our definition of a kind every attribate common to all individuals of that kind ; but until we have defined the kind, how can we tell whether a particular individual belongs to this kind or another? Let the definition of gold be framed by collecting and examining every piece of gold, and noting down the attributes common to them all; the tank is impossible in practice, but that might be overlooked; it is, however, viciona in theory; for it implies that we already know what gold is, or what makes a particular object a piece of gold, and can by that knowledge eelect the objects which are to be examined, as apecimens of gold, in order to determine the nature of that substance. Thus we seem to be moving in a circle; what is gold is to be aettled by an examination of the things that are gold; what things are of gold is to be settled by knowing what gold is.

Hence our selection must be arbitrary; for we have no principle to make it on. We may take a particular opecific gravity, the power to reaist corrosion by air, ductility, malleability, and solnbility in aqua regis ; and say these constitate gold, and are its essence. And in that case its colour is a property, or for all we can tell, an accident; for we can see no necessary connexion between a yellow colour and all or any of thoee attribatea, and if we found a white metal with those five attributes we should have to call it gold. But if we choee to include yellow colour with them in our definition, then nothing could be gold that was not yellow; yellow would be of the essence of gold; bat only because we had decided to give the name to no metal of another colour; it would be the meaning of the name that fixed the easence, and the easence would be only ' nominal'.

It has been assumed in the above that the attribute included in the definition may be not only arbitrarily selected, bat without any perceivable connexion among themelves; so that any attribute omitted from the definition should drop at once into the rank of accident ; the essence is only a collection of attribute comprised in
the signification of the same name, and there are no properties at all. And some logicians have maintained that we can never see any necesary connexion between different attribates; and that when we speak of them as universally connected, we really mean no more than that they have been very frequently found accompanying one another. Without for a moment agreeing with this opinion (which denies any eense in the distinction between a connexion that is necemary and oniverana, and a conjunction that is accidental) it may be admitted that we often regard attributes as neceasarily and universally connected, because we believe that with fuller knowledge we might see into the necessity of the connexion, when ae yet we cannot actually do so. This is markedly the case with the varions properties of an inorganic sabatance; and the kinds of plant and animal also present us with many instances where different peenliarities in a apecies are inferred to be 'correlated', because the same conditions seem to affect them both, without our being able to understand the connexion between them.

The difficulty of determining what attributes are essential to a substance, and therefore of discriminating between easence and property, does not however arise entirely from the seeming disconnexion among the attributes of a lind. It arises also, in the case at least of the organic, from the great variation to which a species is lisble in divers individuals. Extreme instances of such variation are sometimes known as border varieties, or border specimens; and these border varietiee give great trouble to naturalista, when they endeavour to arrange all individuals in a number of mutually excluaive species. For a long time the doctrine of the fixity of apecies, appported as well by the anthority of Aristotle and of Genesis, as by the lack of ovidence for any other theory, encouraged men to hope that there was a atable character common to all members of a species, and untouched by variation; and the strangeat deviations from the type, excladed under the title of monstrosities or sports or unnatural births, were not allowed to distarb the symmetry of theory. Moreover, a working test by which to determine whether individuals were of different epecies, or only of different varieties within the same species, was furnished, as is well known, by the fertility of offepring; it being assumed that a crose between different species would always be infertile, as in the case of the mule, and that when the crom was uniformly infertile, the species
were different. But now that the theory of organic evolution has reduced the distinction between varietal and apecific difference to one of degree, the task of eettling what is the essence of a species becomes theoretically imposible. It is possible to describe a type; but there will be hundrede of characteriatice typical of every species. Who is to determine what degree of devistion in how many of these characteristics will make a specimen essentially or specifically different $?$ Will it not have to be decided arbitrarily at the last ? so that here again our use of names will settle what is essential to the species. Everything will be essential that we require in a specimen in order to call it by a certain apecific name.

Such are the ressons for aaying that the essence of anything is eattled by the meaning that we give to names, and if the easence is thus arbitrary, the dirtinction between essence and property is similarly infected. But that distinotion is obnorions to another objection, already noticed on p. 80 : that if the property is common and peculiar to the kind, it ought to be included in the easence, becanse connected with it univerally and necesaarily. It is as little posaible for a triangle not to contain angles equal to two right angles, as not to have three sides; as little possible for a line not to be straight or curved, as not to be the limit of a superficiea. If the property of a subject is grounded in the nature of that oubject alone, why is it not regarded as a part of ite nature? if it is grounded in part in the nature of the subject, in part in the fulfilment of conditions extraneous to the subjeot, then the subject only possesses it in a certain conjunction, and it ought to be called an accident. ${ }^{1}$

Having thus presented our difficalties, we murt endeavour their solution.

The inexpugasble becis of truth in the theory of the predicablea lies first in the distinction between the necessary and the accidental: secondly, in the analyeis of definition into genas and differentis. The first underliee all inference; the second, all classification. Bat the notion of essence, and the diatinction between easence and property, are not applicable in the aame way to every sabject.

They present at first sight no difficulty in geometry. The easence of a figure inclades moch as need be stated in order ${ }^{1}$ Cf. supra, p. 66.
to wot the figure ase it were before us: whatever can be proved of such a figure univeraslly is a property. Thus the definition is seoumed, the properties are demonatrated; and that is the true Aristotelian distinction between easence and property.

But how are the properties demonstrated? Only by asoming - great deal else besides the definition of the figure of which they are demonstrated. We ansume, for example, the postulates; and that means that we wee that we always can produce a stright line indefinitely in either direotion, or join any two pointa, or rotate a line round one extremity. We assume the axioms; and that meana that we ee, e. g., that any two right anglea mast be equal ; and that if a atright line $A B$ falling on two other atraight lines $C D, E F$ makes the angles $C A B, E B A$ equal to the anglee DAB, PBA, CD and $E F$ mast be parallel, and if not, not ; and vice varra: we sesume aloo in one propoeition all that we bave already proved
 in others. It is not from the mere contemplation of a figure as defined, that the perception of ite propertien follown ; we mast ret the figure into apeco-relationa with other linees and figures, by an act of condruetion; and the trath of our conclucion is involved not soledy in the eseence of the figure as ret out in ite definition, bat in that taken together with the nature of apeoe ; for it is really the natore of apace which we apprehend when wo realize that the sum of the interior anglea made by two particular parallel straight lines with a line that cats them is equal on both sides of it, or that a given stright line can be produced to meet another with which it in not paraliel. Another point mast be noticed. It was eaid that wherees the properties are demonstrated, the definitions are assumed ; bat that does not mean that they are arbitrarily taken for granted. They are cerumed, becance they are what we start with. But thay are not arbitraily taken for granted, because it is relf-evident to us that the existence of a figure ae defined is posesible; and this is selfevident, becanse in the procese of defining we bring the figure into being before ne. We know that three straight linee are enough to make a figure, because we make it of them in imagination; we know that a figure may have five sides, becanse we see the pentagon before us. It is this power which geometry poseesses of creating instances of the objects of its own stady that distingrishes it from the
non-mathematical aciencea. And it createa its objecta by constructing them-i.e. by drawing lineas and in this poneeseas a nataral principle apon which to distingaish between property and eseence. For though, in geometry, propertiee are commensurate with their subjecta, and may be reciprocally demonstrated, jet everything depends upon the power mentally to see the lines; thas the angles of stringle determine the position of ite lines as moch as the position of the lines determines its anglees; bat it is only through dividing apece by lines, that the angles can be realized. The visible figure is therefore our neceesary starting-point. A definition which fails to determine that waits for application until the figure can be pictured. Let a circle be afigure having a larger area than any other of equal perimeter; that does not aet a circle before us; an inflinity of figures can, we see, be made by a line that returns upon itself and is flexible at will; and the property specified will not, previously to demonstration, afford va any meane of salecting the figure intended. But eay that a circle is the plane figure generated by the revolation of a atraight line about one of its extremities remaining fixed, and then we have it before us; then we understand what it is about which the property of having a larger ares than any other figure of equal perimeter is affirmed. Once again, in geometry there are no happeninge, no conjuncturea. It is true that in order to geometrize we have, actually or in thought, to draw the figures : but our procene of drawing only renders visible spece-relations which we conceive are eternally present everywhere in spece. Therefore the circle or the triangle in not subject to mutation on different occosions; there is nothing to prevent it at one plece or time from being the same as at another; and the conditions ander which it exists do not vary; the general nature of the space in which it is is uniform and constant. Hence the properties of any geometrical figure, though, as we have seen, we must take the general nature of apece into account, as well as the definition of the figure, in order to realize their necesaity, may yet without risk of any false deduction be regarded as if they were grounded in the eseence of that figure alone. For the general nature of epace is a ' constant'; it is everywhere the same, and conditions every figure alike; it is not becanse that ever changea, that different figures have different properties, but because the figurea are different.

Geometry therefore deals with subjects capable of definition : in which the definition serves to set the subject before as: and in which the dirtinction between eseence and property, though from one point of view questionable, is from another sound. It is questionable, so fir as the properties of a figure do ideally belong to it always, just as much as the figure always exists; they are as neceeasy to it an ita definition, and do not really any more depend on the definition than the definition on them. But it is sound, $\infty 0$ far as the esence is that which we must start with, in order to have the figure before us, and sy anything about it, while the propertiea are what we can demonstrate. The process of demonatration may require that we aboold make a further constraction than what the figure iteelf demands; but this further construction is not neceseary in order that we may ee before ne the figure iteelf; and hence the definition, which as it were constructs the figure, gives us what is ementin, the demonstration what is necemarily bound up therewith. ${ }^{1}$
Now the scienoe of geometry, both in Aristotle's day and since, has been apt to ceem the model of what a acienoe ahould be; and that deeervedly, so far as its certainty and aelf-evidence go. But though wo may desire an equal certainty and self-evidence in other aciences, we mast not ignore the differences between their subjectmatter and that of geometry; nor mast we asoume that the diotinction of essence and property will have the same applicability to concrete bodies as to figures in spece. The eubjectes which we stady in chemistry, in botany, or in zoology, are not constructed by un; they are complex, and for all we know may differ mach in their construction in different instances; and they exist undar conditions which are not constant (iike the nature of space) but infinitely varions. Under these circumstances, we cannot expect to find the determination of the emence of a kind, and the separation between that and ita propertica, as soluble a tank as in geometry.
Let us consider firat the definition of inorganic kinds. Here, since a compound may be defined by specifying its composition,

[^51]our problem deals with the elements. It will be instructive to look for a moment at the Greek treatment of this question. There were two main attempts to define the famous four elementa of Empedocles, earth, air, fire, and water. Plato supposed that they differed in the grometrical conatruction of their particles, thoee of earth being cabic, of air octohedral, of fire tetrabedral, and of water eicosihedral. If these were their differentias, what was their genus? We can only reply, solid. ${ }^{1}$ They were sometking filling opace, of different figures. In asouming the concrete things which be defined to fill apece, Plato did what every one who definee a natural subetance does. We do not alwaye mention it in our definition ; we might define a suake, for example, as a certain kind of vertebrate; but the notion of a vertebrate involves it; and it is necessary if the definition is to farnish we with the concept of - material object at all. In taking geometrical figurea as his differentise, he attemptod to gain in physics the advantages whioh geometry derives from oar power of constructing ita objects ; but he failed to show how the sensible properties of the different elements were connected with their reapective figures. Aristotle preferred the method of those who distinguished the elements not by the figure of their particles, but by the mode in which they combined certain fundamental sansible qualities, heat, cold, moisture, and drynesa. Fire he thought wha the hot and dry subetance, water the cold and moist, earth the cold and dry, air the hot and moist. These definitions have the disadrantage of using terms that posecese no very precise signification. How bot is unmired fire, and how moist is pure water?

Modern science recognize in each element a whole legion of common and peculiar attribatee. Some of these, such as its atomic weight, or its apecific gravity, are conceived to be constant or to charecterize the element in all conjunctures; others it only exhibits upon occasion; this is the case, for example, with its reactions towards other bodies. We have very little insight into the intorconnexion of the rarious attributes thus characterizing ench element; bat unless we are to regard everything in nature as accidental, we are bound to believe them interconnected.* It is imposesible to

[^52]include in ita definition all that is known to be characteristic of an element; and for the mere purpoee of identification, many of the attribates of an element would serve equally well. Bat we profer to select as differentine, and inclode in the definition, sach attribates as appear, in come form or another, in all or a large number of elemente; becanso we are thas able to exhibit the divers elements as related to one another apon as scheme, or in other worde to claseify them. Thus the specific gravity of a arbotance is more saitable for defining it than some peculiar reaction which it exhibits, although perhaps lese useful for identifying it; because all elementa mart have some appecifio gravity, bat no other need exhibit the same sort of reaction. If, however, a reaction is common to a number of sabatances, it may rerve as a groumd for colleoting those into one clase, like the salta: the common reaction being a generic charncter; especially when for any remon, such an the number of sttributea that are commensurate with it (i. a are found where it is found, and not where it is abeent), auch reaction seems to be of importance in the sabetances to which it belonge.
Such considerationa may gaide us in choosing what to include in our definition; and we ahall aloo coteris paribus prefar for differeative thoee attribates that are continuously exhibited to thove that an element only exhibita in a rare conjoncture. Nevertheleme it is plain that our procedure is in great mesenre arbitrary; and the dirtinction between evence and property is not applicable an it * was in geometry. For among the constant attribates of an element we cannot atart with rome and demonatrate the remainder; and thowe which it exhibite in particular circumstancee are not propertiee in the fall eanea. We may indeed rogard it an the property of an element to exhibit a certain reection in cortain circumstancee ${ }^{1}$; bat whereas the 'oircumstancee' ander whioh geometrical figures exist and poseses their properties are in evary case the mame (being the general nature of rpece), the circomotances relevant to the manifetation of the several properties of an element are different; hence we cannot afford to omit the statement of them in stating its properties; and since they are often very numerous and complex, and involve many other anbetances, it may be more natural to refer the property to a compound, than to one element. Nevertheleass,

[^53]since canal connexion is the root-idee of the notion property, we rightly regard these attributes as properties rather than accidents. For although the subjection of an element to any partioular conditions rather than others is striotly speaking aocidental, since it depends upon historical causes that are independent of the nature of that element, yet its behaviour when eubject to thoee conditions is not accidental : so that it is fairly called a property of gold to be soluble in aqua regia, though very little gold be so dissolved : but an accident to lie in the cellars of the Bank of England, for that belongs not to gold, but only to particular mases of gold, and why those masses should lie there instead of any others cannot be determined scientifically, nor by any reasonings applying to gold universally.

The use of the singular without the article (as in a proper name) when we say that gold is malleable, or iron rusts, or silver tarnishes, is worth remark. It implies that we think of gold, or ailver, or iron es one and the aame thing always: that we are looking to the unity of kind, and not the partionlar apecimens. The very idea of an element negatea the posaibility of any difference between different specimene ${ }^{1}$; and when we investigate the properties of a compound, $s 0$ far as the composition is reall k known with sceuracy, we have the same confidence in attributing to that componen universally the properties discovered in a particular ample. In organic kinde, though we may know the chemical composition of the parts, we cannot know with the same accuracy the composition of the heterogeneous parts into the whole.

Indeed the problem of distinguishing between esence and property in regard to organic kinds may be declared insoluble. If apecies were fixed: if there were in each a certain nucleas of characters, that muat belong to the members of any species either not at all or all in all : if it were only upon condition of exhibiting at least such a specific nucleus of characters that the functions of

[^54]life could g° on in the individual at all ; then this nucleus would form the eseence of the kind. But such is not the cuse. The conformity of an individual to the type of a particular species depends on the fulfilment of an infinity of conditions, and implies the exhibition of an infinity of correlated peculiarities, otructural and functional, many of which, so far an we can wee (like keennees of acent and the property of perspising through the tongue in dogs), have no connexion one with another. There may be deviation from the type, to a greater or lese degree, in endless directions; and we cannot fix by any hard and fast rule the amoant of deviation consistent with being of the species, nor can we enumerate all the pointe, of function or structure, that in reality enter into the determination of a thing's kind. Hence for definition, woh as we have it in geometry, we mast subatitute clusificetion ; and for the demonstration of properties, the dincovery of lawe. A cleserification attempts to entablish types; it eelectes some particular characteristica as determining the type of any opecies; these characteristics must be (a) of the eame general kind for each type, or, as it was expresed on p. 72, variations upon the mme theme, in order to exhibit the matual relations of agroement and divergence among the varione typee: (b) important, or, as one might eay, porvasive : that in, they mart connect themselvee in as many ways as possible with the other characters of the speciea. It will be the description of the type, drawn op on such principles as these, that will serve for definition. It in avowedly a mere extriot from all that would need to be mid, if we were to define (upon the sapponition that we could define) any speciea of plant or animal completely.
The fall nature of an organic apecies is $\mathbf{\infty}$ complex, and rabject to $\mathbf{n o}$ mach variation in different individuals, that oven if it could be comprised in a definition, the task of acience would hardly consist in demonotrating ite properties. To discover the properties of kinds belonge to the empirical and not to the scientific atage of botany or zoology. Soience asks rather what it io about any kind on which a particalar property belonging to it depende. Herein we break up or analyse the complex character of the kind, in order to determine what we call the laves of organio life. If - species, for example, is keen-ccented, that must depend apon conditions that are bat a amall part of what would be included in
a complete account of ite nature. In order to find the commensurate subject of which a property is predicable, we must abstract from all in the speciee which is not relevant to that one property; and our cubject will not be the concrete lind, bat a eet of conditions in the abstract. The property whose conditions we have found is of conres the property not of those conditions, but of anything that fulfils those conditions; feen-scentedness, for example, is not a property of a particular construction of the olfactory organ (though we should call it an effect of this), but of an animal in whom the olfactory organ is thus constructed; the laws of organio life anppose of course that there exist organiams in which they are exhibited. We may still speak therefore of properties of kinds; bat the demonstration of them considers the nature of the kind only so far forth as it concerns the property in question. The property is not common and peculiar to the kind, if other kinde, as may well be the case, agree with it in those respects on which the property depends; or if it depends on conditions which cannot be fulfilled except in an individual of that kind, but are not fulfilled in every individual thereof.

Suah refleotions led the schoolmen to distinguish four senses of the term property -

1. id quod pertinel omai sed non soli: thus it is a property of the cow to give milk; but other animals do the same; and to give milk is the commensurate property not of a cow but of a mammal ; being causally connected with a feature which though present in a cow is present in other species besides.
2. id quod pertinet soli sed nom omai: thus it is a property of man to write poetry, but not universally; for the writing of poetry requires powers which no creature but man poseesses, but which also one may not possess and yet be a man.
3. id quod pertivet omani at poli, sed now semper : in this sense it is a property of the male \&fret to grow a certain kind of feather, mach used by ludiea in their hats; bat only at the pairing season.
4. id quad pertinet onsi ef soli et semper: in this rense it is a property of a triangle to have ita angles equal to two right angles; bat it is difficult to find an example of such a property among organic kinds, for a feature so constant and universal would be regarded as part of the essence: anless like the schoolmen we call it a property in this sense to be capeble of exhibiting a property
in sense 8 ; they often gave it as an illantration of property in the third senve that man laughs; and in the fourth sense, that he is capable of laughter; for the capacity is parmanent, bat the exercise of it occasional.
In all thee uses of the term property the notion of a necesary or cansal connexion is retained; bat commensarateness with the subject is not insisted on in all. No doabt a commensarate subject for every predicate is to be found; bat only by specifying the precise conditions (in an organism or in whatever it may be) on which the property depends; but the concrete thing is the subject aboat which we naturally make propositions, naming it after its kind; and kinds being complex may agree together in some pointa while differing in others with intricate variety; so that when we have distingrished the species to which objectes conform, and the attribates which they poseess, we cannot divide the latter among the former without overlapping.
Many general and abetract terms, which form the subjects of propositions, designate neither nataral substancea, nor mathematical entitiea. There are names of qualities and statea of things, like soflusese or putrefaction: of paychical states and proceses, like pleanure, anger, volitioz: of the material producta of human or animal alill, like $p w m p$, wabrella, bridge or ned: of natural featorea of the earth's surfice, like beach or valley : of determinate parts of an organim, like cell or sympatietic nerve: of forms of haman aseciation, like army, nniversity, demacrecy, bank. It would be todions to proceed further with such an enumeration. About all of theee terms it is to be obverved that the notion of them involves - certain abetraction. Bridge and py=p sre concrete tarms, bat they are names given to material objeots becanse they serve - certain parpose, or exhibit a certain atructare; and all else in the natare of the object is disregarded, in considering whether it is a bridge, or whether it is a pamp. In attempting to define an element on the other hand, or an organic species, we have to wait upon discovery, in order to know the nature that an object must posesess angold, or as a crab; the whole nature of the concrete object forms the subject of our enquiry. It is the abotract character of the terme which we are now considering, or the limited extent of their signification, that renders them more capable of astisfactory definition; they are lenat definable, where that which
they denote is most complex; thas it is easier to define army than democracy, and rigidity than putrefaction. The more complex any subject, the less is it possible to exhaust its natare in any brief compendiam of worde, and the greater also are its capacities of various behaviour under varying conditions; all these are part of the notion of it, and no definition will really be worth much to any one who cannot realize how different the thing defined would be in different circumstances. Thus a definition of democracy means most to him whose mind is moot fally stored with a knowledge of history and of institations and of human life; he can realize what government of the people by the people for the people (if that were our definition) really involvea. Bat comparatively little knowledge is needed in order that the definition of a bridge may be fully understood. It will be readily seen, that what has been said of the difficulty of determining either property or essence in regard to natural kinds applies also to such terms as we are now considering in proportion to the complexity of the notion to be defined; the more complex the subject, and the greater the range and variation of the modea in which it manifesta itself, according to the conditions under which it exists, the more arbitrary becomes our choice of characters to be included in the definition, and the less can properties be commensurate attributes.

We have now reviewed the theory of predicablea as it was first propounded; we have seen that the scheme of knowledge which it implies cannot be realized upon all subjects; that it is best exemplified in mathematics, and in other aciences which deal with abetractions. But we have also eeen that it contains distinctions of great value and importance. Theee are

1. the antitheais between an accidental connexion (or coincidence) and a neceseary or conceptual connexion;
2. the conception of the relation of genua and differentia, and of the unity of genus and differentia in a single notion;
3. the resting the distinction of eevence and property upon the distinction between that which we start with and that which we demonstrate therefrom; though this use of the term property cannot always be adhered to in practice.

It remains to say a few words upon the Porphyrian doetrine.
It differs to appearance in one point alone; the Porphyrian list of predicables subatitutes Species for Definition. But that difference
implies a change in the point of view. The problem now is not as to the relation between two universals predicsted one of another, but as to the relation in which the various universals predicated of an individual stand to their subject: for it is of individuals only that a speciea (such as man, or horee, or parrot-tulip) is predicated. ${ }^{1}$ And various inconveniences arise from this change. First and foremost we have to determine what is a true species, and what only a genus within a wider genus. ${ }^{2}$ Do I predicate his species of Cetewayo when I call him a man, or when I call him a Zula? if Zulu be a species, man is a genus, though included with the wider genus of mammal, vertebrate, or animal; but if man is the species, Zalu is an accident. The question thus raised is really insolable; for species, as in now believed, srise gradually out of varieties. It gave rise to many great controversies, as to whether a apecies were something one and eternal, independent of individuals, or on the other hand no more than a name. These opposite views were indeed older than Porphyry or the mediseval thinkers who discussed them so earnestly; nor can any philosophy refuse to face the controversy between them. Bat it was a misfortane that the theory of predicables should have got involved in the controversy; partly because it led to a mode of stating the fundamental insue which is not the bent : partly because the trae value of the theory of predicables, as a clasaification of the relations between aniversals predicated one of another, was lort sight of in the dust of the diopute between the realiste and the nominalinta

A second inconvenience in the Porphyrian theory is that while beginning by distinguishing the relation of its predicates to an individual, it cannot continue true to this standpoint. Species is properly predicated of an individual; we ask what is the species not

[^55]of man, but of Cetewayo; and if the species can be analyeed into genus and differentia, it is possible to regard theme as predicated of the individual belonging to the species. But we cannot distinguish between property and accident, so long as the subject whose predicates we wial to refer to these heade is an individual. A property is necesary to its subject, and an accident is not; bat all the attributes which belong to Cotewayo are equally necessary to him as Cetewayo; on what ground then are some to be called properties, and others sccidents? An accident is an attribute which coincides ${ }^{\text {' }}$ in an individual with another general character, or universal; its sccidental relation lies towards that other universal, and not towards the individual, in which ite presence is, historically, necesary. A property is an attribute found in an individual, but grounded in certain general characteristica of that individiaal; and it is proper not to the individual as such, but as having thome characteristics, and therefore to everything which has them, or to that kiad of thing aniverselly. It is only therefore in reference to a kind of thing as mbject that we can ask whether a given predicate is to be ranked as accident or property. If it is asked whether it is a property of Cetewayo to talk, or fight, or be remembered, we must demand, of Cetewayo considered as what? Considered as a man, it is a property of him to talk; considered as an animal perhaps it is a property of him to fight; but considered as a man, or an an animal, it is an aocident that he should be remembered, though perhape a property considered as a barbarian who dentroyed a British force. So long as wo consider him as Cetewayo, we can only say that all these attributes are predicable of him.

Thirdly, the Porphyrian doctrine gave rise to a division of accidents into separable and inseparable which, if an individual be the subject, is confused, if an universal, self-contradictory.' An inseparable

[^56]accident of an individual is an accident of the species ander which he is considered, but inseparable in fact from him. Thus it is an inseparable accident of a man to be born in England, bat a separable accident to wear long hair; because he can cut his hair short, but cannot alter his birthplece. Now this notion of an inseparable accident is confused, becasue the attribate is called an accident in relation to the species an subject, but inseparable in relation to the individual ; the whole phrase therefore involves two standpoints at once. And the distinction between separable and inseparable accidents thus understood has really nothing to do with the doctrine of the predicables as a clasification of concoptaal relations between s subject and ite predicstes. There are, properly speaking, no accidente of an individual as the complete concrete individual. The Old Pretender might have been born elsewhere than in England, and might have cat his hair shorter : regarding him as the con of James II, each of these things is an secident; but regarding him completely as the man he wes, there was reason for each, and neither could have been otherwise without certain historical circamotances being different, though history doee not uscally concern iteclf with tonsorial incidents in the lives even of princes. That one thing was altarable while he lived and the other analterable leaves them equally accidents from one standpoint, and equally little secidents from the other. If however the subject of which a predicate is said to be an inseparable accident be an universal, then

[^57]the expression is a contradiction in tarme. It is sometimes asid that bleckness is an inseparable accident of the crow. But if it is an acoident at all, then it is a mere coinoidence that all crowe are bleck, and there is nothing in the fact that a bird is a crow requiring it to be bleck ; it cannot therefore be inseparable, however constant in our experiences the conjunction may heve been. Per contra, if it is inseparable, that must be because the nature of a crow as auch requires it, and then it cannot be an scoident. The so-alled insoparable accident of a specie in really an attribate which we find to charaterize a species on far as our experience extende, without knowing whether ite presence depends on conditions necemary to the existence of the species, or partly on conditions in the absence of which the apecies may still exist. That amounta to saying that we do not know whether it is an accident or a property; and $e 0$ a phrase is adopted which implies that it is both.

It would be well therefore to abandon the division of accidente into separable and inseparable; and it would be well to abandon the Porphyrian list of predicables in favour of the Aristotalian. Either list raisee very difficult questions; but those which have been discused in this chapter are queations that must be raised, whether we attach little value or much to the ue of the terms Genus, Species, Differentis, Property, and Accident. The attempt to think out the connexions between one thing and another is so vital a feature of our thought about the world, that Logic may not ignore the consideration of it. Abatract terms, and general concrete terms, aignify not individaals as such, bat attribates and individuals of a kind. We do regard attributes as connected with one another, and with the kind of a thing, sometimes necesarily and universally, sometimes through a conjuncture of circumstances in the history of an individual. We need a terminology in which to express these differences. We do form complex conceptions of objecta, and of attribatee or states, that cannot be analysed into a mere assemblage of simple qualities, but only per genus et difforentiam. These are the facte which juatify this somewhat difficult part of logical theory.

CHAPTER V

THE RULES OF DEFINITION AND DIVISION : CLASSIFICATION AND DICHOTOMY.

In the lest chapter the nature of Definition was discussed at some length; but nothing was asid of the technical rules in which the requirements of a good definition have been embodied. The process of dividing a genus into species wes also mentioned, but neither were the rales given which should be observed in that. It seemed better to defer to a separate discuscion these and one or two cognate matters. Treated first, they would have been less intelligible. Hut what has been said about the relation of genus and differentia, about the practical difficultiee that lie in the way of adequately defining many kinds of terms, and the homogeneity which ought to characterize the differentiae of the several species in one genus, should serve to render the present chapter easily intelligible.

The rales of definition are as follows :-

1. A definition must be commenourate sith that mokich in to be defined: i.e. be applicable to everything included in the epecies defined, and to nothing else.
2. A definition must give the earence of that which is to be defined.

The essence of anything is that in virtue of which it is such a thing. It is in virtue of being a three-sided rectilinear figure that anything is a triangle: in virtue of being an institation for the education of the young, that any place is a sehool : in virtue of having value in exchange, that anything is wealth. We have seen, however, that in the case of natural kinds, and in some degree of highly complex abstract notions, the essence cannot be comprised in the compass of a definition, or diatinguished very sharply from the properties of the subject. In these case one must be content to do the best he can : remembering-
(a) That the attributes included in the definition should be always such as are the ground of others rather than the consequences. Thus an animal is better defined by the character of ite dentition
than of ita habitasl food; since the kind of food that it can eat depends on the formation of its teeth, and not vice versa
(b) That we must not give only some comparatively isolated attributes of the subject, bat also indicate the kind of aubject which these attributea qualify. This in done by giving ita genus ${ }^{1}$, and hence our third rule is:
8. A definition must bo per genus et differculiam (sive differentias).

The better the definition, the more completely will the differentis be something that can only be conceived as the modification of the genua : and the lean appropristely therefore will it be called a mere attribate of the subject defiried. Thus a lintel is a piece of timber forming the top of a doorway; it can hardly be called an attribute of a lintel that it forms the top of a doorway, for that implies that having alreedy the concept of a lintel, I notice this further as a characteristic of it; whereas really, until I have taken this into account, I have no concept of a lintel. On the other hand, if sodium be defined as an element exhibiting line D in the apectram, the differantia here may fairly be called an attribute. For one may have a pretty definite notion of codiam without knowing that it exhibits this line in the spectrum. The complexity of the subject under definition is in this case such that whatever be taken to serve as differentia can be only a amall part of the whole notion; we have in our minds a pretty substantive concept (if the phrase may be allowed) without the differentia; and therefore this appears as a further characteristic, which is really selected becauso it is diagrostic.
4. A definition mest mot be in negative nokere it can be in poritive terme.

The propriety of this rale is obvious. A definition should tell as what the thing defined is, not what it is not. A scalene triangle, for example, should be defined, not an one containing neither a right angle nor an obtuse angle, but as one containing three acute anglea. In this case it is true that a very little knowledge of geometry would enable any one to extract from the negative information of the former definition the positive characterization of the lester. But a negative definition is in iteelf insdequate, and it would in most ceses leave us quite uncertain what the subject positively

[^58]is. If real property were defined se property that cannot be traneferred from place to place, we should not necessarily realize that it was property in land. If anger be defined as an impulse not directed to obtaining for oneself a pleasure, who is to understand that it is an impnlse to repay an imagined hurt ? A definition in negative torms is, with one exception, slways fanlty; its futility depends on the precirion of the positive meaning which the negative terms may happen to convey. ${ }^{1}$

The one exception to the faultiness of a definition in negative terms is furnished by concepts that are themselves privative or negative. A bachelor is an onmarried man; and the very meaning of the term is to deny the married state. Injuatice, asid Hobbes, is the not keaping of covenant. A stool is a seat for one without a back to it. ${ }^{2}$ But it must not be assumed that becanse a term is negative in form it need be negatively defined; intemperance is the exceseive indulgence in atrong drink.
5. 4 definition must not, directly or indireetly, define the thing by itself.

A thing is defined by iteelf directly, if the term itself or come aynonym of it enters into the definition. The sun might, for example, be thus defined an a star emitting sunlight; or a biahop as a member of the epiecopate. Such error is a little groen; but in the indirect form it is not uncommon. It arises with correlative terms, and with connter-alternatives ${ }^{3}$, where one is used to define the other. A cause, for example, is ill defined as that which producee an effect, or an effect as the product of a canse; for correlatives must be defined together, and it is the relation between them that really neede to be defined ; this is the ground of applying both the correlative terms, and in defining this, wo define them. The objection to defining a term by help of its counter-alternative is that the latter may with equal right be defined by it. If an odd number is a number one more than an even number, the even is similarly that which is one more than the odd. It sometimes happens, however, that counter-alternatives cannot be really defined
${ }^{1}$ Cf. the diacuasion of poritive and negative terms, awpra, c. ii, pp. 28-83.

- From Watta's Logic.
- Where a aubject occurn in two forma, and every inatance muat exhibit either one or other, then thewe forme may be called counter-alternatives. Thus in number, the counter-alternstives are odd and oven; in a line, straight and curved ; in an animal, male end female; in property, real and personal, \&c. Contraries and opposites generally may be wrongly used to define one enother in the tame way.
at all; if a man does not immediately onderstand that number is either odd or even, there is no other knowledge to which we can appeal in order to explain to him the nature of the distinction, for it is unique; and in the same way there is no defining the difference between straight and curved. In suoh cases, to explain one counter-alternative by the other, though not definition, is the beat course we can adopt; for their mutual contrast may help a man to apprehend them both, and he may be more familiar with one than with the other.

There are sabtler modes of defining a thing indirectly by itaelf. We may ase a term into whose definition that which we profeen to be defining enters. Aristotle illustrates this by a definition of the sun, as a atar that ahines by day; for day is the period daring which the san is ahining. ${ }^{1}$ J. S. Mill's ${ }^{2}$ definition of a cause as the invariable and unconditional antecedent of a phenomenon errs in this particular ; for meconditional cannot really be explained without presupposing the conception of cause.

It ehould be noticed that where the thing defined is designated by a compound word, it may be legitimate to employ in its definition the words that form parts of the componnd. Thus a bell-race is the hollow way between the axle and the wheel in which the balls run that are used to take the thruat of one againat the other. The term ball, used in this definition, is not of course what had to be defined.
6. A definition should not be exprosed in obsewre or figurative language.

The use of obecare words where plain and familiar worda are arailable is a farlt in definition, because it militates against the object of definition-viz, that one may understand the nature of the thing defined. The use of figurative, or metaphorical, language is a graver fault, because metaphors, where they are intended to do more than merely to embellish speech, may auggeat or lead up to a right anderatanding of a subject, but do not directly exprese it. Memory, for example, is ill defined as the tablet of the mind; for though knowledge is preserved in memory, $e 0$ that we can recover it again, and writing is preserved in tableta for futare reference, yet the two thinge are very different, and the actual nature of what we call memory is as little like a tablet as possible.

[^59]It must be remembered that language is not necesarily obacure because it is technical. Every science is bound to use 'terms of art' which will be obecare to the laymen, but may expresa the ideas belonging to that acience clearly and precisely. The obscurity forbidden is that which would be acknowledged by thoee soquainted with the field of atady to which the definition belonges.

In the process of Definition, we take some species, or other concept, and distinguiah in it ita genus and difforentia. Thas wealth is that which has value in exchange. There may be things which heve value, but not in exchange-the air, for example, which has value in use; these are not wealth, and with them, in defining wealth, we are not concerned; though they belong to the same genus. Bat we might be interested in distinguishing the different species which all belong to one genus; and the process of distinguishing or breaking up a genus into the specie that belong to $/$ it is called Logrionl Division.

Logical Division is a process of great importance in aciense. Thinge belonging to one genus will be studied together; and the object of our stady will be to discover all the general propositions that can be made about them. But though there may be some etatements that will spply to everything contained within the genus, others will only be troe of a portion. If we rightly divide the genus into ite species, the apecies will be parts about which we chall find that the largest number of general propositions can be made.

Division ${ }^{1}$ is closely allied to Cleadication; and both to Definition. The difference between Diviaion and Clevification seems to be principally thin: that when we clacsify, we atart with the particulars of a genue, and throw them into groupe, eccording to their resemblances and differences ; when we divide, we start with the genus, and distinguigh the epecies within it by the differentiae of which the genus is suscoptible. In other words, Division moves downwarde from the more general to the more apecial, Claseification upwards from the more opecial to the more general. This, at least, is the differance which one would intend to indicate if he contrasted the two operations; but in actual practice our thought may move in both directions at once; and the process of dividing a genus is at

[^60]the same time one of clasifying the things in the genus. If, for example, one were asked to divide the genus novel, he might anggest a division into the novel of adventure, of character, and of plot; but be would at the same time ran over in thought the novels that he had read, and ask himself if they could be clased natiafactorily under these three heads.

The close connaxion between Division or Clavaification and Definition is obvious. If we divide a goane into apecies, it must be by the help of differenties, which sarve to define the species we are forming. If the genus rectilincar figure, for axample, be divided eccording to the namber of a figare's aides into those with three, with four, and with more than four sidee, we obtain the definitions of triangle, quadrilateral, and polygon. In a olmenitication also, the clasees established must be distingrished by charactors that will serve to define them.

A division may be carried through several stages, i. e. the species into which a genus is first of all divided may themsolves be oubdivided into species; and this may be continued until the species reached no longer require anbdivision. The species with whioh a division stops are called infmes apeoies; the genus with which it starta, the cummum genus; and the intermediate species, subeltorn senars, i. e. geners (for they are genern in respect of the species next below them) subordinated to another genus. ${ }^{1}$ The praximam genus of any species is that next above it in the eeries; and the words superordinate, subordinate, and co-ordinate are used to indicate reapeotively the relation of any genus to those below it, above it, or standing on the same level with it (i. e. having the ame proximum genus). These terms are also used in reference to a clesaification; for a clasification when completed may be regarded as a division and rice veras. The co-ordinate species into which a genus is divided are sometimes called its conutituent opecies', as together composing or making up the genus.

A division, or a claseification, may be set out in a scheme, somewhat after the manner of a genealogical tree. The following is an example:-

[^61]

The following are the rules which should be obeerved in a logical division:-

1. 4 dicivion mud be exhiawtive: i. e. there mart be a plece for everything belonging to the genus in one or other of the constituent species into which it is divided. This rale may aleo be expreseed by asying that the constituent apeciea maut be together equal to the 'totam divisum'.
The necoesity of this rule hardly needs indicating. The object of division is to set out in orderly relation whatever is incladed within s certain gencs; and if the division is not exhanative, this is not done. Sappose that an income-tax is introduced; it is neceenary thant the Act imposing it choold state what forms of wealth are to be regarded as income, and taxed accordingly. The rent of land and houses is clearly a form of income, and would be included in the division of that genua ; but if the owner of a house lives in it instead of letting ith, he receives no rent. Neverthelese, he enjoys an income, in the shape of the annual value of the house he lives in, juat as truly as if he had let that honee, and reoeived for it a aum of money sufficient to hire himself another; and he ought to be tared if be lives in his own house as mach as if heleta it. But if the incometax Act omitted to include among the epecies of income the annual value of honees cocupied by their owners, be would escape payment on that head altogether. Such is the practical importance of making a division exhaustive.
2. The constituent opecies of the genus munt anclude sack other.

Unless we secure this, we do not properly divide; for the parts of that which one dividee mant be separate from ench other.

There are two ways in which a breach of this rule may come about. We may coordinate with a species anotber which ought properly to be sabordinated to it ; an Dr. Johnson is suid to have divided the inhabitante of the conntry north of the Tweed into Scotchmen and Damned Scotchmen; or an the proverb dia-
tinguiahes 'fish, flesh, fowl and good red herring'. In these instances the logical error points a sarcasm; but in iteelf it is comparable to the procedure of the philosopher, who cat two holes in his door, a large one for the cat and a small one for the kitten.

The second mode in which this rule is broken is by a crosedivision ; the natare of this will be explained in connerion with the rule now following.
3. A division muet procead at every atage, and $s 0$ far at posrible through all its stages ${ }^{1}$, wpon one principle, or fondamentom divisionis.

The fundamentum diviaionis, the principle or beds of a division, is that aspect of the genus, in respect of which the species are differentiated. ${ }^{2}$ Let the genue be eoldiar; in a soldier we may look to the mode in which he fights, the military rank which he holds, or the conditions of aervice by which be is bound. Proceeding upon the first hasis, we should divide into artillery, cavalry, infantry, and engineers ; perhape ataff and commineariat ought to be added. Proceeding apon the second, we should divide into officer and private, officer being again divided into commisaioned officer and non-commisaioned. Proceeding upon the third, into regulars, yeomanry and militis, volunteers, and resarve. When the division is carried further than one stage, the ame fuedamentwis divisionie should be retained in the later stages which was used in the first. If the division of soldier into artillery, cavalry, infantry, and engineers be prolonged, we might divide artillery into horso-artillery, field-artillery, garrison-artillery, and mountainbattery; cavalry into light and heavy dragrons, lancers, and hussars; infantry into mounted and unmounted. But it would not be proper, after beginning with the mode of fighting as oar fundamentum divisionis, to proceed with that of military rank, and divide artillery into officers and privates; for that is a division of coldier generally, and not of artillery any more then of cavalry, infantry, or angineers ; so that if it is applied to one of these apecies, it must equally be applied to the others.

A division which proceeds on more than one fuadamentung divisiosis at once is called a crose-divinion; as if one were to divide soldiar into artillery, cavalry, privates, and volunteers. It is called a crose-division, because the grouping required by one bacis outs across that required by another; in distinguishing privates, for

[^62]
v] RULES OF DEFINITION AND DIVISION 105

exampla, from other soldiers, we disregard the distinction of cavalry and artillery, taking all members of both those arms who are not officern. A cross-division is worse than uselems ; for instead of asoisting to an orderly arragement of things in thought, it introduces confusion.
It is plain that in a crosedivision, the constituent speciea will not exclude each other. The only poesibility of their being matually exclasive lies in their being formed apon one busis; for then they are distinguished by the different modes in which they exhibit the mame general character. But if different characters \boldsymbol{A} and B are taken, both of them belonging to the genus, everything within the ganua will exhibit nome mode of both theee characters ; and the mame individuals which are included in a apecies that in conatitated by the particular mode d in which it exhibits the chanacter A may aleo be included in a apecies constitated by the particular mode b in which it exhibita the charaoter B; bence a^{\prime} and b^{\prime} will not exclude each other.
There are two apparent axceptions to be connidered here: one to the atatament that the employment of two or more fundamenta dicisionis at once produces a crose-division, the other to the atatement that the members of a crose-division are not mutually exclusive.
The ancient division of matter into the four elementa, alrendy alluded to as having been adopted by Aristotle ${ }^{1}$, proceeds (or appears to proceed) apon a double beais, of temperature and of hamidity. Matter is aither hot or cold; matter is either moist or dry ; and hence four opeciee were eatablished, the hot and dry, the bot and moist, the cold and dry, the cold and moist. But there is not really a crose-division here. We do not, while profeesing to divide apon the basis of temperature, at the same time introduce species founded upon the beas of humidity (es if wo were to distinguish the hot, cold, and moist elementa); our real basis is neither humidity nor temperature, bat the combination of the modes of temperatare with the modes of humidity. And such a basis offers a pecculiarly farourable opportunity for a good division. For given a certain nomber of characters in a genus, each found in oo many different modes, and granted that every member of the genus must earhibit each character in some mode, and no character in more

[^63]modes than one, then the poseible alternative combinations are discoverable with mathematical precision. But it is only where the combination of certain characters happens to be of primary importance, that such a bacis of division can be profitably adopted. There would be no adrantage in applying the method in such a case as the division of the genue soldier, where, if we took the three bases of mode of fighting, military rank, and conditions of eervice together, seanming four alternatives under the first head, three under the second, and four under the third, we ahould obtain a division into forty-eight members. These would be matually exchusive; yet such a result would for most purposes be valuelese ; for the three beses of division are not suoh as it is useful to attend to together; though in a particular connexion, as, for example, in drawing up a acale of rates of pay, it might be advisable to proceed thus.

In our first exception, a crose-division seemed to be employed when it wes not; in the second it might seem not to be employed when it is. It may happen that in respect of the individuala belonging to them, the conatituent opecies into which a ganus ie divided apon one basis coincide with those into which it is divided apon another. Thus flowering plants may be divided according to their method of fertilization into exogenous and endogenous; and according to the mode of germination in the seed into dicotyledonous and monocotyledonons. It happens that all exogens are dicotyledonous, and all endogena monocotyledonous; so that if the genus were divided into exogena and monocotyledona, there would not in fact be any plant that fell within both members. Nevertheless, the division is Logically a crose-division, for there is nothing that we can see to prevent the existance of erch a plant, and we can imagine endogens which are dicotyledonous; and thersfore that our constitaent speciea do not overlap must be regarded as our good fortone, whereas it ought to arise out of the necessity of the method on which our division proceeds. And even if we came to understand the connexion between these differences in mode of fertilization and of germination, such a division would still be vicious; for it wonld not exhibit our apecies an necessarily excluding each other; and this becanse (what is more important) it would not exhibit them as alternative developments of a aingle, or common, notion.

There is a form of division called Diohotomy, which is of neees-
sity exhaurtive, and the species yielded by it of necesaity axclude each other; for it divides the genus at every stage into two membars (as the name impliee), which reapectively do and do not poseses the mane differentis; everything in the genus must therefore belong to one side of the division or the other, and nothing can posesibly fall into both. Avimal, for erample, may be divided into vertebrate and invertebrate, body into animate and inanimate, substance into corporeal and incorporeal ; each of these divisions is exhmartive, and its members mutually oxclusive.

Some logicians have held that in order to secure these edvantages all divisions ought to proceed by dichotomy. Bat the trath seems rather, that when a division is undertaken with the view of clesaifying or arranging all that is contained in the genus, dichotomy ahould never be used. Its use is in analysing or defining some one subordinate species. It may, however, sometimes be used to show that a division which is not dichotomous is necesasrily exhasetive, and the constituent species exclusive of each other.

The reason why dichotomy is out of place in a clasaificatory division is that we desire in a division to exhibit our various species as (alternative developmenta of a common notion; at every atage the genus is further particularized by the differentiae which we introduce in constituting ita speciea; thus the division of the genus eoldier, gecording to mode of fighting, into artillery, infantry, cavalry, and engineers, wae carried further by particularizing the way in which the artillery may be conatitated for different tighting purposes, or the cavalry armed, sce. But one aide of a dichotomy is always characterized negatively, by the non-poseession of the attribute which characterizes the other side; and there is therefore no positive notion which we can develop in the subdivision of this side. The land of a country may be divided, according to the use to which it is pat, into building-land, farm-land, forest, means of commanication, pleasure-ground, and waste; each of these 'subaltern geners' may be subdivided, farm-land for example into arable, pasture, and orchard : orchard again according as bush-frait, tree-fruit, or hope are caltivated. But if we were to proceed by dichotomy, we should divide land into building-land and land not used for building : the latter into farm-land and non-farmland : non-farm-land into forest and not forest, and so forth. Now such a division would not only be far more cumbrous than one
unhampared by the method of dichotomy, se may be seen by setting both out in achame as follows :-

bat it fails ontirely to exhibit its species as alternstive developments of a common notion, or (as it was put in the last chapter) varistions on a common theme. To build on it, to farm it, to let it grow timber, \&c., are no many way of using land; to plough, to graze, and to rise froit from permanent stocks on it are three waye of farming, and therefore of nsing it ; to grow bush-frait, tree-frait, and hope on it are three ways of rasing fruit on it from permanent stocks, and therefore of farming and therefore of using it. ${ }^{1}$ But

[^64]to farm land is not a wry of not building on it; a forest is not a form of not being a farm; roads and railweys, which ocoupy land that is used as a means of communication, are not modee of not being a forest; to nse land as plessure-ground is not a particular way of not making a road or a railway along it ; to leave it waste is not a particular way of not using it as pleware-ground. Neither again is grazing a particular way of not ploughing land, nor growing tree-frait a particalar may of not growing bush-fruit on it. 'A negative conoeption affords no beois for further subdivision, and a division which attempte to cleneify by dichotomy is for ever subdividing negative conceptions.
[This is the main objection to a clasoificatory division by dichotomy; which is strangely defended by Jevons, Principles of Seience, 2nd ed., c. IIx, Pp. 694-698, and Elementary Lesoons in Logic, Lesson XII. Other objections, which it seemed unnecessary to add in the main teart, since the first is fatal, may nevertheless be pointed out. Such a division does not proceed on a single fundamentum divisionis. In the proper division of land, the basis taken was the use to which land is put, and thast was retained throughout; bat in the division by dichotomy, the besis taken was first the use of land for building, by which it was divided into building-land and the rest: and the rest was divided on a different beais, viz. the use of land for farming: and so on. Again, the propar division co-ordinates concepts of the same degree of speciality; but the division by dichotomy subordinates them in several stages; so that waste-land is placed level with orchards of bueh-fruit. The order in which the subsitern genera are pleced (except where a positive concept is divided) is also quite arbitrary ; building on it might as reasonably be called a mode in which land is not farmed, as farming a mode in which it is not built on. Leatly, it is claimed for division by dichotomy that it is the only method which secures us from posesible overaight of a species : if man be divided into Aryan, Semitic, and Turanian, a rece may torn up that is none of these; whereas if it be divided into Aryan and non-Aryan, non-Aryan into Semitic and non-Semitic, and non-Semitio into Turanian and nonTurenian, we have a cless ready (non-Turanian) for any new race that may turn up. But it must be obeerved that to eay that a race is non-Turanian does not characterize it; that the Aryan and

[^65][Semitic races are also non-Turanian (so that the constituent species are not mutually exclusive) ; and that if the leat objection is considered captions, because the non-Taranian is expreasly mades branch of the non-Semitic, and that in turn of the non-Aryan, then it means what is neither Aryan, Semitic, nor Turanian; now if we are uncertain that our division is exhaustive, and wiah to reserve a place for thinge that may fall within none of the opeciea we set up, it is easy to do thet without the pains of all this dichotomy; we may divide man into Aryan, Semitic, Turanian, and anything that is mowe of these; this last heading expresee what non-Turanian means in the dichotomy, and stands, as it should, spow a lovel with the reat.]

For this reason, a alesaificatory division should never use dichotomy; the numbers of apeciee into which a summum or subaltern genus is to be divided can be determined not on any general logical grounds, but solely with reference to the nature of the genum in question. Even where, as in the case of the four elementa, the basis of division is the combination of attribates, the number of possible species that can be formed by different combinations is determined not by logio but by mathematics. Of conrse, if a genus falls naturally into two species, it ought to be divided in two; as number is divided into odd and even, and line into atraight and curved. But this is not mere dichotomy; for it is not the same to divide number into odd and even as to divide it into odd and not odd. The claim made for dichotomy is that ite branchee exhaust the genus and oxclude each other in virtne of the mere form of the division ${ }^{2}$; eince evarything in a genus mast either be or not be, and cannot at once be and not be, characterized by any differentis that can be taken. And this is true; and we need realize no more than this, in order to see that number ie either odd or not odd; but in order to see that it is either odd or even we need to understand the peouliar nature of number, and not merely the gemeral 'laws of

[^66]thought', as they are called, that hold of every subject. The completenem of the division of number into odd or even is not therefore vouched by logic, any more than the completeness of the division of triangle into equilateral isosceles and scalene; nor in the faot that it is twofold does the first poseen any gaanntee which the seoond lecks in being threefold. And if a genus is seen to fall into thirteen species instead of three, it ahould be divided into thirteen; juat as triangle shonld be divided into three and not two. Unfortanately there are few subjects where we can see at once that - genus containa necesearily no many apecies and no more; and that makes our divisions precarious, bat there in no remedy in the use of dichotomy.

It may, however, occasionally be poserible to ahow by dichotomy that a division which is not dichotomons is axhanstive or ita epecies mutaally exaluaive. Aristotle thue supported his list of predicablea.

But there is no particalar logical interest attaching to this mode of eatablishing a division; it is in principle the game as where our becis is the combination of certain attributes, and we show the division to be exhauative by showing that no other combinations remain, as in the case of the four elemente already given.

Dichotomy is really appropriate when we are seeking not to divide a genus but to define a species. There are two contrasting waye in which we may attempt to constract a definition. We may take instancee of that which is to be defined, and try to detect
what they have in common, which makes them instances of one kind, and on the strength of which we call thom by the aame name. This is the 'indactive' method. We might thus define 'snob', comparing those of our aequaintance to whom we conld apply the name, or those whom Thackeray has drawn for us; and if we thought that among all their differencen they agreed in prizing rank or wealth above character, we might accept that as our definition. The other method is that of dichotomy, and in this we try to reach our definition rather by working downwarde from a genus, than upwards from examples. Some genus is taken, to which the subject we wish to define belongs. This genus we divide into what possesees and what does not possess a cortain differentia. The differentis taken must be something predicable of the subject to be defined; and if genus and differentia together are already commensurate with that subject, the definition is reached; if they form only a subaltern genus predicable of it, this subaltern genus must be again divided in the same way : until we reach a commenrurate notion. At every stage of our division, the differentia taken must if possible be a modification of the differentis next before it; it must at least be capable of combining with those that bave preceded it in the construction of one concept in such a way that we are throughout apecifying the general notion with which we started ${ }^{1}$; and there should be so many steps of division as there are stages which our thought recognizes as important in the specification of this concept. At every stage also we proceed by dichotomy because we are only interested in the line that leads to the subject we are defining; all else contained within the genue we thrust aside together, as what does not exhibit the differentia characterizing that subject. Had we further to coneider and subdivide it, we could not be astisfied with characterizing it only negetively; for a negative notion furnishes, as we have seen, no basis for any further apecification. But we may disregard, or cut it off: a stop to which the technical name absciasio inflniti has been given, i. e. the cutting off of the indeterminate.

The following example of definition by dichotomy will illustrate what has been said. The term to be defined is tuber; the genus to which it is to be referred is stom.

In thia division, we reach as our definition of a tuber 'a stem creeping underground, much thickened, and possessing leaf-buds in the form of eyes'. At every stage by an abseissio infinili wo rejected from further consideration a large part of the genus wo had mo far reached : first all stems not oreeping, then all creeping stems not underground, then all underground creeping atems not much thickened, \&c.; and at every atage we subdivided that part of the genus which we had retained by a differentia that apecified further the form to which we had so far brought it.

It might have happened, that creeping stems had a name to denote them, eay Cuckamala ${ }^{1}$; and that underground Chthamala had a special name, say Hypochthamala; that these when much thickened had again a diferent name, say Pachyomala; and that tubers were pachysmata that possessed leaf-buds in the form of eyes. In this case, the division would be eet out in somewhat different form, as follows-

This mode of setting out the definition of anything implies a clessification, in which namee have been given to every wider and narrower genus, and the differentia which distinguishes each within its proximum genas has been settled. It may indeed be regarded as an extract from a classification, made for the purpose of exhibiting the nature of a single species. And this is more or less the character of all definition by dichotomy; though the classification may be only in the making, in the very procese by whioh we seek for our definition. It is only after considerable stady of the parts of flowering plants, enabling us to group them by their less superficial characters, that a tuber would be referred to the genus stem at all, instead of root ; by that time, the diatinction between creeping and other atems, between those that creep above and those that creep below the ground, would have been already made; so that the method of dichotomy does not so mach help us to discover, as to set out and arrange what we know of, the definition of a tuber. There may, however, be cases where the method will guide us in the conatruction of a definition of that whose nature has not yet been carefully invertigated; the genus to which a term is to be referred may be clear, but the appropriate differentive unconsidered; enob, for orample, belongs clearly to the genus man ; bat even here, the process of finding a differentia, by which to distinguish snobs from other men, is clasification in the making. Let us take the prizing of rank or wealth; if that by iteelf does not constitute a smob, we need some further differentin, to distingaish enobs from other men who prize rank or wealth; say they are distinguished by prizing these beyond character; we then have a definition of a snob, but in getting it, we have taken note of a wider class of men within which they are included.

There are three thinga which Aristotle ${ }^{1}$ gags that we must look to, in reaching definitions by the division of a genus. All the terms (the summum genus and the successive differentiae) must be of the essence of the subject defined, they must be placed in their right order, and none must be omitted. These are requirements also of a good classification; but juart as a study of the logical form of classification does not enable us to classify any particular order of phenomena, so we are not enabled to define any particular subject, merely

[^67]by familiarizing oursolves with the scheme of a definition of dichotomy.
[A definition of man, displaying the series of subeltern geners to which he may be assigned below the summum genus substance, and the differentis by which each subeltern genus is successively distingriabed within the genus naxt above it, was long known in logical textbooks by the name of Arbor Porphyriana. It may be transcribed here. That of tuber given above on p. 118 is in the same form.

The material for the scheme is to be found in Porphyry's Isagoge, c. iii; where the writer points out that the same differentis which is divisive (oıa,periкí) of one genus is constitative (ovorarıкฑ) of that immediately below it. The scheme has the advantage of exhibiting the series of differentise by which the definition of the species is reached from the summum genus. Aristotle in Met. Z. xii, discusses how many differentiee there really are constitative of the species; and decides that if each differentia is itself a true differentia of the one before it, then the species has only one differentia, namely the laot. For erample, if animal is divided into footod and footlene (indrouv and axoovp) and if the footed are divided into biped and quadruped, the letter differentis biged is a differentia of footed as such;
[for to be a biped is a particular way of having feet. In the speciee animal biper therefore, the correct anslysis is into animal and biped, and not into footad amimal and biped, and though we may procsed through sucosesive stages to biped, there is nothing in the object correaponding to the serial order. If, on the other hand, at any stage we introduce a differentia which is not merely a further specification of that which we have used before (es e.g. if wo were to divide biped into feathered and featherlest, or rational and irresional), then we are really introdacing a now differentis. In such a caso, if we take animal again as the genus, the apecies mas, defined as a featherless or rational biped, would really be constitated by two differentiae. We might endeavour to svoid this conclusion by calling biped the gronus and featherlose or rational the differentia; but that ignores the fact that biped is obviously not summum genus of man. And if we select a fresh basis of differentiation at more than one stage, wo are each time adding to the number of differentive that must be recognized in the species. In doing so we ignore the precept, to proceed throughout any division upon one besis; and Aristotle certainly speaks of the introduction of a differentim which is not continuous with that before it as dividing kard rd ova $\beta e \beta \eta \pi \delta_{s}$ and not aard rd $\delta \rho \theta \delta \delta_{0}$. We may notice too, that whereas a differentis which is a continuation of that before it is never applicable to the other member of the preceding genus (e.g. bjped is not applicable to foolless, the other member along with fooled of the genus animal), a differentis which is not of that nature might, for all that we can tell a priori, be applicable to both members (e. g. feathered and featherlese might be applicable to quadruped no less than to biped). The fallnese sad complexity of natural kinds is, however, such that we cannot al ways avoid the introduction of fundamentally new differentiee, especially where, as in the classificatory soiences often happens, our differentiae are intended as much to be diagnostic-i. e. features by which a species can be identified to declare the essential nature of the species. Cf. pp. 118-120.]

Before distinguishing Logical Division from the other processes to which the name Division is applied, it may be well to emphacize that it deals entirely (like the doctrine of Predicables) with concepte or universals. The genns which we divide is divided into kinde; itself a universal, the specification of it by various differentiae can only give rise to more determinate universals. The division of it stope therefore with infimee opecies, and never proceeds to the enmmeration of individuals. For if the infima specie could be logically divided into individuals, we must apply some fundamentum divisionis ; and that means, that we should have to distinguish indi-
viduals according to the different modes in which the common character of the species appeared in them; and to do that would be to distinguish these modes themselves, which are not individual but universal, for many individuals might exhibit the same mode. But individuals of any species are in fact distinguished from each other by the coincidence of innumerable attributes; it is not any attribute singly, but the particular combination of them, that is anique in each instance; and whether or not they are sufficient to constitater individuality, unique combinations of innumerable attribates cannot be exhibited in a logical division as differentice of one specien. ${ }^{1}$

There are two procesees which have been called division, besides the division of a ganus into its rpecies. They are known an phyaical and metaphyrical division. In Phynical Divialon, we distingaish the parts of which an individual thing or aggregete is compoeed: as in a man head, limbs and trunk : in a knife blede and handle. This process is also called Partition. It is still a process of thought that is meant-not the actual tearing of a flower to pieces, or quartering and beheading of a man; it may be applied to the distinction of the parts composing either a determinate individual, or any individual of a kind: as Great Britain on the one hand can be divided into England, Scotland, and Wales, a plant on the other into root, stem, leaf, and flower, or a forest into ita component trees.

In Kotaphysioal Diviaion, we distinguich in a kind its genus and differentia, or the various attributes predicable of it, and incladed in our notion of it; thus we may divide man into animality and rationality, or magar into the colour, teatare, solability, taste and so forth that characterize any piece of sagar. This le ohvioualy a division that can be carried out in thought alone. In Physical Division, the parta of an individual man or plant may be physically eeparated; and in Logical Division, when the genus is concrete, individual apecimens of the infimse speciee may be

[^68]exhibited in different cases in a museum. But in Metaphytical Division, though the colour of sugar may be exhibited without its taste in a thing of another kind-e.g. in a ammple of aalt-it can never be exhibited by iteelf.

It should be forther obeerved, for the better distinguishing of these different kinds or senses of division, that in Logical Division the whole which is divided can be predicated of its parto-asimal, e.g. of man, os, sec.-and indeed unleas it is so predicable of all its parta, the division is at fault; in Metaphysical Division the parts can be predicated (paronymoualy, to use the Aristotelian expression ${ }^{2}$, or attributively) of the whole-e.g. whiteness, sweetness, \&c., can each be predicated of sugar, in aaying that ougar is white, is sweet, \&c.; in Physical Division, the parts can neither be predicated of the whole nor the whole of the part-we cannot either say that a leaf or stam is a plant, or that a plant is a leaf or stem.
[A few worde may be added on the relation of Logical Division, and ite rules, to Cleseification. Just an the theory of Definition, with its sharp distinction of essence and property, breaks down amidst the complexity and variety of concrete things, 80 it is with the theory of Division. Ideally when a genus ia divided into species, whether once or through several stages, we ought at esch stage to see that just such and so many species are possible in that genus; we do see this in geometry, in the division for example of conio sections into hyperbols, parabols, and ellipee; bat in other sciences for the most part we must wait upon experience. Now we do not in experience find that things fall into kinds which fit into sny perfect scheme of logical division. Any actual division that can be made therefore of animals, or plants, or forms of government, would exhibit many logical defects; it would be the skeleton of a claserification, and every classification involvee compromise; the things, which it puts into the same class from one point of view, from another claim to be placed in different classes; all that was said in the last chapter about the difficulty of defining concrete natural kinds might be repeated to show the difficulty of classifying them; and the same reasons which prevent our eatiafactorily continuing a division down to a point at which it would find a eeparate specific concept for every individual prevent our satis-

[^69][factorily olessiffing them at all. Clessification is, as Jevons called it ${ }^{1}$, a teptative operation; ites reanlts are provisional ; discovery may reveal new species, and ahow that characters which have been supposed always to go together may be separated, or those hitherto considered incompatible combined in the sme individual: there are limita indeed to this, for there are 'laws of natare' with which all particulare must be consistent; but many of the 'laws of natare' themselves rest on the enme evidence on which our claseifications are constructed.

Thus the ideal which Logical Division sete before ns is very different from anything which Clessification achieves. The first is or would be an a priori process; by which is meant that it would fain develop specific from generic concepts not indeed prior to any experience of those objecte which belong to the various species of the genus divided, bat with a perception that the species revesied in experience are such as must necesserily have existed in that genus. Clamification is an a posteriori proceses ; it appeals for aupport to the frote of the order of phenomena which we are classifying, and argues that the facts could only be thas on the assumption of connexions of attributes such as the proposed classen imply; it does not attempt to show that attributes could be connected in individuals of the genas in no other ways than theea. Logical Division again is exhaurtive, and the conastituent apecies which it establishes are not to overlap; buta clasification may have to acknowledge that there are individualso which might with equal right be referred to either of two co-ordinate clases, or seem to fall between them, or ontride them all. For these reasons, Division, as treated in a tertbook of Logic, is apt to seem unreal and fanciful to any one familiar with the work of acientific clasesifiction; its rulea seem framed to suit not the world he has to deal with but a fictitions world of the logicinn's imagination ; the consideration of a process whicb, outaide geometry, can scarcely be illustrated by examplee except by mutilating facts, is denounced as a barren pastime. And there is justice in the denuaciation, when Division, or Definition, is studied without reference to the recalcitrant faota, and on ite formal side alone. But if we realize with what great abatements the rales of Definition and Division can be fulfilled in the actual classification of concrete facte, we may yet proitably atudy these rules, as counsels and not precepte. That is the beat claseification which conforms to them most closely. The case of the logician may be compared with the case of the geometer. The geometer otadies such figures as be conceives, and he believes that his concluaions are true of the squares or trianglea that exist eternally in apece, bounded by the diatances between points therein; but be does not imagine they would apply without qualification to a aquare table, or a triangular lawn. The figurea

[^70][of these concrete objecte are mach more complex than a simple equare or triangle. So (though the casen are not identical) the logician studies the problem of claseification as it presente iteelf to thought; bat is prepared to expect that concrete thinge are croesrelated to each other in far too complicated a manner for any single and simple scheme of claseification to embrace them as they stand. We must consider aspects of them, and attempt to ascertain what various forms some particuler property may aseume, and under what conditions. In tracing a property through all the phasee in which it appesrs in different instances, we are in a sense pursuing a genus into its species; we are realizing ita generic identity under divers forme, and this is part of the business of a logical division. The thinge themselves which we have to cloenify, if we take them in their completeness, cannot be caged in a neat logical arrangement; yet even eo, the ranking of them in genern and opecies at all, which is not the work of logic, but the natural bias of our thought (for the distinction of man and animal is older than that of epecies and genus), implies an effort at anch arrangement ; the logician does no more than render explicit the aims which underlie all cleasificetion : exoept that the form of his theory takes too little sccount of the modifications which are impoeed by the particular nature of the subject-matter with which we have to deal.]

CHAPTER VI

OF THE INTENSION AND EXTENSION OF TERMS

Ir was obeerved by Aristotle ${ }^{1}$, that in one sense the genus is in the species, in another sense the species is in the genus. 'Animal' is in 'man', in the sense that you cannot be a man withont being an animal, so that being animal is included in being man. 'Man' is in 'animal', in the sense that among the forms of animal nature, man is included.

In the technical language of later Logic, this distinction may be expressed by saying that in intension the species includes the gonus, in extension is included in it.

The intension of a term verbal is what we intend by it, or what we mean by it when predicated of any subjeot ${ }^{2}$: the exsonaion is all that stands subordinated to it as to a genus, the variety of kinds over which the predication of the term may extend. ${ }^{3}$ If by term we mean the concept, or what is thought of, the extension is the variety of species in which a common charscter is exhibited, the intension the common character orhibited in this variety. The distinction may be more readily apprahended, if it is noticed that we analyse the intension of a term in defining it, and break up its extension in dividing it.

It is clear that as between two terms subordinated one to the other in a classification, the higher, or superordinate, must always have the greater extension; animal, for example, in a term of wider extension than mas, and conic section than ellipse; for the concept ' animal' extends or applies to much besidee man, and that of

[^71]'conic section' to hyperbola and paraboles, as well as to ellipes ${ }^{1}$. Many hold also, that the superordinate term, as it is of greater extension, so is of less intension; less being meant by calling angthing an animal than by calling it a man; or by the term 'conic section', than by the term ' ellipse '. Hence it has been said that the extension and intension of terms vary inversely: 'when the intent of meaning of a term is increesed, the extent is decressed; and vice versa, when the extent is increased, the intent is decreased. In ahort as one is increased, the other is decreased.' ${ }^{8}$

This inverse relation of intension and extension in terms may be illustrated not only by reference to classification, but in another way. We may take any term, such as Christian, and qualify it by an adjective or adjectival phrase: as if we were to say 'Armenian Christian' or 'Christian of Cesesar's household'; by the qualifica tion we clearly make a term of narrower extension than 'Christian' simply, for we conceive that there may be Christians not Armenians, or not of Caesar's household; and at the same time we add to the intension, for it is no part of the concept of a Cbristian to be an Armenian, or of the household of Ceesar.

Still, when we thus qualify a general or an abstract term, we are instituting a sort of clessification; we make an Armenian species within the genus Christian, or a cless, asy, of bright colours within the genus colour. Therefore we may say generally that it is only to terms in a clessification, and in one 'series of subordination' in it, that the doctrine of the inverse relation of intension and extension applies. It would be ridiculous to compare in this matter such different concepts as democracy and steam-engine; it is even unmeaning to compare terms belonging to the same clessification but to different lines, or 'series of subordination', in it; bird and reptike, for example, both belong to a clessification of animala, but are not subordinate one to the other, and nobody can well tell which has the greater intension, nor if that were decided would he be able to infer from the decision, which had the greater extension, or comprised the larger number of subordinate species.

 specios in the compen of the speciee under them, species geners in the differenties belonging to them.)

I Jevona, Principles of Science, 2nd ed., c. ii. p. 26. Cf. Sir W. Hamilton, Lecturce on Logic, viii. II xx ; Thomeon, Lasos of Thought, \% 28 ; Bain, Logic, Dedmetioc, p. 51 (' the greater the one the lews the other').

Applying only to terms subordinsted one to another in a clasaification, the doctrine is an attempt to explain the nature of classif. eation, as a series of tarms so related that each is of wider axtension and narrower intension than the next below it.

Now it may be queationed whether this idea is just. The generic term undoubtedly exceeds the apecific in extension, but does it fall short in intension? This quertion may be put in another form: is the process of classification one of mere abstraction? do I form a generic concept from apecific concepts merely by leaving out part of the latter, and attending only to the remainder? If our concepts of apecies and genus were constituted by sets of attribates disconnected but coincident, then this would be the case. The generic concept would be formed by picking out from several sets those attributes, or marks, which occur in them all ; it woald contain fewer marks, or be of lew intenaion, in the wame sort of way as one man may have fewer decorations than another. On these principles the nature of a cleasification might be satisfactorily expressed by the following symbols:-

Bat we have seen ${ }^{2}$ that the genus is not something which can be got by any process of subtraction from the species; it is not the same in all its species, and does not enter unchanged into them all as water into every pipe that leads from a common cistern. You cannot form a concept of it apart from all the species, as a can be read and written apart from other letters with which it may be combined. Attributes that are really independent, such as blue, and aweet, and heavy, can be thus conceived apart; but they cannot stand to each other in the relation of genus and apecies ${ }^{2}$.

If we look at terms which are really in a relation of genue and

[^72]species, it is not clear that the wider term hes the less meaning. Take animal and man; if I say of anything that it is an animal, I certainly convey less information about it than if I asy it is a man ; but it does not follow that the concept animal is of less intension than man. For it must be noted, that I should not say of anything that it is animal, but an animal; which implies that I am aware of other animals, and that the concept animal includes alterantives, among which I am at present donbtful how to choose. But if so, the generic concept would seem to exceed the specific in intension ; ' soimal' means ' man, or horse, or ox, or ase, or nome other form in which the general nature of an animal may manifest itself'. As we become familiar with the infinite variety of animal life, the term comes to mean not lean to us, but more.
Or take another illuraration. Say that a boy first makee acquaintance with the steam-engine in the form of rilway locomotivee. For a long time the term means that to him; but by and by he meeta in bis experience with traction-engines, ship'seanginees, and the stationary enginee of a factory. His earlier concept of a steam-angine-the earlier intension of the term for him-will alter; much which he included at first in it, becanse he found it in all railway locomotives, he will learn to be uneseentiad-firat running on rails, then the familiar shape, then the moving from place to place. And eccording to the doctrine before an, he will leave out from the concept one point after another, and at the end his notion of a steam-engine will be the anexcised residunm. But surely his notion of a steam-engine will have become richer and not poorer in the proces ; it is not that he finds that a steamongine need not run on raile, eo much as that it may run on the roade, nor that its familiar shape is unessential, so much as that it may be built in quite a different manner; nor that it need not move from place to place, so much as that it may work as a stationary engine. It becomes a genus to him, because it becomes athing of alternative posesibilities; and the experience which leads him to extend the term to new kinds of objects leads him to nse it with a wider range of meaning. It is true that in becoming generic, the term comes to have a lees definite meaning, when applied to any object; but in iteelf it does not come to have lesa meaning.

The doctrine of the inverse relation of axtonsion and intension in terms eeems therefore wrong; it misrepresents the nature of a clasaification. But a doctrine which has been accepted so widely of late ${ }^{1}$, and seems at first sight 80 plauible, muat have some degree of justification. It justification, or excuse, seems fourfold.

1. The thought which general terms suggent to the mind is often rague, and the more so in proportion as they lese raggest a definite ensible object. We do not realize all the alternative poesibilities involved in animal natare each time that we use the term animal. Hence in the term of wider, ae compared with that of narrower, extension there is often little definite; and we are apt to suppose instead that there is a definite little. This error is encouraged by mistaking for thought the imagery that accompanies thinking. The nature of this imagery differs with different people, and any illastration can be only arbitrary. But it might well be that when the notion of man or horve rose in one's mind, he pictured to himself the look of either with fair completeness; but that with the notion of animal there went the kind of image which a child would draw of a quadraped-four lines stioking out of an elongated trapezium, with a few more for the head and tail. There is lew detail in. mach an image than in that of a horve or a man; ead it is not imposesible that one might hence be led to suppose there was less intension in the notion.
2. Our actual clasaifications, as we have seen, fall ahort of perfection in many respects; we often do not underatand the interdependence of the varions characteriatics of an organic lind, or of the various properties of an elementary subatance. In these circumstances, we are compelled at times to fix on certain oharacters an constituting a genus, and then distribute into species the objects in which they are found by means of attributes whose connexion with these characters we cannot conceive. For example, there is a far-reaching division of flowering plants (already referred to) into monocotyledons and dicotyledons, based on the number of the seedleaves; but in these two classes the sub-clasess are distinguished by various characteristics of the calyx and corolla, of the mode in which the stamens are inserted, \&c. Now we are ignorant why

[^73]a plant with two seed-leaves should be capable of one series of flower-developmente, and a plant with one seed-leaf of another series; the number of seed-leaves is, for all we can see, an irrelevant character; though it cannot really be oo; and the concept of dicotyledon or monocotyledon is complete, withont reference to the character of the flower. Here therefore the intension of the wider term is less than that of the narrower. To the botanist the term Dichiamydeae, whose extension is leas than that of Dicotyledon, means plants which in the first place have two seedleaves, and over and above that heve both calyr and corolle ; the tarm Dicotyledon means merely a plant with two seed-learee. Such cases give colour to the doctrine, that where terms are anbordinated one to the other, the intenaion varies inversely with the extension; but they do not embody the trae spirit of a claspification.
3. We have seen that a term may be qualified by an adjective whieh is really an accident of it: by which is meant that the adjectival concept is an addition to the original concept, rather than a further determination of it; as when we qualify the term Christian (which implies a certain religious belief) with the adjective Armenian (whioh implies a certain nationality)-there being no necessary connexion between creed and race, but any variety of one being capable of coinciding in individuals with any variety of the other. These cases (to which those considered in the last paragraph approximste) bear out the doctrine of inverse relation, so far as they go. But it may be observed that they only bear it out, becaase they have been as it were constracted to do so. We take a term, and qualify it by an adjective which in the first place is known not to be commensurate with it (and therefore narrows the extension), and in the second place is not implied in it in any way as a possible development of it: so that it is a sheer addition to whatever intenoion the original term possessed. Then we call attention to the fact that in the original term, and the term composed of it and of an adjective, extension and intension vary inversely. Of course they do, because we have carefully arranged it, by so qualifying the original term that they must. But it is ridiculous to infer from this, that in all terms, where one is of wider extension than the other, its intension is less. Because this holds where the terms are not related as genus and apecies should be, it must not be concluded to hold where they are so related.
4. It may still be felt that there is more trath in the doctrine than has been conceded. Take the most unimpeachable oxamples of genas and species, such an triangla, with ita species equilataral, isocceles and scalene. Cen we not and do we not form a notion of triangle which includes those pointe in which equilatenal, isosceles, and acalene agree, bat none of those in which they differ? and may not this notion be perfectly precise and definite? and if such be the intension of the genas-term, is it not less than that of the opecies-term? We must admit that this is posesible. In the words of R. L. Nettleship ${ }^{1}$, 'we may, for convenience' meke, mentally hold aparts a certain fraction of the fact ; for instance, the mizimume of meaning which justifies us in wing the word "triangularity". We may call this the generic triangle, and distingaish it from particular forms of triangle.' But the true intension of the term is not the 'minimam of meaning' with which we can ane it, bat ite 'fall meaning'.
What has been so far mid with regard to the relation of intension and extension in terms may perhape be rendered clearer to some as follows. Wherever we have species of a genus, or didtinguishable varieties of a common notion, we may contrant the anity which they preeent with the variety. To attend to the intencion is to attend to the element of unity: to attend to the extersion is to attend to the element of variety. Sometimes we are more intarested in one, and sometimes in the other. When Socratee in the Mono aske what is virtae, and Meno begins describing the virtue of a man, the virtue of a woman, and so forth, Socrates explains that he wanta to know what virtue is as one in all these, and not what the divers virtaes are ; in later language, he wished for the intension and not the extension of the term. Aristotle remarks ${ }^{2}$ that an enameration of these different virtues and a description of them severally aro more raluable than a vague statement of their common nature: i. e. that here at any rato the element of variety was more worth consideration than the element of anity, if either is to be neglected. But if the two are realized together, the unity of the superordinate whole must be aeen as the more comprebensive unity, not as the more- jejune extract. So far however as we cannot realize them togother, and see their

[^74]necessary connexion, it will have the character of the jejune extract and be a whole of less meaning, even although we know that the variety of opecies into which it enters is great; and in these conditions, it may be said to be of less intension.

It follows, that in reference to an infima species, or a notion within whose unity wo recognize no conceptaal variety, intension and extension are indistinguishable. The equilateral triangle may differ in the length of ita sidea; and we may if we like regard this difference as constitating a variety in the notion of equilaternl triangle. But if we do not-if we conceive the particular length of the sides to constitute no difference in the equilateral trianglethen we recognize no such variety in the unity as makes the distinction of intension and extension possible. The natare of equilateral triangle is not shown in species that are distingrished within that unity, bat in that unity itself. The two aspects of the meaning of the term coincide, or nther, do not fall apart.

But it may be aaid that even if there are no distinguishable species of equilateral triangle, there are very many distinguisbable equilateral trianglea. Two interlaced equilateral triangles are a favourite symbol in the decoration of Christian buildings ; and the number of equilateral trianglea delineated on the walls and in the windows of churches alone must be peat counting. Do not all these and others form the extension of the term, and are not they distinguishable from ite intension?

We have treated the extension of the term as 'the variety of linde over which ite predication may axtend'; the variety which we concrive within a unity. We have dealt throughont with a relation of general terms or notions; the development of variety within the unity of a conceptual or logical whole has been regarded as stopping with whatever we take as infimee species. The extension of a term is, however, sometimes understood to be not the various conceptually distinct forms which are included within the unity of a single whole (like the various virtues, or species of animal or plant, or kinds of conic section, or sources of income), but varions individual instances in which a common nature is realized. According to this view, the extension of man is not Aryan and Semitic, Negro and Berber, acc., but Socrates and Plato, Csesar and Pompey, \&c.; the extension of triangle is not equilateral, isosceles and scalene, but the triangles on particalar church walle and windows or
elowwhere ; the extension of colour is not red, blae, and grven, bat the particular display of colour in every portion of the sky, or blade of grase, or fragment of an army jecket. And the contrast of extension and intension is no longer the contrast of variety and unity in a notion or conoept, bat that between individuals and the common character which makes them individuals of a kind.
This view has never proviled in reepect of abetriet terms. No doubt qualities have their instances; the whitanese of this page and that of the nert are each an instance of whitenese But it is the function of abetraction to consider the quality in ita identity, and to ignore the differenoe between the concrete instances in whioh it is manifested; let the quality differ qualitatively, as the whitenees of milk does from that of anow, and we may be interested in the difference; bat if it differs only numerically, as the whitenees in one patch of snow from the whitenees in the next, we ignore it. We may be separately interested in the various concrets things whioh exbibit the amme quality, but the very purpoee and nature of the sbetraction which we perform in considering the quality is to treat it as the mame in these instances, and to ignore their differenoe. With concrete terms it is otherwise ; an attention to the identity of man in Socratee and Pleto does not exalude our interest in them as separate individuals; and it in of concrete terms that individual inatanoes are cometimea taken to constitate the extension.
Now we need not quarral with this nee of the word; but it is important to see that we aro introducing a new distinotion. The relation of man to animal, or of negro to man, the relation whioh we recognize between apeciea and genus, is not the same as the reletion of Socratee to man or animal, the relation between an individaal and its kind or univermal The inverse relation of axtension and intension of which we have apoken does not bold, except between notions or univereals; if the extension of a term is the individual instances, it is meaninglese. The individual instances may be more or fewer, bat what is meant by the common term predicated of them all remains the same. We mow bow the intension of the term animal might from one point of view be said to increase, as a man becomes sequasted with freah forms of animal life; and how from another point of view, because what at first he might have regarded as cesential to an animsl torns out not to be indiapensable, it might be said to diminish, ebrinking to a jejune residuum. But whichever
wey we look at it, it is only soquaintance with freeh forme of animals that produce this result: a mere inorense in the mwembers of one's sequaintance would produce no such effect. The intension of the term baby does not incresee and decresse with the fluctostions of the birth-rate ${ }^{1}$; when gaineses were called in, the term did not alter ite intension. Intension has nothing to do with actaal existence. There may never have been a perfectly just man; and yet we mean something by perfect justice. The dodo is extinct, but dodo would not have less intension if the bird were as common as the oparrow. ${ }^{2}$ As it is, the chaffinch is commoner than the goldfinch, bat thare is not any consequant difference in intension between the two terms.

We may therefore mean ae we please, by the extenaion of a concrete term, either the distinguishable species or the individuals included under it; but we most not treat the relation of extension and intension as the same in both cases. It is true that concrete individuals of one kind are distinguished from one another by their characters; and if we attend sufficiently to these distinctions, then as our acquaintance extends our conception of the variety of which the kind is susceptible enlarges. Unobeervant people may be familiar all their lives with earwigs, without recognizing the richness of earwig nature an diversely dirplayed in divers individuale. The least obeerrant of us have the richness of haman nature forced to come extent upon our attention. But eo far as our growing experience of life leads us to realize more fully the variety of human natare, it is not because the men we meet differ numerically, bat becanse they differ in charactar from one another. With a kind like man, where the differences of aharacter between different individuals are so closely noted, it might seem that as the individuals are conceptually distinguiahed, therefore in pasaing from man to Socrates and Plato we are only carrying on the aame proces of thought which we had employed in distinguiahing within the genus animal the apeciee of man and horse and ox. That is not so. Man in not

[^75]lees an aniveral notion becanee it is nffre apeoific than animal; and if we were merely furtber specifying our conception of man in the care of Socrates, Socrates would be an aniveral notion too. But Soarates is an individual; and I cannot arrive at individaslity by any apecification of a general notion. Socratea is distingriahed conceptanlly from Pleto; bat that is not the whole of the dirstinction, for they exist in the concrete.
In place of the words Extonsion and Intension, variona writers have used others to mark the same distinction; and in particular, since the pablication of J. S. Mill's Logic ${ }^{1}$, the words Denotation and Connotation have come into fivour for Extension and Intenrion reapectively. Mill claimed for these that they poseess an advantage in the existence of the corresponding verbs, to denote and to consote, which other expreations do not possees ; we may apeak of a term denoting or connoting this or that, bat we ahould have to use a periphrais and any that so and so constituted the intension, or was included in the extension, of a term. Though this is a real advantage, yet in other respects the terms which he selecta seem to be ill chosen. Extension anggeats, what we want to convey, the range of opeciea over which the application of a generic term extends; Denotation does not. Moreover, neage allows us equally to my that a species or an individual is denoted by a term; if either is the more natural expression, it is perhape the latter; and so the very referenoe to individnals which we wish to avoid is foisted on ua. Again, Intension natunally suggesta what we intend or mean by a term; Connotation suggests not that, bat eome subeidiary meaning, a meaning additional to some other. It would, parhapa, be convenient if the term Connotation were dropped, or reatored to ite original signification (according to which nomen comeotaticum meant an attributive term), and if Denotation were distinguished from Extension as reference to individuals from referonce to subordinate species. We could then say that asimal denoted Socrates and Bucephalas, bat that man and horse were part of its extension.

Suoh an emancipation from what seems to be an unhappy phraseology may, however, be too mach to hope for. Bat from a doctrine which Mill need his phraseology to exprese it is necessary that we should emancipate ourselvee. Mill drew a diatinction

$$
\begin{gathered}
10 . \text { I. ii. \& } \\
\mathrm{I}_{2} 5 . \\
\hline
\end{gathered}
$$

between connolative and montromolative namen, whiah he deeoribed se being 'one of the most important distinctions which we ahall have occasion to point out, and one of thoee which g_{0} deepest into the nature of language'. There are, however, no non-connotative names.

The distinction had better be stated in his own words. 'A nonconnotative term is one which aignifies a subject only, or an attribate only. A connotative term is one which denotes as subject, and implien an attribate. By a subjeot is here meant anything that ponecees attributes. Thus John, or London, or England, are namee which signify a subject ouly. Whiteness, length, virtue, signify an attribute only. None of theee names, therefore, are connotative. But white, long, virlmoue, are connotative. The word white, denoten all white thinga, as snow, paper, the foam of the een, \&c., and impliee, or in the langrage of the echoolmen ${ }^{2}$, comnotes, the attribute whilences. The word white is not predicated of the attribate, but of the eabjecta, anow, \&ce; bat when we predicate it of them, we convey the meaning that the attribute whiteness belongs to them. . . . All concrete general names are connotative. The word man, for example, denotes Peter, Jane, John, and an indefinite number of other individuals, of whom, taken as a clas, it is the name. Bat it is applied to them, because they poseess, and to signify that they pomese, certain attributea. . . . The word man, therefore, signifies all theoe attributes, and all aubjects which posees theer attribntea. . . Even abetrect names, though the namee only of attributes, may in some inatancee be juatly conaidered as connotetive; for attribates themaelves may have attributes aecribed to tham; and a word whioh denotes attributes may connote an attribute of those attributea. Of this description, for example, is suah a word an fautt ; equiralent to bad or hurtful quality. This word is a mame common to many attributes, and connotes hortfulnees, an attribute of thoee varions attributea, . . . Proper names are not connotative: they denote the individuals who are called by

[^76]them; bat they do not indicate or imply any attributes as belong. ing to those individuals.'

Thus Mill considers to be connotstive-
(a) general concrete terms;
(b) attributive terms ;
(c) abetract terma, if they are namea of a genue of attributea;
and to be non-connotative-
(a) proper names ;
(b) abotract terma, if they are namea of a aimple or a logically undivided ${ }^{1}$ attribate.
Denignations, i.e. descriptions of an individaal involving connotative terms, he considers connotative; sbotract terms which are logically undivided, but not indefinable, like velocity or momentum, he does not specially discuss; they ought to be connotative, if (as he holds) definition unfolds the connotation of a name; they ought to be non-connotative, if (as appears to be the case) they 'signify an attribute only', and not an attribute ascribed to other attribates; but as he has forgotten his view of definition in this rection, we seem justified in following the indioations of the contaxt and clesaing them as non-connotative.

We have to consider, therefore, two clasese of names which socording to this doctrine have no connotation (or intension): proper names, and abstract terms which are not generic, i. e. not predicated of other abotract terms which would form their oxtencion. We may begin with the latter.

According to Mill, faull is a copnotative term, because it denotes slownes in a horse, and other hartful attribates, while connoting their common attribute of hartfulnese. Fice would be comnotative, denoting indolence, intemperance, jealousy, and so forth, and connoting their common character an vicea. (It is to be obeerved that all terms are asoumed to denote something, and the question is whether they do or do not connote something as well.) Bloweses, on the other hand, is non-connotative, and 00 is indolence or jealowry; for these merely denote esch a single attributa.

It would be very strange, however, if this were trua. What I mean by calling Othello's paseion a vice forms the connotation of that term; vice is connotative by what it means in regard

[^77]thereto; but when I call his pasaion jealousy, though that includet calling it a vice (for vice is part of the notion of jealousy), we are told that the term has no connotation; ' vice' is a connotetive term; bat 'the vice of readily suspecting the unfaithfulness of those you love' is not.

The fact is that Mill starts from the diatinction between concrete individuale, and their common character on the ground of which they are called by the aame name; and he takee a name to be connotative, if it has a common meaning dirtinct from the individuals of which it is predicated. Thus man is connotative because its meaning is not identical with John or Peter; and white because its meaning is not identical with milk or snow. He then confusedly supposen indolence and jealoury to be individuals denoted by the common term vice, alowness and stupidity by the common torm fault; and since we can distinguish the common meaning of the terms faull and vice from the particular attribates of which they are predicable, be treats them ae connotative terms; while indolence and jealonsy, alowness and stapidity are non-connotative like John and Peter. 1

Now we shall see that John and Peter are also connotative terms ; and therefore that even if indolence and sach-like terms were comparable with them, they would not have been shown to be devoid of connotation. But they are not comparable. Indolence and jealousy are not individual attributes; if we are to talk of individual attributes, we muat mean the indolence exhibited by a given person at a given time and place: as the jealouny which fired Othello's heart when he strangled Deedomona; and eo far as indolence and jealonsy can be predicated of theee and other indolencee and jealousies, we can distinguish the common meaning of the terms from the particular manifestations of that meaning. They will therefore be ae connotative as any general concrete term. We have aeen, however, that in abstraction we are not considering the particular manifestations of an identical quality; we are looking upon indolence as one thing, not difterent things every time that it is exhibited. Therefore the diatinction between the concrete individuals and their common oharacter, from which Mill starts, is altogether out of place, and a view of connotation based on that cannot apply to abstract terms. We must fall back apon the relation of concepte, which wad developed at the
beginning of this chapter by the belp of the words intension and extension. Let un call these reppectivoly connotation and denoter. tion if any one prefers it; bat what we shall have to esy about connotation and denotation in abotract torma is as follows.

An abstract tarm han a meaning: it means a certain attribute ${ }^{1}$, as an unity. This is its connotation. But we may reoognize a diversity within this unity, or forme of this unity conceptually dis-tinot-the kinde, e. g., of vice or virtue. If m, these form its denotation. The tarm may be prodicated of any part of its denotation meparately, and no far sen we diatinguish the divers parte from the unity of which they are parte (e. g. indolence from rice as rech), it does not denote preciely what it connotea. But when we come down to attribatee within the unity of whioh we distingaish no diversity, the dietinotion between what a tarm denotee and what it connotes dimppears. Indolence, so far as we recognize no meparate apecies of indolence, is just one attribate: not one like a concrete individual, bat as an univeran. The term connotes that attribate; and that is what it denotee or is the name of. It can be predicanted, as a name or word, of the attribute it means. As a thing (i. e. here, an attribate) it is itself, and not a genus of different things. Sappose we recognired (ar indeed wo may) degrees of indolence; so far as we thought of them as different when we spoke of indolence, material for the distinotion between whit the term denotes and what it connotes would be furnished afresh. We might still have no separate names for indolence of divers degrees, bat in spite of this the term would have connotation. Are we to any that when we cesce to think of theese degreen of indolence, it has connotation no longer? What hae become of the meaning (for connotation is meaning) which it had before? Clearly it mast have menning. What we have to explain is how it can be prodicated of that which is not precieely what it means. This arises through the recognition of a conceptual divernity within a conceptual anity. Where that is not recognized, the problem does not arieo; but the term otill has meaning, or connotation.
The other clase of terms which Mill regarde as non-connotative are Proper Names. His view is equally antembble in thin case, but

[^78]for different rescons ; and there is more plassibility in it. For there is an important difference in instructivences between proper and general concrete names, which ought not to be overlooked, though it ought not to be stated as lying in the non-oonnotative character of the former.

Mill denies that proper names are connotative, because they tell you nothing sbout the individual which they denote; wheress general names give you information about it. 'A proper name,' be mys, 'is but an unmeaning mark which we connect in oar minds with the idee of the object, in order that whenever this mark meets our eyes or cocurs to our thoughte, we may think of that individual object'; and he contrants 'connotative' namee as 'not mere marks, but more, that is to say, significant marks'. A general name is used of an individaal on the ground of some character which the thing is believed to possess ; and that forms its connotation, which it posesesee independently of ite use about this individual : a proper name is given upon no sach ground, but meraly in ordar to distinguish the individual it is given to from others.

The premisses hereare correct, but they do not justify the conclusion drawn from them. A proper name need be given on the ground of no attribute ${ }^{2}$; for we may set aside as irrelevant to the real isurue the case which Mill instances of a name like Dartmouth, intended to imply that the town is at the month of the Dart, and compounded out of elements whereof one is general; in the case of the river Dart itself, at any rate, no such significance is to be found in the name." On the other hand, general names are used on the ground of some attribate. I should not call London s port, except to indicate that coesn-going shipa resorted there. Yet it does not follow that proper names are non-connotative. For the proper name is only unmeaning before it is gives; by being given, and becoming a mark, it acquirea a meaning. And the general name was equally unmeaning before it wace ever givew; but being general, it can be given to more things than one, and having aoquired a meaning by

[^79]ite original imposition, hem a meaning in adrance of ita sabsequent uee aboat other individuals; and that is why it is instructive.
The account which Mill gives of a proper name is anbstantially indistinguishable from Hobbes's definition of any name, which Mill himeelf had accepted in the fint section of the same chapter. According to that, a name is 'a word taken at pleasure to eerve for a mart which may raise in our mind a thought like to some thought we had before'. Being a word taken at ploasure, it can have had originally no meaning ${ }^{1}$; else that meaning would have restricted our choice. It acquired a meaning when we marked with it the object which we would have it to signify. And whether we wish to mark with it an individual object, or a kind of object, makea so fir no difference. All names, whother general or proper, are an Aristotie called them, фwval onpaviual narà ouvorianν^{3}, originally, and before they are asaigued to an object, they are фuval only, soonds without meaning. In being aseigned to an object, or becoming marks, they eo ipso acquire meaning; for an unmeaning mark is not properiy a mart at all, thongh I may of course be ignorant of the meaning of it. The broded arrow \uparrow which is occasionally meen on gatepoata, milestones, \&c., is a mark; the traveller would know that it was not a mere faw in the wood or otone; be might not know what it meant; but be would know that it meant something. By enquiry he might learn that it meant that the spot where it was placed was the precire epot whoee height was recorded in that portion of the ordnence ourvey. Here the mark is general. But the mark by which his narse recognized Odyweus was equally aignificant. In its own noture it was a scar, the consequence of a wound, and not (like a brand) intended as a mark. Yet this soar (its preciee form and position being taken into acconnt) to those who had observed it in Odyeeens became a mark by which to know him. He had been absent twenty years, and wae changed otherwise beyond recognition; he whe suppoeed to be dead; but his narse, seeing the mark, knew the man before her to be him-knew that aboat the man before her which otherwise ehe would not have known. How can it be said that it was an anmeaning mark for her? And sappose that instead he had at once told ber that he wan Odywoun ;

[^80]the name would have given her precisely the same information; how could the name be anmeaning? The doctrine that propar nemee have no connotation is refuted by every criminal who cesumes an alise. ${ }^{1}$
Proper names, it was admitted, are not amigned (as general names are employed) on account of their meaning. They only aoquire their meaning by being amigned to an object. But in being aseigned to an object they must aoquire connotation. The error which it is important to avoid is that a name can denote without connoting; for that implies that a thing can be, and be distinguiebed, without any attribates distinguishing it. I may frame the sound Glamby: it is doubtlees non-connotative; bat neither does it ω yet denote anything. So $2000 \sim$ I give it ω a name to my hoase or my horre, my dog or my daughter, it will denote that thing, and also connote it for me; for here, ass in the case of non-generic abetract terms, we may sey that the term denotes what it connotee. The two kinde of term have important differences. Proper names are given to individuals; and what the individual is we can never know completely. The proper name therefore cannot be defined; and a great deal of its connotation may be asid to be left as it were in the dark; the name connoten an individual characterized by all which distinguishes it from others; but we do not know all that. Practically we may say that the connotation is anything which enters into our notion of the individual, and therefore so far an no two men have the meme knowledge of Glamby, that name will have partinlly different connotation for different men. The mme remark might be made, however, in some degree about general namea. And if Glamby were a mark denoting an individual, bat connoting nothing, how should any one whom I told to go to Glamby know whether I sent him to a person or a place?

It is hardly necessary to labour the point further. If the connotation of a name were a fixed and constant meaning, borne by it in every case of its application, and therefore general, it would be fairly anid that proper namees were non-connotative. Por they have no constant meaning, except in reference to the same individual; and so far as they belong to several individuals, they aro equivocal. But an equivocal term is not a term without meaning;

[^81]it is a term with more than one meaning. And whatever has meaning has connotation. The connotation of a proper name can oaly be learnt by knowledge, personal or through report, of the individual denoted; such report mast of course be made by help of general terms. But the connotation of a general term is in the lact resort learnt through permonal acquaintance with or report of some object of the kind denoted. Only being general it servee now to convey information about individuals withoat the need of personal acquaintance. ${ }^{1}$
[A little further examination of the pasaage quoted on p. 132 will ahow how thoroughly confused Mill's sccount of the matter is. A connotative name, he eaye, is one which denotea a aubject and implies an attribute: a non-connotative name denotes a subject only or an attribute only. He clearly intends here to distinguiah between subjects and attributes; and by a subject be meens an individual. ' By a subject is here meant anything which posesses attribates. Thus John, or London, or England are names which signify a subject only.' Bat whether such a subject of attribates is a bare uncharacterized ctatat, and all ite prodicates are attribntee: or whether it in a subject of a certain hind, of which ita further predicates in other categorice are to be called the attributes, Mill does not say in so many words. The former is, however, implied; for the word man connotes all that makes Jobn a man; and the mocount of eubstance in the next chapter beare this out. Yet we are told that fauld is a connotative torm becanse it denotes, e.g., slownese in a borse and connotes the hartfulnems of this quality; the namees of attributes 'may in some canee be justly considered as connotative; for attributes themselves may have attributes ascribed to them'. According to the definition of a connotative term given at the outset, slowences ought to be a subject and not an attribute, if faull is connotative.

Mill has confused the logical relation of subject and predicate, which allows you equally to say that alowness is a fault and London is a city, with the metaphygical relastion of aubetance and attribute, also sometimes called the relation of oubject and attribate; and he has not any very coherent view of what he meana by a subject an

[^82][= substance. He has consequently also friled to distinguish the relation of genus and speciee from the relation of genaral to singular ${ }_{2}$ or upiyersal to individual. Thas terms like whitio or Eirtuous are connotative, because their form implies a subject (whether a substance or not) distinct from whiteness or virtue, of which they are to be predicated; colour is connotative, while whiteness is not, because that is a genas, and this is an infima species; cily is connotative, while Lomdon is not, because cily is general or universal, and London is singular or individual]
[For the sake of the curions, a few worde may be added on the history of the term 'connotative'. In William of Occam a distinction is found between abeolute and connotative terms. Absolute terms have not different primary and secondary significations; 'nomen autem connotativam est illad, quod significat aliquid primario et aliquid secundario.' He gives as instances relative names (for father signifies a man, and a certain relation between him and another): names expreasing quantity (since there must be something which has the quantity) : and certain other words: v. Prantl, Gesehichte der Logik, Abe. xix. Anm. 831, vol. iii. p. 864. Johannes Buridanus said that some terms connote nothing beyond what they stand for (' nihil connotantes ultre ea, pro quibus supponunt'); but 'omnis terminus connotans aliud ab eo, pro quo supponit, dicitar appellatives et appellat illud quod connotat per modum adiacentis ei, pro quo supponit'. Thus mews and tuus stand for something which is mine or yours; bat they connote or signify further and 'appellant me et te tanquam adiacentes' (id. ib. xx. 111, vol. iv. p. 80). In the aame way elsewhere we are told that 'rationale' 'connotat formam subetantialem hominis' (xx. 282, vol. iv. p. 63 : cf. Anm. 459, p. 109). 42 bwm and agens are given elsewhere by Occam (ib. xix 917, vol. iii. p. 886) as examples respectively of connotstive and relative terms; and it is explained (ib. Anm. 918) that a connotative or a relative term is one which cannot be defined without reference to one thing primarily and secondarily another; thus the meaning of album is exprossed by 'aliquid habens albedinem'; and when by any term anything 'connotatur vel consignificatur, pro quo tamen talis terminus supponere non potest, quis de tali non verificatar ${ }^{\text {" }}$, such a term is connotative or relative. Thus a term whas called connotative if it stood for (' supponit pro') one thing, but signified as well ('connotat') something else aboat it; as Archbishop Whately mag (Logic, II. c. v. § 1, ed. 9, p. 122),

[^83]['it "connotes", i. e. "notes along with" the object [or implies], something considered es inherent therein.' The Archbishop suggeets the term attributive as its equivalent; and though connotative terms were not all of them adjectives, since relative terms also connote, and so do terms like ' mischief-maker' or 'pedant', which though adjectival in meaning are subetantives in form, yet adjectives are the principal cleas of connotative terms, in the original sense of that word.

Connotation and denotation were thue originally not opposed to each other, and the terms were by no reans equivalent (as they have come to be treated as being) to intension and extension. And James Mill, who probably by bis remarkes upon the word connote had some infloence in directing his eon's attention to it, says that 'white, in the phrsee white horse, denotes two things, the colour, and the horee; but it denotes the colour primarily, the horse secomilarily. We shall find it very convenient to say, therefore, that it notes the primary, conmotes the secondary, signification' (Amalysis of the Hwean 1/ind, vol. i. p. 84). By the echoolmen it would commonly have been said to connote the colour, and the primary signification whe that 'pro quo enpponit'. J. S. Mill, in a note to p. 289 of the ame volume, objects to his father's inversion of the asage. But he himsolf, by extending the term connotative to cover what the achoolmen called aboolute, and opposed to connotative, names, introduced a complete alteration into its meaning.

John and man are both absolute names in Occam's mense. Man, no doubt, according to some (though not according to a nominalist like Occam) may stand for either an individual or an universal ; for an individual when I say 'this man', for an universal or species when I say that man is mortal. (Oocam would have said that in the latter case it stood for all the individuala.) Bat even when I say 'this man', meaning John, the name mas does not denote two things, man and John; for John is a man; and if I abstract from that, John disappears too; I have no notion of John as something with which I can proceed to combine in thought another thing, viz. man. With while it is different; I have a notion of paper, and a notion of whiteness, and whiteness is no necessary part of my notion of paper; and so with any other subject of which whitenees is only an attribute and not the essence. Hence the name white may be said to denote two things, the colour, and that which is so ooloured; for these can be conceived each without the other, as John and man cannot. Jamea Mill, who thought that objects were 'clusters of ideas', and that we gave names sometimes to cluoters (in which case the namee were concrete) and sometimes to a particular idea out of a cluster (in which case they were abstract), could also eay that white, when predicated of this paper, denoted two things-the whiteness, and the cluster not including whiteness
[which I call peper. But Joks only denotes one thing-the cluster of ideas which make John; and man only one thing, the cluster of ideas common to John and Peter. J. S. Mill, however, dirtinguiahed what is common to John and Peter from John or Peter, and said not indeed that mas denoted two things, but that it denoted one and connoted the other. But if he had been asked what Jobn, the sabject, was as distinct from man, his attribate, he would either have had to any that he was not something different from man, any more than slownees is eomething different from a fault, though fault was aloo held by him to denote one thing and to connote another; or that John was just the uncharacterized substance, in which those attribates inhered, the unknown sabject; or else that he was what remained of the concrete individual when his homanity had been left out of his nature. None of these answers would be very satisfactory. Again, colowred is connotative, in the original meaning of that word, because it is predicable, say of a horse, and to be a horse is something else than to be coloured; in J. S. Mill's usage, because it is predicable of brown, though to be brown is to be coloured. Mill treats as two, when he opposes a tarm's denotation to its connotation, thinga like John and man, brown and colour, whereof the letter is simply the universal realized in the former, and the former nothing without the latter: as well as things like horse and colour, which are conceptually two. Originally, only a name that was predicated of eomething thus conceptually a distinct thing from the attribute implied by predicating it was called connotative; and it is only where there are thus conceptually $t 100$ things, together indicated by the name, that the word cownotative has any sppropriateness.
(Cf, also on the hintory of the word Comnotative a note in Minto's Logic, p. 46.)]

CHAPTER VII

OF THE PROPOSITION OR JUDGEMENT

A arnbral acquaintance with the natore of the judgement or proposition has been hitherto seamed. It would be impossible for Logic to be written, or if written to be underatood, unlese the acte of thought which it invertigates were already in a why familiar ; for Logic ariees by reflection apon the modes in which we already think of things. Now judgement is the form in which our thought of thinge is realized, and it is only.in judgement that we form concepta. The varieties of the concept, an they are distinguished in the doctrine of terms, the different relations of one concept to another which form the besis of the distinction of predicablea, would be anintelligible, anlews it were realized that, in the first instance, concepts come before us ouly as elements in a judgement. They live, as it were, in a, medium of continuous judging and thinking; it is by an effort that we inolate them, and considering subject and predicate neverally by themselves ask in what relation one stande to the other, whether they are positive or negative, abortract or concrete, singular or general, and so forth. Withoat presuming some knowledge of this mediam in which they live it would be of as little ase to discuass terms, a it would be to discuse the styles of Gothic architecture without presuming some knowledge of the nature of apace.

We must now consider more aloeely what judgement in, and what arieties of judgement there are that concern Logic-i.e. varieties arising in the manner of our judging abont any sabject, not in the matter which we judge of. ${ }^{1}$

A general definition of judgement raisee many metaphysical problems, which cannot be fally discussed in such a work as this. But a few thinge may be pointed oat abont it.

[^84]Every judgement makes an amertion, whioh must be aither true or false. This capacity of truth or faleehood is the peouliar dietinction of judgement, expresed grammatically by the indicative mood. Imperatives, optatives, exolamations, and interrogations are not judgemente as they stand, though they imply the power of judging. 'I asy unto this man "Come", and be cometh.' Here the indicative sentence ' I my unto this man "Come"' may be true or false, the indicative eentence ' He cometh' may be trae or false, and both these are judgemente ; but we cannot ask of the imperative ' Come', is it false or true ?-it is not as judgrement. Again the queation 'Art thou he that troableth Irrael?' is not a judgement; it is not iteelf true or false, bat enquires whether the judgement implied is trae or falbe. An optative, an in the line ' Mine be a cot beaide the rill', in not as it stands a judgement; it coold hardly be met with the rejoinder 'That 's true', or 'That 's a lie'; if it were, and we were to ak ' What is true?' or 'What is a lie?' the answer woold be 'That jou really wish to live in a cot beside the rill'; so that, although an assertion is implied about the wishee of the perron speaking, it is not so expresed in the optative. Exclamations may in like manner imply an assertion which they do not expreen, as when we say 'Strangel' or 'Incredible I' They may aleo be mere modes of expresening feeling, like an action and gestare; and in such cases, though eomething doubtleee 'paeseen in the mind', the exclamation can hardly be regarded an an attempt at meverting ${ }^{1}$ anything. It is not, however, necemary to go into any mbtleties; the same grammatical form may indicate different acta of mind, and the same act of mind be indicated by different grammatical forms ; 'Let the king live for ever' may be called imperative or optative : ' Angels and miniters of grace defend us,' imperative, optative, or axclamatory : ' I would that I were dead,' optative or indicative. It is enough for as to realize that a judgement being an assertion, capable of truth and falsehood, the full and proper expresaion of it is in the indicative mood.
4 judgement makes ons aesertion; an asesertion is one, when there is one thing said of one thing-iv xaft idot, ie. when the sabject is

[^85]one, and the predicate one; though the rabject and predicate may be complex to any degree. Thus it is one judgement that 'The lest rose of sammer is over and fled'; but two that 'Jack and Jill are malo and female'; for the latter is equivalent to 'Jack is male and Jill is female'; one thing is asserted of Jeck and another of Jill; there is one grammatical eentence, but two judgementa.

Subject and predicate are terms which have already been explained, as that about which momething is aseerted, and that which is asserted about it. A judgement is often said to be compoeed of three parta, subject, predicate, and copula; the copula being the verb subatantive, 'is,' $\langle\sigma r l y$, est, ist, sometimes, though miechievously, represented in Logic booke by the mathematical sign of equation, $=$. We may consider at this point the nature and fanction of the copula, and the propriety of thus reckoning it as a third member of a judgement.

Common speech doee not always employ the copola. Take the line ' It comes, it comes; oh, reet is sweet'.' Here in the judgement 'Rest is awreet', we have subject (rest), predicato (aveet) and copula all soverally present; whereas in the judgement 'It comee', we have the subject (if, referring to the omnibus), and for copula and predicate together the one word, comes. But that word contains what is said aboat the omnibus (for it is said to be coming, as rest is anid to be sweet) ; and it also contains, in the inflerion, a sign that this is asid about a rabject; and the jadgement may, if we like, be put in a form that exhibite predicate and copule eeparstaly, viz. 'it is coming'. It is true that such a change of verbel expreseion may sometimes change the senee; it is not the ame to say 'he plays the violin', and to say 'be is playing the violin'; we must use a periphrasis, and say, 'he is one who plays the violin', or 'he is a violinist'. But it is clear that the copula is present as much in the proposition ' he plays the violin' as in the proposition 'be is a violinist'; just as it is present alike in thought, whether I eay Beati immaculati in oia or Beati sunt immaculati is via. The inflerion of the predicate verb, or the inflerion of the predicate adjective together with the form and balance of the aantence, replaces or renders superfinous the more precise eabibition of the copaln ; it in, however, always understood, and if we set down the rabject and predicate in symbols whose meaning is helped ont by no inflexion, we naturally exprese it. We symbolize the judgement generally by the form ' A is B '; we may

[^86]write it ' $\boldsymbol{A} B$ ', bat that in an abbreviation; to write it ' $A=B$ ' is an error.

If the copala is thus present, openly or surreptitionsly, in every judgement, what is its function, and can it be regarded as one of three parts composing a judgement? Its fanction is to exprem that the sabject and predicato are brought into the unity of a judgement: that the predicate is amerted of the subjeot, and that the subject is qualified by the predicate. I may think of property and I may think of robbery, bat they may remain apart in my thought-subjects sucoemively contemplated, like breakfast and a morning's work; if I eay that 'property is robbery', I show that they are not anconnected concepta, to my thinking, bat that one qualifies the other.

Is the copala then a third member in the judgement, distinct from mobject and predicate? Strictly speaking, no. For two terms are not sabject and predicato, except in the judgement; and the act of judging, whereby they become subject and predicate, is already taken into account in calling them sabject and predicate; it ought not therefore to be reckoned over again in the copale. In the verbal expression of judgement, which we call a proposition, the copula may fairly be called a thind and distinct member; bat the whole proporition ' $\boldsymbol{\Delta}$ is B ' exprease as single act, in which though we may distingaish subject and predicate from the predicating, we cannot distinguish them from it es we can from one another. In our thought, the copals is the synthesis (or linking) of jadgement: it is the form of the act, as distinguished from subject and predicate, which are the matter. In our langaage, the copula is a word used to exprees the performance of that act.

Is it of any consequence how that act is axpressed-(1) whether by an inflexion or by an independent word; (2) if the latter, whether by the varb subetantive or some different word or aign (ruch as the mathematical sign of equality) $?$
(1) Every judgement is analyuable into anbject and predicate; though in the act of judgement we recognize their unity, yet they are also distinguished; and the predicate may in its turn become a subject of thought. The separation of the sign of predication from the predicate (as in the proposition ' He is a violinist', compared with 'He plays the violin') frees the predicate, as it were, from ite immersion in the prowant judgement. If therefore we wish to set

vi]

out a jodgement in a form that ahows alearly what is the subject, and what the predicete, each eoparataly considered, an independent word is better, as a sign of predication, than an inflerion. For the parpoese of a logical example, we ehould prefer to exprese a judgement in a form that shows this; bat it would be pedantry to do it, where, owing to the idiom of the langrage, it perverta the sease; and we do not need to do it at all when we have no auch need to ertrieste the precicate.
(2) Different languages agree to use the verb aubstantive, or verb of exirtence, as the aign of predication: Homo swm, I amo a man : Cogito, ergo ame, I think, therefore I am. ${ }^{1}$ The ne of the verb of existence as copala arggeets that every jodgement prodioates esidence, that if I my that 'government is a acience', I deolere not only that it is a science, bot that it is or exista; on the other hand, the content of many jodgemente seems to negetive this idee; if I ey that 'a grifin is a fabulous monster', or that 'Queen Anne is deed', I do not aseert that a griffin or that Queen Anne arista. Hence come have boldly and that the verb 'to be' is a mere equivocal term employed cometimes to aignify exirtence, and cometimes to aignify prodication : with mo more identity of meaning in these two ases, than there is between eat $=$ 'is' and ont $=$ 'eata'." From this it would follow, that thare is no opeoial appropriatomeen in uning the verb to be as sign of prodication, nother than any other aign.

Yot if there were no special eppropriatemess in the verb to be, as the sign of predication, it is strange that so many langeages abould have agreed to uee it. The case seems to be thus: that every judgement does imply existence, but not necemarily the existence of the aubject of the sentence. The distingaishing characteristio of a jodgement is, as wo have eeen, that it is true or false. With the falee we need not here concern ourselves; for the man who makes a judgement, unleen he enye what he doee not really think, mys what he thinks to be true, and therefore intends to declare the trath. All judgements therefore, besidea affirming or denging a predicate of a subject, affirm themeelves as trac. Bat a judgement which

[^87]affirms iteelf as true olaims to exprese, so far as it goes, the nature of things, the facte, or the reality of the universe. In doing this it may be said to imply axistence, not of its grammatical arbject, bat of the whole matter of fret meserted in it.
When I amy that a griftin is a fabulous monater, I do not affirm that grifina exist like pigs and cows. But my jadgement implies the existence of a maes of fable, in which grifina have their place a fables too. If there were no fables, I could not aay that grifina were fabulous; but fablee are an element in reality-i.e. in the totality of what is real-no leas than pige and cown. Again, when I say that Queen Anne is dead, I do not affirm the present existence of Queen Anne; I do affirm ber existence in the pest; and the copals therefore otill has the meaning of axistence. It may be mesked why it should be in the preeent tense, when the existence meant is past. The answer is, first, that the predicate correctes this so far as is neceesary; bat eecondly, that the past (like feble) has a kind of existenco. If I am the same to-day as I was yeterdiay, then I do romehow anite in me at once the preeent and the pest; the past has cessed to be preeent, bat it atill somehow belongs to me. What is true of me is true of others, and of reality as a whole. Its history is in time; but it is one through that hiotory; and the past belongs to it now, an well as the present. Queen Anne doen not exiat now ; but that exista now, in whose past the life and death of Queen Anne have their place. They belong to the whole system of thing which we call the univeree; therein they exist, and only in belonging to it can they or anything elve exirt. The moon, if it had no place there, would not be; neither would jurtice, nor the triangle; though these different thiogs play different parte in the whole. ${ }^{1}$
Every jodgement then that I make olaims to deolare some portion of the whole trath that is to be known about the universe: in what form (mofar as ita purview goes) the universe exista. Hence it is no

[^88]accident that the verb of existence is employed to express the act of judgement. I may entertain a concept, aay that of Public Schools; I may think of them as tending to stifle originality in boys, but without deciding in my mind whether they do so or not; ∞ far, the complex concept of public achools as tending to atifle originality in boys floate as it were before my mind, but it is not declared to exprees the facto; if I judge, one way or the other, that publio schools do or do not tend to stifle originality in boys, then I believe that my notion of them expresees them as they are-that it is no mere notion of mine, but the character of the real schoolworld; and to express that a combination of which I think is real and true, I use the verb to be. Public schools are linble (or not liable) to atifle originality in boys, because the liability (or nonliability) of public schools to do 00 is , or exista.
[It will be observed that in the last paragraph the copula was said to imply, not to predicale, existence. For existence by itself is not a significant predicate, as we have already seen, and therefore cannot atrictly speaking be predicated. We may ask, for example, whether grifins exist, as we may ask whether ostriches fly; but whereas in the latter case the subject is asoumed to exist, and the question is whether it possesses a certain predicate, in the former case we do not assume that there are grifins, and enquire whether they possess the predicate of existence. Their existence would consist in being grifins, and not merely in being; and to aak whether grifins exist is to ask whether anything existing hes the character intended by the term grifin. The existent is thus assumed as the subject of our judgement, and the judgement claims to declare ita nature; we do not assume its nature as a subject of which to predicate existence. Hence it has been said that reality is the ultimate subject of every judgement. A judgement as a whole always has a content-the concept of the subject an qualifiod by the predicate : and this content is believed not to be a mere ides entertained by the person judging, but to be true, i. e. to be the nature of the real; and all true judgements are true together, because reality is manifold, and each judgement seizes some portion of its nature. To aak, Can I make such and such a judgement ? is to ask whether reality is correctly apprehended (in part) in the concept of such a subject so qualified. To make the judgement is to apprehend reality in that way, to sffirm of it the content of the judgement; and it is because of this reference to reality involved in every judgement, that we use in expressing a judgement the verb to be.

This view that reality is the mulimate subject of every jodge-
[ment must not, however, be understood to mean that it in the cogical subject, or be taken as destroying the foroe of the logioal distinotion between arbject and predicate. We may diatimgaiah in fact three subjecta, the logical, the grammatical, and the ultimate or metaphysical. That the logical subject is not the same as the grammatical sabject of the eentence is reedily appreheaded. The proposition 'Belladonns dilates the pupil', may be an anower either to the queation 'What dilates the papil?' or 'What do you know of belledonns ?' In either case the grammatical subject is belladonna; bat the logical sabject is in the former case 'dilating the papil'; that is what we are thinking about, and sbout that the judgement informs us that belledonns will effect it; in the latter oane, the logical sabjeat is belladonna, and aboat that the judgement informs us that it produces this effect. This distinction of logical mubject and predicate is always present in thought when we judge, though sometimes the logical subject may be very vague, as when we say 'it rains' or 'it is hot'. But subject and predicate together may qualify something further. This is casily seen when the subject is an abstract tarm. 'Jealousy is a violent emotion': jealousy may be the logical subject here, but it only axists in those who are jealous. It is not then the ultimate subject, for it can in turn be predicated of aomething else. Some have thought (and this seems to have been Aristotle's opinion) that there wae no single metaphysical subject, but as many as there are concrete individuals. And in the Categories ${ }^{1}$ be defines the concrete individual as that which can neithor be predicated of nor inhere in anything further. ${ }^{2}$

But the doctrine which makes Reality the ultumate sabject of every judgement holds that in a sense the metaphysical subject is alwaya one and the aame: ie. that thare can be only one real system, to which all judgemente refer, and which they all contribate to determine and qualify. That a partioular thing ahould exirt or be real means that it has its place in this system; and what is called the acistential judgement-the judgement whoee predicate

$$
{ }^{1} \text { ii } 1^{\circ} 8-9, ~ 5.2=11-14
$$

It in true that a cingular term may appear as predicats of a judgement, en, for ezample, if $\mathbf{w o}$ zay 'The greatere opic poot is Homer' or 'The Arot man wha Adam '. But in such a case Aristotle regarde the predicete as only accidentally predicate, or aard $\sigma u \mu \beta_{c} \beta_{\text {gopdr }}$ (of. Met. Δ, wi) : by whioh he means that the concrete indiridual doee not really qualify or belong to what figuree an ita subject, but that because theee two come together, or becanes it befalls Homer to be the greateat opic poet, and Adam to have been the first man, therefore you can say that one is the other, an you can aleo say that a grammarian in a mucioian when the two characters coincide in one individua, though 'musician' is not what 'baing a grammarian ' is, any more than Homer is what boing the greatent opic poet is, or Adam what boing the firat man is. In fact, when we ennociate such judgemente atheac, we cannot help at the ame time thinting of the predicate as qualified by what figures as aubject.
[is the verb to be, in the arnes of to exist-as in 'Sunt qui non habeant, eat qui non carst habere', or 'Before Abraham was, I am'-dechares a part of the one system of reality. The content of an existantial judgement cannot indeed be predicated of reality 3 a quality or attribute. When I asy that jealousy is a violent emotion, I think of it as attribute of jealoos man; when I eay 'Eat qui non corrat habere', I do not think of Horeoesea an attribate of reality. Nevertheless, his existence is bound up with the exintence of the whole universe; the universe of reality is foand (when we think the matter out) to be preaupposed by the exiatenatial judgement w mach as by any other; and though in it existence appears to be first affirmed in the predicate, and therefore not aseumed in the subject, yet this cannot represent the true courve of our thought. We could make no judgement at all, if we did not presume a reality about which it was made Even the negative existential-'Joeeph is not, and Simeon is not'-impliee this; for not to be meane to have no plece in that which is.

We are indeed accuatomed to think of things and parsons as if eech were complete and independently real ; and in that case, the metaphysical subject of any judgement would be some concrete individual or other. The doctrine we are considering carries the queation further, and holds that what is predicated of the concrete individual is not true of him in complete isolation from all elee, and therefore that he is not, metaphyrically apeaking, or in the leat resort, the subject of whioh it is true. There is no desire to deny to individuals a relative independenoe, or to pretend that the relation of attributes or univeraals to the concrete individual is the same relation as that of an individual to the system of reality which includes him. The judgement 'Jealousy is a violent enotion' can be wo reatated as to make the conarete aubject man the logical sabject of the judgement; I may express it, for example, by eaying that jealous men are violent in their jealousy. I cannot so reatate the existential jodgement, or any other in which the logical subject is already a concrete term, as to make Reulity the logical subject instead. But it is the metaphysioal mabject in the sense that it is presupposed and referred to even in those judgementa. We cannot maintain the view that the metaphysical subject of every judgement is always in the last resort a particular individual. 'Civilization is progressive.' Doubtlees civilization is only seen in the lives of men; but it is aeen in the lives not of this and that man singly bat of the commanity to which they belong. We have to think of men as forming a system and an unity, if we are to give meaning to a judgement like this. What in contended is, that all judgements involve us in the thought of one all-embracing syatom of reality, whose nature and constitution none can exprese
[completely, though each true judgement declaren a part of it. Logic, as has been said before, cannot be rigidly separated from metaphysics; indeed, it derives its chief importance from its connexion therewith. If it had merely to work out the echeme of ayllogistic inference, and such-like matters, the problem which the present note has raised would be superfluous; bat it investigater how we think; and whether we must think of the universe as a sum of independent reals or as a system is a fundamental problem. ${ }^{1}$]

In the act of jadgement, the sabject ${ }^{2}$ with which we atart is modified or enlarged by the predicate, and in that form declared to be real. We end with the aubject with which we began, differently conoeived.' A synthesis, and the affirmation of the reenlt for real, are common features of every judgement, and the copula expresees them always, and so far has always the asme meaning. Whatever sign be mad, whether an inflexion, or the verb substantive, or the mathematical symbol for equality, or anything elee, this aynthesis, and the affirmation of the reault for real, must be meant. The verb to be naturally lends itelf to this meaning. The mathematical symbol of equality has a different meaning; it is not a sign of predication, but an incomplete predicate; it implies, of one thing, quantitative identity with some other. If I say $A=B$, the predicate is not B but 'equal to B ': the special force of the sign ' $=$ ' is 'equal to'; I must still perform in thought the act of predication, whether I may \mathcal{A} is equal to B, or \boldsymbol{A} is the first letter of the alphabet; and if $=$ were adopted as the sign of predication, the equation $A=B$ (which means d is equal to B) must be written $A==B$.
A judgement then contains subject and predicate; subject

[^89]
vi]

and predicate in their combination are dechared true of the real. To the words which signify the subject and the predicate separately is added a word which aignifies that they are combined as subject and predicate one of the other in a judgement. This word is called the copala; it may be omitted in speech or writing, or be repleced by an inflaxion; but the act of thought which it indicates cannot be omitted, if there is to be a judgement. This act, however, is not a part of the judgement in the same way that sabject and predicate are. It is the act or form of judging, and they are the matter judged. Hence it is, at least generically, the same, while subject and predicate change; and for this reason the scheme of a jodgement ' A is B ' represents subject and predicate by aymbols, bat retains the 'copols' itself. We write A and B for subject and predicate ${ }^{1}$, becanse they represent indifferently any subject and predicate, being themselves none; we write 'is', and not another symbol in ita place, because whatever be the sabject and predicate, the act of judgement is, generically, the mame.

The act of judgement is, howevar, only generically the asme in every jodgement; it in the same in eo far an it involvea a synthesis of anbject and predicate, and affirms the reanlt of that syntheais for real. It may differ in the nature of the synthesis of arbject and predicate. If therefore we apeak of judgement as a common form realized, for every difference in the subject and predicate, in different matter, we must admit that there are also differences in the common form. This wes pointed out in the first chaptar, as precluding what is called a purely formal treatment of Logic. We cannot study the form of thought with no reference to its content, because on the natore of the content depends in part the form. Having got some notion of the form of judgement, so far as it is always one and the same, we must now proceed to consider some of the varistions of which it is susceptible, so far as these belong to its form, and not merely to the content. Differences that belong meraly to the content (as between the judgements 'men are animals' and 'roses are plants') we can of course ignore.

[^90]
CHAPTER VIII

OF THE VARIOUS FORMS OF THE JUDGEMENT

Judongents have for long been commonly distinguished according to Quantity, Quality, Relation, and Modality.

In reapect of quantity, judgements are aid to be either singular, or wsiverall, or particular. But the differences at the bottom of this distinction are not in reality purely quantitative, though they have sometimes been represented as being so.

The subject of a judgement may be either a singular term like 'Socrates' or 'Ceesar' or 'the present Cabinet', or a common torm like 'man' or 'triangle'. In the former case, the judgement is aleo called angrular. In the latter, the judgement may affim or deny the predicate of the subject either universally, i.e. in every case, e.g. 'All equilateral triangles are equiangular', 'Nemo omnibus horis sapit': in which case it is called universal ; or partially, i.e. in particular casee, or of a part of the subject, only, e. g. 'Some larkepors are parennial', 'Some animals cannot swim': in which case it is called particular.

By a part of the subject is meant here a logical part, i.e. some instances or species included in the extension of the subject ${ }^{1}$, some part of all that it denotes; thus when I say that some laricspurs are perennial, I mean some apecies of that genus: when I say that some animals cannot ewim, I mean mome species of animal, or some individuals of some species. Now the singular, particular, and universal judgemente may be represented as referring reepectively to an individual, to a part of a class, and to the whole of a class, i.e. to one, aome and all of a certain number. Or since an individual is incapable of logical division, and a singular term, as denoting one individoal, cannot refer to lees than all that it denotes, eingaler judgements may be ranked with universal judgements, and contrasted with particular: both the former referring to the whole of

[^91]What their sabjecta denote, whilo the latter refers to a part only. We shall mee leter, in dealing with ayllogiem, that aingular judge--menter may for cartain porposes be trested es if they were aniversal, became they equally render pomible oartain inferencea. But at prowent it is important rather to realize that acch attempts to treat the differences between angular particular and univeral, or singular + moiveral and particalar, as meraly quantitative do not do justice to the differences in the thought contained in them.

A logicel whole or cless (if we are to give it that name) is-as wo havo alreedy seen-ill conoeived as a collection of individuals. It is rather an unity, or identity ranning through things which are different. It may form the subject of our thought and of our jodgement; but it difilers from an individual not as all from one of - collection, which would be a quantitative difference, but rather notionally, as what is univeral from what is individual. The diference between singular and univenal judgements is therefore not ementially quantitative. Again, the individuals contained within a clase are not, as individuals, an unity bat a collection; between some and all of this collection the difference is quantitative; but that is not the propar diference between a particular and an univernal judgement, for the universal judgement regards primarily the cleas as kind, and not as a totality of individuala, The difference therafore between particular and universal jodgements is not ementially quantitative. On the other hand, the difference between individual and particular judgements is often quantitative. ${ }^{1}$ A criticism of the forms in which lengage expreases jodgements of these different types will throw further light on what has juet been mid.

It is common to indicate an univeral judgement by the words

[^92]all or mo (nome) prefixed to the subject, according as the judgement is affirmative or negative; a particular judgement by the word some, similarly prefired; these are called signa or marks of quantity. The idiom of langange will indeed often expreas a universal judgement in other ways; we can may Mam is mortal, as well as All men are mortal: 1 barometer will not work in a nocwwim, as well as No baromotor will work in a vacumm. But in the abeence of a mark of quantity, it is not always clear whether a judgement is meant to be universal or particular; if I say Womom are jealous, 4 flower is a beantiful object, I need not mean all flowers, or all women. Precision requires the quantity of a judgement to be expresoly indicated : particularly where (as in logical examples) the judgement is taken out of contert and we leok the help which context often affords us in divining the writer's intention; and at least where the subject is in the plural ${ }^{1}$, the words all, none, some are appropristed to that service. A judgement without any mark of quantity is technically known as an indefnite judgerment; because it is not clear whether the whole, or only a part, of the extension of the subject is referred to, and so the scope of the judgement is undetermined; the examples jnst given, Womew are jealows, 4 flower is a beawtiful objech, are therefore indefinite judgementa.

At the mame time, the words all and mone, as signs of the universality of a judgement, have disadvantages of their own. For a judgement is really universal, when the subject is universel or general, and the predicate attaches to the subjeot (or is excluded from it) necessarily; bat if it is found to attach to the subject (or to be excluded from it) in every existing instance without any necessity that we know of, we use the same expressions, all and none. Thus we may say that No American poet stands in the firat rank, or that All the Fremel ministries are shorl-lived; bat neither of these is really an univeral judgement. Fach is a judgement made about a number of individuals : it states an historical fact, and not a acientifio trath. It would be convenient to call such judgements colleotive ${ }^{2}$ or enamarative judgements ; for they really collect in one the statements which may be made about every

[^93]instance of a certain clase, and make their asecrtion on the etrength not of any conceptual necessity, but of an enumeration.

We must of conrse distingaish the quertion whether a judgement is meant as universal, from the question whether we have a right to enunciate it universally. If instead of saying sill the Prouck ministries are short-lived (where the article the shows that I am referring to all of a certain number of things), I were to asy $\mathbf{4} \boldsymbol{\|}$ Fronel miniotries are atort-lived, it might be contended that the judgement no longer referred to individuale or instances, but affirmed a neceseary oharsoter of French ministries as such. In truth the statement is not clear, and a man would have to ask me, whether I meant it as an historical summary, or an universal truth; but the ambiguity of the statement is the very point to be noticed; for the two interpretations indicate the difference between a merely enumerative, and a true universal, judgement. If wo contract such judgements as $1 / l \mathrm{my}$ bones are out of joint and $4 l l$ triangles in a emicirclo are right-angled, the difference is very plain.

We have seen that there is a marked distinction between a singalar judgement, whose subject is an iadividual, and an universal or particular judgement, whoee subject is a general or abstract term, a concept or kind of thing. The enumerative judgement (and this is true in some degree of the particular judgament also) approzimates to the type of the aingular rather than of the universal. ${ }^{1}$ For though the subjeot be a general term, and I predicate about all the members incladed under that term, yet I do so becanse I have examined them as individuala, and found the predicate in them all, not becanse of any neceasary connexion between the predicate, and the common character of theee individuala which the general term signifies. French miniatry is a general term; but (for all that I see) it is not because being a French ministry involves being short-lived, that I assort all the French ministries to be short-lived; it is becsuse I have noted each case; just as it would be upon the strength of noting the individual cese that I should assert the first ministry of M. Julee Ferry to have been short-lived. At the ame time, the collective judgement, though thus approximating to the type of the singular, gives the hint of a troe univereal judgement. It anggents that the ground for the

[^94]predicate may lie in the common character eignified by the general term onder which all them instancen are collected. If I m Ludher was hated, there is nothing to indicate what about him was hateful: with which of all the coincident attributes in Lather his hatefulenes is univeranlly connected. If I any All reformers have beem hatal, though that is an much an historical statement as the firut, and thorefore enumenative only, it auggenta that the reason why all those men have been hated (Lather and Calvin, Cromwall and Gledetome -the atatement impliee a poesible enomeration) liee in the frot that they were roformers. Thus from an enumenative judgement we may pas to an univerial; from a stady of individuals to the amartion of an univernal connexion of characters. When wo enumciabe onumerative judgementa, we are on that roed: cometimen farther, and sometimes lene far.

The difference between a true anivereal judgement and one merely enumerstive is exceedingly important. The one belonge to acience, the other to chronicle or hintory. An univerial judgement holds of any and every instance, alike part present and futare, examined or uneramined. An enumerntive judgement balds only of thoee instancee which we have ermmined, and aummed up in the eubject. All reformers are hated: if that is merely enumerative, it affords me no ground to anticipate hatred if I undertake reform ; it afforde me no explanation of the batred with which reformers have been met. But if it is a true universal, it explains the pest, and predicts the future. Nevertheless an univernal judgement has nothing, as such, to do with numbers of instances; if the connexion affirmed in it be neceesary, the jodgement is still umiveral, whether there be a million instances of ite trath, or only one ${ }^{1}$; so that the form 'All A is B ' hardly does justice to it. An enumerative judgement contemplaten a number of instances, and refers to all of them; and the form ' All A is B ' or 'All the A 's are B ' expreses it adequataly.

The particular judgement may be interpreted as reforring either to individuals not enumerated or to an univeral not fully determined; and it will approximate more to the enumerative, or more to the

[^95]univernal, acoordingly. If I my Some nomon have ruled hingiome, I mean women whom I could enumerate-Semirnmin, Cleopetra, Zenobia, Elizabeth, Christins, \&oc. : not women of such and sach a type, but this and that woman. If I any Bome pigmonte fado, I do not mean pigments that I could enamernte, bat any pigmente of a certain kind; and supposing that I could opecify or determine the character of pigment, I could my that all pigments of that charactar fade. There is nothing in the outward form of a particular judgement to ahow whether the epeaker is thinhing rather of individuals whom he does not mame, or of conditions which be does not apecify; though the content and content of the judgement will often gruide on on this point.

It will be readily seen that there is the mane cort of difference between the particalar jodgement interpreted of individuals not enumerated, and the partioular judgement interpreted of conditions not fully epecified, as exirta between the enumerative and the true univarsal judgement. If the women vaguely referred to as some were enumerated, I could my all the women on my list have ruled lingdome; if the pigments vaguely referred to an some were characterived, I could any $14 l$ swel pigmente fade. The former is the enumerntive, the latter the universal All. And this difference, whether between the two interpretations of the particular judgement, or between the enumerative and the univernal, may be expremed by saying that in the one caee the jodgement is interpreted in extension, in the other anee in intengion. A judgement is interpreted in artension, when we are thinking primarily of the varione instances (individual or opecifio ${ }^{1}$) incladed in the sabject to which the predicate refers; it

[^96]is interpreted in intension, when we are thinking primarily of the subjeot as concept, of the character implied in the sabject term, with which the predicate is connected. 'Some A is B ' is interpreted in extension, if I think of this that and the other $4:$ in intension, if I think of A ' B of a certain character. 'All A is B ' is interpreted in extension, if I think of every one of the $A^{\prime} \mathrm{s}:$ in intenaion, if I think of the charactor of 4 as sach.

What has been said on the quantity of judgementa may be summed up an follows. Judgement predicates oither of individanale or univermale. In the former cese, when it predicatee of one individual, the judgement is called singular: when of every one of a collection or enumeration, it may be called collective or enumerative. In the latter case, when the predicate is affirmed (or denied) of the subjeot without reapect of instances, and therefore in any and every inotance, the jodgement is called aniversel; when otherwise, it is called particular. But an univeraal judgement is indicated by tho bame words (111 and None) as an enumerative, and is often confased with it. A perticalar judgement is really incomplete; it may be an incomplete enumerstive, or an incomplete universal judgement, according as we think rather of the instances we imperfectly denote, or the conditions we imperfectly specify, in the subject. A judgement may be viewed primarily in intension, as aseerting a connerion of content, or in extension, as asserting a certain character in individuals. The former aopect predominates in the univeral, the latter in the enumerative, and even more in the singalar judgement: in the particular, sometimes the former and sometimes the latter, according sa we think more of the conditions imperfectly specified, or the instances imperfectly denoted. Some of these distinctions, though we are conscious of them in our thought, are not expressed in language; and for certain purposes of inference, it is enough to consider judgements simply as either universal or particular : univerala, when the whole of a kind ${ }^{1}$, or
might think of the ahilling in my pocket, in yours, ac.); though when the groande of distinction are no longer proper to the kind (as distinctions of first and econd, hore and there do not bolong to ahillinge qwo abillinga), they are ignored in clomiflcation.
' i.e. a Kind or any 'oniversal'; bot I have avoided the word 'univeral' here, and preferred kind (though otherwiee a leen epposite term) in order to avoid confugion between the universal concept referred to in the judgement, and the univeral judgement referring to the whole of this univenal.
when an individual is referred to (for in both casees the subject is completely indicated), particular when a kind is referred to only in part (and the aubject therefore incompletely indicated).

In respect of quality, judgements are distinguished as affirmatite or negatice. An affrmative judgement aseigns a predicate to a subject; a negative judgement puts it from it. But the distinction between affirming and denying is too familiar to need and too simple to admit of expressing in any other way, in order to indicate what is meant.
There are certain difficolties connected with negative judgementa, which have already met us in dealing with negative terma. Judgement, as we have reen, refers to the existent; the content of our thought is declared to exprese the oharacter of the real, ite manner of being ($\infty 0$ the judgement declares) is an we conceive. But the real in positive ; it only exists by being nomething, not by being nothing. A negative jadgement declaree what it is not, and how can this express it as it is ? Dead-nettloe don'/ eling. How does that tell me anything real in dead-nettlee? You may say that I formed an ides of a atinging dead-nettle, and in the negative judgement declare it faloe, an idee of nothing real. ${ }^{1}$ But the judgement is not aboat my ides; I may reflect on that, and may that the iden I had formed of a dead-nettle was a wrong one; at present I am judging about the dend-nettle, not about any past idea of it And when I say that it does not ating, what am I mying about it ? in it, what is this property of not stinging? surely, it may be urged, just nothing : so that the negative judgement expresses nothing real.
These misgivings are sometimes, though unfairly, met by ridicule. Still, in face of them, we must mesert, that everything finite is what it is, by not being something different: and at the same time, that it is not something different, in virtue of what it positively is. Hence we must accept the negative judgement as expresesing the real limitation of things; but we must allow that it reate apon and presupposes the affrmative. If dead-nettles do not ating, there muat be some characteristic which they do posess, incompatible with stinging. There is always a positive character as the ground of a negation. Snow is not bot, becanse it is cold;

[^97]this is not indeed an explanation of the temperature of snow ; bat it means that a material body (which must have some temperature) can only not have one degree of temperature through having another. If anow had no other degree of temperature, it would have 212° Fahr.; if it had none but 32° Fahr., it must bave that.

To say that negative judgements presuppose affirmative does not get rid of the difficulties to which we have referred. If now is not hot because it is cold, then the cold is not hot. No one will deny that; some people will think it a mere tantological proposition. Bat it is not tantological, though it is superfloons It is tantological to ssy that the cold is cold; to say that it is not hot because it is cold informs us that hot and cold are mutually exclueive attributes. Cold is no more identical with not-hot, than odd with not-even; though the numbers which are odd are the same numbers as are not even. The reciprocal axclusiveness of certain attributes and modes of being is the real truth underlying negation. But for that, everything would be everything else; that is as positive, as these several modes of being themselves.

Negation, as Plato anw ${ }^{1}$, is as necessary as affirmation, if there are to be any differences or discriminations within reality; that A is not B means that it is different from B, and not that it is non-existent.
[The further parsait of this subject would take us too far into metaphysica. It may be pointed out in passing that the notion of an infinite (or, as philosophers sometimes say, an absolute) being is of a being who is everything that there is to be; of whom it cannot be asid that he has one attribute by lacking another; whereas finiteness comes by limitation and exclusion: whence Spinoza's Delerminatio est negatio. Whether this is a tenable conception is another matter. In particular it raises the problem of the meaning, and reality, of evil. For if an infinite being is all thinga, and evil is something real, be ought inter alia to be evil. It has been contended therefore that evil is in reality just nothing, a view againet which there are obvious objections on the surface: or at least that it is a mere appearance incident to limitation, but in itself no more than limitation.]

It has sometimes been proposed to treat the negative judgement,

[^98]A is not B, as an affirmative jadgement, A is not- B^{1}, by combining the negative with the predicate. But inasmuch as the reciprocal exclusiveness of certain attributes and modes of being is a positive fact, it is no use trying to ignore it by a verbal manipnation. Nothing will make A is not- B an afirmative judgement, unless not- B is a positive concept; and if not- B is a positive concept (asy C), it is only because B and C are reciprocally exclusive attributes; but if they are reciprocally exclasive attributea, then C is not B and B is not C; nor can these negative judgements be done away by repeating the same manipulation, and writing C is not- B, B is not- C. For if C means the very same an not- B, then not- C means the very same as not-not- B, and the proposition B is not- C means no more than B is not-not-B. That, however, is absurd; for C is a positive concept, and the conscionsness of the distinction between it and B. and of their reciprocal exclusiveness cannot be reduced to a consciousnese that B cannot be denied to be itself. The argament thus axpressed symbolically can be easily applied to a concrete case by any one who chooses to subetitute for B and C odd and even or dog and borse; though there is lese temptation to think not-a-dog a positive concept, than not-odd, as it leaves us to select in the dark among a large number of atill remaining alternatives,

Judgements are distinguished scoording to relation into eategorieal, hypothetical, and digjunctive. We have been considering hitherto categorical judgements. A oategorioal judgement merely affirms or denies a predicate of a subject: dogs bark, doad men tell no tales. An hypothetical judgement connectes a consequent with a condition which it does not, however, imply to be necessarily fulfilled: if money is scarce, the rato of discount rises. The condition is called sometimes the antecedent (in grammar, the protagis), as what is connected with it is called the consequent (in grammar, the apodosis). A diadunotuve judgement affirms alternatives: roche are either igneous, aqueous, or metamorphic." The hypothetical judgement in sometimes called conjunctive, as conjoining the truth of the consequent with that of the antecedent: while the disjunctive disjoins the truth of one alternative

[^99]from that of the others. Both are cometimes called complex judgementa, in contrast with the categorical, which is called simple.

In an hypothetical judgement, the antecedent and consequent may have the same, or different, subjects: the scheme of the judgement msy be either ' If A is B, it is C ' (If corm is searce, it is dear), or 'If A is B, C is D ' (If moncy is searce, the rate of discownt rises). Again, either antecedent or consequent may be either negative or effirmative: but theee differencea make no difference to the oharacter of the judgement as hypothetical: it still affirms the dependence of a consequent on a condition: hence the distinction of effirmstive and negative, though applying to the antecedent and consequent severally, does not apply to the hypothetical judgement as as whole.

Where the sabject of the antecedent and the consequent is the same, the hypothetical judgement may commonly be reduced to categorical form: ' If \boldsymbol{A} is B, it is C ' may be written ' A that is B is C^{\prime}; If corn is ecaree, it is dear, becomes Scarce corn is dear. Even when antecedent and consequent have different subjecta, a little manipulation will sometimes produce an equivalent judgement categorical in form: If wishes were horees, beggare wowld ride might be written Beggars whose wishes were horses wowld ride. For the hypothetical jodgement aeserts a predicate of the subject of the consequent, under a condition expresed in the antecedent; and if that condition can be expressed as an adjective of the subject of the consequent, then of that subject, so qualified, we may assert the predicate in the consequent categorically. But we do not thus reduce hypothetical to categorical judgements: the hypothetical meaning remsins under the categorical drees. Scarce com is dear is not really a judgement about scarce corn, bat about corn: we realize that corn is something which may be scarce, and is dear when scarce; and so the dependence in corn of a consequent on a condition is the barden of our judgement about it.

The difference between the categorical and the hypothetical jodgemento-between affirming or denying a predicate of a subject, and asserting the dependence of a consequent on a conditionbecomes clear in the case of unfulfilled conditions, in past or future time. If I had served my God as I have served my king, Ho mould not hare giren me over in my grey kairs: no doubt this implie the antegorical jadgement God does not forsake those woho serve Him
failkfully; but it cannot be reduced to this, for it implies also Therofore He wowld not have forsaken me, if I had served Hism faillfully; and we cannot eliminate the hypothetical judgement.
 Halye, he will rwis a greal power; bere it is not atated whether Croesus will croses the river or not; so that as the fulfilment of the condition upon which the essertion in the consequent depends is left in doubt, there is nothing bat the dependence categorically asserted.

It may be urged that at least the dependence is categorically asserted; and therefore the hypothetical judgement is categorical after all. This is a very good anower to any one who attempta to abolish the dirtinction between the two judgements by deolaring that all judgements are in reality bypothetical; for it shows that the bypothetical does presume the categorical. But it does not invalidate the distinction of the hypothetical from the categorical; for that distinction rests upon the difference between neserting a dependence of consequent apon condition, and asserting an attribate of a subject; if it is granted that the hypothetical aserte the former, though it do so categorically, yet it differs from the categorical judgement.

It has been said 'that the very reason just given for maintaining the essential difference of these two types of judgement excludes the consideration of that difference from Logic. For both assert; they differ in what they assert; the difference is therefore in the matter and not the form of judgement. We have the same form, A is B, whetber for \boldsymbol{A} we write Groerns, and for B a king of Lydia, or for \boldsymbol{A} the destruction of a great power, and for B aust follow on Croense crossing the Halys. But it will be readily admitted that the distinction between categorical and bypothetical assertion is formal in the sense that it meets us, whatever be the subject we may think about; and to exclude it from Logic on the ground that, as compared with the common form of assertion in both, it is material, only shows the impossibility of making Logic a purely formal science. It is claiming to consider the genus, and refusing to consider the species: a procedure which would be tolerated in no other science, and cannot be tolerated in Logic.

[^100]There is a metaphyrical problem suggented by the hypothetical judgement, which must be briefly noticed. If Hannibal had marched on Rome after Cannae, he would have taken it. This jodgement makes an assertion; in doing 00 it declares something to hold good of the real, for it declares its own content to be true. But what does it declare true of the real, and what historical fact (as we may put it in such a case) does it affirm? Not that Hannibal marched on Rome after Cannee, for he did not; nor that he took Rome, for he did not; nor that the one event was due to the other, for neither happened. If he had marched on Rome then, he woukd have taken it ; but that is not a fact in his history, or in the history of Rome; it is an unfulfilled contingency; and how can that be real? Every hypothetical judgement presente this problem; for it aseorts that under certain conditions eomething would exist or have existed, bat not that the conditions are realized, nor therefore that it does or will exist or has existed. Nor does its trath require this; in order that an hypothetical jodgement should be true, neither condition nor consequent need be realized; and yet if an bypothetical judgement is true, it is true of reality, and reality, we may urge, is actual ; what then does the hypothetical judgement affirm to be actual in the real? A charseter, saye Mr. F. H. Bradley ${ }^{2}$, which is the ground of the connexion hypothetically asserted in the judgement. Rome was in such a state that it could not have resisted Hannibal after Cannes. This is true; bat it still leaves us with the queation, how can there be the ground, in the real universe, of something which nevertheless does not happen? We speak freely of unrealized possibilities, as if they existed as well as realized actualities. We are not alwnye conscions of the metaphysical difficulties involved: how are we to think of what we so freely speak of ? When we reflect, in Logic, upon the hypothetical form of judgement, we become conscious of the problem. ${ }^{4}$

The diajunctive judgement may be expressed schematically in the forms ' A is either B or C ' (Every man at forty is either a fool or

[^101]a phyvician), 'Either A is B or C is D ' (He oilher fears his fate too mwel, O_{r} his desert is small ${ }^{2}$, Wbo dares not put it to the tonch, To gain or lose it all), 'Either A or B is C ' (Either the Pope or the King of Italy alowld retire from Rome). As the hypothetical jadgement alwaye affirm an hypotheris, so this always affirme a diajunction, whether the alternatives themselves be given affirmatively or negatively. So far as the nature of the diajunction goes, there is no difference between ' A is either B or C ', and ' A is either not B or not C ': between ' Either A is B, or C is D ', and 'Either A is not B, or C is not D ': between ' Eitber A or B is C ', and ' Either d or B is not C '. Bat it should be noted that 'Neither . . . nor' is no dirjunction at all, but a conjunction of negations. On St. Paul's voyage to Rome 'neither san nor etare in many daya appeared'; there is no ohoice between alternatives here, but two statementothe sun did not appear, and the stars also did not.

There may be any number of alternativee in the digjunction; but that clearly does not alter the character of the judgement.

It is not alweye clear in a dipjunctive judgement whether the alternatives offered are meant to be mutually exalusive. If α is either B or C, then it cannot be neither; but may it be both? The question concerns the right interpretation of a form of speech, rather than the nature of disjunctive judgement. Sometimes from the nature of the caee we may know that the alternatives exclude each other : ss if wo are told that Plato was born either in 429 or 427 B.c. Where this is not so, it is perhape safer to essume that they are intended as mutually exclusivo, unlese the contrary is stated; a legal document is careful so to write it, where ' A or B or both' is meant, or to write ' A andjor b ' with that aignification.

It has been saggested that the disjunctive judgement is in reality a combination of hypotheticale; that ' A is either B or C ' means ' If A is not B, it is C; if A is not C, it is B; if A is B, it is not C; if \boldsymbol{A} is C, it is not B '. Doubtless these four propositions are involved (supposing B and C to exclude each other); but we do not therefore get rid of the peculiar natare of the disjunctive

[^102]judgement. For they are not four independent hypothetical judgements; and their force is not appreciated, unlees it is seen that together they make up a disjunction, that they offer us a choice between alternative hypotheses. Thus disjunctive judgement at once includes and goes beyond hypothetical, in the same sort of way as hypothetical judgement includes and goes beyond categorical. An hypothetical judgement makes an assertion, like a categorical ; but what it asserts is a relation of a consequent to a condition. A disjunctive judgement involves hypotheticals, but it presents them as alternatives and asserts the truth of one or other of them.

The disjunctive judgement also raises a metaphysical problem, when we ask what real fact corresponds to it. 'Plato was born either in 429 or 427 b.c.' cannot state the sctual fact about Plato: he was born definitely in one year, not merely in one or other; it is because soe do not know in which, that we state an alternative, and there was no alternative in the event. Here, therefore, the disjonctive judgement seems rather to express the atate of our knowledge, than the state of the faots. On the other hand ' Number is either odd or even' seems to expreas a disjunction in the facta ${ }^{1}$; and the species of the same genus are a kind of rea! dirjanction. If a colour is to exist, it must be blue, or red, or some other colour, and if it is one, it can be none of the others. We come back here upon the ame trath which met us in considering negative jadgements, that a thing is definitely this or that by not being something else; we have to recognize aloo that there is often a limited number of possibilities, in the way, for example, of colour, or of animal apecies, but why or how there should be a limit to what is possible in the universe is a bard question. ${ }^{3}$

We come next to the distinctions of modality in the judgement. In reapect of modality, judgements are diatingaished as assertoric, problematic, and apoderictic; the first is sometimes opposed as pure to the other two as modal; but we shall find that if judgements are divided into pure and modal, the assertoric can be

[^103]conveniently retained as a form of modal judgernent. Judgements of the form ' X is Y ', ' X is not Y ' are assertorio-' the train is late', 'the train is not late'; of the form ' X may be Y ', ' X may not be Y ', problematio-' the train may be late', ' the train may not be late'; of the form ' X must be Y ', ' X cannot be Y ', apo-deiotio-' the train must be late', 'the sun cannot be late'. The distinctions are also expressed by adverbs: X actaally, possibly, necessarily is (or is not) \boldsymbol{Y}.

In the sense of the word to which we have so often called attention, these distinctions are clearly logical : i. e. they belong to no special science, bat recur in our thought abont all kinds of subject. Whatever X and Y may be ${ }^{1}$, we may find ourselvea asserting that X is, that it may be, or thast it must be Y. ${ }^{\text {a }}$

It is clear that the modslity of the jadgement whose subject and predicate are X and Y does not in any way affect or modify the predicate Y. When I any that the train is actually, or posaibly, or necessarily late, it is not the predicate late which is actual, possible, or necessary,-but the train being late; for there are not those three kinds of lateness. 'The blossoms of that chrysanthemum are possibly white': 'the blossoms of that chrysanthemum are actually white'; it is clear that 'actually' and 'possibly' do not qualify the predicate white, as the adverbe 'purely' or' brilliantly' might do; there is no such colour an possible white, as there is a brilliant white or a pure white. 'Water runs down hill': 'water must run down hill'; these are not different waye of running, like running fast and running slowly. Grammarians tell us that adverbs qualify verbs and adjectives; bat these adverbs, actually, posesibly, and necessarily, seem to form an exception to the rule. They qualify neither a verb nor an adjective, though these be predicates of the judgement, bat the judgement iteelf.

For the real meaning of these expressions- ' X is actaally Y ', ' X is posaibly, or may be Y ', ' X is necessarily, or must be \bar{Y} '-

[^104]is rather this: 'that X is Y is actual'; 'that X is Y is poseible', 'that X is Y is necessary'. They involve reflection upon the judgement that X is Y, and express differences not in the nature of X or of the predicate belonging to it, but in the nature of our grounds for affirming \boldsymbol{X} to be \boldsymbol{Y}. We may speak of differencee of modality in judgements, if we like, as differences in the mode in which, for us, the judgement is grounded. Yet such an expression is open to misinterpretation. For when I say that X may be Y, I do not judge at all that X is Y, but that there are insufficient grounds for so jadging. We must, however, scratinize these forms of expression more closely; for the illustrations so far chosen do not bring out their different meanings, having been chosen merely with the purpose of showing that modality qualifies neither the subject nor predicate of what appears to be the judgement in which it occurs.

Nothing is more fundemental in our thought than the constant search for necessity in our assertions : the desire to see that the matter of fact asserted could not be otherwise than we assert. In this search we are not content with what is commonly called experience. I may find in my experience that a man whom I had trasted does me a wrong, but I want to know further why he did it. So it is with any otber event of which I have no explanstion. My explanation in such a case would lie in connecting the event with another; we are perpetually tracing connexions between one fact and another, and cannot conceive anything to be completaly isolated from everything else. 'Nothing in this world is single; All things by a law divine In one another's being mingle'; this is the faith that underlies all effort after knowledge. All judgement expresees the connexion of things, or of one attribnte with another in things ; about a thing isolated altogether from everything else, united with no other by any common charactariatic, judgement would be impossible. ${ }^{1}$ But we realize only gradually the interconnexions of fact. In many judgements intended by us to express the fects as we apprehend them, we find upon reflection that the connexion of the subject and the prediaste is not intelligible to us; we then reek some ground for the fact asserted; and if we cannot

[^105]find it by seeing more clearly into the fact, we look for it in another, i. e. in a wider aystem to which the firat belonga. Often, however, when we make a judgement we do so without full reflection upon what is aseerted and upon the grounde for it; and such judgements, barely asserted, are called assertoric; and the expreasion of them, ' \bar{X} is F^{\prime} ' ('crows are black', 'the train is not arrived'), is bare of any words that indicate reflection on the grounds for our aseertion. It is true that such judgemente, reporting what we perceive, are not mede arbitrarily; but the appeal to perception does not satiafy us; for though we may be unable to doubt that a rose is red when we see it, and seeing it justifies our aseartion, yet it doee not show why the rose is red, and the fact remains one for which we see no ground.

But the aseertoric form of judgement, X is Y, mey express two different mental attitudea. We may affirm or deny unhesitatingly, but without any thought in our minds of possible grounds for what is asserted. We may repeat our affirmation or denial as unhesitatingly as before, when the question whether there are sufficient grounds has occurred to us, even though we have not found any to satinfy us. Some men detect woter with the diviningrod. That is very extraordinary; how do you account for it? I can't, but they detect it. Here the assertoric judgement is challenged, and repeated; in the interval, we have reflected on the grounds for our judgement, and found none: none, that is, that make the fact asserted intelligible, though we may still think we have grounds for making the assertion in our experience of events that we cannot eccount for except by connecting the detection of water with the use of the divining-rod. We therefore still use the assertoric form ; yet the force of it is not quite the same, though the words in which we express ourselves are; and we must be careful to notice the difference, since in Logic it is not the form of words that matters, but the form of thought.

The difference lies in the sbeence or presence of the thought of the grounds of our judgement. If there is no thought of them, we make the judgement without looking beyond it; if there is thought of them, we look beyond the judgement in making it, even when we look in vain. It might perhape be best to call a judgement pure, rather than modal, when it is made without any thought of its grounde ; and to call it assertoric, and so assign to it
a species of modality, only when it is asserted with the thought of grounds that are not forthcoming. In this case, the introdaction of the word actually would mark a judgement as aseertoric; but the ordinary categorical form, X is (or is not) Y, might represent either a pure or an assertoric judgement. Very often the emphasis of the voice, or the use of italice, serves to distinguinh the pure from the amsertoric sense of such a form of judgement. If I say 'The stimulation of the retins by waves of ether is correlated with sensations of colour', I may berely intend to state a fect, without thought of looking beyond it for grounds; bat if I emphasize the 'is' or write it in italics, I should be anderstood to affirm it as an actual fact in spite of $m y$ insbility to give grounds for it; the general thought of grounds accompanies the judgement, but in a different form from what occurs in the problematic or apodeictic jadgement.
By the expression 'grounds for our judgement' in the lest paragraph has been meant grounds for the matter of fact jodged; and at the risk of repetition, it may be well again to distingoiah between this, and grounds for judging. For the difficalties in the subject of modality centre in this distinction, and if our discassion cannot hope to solve the difficulties, it may at least be well to indicate where they lie. Even if I do not see how a man is made aware of the presence of water by the divining-rod, I may have reason for judging that he is, if I bave known water found by men who had no other means of detecting it. In acholastic phrase, I have here a ratio cognoscendi, bat not a ratio casendi : a reason for acknowledging the fact, but not a reason for the being of the fact. ${ }^{1}$ Of course the ratio essendi is the best of all rationes cognomendi; of course also my ratio cognabeendi may turn out inadequate on closer acrutiny. And if a judgement made without any thought of ite grounde-what we bave now called a pure and not a modal judgement-be ressested in aseertoric form, it is seldom that it is purely assertoric. Either we find our reasons for aseerting it insufficient, and it has acquired the character of a problematic judgement; or we have begun to explain the fact, and then the jadgement is on its way to become apodeictic. 'There were apecies

[^106]once intermediate between the ape and man. How do you know that, since no specimen has been found? Much may have existed, of which no trace has survived.' This reply gives a tinge of the problematio to the original judgement. Suppoee a different reply: ' The atructure of man bears the same relation to that of the ape as prevaile between species in other cases where specimens of intermedinte forms, now extinct, have been preserved.' This is something of a ground in the nature of the facts for accepting the original judgement; there mwet therefore, we might eay, have once been forms intermediate between man and ape. Our 'must' in such a case expresses a different kind of necessity from what it expreses in a really apodeictic judgement; but atill, it does express a lind of necesaity. It is rare that a judgement is reaffirned after challenge with unshaken confidence, and yet with no thought of any ratio essendi. 'I feel ill' is such a judgement. If a man challenges my assertion, I cannot justify it, but only reaffirm it. But the barely aseertoric attitude, when once the mind has been awakened to the thought of the grounds of its judgement, is rare. Our pure judgements, when we have got so far as to ask their grounds, generally present themselves as either problematic or apodeictio. This might be considered to justify us in calling a pure judgement, i. e. one made without reference to its grounds in our thought, aseertorio: instead of reserving that name for the case in which a judgement is made in the consciousness that judgementa need grounds, and yet is neither problematic nor apodeictic. Nevertheless the distinction between the two cases ought to be observed; and is in fact expressed by the addition to the pure judgement ' X is Y ' of the adverb that marks the agsertoric form of modality, in the expresaion ' X actually is Y '.

If we turn to the apodeictic and problematic judgementa, the character of the assertorio will become clearer by the contrat. The apodeictio may be considered first. When we say ' X must, or cannot, be Y^{\prime} (' X necessarily is, or is not, Y^{\prime}), we imply that there are grounds known to us for X being, or not being, Y. As a rule, these grounds are conceived to lie outside the content of the judgement $X Y^{1}$: i. e, we do not npon reflection see immediately that X must or

[^107]cannot be Y, upon a mere consideration of the nature of X as such; we it to be a consequence of other traths, which in their turn may be aseerted either apodeictically or aseertorically. The water must rise in the common pump, when the piaton is ried: why mat? becanae of the preasure of the atmosphere. It is the conacionsenes of that ground for ite rising which leade un to affirm the water's rising spodeictically, wheress the mere observation of fact would only lead us to affirm it aseertorically. Butare we sure, it may be asked, that the atmosphere must have weight? for if not, we can only eay that the water must rise if and when the atmosphere has weight. We cannot here disecus the safficiency of the grounds on which we regard the general propositions of science as demonstrated; but it is clear that if the grounde of an apodeictic judgement are themselves affirmed only assertorically, there is a doubt thrown on the apodeictic judgement. It is neceesery, if the judgements on which it is grounded are necessary. ${ }^{1}$ 'Animals mast sleep, becarse they cannot be continuonely active.' But how do we know that they cannot be continuously active? And aupposing a reacon were given, we might ank how it is known to be nocesearily true, and so ad infinilmm. An apodeictic judgement would thas be merely a judgement made with reference to grounds from which it followed, and which we accepted as true; but since these groands might not be trae, there would be no judgement abeolately necessary, because none safely grounded.
The remedy for this state of affisirs would lie in the existence of judgements which we saw to be necessary (i.e. esaw mast be trae) without going beyond them: the ground for the judgement ' X muast be Y^{\prime} lying in the content of that jodgement. ${ }^{2}$ We have

[^108]already been made familiar, in discussing the heeds of predicables, with the notion of judgements in which the subject and predicate are conceptually connected : some such judgements are immediately necemary. That a line must be either atraight or curved is a judgement of this kind. A man may aseert as fact that lines are either atraight or curved, being led to that assertion by the memory of pest experience: but if he pase to reflect on the ground for the aseertion, he may realize that not only have the lines he has seen or imagined been all of them either straight or curved, but they must be so.

An spodeictic judgement then is one whose trath is not merely affirmed (for every judgement affirms ite own trath) but seen to be grounded, either in itself, or in other judgements scoepted as true. It is to be noted that many jodgemente which are really or in thought apodeictic are commonly expressed in aseertoric form. In mathematics, for example, every step is by the mathematician seen to be necessary; almost all mathematical judgements are apodeictio ${ }^{1}$; insomuch that it is often summarily said that mathematics deal with 'necessary matter'. There is consequently no need to distinguiah apodeictic from other judgemente in mathematica, and they are sll, as a rule, expressed assertorically : we say ' 2×2 is 4 ', not ' 2×2 must be 4 ': 'the interior angles of a triangle are' not 'must be'-' equal to two right angles'. On the other hand, many judgements expressed in spodeictio form are differently thought. Not only does the form ' X must be Y ' leave it uncertain whether the judgement is asserted as immediately necessary, or as grounded in knowledge outeide itself-a matter of which we cannot be unsware in our thought when we judge; but also the outaide grounde of the judgement may be grounds that merely require the fact asserted or explain it : may be rationes cognoscendi or rationer easendi. At times we even use the apodeictic form of propo-

[^109]sition to hide our doubte : we are conscious of grounds for a judgement, and grounds against it, and we look to those only which enforce the aide we wish to take, and in reference to them make our assertion spodeictic. 'It must beso: Plato, thou reasonest well', does not express the same confidence as if the speaker had said ' It is so'. All these diveraities of thought lie concealed under the apodeictic formula, X must be \boldsymbol{Y}; but it is always implied by that formula that our attention is directed to the grounds for the seser$\operatorname{tion} X Y$.

The problematic jodgement, on the other hand, implies that the truth of the judgement depends on grounds whoee existence cannot be amerted. ' X may be Y ' means that we have not sufficient grounds for asserting positively that $X Y$ is trae. Thus it involves the same attitude of reflection as the apodeictic judgement, or as the assertoric (if we distinguish the essertoric from the pure); but as a reault of reflection, the relation of the content of our judgement to what we know is seen to be different, and precarions.

In order to anderstand the meaning of the problematic jodgement, we must distinguish between those which are general (i. e. which have a general term for subject) and those which are singular. For where the subject is a general term, the problematic form may or may not express a judgement that is problematic in ita logical character. A problematio judgement, at is obvious, expreasen uncertainty; but uncertainty has been regarded as a atate either of facts, or of our mind in regard to facte. As a state of our mind, uncertainty arises through ignorance; and it is this uncertainty which renders a judgement problematic, in the logical sense in which that is one of the modalities of judgement. As a state of fects uncertainty might mean either of two things; but only one of these can be meant when the judgement is singular; and the judgement is not in both cases logically problemstic. Yet the formala ' X may be \boldsymbol{Y} ' is used in all these cases.

The judgement 'Rain may fall to-morrow' is a singular judgement : being concerned not with a particular thing or person, but still with a particular day. This judgement is problematic in the logical sense; for it does not imply. that the fact, whether rain is to fall to-morrow or not, is uncertain, but only that we are ignorant of the present condition of some at least of those factors (wind and clouds, heat and moisture, lie of land, and currente of air) on
which to-morrow's event depends. The fact is really certain, but we are uncertain; the rain falling or not falling to-morrow is now neoeseary, but to us problematic. With eufficient knowledge we could say 'Rain must (or cannot) fall to-morrow'. But sufficient knowledgo is beyond our reach.

Again, 'The Sultan may beheed his vizier to-morrow.' This is still problematic, for it implies that we have not sufficient grounds either for affirming or for denying that he will do so. But in the opinion of many, there is here a further uncertainty in the fact itself. For the isene depends in part upon the Sultan's will; and many bold that the future actions of the human will do not lie contained as it were necessarily in the present; and therefore that no amount of knowledge would enable us to calculate and predict with certainty the eots of men, or eventa depending in part upon the acta of men, as it would enable us to calculate and predict events dependent purely upon physical causes. According to this view there is a 'real contingency' in human action. ${ }^{1}$ Such real contingency would of course carry with it, that our judgements about future contingents must be problematio in the logical sense; we cannot know for certain what in itself is undetermined. But the problematic nature of our judgement in anch a case doee not spring from our ignorance, since no increase of tnowledge could ramove it; it epringe from the nature of the facts; and the difference in the nature of the facta between their real contingency in the one case, and their neceasary intarconnexion in the other, is not a difference of logical modality. Indeed, if we regard the human will as a principle of new beginnings, or soarce of evente whose determining conditions cannot be found in evente preceding them, we might even any that a particular future human action is necesearily contingent. It is to be observed, however, that this uncertainty in the event itself can only belong, if at all, to future eventa. If I say 'The Sultan may have behoaded his vizier yeaterday', I imply no more uncertainty in the facte than if I say ' Rain may have fallen yeaterday'; the aame in true of the judgement 'The Sultan may now be beheading his vizier', just as much as of 'Rain may now be falling'. All theee alike are problematio only in virtue of my

[^110]uncertainty about the facts, and not of any uncertainty in the facts themselves.

The upshot of this is, that in singular jodgements the problematio form ' X may be \boldsymbol{Y} ' expreses always our want of grounds for making an assertion, but not necesearily any want of certainty in the facts themselves. All evente-the scts of man ${ }^{1}$ alone perhape excepted-happen necessarily when they happen, the conditions on which they depend being what they are; but these conditions being largely unknown to us, we have not sufficient ground for aseerting the events; hence our aseertions assume a problematic form, ' X may' be Y ': meaning, that while we know nothing inconsistent with the assertion that X is Y, we do not know enough to justify us in saying that it must be so; though if it is so, it is so necesearily. Only in haman action and what depende on human action some would admit a real contingency; and would understand the formule ' X may be Y ' to inclade in ruch case an assertion of uncertainty in the eventa themselves.

Let us now take a problematic judgement which is not singular. 'Cancer may be incurable.' Here we mean that though cancer either in incurable or not, we have not rufficient grounde for a decision. The judgement is based on ignorance, and is logically problematic. But the aame formula sometimes has a somewhat different meaning. 'Currants may be either bleck, white, or red ': 'a man may die of joy'. We do not mean here that we are uncertain whether currants are bleck, white, or red, though knowing they must be one or other; for on the contrary we know that they are all three, in different casea. Nor do we mean that we are uncertain whether or not joy can kill a man, but that sometimes it does so. If you tell me that you have a corrant bush in your garden, I can say it may be black, white, or red; as to that particular bush I am uncertain. Bat I make this digjunctive judgement aboat it because of my knowledge that there are those three colours in currants.

Such a judgement therefore is not problematic in the logical aense; for as referred to the species, or general term, which is the subject of it, it implies not my ancertainty, but my knowledge of the alternatives. Here the facts may be called uncertain, in the sense of being multiform or variable, but not in the sense (in which a particular fact, if really contingent, is uncertain) of not

[^111]being the necessary outcome of proexistent conditions. This varisbility arises either through the diversity of epecies necesearily included in a genus (as when we eay that a conic section may be either an ollipee, a parabola, or an byperbols) or through the multitude and complexity of the elaments in the world that go in constantly shifting combinations to the production of what we regard as single things or events Any two elements (the word here must not be confined to its technical chemical sense), taken arbitrarily in isolstion from everything else, would as we believe interact with each other always in the same way. Science endeavoars to determine the interactions that would occar between such isolated or 'abstract' elements, and so to enunciste its propositions universally. But in fact we cannot readily secure such isolation. History, or the course of eventa, depends on all sorts of elements as it were jostling in concreto, and so presenta perpetaally varying combinations or conjonctares This gives rise, as we previously saw, to the accidental or 'coincidental': which is also sometimes called the contingent ${ }^{1}$; and in the sense that the eame conditions, in the kaleidoscopic movement of events, are combined now with these and now with those others, there is uncertainty in facts. We might lnow enough to say what precise conjunction of physiological and other factora is necessary in order that a man should die of joy; but the occurrence of this conjunction depends on historical conditions that are sometimes fulfilled and sometimes not. Hence we make a judgement which is problematic in form, 'a man may die of joy': meaning that if certain factors combine with his joy, a man will die. We have no right to connect a predicato Y universally with a given subject X, if its presence in X depends on the coincidence of other factors; and so long as in our judgement we do not specify all the conditions neceseary in order that X should exhibit the predicate Y, our judgement will assume the form ' X may be Y '. These conditions may or may not be known to us. 'Water may boil below 212° Fahrenheit': this depends on its being sufficiently heated, and at an atmospherio pressure sufficiently low: both of them conditions not neceesarily connected with the occurrence of water below

[^112]212° Fahr. But the conditions here are known; and we give our jadgement the problematio form, not on account of our ancertainty of the grounds on which the content of the aseartion depends for ite truth, but because we know that those grounds are not always present. Here then the problematic form is due to an omisaion of the conditioning details. The particalar judgement is sometimes particular for the same reason, becanse we omit some of the conditions, given which the predicste might be afflrmed of the subject universally. In other cases of course the particular jadgement is sll we are able to enunciate, and we do not know under what conditions the predicate could be affirmed universally of the subject. 'Some triangles have the square on one side equal to the squares on the other two'-riz. when that aide subtends a right angle; 'some children are taller than either parent', bat here we cannot give the condition on which it depends. The same difference is observable in the case of these quasi-problematio judgements; as may be seen if the foregoing particulars be put into the form ' \boldsymbol{X} may be \boldsymbol{Y} '. 'A man may amile and amile and be a villain' means much the same as if it were said that some men smile and smile, and yet are villains; but we do not know more than the fact which ehows this conjunction to be possible; we cannot state the condition on which the conjunotion of a smile with villainy dependa.

In dealing with the quantity of jodgementa we eaw that in the particular judgement 'Some X is Y^{\prime} ' we may either be thinking of individuals of the kind X, not eeparately enumerated, or of some general determination of the kind X, not specified, which would involve ite being \bar{Y}; that in the former case, it is rather of the natare of the singular judgement: in the latter, it is on its way to become universal. Particular judgements of the latter kind have been called 'modal particalars', because of their close similarity to the quasi-problematic judgementa which we are now considering. They can indeed be expressed in the form ' X may be Y ' as easily as in the form 'Some X is Y '. There is only this difference between the two expressions; eech implies that under cartain conditions, not specified, though poseibly known, X would be Y; but the latter implies that these conditions are sometimes actually fulfilled, the former does not necessarily do sol.

[^113]Where a jodgement problematic in form etates the alternatives within a genus, as if I asy that a line may be straight or corved, the architecture of a church classical or Norman or Gothic, it is really, as referred to the genus, a necessary judgement if we see that the altarnatives are necessary, but assertorio if we merely accept them as actan. As referred to any particular mabject, like the boundary between the United States and Canada, or the parish church of Clayfield Porcornm, it is problematic; because it implies that I have grounds for offering these alternatives, bat not for going further and deciding between them. Where, though the judgement is not disjanctive, yet X is general, and the unspecified conditions under which \boldsymbol{X} is \boldsymbol{Y} are known, the meaning of the form ' X may be Y^{\prime} has really nothing problematic abont it-i. e. it corresponds to no ancertainty in oar thought with regard to the content of the judgement. Where the conditions are unknown as well as unopecified, it has the logical character of the problematic judgement mo far as it implies that we are uncertain under what conditions X is Y, but is asertoric so far as it implies that we know that there are anch conditions, because X is cometimes Y. The singalar jadgement 'This X may be Y^{\prime} ('This water may be unwholewome') is problematic in the logical sanse, becanse it mean that we are uncertain whether the conditions under which X is Y are fulfilled in the ase before us.

A problematic judgement therefore does not imply by it form that any partioular event is in itself uncertain ${ }^{1}$; though nome hold that there is a real uncertainty abont eventa involving human will. The matter of faot asearted in a problematio judgement whose aubject is a general term may be uncertain, in the sense that the given eubject does not carry with it the predicate, bat will only exhibit it under conditions that are not constantly and necesearily combined with it. But a jodgement is not logically problematic unless it expresees oar ancertainty with regard to the connexion of - predicate with a given subject. All aingular judgements of the form ' X may be Y ' are therefore logically problematio; but general judgemente of that form are not really problematic, whem the form only serves to cover the omiseion of the known conditions

[^114]under which X is Y universally, or to specify one of the alternative forms under which X is known to occur.
[The distinction between singular and general problematic jadgements finds a parallel also in the case of spodeictic judgements; but as confusion is not so likely to arise there from want of noting it, the discussion of apodeictio jodgement was not burdened by it. Any one remembering what was said in c. iv on the difference between conceptual and historical necessity will see that a singular apodeictic judgement is one in which an historical event is recognized to be necessary on the ground of previous historical events accepted as actual; these last may in turn be shown to have been necessary, on the ground of other events before them: but such a process of demonstration recedes into the past ad infinitum, and so we never get more than hypothetical necessity. A genersl apodeictic judgement, on the other hand, is a reaily universal judgement-a judgement msserting a connexion of content or of universals, irrespective of occasion or time.]

We may rum up what has been said of the modality of judgement as follows. In every judgement I intend to assert truth, but not necessarily about the particular reality that my judgement refers to; the truth I assert may be that I am unable to discover the trath about this reality. I may judge without looking for the grounds of what I assert; and in such case my judgement is called assertoric, and expressed in the form ' X is (or is not) Y^{\prime} '; it can, however, alao be called pure, as being pure or free of any reference to the grounds for what is asserted. On the other hand, I may reflect on the relation which the content of a suggeated judgement bears to what I already know, or take, to be true; and if I find it involved in such truths, my judgement is oalled apodeictic, and expressed in the form ' X must (or cannot) be Y '. Judgements whose trath is seen to be grounded in the nature of their own content are also affirmed apodeictically. Those apodeictic jadgements which are grounded in facts not forming part of what they affirm themselves have a different logical character according as these facts can be affirmed apodeictically or only assertorically; if the latter, the judgement resting on them is not strictly apodeictic, for only the sequence can be afflrmed spodeictically. If I find the content of a suggested judgement involved in conditions about which I am ignorant or uncertain, I assert it to be possible; such a judgement is called problematic, and expressed
in the form ' X may (or may not) be Y '. The problematio judgement does not imply that particular events are unnecessary in their happening, though, when general, it does imply that an event of a certain kind depends on a conjunctare, or contingency, which is not universally necessary. It is possible that when reflecting on the groands for what we aesert, we cannot find any ercept that we perceive or remember it, though this may be reason enough to convince us of the truth of our essertion; then the content of the judgement is affirmed to be actual, and the judgement called aseertoric, and expressed in the form ' X is (or is not) Y ', with an emphasis perhape on 'is', or the addition of the word 'actually'. This assertoric judgement, being not a bare unreflective assertion, but expressing beaides our mental attitude towarde the content of a judgement, is different from the assertoric judgement, above called also pare, that containg no reflection apon the grounde for what is asserted or for its aseertion; and as involving such reflection, this is modal.

These distinctions of modality do not then express differences in the necessity with which elements connected in reality are connected ${ }^{1}$; yet they do express this, thast wheress some connexions in reality are seen to be necessary, others, and the existence of such elements, and their distribution in time and place, are not. Many philosophers have felt it impossible not to believe that the existence of all things, and their diatribution, and every feature of thair interaction are as necessary as those matters which form the content of our really apodeictic judgements; and if their belief could pass into clear vision, judgements at present problematic or assertoric would be repleced by apodeictic.
[There are a few other adverbs (besides poscibly, actwally, and neccosarily) which may be introduced into a judgement in order to express reference to the grounds for asserting it and an estimate of the truth of ite contents: e.g. probably, truly, falsely, really: although all but the first of these may also be used merely to qualify some term in the judgement; a truly virtuous woman, for example, meaning a woman virtuous in a particular way, or a falsely delivered message, one not delivered as it was received,

[^115][whereas a probably dangerous undertaling does not mean an undertaking involving a particular kind of dangar. Such adverbs (if used to express our attitude as to the truth of the content of the judgement in which they occur) may be called modal, and judgements modal, in which they are used. But no adverbe of any other kind make a judgement modal, and no qualification of the content, but only of the anreflecting directnees with which, in a 'pure' judgement, the content is affirmed. Differences of tense, for example, must not be reckoned to affect the modality of a judgement ${ }^{2}$; they merely affect the predicate, and not our attitude towards affirming the predicate of the subject; and past, present, and futare verbe may all occur (as we have seen) in judgements of any modality. No doubt differences of tense are a somewhat peculiar affection of the predicate. If I my Jeks driver furiosely, I predicate a different action from what I predicate if I say that he drives slowly; but the action predicated is the same, whether I say that Jehu has driven, is driving, or will drive, and only the time of the action differs. This, however, merely
${ }^{1}$ As by J. 8. Mill, Logic, I. iv. 2, who rightly rejects the view of those who would make every edverb the ground of a modal difforance in the proponition whore it occare. The diftinctions of modality deecend from Aristotle, de Interp. xii. 1 and Amal. Pri. a. ii. 1, but the word rposos (- modse) is said to occur first in the Commentary of Ammoning; a. Ammonius in Ar. de Interp. 1727, (quoted in part Prantl, vol. i. p. 654)=Berlin

 ing how the prodicate belonge to the mbject, e.g. "quickly", when we my that "The moon waxes quiclily", or "well" in "Socrates argues woll", or "much" in "Plato love Dion much", or "always" in "The man always moves ". The number of them is not infinite in the nature of thingo, but is beyond our computation, like the number of univernals that can be subjecta or predicatee, though they cannot be numbered. Aristotle, however, bringz into his contideration of modal propocitions four moden only, the necesary, the possible, the contingent, snd further the imposible. ...' This statement sbout Aristotle is bewed on do Interp. zii, and the modalitiea were ofton enumersted as these four, sometimes with the addition of the true and the false. The uame wide definition of rporoc is given by Michael Psellus (o. Prantl, ii. 269), bat he singles out for discassion only those which 'determine the connerion' of subject and predicate, i.e. the modalities proper. Cf. Buridanua (Prantl, iv. 22), who explains that the qualification which is to make the proposition modal must attach to the copnia, and not to the aubject or predicate. The word modue is of course a term of wide gignification, but Logic is concerned with certain modi propositionie; and it is obviously wrong to ouppoes that any adverb will make the propoaition in which it occurs modal ; nor can differencea of tanse do m, though they expres a modification of the prodicate.
[amounts to saying that judgements differing in tense differ thareby in the category of time, and not in another category. Time is a very peculiar feature in the existence of things, but still it is a featare in their existence, and gives rise to a great variety of modifications in their predicates. There is no more reason for reckoning as modal these differences in time, than there is for $\boldsymbol{0}$ reckoning the differences in degree, or in place, to which the axistence of a predicate is susceptible in subject. The plague raged last year: it is raging now: it is raging here: it is raging in Calcutia. If the plague can exist in different times, so aloo can it exirt in different places; and if judgements do not differ in modality by connecting its existence with different places, neither do they differ in modality by connecting its existence with different timea.

There are a few other distinctions drawn among judgements, which ought to be noticed. We may deal first with a series of antitheses whose force is sometimes too readily considered to be the same: these are analytio and synthetic, esoential and accidental, verbal and real.
'In all judgemente,' says Kant ', 'wherein the relation of a subject to the predicate is cogitated (I mention affirmative judgements only here; the application to negative will be very easy), this relation is possible in two different ways. Either the predicate B belongs to the subject A, as somewhst which is contained (though covertly) in the conception A; or the predicate B lies completely out of the conception A, although it stands in connexion with it. In the first instance, I term the judgement analytical, in the second, synthetical. Analytical judgemente (affirmative) are therefore those in which the connexion of the predicate with the subject is cogitated through identity ${ }^{2}$; thoee in which this connexion is cogitated without identity, are called synthetical judgements. The former may be called explicative ${ }^{8}$, the latter angmentative judgements; becanse the former add in the predicate nothing to the conception of the subject, but only analyse it into its constituent conceptions, which were thought already in the subject,

[^116]although in a confused manner; the latter add to our conception of the subject a predicate which was not contained in it, and which no analysis could ever have discovered therein.' Kant's example of an analytic judgement is 'all bodies are extended': for our conception of body is extended anbstance, and therefore, in order to make the judgement, we need only analyee the conception. 'All bodies are heary', on the other hand, is a synthetic judgement; for it is not contained in the conception of bodies, that they gravitate towards one another.

Kant's statement of the distinction between analytic and synthetic judgements has been much discussed and critioized. In particular, it has been pointed out, and it is important to recognize, that no judgement is purely analytic; every judgement is a synthesis of distinguishable elements. Let the predicate B of an analytic judgement be contained in the conception of the subject A-extended for example in the conception of body. Suppose the constituent elements of the conception A to be $B C D$, as those of body are substance and extension. Yet the judgement ' A is B ' (all bodies are exlended) is not equivalent to the judgement ' $B C D$ is B^{\prime} (all exteuded substances are extended). The latter doee merely repeat in the predicate what is contained in the subject-conception; and inssmuch as the rubject-conception has already been exbibited as a synthesis of elements, among which the predicate is one, the judgement only goes over old ground. But the former judgement performs a process of analysis, and does not pick out one element from an analysis already made. Now this difference is important; because in performing an analysis of the subject-conception, we realize at the same time that the predicate muat be conjoined with the other constituent elements in the subjeot, in order to make the subject-conception. ' A is B ' means 'to the constitution of A, B must go with $C D$ ': all bodies are extended means 'to the constitation of body, extension must go with substantiality'. Kant indeed tells us that until the analytic judgement is made, the predicate B is only covertly contained in the conception A : so that it is really the work of the judgement to recognize B (as an element along with other elements) in the conception 4 . On the other hand, the synthetic judgement is from one point of view analytic. 'Cats purr'; it is true that I learn this only by experience, and that purring is not otherwise necessary to constitute the

vin]

conception of a cat: but to me, who have learnt long ago that cate do purr, purring has become part of my conception of a cat, and when I make this judgement, I am picking out one element in my conception, in order to assert its connexion with the others. Except therefore to some one who knows what cats are, but not what noise they make, and knows what purring is extraneously; the judgement that cats purr is not purely synthetic. And even to him, in the act of making it, it becomes also analytic; for no sooner has he united the predicate 'parr' with his conception of a cat, than it becomes an element selected from among the other elements of his more enlarged conception.

Every judgement then is at once analytic and synthetic; for the act of judgoment at once holds different elements apart and recognizes them as elements in a single whole. As held apart, it requires an act of synthesis to see that they make one whole: as recognized to make one whole, it requires an act of analysis to find and hold them apart.
.In distinguishing analytio and synthetic judgements, then, Kant has not distingaished judgements in which thare is only an act of analysis from those in which there is only an act of synthesis. What he has really done is to distinguish those in which the predicate is part of the definition of the subject from those in which it is not. For he really had in his mind only judgements whose subject is general, or at any rate if his distinction can be applied to singalar judgements, it is only so far as a particular thing is designated in the subject by a general term, or concept under which it is brought. 'This body is extended' would be anslytic, and 'This body is heavy' synthetic, because the predicates are respectively explicative and augmentative of the concept body. Yet if we look to the particular experience which is the ground of the judgement 'This body is heavy', we shall have to acknowledge that it analysee what is given as a concrete whole; so that although the judgement is synthetic so far as concerns the relation of the predicate to the sabjeot-concept, it is analytic as concerns its relation to the object of perception, the body in question. Such judgements have in fact been called in consequence 'analytio jodgements of sense', though they are emphatically synthetic in the Kantian sense, as being grounded on the conjunction of manifold elemente empirically in an object, and not on a relation between
rabject and predicate which is necessary for thought, because 'cogitated through identity' and so incapable of being denied without self-contradiction.

Now Kant, in drawing the distinction, was interested precisely in the queetion of the necesity belonging to certain judgements, in virtue of which our thought recognizes them as true without appeal to confirmation from repeeted experience. His 'analytic' judgements have this necessity because thay are analytic; the problem, he says, is to see how any 'synthetic' judgements can have it. So far as these merely state the conjunction in things of attributes which are distingaished and found together in them, they lack the character of neceasity, whether we call them synthetic or analytic ${ }^{1}$; but he beld, and rightly, that there are some jadgementa in which we do apprehend the necessity of the predication, without the connexion being 'oogitated through identity'. Sach are the judgements ' $5+7=12$ ', or 'Two etraight lines cannot enclose - spece'.

A question next arisen regarding thoee judgementa in which the predicate is already covertly contained in the subject-concept, and which are therefore incapable of being denied without contradiction, and so conceptaally neoessary; has this come to pasa merely by the fact that we have choeen to include certain elements in the subject-concept, which we thereupon cannot consistently deny of it? We eaw, in diconsaing Definition, that we have sometimee to determine arbitrarily what elements are to be included in oar definition of a concept; and if this were always the case with definitions, it would appear that Kant's anslytic judgementa are necesearily true merely becanse of the meaning which we have given to the subject of them. On the other hand, if the elements in the definition are not arbitrarily selected, but are seen to hang together necessarily in the constitation of the thing defined, then the analytic judgement which predicates of a concept a part of ita definition is jurtified by the same insight into the necessary connexion of distinguishable characters as justifies a synthetic jadgement which is not empirical. Let us take an example of a subject in whose definition the elements are arbitrarily ${ }^{2}$ put together. In

[^117]the Elementary Education Act of 1870, \& 8, an elementary school is by definition 'a school, or department of a school, st which elementary education is the principal part of the education there given, and does not inolude any school or department of a school st which the ordinary payments in respect of the instruction, from each scholar, exceed ninepence as weak'. To say therefore that an elementary achool charged less than 10d. per bead per week in fees was to make an analytic judgement, from the standpoint of the Rducation Department in 1870; but ouly because it had been arbitrarily settled that none charging 10d. or over should rank as an elementary echool, and not because we have such a knowledge of what an alementary school must be as to see that it could not be elementary, and charge a fee no high. Wbereas if I say that a figare has sides, that is true not because it is agreed to call nothing a figare which has not, but becsuse I see that lines can be pat together into the unity of, and are required in, a figure.

It follows that some jodgements ranked by Kant as analytic may involve just the same insight into the necessary connexion of elementa in an unity as is foand in the clese of eynthetic judgements which most interested him-viz. those that are grounded not upon repeated experience but apon the apprehension of necessity; while others are true only in virtue of the meaning we have chosen to give to words; neither is any judgement purely analytic or parely synthetic. His dietinetion therefore is not well expreseed by these terms. If, however, we take the terms acplicative and angmentative (or ampliative), we may say that all his 'sanalytio' judgementa are explicative of what is already involved in thinking the subject, bat we may queation whether all his 'synthetio' judgements are ampliative, unlesa aingular judgements, which analyee a present axperience, are excluded; nor does the term 'explicative' apply any otherwise to those judgements where the elements in the sabjeot are arbitrarily put together than to those where they constitute a real anity for our thought. Now the former are, as we have seen, true by convention as to the meaning of words, and no they may be called vorbal; and to verbal jadgements we may oppose as real all whose truth doen not rest upon the meaning given to words, but which state something about the nature of things: whether what they state is seen to be necesaary -in which case they may be either analytio or aynthetio in the

Kantian sense-or rests apon mere experience of fact-in which case Kant would call them synthetic. This does nọt commit ns to the view that all definition is verbal, bat only that if a so-called definition does no more than arbitrarily to inclade certain elements in a concept, like the definition of 'elementary achool' quoted above, then it is verbal. On the other hand, if we wish to mark the distinction between judgements in which the predicate is part of the definition of the subject, and those in which it is not, we may call the former casontial and the latter aooidontal. The term 'essential' may be extended to cover those cases where the definition is arbitrary ${ }^{1}$, and some cesential judgementa will then reat merely on the law that forbids self-contradiction; while others will involve the same apprehension of the necessary connexion of elements in an unity as Kant's neocesary ' synthetic' judgements; some, that is, will be verbal and others real. The term 'accidental', if 'eccident' be taken, as by Aristotle in the phraee nat' aird $\sigma_{0 \mu} \beta \cdot \beta \eta \kappa \delta s$, to inclade what is demonstrable of a kind, will cover all Kant's 'synthetic' judgements, whether they are grounded on an experience which, so far wo we can see, might have been otherwise, or on insight into a neceseary relation of concepts ${ }^{\text {? }}$. It will be seen that the three antitheses, of analytic and synthetic, essential and accidental, varbal and real, cannot really be regarded as equivalent; for neither are they made on the same fundamentwom divisionis, nor do they reopectively bring together and keep apart the same individual judgemente.

Two comparatively unimportant clasees of judgements may be mentioned before closing this chapter-exceptive and exoluaive judgements. An exceptive judgement is one which excepts from its application a certain part of the extension of the subject ${ }^{3}$: es in Clough's satirical version of the second commandment-'No graven images may be Worahipped, except the carrency.' An exclusive

[^118]jodgement is one which confines the application of the predicate to the subject of which it predicates it: as in Elijah's exclamation, ' I, even I only, am left.' It is clear that within a given whole, it makes no difference whether a predicate is affirmed of one part only, or denied of all but that: Only the brave deserve the fair would mean the asme as the poet's actual line None but the brave deserve the fair. The scholestic logicians treated these and some other forms of judgement under the head of Exponiblis, i. e. propositions whose full meaning could only be expounded in more jodgements than one. Thus 'None but the brave deserve the fair' impliee two statements, that the brave deserve the fair, and that thoee who are not brave do not. The infinite judgement whe also an exponible; for if I say that Parlisment is not-in-session I imply that it is not in semion, and is in some other state instead.

CHAPTER IX

OF THE DISTRIBUTION OF TERMS IN THE JUDGEMENT: AND OF THE OPPOSITION OF JUDGEMENTS

Ws saw in the lest chapter that all judgemente, in respect of their quality, were either affirmative or negative; and in respect of quantity, might be treated as either aniversal or particular. The latter division indeed atrictly applies to those judgements only whoes subject is a general term, and therofore not to singular jodgemente ; but for the purposee for which these can be reckoned with univeral judgements the divicion is axhanative. The purposes in question are the deternining the didtribution of terms, together with what depends on that. A term is said to be dientributod, when it is used in reference to its whole extension, or to all that it can denote. ${ }^{1}$ Now the subject of a aingular judgement denotes one individual only, and the judgement refers to that ; the subject of an univeral judgement is general, and may denote any number of individuale, but since the jadgement is univeral, it applies to them all. Therefore in both singular and univeraal judgements, all that the subject can denote is relerred to, or, in other wordes, the anbject is distributed; and, in considering the distribation of terms in a judgement, we may accordingly rank the ningular with the univeral.

As every jodgement muat have both quantity and quality, and in eeoh respect there are two alternstives open, there are four varietios of judgement in respect of these two characters combined. An affirmative judgement may be univeraal or particular : a negative judgement may be aniveral or particular. It is costomary in

[^119]Logio to indicate these four forms of judgement by the first four vowels, thas :-
an univeral affirmative jadgement is indicated by the letter 1 ;
an aniversal negativè " " " " " \boldsymbol{E};
a particular affirmative " " " " " I;
a particular negative \quad, " \quad, 0.
Thus the affirmative judgementa are A (universal) and I (partionlar): the negative judgemente are E (anivernal) and O (particular); and this may be remembered by noting that 4 and I, whioh indicate the oniveral and particular affirmative 'y dgementa, are the firt two vowels in the verb 'affirmo': E and \cap, which indicate the univeral and particalar negative jadgemente, the vowela in the verb 'argo'.
All aniveral judgementa (\boldsymbol{A} and \boldsymbol{E}) distribute their mabject: all negative judgementa (E and O) dietribate their predicate. No particalar judgementa (I and O) diatribate their mabject: no affirmative judgemente (1 and I) diatribate their predicate. Thus :-

It is impor t to onderstand and become familiar with these characteristics of a judgenent.
A term, as was explined just now, is said to be distributed when it is used with reference to all that it can denote ${ }^{1}$. The term ' book' is distributed, when used in a proposition that refers to all books: undistributed, when used in a proposition that does not refer to all books. It is obvious that an aniversal proposition about books (whether affirmative or negative) refers to all ; and that a particular proposition does not; all books are written bfore being printed: no book was printed before 1450: : oone books are publishod wnewon: some booke are neerer published. That the subject of universal propositions is distribated, and of particular propositions undistributed,

[^120]needs no further illustration. Two cautions, however, may be offered.

1. The subject of a proposition is the whole subject-term; if I say all modern booke are printed from movalle type, the subject is not books, but moders books; it is true that my judgement does not refer to all books, but it refers to all modern books, and so the subject is still distributed; while it is andistribated in the proposition some morlern books are priated from steroplype platen But I may reatrict a general term like book not by worde which leave it still general (e.g. moders book, book printed by Elcovir in Lryden), and therefore capable of being either dirtribated or andistributed, bat by a demonatrative pronoun, or other worde which deatroy its generality (e.g. that book, these books, the frat book solich I ever posecsed). In the latter case, the term becomes a derigantion, and is therefore ringralar, or (lize 'these books ') a collection of singralas ; and the proposition should rank with oniversals. But the general term which is restricted, by a demonatrative or otherwies, to the designation of a particular individual, is not distributed, since it does not refer to all that it can denote. 'Book' therefore is undistribated, bat 'this book' is diatributed, in the proposition 'This book wants rebinding' ; for 'book' might be used of other books, but 'this book' is already used of the only book of which, wo long as I mean the same by 'this', it can be used.
2. In apeaking of the distribution of terme, we are inevitably led to view judgementa in extension rather than intension: and indeed as referring (altimately) to so many individual objects, rather than aserting a connexion between universals. Now we have aeen that a judgement may refer to individuala, bat need not ; , and that in a judgement properly universal, there is no particuler thought of individuals. In saying that a triangle has ite angles equal to two right anglea, I am not referring to all the particular triangles that have ever existed or may exist; I am thinking of their common character as triangles, which being one and the same in them all may be apoken of in the singular number. ${ }^{1}$ It may therefore appear erroneons to say that such a judgement distributes its subject, if to distribate a term is to use it with reference to all that it can denote; for to the individuals which the term triangle

[^121]can denote I am not referring. Bat it is true in this rense, that whatever particular trisngle you ohoose to take, my judgement bolds good of that. We must avoid supposing that in every aniversal judgement we are thinking of all the different individuals of which the subject-term is predicable; bat we must recognive that our judgement bolds of them all.
The distribation of the predicate in a judgement is not generally so readily understood as that of the subject; for the extension of the predicate in not naturally before us. The rule is that negative propositions distribute their predicate; affirmative do not: and this equally whether they are universal or particular.
All preachers praise virtue: some practise it. It is enay to see here that I rofer in one cue to all and in the other only to part of what the term preacher can denote. The subject therefore is dirtributed in one case, and not in the other. But what of the predicate? That is not distribated or undirtributed becunce it refers to all or only come preachers; for a term is only distribated or andistribated when it is ased in reference to the whole or to a part only of ite own extension, not of the extention of the subject of which it is predicated. Now the axtension of the terms 'praiser of virtuo' and 'practiver of oirtwo' includes everything which can be said to praise or preotise virtua. Preachers may do so, bat so may others who are not preachers; thees aleo are therefore included in the extension of the predicate ; bat what is thus incloded is not prelicated of preachers. In the jadgement X is Y, I predicate Y of X; but I might predicate it aleo of $Z ; X$ and Z are both included in the extension of Y, or in what Y can denote; bat when I affirm Y, I do not affirm it in ite whole extension; for then in asying ' X ia F ', I should mean that it is X and Z, and in esying ' Z is Y ', I should mean that it is Z and X. The predicate therefore is not uned in reference to ite whole extension, i. e. is andistributed.
The predicate of an affirmative judgement in fact cannot be thought in extension at all. The subject of which it is predicated forms part of its extension; but in the predicate, $2 s$ opposed to the sabject, I am thinking of a character or attribate belonging to that sobject. A great deal of the diffeculty which hangs about the doctrine of the dirtribation of terms arises from the fact that a term is said to be undistributed both when it is need with explicit reference to a part only of its exteasion, and whon it is usel
without explicit reference to its extension at all. The subject of a particular judgement is undiatribated in the former sense; when I say that Some preachers practise virtue, I am oxplicitly confining my atatement to a part of the extension of the term preacher. The predicate of an affirmative judgement is undistributed in the latter eense. When I say that $A \|$ preaciers praise virtue, though it is true that preachers, even all of them, are only part of the extension of the predicate, yet I em not thinking in the predicate of its extension bat of ite intension. The extension of a term consists of all the alternative species, or different individuale, in which it is manifented. It is imposerble to predicate alternative apecien of the aame subject, or to esy of anything that it is so many differentindividasle. 'An elliper is a conic section.' The extenaion of the predicate conic seotion is hyperbola, parabola, and ellipee; I cannot eay that an ellipee is all of these; I do not want to say that it is an ellipeo; I am thinking of the common charncter in them all, i.e. using the predicate in intension. Still, it is only part of the extension of the predicate which is referred to in this judgement, and therefore the term is said to be undintributed in the judgement, though in the predicate extension is not considered at all.

In a negative judgement, on the other hand, the predicate is necemarily denied in its whole extension. Casar is mol ambitions; there are a thousand forms of ambition among mankind; but if I deny ambition of Caesar, I deny all these. It in the mame whother the judgement is univeral or perticular. No Muswiman frars deatk. Whether we look to the forms which fearing death may take, or to the individuals in whom it is exhibited, if I deny the predicate of Mussulmans, I deny all forms of it, or deny that they are any of those individuals in whom it is exhibited. Bat egain, Some marine avimals are not vertebrate; of thoee animale I do not merely deny that they are doge or cats, plaice or almon, sll of which form part of the extension of vertebrate; vertebration in every form is denied of them; a negative jodgement denien ita predicate in tolo.

In an affirmative judgement, the subject is necessarily part of the extencion of the predicate; in a negative judgement it is as necessarily no part thereof. And to say that the subject is no part of the extension of the predicate is to say that the predicate is denied in ite whole extension.

But here again it is primarily the intension of the predicate which is in my mind. When I any that ' Bratus in an honoarable man', the only individual referred to is Bratas, though 'they are all honourable men that have slain Ceesar'; when I may 'Cresar whe not ambitious', I need not be thinking of any one who was. It is an attribute which I affirm in one ceve and deny in the other. Nevertheless, wheress if I do attend in affrmative judgements to the extension of the predicate I cannot affirm the whole, and do not want to affirm the only part-viz. the enbject of the same judgement-which I can affirm, in a negative judgement, if I attend to the extension of the subject, I can deny the whole. 'A cycloid is not a conic Bection'; if I remember that conic section includes hyperbola, parabole, and ellipse, I can say that a cycloid is neither an hyperbole nor a parabole nor an ellipee.
We are not thinking primarily of the extension of the predicate in a negative judgement; bat if we do think of it, we muat deny it in toto, or else our judgement will not mean what we intend it to mean; therefore the predicate is distribated. 'The Tenth don't dance'; we are not thinking of those who do; bat bears dance, and so are part of the extension of the predicate, and if the predicate were not denied in ita whole extonsion, it would be compatible with the trath of that proposition to say that the Tenth were bearr: or if the predicate were used only in reference to the ursine portion of its extension, the proposition would mean no more than that the Tenth were not beara
[Sometimes the device of circles, representing the extension of the sabject and the predicate, is used in order to explain the dirtribution of terms. Collect the mammals in one circle, and the onakes in another: then if no snakes are mammals, snakes will lie outeide the whole mammal-ares: and if some vertebrates are not mammals, some part of the vertebratearea will lie outaide the whole mammal-ares;
 whereas if some vertebrates are mammals, some part of the vertebrate-ares will coincide either with the whole or with a part only of the mammal-ares; and if all mammals are vertebrates, the mammal-ares will fall completely within the vertebrate-area. But all the objeotions which lie against representing in this figurate way the logical relation of a larger to a smaller cleas within it lie equally against so representing the distribution of terms. We may mey that the negative proposition
[snakes are not mammals excluden snakes from the whole clase of mammala, and not merely from a portion of it (say men) : but we must not think of the class as an area cut up into districts called apecies, or as a collection of which the species are component groupe.]
[Any one who realizes that the predicate of a proposition is not thought in extension will see that there can be no truth in the doctrine of the Qwantification of the Predicale. But the doctrine hes the support of distinguished writers, among others of Sir William Hamilton, who invented it, and of Stanley Jevons; and it ought perhaps to be examined here. It may be easily shown to be false; and the conscientious atudent haply stumbling upon the mass of intricate technicalities baged upon it may be glad to feel excused from the labour of mastering them by the knowledge that they are built upon a worthless foundation.

By quantification of the predicate is meant affixing a mark of quantity to the predioate as well as the subject of a judgement. Thus instead of the four forme of judgement, A, E, I, O, we get eight, as followe :-
U. All X is all Y. All organisms are all mortals.
A. All X is some Y. All men are some mortals.
Y. Some X is all Y. Some mortale are all men.

1. Some X is some Y. Some men are some (things) fleet of foot.
E. No X is any Y. No anakes are any mammals.
η. No X is some Y. No men are come mammale [e.g. not monkeys].
O. Some X is no Y. Some vertebrates are not any mammals.
c. Some X is not some 1 . Some mammals are not some vertebrates [e.g. not cows].

In defence of this mode of atating propositions it is urged that as the proposition whose predicate has all before it, and the corresponding proposition whose predicate has some before it, do not mean the aame thing, and we must know which we mean when we jadge, we ought to express it. It is strange, if that is the case, that no language ever has expressed it ; and it may be confidently asserted that none of these eight forms of proposition expresses anything that we ever really mean when we make a judgement (though some express, in 'portmanteau' fashion, what we mean when we make two judgements); and that the reason why we ought not to express in our proposition whether we mean all or some before the predicate, is that we mean neither.

Let us take an \boldsymbol{d} proposition. It used to be atated 'All X is Y ';
[we are told to state it 'All X is some Y '. $A l l$ men are some [wortals: which mortala are they? the horses? the grase of the field ? clearly not, but only the men. Yet it can hardly be meant by the proposition, that all men are men; it is somothing about men that the proposition tells us. What about them? that they die, and not which kind they are among the kinde of things which die; we know that they are men slready, and that need not be repeated in the predicate.

But there is a difference between saying that all men are all mortals, and raying that all men are some mortala; the first implies that the terms are commensurate, that there are no mortale but men : the second that men are mortal, but an undetermined range of objects (cats and doge and horses and asses and what not) are so besides. Ought not this differences to be expressed ?

Doubtless, but it requires enother proposition; $4 l l$ men are mortals - oome mortals are not men. In recognizing that men die, we do not judge that any other hind diee; and though we may be aware of it when we say that mon die, it is no part of the judgement men die. There is much that we are aware of when we judge that men die, beaides the content of that judgement-that the gun is shining, for example, or our feet sching; yet nobody would ouppose this to be included in that judgement, merely because we are aware of it in making the judgement. There is no more reason to suppose the faot that other creatures besides men die to be included in the judgement all men are morial, because we are aware of it in making the judgement. All men aro nome mortale is not one judgement, but a 'portmanteau' propoeition-two judgements expressed in what (in respect of its grammatical form) is one sentence.

It is true that in some judgements we expressly think the predicate and the sabject to be commensurate. In a definition, we must do this. Momontwm is the product of mase into velocity: wealth is that which has value in exchange; in these cases, it is included in our thought that the product of mass into velocity is momentam, or that which has value in exchange, wealth. But such jodgements are ill expressed in the form ' All X is all Y '. We do not think of all momenta, all samples of wealth, but of wealth and momentum each as one thing. Again, the formula ' All X is all Y ' makes us think of X and Y as different thinga: whereas the whole force of a definition is to assert that the subject and predicate, the thing defined and the definition of it, are the same thing.

There are propositions whose terms are known to be commensurate, but which are not definitions, such as all equilateral triangles are equiangular. These also we are told to represent in the form 'All X is all Y^{\prime}, and to asy that all equilateral are all equiangular triangles. But this does not correctly exprese the true meaning of
[the other proposition. For granted that in enuncisting it we are aware that the terms are commensurate: what we wish to assert is the matual implication of two attribates in the triangle. It follows from this that every tringle exbibiting one exhibits the other; bat those which exhibit one are not a different set of triangles from those that exhibit the other. By putting a mark of quantity bafore the predicate as well as before the subject, we make it appear as if the extension of one term whe affirmed of the extension of the other, and (if we consider individuals) as if the individuals denoted by one term were affirmed of the individuals denoted by another. Bat that is either impossible, if the individuals are different, or tautologous, if they are the same.
'All' can be no part of any predicate, except where (as in these are all the apostles) the subject is collective. If the universal jadgement 'All living things reproduce their kind' is true, then it is true of any living thing and therefore of peas. I may introduce ' perfectly' into the predicate, and then it will be true that peas reproduce their kind perfectly. But I cannot introduce 'all' into the predicate. For then, since all living things are all things that reproduce their lind, peas would be all things that reproduce their kind; and that is nonsense. The predicate of a judgement is affirmed distribatively of each that falls ander the subject; the predicate quantified by all could be only true of the subject collectivaly. No equilateral triangle is all equiangular triangles; how then can they all be? The proposition only means that all equilateral triangles are equiangular and cice vorsa. As before, it is a'portmantean' proposition, and not a single judgement.

The U form of proposition hes been considered at some length, because it is in a way the most plansible member of the series. Universal judgemente whose terms are commensurate do differ from those whose terms are not, and do form a very important clese of judgements; and there is no special recognition of them in the ordinary fourfold classification of jodgemente (A, E, I, and O). It has been wrongly alleged that Aristotle ignored such jadgements; on the contrary, he recogaized their great importance in acience. To romedy this supposed omission the doctrine of the quantification of the predicate offers us an entirely false analysis of them, and one which Aristotle himself exposed. ${ }^{1}$ The analyais overlooks altogether the

[^122][interevion of terma. Professing to complete what is defective in the current recogrition of different trinds of proposition, it leaves important differencee itself unrecognized. We have meen that a proposition of the form ' All X is Y ' represents two kinds of judgement essentially different in thought, according as it is really universal, meaning ' X es such is Y^{\prime}, or only onumerative, meaning ' All the X 's are Y '. Of this difference, whether in anivenal judgements whose terms are commensarate (U) or not ((4), this doctrine takee no note; bat sets up insteed two kinds which miarepresent our thought by the sign of quantity prefired to the predicate.

The particular affirmative propositions may be dismiseed brieflyWe are told that 'Some X is Y ' should be written either 'Some X ' is some Y ' or 'Some X is all Y '. Take the former, 'Some X is some Y^{\prime} : we ask immediately, which X are which Y ? and the only answer is that the X that are Y are the Y that are X. Some sowers reap; if that means some sowers are some reapere, this can only mean that the sowers who reap are the reapers who sow. Take the latter, ' Some X are all Y '; come animale are all the pige (for it doee not mean, are all of them pigs: as we might my that some families all squint, meaning that all the members of some familien squint). Which animals are all the pigs? surely only the pigs themselven. If it be said that the proposition means that there are more animals than pigs, then the real subject of the jodgement is the other animals (which are not pigs), and not (as this form pretends) the animale which are piga. If, again, it be axid to mean that all pigs are animale and nome animals are not pigs, than as before we have two judgements pecked into one eentence. What is one jadgement, and what is the character of a judgement, are questions to be determined by considering our thought, and not the verbal devices we adopt to express it. To thinkt that all pigs are animals, and some animals are not pigs, is to judge not once bat twice, even though we were to write such a pair of judgements in the form some animals are all pige.

To the negative judgement also the quantification of the predicate does violence. The universal negative is to appear in the two forms ' No X is any $Y^{\prime}(E)$ and 'No X ' is come $Y^{\prime}(\eta)$. The former may stand; for as we have seen, if X is not. I; it is not any

[^123][case or kind of \boldsymbol{Y}. The latter may well puzzle us. It denies of \boldsymbol{X} some part of the extenaion of \boldsymbol{Y}; pig, for example, is part of the extension of animal, and sheep are not pigs; bence sheep are not come animals ; but this is quite consistent with their being animale. ' No X is some Y ' is therefore consistent with 'All X are Y ', and what it means is that 'Some Y are not X '; whether any X are Y or not it leaves doubtful. There remain the particular negatives, 'Some X is not any Y ', and 'Some X is not some Y '. Again the former will stand; but what does the latter mean? It does not mean that some X is not Y at all, e.g. that some animals are not piga at all, but are something quite different (esy sheep or cows) ; for that is expressed by the form 'Some X are not any Y '. It can only mean that there are some Y 's distinct from some X 's: i.e. that though eome X may be Y, they are not every Y. 'Some murderers are not caught' is sense ; but 'Some murderers are not some caught', if aense at all, is only true because fish and cricket-balla are aloo caught, and some murderers are not these ; so that if the proposition were to be false, they would have to be fish and cricket-balls and everything else that is ever caught; it is the contradictory of the impossible judgement 'Some X in all Y '. Buf as we never make that judgement, we never want to contradict it; yet these are forms of judgement which thoee who would quantify the predicate condemn Logic for hitherto ignoring. ${ }^{\text {. }}$

Thus all the eight forms of proposition with quantified predicate have been found vicious, except E and O; and these are so interpreted as to lay undue utreen on the appect of extenaion in the predicate. The trath is that if we prefix to the predicate of a proposition a mark of quantity, all or some, we are bound to think of the various individuals (or apecies) charecterized by the predicate, not merely of the character, or 'universal ' : we are bound to take the predicate in extension, and that we cannot really do. We cannot predicate of the extension of one term the extension of another. If a set of individuale, or of apecies, forms the subject of a judgement, another set cannot form the predicate. 'All X is some Y ' is meaninglese 'Some Y ', we are told, means ' part of the class Y '; but which part is X ? Let the class Y be divided into two parts, X and Z; we do not need to say that X is the former part ; it is false to say that it is the latter.

[^124][Still, it is unged, the judgement compares the extension of two classes. 'All X is all Y ' means that the class X and the clasa Y are co-extensive: ' All X is some P^{\prime} 'means that the class X is included in the class Y, which extends beyond it. But if the class X and the class Y are coextensive, how are they two classes? Taken strictly in extension (as the doctrine of the quantification of the predicate take ita terms) the cless X and the clam Y are not the common character X and Y realized in many things, but the set of things in which this charseter is realized. If the class X is the things in which the common character X is realized, and Y is realized in the same things, then there is only one class or set of things, and no mmparison between two classes; so that, after all, we have the class X, and predicate the character Y of them, i.e. we do not take Y in extension. And if the class X is included in the class Y, what does that mean? Suppose that all Y 's were collected in one place, all X^{\prime} s would be found in the crowd ; then, when we said that all X in some Y, we should mean that all X were incladed in the crowd of I's. But now our predicste is no longer Y, and has become 'included in the crowd of r_{s}^{\prime}. We must quantify that if all predicates are to be quantified, and state whether all or part of what is incladed in the crowd of Y^{\prime} ' be meant. Clearly part; so that our judgement will run ' All X are some things included in the class Y (or crowd of $Y^{\prime \prime}$ e) '. But which things so included are they? as before, themselves, the X^{\prime} '. If this answer be not accepted, and it be said that nome means 'included in the class of ', then our new judgement must run 'All X are incladed in the class of things included in the cless I^{\prime}. But now the last eleven words become the predicate, and it must again be quantified; we must say 'All X are some things included in the class of things included in the clase Y^{\prime}. So the process poes on ad infinitnm. You cannot predicate of one class the whole or part of another. You may compare the extension of two classes: e.g. when we eay that male infanta are more numerous than female; but then one class is not predicated of another; female infants do not include male infants and extend beyond them. You may predicate a genus of a species, and the genus as compared with the opecies has a wider extension ; but it is not the extension of the genas which you predicate of the speciee, nor any part of it.

It may be thought that in discussing the quantification of the predicate we have been belabouring errors too trivial for notice. No one, of course, really supposes that the act of jodgement means any of these absurdities. But many people have supposed that a judgement compares the extension of two terms, or inclades a subject in or excludes it from a class; and they think of a clese as no many thinge or kinds of thing. Such views imply the absurdities that have been dragged to light; and the cuatom of elucidating the relation of terme in a judgement by the relative position of circles on paper,
[outside eech other, one inside the other, or with s common eegrent, tonds, sa has been and before, to make us think wrongly about a judgement precisaly in the direction of theee absurditiee. It is of great importance, in epeaking of the distribation of tarms (as we shall have to do frequently when examining the ayllogism), not to suppose that the terms of a judgement are all taken in extension, and that we are alway: identifying and distinguishing all or part of what our terms denote. The doctrine of the quantification of the predicato flourishee upon this mistake, and a thorough examination of that doctrine is a good prophylectic meseure. ${ }^{1}$]
${ }^{1}$ Arebbichop Thomnon (Laves of Thought, pp. 187-189), though not conteating the doctrine of the quantification of the predicate, axcludee the forms of proposition η and - ('No X is some $Y_{\text {; }}$ ' Some X is not some Y^{\prime} ') on the ground that though conceivable they are not actual canes of negative predication. "It it not inconceiveble that a man ahould ma"No birde are come saimale" (the q of the Table), and yet auch a judgement in never ectagly made, because it has the cemblance only, and not the power, of a denial. True though it is, it does not prevent our mahing another judgement of the affirmative hind, from the aame tarms; and "All birds ara animals" is also true. Though such a negative jadgement is concaivable, it is uselem; and feeling thia, men in their deily conversation, aswell as logician in their treatiset, have proseribed it-But the fraitleanen of s nogative judgement where both terms are particular is even more manifent; for "Some X is not nome Y " is true, whatever termin X and Y stand for, and therefore the judgement, as preauppoeed in every case, is not worth the troable of forming in any particular one. Thus If I define the composition of common malt by enying "Common malt is chloride of sodinm", I cannot provent another maying that "Some common alt is not anme chloride of sodium ", becanse ho may mean that the common aslt in this alt-cellar is not the chloride of sodium in that. A judgement of this eort is apurions upon two grounds; it denien nothing, becmase it does not prevent any of the modes of affirmation; it decides nothing, inamuch an ita trath is prempposed with reference to any pair of conceptione whatever. In a lint of concaivable modes of predication, theme two are entitled to a place.' In this pasage, the ridiculone nature of η and - is ercellently ahown; and the observation that they have the eemblance only and not the power of a denial is very just. But how then can they be negative judgementa? A negative judgement is an act of thought that denice, not e sentence that looks negative on peper. It may be noticed that not only can we asy 'Some salt is not come chloride of sodiam', but with equal truth 'Some salt is not some nalt'. Now that means 'One piece of alt is not another' : a perfectly 'conceivable mode of predication - -only, there is no quantification of the predicate in it. It is trae that there is a difference for thouglt between diatinguiahing individuals from one anothar, and denying an attribute of a subject: a difference which eacapes in the common aymbolic form ' X is not \boldsymbol{Y}^{\prime}. The difference arises through the content; for we cannot think and judge sbout the relation between individana so wo think and judga about the relations between universale, or of attribates to a rubject. Hence it is by something of a fietion that we inclade all powible judgemente under four forme A, E, I, and O : the fotion being that singulare may be treated an univereal. It is well to bear in mind that the form of judgement is really different (although the difference comes through the matter, as was just now atatod; for form and matter, wo may repeat, are not rigidly

We may paes now to the opposition of propositions or judgements.

Propositions having the mme sabject and predicata, but differing in quantity, or quality, or both, are said to be opposed to one another. The four forms of proposition A, E, I, O admit four kinds of opposition among them.

1. $\boldsymbol{A}-\boldsymbol{E}$. Where the propositions differ in quality, and are both univeral, they are called oontrary to each other: everything in Aristotle is true, modhing is Arivtolle is true are contrary proporitions. ${ }^{1}$
2. $I-O$. Where they differ in quality, and both are particular, they are called eab-oontrary : a.g. some thinge in Sristolle are trme, some things in Aristotle are mot tree.
3. $\angle-O, E-I$. Where they difeor both in quantity and quality, they are called oontrediotery: e.g. everything is dristofte is true, some things in dristodte are not true: mo

4. A-I, E-O. Whare they differ in quantity but not in quality, they lue allled subaltarn : a.g. overyding in drietoth is true, wome thinge in Ariolotle are trwe: mo Mmowhean feare death, come Mreendmave do not fear dealh.

Contrary and contradielory are terme in common use, though somotimes treated es equivalent; the origin of the tarms auballern
ceparated, like emould and the jolly in it, ∞ an that the form is the mame whether the terma are aingular or anivoral); yet for cartain parpoeen in the theory of ayllogism we need not sttend to the diference. But the real variety in the form of our jadgomenta in not recognized by quantifying the predicate: a procen which, iastond of bringing out the trae feateres of thought, dibtorts and falcifies aven the commoneat jodgemente.
${ }^{1}$ Contrasies are what stand furtheat apart apon a acale of some hind-rd mincora Ruomadon is rí airip xime: m white and bleck on the scale of illumination, higheat and loweat on the soale of olevation, or of pitch, \&e. Contrary propositions are thome which stand furthest apart on the acale of quantity : one amerting that to be true of all which the other amerte to be tras of none. The notion of contradiction belonge properly to judgemente only, and not to terms, though mometimes tranterred to the latter, A and not- Δ (blue and not-blue, te.) being called contradictory terme. But we have seen that mere not- \boldsymbol{A} in no torm at all : there muat be some poritive content. (See however Bradley, Logic, p. 119, for the view that all diaparate or incompatible termas abould be treated as contraries: e.g. blive and red. ' In logic the contrary ahould be imply the diaparate.')
and anb-contrary may be seen in the above-given, and ancient, "diagram of opposition'. I is placed under A, and O ander E, for the same reason that in setting out a cleasification we place the species under the genus: the wider includes the narrower under it : 4 and I, \mathcal{B} and O are called subaltern, because in each pair one is subordinated to the other: I and O are called sub-contrary, because they are subordinated to the contraries A and E, their respective universale.

It will be observed that in order to overthrow an universal proposition, effirmative or negative, it is only necessary to establish. the particular negative or affirmative; that everything in Aristotle is true is refuted by showing something in his writings false; that nothing in Aristotle is true, by showing something true. We contradict the affirmation 'All men are liars' by saying 'not all', not by saying 'all not'. But of course the greater includes the less, and we refute a proposition by establishing its contrary, as well as by establishing its contradictory. In common speech therefore we are said to contradict a proposition when we advance another whose truth is inconsistent with that of the first, whether it be the contrary or the contradictory; and since the contrary imputes more error than the contradictory (for if a man tells me that all animals reason, I impute more error to him by replying that none do, than that some don't) it may in a aense be said to contradict more fully. It is, however, convenient to have different words to mark the relation of A and E to each other, and their relations to O and I reapectively; and Logic confines the title of contradictory opposition to the latter.

Given the truth or falsity of any proposition, we can see at once which of the opposed propositions mast be true, which false, and which (upon the information given us) remain doubtful. For contrary propositions cannot both be true, and therefore if A is given as true, E must be false, and vice versa : but they may both be false (for it is not necessary that either all babies should be dimagreeable, or else none of them), and therefore if one is given as false, the other remains doubtful. Contradictory propositions cannot both be trae, but neither can they both be false; and therefore if A, E, I, or O is given as true, O, I, E, or A mast reapectively be false, and vice versa. Subaltern propositions may both be true, or both false, or the particular may be true while
the universal is false; but the particular cannot be false while the nniveral is true, for the grester includes the less; bence given the trath of A or B, I or O is true, and given the falsity of I or O, Δ or E is false; but given the falsity of A or E, I or O remains doabtful, and given the truth of I or $0, A$ or E remains doubtfal. Sub-contrary propositions cannot both be false (for in that case their respective contradictories, which are contrary to one another, would both be true); but they may both be trae, just as contraries may both be false; hence given the falsity of I, O is true, and vice verse; bat given the truth of $1, O$ remains doubtiful, and vice versa.

Of two contrary or of two contradictory propositions one may be advanced againat the other, i.e. we may deny one, and advance the other in its place; and of two subaltern propositions, the particular may be adranced against the universal. If any one said 'Some animals reason', we could not answer 'No, but all do'; but if he said, 'All animals reason', we could answer, 'No, bat some do : Sub-contrary propositions, on the other band, cannot be advanced one against the other. 'Some animale reason': we cannot retort, 'No, but mome don't'; 'Some animals don't reason': we cannot retort, 'No (i.e. that is false), but some do'. We may indeed, to the staternent that some animals reason, reply, ' Yes, but come don't'; and to the atatement that some animals do not reason, 'Yes, but some do'. In these cases, however, the particular proposition 'Some don't reseon', or 'Some do reason', is advanced not againat ita eub-contrary, 'Some do reason' or 'Some don't reagn', but against the universal proposition 'All reason' or ' None reason': which it is feared we might otherwice be supposed to allow, when we admit that some reason, or that some do not. Hence it hae been urged that we ought not to epeak of sub-contrary propositions as opposed ${ }^{1}$, nor include them in a list of the forms of opposition; but if they are not opposed, they are anylow contrasted, and that may justify their continued inclasion. Given the trath or falsity of any proposition, the step by which we pase to the perception of the trath, falsity or doubtfulness of its soveral opposites is in the strictest sense formal. It depends in no way

[^125]upon the special content of the proposition, bat solely upon the noceseary relations, according to their quantity and quality, in reapect of truth and falaity, between propositions having the eame subject and predicate. And since no other information need be given, except whether the one proposition in true or false, in order that we mey determine the trath, falsity, or doubtfalnees of the remaining three, the procese of inference (if inference it is to be called) is immodiate.

CHAPTER X

OF IMMRDIATE INFERENCES

Inpsrance is a procese of thought which, starting with one or more juidgements ${ }^{1}$, ends in another jodgement made necesary by the former. The latter, which, in relation to the jodgement or judgements from which the proces starts, is called a conclusion, mout, as compared with them, be a new judgement; to ropeat in fresh words our original statement is not inference, any more than tranalation is inference. For the most part a nev jadgement is only got by putting together two judgementa, and an it were extracting what they yield. But there aro a few concluaions which we appear to draw not from any 'putting together' of two judgements, bat simply from the relation to one another of the terms in one judgement. This is called immodiate inference, etymologically becanse (in contrat with ayllogism ${ }^{2}$) it proceede witbout the use of a middle term: bat, to put it more generally, becanase we seem to proceed from a given judgement to another, without anything forther being required $n a$ means of paesing to the conclasion. ${ }^{3}$
It wee mentioned at the ond of the leat chaptar, that when we infer, from the trath or falgity of a given proposition, its varions opposites to be true, or falee, or doubtful, we perform an aot of immediste inference. We have now to consider other forme of immediate inference, of which the principal are Convercion, Permulation (or Obversion) and Contraposition.

[^126]A proposition is converted, when ite subject is made the predicate, and vice veras, its quality (affirmative or negative) remaining unchanged : as, for example, when from ' No true Mussulman eats poric' we pase to 'No one who eats pork is a true Mussalman'. The original proposition is called the conoertend, and the new proposition ite concerse.

Whether, and in what way, a proposition can be converted, depends on ita form, A, E, I, or O^{1} : because the procese of converaion is invalid, unless it conforms to the following rule, that no term may be distributed in the converse, which wae not distributed in the convertend.' An 1 proposition in converted by limilation: an E or an I proposition rimply : and an O proposition not at all except through first permuling it.

A proposition is eaid to be converted amply, when the quantity of the converse is the eame with that of the convertend. In an univeral negative proposition (E) both terms are distributed; in a particular affirmative proposition (I) both are- undistributed. Therefore their mutaal subetitution in the process of aimple conversion does not distribute any term that wee not distributed before. Thus E, no X is Y, becomes E, no Y is X : e.g. 'no lewyers are parsons'-' no parsons are lawyers'; 'no true poet admires Macauley's Lays' - 'no one who admires Mecanlay's Lays is a true poet"'; 'no snakes auckle their young'-' no mammals are makes ''; 'Chatham is not the youngar Pitt'-' the younger Pitt is not Chatham'.

Again, I, some \bar{Y} is \bar{X}, becomes I, some \bar{X} is \bar{Y} : e. g. 'some diamonds are bleck '-'some bleck stones are diamonds'; 'some ever-

[^127]green abrube flower brilliantly'-‘some brilliant flowering shrabe are evergreen'; 'some victories are more fatal than defeat''some events more fatal than defeat are victories'.

A proposition is anid to be converted by limitation, or per scoidenn, when, it being universal, ita converse is particular. In an universal affirmative proposition Y is predicated of all X; bat it may attach to other subjecte equally, P, Q, and R; therefore what is Y need not be X, and we can only say that some Y is X, not that all Y is X. To use the lengrage of distribution, the cubject is distributed, the predicate not: if we meraly subatituted each for the other, the original predicate, become the subject of an aniversal proposition, would be distribated; for 'all roses are deciduous' we should have 'everything deciduous is a mpes'. We must therefore limil the extent to which we affirm our original subject rove of our original predicate decidwows; and hence such conversion is ealled 'conversion by limitation'. So A, all X is Y, becomes I, some Y is X : 'all men are mortal'-'some mortals are men'; 'all Roman priests are celibate '-'some celibates are Roman priests'; 'all isoccelen trianglee have equal angles at the base'- 'some triangles with equal angles at the base are isosceles '.?

In the last example, any one who knows geometry will be tempted to convert simplieiter, and say that all triangles with equal angles at the base are isouceles. He would not be wrong as a geometrician ; bat he would need a knowledge of geometry, and not merely of logic, to justify him. In conversion, we look solely to what is justified by the fore of the proposition to be converted, be it A, E, I, or O; in this reapect 'all isoscelea trianglea have equal angles at the base' is indiatinguighable from 'all isoecelea trianglea have angles equal to two right angles'; the geometrician knows that it does not follow from the latter, that all triangles having anglea equal to two right anglee are isoscelee; neither therefore does it follow logically from the former, that all triangles having equal angles at the bese are isoecelea. The form of proposition ' all X is Y ' only justifies a conversion to 'some Y is X '; in order to convert to ' all Y is X ' we must know that X and Y neceesitate each other, or that there is nothing accidental in the relation between them; this is not implied merely in the one being prodicable of the other, becanse the relation of a predicate to ita subject

[^128]may be either accidental or essential. It must at the least be accidental, and therefore from its bare form, we are entitled to convert an 4 proposition as if Y were an accident of X; but we are not eatitled to do more. For this reason, conversion by limitation is oalled conversion per accidews ($\kappa a r d \sigma_{0} \sigma \mu \beta e \beta \eta \pi \delta s$); if Y is an eccident of X, i. e. coincides in the same individan subjeot with X, then X is predicable of a subject which Y characterizes, and we may any that some Y is $X .^{1}$

In a particular negative proposition (0), the subject is undistributed, the predicate distributed; if here we substituted each for the other, the original subject, become the predicate of a negative proposition, would be distributed in the converse. And since the predicate of a negative judgement cannot, like the subject of a jadgemont, be limited by a sign of 'particular' quantity, an O proposition is not convertible, except by negation : a process which will be explained later (p. 215). This is not always reslized, when we use symbols, and forbid the passage from 'some X is not Y ' to 'some Y is not X^{\prime}; for it is quite possible that both of these propositions may be trae at once : e. g. come freemasons are not freethinkers ${ }^{2}$, and some freethinkers are not freemacons. But although 'some X is not Y ' and 'some Y is not X ' may be true at once, yet we are not justified by the form of the one in peasing to the other; and this becomes obvious by comparing such an example as the last (where both propositions are true) with another, where the converse is manifestly false: e.g. 'some men are not monke'-'some monks are not men'. In form the two propositions ('some freemasons are not freethinkers' and 'some men are not monks') are

[^129]the same; and therefore formally the conversion must be invalid in the former case, since it is invalid in the latter.

It is indeed impossible, in converting a proposition, to treat the termequita like oymbola, and to proceed solely by the consideration of the dirtribation of the terms in the convertend, without considering what the tarms are. In an E proposition, for example, if both terms are proper names, the act of conversion is felt to be different from what it is where the sabject is a general concrete term and the predicate attribative: in passing from 'no judge has any right to meddle in politice' to 'no one who has any right to meddle in politica is a judge', the character of the jadgement alters in a way that it doee not, when we paes from 'Chatham is not the younger Pitt' to 'the younger Pitt is not Chatham'. It is not matural to eang 'no one who has any right to meddle in politics is a judge'; and though it is natural enough to eay 'no one who meddles in politics has any right to be a judge', this is not the converse of the proposition with which we started. It is equally natural to say 'Chatham is not the younger Pitt' and 'the younger Pitt is not Chatham': eccording as we are discoursing about the one or the other; for two individuals atand as it were on the same level in thought, and each may indifferently be distinguished from either. Bat our rights depend apon our poesition, and not vice verse; so that it is natural to deny certain righto to a man filling a certain position, but not to deny the position to a man ponessed of those righta. Other examples of the same thing might be given. A proposition both whose terms are singular is called an A proposition, but it cannot be converted per aceidene: 'Chatham is the elder Pitt' can only become ' the elder Pitt is Chatham'. If the subject is and the predicate is not a singular term, conversion is a form without meaning; 'Chatham was eloquent' becomes 'an eloquent man was Chatham ', and however we may write it, the latter means just the same as the former; we cannot predicate Chatham of 'an eloquent man', for this is a general term, and that s aingular. Again, ' Demosthenes and Cicero were the greatest orators of antiquity' becomes 'the greateat orstors of antiquity were Demosthenes and Cicero'; wecannot any 'some greatest orators of antiquity were Demosthenes and Cicero' without altering the force of the term 'greatest orators' from comparative to positive. 'Some men are Christians' is a proper, 'some Christians are men' an improper
mode of epeech; religion can belong only to men, and we do not predicate of an sttribate partially the subject presuppoeed by it. A difficulty arises again in a proposition not univereal where some mensure is given of the axtent to which the prodicate characterizes the subject, e.g. by using such wordes as 'many' or 'few'; 'moat great men have been of obecure origin ' cooverts to ' eome men of obscure origin have been moot great men '; but no one would ever nay this, for the mesoare 'most' applien to 'great men' e a taken in extension, and therefore cannot be predicated of ' men of obscure origin'.
It would be absurd to eay that as conversion is a strictly formal process, we mast therefore convert propositions by ite rales, according to their form as A, E, or I. Logic investigates the actasl nature and procedure of our thought; and when we find that our thought is not governed by the bare form of a judgement irrespective of its content, it is no use to pretend otherwise. The converaion of propositions may be stadied formally, with symbole for terms; but when real terms replece the symbols they must affect the judgement, and our treatment of it in conversion; for example, symbols, like X and Y in the proposition 'no X is Y ', are always regarded as general terma, bat the actanl terms need not be general. This is said, not in order to disecredit the abstract and formal treatment of converstion, which is sound within its limita ; bat in order to emphasize the fict that the form and matter (or the form and content) of thought are not capable of separate consideration, like the mould and the padding : what from one point of view in form is from another matter, and the eame form in different kinds of content is not altogether the same, any more than is the same genua in different speoies. The importance of this frot mast excuse the reiteration of it; meanwhile in a tertbook of Logic, as of any other acience, wo must consider typical cases, with a general cavoat that the subject is thereby artificially simplified.
In conversion, the aubjeot and predicste were tranoposed, but otherwise unaltered, and the quality of the proposition remained the same. In Pormatation, or (as it has been aloo called) Obreradon ${ }^{1}$, there is no traneposition of terms, bat the quality of the pro-

[^130]position is changed, and the predicate at the amme time replaced by its contradictory. It consista in fact of substituting for an affirmetive or negative proposition an equivalent negative or affirmative of opposite quality, by means of negating the predicate.

Thus-
A, All X is Y, becomes E, No X is not- Y : All right angles are equal, No right angles are unequal; Barkis is willin', Barris is not unwillin'.
E, No X is Y; becomes A, All X is not- Y : No dogs allowed, All dogs forbidden; Lear is ngt mad, Lear is not-mad.
I, Some X is Y, becomes O, Some X is not not- Y : Some stretches of the road are level, Some stretches of the road have no gradient.
0 , Some X is not Y, becomes I, Some X is not- Y : Some learned theories are not sense, Some learned theoriee are nonsense; Some ewane are not white, Some swang are not not-whita.
Further traneformation of a given proposition may be effected by a combination of Conversion and Permatation. The procese of permuting and then converting is called Converaion by Nogation. The conclusion so obtained may be converted again, and this process of permating, converting, and permuting is called Contreporition.

All forms of proposition axcept I can be converted by negation; the process is inapplicable to I, becanse it becomes O by permutation, and a particular negative, as we have seen, cannot be converted. For the same reason I cannot be contraposed.

In converviou by negation-
4 becomes $E:$ All X is $Y \therefore$ No X is not- $Y \therefore$ No not Y is X. All scids turn blue litmus-paper red \therefore No scide do not turn blue litmus-paper red \therefore Nothing thet does not turn blue litmun-paper red is an acid.
E becomen $I:$ No X is $Y \therefore$ all X is not- $Y \therefore$ Some not- \boldsymbol{Y} is X. No stimalant nourishee \therefore All etimulanta are innutritions, \therefore Some things innutritions are atimulanta.
0 becomes I: Some X is not $\boldsymbol{Y} \therefore$ Some X is not- $\boldsymbol{Y} \therefore$ Some not- \boldsymbol{Y} is X. Some rea-animals are not vertebrate \therefore Some sea-animals are invertebrate \therefore Some invertebrates are sea-animals. Some thinga necenary to life have no market-
value \therefore Some things that have no market-value are necesmary to life.
This is the only way in which a partioular negative can be converted.
In contraposition ${ }^{1}$ -
4 becomes 1 : All X is $Y \therefore$ No not- Y is $X \therefore$ All not- Y is not-X. All Arabe are hoopitable \therefore. All who are not-hospitable are not-Arabe.
E becomee O : No X is $Y \therefore$ Some not- Y is $X \therefore$ Some not. Y is not not-X. No unfriendly man is happy \therefore Some who are not happy are not friendly.
O becomes O : Some X is not $Y \therefore$ Some not- Y is $X \therefore$ Some not- Y is not not-X. Some reformers are not radicals \therefore Some who are not radicale are not not-reformers (are not opposed to reform).
The above procesees, when worked in symbols, might be supposed to be equally applicable to all judgementa. But when we apply them to concrete eramples, we see at once (as with Converrion) that it is not es. It is indeed often convenient in discourse to make what was predicated of a subject iteelf the subject and atartingpoint in our predication, or to lay atrees on the affirmative value of 2 negative, or the negative value of an affirmative statement. But the use of these proceses is limited in part by the idiom and vocabulary of the language, in part by the logical character of the terms in the jadgement. The permatation of I to O looks almost ridiculous in symbolic form; bat where there exist two terma, the affirmation of one of which is equivalent to the denial of the other, there the proces is in practice perfectly natural. No one would pees from 'Steam is invisible' to 'Steam is not not-invisible'; but he might naturally paes to 'Steam is not visible'.
Contraposition, as involving the largeat number of atepa, and employing permatation twice, may reem to lead to the leant natural modes of expression. For permatation introduces 'infinite' terms, not- Y and not- \bar{X}; and infinite terms do not ordinarily figure in speech; so that unless we can subatitute a term that is not infinite in form, our result seems fantartic. Bat we may see that

[^131]the process of thought involved in contraposition is a common one, (although the mode of expression may be awkward) if we look at it from the point of view of hypothetical judgement. Given that all lovers are jealons, it is poesible to infer that all the not-jealous are not-lovers. No one would, however, express himself thus. But the original proposition, if it is a true universal, states a necessary connexion between the predicate and the subject; it involves the proposition that if any one is a lover be is jealous. Therefore, if any one is not jealous, he is not a lover; and thin is an inference quite naturally expressed. 'If anything is X, it is $Y \therefore$ if it is not Y, it is not X^{\prime}; we have here precisely the same inference as in the contraposition of A, 'All X is $Y \therefore$ All not- Y is not- X.' We may interpret in a correaponding way the contraposition of E and O, if we bear in mind the model or problematic force which may belong to the particular judgement. 'No X is Y ' will mean, ' If a thing is X, it is not Y^{\prime} : from this we cannot, however, infer that if it is not Y it is X; if a man is insufficiently fed, be cannot do a proper day's work; but it does not follow that if he cannot do a proper dey's work, he is insufficiently fed; this may or may not be so. Hence we can only infer that ' If a thing is not Y, it may or may not be X ': and that ie the force of 'Some not- Y is not- X ', regarded as a modal particular. Similarly with O; 'Some X is not Y ' will mean, ' If a thing is X, it may or may not be Y '; from which it follows that 'If a thing is not Y, it may or may not be X^{\prime}.
[The operations whose formal character has been considered in this chapter are called Immediate Inferences; but we have seen that one of them, Permutation, used to be regarded as belonging to the subject of Equipollency of Propositions, and J.S. Mill ${ }^{2}$ is not alone in so regarding them all. In his view we have been dealing merely with equivalent propositional forms ; the processes are 'inferences improperly so called'; and indeed they have once or twice been called trangformations in the course of the text. Thus conceived, they would belong rather to a stady of language than to Logic. We must therefore consider whether there is really any inference involved in them or not. ${ }^{*}$

We must at the outset bear two things in mind: firstly, that in all inference there must be come movement of thought; we must conclude with something not quite the same as what we started with; though the obvioumess of the inference is no ground for

[^132][denying that it is inference. Secondly, that the eame form of proposition, d, E, I, or O, may be diverealy intended, and exprese dififerent judgementa, so we have already seen. I, for example, the particular affirmative, may be intended to aseert the compatibility of attribates, or to make a statement about unnemed individuala. If I say that come cities are episcopal sees, I may either have in mind particalar cities not named, eay Durham, Winchester, and York, and make my assertion about them; or I may wish to affirm generally that the atatus of a city and an epiecopal aee are compatible. In the former case, Darham, Winchester, and York are thought of for their own eake; in the latter, as instances establishing the judgement. We may say that a proposition, taken as making an assertion about individaals, whether these are specified by name, or indicated as some or all of a speoifieal kind, is intended hietorioally; when it is taken as amerting a relation, whether of compatibility or of neceemary connexion (or separability or necessary disconnexion) between universalo, that it is intended ecientifically. We ahall find that the presence of inference, in come of the proceses which we have to examine, depends on there being a traseition from one to the other of these modes of underatanding the proposition.

In the conversion of d to J, if convertend and converse are both understood historically, or both scientifically, there is no inference. All rumizante part the hoof \therefore some asisuale that part the hoof ruminalo. If by the former statement I mean that various apecies, which I could enamerate if I had leisure, but prefer to designate as all ruminants (i. e. all the ruminanta), part the hoof, then I must know in making it that thoee cloven-footed species ruminato. The subjects of my thought are cows, staga, and camels, and so forth; I affirm that they part the hoof; but I have recognized that they are all the ruminants, and can be so deeignated. In the converse, I am atill thinking of the ame animals; I derignate them as cloven-footed, which I previously affirmed them to be; and I sffirm that they ruminate, which I had previously recognized. It is true that my former proposition spoke of 'all', and the latter of 'some'; and it might be urged that there is inference in seeing that I am not entitled to say that all cloven-footed animals ruminate. Bat surely I recognize this from the outset; when I say that all ruminants part the hoof, I know that is not equiralent to aaying that all cloven-footed animals ruminate; it can hardly be called inference to refrain from maserting what I know I have no right to assert ${ }^{1}$; and it is to be observed that when I assert that some cloven-footed animals ruminate, I do not positively asoert thast some do not; I merely reatrict myself within the limits of what I have a right to masert.

[^133][Again, scientifically, the convertend aseerts that whatever raminatea parts the hoof; and the converse, that what parts the hoof may rominata. And I cannot know one property to be necesacrily connected with another, withoat lnowing them to be compatible, or capeble of coexisting in the same individual. There is therefore no movement of thought, no transition to anything new, in pasaing from the forreer proposition to the latter. If, again, the inference be asid to lie in the limitation, in eeeing that the right to infer a cloven foot from ramination does not involve the right to infer ramination from a cloven foot, the answer is as before; this should be known from the outset, and there is no inference in not inferring what you have no right to infor.

But now, suppose the proposition 'All X is Y ' to be understood historically, and the converse 'Some Y is X ' scientifically; them there is inference. If in fact all the ruminanta do part the hoof, then generally ramination is compatible with a cloven foot. Set out in full, the argument wonld be that cows, and staga, and camels, and so forth, which ruminate, part the hoof, and therefore an animal that parts the hoof may ruminate. But the inference is no longer immediate. It is really in the third figure of ayllogim. ${ }^{1}$

Similarly if the convertend is understood scientifically and the converse historically: because whatever rominates parts the hoof, therefore any given animals which raminate will do so, and they will be animals which exhibit both characters, so that some clovenfooted animals ruminate. This also is inference, but not immediate; for we are applying a general principle to particulars which fall under it, as in the first figure of syllogism.

The simple conversion of I is to be similarly regarded. If 'Some X is Y^{\prime} be intended historically to assert that some thinga, which are X, are Y, then it means also that eome things, which are Y, are X : to realize one statement is to realize both, and there is no inference in passing from one to the other. If it be intended scientifically, to mean that Y is compatible with X, then it already means also that X is compatible with Y. But if it be intended historically, to mean that some things, which conld be named, and are X, are also Y, and the converse be intended soientifically, to asert in general that X is compatible with Y, then there is inference, bat it is not immediate. We infer generally that Y may be X, because certain individuals are in fact both X and Y; it is not from one relation between \boldsymbol{X} and \boldsymbol{Y} that we infer another, but from the relation of both as predicates to the same third term (thowe individusls) as subjects, we infer the compatibility between \boldsymbol{X} and \boldsymbol{Y} themselves. If, however, the convertend be intended scientifically, to assert the compatibility of Y with X, then the

[^134]i is minatact [converse as an historical atatement does not follow. There is ar criutur f ing Br of the Board of Trade; the latter office is compatible with the - Whikiret Board of Trade have been Secretaries for War. w:! : crinture

With the simple conversion of E, the case seems to be different. Here, if both convertend and converse be taken scientifically, there seeme to be inference. ' No X is $Y \therefore$ No Y is X ', anderstood scientifically, means, ' If anything is X, it is not $Y \therefore$ If anything is Y, it is not X.' This inference is of the same kind as what we found in the contraposition of 4 , and shall meet with agsin in hypothetical reasoning. Again, if both be taken historically, there seems to be the sume form of inference. 'No mountain in England is 5,000 high \therefore No mountain 5,000' high is in England'; 1 am not here, as in the conversion of 4 , considering the same individuals as my subject (though starting from a different character in them) in convertend and converse. I realize that if a given mountain $5,000^{\text {high (eay the Rigi, whose height I might know bat not }}$ its situation) were in England, that would contradict the propoeition that no mountain in England is 5,000' high; therefore the Rigi cannot be in Englend; and this seems to involve hypothetical reasoning. But if the convertend be intended historically, we cannot infer the converse in its ecientific intention. Becanse as 2 matter of fact ' No o $\overline{\text { is }}{ }^{\prime} Y$ ', it does not follow, so far as we can see, that what is Y is necessarily not X. If no Sikh smokes, but this is a mere fact aboat every Sikh, it does not follow that no smoker could ever be a Sikh. On the other hand, let the convertend be anderstood scientifically, and the converse historically, and there will be inference, for the converse in ite historical intention is only reached by frrt inferring the converse in its acientific intention, and applying the universal principle so obtained to all the actual cases of Y; again, however, the convertend, as understood scientifically, fails to amsert the existence of any actual caece.

The process of Permutation involves the use of the infinite or negative term not- Y in the predicate in lieu of Y. Now we have seen that an infinito term has not any meaning at all onlees it has eome positive meaning; not- Y muat mean something else than Y. ${ }^{1}$ We have seen also that the diajunctive judgement ' $\boldsymbol{\Delta}$ is either \boldsymbol{B} or C ' does not always imply than it cannot be both. But Permutation reate upon diajunction; Y and not- Y are alternatives, and it is assumed that if Y is affirmed or denied of any sabject, not- Y can be denied or affirmed accordingly. Bearing in mind these

[^135][conriderations, we shall find that there is a cortain difference in different cases, in respect of the presence of any real inference in permutation, according to the meaning atteched to the negative term.

It is unneceseary here to separate universal and particular propositions. If we are told that X is not Y, and Y and not- Y are alternatives, one of which mast attech to it, then since it does not exhibit Y, it must exhibit the other, not- Y. We thus reach the affirmative, X is not- Y; and the question is whether that is any way different from the negative with which we ctarted.

Now we cannot deny that there is any inference in disjunctive reasoning at all. When I argue that A is either B or C, and is not B, therefore it is C, there is clearly inference; and I conld not argue that, because A is not B, it is C, unless I were given the difjunctive premiss, \boldsymbol{A} is aither B or C, as well. But in permatation, my altornatives are not two different positive terms, like B and C, but Y and not- Y. Is there any inference in aying that becanse X is not Y, it is not Y ?

It will be allowed that the conclusion would not hold unless X were either \boldsymbol{Y} or not- \boldsymbol{Y}. But it may be said that this, the 'principle of Excluded Middle', though true, is not a premise of inference. No one knows what he mesns in saying that X is not Y, unless he wees that in that case it it not- Y : any more than he can know what he means in eaying that X is Y, unless he sees that in that case it is not not-Y. If a proposition is trae, its contradictory is false; but there is'no step from the trath of the one to the falsity of the other, no movement of thought; since the trath of the one is not apprehended withont apprehending the falsity of the other.

If the infinite term not- Y were parely negative, this view of the matter would demand seeent. But \boldsymbol{Y} and mat- \boldsymbol{Y} are in practice always alternatives within some definite himits. Y may be $b l$ me, and then not- Y will be of some colowr not blue: or Y may be Englishspeaking, and not- Y speaking some language not English. And in pasaing from one of these predicstes to the other, there is inference, and we do not rely merely on the lew of Excluded Middle. 'Noble blood is not blue \therefore it is not-blue': if this means 'of a colour notblae', we require the further premiss that it is either blue or of some other colour. We thus pass from a determinate positive predicate to another predicate leas determinate, but atill positive.

If however there is no positive alternative meaning in the predicato not- Y, then indeed there is no inference, bat only equipollency. 'Steam is not vigible \therefore it is invisible' seems a mere subatitution of one equivalent expreacion for another. It follows, that we cannot tell by the mere aymbolic form whether the permatation of a negative proposition contains any real inference or not, but must look to
[the content ${ }^{1}$; and if it contains real inference, the inference is diajunctive.

The permutation of an affirmative proposition may, like this last, be no real process of inference. We pees here from ' X is Y ', to ' X is not not- Y '. It is not always possible to find in this any other meaning than that from which we started. We cannot alweys interpret not- \boldsymbol{Y} to meap ' possessed of some other of the range of altematives to which Y belongs'; if a subject must display some one out of a given range of altarnativea and does not display Y, it will display one of the others; but if it does display Y, we cannot be sure that it may not display one of the others as well. If a man holds offlice in the Government, and does not hold an office that entitles him to Cabinet rank, be must hold an office that does not entitle him to Cabinet rank; but if be does hold an office that $s 0$ entitles him, he may also hold one that does not. Equally, if not- Y is quite unlimited in range, and includes everything whatever except Y, it will not follow that becanee X is Y, it is not also not- Y; becanse we can predicate of a goose that it hisses, we are not precluded from applying any predicate but hissing. The only sense, therefore, in which it is true to say that X is not not- Y, is one in which we deny no alternative, but only deny the denial of $\boldsymbol{Y}_{\text {; }}$ and that is just equivalent to the affirmation of \boldsymbol{Y}, or at least can hardly be aaid to involve any inference from it. If however we have in mind a range of matually exolusive alternatives among which Y is one, then permatation takes us from the affirmation of Y to the denial of the rest; and this is again disjunctive ressoning, wherein the conclusion will be more or less definite acoording to the definitiveness of our knowledge of the alternetives to Y. But so far as there is inference here, there is no nse of an infinite term; where not- Y is really infinite or unlimited, the only sense in which the permutation of an affirmative proposition is logically justifisble is one in which it involves no step of inference. ${ }^{\text {. }}$

We have already dealt with Contraposition eo far as it can

[^136][be treated as a mode of inference from hypothetical propositions. It is hardly necessary to deal at length with conversion by negation. The conversion of O by negation is permutation, and then the simple conversion of I. The general result of our investigation is, that from the aymbolic form of these processes it cannot be determined whether they contain any real inference or no; that where there is real inference, it is either, as in the conversion of \boldsymbol{E} and the contraposition of A, of the lind that we shall study in dealing with hypothetical argumenta: or, as in the permutation of E and O, of the kind that we shall study in dealing with disjunctive arguments: or, $2 s$ in the ennversion of d and I, and that of O by negation, it involves suppreseed syllogism. Immediate inferences, therefore, so far as they are inferences, are not s distinct kind of inference; so far as they seem distinct, and apecially unqueationable, it is because they merely bring out another appect of what we have slready intended in s proporition, without sany freak step in thought. This resalt may throw some doabt upon the appropriateness of the name by which they have become known.]

The immediate inferences which we have considered so far have all been of a more or less formal charscter; as is ahown by the fact that they have been capable of explanation, ap to e point, by uaing symbols and not real terma. There are certain kinds of inferencea, which have been called immediate, that cannot be exhibited by symbols at all, but only in concreto. One of theee is known as Immediate Inforence by Added Determinants: in which we add the same qualification to both subjeot and predicate in a judgement, and hold the reault of our operation to be true, on the etrength of the trath of the original jadgement; a.g. 'A negro in a fellow creature \therefore a negro in suffering is a follow creatare in suffering'. Another is called Immediate Inforence by Comples Concoption : in which the sabject and predicuts of a given judgement are used to qualify in some way the aame term, and thus complex concepta are formed, that are made subject and predicate of a new judgement, e.g. 'Physics is a science . \therefore physical treatises are scientific treatises'. The following examples, some of them sound and some ansound, but the sound identical in form with the unsound, will serve to show that the ground of the soundness of these arguments does not lie in the form of them :-

[^137]The horse in an animal \therefore the head of a horse is the head of an animal.

Horsen are animals \therefore the greater number of horsea in the greater namber of animale.

A shark is not a mammal \therefore the anntomy of a shark is not the anstomy of a mammal.

A shark is not a mammal \therefore the food of a ahark is not the food of a mammal.

A ahark is not a dog \therefore the owner of a shark is not the owner of - dog.

It is not worth while multiplying argumenta to ahow how entirely the validity of arch inferences as these involves their content. It would not be poseible to reduce them to a definite number of fixed typea, though in corsidering genernlly which are valid, some of Aristotle's obeervations in the Sophistici Elenchi, eopecially thowe on what he calls the Fallecy of Accident, would be pertinent. But their mention here will serve to illustrate, what it is well to realize early, that inference is not a purely formal process; that arguments are not all built on the principle of American watches, with interchangeable parts ${ }^{1}$, so that terms from one may be transferred to another, without interfering with the working of the inference; and that the study of inference, like the stady of life, is largely a matter of examining types: though there are a certain number of common forms, which recur identically is divers contente. One of the most famons of these common forms is the Syllogiem, to which we must now proceed; it has often been regarded as the form of all inference whatever that is not 'immediste'; it is indeed highly general, and applicable to all kinds of subject-matter; though the nature even of it cannot be profitably studied altogether in the abotract, bat is to some extent affected by the concrete character of ite terms.

[^138]
CHAPTER XI

OF SYLLOGISM IN GENERAL

Aristotle, who was the first person to work out the theory of syllogism, though not, of conree, (as Locke maliciously anggenta his followers claimed) the fint to reamon ayllogistically, defines a syllogiom as follows: λ óyos dv í reOduren rivêy trapón rt rây
 'diecourse in which certain things being posited, something else than what is posited necesaarily followe on their being true'.

This definition is too wide. It covers, as the word ayllogism in its etymological signification itself covers, every argument in which from a consideration of two trathe we infer a third-overy argument in which (to use a homely phrsee) we 'put two and two together', and find a certain conclasion necewarily following ${ }^{2}$. But neither by Aristotle, when he investigated in his Prior Analytice the various forms of syllogism, nor by the world, which has followed Aristotle, has the term been actually used 80 comprehensively. A syllogism is actually an argament in which, from the given relation of two terms, in the may of sulject and prodicate, to the same third term, there follows necesearily a relation, in the way of sulject and predicato, between those two terms themselves. ${ }^{3}$

Erample will best explain what is here meant by the words italicized. If A is equal to B, and B is equal to C, then A is equal to C. If a bullet travels faster than a borse, and a horse travela faster than a man, then a bullet travelo faster than a man. Now here the terms are A, B, and C : or a bullet, a horse, and a man; but the relations between the terms are in the one case relations of

[^139][^140]quantity, in the other of velocity. A and B are not related as subject and predicate, for I do not say of A that it is B, bat only that it is equal (in quantity) to B; a bullet and a horse are not related as subject and predicate, for a bullet is not a horse; its asserted relation to a horse is in the wey of travelling faster, not in the way of being a subject whereof borse is a predicate. No doubt it is a predicate of a bullet, that it travelo faster than a horse, as it is a predicate of A to be squal to B; but then what I proceed in my argument to compare with C is B itself, and not that which is equal to it; what I sey travels faster then a man is a horse, and not what travele faster than a borse. A, B, and C, a bullet, a borse, and a man, are the terme which I compare, the former in respect of quantity, the latter of velocity; and from the given relations of \boldsymbol{A} and \boldsymbol{C} to the common term \boldsymbol{B}, in the way of quantity, I deduce a relation between α and C themselves in that reapect; or from the given relations of a bullet and a man to a horse in the way of velocity, I deduce a relation in the way of velocity between a bullet and a man.

Now the relations between the terms of an argument may be in the way of aubject and predicate; and then the argument is a syllogiem. Let us for the present use the aymbols X, Y, and Z to represent terme related in this way, Suppose that \bar{X} is predicated of Y, and Y of Z; then X must be predicable of Z. For example, silver prints fade in the sun; and the photographs which I have bought are silver prints; therefore they fade in the sun. Here the term common to the two premiseses (for such the given propositions are called, from which the conclueion is deduced) is cilver priste (Y): that is predicable of the photograpke which I have bought (Z), and of that is predicable Kafade in the ous (\bar{X}); hence Xefade in the ons (\bar{X}) is predicable of the photographe which I have lowght (Z). Or again, Y may be a predicate affirmed or denied both of X and Z; in the Dreyfus affisir, the French War Office frequently argued that the man who wrote the famous 'bordereau' was on the General Staff: Esterhazy wes not on the General Staff, and therefore did not write it ; here Y (being on the General Staff) is affirmed of X (the man who wrote the 'bordereaw') and denied of Z (Eoterhazy); and bence \bar{X} is denied of Z -Eaterhazy did not write the 'bordereau'. Yet again, \boldsymbol{Y} may be a subject of which both X and Z are predicates affirmed or denied; then X may be predicable of Z, or vice versa. The horse is atrong,
and is an animal that livee exclusively upon a vegetable diet; therefore an animal that live exolusively upon a vegetable diet may be atrong. Here we have two terme, atrong (X) and being an aximal that lives esolurively upon a vegotablo diel (Z), affirmed as predicates of the same term (Y) the horse; and we hence deduce that X, strong, is predicable of Z, am animal that lives exolxrively mpon a vegetable diel, not indeed necessarily and universally, but as a posaibility in certain casee.

These examples may perhaps explain what is meant by ferms being related in the way of subject and predioate, and how the relation of two terms in that way to a common third term may necessitate their relation in the why of sabject and predicate to one another.

What is here called a relation in the way of subject and predicate may be also called a relation in the way of subject and attribute; as it is called, for example, by Mr. Bradley in bis Logic, Bk. II. Pt. L. c. iv. \& 10 and elsewhere. If the word attribute is ased, it mast be understood generally of anything predicated ${ }^{2}$; it is an attribate of Baal to be a god, to be talking, to pursue his enemies, to be on a journey, to be asleep, to need awakening, to heve 450 prophets in Israel, to be worsbipped by the Philistines; whatever can be afflrmed or denied of him is an attribute affirmed or denied; the attribute may be in any category, of subatance (as when we may that he is a god), of quality, time, place, state, relation, sce.; the only thing necesaary is that it should be related to him an a predicate to a subject, not (for example) as an uncle to a nephew, as yesterday to to-day, as canse to effect, as here to there, as means to end, as j more to less, \&c.; all of these are relations in which terms may stand to one another, if we mean by terms distinct subjects of thought, and not merely the subject and predicate into which the judgement which affirms their relation is resoluble. Thas when I eay that the Old Pretender was nephew to Charles II, he and Charles II may be called the terms placed (in this judgement) in a relation of coneanguinity; he and 'nephew to Charlea II' are the terma placed in a relation of subject and attribute. Wben I ary that Edinbargh is west of Liverpool, Edinburgh and Liverpool are the tarma placed in a apace-relation; but Edinbargh and 'west of Liverpool' the terms placed in a relation of subject and attribute.

[^141]Understanding the word in this comprebensive sence, wo may eay that the theory of ayllogimm is the theory of inference in the domain ${ }^{1}$ of sabject and attribute, juat as well as in the domain of cabject and predicate. Bat it is important to remember that 'attribute' is baing used in a wider sense than it usually bears; we should not ordinarily call it an attribute of Mr. Pickwick to have been once imponnded; or of Becky Sharp to have thrown Dr. Johneon's Dictionary out of the carriage window; the word is not ordinarily nnderstood to inolude actions, or the casual relations of one thing to another; bat in its present use, it inclodes every predicate. The advantage of using it is this, that it explains what we mean by predicate. Thinge may be related in apace, time, quantity, degree, consanguinity, or as cause and effect : all this conveys a pretty definite meaning to us. They may be related in the way of subject and predicate; bat what, we may ask, is the relation of a predicate to ite aubject? it is that of an attribato-a charsoter attributed or belonging to it. In explaining predicato as attribate we subetituto, we may eay, a word expreasing a real, for a word expresing a logical relation. Blue is an attributo of the gentian really and alwags : a predicate, only when one $j w d g e s$ that the gentian is blue. It is true that in the theory of ayllogiam we have to do with attribates only eo far as they are predicated; but we think of our predicates as attributes.

It has often been held that the syllogism is the type of all

[^142]resconing, except the inferences called immediate. ${ }^{1}$ No one has done more to dispal this illuaion than Mr. Bradley, in his Logic; though perhape the zeal of an iconoclast has prevented him from dwelling enough on the fact that the syllogism formulates reasoning which is very frequent in occarrence. But our present business is to become familin with the theory of syllogimm on its formal side. There is a prociaion and completeness about this theory, which have made logicians dwell on it with comething of an artist's concentration; and the truth of science has somotimes been macrificed to the neatnese of exposition.

The business of ayllogism is to eatablish a relation in the way of subject and predicate between two terms, by means of their relstions in that way to the same third term. Bat the judgement which relatea two terms as aubject and predicate may be univeral or particular, affirmative or negative. Moreover, we have seen that there are various whys in which the two terms that are to be brought together in the conclusion may be related to a common third term ; both may be predicated of it, or it of both, or one of it and it of the other. Therefore a very general problem presents itealf to us, which may be stated thas-writing S for any subjeot, P for the predicate which is to be brought into relation to it, and M for the third or middle term whose relations with S and P are to bring them into relation with each other. What must be the quantity and quality of the propositions (or premisees) connecting S and P respectively with M, and how muat \boldsymbol{H} be related (i.e. as subject or as predicate) to S and P in these premises, in order to establish in the conalacion a proposition whoee terme are S and P, of the several forme $4, E, I$, and O ? In other words, what forms of premiesee will prove that all S is P, no S is P, some S is P, or some S is not P, by means of the relations, in the way of subject and predicate, of S and P respectively to $M l$? Or, yet again, what relatione in the way of anbject and predicato botween two torme S and P respectiocly and a common third herm M will eatabliak what relationt in the way of subjoet and predicate between those troo terme themselves? This is the question, put in its most abetract form, to which the formal part of the theory of syllogism is an answer.

[^143]
CHAPTER XII

OF THE MOODS AND FIGURES OF SYLLOGISM

A. Nomonelatare. 1. In any syllogism, there are two propositions taken as trae, and another inferred or following from them. The latter is called the oonoludion (Lat. quasetio or conclusio, Gk. т $\rho \delta \beta \lambda \eta \mu \varepsilon$ or $\sigma \mu \mu \pi / \rho a \sigma \mu a)$: the former the promisese (Lat. preemisea, Gk. тpordrets).

It was said, that the premines are taken as true: whether they are true or falme, the conalusion which they yield is the same; only that if they are true, it is true, and if they are false, it is probably false. ${ }^{1}$ We are not concerned, therefore, in the formal theory of syllogism, with the trath or falsebood of our premisses or our conclusion, but only with the validity of our reasoniag: we wish to know, if the premises are granted, what must be granted as following from them. If our reseoning be correct, a man cannot admit the premises, and deny the conclusion. Suppose that a man admits that every reatriction apon freedom of contract is mischievous, and udmits that the marriage laws restrict freedom of contract, then he must admit the marriage laws to be miachievons.

It has been made a reprosch to the theory of syllogism, that it looks only to the cogency of the inference, and not to the truth of the premisses. We need rules, it is said, by which to determine whether a proposition is actually true, and not merely whether it is true, upon the hypothesis that certain other propositions are so. The theory of syllogism is decried as a Logic of Consistency ; for the most that it can do is to furnish rules by which to judge whether different assertions are consistent with one another. In rivalry with the Logic of Consistency, some writers have projected

[^144]a Logio of Truth, and offered it to the world under the name of Induction. ${ }^{1}$ But it hae been unfortanately diecovered that the 'Induotive Methods' that were to teat the trath of the premiseses, from which the doctrine of syllogiom enquiren what may be inferred, suffered from the same defect an the syllogiam iteolf; for they slso were procesess of inferunce, in which conalasions were druwn from premisees; their conclasions were only true, if the premiseses were true; they ahowed themselves quite unable to determine whether their premimee were true or not, though it was generally just on that point that dieputes were most pronounced.

The fact is, that so far as ressoning can be reduced to fixed forms at all, and theee forms atudied in the abatract-whether or not the forme are syllogistic-we muet dieregard the trath of the premines ; for in expounding an abetract form of reaconing we may even use symbole for terms ${ }^{2}$, i, e. we do not trouble ourselves to ask what in particular the terms are at all; and bence we annot be asking whether the judgement which connects them is trae.

Given then the premimes, the conolvaion followe neomarily; but it may neverthelens be false, if the premiseen are fulce. The premissen, however, need not in the fint place be given, they may be canted.

Suppoaing a man to have admitted that whatever discourages thrift and independence is evil; and to have admitted that an universal system of pensions in old age at the cost of the atate discourages thrift and independence: then be mart admit as a conclusion that such a syatem is evil. Here, and to such a man, the conclusion presenta ituelf in the first place an a consequence of what is already granted or 'given'. But supposing aman to be in doubt whether an universal ryatem of pensions in old age at the oost of the state is evil or not, and to be wanting some proof, one way or the other; and that a friend offers him the above 'premisees', as ahowing that it is ovil : then, and to him, the 'conolusion' presents itself in the first place as a question or problem, about which he wants to know whether he is to affirm or deny it; and aylloginm is a procen of finding proof, rather than of drawing connegmonces.

It makes of course no differance to the form of preminees whioh

[^145]will eateblish a particular form of conclueion, whether the preminees be first known, and the concluaion diccovered as a consequence: or the conclavion raived as a problem, and the premienee diecovered to cottle it. And in either cese alike, the preamisees are 'given' in the mance of being admitted and not proved in the argament. But they are not always 'given' in tho sense of being that with whioh a man begins: our thought is an often occapied in looking for premienes to extablish what we beliere or suspect, as in looking at premiseea to weo what follows from them. And that is why Aristotie used the expreasions $\pi \rho \phi \beta \lambda \eta \mu a$ and $\pi p o x i d \sigma e t s$. For him, the conclusion was genarally regarded as something to be procod ${ }^{1}$: the premisees, so something profferod in proof of it; and wo he anked rather, - What kinds of premisecs are required to prove various kinde of concluaion ($1, E, I$, and O)?' than 'What kindo of conclasion follow from various combinations of premises? ' But eos soon an he had answered his question, and asid 'These kindo of premisess prove the various kinds of conalacion', then other people could look at the matter from the side of the premisees frot. To them, the premisese were something which, if given, necosesitated a cartain form of conclasion : rather than something which, if a cartain form of conclanion were to be eatablished, must be given.
2. The premisses are called reepectivaly the mador and minor premien. This nomenclature is adjusted to that of the lerime in the argament. There are, an we have meen, three terms in a syllogiem : two, which form the anbject and predicate of the conclusion, and one with which each of the former in brought into relation (in the way of subject and predicate) in one of the premisees. The anbject and predicate of the conclasion are called respectively the minor and the major torms: the term common to the two premisses is called the middle tarm: The major premise is the premien in

[^146]which the major term oceurs, and the minor premise that in which the minor term occars. Than in the syluginm
\[

$$
\begin{aligned}
& \text { All orginioms are fortal } \\
& \text { Man is an orgstism } \\
& \therefore \text { M号 is mortal }
\end{aligned}
$$
\]

the major term is mortal, and the major premin all organiome aro morlal; the minor term man, and the minor premisa man is as organizu; the middle term, organiom.

It will be noticed that each term in a ayllogism appears twice: the major and minor terme each in its reapeotive premise and in the conolurion, the middle term in both premisess bat not in the conolusion.

In giving examples of ayllogism, it is usaal to write down the major premise first; bat in ordinary life and conversation, no particular order is obeerved; nor is it mecessarily the major premiss that is written first in a logical example. ${ }^{1}$ The only mode of determining the major premise is to look for the premies which contains the predicate of the conclusion.
8. Syllogisms are mid to differ in ficure ($\sigma \times \hat{\eta} \mu \mathrm{a}$) ascording to the position of the middle term in the premisees:" (i) The middle tern may be subject of the major premise, and prodicate of the minor : in this caco Arintotle called the syllogism of the firat (or perfect) figare. The example just given belongs to the first figure, as aleo does the following:-

No instect haje eight legs
Waps are insects
\therefore Waps have not eight lege.
It is convenient to have a conventional symbolism, in which to represent syllogirms sccording to their form; we shall use the letters P, M, and S. S ($=$ subject, of the conclusion) will alwhys indicate the minor term, P ($=$ predicate, of the conclusion) the major term, and M the middle. Thus the figare of both these examples (i.e. their form, so far as it depende merely on the position of the terms in the premimes) may be written

MP
$S M$
$\therefore S P$
${ }^{1}$ C. Lecke, Eneay, IV. xvii. 8 (fourth or inter edition).
${ }^{1}$ Cr. а. Ii, oupro, pp. 226-227.

If we wished to indicate in our aymbole the charncter of the propositions which compoee the syllogimm (i. e. whether univermal or particular, affirmative or negative), we ahould have to write our two examplea differantly. The former is of the type

$$
\begin{array}{r}
\text { All } M \text { is } P \\
\text { All } S \text { is } M \\
\therefore \text { All } S \text { is } P
\end{array}
$$

the latter of the type

$$
\begin{array}{r}
\text { No } M \text { is } P \\
\text { All } S \text { is } M \\
\therefore \text { No } S \text { is } P .
\end{array}
$$

(ii) The middle term may be predicate in both premises, the figure of the syllogim being indicated as follows:-

$$
\begin{aligned}
P M \\
S M \\
\therefore S P
\end{aligned}
$$

e. g.

No insecta have eight lege Spidens have oight legs
\therefore Spiders aro not insecte.
Syllogisme in which the middle term is thus pleced were called by Aristotle of the second figure.
(iii) The middle term may be aubject in both premisees, the figure of the syllogiem being indicuted as follows:-

$$
\begin{array}{r}
M P \\
M B \\
\therefore B P
\end{array}
$$

e.g. The Veddahs of Ceglon show great conjugal fidelity The Veddahs of Ceylon are savages
\therefore Some anvages ahow great conjugal fidelity.
Syllogisms in which the middle term is subject in both premises were called by Aristotle of the thind figure.
(iv) Aristotle recognized only these three figures. But he pointed out ${ }^{1}$ that the premiseen of a syllogism in the firat figare would cometimes justify you in concluding to a perticular proposition in which the minor term was predicated of the major, even though no

[^147]conclusion was pomible that predicated the major of the minor. For example, from the preminses

Some parliamentary voters are freebolders
No women sre parliamentary voters
it is imposaible to determine whether any women are freeholders or not (for a reseon which will be explained later); bat we can conclade that some freeholders are not women.

Again, from the premisee
All persons who have the franchise are aligible to Parliament ${ }^{1}$
No woman has the franchise
we cannot conclude that women are not eligible to Parliament (for othens might be oligible beridee thoee who have the franchise) ; bat we can conclude that come persons who are eligible are not women.

The famous physician Galen is anid by Averroes to have referred argaments of this kind to a erparate and fosrch figare (cometimen called after him the Galemian figure), in which the middle tarm is predicate of the major premise and subjeot of the minor: the figure being accordingly aymbolized

$$
\begin{array}{r}
P \boldsymbol{P} \boldsymbol{M} \\
\boldsymbol{M} \boldsymbol{B} \\
\therefore \boldsymbol{B P}
\end{array}
$$

The theory of syllogism has been mach darkesed by this addition. ${ }^{\text {: }}$ For in erecting these arguments into a separate figure it is implied that the diatinction betwean major and minor term is arbitrary, one of place and not of function. The meaning of that distinction mast be conoidered next.
4. We have asid that the major term is the predicate of the conclusion, and the minor the subject. But why are they called major and minor? Did Aristotle merely want shorter namee, to avoid the constant repetition of such cumbrous expressions as 'subject of the conclasion' and 'predicate of the conolasion'? Are the names chosen arbitrary ? And would it have been equally appropriate to call the sabject of the conclusion the major, and the

[^148]predicate the minor term? Or, on the contrary, does the choice of names indicate a real feature of the relation between subject and predicate in a judgement? Is there a reeson why the predicate should be called the major term, and the subject the minor?

Aristotle conceived that there was such a reacon, not indeed in all judgements, but in mort and especially in scientific judgements (i. e. judgemento which really expresa knowledge). We shall do best to look first st judgements in which the distinction of major and minor term is arbitrary. 'Some scholars are statesmen' might be ss well expressed by eaying 'Some stateamen are scholare'; for here the two terms or concepts have no necessary relation: it is only as coincident in the same individual that atateman can be predicated of acholar, or vice versa; and there is no more reason for mating one term aubject than the other. 'Some poulterers are not fishmongers' is a jodgement of the same kind: the two trades are frequently conjoined, but merely conjoined, and as there would be no more resen for making the sale of fish an attribate of a poulterer, than the aale of poultry an attribute of a fishmongar, so in the negative judgement, each term is with equal propriety denied of the other. But where the subject of a judgement is s concrete thing or person, and the predicate an attribute: or where, though the subject is an abstract term, yet the predicate belongs to it, and is not merely coincident with it in the same thing; there the two terms cannot equally well be predicated of each other. We eay that Ceemar was s grest general; if we said 's great general was Casear', we should still be understood to make Creear the subject, and to have merely inverted the uaual order of words in the sentence. We say that diamonds glitter, rather than that come glittering things are diamonds; that blue is a colour, rather than that a colour is blue. ${ }^{1}$ To say that a colour may be blue is natural enough; just as it is to say that a stone may be a diamond; but otill wo predicate the genus of the species, and not the species of the genus : it is not the genus colour, but colour in some particular case, not the genus stone, but some particular mineral that is blue or that is diamond. Commonly, except where they are merely coincident attributes ${ }^{2}$, the predicate is a wider term, or more generic,

[^149]than the aubject in judgement; it is something which belongs to this and may belong to other subjecta, not a part of the extension of the subject iteelf. It is nstural to predicate the genus of the apecies, the attribate of the concrete thing. In acience especially, whoee judgements ahould be necesary and univeral, the predicato, if not commensurste with the sabject, must be the wider term. We cannot predicate onivernally of any term what is only part of its axtension. If stone is a wider or more comprehensive term than diamond, other things besides diamonde are stones, and therefore that proposition must be perticular in which diamond is predicated of atone. A diamond is a stone, a stone may be a diamond; blue is a colour, a colour may be blue

In calling the predicate of the conclusion in a allogism the major term, then, Aristotlo choee a name which was appropriate, both when the predicate is related to the subject as attribute to concrete thing, and when it is related to the subject as the more to the leas generic. And by the name major he wiahed to indicate not (as in sometimes anid) that the predicate denoted the larger class; for he did not thint of a predicate as a collection of things, including a amaller collection (denoted by the subject-term) within it; he meant, that it was the more comprebensive notion: embracing as it were all the sabjecta of which it could be predicated, but as a character in them and not a clam in which they were. ${ }^{1}$
of the thing they denote, if they are not in the category of subetance: cf. supre. p. 25, n. 1.
${ }^{1}$ In sdopting thene expremions, however, Ariatotle had not in mind what in the Popterior Analytics he rightly recognizes as characteristic of science, that it sime at demonetrating commenourate judgemente. Still, there are many acientific judgements which have not that character, and oven in those that have it, the predicate, considered apart from the demonatration, 1e, like any other predicate, conceived as what does belong to this mubject, and might belong to others. It is only in the demungtration by which it is shown to belong to one zubject, that we come to realize it can belong to that subject alone. If we eee, for example, in proving that the angle in a memicircle is a right angle, that the proof hinges apon e feature which cannot belong to the angle in another eegment (vis that the bese of the triangle pasees through the centre of the circle), then we see that the predicate is commennurate with the anbject: and then also the predicate (if I may so exprese myeelf) sinks into the concreto nature of the sabject, and becomes a necesary part of the subject-concept. While a domonstration is atill wanted by us, to ahow us that the angle in a aemicircle is a right angle, we have no ground for sopposing that that is not a property of angles in some other segmenta as well: so coon as we realize that it can be tho property of none other, wo have incorporated the demonstration with the enbjeot-concept (of the angle in a aemicircle) and major, minor, and middle

The middle term takes ite name not simply from being a point of connerion between the other two, but from being really an intermediate concept. This it is, however, only in the firat figare. It is only there that the middle term is predicated of the minor, and the major predicated of it. In the second, it is predicate in each premiss; in the third, subject, of which both major and minor terms are predicated. But that which in the first figure is really a middle term between the major and minor servea equally in the others to be the means of establishing that relation between the major and minor which we wiah to prove; and the nomenclatare that is fixed by the first figure is extended to thero all.

We can now see that Gslen was wrong in adding a fourth figure to the ayllogism. Where the same term M is predicated of one term Z and is the subject of which another, X, is predicated ${ }^{1}$, there X is the more comprebensive term, and Z the leas comprehensive: X is really and in our thought the major, and Z the minor. We do not change this fact, by framing a forced and artificial judgement, in which the naturally minor term is prodicated of the naturally major. Let us take an example.

> All organisms are mortal

Man is an organiem
\therefore Man is mortal
is a syllogism in the first figure. Bat the premises allow us to conclude that some mortals are men. None the less, man is not really a predicate of mortal; this conclusion affirms of the subject mortal a predicate man, that is naturally related to it as ita subject or as minor term to major. Nor is it otherwise, even where the premisses allow no conclusion to be drawn in which the naturally major term is predicate. Take one of the examples given on p. 285 ; from the premisges

All persons who have the franchise are eligible to Parliament
No woman has the franchise
torms have for ue lout their isoletion. Demonatration, when complete and while completely realized by the mind, may be aaid to collepee into a judgement whose terms are interfused. But the major term, while waiting to be domonatrated, is otill the morn comprehensive notion, oven in regard to a mabject with which it is to be proved commenaurate; while if it is not conmeneurate, it remeins the more comprehensive. Cf. p. 807, infra.
${ }^{1}$ I uee the symbols Z and X for S and P here, in order not to seem, by taking letters which suggent 'subject' and 'predicate', to prejudge the question, which term ahould be made the rabject.
we can draw no conclasion ae to whether women are eligible to Parlinment; bat we can conclude that some persons eligible to Parliament are not women. Yet what an unnatural jodgement is this. To be a woman is not conceivable as an attribute of eligibility to Parliament; but eligibility to Parliament is conceivable an an attribate of women; hence we might properly my that some women are not eligible to Parliament ; but it in forced and artificial to eay that some eligibles to Parliament are not women. ${ }^{1}$ Though we say it, we feel that we are making that a predicate which should be aabject, and that a aubject which should be predicate. It is true that this conclusion is got, and is all that can be got, ont of the premisees: bat it is of no scientific value. Either the fect is that no one eligible to Parliament is a womanand that ought to be expreseed conversely, that no woman is eligible to Parliament ; or else if some persons eligible to Parliament are women and some are not, we want to know what women and what men are eligible; bat no one who had any knowledge of what qualifees and disqualifies for election to Parliament would exprose any part of that knowledge in anch a proposition as that ' come eligibles to Parliament are not women'.
The introduction of the fourth figure then reata on the erroneons idea that a term is made a major or minor term by being thruast into the position of predicato or subject in a proposition; whereas in fact a term is made predicate rather than sabject when it is in ita own nature, by comparison with the subject, a 'major' term : i. e. a torm more aniversal, abatract, generic, or comprehonaive, than the other.
Bat the fourth figure has been taught for 80 many centaries among the 'moode and figurea' of the ayllogiom, that for the aske of the history of Logic we cannot altogether ignore it, even while we recognize the error in which it had its birth.
B. The last paragraph apoke of moode and figures of the ayllogism. The difference of figurea has already been explained to depend on

[^150]the position of the middie term in the premimen. The difference of mood depende on the quantity and quality of the propositions composing the syllogism. This may be the eame in different figares, or different in the meme figure: e.g. in the syllogisms
\[

$$
\begin{aligned}
& \text { All organiams are mortal } \\
& \text { Man is an organiam } \\
& \therefore \text { Man is mortal : }
\end{aligned}
$$
\]

and No unlicensed body may eell liquor to atrangers A college is unlicensed
\therefore A college may not sell liquor to strangers :
the figure is the same (the firat), but the component propositions are in one case of the form A, A, A, and in the other of the form E, A, E. If the eecond syllogiam be now compared with the following :

No good comrade avoids plesure All ascetics avoid plessure
\therefore No ascetic is a grod comrade :
it will be seen that the component propositions are of the same form in both, E, d, \boldsymbol{E} : but the figare is different.

The different moods have received distinct namee in the varions figures wherein they occur; and hence what are called the 'moodnames' of the varions forms of syllogiam indicate both figare and mood. What moode are poseible in what figuren-i.e. what combinstions of premises, as determined by their quantity and quality, will yield what form of conclusion ($4, E, I$, and O) with each position of the middle term-is the general problem to whioh the formal pert of the theory of ayllogiem has to find an anower. We sre now familiar with the technical terms that we shall employ in solving the problem. We must next consider the solation.
B. The only method of originally determining what combinations of premisses will yield what conclusion is to try them all, with each position of the middle term, and see. This is what Aristotle did, in the Prior Analytics. But when it bas been done, it is possible to review the result, and there recogaize the nature of the fanalts committed in those which are invalid, and the rules which therefore must be observed (whether in all syllogisms, or in those of a particalar figure) in order to validity. These rulea may then be placed in the
forefront of our exposition; it may be shown, by the help of an example, that the breach of them brings invalidity; and in eech figure, out of the whole number of ways in which it is mathematically poesiblo to combine two promises, when each of them may have either of tour forms, we can ascortain which in each figure are conformable to the rulee that we have found necensary to be obeerved in that figare.

The syllogiom is now generally tanght in the latter manner, which is the more formal and aystematic. But the other is the more natural, and we shall therefore begin, for the first figure, with that.

A valid mood of syllogism is immedistely seen to be valid by any one who considers it in a particalar example, and though the example is particalar, the form of inference is seen to be valid aniversally. The best way, on the other hand, to show that a mood is invalid, is to produce examples in which the premisees and conclusion are of the quality and quantity which that mood requires, and show by them that while the premisses are true, the conclusion may be indifferently true or falee. For if you cannot rely on a form of argument to produce a true conclusion from true premises, it certainly is not a valid form.

Now in the firat figure the middle term is subject of the major premien and predicate of the minor. Let us take the pomibilities in order.

1. Both promieses wnivercal.
a. both affirmative; the mood is valid, and the conclasion 4 :

All organisms are mortal	All M is P
Man is an organism	All B is M
\therefore Man is mortal ${ }^{1}$	\therefore All B is P

b. both megative; no concluaion follows:

Sounds have no scent No M is P ©
\therefore Colours have no scent
Sounds are not visible
Coloars are not sounds
\therefore Colours are not visible ${ }^{1}$

[^151]c. one affirmative and the other megative:
i. the major negative; the mood is valid, and the conclusion E :
No Protestant acknowledges the Pope No M is P
Latherans are Protestants All S is M
\therefore No Lutheran acknowledges the Pope $\quad \therefore$ No 8 is P
ii. the sainer eagative; no conclusion follows:
$$
\text { Lutherane are Protestants } \quad \text { All } M \text { is } P
$$ Calvinists are not Lutherans

No B is M
\therefore Calvinists are not Protestants
Lutherans are Protestants Romanists are not Lutherans
\therefore Romanista are not Protestants
2. One premise wniversal, and one particular.
a. both affirmative:
e i. major wniversal, misor particular ; the mood is valid and the conclusion I :
What raisee prices injures the consumer All M is P Some import-duties rase prices Some S is M
\therefore Some import-daties injure the consumer \therefore Some B is P ii. major partiowlar, minor universal; no conclusion followe:

Some taxes are levied at death Some M is P
Excise-duties (or Legecy-dnties) are taxee \quad All B is M
\therefore Excise-daties (or Legacy-duties) are levied at death \therefore.
b. both negatios:
i. major meiversal, miner particular; no conclusion followe:

Starchee contain no nitrogen
No M is P
Some foods (or flesh-foods) are not starches ${ }^{1}$
Some S is not M
\therefore Some foods (or flesh-foods) contain no
nitrogen
univeral, it hee not boen thought necemary to mark the quantity in that way. Bat with aymbole, becanse there is then no content to guide us, this is necemary.
${ }^{2}$ It in trae that no fiewh-foode aro starches. But if with premisecs true and of the above form the conclasion is to be false, it is imponible to find an example where it would not be equally true to enunaiate the minor premien aniverally. For auppose that only come S is not M : then some S is M, and with the help of the major premim, no M is P, it will follow that come S is not P. Bat this conclasion was to be false; therefore no S can be \boldsymbol{M}.
ii. major particular, minor universal; no conchasion follows : Some quadrilaterals contain no right angles Some M is not P The triangle in a semicircle (or The penta- No S is M
gon) is not a quadrilateral $\quad \therefore$
\therefore The triangle in a semicircle (or The pente-
gon) contains no right angle
c. one affirmalive, and the other negative:
i. major affirmative and meiversal, minor megative and particular; no conclusion follows:
All living thinge change (or contain carbon) All M is P Some compounds are not living

Some S is not M
\therefore Some compounds do not change (or do not \therefore contain carbon)
ii. major megative and wniversal, minor affirmative and particular; the mood is valid, and the conclusion O :
No political offence is extraditable
Some murders are political offences
No M is P
Some S is M
\therefore Some marders are not extraditable
\therefore Some S is not P
iii. major affirmative and particular, minor negative and miversal; no conclusion follows:
Some traders are freeholders (or are members of Parliament)
No parson trades
Some M is P
No S is M
\therefore No parson is a freeholder (or is a member of
Parliament)
iv. major megative and partienlar, minor affimative and muiversal; no conclusion follows :
Some plante are not edible
Beans (or Monkehoods) are plants
\therefore Beans (or Monkshoods) are not edible
8. Both premiseses partieular.
a. both affirmative ; no conclusion followe:

Some Germans are Protestanta
Some Calvinists (or Romanista) are Germans
\therefore Some Calviniste (or Romaninta) are Protentanta
b. both megatioe; no conclusion follows :

Some things profitable are not pleseant
Some things popular (or plessant) are not profitable
\therefore Some things popular (or pleasant) are not pleasant
c. major affirmative, minor megative:

Some laxaries are tared
Brandy (or A cart) for some purposes is not a luxary
\therefore Brandy (or A cart) for some purposes is not taxed
d. major megative, minor affirmatire:

Some men of acience do not study philosophy Some rich men (or philosophers) are men of science
\therefore Some rich men (or philoeophers) do not stady philoeophy
This exhensta the possible varieties in form of premiseen, so far as the first figure is concerned; and we have foond only four which give any conclasion, namely (to represent them by the accepted symbols, and add the symbol for the conclusion) $1 A A \quad A I I$

EAE EIO
Since the thirteenth century, logicians have given to each of these moods, as well as to those in the remaining figures, a sepsrate name, in which the vowels in order indicate the quality and quantity of the major and minor premises and the conclusion. The names of theee moods of the first figure are Barbars, Celarent, Darii, Ferio: and syllogisms of those types are called syllogisms in Barbars, Celarent, \&c. ${ }^{1}$
' The earlieat known work in which these mood-names are found is by William Shyreswood (born in Darham, stadent in Oxford, teaght at Paris, died as Chancellor of Lincoln, 1249; •. Prantl, iii. 10, Abech. xvii. Anm. 29): 'Modi autem et oorum redactionea retinentar his verribue-Barbara, \&e.' (ib. Anm. 52). They pemed into general carrency through the Summulat Logicales of Petras Eiupanas, afterwarda Yope John XX, who was long bolieved to be the author of thom (c. 1226-1277), antil Prantl found them in the unpabliahed MS. of William Shyreswood in the Library of Paris (vol. ii. p. 284). A nomewhat similar memoria technica, but lean ingenious, becaune it embodies only the form of the moode, and not the rules for the

But an addition bas to be made. If the minor premies is an universal negative proposition, and the major is affirmative, whether universal or particular, then though no conclusion can be drawn in which the major term is denied (or affirmed) of the minor, it is posible to draw a particular conclusion in which the minor term is denied of the major. Thus in 1. c. ii. from the premisees

Latherans are Proteotants
 Calvinista (or Romanists) are not Lutherans

it was imposesible to infer whether Calvinists or Romanists were Protestants : the former in fact being so, and not the lattor. But it is possible to infer that some Proteetants are not Calvinista (or Romaniata). And in 2. c. iii. from the premiseen

Some traders are $\left\{\begin{array}{l}\text { freeholders } \\ \text { members of Parliament }\end{array}\right.$
No parson trades
it was imposesible to infer whether any parson wha a freeholder, or a member of Parliament: none of them, in fact, being eligible in the latter capacity, while a rector or vicar is legally a freeholder. But it is possible again to infer that

Some $\left\{\begin{array}{l}\text { freeholders } \\ \text { members of Parliament }\end{array}\right\}$ are not parsons.
Doubtless no member of Parliament is a parson, as no Romaniet is
reduction of the moods in the mecond and third figures to the firmt (0. next chapter) is found in the margin of the treatise attribated to Michsel
 ing to Prantl, in the ame hand an the text, ii. 275, Absch. xv. Anm. 48). Prantl believes the work of William Shyroswood to bo borrowed from, and that of Petras Hispanus to be a mere tranalation of, the Symopecis of Psellua. In an article, bovever, by R. Stapper (Die Summalee Logicalea des Petrua Hispenua und ive Verhaltinife an Michael Peellua, publinhed in the Fertechrift sum elfhundertjahrigon Jubilaum dea deutechen Campo Santo in Rom, Freibarg im Breisgan, 1897, pp. 180 eq. $;$ cf. aloo his Papet Johanneo XXI. pp. 16-19, Monater i. W., 1898), reamon is shown for thinting that the ascription of the Synopria to Micheel Prollus is erroneous, and that it is really - tranalation of the Summulae: the Augiburg M8. in which the merription occurs contains aleo chapters lacking in tho Summulac, and partly identical with other worko of Prellue ; themo may have led to his name boing placed in the titlo, which Stapper conceives to be in a hand fifty yeas later than the balk of the MS. No other MS. ascribes the work to Puellus; all the rest profeen to be tranalations from the Letin; meven give the name of Petrus Hippanus an author, and four that of Georgius Scholarion (Gennedian) as tranalator. Cf. aleo Sir William Hamilton's Dienuwione, 2nd od, Pp. 128, 671 aq.: who, however, wrote before Prantl's work appeared.
a Protestant; and those who know this would not troable to enanciste the subaltern, or particular, propositions ; but our premisees do not inform us of the universal; what they do tell us is the truth, even if not the whole truth.

We have thus two further indirect moode, i. e. moods in which the minor term is concluded of the major instead of the major of the minor, viz.

$$
\begin{aligned}
& A E O \\
& I E O
\end{aligned}
$$

And there are other indirect moode aloo. For in Barbars, Celarent, and Darii, it is possible, instead of drawing the direct and natural conclusion, to draw the converse, wherein the major term will be subject and the minor predicate. Thus in 1. a, we might have concluded 'Some mortals are men', in 1.c. i. 'No one who acknowledges the Pope is a Lutheran', in 2. a. i. 'Some things that injure the consumer are import-duties'. There are thus five indirect moods in all: and the whole nine are given in the first two lines of the following herameters (it is to be noted that the extra syllables after the third, in the fifth and ninth names, are inserted metri gratia, and have no significance) :-

> Barbars Celarent Darii Ferio, Baralipton, Celantes Dabitis Fapemo Frisesomorum ${ }^{1}$: Cesare Cameatres Featino Baroco: Darapti Felapton Disamio Datisi Bocardo Ferison.

The first four names in the third line belong to the valid moods in the eecond figure: the remainder to those in the third. It would be possible to show what moods are valid in these figures by experimenting with all the combinations of premiss possible in reapect of quality and quantity when the middle term whs respectively predicate or subject in each premisa. But any one who has followed the process for the first figure can work it out for himself in the others; and we may proceed now to the enunciation of the rules of syllogism, and the briefer deduction of the valid moods from them.

[^152]C. The syllogiatio Rules are eight in number, viz.

1. A ayllogiem muat oontaln three, and only three terma. The necesoity of this rule is manifeat; for we have seen that a syllogism is an argament in which a relation (in the way of subject and predionte) is eatablished between two terms, in virtue of their common relation (in that reepect) to a third term. Hence without a third term, there is no syllogiem : and if the terms of the conclusion were not related to the aame third term, there would be no rolation established between themselves, and eo again, no eyllogim.

For example, we can draw no conclusion barely from the premisess Roptiles are vertebrate and The croeodile is a lizard. Any one who knew that lizards are reptiles might infer that the crocodile is vertebrate: bat the inference requires the premiss Liearde are reptiles no less than the other two; and falls really into two syllogisms, eech containing three terms: though four terms ocear in the whole argament, viz. :
(i) Reptiles are vertebrate

Lizarde are reptiles
\therefore Lizards are vertebrate
(ii) Lizards are vertebrate

The crocodile is a lizard
\therefore The crocodile is vertebrate
If the middle term is used equivocally-i. e. in different senses in the two premisee-there will in reality be four terms, and no conclusion is possible; e. g. it is true that no regetable has a heart: it is also true that a good ketiuce has a heart: but to have a heart means something different in these two propositions, and it would be fallecious to conclude that a lotiuces io not a vegetable. ${ }^{1}$

A breach of this first rule is technically known as the fallecy of Quaternio Terminorwm or of Four Ternus; and where it arises through the equivocal use of the middle term, as the fallacy of ambiguows middle.
2. The middle term must be diatributed in one premies at loest.

It will be remembered that a term is distributed; when used with

[^153]reference to its whole extension; and undistributed, when used with reference to a part of ita extension only. Thus in the proposition $\mathbf{A l l}$ jealons men are suspicions, the term jealowe mas is distributed (for I expressly refer to all that falls within the range of it); bnt the term mospicious is undistribated, for I consider it only as characterizing the jealous, and it may very well have a wider range than that. If again I say that some jealour men have killed their wioes, in this proposition neither term is distributed.

Now when the middle term is undistribated in both premisess, it may refer in each to a different part of its extension; and then the major and minor terms are not brought into relation with the aame term in the premisses at all : hence no conclusion can be drawn. ${ }^{1}$

Examples from the three figures will make plain what is perhape hard at first to grasp in an abstract statement. If a Presbyterian is a Christian, and some Christians think that the order of bichops was inetituted by Christ, it does not follow that a Preabyterian thinks this. Christian is a term that includes more than Presbyterian; if all Christians thought that the order of bishope was instituted by Christ, then it would follow that Presbyterians thought so; but if only some Christians think it, how am I to tell that the Presbyterians are among these? Again, in the second figura, from the premisses Birds fly and Eagles fly, I cannot infer that an eagle ie a bird; for though birds lly, many creatures mey fly which are not birds, and an eagle might be one of these. If in either premisa the middle term were used with reference to its whole extension: if nothing flew but birds, or nothing flew but eagles, and if my premise informed me of this: then I could conclade that all eagles were birde, or that all birds were eagles; bat as it is, I can make no inference. Inference is as obviously impossible, with the middle term undistributed, in the third figure. Granted that come cripples are Torice,

[^154]and some cripples are tailors: I cannot hence determine whether or not some tailore are Tories: for the cripplee that are tailors may not be the ame cripples as are Tories, and if not, the inference would be false. But if in either premise the middle term were distributed : if cripples were referred to in the whole extension of the term, and all eripples were spozen of : then conclasion would follow. For whether all cripples were tailors, and some Tories, or vice versa, in either case the some of whom the one term was predicable would be included among the all of whom the other tarm was predicable, and then these two terms (tailor and Fory) would be predicable-not universally, but in a particolar judgement-one of the other.

A breach of this rule is technically known as the fallecy of undiotributed middle.
[It is in the third figure, where the middle term is subject in both premisses, that the necessity of distributing it once at least is most obvions. Plainly, there, to say that it is used with reference to a part of its extension only is to say that only part of what it denotes is spoken of; and if this is a different part in the two premisses, there is not really any middle term. Some vertebrates fly, and some are rodents : but they are not the same vertebrates; swallows e.g. fly, and rats are rodents; and it is obvious that our premisses do not justify the inference that the same thing flies and is a rodent. But where the middle term is not subject, there is a certain awtwardnes in talling of its distribution. This has already been noticed in discussing the 'quantification of the predicate'. It was then shown that the predicate of a proposition is never really thought of in extension. And yet in explaining the present rule of syllogism, one is tempted to speak as if it were so thought of A general demonstration of the rule is wanted, applicable equally to any figure; and it is easy to say that if the middle term is undistributed in both premisses, the major and minor may be brought into relation only with different parts of its extension, and therefore not with the same term at ali. Or if we spenk of agreament between them and the middle term, we have s more seductive formuls: we can illustrate with circles, thus:

${ }^{1}$ Cf. c. ix. pp. 198 a.., wprs.
[The inclusion of one area, wholly or partially, within another symbolizes an affirmative judgement, universal or particular : it is plain that the area S may fall wholly within M, and M partially within P, and yet S may lie wholly outside P. This is anpposed to ahow for Fig. 1, that with an undistributed middle we can draw no conclusion; and the other diagrams are as readily interpreted.

Yet a ayllogism does not really compare the extension of three tarms, and Euler's diagrams put us into a wrong train of thought. It is true, that unless the middle term be distribated once at leant, there is no point of identity in the premisses; and all ressoning proceeds in some way by help of an identity. It is not true that the point of identity need consist in the same objects being denoted -in the reference to the same part of the extension of the middle term in both premisses (for which referring to the whole extension in one of them would be an obvious security). In the third figure it is on this, no donbt, that the inference hinges; but not in the second, or the first. On the contrary, the inconclusiveness of an argument in the second figure with undistribated middle is best expressed by saying that it does not follow, becanse the same predicate attaches to two sabjects, that these can be predicated one of the other: and in the frst figure, that unless P is connected necessarily and universally with M, it is clear that what is M need not be P. ${ }^{1}$

If this discussion of the Undistributed Middle should seem too lengthy, it must be remembered (1) that for working purposes, in order to determine the correctneas of a syllogism, the main thing to look to is the distribution of terms: and hence (2) that it is of great importance, in the theory of syllogistic inference, not to misunderstand this reference to distribution. In a later chapter (c. xiv) it will be necessary to consider whether the different figures of ayllogism are really different types of reasoning, or the same; and the present discussion will throw light on that enquiry.]
3. From two negative premissee nothing oan be inferred. A negative proposition denies between its terms the relation of anbject and predicate. It is clear that if the major and minor terms are both denied to stand in that relation to the middle term, we cannot tell whether or not they are related as subject and predicate to one another. Ruminant may not be predicable of rodent, or vice veras: neither carnivorous of ruminaut, or vice versa: we cannot infer anything as to the relation of carnivorous and rodent.

[^155]4. If either promise is negative, the oonaluaion muat be negetive. The same kind of reflection will justify this rale, as the last. Two terms stand in the relation of subject and predicate; between one of them and a third term the same relation is denied; if any inference is poesible ${ }^{1}$, it can only be to deny the relation aleo between the other and the third term.
6. The oonoluaion oannot be negative, unlees one promice is negative. This rule is the converse of the lest, and equally obvious. If both premisees are affirmative, and if they justify a conclusion at all, they must eatablish and not refute our right to predicate the major of the minor.
6. Ko term may be distributed in the oonolualon, which was not dirtributed in ita promisa. For if a term is undistribated in the promises, it is there used with reference to part of its extension only; and this does not justify us in a conclusion which neee it with reference to ite whole extension.

A breach of this rale is called an illieit procsse of the major, or minor, term, as the case may be.
[With an illicit process of the minor term, if (as in the first and second figures) the minor term is subject in its own premiss, it is obvious that we are treating information aboat a part of the extension of the term as if it were information about the whole. If alr"is P, and some S is M, we can only infer that some S, and not all S, is P. Where the minor term is predicate in its own premise, or with an illicit process of the major term, the matter requires a little more reflection. The predicate of a judgement (and the major term is always predicate in the conclusion) not being thought in extension, there is some danger here again lest we should misunderstand a reference to its distribution. Take the following example of illicit process of the minor term, where the minor term is predicate in the minor premise :

To make a corner in wheat produces great misery
To make a corner in wheat is gambling
\therefore All gambling produces great misery.

[^156][My premisses do not primarily give me information about gambling; neverthelesa, if there were no gambling except a corner in wheat, the minor term would be commensurate with the middle, and what is predicated universally of the latter could be predicated universally of the former. As it is, however, for all the information that is given me, the minor term may be (and in fact it is) of wider extension than the middle; for there aro many other modes of gambling besides making a corner in wheat. It is used therefore with reference to a part of its extension only, in the minor premise; and it is that part which I am told in the major produces grest misery. I have no right to extend that information to the whole extension of the term, and asy that all gambling produces great misery; my only proper conclusion is that some gambling does so. Again, with regard to the major torm: if I argue that productive expenditure benefits the conntry, and expenditure on art is not productive; and that consequently expenditure on art is of no benefit to the country: I am guilty of an illicit process of the major term. It may not at first sight appear that I have treated information given me about a part of what benefits the country as if it were information about overything that doees so. And indeed expenditure which benefits the country is not directly the subject of my thought. Yet it is plain that though productive expenditure may benefit the country, it need not be the only form of expenditure to do so ; and hence expenditure on art, though not productive, may be of benefit to the country for some other reason. Yet my conclusion would only be justified if I knew every reason why expenditare could benefit the country, and knew that none of them applied to expenditure on art: whereas my major premiss mentions one ground, and not the sole ground, on which expenditure is beneficial. It is therefore true in effect to say that in the conclusion I treat as referring to its whole extension information which was confined to a part of the extension of the major term; though none the less the extension of the major term is not the proper subject of my thought. ${ }^{1}$]

There remain two rules which are corollaries of those already given, viz,
7. From two partionlar premimes nothing oan be inferred, and

[^157]8. If either promise is partionlar, the conoluaion munt be partiodar.

The truth of these roles is not evident at first sight; and they can only be eatablished generally-i.e. without reference to mood and figare-by considering what combinations of premieses there are, both of which, or one of them, is particular; and it will then be seen either that there are not enough terms distributed in these premisses to warrant a conclusion at all; or not enough to warrant an universal conclusion, i. e. one that distributes the minor term.

If both premisees are particular, they must either be both affirmetive (I and I), or both negative (O and O), or one affirmative and the other negative (I and O). But in a particular afffrmative proposition neither subjeot nor predicate is distributed; so that the combination of premisees $I I$ contains no distributed terms, and therefore-since the middle term must be distribnted if any inference is to be drawn-will yield no conclusion. From 00, two negative propositions, s conclusion is impossible. From I and O, if there were any conclasion, it would be negative; but as the predicate of a negative proposition is distribated, the major term (the predicate of the conclusion) would be diatribated in the conclusion; therefore the major term should be distribated in ite premiss; and since the middle term must be distributed in the premisses also, we require premises with two terms distribated in them, to obtain a conclusion; now the combination of a particular affirmative with a particular negative providee only one distributed tarm, viz. the predicate of the latter (O); and tharefore from them aleo a concluaion is imposable.

A similar line of reeconing will eatablish rule 8; no combinetion of premisees, whereof one is particalar, contains enough distributed terms to allow of an oniversal conchusion. For again, either both are affirmative (A and I), or both negative (B and O), or one affirmative and the other negative (A and $O: B$ and n). The two negative premisses may be struck out as before. The combinstion of A with I contains only one distributed term, the subjeot of the univarsal affirmative (4); and as the middle term must be distribated if the reasoning is to be valid, the subject of Λ must be the middle term; hence the minor term will be one of those that are undistributed in the premisses, and tharefore aleo in the conclusion (of which it is the subject) it must be undistribated-i.e. the
conclusion must be particular. The combinations A and O, E and I both contain two distribated terms; viz. in the former the aubject of the universal affirmative and the predicate of the partionlar negative, in the latter the sabject and predicate of the universal negative; bat both of them require negative conolasions, in which the major term is distribated; in both therefore the terms distribated in the premisees must be the major and middle, and the minor term be one of those that are undistribated, so that the conclusion again will be particular.

The above rules are all contained in four rude herameter lines:
Distribuas medium, nec quartue terminus adsit;
Utraque nee prsemisee negane, nec particularis;
Sectetur partem conclasio detariorem;
Et non distribuat, nisi cum pramises, negetre.
The third line (that the conclusion must conform to the inferior part of the premisses) covers both the fourth and eighth rules; a negative being considered inferior to an affirmative, and a particular to an aniversal jadgement. The fourth line (that the conclusion must not distribate any term, unless the premiss doee so, nor be negative unless a premise is so) gives the sirth rule, and the fifth.
D. Determination of the moode valid in the several figuree.

We have sean that syllogisms are distinguished in mood according to the quantity and quality of the propositions composing them; and in figure sccording to the position of the middle term in the premisees. The validity of a syllogism, and the character of the conclusion that can be drawn, depend very largely on the distribution of the several terms-middle, major, and minor-in the premisees; and this again on the question whether the middle term is subject, and one of the othere predicate, in a premiss, or vice versa Hence a combination of premisees which yields a conclusion in one figure, may yield none in another: e. g. $A l l \bar{M}$ is $P, A l l S$ is M yields the conclasion $A l l S$ is P; bat $A l l P$ is $M, A l l s$ is M yields no conclusion, though the quantity and quality of the promisses are unchanged. We ahall therefore have to take the poesible combinations of premises in each figure in turn, strike ont those which yield no conclusion in that figure, and ant what kind of
concluaion-i.e. whether universal or particular ${ }^{1}$-the othere gield in it.

Now as there are four kinds of proposition, so far as quantity and quality are concerned- A, E, I, and O-and our premisses must be two in number, there are sixteen combinations of premisecs mathematically ponible. It is not, however, necessary to try the validity of all sixteen combinations in each figare in tarn; for eight can be shown to yield no conclusion on grounds which are applicable to all four figurea alike, and without referance to the position of the middle term.

The sirteen combinations of pramisess mathematically possible are as follows: they are indicated by the conventional vowele, and the mejor premiss in all cases by the vowel which stande first.

$A A$	$E d$	$I A$	$O A$
$A B$	$E S$	$I R$	$O E$
$A 1$	$B I$	$-I I$	$O T$
$A O$	$B O$	10	00

Of these, the combinations $E E, E O, O E, O O$ may be otruck out, becsuse both premisess of a syllogism cannot be negative; II, IO, $O I$ (and 00 again) becanse both cannot be affermative; while IE (if we do not consider indirect conclasions) would involve an illicit process of the msjor term : for the concluaion being negative would distribute the major term, while the major premise is a particular sffirmative proposition, and therefore, whether it atood as mabject or predicate, the major tarm would not be distributed in it. ${ }^{\text {a }}$

Thare remain eight combinations of preminees, on whoee validity we cannot prononnce withont reference to the figure and the position of the middle term, viz.
Ad $A E \quad A I \quad A O \quad E A \quad E I \quad$ IA $O A$

It will be found that four of them are valid in the first figure, forr in the eecond, and air in the third; there are almo five indirect moods of the first, or moods of the fourth, figure: making in all nineteen moods.

[^158]In the finat figurs, the middle term is subject of the major premiss and predicate of the minor : hence in this figure $\quad M P$

1. The minor promies mast be affirmative: for if it were $S M$ negative, the conclusion would be negative, and co distri- $\boldsymbol{S} \quad \boldsymbol{P}$ bate the majortarm \boldsymbol{P}; the major term must therefore be distributed in the major premiss; but as it is there predicate, it cannot be distribated unless the major premisa is also negative (since no affirmative proposition distribates its predicate): we should thus have two negative premisees, or elee an illicit procee of the major term.
2. The major prosises must be suiversal: for since the minor is affirmative, its predicate M, the middle term, will be andistribated; therefore M must be distributed in the major premiss; and for this purpose the major premiss, of which it is the subject, must be universal.

In this figare, therefore, the premisses $A E, \Delta O$ are invalid, by rule 1: $I A, O A$ by rule 2^{1}; $A A, E A, A I, 4 O$ are valid. The conclusions which they yield will be respectively A (universed affirmative), E (univeral negative), I (particular affirmative), and O (particular negative); and the moodo-in which the quantity and quality of the conclusion are indicsted, as well as of the pre-misses-are AAA, EAE, AII, 4OO. Their names are Barbara, Celarent, Darii, Ferio. But in the fint three of these moods, as we have seen, the converse conclusions can also be drawn; and with the premisses $A E, I E$, a particular conclusion follows denying 8 of P; and so we get also the indirect moods $A d I, E A E, A I I, ~ A E O$, IBO, whoee names are Baralipton, Celantes, Dabitis, Fapeamo, Frisesomoram.

In the eeoond figure the middle term is predicate in $P M$ both promisses: hence in it $S M$

1. One premint mat be acgative, for otherwise the middle $S P$ term would beytistributed.
2. The major premises must be wniversal: for since one premiss is negative, the conclusion will be negative, and so distribate the major

[^159]term $P: P$ must therefore be distribated in the major premiss ; i. e. as it is here the subject thereof, the major premiss must be universal.

Hence the premisses $A A, A I, I A$ are invalid, by rale 1: the premises $0 A$ (and $I A$ again) by rule $2^{2} ; E d, A E, E I, A O$ are valid. The moods are therefore $B A E, A E E, E I O, 400$; their mood-names are Cesare, Camestres, Feetino, and Baroco.

In the third figure the middle term is subject in both $M P$ premisses : hence in it $M S$

1. The minor premies must be affirmative, for the same resson $8 P$ as in Fig. 1 (the major term, in both figures, being similarly placed in its premise).

This rale excludes the premisses $A E, 10^{2}$: the remaining combinations, $A A, A I, E A, E I, I A, O A$, are valid. Bat becanse the minor term in this figure is predicate of the minor premiss, and the latter is affirmative, the minor term will not be distribated in it; hence it mast not be distributed in the conclusion; and therefore in all cases
2. The comelwion will be particular.

The moode are consequently AAI, IAI, AII, EAO, OAO, EIO: their mood-names are Dathpti, Disamis, Datisi, Felapton, Bocardo, Ferison.
[It is impossible at this point to pess over the fourth figure, in which the middle term is predicate of the major premiss, and subject of the minor, thus (1) $P M$

MS
$\therefore 8 P$
It is clear, however, that if the premisses of a syllogiem in the first figure be transpoeed and the conclasion converted, we get just the same arrangement of terms, (2) $S M$ ${ }_{M} P$

$$
\therefore \bar{P} \bar{B}
$$

' e.g. from Some (or All) daisics hase a great number of flowers within a single calyx, $A l l$ (or Some) comparila hase a great number of flowers within a aingle calyry it cannot be inferred that Some, or All, componita are daieict (AA, AI, IA) : nor from Some anmuall ane mot (or arv) hardy, All poppies ars hardy, thist Some poppies are not (or are) annwale (OA, IA).
${ }^{1}$ o.g. from the premispes $A l l$ atrichet haw wings, No astriches can (or Some oatriches cannot) fly, it cannot be inferred that No creaturwe that can fy hare winge or that Some creatwres that cen Aly how no winge ($\mathcal{A}, \mathbf{4 O}$).
[the only difference being that P is now the symbol for the subject, and \mathcal{B} for the predicate of the conclusion, instead of vice versa Now the order in which the premisses are written down makes no difference to the real relation of the terms in them to one another. In (2) P is still functionally the major term; and the premissea are really premisses in the first figure, $\frac{M P}{S} \boldsymbol{M}$, from which a conclusion is drawn wherein the minor term becomes predicate to the major. Thus any mood in the fourth figure can be looked at as a mood in the first figure, predicating the minor term in the conclusion of the major: in other worde, sa an indireet mood of the first figure.

It was stated at the beginning of the chapter that, according to the anthority of Averroes, the first person to regerd each moods as belonging to a distinct figure was Galan. ${ }^{1}$ Averroes himself disagreed with that view of them, and in thin he was followed by Zabarelle ${ }^{2}$, one of the greateat of the acholartic commentators upon Aristotle, whose Do Quarta Figura Syllogismi Liber is still worth reeding on the subject; though in the reasons be gives for not regarding the Galenian as really a fourth and independent figare he rolies in part upon the questionable analysis which regards all ayllogism as an application of the principle called the Dictum de omni et nullo (cf. infra, p. 274).

Arintotle, as already remarked, recognized the possibility of concluding indireotly in the first figure; though only by the way. He remarks in one plece ${ }^{3}$: 'It is clear that in all the figures, when there is no proper syllogism, if both preminees are affirmative or both negative nothing st all necessarily follown, but if one is affirmstive and one negative, and the negative is universal, a ayllogism always arises with the minor as predicate to the major: e. g. If all or some B is A, and no C is B; for, converting the premisses, it is necessary that some A should not be C. And similarly in the other, figures; for by means of conversion a syllogiam aways arises.' This covers the moods Fapeamo and Frisesomorum in Fig. 1. With regard to Fige. 2 and 8 it is plain from Aristotle's language that though the major premiee cannot be distinguished by the poaition

[^160][in it of the middle term, since this occupies the same position in both premisses, whether as predicate or as subject of major and of minor terms, yet in his view it was not arbitrary which term is regarded as the major; it would be the term which, as compared with the minor, is of wider extension, or as Zaberells says, higher in predicamental order. Thus if I say that

Some roses are fragrant

and The Baronees Rothschild is not fragrant
I can conclude that some roses are not Baroness Rothschilds. Now naturally, rose is a predicate belonging to the particular variety Baronese Rothechild, and not Baroness Rothechild a predicate to be affirmed or denied of rose. We may be said, therefore, to be concluding the minor of the major. Bat in many and probably in most cases of syllogiom in these figures it would be difficalt to say which of the two terme was naturally major and which naturally minor, for they are not generally terms belonging to one series in a ciaseification. Hence we can transpose the premisses; and in any case this produces no appearance of a new figare, as transposing the premisses in Fig. 1 does, because the middle term still retains the same relation to what is now treated as major term which it held towards what was before so treated. We now have

The Baronese Rothechild is not fragrant
 Some roses are fragrant
 \therefore Some roses are not Baronees Rothechilds

which is in the recognized mood Featino of the second figure. Similarly $A E O$ would be regarded as Cesare, by transposition of the pramiseas; and in Fig. 8 AEO as Felapton, and IEO as Ferison. But in Fig. 1, if we transpose the pramisees in the moods $A E O$ and IEO, we no longer have the right position of the middle term. They must therefore be regarded either as moods of the first figure conclading indirectly, E being the minor premise: or if E be considered major premisa (as containing the term which is predicate in the conclasion) they must be referred to a fourth figure in which the major term is subject of the major premiss and the minor term predicate of the minor premise.

Elsewhere ' Aristotle points out that 'whereas some syllogisms are universal [in their conclusion] and some particular, those which

[^161][are universal alwnys have more conclasions than one, and so do those which are affirmative among the particular, but those which are negative among them have only the [direct] conclusion. For the other propositions convert, but the [particular] negative does not'. He means that any syllogism concluding to E, No S is P, implicitly gives also the conclasion No P is S, and any concluding to A or I, All S is P or Some S is P, implicitly gives also the conclusion Some P is S. We have therefore bere a recognition of the porsibility of the first three indirect moods of Fig. 1, Baralipton, Celantes, and Dabitis: whose conclusions are merely the converse of thoee which follow directly in Barbara, Colarent, and Darii. But in Fig. 2 the converse of Cesare is given in Camestres, and vice versa, and according to the conclasion drawn, you would be said to be arguing in one mood or the other. There is no affirmstive conclusion in Fig. 2 and no aniversal conclusion in Fig. 8; bat the converse of the conclusion I in the latter figure can be got, if both premisses are universal, by merely transposing the premisses in the recognized mood Darapti; while if one is particular, the converse of Disamis is given in Dstisi, and vice versa. This transposition of premisees enables us to refer all these conclusions to recognized rooods, while we can still say both that the premiss containing the predicate of the concluaion is the major, and that the middle term occupies its regular position in the premisees. Bat with these three indirect moods in Fig. 1 (as with the other two) we must either give up the robric, that the premisa containing the predicate of the conclasion is the major premiss, or else allow that we have a new arrangement of terms, in which the middle is predicate in the major premiss and subject in the minor.

It was very early seen that what Aristotle in these pasegea notices generally sbout the three figures works out rather differently in the first figure and in the other two; and an explicit recognition of the five indirect moode as supplementary moods of Fig. 1 is attributed to his nephew and successor in the Lyceum Theophrastus. ${ }^{1}$ If the fourth figure is really the erection of Galen, logicians for some five centuries enjoyed immunity from the burden of it. For it can hardly be doubted that Galen's implies a defective insight into the character of the thought which these forms express, and treata the ayllogiam more as a matter of verbal manipalation. In the fourteenth chapter an ondeavour is made to explain the grounds on which this verdict rests. It is hardly more than the logical issue of the external and mechanical way of regarding syllogism, which underlies the reference of these moods to a fourth and separate figure, when we find some of the later scholastic writers erecting separate moods on no better

[^162][ground than the order in which the premisses are enunciated, without there being any actual difference in the premisses or conclusion. ${ }^{1}$

Granted, however, that we are to acknowledge a fourth figure, the following will be the special rales of it : it must be remembered that as referred to this figure we call that premiss the major which $2 a$ referred to the first figure we should call the minor, and vice verse.

1. If either premise is negative, the major must le universal: for if either premiss is negative, the conclusion must be negative, and will distribute the major term; which in thia figure is subject of the major premiss ; and if it is to be distributed there, the premiss must be universal (cf. Fig. 2).
2. If the major premises is affirmative, the minor must be wnitersal: for the middle term, as predicate of an affirmative proposition, will not be distributed in the major premiss; it must therefore be distributed in the minor premiss, where it is subject; and therefore the minor premiss must be universal.
3. If the minor premize is affirmative, the conclnsion woill be particular: for the minor term, as predicate of an affirmative proposition, will not be distributed in the premiss, and must not be distributed in the conclusion, which will therefore be particular. ${ }^{2}$

Hence the premisses $O A$ are invalid by the first rule: $A I$ and $A O$ by the second ${ }^{2}$; $\triangle A, A E, E A, E 1, I A$ are valid; but ΔA will afford only a particular, instead of an universal, conclusion. The moors are thus AAI, AEE, IAI, EAO, EIO; and their mood-names, as moods of the fourth figure, are.Bramantip, Camenes, Dimaris, Fesapo, Fresison.

The complete memoria technica, with the fourth figure replacing the indirect moods of the first, is commonly given in English textbooks nowadays as follows ${ }^{3}$:-

[^163][Barbara Celarent Darii Ferioque prioris;
Cesare Camestrea Festino Baroco secundee;
Tertia Darapti Disamis Datisi Felapton
Bocardo Ferison habet; quarta insuper addit
Bramantip Camenes Dimaris Feeapo Fresison
Quinque subalterni, totidem generalibus orti,
Nomen habent nullum, nec, si bene colligis, usum.
The mesning of the lest two lines is explained in the next paragraph.]

It will be noticed that in five out of these nineteen moods the conclusion is universal, viz. in Barbars and Celarent in Fig. 1, Cesare and Camestres in Fig. 2, and Celantes in Fig. 1 (= Camenes in Fig. 4). It is, of course, possible a fortiori to draw a particular conclusion in any of these cases; and the syllogism is then said to have a meakened conclusion, or to be in a rubaltern sood (becanse it concludes to the subaltern of the universal proposition that might be inferred from it). Subaltern moods wonld be used by no one who was asking what could be inferred from given premisees; for it is as easy to see that the universal conclusion, es that the particular, can be drawn from them. Bat in seeking for the proof of eome particalar proposition, we might very likely find premisses that would really prove the universal ; yet, since we are only uning them to prove the particular, our reasoning would fall into one of the subsltern moods. Still, we should see that our premisees proved more than we had set ont to eatablish, and substitute at once the wider thesis; the subaltern moods are therefore of little importance, and are not included in the enumeration of valid moods of syllogism.
[It would have been poseible to determine what moods are possible in each figure, without enunciating the opecial rules (as thoy are called) of the different figures. It might merely have been pointed out, e. g., that in the first figure $A A$ would yield an A conclusion, $A E$ involve an illicit process of the major term, $A I$ yield on I conclusion, 10 again involve an illicit proceas of the major, $E A$

[^164]Fyield an E, and $E I$ an O conclusion, $I A$ and $O A$ involve an undistributed middle. And if it were asked why the mood IAI is invalid in this figure, the proper answer is not because in the first figure the major premise must be universal (though that is the second rule of this figure), bat because such a combination of premisses in it involves an undiatribated middle; the rule being made necessary to svoid this fallacy, and not the fallecy condemned because it breaks the rule. The rulen, however, if the grounds on which they rest are understood, give in a general form the principles which must be obeerved in each particular figure. A science should recognize prisciples; and therefore the knowledpe of these rules helps us to master the theory of syllogism; but only if their groands are understood. It is better to know what moods are invalid in each figure, and what fallacy they severally commit, than to know the apecial rules and apply them in a mechanical manner, without being sble to justify them.]

CHAPTER XIII

OF THE REDUCTION OF THE IMPERFECT SYLLOGISTIC FIGURES

Aristotls distinguished between syllogisms which were only valid (buvaro) and syllogisms which were perfect (rinewi). In the latter, the necessity of the inference appeared sufficiently from the premisses as they stand; in the former, they required to be supplemented, in order that it may be seen. The recond and third figures, in his view, were in this plight. Their validity, though real, needed proving, by means of the first figure. By converting one of the premisses in the two imperfect figures, he showed that we might obtain a syllogism in the first or perfect figure, either with the same conclusion or with one from which that could be recovered by conversion; where this direct method of validsting an imperfect mood fails, we can still validste it indirectly, by proving, in a syllogism of the first and perfect figure, that the falaity of its conclusion is inconsistent with the trath of its premisees. ${ }^{3}$

The process of crhibiting by the help of the first figure the validity of ayllogisms in the other two (or three) is called Reduotion. A knowledge of the method of reducing the imperfect moods to moods of the first figure belongs to the traditional part of the theory of syllogism. The present chapter will explain this; in the next we must ask whether the process of Reduction, though asactified by the tradition of many centuries, is really necessary, in order to validete the imperfect figures.

Directions for Reduction are concealed in the mood-names of 'Barbara Celarent'. Those who have thoroughly mastered the theory of ayllogiam will see at a glance how a given imperfect mood may be reduced; but the mood-name ensbles one to do it, as it were, with a mechanical correctness.

[^165]Reduction, as already stated, is either direet or indirect. Direct Reduotion of an imperfect mood to the first figure consists in showing, from premisses that are either the same as in the original syllogism, or inferred immediately by conversion from these, that the original conclusion, or one from which it can be immediately inferred, follows in a syllogism of the first figure.

As the figures are distinguished from one another by the position of the middle term in the premisses, it is plain that, to reduce a figure from one of the imperfect figures to the first, we must alter the position of the middle term. In the second and third figures, it occupies the same position in both premisses, being predicate in the second, and sabject in the third, whereas in the first figare it is subject of the major premise and predicate of the minor. We must, therefore, convert one premiss of a syllogism in the second or third, in order to reduce it to the form of the first. In the second we should convert the major, for there it is in the major premiss that the middle term is out of place; in the third, the minor. But it may happen that this would give us a combination of premisses which, in respect of quality and quantity, cannot stand; e.g. in a syllogism in Disamis (Fig. 3), by converting the minor premiss A, we should get the combination $I I$, which yields no conclusion. We therefore have sometimes to transpose the premisses, making our original minor premiss the major, and vice verss, and converting in the second figure that which becomes the major, in the third that which becomes the minor. Where the premisses are transposed to make a syllogism in the first figure, they will give a conclusion in which the terms of the original conclusion have been transposed likewise; and it will be necessary to convert this conclusion in order to recover that of the original 'imperfect' syllogism.

By way of illustration, we may take the following example in Camestres, the form of which, as indicated by the vowels of the mood-name, is

$$
\begin{array}{r}
\text { All } P \text { is } M \\
\text { No } S \text { is } M \\
\therefore \\
\hline
\end{array}
$$

If we were to argue that a spider is not an insect because it has not six legs, our argument would fall quite naturally into the above form :

Insects have six legs

The spider has not six legs
\therefore The spider is not an inseot
Now if we want to get the same conclusion in the first figare, we cannot convert the major premise; for that would give us a particular major

Some animals with six legs are insects
and no conclusion as to whether a spider is an insect or not would follow. ${ }^{1}$ We must therefore convert the minor premiss, which being E can be converted without change of quality: and transposing at the same time, form the syllogism in Celarent:

No animal with six legs is a spider Insects have six legs
\therefore No insect in a spider
From this conclusion we can recover by conversion the original conclusion

> The spider is not an insect

Had our argument run alightly differently, to the effect that the spider is not an insect because it has eight legs, it would have fallen into a syllogism in Cesare:

$$
\begin{array}{lr}
\begin{array}{ll}
\text { No insect has eight legs } \\
\text { The spider has eight legs }
\end{array} & \text { No } P \text { is } M \\
\therefore & \text { The spider is not an insect } S \text { is } M
\end{array} \quad \therefore \text { No } S \text { is } P
$$

Here the major premise can be converted simply, being E : and transposition is not required. The premisses

> No animal with eight legs is an insect
> The spider has eight legs
are of the form of Celarent, and yield at once the original conclusion.

If we consider the indirect moods of the first figure (the moods, as others regard them, of the fourth figure) in order to show that their conclasions (or others yielding them by conversion) can be obtained directly in the first figure from the same premisses (or from premisses which these gield by conversion), we shall see that they fall into two groups. 'Three, Baralipton, Celantes, and

[^166]Dabitia, simply draw the converse of the conclusion which the same premises yield directly; all we have to do therefore is to draw the direct conclasion and convert it. But Fapesmo and Frisesomoram yield no direct conclusion. If every copy of the Times contains an advertisement of the Encyclopaedia Britannica, and the newspaper I buy is not the Times, I cannot infer that it contains no advertisement of the Encyclopaedia Britannica. The only conclusion is that some papers containing an advertisement of the Encyclopaedia Britannica are not the newapapers I buy. Now to get this conclusion directly in the first figure I must transpose the premisses, so that 'newspaper I buy' may be in the major premies, and 'copy of the Fimes' in the minor. But this will bring the middle term into the wrong position, unless at the same time I convert both premisses; then indeed I shall get the syllogism

No copies of the Timet are the newspapers I bay
Some papers containing an advertisement of the Encyelopaedia Britansica are copies of the Times
\therefore Some papers containing an advertisement of the Encyclopaedia Britannica are not the newspapers I bay
which does prove my original conclusion in a direct mood of the first figure, Ferio; though whether it is the most natural way of removing any doubts I may have had about the validity of the indirect inference in Fapesmo must be considered in the next chapter.
[If theme moods, instead of being regarded as belonging to the first figure, are placed in a fourth, their reduction will be formally a little different. To reduce the first three, we shall simply have to drew the conclusion which naturally follows from the same premisses in the first figure, and then convert it; but this will now be asid to involve transposition of the premisses; for what is major regarded as in the fourth is minor regarded as in the first, and vice verse: thus

Fig. 4. Bramantip.
Men of stout heart are free The free are happy ${ }^{1}$

Fig. 1. Beralipton.
The free are happy
Men of stout heart are free \therefore Some who are happy are of stout heart
The premises in Baralipton are premisses in Barbara; those in Bramantip are not so, till they exchange position.

[^167][On the other hand, in the last two moods transposition will now be unnecessary; for the fourth figure already regards the universal negative premisa in Fesapo and Fresison (= Fapesmo and Frisesomorum) as the major, because it contains the term which is predicate in the conclusion, though it is subject in the premiss; conversion will bring it to the position required of the major term in its premiss by the first figure; and so with the minor; and our original conclusion then follows in Ferio.]

Whether, in reducing a syllogism of any imperfect mood, the premisees need transposing; which, if any of them, must be converted; whether we have to convert the conclusion obtained in the first figure by the syllogism of reduction, in order to recover the original conclusion; and in which mood of the first figure the validating syllogism will be-all these matters are indicated by the consonants of the mood-names. The significant consomants ${ }^{1}$ are:

1. The initial, always the same as that of the mood in Fig. 1 to which the imperfect mood must be reduced.
2. m (=muta), which indicates that the pramisses must be transposed.
3. ($=$ simpliciter), which indicates that the premiss, or conclusion ${ }^{2}$, signified by the preceding vowel must be converted simply.
4. p ($=$ per accidens), which indicates that the same must be converted by limitation.
5. c (= per contradictionem), which, occurring medially, indicates that we must employ the process of Indirect Reduction, to be explained immedistely.

In order to illustrate the mechanical use of these inatractions, it will be enough to work out in symbols the reduction of a single mood, Disamis. That, as the mnemonic tells us, is in Fig. 3; the middle term is therefore subject in both premisses. The major, being indicated by I, is a particular affirmative, and the minor, being indicated by \boldsymbol{A}, an oniveras affirmative; the conclusion

[^168]If any one in horrified at the doggerel, he may be asaured that much worse thingo could have been quoted in carlier chaptera.
i 1.e. not the conclumion of the original ayllogism (which bas got to be obtained a it is), but the conclumion of the calidating sylogism.

III] REDUCTION OF THE IMPERFECT FIGURES 269
similarly a particular affirmative. Our ayllogism is therefore to be of the type:-

	Some M is P
All M is S	I
\therefore	Some S is P

In reducing it, the m of the mood-name indicates that we must transpose the premisses, and the * that we must convert simply the premiss indicated by the vowel after which it stands; the D that we shall so obtain a syllogism in Darii, thus :-

All M is S
Some P is M
\therefore Some P is S

The simple conversion of this conclusion, enjoined by the * after the third vowel in Disamis, gives us

Some S is P
This process of Direct Reduction cannot be applied to the two moods, Baroco and Bocardo. The reeson is obvious. In order that the middle term may occupy a different position in the two premisses, as the first figure requires, one of the premisees in the second and third figares must be converted. In these moods, the premisses are respectively an univeraal affirmative and a particular negative proposition. The latter, O, cannot be converted either simply or per accidens; the converse of A is I; and so by converting that we should obtain two particular premisses. These ayllogisms can, however, be validsted by the process of Indirect Reduction.

Indirect Reduotion, or Reduotion per imposelbile, consista in showing, by a syllogism in the first figure, agsinst which no objection can be taken, that the falaity of the conclusion in the original syllogism is inconsistent with the truth of its premisses. This is done as follows:-

Baroco is of the form

All P is M
Some S is not $\boldsymbol{H} \boldsymbol{L}$
\therefore Some S is not $P \quad \therefore$ Some natives of Africe are not negroes

Now if this conclasion is false, its contradictory will be true, i.e. that All natives of Africa are negroes. We can then combine this
with our original major premise to form a syllogism in Barbara, thus:-

$$
\begin{aligned}
& \text { All } P \text { is } M \\
& \text { All } S \text { is } P
\end{aligned}
$$

$$
\therefore \text { All } S \text { is } M I \quad \therefore \text { All natives of Africa have curly hair }
$$

But the conclamion thus obtained contradicts the original minor premiss; hence if the original premises are true, the conclusion we drew from them cannot be false, and our original syllogism is therefore valid.

The method of reducing a syllogism in Bocardo is the same: except that here by combining the contradictory of the conclusion with the original minor we reach a reault inconsistent with the original major premiss; while in the former case, by combining it with the major, we deduced a conclusion contradictory of the minor. The letter c in the mood-name means that the mood is to be reduced indirectly by subetituting for the premiss indicated by the vowel afler whick the c is placed the contradictory of the conclusion. ${ }^{1}$
[All the imperfect moods could be validsted in this indirect manner, ${ }^{2}$: take, e. g., Darapti-All M is P, All M is $S \therefore$ Some S is P; if this is false, then No S is P; and All M is $\mathcal{S} ; \therefore$ No M is P; which is inconsistent with the trath of the original major premis. The first figure, on the other hand, cannot be appealed to in order to confirm itself; if we sappose its conclusion to be false, and combine the

[^169][contradictory thereof with one of the premisees, it is only by a byllogism in the second or third figure that we can deduce a conclusion inconsistent with the other premiss; e.g. in Barbars (All M is P, All S is $M \therefore$ All S is P); if the conclusion is false, then Some S is not P; and All M is P; Some S is not M-which contradicts the original minor; and again, Some S is not P, and All S is $M \therefore$ Some M is not P-which contradicts the original major; but the argumenta are in the second and third figurea.]

CHAPTER XIV

ON THE PRINCIPLES OF SYLLOGISTIC INFERENCE

When I argue that because $A=B$ and $B=C$, therefore $A=C$, my reasoning proceeds upon the same principle as when I argue that because $X=Y$ and $Y=Z$, therefore $X=Z$. This principle is expresed in the familiar axiom that thinge which are equal to the same thing are equal to one another. In the particular inference, $A=B, B=C \therefore A=C$, I do not deduce any conclasion from that axiom, at from a mejor premiss. It has indeed sometimes been contended that the argument is really ayllogintic; that it should be written

Thinge equal to the mame thing are equal to one another 4 and C are things equal to the same thing $\therefore \Delta$ and C are equal to one another ${ }^{1}$
But the following considerations will show that this is not the case. Firutly, we may appeal to an analogous argument, in which a quantitative relation is eatablished between A and C on the ground of the quantitative relations of both to \mathbb{C}, although the quantities are none of them equal. If A is greater than B, and B is greater than C, A is greater than C. Are we to maintain that this inference should properly be written

Things of which one is greater and the other leas than the ame thing are greater the one than the other
A and C are thinge of which one is greater and the other less than the same thing
$\therefore \Delta$ and C are greater the one than the other
The cumbrousness of this would be no reason for refusing to recognize it, if it were correct; and if the other is correct, this must be. Yet where, as in this case, it requires some violence and ingenuity

[^170]to bring a quantitative inference into the form of a syllogiem, it is not habitually done; and since men have been content not to force into the form of syllogism the inference ' $A>B, B>C \therefore A>C$ ', it may be surmised that they would not have so dealt with the inference ' $A=B, B=C \therefore A=C$ ', if it had not been for the apparent ease of the tranoformation. But appearances may be deceptive; it must therefore be noticed secondly, that in the ayllogiem which is supposed to represent the latter inference, vix.

Things equal to the same thing are equal to one another 4 and C are thinge equal to the arme thing
$\therefore \Delta$ and C are equal to one another,
our minor premies and our minor tarm are both fanlty. The minor premise is not a correct statement of the grounds of our inference; these are, that A and C are both equal to B, and therefore the major required is 'Things equal to B are equal to one another'. And the minor term ' A and C ' is not really a subject of which we demonstrate an attribute; it is two subjects, which are ahown to stand in a certain relation to each other. Thirdly and chiefly, the ro-called major premiss is itself establiahed through the so-called minor and its conclusion. It is becanse I see that if A and C are both equal to B, they are equal to one another, that I recognizo the truth of the general principle or axiom. If I were incapable of recognixing the validity of the inference in the case of the three quantities A, B, and C, or X, Y, and Z, I should not be able to recognize the trath of the axiom. The axiom, therefore, is not one of the premisses from which we reseon, when we argue that ' $A=B$ and $B=C \therefore A=C^{\prime}$: it is the principle in accordance with whick we reason. If it were denied, the validity of any particular inference that conforms to it would be denied also; its truth is therefore involved in that of the particular inferences. But a man may see the validity of the particular inference, without formulating the axiom. This would not be eo, if it were really a suppresed major pramise, and ' A and C ' a true minor term. In the argument that 'Silver ia a good conductor because it is a metal', every one recognizes that it is implied that 'All metals are good conductors'; and without this premies, the grounds of the inference are not apparent. But no one requires any further grounds for inferring ' $A=C$ ', than are contained in the premisses ' $A=B$ and $B=C$ '.

We may therefore dismies the attempt to reduce this argament to syllogistic form, and recognize in the axiom not a premise bat the principle or canon of the argament. Bat the queation then arises, whether there is similarly a principle or canon of syllogistic inference. Let us recall what was shown in Chaptor XI, of which what has just been said is only a corollary. We there distingaished between an argument in which a relation of quantity was eatablisbed between two terms, through their relation in quantity to a common third term : and an argument in which a relation was established between two terms in the way of subject and attribute, through their relation in that respect to a common third term; the latter being syllogism. Now the axiom 'Things that are equal to the ame thing are equal to one another' is a principle of inference in the domain of quantity. It specifies no particular quantities, but states that two quantities will stand in a certain relation (of equality) to one another, if they stand in certain relations (of equality) to a third. May there not be a corresponding principle in syllogistic inference-one which specifies no particular terms, but states that two terms will be related to each other as aubject and predicate in a certain way, if they are so related in certain ways to a third term?

Such a principle has been supposed to be furnished in the Dictwin de omai ot nullo; and a consideration of this, and of other canons which have been propoeed in its place, will throw a good deal of light on the natare of syllogistic inference, and the difference between its different types or figures.

The phrase 'Dictum de omni et nallo' is really a short title by which to refer to a principle too long to enamerate always in full; just as we refer to statutes or papal balls by their first word or two. The principle may be expreseed thus-Quod de aliquo omni praedicatur [dicitur, s. negetar], praedicator [dicitor, s. negatur] etiam de qualibet eius parte: What is predicated [stated, or denied] sbout any whole is predicated [stated, or denied] about any part of that whole. ${ }^{1}$

[^171]If we take ayllogisms in the first figure-and it is enough to consider Barbars and Celarent-the meaning of the principle will
remarks of Aldrich's) to be more nearly a tranalation of the peasage in Aristotle's Catagories than of that in hie Analytics. The formule 'quod valet do omnibas valet etiam de singulin' (the referonce for which I aannot now find) treate the major premies natedly a an ennmerative judgement; the eame view is implied in opeating of the middle term as a clase, as a.g. Whately and Bain do.

The peasege in Aristotle from which the Dictum de Omni whe primarily

 Acyoijorras" nai ro nard $\mu \eta$ onedr ioraires ("That one term shonld be containod in enother as in a whole is the asme as for one to be predicated of all another. And it is aaid to be predicated of all anything, when no part [= logical part] of the subject can be found, of which the other term the predicate] will not be trae; and to be predicated of nowa, cimilarly'). Aristotle is here explaining the meaning of expremions which he is about to une in the Analytice; if mortal is predicated of animal or man nera mawde, it means that there is no animal (e. g. man) or man (e.g. Socrsten) who is not mortal. And no doubt that il involved in the trath of the univeral proposition; bat it does not follow that Aristotie thought of the univeral proposition as no more than an enumerative judgement about overy species (or individnal) of which the eabject-term can be predicated. The fact that he nsee the formule rd míop doriv dr 840 rip mpiry as well at rd mperov
 middle term in Fig. I (and similarly with the relation of the middle to the minor) ahow that he looked apon the univernal an a whole or unity, and not a mare collection. Again he asye of that figare, al yip ad A rard marrds

 B, and B of all C, A must be predioated of all C : for we have already atated what we mean ly predicating of all') (Anal. Pri. a. iv. 25' 38-4, 87-40). Dorbtleen if it is involved in mying ' All A is A ', that every B is A, and in eging 'All C is B ', that every C is B, then every C must be A; but the univaral proposition need still not be viewed an atatement sbout particulars. Indeed if it were, each particular C muat be already known to be 4 in mating the judgement ' $\Delta l l \mid C$ is A ', and therefore the inference that all C is A would be unnecesaary. Aristotle himself points this out in Anal. Pock. a. i, and makes it plain that in his view the onivernal proposition whe not an enumerative judgement sbout known particulars; and he hardly ever usea a aingular term to illustrate the minor of a ayllogiam. And althongh wo must admit that in regarding Fig. I sa the only perfect figare, and in arhibiting the necestity of the inference in Fig. 1 ae be does in the words last quoted, Ariatotle layv too mach etress on the appect of extenaion, and not enough on that of neceseary connezion of content within the object, yot he largely corrects this himealf in bie acconnt of demonstration, and he did not thing that the emential meaning of the univeral proposition, and What constituted the nerve of the reasoning, lay in the fact that it made an asertion sbout every particular falling ander it.

There is snother pesage in Aristotle eometimes quoted es the source of the Dictam, vix, Cot. iii. 10 10 (e. g. Mansel', Aldrich, p. 85 note a: Bald win's Dictionary of Philosophy and Pyychology, toc. Ariadole's Didum). The
 dee zard roì cartyopov
be plain. All (or No) B is A, All C is $B \therefore$ All (or No) C is A. Here it matters not for what real terms A, B, and C stand, any more than

 ael hifopentic dort enl Cior ('When one thing is prodicated of another an of a aubject de quo, all that is amerted of the predicate will be asertod of the subject an well: e.g. man is predicated of a particular man [as mbject de quo), and enimal of man, and therefore animal will be predicated also of the particular man'). Taken apart from ita context, this sontenoe might weem to be an enunciation of the Dictam. But ite context dispele this presumption. There is nothing about ayllogiam in the Categorica at all. Ariatotife has been distinguishing in the previous chaptar between different kinds of being (5-ra). What be asys involves the diatinctions-to put it into other language-between the individaal and the univeral, the concrete and the abotract. In his own language some thinge nof imoscuminov λ iquar, is

 are predicated of a mubject-it is their aubject de quo-but do not inhero in any mubject: others inhere in a subject, but are not prodicated of any; others are both predicated of a subject and inhere in a subject; others neither inhers in s subject, nor are prediosted of any). Hert it is obvions that the leading distinction' is between ro ncy' imromyívov díyodas and nd is iroscuip shas: between being predicated of a sabject, and inhering in it. The diatinction is atin to that between eapential and accidental predication. Man is predicated of a particular man, and animal of man ins sof inroasuminov, as the aubject de $q u 0$, becanse man is what he is, and animal what man is; remove the predicate, and the anbject would not be left; the predicate as it were overspreade the whole aubject. In the same way grommar is predicated of Priscian's distingoishing aciance, and acience of grammar ior anf inocnyivov, because grammer is what his science whe, and soience is What grammar is. Here man is a concrete and grammar an abstract term; hat either is predicated ioc nof: imacumipov of its own particulare-they are the sabject de guo; and prodicatee which are of their emence, or tell us what they in themelves are, are predicated ioc caf imosaumivov of them. On the other hand, grammar is fornd in the sonl, and colour in a body, as inhering, de d_{7} irourumim; and if they are predicated of theme sabjecte, we are not eajing what the coul is, or what a body in, emantially; theme attributes indeed can only exist in a aubject (and therefore Aristotle
 dinvoror xeple ivas roi do \dot{f} dorir-' what being in a particular not as a part of it cannot exist separate from that in which it is'), but their removal does not involve the diappearance of the anbject of which they are predicated The grammatical science of Priscian therefore, though there is no anbject of which it is predicable as de quo, ics anf innosupivou (for it is a particular instance of that sttribate, or univenal), yet exiata is imosuruizp, an an attribate in his 'soul'; but Priscian himelf is neither predicable of any unbject is reff íronenpinou (being a concrete individual), nor (for the ame reacon) does he inhere or oxiat in anything forther.

Haring asid this, Aristotle proceeds to add the sentence quoted at the bead of the lant parsgraph ; which must clearly be interpreted with referenco to the distinctions which he had in his mind at the time; and the point seeme to be thie. There are thinge which we might hecitate about placing in aither of the four clesese which Aristotle has discriminated. They are what wo should call generic conorote torms, like snimal Thewe are
in the ariom it mattered what real quantities were intended. Whatever they are, suppoee that A can be affirmed or denied of all B, it can be affirmed or denied of each particular mobject, C or any other, included in B. Here, according to a tradition which has been strong, is the fundemental principle of ayllogistic inference. In this Dietum is nakedly displayed what is the nerve of our reasoning, whenever we syllogize in the concrete. It is'the aesurance that Δ is trae of all B, which metinfiee us that it is true of this B, viz. of
primarily predicated not of the individmal-ag. the individual man Socrateo-but of the species man; we ay that a mun is an animal, not that Socrates is an enimal. Now mas is not the imourimenov, but digerat eaf θ° ironumiov ; and therefore it cannot be primarily eaid of amimal that it an σ imoscuinov díquau. Yet $w e$ cannot treat it like seneric abutract term anch at acience, and may that it attaches to man io cat ivroaruivon and to Socratee iof dy irrontuing. Still leas can we treat it like tho concreto individnal, and ay that it neither in imonayimp fori nor anf imowneivon λ 'jeral. But we need not erect a new clage of thinge which mard marmopouniron degrrat ; for in caeen like this, where that of which snything is predicated is in torn predicated of nomothing eleo is mef imonourinn, that thing is itnelf predicated ior kaf imochuivou of the amme anbject. Animal therefore, no leas than man, nof inowtuinou λ íyrat, though predicsted usually of man or horse, and not of Socrates or Buopphalus. The case would be different, if that of which anything wer predicated inhered in something else is iv iwocrupin: we could not then predicate it of the aubject, as we predicate it of what inheree in the mubject. Seience may be predicated of granmar, and grommar was comething inherent in the sonl of Priecian ; bat we cannot asy that the moul of Priscian was a acionce, like the grammar in it. Science, however, is provided for already in Aristotle't list, as ammething which maf irownuivov re λ igeras anal if inoweyiop ioriv: and animal and its congeners are no less provided for, if we realise that, thongh predicated primarily of prodicatea, they are ultimataly and really predicated of the anbjecte of theae-

The section is therefore fer from enanciating the Didmon de onni at nullo. The imrominnors is the concrete individual, and not a minor term (though it is troe that it might be alco a particular inatance of an attribute). The tranmerence of a predicate A from B to C is considered only in the case where A is predicated of B, and B of C, \cos naf imonequenov: bat the Dictum is innocent of any anch reatriction. If Priscian wan a grammarian, and a grammarian is aciontific, Priscian whe scientific; but hure in the minor premien it is not true thet "Trepon aut' iripon narmopeirat ios raf' imorerminov. If Priscian was a man, and All men are jealons, Priscian whe jealous; but bere jealous, in relation to man, is not one of those things dara aard roi rarmopouminov λ igarat; man is that, ir \ddagger iovis. Now the Dictum covers theme syllogitas no leen than the oyllogism 'All mon aro animals, Socrates is a man \therefore Soarates is an animal -if indeed Aristotle would have called any of them ryllogirms (cf, infro, p. 296). But the remarl which we are considering cannot cover the firit two, nor could Aristotle have thought of it for a moment acovering them; the difference between accidental and easential predication was much too prominent in his mind. There is therefore no ground for anying that thin paesage enanciaten the Dictum; whether he would heve accepted the Dictum an scorrect exprewion of the principle of ayllogistic inference is another question, to which the answer depends very much on how we interpret the Lictam.
C; the business of reduction is to bring imperfect syllogiams into a form, in which we can eee at once that the principle applies to tham; and the title of the first to be the perfect figure liee in ite admitting of the application of the Dietum do omeri et nullo.

There are several objections urged againat the claims of this formula. In the first plece, it suggeste the 'nominalist' doctrine expressed by Hobbee, when he anid that reasoning is but the right ordering of names in our affirmations. It suggeste that our ground for affirming or denying that C is A lies in the fact that A is said of all, or no, B, and B is said of C. Clearly it is because we believe that B is A, and C is B-not because B is called A, and C is called B-that we assert the conclusion. However, this nominalist interpretation of the Dictum is not necessary; it is not as thus interpreted that it will be here discussed; and therefore this objection may be dismissed.

It may be said secondly, that if the reduction of the other figares to the first is not neceseary, i.e. if the true character of our reasoning in them is not more clearly displayed in the firat figare, the Dictum is not the principle of all syllogistic inference. In claiming to be that, it denies any essential difference between the different figures; and those who think them essentially different are so far bound to question the analysis of ayllogistic inference which the Dictum implies. This is quite true; but we can hardly discuss the relation of the different figures, until we have settled whether the Dictum expresses correctly the nature of our reasoning in the first.

We come therefore to what is the main criticism which has been urged against the Dictum, and against all ayllogiatic inference, if it be supposed that the Dictum is a true analygis of its nature. It is esid that a syllogism would, on this showing, be a petitio principii. By petilio principii, or begging the question, as it is called in English, is meant assuming in one of your premisees what you have to prove. Of course, the premisses must implicitly contain the conclusion; otherwise you would have no right to draw it from them, and could deny it, while admitting them : thio much is true of every kind of cogent inference, whether syllogistic or not, though it has been sometimes treated as a peculiarity of ayllogism by persons who thought they could find other kinds of inference not obnozions to it. But you do not beg the conclusion in the premisses, except where the conclusion is necessary to cetablish one or other of
the premissea. For example, I may know that treason is a capital offence; and the law might make it treasonable to publish libele against the sovereign; and in that case, from the premisses, Δu treason is a capital offence, To libel the sovereign is treason, I could infer that To libat the covercigm is a capilal offence. In this argument, there is no petitio principii; I can leam the truth of both premisses by conallting the atatate-book, and do not need to be aware that it is a capital offence to libel the sovereign, in order to know either of the premisees from which that conclusion is deduced. But the case is different in such a syllogism as that All ruminants part the hoof, and The deer is a ruminant \therefore The deer parte the hoof. I have no means here of accertaining the truth of the major premisa, except by an inspeotion of the various species of ruminant animals; and until I know that the dear parts the hoof, I do not know that all ruminanta do so. My belief in the constancy of structural types in nature may lead me to expect that a rale of that kind, found to hold good in all the speciea which I have axamined, holds good universally; but this preamption, so long as it reate merely on the examination of instances, is not conclusive; I should not accept the conclusion merely on the strength of the pramisses, but should seek to confirm it by an axamination of the hoof of the dear; the caee of the dear therefore is neoesary to establinh the rule.

Now it has been alleged that all syllogism is a patitio priscipii ${ }^{1}$; and the allegation hae gained colour from the Diatum do omeni et mallo. 'That which is affirmed or denied of any whole may be affirmed or denied of anything contained within that whole.' What do we mean by a whole here? If it is a class or collection, if the major premise is to be underatood in extension, then it can hardly be denied that it presupposea a knowledge of the conclusion. If in the proposition $A l l B$ is A, I mean not that B as anch is A, but that all the $B^{\prime} s$ are 1, I must certainly have axamined the case of C (if that is one of them) before making the aesertion; and therefore the major premise, $\Delta l l B$ is A, resta (intor alia) on the present conclusion, C is 4 . Aceording to this view, the major premise of a syllogiam is (at least in most cesen ${ }^{2}$) a atatement of faot about the

[^172]\checkmark whole of a number of particulars; it is really an enamerative, and not a true universal, judgement. ${ }^{1}$ We make it, not becanse of any insight that we have into the nature of the predicates B and A, and into the necesity of their connexion : but aimply because we have examined everything in which B is found, and atisfied ourselves that 4 is equally present in all of them.

There is indeed another sense in which the major premiss may be understood, and one in which it no longer makes an assertion about the whole of a number of particulars. If I sey that all gold is yellow, I noed not mean to aseart that every piece of metal, which by other qualities I ahould identify as gold, is also yellow-s statement for which I certainly cannot claim the warrant of direct experience. I may mean that a yellow colonr is one of the qualities on the ground of which I call a subatance gold; or, in Locke's langrage, that it is included in the nominal esence of gold. By a nominal eesence, Locke means what J. S. Mill called the connotation of a namethoee attributes which are implied to belong to any subject, when we call it by some general name. We may colleot together in our thought any set of attribates we like, and give a name to the assemblage of them; and then it will, of course, be true to say that anything called by the name, if rightly callod by it, poseeses any of the attributes included in the signification of the name. The general proposition ceases, in that case, to be enumerative; but it does not become really universal. It becomes a verbal proposition. Gold is yellow, becanse we do not choose to call anything gold which is not yellow ; but we are not asserting that there is any neceseary connexion between the other attributes for which a parcel of matter is judged to be gold, and this of yellowness. Given such and such attributes, we call it gold; and therefore gold has all these. Let any one of them be wanting, and we ahould not call it gold; therefore that is not gold which is not yellow; bat there may be a parcel of matter, for all that we mean to affirm, which has all the other qualities of gold, but is of the colour of silver.?
or evente to which they refer. Such syllogismes, therefore, ws that sbout libelling the soveraign, given in the lat paragraph, can in no case be alloged to beg the queation. If any other asthority (buch as rovelation) sequaints us with general rules, they will serre is major premisese of equally unexceptionable allogims. All other general propoaitions have, by the extremer critica, been interpreted in the way mentioned in the tert.
${ }^{1}$ Yor this dintinction ef. anpra, p. 158.
${ }^{2}$ CEL Locke's Eway, III. vi. \$\$ 6, 19, and also pp. 78 aq., owpra, on Definition.

Locke did not suppoee that the ordinary man, who says that gold is yellow, means only to sesert that yellowness is one of the attributee included by him and others in the nominal essence (or connotation) of the word gold. Bat be thought that the ordinary man would find it hard to ay what precisely be did mean; and anyhow, that this was all that the evidence, and the means of knowledge open to us, jurtified him in meaning. It is not our present business to discuse this; we have not to ask how many of the general propositions enuncisted in the sciences have any right to be regarded as really universal propositions, nor what means there are (if any) of proving universal propositions aboat such matters of fact. We are concerned with the theory of syllogism, and the allegation that it begs the question. We found that if the major premiss be interpreted in extension as an enumerative judgement, the charge is true; and that the Dictum de omni et anllo at least lends colour to such an interpretation. We have now seen that there is another interpretation, according to which the major premis becomes a verbal proposition. On this view, its general trath doee not depend on an emmination of all the instances incladed ander the subject of it, and may therefore be known antecedently to such an examination. It depends, however, on an arbitrary convention about the meaning of names; the 时llogism too will still be a petitio prineipii, though not in the way which the Dietum de omai et aullo suggesta. For though the major premiss will no longer presuppose a knowledge of the conclusion, the minor will do mo. If nothing is to be called gold unless it is yellow, I cannot tell that the sabstance, in which I have found the other qualities which the name implies, is gold, unleas I have first seen that it is yellow. Of course, colour being the most obvious of the properties of a substance, I am not likely ever to be in the position of inferring the colour of a substance from its name; but the argument is the same as if I took some unobvious quality, like solubility in aqua regis. If that is part of the nominal eesence of gold, then I cannot tell that a particular parcel of matter with the familiar weight and colour of gold is gold, antil I know that it is soluble in aqua regis. I do not therefore infer its solubility from the knowledge that it is gold, but I call it gold because I know it to be thus soluble. ${ }^{1}$

[^173]We need not dwell longer on the view that a genaral proposition asserts the meaning of a name, nor on the consequences, fatal enough, which this view would entail on the syllogism. Beasoning is not a mere process of interpreting names; and it is not the principle of syllogistic inference, that whatever a name means may be affirmed of the subjects called by it. In considering the charge that the ayllogism is a petifio prineipii, it was necesmary to notice the view which makes the petitio lie in the minor premiss, as well ss that which makes it lie in the major. We must now return to the latter, and to the Dictum which is supposed to countenance it.

We saw that the crucial question here concerned the nature of the major premiss; is it universal, or merely enumerative? is it based on an enumeration of particulars, or on the connexion of univerasls? If it is enumerative, and resta on a previous review of all the particulars included in the middle term, the charge of petitio is sustained. We should then accopt the Dietwin do omai et nullo es the general principle of syllogism, the 'whole' of whioh it apeaks being underatood as a whole of extanaion, a collection or class; but wo should scarcely be able to speak of ayllogistic inforence.

Now Aristotle, who thought syllogism to be the type of all demonatration, could not possibly have understood the major premiss in this way. ${ }^{1}$ He thought that, although we might know as a fact that F_{E} is d, yet we did not understand it, withont seeing that it mase be eo; and to see that it must be so is to see that in it which makes it so-to see that it is \boldsymbol{A} in virlue of $B . \quad B$ is a middle term, because it really mediates between C and A; it performs for C the office of making it A, and is the reason why C is A, not merely the reason why we know C to be 4 .

We have already, in discussing the modality of judgements, met with this distinction between the reason for a thing being so and so, and the resson for our knowing it to be so-between the ratio cosendi and the ratio cognoscendi. When I say that wheat is nourishing, because it contains nitrogen and carbon in certain proportions, I give

[^174]the reason for its being nourisbing: it is this constitution which makea it so. When I say that Mellin'e Food is nourishing becane Baby grows fat on it, I do not give the reason for its being nourishing, but only the reason for my eaying it is 80 : it is not Baby's condition which makes it noarishing, bat its nourishing properties which prodace Baby's condition. The physical sciences alweys look for ralioner casendi, so far as possible; though it may be noted that in what is, in many ways, the moet perfect of the aciences, viz. Mathematica, we reason very largely from rationes cognomendi. If $A=B$, and $B=C$, then $A=C$; but it is not becawse A and C are both equal to B, that they are equal to one another, though that is how I may come to know of their equality. The reason why they are equal in that they contain the same number of identical unita. ${ }^{1}$

It is not all syllogisms, in which the middle term gives the reason why the major belongs to the minor. It does so only in the first figure, and not always there. Because a syllogiom falls into the first figure, whenover the middle term really is a ratio
 Why are modest men grateful? Because they think lightly of their own deserts. This impliee a syllogism in Barbers. All who think lightly of their own desarts are grateful, and modeat men think lightly of their own deverts. But if I try to eatablish the conclusion by an appeal to instances, pointing out that Simon Lee and Tom Pinch, John Doe and Richard Roe, were modest, and were grateful, I am giving not a reason why the modest are grateful, but reasons which lead me to judge them to be so; and my syllogiam falls into the third figare, not the first: Theee men were grateful, and these men were modent, therefore modest men are (or at least they may be) grateful.

The first figare is scientific, because a ayllogiom which makes you know why C is \mathcal{A} falls into that figure; but the middle term in the first figure soed not be a ratio eavendi. Parallel rays of light proceed from objects at a vast distance; the sun's rays are parallel; therefore they proceed from an objeot at a rast distance. Here my syllogiom is agsin in Barbera; bat the distance of the san is not due to ite rays (at the earth) being (so far as we can detect)

[^175]parallel : their being parallel is due to the distance of the san from the earth. Nevertheless, the syllogisms in which the middle term does account for the conclusion are enough to show that syllogism is not essentially a process of inferring about a particular member of a clase what we have found to be true of the whole class. The importance of the scientific, or demonstrative, syllogism in this connerion, is that it most effectually disposes of this analysis of syllogistic inference. It shows that there are syllogiems which cannot poasibly be brought under the Dictum do omai et aullo, thas interpreted. We shall, however, find that even where the middle term is not the cause of the conclusion, in the sense of being a ratio essendi, the Dictum thus interpreted does not give a true account of the nerve of our reaconing.

For the central ides of ayllogism is that it works through concepts, or universals. The major premiss seeerts, not the presence of \mathbf{d} in every B (and therefore in C, among them), bat the connexion of A as such with B ae such ${ }^{1}$: hence wherever we find B, we must find A; if we koow, or can show, that C is B, then $c o$ ipeo it is A. B is one thing, present in many; an attribute that is the same in the various subjects in which it occurs, and therefore involves in every case what it involves in any. How we are to discover what B involves is a problem of Induction, in the modern sense of that term. But if we know it, and if we know or diccover in a subject C that the condition B is present, we know and conclude that C is Λ. Where B is only something from which we can infer A, as we infer the distance of the sun from its rays being parallel, B is still an oniversal, iv ixi mo八入ôv: an attribute which for one reason or another we take as a sure indication of another attribute, and which we look on as the same in the various instances of its existence. There could be no syllogism if the major pramiss really made an enumerative statement about a number of particulars; the most that we could aay of the major premies then would be what Mill says of it, that it is a note or memorandum to which we subsequently refer in order to refresh our memory and save the trouble of repeating our observations: as if a man intending to dispose of part of his library were to put the volumes, which he did

[^176]not consider worth keeping, all in one bookcase; he might then infer that any particular volume in that bookcase was not worth keeping, merely because he had made a mental note to that effect about them all, and without looking at the volume again.

The perception that the middle term is not a clase but a charecter, universal and not a sum of particulars, has led to the formulation of a principle intended to exprese this more antiafactorily than the Dictum de omni et anllo does; of which it hae already been asid that it at least lends itself to an erroneous view of the major premise, as an enumerative proposition, though it was by no means always 00 intended. The principle is thio-Nola zolas ast mota roi ipmine (and for the negative, Repugnane nolae repugnal rei ipni): i.e. what qualifies an attribute qualifies the thing posessing it. Certain objections may be made to this formula also. It suggests that the minor term is always concrete, and that the ayllogiam refers to a concrete arbject (res ipva) what in the major premiss is stated to characterize its predicatea. It speaks also as if one attribute were conceived to qualify another in the same way as an sttribute qualifies a concrete subject. And the conoeption of a mark or nota is no improvement on that of sttribute. ${ }^{1}$ We need not interpret it as a purely external sign, related to what it signifiee as a word to ite meaning or a letter to a sound. The 'notea' of a thing are its characteristics, as Cardinal Newman apoke of the notes of the Church; they are not the mere indications by which we judge what object is present, bat themselves contribute to make it the object that it is. Yet the natare of a thing is no less ill conceived as an aseemblage of marks than as a bundle of attributee. The notes of the Church would not exhaust the notion of the Church; the marks of a disense, though elements and features of it, would not give a complete conception of what the disense is. There sre predicates of a thing which inclade too mach of its nature to be called marks of it. Neverthelens this formula hes the great advantage that it does prevent our regarding the middle term as a class which includes the minor in its extension. ${ }^{\text {? }}$

[^177]Kant said of the syllogism that it subrumed a cognition (i.e. a subject of knowledge) under the condition of a rule, and thus determined it by the predicate of the rale. ${ }^{1}$ The rale is given in the major premisa, which connecta a predicate (the major) with a condition (the middle term) : the minor premisa asserts the fulfilment of this condition in its sabject; and in the conclusion we determine the subject by the predicate which the rule, in the major premiss, connected with this condition. This anslysis bringe out the eesential natare of the major premiss, as a rule connecting a predicate with a condition universally, not an assertion that the predicate is found in the whole of a class. It also applies equally where the middle term is, and where it is not, the ratio eacondi of the major. And it is free from the objections just urged against Nota notac. If we were to frame from it a 'canon' parallel to this and to the Dietum de omani et nallo, it would run somewhat thus: Whaterer satidifies the condition of a rulo falls under the rule. If B is the condition of the rule of being A, whatever is B-for example, C-will fall under the rule of being A. We may perhapa accept this as a statement of the nature of the ressoning employed in syllogisms of the first figure. We need not deny that the liclum de omni et nullo, if rightly interpreted, is free from the offences charged againat it. If the omene be understood
qualifies an attribute qualifes the aubject of it, comes to mean that what indicates the promence of an attribute indicates what the latter indicates. He naturslly gets into grest difficalties where the minor term is singular. We may treat the attributea of mun as a mark or indication of mortality (though this ia rather like asying that a bottle of Liebig's Extract is a mark of the presence of a certain familiar signatare) ; bat we cannot treat Socrstes a a mark or indication of the attributes of man. Therefore in the syllogisme All men are mortal, All kings are men (or Socrutes is a man) \therefore All kingz ant (or Socrates is) mortal, while the minor premiss of the former is peraphrased The attributes of a king are a mank of the attributes of man, that of the latter rums Socrates has the attributes of man. This is a rather desperate abift. But res ipan never meant the major term, the mont general or abotract term in the ayllogiem ; and the whole interpretation, which necematates a mearare so violent, is impomible. The formuls is really an abridged equivalent of the passage in Ar. Cat. 1b 10-12, quoted p. 275, n. 1, oupra.
${ }^{1}$ Krit. d. r. Vern., Transcendental Dialect, Introd. II. B.(p. 215, Meirlejohn's Translation).

- Kant himself applied this snalysis to hypothotical and diajnnctive arguments also. In a later chapter, these are more atrongly dirtinguiahed from 'categorical' ayllogioms than he allows. But this need not prevent the ecceptance of bis analyais. A statement may correctly express the nature of ayllogistic inference, even when some arguments, which are not strictly oyllogistic, are also alleged to fall under it.
as an unity present in many instances- whole of intension, not a whole of extension-then the principle will serve. Bat the other puta more clearly the nerve of the inference. And it applies to all syllogiams in the first figure, whatever the nature of the middle term : whether it be a mere sign of the major term, as if we said that 'All men with large hands and small eyes are choleric'where the connexion of the predicate with ite condition, though sccepted de facto, is one for which we can see no necessity: or whether it give, wholly or in part, the raason and the explanation of the major, e.g. in such promisses as that 'All trees fertilized by the wind blossom before their lesves are out', or that ' Men sueceseful in a work that gives full play to all their facultice are happy'. Whatever our particular syllogism is, we shall find it true to say of it, that it brings a sabject onder a rule, on the ground that it satisfies the condition of that rule: that it affirms (or denies) a predicate of a subject, on the ground that this subject fulfile the condition with which the predicate (or its absence) is universally connected.

That this, like the axiom of equals, is a principle and not a premise of reasoning, is easy to see. Any one denying it would as readily deny the validity of any particular ayllogistic argument; but a man may admit the validity of the inference, in a particular case, withont needing to consider this general principle. And, as no one could nee that Thoo thinge equal to the same thing are equal to one another, who was incapable of seeing the trath of that principle in a given case, 00 no one could see the trath of the principle that What satingies the condition of a rule fallo wnder the ralo, who failed to recognize that if all organisms are mortal, and man is an organism, man must be mortal. What then is the use of the principle, if it is not a premise of inference? It might be used to stop the mouth of a disputant who denied the conclusion which followed from the premisses he had admitted. We might ask such a disputant, whether he donied the trath of this principle, and unless he was prepared to do that, require him to admit the validity of the syllogism he was disputing. It is true that in consistency he might decline. A man who denies the validity of a given ayllogiam in Barbare may with equal rescon deny the argument which attempts to prove its validity. For that argument will itself take the form of another syllogism in Barbara :

All inferences upon this principle (that what astisfies the condition of a rule falls ander the rule) are ralid
The syllogism in question is an inference upon this principle
\therefore It is valid
Why ahould a man admit this reasoning, if he will not admit that since

$$
\begin{aligned}
& \text { All organirms are mortal, and } \\
& \text { Man is an organism } \\
\therefore & \text { Man is mortal ? }
\end{aligned}
$$

The two are of the same type, and ahow that you cannot make the principle of ayllogistic inference into the premise of a particular syllogism, without begging the question. ${ }^{1}$ Yet a man who disputes in a particular case the conclusion that follows from his premisees Imay hesitate to maintain his attitude, if the principle of reesoning involved is put nakedly before him, and shown to be one which he daily proceeds upon, and cannot disallow without invalidating his commonest inferences. For this reason it may cut wrangling short, if we can confront a man with the principle of the inference he questions. Show him, for example, that the inference ascribes to a sabject, in which certain conditions are fulfilled, a predicate connected universally with those conditions, and he cannot longer refuse hie aseant. For to do what it does is to be a ayllogiom ' and therefore valid.

And there have been writers ${ }^{3}$ who thought that the only object of knowing the theory of eyllogism was to cut ahort wrangling. Bat there is another object, connected with a side of logic which the

[^178]
xiv] PRINCIPLES OF SYLLOGISTIC INFRRENCE

rame writers for the most part ignore. Logio is not an art. Its busineas is to know and anderstand the procemea of thought, and not least the true nature of our procesees of inference. To this buaineas belonge the queation, what is the principle of a cortain inference which we make, and recognize to be valid? To find and formulate that principlo-to extricate it from its conarote setting in the matter of a particular argument, and set it oat in abotrect, -this is the logician's teak. Now men may misintarpret the charnoter of eyllogiam, and formulate wrongly the principle involved; got if their misinterpretation is generally recsived for true, the wrong principle will serve in practice to stop dirputo an well as the right principle would have done. Thow who are agreed that syllogism in conclucive, however they define a ayllogiem, will accept an argument if it can be shown to accord with their definition; and the same misinterpretation which appears in their account of the general nature of ryllogiam will appear in their view of particular syllogimss, from which that account is of conrso derived. Therefore, though it be said that a syllogism is an argument which applies to any member of a cleae what is true of them all, yet even this analysis of it, however faulty, will serve to 'stop wrangling' among persons who eccept it. For let a particular argument be exhibited as doing this, and it will be socepted an valid. But the theoretical objections to this analyvia of ayllogistic inference are in do way leseened by its being prootically as ureful many other that men could be brought to eccept. The paramount question is, whether it is true: not whether for any parposes it is usefol. And the present chapter has been quite divinterested; it has aimed at throwing light on the question, What in a syllogiam ? i. e. What in the principle of inference which a ayllogiem exemplifies?
We bave ignored of late the imperfect figures, in ceeling an answer to this question. They farmished a poserible objection to the claims of the Dictum de omxi et $\mathrm{mm}^{2} / \mathrm{o}^{1}$; for if their reduction to the first figure is unnecewary, then the Dictum, which only contemplates the first figure, cannot be the principle of all ayllogistic inference. But this objection was deferred, until the Diotum had been examined on its own ground. We must now retarn to the subject of the imperfect figurea.

[^179]It may make thinge clearer, if the view to be taken in the following pagee in given rummarily at the outsek. There are dificulties in any view of the matter; because the ame verbal form may be used where the thought in the apeaker's mind is different. The true character of an argument depende not on the verbal form, bat on the thought behind it. And therefore sometimee the movement of a man's thought, though he expresses himself, e. g., in the second figure, would be more edequately exhibited in the firet. ${ }^{1}$ In anch a case direct reduction may be defensible, though still annoceneary; and yet it may be true that, speaking generally, the direct reduction of the imperfect figures distorts them, and parchases a show of conformity with the first figure at the expense of concealing the genaine movement of thought in them.

It would meem then that ayllogims in the reoond and third; figarea do not as a rale merely present under a dieguise the reasoning of the first; they are independent typea. Their validity is confirmed, in the second figare, by the reductio ad ahourdwin ${ }^{2}$, and in the third, by the method which Aristotle called J_{k} eects, or exposition. The fourth figare (or indirect conclusion in the firat) is not an independent type; its first three moods are merely moods of the first figure, with the concluaion converted, as the procees of redacing them anomee; ite lest two moode draw conolusions which are shown to be valid moot naturally by reduotion to the third.

Let us begin with the eecond figure. Take the syllogism : $\mathbf{A l l}$ true roses bloom in summer: The Christmas rase does not bloom in owmern \therefore lt is not a true rose. Surely, if a man heritated for a moment about the necessity of this consequence, he would reastare himself, not by transposing the premiees, and converting the prowent minor into the statement that No rose which bloome is swmer is a Cirismae rase: but by considering, that the Christmas rose, if it were a true rose, would bloom in summer, wherees it does not. The same remarke will obvioualy apply to s syllogism in Baroco. Nor is it otherwise with the remaining moods. If No

[^180]fiak har lumge, and Whales (or Soms aquatic animalo) have langs, then Whales (or Somed aquatic animals) are not fisk. A man sees at once that if they were, they would not have langs: whereas they have.

It might be raid that the last conclasion could be as natarally reached in the first figure; that if a man, confronted with the conolusion that Whalee are not fial, and not feeling that he was clear ebout ite cogency, were to ask himeelf 'Why not?', he would answer 'Becanse they have lungs'; and that this implies a syllogism in Barthari, with the major premiss What has luuge is not a firh. Whether this gives the reason why a whale is not a fish (in which case Barbars would be a better way of proving it) we need not dispute ; but there certainly are cases where, in what a subject is, we can find a reason for its not being something olse. Notes that produce beats are mod harmoniows: The fourth and ffth prodwee beats; Therefore they are not harmonions. This argument might be set forth in the second figure: Harmonious notes do not produce beats: The fourth and fifth produce beats; Therefore they are not harmonious: but here undoubtedly the ryllogirm in Barbars is better than the syllogiam in Ceeare; and any one who knew that concord was dependent on regular coincidence in vibrations and discord on the abeence thereof, would extricate from the major premiss of the latter syllogism the major of the former, and think in Barbern Nevertheless it is only this knowledge which makes him do $s 0$; and without it he might perfectly well validate to himself his conclasion by considering that if thoee notes were harmonions, they would not produce the beats they do. If the middle term gives a ratio essendi, we naturally put our reasoning into the first figure. ${ }^{1}$ The Chinese are not admitted into the United States, for fear lest they should lower the white labourer's standard of living. The likelihood of their doing this is the cause of their exclusion. It would be annatural to express this in Cesare-

None admitted into the United States are likely to lower the white labourer's standard of living
The Chinese are likely to lower it
\therefore The Chinese are not admitted into the United Statea.
But we are not concerned to prove that no arguments expressed

[^181]in the second figure are better expressed in the firut; only that there are arguments which are more naturally expresed in the second, and which we should not, if challenged, attempt to validate by reduction to the first. Thus I may argue that Notes which produce beate are mot harmonious, and 4 mote and its octave are harmonious, \therefore They do not produce beate; and it is as mach a distortion to pat this into the fint figure by conversion of the major premin as to pat the previous erample which used that major premies into the seoond figure by the came meang. Again, if I give, as a remeon why whales are not fiah, that they have not the charmoteristice of fish, such as breathing through gills, laying egge, \&c., my ayllogiem may very well be in Camestres-All fohl breathe through gillf, and Whales do not $\therefore 1$ whale in not a fed ; if I still aek myself why not, I should probably answer, 'Becanse if it were a fish, it would breathe through gills, which it does not do.' The conclusion states a fact of difference between two things, which the premisees prove bat do not sccount for; and the proof in the second figare may be said to be here the primary form. ${ }^{1}$ Moreover, if I were to recur to the first figure in order to establish this inference, it would maturally be by contraposing the major premiss

What doee not breathe through gills is not a fish
Whales do not breathe through gills
\therefore Whales are not fish
for the absence of a feature essential to any fish may be treated as explaining why s thing is not a fish. But the syllogism to which Camestres is supposed to be redroed is not the sbove; it is the following-

What breathes through gills is not a whale
A fish breathes through gills
\therefore A finh is not a whale
from which the original conclusion that a whale is not a fish is recovered by convernion. Now this argument, instesd of relying on something in whalee (viz. the absence of gills) to show that they are not fish, relies on something in fish (viz. the presence of gills) to show that they are not whales; whereas whales are really the

[^182]
Iiv] PRINCIPLES OF SYLLOGISTIC INFERENCE

subject of my thought. The ame line of reflection may be applied to the argament, Matter conlaining aetive bacilli putrefies: Prozen meat does not putrefy \therefore It contains no active bacilli; where no one could maintain that non-putrefiction was really the cane of matter containing no active bacilli.

Thus the eecond figure is really different in type from the first; although reseoninge which would naturally fall into the first may be thrown into the recond. And the difference is this, that the second is essentially indirect, the first direct. In the second, we see the validity of the conclasion throagh the contradiction that woold be involved in denying it; in the first (though, of course, it would be equally self-contradictory to admit the premisenes and deny the conalasion) the perception of this is not a ' moment' in our thought. It may fairly be maid that the first figure is prior to the second, in the sense that it is involved in the perception of the contradiction which would result from denying the conclusion in the second. But that does not justify us in reducing the second to the first. For it is an essential part of our thought in the second figure, to see thet the conaluasion must follow on pain of contradiction; and not marely to see the validity of the first-Gigure syllogism, by help of which the contradiction, that would follow on denying the conclasion, is developed. There is therefore a movement of thought in the second figure which is abeent from the first. This is what prevente our reducing it to the first, and makes a new type of it; and this is why its direct reduction, representing second-figure syllogiems as only first-figure syllogisms in diaguise, is wrong, and therefore saperfluous.

It may be asked, is even indirect reduction necessary? Is not the validity of the argament plain, without oar being at pains to show that, if it were diaputed, we should be involved in a contradiction? Cannot a man appreciate that if No A is B, and C is B, then C is not A, without the necessity of pointing out that C would not otherwise, as it is, be B ? The anower is that a man may certainly not require this to be pointed out, inasmuch as he sees it at once to be involved in the premissea. The so-called indirect reduction is really a part of the thought grasped in the syllogiom; not something forther, by which, when a man has already made his inference, and realized the act of thought involved in making it, be then proceeds to jurtify his ect. It rather bringe out what is in the inference, than reduces or resolves it into another. Hence a man may feel it
to be unnecesary, but only because it in a repetition, not becanse, if he did not eee it, the ayllogism would etill be meen to hold withoat it.

Yet it mast not be supposed that a form of argument is valid only because to question it would involve a contradiction. With equal renson it might be said that unless the argument were valid, there would be no contradiction in rejecting it. Hence the perception, in the second fagre, of the contradiction that would ensue if we denied the conclasion, is not the reason for admitting the conclurion, bat ooly involved in realizing its validity. An analogy may halp na
 If a otraight line, falling on two other straight lines, makes the exterior and the interior and opposite anglea on the ame side of it equal, the two linee muat be parallel. Strictly speaking, this asnnot be proved by reasoning; we just eee, when we try to draw the figure otherwise, that it must be $\infty 0$. Bat this necessity may be brought out indirectly by the consideration, that if $B E F$ were to be greater than $B C D, E F$ and $C D$ would cat $A B$ at a different slant, and therefore incline towards one another; and the perception of this is really part of seeing the neceanity of the original proposition. Neverthelesa it cannot be given a a reason for the truth of that proposition; for unless the lines were parallel when the anglee $B E P, B C D$ are equal, they would not necesearily tend to meet when each cute $\boldsymbol{A B}$ at a different slant. The confirmation, such as it is, is obtained by looking at the same matter from another side; and $\infty 0$ it is in the aecond figure of syllogiam. The truth of one side cannot reelly be separsted from the trath of the other, and therefore the one is not dependent on the other; but it is not fully apprecisted without it. The development of the contradiotion involved in denying the conclasion in the second figare is a development of the syotem of relations between the terms alleged in the premisees, or of the consequances involvel in theee. It is not, like a suppresed promises, something without the consideration of which the argument is altogether broken-becked; but it is something involved in the full apprecintion of the argament. It follown, if the second figare is not a mere variation of the first, that the principle or canon on which the first proceds is not that of the recond. If the above account of the nature of our remooning in

xIv] PRINCIPLES OF SYLLOGISTIC. INFERENCE 296

the second figure is correct, ite principle is this, that no anbject can poesess an attribute which either excludee what it pomemes or carries; what it excludes.

Of the third figare we must give a different socount. Its two most noticesble features are that the middle term is sabject in both premisses, and the conclusion alwaye particular. For thin reacon it has been well called the indwelive figure; for induotion (whatever elee berides their citation may be involved in it) is the attompt to eatablish a concluaion by citation of inatanoes. The termet of the conclurion are alwaye general; they are what we heve called univernals. The conolosion declares two general oharncters to be conneoted, or (if negative) that one excludes the other: Sailore are hasdy, The larger carmivora do wot breed in caplivity. In the preminea wo bring instances of which both charsctere can be affirmed; or of whioh one can be affirmed and the other denied; and these inutances are our evidence for the conclasion. But the conclusion is not general; we are nevar justified, by a mere citation of instances, in drawing a really univermal conolusion. If All B is A, and All B is C, we cannot eny that All C is A; in traditional phraeoology, C is undiotributed in the minor premias, and therefore mant not be distributed in the conclasion; and the thing is obvious, without any auch technicalities, in an example; if all men have two arme, and all men have two lege, it does not follow that all animale with two lega have two arms ; for birds have two legs, beeides men, and have not arms at all, but wings. Yet, though our instanoee will never jualify a really univeral conclusion, they may ruggent one; and they will at any rate overthrow one. The instancee of Queen Blizabeth or Queen Victoris, of Catherine of Rusais or Christina of Swedan, will disprove the proposition that No vomas can be a statesmas ; and trath is often adranced by establishing the contrsdictory of some univemal proposition, no lets than by etabliahing universal propositions themselves. -

Now what is the true nerve of our reseoning in suoh argumente? It is the instance, or instances. We prove that some C is A, or nome C is not A, because we can point to a subject which is at once C and d, or C and not 4 . Unlese we are sure that the amme nubjeot is referred to in both premimen, there can be no inference: 8 omo animale are quadrupeds, and Some animalo are oortobrates; bat they might be different animals, and then there would be no instance of

2 vertabrate that hed four lega. But if either premise is univermulif $0 . \mathrm{g}$, with menmal an our middle term, we take the premineces Some mammale are quedrupedo, and $4 l l$ manmale are vertbratoo-then it follows that Some vertdrates are quadruperle ; for the 'some' mammals of the major premian are induded among the 'all' of the minor, and therefore we could pick out, from among the latter, instancea of animals that were both vertebrate and quadruped. The instances, however, instead of being vaguely indicated an 'some' of a whole clase or kind, may be apecified by name; and then the nature of our resooning is unambiguous; we are manifeatly argaing through instancer. In order to chow that A moman may lo a alaterman, we can appeal to the four quoess mentioned above; these were statesmen, and these were women; and therefore some women have been (or women may be) ctatemmen. But whether the inatencean in which C and d are anited, or C is present without A, be cited by name, or only indicated an 'mome' of a whole clame, in both cases alike it is on them that the reaconing hinges, and it is by producing them that a coeptic could be confuted, who refused to admit the conalusion
Aristotle called this production of the instance by the name Ineecos, or Exposition. He concesived that the proper mode of validating a eyllogien in the third figare wae by direot reduotion ${ }^{1}$, but added that it was poseible to validato it por imposeribile or by 'exposition': 'if all S is both P and R, we may take some particular S, my N; this will be both P and R, oo that there will be some R which is P^{1} '; and what is pomible where both premisses are universal and effirmative is equally posemble in any other mood. This seems to exhibit the real movement of thought in the third figure better than the artificial proceses of direct reduction. For, in the first pleoe, if the middle is a singaler term, aso in thin figure it often is (though Aristotle took little note of such cases), the con. vervion of a premise is forced and onnataral. In words I may sey that since Queen Elizabeth and Queen Victoris were statesmen, and mome women were Queen Elizabeth and Queen Victoria, therefore women may be stateamen; but in thoaght, Queen Elizabeth and Queen Viotoris will still be subject in the minor premiss. And secondly, even where the middle is a general term, direet

[^183]
x'v] PRINCIPLBS OF SYLLOGISTIC INFERENCE
 297

reduction often conceale, nether than expremeen, our thought. No oobrich can fyy, All ortriches have wingt \therefore Some winged amimale cannot fy: here, though it is pomible to subetitate for the minor premise Some winged amimalo are ostrichos, the other is the form in which we natarally think; the more concrete torm stands naturally as the oubject of our thought.

It may be admitted that there are cases where direct redaction is anobjectionable. No clergyman may sit in Parliament, and Sone celergymon are elactore to Parliament \therefore Some olectore to Parliament may not rit in it. Here it would be an nataral to may that Some electors to Parliament are clergywen; for the franchive, and the clerical office, are each an 'eocident' of a man, and either can equally be the subject of the other. Bat the character of the argument seems changed by this alteration. Chorgymen are no longer the instance which shows that a man may be entitled to vote without being entitled to sit; the middle term is now a status in virtue of which certain voters cannot sit. The point contended for is not that there may not be ayllogiams in the third figure, whose conalusion coald be equally well, or even better, obtained with the mame middle term in the firot: bat that the movement of thought characteristic of the third figare is not, and cannot be reduced to, that of the firat; and that reduction, an a general prinoiple, is therefore superflious and misleading: the true confirmation of the validity of the ayllogism lying in the parception that tharo sotually are inotances of ite truth.
One objection to this riew of the third figure needs consideration. It may be esid that the produotion of a particular instance in support of the conclasion doee not do fall justice to the grounds on which wo mocept it, in caves where the middle term is general and both premienes univeral. All horned animals raminate, and they all part the hoof ; this, it may be urged, is better ground for concluding that cloven-footed animala may be ruminanta, than if I merely appealed to the case of the cow in my peddock. To settle this, let as look for a moment at the two meanings, which (an we saw before) may be intended by 2 particaler proposition. ${ }^{1}$ If I ay that Somo C it A, I may either mean to refer to certain unspecified but definite membert of the alene C, and prodicate A of them; or without any apecial thought of any particular case, I may mean to deolare the ${ }^{1}$ C. supres, pp. 158-160, 179.
compatibility of the two characters, C and A, in one subject. In the latter case, I can also exprese my meaning by the problematic judgement C may be A; which contains no doubt the thought of unknown conditions under which it will be so. Now supposing I underatand the proposition in the latter sense, the cow in my paddock is as good a middle term as borned animale generally; supponing I understand it in the former sense, then my conclusion, that Some cloron-footed amimalo ruminate, nodoubtedly has more to rest on, when the premimes speak of all hormed animals, than when for middle term I refer only to a cow or two in a neighbouring peddock. But it is also really a different conclusion; the 'some' intended are a larger number of unspecified animals in the one case than in the other; and it is only by the production, or 'exposition', of all the instances to which our 'some' refers, that the reference to them all, in the conclusion, may be juatified.

It may fairly be asid that the argument, in this view of it, does not really amount to a syllogiem: it comes to this, that if all horned animals ruminate, and all part the hoof, then all clorenfooted animale that are horned ruminate. If the exact sphere of the conclusion is thus borne in mind when we my that some cloven-fooled animals ruminate, and we mean by 'some' all that are horned, there is not really and in thought that elimination of the middle term in the concluaion which is characteristio of allogiam. It would not be reckoned a syllogism if we argred that cince Woleey was a cardinal and Wolsey wae chancellor, he was both ohancellor and a cardinal ${ }^{1}$; neither is it a syllogiom (though it is inferanoe) to argue, from the premisees above, that all horned animals are both ruminant and cloven-footed: from which it follows that all clovenfooted animals that are horned are ruminant.

We may admit the view of the leat paragraph to be the right one. Sapposing that when we conclude, in the third figure, that Some f is (or is not) d, we refer in thought, though not in words, just to those particular instances, and no others, which in the premisees were stated to be both B and A (or not d), then we bave not got a proper ayllogism. Still our concluaion resta entirely on the production of those instances, few or many, beyond which our thought refuses to travel. The true and charactaristic syllogism in the third figure, however, intende its conclusion in the other sense : ${ }^{1} \mathrm{Cf}$. Bein't Logic, Doductiom, p. 159 (ed. 1870).
as a problematic judgement, a statement of the compatibility of two attribaten, or the possibility that one may exist without the other. And to establish this too it relies on the production of an instance; nor are many instances really more sufficient than one, to establish mere competibility, except as minimizing the risk of malobservation. The instance need not indeed be an individaal; it may be a kind. If we want to prove that an evergreen may have conspicuous flowers, we can cite the rhododendron; and we may mean by that the apecies, and not any particular specimen ${ }^{1}$. But very often, and mostly where one premise is particular ${ }^{2}$, and of course always where the premisees are singular, it is on an individual instance that we rely; and one instance, whether individual or species, is enough. Therefore it is by exposition-by a production, not of course in bodily form, but in thought, of one instance-that we justify the inference to ourselvea; we sctaally make this appeal in our minds, if we realize the ground of our conolusion. Persons familiar with a type of reasoning may draw conclusions from premisess as it were by precedent, and without realizing the evidence on which they aot; but whenever we are fully conscious of what we are about, there is, in the third figure, the recognition that the conclusion is proved by ita exemplification in a case cited, or included in what we cite.

Of course thare is a way in which the number of instances makea a real difference to the conclusion which we are inclined to draw. The case of Prince Bledud is alone enough to show that a man who washes in the waters of Bath may recover of a disease. The two eventa, however, may be accidental and unconnected. But if cases were multiplied, we should begin to suppoee there was a connexion between the use of theee waters and the care of certain ailments; or if the ailments which dimppesred after taking the waters were of

[^184]ell sorts, we might begin to look on Bath waters an a panacea. For entablishing a consexion between two attribatee the numberand variety of instances are matters of great importance; but for establishing compatioility one instance is enough. Now the third figure does not prove more than a compatibility; and never can prove a conperion, however many the instancee are; and though the number of instancea may make a connexion highly probable, yet we are influenced in reaching such a conclasion by other considerations bearides the instances themeelves. For example, a man who observed in several cows the combination of the cloven foot with the ruminating stomach would be mach lem inolined to suppose that there whs any general connexion between these characters in nature, than if he had oboerred the same thing in an equal number of bearta belonging to ar many different opecies. For we are accustomed to find peculiaritien constant throughout one species, and failing when we go beyond it; so that the eccumaletion of intances would be discounted by the fact that they all belonged to the ame kind. Again, we might meet a Privy Councillor in a light suit, and yet not be led to regard the next man we met in a light auit as a Privy Councillor; but if we met a Guardeman in a breestplate, we should very likely muppose the next man in a breastplate to be a Guardeman. The readineses with which we infer connexion is controlled by our general knowledge of the kind of attributes that are connected; such conadderations do not appear in our premissee, but greatly infaence our thought. Hence it is, that those who are thoroughly familiar with the facts of a science, or of some historical period, can make inferences from isolated facte which to persons ignorant of the field of investigation, and the controlling principles applicable to it, appear foolhardy. But all this belonga to rather a different department of logical theory, the Logic of Induction. It remains true that so far as we bring no extraneous considerations to bear, and are gaided only by the facts contained in our premisses, we can infer no more than the compatibility of two charscters (or the posaibility that one may appear without the other) from any number of instances; and we can infer thue much from a single instance.
It should be noticed, before leaving the consideration of the third figure, that it always argues from a ratio cognoscendi. It is not because the rhododendron hes brilliant flowers, that this attribute
can be combined with evergreen folinge; if it were not that there is no incompatibility between them, the rhododendron could not exhibit both. Our instance merely teaches us that the two are compatible; it is the ground of our assertion, not the ground of the fact asserted. And this in itself is enough to show that thero is a real difference between the nature of our reasoning in the third figure, and in the first-at least when our syllogisms in the fint figure are sciontific; and that the attempt to reduce all syllogiems to one typical form imposes an unreal appearance of conformity upon argaments which are essentially disparate,
[The fourth figure of syllogism remains for consideration. ${ }^{1}$ It has this peculiarity, that ite premisses as they stand, if we transpose them, present the arrangement of terms required by the first figure. And three of its moods (Bramantip, Camenes, and Dimaris), when thas regarded as being in the first figure (=Barslipton, Celantes, Dabitis), afford conclusions of which those drawn in the fourth figare are merely the converse; but the other two moods (Fesspo and Fresison) yield no conclusion in the first figure, from which the conclusion in the fourth might be obtained. Are we therefore to regard this figure as presenting a separate type of inference from the first, or was Aristotle right in disregarding it ?

Let us look first at the moods which are reduced to the first figure by a mere transposition, and without any alteration, of the premisses. In the premissen All nitrogenows foods are flesh-forming, All graine are nilrogenows, if we treat flect-forming as the major term, we have a syllogism in Barbars; but if we treat grains as major term, our ayllogism is in Bramantip, and the concluaion is that Some flesh-forming foode are grains. It is surely true that the cogency of this inference, as compared with the other, is peculiarly unobvious. The conclusion is not what we ahould naturally draw from the premisses; and we need to look a little closer, in order to convince ourselves that it necessarily follows. And this conviction comes to us when we realize either that from the given premisees it follows that dll grains are flesh-forming, and our other conclusion follows by conversion from that : or else that if no fleshforming foods were grains, no nitrogenous foods would be grains; and that in that case grains could not all, or any, of them be nitrogenous. The same remarks would apply muta/is mutandis to syllogisms in Camenes or Dimaris; and we may therefore conclude that

[^185][these moods are not evidently cogent without a further act of thought than their formulation in the fourth figure displaya. Are we therefore to treat them as belonging to the first figure? The reason for doing this is, that the simplest and directeat way of justifying the inference which they contain is by drawing a conclusion in the first figure from their premisses, and converting it.

The two remaining mood, Fesspo and Fresison, are less eacily disposed of. As the same considerations apply to both, it will sufice to take an example of the former. No avimals indigenous to Australia are manmals, All mammals are rertebrate . Some vertebraten are not indigenows to Anstralia; if we transpose these premisses, no direct conclusion follows; we cannot tell from them whether any of the animals indigenous to Australia are vertebrate, or not; so that if our argument requires validating, we must validate it either by direct or indirect reduction, or by exposition. That it does need validating seems to follow from the fact, that in its present form it is no more obvious than the three preceding moods of the fourth figure; no one ever argues in the fourth figure, and that shows that it does not adequately exhibit the movement of thought in inference. Aristotle exhibited the validity of this mood ${ }^{2}$ by converting both premisses (i. e. by direct reduction): No mammal is indigenous to Anstralia, and Some verlebrates are mamals; and this is a more natural why of putting the argament. But there are cases in which conversion would substitute a less natural mode of expression in the premisses; e.g. from the premirees No mineral saters are alcoholic and $A l l$ aleohol is taxed 2, we can infer that Some thingo lased are not mineral soaters; it would be less natural, although it would yield the same conclun sion, and that in the first figure, to say that Nothing alcoholic is a mineral water, and Some thinge tazed are alcokolic. Again we may proceed by indirect reduction; we may argue that if all vertebratea were indigenous to Australia, then since no animals indigenous there are mammals, no vertebrate would be a mammal; we thus reach a conclusion inconsistent with the premise All mammale are vertelrate, and that shows that our original argument cannot be disputed ; but we ahould more naturally say that No mammals are vertebrate than that No vertebrates are mammala; and the former contradicts more directly the premise that All mammals are vertebrale; and still more do we feel this, if we apply indirect reduction to our other example; there, if Everything that is taxed were a mineral water, then since No minersl watere are alcoholic, Nothing taxed is alcoholic; it is clearly more uatural to say that No alcohol is taxed,

[^186][and that eahibits better the contradiotion with our premim. If we employ the method of infercs or exposition, we must convert the premiss No animale indigenowe to Auntralia are mammale; then we have it given that mammala, in any instance that we like to take, are not indigenous to Australis, and are vertebrate; from which it follows that an animal is sometimes vertebrate, and not indigenons to Australia. Similarly we may convert No miseral soaters are alconolic.

Thus we have in this mood an argument undoubtedly valid, yet laoking something to be obvious; it is possible to validate it in several waye, either bringing it into the first figure by conversion of both premisses, or into the third by conversion of one, or leaving the premisses and showing, as in the second figure, that the falaity of the conclusion is inconsistent with their trath. Which of these methods is prefersble? and to what figure should the mood be referred? or is it really of a fourth sort? That it is not of a fourth sort is shown by the fact that without one of these methods of validation its conclusiveness is not apparent, and they bring it under one of the other figures. Perbaps the first of these questions will be best answered, if we alk in what way, by the use of the same middle term, the conolusion of the given syllogiam could mont naturally be reached. How are we to prove that some rerlebrates are not indigonous to Australia, using mammals as our middle term? or that Some thinge tased are not mincral waters, using aleohol as middle term? In both cases we ahould appeal to an instance in point; the mammals may be cited to show the former, and alcohol to show the latter. It would seem therefore that exposition is the natural way of validating the argument; or in other words, that we realize ita cogency moot readily if we realize that in the major premiss there is involved a converse, from which the conclusion follows at once in the third figure.

Are we then to reokon the mood to the third figure, and not (with Aristotle) to the first? Aristotle would, of course, have said that since the third figure itself needed validating through the first, we had stopped half-way in reducing it to the third; but if, as has been held above, the third figure is really a different type of inference, our question cannot be settled thus. Let us recall the meaning of the distinction between major and minor terms. The distinction is not parely formal and external. A term is not really the major term because it is made the predicate, and minor because it is made the aubject, in our conclusion. It is the meaning or content of the terms themselves whioh determines which ought to be arbject, and which predicate, and therefore which ia major and whioh minor. Otherwise, Aristotle would have recognized the fourth an a separate figure. We may take a ayllogism in Darii, and by transposition of the premieses produce one in Dimaris; e.g.
[the premisses White is conspicuous at night, Some flovers are withe, whose nataral conclucion is that Some flowers are conopicuour at nighl, furniah instead, if we transpoee the preminees, the conolusion that Sowe climge comppicuous at might are flowars. But this is an obvious inversion, for it is the flower which is conspicuons, and not the conspicuous, as such, whioh is as flower. It is true that there are caeen where either conclocion is equally natural, as there are propositions which may be converted without contortion. Thase who are friendlese are wahappy! Some rich men are frimdlew : Some rioh men are wnhappy ; or, in Dimaria, Some wnhappy mon are rick. Here the concluaion in Darii is the natural conclasion to draw, becanse the premisees give the reason why a rich man is sometimes unhappy, but not why an unhappy man is sometimes rich; yet, considered apart from the premissen, either conclusion is an equally nataral form of judgement. But the reacon is, that the concrete subject men is retained throughout; in the conversion, the attributee rich and wwhappy change places, but the subject of which they are attribates is retained in its place. Now these are maraly coincident attributes, and neither is properly the subject of the other; we feel this in making the judgement; and instinctively convert Some rich men are wniappy not into Some mehappy are rieh mon (where the concrete term 'rich men' could not be predicated of 'unhappy' as such) but into Some wehappy men are rich. When, however, this is not the caee-when the subject-concept contains the ground of the predicate-concept, or is the concrete whole in which the latter inheres as one featare-then the former is essentially the minor and the latter the major term, and no verbal artifice which inverts them can alter what the fact is for our thought.

Hence in the first three moods of the fourth figure, reduction in the first does no more than recognize in ontward form as major and as minor terms what we must acknowledge to be $s 0$ in our thought. But in Feaspo and Fresison, the conclusion is the came as what we should draw in Ferio ofter their reduction, and not its converse; we have therefore no ground so far for giving a preference to the expreesion of the argument in the first figure. Bat the same considerations which make it not an arbitrary matter, which term is major and which is minor in the conclusion, will help us to determine the right position of the middle term in the premissea. If then the premises of a ayllogism in Fesapo or Fresison were both of them inversions of what would naturally be expressed in the converse form, we should instinctively think them back into the form required by the first figure, in drawing the conclusion. This can hardly be the case with Fesapo; for bed logic, as well as verbal contortion, is required in order to express a particular affirmative by an universal converse; and thersfore the minor premis 4 cannot be an inverted way of atating I : the original of Fempo cannot be
[Ferio. With Fresison it is more poosible; that is to eay, a syllogism in Freaison may be reeched by converting both premisees of one in Ferio (or Celerent); and then it is poomible that our thought may validste the conolusion by converting them beck again. Gold does not tarnioh, Some anciont ornamonte are of gold: we may, however, my, if we like, that What tarmicice is mot gold, and Some thinge of gold are ancient ormamente, and from these premimes draw the ame conolusion as from the others, that some anciont ornamente do not tarnich; yet our thought, jurtifying to itaelf an inference made by outward rale, may fly to the other forma of premiss. If 90 , it is hard to asy that we are not really arguing in the first figure, and in such a case the aylogime which wears externally the garb of the fourth belonge really, and is rightly foreed by direct reduction to show that it belongs, to the first. It is, however, possible even here to convert only the minor premise in thought, and reach the conclusion in the aecond figure: by realizing that ancient ornaments, if they tarnished, would not be of gold. But the important cases are not such an these, where the premisese are palpably in an unnataral form, and would be reatored to natural form by conversion. They are those in which the poeition of the middle term, an the predicate of the major premiss and subject of the minor, is the nagaral position. For here conversion to the first figure producee a result as unnatural an there conversion to the fourth figure produced in the premisess of an argument naturally belonging to the first; No mixeral watere are aleoholic and All alcahol is tased are propositions put in their natural form; Nolting alcoholic is a mimeral mator and Some tased things are alcoholio are not.

And if that is so, there is only one ground on which we can justify Aristotle in reckoning theee moods to the first figare. It is, that what is easentially the major term-that is, the moat general and comprehensive-does stand as predicate in its premiss, and what is easentially the minor term-that is, the moat concrete and specific $-a s$ subject. Hence looking to the charscter of the premisses, we may fairly eay that our syllogism is of the first figara. And it follows that Aristotle is right when be says that we prove the minor, not univerally but partially, of the major; for major and minor, as we have seem, are uch intrinaically, and not barely in virtue of their position in the conclusion; so that where the two criteris leed to opposite resulta, it is right to base our nomenclature on the former. It was through overiooking this, and talring a purely formal and external view of the notion of major and minor terms, that some of his succemors were led to add a fourth figare to the three of Aristotle. Bat if we recognize theoe moods as of the first figure, we must no lese recognize that they need validating; and the moot natural way of realizing their validity is by the
[procese of exposition which we found to be the characteristic method for the third. We need not on this account any that the syllogism belongs to the third figure. The occurrence of a syllogiem of the first figure in the reduction ad imposeribile by which we validate the eecond did not lead us to resolve the second figure into the first. Exposition too, though the most nataral, is not the only way in whioh we can realize to ourselves the validity of these argomente; so that the third figure could not receive them anchallenged. We must be guided, therefore, by the charnoter of the premisees, and assign them to the first: but admit that the conclusion is not really drawn without a further act of inference than appeare upon the face of them.]

We may now sum up the results of our enquiry. There are three figarea, each with a distinctive character, and the 'imperfect' figuree are miarepresented by reduction to the first. The first is the ahief, because the demonstrative, bat not becanse the only figare. Argumente in it need not be demonstrative, but when they are, our thought is moving on a higher level of intelligence, though not of cogency, than in the other figures. In realizing the validity of the mecond figure, the inconsistency involved in denying the conclusion is a more prominent ' moment' in our thought than the neceasity of edmitting it. The third figure appeals not to relations of concepte, bat to exparience of the conjunction of attributes (or their digjanction) in the same subject, and from that arguee the general possibility, under conditiona unopecified, of what is exhibited in a given case. There is no fourth figare; bat in the first three moods of the first figure we may also argue to the converse of their concluaions; and two moods may be added, with an univeral negative minor premies, in which, while the major term cannot be denied of the minor without fallecy, the minor can be denied of the major; though such a conclusion is only particular, and realized by the belp of exposition or of conversion or reduction ad imposeribile. It must always be remembered that the character of an argument is determined not by the form into which it is thrown in words, but by that which it sessumes in our thought. This is our justification for recognizing the figures as distinct types. In particular cases, a syllogiam may not belong to the figure into which it has been verbally compelled; in others, it may be poesible with the same terma to constract nyllogisms in more than one figare; but then there must be is real movement of thought in the procese of conversion by which the

siv] PRINCIPLES OF SYLLOGISTIC INFERENCE 307

chagge is effected. The theory of syllogism ought not to be regarded ana leson in the manipulation of symbols and the application of the formulae. What we have to look to is the character of the thinking involved in it, and to that end wo need to realize our aymbols and see how the varying character of our terms, and of the relations between them in judgement, affecte the inference. If our enquiry has done anytbing to bring this leseon home, ita length and intricacy will not have been altogether vain.
One more remark may be made abont the firat figure. We have ween that the charge of petitio faile, ualess the major premise be enumerative ; bat suppose that it otatee a connexion seen to be neceesary between A and B as euch; may it not be urged that in this case no one can judge that C is B without co ipeo recognizing it to be $A=0$ well? and that if so, there will be no such act of 'saboumption', bringing C under the condition of a rale, an we found the first figure to involve? To this we mast answer yes; with complete iaright we should go atraight from B to A in the oubject C, and the major premies as an independent rulo would not be wanted, and would be represented only by the recogrition that 2 connexion of A with B, which we see to be necesessry, is therefore univeral. Thus it will be found that in geometry we never ayllogize except when we rely on the resultis of a previona demonstration whose stepe we do not realize in the case before us. The triangle in a semicircle has the equare on the hypotennse equal to the equares on the other two sides, because it is right-angled; but if we realized st once the conatructions of Euclid i. 47 and iii. 81, the proposition that in a right-angled triangle the square on the bypotenuee is equal to the squares on the other two sides would appear rather as generalized from what we new to be true in the trisugle in a semicircle, than an 2 rale applied to that ceace. The sobrumption in syllogiem belonge therefore to thinking which has not complete insight into the grounds of all ite premisee at once.

CHAPTER XV

OF HYPOTHETICAL AND DISJUNCTIVE REASONING

Triz form of argument which we have been examining under the name of Syllogism has for its premisses only categorical propositions; but there are forms of argoment to which the name has been extended, in which this is not the case. In what have been called Hypothetical and Disjanctive Syllogiams, hypothetical and digjunctive propositions figure in the premisses. For reesons to be considered later, it appeart, however, better not to call them syllogiems, but to apeak rather of hypotbetical and disjanctive argmanents. They are processes of argument that recur with great frequency both in ordinary thought and in the reasonings of science.

In a hypothotionl argumont, one premise is a hypothetical proposition, connecting a consequent with a comdition or antocedent: the other is a categorical proposition ${ }^{1}$, either affirming the antecedent or denying the consequent. From these follows as conclusion a categorical proposition, either affirming the consequent or denying the antecedent. In the former case, an argument is said to be in the modue ponens or oonstructive: in the latter case, in the modue tollens or dectraotive. Examples will make this clear.

1. The modur porens is of the form

> If A is B, it is $C \quad$ or \quad If A is B, C is D
> A is $B . \quad A$ is B
> $\therefore A$ is $C \quad \therefore C$ is D
e.g. If the soul is uncrested, it is indeatruotible The soul is uncreated
\therefore It is indestructible
or If all men are born equal, slevery is unjuat All men are born equal
\therefore Slavery is unjust.

[^187]The following pointe abould be noted further:-
i. The subjeot of the minor premises may either, as in the foregoing examples, be the same as the subjeot of the antecedent in the major premise (if we may retain the name of major for the hypothetical and of minor for the categorical premisese in this form of argoment), or it may be a term that we recognive as induded therein, falling under it. Thus we may argue that

$$
\begin{aligned}
& \text { If a benutiful thing is rare, it is costly } \\
& \text { Diamonds are rare } \\
& \therefore \text { They are costly. }
\end{aligned}
$$

Here it is implied and recognized that diamonde are beautiful things. The argament might of coarse be expreseed

If anything is at once beantiful and rare, it is coutly
Diamonds are at once beantiful and rare
\therefore They are coatly.
But diamonde are still 'subeumed' an a apecial caee under a rule that appliee beyond them; the condition in the major premies does not concern them in particular.
ii. We asw in a previous chapter that the distinction of affirmative and negative hae no application to bypothetioal judgemento-for every hypothetical judgement connecte a consequent with a condition, whether that consequent iteelf be expresed in the form of an affirmative or of a negative statement : it would be no hypothetical judgement to say that ' If the weather changed at full moon, it does not follow that the change will laet'.' Hence the character of the modwe ponens is unaltered, whether the antecedent or the consequent (and therefore the conoluaion) be afflrmative or negative. I may argue

If the North American colonies were unrepresented in Parliament, they ought not to have been taxed by Parliament
They were unreprecented in Parliament
\therefore They ought not to have been tazed by Parliament.
Here my conclusion is negative ; but the argament is still in the modue ponons: for by that is meant not the mood which is affirmative in its conclasion, but the mood which establiskes the consequent set down in the mejor premiss. The reader will easily see that if

[^188]the antecedent were of the form ' If A is not B ', it would still make no difference to the character of the argument.
iii. It is possible to argue with both premisues and the conolusion bypothetical, in the form :-
\[

$$
\begin{array}{rrr}
\text { If } A \text { is } C \text {, it is } D & \text { or } & \text { If } C \text { is } D, D \text { is } F \\
\text { If } A \text { is } B \text {, it is } C & \text { If } A \text { is } B, C \text { is } D \\
\therefore \text { If } A \text { is } B \text {, it is } D & \therefore \text { If } A \text { is } B, E \text { is } F
\end{array}
$$
\]

e.g. If the price of an imported article riees, thoee who manafacture the aame article at home will charge more for it
If a tax is imposed upon the importation of an article, the price of the imported article rises
\therefore If a tax is imposed apon the importation of an article, those who manufacture the same article at home will charge more for it.

The remarks made in the lant paragraph apply mutatio mulandis to this form of the modus poneye also; had the subject of the antecedent may be in one premiss the same with that of the consequent, and in the other different. It is unnecessary to illustrate all these varistiona.
2. The modes collene is of the form :-

If A is B, it is C	or	If A is B, C is D
A is not C	C is not D	
\therefore It is not B	$\therefore A$ is not B	

e.g. If matter is indestructible, it is uncreated

Matter is not uncrested
\therefore It is not indestructible
or If the earth did not rotate, the winds that blow from the poles to the equator would not be deflected weatward
But they are deflected weatward
\therefore The earth does rotate.
It is plain that the obeervations made above with regard to the modue ponews are equally spplicable, mentatio mulandit, to the modme tollens.

Thus, given a hypothetical proposition, we can proceed to draw an inference whenever we have a further premiss given us, either affirming the antecedent or denging the connequent. But from the affirmation of the consequent, or the denial of the antecedent, no concluaion follows. Arguments of the form

If A is B, it in C A is C \therefore It is B

or $\quad 4$ is not B

\therefore It is not C
are invalid. It is true that if a member of the Commons House of Parliament is declared a bankrupt, he loses his seat; bot it is not true that if he losee his seat, it must be because he has been deciared a bankrupt, or that if be is not declared a benkrapt, be may not still loee his seat. For the connexion of a consequent with a condition does not preclude the possibility, that there are other conditions upon which the eame consequent may follow; so that the fact of the consequent having occurred is no proof that it occurred in consequence of this particular condition; nor is the fact that this particular condition is not fulfilled any proof that the consequent has not occurred in virtue of the fulfiment of some other condition with which it is connected. Obvions as these considerations are, yet these are among the commonest errore to ocear in men's reasonings. We are all of us apt to conclade, that by disproving the allegations advanced in support of a proposition, we have disproved the proposition itself; or that by showing that facts agree with the coneeqneace of some hypothemis which we have formed, we have eatablished the truth of that bypothenis. We do not realize that it would be neceseary to ahow, not only that the facts agree with the consequences of our hypothesis, but that they do not agree with the consequencee of any other. The Teatonic noes have during the lest three centuries inoreased and axpanded fenter than those which speak languages of Latin stock; and some may be inclined to attribute this to the fact that the former in the main embraced, while the latter rejected, the principles of the Reformation. Grant that the facts are consistent with the hypothesis that this difference of growth is due to a difference of religion; yet if there are other ways of explaining it, what ground has yet been ahown for accepting that way? When fectasere equally consistent with the truth and with the falsity of our hypothesia, we have so far no reason for believing it true.

It is then fallecious to draw any inference from the effirmation of the consequent, or the denisl of the sntecedent, in a hypothetical
argoment. It is mometimes mid that to do the former is to commit the fallacy of undistributed middle; and to do the latter, to commit the fallecy of illicit procese of the major term : for that the argament

$$
\begin{aligned}
& \text { If } A \text { is } B, \text { it is } C \\
A & \text { is } C \\
\therefore A & \text { is } B
\end{aligned}
$$

may be exhibited in the form

$$
\begin{aligned}
& \Delta B \text { is } C \\
& \Delta \text { is } C \\
& \therefore \Delta \text { is } A B
\end{aligned}
$$

and the argument

$$
\begin{aligned}
& \text { If } A \text { is } B \text {, it is } C \\
& A \text { is not } B \\
\therefore & \Delta \text { is not } C
\end{aligned}
$$

may be exhibited in the form

$$
\begin{aligned}
& \Delta B \text { is } C \\
& A \text { is not } \angle B \\
\therefore & A \text { is not } C
\end{aligned}
$$

And valid hypothetical arguments, it is said, may be similarly 'reduced' to categorical syllogisme; when it will be found, that the modme ponews is really a syllogism in Berbarn, and the madne tollene one in Camestres. ${ }^{1}$

It seems to be an error thus to identify hypothetical reaconing with syllogism. In syllogism, as we have seen, a relation is established between two terme in the way of subject and predicate, by means of their common relation in the way of sabject and predicate to a third or middle term. Hypothetical reaconing rests upon another relation than that of subject and predicato-the relation of logical dependence; and there is not necesarily any middle term. Where antecedent and consequent, in the hypothetical premies, have the aame aubject-where that proposition is of the form ' If A is B, it is C^{\prime} 'a middle term may at times be found, and the reduction effected; but where that is not so-where it is of

[^189]the form ' If A is B, C in D '-there a middle term is wanting, and the violent nature of this process of reduction becomes manifent.
' If the value of gold is affected by the amount of lebour needed to obtain it, improvements in mining machinery must rise prices. The value of gold is affected by the amount of labour needed to obtain it. Therefore improvements in mining mechinery raise pricea.' We are not concerned here with the trath of this hypothetical proposition. So many circomstancea, many of them varying independently of one another, combine at any time to affect the coarse of prices, that it would be hard to reat on obeervation the effect which it is here aserted that improvemente in mining mechinery ought to have. Our concern, however, is with the character of the argument; it is clearly difficult to reduce it to a syllogiem. There in nothing aserted of improvernenta in mining machinery, which in tam is asarted univernally to nise prices; the connexion between the value of gold and the amount of labour zeeded to obtain it is not a predicate of improvements in mining machinery, nor in nising prives a predicate of that connexion. It is a consequence of it; bat that in another matter. Attempts have indeed been made to get round this difficalty. It is and that the major premiss may be expromed in the form 'The case of the value of gold being affected by the amonnt of labour needed to obtain it is the cese of improvements in mining maohinery raiaing prices. The eristing case is the case of the value of gold being affected by the amount of labour needed to obtain it. Therefore the exirting cese is the cese of improvements in mining meohinery mising prices.' 1 But such lingaistic tours de force do not alter the natare of the argament whioh they conceal. What does that major premise mean? Interpreted literally, it is undoubtedly false. Modification in the value of gold, becanse gold has become easier or harder to obtain, is not a rise in prices doe to improvements in mining meohinery. The one fect may be dependent on the other, but the one is sot the other. It is not therefore until we mentally substitute for this premis the hypothetical proposition it attempta to supersede, that we assent to it at all; the 'redaction' is parely verbal; our meaning remaina unchanged, and cannot be put into

[^190]the categorical form. Nor does the minor premies stand criticism any better. What case is 'the case of the value of gold being affected by the amount of lebour needed to obtain it'? To aay the exirting case is useless, unless we are told what the existing case is a case of. If it is a case of the value of gold being affected by the amount of labour needed to obtain it, the proposition becomes tautological, and the conclucion will only repent the major premiss ${ }^{1}$: if it is a case of something else, we ought in the first plece to have that something stated, in order that we may know what the proposition means; and in the cecond pleoe, when it was stated, we should find the proposition had become false, in the same way as the major premiss, literally interpreted, was false. It is clear then that this syllogism is far from exhibiting more correctly the true aharacter of the hypothetical argument in question; on the contrary, the hypothetical form exhibite the true -nature of the argament thus violently forced into a syllogiem.
. Had we indeed taken an example in which the subject of the sntecedent was the same with the subject of the consequent in the major premis-in which, to put it otherwise, the major premise was of the form 'If A is B, it is C ': then the process of reduction to ayllogism would not have appeared to be so difficult or violent. For then the condition on which it depende that \mathcal{A} is C is a condition fulfilled in Δ. 'If the moon rotates in the same period as it revolves, it must present always the came face to the earth. It does rotate in the same period as it revolves. Therefore it does present always the same free to the earth.' 'If Christian nations had the apirit of Christ they would avoid war. They do not avoid war. Therefore they have not the spirit of Christ.' There is little change made, if we substitute for these argumente the following syllogisms:

A body rotating in the same period as it revolves in round another body presents always the same face to the other
The moon rotates in the same period as it revolves in round the earth:
\therefore The moon presenta always the aame face to the earth

[^191]Those who have the spirit of Christ avoid war
Christian nations do not avoid war
\therefore Christian nations have not the spirit of Christ.
Indeed, if it be granted that the hypothetical premise is unaltered, otherwise than in verbal form, by reduction to the form of a categorical proposition, we must grant that the argument is unaltered by reduction. And there are logicians who have contended that all universal judgements are really hypothetical ${ }^{2}$; from which it would follow that there is no real difference between a syllogism in Barbars or Camestres, when it has a genuinely universal (i.e. not a merely enamarative) major premiss, and a hypothetical argament in the modus powene or the modus collens-though the former nither than the latter would demand reduction. Yet there do seem to be some jodgements which, in their context, intend to affirm the existence of the subject about which assertion is made, and not merely to aseert that something would be true about it if it existed. To asy that, if Cbristian nations had the apirit of Christ, they would avoid war, leaves it an open question whother any have that spirit; to ey that those who have the epirit of Christ avoid it, natarally implies that there are auch. The redaction of a hypothetical argument to a syllogiam is no merely verbal change, if it subatitutes one of these forms of statement for the other.

Attention ought to be called to one other change incidental to this reduction in the last two examples. Our hypothetical major concerned the moon and the earth, or Christian nations; in the syllogism, the major concerned any two bodies in which certain conditions are fulfilled, or any in whom the spirit of Cbrist is found. Thus in the syllogism, a principle is stated in more general form than in the bypothetical proposition. Here again, more than a merely formal change is involved. It is true that no one could assent to the

[^192]proposition, that if the moon rotates in the same period as it revolve in, it must present always the ame face to the earth, without seeing that its truth has nothing to do with the fact that the bodies in question are the moon and the earth, but holds equally for any two bodies; so that the more general form of the universal categorical proposition given sbove is obvionaly justified. Yet it is not the mere form of the hypothetical judgenent which enables us to see this; and it might be contended in the other case that the more general form of the categorical judgramt is not justified, and that we ought not to have aaid more than that ' Nations who heve the opirit of Christ avoid war'. It might be asid that if a Christian nation had the spirit of Christ, it would avoid war; but that an individual may be morally bound to take part in waftare, though he has that apirit, when the nation to which he belongs has it notNow there in, doubtlees, in every true hypothetioal judgement of the form ' If A is B, it in C ', some gemeral principle involved: we may expres this as ' $a \beta$ is γ '. But if A is some determinate individual, or case of a particular kind, and if the condition B is similarly determinate, we may know that if A is B, it is C, withoat knowing generally what conditions β, occurring in what kind of subject a, will involve the predicate γ. Where this is the case the hypothetion form is more natural to the expression of our argument than the syllogistic.

We find, then, that even whon antecedent and consequent have the same subject in a hypothetioal major, reduction of the hypothetical argoment to syllogiam may mean a real change in the nature of the argument used; and that where they have different subjects, such reduction can only be effected to outward appearance, and by violent means; for here the condition on which it depends that C is D is not a condition asserted to be realized in the nature of C itself; in other worde, there is no middle term ${ }^{1}$. No

[^193]doubt there is an unity embracing both condition and consequent; they belong to a a ayatem, of which it might be aid that, when affected by the condition, it exhibits the consequence. Sometimes this edmits of ready expreasion. 'If the rainfall is deficient, the hay-crop is light': wo may exprese this by aaging that 'Graes which is insafficiently supplied with moistare makes only a amall growth that can be used for hay'. In other cases, the interconnexion of facta within a whole does not admit of being atated except in hypothetical form. And anyhow, it muat be contended that hypothetical reesoning in not identical in character with syllogism, and that we ought not to pretend to validate it by reducing it to syllogism, nor to identify the fallecies involved in argument from the denial of the antecedent or the affirmation of the consequent with the syllogintic fallecies of illicit process of the major term or undistribated middle.

In a diadunotive argament, one premise is a digjunctive proposition; the other is a catogorical proposition, affirming or denying one of the alternatives in the former. From these follows as coaclasion a categorical proposition, denying or affirming the other alternative. In the former case, the argument is said to be in the
maquired an a moans of reaching the concluvion. Hypothetical argamenta are not immediate in this rense. Given that 'If A is B, it is C ', 1 cannot conclade that A is C, anlew I alno tnow that A is B : nor conld I conclade that A is C, from the fact that A is B, withoot tho hypothetical promim. I can, howerer, conclude from 'If A is B, it in C ' to 'If A is not C, it is not B^{\prime}, without any forther knowledge : and to this we caw that some forme of co-called immedisto infarence amonnted.

The conditions of valid bypothetical reasoning are of course recognised by Aristotle (cf. a. \&. Top. B. iv. 111 ${ }^{\mathrm{b}}$ 17-28 a al.); but he does not apeak of bypothetica! ryllogims. The term rudionaput dE incofioror has a different meaning-vis. a ayllogiam proving the antocedent of a bypothetical proposition, and therofore, by cirtme of the aceoptance of that hypothesio, proving the conclarion. Let it be granted that if A in B, C is D : then any ayllogiam Which proves that A is B will by virtue of this agreement eastabliah aleo that C is D : bat without such agreement, it would not have been shown at sil that C is D : that is therefore eaid to be proved only ax hypothesi. In a recent cave between University Colloge, Oxford, and the City of Oxford (v. Times of Jaly 5, 1904) sricing out of a claim by the College to put a bridge between two bloaks of buildings on either side of a nacrow street called Logic Lane withoat peyment of any acknowledgement to the City. it wes agreed that if the noil of Logic. Iane were reated in the College, the College wise entitied to do this (oubject to any building regulations which the City had power to make); the argamente advanced on behalf of the College (which extabliahed ite ceve) were directed to show that it wne owner of the moil; bot if inrobigoer, the College showed by the meme argaments that it whe ontitled to oreot the bridge without noknowledgement.
modue ponendo tollens : in the lettor case, in the modum tallendo ponens. Examples and obeervations follow.

1. The modus powendo tollens is of the form

or
Either A or B is C
\triangle is C
$\therefore B$ is not C
e.g. 'Possession by devils' is either a form of mental derangement, or supernatoral
It in a form of mental derangement
\therefore It is not supernatural
or Either the interests of religion require the msintenance of the Temporal Power, or the Popes are actuated by worldly motives in continuing to claim it
The intareats of roligion do require ite maintenance
\therefore The Popes are not actasted by worldly motives in continuing to claim it
or Either Newton or Leibniz invented the calcalas
Newton invented it
\therefore Leibniz did not
2. The modus tollendo ponems is of the form
\triangle is either B or C Either A is B or C is $D \quad$ Either A or B in C
A is not $B \quad$ or $\quad A$ is not $B \quad$ or $\quad d$ is not C
\therefore It is $C \quad \therefore C$ is $D \quad \therefore B$ is C
eg. The belief in a golden age reats either on history or on hope It does not rest on history
\therefore It reate on hope
or Either God is anjust, or no man is eternally paniahed God is not unjuast
\therefore No man is eternally punished
or Either Aristotle or Eudemas wrote Bics. v, vi, vii of the Nicomachenn Blices
Endemus did not write them
\therefore Aristotle did write them.

The following points should be noted :-
i. It is sometimes contended that the modue pomendo tollons is invalid : that the affirmation of one alternative doee not juatify the denial of the other. This will depend on the interpretation given to the digjunctive proposition. If the alternatives therein stated are matually excluaive, the argument is valid: if otherwise, it is not. Whether they are so intended can only be determined in a given case by reference to the context and the matter of the judgement; but mutually exclusive alternatives may exist, and therefore a valid argament in this mood is posible. Of the examples given above, the third is clearly the most open to objection; for Newton and Leibniz may well have invented the calculus independently, as is now believed to have been the case. In the first, it is implied that if we can otherwise account for the phenomena of demoniacal possession, we shall not attribute them to sapernataral agency; and the argument may be considered valid, provided that we are juastified in that view. ${ }^{\text {I }}$ The second is more doubtful; men may do from bad motives what ought anyhow to be done, and the motives of the Popes in maintaining their claim to temporal power might be worldly, even though their posseseion of it were required in the intereste of religion. The premisses do not really prove the unworldiness of their motives; but they show that we need not sasume the contrary, in default of farther evidence. The validity of the present mood of diajunctive argament will, in fect, depend on what hypotheticals are implied in ite disjunetive premies; for we have seen (p .167 , supra) that the digjunctive judgement ' A is either B or C^{\prime} may imply, though it is not reducible to, the hypothetical judgements ' If A is B, it is not C ', 'If d is C, it is not B,' ' If A is not B, it is C,' and ' If A is not C, it is B '. If the alternatives are mutually exclusive, all four will be implied, and the sodus ponendo tollews will be valid. If not, we cannot gat, out of the proposition ' \boldsymbol{A} is either B 'or C ', the propositions ' If A is B, it is not C^{\prime}-' If A is C, it is not B^{\prime} '. To say that ' Either the intereats of religion require the maintenance of the Temporal Power, or the Popes are actasted by worldly motives in continaing to claim it' will mean that if the interests of religion do not require it, they

[^194]must be eo actuated; but not that if the intereats of religion do require it, they cannot be so ectuated; and therefore to argue from the premine that the intereate of religion do require it is to argue from the denial of the antecedent in a hypothetical argument.

Here we might lesve this matter, with this as our remalt-thet the validity of the moduc powendo collone depends on the altornatives in the diajunotive premie being mutually excluaive, and that there is no way of determining on merely formal considerations whether they are 80^{1}; that the form of argument is not universally invalid, becmase they may be eo; but not universally valid, because they may not. It is, however, worth while noticing that quite independently of this doubt about the validity of the modue ponendo tollens in any given case, the modes tollendo ponens is of more importance on other grounds. We are more often interented in proving one alternative by disproof of others, than vice varan. A prisoner indicted on a charge of murder may indeed be content to show that, whoever committed the crime, he did not; and his enda may be satiefied by proving an alibi. But the ende of jurtice are not satisfied axcept by discovering the murderer. And 50 it is with disjnnctive argument genenally; its use lies more in what it can establigh than in what it can overthrow.
ii. As in hypothetical, $\infty 0$ also in diejunctive argument, the major premise may make a more general amertion, which in the conclusion is applied to some special case. Thus a man might argue

Every man at forty is cither a fool or a physician My son at forty is not a phyaician
\therefore He is a fool
or from the premise 'Either God is unjust, or no man is eternally puniahed', I might have concluded that I shall not be oternally punished. ${ }^{\text {a }}$

[^195]iii. The mood of a disjonctive argument is not affeoted, any more than the mood of a hypothetical argument, by the qualityaffrmative or negative-of the minor premise or the conclusion. Arguments of the type
$$
A \text { is either } B \text { or } C
$$
A is not B
\therefore It is C
are in the same mood as those of the type
A is either not B or not C
A is B
\therefore It is not C
I establish one altarnative by way of rejecting the other, equally whether from the premisses

A diplomatist mast either be insincere or be a failure
Biamarck wes not a failure
I conclude that he was insincere, or whether I conclude that he was not honest from the premisses

A diplomatist is either not honest, or not succesaful
Biemarck was successful
Attempta have been made to reduce diejunctive argumenta aloo to syllogistic form. We have seen that a disjunctive proposition implies two or perhaps four hypotheticals; and every disjunctive argament can be exhibited as a hypothetical argument using for major premiss one of these. But as hypothetical argument is not syllogism, we do not thereby make disjunctive argument into syllogism; nor do we really identify it with hypothetical argument; for the hypothetical major premiss expresses only a part of the meaning of the disjunctive proposition, from a perception of the relations involved in which a disjunctive argument proceeds to draw its conclusion. ${ }^{1}$
and ayllogistic argament: thus
Every man at forty is either a fool or a physician
I am forty
\therefore I am either a fool or a phytician : but I am not a physiciar, te.
and haring reached the conclasion ' No man is oternally puniahod', I can with the minor premiss 'I am a man' draw the conclusion that I aball not be oternally poninhed. This act of zubsumption is a different act of inference from the dirjunctive argument.
${ }^{1}$ The term hypothetical was long uned (following Boethius) amsu latiore, to cover both what bave in this ohapter been called hypothetical and what
have been called dipjanotive argumenta; and for hypothetical, in the nemrower nense employed above, the term conjunctioe. Conditional-originally equiralent to hypothatical in the wider cense-han by some who retained the Ider cenne for the latter been uned as equivalent to comjunctioe (ef. Bir W. Hamilton's Diecuevione, p. 150). A few pointa may be noted here which did not weem worth a place in the text.

1. The order in which the aiternatives in the diajunotion are mentioned being irrelevant, it makee no difference to the nature of the argoment whether we proceed from the affirmation of the firt to the denial of the second, or from the affirmation of the cecond to the denial of the firth.
2. A dinjunction may contain more than two members: 0. g. it may be of the form A is either B or C or D. In this case, if the minor is categorical, the conclusion will be dirjunctive; and in the modus ponendo follene, a disjunctive minor will give a catagorical conclusion- A is either B or $C \therefore$ it is not D. Bat the minor ' \boldsymbol{A} is neither B nor C ', which is needed in order to get a categorical conclusion in the modus collondo ponene, is not a dirjunctive proposition. But anch detaila involve no freah principle of reasoning. and need not be puraned, any more than it is neoeemary to work out all the variation that are poserible according an the dirjunction is between two prodicatee of the mame subject, or two anbjects of the same predicate, or two ateertions differing both in mubject and predicato, when either or both aseortions in esch of theee cases are affirmative or nogative.
3. An argument of the form ' Δ is either B or $C: C$ is either D or $E \therefore A$ is aither B or D or E ' is not a diejunctive argoment, but the application of ayllogim to one limb of a dinjunctive proposition.

ENTHYMEME, SORITES, AND DILEMMA

This chapter deals with certain forms or modes of stating an argument which introduce no new principle of ressoning beyond those now already discoseed, but for one reason or another deserve - apecial name and mention.

An enthymeme indeed is not a particular form of argument, but a particular way of stating an argament. The name is given to - ayllogism with one premiss-or, it may be, the conclusionsuppressed. ${ }^{1}$ Nearly all syllogisms are, as a matter of fact, stated
${ }^{1}$ By Aristotle the torm defipqua is ased in quite a different sense: he
 nature is discused in that chapter and in various pamages of the Bhetoric. Roughly apeaking, ciedr in a general proponition true only for the moot part, cuch an that Rave foods are unurholasome; in applying this to prove the unwholenomenem of some particular article of diet, we are open to the objection that the article in queetion forms an exception to the rule; bat in practice we are often oompelled to argue from such probable promiseen. A onmeion is either a particular fact, to which one can appeal in support of a general proposition, because if the proposition were true, the fact would follow as a consequence of it: thus we may ergue that 'The wise are jurt, for Bocrates whe wise and just': where Bocratos is the ofymior (Rhet. as i. 1857° 11); or it is is particular fact appealed to as evidence of anokber partionlar fach becance the existence of one ench fact implies the previous or sabrequent or concurrent existence of the other: thus 'Pitticus is liberal, becanse ambitione men are liberal, and Pittacus is ambitious': here hin ambition is the onpeioy of his liberality (Anal. Pri. B. xxvii. 70^{2} 26). In this ceae, the appeal to a onpeioy implies a general principle which, if it is irrofragabla, gives to the onpuion the nature of an ovidence, or rexuiptov (Rhet. a. ii. 1857^{6} 8) ; to argue from a rexuipooe is not, howevar, to argae from the true cause of the effect; for this woald be scientific oyllogrem, and not dreipnpa. It may be added that, where the goneral principle implied is not irrefragable, but true for the moot part, it in
 sixbroc. It ahould be noted that Aristotlo inclades under onpuion that which, ma consequence of something else, is nemumed, where it exista or occans, to presuppose it, whether it could exist or occor without the exintence or occarrence of that other thing or not; where it could not, we have a rexuiptoy; and of this character are what doctors call the aymptoms of a divase (and anch reasoning from effect to canse is not
as enthymemes, except in the examples of a logical treatise, or the conduct of a formal dispntation. It must not be supposed, however, that we are the less arguing in cyllogiam, because we use one member of the argoment without ita being explicitly stated. Syllogism is an aot of thought, and if, in order to perform this ect, we need to recognize in thought all three propositions that when formally expressed it containa, we are arguing syllogistically, whetber we enunciate the whole syllogism or not. That we do recognize a suppressed premise may be shown by the fact that, if any one were to deny it, we ahould feel that he was attacking our argument, though we had not expresely asserted it.

The sappressed member may be the major premisa, or the minor, or-lean frequently-the conclusion. Medes, in Ovid's play of that name, ake Jeson-Servare potwi, perdere as pasim rogas: here the major premiss, Qui servare, penders posennt, is understood : Medee supplies only the minor, and-in the form of a rhetorical queation-the conclusion. ${ }^{1}$ If I argue that 'those cultivate the land best who heve a personal interest in ite improvement, and therefore peasant proprietors are the best cultivators', I omit-yet I clearly uee, for to deny it would deatroy the arga-ment-the minor premiss, that 'peasant proprietors have a personal interest in the improvement of the land ${ }^{\prime .1}$ Tho conclusion may be

[^196]omitted from motives of delicacy, or sometimes for purposen of effect, $s s$ in the Greek conplet

It is, of course, poseible that an enthymeme may be contained in what grammatically is only a single santance; as in Goneril's eddress to King Lear:

You, as you are old and reverend, should be wise, or in Regin's, later in the play :

I pray you, father, being weak, seem so. ${ }^{2}$
A syllogism, whether expreeed in full or as an onthymeme, is a single act of inference; it may be analyeed into preminees and conolusion, but not into parts which are themselves acte of inference. The premisese may, however, be themselves in turn conclusions reached by other acts of inference; and the concluaion may iteelf serve as premise to a further act of inference. A syllogism proving one of the premisses of another syllogism is called, in relation to that, a proarllogiam : and a syllogism using as a premiss the conclusion of another is called, in relation to it, an epleyllogiam; where the prosyllogism is expreased in the form of an enthymeme, the whole argument is sometimen called an epiahodroma. ${ }^{3}$ The following argument contains both a proayllogism and an episyllogism, and as the former is expreseed in abbreviated form, it is also an epicheirems. 'Those who have no occupation lave nothing to intarest themselves in, and therefore are unhappy; for men with nothing in which to interest themselves are always unhappy, since happinese depends on the success with which we froquently suppremed when the conclamion of the enthymeme is pat in the forefront, the minor when we begin with a reacon. If we begin with a reason, we like to lay down a general principle.
${ }^{1}$. And this of Phocylides: The Leriana are bed men, not thin one only and not that, but all of them except Procleea; and he is a Lerian.'

- The term enthymeme has more commonly been applied to a ayllogism omitting one of the premineen, than to one omitting the concluaion. Sir W. Hamiliton (Diecuesions, pp. 158-158) tracea the antiquity of the non-Aristotelinn une of the term. It goes back to the oldeat of the commentatora.

3. Mansel's Aldrich, p. 97, note t: and Trendelenburg'a Elementa Logices Ariatotelicae, noto to 888 , cited by Mansel. The torm inixcipqus wee differently
 1620 16: it was an amalt upon a porition maintained in diaputation by the respondent.
advance the objects in which we are interested; and so wealth is no guarantee of happiness.' Here the central syllogiem is

All who have nothing in which to interest themeelves are unhappy
Thoee who have no occapation have nothing in which to intereat themselves
\therefore Those who have no occupation are unhappy.
The major premiss is proved by a prosyllogism to this effect:
Happy men are those who succeed in adrancing objects in which they are intereeted
Men who have nothing in which to interest themselves do not succeed in advancing any object in which they are interested
\therefore Men who have nothing in which to interest themselves are not happy.
And an episyllogism is added thus :
Those who have no occupation are unhappy
Rich men may have no occupation
\therefore Bich men may be unhappy. ${ }^{1}$
We have in such a case a train of argment, of which the several stepe are not esch set out in full, though the premisses necessary to complete the sequence of thought are readily supplied, as in an enthymeme. Trains of argament may, of course, be of any length, and vary indefinitely in composition, according to the nature of the separate stepe into which they can be broken up; and it would be useless as well as impracticable to invent names for every variety. But there is one well-marked variety to which the name of Soriles has been given by logicisns.

A Borites ${ }^{2}$ may perhape be defined as a ryllogism in the first figure with many middle torms ; or if it be thought that nothing should be called a syllogism that contains more than one act of inference, as

[^197]a polysyllogiom ${ }^{1}$ in the first figwre with the intermediato comolunione seppreseed. Schemstically, it is of the form
\[

$$
\begin{array}{r}
A \text { is } B \\
B \text { is } C \\
C \text { is } D \\
D \text { is } B \\
B \text { is } P \\
\therefore A \text { is } F
\end{array}
$$
\]

where it will be observed that we start with the minor premim, and esch sabsequent premiss is, in relation to that enunciated before it, a major. ${ }^{2}$

There muas be, at least, two ateps, and therefore three premisees, in a sorites, else we should have no series or chain of syllogisms; and there may be any number of steps more than two; the premisees will always be more numerons by one than the stepe into which the argument can be resolved. ${ }^{3}$ Short sorites are of common occurrence. A well-known axample occurs in Romans viii. 29, 80, 'For whom he did foreknow, he also did predeatinate to be conformed to the image of his Son. . . . Moreover whom he did predeatinate, them he also called: and whom he called, them he also justified : and whom he justified, them he aleo glorified.'

But long specimens are lees common, not because long trains of

[^198]reasoning are rare, but because the succeesive steps do not generally continue for long together to be of the same form. Leibniz, in the second part of his Confacio Natwrae contra stheistas, written in 1668 (and containing doctrines as to the nature of matter which he subsequently abandoned), offers a proof of the immortality of the human soul in the form of a continuous sorites; but even so, many of the propositions are supported by ressons that do not enter into the series of premisses constituting his soritea. ${ }^{1}$ In the following transcription the premises that do not belong to the sorites are placed out of line to the right; and eome of them are omitted.

> The haman soul is a thing whose activity is thinking.
> A thing whoee activity is thinking is one whoee activity is immediately apprehended, and without any representation of parts therein.
> A thing whose setivity is apprebended immediately without any representation of parts therein is a thing whose activity does not contain parts.

A thing whose sctivity does not contain parts is one whose acti-
for all motion is divisible into parte. vity is not motion :
A thing whose activity is not motion is not a body :
What is not a body is not in space :
What is not in spece is insusceptible of motion.
What is insusceptible of motion is indissoluble:
for the activity of a body is alwaye a motion.
for the definition of body is to be extended.

What is indissoluble is incorraptible:
What is incorroptible is immortal. \therefore The human oonl is immortal.

[^199]We may pass from examples to a consideration of the form of the argament, and the rules of its validity. It will be obeerved that the predicate of each premina is the subject of the next, while the rubject and predicate of the first and last premiss are the subject and predicate of the conclusion. For each premiss is minor to that which follows, and major to that which precedes it; and as we start from the minor premiss of the whole argument, each middle term is predicate of one premisa and subject of the next. It follows, that (i) no premiss except the first may be particalar, and (ii) none except the last negative; for in the first figure, the major premiss must be universal, and the minor affirmative; now each pramise except the last is a minor, in relation to a premise following it, and must therefore be affirmative; and each pramies except the first is major, in relation to one preceding it, and therefore must be universal. This will be eacily seen if we resolve the soritee into ite constituent syllogisms:

1. beginning from the minor

A is B	A is B (i)
B is C	B is C (ii)
C is D	$\therefore A$ is
D is B	C is D (iii)
E is F	$\therefore A$ is D
$\therefore A$ is F	D is B (iv)
	$\therefore A$ is E
	E is P (v)
	$\therefore A$ is F

It is clear that if the first premiss were particular, the conolusion of the first syllogism would be particular; this stands as minor to the third premiss in the second syllogiem, whose conclusion could therefore again be particular, and so would ultimately be the conclusion of the whole sorites; but if sny other premiss were particular, there would be an undistributed middle in the syllogism into which it entered.
2. beginning from the major

$$
\begin{align*}
& E \text { is } F \\
D & \text { (v) } \tag{iv}\\
D & \text { is } E
\end{align*} \text { (iv) }
$$

$$
\begin{array}{r}
C \text { is } D \\
\therefore C \text { is } F \\
B \text { is } C \\
\therefore B \text { is } F \\
A \text { ii } B \tag{i}\\
\therefore A \text { is } P
\end{array}
$$

Here, if the last premiss (E is F) were negative, the conclusion of the syllogism in which it stands as major would be negative: this as major to the premiss C is D would make the next conciusion negative, and so altimately the conclusion of the whole sorites; but if any other premin were negative, there would be an illicit process of the major term in the syllogism into which it entered. The rules of a sorites are thus nothing but the apecial rales of the first figure. ${ }^{1}$

A eorites is distingaished from other chains of reasoning by the fact that not only is one of the premisees suppreased, at every step of the argament except one, but the intermediate conclucions, by which the final conclusion is resched, are all exppreseed; for the conclusion of one argument is the suppreseed premies of the next. This is, perhaps, what has led logicians to give special attention to it.

The Dilomms combines into one argament hypothetical and digjunctive reasoning. Generally it is an argament in which one premise is a disjunctive proposition, and the other consists of hypothetical propositions connecting with either alternative in the disjunction an unpalatable conclusion. In one case, however-that of a simple deatructive dilemms "-the disjunction may be in the consequent of the hypothetical premiss, and the other be a categorical premiss denying both alternatives in the diajonction. ${ }^{3}$ We may

[^200]therefore define s dilemms, to cover this case, as a dypothetical argument offering allernatives and proving something againet an oppoment in either case. The conclusion may be either the same, whichevar alternative is accepted, or different; in the former case the dilemms is called edmple, in the latter oomplex. It is called oonstruotive, if it proceeds from affirmation of antecedent in the hypotbetical premise to affirmation of consequent; deetraotive, if it proceeds from denial of consequent to denial of antecedent.

1. Simple Constructive.

If A is B, E is P; and if C is D, E is F
But aither A is B or C is D
$\therefore E$ is F^{2}
Troopa with a river behind them have sometimes been placed in a dilemms none the less painfal because it is simple. If they stand their ground they die-by the sword of the enemy: if they retrest they die-by the flood; but they must either stand or retreat; therefore they must die.
2. Compleas Conatructive.

If A is B, E is P; and if C is D, G is H
But either A is B or C is D
\therefore Either E is P or G is H
Thus we might argue-and this too is unfortunately a dilemma from which it is not eacy to see an escape:

If there is censorship of the Press, abuses which should be exposed will be hushed up; and if there is no censorship, truth will be sacrificed to sensation
But there mast either be censorship or not
\therefore Either sbuses which should be exposed must be hushed up, or trath be sacrificed to seneation.

3. Simple Dexiructive.
 If A is B, either C is D or E is F
 But neither is $C D$, nor is $E F$ $\therefore A$ is not B

[^201]Of this character was one of the arguments used by Zeno to dieprove the possibility (or perhape we might any, the intelligibility) of motion:

If a body moves, it most either move in the place where it ie, or in the place where it is not
But it can neither move in the place where it is, nor in the place where it is not
\therefore It cannot move.
Again, If A is B, C in D and E is F
But either \boldsymbol{C} is not \boldsymbol{D} or \boldsymbol{E} is not \boldsymbol{P} $\therefore A$ is not B
A Liberal, convinced in 1885 that Gledotone's Hame Rale Bill was dangerous to the best intereste of the country, and too much devoted to his lesder to enter into opposition to him, might well have argued:

If I am to continue in politics, I must feel able to support both my convictions and my party
Bat now I must either act againgt my convictions, or oppose my party
\therefore I cannot continue in politics.
4. Comples Destructive.

If d is B, E is P; and if C is D, G is H
But either E is not P, or G is not H
\therefore Either A is not B, or C is not D
A nation having colonies like those of Great Britain might fairly urge:

If we give our colonies self-government, we shall make them powerfal; and if we attempt to control their use of it, we shall make them hostile
Bat either we ought not to make them powerful, or we ought not to make them hostile
\therefore Either we ought not to give them gelf-government, or we ought not to attempt to control their use of it.
[It is sometimes eseid that a deetructive dilemma is always complex, and such arguments as those given under (8) above would not be sllowed to be dilemman. Mansel's definition (which follown Whately, and has been adopted by others since) definitely excludes
[the simple destructive; according to him (v. his Aldrich, p. 108, n. i) a dilemma is 'a ayllogism having a conditional major pramias with more than one antecedent, and a diajunctive minor'; as the destructive dilemms proceeds from denial of consequent to denial of antecedent, if there is more than one antecedent its conclusion must be necesearily complex. A number of writers, however, have admitted the simple destructive dilemma; and it seems very difficult to exclude examples of the second form above given, at any rate. The simple constractive (If A is B, E is F; and if C is D, E is P) may be written

> If A is B or C is D, E is F
> But either A is B or C is D
> $\therefore E$ is F

The simple destractive runs

$$
\begin{aligned}
& \text { If } A \text { is } B, C \text { is } D \text { and } E \text { is } F \\
& \text { Bat either } C \text { is not } D \text { or } B \text { is not } F \\
& \therefore A \text { is not } B
\end{aligned}
$$

It may be asid that there is a disjunction in the hypothetical premiss of the former, and not of the latter; but this does not seem to constitute an essontial difference, such as would render one a dilemms and the other not. In the former, one or other of two alternatives must be affirmed, and whichever be affirmed, the same conclusion follows, because it is logically a consequent of affirming either alternative; in the latter, one or other of two alternativee must be denied, and whichever be denied, the same conclasion follows, because it is logically a consequent of denying either slternative. The essence of the dilemms seems to lie in the fact of confronting a man with altarnatives at once ineluotable and unpleasant : cf. the definition quoted by Mansel from Cassiodorus, loc. cit.: 'Dilemma, quod fit es duabur propositionibus plwriburve, ex quilus quidquid eleclum fuit, contrarimm ewe non dubiwn eat. And therefore the other example given above-Zeno's argument abont motion-seems also to be fairly called a dilemma ${ }^{1}$ It is true that ite second premiss is not disjunctive at all, but denies a disjunctive proposition; it does not assert the trath of one of two alternatives, but the falsity of both. But the whole argument is a combination of the hypothetical and the disjunctive, and drives a man into a corner by way of alternatives between which his choice is alleged to be confined. If we are to maintain that a body moves, we have to assert one or other of two propositions which are both self-contradictory; and that seems a good example of being placed between the devil and the deep sea. The simple constructive dilemma is a hypothetical argument in the modse ponens; its bypothetical premiss has a disjunctive

[^202][antecedent and a simple consequent, and therefore the other premies must be disjunctive and the conclasion simple. The simple deatructive dilemms of the form given first above is a bypothetical argument in the modes tollens; its hypothetical premise has asimple antecedent and a diajunctive consequent; the other premim must therefore be the denisl of a disjunctive proposition, and the conclusion the denial of a simple one. But the denial of a diajanctive proposition is a categorical, whereas the affirmation of it is of course a disjunctive propoeition. Hence the difference which has led to refuaing the name of dilemma to this fornt of argument; yet its parallelism with the simple constructive seems correct and clear. It may be asked why there are two types of simple destructive dilemma, against one type of simple constructive. The answer eeeme to be this. In the destructive dilemma, I may overthrow the antecedent, either if its truth involves two consequents, one or other of which I can deny, or if ite truth involves one or other of two consequenta, both of which I can deny; and each case involves a disjunction. In the constructive dilemma, I can establish the consequent, either if two antecedents involve its trath, both of which I can affirm, or if either of two antecedents involve its trath, one or other of which I can affirm. But bere the former case does not constitute a dilemms, because no disjunction is involved anywhere: If A and B are true, C is true; but A and B are true $\therefore C$ is true. It would sppear therefore that so far from there being no such thing as a simple destructive dilemma, there are two forms of it, against only one form of simple constractive dilemma]

A dilemms is sometimes spoken of as if it were a peculiarly unsound form of argument. It akares with all inference the property that it is of no material value unless its premisses are true; but formally it is quite sound, and if there is about it any special weaknees, it murt lie in some special difficulty in getting trae premisees for it. Now it is generally difficult, except where one alternative is the bare negation of the other, to get an exhaustive disjunction; it is here that any one 'in a dilemms' would look for a way out; and it is this difficulty which inspires mistrust of the dilemmessa form of argament.

To show that there is some other alternative besides those, on one or other of which your opponent attempte to drive you, is called escaping betwoen the horne of a dilemms: the alternatives being the horns on which you are to be 'impaled'. In reply to Zeno's dilemma to show the impossibility of motion, it is often said that a body
need not move either in the pleoe where it is or in the place where it is not; since it may move belween theee places. It may be questioned whether this is a very satisfactory solution of the paradox; for those who offer it might find it hard to say where the body is when it is between these places; if it is not in some other place, the continuity of spece seems to suffer disraption. But however that may be, we have here an attempt to eacape between the horns of Zeno's dilemma
The other two ways of meeting a dilemma also bear somewhat pictureeque names; we may rebut it, or we may take it by the hornd. To rebat it is to produce another dilemma with a contradictory conclusion. The old story of Protagons and Euathlus, without which a discussion of Dilemms would hardly be complete, furnishes a good example of rebutting. Protagorss had agreed with Enathlus to teach him rhetoric for a fee, of which half was to be paid at the conclusion of the instruction, and the remainder when Eusthlus won his first suit in court. Obeerving that the latter delajed to practise, Protagoras thought he was endeavouring to evade payment, and therefore himself brought a suit for the recovery of the eecond half of his fee. He then argued with the jury that Euathlus ought to pay him, in the following way:

If, he said, he loses this case, he ought to pay, by the judgement of the court; and if he wins it, he ought to pay, by his own agreement
But he must either lose it or win it
\therefore He ought to pay.
Eusthlas, bowever, rebutted this dilemme with the following:
If I win this case, I ought not to pay, by the judgement of the court; and if I lose it, I ought not to pay, by my own agreement
But I must either win it or loee it
\therefore I ought not to pay.
It will be ween that the rebutting dilemma is produced in this saee by tranposing and negating the consequents in the major promisa. With a destructive dilemma the parallel procedure would be to negate the antecedenta. But this is not the only way of rebutting; you rebut whenever you produce a dilemms with contradictory conclasion, and you may do that with quite different
premisees. Nor can every dilemme be rebatted in this way or in any other way : not in this, for the alternative conditions are not always such with which you can connect the contradictory of each other's consequents. And if a dilemms can be rebutted, one of two things must follow. Either there must (as in the last example) be some element of contradiction involved in the situstion; and some of the ancients spent much ingenuity in imagining sitantions of this kind, in which our reason was entangled by finding that two contradictory solutions of a problem could apparently be maintained with equal force; of this nature are the well-known mophimen of the 'Liar' and the 'Crocodile'; Epimenides the Cretan said that all Cretans were linas; if they were, wes he lying, or was he speating the truth? ${ }^{1}$ - a crocodile had stolen a child, and promised the mother be would restore it, if she could guess rightly whether he intended to do so or not ${ }^{2}$ if she said he would not restore it, she could not claim the child by his promise, because her taking it would make her guess wrong; if she said ho would restore it, she could not claim it, for she guessed wrongly; what whe she to say? Or if there is no such element of contradiction involved in the situation, then a dilemms can only be rebatted because its premisses are unsound, and premisses equally or more plausible can be found for another dilemms proving a contradictory conclusion. In this case, it would be possible to attack the original dilemms directly, either by showing that you can eacape between the horns of it, if the disjunction is not complete, or in the third of the ways mentioned above, by 'taking it by the hornn'.

To take a dilemma by the horns (or by one of them) is to eocept the alternative offered you, but to deny that the consequence, which the opponent attaches to its acceptance, follows. Perhspe the following will serve for an example. It is held by many naturalista, that species are modified in the course of descent only by the accumulation of many slight variations, and not per aaltum : varistions not being directly adsptive, but being distribated, in respect of frequency and degree, in proportions that follow the well-known 'curve of error', on either side of the standard represented in the

[^203]parents. Against this it hes been argued, that though the cumulative effect of many alight varistions might be useful, it will often happen that in the incipient stages, while the distance traversed in the direction of some new peculiarity is still very slight, the variation would be valueless, and therefore not tend to be perpetnated; so that the besis for socumalation would not exist. This line of objection has been applied to the particular case of protective coloaring in insects in the following argument. ${ }^{1}$ If, it is said, the slight variations, with which the procese of mimicry in ineects must, as alleged, begin, are of no use in leading birds to mistake the individuals exhibiting them for mambers of some proteoted species, then they will not be preserved by natural selection, and no acoumulation can take pleoe; while if they are of use, any further and more axect resemblance to the protected species is unnecessary, and could not, if it occurred, be preserved by natural selection. Now against this dilemms we may answer that it does not follow that, becanse a slight degree of resemblance is useful, any further degree would be superfluous. On a particular occasion a particular insect no doubt needs no greater resemblance than what has actually enabled it to escape; but with a large number of insects over a long series of occasions, it may well be that the percentage of escapes would be higher with those in whom the resemblance whe closer. Thus the dilemms is 'taken by the horns'; but that does not settle the important queation at inve as to whether variation ever does proceed per salfum or not. We asw before that a thesis is not disproved by the refutation of any particular argument brought forward in support of it.

[^204]
CHAPTER XVII

THE FORM AND MATTER OF INFERENCE

So far we have considered and examined some of the commonest typee of inferenoe-syllogism, hypothetical and diajunctive reasoning, and certain complications of theee. We have not pretemdedwhat has nevertheleas cometimes been maintained-aither that the letter can be reduced to syllogism, or that ayllogism, even if the term be eartended to inolude them, is the type to whioh all valid inference muat conform ; though we have maintained, and it will appear more fully in the eequel, that they are forms of great frequency and importance in our thought. Were Logic a purely formal soience, the analysia of these forms would be, to those who thought that all receoning really moved in one or other of them, the end of the task imposed upon that science; to those who did not think them the only form in which men's reaconing moves, no other tank would beleft than to offer a similar analysis of the remainder. Bat if it is impoesible to understand fally the form of thinking without reference to the natare of that about which we think, then the takk of Logic is obviously harder. It will not auffice to work with symbole. We cannot make abstraction of the special chanacter of our tarme. Already we have found this to be the case. We saw that ayllogism in the first figure, and in the highest form which it can assume in that figure, rests apon a perception of the necestary relation between certain notions, or universals; while in the third figure such a perception of necessary relation neither need be given in the premisses, nor can be reached in the conclusion. We aaw too how hypothetical reasoning, where it differs most from syllogistic, differs becanse it establishes a connerion between subject and predicate in the conclusion by means of a condition which is apparently extraneous to the nature of the subject ; and yet how our thought recognized that there must be some wider system to which the subject and that condition both belong, and through which it comes about that the fulfilment of the latter ahould affect the predicates of the former.

None of theee thinge could be explained or undenstood merely through symbols : axamples were needed not only to show that the argaments symbolized were such as we do actaally often use, but becasee only in suitable examples could thoee fects of our thought with which we were concerned be realizod. The symbols are the mame, but do not aymbolice the asme thing, when some terms in our syllogiem are particalar concrete objects, whose attributes are set down as we find them, and when they are all anivenal characters of thingr, between which we percaive connexion.

It will be said that if the form of thought be thus bound up with the matter, an understanding of the form moas wait upon a knowledge of the matter, and the tank of Logic will not be complete until we have finished the investigation of what is to be known. In a sonse this is true. It may be illustrated by the case of mathematice; no one can understand the conditions on which the cogency of mathematical ressoning depends except in the procese of thinking about number or apece or quantity; they cannot be seen in application to heterogeneous sabjeots. And it consiste with the position which we have taken up from the outact, that Logic is the science which bringe to clear consciousnese the nature of the procemes which our thought performs when we are thinking aboat other things than Logic. Neverthelew we must bear in mind one or two facte, which may make the task of Logic seem a little less hopeless than it would appear to be, if it had to wait altogether upon the completion of knowledge.

In the first plece, the dependence of the form of thought upon the matter is consistent with some degree of independence. It may be imposcible to grasp the nature of mathematical proof except in application to mathematical matter; but an analysis of one or two examples of geometrical remeoning may serve to show us the nature of geometrical reseoning in general, and after that the form of it will not be any better understood for tracking it through all our reasonings about every figure and epace-relation. So aleo it may be impoeaible except in examples of the relation of subjeot and predicate to graop the distinctive aharacter of syllogistic reasoning; bat we may grasp it there univerally, and realize that it will be the anme for all terms that stand in those relations. If this were not mo, science would be impossible; for acience eake to reduce a maltiplicity of facts to unity of principles. Thas our apprehension of the forms
of thought has not to wait upon the completion of our knowledge mo far as that completion means only its extension to freah matter of the asme kind. If some branch of our knowledge is defeotive in point of extent-as it would appear, for example, that the science of number must ever continue to be, becanse the numerical series is by its nature inexhaustible-yet its further extension may involve no change in its character; and so soon as all the main branches of poesible knowledge have been discovered-that is, knowledge about all the main departments of fact-the forms which thought aseumes in them can be studied even while our knowledge is incomplete in its extent. The main depertments of fact mast, of conree, be taken to include not merely those which form the subject-matter of the phyeical aciences, but equally those of which philosophy treats, and not least the relation of the world to the mind that knows it. It would be rash to assert that this stage has been reached in the progrese of knowledge. The completion of our knowledge may yet require not only ite extencion, but in large degree its transformetion. Yet we may aseert that a great deal of our ignorance forms no bar to the completion of the invertigations of Logic.

And in the eecond plece, though Logic is in the main a reflection upon the nature of knowledge already gained, there is this parador sboat lunowledge, that we seem to some extent to know what knowledge ought to be, before we know anything as we ought. We have an ideal, of which we are sufficiently conscious to realize the imperfections of the actual, though not sufficiently conscious to be able to pat it clearly and fully into words. This parador is not mafined to knowledge; it occurs in art and in morality also. We may recognize defect in an aesthetic whole without being able to rectify it, and yet we may be able to say in what direction its perfection must lie; we may know that 'we have all sinned', withoat having seen 'the glory of God', and atill be able to prescribe some of the conditions which that must realize. So aleo we may know that the form of our thought, even when we think beat and moat patiently, often falls short of the full meesure of lnowledge: that our way of thinking-our way of looking at things, if one may pot it ro-is wrong because it fails to eecape contradictions and antisfy all doubte; and that there must be some way of thinking (if the world is as a whole intelligible at all) in which contradiction and nocertainty will vanish. We may know all this, and know that we have
not found that better way (for if we had, we ohould certainly not remain in the wome) : and atill we may be able to eny something about it though we have not found it: to lay down conditions which our knowledge of any oubject murt astiafy because it is knowledge-i. e, to prescribe to some extent the form of knowledge, not only as a result of reflection upon instances of subjects perfectly known or by abotraction from the activity of knowing perfectly in the concrete, but by way of anticipation, out of reflection upon instances in which we know subjects less than perfectly, and know the imperfection of our knowing. The extent to which we can thus anticipate is not unlimited; a man must get some way in science, before he will realize what science should be, and that it is not what it should be; just as a man must get mome way in virtue, before be will realize how much more it requires of him then he has achieved. Yet it remains true that thought can in some degree anticipate a form of knowing a matter which it has not exarcised therein; and it is the businees of Logic to set this form forth. So far again Logic has not to wait, in order to complete ita task, until our invertigation of what is to be known has been completed.

If thin is true, we may say on the one hand, that no study of the nature of inference can be adequate which treats it as an operation performed with symbols, or one intelligible at any rate when we work with symbols. On the other hand, we may recognize that there are recurrent forms of inference, whose nature is the same in their different occurrences ${ }^{1}$, and they occur commonly in application to matters in many reapecte very diverse; we may aloo recognize an ideal of what inference should be if it is to convey knowledge: if we are to feel in making it not merely that the conclusion follows from the premisees, but that we are getting at indubitable truth.

Our discusaion of inference up to this point must therefore be incomplete, in so far as (a) we have failed to deal with all those distinguiahsble recurrent forms of inference whose universal nature can be realized'in an example; (b) we have failed to make plain the conditions of knowledge as well as the conditions of cogency.

As to the first count, there are certainly forms which have not

[^205]been examined. For example, there is the a fortiori argument. 'If a man love not his brother whom be hath seen,' asks St. John, 'how shall he love God whom he hath not meen?' And there is mathematical reasoning, of which we have only enid that it is not ayllogistie ; this from ite importance may chim nather fuller comsideration. But perhape more remains to be done in the may of showing how far inference of these different forms enters into the building up of our knowledge, and what other operations of thought enter into it.

As to the second count: it is a charge brought against the analysia of ayllogiem, and the other inferential forme considered above, that such analysis only shows us the conditions of consintency in reasoning, and not the conditions of truth. To reason consistently is very different from discovering truth; for the consintent reasoner will reproduce in his conclusion the error there may be in his premisses. ${ }^{1}$ Those who have brought this charge have sometimes supposed that what is wanted is other and better forms of inference. It would be much truer to eay that what we want is to realize how much besides formal validity of inference must be present in an argument which is to convey knowledge. To realize what is needed is not indeed the same thing as to supply it ; but Logic cannot help us to more. The critice of the Logic which whe content to analyre the conditions of validity in some of the common inferential forms (and which often supposed-it must be adrittedthat there were no other forms of inference) have not always believed this. Many of them, as has been eaid in an earlier chapter, still looked on Logio mainly as an instrument for the discovery of trath about any matter on which we might propose to reason, and hoped to find a new and better instrument than what the Logic which confined itself to such analysis afforded. This was the object with which Becon wrote his 'New Instrument' or Novwm Organem; and J. S. Mill, though be defines Logic as a Science, wrote his famous treatise in the hope that familiarity with the methods of reasoning used succesafully in the phyrical sciences would enable men to prosecute the stady of the moral and political sciences with more success." Logic is not a short cut to all

[^206]
xvil] THE FORM AND MATTBR OF INFERENCE 848

other branches of knowledge. But this we may any, that men who know the differsice between consistency and demonstration, who know what is required before it can be maid that thay have knowLedge about things, in the full and proper aense of that term, are lese likely to remain content with the enbetitutes that commonly paes muster in men'e minds for knowledge. By a study of the conditions of demonstration we may be led to see how far from being demonstrated are many of the beliefs we hold mort confidently. To know what we do know, and what we do not-what, out of the thinge we suppose ourselves to know, we really know and are rationally justified in believing: this, as Plato long ago insisted ${ }^{2}$, is neither a small thing, nor an easy; and until we have some iden of what knowing a thing means and requirea, we are not likely to sohieve it. This is why Logic should do more than present us with a etudy of the forms of consistent reaconing, and ahould attempt to achibit the nature of knowledge and demonstration: not becanse such an exposition of the form of knowledge is itsalf an instrument for bringing our thoughts upon any matter into that form, but becuuse it stimulates us to use such instruments as we have, and to appraise the reaulte which we have so far attained.

Now the moet obvioas criticiam that can be made apon a Logic which confines itself to setting forth the formal conditions of valid inference is that it ignores the .material trath of the premises; the validity of the reaconing afforde no grarantee that these are true. It is no doubt posible to direct men's attention so exclusively to the form of argumentation that they will bestow little upon the trath of the principles from which they argae. It has often been complained that the study of Logic did this-or, as ita critice would sey, the study of Deductive Logic.? The opithet, however, implies a miounderntanding; it is a disproportionato attention to validity of form in general which the critics ought

[^207]to deprecata. Validity of form is a thing worth stadying, not only for its own sake, but in some degree lest we infringe it; yet it is peychologically poesible, by stadying it too much and too exclasively, to become distracted from due care about truth of matter. It is, however, probable that in the times when men have been most remiss in the examination of their premisees, the state of the study of Logic has been as much a symptom as a canse of this; and however that may be, so far as it lies with Logic to provide a corrective, it is very important for the logician to be clear as to the nature of the corrective he is to provide. And for that purpose he must distinguish two questions; be may try to show what kind of premisses knowledge requires, or by what process of thought we may hope to get them. In modern times, the former of theac questions has been too much neglected.

These last remarke may be a little expanded. And firat as to the capses which for many centaries made men remiss in the examination- of their premisees; one sometimes finds the blame for this thrown upon the futility and misdirection of the scholastic Logic, which absorbed daring the Middle Ages, and even later, so large a part of the energy of men's minds. It would be hard to deny that much of it was fatile, and that mach energy was misdirected; but it is as likely that energy went into this channel because others were temporarily closed to it, as that others were robbed of it because it ran in this; though no doubt there is action and reaction in such a case, and a habit which certain infaences tend to form may in turn strengthen those influences.

It has been said that the mandste issued to the age of Plato and Aristotle was Bring your beliffo into karmony with one amother; thet the mandate of the Mediseval Spirit was Bring gowr beliefs ink harmony with dogma; and that the mandate of the new spirit which rebelled against the authority of the Church was Bring your beligfs into harnony witk fact. ${ }^{1}$ Such a mode of putting things may suggent some false ideas. It is impossible to bring one's beliefs into harmony with facts, except so far as the facts are known to us, and therefore by the way of bringing them into harmony with one another; and it would be wrong to suppose that Plato and Aristotle forgot that among the beliefe they had to harmonize with one another were the beliefs they held about matters of daily experience, or that they

[^208]
xvi] THE FORM AND MATTER OF INFERENCE

were indifferent to the necewity of correcting and enlarging those beliefs by more or leses eystematio obeervation; Aristotle in particular added largely to men's knowledge of facta. Again, it is clear that to bring one's beliefs into harmony with dogma is to bring them into harmony with other beliefs; and that those who rated bighest the importance of that task would least have doubted that they were bringing them into harmony with facts. Facte can only be expresed in judgements which are matter for belief; and such judgemente need not cesee to exprese facts because they are presented as dogmas. But it is true, as Minto wishes to bring out in the chapter quoted, that dogme and the epirit which accepta dogme did during the Dark and the Middle Agee play \& part in the history of thought far greater either than they played in olaserical antiquity or than they have come to play since the revival of learning. And auch dogma whs not necesarily eccleainatical dogma; it came from the scientific works of Aristotle, or other great men of old whoee works were known, as well as from the Bible snd the Church; juat as to-day there is orthodory in acience, against which new acientific ideas find it at timea a little diffioult to battle, as well as in theology.

The achoolmen knew, as well as Bacon or any other of their critica, that the atudy of the syllogism was not all-sufficing: that no oyllogism could guarantee the truth of its premimes; and that for a knowledge of the most genersl principles to which deductive reasoning appeals we must rely on something else than deductive reseoning itself. Bacon refars to the 'notorions answer' which was given to thoee who questioned the accepted principles of any science-Cwique in sua arte credendmm. ${ }^{1}$ And there are seasons in the process of learning when that is a very proper answer; men most be content at many time and in many mattere to accept the expert opinion of their day. But this is only tolerable if in overy science there are experts who are for ever queationing and teating. When tradition stereotypes doctrine, it is as bad for knowledge as close guilds and monopolies are bad for the industrial arts; they shut the door upori improvement. Anthority plays, and must play, agreat part in life-not only in practice, but also in things of the intellect. But the free spirit is as necesaary, which insints on satiafying itself that what is offered apon anthority bas claims on ite own account upon our acceptance.

[^209]Why was it that for 90 meny centaries 00 much was accepted upon authority which afterwards fell to pieces in the light of independent enquiry ? Mach knowledge of the hamun mind, historical and philoeophical, would be needed in order to answer this queetion adequately. If a few obeervations may be made upon it here, it is with a full conscionsnees of the inadequate equipment of knowledge apon whioh they reat. And it may be doubted whether we can hope fully to explain why some periods and places are richer than others in men of fruitful and original thought; at moot we can hope to show what conditions are favourable to such men's work when they arise. Now to us, looking backward across the Middle Ages to the more brilliant days of Athens and of Rome, and looking also at the great increase of knowledge which the lant three centuries have brought, the stagnation of the sciences in the period intervening is apt to soem a thing surprising. But how long was it before ancient science began to appear and to adrance? The power of tradition and authority over the haman mind is the rule rather than the exception. ${ }^{1}$ And in the break-np of ancient civilization there perished not only much knowledge, but much material wealth; men were of necesity for long abeorbed in the task of reatoring this and reatoring order; and it is not wonderful that they had little time to spend in queationing such scientific principles as had survived. Moreover, during the darkest times, the most powerful and the most beneficent institution that stood erect wes the Church; the most comprehensive and well-reasoned theory of the world was that which the Church tanght; the strongest minds, almost the only minds that thought at all, were enlisted in the ranks of the clergy (which was why independent thought took s largely the form of heresy), and the intereat of men was directed rather to what concerned the soul than to nature around them. To this it must be added, that through a series of historical accidents, a great part of the literature of Graeco-Roman civilization had perished; bat that of the works of Aristotle some few were known continuously, and the rest recovered, at least in tranalations, by the end of the first quarter of the thirteenth century. The works of Aristotle, by their enoyclopeedic range, by the effort after systematization displayed in them, and by their

[^210]
xivi] THE FORM AND MATTER OF INFERENCE

extraondinary intellectual power, were peculinrly suited to rivet themselves upon the mind at a time when ability wis not wanting, but when detailed knowledge was slight, and there was little eloe to serve for an edocational discipline. It is not sarprising, if Aristotle and the Charch (especially when the Charch preseed Aristotle's philosophy into its service) acquired a preponderant infuence over men's minds. Indeed, it is hard for us to imagine what self-confidence and coorrage were neccesary, in order to question any part of that clonely concatenated fabric of belief, upon appearing to accept which depended a man's comfort in eociety and perhape his life in this world, and apon really socepting it-unles he could find for himself something better-bis confidence with regard to the next. It is no amall teatimony to the inexpugasble power of reason, that this syatem broke down. And it began to break down largely through the recovery of other monumente of ancient thought and learning benides the works of Aristotle. This doabtlean stimulated, though it could not produce, the powers of those men by whom the foundations of modern acience were haid-men like Copernicua, Galileo, Harrey, Gaveendi, Deecartea. It was not the reform of Logio which liberated the mind, any moro than it wan Logic which had boand it.
It is, then, rather to the habit of believing on autbority, the otrength of which it has been attempted in come degroe to account for, than to the prevalence of an erroneons Logic (whove errors were not really what the 'indactive' logicians suppoeed), that the stagnation of science for so many generations must be attributed. Given that habit, it was natural that men should apend time and thought upon a berren elaboration of the more technical parta of Logic, and leave the traditional sasumptions both of it and of the natanal sciences aneramined. When the overmantering influence of authority began to decay, the seience of Logic ahared with other sciences in the revivification that comes from thinking ont a oubject freehly and indopendently.

But, an wien aid above, the particular matter whioh firet attracted the attention of the reforming logician was the barrennem of an exclucive attention to the forme of nlid inference; and the particalar improvement proposed was the eetablishment of a Logic that should do for the discovery and proof of seientifio principles what had already in part been done for the drawing of condusions from
them. This at least is bow Bacon looked at the matter; and others have so looked at it after him, in this country more especially. Now it is a very interesting question, how aciences get their principles, and when they may be considered proved; bat it is not quite the same as the question, what kind of principles knowledge requires.
The works of Aristotle dealing with inference are three-the Prior Analytices, the Posterior Analytice, and the Topice. Speaking generally, the first of these deala with ayllogism from a formal point of view-it page no attention to the nature of the premiseses, but only to the validity of inference; the second deals with knowledge, or demonstration : it aske not when a man is bound by the coceptance of certain forms of premies to admit a certain form of conclusion, bat when he can be aid really to know a thing aboolately, and not merely on the assumption that certain premiseas are true; the third anke how positions can be established or overthrown, what sort of considerations are useful in weighing their claims to acceptance, and on what sort of grounde men may be content to accept their principles in matters where certainty is not attainable. In the first and in the third of these treatises, Aristotle whe analysing and formulating the actual procedure of his contemporaries; he did not, upon the whole, go ahead of the science, the disputation, the rhetoric and the pleadings of his day. In the second, he was doubtless gaided also by a consideration of the highest types of acientific knowledge then existing; but he wha guided also by an ideal; he was trying to express what knowledge ought to be, not merely what the form of men's reasonings was.
It may be aaid that in scholastic Logic, the problems of the Prior dxalytica balked too large; that those who revolted against this raised, without realizing it, problems of the mame kind as Aristotle had already discumed in the Topice; but that for a long time the questions of the Posterior Analytice received insofficient attention. It is these last which are the higheat, and go deepest into the philosophy of the subject. The physical aciences employ many principles of great generality which they try to prove; but there are some aesumptions about the nature of the worid, which they accept without anking why they accept them. As instances of these may be mentioned what is called the Law of the Uniformity of Nature-the pricciple that every change has a cause
upon which it follows in accordance with a rule, so that it could not recur in the same form unless the same cause were present, nor fail to recur when precisely the same cause recurred: or again, the principle that matter is indestructible: or that the lawe of number and space hold good for everything numerable or extended. There are other principles less general than these, such for example as the Law of Gravitation, of which, as aforesaid, science offers proof; but whether the proof of these amounts to complete demonstration, and whether the assumption of the truth of thoes is justifiedthese are problems with which the special sciences trouble themselve little, and which will not be answered merely by analysing the nature of the inferential proceases that do as a matter of fact lead acientific men to accept the general propositions which they conceive themselves to have proved.

This is only an elementary book, and makes no pretence to give a complete answer to that moet dificult of logical queetions, What is knowledgo, in ils perfect form? But from what has been said in the present chapter, it follows that there are two problems to which some attention ought to be given. One is the question how, as a matter of fact, we do get our premisses : the other, what are the requisites of demonotration. ${ }^{1}$ The first of these may be called the problem of Induction.

$$
{ }^{1} \approx . \operatorname{p.} 487 .
$$

GHAPTER XVIII

OF INDUCTION

Thes history of the word Induction remains to be written; bat it is certain that it has ahifted its meaning in the course of time, and that much misunderstanding has arisen thereby. The Aristotelian term imayovi, of which it is the trasslation, signified generally the process of establishing a general proposition not by deduction ${ }^{1}$ from 2 wider principle, but by appeal to the particular instances in which its truth is shown. From what sense of the verb dráyew this use of the word sprang in not clear; there are two pesaages', where the verb, in a logical context which makes it clear that the procese of draywyn is referred to, takes a personal subject; as if it were meant that in the process a man is brought face to face with the particulars, or perhape brought, and as we could say induced, to admit the general proposition by their belp. In another place ${ }^{3}$, it is the universal proposition which is said to be 'induced' or brought forward or brought up (whatever the best translation may be); and perhape the not infrequent antitheais of iracownd and oudioyorubs might suggest that the usual object of the verb is the inductively obtained conclusion; the concluaion is certainly what is 'syllogized', so that the conclusion may also be what is 'induced'. It has, however, also been thought that the process of bringing np or citing the instances, by means of which the conclusion is to be established, is what the word was primarily intended to signify ${ }^{4}$; and anyhow the process deacribed is one in which a general conclusion is established in that way, by citing the instances of its truth.

[^211]Induction then meant primarily to Aristotle, proving a proporition to be troe aniversally, by ehowing empirically that it was true in each particular case: or, proving something about a logical whole, by appeal to the experience of its presence in every part of that whole; ae you might show that all horned animale ruminate, or that whenever the tail of a fish is unsymmetrical (or heterocercal) it is vertebrated, by a disecotion of the intestines of every kind of horned benst, or of the tail of every kind of beterocercal finh. In suoh a proof, it would be asoumed that the natare of each opsecics of fish or beast might be judged from the single specimen disseoted; and it is to be noted that Aristotle thought that the process of induction began with the infimm species; the species in his view (ae we saw in discusing the Predicables) being essentially the same in every one of its particolars. ${ }^{1}$ This form of argument he described in his own teahnical langrage as proving the major term of the middle by means of the minor; and he showed bow it could be expreseed as a byllogiom. From the premisees

> The cov, the sheep, the deer, gic., tuminate
> The cov, the sheep, the deer, fe., are horned

I cannot, as they stand, infer that all horned animalo rwminate, because there may be other horned animals besides all that I have

[^212]enumerated; but if I know that this is not the case: if the members in my enumeration taken together are commensurate or equate with the term 'horned animals', then the poseibility which forbide the general conclusion is excluded, and I may infer that all horned amimals ruminato: as is shown by the fact that the minor premiss may be converted aimply; I may say that all the horned animalo are the cono and skeop and deer, gec.; and my syllogiam becomes formally correct. In such a syllogism we are aid to prove the major of the middle by means of the minor, becsase (20 we ssw) the minor means to Aristotle not primarily the subject of the conclusion, but the term of least generality and nearest to the individual; it is by the particular instances that the predicate ruminant is proved of the subject horned animal. And if we might regard the possession of horns as the cause of ruminating, then it would be the proper middle term by which to demonstrate ruminant of cow or sheep or deer; in Aristotle's own example, where longerity is proved of gall-less animals by mesns of man, horse, mule (and any other particulars that ought to be mentioned -though for brevity they are not enumerated), it is suppoeed that the absence of gall is the cause of longevity.

In symbolic form then we may express Aristotle's Indaction thus :-
$A B C D$, \&c. are P
$A B C D$, \&cc. are all the M
\therefore All M are P
 called now the Inductive syllogem. If it is to be valid, our . minor term must, as Aristotle says, comprise all the particulars;

We have now seen what Induction, as a formal process, meant in the mouth of the first author who used the term; and when Aristotle insisted that it must proceed through all the particulars, or (es it was afterwaris put) by cosiplete enmmeration-the requirement which, to Bacon and the 'indactive logicians' of modern times, has given so much offence-he was quite right; for if you are going to establish a general proposition that way, you will clearly not be justified in making it general unlesa you have made

[^213]sure that your enumerstion of the partionlars is complete; though, se hes been said, it is not really an universal proposition then, but only 'enumerative': a thing whioh Aritotle fails to point out. The burden of the oharge against Arintotle ia, however, not that he held that, if a general proposition is to be eatablished by enameration of particulars, the enameration must be complete: bat that he recognized no other mode of establiahing general propositions. And if this be so, then his Logic falls to piecen. For syllogism needs a general proposition for ita major premise; and us Arintotle himself insista, we cannot be mid to know the trath of the conclusion, unlese we.know first the trath of the premiss '; doubt of that will involve doubt of what is stated in the conclucion, 80 far as this is arrived at by inference, and not by direct experience independently of the inference. Now how can this condition be fulfilled, if our knowledge of any general principle resta on nothing better than an encunerative masuranoe that it holds good in every particular cese? Let us take the principle that all matter gravitates, and aymbolize it in the form 'All M is G^{\prime}. If it is possible to know this without experience of its truth in every parcel of matter, we may use it in order to prove that this book must gravitato; and therefore may refrain from adding the book to one's kit in going upa mountain, or laying it upon a flower that is for show, or on the other hand may use the book to keep one's papers steady in a wind or an a missile against a neighbour. But if the principle can really only reat upon a complete enumeration, we must experiment with thio book, before we can aseart it ; and then we shall know that this book gravitates by direct erperiment, and our dedaction thereof from the general principle will be ruperfnous, even if the enumeration be completeas it would only be, if this book were the leat parcel of metter to be experimented with; but even e0, the dedaction would be but a hollow show, and begging of the question. For let us symbolize any particular parcel of matter by μ. We propoee to prove that μ is G, because all M is G, and μ is M; how do we + know that all M is G ? Only becauee μ_{1}, μ_{2}, \&ce up to μ_{1} are G, and $\mu_{1}, \mu_{3} \ldots \mu_{0}$ are all the M, and therefore all $M I$ is G. Hence we use the fact that μ is G to prove the principle by which we prove that' μ is G. And the upehot of this is that we can never prove

[^214]anything by reasoning, antil we already know it by direct experience; so that the use of resooning, in order to infer that which we have not learnt by direct experience, must dimppear. If we still try, by appeal to any general principle, to prove anything which wo do not already know, we shall be appealing to a general principle which we do not know to be true, in order to prove a perticular conclusion which we do not know to be true; for ae Aypothesi our knowledge of the truth of the general principle depende apon the knowledge of what oocurs in the particular cese in question among othera. Such a procedure hardly commende itsolf to a mene man. And if again it were acid, that however little we may be logioally justified, in adrance of experience, in drawing inferences about come particular from a general principle, yet our experience when it comes is conetantly confirming the inferencee we thus draw, thin, far from being a solution of the logical diffculty in which we have found ourselves, ought only to be mattar of perpetual artoniahment, to a creatare that reflectes at all aboat his experience.

Such is the difficulty that arises, if there is no other means of proving a general proposition than by enomeration of all the particulars to which it refers ${ }^{1}$; and to this oriticism Aristotle is obnoxions, if be recognized no other means. But did he recognize no other?

Now Ariatotle undoubtedly mys that we arrive at our firat principles by a procese of Induction ${ }^{3}$. He draws a famoue dirtinotion between the logical order and the order of experienco ${ }^{3}$; in the logical order, the general principle ia prior to the aensible fact; in the order of experience, it is the reverse. To us, the particulars of sense are known first : the intelligible principles by which theee are explained are known afterwards; bat Nature may be conceived as starting with principles or laws, and with these in her mind proceeding to the production of particular objecte or evente. Indaction proceede from what is first in the order of experience to what is first in logical order: from the apprehension of the sonsible facts to the apprehension of the general principles, out of which we subsequently construct the sciences. Without eense-exparience, there is no knowledge of intelligible principles; and the procese of obtaining that knowledge out of sense-axperience is Induction.

[^215]And this, taken together with his analysis of the Induotive Syllogim, might seem to settle the question; if only we could suppose Aristotle capable of overlooking the difficalty in which his whole syatem would thereby have been involved. But so far from overlooking, he ahows in one peasage that he had conaidered it, and uses his distinction between what is logically prior, and prior in the order of our experience, in meeting it ${ }^{1}$. His view seems to have been this.

The businese of any science in to demonstrate the properties of a kind-such kinds, for example, an geometrical figares, species of animals or plants, or the heavenly bodies. As we sew in the chapter on the Predicablee, he was influenced much by the fact that geometry and biology were the two most progrewive aciences of his day. Science is conoerned with kinds, as what are identical in their γ many members, and eternal. In demonatrating their propertiee, it starts from a knowledge of their definitions; such definitions cannot themselvee be demonotrated; and for them we are dependent on experience, which familiarizee un with the nature of any tind, or of ite properties, by means of perticular cases. But though experience may thas acquaint us with the definition of anything, yet the emential nature of a thing (which is what a definition gives) cannot powibly be an empirical fact. It may be an empirical fact that all sailors are auperstitions; but how can it be an empirical faot that a triangle is a three-sided rectilinear figure? For to say that anything is an $/$ empirical fact implies that it might (so far as we can see) have been otherwise; and certainly we can conceive that a sailor may be sitber superstitions or not superstitions; but we cannot conceive that a triangle should not be a three-sided rectilinear figure, since if that-which is its easence-were removed, there would be no triangle left to be anything else. It will be asked, how do you know what constitutee the ensence of anything? The antwor is, that the intellect sees it: sees it, as we might any, intuitively, as something necessarily true; and this is the cource of our assurance, in virtue of which we know the principles from which our demonatration proceeds more securely even than the conclusiona we draw from them. But the intellect does not perceive it at once; experience of things of the kind is necessary before we can define the kind.

[^216]The nee of these particulars is, not to earvese the proof of a principle, bat to reveal it: as the counters, for example, which a child usee in learning the maltiplication table, though one among innumerable inctanoes of the fect that three timee three is nine, are to be appealed to not becsuse the general proposition could not be aseerted unless it were tried and found true in the asee of thewe counters as well as of all other coontable thinge: for had the child learned with nute, it would have been quite unnecesary to confirm the generalizetion by an eramination of the counters ; but because they eerve as a material in which the child can be brought to realize the trath of a numerical relation, which it apprehends forthwith with a generality that goes far boyond these particular counters. They are a means used becanse some countable material is neceseary in order to realize the genernal trath; but the genernal trath is not accepted simply becsues it is confirmed empirically by every instance.

Now we need not aak at the moment whether the sort of intellectral insight with which we do apprehend the neceasity of numerical or spatial relations ${ }^{2}$ can really serve us in determining the emence of gold or of an elephant or a tortoise; our present parpose is only with the nature of Induction, and the diferent senses in which the tarm has been need. And the parpose of the preceding paragreph is to show that in spite of the analyais which Aristotle gave of Induction as a logical procem, yet when he said that we get our first principles by induction, he had comething else in his mind. Where your anits are species, and you want to prove something about the genus to which they belong, there you may proceed by appealing to the fact, that it is found true of every species in the genus; there your reaconing may be thrown into the form of the 'inductive syllogism', 一which is inconclusive unless overy species is incladed in the premisess. Bat even there, from the fact that be regarded the conclusion an an universal and not merely an enumerative proposition, we must suppose Aristotle to have

[^217]thought that the mind gresped a neceesity in that relation between the tarms of the conclusion, at which it arrived by a process of enumeration; directly or indirectly, the connexion of longevity with gall-lewnese was to be seen to be neceseary, and froed from the appeal to man or horse. And where your unite are individuals, and you want to diecover the enentisl nature of the apecies to which they belong, there you do not work by an inductive ayllogism that summons all the instances to bear witnees to the truth of your definition; for how could yon summon the numberien members of a species? There is atill a use for experience; we may still say that we know these things by induction; bat the induotion now is a puychological rather than a logical procese; we know that our conclusion is trae, not in virtue of the validity of any inductive ayllogiam, drawing an aniveral conclusion in the third figure because the subject of the conclusion is coextengive with the particulart, taken collectively, by means of which we prove it: but in virtue of that apprehension of the necesaary relation between the two terms, which our familiarity with particulars makes powible, but which is the work of intellect or poos.

Such eeema to have been Aristotle's doctrine: and this be avoided the bankruptey that would have ensued, had he taught that all oyllogism reated on univeral propositions, and that univeral propositions reated on nothing but showing by enumeration that they held true in every particular instance that could be brought under them. But it may be aaid that thus he only aroide the Charybdia of moving in a logical circle to be anatched up by the Scylls of an arbitrary asumption. We are to scoept the general proporitions upon which every sabsequent step of our inference reats, because our intellect mesures us of their trath. This may eatisfy the man whose intellect gives him the sasurance; but how is be to commanicate that assurance to others? If a principle is not arrived at from premisses which another admite, and between which and it he sees a ralid process of inference to lie, why should he sccept that principle? No evidence is offered, whose sufficiency can be tested. The ipse diasit of an incommunicable intuition takes the place of any process of reasoning, an the means whereby we are to eatablish the most important of all judgements-the general propositions on which the sciences rest.

Of this charge Aristotle cannot altogetber be scquitted; yet we
may say this much in his favour. Such an intellectual apprebensioir of the necessary truth of the principles from which demonstration is to start forms part of our ideal of knowledge ${ }^{1}$; doabtless it neldom enough forms part of the actuality. But Aristotle idealized; he apoke of what, ase conceived, science in the folleat sense of the term involved, and forgot to otate, or failed to soe that the scieuces did not realize it. And the prominence which he gave to the question 'What sort of premisses does knowledge require?' led him to relegate to an inferior position the question 'How can the sciences as they are validate their premisees ?'

He did not overlook this last question altogether; indeed be devotes to it a considerable portion of the longest of bie logical treatisea, the Topics; for when be aske by what sort of considerations you can prove or dieprove that a proposition gives in ite predicate the definition, or a property, of its subject, he is asking how you can prove acientific first principles. And he knew this; and among the uses of Dialectic, or of the disputation whowe methode he elaborates in the Topics, he places an ite most peculine use the examination of the trath of scientific principles. But he ought to have seen that, outride mathematics, we seldom bave any other means of eatablishing general propositions upon the evidence of particalar facts than those of the kind which he discusses in the Topics. For the rest, his account of the logic of the ressoning by which the sciences do as a matter of fact support the general principles which they accept contains hints which are in advance of mach modern 'inductive logic'; though there is mach in his conception of the charaoter of the general principles which science seeks to eatablish, that is now antiquated. Science seeks to-day to eatablish for the most part what are called 'laws of nature'; and these are generally answere rather to the queation 'Under what conditions doee such

[^218]and such a change take place?' than to the question 'What is the definition of such and such a sabject?' or 'What are its essential attributes ${ }^{\prime}$ ' 1 It is more in respect of the problems to be answered, than of the logical character of the reweoning by which we must prove our answers to them, that Aristotle's views (as represented in the Topics) are antiquated.

We may briefly indicate the nature of 'dialectical' reasoning, as Ariatotle conceived it, and of the 'topies' which it employed. Dialectic is contrasted with acience. Every science has its own peculiar aibject-matter: geometry inveatigates the nature and properties of spece, geology the conditions which determine the character and distribution of the materiale which form the cruat of the earth, phywiology the functions of the organs and timaces of living bodies, sco. Each soience, in explaining the facts of its own department, appeals to special prizeiples, or Docal dpxal; to the specific nature of its own, and not another, subjeot-mattor-to lawe in accordance with which that particular clese of facts is determined, and not another clase. The geometrician makes use of the axiom of parallels, of the notion of a struight line, of the definition of a cone or circle; but the matare of chalk or granite is indifferent to him. The geologist will use such principles as that atratified rocks are sedimentary, or that monntains are reduced by denudation; but he draws no conclusions from the definition of a cone. The phyziologist in turn has his own problems to explain, and his own principles to explain them; that every tisene is composed of colls which multiply by divirion is a phyviological principle of whioh we hear nothing in geology, while the laws of denudation contribute nothing towards the explanation of the growth of living bodiea. Dialectio, on the

[^219]contrary, has no pecouliar subjeot-matter; all the scionoes enbmit their principlea to ita invertigation; the dialecticina may aek whether a georneter would be right in mying that it is a property of a triangle to have ite exterior angles equal to foor right anglea : whether the geologist has rightly affirmed all strastified rooks to be sedimentary : whether the physiologist would do well to mocept Spencer's definition of life, as 'the continuous adjustment of inser to outer relations '. And in debating anch questions, the dialecticien will invoke not apacial, but common princoiplon, kowai dexal ${ }^{1}$ i. e. not principlee whose application is confined to the ecience be happens to be invertigating, bat principles of univenal application: as, for examplo, that what is common to the genus is not a property of the epeciee-whence it followa, that aince all rectilinear figures have their exterior anglee equal to four right angles, this is not a property of a tringgle, or in other worde, that it is beccuse a figure is reotilinear, aod not because it is three-sided, that this can be predicatod of it; it is for the geometer to show that all rectilinear figares bave their exterior angles equal to four right angles ; the dinleotician's buxines is to show that it cuanot therefore be called a property of a triangle, as such. Or aggin, the dislectician may ask, with regard to Spencar's definition of life, whether the distinction between 'inner' and 'outer', on which it reste, is olear ; for he knows that the torms of a definition should be olear, thangh he does not necessarily know physiology; and if Spencer, or his
bim from illastrating it as it would be illustrated now, and his remarks on the subject are open to a grod deal of criticimm. Cf. An. Poot. a. xiii. 78b $32-79{ }^{16} 16$.
 In the second of theoe panges, Aristotle gives as examples of common principlee' the Lam of Contrediction, that the mame proposition cannot be at once true and faleo, and the methematical axiom that the differences between equale are equal. The latter is not really 'common', but special to the sciences of quantity; and if he wished to be consistant with what he anye in β. xvii. $890^{6} 6-16$, Ariatotle ohould hare allowed that it means comething a little different in geometry and in arithmetic. By no means all of the communce loci in the treative called the Topics are 'common principles' -a.g. the topice given in γ, repl roû alpereripne, which are principles to be appealed to in detormining which of two goods is to be preferred: as, that the more lanting good is preformble, or the more secure, or the greator, or the nearor. Moat of them howerer are auch, though it must be admitted that Aristotle does not describe his topics as common principles, or consai doxal : and I think that the distinction which he intende to convey in the Posterior Analytice by the antithenis of ishat and saral dpxai is really what bat been stated in the text.
disciples, could not ahow precisely what it means, he would say the definition must be fanlty; and if they replied that 'inner' meant within the orgenism, and 'outer' outside it, he would ask whether all material systems which changed inwardly in response to ohanges outaide tham are living bodies; for be lonows that a definition shoald not apply to anything except the speciee defined, and if this expreasion does, it cannot be a definition; or he might aak whether many of the peculiar processee of living bodies are not apparently initiated from within the body; and if the answer was affirmative, he would again object to the definition; for though it is not his basiness to know'whether any of the peculiar procemes of living bodies are initiated from within or not (and therefore he has to ank the phymiologist how that matter stands) it is his businees to know that e definition must include everything emential to the thing defined; so that if there are sach procesees, a definition of life which excluden tham mant be a wrong one. Or, leatly, the dialecticina might ask the geologist if there are not some igneous rooks that are stratified : not knowing, as a dialeotician, the answer to that queetion, bat knowing that, since igneons rocks are not sedimentary, the existence of igneous rooks that are stratified would upeot the geologist's proposition; while if the geologist were able to answer the question in the negative, he would so far have come out viotorioce ander examination.

All these general principles, to which the dialeotician appeals, are called topies ${ }^{1}$: it is a topic, that what belongs to the genus is not a property of the species; or that what in some particular instance is absent from a epecies is not a property of it; or that the torms of a definition muat be preoise, or that it must be commensarate with what is defined. All these principles hold good in any acience; it matters nothing what the apecies may be, or what the property, or what the definition. A man therefore whose mind in stocked with principles of this kind hae pointe of vantage, as it were, from which he may prooeed to attack or defend any definition, any predication of a property; they are topies in common, 'commonplaces,' pointe of view whence you may approech to the consideration of the statementa of any science. Just an a man who known nothing of the truth of its premisees may be able to deteot a faw in a ayllogism, so the dialeotician, without a scientific knowledge of a subject, ${ }^{1}$ rdroy, loci, communes loci.
may know what eort of queations to ask, if he wishee to tont a acientific man's right to affirm the principles he enuaciates.
Aristotle's Topics is written with reference to his doctrine of Predicableas He regards every proposition as mserting (or denying) some accident, property, differentis, genus or definition, of ite subject; and be aeks, to what considerations are you to look, if you woald know whether such and sach a predicate does otand to suah and such a aubject in any one or other of these relations? Each of these considerations is a topic. He details an astonishing nomber of them. They are of very different degrees of importance and value. Some are drawn from language. Look, he ayyb, for example, to conjugate terms; if noble is a property of just, then jwolly is nobly; parbape a man who affirmed generally that jastice is noble might admit that it is posesible in mome ases to act justly and not nobly. ${ }^{1}$ Others are besed on the principle that contrary thinga have contrary properties; so that you cannot eay that the just is the equal, unleas you can eay that the unjust is the unequal. Some aim only at enabling you to determine whether an expresion is elegant, acoording to socepted rules. Bat others are princoiples of great importance. For instance, there is what we might call the topio of Concomitant Variation ${ }^{2}$; thant is not a property of a rubject which does not increase or decrease with an increase or decrease in the subject, and conversely, if you find two things increasing and deoresoing together you may seseort anch connexion between them. ${ }^{3}$ Considerations of this kind easble you to judge how different conceptes are related to one another; and relations between concepts furnish the principlee with which the special acienoes work.
It may be admitted that this treatiso containe much that is trivial; that it throws together considerations, or principles, of great and of little cogency; that the problems of science nserume other forms than determining the definition of a sabject, its properties, or its accidents (although these problems occur too, and many problems which we sbould not express in thoee forms can be translated into terms of them). It may also be admitted that Aristotle had his mind fired too exclusively apon debate. The answers to the questions asked were to come from the reapondentthe other dispatant; but in bailding up the scienoes, they must

[^220]tome from the field and from the laboratory. Aristotle would have a man test any ecientific doctrine that is put forwand by intorrogating its maintainer; the man of science must teat those which be himself or a fellow worker pats forwand by interrogating nature. It would be easy to do. Aristotle an injurtice on this heed. It may be asoumed after all that the respondent teatifiee to what he hae seen; and Aristotle was alive to the importance of collecting and recording facta. ${ }^{1}$ But the Topics in a treatice on the art of disputation; disputation aime after all more at silencing an opponent than at entablishing truth; and though we are told that Dialectic has ite use as much in the examination of the prinoiples of the soiences es in the conduct of a dispatation, it is in the latter opirit that it is expounded. Nevertheless, in the distinotion drawn between acientiflo and dialectical reasoning, as illustrated above, and in its acoount of the general nature of the considerations to which one must appeal in any defence of tbe principles of a ecience, the Topics is a work of great logical valae.

What, then, has Aristotle to say about Induction?

1. He gives the name to a formal procen of inference, by which we conclude a proposition to hold aniversally of some class, or logical whole, becanse an enumeration shows it to hold of every part of that whole. This is what has been since called Indsection by Complete Enemeration, or Perfoct Induction; and be shows how it might be thrown into the form of an Inductive Syllogim.
2. He points out that our knowledge of scientific prisciples springe historically out of oar exparience of particular ficots; though its certainty reate ultimately upon an act of intelleotual insight. And he gives the name of Induction to the process in which the particulars of our experience suggent to us the prinoiples which they exemplify. But this is not a formal logical process from premisees to conclasion; and it is not the induction (in this ennse) which leads us at the end to scoept such principles, but our intellect, or yoves.
3. He shows where (presamably in defanit of the necesary insight and asmunce from our intellect) we may look for reasons for aceepting or rejecting any principles which a science pats forward. He does not give to this procedure, which is of a formal logical kind, the name of Induction, bat calls it Dialectic; nevertheless what he says on this head is of much the most importance from the

[^221]point of view of acientific method, and comee much closer to what modern writers underatand by Induction.

Thus he admitted that our knowledge of general principles comes from our experience of particular facta, and anid that we arrive at them by Induction; but the only formal logical procees which he deacribed under the name of Induotion was that 'Perfect Induction'. which clearly neither in nor can be the procees by which the sciences establinh genaral proporitions; while the kinde of procese whioh thay really do employ, 00 far an they appeal morely to the evidence of our experience, he deaeribed under a different name. It is not surprising that some confusion hae resulted.

The critics of whom Bacon is the corypheens, recognizing with Ariatotle that we discover univeraal truthe by induotion, attacked him for saying that we only discover them by complete enumeration, which he had not said; and finding the name of Induction given to no otber formally valid procese than this ${ }^{1}$, supposed he had nothing else to ay of the provesese by which such truthe are reached. Becon himself attempted to syutematize the process of discovering and proving them in a way which undoubtedly pomemes value, and no less undoubtedly owes much to Aristotle; buten the Aristotelian idens on which it is besed do not occur in the Organom in connexion with draymory, he hardly realized how mach he was borrowing. His analyaia is offered in connaxion with an unwortable theory of the nature of the problems which ecience should net itself to colve. To put it summarily, he thought that a liat of the eeveral sensible properties of bodies abould be drawn up, and that men should then try to discover on what particalar principle of corpuscular atructure in the bodies that exhibited it each property depended. There was nothing in the conception of any particular principle of atracture, which would lead you to anticipate that ite presence would involve any one eancible property more than another; you could not tell, apart from experience, that a particular motion of the component particles of a body would exhibit itself to the senses as heat, or that. a particular dimposition of its surface particlee would show an whitej and another disposition as black. Suppose we were to ayritolize the sensible properties of bodies by Boman letters, and the pri Arfes

[^222]of corpusealar structure in them on whioh theee depend by Groek letters : how are you to prove whether a property a is connected with a or b or s ? Becon's anawer is as followe. He called the principle of corpruoular atracture Forms: whatever be the Form of a given property a, it mast be $e 0$ ralated to a as to be present in every body in which a is present, to be abeent from every body whence a is absent, and to incresee or deorease in any body as a increnees or decreases. Our problem then is, a he says, a ℓ inve niatur matura alis (the Form) quae awn matwra data (the sencible property) perpedwo adsil, absil, crescat atque decremcal. ${ }^{1}$ How are we to solve it? No mere enomeration of instances in which a sensible property a and a Form a are present togother will prove that they are thas related, and that a is the Form of a; for your enumeration must be finite, bat your conclusion is to be univeral. You may find a hamdred bodies exhibiting both a and a: yet the presence of one may be quite unoonnected with the presence of the other, and you may find a body to-morrow exhibiting ore without the other. We must proceed then by eaclusious. Where a hundred instances will not prove an anivernal connexion, one will disprove it. This is the corner-atone of hie mothod: maior ast nis inetantiae negativas. ${ }^{3}$ If we had drawn up an exhanative list of the different principles of corpuscular atructare present in bodies in different combinations, all we chould have to do would be to find instances in which any of theee was present in a body that did not exhibit the property a, or abeent in one that did exhibit it, or in which it increased or deoressed withont a corresponding variation in the degree of the property, or vice verm. We could then confidently rejeot that Form; and when we had thue rejected every other Form, then we could confidently affirm that principle of corpuscular structure which alone had not been rejected to be the Form (or cause of the presence) of a given sensible property a. Oar assarance would reat not on the positive tentimony of its presence along with a in a number of instances, but upon the fact that we had disproved all possible rival theories.

It will be seen that this procedure presupposes that we know all the possible Forms, among which that of any particular sensible property is to be sought; and Baoon, though he promised to do so,

[^223]never showed, and conld not have ahowed, how we were to discover that. The procedure in formulated too ander the ides, that the immediate task of science is to draw up a complete lint of all the distinct eencible properties found in nature, and then look for what we ahould perhapa now all their phyaical bacis. This idea was mistaken. But the fandemental principle of the method by which Becon proposed to 'interpret nature', the principle on account of which he gave it the name by which he called it, Eseluriox, is correct; it is that where you cannot (as in Mathematios) eee that 2 proposition mund aniversally be true, but have to rely for the proof of it on the fects of your experience, there there is no other why of establishing it than by ahowing that facte disprove ite rivale. ${ }^{2}$

Becon called this method inductive; it may be as well to point out at once that formally the reseoning involved is just that of a disjunctive argument. The alternative hypotheess (with Bacon, the alternative hypotheses as to the Form or physical becis of a particular sensible property) are so and so: such and auch of them are false; therefore the one remaining is true. How we are to discover what the alternative hypotheses are, he does not explain to us; we are to prove that the rest are false by appeal to the facts of our experience; these facts he would have men methodically collect and tabalate, and in making use of them be relies upon the general principle that nothing can be the Form sought for which is ever present in the sbsence of the property whose Forrn it is alleged to be, or aboent in ite presence, or variable when it is constant, or constant when it varies; when he has got his premisees, his conclusion followe according to the ordinary principles of diajanctive reasoning.

Becon wrote in the dawn of modern science, and proclaimed with splendid confidence its future triumphs. His predictions have been falfilled, perhape to the extent, though not on the lines, that he anticipated. Spes cat mana, be wrote, in inductione vera ${ }^{2}$; and as men watched the continuous progress of the inductive sciences, they came to think that induction was really some new form of reasoning, ignorantly or perrersely rejected by our forefathers in favour of

[^224]the deductive remoning, which they asoociated with the name of Aristotle, and now held to be in comparion an idle thing. To praise induction became a eign of enlightenment ; but the praise of it ran abead of the underatanding.

Those who did the moot to advance the sciences had not the need or inclination to perise and analyse the argamente which they were so anccesofully building up; nor would it imply any disrespect to add, that many of them probably had not the power of doing 80. It is no more necemary that a great scientific genius ahould be able to give a correct account of the methods he uses than that a great artist should be able to expound the philosophy of art; those can often do things beat who are quite unable to explain how they do them. The chief scientific name in the history of speculation upon the logic of the inductive sciences in this country is that of Sir John Herschell; four writers in all, if we exclude those still living, have made the principal contributions to the sabject. David Home, in a brief section of his Treatise comcorning Humas Nature (Of the Understanding, Part III, Sect. xv), givee 'Rales whareby to judge of canses and effecte' which contain the pith of much rabeequent writing; but the work, as he said himself, 'fall etillborn from the prem'; this eection wae not incorporsted in the latar and more popular 'Enquiry'; and it had no influence on the exposition of Induction. Sir John Herschell's Diecourse concerning the Study of Natural Philomophy and the varions works of Dr. Whewell did, on the other hand, much to atimulate intereat in the subject; empecially since Whewell propounded an explicit theory of it. The help which he had derived from both is acknowledged by J. S. Mill, whoe Syatem of Logic for many years held the field as an exposition of inductive reasoning. To that more than to any other work is to be treced the prevalence of the opinion, that inductive reasoning, or Indactive Logic as the theory of it, is s discovery of the moderns-an opinion which certainly contains less truth than falsehood. The name induction may be asid with him to have atood for more than a particular form of inference; it was the battle-cry of a philoophical school, the school, as it is called, of experience. But as a result of this, and of its previous history, it hae become. one of the most confusing terms in Logic. It stands firstly for that induction by complete enumeration which Mill deniea to be properly induction at all, but from which his influence
was unable to withdraw the name after the preseription of momany centurien. It stande cecondly for the logical procesere employed in the indnotive sciences, wh far as these infer from partionlar factes the principle that explain them; s to what the nature of these logical procemes is, Mill hed a theory different from Whowell's, and others have since had theories differont from Mills. Thirdity, Mill, who admita that there are certain general principles asoumed as true in the remonings of the inductive saiences, gives the name to what he conceives to be the logical proeen by which these principles thamedves are reached : a procese that atarts, in his riew, barely from a great number of partioular feota, and withont the help of any general principles at all bases apon theme faota the general principles whereon all other induotive inference reate. Many of Mill's critica have thought, and have thought rightlyfor it is better to state one's position explicitly at the outrot-that if the procese by which these principles are reeched were as be deecribes it, it could only be called an illogical proceme. ${ }^{2}$

It would have been poemible to omit the foregoing hirtorical sketch, and to offer a parely dogmatio account of what Induction is, and what it is not. But against suoh a coure there were two ressons. In the first plece, a new writer bee no right to do such a thing. It is indeed necemary for him to put forward that ecoount of the nature of the reesoning of the indoctive sciences, which he believes to be true; but not as if he was only delivering an acoepted tradition. And in the second place, anless the reader knows nomething of the history, he can hardly fail to be confused by the diversity of sanser in which he finds tho word Induction used. Men have rightly felt that an antithesia could be drawn between the inductive and the deductive aciences; though thay can be classed only according to their predominant character, since no eciences, except the mathemation, are exclusively the one or the other. On the strength of this they have most anfortanately erected an antithesis between Inductive and Deductive Logic:

[^225]unfortunately, partly because Logic is one; the science which studies the nature of our thought embraces equally the processes of thought that enter into the constraction of the deductive sciences and of the inductive; but unfortamately also, because it has led to much misunderatanding of the natare of inductive reasoning itself. Inductive Logic has not really hid bare any now forms of ressoning ;) we have already seen that Bacon's Indaction is a disjunctive argument. The true antithesis is, as Aristotle amw, the antithesis between Dislectic and Demonstration; or in more modern phrase, between Indaction and Explanation. ${ }^{1}$ Or if any one likes to seep the antithesis between Induction and Deduction, and to call inference deductive when it proceeds from conditions to their consequences, and inductive when it proceeds from facts to the conditions that account for them ${ }^{2}$, he will find
a. that the two processes cannot be kept rigidly apart. Whoever infers from the facts of experience the conditions which account for them must at the same time in thought deduce those facts from thoee conditions.
b. that what kas been called Deductive Logic, what Inductive Logic has been contrasted with, analybes forms of inference which, if the antithesis between Induction and Dedaction be thus anderstood, must be called indactive. This will appear more fally by and by ; it will be admitted now that, if it is true, though we allow a difference between indactive and deductive ressoning, we had better give up opposing Inductive and Deductive Logic.

[^226]
CHAPTER XIX

OF THE PRESUPPOSITIONS OF INDUCTIVE REASONING: THE LAW OF CAUSATION

' WHy is a single instance, in some cases, enfficient for a complete induction, while in others myriads of concurring instances, withont a single exception known or presumed, go such a very little way towards eatablishing an universal proposition? Whoever can enswer this question knows more of the philosophy of logic than the wisest of the ancients, and has solved the problem of Induction.' However we may think of the knowledge possessed by the wisest of the ancients, the question which Mill aske is no doubt an important one. By what right do we ever generalize from our experience? and how can we tell when we have a right to do so? To these questions we must now attempt an answer. Afterwards we may note what other processes of thought besides generalization enter into the aciences; and then we shall be able to realize better the true nature of that antithesia between induction and deduction which was apoken of at the end of the last chapter.

The present chapter will addrese itself to the question, by what right do we ever generalize from experience. This is the primary question. Syllogism never generalizes. Unlese it is provided with universal propositions for premisees, it cannot arrive at them in its conclusions, and even so, its conclusion is never more general than its premisses.' It is just this fact which raised the difficulty,

[^227]how to get the univeral propositions which syllogism needs to start with. If experience gives us only particular facte, how art we to get aniveral concluaions out of them? A mere enumeration of particulars will justify a conclusion sbont no more than the particulare which have been enamerated, whereas we claim in any peneralization to $g \circ$ beyond the observed facte on which the generalization is besed, and to drave conclunion true in any possible instance whatsoever. By what right do we do this?

The answer is that all induction asoumes the existence of univernal connexions in nature, and that ite only object is to determine between what elements these connexions hold. The events of our experience are no doubt particular, bat we believe the principles which they exemplify to be universel ; our difficalty lies in discovering solat principles they exemplify; in that, a cloee study of particular facts will help us; bat were we to be in doabt whether there are any sach principles or not, no amount of stady of particular facte coald resolve our doubt.

There are many ways in which this assumption may be expresed. It will be well to consider come of these, and to ask what precisely it is that we aerume. We may then ahow that (as hes just been said) it is hopeles to attempt to prove the assumption by any appeal to experience; and alk oumelves what juatification we have for making it.

The commoneat expression for it is the Law of Universal Caumation, or (more briefly) the Law of Cansation; again, we my that we believe in the Uniformity of Nature; but the same ides is implied in the distinction between essential and aceidental circumatances, or in asking what circumstances are relevant to the occurrence of an event, or what are the material circumstances in the case. For only those circumstances can be called material, or relevant, or essentinl, without which the event would not have occurred, or whose non-occarrence would have made some difference to it; and the occurrence or non-oceurrence of any particular circumstances can make no difference to an event, unless there is some connexion

[^228]between them and it. Were everything in nature loose and unconnected, it would be impossible to eay that an event occurred lecause of any one thing rather than another. All these phrases therofore imply Causation, and imply Uniformity.

Both the Law of Cameation and the Uniformity of Nature are phrases open to misuaderstanding. There is a sense in which it is the business of induction to discoser laws of causation; in the plural, the term refers to the various particular principles of connexion axemplified (whether we detect them or not) in the conrse of nature; it is equivalent to Lawe of Natzre, or Nabural Laves, such lawe, for example, an that matter gravitates, or that organisms reproduce themselves after their kind. Used aboolately and in the singular, however, it means the principle that there are such perticalar principles, and hence we speak of the Law of Uaiversal Ceusation, intending to aseert that enerylhing has a cause, aod that no change occurs except under conditions with which its occurrence is connected univeraally. And it in because we believe ite occarrence to be connected universally with such conditions, whatever they are, that we apeak of the wwiformity of nature. We do not mean to deny variety, bat only to aseert the unbroken reign of law. That which collectively we call nature is a vast asoamblage of mabstances of divers kinds diversely intermingled : interncting with one another in ways that depend upon their abiding character and their ahifting situation; what we call single things are highly complex, and their properties and behaviour depend opon their composition, and upon the circumstances in which they are pleced; we may believe that whenever a thing of precisely the same kind is placed in precisely the same circumstances as another, it will behave in precisely the same wry; nor is more required by the principle of the Uniformity of Nature; and yet we may doabt whether such precise repetition ever oceurs. Watch the movements of a waterfall, how it breaks into a thousand parts which seem to abift and hang, and pause and harry, first one, and then another, so that the whole never presents quite the same face twice; yet there is not a particle of water whose path is not absolntely determined by the forces acting on it in accordance with quite simple mechanical lawe. No one would auppose that because these mechanical laws are unchanging, the waterfall must wear a monotonons and unchanging face; and so it is, on a larger acale, with the
couree of nature. Nature is uniform in the senee that under like conditions like events oceur; and in fragments, as it were, she is ever presenting us with the repetition of conditions that have been fulfilled before; so that in fragments there is recarrence of like events enough. But sooner or liter, because the surrounding circumetances are not quite the same as before, the course of like events is broken in upon; from the beginning the likeness whs probably not complete. Were it indeed possible for the proceserion of events to bring beck precisely the state of thinge which hed existed at some moment in the pest, then it must follow, from the principle of the Uniformity of Nature, that the same procession would recur, and terminate again by reinstating the phase in which it had begun; so that the bintory of the world as a whole would really repeat iteelf indefinitely, like a recurring decimal, and to a spectator who could watch it long enough, might reem as monotonous as the music of a musical bor which, as it played, somehow wound itaelf up, to pace always from the conclusion to the recommencement of ita atock of tunes. But nothing of this kind occars; and the uniformity of nature is consistent, as Mill asid, with her infinite variety.

But it may be said, the Law of Causation is one thing, and the Uniformity of Nature is another; every event may have a cause; but the same cause need not always produce the same effeot, nor the cause of the same effect be always the same. The human will, for example, is a cause; but it does not always act in the same way under the same circumstances; to-day in a given situntion I may act meanly; yet it is possible that in a situation of the same kind I may act better to-morrow.

The freedom of the human will is a peculiarly difficalt problem, not to be argued here; doubtless there are some who so understand it (if understanding is then the proper word) as to make it an exception to the Uniformity of Nature. Some would say that, in this sense, it is not to be called a carse at all; that to assert it in this sense is to assert mere chance, the happening of events for no reason, the very negation of cause; for they hold that there is no causation which doee not act uniformly. Others would make an exception to that principle in this one case; but even if we were to allow it, we should atill heve to say that, except so far as a cause is of the nature of the haman will, there is no meaning in a cause which does not set uniformly.

Let ns aak what is involved in the conception of a cause not acting aniformly: we shall see that it is the same as if we devied the existence of causal connexions altogether. For suppose that every event bad a cause, but that there was no reason why the same event ahoold have the aame cause or produce the same effect on different occasions. There need therefore be no appearance of order in nature at all, but things might happen just as if all changee were fortuitous. As it is, we believe that plants produce seed after their kind; we do not expect to gather grapes of thorns, or fige of thistles; where we see garden fruit upon a wild stock, we look for a graft, convinced that the same stock will only bear different fruit in virtue of some material difference in the conditions. If any plant might produce any seed, or any seed any plant, and it was impossible to discover, in such circumatances as graft or coil-because no reason of the kind existed-why the same plant prodaced now one seed and now another, or the rame seed now one and now another plant, then we should just deny that there was any cause for the thinge that happened. We should not say that there wha always a cause, though the canse need not act uniformly. If two plante, whose nature is really the same, can determine the growth of totally different seeds, how can we call either the seed of that plant at all? Grant that a seed may sometimes be prodaced by a plant of its own kind, and sometimes by a plant of another kind, withoat any difference of circumstances, and merely becanse canses do not act uniformly, and you have really granted that anything may produce anything; flint and steel may produce seed instead of a apark, and oil raise the waves or quench a conflagration. But to aay that anything may produce anything is to empty the verb 'produce' of all ite meaning. For the causal relation is a neceseary relation, such that if you have one thing you musl have another. • To add that it doee not matter what the other is, destroys the force of the musl. The diatinction between essential and accidental, material and immaterial, relevant and irrelevant, will vanish. So long as causal connexions are universal, there is a meaning in it. That is essential to health, with. out which health is impossible, and that is accidental to it which (though doubtless it has its effects) has no effect upon health. But if exercise, which is essential to my health to-dsy, should suddenly and withont any change in my condition give me epilepsy to-
morrow, while the lose of a letter in the post somewhere in the antipodes should on the following day cure my epilepay, then it would be imposesible to say that anything was accidental, or anything eseential, to the same result for two minutes together. And the discovery of the causal connexions that determine the succession of evente now would certainly be of no use in enabling any one to forecast the futare; because the connaxions themselves might have altered in the meantime. It is difficult to see how all this differs from denying that there are any connexiona.

Causal connexions then are necesary and univernal; to asaert causation is to resert uniformity of connexion. Were it otherwise, to discover them would mean only to discover the connexion subaist- $/$ ing at a particular moment; and we could not tell that such connexion would subeist the next moment. For this reason, we could not generalize, even though we believed in the Law of Cansation; nor indeed could we so mach ae discover what connexions did subsist at any moment. For aince anything might produce anything, there would be nothing to make us connect a change with one rather than another of the evente that were obeerved to occur immediataly before it. No light would be thrown upon the problem by comparison with other instances, sinco, ax kypotheni, the cause might be different there. As it is, if the sun comes out when I bear the clock strike, I do not auppose that the striking of the clock canses the sun to shine, becanse it so often strikes without relieving the gloom, and is so often silent when the san comes out. But when I reeson thus, I essume that if one event were really the canse of the other now, it would be so always. If it can be the canse now, and not another time, how am I even to tell whether it is the cause now or not? We spoke of the humay will an an alleged exception to the rule that the same canse must always produce the same effect. We may notice here that just in so far as it is allowed to be an exception, human actions are allowed to be incalculable. And if everything were endowed with a will like man's, and all these wills were free in the sense in which rome suppose that man's will is, then we shoold have no logical justification for any generalization whateoever. But those who claim this freedom for the haman will would attach no value to it anless the act to which a man was determined by his free choice produced effecte that were necessary in mecordance with univeral laws.

There is no need then to distingaish the Law of Cansation from the Uniformity of Nature; for-bating the poesible exception of the caueality of the buman will-s canse which does not act uniformly is no canse at all; and if we are looking for the presuppositione of inductive inference, it is plain that the only connexions whose existence would justify suoh inference are uniform connexions. But two cantions must be given here. First, it must not be imagined that uniformity is the fumdamental element in the conception of causal connexion, but meceavity or law. Secondly, we must be carefal not to confuee a conditional with an unconditional necesaity.

David Hame, whoce enquiry into the meaning and origin of our ides of Cassation whe epoch-making in the history of modern philoeophy ${ }^{2}$, could find no other meaning for the statement that one event is the cause of another than that in our experience the one is always immediately followed by the otber; and according to bim, the thought and expectation of this uniformity of sequence is all that is present to our minds when we assert causation. In agreement with this view, J. S. Mill (who differed from Hume on this matter chiefly in not drawing the logical consequences from the same premisess) defined a cause as the invariable and unconditional antecedent of an event. The word anconditionsl in this definition may reem to betray ideas inconaintent with the resolation of the causal relation into one of time; but Mill explaing an unconditional sequence to be one that is subject only to negative conditions ${ }^{2}$, and the negative conditions of any phenomenon 'may be all anmmed up under one head, namely, the abeence of preventing or connteracting canses' ${ }^{3}$; mothat those circumstances are the cause of an event, upon which it follows whatever other circumatances may be present as well ' ; and the relation remains one of invariable sequence after all. Now it is not denied that if any set of conditions a is the cause of an event x, x will be produced as often as the conditions a are fulfilled; and in this sense the sequence will be invariable; but we cannot intend to assert primarily that, when we say that a is

[^229]the cance of s. For if a in the canee of s, the relation subsists between them in every cace of their occurrence; it subsists between thie a and this a; and it is clear that the relation between this a and this a cannot be the uniform sequence of all inatances of x upon instancee of a. The action of light of certain wave-lengthe, \&e., upon a chemical surface prepared in a particular way may be the cause of the production of a photographic negative of a particular peak in the Himalayan mountains. I cannot mean by that that the production of all auch negatives has been preceded by a similar assemblage of conditions on each occanion, since mine may be the only photograph ever taken of the peak in queation. No event could have a cause antil it had, been ropeated at least once, if the essence of the causel relation lay in uniformity of sequence; nor could that relation ever be one subsisting between a and s in a determinate instance; and it is difficult to see bow a causal relation which subsists between no determinate instances of a and \equiv conld subaist at all. So far then from the causal character of a sequence being derived from its uniformity, its uniformity is derived from its causal character. We arail ourselvee of the uniformity which must characterize causal sequences so far as they are repeated, to determine which of the sequances that we observe are caunal; and that is why the repetition of an event under divereity of conditions is of auch acaistance to us in determining what conditions are emential, or meterial, to its occurrence. But an event that was abeolutely unique must just as surely have ite cause, though we may be unable to discover what it is. For the causal relation hes nothing to do with momber of instances, so far as its axislonce-though not so far as ite deloction-is concerned; it is bound up altogether with the nature or character of things, and the nature of anything is not a queation of the number of such thinga that may be or have been fachioned. We have seen indeed that a cause which doee not act uniformly is no cause at all; but we may now see that were it otherwise, a thing would have no determinate nature. If a thing a under conditions c produces a change a in a subject a-if, for example, light of certain wave-lengths, passing through the lens of a camera, produces a certain chemical change (which we call the taking of a photograph of Mount Evereat) upon a photographic film -the way in which it acts must be regarded as a partial expression of what it is. It could only act differently, if it weere different.

As long therefore as it is a, and stands related under conditions c to u subject that is a, no other effiect than a can be produced; and to say that the same thing acting on the same thing under the same conditions may yet produce a different effect, is to any that a thing need not be what it is. Bat this is in flat conflict with the Law of Identity. A thing, to be at all, must be comething, and can only be what it is. To sesert a causal connexion between a and x implies that a acts as it does because it is what it is ; because, in fact, it is a. So long therefore as it is a, it must act thas; and to assert that it may act otherwise on a subsequent occasion is to aseert that it is something else than the a which it is declared to be. It may be replied that no two things ever are the ame, and-what that reply must commit you to-that no one thing ever is the same for two successive moments. The fact of change is not disputed, nor the diffculty of finding two things that are qualitatively the same. But if the effect of the second is different, that must be because of its qualitative difference from the first, and not merely becsuse it is a second; and so far as it is qualitativaly the same, the effect most be the same also: it being understood of course that to sameness of effect qualitative sameness is equally necessary in all the material conditions. To deny this is to deny the poesibility of reaconing altogether. If we cannot truly make the same aseertion about a number of things, then, as Aristotle observes, there will be no universal, and so no middle term, and no demonstration. ${ }^{1}$ For an universal judgement connecta a certain attribate with a certain subject in virtue of their content and without regard to the frequency of their existence. If we can do this, we can make the same assertion about all things of such and such a kind; if we cannot do it, we are left with nothing but particular things whoes attributes must be ascertained from inopection or experience of themselves; and not by transference of what we have once found true of such a kind of thing to otbers of the kind. What holds for the relation of subject and attribute holds in thin respect co ipso for that of cause and effect. To suppose that the same cause-other things being equal-can have different effects on two occasions is as much as to suppoee that two things can be the same, and yet so far their attributes different. To reply that two thinge cannot be the same, and that the same cause cannot be

[^230]repeated, is either to miss the point, or to abandon reasoning. If it is meant that two complex things cannot be qualitatively the same, nor can conditions precisely the same in kind ever recur, such an objection misses the point. One need not maintain that such identity, or auch recurrence, in fact occurs, though it is not perhaps inconceivable that it ahould; all that is maintained is, that eo far as things are qualitatively the same they have the same attributes, and so far as conditions precisely the same in kind recur, they must, if there is such a relation as cause and effect at all, bave the eame effect. If, on the other hand, it is meant that there is no qualitative sameness in what is numerically different, we can only sey that if ω, there is no reasoning. But this denial of identity between different things is what is really at the bottom of the attempt to resolve the causal relation into uniformity of sequence. For the causal relation which connects a with \geqslant connects a cause of the nature a with an effect of the nature a. The connexion is between a and x as such, and therefore must bold between any a and any s, if they really are a and x respectively; in other words, it must be uniform. The denial of this is just the denial of universals; while if there are universals-the same content in numerically divers things-the relations between them must be universal. If, on the other hand, we are to subatitute for a relation one and the same in all its instances a mere similarity between the relations that connect the respective terms of many different instances-if for the relation between a and s as auch we are to substitute the uniformity between the relation of this a to this x, and of that a to that x, and of the other a to the other x, then we are substituting for the common content of many things a bundle of things united by nothing in common. How then can we apeak of them as things of a kind, or hold our sequences aniform except in the fact that they are sequences ? ${ }^{1}$ The cause of an event might then indeed be anything to which it stood in a relation of sequence at all, and need no more be the same on different occasions than its antecedent need be; since we should have agreed that it was impoesible that the sequence of the same thing \approx upon the same thing a should ever be repeated.

We may pass now from this to the second of the two points mentioned on p. 376. If it is thus neceseary that causal relations

[^231]should be uniform, it is all the more important that in speaking of the Uniformity of Nature we should not confuse conditional with unconditional necesaity.

We asw above that the Uniformity of Nature whe concistent with any degree of variety in the course of eventa; bat that it implied that the principles in accordanoe with which these events cecur, or what we often call the Laws of Nature, are unchanging. In other words, the uniformity which a particular law requiree in events can admit of no exception; for an exception would mean, that events did not necesarily happen in scoordance with the law; and a law that changes is no statement of the way in which evente mest happen. Nevertheless, wo often ase the term Law of principles which we should not be prepared to declare unchanging; which, as we might eay, do not hold good always. In the atrictest sense of the word, no doubt, a law must hold good always and anconditionally ${ }^{2}$; bat we use it in a looser sense as woll. It is important to realize this distinction, and aleo to consider how far, when we speak of the Uniformity of Natore, we mean to ameart that what are commonly called ' netaral lawn' are uncoaditional.

The firat law of motion is an exsmple of a natural law which would perhape be regarded as unconditionally trae-that every body persists in ite state of reat, or uniform rectilinear motion, until it is interfered with by some other body. The same might be asid of the law of universal gravitation, that all bodies attract one another with a force that varies directly as the mana, and inversely as the equare of the diatance. Compere with these the principle that acquired characters in a plant or animal are not inherited. Sapposing this to be true (for it is still sub indice), yet it is not true anconditionally. We are not in a position to say that living things could not be so organized, in respect of their reproductive system, as to make acquired characters heritable, but only that, with the organization which we find, they are not heritable. That organization therefore conditions the truth of our principle. Just as the prevailing necessity for sexual union in the reproduction of all malticollular organieme does not exclude arrangements in some species which make them parthenogenetic, so there might posesibly be conditions

[^232]ander which the non-heritability of sequired charnoters held good no longer. And as conditions may change, those realized at one time not being realized at another, 80 the conditional prinoiples which prevail may change with them. It appears to be the case that living matter can only be produced from other living matter; there is no spontaneous generation of it from the inorganic; omme ciowm em vico. But many scientific men bave supposed that though this is true and neosemary now, yet in an earlier period of the earth's history, under very different conditions of temperatare and so forth, it wee not so.

Conditional principles are necessarily derivative: i. e. their truth, so far as they are true, follows from eome unconditional laws, which wwiler given conditions involve them as their consequence. They therefore admit, theoretically if not as yet actaally, of explanation. But derivative principles, or principles admitting of explanation, are not necemarily conditional. For when we call a principle conditional, we mean that the trath of our principle depende upon conditions which are not stated in it. If we bring the conditions into the atatement, then, though it remaina derivative, it is conditional no longer. Supposing that we knew precisely those conditions of organization in animale and plants whioh made acquired chanacters non-heritable; then the rtatement that in animale or plante of that orgenication aoquired characters were not inherited would be unoonditionally true, although no doubt it would admit of explanation. It would probably not be called a law of nature, becanse it would bo derivative; but it would have all the neceveity of a lew of natare. ${ }^{1}$

The Uniformity of Nature then involvee the trath, without exception or qualification, of all anconditional lawe; but conditional principles admit of apparent exceptions, withont derogation to its truth; and if we are ignorant of the conditions within which these conditional principles hold good, we cannot tell when the exceptions may not occur. To retarn to our previous illustration: if we do not know under what conditions of organization acquired characters are and are not heritable, we must be prepared to admit evidence that in some cases they have been inherited. Where, however, exceptions occur to some conditional principle, they constitate no exception to the truth of the Uniformity of Nature; bat only imply

[^233]that the conditions, under which that principle held good, are not fulfilled in the exceptional case. And the exception leads us, not to deny that 'Nature is uniform', but to revise or to determine more precisely the particular principle which we have found invalid. It is only unconditional laws that can have no exception.

It becomes therefore important to determine, if possible, when we have discovered an unconditional law. We may disregard here those derivative lews, which we may be capable of explaining from others more genernl than themselves; for the question whether they are unconditional is the same as the question whether the more general laws from which they are derived are so. Now, if wh have no better reason for accepting a law as unconditional, than thst by assuming it to be true we can account for the facts of our experience, then, though we might provisionally accept it, we can hardly be content with our warranty; for perbspe eome other law might also account for the facts. But if (and this, as we shall see hereafter, is a distinction of the first importance in inductive theory) -if, without assuming it to be true, it is imposesible to account for the facts of our experience, we should have to suppose it unconditional; though such impossibility may be hard to establish. Still, we should not be fully satisfied; for had the fects been otherwise, we need not have admitted the law ; and we do not eee, except on the hypothesis that the law is true, why the facts might not have been otherwise. Complete satisfaction woald only come, if the law which the facts had forced us to recognize should, when considered, lappear self-evident.

Are there any anconditional laws known to us? There is no doubt that the fundamental principlea of physical acience are often so considered. It is held that we have discovered certain physical laws prevailing throughoat the material universe, in eccordance with which every event in the material order takes plece; that these laws are mechanical; and that nature is, in trath, and in the last resort, a purely mecbanical system. And this view is supposed to be confirmed by the character of the principles with which physical science works. A great deal is purely mathematical; and abont mathematical principles at any rate we can say that they are unconditional because self-evident; no apparent exception would make us doubt them or revise them; we should only doubt the fact which was supposed to constitute the exception. And some of the
most general physieal laws have often been held to poseess the same self-evidence; the first law of motion, and the lawe of the conservation of energy and the conservation of mass, are instances, That anything should occur in the material systam unconformably with these principles would then present the same kind of contradiction as that two and two should make five. The explanations of physical science, at least so far as they rested on laws of this kind, would be complete and final.

On the other hand, there are very serious difficalties in the way of admitting the finality of the explanations which physical acience offers of evente in the material system. Theme difficalties arise from the relation of some of these events to human, and also to infre-haman, conscioumess. Experience reveals to us a correspondence between certain changes of a material kind in the nervons system, and changes in our consciousness. No satiafactory theory of this correspondence has yet been found; it cannot be asid that what is involved in treating as unconditionally true the principles of physical science is aatisfactory in theory. For if all physical changes are to be explained as determined altogether according to physical laws, then they are parely mechanical ; the existence of consciousness has made no difference to anything which has occurred on the surface of the globe; we are, in Huxley's language, what Descartes thought the lower animals to be, conscions antomats; and the laws of matter and motion would of themelves have sufficed (if we may borrow an illustration from Profeseor James ${ }^{1}$) to produce the manuscript of Shakeopeare's works-and indeed every edition of them-though Shakespeare had been no more than a lump of matter an devoid of thought and feeling as the pen he wrote with, or the antomaton of Varcanson.

Such a conclusion is undoubtedly paradoxical, bat paradox does not by itself constitate a refutation. It is, however, impossible to accomat on physical principles for the facts of consoiousness. They cannot be physical processes; and a mechanical theory demands not only that a physical event should depend only on physical conditions, but that physical conditions should determine only a physical result. Mass and energy are to remain constant in amount, but to undergo redistribation in accordance with certain lawn, which can be expressed

[^234]in a mathematical formula enabling us to calculate the precise degree of change in one direction that will be involved in a givendegree of change in another direction. ${ }^{1}$ In these redistribations there is no room for knowledge or feeling among the 'forms of energy'; for mechanical conditions are to have their complete mechanical equivalent, in terms of matter and of motion, potential or actual. Thas to a physical theory of the world conscioumene romains unaccountable; such a theory therefore cannot be complete or final.

Now philosophy suggesta that in the leat resort, instend of explaining consciousness in terms of phymical law, we ahall have to see in phyrical law a manifestation of intelligence. The whole material order is an objeot of apprehension; therein, however, it stande related to minds that apprebend it; it and they together form the complete reality, or ree completa; and they cannot be anderstood except together. There is, however, another parador here; for what understands is mind, and so one term in this relation has to understand both itself and the other term.

It is not our bosiness to discuss here this central metaphyical problem. But we are concerned with the conception of an anconditional law ; and a self-avident principle must be unconditional. With regard to the claims of physical science to have discovered principles really unconditional we must therefore either aay that they are not melf-evident, or admit that they are unconditional.

If we adopt the latter alternative, then we shall hold that whatever tranaformation our view of the material order may andergo, yet the intarconnexions of evente within it, the connerions of canse and effect there traced, will as it were be taken over en bloc, unbroken and andistorted, by any interpretation of the oniverse which takes knowledge as well as ita objects, mind as well as matter, into account. A moving body may be something else than a moving body; but its motion will for ever appear determined in accordance with physical lawe. If, however, we adopt the former alternative, the principles of physical science may not be unconditional.

Now we are perhape sometimes too hasty in sapposing that we see the necesary truth of physical principles. The speculations of men of science themeelves have lately called in question the doctrines

[^235]of the conservation of energy and of mass; ${ }^{2}$ though doabtless without questioning the possibility of getting some physical formula that will be unconditionally true. It might be said that in the first law of motion it is self-evident indeed that a body will persist in ite state of rest or uniform rectilinear motion until something interferes with it, but not that interference can obly come from another body; that the mathematical reseoning in physical science is neceseary, but not the physical principles which aupply the data to which mathematical reasoning ia applied; and that the doctrine that a body can only be interfered with by another body is one of these. If these physical principles are only conditionally true, the same will hold of their resalis; and changes may oecar in the material order not accountable in terms of physical conditions, and not conformable to physical 'laws'. Nevertheless, because these physical 'laws' are not unconditional, there is nothing even so that conflictes with the Uniformity of Nature.

We need not here determine which of these alternstive positions to take. But it must be pointed out with regard to the latter, that if physical laws are conditional in the way suggested, there is an important difference between them, and the conditional principles with which we are already acquainted. For in the case of a conditional principle like the non-heritability of acquired chanacters, we conceive that the laws on which it depends might be found, and would be in eodem genere with the principle itself; i. e. the principle stated with the conditions to ita trath (and stated then in a form unconditionally true) would be derivative in an intelligible way from principles more general, bat from principles that bold like itself of what is material. On the other hand, if the fundemental physical laws are only conditionally true, yet it is impossible to derive them from physical principlee more general than themselves; and so the kind of explanation which is possible of other conditional principles (when their conditions are taken into eccount) from principles of the same sort with themselves, whereof they are really but examples, is here precluded. Supposing that there are, if we may eo put it, epiritual conditions apon which the movements of bodies in the last resort depend, and under some of these the first law of motion holds good, and not under others, then physical science at any rate cannot deal with those conditions.

[^236]For this remson, physical science will ignore this alternative. If the non-mechanical conditions upon which phyaical changes depend (sopposing that such there are) cannot be sacertained and formulated in a way which enables physical science to take account of them, it will treat them as non-existent. It is of no use to regard a factor, whose mode of action is unsscertainable. It mast romain for science -what the will is apon one theory of human freedon-s source of parely incalcalable and to it irrational interference. But irrational interference is just what cannot be supposed to occur. No doubt an interference which admits of explanation according to law is not irrational; but if the law is unsecertainable, it is as good as irrational. And this attitude of physical science has the practical justification, that if eventa are onceadmitted to occur in the material order whose conditions are unascertainable within that order, there is no point at which we can draw the line. Only by aeroming that it can explain everything is it possible to find out how mach it can explain in physical terms.

What has been maintained then is this :-It is part of the conception of Cause to act uniformly : and no far, the Universality of Causation and the Uniformity of Nature are the aame thing. But it consists with the Uniformity of Nature that many principles which we use to explain eventa should be only conditionally true; these admit of exception; but no unconditional principle admita of exception. If a principle is self-evident, it must be unconditional; and the fundamental principles of physical science are commonly treated ae unconditional. On the other hand, there is much in the world not explicable from principles of physical science. But if any of them are self-evident, what follows from them must be retained, and not contradicted, in any complete explanation which takes into account what physical science lesves on one side. And if the principles of physical acience are only conditionally true, yet mo far as the conditions under which they do and do not hold good are unascertainable, physical science may fairly treat these conditions as non-existent.

After these explanations and qualifications we may say indifferently that the inductive sciences presuppose the Law of Univeral Causation or the Uniformity of Nature. But as it has been held by come to be the taak of induction to prove this principle ${ }^{1}$,
' Cf., e. g., Mill, Logic, III. $\mathbf{x x i}$.
it may be worth while to show that that is impossible. It is alleged upon the view now to be considered that our experience of the great extent to which like antecedents have like consequents is the ground upon which we believe that this is universally the case. Against this we may point out in the first place, that such an inference assumes the course of events in one time and place to be a gride to their course in other times and places: which is really the very principle that is to be proved. As Lotze has arged, if a reason can be given for the inference, it rests on some previous assumption; and if no reseon can be given for it, what is its force? ${ }^{1}$ Next, it is to be noted that two very different kinds of argument are confused. It is supposed that to infer the uniformity of nature from the observed succession of like consequents apon like antecedents is an argument of the same kind as to infer an universal connexion between two events a and x from the frequency with which one has been succeeded by the other. This, however, is not the case. We infer under such circumstances an universal connexion between a and a, because upon the assumption that there is some set of conditions upon which every change follows nniformly, it the only thing consistent with the facts of our experience in the case of Δ to sappose the conditions to be a. Upon the assumption that there is some set of conditions upon which every change follows uniformly, the uniformity in general hae not got to be inferred; while, if that assumption is to be made in neither case, an universal connerion between a and x conld not have been inferred. Thare is therefore no parity between the two arguments. That may indeed be seen if we attempt to put them into symbolic form. In the one case we reason that because a has in many instances been followed by a, therefore the connexion $a-\infty$ is universal. In the other wr reason that because a has in many instances been followed by a, and b by y, and so forth, therefore there is something by which every other event, such as p, q, or r, will be uniformly followed. Again, the uniformities which are said to be the empirical besis of our generalization are not really matter of direct experience. We have said above, that the particular connexions which we believe to prevail in nature have been inferred with the help of the assumption that all changes occur in accordance with laws. But if any one likes to question this, he must at any rate agree that moot of the

[^237]uniformities in which we believe have been inferred somehow : very little has come directly under our observation. We believe that winds are caused by differences of atmospheric pressure: theee differences of atmospheric presaure are themeelves inferred rather than observed; but waiving that, for what proportion of winds have they been noted? We believe the sound of the noter of a piano to be caused by the striking of strings : for what proportion of the notes which we have beard have we first seen the strings atruck by the bammer? It is needless to multiply such examples: but when it is alleged that we are justified in inferring the uniformity of nature to hold good universally because we have direct experience of it over vastly the larger portion of the field, it is important to point out that our direct experience of it is siagularly small, and that the vartly greater proportion of what we believe ourselves to have sacertained is matter not of experience but of infereuce. Now we may offer the empiricist his choice. If this inference is made by the help of the assumption of the aniformity of nature, its results cannot be used to prove that sesumption. If it is made withont that help, by his own admission it falls to the ground, for the inference of any particular uniformity is supposed to need that assumption; and so he is not left with experience sufficient to justify his generalization. We may present the argument against his poaition in yet one more light. The evence of his contention is, that we must come to the facts of experience without any preconceptions; we must have no antecedent view of what is conceivable or poseible. For all that we can tell to the contrary until experience has instructed us, anything whatever is possible; and if it occurred with sufficient frequeacy, anything would be conceivable. Now, it will be admitted that if there are a number of independent alternatives all equally possible, an event that is inconsistent with only one of them leaves us quite unable to decide between the rest. But if, as the empiricist insists, all things are antecedently equally possible, then all proportions of regularity to irregularity in the world are equally possible antecedently. All events may occur in accordance with uniform principles: or there may be no event which ever has the same consequent twice; and between these two axtremes an infinity of alternatives may be conceived, among which we cannot select except upon the evidence of experience. The extent to which regularity, or uniformity, prevails may therefore be limited in any
conceivable way, whether as regards place, or time, or subject. There is no resson why the succession of like consequents upon like antecedents, while exemplified at other times and places, should not fail in the hitherto unexplored parts of Central Asis, or on all Fridays subeequent to the Friday in next week. Nothing less than this is involved in the refusal to prejudge experience. But if that is so, experience itself can never enable us to prejudge. For why should any degree of uniformity observed till now in the succession of events induce us to expect such aniformity to continue? It was antecedently as possible that such uniformity should continue till to-day, and then terminate, an that it should continue till to-day and still continue. The fact that it bas continued till to-day has disproved what until to-day was a possible hypothesis, viz. that it might terminate sooner; but between its terminsting to-day, and still continuing-two indepeadent and antecedently equally probable alteraatives with which that fact is equally consistent-it does not in the least enable us to decide. This argament will hold good, at whatever point in the series of time to-day may fall; so that we never get any nearer being able to infer a degree of uniformity which goes beyond what has been actually observed. It seems conclusive therefore against the view that the Uniformity of Nature can be an induction from experience, if by the term induction any legitimate process of inference is understood. ${ }^{1}$

[^238]With what right then do we assume it? The answer to this has been given in discussing what we mean by it. To deny it is to resolve the universe into items that have no intelligible connexion. If the universe and the events in it form a aystematic whole, then any change must be determined by something in the nature of that whole; and for the ame change to occur on different occasions except under the same conditions is not consistent with its having a determinate nature. It is not, of course, denied that changes partially the same may occur under conditions partially different; and the task of disentangling the identitiee in what is pertially different is one of the tasks of the inductive sciences; but eeferis paribus-a proviso about which it is very difficult for un to know in individual cases how far it is fulfilled-the same conditions must produce the same effect, and the same effect must have been due to the same conditions. The aniverse is otherwise anintalligible or irrational. If any one likes to accept that alternative, it may be impossible to reseon him out of it; for he has disallowed at the outeet the sppeal to reason. At least let him not maintain that, while the alternative is conceivable, experience proves that it is not the case. ${ }^{1}$
that they should occur with the same apecified degree of regularity down to the end of the year 2001 A.D., and thence with leas or none or other, io another such issue. And these issues are porfectly detached alternatives a priori. Let them be called \boldsymbol{X} and \boldsymbol{Y}.
5. The empirical observation of that apecifed degree of regularity down to the end of 2000 A.D. is equally consistent with the bypotheaie that X, or that Y, expresses the truth. Therefore it afforde no ground for deciding between them.
6. It would therefore be equally likely at the end of 2000 A.D. that the oventa should thenceforward exhibit none or lew of the regularity that they had hitherto exbibited, or conform to quite different rulea, to that they should continue to exhibit the mane regularity even for a year longer.
7. The dividing date might be taken anywhere; and one might take equally a dividing place, or department of fact.
8. Hence the actual isane never afforda any ground for preferring the hypotheris of a continuance of the oboerved regalarities to any hypothesis of their discontinusnce, complete or partial, with or without the aubatitation of other regularities, in any period, region, or department of fact, in which they have not been empirically verified.
${ }^{1}$ In speaking of caumality in the present chapter, prominence has throughout been given to the conditions which detarmine ouccessive crents. But so far as ecientific explanation appeals to principles of interaction, it regarde a thing as determined by what is contemporaneous with it and not by what is antecedent. Moreover, if the whole sariee of events in time can be
regarded an an exprosion of the activity of that which is in come way exempt from subjection to succesoion, then what appears in time as future may have to be taken into ecocunt in giring a reason for the present and the part, though of conre the fature cannot dotermine the present in the ame why en what precedes it doea. The present chapter is perhape alraedy more than oufficiently metaphynical. But it is important to realize that the ground of our belief in the Law of Cansation has nothing to do with succemion. It reate rather on the perception that a thing mant be iteelf. If it is the nature of one thing to produce a change in another, it will alwaye produce that change in that other thing; just an, if it is the nature of a triangle to be half the aree of the rectangle on the same bese and between the same parallele, it will alway be balf that area. And modern science largely eliminates the relation of succession from its statement of scientiflc laws.

CHAPTER XX

OF THE RULES BY WHICH TO JUDGE OF CAUSES AND EFFECTS

We saw in the last chapter that all inference from experience rested on our belief in wniversal connexions in nature. If there are no circamstances material to the occurrence of a landslip, it would be foolish to expect that any examination of the circumstances under which landslips bave been found to occur would enable us to determine under what circumstances they will occar in the future. But if such aniversal connexions do exist, the examination may help us to detect them; and if we can detect them, we ipso jacto generalize.

Our problem then is how to detect them; and indeed the discovery of causes is the popular conception of the task of an inductive science. But cause is a relation ${ }^{2}$; and how are we to determine what stands to what in that relation? The relation iteelf cannot be perceived. Events as they occur by no means display to obeervation the lines of causation that connect them. What we call the puerile fancies of the savage mind, which thinks that the incantations of a medicine man will produce rain, or the glance of a witch wither the crope-or at a later stage of civilization, that walking under a ladder, or overturning the salt, will bring disasterthese would never have arisen, if you could observe with what effect such incidents are connected, as you can obeerve that the medicine man is gesticulating, or the salt lying on the table. We may / observe the eventa, bat never their connexions; these can be only indirectly ascertained by considering whether the eventa occur as they should if they were connected.

It is here comes in the working importance of the uniformity which is involved in the conception of a causal relation. All manner of events are occurring simultancously at every moment;

[^239]and the events of one moment, taken in the lump, must be the r cauees of those at the next. ${ }^{1}$ But which is the cave of which, the single experience of their ruccesaion will not determine. A man may run for an hour round his garden on a frosty night, and when he wakes up next morning may notice that his legs are atiff, and the dahlias in his garden bleckened. If he had really no other experience of such events than in this succession, he might equally well conclude that the frost had made him atiff and his running blackened the dahlias, as vice versa. But it is involved in the causal relation that if two things are reslly canse and effect, the one never occurs without the other; and hence by comparioon of that experience with others, be might conclude that running round the garden did not blacken dahlias, because st enother time they had not gone bleck after he had been running round it; and that frosty nights did not make his legs stiff in the morning, because he had waked up after another frosty night without any stiffiness in them. So far he would only have disproved the connexions to which his mind at first had jumped. To prove that frost does blecken dablias, and that it was the running that made his legs atiff, is a more difficult matter; for the mere fact that one has been followed by the other many times conatitutee no proof. Yet the repetition of the asme event under different circumstances is constantly narrowing the feld of poseibilities; for no two events can be precisely cause and effect, of which one in any case occurs without the other; so that if we can show that out of all the circumstances under which the bleckening of dahlias has been obeerved to occur, a frost is the only one that has not aleo on another occasion either occurred without such an effect befalling the dahlias, or failed to occur when it has befallen them, we may conclude that there is nothing except the frost to which their bleckening can be attributed.

[^240]In this example we find the simple principle apon which the reseoning of induction rests: though the sucoesful prosection of inductive science requiree very much besides such reasoning. The cause of any phenomenon ${ }^{1}$-in the strictest sense of that relationis moleted to it, as to occur whenever the phenomenon occurs, and never when it does not; and to vary or be constant as the phenomenon varies or is constant, when susceptible of variations in quantity or degree. From this it does not follow that because in a limited number of instances some two particular phenomens a and as have been observed to be present and absent, to vary and be constant together, they are related aa canse and effect; since there may be another phenomenon b which aloo antisfiee the conditions, and it is imposesible so far to tell whether a or b or the combination of thom is the canse of a. But it does follow that nothing is the cause of a which frils to satisfy the conditions; and it is upon that congideration that all discovery of canses from experionce reste. In eaying this we do isdeed but repent what was said in reference to the 'New Induction' of Becon.

Thus inductive reasoning rests upon the definition of Cause ${ }^{2}$; for unlese we know what causal relation is, we cannot know that certain phenomens do not stand to each other in that relation. And from the definition of Cause proceed what may be called Topics of Cause, or rules whereby to judge whether two phenomena are thus related to each other or not: just as from the definition of Property proceeded what Aristotle called Topics of Property, or rules whereby to judge whether a given predicate was or was not a proprimm of a given subject. But you can only prove that they are related as cause and effect by proving that there is nothing else with which either of them can be causally connected.
J. S. Mill formulated four ' Methods of Experimental Enquiry',

[^241]or the he aloo called them, ' Inductive (or 'Experimental') Methods,' to which he attached considerable importance in his Syatem of Logic. ${ }^{1}$ He called them the Method of Agreement, the Method of Difference, the Metbod of Residues, and the Method of Concomitant Variations. Among other defects of his exposition, there is one that darkens in a special degree the subject of induction.

We shall be able to appreciate the nature of this defect if we realize that the essence of inductive reasoning lies in the use of your facts to disprove erroneous theories of cansal connexion. It is, as Mill bimeelf asserts, a process of elimination. ${ }^{2}$ The facts will never show directly that a is the cause of a; you can only draw that conclusion, if they show that aothing eles is. In order to show that nothing else is, it is of course in the first place necessary that you should know what other circumstances there are among which the cause might be eought; you cannot 'single out from among the circumstances which precede or follow a phenomenon thoee with which it is really connected by an invariable law' (to borrow an excellent phrase of Mill's ${ }^{2}$) unless you have ascertained what circumstances do precede or follow it on divers occaions. But as to do that is no part of the inductive reasoning which we are now considering, we may for the present neglect it, or asume it to have been done. The important thing to notice here is, that you do not discover what is the cause, except by eliminating the alternatives. Yet it is very often impossible to do this completely; nevertheless the nature of your reasoning is precisely the same, when you are left with the conclunion that the cause is either a or b or c, as if you had been able to elimimate b and c also, and so determine that the cause is a. Moreover, it makes no difference to the nature of your reasoning, se a process of advancing to the proof of the canse by the disproof of the alternatives, what the principle is to which you appeal in order to disprove them. You know that nothing is the cause of m which does not satisfy certain conditions-which is not present whenever x occurs and abeent when it does not, which does not vary or remain constant ase does so. It is aufficient to be able to show that one of these conditions is not eatisfied by 4 given circumstance p, in order to conclode that p is not the cause of a; and ehich condition it is does aut mattor in the least. It is unlikely that in any particular

[^242]investigation every alternative hypothesis which we disprove as to the cause of the phenomenon that we are studying will be rejected because it fails to astiafy the same one of these conditions; the facts of our experience will probably show us one occurring where the phenomenon is abeent, and the phenomenon oocurring in the abeence of another, a third unaffected in quantity or degree through all the variations of the phenomenon, and $s 0$ on. All that is essential to the progress of our enquiry is that we should be able to show some fact inconsistent with supposing such and acch an alternative to be the cause; then that alternative is eliminated, and the cause must lie among the rest.

The essence, then, of these inductive enquiries is the process of elimination. The reasoning is disjunctive. And the character of the reasoning is unaffected either by the completeness of the elimination (i.e. the fact that there are no allernatives left in the concluaion) or by the ground of elimination used. Yet Mill bas so formulated his 'Methods' ae to make it appear (a) that they ane only used when the elimination is complete; (b) that they are different when the groand of elimination is different. From this it follows that very few inductive reasonings really conform to any of them; but the credit which this part of his work has obtained, and still more the currency given to the names of bis ' Methods', in which his doctrine is enshrined, threaten us with a repetition of the same sort of mischief as arose from supposing that every argument could be put into the form of a syllogism. Just as arguments not syllogistic at all were forcibly tortured into the appearance of it, to the destraction of any proper understanding of what syllogism really is, and how it differs from other forms of reasoning, so inductive arguments are now often forced into a pseudo-conformity with the canon of one of these 'Methods', to the utter confusion of the mind. For in the procene, we are made to allege that some circumstance is (say) the only one in which a number of instances of a particular phenomenon agree, in order to conclude in accordance with the canon of the 'Method of Agreement' that it is therefore the cause of the phenomenon, when we know perfectly well that it is not the only such circumstance; and as we know that it is not by such assumptions that we really conclude that circumetance to be the cause, we are only confused by a Logic which makes it appear that it is.

There are paseages in Mill's work (as is often the case with him) which impligitly correct his own error. In speaking of what he calls the 'Mothod of Agreement', be writes: 'The mode of diecovering and proving lawe of natare, which we have now examined, proceeds on the following axiom. Whatever circumstance can be excluded, withoat prejadice to the phenomenon, or can be absent notwithstanding ite presence, is not connected with it in the way of causation. The casual circumstances being thus eliminated, if only one remains, that one is the canse which we are in search of : if more than one, they either are, or contain among them, the cause; and so, mutatis mutandis, of the effect.' ${ }^{1}$ It is plain from this that I am not the less ressoning in mocordance with this method, because I am only able to say in the conclusion that the cause of the phenomenon is one or other of several alternatives, than if I were able to offer a definite solation. Yet this is quite ignored in what immediately follows: 'As this method proceeds by comparing different instances to ascertain in what they agree, I have termed it the Method of Agreement; and we may adopt as its regulating principle the following canon,' which Mill proceeds to enunciate thus :-
'If theo or more instamess of the phenomenon seder investigation have only one circumplance in common, the circumblance in mhich alone all the isatances agree is the camee (or effect) of the given phonomonom.'

Every one who has tried knows how difficult it is to find cases to which this canon can be applied; for it is seldom that your instances have only one circomstance in common. Where such instances are forthcoming, they are peculiarly instructive to the inventigator; and therefore Becon placed them first in his list of Prerogative Inatances (i.e. instancea to be consalted first), under the name of Inotantiae Solitariae.? Bat what if your instances have s several circomstances in common? Are they, therefore, useless to the investigator? Throughout the organic world it is observed that speciee present a number of adaptive atructares-that is, structures fitting them for the conditions under which they have to live. To the queation how this has come about several answers

[^243]have been suggested; one, the oldeat, attributed them to special design on the part of the Creator: another to the inherited effects of use and disuse: another to the survival of those individuale who happened to be born with a body more suited in any respect than their neighboars' to the conditions of their life, combined with the elimination of the less fit. Now if it is pointed out that some adaptive structures, like the borny beck of a tortoise or the shell of a mollusc, cannot be improved by uee as a muecle can, one of these suggestions is overtbrown, at least as a complete solution of the problem; but it remains doubtful 00 far whether we are to rofer the structures in question to design or to natural selection: yet we have certainly made some way in our enquiry, and this argament is part of oar inductive ressoning. Mill's canon, however, is inapplicable to such a case as that, becanes the tortoine with his horny back, and the elephant with his powerful trunk for aeizing branches, though both possessing adaptive structures, which may in both have been developed by natural selection, are not instances with only one circumstance in common. It is excellent advice to see in what the instances of your phenomenon agree; but the ground of the advice is that you may eliminate the circumstances in which they differ; and the principle at the foundation of the ' Method of Agreement' is not that ' the sole invariable antecedent of a phenomenon is probably its cause',' for the ' Method' is often employed when there is no sole invarisble antecedent; it is that nothing is the cause of the phenomenon in the absence of which it ocewr.

Again, so obvions is the difficulty of finding such instances as the application of this ' Firat Canon' requires, or such as the second, that of the 'Method of Difference', requires, that Mill, having begun by mentioning four methods (of Agreement, of Difference, of Residues, and of Concomitant Variations), adds a fifth, which he calls the Joint Method of Agreement and Difference. In order to apply the ' Method of Difference', you are to find an instance in which the phenomenon under invertigation occurs, and another in which it does not, agreeing in every circamstance except one, which last circumatance is to occur only in the former; and that will be the cause (or effect) or an indispensable part of the cause of the phenomenon. Such instapces as these may also not be forthcoming; and therefore, under the name of the Joint Method, Mill describes the

[^244]case in which you look for a circumstance about which it can be said that it is the only one that is neither absent in any inetance where the phenomenon occurs, nor present in any where it does not. ${ }^{1}$ Here then both grounde of elimination are employed; but there is no reason in the world; as a stady of his account of his Methods would show, why he should not have had another Joint Method, of Difference and Concomitant Variations, or of Agreement and Residues, and so forth. An enquiry into the cause of one phenomenon need not confine itself throughout to one ground of elimination.

For the above reacons it would be well to recognize that Mill hes not formulated four (or five) but one ' Method of Experimental Enquiry'-as indeed Becon might have shown him; of which the essence is, that you establish a particular bypothesis abont the cacse of a phenomenon, by showing that, consistently with the nature of the relation of casse and effect, the facts do not permit you to regard it as the effect of anything else (and mulatio malandis if you are enquiring into the effect of anything). It is this which makes the reasoning merely inductive. If you could show in accordance with known or accepted scientific principles that the alleged cause was of a nature to produce the effect ascribed to it, your reasoning woald be deductive; leaving aside the question how thowe scientific principles were ascertained, you would be applying them to produce a conclusion which you see to be involved in their trath; and if we suppose the principles to be of such a nature that we can see they most be true, then the conclusion will appear necessary, and a thing that could not conceivably be otherwise.

[^245]Take, for example, the maxim that men hate thoee who have conferred a benefit on them. ${ }^{1}$ We may regard that as, in the first place, an induction formed from the consideration of many instancee of ill will, which are unsccountable otherwise than on that principle; yet so far it remains a thing obecure and unintelligible, a relation which the facts forbid us to dispute, but in which we nee no necessity. Now if a man were to say that men hate to feel themselves in a position of inferiority, and that they do feel themselves in a position of inferiority to thoee from whom they have received a benefit, the maxim follows deductively; and these principles are not only, like the original maxim, capable of being indactively sapported by an appeal to experience, but they are also intelligible to us in a way in which that was not; it is mercifully untrae to any that they appear neceseary, but they do appear more or lees natural. Where, however, we have to rely parely on induction, there is none of this 'naturalness ': I stand on my conclusion becsuse ' I can no other', and not becanse I see any intrinsic necessity for it. Necessity there is, if I am right about my facts, and am to reason in this case consistently with what I know to be involved in the causal relation; but that necessity is not intrinsic; had the facts been otberwise, and for all I can see they might have been, I ahould have concluded otherwise; and then I should have been just as content to accept that as I now am to accept this conclusion.

There is an enormons number of general propositions, which we accept for no better reason than that the facts are inconsistent with our denying them, and not because in themselven they have anything which could bave led us to auppoee them true, antecedently to our experience. When it is said that we ought alwaye to follow experience, it is meant that we ought not to truat our notions of what seems antecedently fit to be true, or mere gaeeves as to the connexions that subsist in nature, bat accept only those connexions which our experience forces us to accept because it is inconsistent with any alternative. Such reasoning is called a posteriori, becunse it starts from the facte, which are conceived as logically dependent on, or posterior to, their principles, and thence infere the principles on which they sre dependent. Conversely, deductive reasoning is

[^246]often called a priori, because it starts from the principles or conditions, which are conceived as logically prior to the consequences that follow from them. ${ }^{1}$ When a priori reasoning is condemned, it is not meant that we are never to reason deductively, but only that we are not to reason from principles that are not warranted by experience; at any rate this is the only sense in which the condemnation can be justified. But it is an error to suppose that all general principles are arrived at a pastoriori, or by proces merely of showing that facts are not consistent with any other; the Law of the Uniformity of Nature itself, as we have seen, is not arrived at in that way, since if we once doubt it, it is impossible to show that the fects are any more inconsistent with its falaity than with ite truth; neither are mathematical principles so arrived at : we do not believe that three times three is nine, becsuse we show succesively that it is not five or ten or any other number exoept nine. Still it is trae that in the inductive sciences the vast majority of our generalizations are reached eithar in this a posteriori manner, or by the help of deduction from other generalizations so reached. And it may be well to show by one or two examples bow generalizations that reat merely on induction preeent as it were a blenk wall to our intelligence, as something at which we cannot help arriving, but which we can in no way see through or make intrinsically plausible. Facte show that the excision of the thyroid gland dulls the intelligence : could any one see that this muet be so ? Explanation may show that on a contribution which the gland, when properly functioning, makee to the circulating blood depends the health of the brain; but that comes later than the discovery of the effects of excision; and even so, can we understand the connexion, which facts eatabliah, between the atate of the mind and the health of the brain? Or take a thing more frequent and familiar. It sounds perhaps the most nstural thing in the world, that we ahould see with our eyes, hear with our ears, taste with our palate, and so forth. Yet for all that we can aee a priori, it might just as well have been the case that we should see with our cars and hear with our eyes, smell with our palate and taste with our

[^247]fingers. Doubtless if we tested with our fingers, we should not have to eat in order to taste; there might be some advantages in that, and at any rate it is not antecedently inconceivable. It may be said that the mechanism of the eye, by which light is focased from many points at onoe apon the extended surfece of the retina, and the eye is readily turned in any direction, makes it a priori a more suitable organ of sight than the ear could be; and it is true that upon the ascumptions that light-sensations are produced by the etimalation of a nerve, that this stimulation is supplied by wave-motions in the ether, that distinguishable colours are produced by differences in the wave-length, and that the arrangement of these colours in the viral field corresponds to that of the nerve-fibres appropriately gtimulated in the retins, we can find in the eye an excellent srrangement for securing clear vision. There is nothing, however, in thoee asumptions (which have oaly been proved inductively) that is any more intalligible to us than if the wave-motions of the ether atimulated the fibres of the ear; though doubtlees our viaion would be leas serviceable in the latter case. There is in fact no peycho-physical correspondence that is at present intelligible to us, although particular correspondences may be intalligible in the sense of conforming to more general principles which we have found to prevail. The same may be said with regard to the properties of chemical compounds, which are not for the most part intelligible from a consideration of the properties of their elementa; hence in eaying that they depend upon the composition of the subatance we rely merely upon this, that no other view consista with the facts which we have observed in our experimenta. The largeness of these two classes of inductive generalizations may perhaps make it unneceesary to illustrate further what Bacon would call the 'sand and positive ${ }^{1}$ ' character of conclusions resting only on induction; but, as showing how the mind desiderates something better, we may notice the attempt continuously made to conceive chamical as at bottom only physical proceses. In the physical process, the successive stages do to some extent at least appear to follow necescarily one out of anothor ; on their mathematical side, the principles that connect them are not mere matter of fact, but matter of necessity which we cannot conceive otherwise. Hence the attraction of

[^248]reducing chemical processes to physical terms. It is true that the appearance of new sensible properties in bodies in virtue of their physico-chemical composition is not hereby explained; but it is supposed that they only posses these for we that the appearance is subjective, or in other words that while the processes in bodies themselves are puraly physical, we are determined to receive qualitatively different sensations by different phyaical stimuli. There is not much proepect at present of rendering paycho-phyaical correspondences really intelligible; thus there is a temptation to regard the emergence in a chamical compound of properties which cannot be seen to have any neceseary connexion with the properties of its elemente as only subjective, a freah case of that psychophysical correspondence which we admit that we can only aseertain and not anderstand : in order that we may if poesible find in the principles of ohemistry itself something intelligible, and not merely necesary to be admitted. The gain is more apparent than real; but the procedure betrays a eense that though it may leed us far and win us much, induction tarns out at last to be the blind alley of the reeson.

We must return, however, from these general considerations upon the nature of induction to the particular inductive reasoning which rests upon our knowledge of the requirements of the cansal relation. By and by we shall find that reasoning which is really inductive enters into proceses of a more complex and partially deductive lind. What we are at present considering is in principle quite simple. The cause of a phenomenon ${ }^{1}$ is to be sought among those circumstanoes under which it oocurs in the instances that we take. The causal circumstances are indicated by a procese of exhaustive elimination. Those which are not cansal can be eliminated because the facta show that in regard to this phenomenon they do not satiafy the conditions of a cause. Now the grounds on which we may eliminate are these; and each points to some particular requirement of the causal relation, failure to matisfy which disproves that relation as between two given phenomens:

1. Nothing is the cause of a phenomenon in the abeence of which it nevertheless occurs.

[^249]2. Nothing is the canse of a phenomenon in the presence of which it nevertheless faile to occur.
3. Nothing is the cause of a phenomenon which varies when it is constant, or is constant when it varies, or varies in no proportionate manner with it.
To theee may be added a fourth ground:
4. Nothing is the cause of one phenomenon which is known to be the cause of a different phenomenon.
This lest principle is also, like the others, involved in the general conception of a reciprocal causal relation; but in applying it we appeal not merely to what we obeerve in the instances of the phenomenon under invertigation, or in the instances where under more or less similar circumstances the phenomenon does not occur; we appeal also to previous generalizations regarding the connexion of phenomens. These generalizations, however, are used not to account for the connexion which we are now establishing-it is not deduced from them; but merely to exclude alternative explanations of the prosent phenomenon, and so force us upon the one which we finally accept; and so far the resooning which appeals to such a ground of elimination is atill indactive. ${ }^{1}$ Butit belonge erpecially
${ }^{1}$ On these grounds of elimination Mill's 'Inductive Methods' severally repoes. The firt is the foundstion of his 'Method of Agreement', the second of his 'Method of Difference', the firct and eecond jointly of his 'Joint Method of Agreement and Difference', the third of his 'Mothod of Concomitant Variations', and the fourth of his 'Method of Reaidues'. All of them are quite general, and have been stated above in a way which only holde if in the cane we include everything necemary and nothing superfloona to the prodaction of the phenomenon in queation. The illustrations in the present chapter are not confined to that, the etrictent, seneo of asase; but the important point involved will be conaidered later in Chapter mii, on Non-reciprocating Causal Belations. Where the canse mought in a monreciprocating cause, other principles call to be applied: e.g. we msy ay that 'where the removal of one of a namber of conditions is found to involve the censtion of a phenomenon, though the other conditions may remain, but its reatorstion is not found to involve the restoration of the phenomenon in the abeence of those other conditions, it may be called the cause of the phenomonon'. 'Cuuse' here is clearly only a sine qua non, but for various ressons the indispanability of come particalar condition may be what we wish to mecertain. Lotse, in BL II. a. vii. of his Logic, headed Uniswrsal Inductiona from Pereprion, has paid some attention in $\$ 261$ to the formuletion of principles of this lind, stating what degree of connexion between two elementa C and E can be inferred from what kind of obeervations with regerd to the circumstances of their occurrence. The section is eminently worth conalting in reference to the nature of inductive reasoning; and the principles in queation might all be called Topics of Canse, though some of them are doubtful; just as Aristotle recognised Topics which hold trae in application only for the most part. Hame too in Part III. δ av. of hig
to the later stages of a ecience, becanse it presupposes the discovery of other causal connexions, as a means of prosecuting some present enquiry.

It is plain that we cannot get to work in the application of these principles, until wo have clearly conceived the phenomenon we are stadying, and ascertained and distinguished the circumstances under which it occurs (or fails to oceur) from one another. And if all this were done, their application would be an easy matter, as Becon imagined he conld make it. All symbolic representation of such inductive arguments by letters of the alphabet, where one letter stands for the phenomenon investigated, and others for the circumstances among which ite cause is sought, presume these tagks to have been achieved; and thus they are apt to convey a totally false impression of the degree of difficulty attaching to inductive enquiries ${ }^{2}$ The truth is, that inductive reasonig g is in form very

Treatise, Of the Understanding (already, like this chapter in Lotse, referred to), givee a number of Rules by which to jodge of Canses and Effecta which aro derivative, but highly important, as for example that ' where several different objecte produce the same effect, it must be by means of some quality, which we diecover to be common amongst them.' Bat those in the text weem to be really the ultimate principles, if a reciprocating cause is meant.
${ }^{1}$ On the artificial simplification which letter of the alphabet alvo imply, cf. Venn's Empirical Logic, c. avii. pp. 406, 407. If they are to be used at all, to which I woe no objection mo long as their limitations are onderatood, it it important how we use thom. In Mill'g use of them, which has been followed by Jovona, Elementary Lessons in Logic, and by Fowler, Inductice Lagic, and I dare my by othera, there are two defecta. He nees big lettors to aymbolize 'antecedonts' or causeen, and the correaponding small lettor to aymbolize 'consequente' or effecte. Now in the first place he has thua alwise an equal number of big and small letters; but when we aro looking for the cance of nome phenomenon x, and neek it among a number of alternatives abcd... we have not also before ne effects as many an the alternativee among which the canee of this phenomenon is nought. Only in symboliving his 'Method of Rceniduee' is this feature appropriate; there certain circumstanoes collectively are supposed to be known to be the cause of a number of offecte (or of an offect of a certain quantity or degree), and out of theme we reject, as not the canse of one among the effecta, thome which we know to prodace the othere (or if the question is one of quantity or degree, we reject those whove total effect we know to differ from what we have to account for, at not accounting for the remaining component). Hence separate symbols for the effects (or components of the effect) of the rarious circumstancea among which the cause of one effect (or component) in sought, as well as separate symbole for the causen, are required. The mecond objection in, that he uses corresponding big and umall letter (ABC followed by abc, \&c.). Now, an Mr. F. H. Bradley pointe out (Principlea of Logic, p. 899, note ${ }^{\circ}$), the letters are intended to rymbolize the phenomena as presented to ua before we apply our inductive canons; and therefore they ought not to imply, ae by this correspondence they do, that the phonomena themeolves, as distinct from the facte of their joint or separate occurrence,
simple; bat the discovery of the proper premisses is very hard. As Hume well observes of the rales he gives 'by which to judge of canses and effects', 'All the rales of this nature are very easy in their invention, bat extremely difficalt in their application.' ${ }^{1}$ It is easy enough to see that if out of so many alternatives $a b c d \ldots s$, the canse of a is not $b \circ d \ldots$ or ε, it muart be a; and it is easy enough to see that if c occurs without a, it is not its cause. But to show that c occurs without ε, and to show some reason for rejecting $b d \ldots z$, as well, and to discover b c d $\ldots z$, and ahow that no other altornatives are possible-all these things are extremely difficult. Something will be said of these operations in the next chapter. Here we are concerned with the form of the reasoning, which is of a disjunctive kind, and may be symbolized thus:-

The canse of x is either a or b or c or $d \ldots$ or z
It is not b or c or $d \ldots$ or z
\therefore It is a.
In this argument the minor premiss is proved piecemeal by hypothetical arguments that rest upon one or other of the above grounds of elimination, or 'rules by which to judge of canses and effects'.

If b were the cause of a, it would be present whenever \boldsymbol{a} is present
But (in this instance) it is not.
If c were the carse of a, it would be absent whenever ε is abeent
But (in that instance) it is not:
and so forth. Or if any one prefers it, he may repreeent this part of the argument as a eyllogism :

Nothing is the cause of x, in the absence of which ∞ occurs b is a thing in the absence of which x oceurs
Nothing in the canse of x, which variee without relation to it d variee without relation to \boldsymbol{c}.
It is of course possible that $b c d \ldots z$ may all be eliminated, or shown not to be the canse of a, by the application of the same principle or major premiss; in this case the minor of the above disjunctive argament might be proved en bloc, and not piecemeal; have anything about them that proclaima which is the cauve of which. CL alco Profeseor Bomenquet's Logic, II. iv. vol. ii. p. 128.
${ }^{1}$ Tratim, Of the Underatanding, loc. cit.
but this is by no means necessary, and in fect unusaal, and does not affect the nature of the argument. It is, howevar, the only case contemplated in Mill's formalation of inductive reamoning. It is also pomible (and this Mill's formalation does not recognize at all) that we may not be able to prove the whole of the above minor promiss; and then our argument will take the form

The cause of a is either a or b or c or $d \ldots$ or z
It is not c or $d \ldots$ or z
\therefore It is a or b
or It is not d or z
\therefore It is a or b or c...
where the degree of uncertainty symbolized as remaining at the end of our enquiry is greater.

It appears plainly enough in this analysis how all induction rests on the Uniformity of Nature; for in proving the minor of the disjunctive argument a principle is always appealed to, that would fall to the ground if the Uniformity of Nature were denied. It is not indeed necessary, in a particular inveatigation, to assume this uniformity to extend beyond the department of facts with which we are dealing; if I am looking for the cause of cancer, it is enough that cancer ahould be subject to oniform conditions in its oceurrence; and I shoald not be impeded in my research by the fact that thunderstorms occarred quite capriciously. There is, however, no ground for assuming cancer to be rabject to uniform conditions in its occurrence which does not apply equally to thunderstorms, or to anything elee that could be mentioned; if I serume the principle of Uniformity at all, I must logically aesume it altogether; and eo, though I may be anid to appeal to it in any particular inductive argament only so far as concerns the department of nature to which my inveatigation belonge, I really sasume it universally. ${ }^{1}$ Nevertheless it is not correct to asay that it is the ultimate major premies of all indactions ${ }^{3}$; for that im'plies that an inductive argument is, formally considered, a ayllogiem, and we have seen that it is not. It is indeed impossible to see how this principle can be made the major premiss of any inductive argument as a whole, though its particular applications

[^250]may afford the major premise of an argument by which we prove any part of the minor in our diajnanctive argument. Let us bay that 'Nature is uniform', or (since we can hardly make a middle term of 'Nsture', which in the sense of nature as a whole is not predicable of any particulsr subject) that 'All events in nature take place in accordance with uniform laws'; we may then proceed to argue that 'Cancer is an event in natare', and therefore that it takes place in accordance with nniform laws; but we are thus no further advanced than we were at the beginning, since so much is assumed in looking for a cause of it at all. Or if we put our major premiss in the form 'Every relation of canse and offect that is observed in any instance between one phenomenon and another holds good universally', and then used as our minor 'The relation between a and x is a relation of cause and effect between one phenomenon and another observed in certain instances', we might indeed take the formal step of concluding that it holds good universally (though that is already implied in calling it a relation of cause and effect), but the whole question at issue is begged in the minor premiss; for what we want to prove is just that a is related to a as a cause, and not in time only and accidentally. For the formulation of the reasoning by which that is proved-which is the inductive reasoning-nothing therefore has been done. And any other attempt to reduce inductive reasoning to syllogimem with the principle of the Uniformity of Nature an altimate major premisa will be found equally unsuccessful.

It remains to illustrate by a few examples the trath of the contention that inductive conclusions are establisbed disjunctively by the disproof of alternatives.

1. The power of the chameleon to change colour in accordance with the colour of its surroundinge is well known. Bat this power is not confined to the chameleon; it occurs, for example, also in certain froge. ${ }^{1}$ The question raised is as to the cause of this change. We have first indeed to show that the change is due in some way to the colour of the surroundings; that implies a previous inductive argument; for so long as it was only noticed that the frog changed colour from time to time, it would be quite ancertain with what that change was connected. Of the suggestions

[^251]that might oceur to a biologist (for we may diaregard auch as might occur to a collector of portents; Livy gravely records as portents of disaster some facte quite on a par with the statement that 'a frog changed its colour in broed daylight', but it would be easy to show that the phenomenon had occurred at a time of no disaster)-of the suggeations then that might occur to a biologist we rasy conceive the nature of the animal's food to be one: time of day or season of year to be another: intencity of aunlight to be a third, and 90 on; but when it was shown that the frog might variously change ita diet, and be of the ame colour, and that the change of colour might take place at any time of the day or year, and in various degrees of sunlight, these suggestions would be discarded, and so on until the only reaconable suggestion left was that which connected the change of colour with the colour of the surroundings. Of course this conclusion would acquire great strength 80 s00n as any one noticed the frog in the process of changing colour upon removal from one ground to another; for thus the alternatives would be confined to those matters in which a change of conditions hed been just then effected. The preliminary induction implied in saying that it changes colour according to the colour of the ground on which it reats need not, bowever, be further considered; we wish to know more precisely what produces the change. Now differently coloured grounds may vary in temperature as well as in colour; but it can be shown experimentally that the colour-reaction is independent of temperature. Granting then, in the absence of any other alternative, that it depends on the colour as such, we may ask in what way the differently coloured rays ${ }^{1}$ affect the animal. Lord Lister showed that they affected it through the eyes; for s specimen of Rasa temporaria whoee eyes had been removed was no longer affected by any change in the coloar of the sarroundings in which it was placed; thus the alternative, otherwise not unremonable, is excluded, that the reaction is somehow determined through the skin, the principle applied being that no circumstance in the presence of which the phenomenon fails to occur is its canse. This conclusion is further confirmed by the fact that in other species that normally exhibit a similar colour-reaction individuals have been found, in whom the power of adjustment to the colour

[^252]of their surroundinge is abeent, and thet these individuale on examination have been accertained to be blind; but it may atill be asked how the otimalation of the eye by different kinds of light effecta the colourmange. Perhape there are two altarnativee here; it might be necesaary for the frog to be aware of the colour of its surroundingo, or there might be a reflex mechanism. The latter is supported by the fact that a blinded frog, after a violent struggle to escape, changed from dark to light, bat in half an hoar, though placed in a bright light, became almost coal-black again. Here it is shown that a colour-reaction can take plece without awareness of colour; so that awareness of colour is eliminated from among the conditions necessery to the production of the reaction, on the principle that a circomstance in the aboence of which the phonomenon nevertheless occurs is not ite canse. We must look then for some circumstance common to the case of a blind frog changing colour after a violent straggle, and of a normal frog changing colour'with a change of surroundings; and we may find this in nervous excitation, for that may be produced by the action of light apon the eye, and also by the atraggle. Until some other feature common to the two cases was suggested, we should sccept this on the principle just cited; but it is also sapported by the known physiological function of the nervous system in the building up of reflexes; it consists too with the fact that when the excitement subsided the frog returned to a colour not adapted to its environment. Yet how can the animal's colour be affected by different linds of nervestimulation? There have been found in the skin of the frog pigment granules of divers colours, eo arranged that different surface effects can be produced by different degrees of concentration in the granules. The final connexion of the phenomenon of colour-reaction in the frog with these pigment granules is indeed rather deductive than inductive; for the part which efferent currents from the nerves play in provoling muscular contractions and relarations is already known, and so is the fact that an afferent nerve-carrent diecharges into an efferent nerve; and we have just shown that the colour-reaction is connected with afferent nerve-stimulations.
2. Let us take nert a simpler example, and one in which there is little or no generalization : for inductive reasoning may be applied to discover the canse of a single event, ae well as of an event of a certain
kind; and it is not necessary to carry the analysis (of which more in the next chapter) вo far as to make a general concluaion powible. Let a novice notice that his bicycle makes an unpleasant noise in running, and try to ascertain the cause. We are to suppose a novice, because any one of any experience may be presamed already to have arrived by induction at the knowledge that one kind of noise is made in the chain, and another kind in the bearings ; and the application of this previously acquired knowledge to a particular case would be deductive. In this problem the determination of the alternatives among which the cause is to be sought is tolerably simple; for the noise mast originate in one or other (or it may be several) of the non-rigid parts. Say that these are, on the machine in question, the axle-bearings of either wheel and of the cranks, the bearings of the head, the pedal-bearings, the clutch, the backpedalling break, and the saddle-springs. All that the rider has to do is to secertain which of these parts may be at rest while the noise occurs, and which may be in motion without the noise. If the noise ceases in freewheeling, it is not produced in the axlebearings of either wheel, for they are atill ranning, and that is not the cause, in the presence of which the phenomenon fails to ocour; for the same reason it is not in the bearings of the clutch, which is now ranning. If it is not produced in 'wobbling' the head, or turning sharp corners, he may acquit the bearings of the head on the same principle. If it occars in driving with each pedal singly, it does not arive in either pedal-bearings, because it occurs with each pedal in turn undriven, and that is not the cause in the aboence of which the phenomenon occurs. Similarly if it occars without patting on the back-pedalling break, or when he removes his weight from the saddle, it does not originate in either of those quarters. Two alternatives remain : it may be in the crank axle-bearings, or in some looseness of the clatch when that is canght and driving. As between these alternatives a decision might be made if he diamounted, and listened while he whirled the hind wheel roand by the pedels; here however he would be reasoning deductively from the principle that sounds are more distinct when you are nearer to their point of origin. The difficulty of generalising in such a case arises from the difficulty of distinguishing the phenomenon investigated from others that may be like it but have different canses. If the noise which each part of his bicycle could make were of a distinctive
kind easily recognized, a man might very soon determine that such and such a noise (at least in his bicycle) only originated in such and such a part; or if he could note the differences between noises otherwise similar coming from before or behind him, from right or left, he might then (without having originally known, although he distinguished their quality, from which quarter each kind of noise came) establish inductively in the way described a generalization that such and such a noise whes produced by something in the front axle-bearing, and such another by something in the left pedal; again, further experience, argued from on similar lines, might show him that a particular character in a noise was due to want of oil in a bearing, and another character to a broken ball. But oo long as the phenomenon studied is submitted to no such analysis, it is lisble to be confused with others that are not really the same, and error would obviously arise if we generalized about it under these circumstances. Hence one may bave to be content with a conclusion that assigns the canse of it in the particular case. It is, however, instructive to observe that the same process of elimination among the members of a disjunction is employed here, as if one were establishing a general conclusion. For ex kypotheri the novice recognizes in the noise no intrinsic cbaracter which he knows to be connected according to any principle with a particular origin; he has therefore to fall back upon ascertaining its origin by the indirect method of showing that among the possible origins to which it can be ascribed there is none but one to which the factes permit him to sacribe it consistently with the principles of causation.
8. Professor Weismann's theory of the 'Continuity of the GermPlaem' is well known. The reproductive celle, whether of a plant or animal, are different in certain important respects from those composing other parts and tissues, and called somatic or bodycella; and in particular of course, whereas the latter, in the process of increase and division, produce only cells of one kind, such as compose the part or tisoue to which they belong, the former produce cells of every kind that occurs in the organism, and, in fact, are capable of reproducing the whole organism and not merely a special part of it. In so doing they must, of course, reproduce the reproductive cells also, in order to provide for the following generation. Now Weismann holds that the reproductive cell, or germ-plaom, as it develops, sets aside from the outset a part of itself to serve
the purpose of reproduction once more, and that this, which is atill germ-plasm, remains as it were isolated in the developing organism, and unaffected by the other and heterogeneous parts, or aomatoplanm, which the reproductive cell develops into; and as this happens in each generation, there is an abeolute continuity of the germ-pleam; from which it follows in his view that no characters acquired by the individual in the course of its lifetime and not congenital can be tranamitted to its offepring; for a character which is paraly an sequired character arises in the somatoplasm, and the germ-plasm is from the first secladed from the possibility of being affected by the somatoplasm. Influences which reach the germ-plaam can slone modify subsequent generations; of which the most important is the fusion of two reproductive cells that takes place in serual propagation (for the theory applies only to the metazos, which increase by copulation); for the germ-plasm of the orum blends with another germ-plasm conveying more or less different heritable tendencies, and a sort of shaflling takes place as a result of which there arises a new individual resembling precisely neither parent, but exhibiting those 'spontaneous variations', as Darwin called them, which form the material for Natural Selection to work upon. Darwin himself, on the other hand, believed that 'sequired characters' might in certain cases be inherited, and that it was very difficult to account entirely for the progressive modification of apecies in adaptation to their environment, writhout allowing the influence of this so-called 'Lamarckian' factor.' The question has formed a subject of protracted controversy among biologists, and it is not an easy one to settle conclusively on inductive principles by appeal to evidence, because most facts edmit of being interpreted in either way. One of the most important investigations into the eabject ${ }^{2}$ is a series of experiments on guinea-pigs, conducted during thirty years by BrownSequard and extended by two or three other naturaliats; and it is claimed that in the course of these experiments certain modifications appeared in some of the guinea-pigs, the cause of which lay in injuries done to the nervons aystem of their parents.

[^253]It was found that epilepsy sometimes appeared in snimale born of parente which had been rendered epileptic by an injury to the spinal cord or a section of the ecistic nerve. Here whas a fact to be mocounted for, and the cause must be sought among the circumstances to which the epileptic offepring were expoeed. Brown-Sequard attribated it to the injury done to the parent; bat nobody professes to see how that could produce the effect, so that one can only be forced to acoept that explanation by default of anything else to which to attribute it. It might be aaid that the epilepsy was dae to some congenital defect that had no relation to the experiment performed on the parents; but epilepey is not otherwise known to occur spontaneonsly in guinea-pigs, and apart from any improbability in the concidence, we should expect that if some congenital modification of the germ-plesm produced epilepsy in these cases, it would have occurred and produced it in others. Weismann suggested that it was due not to the injury to the parent, bat to 'some unknown microbe' which, entering at the incision whereby the injury was made, both produced the epilepay in the parent, and by invading the ova or spermatozon, produced it also in the offispring. Bat against this suggention we may urge that, though there may be microbes enough unknown to us, yet if this microbe of epilepsy in guinea-piga exist, it wonld be likely to seize other opportanities of entering; the disesee, however, as already mentioned, is not otherwise known to attack them. And it was also found that the epilepey might be produced (and apparently transmitted) without incision, by a blow on the bead with a hammer, in circomatances that preclude the entry of microbes. To this Weiamann rejoined that the shock of the blow might have 'caused morphological and functional ohanges in the centre of the pons and medulle oblongata, identical with those produced by microbes in other caees', and eo set up the epilepey; but these changes would not penetrate, as microbes may be conceived to do, to the ove or spermatozon, and so the disease in the offepring oscurs without the presence of the canse alleged. Moreover, there are cases (though the facts of them are not eo clear or well confirmed) in which other diseases produced by other traumatic injuries to the parent have reappeared in the offapring; these disesses were not such as could have been produced by microbes; and to suppose, with Weismann, that the shock of the injury cansed
a general weakness of the nervous system, in consequence of which the animals would be likely to bear 'weak descandants, and such as are readily affected by dieeses', does not account for the diseases in the offispring being of the eame sort as those respectively produced in the parents. So far, therefore, the alternative hypotheses to that which attributes the disease in the ofliopring to the injury done the parent eeem to be excluded; but Weismann has a final argament to urge against the 'Lamarckian' bypothesis. If the epilepry was produced in the parent by the injury inflicted, it ought not to occur in the offispring in the absence of that injury in the offispring; and it would therefore be necessary to show that the nervous lesion which is the alleged cause of the epilepay, and not merely the epilepsy itself, is transmitted. To this Romanes replies, that it very well may be transmitted; since even if adequate eramination had been made (which is not the cane), there may be structural injuries in a nerve which are not diecernible. Neverthalena, he admits that the remult of the whole debate is to leave 'the Lamarckian interpretation of Brown-SEquard's reculte' rather unasailed than proved. The facte alleged are 'highly peculiar', and hardly sufficient by themsalvee to furniah 'positive proof of the tranemission of acquired charsoters'.

This example hes been chowen becanse it illuenratee very well how the inductive proof of a conolusion rests on axcluding altermative explanationa. The whole chapter in Bomaner' work, from which it is taken, may be profitably studied from that point of view. ${ }^{1}$ A further knowledge of fect might onable a biologist to suggost - cause for the appearance of epilopery in the eecond (or later) generations of grinem-pigs, conristent at once with the facte and with Weismann's theory of the continuity of the germ-plasm. But this does not detract from the value of the example as an illurtration of the method of inductive reasoning; indeed, it must be remembered that such ressoning, if the premisess are false, will probably involve us in false conclusions. But it mast be pointed out, that in the process of excluding altarnative suggestions as to the cause, it was sometimes necessary to do more than merely
${ }^{1}$ Cf. Romanes own worde with reference to another experiment on guines. pigs: ' Natorally, therefore, the hypothecis of beredity weems leen probable than that of mere coincidence on the one hand, or of tranamitted microben on the other. But I hope to have fairly exeluded both these alternatire explamations,' Danoin and after Darein, p. 119. (The italics are mide.)
appeal to one of the groands of elimination set down earlier in this chapter; some deduction of the consequences of accopting such alternative was needed, more elaborate than is involved in saying that, if such were the cause, the epilepey would appear where it did not, or not appear where it did. Thus it was argued that the epilepey was not to be attributed to a microbe, because other diseases equally appeared to be transmitted, which a microbe could not have originated; we cannot be said to be here applying the simple prisciple, that that is not the cause of a phenomenon, in the absence of which it occurs, for these other disesses are not the same phenomenon as the epilepry. To make the evidence of these other diseases serviceable, it had to be shown that there was no tenable alternative to the Lamarciian interpretation put forward (in lieu of microbes) in their case; and the principle involved in the use of their evidence was this, that if it is necessary to attribute the reappearance of one kind of disease in offepring to its artificial production in the parents, it is more reasonable to attribute the reappearance of another kind of disease (epilepay) in offspring to its artificial production in the parents, than to a different sort of cause of whose presence and operation there is no evidence. This principle may in turn be asid to rest upon the principle that like effects have causee correspondingly like; and all rests ultimataly on our understanding of the causal relation; but in order to see that facts are inconsistent with the arcription of a given phenomenon to some particular cause, a more or less extensive hypothetical deduction of the consequences that ought to follow if that were the canse is often necessery. It may be noted, too, in this example, that some of the stepe of the argument are only probable; if the entry of a microbe at the incision were the cause of the epilepay, it would probably occur in cases of natural injury where, so far as we can see, the microbe might equally well enter: acconding to the principle that that is not likely to be the canse of the phenomenon, which is probably present on some occasion when the phenomenon fails to occur. ${ }^{1}$ And lactly, Romanea cautioualy

[^254]concludes that the attribution of epilepey in the offirpring to ite artificial production in the parent is not proved, becanse the canse may lie in comething hitherto andetected; and this illustratee what was maintained earlier in the chapter, that the getting of a positive conclasion, hat not the inductive character of the argament, depends on the completeness of the elimination.
4. Adam Smith, in the Weallh of Natione ${ }^{1}$, discuasing the inferences which can be drawn from the low money prices of goods in ancient times, and wishing to show that from the low prices of goods in general nothing can be inferred as to the wealth of a country, though mach can be inferred from the comparative prices of different kinds of goods, such as corn and meat, mentions that it was commonly sopposed that the said low money prices of goods in ancient times were a proof of the poverty and barbariam of the conntries where they previled. He ases the following argument to show that this is not the case, but that they prove only the barrennee of the mines which then supplied the commercial world. First, he sags that China is a richar country than any part of Earope, yet the value of the precions metals is higber thare than anywhere in Europe: now on the principle that that is not the cause of a phenomenon which doee not vary proportionately with it, we cannot attribate low money prices to poverty in the face of lower prices whero poverty in lese. Next, he admita that aince the discovery of America the wealth of Europe had increased, and the value of gold and vilver diminished; but be urges that the two evente have ecarcely any connexion; the firut being due to the fill of the feudal cyrtem and the growth of public security, the eecond to the discovery of more fertile mines. In support of this way of connecting the facts he points to the case of Poland. Poland was the most beggarly country in Europe, as beggarly as before the discovery of America; yet the money price of corn (the most important single commodity) had risen equally there: if poverty were the cause of low money prices, it ought not to be found where pricee were high. On the other hand, Poland wes still feudal, so that her beggarly state was consistent with the connexion of factas alleged by Adam Smith. Again, Spain and Portagal were the next most beggarly countries in Europe to Poland, and prices ought therefore to be low there, if there were

[^255]the connexion between low money prices and poverty that was supposed; but it was not the case; prices were higb; as might be expected if they depend on the facility with which the precions metals are obtained, for, owing to their control of the American mines, gold and silver were brought more cheaply to Spain and Portugal than to any other country in Europe. The canse of low money prices in general, therefore, is not poverty and barbarism, and may be the barrenness of the mines supplying the commercial world with gold and silver; and this has been ahown by inductive reasoning. Adam Smith also offers deductive arguments to show that it is the latter, and is not the former. It is not the former, because a poor could not afford to pay as much as a rich country, in labour and means of subsistence, for such comparative superfinities as gold and vilver; it is the latter, because the purchasing power of gold and silver, or the amonnt of goods for which they will exchange, depends on what has to be given in order to get them; and where the mines are fertile, a lees amount of labour and means of subsistence needs to be supplied in the work of getting them, than where they are more berren. The logician may diatingaish an inductive from a deductive argument; but investigators will gladly use argaments of both kinds to sapport the same conclunion.
5. We may conclade with an example drawn from the Poor Law Commissioners' Report of 1884, with regard to the cause of the appalling increase of pauperism in England daring the early part of the last century ${ }^{1}$. The Commissioners who were appointed to find the cause and to suggert a remedy, attributed the evil to one principal fact in the situation, viz. that the condition of those receiving parochial relief had been allowed to become not less eligible than the loweat condition of men maintaining themselves by independent labour. In proof of this finding, they pointed out in the first place that the cause alleged was present in all instances of the phenomenon to be accounted for. The great increase of pauperism had dated from 1796. In that year, an Act of 1723, providing that no one should be entitled to relief who would not enter the workhouse, had been repealed; and it had become customary for the parish to aesure to all labourers, in their own homen, a certain weekly sum, varying with the numbers in the

[^256]family and the price of bread. This sum wha made up in varions ways; sometimes grants were given in supplementation of wages (which naturally teaded to make farmers and other employers give a lesser wage, and so interested them in the support of a system from which they ssw more clearly the immediately reaulting benefit than the remoter but far greater evils); sometimes the parish found work, generally lighter than what was exacted for the same price by private employers (and this led men to prefer to work for the pariah); sometimes a money-grant without any return of labour was made to men out of work (who were not, therefore, the more likely to look for work); but in any case, it was made possible for a man to count upon parish pay, safficient to maintain him as well as many independent labourers were maintained, whether or not he endesvoured to support himself.

The cause alleged, then, was present where the pauperism was present; but that was not enough to show that it was the canse. It might indeed be plausibly argued, from familiar principles of human natare, that such a method of administering poor-relief would be likely to increase pauperism faster than it relieved it: but this dednctive reasoning was not, and atill ia not, cufficiently convincing to men who, from one motive or another, are attached to each methods-whether from compassion for the immediste suffering of those applying for relief, or from deaire to get relief on the casiest terms, or from feer, if relief is lese readily given, that it will become necemary to give bigher wages to the labourer. To bring conviction, it was neceseary to show that there was nothing else to account for the phenomenon. Now several other causer had been euggeated to account for this growth of pauperism. One was the great rise in the price of corn, which had occurred during, and partly in consequence of, the French war: another was the increase of popalation: and another was the introduction of machinery-a highly unpopular thing at the time, because its firat and moat obvious effect was to displace lebour; and there had been agricaltural riots directed against the use of mechinery in 1880.

It would not be possible to show that none of these causes had ever made a man a panper. But it wha possible to show that in the main the pauperism so widely prevailing (which wes so great a national eril becanse it prevailed so widely) could not be due
to them. The Commissioners were able to point to numerons instances of three kinds, in which the panperism oo prevalent elsewhere was absent; in all of them, the cause they alleged was abeent too; bat the alternatives whiah they wiahed to disprove were present.

The first clase of instances consisted of certain parishes where what whas called a Select Vestry had adopted the plan (still then lawful, though not since 1796 compaleory) of refusing relief to any able-bodied labourer except in a workhouse where a full task of work was exacted. It was their experience that pauperism immediately and greatly diminished. And naturally; for when men who had hitherto been content to take parish pay found they had to work as hard all the same, they preferred to work for themselves; with a motive for independent industry and thrift, they became more induatrious and thrifty; becoming more industrions, they were better worth employing; and the farmer beaides, knowing that the parish would no longer supplement the inadequate wagee by which be had obtained lsbourers apon his farm, was compelled, if he would still have libbourers, to give a better wage.

The second class of instances was farnished not by parishes which, in removing the cause alleged, had removed the panperism which it was alleged to be the cause of; but in the parishes themselvee where the pauperism existed. It was furnished by what are called the non-settled labourers, who in all parisbes were found to be more industrious, thrifty, and prosperous, and leas panperized, than the eettled labourers. As the circumstances of two sets of labourers in one parish are likely to be more nearly alike than those of labourers in distinct parishes, these conatituted what Becon calls a prerogative instance; for all the conditions equally affecting settled and non-settled labourers may be axcluded, in looking for the cause of this difference between them, on the principle of rejecting the circumstances present when the phenomenon is absent. By a non-settled labourer is meant a labourer living in another parish than that which is legally bound to support him. If he becomes a pauper, auch a person can be removed to the parish to which he is legally chargeable; and to save their own ratea, overseers were always anxious to remove any one they conld. To the labourer, on the other hand, removal was at a rule by no meane welcome; such labourers, therefore, found that they had to chooes
between removal, which they did not want, and an effort to maintain themselves by their own habour; for if the pariah relieved them at all, they would only get-unlike their settled neighbours -little relief on hard terms where they were.

The third class of instances whe afforded by parishes which had never adopted the practice, so common since the Act of 1796, of relieving able-bodied men out of the workhouse; i.e. they had never consented to male the condition of the pauper as eligible as that of independent labourers; and in them the same extensive pauperization and increase in the rates, which had occorred elsewhere, had never happened.

Now in all these three classes of case, the Commissioners' theory held good; for when the effect was aboent, so was the casuse to which they attributed it. But the same conld not be said for the alternative theories put forward. If it were alleged that nonsettled lebourers had smaller families, which is doubtful, yet the incresse of popolation was not confined to parishes which had adopted, or banished from those which had abandoned, the practice rendered permissive by the Act of 1796 . The price of corn had risen, and the introduction of machinery must have had ita effects -whatever they were-in the parishes which had abandoned or never adopted that practice as much as in the rest, and among the non-settled as much as among the settled labourers of any parish. In short, looking to the mess of pauperism, there was no other circumatance which might be auggested as its cause, that could not, upon one or other of the plain grounds of elimination 10 often refarred to, be rejected; and the Commisaioners' cause was left in posession of the field; with the additional aupport derived from the deductive reasoning that might not have been thought ofeven if it would have carried conviction-by itself. For it often happens that we can subsequently show that a cause, to which an effect has been attributed on the grounds that there is nothing else to which the facts permit ue to ascribe it, must, in according with some accepted principles prevailing in the subject-matter to which the enquiry belongs ${ }^{1}$, produce that effect : although, but for the help which the inductive argument bad given us in finding the cause, the deductive argament would never have occurred to us.

[^257]
CHAPTER XXI

OF OPERATIONS PRELIMINARY TO THE APPLICATION OF THE FOREGOING RULES

Ir was allowed in the last chapter that it is impossible to apply the kind of reasoning there analyeed until a good deal of work has already been performed upon the material which experience offers us. That work is really much harder than the reasoning that succeeds it; indeed so simple does the reasoning look when thrown into symbolic form, that it would not be surprising if any one mistrusted the foregoing account on the mere ground that induction must be a harder businesa. A consideration of the present chapter may reassure him on this point. ${ }^{1}$

The operations that have to be performed in order that the foregoing rales, or any other more special rules of the same kind, may be applied, are difficult to classify in a perfectly satisfactory manner. Different writers have called attention, and have given different names, to processes which are sometimes more or less the same essentially. Moreover, we should make our list shorter or longer according to the extent to which we considered what may be called the Methodology of the several sciences. By this is meant an attempt to give special directions, based partly on general logical considerations and partly on the nature of the facts with which it deals, for mastering the special difficulties which s particular acience presents; for example, a mythologist might be enjoined to adopt the comparative method, and collect, with all the precautions which the experience of those who know the difficulty of rightly interpreting the savage mind can suggest,

[^258]the mythe and customs of many different lands: in biology again we should probably be told of the importance of obtaining atatiatios of a truatworthy kind regarding the mode in which divergences were distributed on either side of the average or normal in reapect of divers measursble characters in animale and planta: and so forth. The particular preliminaries, without whioh inductive reseoning in each science may have little prospect of sucsess, could of conrse only be determined by some one well acquainted with that science; though it is quite possible that a man of logical training, coming freeb to the atudy of what others bave done, may be the better able for that training to make contributions to the work of acientific investigation; still, here as elsewhere, Logio learne by reflection on the immediate operstions of thought about things. A methodology of the several scienoes lies however begond the scope of this volume, and would require far greater knowledge than it has at ite command. The list of operations therefore which follows makes no pretence to go as far as it might, or to embody the only possible division.

Firat of all may be placed what has been called the Analyais of the Given ${ }^{1}$: and this is requisite in two ways,

1. in defermining precisely the phenomenon to be otwdied;
2. in distingwisking and detecting the varions circumstances under which it ocemrs, or meder whick it fails to accur when perkape it might have been expected.
Long before we consciously seek 'rerum cognoscere causas', a beginning has been made in the performance of this analysis: and the results are embodied in the general namee by which men group and distinguish different objects, attributes, or events. But there are many distinctions which ordinary language ignores, and it often gives different names to things which are in some important reapect identical. For ordinary purposes the identity may be of no account, and yet in a scientific enquiry it may prove fundamental. For example, to the lewyer hares and rabbite are vermin, to the sportsman they are game, and to the zoologist they are rodents; each of these men for his own purposes is interested in characters that unite them respectively with quite a different group of other animals; but there is nothing in their specific

[^259]mames to indicate their affinities with any one of these groupa. Or again breathing, burning, and rusting are three proceses for all practical purpoees so very different, occurring in such different connerions and of importance to us in such very different ways, that they naturally have obtained distinct names; yet one of the greateas steps in the history of chemistry was connected with the discovery that they are, chemically speaking, all processes of the same kind, viz. the combination in the fint two cases of carbon and in the third of iron with the oxygen of the air. ${ }^{1}$ These cases illustrate the way in which it may be neceesery to ignore our customary clasaification of thinga, and bring together, upon the strength of some identity which an analysis may have discovered in them, thinge that we have habitually kept quite apart in thought. It is equally necessary at times to distinguish things which we have habitually classed together, if we are to make any progress in the investigation of them. The case of rent furnishes a good instance. The name is given equally to the sum which a man pays for the occupation of land, and to that which he pays for the occupation of a building; as these are very commonly paid to the eame person, as a lump sum is then charged for the two, and as the ordinary tenant in search of a dwelling is prepared to pay so much for accommodation, bat indifferent to the question whether the owner considers his charge to be based on the value of the house or of the site it stands on, it follows that most of us find no inconvenience in this double use of the word. The farmer who has to consider separately what the land he farms is worth to him per acre, and what the value of the homestead is to him, is more or less aware of the ambiguity; but the political economist, when he comes to consider the causes that determine rents, is bound to distinguish house-rent and ground-rent by name. Indeed until that is done, his investigation will make no progrees; for the two depend upon quite different conditions. The rent of a house, spart from any special history or sentiment, depends chiefly on the cost of building another like it, and the current rate of interest on money in the country at the time; bat land cannot be produced as it is wanted, and this natural limitation of supply may give to a particular piece of land, in virtue of its fertility or its situation, a rentable value that depends mainly on its superiority in those ${ }^{1}$ Cf. pp. 486, 437, infro. Of coame the orygen need not be atmospheric orygen.

xxi] PRELIMINARIES OF INDUCTIVE REASONING

respects over other land which cannot be dirpensed with for cultivation or for bailding, and only very alightly and remotely, if at all, upon the circumstances which regalate house-rent.

The process of discovering identities between things in which we commonly ignore them, and that of discovering differences between thinge which we commonly take for the mme, very generally involve one another. We perform as it were a mental re-grouping; and in the act of bringing together what we hed hitherto only distingaished we most probably break up or find distinctions in the groups from which members are brought together. But in a given case one aspect may be much more prominent than the other; and Bacon has observed ${ }^{1}$ that some men have a greater capacity for the one kind of work than for the other, insisting (like Plato before him) on the necessity of noting, in the investigation of nature, both the resemblances and the differences that are ordinarily overlooked. Analyais is at the bottom of each procese, for until we have distinguiahed the varions characters of thinge, we have not diecovered the besee on which to compare them. It must be added however that analysis may be of great importance, yet without leading to any act of freah clansification, when we want primarily to know the circumetances under which a phenomenon occurs.

We have now to some extent considered the natare of the work involved in the performance of the two tasks above mentioned: namely, in determining precisely the phenomenon we have to stady, and in distingriahing and detecting the various circumstances under which it occurs, or under which it fails to occur when perhaps we ahould have expected it. It is sufficiently obvious that without performing them we should hope in vain to discover cansel connexions by way of induction. If we have no precise or exact conception of the phenomenon to be studied, or have not (as one might say) duly determined it, we may examine ingtances that we ought to ignore, and ignore instances that we ought to examine. The result of the former error will be that we shall try to make our theory as to the cause of w consistent with the facts of the occurrence of a different phenomenon y : and the reault of the latter, that we may be ignorant of facta which might throw great light upon the cause of a. The necesaity of making a correct enumeration of the circomstances under which a pheno-

[^260]menon oceurs, before aking with which of them it is cansally connected, needs no comment; nor is it lese plain that, if the question is to be answered, we need equally to recognice the circumatances, where they occur aleo in the abeence of the phenomenon.

But though this work is no necesesry, it is impossible to give any rules for the efficient dispatch of it. Familiarity with a science may help a man to perform it in the invertigations of that acience, teaching him the sort of thing to look for, and the sort of way in which to look for it. Yet the saganity upon which the discovery of new truth depends does not come to most men even by such familiarity. The logician's business at any rate, aince be cannot teach them to do it, is to make men realize the part which it plays; and one or two further examples may be given with that object.

A research which has been so frequently cited in works on Induction as to become almost a stock instance will serve this pur-pose-Welle's Theory of Dew. Dew, as is now pretty generally known, does not rise but falls: the atmosphere can hold in suspension a certain proportion of water in the form of vapour, but the amount depends upon the temperature of the atmosphere, and increases with it. If anything suddenly chills the atmosphere, it precipitates such a portion of the moisture which it holds as exceeds the maximum it can hold at the temperature to which it is reduced. It may be chilled in various ways. One is the contact of a colder surface, on which the moisture is thereupon precipitated ; and the rapidity with which the surface of a body gets chilled depends on various circumstances-partly on its substance, partly on its terture (rough surfaces, or those with many points, like grass, radisting heat more repidly than smooth ones): another way is by the inrush of a hesvier and colder current: another is by radiation to the sky, and the degree to which that takes place depends on the amount of cloud about; a sheet or other covering stretched over the ground acting in the same sort of way over a small area, though with more effect over that area, as the clouds spread out over the earth. This precipitation of moisture held in suspension in the air is seen not only when dew falls; when warmer weather comes after a frost, particularly if accompanied by rain, the cold surface of a atone wall, if painted or otherwise not porous, drips with the water it has extracted from the air which ite contact chills. In the same way cold apring water poured

E131
into \＆glass in summer will chill the outside of the glaes，so that water is deposited on it from the air without ：and when hot water is poured into a glase without filling it，and sends ite vapour into the air above，some of this vapour bedews the interior aurface of the glass above the water－level，until this portion of the glass has acquired by conduction the temperature of that below it．Now our present business is not with the reasoning by which Wells ahowed the deposition of dew to depend apon a relation between the tem－ perature of the atmosphere and of the body on which the dew fell， taken in conjunction with the degree of saturation of the stmo－ sphere at the time．But it is plain that he could never have done this，if he had not taken note of all the above pointa，the material and texture of bodies，as affecting their surface－tempersture， the clearnese or cloodiness of the nights on which he looked for dew，the conditions of air and wall when the latter drips with moisture，and so forth．It would bave been in rain to observe that one body collected more dew and another less，unless their roughness and amoothnese were noted，as well as their substance： or that on some nighta there was heavy dew and none on others，unless the aturtion of the atmosphere were ascertained as well as its temperature．And similarly，it was necessary that he should get a right conception of the thing called dew that he proposed inveetigating．There are elammy deys when everything grows damp from a moist fog hanging in the air．It would not have been unnatural to look in this for a phenomenon of the same nature as dew，and to overlook such things as dripping walls and moisture－frosted tumblers．Yet the mistake would have put the enquirer altogether off the scent．

Curstive effects of different kinds are exhibited by certain waters．To the eyo many of the waters are indistinguishable； and if the palate detects a difference，yet it would not be found poseible to connect efficacy in particular complaints with particular flavours according to any explicit and invariable rule．It is plain that no progress can be made unless the various diseases are described not merely by their more obvious symptoms but by reference to the physiological charucter involval ：and the water chemically analysed， so that one may know each separate ingredient，and the different proportions in which they are present in different cases．Again，the bacteriological theory of disesse would never have been formulated，
until the becteris themselves wero found-bodies so small that before the constraction of powerful microscopes their presence was of necessity overlooked; and when one hears of pathologists endeavouring to isolate the microbe of some particular disease, one realizes how imposeible it is, without the preliminary work of distinguiahing the circumstances, to apply the 'canons of induction' to any effect. Or suppose that an enquiry is undertaken not into the physiological cause of a disesse, but into the causes of its disemination, either generally or on some particular occasion: let the disense, for example, be malaria. Malaris was long supposed to be contracted from the exhalations of the ground; and it was true that many malarious districts were marshy, and that persons who avoided the swamps at duak and dawn seemed less liable to be infected; but it was not until it was noticed that such districta were infented with mosquitoes of a particular apecies, and it occurred to some one to connect this circumstance with the commanication of the disease, that false ideas were exposed and the true law of the matter established.

The last remark suggesta a transition to the next preliminary operation that we may notice-the formation of hypotheees. Much has been written upon the question whether Logic can lay down any rales by which the formation of hypotheses ahould be controlled; but beyond the somewhat obvious and quite general consideration that an hypotheris mast contain nothing inconsistent with principles which thought finds necessary, it doee not seem that Logic can be of any more eervice hare than in the performance of the work of analysis. It would be an illegitimate hypothesis on the part of a bank clerk confronted with a small discrepancy in his books, to suppose that on this occasion two and two made three; but a petty theft on the part of the Principal Manager, though very likely a foolioh bypothesis, would not be logically illegitimate. It might indeed be urged, that the bypotheais of angelic intarvention, though there is nothing inconceivable in the existence of angels, would not be a legitimate way of proposing to account for an event; and this may be admitted; for there is no use in attributing phenomena to causes whose presence we have no means of ascertaining; since such hypotheses can never be brought to the test of facts. It is obviously more reasonable to go on trying to sccount for them by ascertainable natural causes in the hope of being able to connect
them by general principlee with other observable phenomens, than to abandon that hope at the outset and invoke the ageney of beinge whose existence cannot be empirically verified; so that although we can hardly pronounce it logically inconceivable (however it may be scientifically inadmisaible) for the physical order so to depend on something beyond itself as to make it impossible to account for a particular natural event by reference solely to other natural events preceding it, yet we may on logical grounds pronounce it anscientific: i. e. it is seen to be unscientific not in rirtue of any special rnowledge of the particular science to which auch bypotheais belongs, but in virtue of our general appreciation of the aim of science as such, and of the logical conditions under which that aim can be realized. And this is perhaps what Mill really had in his mind when he said ${ }^{1}$ that ' It appears, then, to be a condition of the most genainely scientific hypothesis, that it be not deatined alway to remain an bypotheais, but be of each a nature as to be either proved or disproved by comparison with observed facts'. It should be of such a nature that observable facts, if woo could find them, might prove or dirprove it ${ }^{2}$: i.e. it should not appeal to the agency of canses (like the intervention of an angel ${ }^{3}$, or the influence of the organic type as a whole upon the growth of the individual organ. ism) of whose presence we can have no independent evidence, and whose nature we are not able so to ascertain as to determine deductively how they must act if they are present; for with the agency of such canses as theee any facts are equally compatible; and thus they farnish no explanation why the facte are so and not otherwiee. For this reason, as Bacon asid, in looking for the causes of things in nature Deum senper excipimus ${ }^{4}$: and Laplace, when Napoleon obeerved to him that there was no mention of God in his Mdeanique Coteste, replied that he had no need of that hypothesis. But that an hypotheeis should be of such a nature that observed facts seill ultimately either prove or disprove it, and not merely might ultimately do so, seems a condition quite impossible to

[^261]lay down. We cannot tell the fature in these mattore; how long may an hypothesis be deatined to remain an bypotheris withont prejudice to its genuinely seientific character? The ultimate deatruction of life on the earth is assumed by science; for human minde, on hypothesis which is not proved or disproved before that date will always remain an bypothesis. We cannot suppose that its scientifie character, when it is made, is to be eatimated by the prospect of its trath being definitely ascertained a few years, or even s few myriads of years, earlier or later. Darwin, in the Origis of Species', writes as follows: 'As the embryo often shows more or less plainly the structure of the less modified and ancient progenitor of the group, we can see why ancient and extinct forms so often resemble in their adult state the embryos of existing species of the same class. Agassiz believes this to be a universal law of nature; and we may hope hereafter to see the law proved true. It can, however, be proved true only in those case in which the ancient state of the progenitor of the groap has not been wholly obliterated, either by succeseive varistions having supervened at a very early period of growth, or by such variations having been inherited at an earlier atage than that at which they first appeared. It should also be borne in mind, that the low may be true, but yet, owing to the geological record not extending far enough back in time, may remain for a long time, or for ever, incapable of demonotration.' But that the rale in question is an universal law is a acientific hypotheria.

An hypothesis then must be thinkable ${ }^{2}$, consistently with the fundamental assumptions of the science which makes it: bnt we cannot restrict, within these limits, the freedom of acientific hypothesis. What is important is that men should be cantions not in

[^262]
xir] PRELIMINARIES OF INDUCTIVE REASONING

framing but in teeting hypotheese. The publication of every wild conjecture is nodesirable; but it would be equally undesirable that a man should never entertain an hypothesis which contemporary opinion could pronounce wild. Darwin said that he had framed and abandoned many an hypothesis which be would be aghamed to avow : be does not imply that he was anhamed to have framed them. The beat control over the licence of the imagination is exercised by special knowledge. The man who knows moot about any department of nature will see moat readily what hypotheses are foolish in that department, just as in sach practical V matters as legialation the beat oritics of a bill are those who have experience of the afinirs with whioh it deals.

It is clear that every causal connexion presents itself at the outset in the light of an hypothesis, to the mind to which it first occurs. The framing of the hypothesis may sometimes be very simple, though the proof of it may be very difficult. If we know exectly what persons were oognizant of a secret which has been betrayed, it is cany to say that one of them must have betrayed it; and so far there is no hypothesia; hypothesis begins so soon as we aecribe the offence tentatively to any one of them, and in this there is not the least difficulty; but a proper test of it may be imposible. Wheress liere, however, all the alternatives are before us, and in the abetract any one of them would equally fit the facts, because it is simply a question of connecting an event a with one of a number of conditions $a b c$, about which we do not know enough to may that it might not be connected with any one of them : yet commonly it happens that the facts which an bypothesis has to fit are more or less elaborste; and then the framing of it is not such a simple matter a the pairing off of two terme a and x. Take for example the queation of the anthorship of the Acts of the Apostles; if that book must have been written as it stands by one of the recorded companions of St. Paul's journeys, it is a simple thing to any that the author may be Lake, or may be Silas: although it need be by no meana a simple thing to decide between them. But if that is not necessary,
fruming them. We restrict it to eomething which the facts of experience might teat: but the fundamental asamptions of a science may be metaphyaically untenable, and we enlarge it to extend to all which these asamption cover, bowever it may be uitimetely impomible to think the fecta in terms of them.
if the book may be of late date, and contain the work of eeveral hande, it becomes very dificalt to frame an hypotheris which ahall do juatice to all the features of it. We have a large number of facts to co-ordinate; and the aerumptions by which we connect them must all be mutoally coherent. Historical criticism presente many problems, where no bypotheris is free from difficulty; and though doubtless a problem mast have a solution, yet an ignorance of some detaile, and very likely the erroneons accounte that we have received of others, may leave us permanently unable to find it. And the penetration and ingenuity of the historian are shown in such cases in devising as well as in testing hypotheses; indeed the two operations cannot be kept altogether distinct: for when our knowledge of the concrete detail of events is considerable, the process of framing an bypothesis to fit them all is itself a procese of teating. Now what is true in history, where upon the whole ${ }^{2}$ our business is rather to determine eventa in conformity with acknowledged principles than to determine principles in accordance with empirically ascertained events, in true also in science, of whose business the latter would be the more aecurate deecription. Scientific hypotheses consist for the most part not in the mere coupling in the mind, as canse and effect, of two insulated phenomens (if the epithet may be allowed) : but in the weaving of a large number of phenomena into a coherent system by means of principles that fit the fects. In the framing of hypotheses therefore we are called upon to conceive facts in new ways : and to conoeive not simply that certain facts are connected, but how, or in sccordance with what principle, they are connected. And this often involves a radical transformation in our way of looking at the facts themselves ; for a fact is not such an easily ascertainable thing as the language we sometimes use might eeem to imply. In a sense facts are atubborn : in another sense they are pliant to our thought. They are atubborn $\infty 0$ far as we have rightly apprehended them; but what we call fact is largely matter of inference and interpretation, performed often unconecionaly, and often erroneously; there is room

[^263]here for re-interpretation, in accordance with the requirementa of the rest of our knowledge, and so far as facts lend themselves to this they may fairly be called pliant. It would have been called a fact, for erample, in the daye before Copernicus (though some of the Greeks had questioned it) that the sun went round the earth; but this was only an interpretation of appeerances which we have now been taught to see to be equally compatible with the fact that the earth goee round the sum. It would have been called a fict that species are fixed and immutable; and it is the case that they breed so true upon the whole in any one generation as to make that a fairly accurate statement for practical purposes. Yet we have learnt to see that this comparative stability is consistent with any degree of modification over long enough periods of time. These instancee will be enough to show how the familiar facts take on s new appearance in the light of new theories.

Now some new theories or hypotheses are, as we all know, more far-reaching in their effects than others; for mome are much more general, and apply to a mach larger number and variety of facts. Their introduction marks an epoch in the progress of ecience; and Whewell atteobed more importance to the framing of such hypotheses than to any other of the operntions connected with inductive ressoning. Indeed he held that this step was the indaction; and that the history of the inductive sciences could be re-: presented as the preparation, elaboration, and diffucion of auccessive hypotheses each more adequate to all the facts of a science than its predecessors. He did not use the word hypothesis very prominently in this connerion; he preferred to speak of comocptione: and what he called the colligation of facts by mean of appropriate conceptivns ${ }^{1}$ was in his view the essence of induction. The new conception, however, is alwaya an hypothesis as first entertained, and only converted into a part of the accepted body of lnowledge by its superior succeas in co-ordinating facta. This work of 'colligation' therefore must not be regarded as something distinct in its nature from the framing of hypotheses: it is rather a special and important case of it, where the hypotheris, instead of merely connecting facts in a more or leas familiar way that leaves our view of them very much what it was before, involves a profound and far-reaching

[^264]change in our view of the facts themselves. Thus the suggeation that malaris is commanicated by the bite of the Anopheles mosquito neither altered aerionsly our notion of the nature of that insect (though it altered our practical attitude towards it in a way by no means favourable to the numbers of Anopheles) nor introduced any new way of conceiving disease ; for the bacteriological conception of disence had already been applied to many other fevers. But the first suggestion that a dieense depended on or consisted in the presence and multiplication of some specific noxions becillus in the blood altered profoundly men's view both of what it wes, and of how it was commanicable, and of how it might be cured. In the relation of thin 'colligation' to the more general notion of framing hypotheses we have an instance of the difficulty of distinguishing sharply the different operations of thought which logicians have enumernted as preliminary (though by no meane subordinate) to such application of the rules on which indoctive reasoning rests $0 s$ we examined in the last chapter.

A somewhat unprofitable controveray arose between Whewell and Mill as to the part which the 'colligation of facts' should be regarded as playing in induction. While Whewell asid it was the induction, Mill said that it was improperly so called. Mill seems to have been influenced in part by the iden that an induction must end in establishing a general proposition, whereas it is possible to bind facts together by a new conception and $s 0$ place them in a different light and reinterpret them, without apparently generalizing; he seems too to have considered that nothing in the whole process of thought, by which general conclusions were reached from the examination of particular facts, ought to be called induction, except what could be reduced to the form of inference or reasoning: the reat was all subsidiary to induction. But the operations of thought preliminary to the application of such rales as inductive reseoning rests on are not subsidiary in the sense of being of secondary importance; and it would perhape also be better to distinguish induction as the whole process from the reasoning employed in it. We might then agree with Whewell that in induction, i.e. the whole process of the 'interpretation of nature', what he called the 'colligation of facts' is an operation of the very first importance, demanding higher and more uncommon powers of mind than inductive reasoning; while we agree with Mill that it is not the

II]
 PRELIMINARIES OF INDUCTIVE REASONING 485

inferential operation. Bat if by induction we mean the inferential operation, then we shall have to say that this 'colligation of facts' is more momentous in the history of acience than induction; for mort of us, as Becon rightly said ${ }^{1}$, would light upon the use of the methods of inference to which Mill would reatrict the name of indaction, by our ordinary intelligence, without their being formulated for us; bat few can originate the new conceptions that bring order and intelligibility into a mase of facta.

The instance which served to illustrate the dispate will help to show what this 'colligation' is. The anciente at first supposed the planets to move in circles roand the earth. When further obeervation showed that this was not eo, they conceived the centre of the circle in which a planet moved to travel on the circumference of another circle; these circles were conceived not as mere imaginary paths, but as physical entities actually revolving; and it was poseible to assign such a radius and rate of revolution to them as would sccount for the planet fixed upon the outer circle deecribing the path it does. This hypotheris had grown more and more complicated, as the mass of observations apon the movementa of the planets had increased; and though it was capable of application to the heliocentric no less than the geocentric theory, Kepler sought for one more satisfactory. After trying a large number of other carves, and rejecting them on the ground that they did not agree with the observations, he at last discovered that the planet Marsthe primary subject of his investigations-moved in an elliptical orbit round the cun, which stood in one of the foci. Now the ellipee is here the appropriate conception which binde together into an unity the succestive obeerved positions of the planet Mars. Each position taken singly muat of course necessarily be on the circumference of that or any other curve; for any curve can paea through any point. But he sought for a curve which would paes through all the positions; and he found that in an ellipse. There was indeed nothing disjunctive in his argument. Other curves were rejected becanse disproved by the observations; bat the ellipee was accepted because the observations agreed with it, and not because no other curve would satisfy them. If it had suggested itself sooner, the others would not all have been tried. There are curres, of higher degree, that will equally satisfy the observations, and had

[^265]they occurred to Kepler, he could perhapa have given no other reason for preferring to accept the ellipee than an a priori preference for the simplest curve that would do s. It is to be noted, however, that even here the critical matter was the thinking of an ellipee, and not the testing its agreement with the facts: any one with the neceesary mathematical training could have done that, whenever the ellipee had been thought of. And so it often is, though not always, when the appropriate conception is a oonception of causal relation: not always, because sometimes there may be as much difficulty or more in teating the conception than in thinking of it. To teent it, we may have to deduce ite consequences by some intricate methemetical calculus, as in the case of the Newtonian theory of gravitation; or to devise an experiment in which we may wee whether the theoretical consequences of our conception occor. Great mathematical power or grest ingenuity may be wanted here; but the reseoning will be deductive. Yet even so, to introduce the appropriate conception is much; new ideas are acarce; indactive reasoning, if the material were given all ready prepared, is easy.

An excellent example of the part which a new hypothesis may play in inductive enquiry is furnished by the Oxygen theory. It is borrowed from Whewell ${ }^{1}$, whose works afford many more. It was for a time supposed that combustible bodies were combastible because of the presence in them of a peculiar substance, that escaped in the procese of burning. This hypothetical substance was called phlogiston; and it was very natural to think that one could see it eecaping into the air wherever a fire was burning. When it was found that there was one air (or, an we should now say, gas) in which bodies burnt readily, and another in which they would not burn at all, it was conceived that air could only abeorb a limited quantity of phlogiston in proportion to its volume; in the former it was supposed that there was no phlogiston, and it was called dephlogisticated air ; the latter was supposed to be already saturated with all that it could hold, and was called phlogisticated air accordingly. The phlogiston theory received a shock when it was discovered that if a body were calcined, or reduced to ashes, in a closed vessel, the weight of the ashes was greater than that of the body before it was burnt. This, however, was explained by supposing phlogiston to be a substance naturally ${ }^{1}$ Whewoll, Fiss. Ind. Sei., vol. iii. Bk. XIV. 11. 4-7.
light, whose eecape therefore left a body heavier-a view plasible, perhape, when we remember how the sparke fly upward, yet really presenting great difflculties in relation to the theory of gravitation. The great French chemist Lavoisier, however, applied anew conception to the facts : he conceived that, when a body barned, what happened was not that a enbetance natarally light eecaped from it into the air, and to left it heaviar; bat a subatance naturilly heary was witbdrwn from the air and combined with the barning body; barning in fact was a process of what we abould call chemical combination; and Lavoisier supported his theory by showing that after the calcination of a body in a close vessel the air in the vemel was lighter by the same amount by which the ashes were heavier; this observation perhaps was not conclasive, if the phlogiston had carried ite natural levity into the sir ; but the new way of conceiving the fecta accorded far better with the general theory of gravitation. The rubetance thas withdrawn from the air in burning he celled oxygen; and oxygen now took the place of dephlogisticated air; while phlogisticated air, instead of being conceived as maturated with phlogiston, was conceived to be a different sabotance from oxygen, incapable of entering into those chemical combinations which constituted burning. This sabetance was rechristaned azote, and afterwardo nitrogen. Lavoisier farther showed that oxygen was withdrawn from the air and chemically eombined with other sabotanceas not only in burning bat also in the familiar procese of breathing, and in the rusting or oridation of iron, which could rust in water aleo becanse oxygen was present there as well; and thas his new conception, that borning whe really a process of chemical combination between a substance in the atmosphere, which be called oxygen, and the subatance of the body barnt, serred to throw light equally on processes at first sight quite remote from burning. In this example, therefore, we have as it wero s 'colligation' of two kindo : primarily, in so far as a large number of facta aboat burning were all rendered consistent with one another and bound together by the help of this new conception of what goes on when a body burna ; secondarily, in so far as that conception was ehown to be applicable to other phenomens as well as burning, and they are therefore brought under the same explanntion with it. It may be worth while to give one more example of the tranaforming and connecting power exercised by a new and
appropriste conception apon a multitude of facte, in the biological theory of Evolation, or the modification of epecies through natural descent. We are not for the moment concerned with the queation whether the only ageney in determining such modification is Natoral Selection. The theory of Natural Selection, as a theory of the way in which modifications have, not indeed originated, but been eatablished when they had once arisen, teaches that in each generation individuale vary more or lese in colour, size, structure, \&c., from their parents ; that some of these variations are useful to their posseseors under the ciroumstances in which they live; and that their possessors will, in the constant struggle for existence going on in the world, have an advantage over their competitors; ao that those individuals who happen to possess 'adaptive' variations will eurvive and propagate, while their leas fortanate and worse-adapted rivals will perish; and thus species are brought into and kept in conformity with the conditions under which they have to live. Now there is not complete agreement among biologists either as to the extent to which the peculiarities of different species of plant or animal are adaptive, or as to the extent to which those that are adeptive can be accounted for by the theory of Nataral Selection alone ; though there is no doubt that the doctrine of Evolution won its way on the strength of the success of the principle of Natural Selection in accounting for at any rate a vast number of adaptive structures, instincts, and colouringe. Bat the doctrine of the Evolution of Species, or their modification by descent, as opposed to their special creation in immatable form, does not stand or fall with the view that Natural Selection is ite exclusive modwe operandi. This doctrine has brought into intelligible connexion with one another whole departments of fact. It explains the various and intricate relstions of likeness and unlikeness between different species of the same genus, different geners of the same family, different families of the same order, ecc.; it explains why the same structural plan is observed in many cases where the function of some part of the structure has been lost or altogether altered: and why it is that where their life requires the performance of the same function in groapa otherwise very remote morphologically from one another, we find the function fulfilled by such very different means as are, for example, the wing of an insect, of a bird, of a bat, and of a flyingfish. Again, it explains the divers series of fossil forms: and

1x] PRELIMINABIES OF INDUCTIVE REASONING 489

accords with the facts of embryology, such as that the embryo of a given vertebrate only gradually develops the more distinctive specific festures, and at an earlier stage is very little distinguishable from the embryo belonging to a different genus or family; for the characters which appeared later in the course of evolation and supervened as it were apon a simpler structure appear later in the growth of each subsequent individual of the same more complex type, and anpervene apon the aimpler etructare there. Again, it explains the fecte of geographical dirtribution, such as that the degree of affinity between species is much greater when they inhabit a oontinnous area, than on either aide of a geographioal barrier; and that the barriers on either side of which the difference is moet marked are not the same for every kind of organism, but are for each kind those which would offer the most effective obstacle to the migration of that kind-high mountain ranges in the case of land animals or freeh-water fish, doep ses in the case of salt-water fish, and so forth: or such facts again as this, that 'wherever there is evidence of land areas having been for a long time separated from other land areas, there we meet with a more or lese extraordinary profasion of anique species, often ranning ap into unique geners'.' All these facta, and many others, for which apon the old hypothesis of the special creation of immutable apecies it is impossible to suggest a reason or a motive, fall into line apon the bypothesis of modification by descent, and are bound together by that conception an common consequences.

We have now considered eome of the moat important operations, without which inductive reasoning would be powerless to advance inductive science. One or two others may be noticed. It may seem unneceseary to mention the observation and registration of facts; yet that is no small part of the work that has to be performed before we are in s position to tell what phenomens may be supposed to atand related to one another as cause and effect. Along with this goes often what was incidentally referred to on p. 486^{2}-the devising of experimente by which to teet whether a phenomenon is

[^266]present or absent, varies or is constant, as should be the case if its cause is what we take it to be. If it be supposed, for example, that spirit-rapping is really produced by 'aracking' the joints, it will be neceseary not only to show that a man can produce such noises that way, bat to devise conditions under which one may be certain that the joints cannot be 'cracked' without its being detected, and see whether the 'opirits' still continue to rap.' The collecting and sifting of statiotics, and their reduction to tabolar form or curves, is also in many enquiries a neceseary preliminary to the application of the rule that nothing can bo the cause of a varying phenomenon which does not vary proportionately with it.

This is perbaps enough to say upon the present subject. There are other taaks set to our thought in science, which are of great importance to ita development; but wo have been concerned eapecially with those that are presupposed in inductive remoning. The help efforded to the 'interpretation of nature' by a well-ehosen armoury of tecinical termes, great as it is, is not confined to the nae of inductive reasoning. And the work of abistraction has had account taken of it in what whas asid of analysis and hypothesis and the formation of conceptions. By abotraction we mean considering some special feature of the concrete fact, in mental separstion from all with which it is combined in its existence. It is between feature and feature that we strive to trace connexion. The concrete mass of events changes from moment to moment. Not until we pick it to pieces are we able to see what it is in one state of the mass that determines what in another. Every common term involves some degree of abotraction; but in ecience we have to break up what in daily life we treat as a single matter, and to consider by itself, or in abstrection, that which had hitherto not been apecially noted and distinguished in the total nature of come comparatively concrete notion.

[^267]
CHAPTER XXII

OF NON-RECIPROCATING CAUSAL RELATIONS

In all that bas been so far said with regard to the process of inductively determining the canse of a phenomenon, it has been aasumed that the canse, whatever it is, reciprocates with the phenomenon: i.e. that not only does the phenomenon occar whenever the cause is present, but that the carse must be present whenever the pbenomenon occars; so that you may asfely argue from either to the other, as in geometry you may equally infer that s triangle is equilateral from the fact that it is equiangular, and that it is equiangular from the fact that it is equilsteral.

But we often speak of one thing as being the cause of another, where this reciprocal relation by no means obtains. We say that drankenness causen crime, although many people get drank without committing crime, and many people commit crime without getting drank. And in eome of the examples of inductive reesoning given in provious chapters, the canse found was not a reoiprocating cause, The appearance of congenital epilepey in guinea-pigs wes ahown to be possibly dae to a traumatic injury producing epilepey in the parent; yet it was not alleged that the production of epilepey by these means in the parent was always followed by the appearance of epilepsy in the ollspring.

It whes asid that the inductive proof of the cause of a phenomenon rested on the definition of cause; for nothing that does not stand to the phenomenon in relations that eatisfy the definition can be the cause of it; and it in by eliminating all alternatives that its canse is inductively established. Our definition of cause assumed that it reciprocated with its effect. But if it does not, we clearly have no right to eliminate whatever fails to reciprocate. The admisaion that there are non-reciprocating causal relations may seem therefore to invalidste reasoning that starts with the assumption that cause and effect reciprocate.

This difficulty has been portponed till now, partly that the exposition of the subject might not be unduly complicated : but
also, because the cassal relation is really, and in its strict sense, reciprocal, and without understanding that first, we could never render non-reciprocating causal relations intelligible to ourselves. Properly speaking, to give the cause of anything is to give everything necessary, and nothing saperfinons, to its existence. Nevertheless we ahould often defeat our ends, if we gave precisely this; if our object in oeeking the cause of a thing is that we may be able to produce or prevent it, and if something in neceseary to its existence which is a property of an object otherwise superflnons, it would be of no use specifying the property necesary unless we also specified the otherwise superfinors object in which it was found. ${ }^{1}$ Even though we have no such practical purpose, so long ae we do not know what object contributes, in the property which it possesses, the fiector necessary to the effect, we can hardly be said to anderstand complotely the production of the effect. Hearing at a distance, for example, depend on the tranamiacion of certain vibrations tbrough an elastic mediom; the neceasary elasticity is a property of the eir; and therefore we can hear at a distance in the air, while if thare is a vecuum interposed between the sounding (i. e. the vibrating) body and the ear, the transmisaion of the sound is prevented. It is true that, except in reapect of its elesticity, air is quite superfluous so far as hearing at a distance is concerned; not air in the concrete, but that property in abstraction, is one of the conditions thst make op the reciprocating cause of hearing at a distance. But an olastic mediam cannot be just elastic and nothing else besides.' We want to know what posessed of the necessary elasticity is preeent when we bear at a distance ; nor could any one, without knowing that, prevent the transmission of sound by removing the elastic medium ; for he would not know what to remove.

We may pursue this illuatration a little further. It might be shown inductively that the interrening air was the cause of the trans,

[^268]misaion of sound; indeed it was shown inductively, by the belp of a well-known experiment. And apeaking loosely, it is true that from the presence of air it can be inferred that sound will be transmitted, and reciprocally, from the tranamission of sound, that sir intarvenes. Yet neither inference is quite safe. The first is only true with qualifications: the distance muat not be too grest in proportion to the loudness of the sound, and eo forth. The second may be altogether false; for cound can be tranamitted through water, or (with the belp of a talephone ${ }^{2}$) through a vacuum. And in this case the reason is that the eleaticity is provided in some other way than by means of a continuun of air. We saw that, except in reapect of its elacticity, air was saperfluous : but we could not get the elasticity alone. Now we find that there are other elastic media which will eerve, and the elasticity may be provided by them. An elantic medium is what is wanted; but divers things will supply the want. They are alternatives, and none of them axclusively reciprocstes with the effect; for the effect may be produced by the help of any one of them, so that the occurrence of the effect doee not prove that any one more than another is producing it. But their common property of providing an elantic medium doee reciprocate; sound cannot be tranamitted without that.

There ie, then, alwaye a reciprocating canse ; bat it is not always most instructive to state only that. And very often that is not what we want to know. There are several reseons for this.

In the first pleoe, though the objeot of a science is to discover strictly univarsal propositions, and though in most soienoes ${ }^{3}$ these involve relations of canse and effect, yet as a acience advances, its problems often take a different form than that of an enquiry after the canse of a given phenomenon. We may start with some phenomenon that eeems comparatively simple; and, as we proceed, may find that it depende apon a namber of conditions being combined together, each of which can be fulfilled in a number of ways, but none of them without much that is superfloons or irreleanant to the production of the phenomenon in quertion; each is an incident of some concrete event, or implies the operation of a property of some concrete object,

[^269]like the elasticity of air in the case of the tranamission of cound. To state in abstract form the conditions that mart be satiefied, without indicating the kind of object or event in which ouob conditions can be realized, is uninstructive; for it faile to explain by what the phenomenon is produced; yet to mention every object or event in which the conditions might be realised would be an endlese and unprofitable task. Hence we alter the form of our problem. Looking upon the phenomenon as the complex result of many conditions, we attempt to detormine not what assemblages of objects or events will produce the result, nor on what properties or incidents therein it depends; but what is the principle of action in different objects or evente, in virtue of which eome one particular condition neceseary to the production of the phenomenon is realized in them. For the reciprocating canse of a complex phenomenon we subetitute as the object of our search the principle in accordance with which a certain kind of object or event acta. Our problem is better expressed as that of discovering laws of nature, than cansea For example, we may ask what is the cause of the monsoons-that is, of the regular and periodic winds that blow steadily in cartain regions for one part of the year in one and for another in the opposite direction? If we said that they were due to periodic alternations in the distribation of atmospheric pressure, it wonld not be very instructive ; for we really want to know what evente, happening in those regions, produce thees differences. Yet the events which contribate to determine the deviation and direction of the monsoons are nurterous and rariable : the exact combination of them differs from year to year and from place to plece, and produces corresponding differences in the reeult. It is better therefore to take these ovente, by their kinds, singly: to point out the difference in power of the sun at eny place produced by the varying direotnees of its rays; how the sea gives off vapour; how vapour abeorbs part of the heat of the sun's rays; how the heated water circulates with the colder; bow the earth aboorbs and retains the heat of the sun ; how air is expended by beat; how the principle of atmospheric presere acte under conditione of different expansion; and so forth. Then we can see that if a certain combination of events ocears, a particular complex result must arise; if the mun travels from over the see to over the interior of a continent, we ahall find monsoons; for the difference between summer and winter temperatare will in

xyIr] NON-RECIPROCATING CAUSAL RELATIONS 445

the interior be very great, bat on the sea, owing to the way in which the moisture of the air absorbs part of the heat, and the currents in the water carry away part, it is not $\mathbf{0}$ great; bence as summer is ending, the air inland will be hotter and have expanded more than out at sea, as winter is ending it will be colder and have contracted more; so that at one time the current of air sets inland in accordance with the lawe of atmospheric preasure, and at another time it sets shoreward. The principles, or ways of acting, on the part of the oun according to ita altitude, of the earth and sea reapectively under the influence of heat, of air when unequally expended, ce., are not exhibited eolely in the pbenomena of moneoons; while the details of thoee phenomens display the influence of other principles of action on the part of other objects (a g. the sotion of a mountain-wall on a moistare-laden wind). To give the canse of monsoons, without defioienoy or superfluity, would mean that we must not mention the sun (because only the heat of ite raye is material) nor the sea (because only ita fluidity and its power of giving off vapour concern us, and a lake, if it was big enough, would do e well) nor any other of the concrete thinge which act in the way required, but only their requisite actions. If we do not go to this length of abstruction, we shall have to include in our statoment of the canse elements at least theoretically superfions; and even eo, we shall have to chooee some particular monsoon, eupposing we are to state everything that goes to produce it. It is clearly simpler to break ap the problem, and look for the principles in mocordance with which objects of a certain kind act under certain circumstances; then we can show that the monsoon is only the complex reault of the action of a number of objects under the particular circamstances of the caee, and in accordance with the principles of action which our 'lawe' express.

This then is one reason why what we want to lnow is not by any means alwaye the reciprocating cause of a determinate phenomenon: the phenomenon under investigation is often highly complex, and subject to all sorts of variation on the different occasions of its occarrence, through variation in the objects or events contribating to its production; not the whole nature of the objecte or events under whose influence it occurs is relevant to ite occarrence, but only certain particular properties or moden of action; and it is posaible to formulate severally the principles of action involved,
from which the joint resalt may be seen to follow, where it would not be possible to asaign to the phenomenon any group of concrete objects or events as canse, about which we coold asy not only that, given them, the phenomenon must be given, bat also that, given the phenomenon, they must have been given too. These laws or principles of action may of course be proved indactively in just the same way as may a causal connerion between two particular phenomena a and m. Jurt as we may argue that a cannot be the canse of a, if it occurs in the absence of a, or is absent when a occurs, so we may argue that a law or principle of action camot be rightly stated, if consequences should follow from it as thus stated which do not actually arise, or shoald not follow, which do arise. Here, as there, we may have no other reason for accepting a theory than that the fects are inconsistent with any other that we can devise; and then our argument is inductive.

Another reason for the same fact is that for practical purposen it is generally more important to know what means will produce a certain reault, than by what it has been produced. We cannot alter the past; we may control the future. The means preecribed for the production of a certain reanalt may contain much that is not relevant precisely to the production of that result; and as this irrelevant matter may be different on different occasions, there may be a choice of means. To have a choice of means is undoubtedly useful; but if any of these means is called the cause of the result in queation, the term canse is clearly not used in the strict sense; for we may be able to argue forward from the means as cause to the reault as effeot; bat we cannot argue beokward from the result as effect to this particular mesans as cause. Yet this may be of comparatively little consequence, if our intereat lies less in being able to determine by which means the reault in question was produced on a past occasion, than that it will be produced if such and such means are employed. About a variety of advertised rat-poisons, all that we should care to know would be that they would rid us of rate; and we might endeavour to determine inductively whether a particular poison was efficacious. But we should be indifferent to the fact that other poisons might be equally efficacious, and that rats who died off need not have been killed by this particalar poison; in other words, we shall not want to learn the reciprocating cause of the dying off of rats. Indeed as long as the effect is
stated in such a general way, a reciprocating cause cannot be given. There are, as Mill observed, many canses of death; and though he was referring to men, it is also true of rats. But death is not altogether the same thing whenevar it ocears; and the doctor or the coroner knows this. The many different canses of death do not have sltogether the mame effects; if you shoot a man and if you bebead him, the difference in the result is visible; if you poleaxe an ox and if you poison him, he is not equally edible. As soon as we begin to be intereated in the particular variety of death produced, we find the number of causes that produce the result in which we are interested diminish rapidly; if we carried our interest far enough into detail, we might say that for death of a particular kind there was only one cause possible. Bat since much of this detail is quite unimportant, we treat as instances of the same event events which in eome reopecte are different, and then say that the same event has divers carses: forgetting that the differences between these several carses consist partly in irrelevant circumstances, included in our statement because indissolably bound up with what is relevant, bat otherwise superfluous to the production of this event: and partly in circomstances that are represented by differences in the resulting event, only by differences which we ignore. Here then, in the fact that our search is often for means to the production of a phenomenon of a certain general charscter, to the precise form of which we may be indifferent, is a second reason why the causel relations which we seek to entablish are often nonreciprocating.

On the other hand, thirdly, there are cases where it concerne us more to be able to argue from one phenomenon to another as its cause, than from the latter to the presence of the former as effect. For example, there may be alternative symptoms of the same disesse: for the effects of the disesse may differ to some extent in patients of different age, or eax, or race. Here it may be important to show, that if a certain aymptom occura, that disease must be present to produce it; while the fact that the disease may exist withort giving rise to that aymptom is a minor matter, and one which, if we could be certain that some other equally conspicnous and unambiguous symptom would occur instead, might be called altogether unimportant. In such a case we shall be anxious to show a causal condexion between the disease and the symptom in quee-
tion, though again the relation will be non-reciprocating; bat it will fail to reciprocste this time, because the co-called canse may exist without the so-called effect, although the so-called effect cannot exist without the so-called cause; wherens in such casen as were considered in the last paragraph, the so-called cause always produced the so-called effect, bat the so-called effect might exist without the so-called caase.

Fourthly, our enquiries are often directed to the discovery of the canse or effect of some singulor event-aingralar, not in the sense of unusual, but of a single and definite instance : we ask, for erample, what has been the effect of the repeal of the corn lawn, or what wha the cause of a particular railway acoident, or epidemic. It is plain that the relation we wish to entablish in such cases as thene is a non-reciprocating relation. The repeal of the corn laws was a measure introduced into a highly complex social and economic state, and whatever resulte we can point to depend on much elee besides that mesaure; no one would pretend that the same measure would have produced the same resulta in other circomotanoes. It might be poesible here to substitute for the question, what effect repeal has produced in the United Kingdom, the more ecientific question, in what way corn lewe act: the answer to the latter question might be given in the form of one or more universal propositions: bat the anower to the former will be a singular jodgement. For it is practically impossible to specify all the conditions which have combined with repeal to produce the resalts in which the influence of repeal is exhibited; so that wo cannot hope to establish an universal proposition of the form that repeal of corn lawn produces alwaye under auch and such conditions the resalt which we secribe to it in the case of the United Kingdom since 1846. If a man eays therefore that the repeal of the corn lawe has increesed the population, or depopalated the country, or crippled the ancient Universities, or made inevitable a celibate clergy, he is not to be underatood to mean either that it would always produce any one of these effecta, or that they must always be due to a repeal of corn laws: but only that in the history of the United Kingdom, had the corn laws remained in force, other thinge being equal, these effects would not have occarred in the same degree. So also when we enquire the canse of a singralar effect: it may be known that the reoiprocating cause of small-por is the presence of a certain
microbe in sufficient strength in the blood; bat if we ask for the cause of a definite outbreak, something else than that is wanted. We want to know what particular precaution hes been omitted, by taking which this outbreak might have been prevented; or in what particular way the infection was conveyed to the neighbourhood. Thus we might siy that the outbreak was due to a tramp sleeping in a common lodging-house, or to insufficient veccination; bot it is not imagined that a tramp suffering from emall-pox cannot sleep in any common lodging-house withont an outbreak of amall-por following in the plece; or that no such outbreak ever occura unless from that reason; while ingofficient vaccination, even if no serious outbreak ever occurred where it conld not be alleged, may provail without an outbreak following, so long as nothing brings the infection. Similarly in the case of a railway accident, the queation is, what particular act or omisaion that eome one is responsible for, or what other unforeseen event, can be slleged, without which on thic ocession there would have been no accident: did a aignalman give the wrong signal, or pull the wrong points? did an engine-driver diaregard asignal? had a flood weshed out the ballest of the line, or a fire deatroyed a wooden bridge? These and many more are the 'causes' of railway accidenta, though railway accidents occur without them, and they may ocour without accidents following.

In previous chaptars we have represented the phenomena between which it is sought to establish causal relations by letters of the alphabet. Fech of these letters is quite distinct from the reat, inculated as it were, and discontinuous both with those grouped with it to indicate contemporaneous phenomena, and with those placed apart to indicate phenomens preceding or ancceeding it; and the use of them as symbole tends to saggeat that the course of events is a succession of discontinuous phenomena, which produce each the next in a number of parallel or contemporaneous series. Nothing could be further from the trath: it is imposesible to conceive the matter thus. ${ }^{1}$ We have already noted the ambiguity

[^270]-the convenient ambiguity-of the term phenomenor; some 'phenomena' which we isolate and individualize by a name do succeed one another; but others do not precede or succeed at all, but endure or persiat. Kant eaid that 'only the permanent can change': we look on events as occurring to things ; permanent things change their states; and the permanent thing enters into the carlier and the later atate slike, or persists through them. What that is which remains unchanged, how we are to conceive it, and how we are to conceive the junction between its abiding nature and its changing states-thene are very difficult questions. And such deep questions do not belong to the Logic of Inductive Science. But it is clear that our alphabetic symbole fail in the first place to represent the persistence of anything through change : they are discontinuons in their series where they symbolize a change which is continuous. And secondly they are discontinuons within the group that represents contemporaneous phenomens; whereas the contemporaneous phenomena they repreeent are not similarly insulated from one another. What we commonly speak of as single phenomens are bound together not in independent series unit to successive unit, but by all sorts of cross ramifications, so that each is what it is in consequence of conditions which are at the same time conditioning many others in the most complicsted way. To this complication the letters of the alphabet do no justice. Doubtless if we carry our analysis far enough, we may find the a which is the reciprocating cause of x : but a will not in that case as a rule be anything for which we have any aingle name; a long and carefully guarded statement of conditions will be what it must signify.

The fact is that in most cases the reciprocating canse of anything, if we push our enquiries far enough, emerges as the conditions that constitute it, and not those that precede it and bring it about. The reciprocating cause of amall-por is that activity of a specific

[^271]bacillus in the blood in which small-por consiste: the reciprocating canse of malarial fever is the corresponding setivity of snother bacillus. But in the procession of event by which that state is brought about there may be one, which-for one reason or another-it concerns us to single out, and call the cause: and that will often be a non-reciprocating casse. It need not be so; it is possible to find an event, whose happening in a given set of conditions or to a given subject slways gives rise to some definite new event or state of that subject, and without whose happening such new event or state of that subject never arises. It is supposed for example that malaria is always communicated to man by the bite of the Anopheles mosquito; there are persons immune to the bacillus, and therefore the bite of Anopheles is still a nonreciprocating cause; but if we knew what state of a subject precluded immanity, then we could say that the bite of Anopheles caused malarial fever in any man in that state, and we should have stated a reciprocating relation; for no man in that state could be bitten without getting malaris, nor get malaris without being bitten. If with Aristotle we call the conditions which constitute anything the formal cause, and the event whose occurrence brings those conditions into being when they hed previonsly not all of them existed, the efficient casse ${ }^{1}$, we may say that the formal cause reciprocates or is commensurate with the phenomenon (as indeed anything must which can in any sense be called the definition of it: and the conditions into which it can be analysed may be called its definition); while the efficient cause seldom reciprocstes. The event which provides the conditions, or pert of the conditions, constituting the phenomenon, may also be called, in a metaphor of Bacon's using, the rekicle of the formal cause; the bite of the Asopheles mosquito is the vehicle of, or conveys, the bacillus in whose activity malarial fever consista; the headsman's axe, or the bullete of the firing party, convey, or are the vehicle of, that bodily state which we call denth.

There are indeed many cases where our ignorance of the conditions constitutive of a certain phenomenon compels us to seek

[^272]instead for eome event indispensable to ite occurrence, even though our scientifio interest would be bettar satisfied by discovering the constitutive conditions. And there is one moot extensive and important clese of caese where the reciprocating conditions cannot really be called constitative of the phenomenon; it is this clase of cases which made it necessary at the beginning of the last paragraph to write 'moet' and not 'all'. The former sort may be readily exemplified in the biological sciences. 'That form of barrennese,' writes an authority quoted by Romanes ', 'very common in some districte, which make heifers become what are called " bullers"-i. e. irregularly in seseon, wild, and failing to conceive -is certainly produced by excoss of iron in their drinking water, and I suspect also by a deficiency of potash in the soil' Here we have one and perhaps two causen alleged for an effect, whowe natare we do not understand aufficiently to see how the causes bring it about, though the facte may prove the connexion. Such a relation may be called diccontinwow-i.e. we do not see how the alleged cause, by any intelligible procession of events, pesess into the effect, or helps to set up the conditions constitutive of it. We connect one phenomenon as cause with another as effect, where from our ignorance of the intimate nature of the effect, and of the subject in which it is produced, and from the fact that the intervening procese of change is withdrawn from view, the two seem quite heterogeneons. In Chicago, one is told, there are machines into which you place a pig at one end, and receive sancages at the other. The pig and the sausages, to any one who has no conception of the nature of the machine and what befalls the pig in it, eppear in as relation of requence without continuity: first the pig exista, and then instead of it, the anaages ; but we do not see how the one becomes the other. This momewhat mythical machine may serve to illustrate how our ignorance of the nature of the procesa of change connecting one event with another may produce apparently discontinuons causal relations; and such relations are often all that we can at present hope to discover; and they are generally, as may eacily be understood, non-reciprocating relations. This case is different from that mentioned previously on p. 446; for there it was our practical ends which interested us in casuses that were non-reciprocating;

[^273]
xI11] NON-RECIPROCATING CAUSAL RELATIONS
 458

here it is due to the limitation of our scientific knowledge that we have to acquieace in them.

But in the ertensive and important class of cases to which attention must be called next, we find discontinuity even where the causal relation reciprocates: viz when the cause is physical and the effect peychical, or vice verse It has already been stated that such connerions furnish one of the best kinds of example of parely inductive reasoning, becaume there is nothing in the nature of a particular physical process which would lead as to anticipate the particalar paychical state that we find ourselven led by the facte to connect with it. What mag be the trice interpretation of this apparent dependence of prychical statee on physical processes, and phyaical movements on paychical states, is the hardest question in metaphysics. Meanwhile, at the standpoint at which many eciences and all of in in our ordinary thought are content to atop, we attribute many paychical events to physical causes, and vice versa. In science indeed the attribution of phyrical effects to peychical canses is lees common than that of paychical effecta to physical cansea; just becanse between the succeasive evente in the physical order there are prospects of establishing that continuity, which there reems less hope of establishing in any completenesa in the paychical series, and none of establishing between members of one series and members of the other, between a motion of matter in the brain and a sensation or thought or feeling or emotion. The series therefore whose members do appear capable of continuous and coherent connexion is often- treated as independent, and paychical states regarded as by-products of particular terms in the physical series; although further reflection can easily show that such a statement of the case, when thought out into its consequences, involves us in hopeless contradiction. We are however at present only concerned with the interdependence of physical and paychical states as it appears to exist, and is for many practical porposes rightly treated as existing.

It is supposed that to every distinct state of conscionsmess there corresponds some distinct state of the body; and this bodily state is not separated from the state of conscionsness by any intervening process, the discovery of which might help us to see how one gives rise to the other (as drinking water with an excess of iron in it is separated from the supervening larrenness in a heifer). There is perhape no interval of time between them, but the completion of
the conditions in which the bodily state consists is $e 0$ ipso the production of the corresponding state of conscionsness; so that some writera have been led to speak as if the state of consciousnees could be analysed into these bodily conditions, and they really constituted it. That however, when examined, proves to be nonsense.

Yet though in this field we may hope to find relations that reciprocate in spite of the diecontinuity between the so-called casse and its effect, there are instances here too where the causal relations are non-reciprocating; and of this perhaps the most notable instance is death. It was explained above, how the many alternative causes of death are not all of them causes of the aame effect; because they do not pat the body into the same state, although the differences may not concern us. But if we look not to what befalls the body, but to the reault on conscionsness-whether we suppose it to be that the soul is sepersted from the body, or that it is destroyed-we can ree no difference in that main result corresponding to the difference of the means by which it is produced. If the soul, or individual conscionsness, be destroyed at death, there is of course nothing any longer in which a correaponding difference can be displayed; if it be not, we may conceive that as the manner of a man's death, if it be not absolntely sudden, affects him while be yet lives-one death being more painful, for example, than another $-\infty$ the differences between one death and another are represented by some difference that persists in the experience of the soul after death, and therefore the effect is not really the ame upon the soul when the physical 'cause' is different. But such a suggestion is quite unverifiable; and however that may be, it is well to realize the peculiarity of the relations which we try to establish between physical caases and paychical effects; owing to the heterogeneity of the two terms, we cannot hope to find an intelligible cause of the paychical state in the conditions constitutive of the physical state with which it is connected; at this point there is diecontinuity; and so there may arise an appearance of different causes producing the same effect which we cannot explain as we explained it in a purely physical sequence. There we saw that different series of events might, in their course and as a part of their result, agree in establishing the asme complex of conditions constitutive of some particular phenomenon, although the difference in the events occasioned differences in the rest of their result which we ignored.

Here, inasmuch as we cannot see that the different causee establish conditions that are constitutive of the effect at all, the appearance of the same effect when the causes are different cannot be exhibited as a case where effects different as a whole (in a way corresponding to the difference of the canses) agree so far as concerns the conditions constitutive of the phenomenon we are inveatigating.

The term Plurality of Cawses ${ }^{1}$ has been used to indicate the fact that the same phenomenon may have different casues on different occasions. We have seen that the fact is more apparent than real : that the alternative 'cauces' of a phenomenon, which make up the plurality, are none of them causes in the strictest sense, but rather evente which agree so far s the production of the phenomenon requires, though taken as a whole they are very different. It would perhaps be well if there was a term to indicate the corresponding fact, that the same phenomenon may produce different effects on different occasions: a fect also more apparent than real, for such phenomenon cannot be the cause, in the strictest sense, of any of the alternative effects which it produces. We might epeak in this sense of the Diveroity of Effects. In neither case do cause and effect reciprocate.

Where the cause or effect sought is non-reciprocating, it is obvious that the rules on which the elimination involved in inductive reasoning rests are no longer to be safely trusted. If the same effect may have divers causes, we cannot say that nothing in the absence of which a phenomenon occurs can be the cause of it; it cannot be its cause in the perticular instance in which it is absent; but it may be on another occasion. If a small group of planta be geographically isolated from the main stock, it will diverge, and in course of time probably give rise to a new speciea; but there are other ways in which a particular group may be prevented from interbreeding with the main stock (e.g. by flowering at a different season), so that new epecies may arise in the absence of

[^274]geographical imolation ; it would clearly be unmefe to conclode, from the frect that now opeciee had arisen without geographical isolation, that geographical isolation wee not a cause of new opecies ariaing.

No doabt sach an argament would betray inaufficient analysis: it would overlook the faot that geographical isolation wn not a single factor, but highly complex; and that one featare about it-riz. that it prevented intarbreeding with the reat of the stock-characterived aleo ruch very different phenomens as dirference of flowering-season, or selective sterility. ${ }^{1}$ However, our analysia is very commonly incomplete; and then it is poesible, that by applying the above rule, of eliminating whatever faile to ocear in any instance of the effect, we have eliminated the cause altogether: and that if some circomstance is left uneliminated, becasase it fails to occur in none of the inetances of the phenomena, we take it to be the cause of what it has really nothing to do with. If a child were given the same medicine in a variety of jams, and always had a particalar biscuit afterwards, it might very likely attribute the effects of the medicine to the biecuit. Sappose my apple-crop fails four years in ancoesaion, and that each year it was 'overlooked' by a woman reputed to have the evil eye: were I to argue that the failure was not due to insufficient rain, since in the first year there was plenty-nor to hate frosts, for in the last year there were none-nor to blight, which only occarred once-nor to high winds, since the third year was aingularly quiet, I might st lout attribute the failure of the crop to the 'witch-woman' overlooking it.

In such s situation it is well to test one's resulta by the second role, that nothing is the canse of a phenomenon, in the presence of which the phenomenon faile to oecur. If the child ware frequently given the ame biscoit when it had not been doeed, it would learn to disconnect the biscuit from the effects of the medicine; and if the witch-woman were observed to overlook my orchard in several years when I subeequently obtained an excellent crop, I might be cured of my superstition. It is however posible that I might still hold her reaponsible for the bad oropa, and apply the doctrine of

[^275]the Diveraity of Eflecte to explain why her action had failed of its provious result on other cocasions. Perhap I might have had the crop blessed by a prieot, and attribute to that an effect counteracting the influence of the evil eye; or merely say, that the evil eye cannot be expected always to produce the same resulta, when there must be many contributory conditions that are varying.

There is no remedy against such errors except a wider sequaintance with facts, and a closer analysis of them, and a better way of conceiving them and their connexions. To this end however very special help is given by eaperiment. The resulta of an experiment are of the same kind with the data of obeervation-facts, namely, with which we have to make oar theories consistent; and the inductive reseoning to which the facts contribate premises is not altered in character because the facts are obtained experimentally. But where we can experiment, we can commonly discover facts which obeervation would never reveal to un. We can introduce a factor into conditions carefully prepared, $e 0$ that we know more or lese accurately what change we make, and in what we make it; and then, when we watch the effeet, the work of elimination has more groands to proceed on. If we are in doubt whether to refer some phenomenon to a planality of canses, or to a single circomstance which, as prewnt in all our instances, they have not 80 far enabled us to eliminate, we might reeolve the doubt by producing this circumatance experimentally: should the phenomenon not follow, wo hive then shown that, at least in the conditions into which we introduced it, the factor in queetion will not produce it. We may then try one and another out of the plurality of alleged alternative causes: and if we find each of them producing the phenomenon, we shall conclude that they are causes of it. We shall atill probably be far from having discovered its preoise cause, without deficiency or suparfluity; bat we shall have advanced our enquiry. The child who attribated to the biscuit the effects of the medicine conld correct ite error by experimenting with the biscuit separately, and the medicated jams separately. And if I could bring myself to experiment with the evil eye, I might convince myself that it was innocuous to orchards.

It should be noted that though the Plunality of Canses and the Diversity of Effecte render precarious, when our analysis is imperfect,
the application of both the groande of elimination just cited-viz that nothing is the canse of a phenomenon in the abeence of which it occurs, and nothing aloo, in the presence of which it fails to oceraryet the amount of error in which we may be invoived is not the same in each case. Should we reject in tarn everything, withoat which the phenomenon is found to occar, wo might reject all its several canses, and fall beck on something whose presence in the instances we have axamined is quite accidental: something altogether immaterial to the phenomenon. On the other hand, should we reject everything, with which the phenomenon is yet found not to oocur, though we might be wrong in conclading that what is left is the whole cause of the phenomenon, or that the phenomenon may not have other causes, yet we should be right in concluding that it wae not altogether irrelevant to the prodaction of the phenomenon. I give a dog cyanide of potassium, and it dies; assuming this to be the only fresh circumstance in the case, I cannot conclude that doge do not die without taking cyanide of potassiom; but I can conclude that taking cyanide of potassium contributed something to the death of this dog, and that the conjunction of the two events was not merely secidental, as eating the biscuit was accidental to the child's subsequent experience, or as being 'overlooked' by a witch-woman was accidental to the failure of my apple-crop. In the former case, where I rejeot everything in whoee absence the phenomenon occurs, I reject too much: the eseential factor larks andetected each time in a different 'vehicle': each of these 'vehicles' is rejected in tarn, and the essential facts rejected with them. In the intter case, where I reject everything in whoee presence the phenomenon fails to occur, I may reject both too much and too little-perhape too much, for what I reject, though ingufficient of itself to produce the phenomenon, may contain conditions withont which it cennot be produced : perhape too little, for what is left, while I take it to be essential to the phenomenon, may still contain more than the eseential factor that lurks within it; so that other things, in which the same essential factor is contained, may equally serve to produce the phenomenon; yet still I retain momething eseential, and do not reject everything which I need to retain.

This also is to be considered: that in the loose sense of the term canoe which we are now employing, we may either mean
(i) somothing essential, but by itself insufficient, to the production of the phenomenon (as when we say that atmospheric pressure is the cause of water rising in the common pump, though the production of a vacunm by pumping is necessary too): or (ii) something sufficient, but superfluous in part, to its production (as when we say that the explosion of a powder magazine under the place where he is atanding is the cause of a man's death) : or (iii) something at once superfluous in part and insufficient, but containing an element that is cessential (as when we say that the Company Acts are the canse of a new clang of fraudulent actions) : or, where our phenomenon is the failure or deatruction of an effect that depends on the fultilment of a number of conditions, in the absence of any one of which the effect cannot occur, (iv) something sufficient but not essential to such failure or deatruction (as when we say that a late and severe frost causes the failure of the frait crop). Now when by 'cause' we mean (i) something essential bat insufficient, it is only part of the real cause; and there must be other factors, aleo easential but aingly insufficient ; and it is false to asy (1) that nothing in the presence of which the phenomenon fails to occur is its cause in this mense; though it is true to say (2) that nothing in the abeence of which it occura is its cause. Nevertholess when we use the former rule to show that certain circumstances are not the cause, and therefore that what remains is so, we use it really to show that such circumetances are not rufficient, and that what remains is essential: which if we thereupon call the cause of the phenomenon, we mean to emphasize the fact that it is easential, but not necessarily to assert that it is sufficient; and hence, though what we reject or eliminate may have as mach right to be called the cause as what we retain and call so (as being slso ersential though not sufficient), we fall into no error in inferring that what we retain is (or contains) something essential, nor need we fall into the error of supposing that there is nothing essential in what we reject. But when by 'cause' we mean (ii) something sufficient, but in part superfluous, to the prodaction of the phenomenon, then on the contrary it is true to say (1) that nothing is the cause, in the presence of which it fails to occur: bat false to say (2) that nothing is the cause of it, in the absence of which it occurs; if a man could be blown to pieces by the explosion of a powder-magazine without dying, that would not be, in this sense, the cause of his death; but if he may die without being blown to pieces, being
blown to pieces may atill in this senne be a canse of it. In this sense (ii) of carase therefore, the second of the above rules or grounds of elimination is false, and the first true; while conversely in rense (i), the firtis is trae, and the recond false. Bot when we are opeaking of canse in rense (i), the application of what is then the false rule is lem mialeading than, in rense (ii), is the applicetion of the rule which is fileo for it. We really argue from the principle that nothing is sufficiout, in the preeence of which the phenomenon fails to occur, to the conclasion that romething else is esontial. This prisciple is trae. If the something elve is thereupon called the canse, in the sense of being esential thongh insoffcient, yot what is eliminated is denied to be casse, in the sense merely of being insofficient. By means of this discrepancy in the meaning attached to the term 'canse' as applied reopeotively to what we rejeot and what we aocept, in the case where we winh to eatablish that one thing is essentisl to the prodaction of another, thoagh not necessarily sufficient, the rule, that nothing in the presence of which the phenomenon fails to occar is ite canse, comes to seem a safer ground of elimination, than the Tole, that nothing in the absence of which it occurs is ite cause, appears to be. Bat if the term 'canse' is interproted in both with the same strictnew and consistency, there is no justification for discriminating between them.
[J. S. Mill, who spoke of what he called the Plurality of Cansee as the 'characteristic imperfection of the Method of Agreement', said that the Method of Difference was unaffected by it. Clearly he was wrong. The above argument endesvours to bring oat the truth anderlying the exaggeration of his statement. That he wis wrong may be seen further by help of the following conmideratione If a occurs under the circumatances abc, and not under the circumstances δc, I can infer that δc is not sufficient to produce x, and that a contributed to its production on this occasion; but I cannot infer that \boldsymbol{v} could not have been produced withont a : ple might equally produce it. That a and p can equally produce x (or equally produce it in bc) is an instance of the Plurality of Causes ; and it is the Plurality of Canses therefore which prevents my inferring universally that x is produced by a, or requires a for ite production, and limits me to the inference that a produces x, at leset in bc. It will be said that a and p most have some common property r, which is the really essentia! factor. No doubt; bat, as we have ween, this is equally the case in any instance of Plurality of Canses; if I
[refuse to infer, in accordance with the 'Method of Agreement', from the fact that ∞ occurs under the circumstances abe, ade, afg, that a is its cause, urging that for sught I know the cause may be c in one case, c in the next, and g in the third, I muat believe that c, c, and g contain a common r which is the really essential factor; and then a is not the 'only circamstance in common', for r is another: just as in the other ease a was not the 'only circumstance of differenoe', where as occurred and where it did not, but really r contained in a was a circumstance of difference as well.

The distinction which Mill draws between the two 'Methods' then is not altogether sound; for the appearance of Plurality of Canses affecta the inference which can be drawn in each. But there is this much truth in it, as was pointed out in the text: that in the ' Method of Agreement', where I am eliminating that in the aboence of which the phenomenon occurs, I may unwittingly eliminate the ensential factor: I throw away the baby with the beth, and am left enpposing that a is the canse of x, when a may really have nothing to do with it, and its preeence in each of my instancee be a mere accident; in the 'Method of Difference', where I eliminats that in the presence of which the pbenomenon fails to occur, though a large part of a may be superfluous to the occurrence of x, yet it is not altogether superfluous; I do not this time connect sa with something that has nothing to do with it. But I am unable to infer a reciprocating relation between a and \approx for the same reweon that in the former case I was unable to infer any relation at all-viz. the Plurality of Csuses. And let it not be aaid that this difficulty would not arise, if the conditions of the 'Method' were fulfilled, and a were the only circumstance of difference where a occurred and where it did not. For (i) I should still be unable to infer a reciprocating relation : I could only conclude that a was necessary to the production of a in $b c$: how much of be whe also essential I should not yet have discovered. And (ii)-what belongs more particularly to the present contrast-it is equally the case that if a were the only circumstance of agreement in the instances where a doen occur, the difficulty would not arise. In both cases, if the analysie of the circamstances were more complete, the Plurality of Canses would disappear.

Mill seems unconecioualy to sesume that this analysis is more complete when we employ his 'Method of Difference' than when we employ his 'Method of Agreement'. The reseon of his doing so is probably that experiment uses the 'Method of Difference' (or the principle of elimination which it involves), and a completer analysis is generally obtainable when we can experiment than when we are confined to the obeervation of ovents as they occur in natare: experiment usee the 'Method of Difference', because in experimenting we introduce or remove some particular factor-and that
[under circumstances which we have endesvoured to amertain as precisely as posible-and watch the result; and if we are right in reauming these circumstances to remain otherwise unchanged, we do approximate to having only the 'one circumstance of difference' which Mill's canon requires; in other words, we are really eliminating at once and by appeal to a aingle principle all except this factor removed or introduced by us; though it must not be forgotten that what we eliminate is only shown to be insufficient to the production of the phenomenon, and may still contain conditions that are essential though not sufficient. We may note here the reason why Mill thought the 'Method of Difference' to be of superior cogency. The reasoning is clearly no better in it; but it is casier, in the case of this 'Method', to obtain facts of the hind on which cogency depends, becense it is easier to obtain them by experiment, and this ' Method' is practically a formalation of one of the commonest ways in which we reason from the results of experiment. We may indeed say that the error into which reasoning from an incomplete analysis of the facts may lead us is greater when our ground of elimination is that anderlying the 'Method of Agreement' than when it is that underlying the 'Method of Difference': because in the former case we may reject what is easential, and end by attributing the phenomenon under investigation to something whose presence is quite accidental ; while in the latter case, we may rather end by supposing that more is essential to it than really is so. Yet there is error in both cases, and for the same resson, viz. our incomplete acquaintance with the facts. What Mill however eaw was, that where you can experiment with precision, your aoquaintance with the facts is most complete, and hence the conclusions to be drawn most cogent. It is just in these cases that the ' Method of Difference' as he formulates it is specially applicable; for it requires instances where the phenomenon occurs and where it does not occur with 'only one circumstance of difference'. He overlooked the fact that the reasoning is just the same, where this condition is not fulfilled, so long as your ground of elimination is the same-viz. that nothing in the presence of which the phenomenon fails to occur is its cause; and so he attributed to the 'Method' a superior cogency which really belongs to the 'prerogative' nature of the instances in connexion with which chiefly he considered its use.]

It has been the object of the present chapter in the first plece to acknowledge that the 'Rules by which to judge of casues and effects', whereon inductive reasoning depends, are not infallible where we are dealing with non-reciprocating causal relations; for they rest on the assumption that one effect has only one cause, and conversely that the same cause has never any but the same effect;
and so they furnish no safe guide to the discovery of 'causes ' which are not the only causes of the effect sesigned to them, or of effects which are not the only effects that the alleged canse may have. Its second object has been to show that such non-reciprocating causal relations arise from the fact of our including in the cause more than is necessary, and perhaps also lesa than is necessary, to the production of the effect: or including in the effect less or more than the canse assigned produces; i.e. our analysis is not perfect: we combine with the matters strictly relevant to one another otbers irrelevant, but closely bound up with what is relevant : so that there appears to be a Plurality of Causes for the same effect, or a Diversity of Effects for the same cause, while really, if we could 'purify' our statemant of the cause and the effect sufficiently, we should see this not to be the case. But we admitted that for many purposes, practical and even scientific, it is causes in the looser sense that we need to discover-the sense in which the cause includes more than is material to the production of the effect in queation, but a more from which what is material cannot be dissevered, and so forth. And we asw that science, when pushing its investigation beyond such a level as that, tends to substitute for the rearch for the determinate cause of some concrete effect the search for laws or principles in accordence with which things of a certain kind act on one another under specified conditions.

In illustrating these pointe, the rules whose guidance we showed to become unsafe when non-reciprocating relations were in question were the first two of the rules laid down in the Twentieth Chapter. But the last two are also lisble to mislend us in ruch cases. These are, that nothing which is constant when the phenomenon varies, or varies when it is constant, or varies independently of it, is its cause: and that nothing which produces a different effect is its cause. In particular I cannot, because elimination based upon these rules reveals that a is not independent of a in the instancee before me, infer that a never occurs without a; for p might do $a s$ well. If I find that the faster I run, the hotter I get, and if I know that the temperature of the atmosphere has not altered, and so forth, I may infer that running makes me hot; but not that no one gets hot without ranning. If I experiment over a series of years with a particular manure, and take care to ascertain by 'controlling' experiments the average crop that I might have expected without
its une, I may be led to attribute the excem to the use of the manure; but I cannot conclade that a aimilarly large crop is alwaye due to the use of it. Errors of that sort would be similar to those which I might commit in applying the rale that nothing is the casse of a phenomenon, in the presence of which it fails to ooeur: then too I have no right to essumo that what I fail to eliminate is altogether neceseary, and that nothing else woald serve equally insteed of it. But the danger of eliminating too much, which besets the application of the rale that nothing is the canse of a phenomenon, in the abeence of whioh it occurs, doee not equally beset the application of the two rules we are now considering. It is true that in invertigating the canse of a phenomenon that may vary in quantity or degree, and is due as a whole to a number of contributory factors, this danger is theoretioally possible. The quantity or degree of the phenomenon might remain constant, owing to divers complementary varistions in the factors, some increasing an others decreased; and becanse the variations makked one another, I might reject each varying factor in turn, until I had rejected all the contribatory factors, as capable of varying with no correaponding variation in the phenomenon. Bat this is not a probable error. And the fact that the phenomens, to which these rulea are applionble, are chielly meassrable phenomens, is of great importance in the use of them. Peculiar difficulties no doubt often beset us in tracing the influence of some particular factor apon a phenomenon, which varies in magnitude dependently upon the joint ection of a large number of conditions independently variable; it is for erample exceedingly hard to determine indactively whether the corn-daty of 1002 influenced the price of bread in Great Britain. But these difficulties would obviously be altogether insurmountable if no measarement of the conditions and of their result were poesible. The introduction of the element of quantity ensbles us to determine lews which connect a definite amount of change in one phenomenon with some correaponding amount in another. Where we can do this, we are already getting clear of the errors lurking in non-reciprocating causal relations. It still remains true that we cannot, in virtue of a law which connects with a change in the condition a s correoponding change in the reault x, argue beckwards from the presence of x to that of a. But that point has been sufficiently exemplified already; and inasmuch as

xul] NON-RECIPROCATING CAUSAL RELATIONS 465

some special attention will have to be paid in another connerion ${ }^{1}$, when we are dealing with the importance of quantitative methods in indaction, to the two rules or principles of elimination lant mentioned, it is perhape unnecesesary to say anything further here apon the care that mast be ased in argaing from them when the cansal relations which we have it in mind to establish are nonreoiprocating.
${ }^{1}$ CE. infros, a. xiv, pp. 516-521.

CHAPTER XXIII

OF EXPLANATION

To explain anything is to show that it follows from something either already known, or taken as known, or shown by our explanation to be trae. ${ }^{1}$ Explanation is dedactive, for it goes from conditions to their consequences, from principles to that which they involve. We may explain either a particalar fact or a general principle. There is no fundemental difference between the two undertaking; but in the explanation of particular facte, particular facte necesgarily figure among the conditions to which we appeal. In all explanetions, our premisees are 'special' or 'proper' or acientific principlea. General logical considerations, such as direct us in the inductive sesich for caneal relations, account for nothing in particular; every explanation must be consistent with them, but they will not themselves explain anything. The explanation of the facts or derivative laws of any science rests therefore on a scientific knowledge of the subject-mattar of that ecience.

In an earlier chapter it was pointed out that the first or fundamental principles of science are themselvea insusceptible of scientific explanation. It does not follow from this that the principles which at any given time are the most ultimate to which a science appeals should be insusceptible of explanstion; the Law of Gravitation, for example, is and has long been a fundamental physical principle, but various mathematicians have attempted to show that the behaviour of matter expressed in that law follows necessarily from some more general principles axhibited aleo in activities whose principles we commonly regard a different, like electricity and light. But the process of explaining must come somewhere to an end, with priaciples deducible from nothing prior to themselves.

These principles, as was also pointed out, mas possibly appear
' We may point to fucts from which it followe that we must believe a proposition; but we do not thereby explain the proposition. It is the thiog believed, and not our believing, which math be ihown to follow, if we are to ray that we are finding an explanation.
self-evident when we have reached them; the Finst Lew of Motion has often been thought to be a self-evident or necessary truth. But in most cases, they do not; and then all that we can say about them is that nothing so well explains those facts, the stady of which ${ }^{\prime}$ has led us to their enuncistion. This however is a pis aller.

It hes not infrequently been said that ecientific certainty is unsttainable. Jevons arges that the conclusions of Induction are only probable at the beat. The resson is that the principles which we arrive at 28 those which explain things are not-at least as a rule-seen to be neceseary; and that we cannot absolutely prove that no other principles will explain the facta : just as in eimpler inductive enquiries our confidence in the canse which we assign to a phenomenon in qualified by the difficulty of being anre that we have overlooked nothing which might equally, upon the facts examined, be allowed to be the cause.

Jevons indeed suggests ${ }^{1}$ that the true though impracticable road to certainty would lie in Complete Enumeration. 'Perfect Induction' reste on complete enumeration, the 'Imperfect Indaotion' of actual reientifio procedure does not; and in this he sees the source of the 'imperfection' which conclusions only approximately certain possesa. But though we may agree with him that many of the conclusions accepted in acience foll short of certainty, we cannot agree that they would rank higher if they were reached by complete enumeration; for in that case they would not be univeral truthe at all, in the proper sense, bat only truths about the whole of a limited number of particalar facta. Indeed the antithesis of Perfect and Imperfect Induction is an unfortanate one. It belongs to a different sense of the term Induction from that which, in the phrase Imperfect Induction, the term now bears. It is drawn from the completeness and incompleteness of the enumeration of the particulars on which the Induction resta, and to which ite conclusion refers; we have seen that if a generalization resta merely on citation of particular facts, without any attempt to establish connexions of a causal character by analysis and elimination, the citation should be complete; though in such cases, the conclasion has not the true character of an universal proposition. But the ressoning which infers general truths from the analysis of a limited number of

[^276]particalars doee not rely on enumeration, and is not an operation of the same kind as that which proceeds by complete enumeration. Though the one therefore may cite every instance, and the other not, yet they are not to be contrasted as if they were operations of the aame kind differing only in that feature. They are operations of different kinds; and their other differences are more fandamental than the difference in the completeness or incompleteness of the enumeration they involva. If the one is called perfect because ite enameration is complete, it muat be remembered that it requires a complete enumeration; bat since the other does not require it, it is mialeading to call it imperfect for not employing it. The imperfection attaching to the conclusions of indactive ecience-conclusions which are anid to be reached by "Imperfect Induction"/springs from the defective analysis of the instances cited, not from failure to cite every instance; and it is a mistake to suppose that ' Perfect Induction', if it could be employed -as it is acknowledged it cannot-would remove the defect of cortainty atteching to acientific genernlizations. For science seeks after the neceseary and the universal, not after the exceptionless.

However, our present concern is less with the reason for the want of abeolute certainty in the pripciples of ecientific explanation, than with the fact itself. It cannot be denied that the first principles of ecience rest for the most part on no better foundation than this, that no others heve been suggented which explain the facte equally well; and this is not the aame an saying that no othere can be suggested which will do en. And even if we were antisfied that no others could be ruggested, i. e. if we could be certain that nothing 80 well explains the facts as the principles to which we appeal in our explanation, yet if we cannot see why these principlee need have been what we find them to be, we are etill left with something that at once demande to be and cannot be eccounted for.

We shall be wise therefore to recogrize these two thinge aboat scientific explanation at the outeet, viz. (i) that it often starts with principles, or traths, or laws, which are neither acconnted for nor in themselves self-evident, but only warranted by the succes with which they account for the facte of our experience: and (ii) that these principles are not abeolately and irrefragably proved, so long as any others which might equally well account for the facta
remain conceivable. But it woold be foolish to let these considerations engage us in a general and indiscriminate distrust of acientific principles. Such principles may lack that demonstrable character which we should like them to have; and Logic would sbandon its function, if it heaitated, out of reepect for the greatnoss of acientific echievement, to point this out. But they hold the field; we are not entitled to treat them as dogma, which cannot be questioned; bat we are entitled to asy that so long as they remain onahaken, thay should be treated as true.

It may be objected that they are not unghaken; for the fundemental concepts of eciance are unable to reaist metaphysical criticism : the independent existence of matter, the action of one independent thing on another, the production of a conscious state by a process in a physical organim, are all anintelligible. And it most be allowed that the representation of reality which the physical sciences offer cannot be the ultimate trath. But if the provisional nature of its metaphysical asgaptions be borne in mind (for acience does not really discard, though it sometimes profesees contempt for, metsphysics), we may then admit the explanations which it offers within their limits.

If however we are to acoept those principles which best explain the facts of our experience, we must have some anteoedent notion of what a good explanation is. Now it can certainly be required of an explanation that it should be melf-consintent. But we are not content with this. There are a number of maxims, which do actually gaide us in theorizing about the laws of nature, pointing to some more positive ideal than self-consistency. The influence of these maxims shows that there operatee upon ecientific minds some notion of what a rational universe should be, as well as a belief that the universe is rational, not derived from experience, bnt controlling the interpretation of experience. We saw that the principle of the Uniformity of Nature was an 'anticipation' of this kind; but it does not stand alone in that regard. "The common notion that he who would search out the secrets of nature must humbly wait on experience, obedient to its alighteat hint, is' it has been eaid ',

[^277]' but partly true. This may be his ordinary attitude; but now and again it happens that observation and experience are not treated as guides to be meekly followed, but as witnesses to be broken down in crose-eramination. Their plain message is disbelieved, and the investigating judge does not parse until a confession in harmony with his preconceived ides has, if possible, been wrung from their reluctant evidence.' What these preconceived ideas are, it would be difficult to say precisely; nor is the question of their justification an easy one. They have formed the subject of considerable discussion on the part of philosophical writers since the time at least of Leibniz, who perhapa did most to call attention to them. But one of the most famous has a mach higher antiquity. 'Occam's razor' '1-entia non sunt multiplicanda practer necessitatemis a maxim to which ecience constantly appeals. It is felt that there is a presumption in favour of theories which require the smallest number of altimate principles: that there is a presumption in favour of the derivation of the chemical elements from some common source, or of the reduction of the laws of gravitation, electricity, light, and beat to a common basis. Again, we are inclined to believe that the ultimate laws of nature are not only few but eimple. The law of gravitation atates that the attraction between any two bodiea varies inversely as the equare of the distance. But it is conceivable that the true relation of the force of attraction to the distance of the bodies between which it acta is not so simple; provided it diverged from the ratio of the inverse equare so slightly that the difference would be less than our obeervation, with the margin of error to which it is liable, could detect, such less simple relation would have as much to be said for it, so far as the facte go, as the simple relation that Newton eatablished. Yet few would seriously consider its claims. It may be said, and truly, that there are sound practical reasons for accepting the simple relation, in preference to any other that has no better claims, because it renders our calculations much easier; yet it may be doubted whether we really regard it as only a more convenient hypothesis. , We should regard it as more likely to be true, and this becanse such a simple relation satisfies better our ideal of explanation.

[^278]J. S. Mill's definition of Laws of Nature has been alreedy quoted'the fewest and simpleat asaumptions, which being granted, the whole existing order of nature would resalt'. ${ }^{1}$ In the words 'fewest and simpleat' are contained perhape the moot important of the preconceived ideas which we have abont the explanation of the facte of nature.

It is imposesible to reduce explanation to any definite formulee. When nothing bat a middle term is wanted, to connect with a subject a predicate empirically found to charactarize it, there it will fall into the form of syllogism. ${ }^{3}$. But comparatively fow explanations can be expressed in a single ayllogism. Where, as is commonly the case, they trace the complex reanlt of several principlea in some particular combination of circumstances, the building ap of thie reanlt in thought can never be expresed ayllogistically.

As has been said above, there is no fundamental difference between explanation of a particular fact and of a general principle. In the latter case, more abstraction has been performed; we are explaining something exemplified in ficta that constantly occur, that has beep extricated in thought from varying and irrelevant detail. In the former also, eome amount of abetraction must have taken place; but the fact we have thus isolated still retains details that make it anique. An ocelist may explain the common fact that shortsighted persons grow longer-sighted as they grow older, by showing how clear vision depends on foonsing all the rays proceeding to the eye from each reveral point procisely apon the surfice of the retina ; in short-sighted perrona, the carvature of the lens of the eye is excessive, and therefore objecte have to be nearer than would normally be neceseary, in order that the raye proceeding from any point in them may be focesed on the retins and not in front of it; but the carrature of the lens is maintained by certain mascles, which relax with age, and therefore as years advance, clear vision of objects in posesible at a greater distance. If he were called upon to explain some unique pecoliarity of vision in a particular patient, the task would still be of the eame kind; bat the facte to be taken into account would partly be facts peculiar to this case, and though their consequences would be traced eccording to general principles, their special combination would make the complex reanit unique:

[^279]unique however not neceesarily, for the same combination might conceivably recur, but only an a fuot within medical experience.
Historical explanation is largely concerned with events in this sense unique. History has goneralizations that admit of explanation also; but human affirirs are 00 compleax, and oor interest in them vertends into so muoh detail, that the noique occapies a quite peculiar ahare of attention in ite invertigations. And its task consists largely in mating frets intalligible by tracing their development. For an institution or event, when we come upon it as it were abruptly, may surprive us: whereen if we know the pest, we may wee that ite existence or ocourrence connects itealf with ather fucte abont the eame folk or period in acoordance with accepted principlee. The institation of primogenitare for example, according to which land descends upon the eldest son, is a pecoliar institution, unknown, according to Sir Henry Maine, to the Hellenic, to the Roman, and apparantly to the whole Semitic world; neither did the Teatonic recees when they apread over Weatern Earope bring it with them an their ordinary rale of macoession. Whence then did it originate? for anch institutiona do not occur at haphezard. Maine scocounte for it as 's produot of tribal leadership in its decan'. Chieftaincy is not the mame thing as being a lendowner; but some of the tribal lends were generally the appanage of ohieftainoy. So long as times were warlike, the ohieftainoy aeams not neccesarily to have gone to the eldeest son of the decensed ohief; but 'wherever some degree of intarnal peace whe maintained during tolerably long periode of time, wherever an approach was made to the formation of societies of the distinotive modern type, wherever military and civil institutions began to group themeelvee round the central anthority of a ling, the value of atrategical capacity in the hambler cbiefo would diminish, and in the amaller brotherhoods the reapect for parity of blood woald have unchecked play. The moot nataral object of this respect is ho who moot directly derivee his blood from the last ruler, and thas the eldest son, even though a minor, comes to be preferred in the succossion to his uncle; and, in defanalt of sons, the succession may even devolve on a woman. There are not a fow indications that the transformation of ideas was gradual': The castom, Maine thinks, was greatly fixed by Edward I's decision in the controverry between Bruce and Baliol; where the celebrity of the dispate gave force to the precedent. The rule of primogeni-
ture was extended from succession to the lord's dememe to succession to all the estates of the holder of the signory, however scquired, and ultimately applied to all the privileged clasees throughout feadalized Europe. ${ }^{1}$ In a case like this, a knowledge of past facts enables us to see how a now custom might emerge conformably to known principles of human nature. There are motives for allowing the chieftaincy to devalve upon the eldest mon, and motives for conferring it apon the strongeat of the near kindred; when the latter are weakened by change of eircomstance, the former are likely to prevail. The inflaence of precedent apon the human mind is also a familiar prisciple; and though it is imposeible to show that in such cases nothing else could have happened (Edward I for example might have decided differently), yet what did happen is shown to follow socording to accepted principles from the previous circamstances.

Sciences like Geology or Biology set themselves for the most part to solve more generalized problems of development: though to them too some particular faot, apparently in conflict with a theory, may offer occacion for a detailed historical enquiry. But the explanation of the occurrence of erystallized rook, common as it is, is not logically different from what it would be if. there were only one place where it occurred; and if we set about accounting for that local and temporal affinity of species which is expressed in Mr. A. R. Wallece's principle that 'Evary species has come into existence coincident both in spece and time with a pre-existing and closely allied species',' we thall not proceed otherwise than if the affinitiee of one particular historical group of species were to be sccounted for.

There are other acienoes (e. g. Politieal Economy or Kinematice) which do not concern themselvee with tracing any particular historical development, yet have to explain the laws manifested in a enccession of eventa. Here too it may be of the easence of the explanation to show how one change determines another, and the new fact thas introduced determines a third, and so forth. The laws to which we necemarily appeal may be different lawe, and the sequence is explained by resolation into itages, each of which

[^280]exhibits \& general principle, while the epecial circumstances in which auch a prineiple is exbibited farnish the occasion for a further change that exemplifies another.

There are cares where the element of time is one of the moot ${ }^{1}$ important of the facto. Many effecte depend apon the jaxts. position of objects in speoe, and their juxtaposition depends on time-conditions. The fortane of a campaign may be decided by the rapidity of a march, bringing troops upon the field at a critical moment; the troops may fight upon the same principles and with the same degrees of counge all through, but the result is determined by their being there at the time. The working of a machine would bo thrown out by anything that delayed or hastened the movement of a part with which other moving parts had to connect; and the same is of course true as regarde the articulated movements of an animal. The disintegration of mountains is largely produced by frost succeeding rain; if rain only succeeded frost, it would not take place in the same way. Professor Marshall has called attention, in his Principles of Economics, to the great importance of the element of time in the working of economic lewe. ${ }^{1}$

There are however also many results that are to be accounted for through the concurrent operation of several principles : or rather -for principles cannot in otrictness be said themselves to operatethrough the concurrent operation of several causes, each eccording to its own principle. The path of 2 projectile at any moment is determined by its own motion, the pull of the earth, and the resistance of the atmosphere. It is true that at every moment these forces are producing a new direction and velocity in the projectile, which forms the basis for an immediate further change; and that it is by following the continuons series of these successive changes that its path is ascertained-a task which the notation of the calculus alone renders posaible. The consideration of any term in the series of changes as the resultant of aimaltanoously operating causes io however different from the consideration of the succession of one resultant change upon another in the series And the explanation of many problems lies in showing the concourrent operation of different causes, each acting continuously according to its own law; as opposed to the case just considered, where one

$$
{ }^{1} \text { e-g. Bk. III. o. iv. § 5, 4th od. p. 18\& }
$$

cause may produce an effect that, by virtue of the conditions with which its production coincides, then produces a fresh effect in accordance with a different law. The column of mercury in the barometer is maintained according to lawe that are all continuously exemplified, and not first one and then another of them; the atmosphere is always axarting pressure, and in the mercury the pressure is always equalized in virtue of its nature as a fluid. Economists are familiar with 'Gresham's Law' that bad money drives out good, i. e. that if in any country the circulating mediam is not of uniform quality, the beat is always exported and the worst left behind. By beat is meant that whose intrinsic value bears the higheat proportion to its nominal value; a sovereign which contains the proper weight of fine gold being better than one containing less, and so forth. The explanation of the Lsw is simple. Government can make the bad money legal tender for the payment of debts at home; it cannot compel the foreigner to receive it. For discharging debts abroad the better money is therefore more valuable, for diecharging debte at home it is no more valuable than the worse ; it is therefore more profitable to export the good, and keep the bad money for home purposes; and the desire of wealth being one of the strongest and most uniform motives in mankind, what is most profitable is naturally done. Nothing tarns here apon the resolution of a sequence into atages exhibiting different laws; the derivative law is shown to follow from more general laws, under the special assemblage of circumstances described in asying that the circulating medium in a country is not of uniform quality; but these general laws are exhibited simultaneously and not successively. That the power of any government extends to its own subjects only, and that men desire wealth, are principlea more general than Gresham's Law ; and both apply to money, which is at once, as legal tender, a matter to which the power of government applies, and, as medium of exchange, the equivalent of wealth.

No logical importance attaches to the distinction between explanations that derive a complex law from simpler lnwe exemplified together, and those that derive it from simpler laws exemplified successively. Many explanations involve both featuras. But there is a difference of more importance between either of theee, and that form of explanation which consists in showing that laws, hitherto
regarded as distinct, are really one and the amme. Newton ahowed that the familiar fact that heary bodies fall to the earth, and the equally familiar fact that the planeta are retained in their orbits, were really instancee of the aame principle, the goneral Law of Attraction. Something of the mame cort is done when Romanee brings Natural Seleotion, and Serual Selection, and Phyviological Selection, and Geographical Ieolation under the general conception of forms of Isolation preventing free intercroveing among an the members of a species. ${ }^{1}$ In cases like theso, the derivative law is not deduced from several more general laws exemplified together or succeesively in complex circumstancee of a particular Hind; but a single more general law is shown to be exemplified in a diversity of circumotances which have hitherto concealed its identity. This operation is sometimes called aboumption, as bringing eeveral conceptions under one, in the character of instanees, or of subjects of which it can be predicated in common. Yet even here it is plain that the operation, of tracing the distinctive peculiarities of the lawe explained or subsamed to the special character of the circomatances in which the ame more general principle is exhibited, is of the same kind as occurs in all other forms of explanation : only the further synthesis of the consequencea of eeveral laws is lecking.

Explanation, as was anid at the beginning of the chapter, is deductive-deductive, that is, in respect of the reasoning involved in it Yet it has a close relation with the work of Induction, and the consideration of this will form the aubject of the remsinder of the chapter.

Explanation starta, as we have seen, from principles already known, or taken as known; and it shows that the matter to be explained follows as consequence from theme. But it is clear that the reasoning which deduces their consequence from them is unaffected by the nature of our grounds for taling them es true. If they were nothing more than hypotheses, we might etill argue from them to their consequence as if they were indubitably certain. Just as we may ayllogize in the mame way from true premisees and from false, $\infty 0$ it is in any other kind of reasoning. Moreover, it was pointed out that many at least of the moat general and fundamental of our soientific principlea are accepted only

[^281]becsuse they explain the facts of our experience better than any we can conceive in their stead; they are therefore, or were at the outset, hypotheses, used in explanation of facte, and proved by their relative success in explaining them. We do not see why they are trae, but only why we must believe them to be trae. They are established inductivaly, by the facts which they explain, and the failare of any rival hypothesis; the facts are explained from them.

It follows that all the deduotive remoning that enters into an explanstion enters into the inductive proof of an hypothesia which is shown to explain, and to be the only one that will explain ${ }^{1}$, the facts. And many explanations are put formard, which do not appeal only to principlea already known, bat have it as their avowed object to prove one or more of the principles which they employ. Explanation then figuree as an instrament of induction; and J. S. Mill spoke accordingly of a 'Deductive Method of Induction', and rightly attribated great acientific importance to the procens which he called by that name.

No better instance of this operation can be given than the familiar instance of the Newtonian theory of gravitation. Sir Isack Newton ahowed that the movementa of the heavens could be explained from two principlea or lawb-the First Law of Motion, and the Law of Universal Gravitation. The former is, that every body preservee its atate of reat or aniform rectilinear motion until it is interfered with by some other body; according to the latter, every particle of matter attracte every other particle with a force that variee directly as the mase and inversaly as the equare of the distance. The former had already been establiahed by Galileo, and Newton took it for granted; but the latter he proved for the first time by hie use of it in explanation.

The theory which bears the name of Ptolemy, though much older than he, reprevented the san, moon, and atars as moving round the earth; and originally it was supposed that they moved in circles with the earth as centre. While the laws of motion were still

[^282]undiscovered, no difficalty was found in theit circalar motion; indeed Aristotle supposed it to be naturally incident to the sabstance of which the heavenly bodiee were composed, that their motion should be circular; for the circle is the perfect figure; movement in a circle is therefore perfect motion; perfect motion belongs naturally to a perfect body; and the substance of which the beavens are composed-the quinla essentia, diatinct from the four primary substances, earth, air, fire, and water, that are found compresing this globe-is perfect. ${ }^{1}$ The only difficalty arose when it was found that the orbits of the heavenly bodies, other than the fixed stars, were not perfectly circular ; and that was met by the hypothesis of epicyclea referred to in an earlier chapter. ${ }^{2}$ The substitution of the Copernican for the Ptolemaic hypothesis, though involving a reconatruction of the geometric plan of the heavens, did not necesearily involve any new dynamics; Kepler's discovery that the planetary orbita were elliptical was however a severe blow to the traditional theory of epicycles, which had already by that time become highly complicated, in order to make it square with the observed facts. But when the first, law of motion had been grasped, it was evident that a planet, if left to itself, would not continue moving in a circle, and returaing on its own track, as Aristotle had thought to be natural to it, and as with more or less approximation it actually does: but would continue moving for ever forward with uniform velocity in a straight line. Circular motion, however uniform, was now seen to involve an uniform change of direction for which a dynamical reason was required. And as the planets were constantly changing direction towards the san, s force exerted from or in the direction of the sun seemed necessary.

Now the greatness of Newton's achievement did not lie in the couception that the orbital motion of the planets was the resultant of two forces, the 'impressed force' (as it is called) which, left to itself, would carry them forward with constant velocity in a straight

[^283]line, and a 'centripetal force' which, left to itself, would carry them to the sun. The resolution of corvilinear into rectilinear motions had been accompliabed before him, and the hypothesis of an attractive foree had already been hazarded. It had even been suggested that such a force might vary inversely as the square of the distance; for the area over which it might be conceived as spreading in any plane talsen through the centre of the sun varies directly as the equare of the distance, and its intensity might be supposed to decrease as the area increased. Neither was it Newton who ascertainod the fects about the movements of the planets-no mall or eney contribution to the solation of the problem. But he did two things. He conceived that the force which deflected the planets into their orbits was the amme as that which made bodies fall to the earth: or, to put it differently, he identified celestial attraction with terreatrisl gravity, and conceived the earth as continually falling out of a stright path towards the sun, and the moon towards the earth; and he invented a matbematical calculus by which he could work out what were the theoretical consequences of the principles which he assumed.

Both these steps were of the bighest importance. The first provided data to calculate from; the second made the calculation posesible. The amount of acceleration produced per second in near bodies falling to the carth wes already known ${ }^{1}$; from that it could be eatimated what it ought to be for a body 00 many times remoter ss the moon, or what acceleration a body so many times more massive than the earth as the sun is ought to produce, if once a method of performing the calculation could be devised.

With this method Logic is not concerned. Processes of reasoning are too numerons for Logic to enumerate them all, and those of mathematice are for the mathematician to appraise; it is enough

[^284]if the logician can satisfy himeolf in general regarding the grounds of mathematieal oertainty. But everuming the tack of dedncing from his principles their theoretical consequenoes to have been parformed, we may look at the logioal charncter of the reasoning in which Newton made use of that deduction.

The principal entronomical frets to be mocounted for concersed the movements of the earth and other planets round the eun, and the movementes of the moon round the earth. ${ }^{1}$ The former body of factes had been alreendy generalized by Kepler, in his three ham, (i) that the planets move in ellipees round the sun, with the ann in one of the fooi; (ii) that they describe equal aress in equal times; (iii) that the cubes of their mean dirtances vary as the squares of their pariodio timeer: There was also a large body of recorded obearvations upon the movementa and pertarbations of the moon; and when Newton first worked out his theory, he found it led bim to different resalts than thoee actually recorded. He therefore laid it aside; and it we only after several years, when freek and corrected obearvations upon the moon's motion were published, that he returned to it. He then found the theoretioal remulte agree with the observed facta; bat to show this max not sufficient. He demonstrated further that from any other bypothesis as to rate of varistion in the attractive force resalta followed with which the obeerved fucta conflioted; and thes showed not only that his theory might be trae, but that if the planetary motions were to be acoounted for by help of a theory of
${ }^{1}$ Where the planeta are mentioned they may be taken to include the moon, unlees the contert expremaly forbide.

- Perchape it should be explained that as s cirole is a curre, every poini on which is equidistant from a point within it called the centra, 00 a ellipse is a curre, the sum of the dirtances of every point on which from two points within it called the foci is equal; that the ares described by
 a planet in moving from a point a to a point b on ita orbit is the aren comprised between the arc, and the lines joining those points to the centre of the san: wo that if the planet is nearer the can, it will move faster, since if ac, bc are shorter, $a b$ must be longer, to make the ares abc the ame: that the mean distance of a planet io ita average distance from the ans during its revolution, and ite periodio time the period of ite revolution, ω that if the cubes of the mean dietance vary an the squares of the periodic time. it follow that a planet whoee mean distance from the tan is twice that of the earth would have a 'year' or period of revolution, whose equare wat to the equare of one (earth's year) ae the cube of two to the cube of one-i.e. that its period of revalation would $=\sqrt{ } 8 \times$ the earth's year,
attraction at all, the law of that attrection must be ac he formulated it. ${ }^{1}$

The further confirmations whioh Newton's Law of Universal Gravitation has received, from its sucoses in socounting for other physical phenomena, need not detain us; we have to look to the steps involved in ite eatablishment, and they oan be sufficiently seen in what has been detailed already. First, there was the idee that the movements of the planete were to be acoounted for by reference to two forces acting on them-the impressed force, and the force of attraction; this wes not due to Newton. Next, it wha necessary to determine or conjecture the way in which these two forces aeverally operated; $e 0$ far as the impressed force went, that had also been in part alreedy done, and it was expreseed in the first law of motion; the actoal velocity of each planet was ascertained by calculation from actronomieal obeervations, and the velocity due to the impresed forve taken alone was determined by reference to the actual velocity and the valocity acquired by gravitation. But the velocity acquired by gravitation, or through the influence of the attractive force, had to be conjectured; and though the law of ite variation had been auggested before, unlees the amount of its effect between some given masees at some given distance were known, the law of ite variation left the matter quite indeterminate. The identification of the attractive force with terrestrial gravity thus completed the neceseary data; and principles and facte were now before Newton, afficient, if a method of calcalation were derised, to enable him to determine what should be the consequences of his hypothesis. The next step was the process of calculation. But he had to ahow, not barely what the consequences of his hypothesis would be, but that they would be the same an the obeorved facts: and moreover, that his wes the only hypothesis ${ }^{1}$, whoee coneequences would be the mame as the observed facts. ${ }^{2}$ The comparison therefore of the facts with the theoretical results of his and of any other hypothesis was the step that succeeded the calculation; and having found that they agreed with his, and with no other, he reseoned thus-Aesuming

[^285]that the continual deflexion of the planeta from a rectilinear pati is due to an attractive form, their actual motions, if my atatement of the law of attraction is true, woald be thus and thas; if it is false, they would be otherwise: but they are thos and thas, and therefore my otatement is true.

Now of the steps in this whole logical proces, some are not processes of reasoming at all-the eaggerted reference of the revaltant motions to thoes two forces, the auggented identification of one of the forves with terrestrial gravity, and the comparicon of the theoretical results with the obeerved facta. Benoning may have been employed in establiahing the first law of motion; but that reseoning lies outride the present appeal to it. The reasoning involved in determining the theoretical realts of the action of the forcen ascomed in deductive. But the final argament, in which the agreement of the ficta with the reanlta of this hypothesis and of no other in ahown to require the eccoptance of this hypotheris, is inductive. Hed the Law of Gravitation been already proved, we might have asid that Nowton wee meraly explaining certain empirical generalizations about the movements of the planets; had it been already proved, the dimgreament of ite consequencee with the earlier records of the perturbations of the moon would have led bim not to ley aside the theory, but to doubt the obearvations, or to asmome (a Adams and Leverrier afterwards did for the pertarbations of Uranus) the existence of some other body whowe attraction might sccount for the discrepancy; bat inaamuch as it wea only now proved by ite exolusive suoces in explaining the facts, he whe arguing inductively to the proof of it.

If we look for a moment at the simpler inductive argaments which ertablish the annse of a phenomenon by appeal to 'grounds of elimination', we shall find in them too something of this double character, at once inductive and deductive. The fecte appealed to as showing that a is the canse of a are themselves accounted for by that hypothesis. If, for ermple, facts do not allow us to doubt that malarial fever is conveyed by the bite of the Anopheles moequito, then too the power of the Anophelee moequito to convey malarial fever accounts for its appearing in persons bitten by that insect. It is impoesible but that, if certain facta are the ratio cognoveondi of a cansal principle, that principle should be the ratio easendi of the facta. But in these simple arguments there is nothing correspond-
ing to the deduotive remeoning which works ont the joint consequence, in particalar circumstances, of the aotion of two or more canses, from a knowledge (or conjecture) of the effect which each of these causes would produce singly. It is on eocount of this operation that J. S. Mill geve to reasoning of this kind, even when ita primary object was the induotive establishment of a general principle, the name of the 'dedactive method of induction'.

Such reasoning can only be need where the joint effeot of several canses is caloulable from the laws of their separato effects. Where the joint or complex effect meams totally dimimilar to what any of the separate effecte would be, it cannot be calculated from them in anticipation; and we rely entirely on the induotive method of elimination in order to ahow that anch complex eflect is to be attributed to the action of one particalar conjunction of canses rather than another, without being able to show a priori that it is the effect they would produce. But into the inventigation of any complex effect of the other kind, in which the action of the eeveral caness can be traced as combining to produoe it, some mearure of this deductive ressoning will always enter. Moet obviously is this the case in regard to thoee complex effeots which exemplify what has been called a domogencome intermixtare ${ }^{1}$-i.e. Where the compler phenomenon is quantitative, and there are many factors determining its quantity, some by way of inarease and nome of decresee. The simpler inductive methods are there quite inedequate : for there need be no two instances of the phenomemon in which its quantity is the same, nor, if there ware, need the combinstion of factors be the same; neither can wo infer from the non-oocurrence of the phenomenon, or its presence only in an imperceptible degree, where the supposed canse is present, that what we had been inclined

[^286]to ascribe it to does not produce it; since that canse might be present, but counteracted by another of contrary effect. Even the rule that cause and effect must vary concomitantly, and the rule that no such portion of the effect must be attributed to one among the factors making up the cause of the whole, as is already accounted for by other factors, are not sufficient to ensure ruocess in auch enquiries. It is necessary to be able to measure more or less precisely the complex effect, and to know with corresponding precision the amount of effect that the several supposed canses would produce alone, in order to prove that any particular one among them cannot be dispensed with, or rejected from being a part canse. And into this proof a deductive calculation will obviously enter. In the fiscal controversy, for example, initiated in Great Britain in 1903, it was alleged that the excess in the value of our imports over that of our exports was due to the crippling of our production by free-trade; but this could only be proved by showing that the difference of value between exporta and imports was unsccounted for, unleee we were living on our capital; and that could not be shown unless the excess in value of imports were secertained, which wes attribatable to other causes known to assist in producing their total excess-value-such as the fact that the valastion of our imports was swollen by the inclusion of the cost of carriage to our ports (while our exporta, being valued before transport, did not receive this addition) : and by the value of the goods that paid for the sarvice which the country performs as ocesn-carrier, although nothing appears in the total for exports on that head: and by the value of the goods that represent peyment for the use of British capital invested abroad, or pensions charged on the Government of India The difficulty of determining the amount by which these canses should make our imports exceed our exports in value rendered it exceedingly hard to prove, at least on this line of argument, that we could not be paying out of the year's production for all that we imported in the year.

To sam ap-Explanation considered in iteelf is deductive : it consiste in showing that particular known facta, or laws, or general causal connexions, follow from principles already eatablished, in the circumstances of the case; it establishes therefore nothing now, except as it makes us understand the reason for that which we had hitherto only known as a fact. Bat explanation also enters into
induction, 80 far an the principles, from which the facte, or lawe, or general causal connerions, are ahown to follow, were not previonsly eatablished, but are only now confirmed in showing that the actaal facts, laws, or causal connexions would follow from them and not from any alternative principlea. In such induction there are four main steps distinguishable : (i) conceiving the sevaral agenta, or canses, at work; (ii) determining or conjecturing bow or according to what law each of them soverally would act; (iii) reasoning from these premisess to the result which they should produce in common, as well as to the result which would follow on any rival hypothesis as to the agente at work, and the severab lawe of their operation; (iv) showing by comparison that the facta agree with the resulte dedaced from these, and not with the results deduced from any rival premisees.

Many observations might atill be made upon this type of arga-ment-one of the commonest and most important in the sciences. It might be shown how it may be directed to eatablish either that a particular agent produces a certain kind of effect at all, or how much of that effect, according to its own variations, it produces : or that an agent known to produce an effeet of a certain hind is one of the causes contributing to produce that effect on a given occesion. The queation may be, what canses cas produce exuch an effect, or which of the causes that can produce it are contributing to produce it now? We may wiah to establish a general principle, or only some special fact as to the ciroumstances that are modifying the reanlts of that principle in the case before as. It is poosible too that the laws of the action of the several agents may mome of them have been previonaly acoertained and entabliahed, while others are only conjecturally formulated; or, if the quertion be as to the agents contribating to the result in a particular case or clase of cases, the lawa of the several actions of them all may have been entablished previoualy. But without dwalling on theee pointe, we may conclude the chapter with four conaiderations.

First; the inductive arguments of ecience display in every different degree that combination with deductive reasoning which has been now analysed. Thus, though we may represent in symbola the induction whose logical form is a mere disjanotive argument, and contrast it with this into which the deduction of a complex result from several premisecs so prominently enters, yet in sctual
practice the contrast is not $e 0$ sbrarp; in few indrotive investigatione is the remeoning merely digjunctive; bat the amoant of deductive reseoning that has to be performed before one is in a position to apply a dirjanotion, and to my that this hypotheris is true becanse the reat can be proved false, varies very greatily in different invertigations.

Secondly, to ahow that the facta agree with the consequences of our hypothesis is not to prove it true. To show that, is often called eerification; and to mistake verification for proof is to commit the falleoy of the consequent ${ }^{1}$, the fallmoy of thinking that, becase, if the hypothesis were true, certain facts would follow, therefore, since those fects are found, the hypothesis is true. It is the same mistake ss that of incomplete elimination, in the establishment of a simple consal relation : the same as resulta from overlooking what whe called the Plarality of Cansel. A theory whose consequences conflict with the facts cannot be true; bat so long as there may be more theories than one giving the ame consequences, the agreement of the fects with one of them furnishes no ground for choosing between it and the others. Neverthelees in practice we often have to be content with verification; or to take oar inability to find any other equally eatiofactory theory as equivalent to there being none other. In sach matters we muet conaider what is called the weight of the evidence for a theory that is not rigorously proved. Bat no one has ahown how weight of evidence can be mechanically ertimated; the wisert men, and beat soquainted with the matter in hand, are oftenent right.

Thirdly, there is no logical differenoe between the reasoning contrined in explanation, end the inductive reaconing that involves explanation, ercept in one point: that the latter infers the trath of come premise assumed in the explanation from ite success in explaining the actual facta and the impowibility of explaining them without aseuming it. Where this impoesibility is not shown, and we content ourselvee with verification-that is, with ahowing that the facte consist with the eosumption-there the logieal difference is still slighter; it amounte to thie, that in explanation the premiesa are taken as provionsly known, and in the other case comething in

[^287]the premisees is takem not known previously to ita ues in the explanation. ${ }^{1}$

Fourthly, we may answer here the mecond of the two queations raised at the end of a xvii Demonotration is oxplanation from principles that are self-evident, or neceasarily true. If it be asid that in that case very little of what we believe is demonstrated, we must admit it. We can demonstrate little outride mathematice. But we heve an ideal of demonatration, and it ceeme to be that; and it is not necessarily syllogistic, as Aristotle thought it to be. ${ }^{1}$
${ }^{1}$ J. B. Mill, to whoee work the sbove chaptor is not a little indebted (o. Logic, III. x-miil), faile to mark cufficiently the difference between ahowing that the facta agree with a theory, and ahowing that the theory is true. And he does not bring out clearly enough the relation between what he calls the Deductive Method of Induction (c. xi) and what he calls the Explanation of Lawi of Nature (o. xii). He neither notices how they differ, nor how closely they egree, though he givee the asme investigution (the Newtonian theory of gravitation) an an example of both of them (ri. 2, xiii. 1). Moreover, in resolving into three eteps his 'Deductive Method of Induction', he leaves out the fint of the four mentioned on p. 485.
${ }^{2}$ Indeed, if ayllogism implies the application, to a particular case, of a general principle mown independently, demontration is nover ayllogitio; for, with complete ingight, the neceevity which connects the diferent olementa in a complex fact ahould be manifort in the case bafore us, and the general principle or major premien in not brought in ab axtra, bat rather risible in and extricable from that caee (ef. p. 807. expra). This much howuver Aristotle would probably have admitted; but most demonatration cannot even eo be put into the form of ryllogim, connecting one term with another throagh a third by the relation of anbject and attribate.

CHAPTER XXIV

OF INDUCTION BY SDMPLE ENUMERATION AND THE ARGUMENT FROM ANALOGY

Trere are many reasonings which do not prove their conclusion. It is not merely that we have to nee premisees of doubtful certainty ; for this, though it deetroys the atrictly demonstrative character of our knowledge, does not invalidate the reasoning, so long as the conolusions are what muel be drawn, if the premisses are true. We often draw, and act upon, conclusions, about which we cannot say even this much, that they must be true if the premisees are. And in so doing, we often find ourselves right; nor, if we refused to do it, could the affains of life be carried on. Descartes, when he set himself to examine all which he had hitherto believed, and to doubt everything which could be doubted, determined with himeelf that he would not let this demand for demonstration in thinge of the intellect prevent his following the most probeble opinion in practical matters. ${ }^{1}$ Bat it is not only in practice that we have to harand an aseent to conclusions whioh our premisses do not strictly justify. Many branchee of acience would not progrees at all, unlees we did the aame there. In the first plece, by committing ourselves to a conclasion, and working upon the agumption that it is trae, we may be led to results that will help either to confirm or to overthrow it; whereas if we had merely withbeld our assent from any conclusion, becanse the evidence was inconolusive, we might have remained indefinitaly long possessed only of that inconclusive evidence. 'Truth,' said Becon, 'is more readily elicited from error than from confusion' ${ }^{2}$; and perhape we might add, than from indecision. Only we must in such cases let our asent be provisional, and hold our opinion not as demonstrated, bat as in defanlt of a better. The advice of the politician, that a man should make war with another as with one to whom he may be reconciled, and peace

[^288]as with one with whom he may become at variance, may without suspicion of cyniciem be adepted to the essent or dissent with which we receive conclusions that are besed on insufficient evidence. But secondly, the sciences differ very moch in the amount of evidence which they can hope to obtain for their conclusions. A fairly rigorous ecience may be content to use provisionally principles which are known to be insufficiently proved (and that means really, not prooed at all); bat some sciences hardly ever obtain rigorons proof of their positions, as for axample Anthropology; and yet mach at any rate of their teaohing is genarally accepted as authoritative. Aristotle asid that it was the basinees of education to teach a man to demand rigorous proof of anything according to the nature of the subject; for it is as foolish to ask demonstration of the orator, ss to sccept plausibilities from the mathematician ${ }^{1}$; and he would have allowed that for this parpose education must include both a training in 'Analytica' and an soquaintance with the different kinds of subjeot-matter to which one's attitude should be diferent. It is often said that a man whose studies are too exclusively mathematical is at see whan be comes to deal with matters that do not admit of demonstration; and that contrariwise, if he is trained only in sciences where rigorous proof is impossible, be becomes incompetent to see what is required in matters of a stricter sort.

There are no logical criteria by which to judge the value of such reasonings, unlese what is called the Theory of Probability may claim to be auch a critarion. But the Theory of Probability is primarily a branch of mathematics; many of the amumptions which underlie its applications are open to enepicion on logical grounde; and its use is at any rate confined to subjects that admit of quantitative treatment. The object of the present chapter however is to consider briefly two kinds of argument, which while being of this inconclusive character are very common, and have attracted considemble attention from logical writers accordingly.

Induotion by simple Thameration consists in argaing that what is true of several instances of a kind is true universally

[^289]of that kind. Simple enumeration means mere enumeration; and suoh an argument difers from acientifio induotion in the abeeace of any attempt to show that the conclusion drawn is the only conolurion which the facte in the premimes allow, while it differs from induction by complete enumeration in that the conclusion is general, and rofers to more than the instances in the premiseec. It ahould bowever be noted here, that induotion by complete enumeration, if the conclusion be undertood an a genininely aniveral judgement, and not as an enamerativo jodgement about all of a limited number of things, hee the chancter of indaction by simple enameration. The name of empirical generalication is sleo given to soch argumenta by cimple enameration.

Becon's strictares apon this form of ressoning have heen alreedy referred to. ${ }^{1}$ Regard it an a form of proof, and they are not undoserved. Yet it is still in frequent use in default of anything better. It has been inferred that all eppecifio characters in plantes and animals are useful, or adaptive, because so many have bean found to be so. So many 'good apecien' have become 'bad apecies' (i. e. apecies incapable of any atrict delimitation) in the light of an increased knowledge of intermediste forms, that it has bean inferred that all apeciea, if we knew their whole history, would do so.' The thmiliar generalization that we are all mortal, though not based solely on enumeration, draws nome of ite force thence. Most men's viewe of Germans, or Frenohmen, or foreigners generally, reat upan their obeervation of a few individuala. The 'four general rulea of geography', that all rivers are in Themaly, all mountains in Threce, all oitiee in Asia Minor, and all inlande in the Aegrean Sees, are a caricature of this procedure, drawn from the experience of the echoolboy beginning Greek History. The history of the theory of prime nambers farnishee one or two good examplea. More than one formale has beem found alway to give prime numbers ap to high values, and wan acoumed to do 0^{0} univerally: $\varepsilon^{2}+\varepsilon+41$ worked for every value of e till $40: 2^{23}+1$ worked for long, but it broke down ultimately.s It is needlem to maltiply illuatrationa
What is the aseumption which anderliee arguments of this kind? It is the old asamption that there are aniversal connexions in

[^290]
xxiv] SIMPLE ENUMERATION AND ANALOGY 491

nature; and the conjunction of attribatee which our inatances present is taken as evidence of a connexion. The argumentas are weal, becanse the evidence for the conserion is insafficient. If $\boldsymbol{a} \delta \boldsymbol{c} d$, inatances of the clame x, present the property y, it doee not follow that y is connected with thowe features on mecount of which they are clamed together ase. Yet a large number of instances furniabes some premomption. For come reason mout exist, why all thewe instances exhibit the mame property. If it is not in virtue of their common character a, it must be in virtae of some other common festare. When the variety of oircumatances is great, under which the inotances are found, and the dififerenoes many which they present along with their identity a a, it is harder to find any other common featuree than what are included in claseing them as x. Therefore our confidence in the generalization increaces, although it may atill be misplaced. All men are mortal; for if men need not die except through the accident of circumatances that are not involved in being man, is it not atrange that no man has avoided falling in with these circumstances? There is force in the question. The namber and rariety of our oberrations on the point are auch, that almost everything can be eliminated: almoot everything that has befallen a man, except what is involved in being man, has also not befillen other men : who therefore ought not to have died, if it were because of it that men die. Something involved in being man mast thenafore caroly be the cause of dying.

Induction by Simple Enameration reate then on an implied elimination; bat the elimination in half-anoonscions, and mostly incomplete; and therefore the conclasion is of very problematic value. But where it is felt that the instances do verve to eliminate a great deal, it is felt that the openings for error are correapondingly reduced in number, and the conclusion is received with greater confidence. General considerations of this kind, however, will not stand against definite opposing fecta; therefore such an empirical generalization in at once overthrown by a contradictory instance. ${ }^{1}$ Neither will they overbear more special conaiderations drawn from ecquaintance with the sobject-matter to which the induotion belonga. Pigmentation is known to be a highly varisble property in many epeciee; therefore the overwhelming range of inatancea to show that all crowe are bleok was falt to be insolfcient to give ${ }^{2}$ Inefantia, Invracts, moant originally a contradictory instance.
the conclusion any high degree of value. Again, a dificulty in conceiving how two properties could be canmally connected will incline us to attach leses weight to the fact of their conjanotion. And contrariwise, where the connexion to which the conjunotion points is one which meems conformeble with other parts of our knowledge, we are much more ready to generalize from the conjunction. Many general atatemente are made about the correlation of attributes in plants and animals, which rest on simple anumeration; but the theory of dencent suggeeste as explanation of the constancy of such a conjunction; for what whe correlated in a common ancestor might well be correlated univerally in the descondanta. We are therefore readier to mappose that attribates found several times sccompanying one another in a species (such as deafnese with white fur and blue eyes in tom-cats, or black colour with immonity to the evil effecta of eating the paint-root in pig ${ }^{2}$) are correlated universally, even though we can see no direct connexion between them, than we should be if mo way of expleining the constancy of the conjunction presented iteelf to us.
The argumont from Analogy (at least in the uaual senne of the term) is of the same inconclasive oharacter as Induction by Simple Enumeration; and like it, reata on the general belief in universal connerions, and takes a conjunction of attribatee as evidence of their connaxion.
Analogy meant originally identity of rehtion. Four terms, when the first stands to the eecond as the third atande to fourth, were said to be analogons. If the relation is really the same in either cose, then what followe from the relation in one case follows from it in the other; provided that it really follows from the relation and from nothing elee. Where the terms are quantities, or are considered purely on their quantitative side, and the relations between them are aloo quantitative, there the reesoning is of course mathematical in character: analogy in mathematice being more commonly called proportion. And such reaconing is necessary, like any other mathematical reasoning. If in respect of weight $a: b:: c: d$, and if a weigha twice as much as b, then c must weigh twice as much as d. So soon however as we connect with the reletion $c: d$, on the gronnd of its identity with the relation $a: b$, a rconsequence which is not known to depend entirely on that relation,

[^291]
xKIV] SIMPLE ENUMERATION AND ANALOGY 498

our reasoning cesess to be demonstrative. Suppose that the distanoe by rail from London to Bristol bears the same relation to the distance from London to Plymouth as the distance from London to Darlington bears to the distance from London to Aberdeen: and that it costs half as mach again to send a ton of timber from London to Plymouth as to Bristol; we cannot infer that the rate from London to Aberdeen will be half as much again as it is to Darlington; for the rate need not depend entirely on the relative distance, which is all that is alleged to be the same in the two cases.

There are many relations however which are not relations of quantity, and hold between terms on other groands. Here too, four terms may stand in an analogy : and what follows from the relation of the first to the second may be inferred to follow from the relation of the third to the fourth. It might be said that the relation of bis patients to a doctor is the same as that of his customers to a tradesman, and that therefore $28 \times$ cuatomer is at liberty to deal at once with rival tradermen, 00 a man may put himself at once in the hands of several doctors. And if the relations were the came, the argament would be valid, and indeed in principle eyllogistic; for the common relation would be a middle term connecting a certain attribute with a man's position towards his doctor. 'Those who employ the services of others for pay are at liberty to employ as many in one eervice as they pay for': such might be the general principle elicited from our practice in shopping, and proposed for application to our practice in the care of our bealth. The case of patient and doctor is 'subsumed' under the principle supposed to be exhibited in the osse of customer and traderman. Even however if it were not possible to disentangle a general principle, and reason byllogistically from it, we might uee the analogy; thinking that there was an identity of relations, and that what is involved in the relation in the one case must be involved in it in the other.

Unfortunately however the identity of the relations may be donbted. Relations are not independent of their terms. Quantitative relations are no doabt independent of everything except the quantitative appect of their terma, and are on that account urually atated as between quantities in the abstract. But with other relations it may be very difficalt to abstract, from the concrete netore of the terms between which they hold, the preciee featuree which involve
the relation. Hence we may say that two relations are similar, and yet doubt whether they are similar in the way that would justify the inference. They may be partially the ame, bat the differeace may just invalidate the coneequence ${ }^{1}$; and reasoning by enalogy cannot then poses the character of necessity.

David Hame held that virtue and vioe are not attributee of any act or agent, but only feelings which an act may arouse in a spectator; so that if nobody approved or disapproved my actions, they could not be called either virtaons or vicions. And one of the argamenta by which he endeavoured to sustain this opinion was as follown. A parricide, he mid, is in the same relation to his father as is to the parent tree a young oak, which, apringing from an acorn dropped by the parent, grows ap and overturne it; we may search we we like, but we ahall find no vice in this event; therefore there can be none in the other, where the relations involved are just the same; so that it is not until we look beyond the event to the feelings with which other persons regard it, that we can find the ground for calling it vicious. ${ }^{\prime}$ Doabtless there is an anslogy here; but the relations are not altogether the same; for the relation of a perent to a ohild is spiritual as well as physical, and in the parricide there is an attitude of the will and the affections which cannot be eacribed to the oak.

Many arguments from Anslogy, in the sense of this loose identity of relations, have become famous; and they are a favourite portion of the orator's resourcea. How often have not the daties of a colony to the mother-country been deduced from thoee which a child owes to a parent; the very name of mother-country embodies the anslogy. Yet it is by no means easy to find the torms which stand in the ame relation. The soil of Britain did not bear the soil of Australie ; and the present population of Australis are not the deacendants of the present popalation of Britain, bat of their ancestore. To whom then does the Commonwealth owe this filial regard, and why? Doubtiess the mentiment has value, and therefore some juatification; bat this argument from analogy will not quite give account of it. Alexis de Tooqueville again said of colonies, that they were like fruit which drope off from the tree when it is ripe.

[^292]Here is another analogy, and two of the torme are the same as in the leat. The relation of a colony to the mother-country ouggesta different comparisons to different minds, and very different consequences: which cannot all of them follow from it. We may take another instance, where the reletions are really oloser, and the argument therefore of more value. To grant that Nataral Selection may be ablo to do all that is claimed for it, and yet object to it on the ground that the facts which are accounted for by it may equally woll be ascribed to intelligent design, is, it has been arged, n a if a man were to admit that the Newtonian theory of the solar syotem works, and yet were to continue to rappose with Kepler that each planet is grided on ite way by a presiding angel; if the latter therefore be irrational, to must the former be ${ }^{1}$ Or consider the following pasagge ${ }^{3}:-$ ' It has been objected to hedonistic systems that plessure is a mere abstruction, that no one could experience pleanare as such, bat only this or that apecies of pleasure, and that therefore pleasure is an imposerible criterion' [i. e. it is imposesible to judge what ie good by the amount of pleasare which it affords]. 'It is true that we experience only particular pleasurable states which are partially heterogeneoue with one another. But this is no reason why we should be unable to clessify them by the amount of a particular abotract element which is in all of them. No ship contains abstract wealth ae a cargo. Some have tea, some have butter, some have machinery. But we are quite jastified in arnaging thoee shipe, should we find it convenient, in an order determined by the extent to which their concrete cargoes poseese the abetrect attribate of being exchangeable for a number of sovereigna' The force of this argument will depend on whether the particular concrete plessurable statee do stand to the abstract element of plesurare in the same relation as the concrete cargoes of ships stand to the abstract element of wealth. Doabtless the relatious are partly the same, for each abotract element is an attribate of its concrete subjecta. Bat these are meacurable in terme of their attribute, by the fact of being exohangeable for a definite number of sovereigas; and the question is whether there is anything that renders the others similarly mensurable in terms of

[^293]pleasure. On the value of this argument doctors will probably dieagree: and this again ohowe how argamente from analogy are inconcluaive.

There is however another sense in which the terms analogy and argwont from analogy are used. The analogy may be any resemblance between two things, and not merely a resemblance of the relations in which they respectively stand to two other things; and the argument from analogy an argument from some degree of resemblance to a further resemblance, not an argument from the consequences of a relation in one case to its consequences in another. Expresed aymbolically the argument hitherto was of the following type: a is related to b as c is to d; from the relation of a to b such and such a consequence follows, therefore it follows also from the relation of e to d. The present argament will ran thas: a resombles b in cortain respects a; a exhibits the charsoter y, therefore b will exhibit the character y aleo. Argament of this type is exceedingly common. ' Just as the flint and bone weapons of rade races resemble each other much more than they resemble the metal weapons and the artillery of advanced peoples, so,' says Mr. Andrew Lang, 'the mental producta, the fairy tales, and mythe of rade races have everywhere a strong family resemblance.' " It is inferred here that mental producta, which resemble certain material products in being the work of rude races, will resemble them in the further point of exhibiting the otrong family likenese that is known to characterize the latter. Or take this inatance from Sir Henry Maine. He is discusaing the varions devices by which in different systems of law the lack of a con to perform for a man the funeral rites can be supplied. We are familiar with adoption. But adoption in England does not carry the legal consequences of legitimate sonship. The Hindu coden recognize adoption and various expediente besides; and the con $\infty 0$ obtained has the fall status of a real mon, can perform satisfactorily the important ceromonies of the funeral rites, and succeed to proparty as the real son would succeed. One of their expedionts is known as the Niyogn, e enstom of which the Levirste marriage of the Jews is a particular case. The widow, or even the wife, of a childless man might bear

[^294]a son to him by some other man of the family, and the son became his son, and not the natoral father's. How did Hindn thought reat content in so fictitions a relation? 'All ancient opinion,' says Maine ', 'religions or legal, is strongly influenced by analogies, and the child born through the Niyoge is very like a real aon. Like a real eon, he is born of the wife or the widow; and though he has not in him the blood of the husbend, he has in him the blood of the hasband's race. The blood of the individual cannot be continued, bat the blood of the household flows on. It seems to me very natural for an ancient authority on customary law to hold that under such circumstanoes the family was properly continned, and for a prient or asoerdotal lawrer to suppose that the funeral rites would be performed by the son of the widow or of the wife with a reasonable prospect of ensuring their object.' We may tarn to the exacter aciences, and find this sort of argument from analogy employed. Before it was known that light travelled in waves, it was known that sound did so. Light and sound were both capable of being reflected, and the direction of their reflection obeyed the same law, that the angle of reflection is equal to the angle of incidence. From these facts it was inferred by analogy that light, lize sound, travelled in waves: as was afterwards shown to be the case. Among the properties of gold whs long enumernted fixity, i. e. that it was incapable of volatilization. As one element after another was succesufully volatilized, it might have been inferred by analogy that gold could be volstilized too.

We may now compare this with the former type of argument from analogy; and afterwards consider their logical value, and their relation to induction by simple enameration.

Since analogy properly involves four terms, the latter and looser but commoner sense of the axpression argument from analogy seems at first sight difficalt to account for. Why should a resemblance which is not a resemblance of relations be called an anslogy at all ? Perhape the answer is that where the relation is no longer a quantitative one, it is apt to be regarded as a property of the subject that stands in the relation. The quantitative relation of one thing to another does not affect the intrinsic character of the thing; but other relations do. We ahould not regard it as constitating a reeemblence between a child and a young elephant that one weighed

[^295]half a hundredweight, and the other half a ton; bat that they both had mothers (though that is aleo a rememblance of relations) would seem to constitute a resemblance. Such a relation rests on and involves important charecters in the thing related of a less parely relational character than quantitative predicates are. And in this way the term analogy may well have come to be exteaded to resemblances generally, oven where the resemblance is not a recemblance of relationa ${ }^{1}$

Bven in the atricter sense then, the argument from analogy does not commonly mean the mathematical argament from an identity of ratio: the relations aro only similar, and must be conceived to involve intrinsic attribates of the things ralated. ${ }^{3}$ In considering the value of the argument therefore we may for the fature ignore the distinction pointed out between the two types of inference to which the name is given, and may take the second (to which the firat teads to approximato) as fundamental. The argameat from analogy is an argument from a certain degree of mocertained remamblance between one thing and another (or others) to a further rewemblance; because a and b are e, and a is $y, \therefore b$ is g. What is the logical value of this argument?

It is plainly not proof. Ae Lotee has pointed out ${ }^{3}$, there is no proof by analogy. Many concluaions drawn in thin way are afterwards verified; many are foand to be faleo Argumenta from analogy can oftan be found pointing to opposite concolacions.

[^296]
1IIv] SIMPLE ENUMERATION AND ANALOGY 499

The Parmenides of Plato, a dinlogue of his later period, discomes various difficulties with regard to the relation between the univeral and the particular, which many scholars consider to be criticiems upon his own 'doctrine of ideas 'as presented in his earlier writings. One of these is identical with an objection afterwards frequently urged by Aristotle against the Platonic doctrine as he underatood it. ${ }^{1}$ It has been suggeated that the dialogre incorporatee criticisms which Aristotle had originated as a young man of about 17, when a pupil in the Academy. Are the points Plato's own, or are they borrowed from his pupil? On the one hand it may be said that when he wrote the Parmenides Plato was too old to revise his system, as this intarpretation of the dialogue conceives that be was doing; on the other, that at 17 Aristotle whe too young to develop criticiems so original and profound.

But Kant's chief worke, embodying the ajstem which has made him famous, were written after he was 50; and Berkeley at the age of 20 was entering in his Commonplece-book important and original criticiams of Looke. ${ }^{2}$ One analogy שupports the attribution to Plato, the other that to Aristotle.

If it is not proof, has argument from analogy any value? Can we give any rales by which to judge ite value in a given case? Here we must remember that the argument rests altogether on a belief that the conjanction we obeerve diwcovers to na a connexion; the presence of both a and y in the eubject a points to auch a connexion between them as will jurtify our inferring from m to y in the subjeot b. If we definitely thought that a and y were irrelovant to one another, it would be foolinh to expeot b to exhibit one becanse it exhibited the other. Bat though the argament thus presumes a connexion between m and y, it makee no pretence of ehowing that y depends on m nether than on eome other property ε in a, not shared with a by b. There is no elimination. If however there were any implicit, though not formal, elimination : or again, if there were anything known to us which seemed to support the hypothesis of a connexion between ar and y : we chould atteoh more weight to the argament. Hence if the acertained resemblance between a and b

[^297]is very great, we may think the argument from analogy stronger. For there must be womething in a to mocount for the presence of d; and if y is not connected with ω, we most look for that something in the remaining nature of a; but the more we inclade in x (be ascertained resemblance), the less there is that falls outaide it, and the fewer therefore the alternatives open to us, to account for the preenence of y in a. Still it must be admitted that no long as $m e$ rely merely on this wort of consideration, it remsins to the end as possible as not that \boldsymbol{y} is unconnected with \boldsymbol{z}, and therefore that , will not be found in . . Of mach more weight is the consideration, that the connexion between a and y implied in the argument is one for which our previous knowledge prepares us. The fact that the angle of reflection is equal to the angle of incidence might well be supposed due (as indeed it is) to the propagation of sound in waves; and if ao, we should expect the same fact in the case of light to be produced by the same cause.
It will be seen that the considerations which must infuence ns in determining what weight we are to attach to an argument from analogy are the same as those by which we mast estimate the value of an idduction by simple enameration. Botb point to a general principle, which if it were true woald account for the facte from which we infer it; neither proves ita truth; and to try to prove it muat be our next businese. Mill rightly says that, however atrong an analogy may be, any competent enquirar will consider it ' af a mere guide-post, pointing out the direction in which more rigorons investigationa should be prosecuted'. And the aame might be asid of an empirical generalization. The nert sentences from the same pasange of Mill's Logic may well be quoted: 'It is in thie last reepeot that considerations of analogy have the higheat acientific value. The in which analogical evidense affords in itseclf any very high degree of probability are, as we have observed, only those in whioh the resemblance io very cloee and extensive; but there is no analogy, however faint, which may not be of the utmost value in suggeating experiments or observations that may lead to more positive conclasions.' 1
How then does argument from analogy differ from induction by simple enumeration? In the latter, because a number of instances of a clase x exhibit the attribute y, we infer that all a are y;

[^298]in the former, because two particalary a and b agree in certain respects x, we infer that y, which is exhibited by a, will be exhibited by 6 also. In the latter, from the limited extension of an attribute over a claes, we infer to its extension over the whole cleas; in the former, from a partial agreement between two individaals in intension, we infer to $\&$ further agreement in intension. But the one passee gradually into the other; for the former may be called the application to a particular case of a general principle inferred in the latter from a larger number of inetancee than in the former. This is very plain in an illustration which Aristotle gives of the 'Erample' (his name for the argument from analogy). A man might have inferred that Dionyaius of Syracuse designed to make himself tyrant, when he asked the people for a bodyguard; for Pigistratus at Athens asked for a bodyguard, and made himself tyrant when be got it ; and likewise Theagenes at Megara. Both these fall under the asme general principle, that a man who aims at a tyranny alks for a bodyguard. 1 One of the instances of argument from analogy given above concerned the volatilization of gold; and it might perfectly well be said that it would be contrary to all analogy for gold to be incapable of a gaeoous form. Bat we might equally well asy that our experionce of other elementa warranted the empirical generalization that they could all be volatilized, and therefore gold must be oapable of it. This affinity betwean the two procesees of inference is however often concealed by the fact that the pointe of resemblance in two (or more) subjecte, which form the basis of an inference to a further reaamblance, have not given rise to any special denomination; there is no general name by which the sabjecte can be called on the strength of the resemblance, and the reeemblance may even be one that we recognize bat cannot precisely deacribe. In the case of gold, we might pick out the fact of its being an element, as justifying the expectation that it can be volatilized. In the case of Dionyeius, his asking for a bodygaard is the circumetance that clemses him with Pisistratus and Theagenes, and excites our fear that he aims at a tyranny. But a weatherwise man might be unable to deacribe what it is in the appearance of the sky that makes him fear a great storm, though
${ }^{1}$ Bhet. a ii. 1857b 25-86. To make the inference to Dionysing necemary (it is of coureo Dionyains I who is meant), the principle would have to be, that s man who atk for a bodygaard aims at styranny; and that is really what the suepicione citiven of Ayrscuse would have had in his mind.
he can my that it wae on juat soch a night an this that some other storm broke out. The general proposition (the induction as eome would call it), which mediates his inference from that past occesion to the present, cannot be formulated; and so he may appear to work without it, and the affinity between such a process and induction by simple enameration may be unobeerved. Yet it orists, and, as has been mid, the one process peate imperceptibly into the other, an the number of inatances increases from which the conclusion is inferred; though where we cannot formulate a general principle, we abould certainly spenk of the argament rather as one from anelogy.

It is of some importance to realise that a general principle is alway involved in suah an argument, because it has been contended that all inference goes really from particulars to particulars. ${ }^{1}$ There may be paychological procemes in which a man's mind peoses direct from a to b, and he predicatee of the latter what he was predicating of the former, withoat grounding it on anything recognized to belong to them in common; just as a man who paoses a letter-bor in the wall may look round at it to see the time. Paychologists explain such actions as due to the "Aseocistion of Ideas'. Bat this has nothing logical abont it, and is not inference. Any one mast admit when queationed, that unlea he cupposed δ to share with a the conditiona on which the premence of y depends, he could not rationally infer it in b becane be foand it in a; and a proceses which cannot rationally be performed oan hardly be called a procese of reasoning. But that mupposition is the cupposition of a general connerion; and therefore inferenos from partioalar to particular works through an implicit aniveral priaciple.
${ }^{1}$ Mill, Logic, II. fii. 8, and oxpra, c. xiv, Pp. 278-287: ©f. aleo Bradley's criticims, Lagic, Bk. II. Pl. ii. a. ii.

OF MATHEMATICAL REASONING

Matrimatica is frequently and rightly called a doductive science. Yet it has been mid to rest on generalizations from experience, and for this reecon to be fundementally inductive. There are aleo certain particalar procemes of remoning in mathemation to whioh the name inductive in more particularly given.

One of these is just indaction by complete enameration, which does occur sometimee in mathematica. A proposition may be proved indepandently of a right-angled, an obtuso-angled, and an acutoangled triangle, and therefore enunointed of the triangle anivermally: or of the byperbola, the parabols, and the ellipee, and therefore enuncisted of all conic sections. The formula for the expansion of a binomial series is proved aparately to hold good when the oxponent is a positive integer, negetive, and fractional; and only therefore aseerted to hold good univerally. The peculiar natare of our anbject-matter in mathematice onables us to mee in each cese that no other alternatives are pomible within the genns than thoeer. which we have considered; and therefore we can be sure that our indaction is 'perfect'. The nature of our subjeot-matter further ascures us, that it cen be by no socident that every species of the genue exhibits the aame property; and therefore our conclusion is a genainely nivermal jodgement about the genus, and not a mere anumerative judgement aboat its species. We are are that a general ground exista, although we have not found the proof by it. This kind of mathematical induotion neede no further comaderation.

The case is different where eome proposition in inferred to hold good univerally because it is proved to bold good in one or two instances. This cort of inference oceurs in geometry, whon we prove eomething about a particular aquare, or circla, or triangle, and cosolude that it is true of the equare, the circle, or the triangle; and again in algebra, when a formula for the
summation or expansion of a series, and such-like, being shown to hold good for certain valaes of a, is inferred to hold good for any value. The former kind of procedure is too familiar to need illastration; of the latter, the simplest illustration is the proof of tho formula for the sum of the first n odd nambers-i.e. of the odd numbers, beginning with 1 , and taken continnously up to any term that may be chosen. The sam in alwaye n^{2}; and this is shown as followe. It is foond by addition that the sum of the first three, four, or five odd numbers is 3^{2}, 4^{2}, or 5^{3}; and then proved that if the sum of the first $n-1$ odd numbers $=\overline{n-1}$,
 odd number is $\overline{2 n-8}$. Let

$$
1+8+5+7+\ldots+\overline{2 n-8}=\overline{m-1}=n^{2}-2 n+1 .
$$

Add to each side $\overline{2 \pi-1}$ (which is the next or $\pi^{\text {iw }}$ odd number)
$\therefore 1+3+5+7+\ldots+\overline{2 n-8}+\overline{2 n-1}=n^{2}-2 n+1+2 n-1=n^{2}$.
If the formala holds for $s-1$ pleces therefore, it holds for π pleces : that is, it may always be inferred to hold for one place more than it has been already shown to bold for. But it was found by addition to hold (eay) for 5 placee; therefore it holds for 6 ; therefore again for 7, and so on ad infinitwm; and therefore universally.

It is instructive to compare this ressoning with the induction of the inductive eciences. In one rempect it presents the same problem, viz. What is our marrant for generalization? Yet it cannot be said that the reseoning is of the mame kind.

We saw that in the inductive aciencee all generalization reated on the existence of universal connexions-whether we exprees that se the Law of Canmation, or the Uniformity of Nature, or in some other manner. But the particular problem of any inductive enquiry whe to determine what were the condition with which a determinate phenomenon m whe connected nniversally; and that was only to be done by an exhaustive procese of showing with what, apon the evidence of the facts, it was not conneoted univeraally, until there was only one alternative left unrejected, which we were therefore bound to accept. Now it is by no such process of elimination as this, that wo demonstrate the properties of a figure, or the sum, for any number of terms, of a soriea. We do not conclude that the angles of a triangle are equal to two right angles,
becanse we have tried and found that there is nothing else to which they can be equal ; but we see, by means of drawing a line through the aper parallel to the base ${ }^{1}$, that the nature of apace necessarily involves that equality. The geometrician sometimes appeals to the conclusion of a previous demonstration, without realizing to himeelf the reasons for the necessity of that conclasion; thus, for example, in proving that the angle in a semioircle is a right angle, he appeals to the fact that the three angles of the triangle in which it is contained are equal to two right anglea, and to the fact that the angles at the base of an iecaceles triangle are equal to one another,
 and shows now only that the angle in the semicircle must therefore necessarily be equal to the other two angles in the triangle in which it is contained. So far as he thus appeala to the conclacion of a previone demonatration, and applies it to the figure before him, he syllogizes; bat when he realizee the necemity of that conclusion, he does not ayllogize, bat sees immedistely that it is involved in the trath of other spece-reletions; and this he finds out by help of draving the figure. It is felt that a raluetio ad abrurdum is a defective proof in geometry just because we sbould be sble to show that such and auch a proposition is true by direct reference to the conditions whioh necessitate it, and not indirectly by the refatation of the contradictory. Thus the reasoning proceeds directly from conditions to their consequences ${ }^{2}$, not a in induction from facts to the only principles with which they cannot be shown to be incompatible. And it proceeds by means of our ingight (when we experiment in drawing lines) into the necessary implication of one fact with another in the system of apece-relations. For the first reseon it is deductive; for the second, its premisses are proper premines, torat $d \rho x a l$-geometrical trathe which explain other geometrical truths. It is the meme with any process of calculation

[^299]in arithmetic or algobsh. There too we argue deductively; and there too our premimes are proper premisese, truthe aboat relations of quantity which reader necessary other relatione of quantity. Nor is there any apecial diffioalty about the 'mathematical indnotion' employed in proving the formula for the summation or expancion of a series, \&o. When we prove that a formule which holde for a-1 tarma holde for a terms, n represente any number in jurt the mome way as the circle on a bleokboard representa any circle. Geometrical proofer rest on the intaition of opatial rolations, and algebrsic on the intuition of quantitative relations, and $\infty 0$ far the two aciences differ. Bat that is not more surprising than the fact that moral philosophy, in which our proofe reat on insight into relations neither of quantity nor opece, diftere both from geometry and from algobre.
Yet we may return to the queetion, What warrant have we for generalizing? Wo mast grant that the reasoning by which I prove that the angle in this semicircle $A B C$ is a right angle, or that a formuls which holds for the som of the first $x-1$ odd numbers holds for the sam of the first a odd numbers, is different from that by which I prove connexione of cance and effect in the inductive aciences. Yet why do I conclade that the angle in any semicircle is a right angle, or that the formala for the sam of the odd numbers, which holds up to the term next to the $a-1$ le, holde up to any nert term, when I have only proved it about this aemicircle, and the earies up to the neat to the $n-1^{\text {W }}$ odd number?

Probably moot people's natural impalse would be rather to express eurprise at the queetion than any sense of difficulty in the matter. What difference can it make, they would ask, what circle is taken? What difference can it make that in proving that what holds for so many pleces of odd numbers holds for one plece more, the place you take is repreented by $m-1$? Such counter-questions would be a very proper rejoinder. But it may be anefal to mee what principles they reat on, firmly graped bat perhape not conacionsly formolated.
These principles are, the aniform construction of apece, and the aniform construction of the numerical series. It is because apece relations are anaffected by locality that what I have seon to be a property of this cirole maut be a property of any circle; becwase the difference between one odd number and the next is the same
at overy point of the numerical series, that an inference ceen to hold from the $n-1^{(14}$ to the $\boldsymbol{n}^{\text {m }}$ place holds for any value of m. If it were otherwise, I should have to try speces as I eample choeses, with no more reason to believe that a property which I had demonatrated of the circle on my blackboard would aharacterize a circle on the page of this book, than there is to believe that a Gavour found in a cheese bought at Bridgwater will charnoterise a cheane bought at Waterford. So also I should have to try different regions of the nomerical series.

Bat sampling is not altogether an sppropriate metaphor; for when I sample a cheese, I generalize about the whole cheese from the piece which I taste; but here I should be anable to perform any generalization. I ahould examine a circle, or the odd numbers up to 157, to know whether that circle has a right angle subtended at its circamference by the diameter, or whether the aum of that series of numbers was 1571. I should not bowever be able to take that circle as typical of other circles, nor that eeries of numbers as typical of other earies. For I could have no more reason to transfer my demonatration to a second circle, or a series one place farther, than to all circles, and series up to every place.

In fact our beliof in the uniformity of apece, and in the uniform formation of the numerical ceries, stands to mathematical reseoning as our belief in the uniformity of astare stands to indactive. Deny them, and in either case no goneral proponition remains poesible any longer. Nay more; no demonstration remains possible even ubout a particular cese. As we could not even prove that the death of Cleopetres was anused by the poison of an asp, without aseming that it depended on a cause with which such s kind of death is connected universally, but could only eay that she died after an anp had bitten ber; 00 we could not prove that the anglo in any given amicircle was a right angle, but only eay that this secnicircle contained a equare-looking angle. We rely throughout on universel ocanearions between qualitatively identical elementa. An app, if it is of the same nature, and bites with the eame vehemence a person of the same constitution, must always produce in him the same effect. And a circle, if it is the same figure, mast have always the same property; elee we cannot oven is a ringle case assign a definite result to a definite cause, or a definite property to a definite aubject.

If there is any difficulty in seoing the parallelism, it arises from the fact that a oircle seems obviously the anme figure always. Circles differ in eize and curvature; and triangles have more differences than circles. But we ann easily consider the form of a circle, in abatraction from its size; or the bare triaggularity of a triangle, in abotraction from the proportions of its sides or its angles. And when we have in our damonstration proved that some property follows upon the mere form of a circle, and the mere three-sided rectilinearity of a triangle, withont taking anything else aboat either figure into account, we then know that it must be true of all circles, or all trianglea. In the indactive sciences our difficulty lies in determining on what conditions, amidst the complexity of the concrete case before us, a particular result depends, and what precisely the result is. It is a difficulty very largely of analysia, No one who had proved that ε depended precisely on a in the case before him would hesitate to generalize any more than does a geometrician. Indeed he would feel that he was working with general terms all the time, and proving an universal connexion rather than a particular one. But so long as his x and a are not clear-cat and atripped of all irrelevant matter, he cannot trust a generalization. In mathematics our terms are defined and precise from the ontset ${ }^{1}$; our proof showe eractly on what conditions a consequence depends; and we can recognize those conditions elsewhere wherever they occur.

We may sum up this part of our discussion as follows. Mathematical reasoning postulates in apece and in number a syatem exhibiting throughout fixed universal principles, as inductive reasoning postulates it in the course of nature. On that resta the generality of any conclusion in either case. Bat the nsture of the reasoning by which mathematics connects epatial or quantitative conditions with their consequencen is quite different from that by which the physical sciences, so far as they are inductive, connect physical condition and consequence. The former works by direct insight into the special nature of ita doubtleas highly abstract

[^300]sabject-matter; the latter hae no such insight, bat looke for terms that, in froe of the facta, will slone aatisfy the general conditions of a causal connexion. In the former, generalization is unnoticed because it is all-pervading; for the relevant conditions are distinguished from the first. In the latter, generalization comes at the end, and attracts attention as the result of a long effort; for all oar task is to distinguish the relevant from the irrelevant conditions.

There remains one question, which was referred to at the outset of the chapter. The principles of mathematice have been alleged to be generalizations from experience, and the science on that account at bottom inductive. ${ }^{1}$ It is indeed difficalt to see why the same should not as well be said of the inferences in mathematics.' Their demonatrative force arises from the fact that the nature of epace or quantity allows us to see immediately the consequences involved in certain conditions. But any one who requires repested experience to convince him of the truth of a geometrical principle (such as that two strsight lines cannot enclose a space) may just as well require repeated experience to convince him of the truth of a geometrical deduction; we have to do with the matual implication of apatial conditions in both cases. And so it is also in the science of pure quantity. The maltiplication table up to 12×12 might be asid to contain principles, and the multiplication of 266×566 to apply them; bat whatever reason there is to doubt that $6 \times 6=86$, there will be the ame reason to doubt whether it follows that $60 \times 60=$ 3600. However, it will be sufficient if we confine ourselves to the consideration of the alleged indactive character of the process by which we ascertain mathematical principles, without attempting to determine how much would have to be regarded as principles, and how much as valid consequence.

What is really meant by the allegation is, that whereas every mathematical principle, such as the axiom of parallels, or $2+2=4$, is aniversal, our reason for accopting it as universally true lies in the fact that we have always found it to hold good in experience. Two apples and two apples make four apples; it is the same with cows or sovereigns, window-panee or waterpots. And whenever we have seen a straight line falling on two nther straight lines and making the alteraste opposite angles measarably equal, we have found-if

[^301]we have tried-that however far we produced the two other straight lines, wo long as they continued apparantly straight, they remained at the eame meesorable distance from one another. All experience confirme these principlee, and none is contrary to them; we socept them anempirical generalizations, poseming, on account of the extent and variety of the circumstances under which they have been found to bold grod, the anme degree of certainty as if they had been proved by a rigorons elimination of all other hypotheese

It is really sufficient anower to this view, to recur to what was anid upon a similar attempt to treat the Law of Ceusation as empirically establiahed. If the Law of Causation is true, the facte of our experience belp us to determine what are the partionlar caum connaxions in natare; if we start by doubting it, the facts will never bring un any nearer the proof of it. Similarly, if we start by doubting whether apatial or numerical relations are constant, the facte will never begin to prove it. Grant that the sum of $2+2$ is always the same, and it is worth while to see what it is ; and whatever countable thinge we take to reckon with will make no difference. Bat question whether it is always the same, and proof that it is wo becomea impomible. For you have no ground for supposing that if $2+2$ could sometimes make 5 , cases of its ocearrence would have occurred in your experience. Everything becomea problematical; the frequency of any particular sum of $2+2$ is quite indeterminate, if the sum is indeterminste; and yoar experience may asare you that yon have never found them making anything eloe then 4, but cannot aseure you that you are never likely to do so. And so it is with geometrical principles also. If geometrical roletions are not necessary and univereal, wo have nothing bat a conjunotion of facts empirically escertained. In each place and time the conjunction may be different; there is no resson to suppose that what occurs here and now conveys any instruction about the occurrences at otber times and places. If each place and time is loose and independent, the next may elway contradict even the uniform reanlts of previons experience.

Other lines of refutation are also posible. It might be pointed out that in point of fact we do not look for confirmation of our principlea to repeated experience; but we interpret axperience in the light of our principles. Two drope of quicksilver + two drope of quickrilver will make one drop of quicksilver; but we insist that
the four drope are there, in a new figare. The angles between the end-lines and the side-lines of a tennis-court may seem each to be a right angle, and the sides to be drawn atraight; bat if we find that one end-line is shortar than the other, we say that we know that the angles cannot be true. It may be aid that by this time our principles are well eetablished, and facts in apparent conflict with them are therefore reinterpreted so as to be consistent with them. Bat facte in apparent conflict must have bean frequent from the beginning. Again, it is hard to see what meaning can really be attached to the atatament that $2+2$ might conceivably make 5 , or that lines making equal angles with a third straight line might conceivably remain atraight and yet converge; for auch athing cannot be represented to thought as possible.

It is of course true that in the application of mathematical reseoning to what is concrete, our conclusions will only be true if our premieses were mo. If a wheel which I assume to be circalar is not circular, conclusions besed on the earumption will prove false. If I am wrong in my linear measurement of a floor, I shall be wrong as to the number of equare feet of floor-oloth required to cover it. But that doea not shake the certainty and oniverality of mathematics ; indeed nothing else would consist therewith.

It is also true that withont experience of connting numerable objecta, and of constructing figares in apece, I should be unable to apprehend or anderatand the trath of mathematical principles. But this doee not make their truth empirical, or my mode of eecertaining it inductiva. For theee principlen are meen to be intrinsically neceseary as eoon as they are underatood; wherene inductive, conclusions are never seen to be intrinsically necemeary, but only to be unavoidable. Nor does farther experience add anything to our aerarance, when we have once made the construction or the calculation in which their truth becomes manifeet to us; wherens further experience of the same conjunction amidat variation of circumstance in preciealy what does add to our semurance of the trath of an empirical goneralization ${ }^{1}$.

We mast conclude that in mathomatica there is (or at least should be ${ }^{2}$) no generalization from experience. To suppose mathematical principles to be such generalizations is like rapposing the Law of Causation to be so. Their oniverality is the coanterpart to the reign

[^302]of law in phycical nature. But the deductive character of mathematical acience is due to the nature of the subject-matter, and our peculiar insight into the rational connexion of its parts. What is implied in our possession of this insight is a metaphysical question lying beyond our purview.
[The nature of mathematical certainty is a question of farreaching metaphysical importance; and J. S. Mill, in his Autobiography (loc. cil.), frankly acknowledges that the chief strength of the opposition to the trath of the Empirical Philosophy had alwaye seemed to lie bere. It whe on this acoount that he sought to show that mathematical principles in their turn were generalizs. tions from experience. He beld the same with regard to logical principles. It is logically important to see that there can be no knowledge unless there are truths not empirical-i. e. not open questions, for a decision on which we must go to the tribunal of senseperception or eventa. And no one will understand the structure of knowledge, who does not see that mathemstical principles are trathe of this kind. But it may be asked what their relation is to logical principles. There are some who have represented logic as at bottom a branch of mathematica; and others geem inclined to suppose that mathematics can be reduced to formal logic. A non-mathematician is not well fitted to discuss these matters in print; and the diacussion belonge in any case to a more adranced stage of logical science than this book pretends to attain. But I ought perbaps to say that I do not anderstand how either theory can be true.]

CHAPTER XXVI

OF THE METHODOLOGY OF THE SCIBNCES

Ws have seen that inferencee cannot all be reduced to a small number of fixed typen. They are not all syllogistic, not even all that are deductive. Their form is not altogether independent of their matter. All inference, scoording to Mr. F. H. Bradley, is a constraction and an intaition. ${ }^{1}$ The patting together of the premisess is the construction, bat it is the terms which determine how it can be effected. The percoption of something new to us in the whole which we have constructed is the intrition; and if we do not see its necessity, there is no help for us. But within the unity of this definition, we may examine any particular type of inference which, for ite frequency or importance, seems to demand our special attention. Syllogism is one of these types; the dirjunative argument as applied to establish causal connexion is mother. The relation of subject and predicate is one of the commonest which our thought uses, and therefore inferences besed on it are common. The cansal relation is not lese important, and the type of inference used in its establishment equally deserved our stady.

We foand that this type of inference rested on the conception or definition of cause. We considered very generally what that conception involved, and how we could satisfy ourselvee that we were right in bringing any particalar facte under the conception. We noticed some of the difficulties which the complearity of natare places in our way; and some of the cantions which we most constantly bear in mind in interpreting facta in aocordance with the conception. We found that general traths present themselves to the mind at first in the form of conjecture or hypotheris, and that

[^303]often there is no means of teating such hypothenis except by first deducing-it may be by very elaborate reasonings-the consequences that should follow in apecifed circumstances if it were true and if it were not. But all these matters were discossed and illustrated in a very general wey.

Now different enquiries have their own peculiar difficulties, arising out of the nature of their subject-matter, and of the problem which they set. And any rules for dealing with these peculiar difficulties will constitute rales of method, inatracting us how to set about the task of singling out the laws or causal connerions from amidat the particular tangle in which the facts are presented in such seience. The consideration of such rules, as distinct from the use of them, is Methodology; and no far as herein we consider bow cartain general logical requirements are to be satiafied in a particular case, it is sometimes called Sppliod Logic. ${ }^{1}$

To this subject belongs Mills discusaion of the proper method of studying the moral or social sciences ${ }^{2}$. He points out how methode of enquiry appropriate to certain chemical inveetigations (to which he therefore gives the name of the Chemical Method) are inapplicable in dealing with the sciences of haman nature. The chemist, unable in a great degree to predict from his knowledge of the properties of elemente the propertien which will belong to their componide, han to preoeed by experiment conducted with every precaution to eecure a precise tnowledge of the conditions; and thas discovers the effect of a new condition or ingredient upon a whole of a certain kind. But we cantiot experiment with society out of a merely epeonlative curiosity; the practical interests involved are too great; and were that not so, the thing is impossible. Our material is not under control; it would be moot instractive to prevent the use of alcohol in England for a generation, and watch the differance in the amount of panperiam and crime; but there is no means of performing the experiment, for to pase a law is not to enforee it. Nor can we ever know precisely into what conditione we introduce the factor whoee effects we wish to study ; nor can we maintain those conditions unchanged in all but what is due to the influence of that factor during the coarse of

[^304]our experiment. For these and other reesong, it in hopeless to expect much light to be thrown apon the laws of social phenomena, merely by watching what follows in different cases upon the adoption of the ame policy, or by comparing the results of different policies. There are so many factors which modify one another; each effect depends on mo many conditions, and each condition by its presence or abeence makes a difference to so many effects by us regarded as diatinct, that it is usalese to suppose the effect of any particular social experiment will stand out sharp and recognizable amidst its surroundings, or that we could asy-Here is something which could not have occurred bat for the measure we took.

We must have recourse then to deduction. From what we know of the lawe of human natare, we must attempt to determine the effect which a mearure must produce, or the conditions out of which a given atate of aociety must have arisen. But again the great complexity of the subject impoees certain reatrictions upon us. We must not expect to be able to trace any pervading feature of society to a single motive, as political obedience to fear, or good government to a system by which the ruler's private intereat is engeged in governing well. And Mill hays atrese on one feature in particular of the method by which the course of human hirtory is to be explained. Insteed of working out first the theoretical consequences of certain general principles, and then checking ourealven by comparing our recult with the fecta, he holde that we should ondeevour first to accertain ompirically the arkordinate principles that manifeet themselves in history, and check our formulation of them by considering whether they are consintent with the more altimate lawe of haman nature and conduct from which in the leat reeort they must be derivable. For the facte of every period are so diverse and manifold, that the former procedure would probably be a wate of time. We may know the lawi of human nature, bat until we know the circumstanoes of a given atate of eociety, we cannot tell what result these lawe will produce. We never know them anficiently for it to be worth our while to attempt to develop human history a priori, as the astronomer might attempt to develop a priori the course of a comet or of the tidee. We must be content to confirm such generalizations as we can frame a posteriori by ahowing that thoy prewent nothing surpriaing
when they have happened, although we might have been nuable to predict them. ${ }^{\text {l }}$

In the chapter on Non-reciprocating Cansal Relations, questions of methodology were really to some extent disoumed. For we were engaged in considering the difference between the evidence required to eatablish a pare caumel relation, where nothing irrelevant onters into the statement either of the cause or of the effect, and a nonreciprocating relation such as is implied when we spenk of a Plarality of Canses. Now some sciences find it muah harder than others to eliminate the irrelevant; and to them it is specially important to remember the sort of teata by which the non-reciprocating character of a relation may be detected.

In that chapter, two of the 'Rules by which to jadge of Causen and Eflects' which had been previoualy enanciated were reconsidered at some length, and it was ahown that, although nothing which failed to matisfy their conditions could be in the strict sense the eause of any phenomenon, jet if canse were understood in a looser enee, as non-reciprocating, it whs not mefe to make the same assertion. But of the precantions to be attended to in the application of the other two Rulea little was said.

These rules were, that nothing which varies when a phenomenon is constant, or is constant when it varies, or varies independently of it, is its cause ; and that nothing is so whose effect has already been taken account of in other phenomena. Both these rules are especially useful where we are deeling with mocourable effecte, the total amount of which is dependent on a large number of conditions ; and the investigations which employ them have been called 'Methods of Quantitative Induction'? It may be worth while to consider some of the difficalties whioh beset the use of them; and that will furniah an example of a methodological problem; for a science which deals with measurable phenomens, in epite of the great advantage which their messurability bringe, generally meets also with some special difficulties, which it needs particular preceutionary messures to surmount.

What is mesurable wust so far be homogeneons. Sometimes

[^305]
xxvi] OF THE METHODOLOGY OF THE SCIENCES

it is for all practical purposes entirely bomogeneonas. A gas company supplies gas by metre; the ges is measured, and one cubic foot is practically indistinguishsble from any other. Sometimes the homogencity is lees complete, bat there can be no meararement except to far as it is found. It may be important for a general to know what percentage of men he is likely to lowe by casualties other than in the field; thees casualties may be of various kinds, and to the individual soldier it may make a great deal of difference whether he breake down through dgeentery or fatigue; but they are all alike in incapacitating men for service; and the general wanta a meacure of the extent to which that coours. A valwer amesees the value of the personal property of s man decessed; it consista of pictares, plate, furniture, hornea, atocke and ahares, books, and all kinde of miscellaneous articles; bat so far as these are all axchangeable for money they have a common property whioh can be mearured in terms of money.

Now contribations may be made from many eouroes to any homegeneous quantity, but when you are merely told what the quantity is, there is nothing to ahow of how many parcels, so to say, it is made up. The total quantity is a sort of unity. Had one parcel been greater, the total would have been greater; should one parcel fluctuate in amount, the total fluctustea ; but there is nothing to show which paroel is fluctuating and which is constant, and the veriation seems to belong to the whole.

It follows that where an effect is quantitative, and there are a number of contributory feotors which, one why or the other, influence its amount, fluctuations in these do not necemarily stand out in the result. There is no doubt that overcrowding affects the death-rato; yet the death-rate in a town may rise while overcrowding has diminished, if other canses operate to incresse it fanter than the improvement in housing opentes to diminich it.

Hence a haty application of the rule that nothing is the canse of a varying phenomenon which does not vary proportionately with it may lead us into grave mistakes. We might suppoes, for instance, in the last example, that overcrowding had no infuence on the death-rate, becanse the death-rate meemed to rise and fall independently. Doubtlese it is only seeming; and if the other contributory factors could be kept constant, we ahould find the rise and fall proportionate. But we cannot keep them constant.

And even if we could, we should be exposed to other errors of interpretation. The death-rate, many as are the causes which contribnte to it, is yet measured as a wholo, and treated as one phenomenon. If all the causes which contribute to it were constant except one, and that one fluctanted, the whole result might be attribated to the one circomstance which exhibited proportional flactantions with it. In this particular matter, indeed, we lonow too mach to fall into such an error; we know that overcrowding is not the only canse of death. But where our previous knowledge is leas, it in very eary to attribate the whole of a varying effect to the factor which naries in proportion, insteed of only attributing the the incremes or decrese beyond a fixed amount. The influence of education upon character is great; and that is shown by the effects of giving and withbolding it. But we cannot thence infer that it is all-powerful, or that the whole difference between the criminal and the good citizen and father ia due to comparative defecte in the criminal's upbringing. ${ }^{1}$

It is clear, then, in the case of a fiuctuating effect whioh is the complex result of several canses, that though there must no doubt be a proportionate Alactantion (or constancy) in the cause, yet it is unsufe to reject from being a cause either a feotor which fluctuates when the effect is constant, or one which is constant when the effect fluctantes. For we see the effect $s e$ a whole; and the whole need exhibit no fluctrations proportionate to thoee of any one part. The rule of elimination is not false; and if the separate effects of each factor were not loot and nadistinguished in the total, we should observe the facts conforming to it. But this not being so, the rule is unafe.

The beat remedy lies in determining the precise mount of effect which each factor can penduee; and as each factor may porhape be liable to fluctuation, what we need is a principle or law conneoting each degree of its activity with a correoponding quantity of the effect. This is done, for erample, in the Law of Gravitation. And could we thus calculate the amount of effect which the other canses at work, at the atrength at which they were severally preeent, were capable of producing, we might then safely attribute any difference

[^306]
xxvi] OF THE METHODOLOGY OF THE SCIENCES 519

beyond this to some circumatance that fluctasted proportionately with it.

But in arch a procedure we should no longer be appealing merely to the principlo that the cause of a varying phenomenon must be something that veries in proportion. We should be invoking aleo the fourth of our groands of elimination, that it can be nothing whose effect is already socounted for. Only becanse we have determined the amount of effect which the other fectors can produce are we entitled to eny that the residue is in mo part due to them. And onleas we know with fair accurncy what amount of effect may be justly anigned to other factors present, we cannot apon the strength of this principle attribate any part to some partioular further factor a. The application of this rale therefore is involved in the same difficulties as that of the former, through the fact that the effecta of many different cances are componnded and loat in one total amount.

Moreover, so long as all these causen are freely varying, and making their separate effeots in one total, the determination of the law of any single cause, much as it world help ns to discover the others, is the very thing that is 00 difficult. Hence the necemity of experimenting with each suspected cause singly. It may be impossible to exclude the influence of any others ; we must endes rour to keep it constant; or we may employ what is called a controlling experiment at the aame time. We may see what happens both when a certain factor is introduced, and when it is not, under circumstances which, though we cannot keep them constant, we have good reason to believe to be the amme in either case. A farmer, for erample, wishes to know whether some new dressing is of any use to his graes. He cannot remove the other causee which promote or hinder the growth of graes, and see how large a orop of hay this dreasing could produce alone; for alone it would produce none at all. Neither can he control those other causes, so an upon the aame field to use it one year and not the nert, and maintain all other factors the mame. But be can select two plots, or series of plota, on which he has reason to believe that the other canses all operate equally, and use the dreasing on one and not on the other.

But even m, we have not got a great way towards determining the law of a cause. To show through all that make it that some part of an effect is due to a particular cance is not the ame as
showing how much is due to it: ctill less as finding a mathematical expression that connecte definite fluctuations in the one with definite fluctuations in the other. There are many casee where this last achievement is impossible, even though the phenomens we stody be quantitative and to some degree meanarable; indeed it is impossible except in dealing with the physical properties of bodies Elsewhere we mast be content with a vague much and little. In time of war, the rink of capture at see is a great deterrent to neatral commerce; but we cannot aay precisely how great. The history of times of plague shows that increased ancertainty of life relaxes the bonde of custom and morality; but it would be impossible to give any mearure of the connerion between the two facta, though the mearurability of the facta, in the sense that as the death-rate rives the frequency of criminal or reckles acts incresese, enablee us to establish the connerion. The one faot may be, in mathematical parlance, a function of the other; but it is not a function of the other alone; and we cannot so disentangle the many causen and their complex result as to give preciaion to the degree in which one affects the other. Moreover, where the phenomens are more purely quantitative, the lew of variation that connecte them is by no means esey to establish; for a formula which bolds good over a considerable range of variation may break down beyond thoee limita. The coefficient of expansion of a metal, which indicates the rate at which ite bulk increases with suocessive incrementa of heat, no longer appliea when the metal vaporizes. Thare are what have been called oritical points, at which the change in an effect no longer observes the eame proportion as hitherto to the change in the canse. Great cantion most therefore be obeerved in formalating any law upon the ovidence of concomitant variation between two phenomena, even where we are atiafied that wo have excluded any variation due to other canses, and can give a precise mearare of the phenomena in question.

The canses whowe effects are merged in a total may not only vary independently of one another; some may be intermittent in their operation. And whether thoy are continuous or intermittent, they may be periodic; and one may have a longer period than another. There may again be causes which are both intermittent and irregular in their action, recarring at no definite and periodic intervala Yet it in poseible to cope with many of the difficulties which these
facts present by taking averages. No one would expect the rainfall of one year to agree closely with that of another in the mame locality; the circumstances affecting it are too numerous and inconstant. But we have no reason to expect that the average annual rainfall over a considerable period of years should not agree closely for different periods; for though in one year there may be more circumstances that are favourable to rain than in another, in the next it may be the other way. If, then, the average rainfall for one considerable pariod of years were greater than for another, we should look for some definite reason for the difference: which we might find perhape in a difference in the amount of foreat standing in the district at the different dates; for the intermittent and irregular causee of whoee operation we are aware would have roughly balanced in the two periode, though not perhape in any tro single years. Another method is to plot curves. A base line for example is taken, and perpendicularn drawn to it at equal intervals for the succeesive years. On each of theee a point is taken whose height above the base is greater or less in proportion to the nomber of inches of rainfall in that year; and a line is drawn through those pointe. The line will rise and fall irregularly; bat it is possible that in spite of these intermediste flactuations there may be long-period fluctuations which atand clearly out; what may be called the create and troughs of the ourre may be at fairly equal intervals, though its course is not uniform from trough to crest. This would indicate the action of some case having a similar period; and if we discovered any factor with a corresponding period of fluctuation, there would be astrong preaumption that it was the cause.

The profitable use of atatistice depends very largely on methods like these; but the devices for bringing out their teaching are often much more elaborate than has been indicated. They belong, however, to the detail of particular scionces rather than to the general principles of logical method. Enough perhapt has been asid to indicate the misinterpretations of causal relation to which we might be led, in the case of quantitative phenomena that vary in their amonnt, by too hastily applying rulea true in themselvea to any unanalyred total effect : as well as the difficulties that beset us in disentangling the component parte and fluctuations.

A few further and miscellaneous examples of the way in whioh
precepts for the better prosecation of a particalar acience may be drawn from general logical principles will eerve to conclude this chapter. It must not be sapposed that the subject is at all sdequately treated here; it is only illustrated.

What is called the distorical or comparatine method has in the last few generatione revolationized many branches of enquiry. It is bat an applicstion of the general principle of varying the circumstances in order the better to discover the cause of a phenomenon. But of old, enquirers into metters of historic growth, such as langrage, or myth, or religion, or legal ideas, were content to attempt an explanation of the facts of come particular age or country by obeervations carried on within that age or country alone, or if begond it, only in adjacent ages or conntries of the same type. The historio method looks farther afield. It compares the institutions of widely different ages, or of peoples who though contemporaneons stand at widely different levels of civilization and of thought. In the light of such s comparison, facts may take on quite a new appearance. Legal or other cuatoms for which a later age had found a reason in some suppoeed meaning or utility which they now poseosed are neen to have had a very different origin, in conditions no longer eristing, and idees no longer entertained. Folk-lore is full of such surprises. The castom of throwing rice after a married couple as they drive awny is aometimes explained by eaying that rice is a aymbol of fertility; Dr. Fraer, comparing a number of other facte, thinke that the rice was originally intended to lare back the epirit of the bride or bridegroom to ita body; it was apposed that at critical times-and everything connected with marriage whe critical-the spirit left the body, in the form of a bird; the rice would attract it, and if it hovered about the body it would be more likely to re-enter. Whether this be the trae explanation of the custom or not, only the comparstive method could have ruggeated it. It is the aame with myth; the account of the origin of Greek and Roman mythology popularized by Max Müler represented it as, in the langagge of Dr. Andrew Lang, a disease of language, the pearl in the oyster. ${ }^{1}$ Names originally designating the attributes of earth or sun or moon were confused with words of similar sound bat difierent meaning, and out of these other meaning mythe arose. Apollo ${ }^{1}$ Custom and Myth, p. 1. tion to make, with a view of increscing and aystematizing his : Knowledge of the lawe which determine the development of the ? individual mind ; or instead of the hypothesis of intaraction (which 1 conceives mind and body as producing changes in one another) he : may prefer the hypothesis of parallelism, eccording to which every mental abange has a correrponding bodily change, and vice veras, but the two series proseed esch uninfluenced by the event of the other. Either hypotheais, if not regarded as true, but only as facilitating enquiry, would be s methodological eanmption. Similarly, if he believee in the freedom of the will, the paychologist may still, se methodological assumption, sceept the doctrine of
determinism; becanse mor actions have not any cause sofficiently accounting for them in the pre-existing atate of the agent, but apring from the activity of a will acting according to no fixed lawts, it is hopeless to try to explain their oecurrence. In his attempts to do this therefore he will asome what is necenary to the powibility of doing it, even though he may believe that it cannot be altogetber done.

Leatly, general logical considerations may indicate the weak places in a particular acience at a given time, and thus ahow what line of enquiry is logically of most importance to the ecience in quention. The theory of Natural Selection asumed the existence of variations, that is, divergences from the parent type in offspring; and it assumed these variations to be ascidental and non-adeptive. It concentrated itealf at first on the task of showing how great a degree of adaptation between an organiam and ita anvironment could be brought aboat, through the operation of the atruggle for existence among individuals verying alightly from type in all directions; and how by the accumulation of auch small variations as happened to be favourable in each generation a profound modification of specifio type might altimately be produced. It was quite worth while to work this out even upon a becis of asamption as to certain of the facta. Bat the presure of criticism has directed attention to the quention whether variations are all of them non-adsptive; and one of the logical requiritee of the theory of Natural Salection is a suitable collection of facts throwing light upon this point. The facte are not very easy to obtain or eatimate ; but biologists are working at this problem with great assiduity. A atady of the contemporary state of biology from a logical point of view woald have to consider with some care the kind of facts required on anch a point as this, and the sort of instance that would be crucial', i, e deoisive against one or other theory.

[^307]
CHAPTER XXVII

appendix on fallacies

A pallacy is an argument which appears to be conclusive when it is not; and the chief use of studying fallacies must be that we may learn to avoid them. Regarding Logic as a science, we might therefore justly say that we are not called upon to discuss them. The only way in which their study can help us to understand how our thought works is by the force of contrast. Show a man an argnment which he recognizee to be unsound, ahow him where the unsoundness lies, and he may very likely realize more clearly, so far as theycan be formally prescribed, what are the conditions of valid ressoning. On this account as we wentalong we contrasted examples of invalid with examples of valid inference. What more then is wanted i for the case is not as it is, for instance, with psychology. To the paychologist few things are more inatructive then the atudy of marked abnormalities of mental life: just as to the phyviologist diseases reveal much which cannot be seen in health. For paychology is an empirical acience, so far as it is a science at all : it aims at discovering the principlee in accordance with which the various manifestations of conscionaness develop in the life of the individual ; what these are it is to a large extent unsble to anticipate, although the metaphysician may have his views as to the conditions under which alone their action-whatever they may be-is possible. Now insanity is just as much a fact as any normal mental development; it must equally admit of explanation; and doubtless the same principles, in accordance with which this development proceeds ander certain conditions normally and to a sane reanlt, are exemplified in the mental distarbances which other conditions evoke. They are exemplified too in a more prominent way; so that such cases furnish what Bacon called a glaring instance ${ }^{1}$ to assist us towards their discovery. But it would be absurd to may that the principles of rational thought are

[^308]equally exemplified in fallecy as in sound thinking; and it would be absurd to hope to discover, in the procedure of a fallecions mind, the nature of true thinking. We have anid once and again that Iogic snalyees the operations of thought which the mind has already performed about other matters; but it muot not be cupposed that it in on that scocount, any more then mathematics, an empirical science. The mathemstician can only recognize the neceseary relations of number or speoe by the help of come quantities or figures in which he finds them; yet he recognizes their necessity to be absolate and univerav, and the fact that his nonmathematical friends make mirtakes in their mathematical thinking is not taken by him as evidence that there are really two ways of thinking about the matter; he merely says that on such subjects they cannot really think. So aleo with Logic. Only in some thought in which they are found can the necessary relations involved in thinking be recognized; bat their necessity too is recognized to be absolute, and we aay that those who think differently are incapable of thinking about how they think. If any one is inclined to hold otherwise, and to suppose that the laws of our thinking are paychological laws, exemplified no leas in fallecy than in its opposite, let him reflect that even in doing so be is bound to aspume the contrary. For he who in that mind sets out to ascertain what the principles of thought, a a matter of empirical fact, are, will be unable by rights to know that the thought is valid by which he conducts that inveatigation. How then could be have any confidence in ite results? Yet the fact that he intends to truas them implie that he agrumes the principles of thought, in scoordance with which be conducte the invertigation, to be valid, whatever prinoiples the inveatigation may report in favour of; and berein be takea for granted that he can recognize immediately what rational thought is, without reference to empirical facts revealed by payohology.

Nevertheless the insertion of a chapter on Falleciee may be defended. It has tradition in its favour; and without it, the nomencleture of fallecies-s nomenclature by no means fallen out of common use-would remain unexplained. There are practical uses in it also; and it would be ridiculons to say that because Logic is a ecience we may not turn the otudy of it to advantage in practice. Familiarity with some of the commonest typea of fallacy in no security that we shall nover fall into them oursalvee; atill leas are
we bound to fall into them unless we have aequired that familiarity. But it may belp us to avoid them, by helping us more readily to perceive them. The overtones which a man hes never noticed till thay were pointed out to him he may afterwards detect easily for bimself. A favour in a dish, a line in a picture, whose presence had gone unobeerved, a man may be unable to ignore, if it has been singled out and presented to him in isolation. So it may be with a fallacy. There are many whose perception of the unsoundness of an argument is not unaffected by their belief in the trath or falaity of ite conclusion : they will detect it where they think that what it proves is false ; but let it be true-still more, let the suppoeed trath be precious to them, or familiar-and the ame form of argument in its support may pass unchallenged. Yet if we have accuatomed ourselvee to the look, or type, of the falleoy, we are lese likely to be the victims of auch an imposition. It is true that, in the words of Archbiabop Whately ', 'After all, indeed, in the practical detection of each individual Fallecy, maoh must depend on natural and acquired acutanes; nor can any rules be given, the mere learning of which will enable ns to apply them with mechsnical certainty and readiness: but still we shall find that to take correct general views of the aubject, and to be familiarized with scientific discussions of it, will tend, above all things, to ongender such a habit of $\begin{aligned} & \text { mind, as will beat fit us for practice.' And, as }\end{aligned}$ Aristotle intimates ', a man who may be able to detect a fallacy well enough, if you give him time, by the light of nature, may be placed at a practical diaadvantage by not being able to do it quickly enough : here the eystematic study of fallacies will help him. Nor is it only in argaing with others that he may reap some benefit from the atady; it will eocrue to him also in the condact of solitary thinking. ${ }^{\text {s }}$ It wae bowever chiefly with reference to the conduct of debate that Aristotle discuseed the subject. It was from this point of view that he obeorved, that a man might be auspected of incompetance, who only found fault with an opponent's argument, and could not ahow in what the fault consisted ${ }^{4}$ It may be added, that eo far an fallecies are referable to recognized types, it is a great abridgement of criticim to be able to name the types, and refer a particular fallecy to one of them.

[^309]These are practical considerations; and it woald probably be found that importance has been attached to the doctrine of fallacies chiefly by thnee who have viewed Logic as an instrument for reasoning. But an use may be found in the doctrine, of a more theoretical kind. It is intallectually anmetiafactory to mee that an argament is faulty, and not to see precisely why. We deaire for ourselves, no less than we owe to our opponent, an analygis of the error. Otherwise, and if we can only see it, and not see through it, the mind, as Aristotle erpresess it, is bound, and unable to proceed. ${ }^{\text {i }}$ It is probable that some of the fallacies of which he finde the solution in different ambiguities of langrage did once constitate a more serious entanglement than they do to-day. Thie is partly becanse, se others have pointed out, such falleciee generally dimppear by translation into a foreign tongue; and peoples more familiar than the Greeks were with a diversity of tonguee have a great advantage in detecting sach. It is partly sleo because an analyois now in his day is common property in ours; and many of its resulte are so incorporated into the currency of common thought and speech, that a man whose sttention is called to them feels as if he was taught only what he already knew.

If however we are satisfied that Logic should treat of fallacies, it is very difficult to be antiafied with any treatment of them. Truth may have its norms, but error is infinite in its aberrations, and they cannot be digented in any clessification. ${ }^{2}$ The same inconclasive argument may often be referred at will to this or that head of fallacies. 'Sinoe, in any Argument,' says Whately, ' one Premiss is uaually suppressed, it frequently happens, in the case of a Fallacy, that the hearers are left to the alternative of supplying eifher a Premiss which is not true, or else, one which does not prove the Conclusion. E.g. if a man expatiates on the distress of the country, and thence argues that the government is tyrannical, we must suppose him to ansume eilher that "every distressed country is under a tyranny", which is a manifest falsehood, or, merely that "every country under a tyranny is distresed", which, however trae, proves nothing, the Middle-Term being undistribated.'s The asumption

[^310]of a falee premias is not indeed perhaps to be called a fallacy, as we shall see presently; it is at any rate different in ite nature from inconcluaive argumentation. But the choice may equally well lie between two modes of inconclasive argumentation, when we have to clasaify a fallecy; a man who attompte to refute by an onumeration of striking instances the proposition that some apecific characters in plants and animals are not adaptive might either be charged with illicit process of the minor term, in drawing an universal conclasion where his premisses only entitle him to a particular one, or with what is called Ignoratio Elenchi, in supposing that a par: ticular affirmative refutes a perticular negative. ${ }^{1}$ And not only is it imposible to make such a claseification of fallecies as will never leave it in doubt to which claca a particular example is to be referred; if that were all, it might be aaid that the types were distinct, and the olasification so far a good one, although individuals oould not be aenigned to their typee unambiguously: but it may be doubted as well, if the types of error can be exhaustively detailed; and the classification completed.

The reseon for this is twofold. In the first place, there may be argamente so foolish and inconsequent, that they cannot even be said to simulate cogency; these cannot be positively characterized, but must be lumped together by the mere negative mark of inconclusiveness. And eecondly, there are many fallacies, the detection of which requires not general logical training, bat acquaintance with a particular scientific subject-matter. The latter point is of some importance, as connecting with what has been slready said about demonstration.

We have seen that the syllogism cannot sustain the claim once made in its bebalf, of being the type of all valid inference; but that there are deductive ressonings-to say nothing of hypothetical and disjunctive argument-whose validity lies in no conformity to a scheme exhibitable in the abstract, or symbolically, bat rests for its apprehension upon acquaintance with the nature of the special subject-matter with which they deal. The readiest illustration of this, but by no means the only one, is furnished by geometry. Now what is true of valid is equally true of invalid reasonings. There are many which are not of a sort that can occur in reasoning

[^311]on every subject-matter, bat are bound up with misconceptions of the apecial subject-matter in which they occur. This too may be readily illustrated from geometry. 'Iewis Carroll' devised a proof that 'a right angle is sometimes equal to an obtose angle'. The demonstration was in all other reapecta unimpeachable, bat vitiated by one-of conrse intentional-error in the constraction of the figure, in which a line was drawn to one side of a point which must in fact fall on the other. ${ }^{1}$ Just as a knowledge of geometry can alone show where this line murt fall, 20 a knowledge of geometry can alone expose the inconsequence of the false demonstration. And similar inconsequences ocour in every particular acience, whioh only an understanding of that ecience oan show to be inconsequences. Thus if it were argued that because a and ζ were halvee of the eame thing, therefore they were halvee of one another, and since $a=4, b$ must $=2$, it is only a perception of the nature of quantity that reveala (doubtless in this cace to the lenat mathematical of us) the invalidity of the first step in the argoment. It is less obvious that among a people who noknowledge kinship only through the female, a man would inherit not from his father bot from bis brother or maternal uncle. Yet a little refioction shows this to be the case, and ahowe therefore the fallecy of

[^312]arguing, where female kinabip provails, that because A is in posemsion of a property, his son will posense it after him. Here the detection of the fallecy rests apon our perception of the systam of relationships aniting the members of a society which takee mocount only of union by deecent through the female line.

Aritotle, who noticed that every soience afforded ite own apecial opportanities for erroneous inference, gave to those that involved mistakes in geometry the name of ψ reboypd $q \eta \mu$, or falee construction. ${ }^{1}$ As an example be gives Hippocrates' method of equaring the circle by lunules. A lanale is a figure enclosed between aros of two circles concave in the same direction. Hippoorates found a rectilinear area equal to a lunule whoee upper are was a semicircle, and its lower arc the fourth part of the circumference of another circle; he then found another rectilinear ares equal to the sum of (a) three equal and similar lanules whose outer arce were semicircles, and their inner arcs the sixdh part of the circumference of another circle, and (b) a semicircle of the same diameter as the three lunules (i.e. of diameter equal to the chord of the arcs enclosing them); and he supposed that by subtracting from this rectilinear ares an ares equal to the three lonules, he could obtain in the remainder a rectilinear ares equal to the semicircle. He overlooked the fact that because you can find a reotilinear ares equal to a lunule of the former sort, whose inner are is a quadrant, it does not follow that you can find one equal to a lunule of the latter sort, whose inner arc is a sextant; and in fact a rectilinear ares equal to these three lunules cannot be obtained.:

Now it will indeed be seen that, in this or any other caee of erroneons ressoning dependent on misconceiving the consequences whioh follow from given conditions in a apecial subject-matter, the error can be expressed in a false proparition. It is false that because a rectilinear area can be found equal to one of these lunulea, it can be found equal to the other: it is false that thinga which are halves of the same thing are halvee of another: it is false that, if we take account only of kinship through the female line, a man will be in the same line of descent with his father. But we cannot see that any of these propositions is falee, unlese we underatand

[^313]something of the respeotive subject-matter. They are m it were fale 'speoial principles', or that dpxat. It is not desinble to call every faleo proposition a fallicy, ase.g. that osakea cet duat, or that Soath America is an island; nor can we extend the name to overy valid argament that ones a feleo promian If the falsity of the presoise can only be ascertained empirically, there is error, bat not fallacy. If howerer the falcity of the premine in to be ascertained by thinking out the consequences of certain rolations, or conceptions, in the circumotances of a given care, then we are gailty of fallacy, or defect of resoning, in overlooking it; and that is what frequeatly occurs in the master of any particulur science.
There are indeed genenal heads, ander which many such fallacies can be brought. In particalar, they very often arise from overlooking some of the special circomstances of the ceeo : from sevuming that what is true ander certain conditions will still be true when those conditions are in some way modified. Thas, if two things a and b are equal to the same thing, they are equal to one another ; from which we may conclade, that if they bear any asae quantitative relation to a third thing, they bear that relation to each other ; and then it would follow that if they were halves of the same thing they would be halves of one another. But in fact, it is only when their same relation to a third is one of equality, not merely when their relation to it is the same, that they bear to ooe another the relation borne to it. We shall meet with this type of fallacy by and by under the name of socundum Quid. That heading embraces a great range of examples. Bat though we can detect in them a common character, it is only by anderstanding something of the apecial matter of the argoment, that we can eeo that the fallacy is being committed in a given case. The type, if one may eay eo, is fluid; the ingtances are not eo far of one form, that we can separate their common form from the variety of their matter, and exhibit it aymbolically; nor, though the type admita of all this diverity, can we subdivide it, and carry oar clessification down to infimas species. We recognize that its character differs in different cacca; bot the differences cannot be formulated.
Orr tank then is one which doee not admit of fally entisfictory performanca. Still no doubt it can be better and worse done. What clarification of follscies are we to adopt?

The earliest, and for long the accepted, classification is that of Aristotle, given in the last book of his Topice, called the Sophistici Elenchi. It is not free from defecta; and others, some of which will be referred to, have been propounded. But the subject is emphatically one upon which some consensus is deairable. If it is neeful to have a nomenclature of fallecies, it is ueeful to have a standard nomenclature. And it is remarkable how, oven in rival classifications, many of the Aristotelian species of fallacy still hold their own. Later writers have given new meaninge to the Aristotalian names in certain cases; or beve invented names for special forms of some of the Aristotelian fallacies; or have included in their list what are not forms of arroneons argument, but sources of error of a different kind '; yet it is surprising how little there is which cannot be brought within Aristotle's list. And if we consider not the enumeration of typee of fallacy, but their cleseification, it will appear, I think, that there is no such merit in any alternative echeme as justifies us in eacrificing the advantage of keeping to the standard and traditional scheme of Ariatotle.

Aristotle divided fallacie into two main groupe-fallaeies in

[^314]diotione, or mapd ri力 $\lambda(\xi w$, arising through ambiguity of language, and fallecies extra diotionem, or tfor ris $\lambda d \xi e e^{\prime}$, which do not bave their source in sach ambigaity. Although one of his apeciea of fallacies extro dictionem-the fallacy of Many Questions-might perhaps be referred more natarally to the other group, yet the division, being dichotomous, is sound. It suffers, however, like all ench divisions, from the defect of not positively characterizing one member. ${ }^{1}$ Later writers, willing to remedy this defect, called the fallacies estra dictionem fallacies in re, or material fallacies. But this introduces a crose-division. For it cannot be said that fallecies in dietione are independent of the res or matter of the argument. On the contrary, inamach as they arise through giving different meanings to the same words either in the two premisees, or in premiss and conclasion, they disappear if we abotract from the matter of the argoment and look only to the form in which it is cast. The proper antithesis to matter is form ; a fallacy not in the matter mast be in the form: i.e. it must be independent of what the terma are, and mast therefore persist, if symbols be subatituted for the terms, and whatever term be subatitated for the symbole. This cannot be said of the fallecies in dictione.

It is true that Whately gives a somewhat different interpretation to the expression matorial fallacy. He divide fallacies into logioal and matorial. By the former title he means fallacies where the error lies in the fect that the premises do not prove the conclusion; by the lattar, thoee in which the premisses prove the conclusion, bat cither the premisese are falee, or such at least an we are not entitled to asume, or else the conolusion proved is not that which we profess or are required to establish. He then subdivides logical fallacies into two groups, according as their defect of proof can be seen in the mere form of the argament (e.g. in the case of undistributed middle) or only if we attend to the ambiguity of the terms employed; the former group be calls puraly logical, and the latter anmi-logical. Though the nomenclatare here is unfortunate (for socording to his own definition of a Logical falleoy, those which lie in ambiguity of language are altogether and not only half logical), yet the division is sound. It includes however arguments which have no fault except that their premisses are false; and it is true that in

[^315]this he follows the words of Aristotle ${ }^{1}$; but in the body of his treatise Aristotle proceeds as if be had not included them. And the practice of Aristotle appears preferable in this respect; for falee premisees are certainly inoapeble of any clamification, and the consideration of one does not holp us to detect another. That, if the premimes are falso, the conclusion is not bound to be true, every one shoold certainly realize; and it is good advice to a dispotant to consider well the truth of the premisses he is asked to grant, or to is solitary thinker to consider well the truth of what be proposes to assame and build upon. Nevertheless there seems to be a real difference between a plagaible but inconclusive argwement, which we can see through by clearer and more attentive thinking, and a false proposition (whether or not plauible), which cannot be exploded by any more attentive consideration of itself, though it may by rewsonings that are within our power. For this reason the extension of the term fallacy to cover 'any false sasumption employed as a premise' seems undesirable; the only sort of false proposition to whioh it ought to be applied is false canone of reasoning. If this correction is made, Whately is left with only two kinds of material fallecy (Petitio Prizcipii and Ignoratio Elenehi), both of which are in Aristotle's list of fallacies catra dictioness; and there is no particular adventage in that regrouping of the species enumerated in both lists, which the adoption of Whately's principle of division carries with it. Whately certainly enomerates under the head of purely logical fallacies those breaches of syllogistic rule with which we long ago became familiar by the name of andistribzted middle, quaternio terminormm, and illicit process of the mojor or minor term; and Ariatotle makes no mention of these. But that is not because his clesaification providee no place for them; they are clearly fallacies catra dictionem. They were omitted because they did not, in

[^316]Aristotle's view, simalate cogeney; no one who could not detect these ought to undertake a diaputation; and even a sophist, aiming only at appearing to confute his adversary and not at truth, would hardly dare to employ each methods as these. And so it was with the writers who for many centuriee reproduced-often with increasing divergence-the Aristotelian doctrine. 'The pure syllogism and its ralea were to them an familiar an the alphabet. The ides of an aboolute and glaring offence against the atructare of the ayllogism being supported one moment after it wes challenged, would no more suggest itself to a writer on logic than it would now ocear to a writer on aetronomy that an accidental error (which might happen to any one) of affixing four ciphers instead of five when multiplying by a handred thouman would be maintained after exposare.' 1 A sophism, or sophistical confatation, 20 Aristotle called a fallecy (for he had in mind throughout the conduct of a dioputation, and the methods by which one might attempt to confute a theris maintained by an opponent: though these are of course equally methode of establishing a conclusion that confates it), mast be at least фatoduevos ovidoyoruds, apparently conclusive; these he wished in his treatise to enable the learner to expose ${ }^{2}$; but a plain breach of syllogistio rule had not any appearance of conclusiveness, and enough had already been said in the Prior Analylics to enable any one to expose that.

We may therefore abide by the Aristotelian division into falle. cies in dictione and extra dietionom. In each member of the division be enumerates a variety of typer. The lists are as follows ${ }^{2}$;-

[^317]a. Fallacies in diclione, or mapd rìv λ d ξ w.

1. Equivocation, or इapd rì ν d
2. Amphiboly, or mapd rìp duфıßo入iav.
3. Composition, or mapd नोग σ oindeनur.
4. Division, or zapd riोy braipeow.
5. Accent, or mapג गोे ォporqulav.
6. Figure of speech, or шapd rd $\sigma \hat{\eta} \mu a \operatorname{rip} \lambda \lambda \xi e \omega s$.

 nuples.
7. Ignoratio Elenchi, or mapà fì̀ roû $\langle\lambda\langle\gamma x$ ov ayporay.
8. Petitio Primeipii, Begging the Question, or napd rd dv

9. Non Cawsa pro Causa, False Canse, or mapdे rd̀ μ पो aíriov is alroy.
10. Consequent, or mapà rd drópevoy.
11. Many Questions, or napà rd̀ rd̀ dío dpurífara tv votî̀v.
the terma for its detection. From this point of view, it is noncense to quesk of 'remi-logical' fallacies; a fallacy oither can be detected in aymbole or not : it must either be ' logical 'or not, and cannot be 'semi-logical'. The fallacies in diatione, which he ranke as 'remi-logical', he ought undorbtedly to have ranked an 'material'. On the other band, some of thoee which be ranked as 'matorial'-the fallecy of the Consequent certainly (which however he misunderotande) and one type of Peritio Principii-can be exhibited in aymbole, and ought to have been enumerated among the 'paroly logioal'. The fect is that, if the diatinotione of logical and material, and in dictione and extra dictionem, aro to be combined in one clasalification, they cannot be identifled, a Jevona identifies them. We may oither start with the distinction of fallacies into logical and material, according an they lie in the mere abotract form of tha argament, and can be exhibited in symbolk, or not: and then divide the Gatter into in dictions and extra dietionom, according an they arice through ambiguity of langages, or not; but of courm those fallaciee ertra dietionem which are lagical in this senee mart be removed from Aristotic's list of fallacies artra dictionem, if that title is made to indicate a aubdivinion of meterial. Or else we may begin by dividing them into fallecies in dictione and extra diationam, and treat logical and material as aubdivitions of cartra dictionem. In the former case, what Jerons calls semi-logical ($=$ Aristotle'! fallacies in didtiona) will enter by this name as a subdivicion of material; in the latter, what he callo purdy lagical will enter as a subdivision of artra dictionem. Cf the remarks in Mr. St. George Btock's Deductive Logic, c. $\times x x$, who pointa all this out very clearly in discuming fallaciee. It may bo added that there way be in algebra fallacious arguments which ane aymbola, but are not on that acconnt logical in the above senes, becanse the aymbole are not logical aymbole, atanding for any term, bat apecifically aymbole of quantity.

The fallacies in dictione are so many different forms of error that may arise through the double meaninga of language. They differ according to the character of the ambiguity; and it may be any of the three terma which is ambiguons ${ }^{1}$. Obviously such argaments are invalid; and if the different meanings were expressed by different terms in each case, we ahould have a plain quaternio terminorum, which would impose on nobody. As it is, the shifting of the meaning may nometimes pas znobeorved; or the identity of the langrage seem to afford some proof of identity of meaning; and even where it is obvious that we are tricked by the argument, we may wish to be able to show how.

1. Equirooation is the simplest form of ambigaity, where a single word is used in divers senses. "The siok man is well; for men who have recovered are well, and the sick man has recovered's; here the equivocation is in the minor term, and arises from the fad that the expression 'the sick man' may mean either 'the man who is sick' or 'the man who was sick'. The following is an old example: 'Finis rei est illius perfectio: mors est finis vitae: ergo mors est perfectio vitae'; the equivocation in this case lies in the middle term. Trivial and punning examples of this fallacy, as of all those that depend on ambiguity of langaage, will ocear to any one; but in many cases it is serious and elusive. 'It is the basi. ness of the State to enforce all righte : a judicions charity is right : therefore it is the business of the State to enforce a judicions charity.' 'A mistake in point of law,' says Blackstone, 'which every person of discretion not only may, but is bound and presumed to know, is in criminal cases no sort of defence's; the State most perhaps presume a knowledge of the law, and so far we are boand to know it, in the sense of being required under penalty; bat a criminal action done in ignorance of the law that a man is leganf bound to know is often considered morally discreditable, as if the knowledge of the law on the matter were a plain moral duty. Hor far that is so in a particular case may be a very doubtful question; the maxim quoted tends to confuse the moral with the legal obligation. In a long and closely reasoned argument, where important terms have been defined at the outset, it may still be very difficult

[^318]to hold them throughout to the precise meaning set forth in the definition; and $\omega 0$ far as this is not done, the fallacy of Equivocation arises. Locke in his E'seay ${ }^{1}$ defines 'idea' as 'whatsoever the mind perceives in itself, or is the immediate object of perception, thought, or anderatanding'; bat in the course of it he is at times a viotim to the ordinary associations of the word in English, which contrasts 'my idese' with the ' realities'.
2. Amphiboly ${ }^{2}$ is ambiguity in a phrase, in which the worde are used anivocally throughoat, but the meaning of the phrase as - whole changes through change of the construction in which the words are taken. A traditional example in Latin is 'Quod tangitar a Socrate, illud sentit : lapis tangitar a Socrate: ergo lapis sentit'; in the major premiss, illud is the object of sentit; the conclusion is drawn as if it had been the subject. So we might say in English : ' Polyphemus what he beat loves doth devour: the ram that leads the flock he loves the best : therefore the ram devours him '. Lawyers are well aware of the importance of avoiding ambigaity in the construction of a legal document (though ander that head they would include the ambigaities which Aristotle assigned to Division and Composition, as well as Amphiboly and Equivocation too). Whately oites a good example from the rubric at the beginning of the Form of Service formerly ordered for use on Jan. 80, the anniversary of the execution of King Charles I: 'If this day shall happen to be Sunday, this Form of Prayer shall be used and the Fast kept the next Day following'; is the form of prayer to be used on Sunday and the Fast kept on Monday, or are both to be deferred? Another famous and deliberate example is in the oracle which Ennius said was delivered by Apollo to Pyrrhas- Aio te, Aeacids, Romanos vincere posse.'s Ambiguons words and constructions are atill not anfrequently used to deceive by thone
'That palter with us in a double sense;
That keep the word of promise to our ear, And break it to our hope.'

[^319]3 and 4. Comporition and Diviaion are the converse one of the other. They consist in taking together in the conclusion (or one premiss) either words, or objects of thought, which in the premiss (or the other premies) were not taken together, or vice verm. Plato in the Republice argues, from the fact that a man can refuse the thing that he desires, that there must be a principle of reason as well as of appetite in the sonl. For, he mya, it is imposaible to be contrarily affected at the came moment towarde the eame object in the same part of oneself (one cannot for example at once loathe and long for the same object); yet a man who is thirsty and refuses to drink is contrarily affected at the same moment towards the ame object; he does not therefore refues drink on ecoount of the character of his appetitee, bat becanse of his reason; he reckons that to indulge his appetite would interfere with the parsuit of some other end whioh he prefers. Now a sophist might attack this conclusion as follows: 'Are you now drinking ? No. Can you now drink? Yes. Therefore when you are not doing a thing, you atill can do it? Yea But if yon can do a thing when you are not doing it, you can desire a thing when not deeiring it? Yes. And so you can be contrarily affected in the same part of yourself (your appetitive nature) towards the same object at the same time.' : The fallecy is one of compo sition. The admission is that a man can when not desiring a thing desire it, i.e. that when not desiring it, he is capable of doing so; this is used as if it meant that he can desire when not desiring il, i. e. that be is capable of at once desiring and not desiring it; the words 'when not desiring it' sre taken, or compounded, in one case with 'can' and in the other with 'desire'. If a man were to argue that three and two aro five, and three and two are odd and even, therefore five is odd and oven, and the same number may thus be both, he would be committing the mame fallacy; when
did not opeat in Latin. Cf. Augustina, de Cii. Doi, iii. $17{ }^{\circ}$ Cai anne de rerum futuro eventu consulenti satia urbane Δ pollo sic smbiguou oraculam edidit, nt, e duobus quicquid accidimet, ipee divinue haberetur: ait enim, Dico te Pyrrhe rincere posese Romanos: atgue ite aive Pyrrbus a Romanio sive Romani a Pyrrbo vincerentar, zecurua fatidicua utrumlibet exppectaret eventam.' Cf. aloo Henry VI, Pert 2, Act i. Sc. 4, 11. 60-65.
${ }^{1}$ Rep. iv. 436 A eq.
 oinduar in Soph. El. iv. 166" 24 . I do not know if the principle involved whe ever brought againat Plato's argument.
it in aid that three and two are odd and even, it is true only if 'odd and even' are not taken together, and predicated thus of three and two, but if 'odd' ie separately referred to three, and 'oven' to two; bat the conolusion is drawn as if they were taken together. On the other hand, the same argument furnishes an example of the counter fallacy of taking separately in one promise words which were taken together in the other; for three and two together are five, bat it is eeparstely that they are odd and even, and separately that in the conclusion each of them is declared to be both. And the reader will doubtlen have observed that the previons example illustratee no les the division from one another in the conclusion of words that were combined in the premiss than the combination in the conclusion of worde that in the premiss were divided.

It was said above that in these fallecies either words or objects of thought are taken in one plece in the argament together and in another separately. Of course the combination or eoparation of certain words carries with it that we think differently in either case of the things signified. Bat sometimes the illicit combination or division made in thought is not reflected by taking words together or apart. If any one were, upon the strength of the text in Gen. i. 27-'So God created man in his own image, in the image of God created he him; male and female created he them'-to angue that man was originally crestod bisonaal ${ }^{1}$, and that the prosent division into male and female was the result of the Fall, and were to base on that a condemnation of marriage, he would be guilty of the fallacy of Composition; and quite as foolish arguments hdve been drawn from the worde of Scripture upon such subjects. Now here the fallacy lies in referring the words 'male' and 'female' together to each person aignified by 'them', instead of referring 'male' to one and 'female' to another. But the point is the same in the story of the showman who announced that children of both sexes were admitted free, and then charged admission to boys and girls alike on the plea that neither of them were children of both seres. Yet in the latter case there are no words that are wrongly taken together; it is the sexes thought of, to which the showman pleaded that he had only promised to give free admiseion when

[^320]combined. Words like both and all, which may indicate equally a distribative and a collective reference to the things signified by the sabotantives to which they belong, are apecially adapted to facilitate this fallecy. ${ }^{1}$ Another and a doable example of the fallecy of Composition, in a business trangection, is afforded by the tale of a railway enterpriee in one of the Britich Islands. A company is maid to have been formed to build a railway, and to have announced in its prospectus that a guarantee of 8% on the share capital had been given by the Government, and a gaarantee of 2% by the local anthority; and later in the eame document to have atated that a granantee of 5% had been given by the Government and by the local anthority.
6. The fallecy of Δ ocent meant to Aristotle one arising through the ambiguity of a word that has different meanings when differently accented. It was perhaps distinguished from Equivocation, becase words differently accented are not strictly the same word. The Latin writers illustrate it in words which have different meaninga when their quantity is different; e.g. 'omne malum eat fugiendum, pomum est malum : ergo fugiendum'. The ambignity is of course one which is more likely to occur in what is written than in what is opoken. ${ }^{2}$ In English, which does not distingaish worde by tonic accent, the name is generally given to argoments that turn on a wrong emphasie of some particular word in a sentence; in which if the emphasis were pleced differently, the meaning might be very different. The words of the Catechigm in the 'Duty towards thy

[^321]Neighbour'-'t to hart no body by word nor deed'-have by laying stress on body been wrested to inclade the injunction to be kind to animals. ${ }^{1}$
6. The fallacy of Figure of Apeeoh arises through the ambiguous force of eome verbal inflexion, which is wrongly alleged to imply in one case what it really implies in others. If a man were to argue from the use of anch an expresion as 'I am resolved what to do', that, becanse the pasive aignifiee not action bat being acted on, ae in ' I am beaten', 'I am prised,' therefore a man's resolution is not his own free act, bat the result of momething done to him, he would be grilty of this fallecy. Argumente from lingristio usage of that eort are by no means uncommon or necessarily unsound: as that the object of sight is not a visual senaation, becanse you any that you feel a sensation, but no one would any that he felt a colour. In this case there is no ambiguous infleaion, which is what wes held to constitate the differentia of the fallecy now under consideration. But let a man my that important is a negative notion, becanse imperturbable or impenilent is, and we have a case in point." J. S. Mill in his Utilitarianiom ${ }^{3}$ affords an excellent example of a man misled by this fallecy in a critical point of his argument. He is trying to prove that the chief good, or one thing desirable, is pleacore. 'The only proof,' he says, 'capeble of being given that an object is visible, is that people actually see it. The only proof that a sound is audible, is that people hear it : and so of the other sourcee of our experience. In like manner, I apprehend, the sole evidence it is possible to produce that anything is desirable, is that

[^322]people do metrally devire it.' Bat visidh, andide mean what an be eeen or heard; whereas Mill is trying to prove that happinem ought to be devired, or is the thing worth desiring. Yet the termine tion -able or -ible muat be taken to have the aame force in the word desirable as in audible or visible, if the argument is to have any force at all ; and the only thing shown is really that mea can denirs happineses: which was never in queation.

To distinguiah the different wources of the ambiguity in the differeat fallecies enumersted above is not a matter of first-rate importance; but to be alive to the errors into which ambigaities of lenguage may lead us is so. 'Verbe plane vim faciunt intellectai, et omnis tarbent,' wrote Becon. ${ }^{1}$ Perhapa the distarbance which theycaused was in some respects more serious of old than now. We do not suffer less from the subtle and unconscious shifting of the meaning of important terms in a mastained argument; but some of the more trivial and (as we should say) obvious ambiguitiee may have been a more real puzzle in olden days. 'The geniuz of uncultivated nations,' says de Morgan ', 'lead them to place undue force in the rerbal menaing of engagements and admisaions, independently of the anderstanding with which they are made. Jacob kept the bleasing which he obtained by a trick, though it wes intended for Ema: Lycurgus seems to have fairly bound the Spartans to follow hin laws till he retarned, though he only intimated a short absence, and made it eternal : and the Hindoo god who begged for three stepe of land in the shape of a dwarf, and took cearth, aea and sky in that

[^323]of a giant, seems to have been held as claiming no more than was granted. The great atrees laid by Aristotle on so many forms of verbal deception may have arisen from a remaining tendency among disputants to be very serious about what we should now call pley upon worde.' Just es many people tand to think that in conduct the claims of verscity are eatisfied or broken, according as the facts can or cannot, by some verbal quibble, be brought within the four corners of what they aid or promised, 00 with argument men may think that there is something in it, thougb the concluaion tarne apon an ambigaity of langaage. Not but what men are often also too ready to essume that a controveray is meroly verbal when it is not,

In the enamoration of the fallecies which he recognises, Aristotle obviously had before him the prectioes of dispatante in his own dag. ${ }^{1}$ One man, the 'respondent', undertook to defend a thesis; the other, the 'questioner', attempted to extract admienions from the respondent which involved the contradiction of his thesis. But we find that a man might endeavour to disoredit his opponent by confuting him on a side iesue; and that it was a recogrized device to get him to admit something asier to attack than his original thesis; though when Ariatotle wrote, men had learned to reply to the entrapping question by saking what it had to do with the original thesis.' Similarly we are told that answers in the form of a plain yes or no were less insisted on when be wrote than formerly; whereby a bountiful source of anfair confatations was cat off. ${ }^{3}$ The questioner is adrised also not only to endesvonr to involve the reppondent in a contradiction of his own theas, bat to bring out ita inconsistency with what is hald by those whose authority he or othera may reapect, or by mankind at large, or by the majority of mankind, or by his own sehool.4 Nowaday formal diapatation has gone out of fashion. Men atill harangue; and we underatand by a debate a eeriee of aet apeeches, in which a propoeal is attecked and defended. Many of the devices which cen be

[^324]employed to produce the appearance of confuting an advermary are common to rhetoric and dialectic-to the harangas and to the interchange of question and answer. But if we were more familiar with the latter mode of trying an isace, we shoald perhape understand better the scope that exists for some of the sophistical confutations that Aristotle mentions. Such dispatation is soen chiefly to-day in conrte of law, when counsel cross-eramines a witnese; and an unscrupulous connsel can still confuse a timid witness, and discredit him before the jary, by involving him in contradictions more apparent than real And there have been timee when matters, which to-day are submitted to the judgement of the pablic by means of speeches to and fro, reported in the newspapers, were argaed by chosen dirpatants according to fixed rales of debete before an audience whose verdict, as to which side pot the best of the discussion, whe of high practical importance. Not a few controversies of that cort were argued during the Reformation, at Leipsic or at Marbarg or at Zarich or eleowhere.

The fallecies is dictione have to some extent become of lees importance through the decay of the habit of dirpatation. The same cannot be axid of those astra dielionom. ${ }^{1}$ Theseare not united by any common character, at the othere were by springing from ambigrity in languago.

1. The first in the list is the fallecy of Aooldent. The following are some of the eramples referred by Aristotle to this head :- 'This dog is yours: this dog is a father: therefore he is your father.' ' Do you know Coriscas? Yes. Do you know the man approscbing you with his fece muffled? No. But he is Coriscus, and you said you knew him.' 'Six is few : and thirty-aix is six times six: therefore thirty-six is few.' His eolation of the orror involved seems to be this A thing has divers sccidente, i, e. attributes which are not commensurate with it nor essential to it; what in predicable of the thing may or may not be predicable of ita accidenta, and vice verse. ${ }^{2}$ Thus the dog is a father, and is yours; bot it does not follow that the father is yours-that he is yours as a father, as he is yours as a dog. Coriscus is approeching with his face muffled; to be a man approaching with his face muffled is

[^325]an aocident of Coriscus; and it does not follow that, becanse Coriscus is known, a man approeching with his face muffled is known to you. It is an socidental way of regarding thirty-six things, that they are six groups of six things; and though the groupe are fow, the thirty-six are not therefore few. The defect of the solution offered is, that it does not enable us to distinguish between those cases in which what is predicated of a thing's accidents may be predicated of the thing itself, or vice verma, and those in which it may not. 'This dog is yours, and this dog is property (or, a spaniel): therefore he is your property (or, your spariel)': why is this argament valid and the former one not? If you ay that the former is invalid because it equatee subject and accident ${ }^{1}$ when they are incommenaunte, why do you allow the latter, which does so just as mach? A term and its definition may be equated: they are commensurate, and wherever one oocurs in a judgement you may sabetitate the other without detriment to its truth. Bat you cannot extend that rule to terma that have any less close relation; in other cases, you may be led into error by suoh sabatitation or you may not; the rule would not be infallible.

Wo learn from Aristotle himeelf that otber eolations than what he formulated were offered for some of the fallecies reforred by him to the head of Accident "; and as Poote anyi ${ }^{3}$, the falleoy per socidens has been generally misunderstoed.' It has been very commonly expounded in a way that doee not really dirtinguish it from the fallecy next to be considered, Becundwn Qwid. Indeed what has happened is that the notion of the former has been dropped, being somewhat ill defined, and the name of the latter, being somewhat clamsy; so that what to-day is commonly called Secident is what the Aristotelian tracition called Secwndmw Qwid. Bat because the tradition recognized them as two, a distinction between the direct and the converse form of the latter fallecy was drawn, which is really quite unsubstantial.
2. The fallacy of Bocundam Qaid, or-to give the formals in full-A dicto simpliciter ad dictum secsadmm quid, from which the argament a dicto secundwim quid ad dieture simpliciter is sometimes

[^326]distingrisbed as its converse, is one of the subtleot and commoees sources of error. It consists in using a principle or proposition withoat regard to the circomstances which modify ite applicability in the case or hind of case before us. Water boils at a temperatare of 212° Fahrenheit; therefore boiling water will be bot enough to cook an egg hard in five minutee : but if we argae thus at an altitode of 5,000 feet, we shall be disappointed; for the height, through the difference in the preemare of the air, qualifies the trath of orr general principle. A proposition may be intended simpliciler or without qualification; or it may be intendel aubjeot to qualificetions and resarvations. In the latter alternative, we may proceed to apply it where the circumstances implied in our qualificatione are not present; in the former, where there are circumstances prewent which qualify its applicability. ${ }^{1}$ In saying that a proposition may be intended simpliciter, it was not meant that it in intended as aboolutely univeral ; for the application of a prinoiple true abeolately universally cannot of itmolf lead to arror, and a reapondent brought to admit a case inconcistent with a prisciple pat forwaed thas absolately would be convicted of having put forward more than $k e$ could sustain. It was meant that it is conceived to hold tree normally, or in any circomstancee that the speaker contemplates: the fallecy where there is an unfair confotation lies in extending is beyond those circomatancos. But it is not only in disputation thal the fallecy occurs. We are all of us at time guilty of it; we argue from principles that hold good normally, without eve rettiling what conditions conetitute the normal, or satisfying oarelves that they are present in the case about which we are argaing. Freedom is good, and therefore it is supposed that every oommanity ohould have free institutions, though perhape there are come races only fit for a very moderate degree of 'freedom'. A man shoold be allowed to do what he will with his own; and that is oftea urged as a conclusive argoment againat any interference either with his disposition of his property, or his education of his childrea Paris did nothing wrong in carrying off Helen, for her father left her free to choose her husbend; but the freedom allowed ber extended only to her first ohoice, like the authority of her father.'

[^327]- Ar., Rhet, β. wiv. 1401'h 84, quotod by Poete, p. $117 .^{\text {² }}$

There are trivial examples of this as of any other fallecy, as that if it be maintained that an Ethiopian is black, it is contradictory to asy he has white teeth ${ }^{\mathbf{2}}$; ' Few men die over eighty: I am over eighty: therefore I ahall probebly not die.' ${ }^{1}$ Bat there is no fallecy more insidious than that of tresting'a statement which for many purposes is true as if it were true always and withont qualification. ${ }^{*}$
8. Ignoretio Ilenohd meane proving another conclusion than what is wanted. The name does not literally mean that, but 'ignorance of confatation'. But the business of any one undertaking to confute a statement is to prove the contradictory; and if I prove anything else, I show that I do not know what confutation requires. Of conrse every fallacious confatation shows that I am ignorant of, or ignore, what is required. ${ }^{4}$ Bat other fallacies have other defecta; in this, the argumentation may be perfectly sound, and the sole defect lie in the fact that the conclasion proved does not confute the thesis maintained. Or-since it makes no difference whether we regard a man as undertaking to confute one thesia or to surtain another contradictory to it-we may any that the fallacy liee in proving what is not the precise conclasion which we are called upon to prove. Against a minister who proposes to pat a emall daty on corn to-day it is no sufficient answer to prove that the people are much more prosperous under free trade than in the days when corn stood at 60 or 80 shillinge a quarter; against a free-trader it is no enfficient anower to prove that foreign nations injure ne by their tarifts. Subterfuges of that kind are however so frequenta resource of the orator, that it is hardly necesary to illastrate them. Every reader of Plato's Apology will remember how Socratee refused to appeal to his judges with tears and entreaties, or to bring his wife and children into court to excito their commiseration; for his part

[^328]was to persuade them, if he could do it, of bis innocence and not of his sufferings. ${ }^{1}$

Such appeals as Socrates declined to make are sometimes called the argumentwin ad misericordiam, arguments addressed to show that a man is unfortunate and deserves pity, when it ought to be shown that he is innocent, or has the law on his side. Other fisvourite forms of irrelevant conclusion have also received special names. The best known is the argumonture ad hominem, in which, being called apon to confute an allegation, I prove something instead about the person who maintains it. The politician whoattecke an opponent's mesaures by showing that they are inconsistent with his former opinions commits this falleoy; it is the same if I condemn Home Rule for Ireland on the ground that Parnell was an adolterer. Bat the argumentum ad kominem need not be altogether irrelevant. A barrister who meeta the teatimony of a hostile witness by proving that the witneas is a notorious thief, though he doee lees well than if he could disprove his evidence directly, may reseonably be considered to have sbaken it; for a man's character bears on his credibility. And sometimee we may be content to prove against thoee who attack m, not that our conduct is right, but that it acoords with the principles which they profess or act apon. Christareplied to these who censared him for healing on the Sabbath, by aeking which of them, if his ox or his ase had fallen into a ditch, would not pull it out on the Sabbath day. ${ }^{2}$ Their practice was sufficient to justify him to them, whatever were the true theory of our daties on the Sabbath. And Aristotle answers the Platonista, who held all vice to be involuntary, by showing that they could not discriminate in that reapect between vice and virtue; there was no more reaeon for calling one involuntary than the other; virtue, bowever, they called voluntary; and whatever be the true atate of the case, their position at least whe not sustainable. ${ }^{3}$
4. The nature of Petitio Principii is better expressed in the Engliah name, Begring the Quection.4 It consista in assuming
${ }^{1}$ Apol. 84 C, 85 B C. $\quad{ }^{2}$ Lake xiv. 1-6.
${ }^{3}$ Exh. Nic. γ. vii 11140 81-25.
 admisaion of the very thing proponnded for debate at the outset-the tpdiaqua. The word patitio belonge to the terminology of diaputation, where the questioner corght his premises in the admirions of the respondent He had no right to ant the reepondent to admit the direct contradictory of

What is to be proved, in order to prove it. To do this within the compass of a single ayllogism-assuming in the premisses the very thing to be proved, and not merely some thing which depends on that for its proof-is only possible by the use of synonymas If I argue that C is A because B is A and C is B, and if the middle term B is identical either with the major or the minor, then I uee the proposition to prove itself; for let B be the aame as A : then, by substituting d for B in the minor premiss, I get ' C is A ' as a premiss; or let B be the aame as C : then by sabstituting C for B in the major premiss, I again get ' C is A ' as a premisa; and in either case therefore the conclusion is among the premisees. Thus let the syllogism be that to give to beggers is right, because charity is a virtae; so far as charity is taken to include giving to beggars, we have no business to assume that it is a virtue; for the question whether it is a virtue and the question whether it is right are the same question : to call it a virtue is to call it right. Here the major premise, that virtue is right, is a tantology, and the minor contains the petitio. On the other hand, if I defend legacy daties by asying that property pasaing by will ought to be taxed, 1 beg the question in the major; for a legacy duty is a tax on property paeaing by will, and to say that such property ahould be taxed is only to assert in other worde the justice of a legacy duty. ${ }^{1}$

But the fallecy is generally committed lees abruptly. The promiss
his thesis; let the thesie, for inotance, be that the Pope cannot remit the temporal punighment of sin in Purgatory : the opponent may not aak the respondent to admit that he can. If by come verbal dieguise he gets the respondent to admit it, it is only esophistical confatation; the reapondent did not see what he wus granting, and would have refused to grant it if he had seen-not becance it led to the contradictory of his theais, for amgn in often fairly refuted by showing that be cannot reasonsbly deny something Which does that: but becaum it was the contradictory of it. It is quite fuir to try to get a man to admit a general priaciple, and then to ahow that his theais is inconsistont with it, provided that the general principle doee not really require the disproof of his theas in order to its own eatablighment. Hence the term privcipiwn is a mintranalation. The fallecy liee in begging for the admiation not of a principlo to be applied to the determingtion of the matter, but of the very matter, in question. As occarring in a book or apeoch, where $=\operatorname{man}$ puta forward his own premiases, and hee not to got them by the admimaion of a respondent, it consiats in asemming among the premistee either the conclucion itself which a ahow is mede of proving, or comething more or lem directly depending thereon. Cf. Mansel's Aldrich, App. \mathbf{E}.
It is also posaible to beg the question when the concluaion is negetive, but then only in the major preming; and to beg it in other flgures than the firat (for detaile see Porte, Soph El., App. A). Cf, also swprs, p. 588, n. 1.
/anduly asoumed is genernlly not the conolusion itself differently expressed, but something which can only be proved by means of the conclusion; and argaing thas is often called arguing in a circle. If I argued that early Teutonic societies were originally beld together by kinghip, because all societies were so held together originally ${ }^{2}$. I might be accused of arguing in a oircle; for the major premise, it might be said, is only arrived at by enomerstion; early Teatonio societies have to be examined in order to show that it is true. Of course to show that the generalization was not enumerative would be to rebut the secusation; bot, as we saw in diecusing the view that all syllogism is petitio primeipii, every ayllogiam whose major premise is an enumarative judgement is so.' The circle is fairly manifest in such cases; but in others it may often eacape the notice of ite author. 'There are certain people,' says Dr. MoTaggert ', 'who look on all panishment as escentially degrading. They do not, in their anser moode, deny that there may be caces in which it in neceasary. But they think, if any one requires ponishment, he proves himeelf to be nninfluenced by moral motiven, and only to be governed by fear. . . . They look on all punishment as implying deop degradation in some one,-if it in justified, the offender must be little better thes a brute; if it is not justified, the brutality is in the person who inflicts it. This reseoning appears to traval in a circle. Panimbment, they eay, is degreding, therefore it can work no moral improvement. But this bege the question. For if punishment could work a moral improvement, it would not degrade bat elevate. The humanitarian argument alternately prove that punishment can only intimidate because it is bratalizing, and that it is bratal. izing because it can only intimidate.' Romanes finds an example of petilio in an argument of Huxloy's, addaced to show that all specific characters are adaptive." 'Every variety which is selected into a species is favoured and preserved in consequence of being, in some one or more respects, better adapted to ite surroundinga than ite rivale. In other words, every species which exista, existe in

[^329]virtae of adaptation, and whatever sccounts for that adaptation ecconats for the existence of the apecies.' Here the fallacy lies in substituting, for 'every varioty which is selected', 'every species which exists'; the statement in the first clause is true for every variety which is selected, since selection means the survival of those beat adapted to the conditions of life. Bat the question is whether every species which exists has originated by 'selection'. One more instance may be cited, from a work on the equaring of the circle, called The Nut to Crack, by Jamee Smith. ${ }^{1}$ Smith hald the ratio of oircumference to diameter to be 88, and proved it thas: ' I think you will not dare to dispate my right to this hypothesis, when I can prove by means of it that every other value of π will lead to the growest abourditiee; unlen indeed you are propared to dispate the right of Eaclid to sdopt a false line hypothetically, for the parpose of a reductio ad abourdum demonstration, in pure geometry.' That is, he argued first that if $8 \frac{1}{3}$ be the right ratio, all other ratios are wrong; and then, that because all other ration are wrong, 81 is the right ratio. And he conceived that ho had established his conclasion by a redwetio ad abourdmemby showing that the decial of his thesis led to absurdity. But the abourdity, in auch an argament, ought to be aecertained indopendently, whereas here it resta apon the aerumption of the trath of what it is used to prove.
5. The fallecy of False Canse is incident to the reductio ad cbourdwe. That argument diaproves a thesis by showing that the asumption of its trath leads to absurd or impossible consequences, or proves one by showing the same for the assumption of its falsity." In False Canse, the thesia alleged to be discredited is not really responsible for the absurd or impoesible consequences, which would follow equally from the other premisses, whether that were affirmed or denied. 'It is ridiculous to suppose that the world can be flat; for a flat world would be infinite, and an infinite world could not be circumnarigated, as this has been.' Here the supposition inconsistent with the fact of the circamnavigation of the world is not that the world is flat, bat that it is infinite; it might

[^330]be flat and atill circamnavigable, if it were finito; the thesis of its flatness is therefore anfairly discredited.

From a passage in the Prior Analytics it would seem that Aristotle regarded this fallecy as of frequent occurrence. ${ }^{1}$ Bat the fact that later writers have largely given a different meaning to the name suggests that it is not really a prominent type. It is often identified with the falleoy Post hoc, ergo propter hoc: i.e., cupposing that one event in due to another, merely becanse it occurred after it ; as the countryman is said to have declared that the building of Tenterden Steeple whe the cause of Goodwin Sends, because the annds only appeared after the steeple was built. Such, as Bacon truly says, is the origin of almost every superstition-of men's astrological fancies, and their fanciee abont omens or dreams. The story which he quotes may well be repeated in his own words. 'Itaque recte respondit ille, qui, cam suspensa tabuls in templo ei monstroretar eorum qui vote eolverant, quod nafragii periculo elapai eint, atque interrogando premeretur, anne tum quidem deorum numen agnoseeret, qusesivit denno, $4 t$ uti sunt illi depioti qui pous sole mwncupata perierint?'"

Inferences of this hind are undoubtedly both frequent and fallscious; and Post hoc, propter hoc is a type or locus of fallecies in the mame sort of way ae those enumerated by Aristotle. That is, it in - general or dialectical principlo- principle applicable in divers sciences, and not exclusively appropriate in any : and it is a falmo principle, the application of which is as likely to leed to error as to trath. Nor is it peouliar to this fallecy, that it can be expresed as a falee principle. Equivocation proceede on the false principle that a word is always used with the meme meaning: Aocident, on the principle that whatever is predicated of a thing may be prodicated of its attribute, and vice veras: Seewadum Qaid, on the principle that what is true with certain qualifications is also true without them. And the fact that these different types of fallecious inference severally depend on a false, or mialeeding, principle is

[^331]what was meant by calling them loci of fallacy. ${ }^{1}$ But the locus Post hoc, propler hoc is not quite the same as that of Nom causa pro cassa: in other words, the type is a little different. . In Falss Cavse we are dealing with the logical sequence of premisses and concluaion; the fallecy lies in connecting the conclusion with a particular premiss which might, so far as getting the conclusion is concerned, have been equally well included or omitted; and because the conclusion is false, we orroneously infer this premiss to be false also. In Poot Aoc, ergo propter loc we are dealing with the temporal relation of cause and effect; the fallacy lies in connecting the effect with a particular event which might equally well have happened or not happened, so far as the effect in question is concerned; and we erroneoualy suppose that the effect, which did occur, oceurred because of that event. But if any one likes to nse the name False Camee as equivalent to Poat hoc, propter hoc, there is not much harm done ; for the fallacy which Aristotle meant is not one that we have much occusion to speak of.
6. It is otherwise with the fallecy of the Coneequent, which some modern writers have also miranderstood. For this is one of the very commoneat, and we heve alreedy had oocasion to notice it in discussing inductive reseoning. ${ }^{3}$ It consists in sapposing that a condition and ite consequent are convertible : that you may argue from the consequent to the condition, no lees than vice veras If a religion can elevate the sonl, it can eurvive persecution: hence it is argued that becanse it has survived persecution, sach and suoh a religion mast elevate the sonl; or perhape (for we may follow Aristotle ${ }^{4}$ in including under the name both the forms of fallecy

[^332]

 argument of Melimas; for be thinko that if what ie generated hase beginning. what is ungenerated hes not; wo that if the hearen is angenersted, it is also infinite. But this is not so; for the eequence is the other why'); ;i.e. from ' A is B ' you cannot infer ' $\mathrm{mot}-A$ is not- B ', bat only contrariwise ' not- B is not-4. ' It appears by the mame chaptor that Aristotle would bring the illicit, viz. cimple, conversion of an univerml affirmative judgement under the amme heading. This illuatratee the close parallolism betwoen the mod ponens and tollons in hypothetical, and Barbara and Camestres in ayllogistic reaconing (of. pp. 312-815, supra). But that Aristotle did not identify them might perhapa be inferred from the fact that he does not include Undistribated Middle and llivit Provem of the Major in his list of eophistical confatations,
to which hypothetical reasoning is lisble) that becanse it is incapable of elevating the soul, it will auccumb to persecation. Such fallecies are committed whenever a theory is amumed to be true for no better reseon than that the facts exist, which ahould result if it were true-i.e. whonever verification is mistaken for proof ${ }^{1}$; and whenever the refutation of an argument advanced in support of a theory is supposed by itself to be fatal to the theory. If it can be ahown that no other theory accounta for the facta; or that no other argument can be adranced in support of the theory, then the matter is different; bat without come reason to believe this, such inferences are worth nothing. Neverthelem, they are inferences which we are all very apt to make. ${ }^{\text {a }}$
7. There remains lastly the fallecy of Many Queetions. This consists in putting questions in auch a form that any aingle answer involves more than one admiseion. If one admisaion be true and another faise, and the reapondent is presed for a single answer, he is exposed to the risk of confutation, whatever answer be makes. The execution of Mary Queen of Scota was brutal and sacrilegions-was it, or was it not?' If it was bratal but not sacrilegions, what is a man to answer? He will be accused by saying no of denging the bratality, by eaying yes of affirming the sacrilege. Sometimes, instead of aubmitting two problems for decision together, the queation appears to submit only one; bat that is one which would not arise excopt on the aeromption of 2 certain answer to another: and so the respondent again cannot answer it without committing himself to more than he intended, or on a matter which has not been definitely submitted to bim. Of this sort is the famous enquiry, 'Have you left off beating your

[^333]mother ?', as well as any question that asks for the reason of what has not been admitted to be trae. It is often recounted how Charles II asked the members of the Royal Society why a live fish pleced in a bowl already full of weter did not canse it to overflow, whereas a dead fiah did 50 ; and how they gave various ingenious reasons for a difference which did not exirt. If one were to enquire why a protective syatom encourages the induatry of the country which adopta it, the fallecy would be the same; there would perhaps be some dispute as to whether it is fallecions to ask how dowsers are made aware by their feelinga of the presence of subterranean waters. It may be said that a respondent is always able to give an anower which will save him from any misconstruction; to the question 'Have you left off beating your mother 1' the answer 'no' might seem to be an admiesion of the practice; bub why should not a man reply 'I never began it '? To this it may be rejoined, firat, that in the old dispatations, and in some sitastions, such as the witness-box, to-day, a man might be more or lese precluded from 'explaining himself', and required to give a 'plain answer' to a question which does not admit of it. With the use of the fallecy under this wort of daress may be compared the custom of 'tacking' in the American legislature. The President of the United States can veto billa, and does veto them freely; bat he can only veto a bill as as whole. It is therefore not uncommon for the legislature to tack on to a bill which the President feels bound to let pass a olanse containing a measure to which it is known that he objects; so that if he assenta, be allows what he disapproves of, and if be diseents, he disallows what he approves. ${ }^{1}$ But secondly, even where no anfair duress is employed, the practice of presupposing a certain answer to one question in the form of putting another throws the reapondent off his guard, and makes him apt to admit withoat considering it what, if it had been explicitly submitted to his consideration, he might have doubted or denied.

The fallacy therefore is not a trivial one; such questions are a real source of error, when we pat them to ourselves : of unfair confatation, when we put them to others. But it is doubtful whether it is a fallacy extra dictionem. For the ambiguity or unavoidable falsehood which must in some cases attach to the answer is a consequence of the way in which the question is

[^334]worded; and the same may be said of the aoquiescence in false assumptions, into which in other cases we are entrapped.

The foregoing remarks have been directed to explain what are the types of fallacy which have been traditionally distinguished, and are still many of them very commonly referred to by name. The types are not all equally distinct, frequent, or important; but the original meaning of each name has been given as fir as possible, becsuse nothing but misunderstanding can result when different writers employ such terminology each in his own meaning, and there did not for the most part seem sufficient reacon to prefer any latar interpretation for a standard. In a few casea later interpretations which have much to be said for them have been given s well. No doabt Fallecy is a subject on which successive generations to some extent need a new treatise: not because the principles change, bat becanse the fields change in which they are moat prolific. Many saggeative illustrations of the dominion which fallecy holds in important arbjecte of contemporary thought may be found in the pagee of Whately, Mill, or de Morgen, to which reference has already several times been made.
Δ beoineto Infinitl, 118-18.
Abetreotion, ite pleoe in Induction, 440, 471.
Aooent, fellecy of, 642.
Acoldent, an a Heed of Prodienbles,
61 eq.: moparable and inesperable,
94-5: falleoy of, $588 \mathrm{n} .1,646,564$
Acoidental judgements, 190.
Aldrioh, H., his Logie sited, on def. of Modality, 188 : form of Barbara Celeront. 261 n. 8,589 n. 8.
Amphiboly, fallaey of, 889.
Ampliative judgements, 185, 189.
Avelogy, argament from, 498 eq.: origin of modern senee of, 497, 498 n. 1 : no proof by, 498 : how related to Induotion by Simple Enumeratinn, 500-2: involree a general prinoiplo, 502.
Anelyde in Induotion, 498-6, 466-7. Analytio judgementa, 185-90.
Apolt, Profemer 0., on Artatotle's Catogorice, olted, 80 m. 1.
Apodeliotio judgemente, 178-6, 189.
A porterior remeoning. 400-8.
Appollatia, 140 n .1.
A priort reesoning, 401.
Arbor Perphyriana, 116-17.
Arguing in a oircle, 569 .
Arcumentum ad hominem, 888 n. 1, B50: ad mieerloordlam, 050 .
Aristotle, his deflnition of a tarm, 18 n .2 : of a nama, 187 : of ayllogiam, 284: on dyrrupa and ouriorpa, 81 : on Svoma dSperov, 80 : on the Categoriee, a. IIi pasa: on Matter, 41: on the Pradicable, o. Iv pane: on the forr olements, 88 : on Definition, 114-of. a. a. 'Definition': on rapieruma, 118 n. 1: on Modality, 184 n .1 : on modal eyilogiems, 416 n .1 : on the Grantification of the Prodicate, 800 n. 1 : on indireot conclusions (- the co-alled fourth figuro) In arllogiam, 284 n. 1, 258-69, 805 : not the author of the Diction de Omai, 274 n. 1, 289 : on Infecit, 296 : on hypothetical renonnibg and the ouldoyrame If troefocen, $816 \mathrm{n} .1:$ on Enth jmeme, $838 \mathrm{n}. \mathrm{1:} \mathrm{on} \mathrm{the} \mathrm{induetive} \mathrm{5yllogiam}$, 851-2 : on Indaction in the modern senee, 868 : on the entablimbment of
dexd, a59-68 : on thee and maval dpxel, 860 n. 1 : on maphercypa (- aryument from analogy), 496, 501 : on falleaien, a xxil pean ; hie diviaion of falleoles, $689-4$: hta logical writinge, 289 n. 1. 848 : hie Topicy, 801-8 : distinotion of formal, matorial, final and omalent causes, 451 : theory of motion, 478 : demonatration al waye ayllogistio, 487. Cf. aloo 82 n. 1, 59 nn. 1, $2,61 \mathrm{n}$ 2, 68 n. 1, 66, 68 n. $8,78,77$ n. 1, 81, 87 n. 1, 98 n. $1,100,106,111,121$, 127, 150 n. 1, $165 \mathrm{n} .1,907 \mathrm{n.1}, 294$, 987,880 n. 1, $940,988 \mathrm{n} 9,.886 \mathrm{n}. \mathrm{\%}$, 288 n. 2, 802 n. 1, 814 n. 2, 825 n. 8 , $850 \mathrm{nn} .1-4,851 \mathrm{n} .1,855 \mathrm{n} .2,878 \mathrm{n} .1$, 407 n. 1, 416 n. 1, 489, 648 n. 1.
Aseertorio judgements, 169, 171-8.
Asemofation of ideas, BOR
Augmentetive judgomenta, 185, 189.
Auptin, J, Jurigiviemen, quoted, 688.
Averroen on Fig. 4 of ayllogitm, 258.
Beoon, Francla, Lord Veralam,quoted, $248 \mathrm{n} .1,849,846,858,844-6,897,408$, 495, 499, 486 n. $1,451,488$ n. 2, 490 , 504 n. 1, 685 n. 1, 544 n. 1, 654.
Beln, Alerandor, afted, $188 \mathrm{n} .2,975 \mathrm{n}$., 998 n. 1 .
Belfour, Ht Hon. 1. J., quoted, 409 n. 1.
Barbarm Oclarvit, history of, 94 n. 1 : form of In Petros Hiapanies, ib. : in Aldrioh, ta, 961 n. 8, 969.
Begying the queation, 650 .
Bothinge, 58 n. 9, 821 n. 1.
Boeanquet, Prof. B., oited, 125 n. 1 , 188, 162 n. 1, 168 n. 1, 408 n. 1.
Bradioy, Mr. F. H., oited, 10 n. 1, 29 n. 1, 54 n. $1,125 \mathrm{n} .1,180 \mathrm{n} .1,182 \mathrm{n} .1$, 166 n. 2, 157 n. 1,188 n. 1, 166, 206 n. 1, 900 n. 1, 217 n. 2, 987, 299, 868 n. 1, 405 n. 1, 609 n. 1, 518 n. 1.

Bryoe, Rt. Hon. J., 1 mericen Commenmandict ettod, 857 n .1.
Buridanus, Joannes, on momina comsoteHen, 140 : on Modality, 181 n. 1.

Oategoramatio worda, 14.

Oatefories, Ariatotle's doctrine of, a. iil: Ite rolation to Kant's, 48eq., 987 . Carastion, Iaw of, a IIx pane: in-
volvee unlformity, 871-2, 874-6, 878 : aspumed in phyical moience, 871, 504 : with what right asumed, 890 : cannot bo proved induetively, 806-90, 510: grounds of alimiantion faraished by, 408 : lave of, to be discovered, 872
Oeges, meanlog of, 871, 876, 450-60: whyinveligated, 48 -9: non-rociprocating, a. xill: Aristotio's doctrine of, 451 in 1 : continuity of with erieet, 450 : apparent diseontinuity in certain capes, 489-4: componition of caneos, 488 n .1 : plurality of canses, 458 mq ., 488, 816 : problem of, how related to duotrine of the Predicables, 64-7.
Onrtainty in reience, why hard to obtain, 467.
Ohange, implleseornething permanent, 450 : continuity of, lb .
Oines, meaning of fincluaton In a, 99-71.
Gremiliontion, 101 eq.: ito rolation to Lagioal Division, 118-90.
Colleotive judgemente, 156 : a. torme, 30-7.
Colligration of faota, 488 *q.
Oommencurnte terms, 88, 89-90.
Comparative Mothod, the, 598.
Compontion of Ounees, 488 n. 1: falleog of a, 840.
Conoept, ite nature, 16-18, 65-7 : alone defiable, 67.
Condillonal judsement, 891 n. 1 : a prineiples in eriences, 881-6.
Conjunetive judgement and inforanoe, 331 n. 1.
Connotetion and Denotetion of torma, 181 eq.: no torms non-connotative, 182: hiletory of word connetorn, 140-2.
Comencuent, falleot of, 488, 5BS.
Contradiotion, Law of, 860 n. 1.
Contradiotory judguments. 906.
Oontrapoeltion of propoeltions, 918-17.
Contrary judgomente, 905 : terms, ib. D. 1.

Converaion of propoaltiong, 910 : simple o., 810 : o. perr acoldone, 911 : o., by negation, 915 : whether a proowes of inforence, $817-98$.
Cools Witeon, Prof. J., oited, if n. 2
Copnles, nature of the, 145-68.
Ormokenthorpe, R., Legion, oiled, 84,98 n. 2,981 n. 1,889 n. 2,849 n. 1.

Craolal instance, 8%.
Derwin, C., quoted, 480, 498 n. 1.
Deduetion, meaning of the word, 850 n. 1, 365: contrasted with Induotion, 368, 505.
Defnition, 69, 78 eq. : nominal, 77 eq. : rules of, a.
Demonetration, 849, 487.
do Morysan, A, Fornal Logic, elted, 8 st n. 1, 698 n. 2, 888 n. 1, 856 n. 1, 644 , 549 n. 8, 855 n. 8, 658 : Bndped σ Paradacen, 558 n. 1.
Denotation of terms, 181 eq.
Derivative lawe, 881.
Deeparten, R , quoted, 488 n 1.
Dedirations, 19, 91.
Devalopment, the meaning of, $78-4$
Dialeotioal repeoning, $350-61$.
Diahotomy, 100 *q.
Diotom de Omat et ITallo, 274, ib. D. $1,285$.

Diffreptic, 60, 67 a.: constitation and dirlalve, 116.
Dlemme, 880-7: deatrootive d. mey be aimple, 889-a.
Didanostre jodgement, 166-8: d. remening, 817-21: in induction, 806, 898, 408.
Diftribation of terma, 108-7 : In ayllogiem, 847-64.
Diveritiy of offecte, 458 eq .
Divicion, Lopioal, raiee of, 101 eq.: stops with inflem apwies, 116 : oroes-d. 104: Phydeal D. (- Partition), 117: Metaphgainal D., 117: falleog of D., 640.

Downam, G., Comareat. in Putr. Ram Dial, aited, 827 n. 8.

IIfmination, ite plece in indeotion, 896, 458-8: grouade of, 408.
Empedooles, 86.
Impirioel fecta, 855 : e generalisation, 690.
 of, 888 m. 1 .
Enumeration, Simplo, Indeotion by, 489 sq.
Enumerative jodgementa, 188.
Epiohotrwench 298.
Eplayllogim, 88.
Equipollopoy of propositions, $\mathbf{1 1 4} \mathrm{n} .1$. Equirooation, fallacy of, E38, 854.
Eavenoe, 77 日q., 885 : in peometry, 88 日q. : zominal •., 77-8, 880.
Temontdal judgomenta, 185, 190.
Exoeptive judgemente, 100.
Exoluded Middie, Law of, 99 n. 1.
Frolurive, Bacon's, 865.
Eroluatve judgomente, 190.
Experfinent, importance of to Isductive reaconing, 489, 457: in eome enquifies imposaible, $\mathbf{5 1 4}$.
Explanation, a xxili: not poemible from 'common prinolples', 460 : of particular feots nnd of lawa, the mape in kind, 466, 471 : aramplee of, 47864 : as subsamption, 476: dedoctive and induetire reasoning in, 476 eq.

Expliontive judgamenta, 185, 189.
Erponibilis 191.
Expoaltion or feleont, 290.
Iriension of terms, 181 and a. vi papas
Falleotes, a mivl : reagon: for discunsing in a treatice on Logic, 598-8: difineulty of olnealfying, 588-88; dofnttion of, 525,885 : in dietiom and extre dictionam, 684, 687-8: lopleal and matriol, 884.
False Ceune, falleoy of, 868 .
Firare of Bpeeoh, fallecy of, 548.
Fizare of sylloglem, what, 238 : Galenlen, or fourth, f., 285, 567-61: determination of moods of Arst f., 962-5 : do. of the noveral f., and their rules, 254-7, 952-8.
Form and Metwer soatrated, 76-6: of thought, $489 ., 148 \mathrm{n} .1,168,918$, 988, 858-9: apeoies as form, 78, 76.
Porma, Baoon's doetrine of, 864-5.
Fowler, T., his afe of aymbole in representiog induotive argements, 406 n. 1.
Iry, Sir Edward, quoted, 287.
Fandementam Divialonis, 78, 104.
Gelonian flgure of syllogiam, 285, 287-61.
Genus, 89,67 eq. : ahoald be an unity, ib. : distleguished from dane, 69-71: gumuon, mballernam and prosimum o., 108.

Geometry, dietiaction of defnilion and property in, 88 eq.: of. at. ' Mathematios'.
Grow, J., Exploratio Philoesphica, quoted, 55 n .1.

Hamllton, Bir William, elted, 129 n .9 ,

Eegol, G. W. P., oited, 47, 985 n. 1.
Iitersahall, Bir Juhn, óted, 867.
Iifippoorstes, hle attampt to equare the olrele. 581.
Eitotorioal Mothod, the, 5 gio
Eistory and Soience contrented, 68, 918 488, 478-8.
Eobbee, Thomes, his def. of a name, 15, 187 : thought all inference syllogiem, 929 n. 1 : Mominallam of, 878
Hume, David, olted, $867,876,404$ n. 1, 406, 494.
Eypothede, ita plece in induction, 428-59 : not to be rentricted by Logia, 180.

Fypothotiond jodgement, 168-8: h. remeoning, $800-11$, 881 n. $1: \mathrm{da}$, not redadble to ayllaglam, 812-17.

Tamatity, Law of, 878.
Ignoratio milenohi, fallecy of, 585, 649. Immediate inforences menning of term, 909 : prooeses of, a \times :how far really inforonoe, 217-98
Indifidamalon, Prinalple of, 48, 67, 76-7, 117, 181.
Induotion, a Ivili pace. : meaning of word, 850 : onnfuaion in uee of, 887 : Perfeot L ($=$ L by Complete Knumerstion), 852, 888 : confuaion in contrat of Perfoct with Imporfeot $I_{,}$, 167-8: the I. of the indurive acionoes sesumes universal connexions in nature, 371 : dedactive reasoning often involved in, 478 eq. : in deeling with a complax effeot, 484-5: examples of, 40881, 488-8, 486-9, 449-5, 159-8 (of. 69 n. 1): I by Bimpio Enumaration, 489 eq- : its relation to agument from Analogy, 500-9: ite ocearrenes in mathematica, 808 : Mathematical I., 008 -4: It relation to the I. of the inductive soiences, BO4-9.
Induotiva Methuds, Mill's so-aalled, 894-9; their beale, 104 n. 1: I. reseoning, praliminarles neceseary ta, es xil .
Inference, gineral nature of, 209 : Bradley's def. of, 518 : Immediate I, 210 eq.: vildity of any L. eolfovideut, 911, 816 n. 1: i. not all ayllogistio, 229, 279-8, 888 : a priori and a poctriori I ., 400-8, 515 : 1, not from particulars to partioulan, 608.
Infinite terme, 80, $112,1800: 1$ Judgomenta, 169 n. 1, 191.
Tombantis, original meaning of, 491 n. 1 : aruole, 586 n. 1 : optenedve, 525 n 1 : prorogetive, $866 \mathrm{n}, 8$: molltaria, 897 n. 2.
Intermintare of Eithote, homogeneons and beteropethlo, 488 n. 1.

Jemeth Prof. W., Príncipices of Pryehology, oited, 888 n. 1, 638 n. 1.
Jovons, W. 8, oited, 18 n. 2, 109. $110,188 \mathrm{n} .2,914 \mathrm{n} .1,866 \mathrm{n} .1,868$ n. 1, 870 n. 1. 898 n. 1, 405 n. 1, 467,490 n. 2, 816 n. 2, 536 n. 8.
Judgoment, the true unit of thought, 18: matare and forms of, a. vil: properly expreseed by the indieative, 144: the copala in, 145 eq. : logioal, grammatioal and motaphyaioul subjeot of, dietingulehed, 150 : dietinotion of j . socordiog to Quantity. 184-61: do. quality, 161-8: do. Roletion, 168-8 : da. Modality, 168-86 : onampralive or colleotive, and universal J., diatincalabed, 158: modal partioniars, 180:
infrite $\mathrm{J}, 165 \mathrm{n} .1$: analytio and ryathetic, emential and aooidental, vorbal and real $]$., 186-90: eroeptive and erelal alvej., 100 : exponiblef., 191 : op poaition of j., 905-8: oonveralon, permatation and contrapoaition of j., $910.98:$ a J . does not aepert agresment or dieagresment between its terma, 248 n .1 .

Eant, $I_{\text {, }}$, his doetrine of Categorien, 47 eq.: on analytio and aynthotie judgementa, 185-90: his eanon of syllotam, 286: on ohange, 450: on Applled Logio, 514 n. 1.
Eepler, J.. hie hypotheaie of elliptio orbita, 486 : the three laws of, 480, 406.

Knowledes 'of sequalatanoe' and 'kn. about ', 85 .
trambert of Auxerre, 258 n. 2.
trambert, J. H. Nowe Orpanori, on Fig. 2 of cyllogism, 912 n .1 .
Iang, Dr. Andrew, Ountom and Myb, quoted, 498, 589.
Inpleoe, P.S., Marquia de, quoted, 429.
Ievolater, A. L., nxygri-theory of, 487.
Iewe of nature, 358,880 : precautions nemevary in fornulating. 516 eq.: thair oharactar, $384-5$: conditional, uneonditional and derivative, $880-2$.
Lelbits, G. W. von,olted, 168 n. 1, $\mathbf{8 2 8}$, 470.
'INowle Carroll;' quoted, 288 n. 1, 880 n .1.
Looke, John, quoted, 8, 78, 888 n . 1 , 948 n. 1. 280 , ib. n. 2, 888 n. 8,888 n. 1.
Ioglo, deflned, a i, of. 169 : how far formal, 4-7, 148 n. 1, 165, 214 : not an art, 8-9: falee antitheais between I. of Conaistonoy and L. of Trath, 290-1, 862: Deduetive and Induotive, wrongly opposed, 848 n .2 , 888-9: relation of progrens in, to progrean of moience, 848-7: Inductive L, history of, 86e-7: Applited L, 514 Lotes, H., oited, 868 n. 1, 870 n. 1 . $887 \mathrm{n} .1,404 \mathrm{n} .1,430 \mathrm{n} .2,198 \mathrm{n} .8$.

12CFegeart, Dr. E, Shedien in Hegolion Coemology, quoted, 495, 859.
Kalne, Bir Benry, quoted, 472, 497, 858 n. 1.
Major torm, why eo called, $285-9: m$ promice, how far aurviving in 00 m pleta knowledge, 807, 487 n .2
Thancel, H. L., Prolagomena Legies, quoted, 105 : ed. of Aldriah'e Legic, da, 974 n. 1,885 n. $8,883,886$ n. 2, 860 m .4 .
 546 m. 1, 684.

Marohall, Prof. A, quoted, 474.
Yethematioe, reesoning of, B88, e, XIV : emploge ayllogican when $\mathrm{P}, 507$: ite prinetples not penoralleations from experieace, 509-12.
Yester, Artatello's concepticen of, 41: gences the mattor of ite eppoice, 78 : not the prifictipion indicrinationis, 76.

Xeamarement, importadee of in inductlon, 464, 516.
Kellone, Dr. B. F., quoted, 110 n .1.
Mehhodology of solence, 489-8, e Exvi.
Mieheol Peallos, 184 n. 1 , 915 in.
M14, Jamea, quoted, 20, 141.
MIII, John Btuart, 11: on adjeetival terme, 95 : on Dofnition, 68 n .1 : on Gause, 100, 870-9: on Connotatioa and Denotation, 181 eq : : on Modality, 186 n. 1 : on Byllogiam, 279 n, 1 : on 'mate natas', 285 n . 9 : on the orldence of mathernatical prinelples, 866 n .1 , 609 n. 1, 612 : on Iawe of Neture, 880 a. 1, 471: his attompt to prove the Uniformilty of Natare, 880 n . 1: his ${ }^{4}$ In-duotivellechode',894-9, 460-9: arv in reality ode, 899 : their baeis, 404 n .1 : enan for 'Jolnt Method' defeotive, 809 n. 1 : his ' Deduotive Method of Induetlon ${ }^{*}$, 477, 488, 487 n .1 : on Hypothesia, 489 : on Argument from 4 nelogy, 600: on Colligation of Fuota, 484 : on Plurality of Cauces, 455, 460-8: view that inforence is from particulare to partieulara, 508: on the Lopic of the Moral Belences, 842, 814-16: on Falleaioe, 558 m. 1, 554 n. 2, 558 : UtIitarianlem, quoted, 648 . Cr. almo $917,281,842,870,407$ n. 2, 416 n. 1 , 421 a. 1, 447.
Minoe term, why to called, 295-8.
Minto, W., Legic, Indimetion and DodmeHive, ofted, 149, 888 n. 1, 84, B45 n. 1. Mired modes, 79 a. 1.
Modeltis, Eantic catepory of, 58 : m. of judgomenter, 168-66.
Modus ponens, 808 : tollons, 810 : ponendo tollens, 818 : how far valid, $819-90$: tollendo ponenz, 818.
1 Yood of ayllogiam, 259-40, 234-7: indireot, In Fig. 1, 246-6.

Freonalty in jodsoment, 176 : in causal rolations, 876-9.
Fregation, nalure of, 161-8: converalon by, 216.
Foteloahip, R. L., Phaoophteal Remaine, aited, 128 n. 1, 197.
Fowton, Bir Imeo, bla hietory of gravitation, $\mathbf{6 7 7}$ ल.
Femanellam, 90, 41, 58, 98, 978.

耳ota Irotee, prinolple of, 288.
Obvervion, = Permutation, q.v.
Ooom, Willian of, on ramiva conmorative, 140-2: big 'rasor', 470.
Oppodtion of judgemente, 505-8.8
Parobymoue terma, 118
Por cooidene predication (opp. to por m) ,
Parmutation of propositione, 214: whether inforence, $\mathbf{q 2 0} 8$.
Por $t e$ predication (opp. to per acidene), 88.

Potitio Prinoipil, falleoy of, 580 : of. 278, 885.
Petrie Hiopanue, 944 b. 1.
Potrua Mantaanue, 881 n. 1.
Phonomenon, meaninge of, 896 n. 1.
Philloponus. Joannes, quoted, 4 n. 1.
Plato, on the four elementa, 86 : on negation, 169 : on judgement, 170 n. 1: quoted aleo 127, 848, 490, 540 n. 2,541 n. 1, 649.

Plorality of Canee, 485 eq., 488, 516 : Mill on, 460-2
Podmore, F., Hidtry of Modern Sptrima. liem, quoted, 440 n .1.
Polnoars, Mons H., quoted, 854 n. 1, 888 n. 1.
Polyajllogm, 887.
Poor In Commiaidon, 1834, Report of, quoted, 118-91.
Porphyry, his llet of Predicablea, 58 n. 2, 92-6: arbor Porphyriana, 116-17, 128 n .1.
Port Boyal Iogio, quoted, 884 n . 1.
Poste, R, ed. of Soptimitia Elemen, quoted, $894 \mathrm{n} .2,681 \mathrm{n}. \mathrm{2,57nn.2,8}$, B51 n. 1, $654 \mathrm{n}, 1$.
Post hoo, propter hoo, fallecy of, 864.
Prantl, Carl, Gesolickle der Logik, olted, 14 n. $9,140,184$ n. 1,94 n. 1,258 nn. 1, 2, 260 n. 1, 261 n. 1, 846 n. 2.
Prediosbles, doctrine of, 0 iv: A ristotellan and Porphyrian liste, 68, 92-6: Ita relalion to the question of the meaning of 'oause', 64-7: Ariatotle's proof that bis list is axhacetive, 111.
Promales, what, 280, 988: major and minor, 289: major in Fis. 1, 980, 207, 487 n. 2.
Prerogative inatanoe, 866 n. 1.
Prinoi pixim Individuationis, 7C-7 : of 67, 117, 181.
Prisolplen, 'common' and 'spedal', 859-61, 505, 888: 'oommon' do not explain, 466.
Problematie Jodgamenta, 176-82
Proper namea, 19, 8 : bave connotatlon, 185-9 ; indofinable, 188.

Property, 61: Ite relation to Defnition, 77 eq. : fourfold divition of, 90. Propostition, mondr and tertic allocmbic, 147 n. 1: of. \& e. 'Judgement'.
Prownllogim, 886.
 Proadographema, 681.

Quallity of Jodgemente, 161-2.
Goantifogtion of the Predicate, 108904.

Conntity of judgomente, 184
Retio agnoecond and r. amondl, 172, 201, 800, 466. 2.72
Benlimm, 41, 56, 98.
Beeconting, probable, 416, 488-9: of Mathematice, 608 : ef. a\& 'Inforonce:
Beduction of ayllogiams, a. xill : ancalled for, 890 mq., 806 .
Ealacion, diatinotion of jodgamente cocording to, 168-8.
Rirohis, D. G., Plato, quoted, 490 n. 2. Bomanee, J. G., Darnin and afrr Daneite quoted, 418 sq., 415 n .1 , two n. 1, 452, $478 \mathrm{n} .2,476$ n. 1, 490 n. 2, 652 n. 4

Belisbury, Lord, quoted, 142 n. 2.
Bolenoe and Hiviory contrasted, 68, 218, 458, 472-8.
Elanderson, T., Compend/um Artis Logioae, elted, $14 \mathrm{n} .2,814 \mathrm{n}$. 1.
second Inteatione, 8, 17.
Beoundum quid, falleoy of, 688 n .1 , 647, 854.
shyreawood, Willinm, 24 n. 1.
Bltwart, Chr., Logic, oiled, 158 n. 8.
Blagular judfremente, 154 : for what perpoese ranlied with universal j., 102.
Emilih, Adam, Wralth of Natione, quoted, 417-18.
Borites, 890-80: Goolenian 2., 897 n. 2.
Speotee as Heed of Predioablea, 82 : 2infina and acrabtima, 88 n. 2, 102 : conalltuent a., 102.
Bpenowr, Herbert, 74, $\mathbf{8 0 0}$.
Aplnosa, 168.
Btapper, R, on the Ormmulae Logieale of Potrue Hiepenus, 145 n .
Blook, 8t. G. Dunuctive Logic, eited, 29 n. 9, 587 n .

Bubaltern judgwente, $905:$: moods, 202.

Buboontrary judgementa, 205.
Bubseot, logioal, grammation! and motaphyrical, 160.
Enbetriove, Alrat and acoond, 40-8.
Bubermption, 286, 807, 860 n. 8, 476, 408.

Suppooitio of mames, 14, 140: \& moterialic, 14.
Byllogem, Ariatotlo's dofnition of, 295 : problem of, 289 : nomenclature of, 280-40: Aguren of, 988-8: moode of, 259-40: thoir determination, 2517 : Fis. 1, moods of, 841-4; do., indireot, 245-6: rules of, 247-54 : reduetion of imperfeot moods of, c IIII, 990 aq. : do., Iodirect, 960: charged with pelitio principii, 978 : Fig. 1 of mientitc, 888 : propoeed prinolplee of, a xiv: Fig. 2, 200-5: Fig. 8, 296-801, 870 in 1: fourth or Galenian figure of. 257-61, 801-6 : in mathemation, when used, 807 : Ariatotlo's awlioparmar if trollocent, 817 D : : Induotivo on, 851-2: Modal s. 416 n .1.
Bymbole in reprocenting Induetive reaconing, errors in ue of, 405 n. 1 : inadequacy of, 449-50.
fricestegorematio words, 14.
Bynthotio judgemente, 186-90.

Torm and word, dielingulahed, 18 : derivation uf, 18 n .8 : mixed L., 14 : how defined, 15-16 : abntriot and oonorotet., 18, 91-8 : ainguiarund oommon or geberal, 18-19: attributive, 94-6: colieetive, 26-7 : abwolute and rolative, 97-8: ponitive, negative and privative, 98-84 : infinite and indeinite, 80,220 : univocal, equilvocal and antlogous, 84 : 00mmenearnte, 88 : intenaion and extenalion of $2,121,0$. vi pace: connotation and donotation of, 181 eq. : 80 t. non-connotativo, 182 : abeolate and connotative, 140 : contrary, 205 in. 1: contradietory, ib. : major, minor and middle, in ayllogiam, 282-8, 855-9.

Thompenan, Arohblehop, Laves ${ }^{\text {Themyts }}$ cited, 198 n. 2, 204 n. 1, 824 n. 1.
Topios, what, 861 : t of Cause, 896 : Ariatotho's treatien of that name, 358 68.

Unconditional prinolplee in selepea, 888-6.
Unifegentry of Nature, meaning of. 372-8: ${ }^{\text {man }}$ not be proved inductively. 884-6, 469: importanee of in inductive solence, $85 /-4$, 407: of. also s.e. 'Carantion'.

Universe of Discourne, 88 n. $1,148 \mathrm{n} .1$.
Venn, J, Empirical Logic, quoted. 405 n. 1.
Vorlflastion of a theory, not proof, 486, 686.
Vornon, Dr. H. M., Foriation in 4 nimale and Raver, quoted, 408-10.

Walleov, Dr. 1 R, quoted, 478.
Walle, J., Logic, oited, 216 n. 1, 218 n. 2. Watta, Imea, Lopic, cited, 99.961 n .2. Woltan, Prof. J., Inductivs Logia, eited, $888 \mathrm{n} .1,488 \mathrm{n}$. 1.
Whately, Arehbishop, Lopic, quoted, 140,875 n., $597,588,588 \mathrm{n}$. 1, 884-Q 858.

Whewrell, W., quoted, 867: on Colligetion of Facts. 188-9.
Wollastod, W., Religion of Nabare it. Mneated, alted, 144 n. 1.

Iencarstes on Arlatotle's Calegorien, 88 n. 1.

Eaberolla, Cardinal, on Fig. 4 of aglloglem, 289-9: on Diatur de ompi, 974 n .4 : on reduction of hypothetical remening to ayllogiem, 818 g . 1.

[^0]: ${ }^{1}$ The quastion of the pospipility of a breach of natural law need not be considered here; something is ataid of it in c. xix, infra.

[^1]: ${ }^{1}$ Emay, BL. IV. c. x $\mathbf{x i i}$ \& 4.

[^2]: ${ }^{1}$ Joannes Philoponus citem it ad Ar. Anal. Powt. a. ir. $76{ }^{\circ} 15$.

 - Unless indeed he in collecting statiotice as to the comparstive frequency of different types.

[^3]: ${ }^{1}$ The word logic is sometimes used not for the study of thought which hes been deacribed in this chapter, but for the thintring which it studies: ea when we eny that tone one in a man of powerfol logic, or of great logical acamen. It is important to recogaize that this is a different sense of the word.

[^4]: ${ }^{1}$ It must not however be supposed either that Ethica can determine what ought to be done in overy difficalt case of conecience, or that Logic determines exhasatively the forms of reasoning which the aciences muat employ. CC. Bradley, Logic, pp. 247-249. The phraeg normatiow science, which some writere have of lato applied to Logic, Ethice and Aesthetice, hae perhape been auggented by the character in them to which this paragraph refors. Bat it in liable to create misanderatanding, as if it were the buaineas of these enquiries to preacribe rather than to acertain the principles which our rational thinking, or action or apprecistion of beanty exbibita.

[^5]: ${ }^{1}$ Of course judgemente with the eame anbject may have different predicatea, end those with different subjects may have the ame predicate. 'Vengeance is aweok.'

[^6]: 1 This ctatement neede modifying in the caee of judgementa which dofine their sabject; bat in these almo there is a diatinotion between the aubject an an anity, and the elemente comporing it.

 - "Opor radós els \&y dealúrrat in mptraras, Ar. Anal. Pri. a. i. 24b 16. "Term" is terminua, at translation of the Greek spor. It is not quite eacy to soo why the parts into which the judgement can be broken up were called opos. The statement that 's term is so called because it forms one end of a proposition' (Jecons) in clearly wrong; for that is an accident of langrage, and of the proposition bos locutws est it is not trus. It is possible that Aristotle symbolised the proposition in the form ' $\mathbf{B}-\mathbf{A}$ ' (where we shoald write ' \mathbf{B} is \mathbf{A} '), and that the use of the word comes from the position of the symbole. Bonits (Inder Arie., s.e. opor, $580^{\circ} 21$) thinkt it a metaphor from mathematica, where if the ratio of two quantities was connidered, these were called opos, being represented by lines, which are the boundariee of a plane ; in the judgement, there is a relation of anbject and predicate, which might therefore be called opos too. The word is, however, also used like $\delta p a r \mu \delta s$, to mean definition ; and it may be that subject and predicate were called opot Me the determinate objects of our thought in a purticular judgement, or atogether compriaing what is proponnded, and. limting 2 ns fadgement in which they occur to ith orm field.

[^7]: ${ }^{3}$ With the articles may be coupled worde like anme and asy; not, and no in 'no man', are sloo syncategorematic; so is the copula is, as the sign of predication, though not when it means 'ecista' and is itself the predicate.

 - The doctrine of asppositio, as of divars other 'proparties of ferms', hes happily fallen into oblivion; but for the benefit of any one who wiabes to underitand the phrase auppositio materialis it may be worth while to add a note on it. All perta of speech were said to have signification; then, as sound posesting signification, they ecquired propertiee which did not belong to them as mere wounds. Thewe properfiea were not the wame for every part of speech. Suppasitio belonged to arbatantive denoting subatances, copulatio to verbe and adjectives. Subetantiality and adjectivality were suppoeed to be charscters of the thinga signified ; the adjective coupled some adjectival with mome rubotantival thing, the substentive 'put' the latter 'under' the former (o. Prantl, Geachichee der Logik, vol. II. Abechn. Iv. Anm. 67; vol. III. xii. 59). So far, the senee of mppositio neems to be active; but it is defined as acceptio temnini aubstantivi pro aliguo; and here the sense is pasaive: the 'supposition' of a term is 'being pat" for something. It was then said itself mpponerv pro aliquo (cf. Pranti, wol. III. xvii. 61, 201 : Sanderson's Compendium Logicae Arif, Lib. IL. c. 2); and the same term had different binds of 'supposition' according to what it 'stood for'; e. g. in 'Homo ent animal', homo atands for all men, and thig is the suppositio naturalie of a common term ; in 'Homo currit', it stande for nome individual, and this is suppositio permonalis. Now as a sound haring signiscation, the term was digtinguished into the sound as matter, and the aignification as form ; and when a predication was true of a term as a sound

[^8]: or in renpect of its matter, as in ' Homo ent dirglabum ', it was ald to be by euppositio materialis: when in respect of what it aignibed, by mppositio formalio. There can be ruppositio moterialis of any part of apeech, but formalio only of subatantives; for only a enbetantiva, or aubatantival phraes (hawe enim significat rem ut anbeiementem at ordinabilem aub alio, v. Prantl, vol. III. x vii 60) can have auppositio formalis. Cf. p. 140, infra.
 ${ }^{2}$ Computation, or Logic, c. il $\$ 4$.

 - We can talk in Englioh of the name of a person, thing, plece, river, ac.; it is less natural to apeak of the name of a quality, or to call a descriptive phnse, like 'the only man who escaped from the slanghter of Caragnari's miation', a mame; while verbe and adjectives, which can bo

[^9]: predicatee in a proponition, can hardly be called names at all. Nor would any one apeak of the 'middle name' in a gyllogism, thoogh it is worde which are ambiguous when we have an 'smbiguous middle? Hence it meams deairable to retain the word 'term' in both the reneee mentioned in the neaxt paragraph.
 ${ }^{2}$ Nothing is a term except when it is eo thought; bat when wo condider terma in ioolation, the queation is not whether apything in a term in a given judgement-for there is no jodgement given-bat whether it is a torm of a pomible judgement. Hence in our deflnition we muat ray ' whatever can be thought, \&a. and ' eapable of atanding'.

 1. Technically, in the case of conorete general or of abatract terme. Cf. infro.
 ${ }^{-1}$ On the natare of concepte of. pp. 55-57 infru.
[^10]: ${ }^{1}$ Or have exicted or will exint.
 'It would be ponsible in ordinery speech to talk of a man's 'conception' of Gibraltar, or his 'ides' of it, in distinction from the rock itself; but comerpt in Logic signifles properly something universal. The question however in this peragraph is a general one concerving the relation of what are cometimes called 'Idese in the mind', to things, whether or not these sre 'ideas of individuals'.

[^11]: ' i a termase the word or words aignifying an object of thougbt.

[^12]: ${ }^{1}$ The term humanify has of course other meanings, viz mankind collectively, and also kindliness; in the text it means the human nature common to all men.

[^13]: ${ }^{1}$ We may of coure diatingrish rarietios of any one colonr by apecial names, like sky-blue and peacock-blue. But this doee not affect the argnment in the text : it would only require us to treat, not blue, but slry-blue or peacock-blue as the abotract term that is applicable only to one attribute.

 The individagls of one kind are sometimen also called particulare (f. p. 18), in contraet with the wnipersal or kind that characterises them all.

[^14]: ${ }^{1}$ The meaning of attributivee may, howerer, be incapable of explanation without reference to that in the nature of the aubjecte whereto the qualities belong which makes them eusceptible of theee qualities. Thus neither silk nor oloth could be red unleas they had foritice; neither s man nor a company could be ineolvent anless capeble of haring debte. CC p. 98, n. 1, inf It may be added that tarms like jouther or musician are adjectival in aense, and would by some be clased as attribative; for though they are gubstan:-1 tives, and are predicated of concreta thingm, tiey do piot primerily signify the concrete thing: of which they are gredicated. Cf. pp. 140-142, infro. - Esole; 1. II. 4 .

[^15]: ${ }^{2}$ King Lear, Aet iv. 7 1. 18.

 - Idjectives can indeed be used as subjecta, e. g. Besti immaculati in via, where it is posible to take either term as prodicate. In many languages the article is generally necessary in order to make an adjective do duty an a subatentive.

[^16]: ${ }^{1}$ Ercept so far as they are combined into a term whose whole meaning is aingalar: e.g. frat is general, but the first Pharah is aingular.

[^17]: ${ }^{1}$ This formula, 'Everything is either A or not- $A_{\text {, }}$ ' is mometimes given as the 'Law of Exeluded Middle'. The 'Law of Excluded Middle ' means that of two contredictory proponitions one or other mast be true; they cannot both be fabse, and therefore any third or middle course between accepting one and aceepting the other in excluded. It hae been aeked whetber either of anch contradictory propositiona as Virtus is triamgular and Virtue is not triangular need be accepted; the former is clearly falee, but the latier does not reem true. The answer is that if any one were to emert that virtue is triangular (ae the Pythagoreana beld juetice to have the nature of a squere) we ahould be right to contradict him ; but that no one who realizes virtue to be incapable of any epatial charecter at all would ever pat to himsolf the alternatives, 'is virtue triangular or ia it not?' and that to one who, not realizing this, aseertod it to be triangalar, the proper contradiction is that it has no flgure. The case therefore furnimhes no exception to the truth of the Law of Excluded Middle, provided the altarnativet are not at the outset realived as noncence; but no one to whom they are nonsence would expect to tent by them the ralidity of the lewe of thought; for talking noneence is not thinking. The objeotion to atating the Law of Excluded Middle in the form ' Everything in either A or not- A is this, that it reema to eanction the formation of nonsenvical contradictories, anch an we have examined, no lese than of contradictories that are rational. Cf. aleo Bradley, Logic, I. r. \$5 23, 24.

 1 Stock, Deductive Logic, $\S 188$.

[^18]: ${ }^{1}$ de Interpr. it. 160 80-88: the technical torm in Latin is nomen infinitum, whence the English phreee 'infinite torm' is derived: but infinito means in this contert indeterminate; and for the anke of perspicuity, the lattar word hes been used in the tert.

 Why hath not man a microwcopic eye?
 For thin plain reason, man is not is fly.
 -Popz, Emay on Man, i 198.

[^19]: ${ }^{1}$ Cf. noxt page.
 The old Greek proverb will illmetrate the point here-Joohel pelv ydp drijef, rastodurtier di natul.

[^20]: ${ }^{1}$ The genas within which any attribute falle, or the subjecta sunceptible of some attribute within that genus, may be called with do Morgan (Formal Logic, p. 41) as 'limited univerne'; thas blue is a predicate in the oniveres of colour, or of coloared objecta: prudent in the univere of human character. A poaitive term and its corresponding negative (a g. blue and not-blue) may then be asid to divide between them not indeed the whole univeree, but the limited aniverve or whole of thinge which constitutes the genus to which they belong; the members of this limited aniverne heve a ponitive common charactor. which gives the negative term a positive meaning: wherean if wo connider the whole univeree, there is no positivo charecter common to all thinga incladed in it, except the character of being -- which, as Aristotle pointed out, conaidered in itself and not as realized in some apecial mode of being, is not e significant term. Cf. de Interp. iii. $16^{\circ} 22$. Such a 'limited aniverse in somotimes called an 'univerne of discourse '.

[^21]: ${ }^{1}$ These two ammples are not quite parallel. The notion of deafnes can be formed by any one who knowe what hearing is. The notion of deaiocated ' cannot be formed by any one who known what moisture in, but he must also know what drynese is. 'Desiccated ' is a privative torm, because it means e drynes due to the withdrawal of mointure previoualy preant; but 'dry' is juat as positive a term as 'moint'. It cometimes happens, with two mutually exclusive alternstiven like dry and moist, that men dispate whether or not both are poritive. Some phifoeophers have maintained that pain is merely the privation of pleanore, and evil the privation of good; others, that pain and evil are juet as poaitive as good and plearure. In thewe caes, it will be also in diapote, whether or not pain and evil are privative tarms. But the dispute arises from our uncertainty how to think about the things ; and so furnighes another illuatrution of what bee been pointed out in the text, that logical diatinctions of terms reflect and are based upon diatinctions in the way. we think about thinge.

[^22]: 'This is not a complete atatoment of the meanings in which, according to Aristotlo, a predicato may be mid to belong to a subject caf airb; but it in, I think, s mafficient ecoount of the sense in which the expression is uned in this connerion.
 -This is the trae meaning of the statoment in Cat. iii. 1010 dras iropos

 quoted as equivalent to tho Didum de Omni 4 Nullo. Cf. infro, c. siv. p. 275 n.

 - Bat there are concrete thinge denominated from prodicaten in eome other category than that of rabatance; e. g. a threohold is a concrete thing, bat in calling it a threabold I do not give its subatance: to do that, I ahould have to my that it whe a stone. It is a threahold becanse it is a atone in - cartain silmation.

[^23]: i As a matter of fact, howerer, the category of relation is not equally exoluded by tho others; and Xenocrates is said to have reduced them all to Babotanco and Belation In doing this he would not have effected a real aimplification, any more than if they were all reduced to Being; for time, plece, aotion, \& $c_{\text {., all }}$ involve eneentivlly different kinds of relation; and mere ralation, which is not any defnite tind of relation, is almost as barren a conception an mere being. Aristotle probably eroctod relational predicates into a meparate clase becsuse they appear to tell un leas than others what a subject in 'Sir feet high' would be in the category of nooby: 'taller than his neighboar' in that of $\pi \rho^{\prime} \mathrm{b}_{\mathrm{r}} \mathrm{r}$; it given more information about what a man is to asy that he is air feet high, than that he is taller than his neighbour. The latter predicato may change when his noighboar changes ; the former can only change by a change in the man himself. The former involree relation aleo; bat the latter in more pleinly and purely relational.

[^24]: ${ }^{1}$ Cf. Ar. Mef. A. vii, and Apelt, Beirrdge sur Geechichte der griachischen Philosophie, III. Die Kategorieendehre des Aridotelea. In the expreasion rivn rey acrmppeier, 'hinds of predicete,' earmpoia refors no doubt to the predicates of things, these predicates falling under the kinds enumersted, not to the heads or most general predicates under which theee fall. Some interpretere have therefore held that the conorete individual is not in any cyterory, lince it is never properly a predicate (cf. Cat. v. $\mathbf{3 0 3 6}$ dind miv
 what the whole doctrine of that treative impliee, that the concrete individual is in the category of subatance ; it is cortainly one of the 'kinds of being'. The account in the text accordingly follows the implications of the expremion yin riv dorwy in this point of discrepancy between the two.

[^25]: ' The former wes anid to maintain the erintonce of uniownalia ante sm, the latter of uniservalia in re: where the ree is a concrete individual.
 ${ }^{2}$ Cf. Ar. Phye. a. vii. 101• 8-12.

[^26]: ${ }^{1}$ º
 I In the foregoing criticiom I am particularly indebted to lectures of Profeseor Cook Wileon.

[^27]: ${ }^{1}$ Cf. Mct. M. viii $1084^{\circ} 5-8$; and v. Bonity, Index Arist. 2. v. vin, 788e 52-58.
 one cannot really support any statement on the point except by reference to his whole discuasion.

[^28]: 'It in to be obaeryed that the pendicate of the same pmponition may determine its subject in more than one category. In the proposition -The other disciple did outrun Peter' the predicate is in the category of time, for the past is a time and the event is reffercel to the past: nod of action, for running is an activity : and of rulation, for 'faster than Poter' is a relation. But of course, if we distinguish these different ele thente in the preatcate, we can refer them, considerod soparately, t) diff,ren: categories.
 ${ }^{1}$ It is not necesary, however, to hold that Aristotle's ist of tategories is complete.

[^29]: ${ }^{1}$ = first and second anbatance.

 * It is not meant that collective terms are in the category of State.
 - Except as terms in a derivative category involve terms in thome from which it is derived.

[^30]: ${ }^{1}$ Action.

 - Time.
 ${ }^{2}$ Pacion.
 - Plece.
 - Belation.
 ${ }^{4}$ Quantity.

[^31]: ' Onlese indeed it is equivalent to oicia or Subatance; bat that is one of the categoriea.
 ${ }^{\text {I }}$ If Kant wae wrong in supposing that the formal characten in an object, Whose presence there be secribed to the syathetic activity of the mind, are not merely recognised in it, but are there to be recognized through the mind's activity, yet what hea been asid will atill exprese the relation which, from his point of view, unbsists betwoen Aristotle's doctrine and his own

[^32]:

 ${ }^{3}$ The Aristotelian list is given in the Topice, a iv. 101^{1} 17-25: the later list pessed into modern Europe through the medium of a little work by Porphyry, the Elouyeri or Introduction to Logic, in the Latin version made by Bodthing. Acapopa is ranked by Arintotle with yiroc, as being a modification of that; and as the surplas in öpos over givos, it is known in knowing them. Cf. infro, p. 60.

[^33]: ${ }^{1}$ To une s phrase of Mr. F. H. Bradley's, it is the 'what' and not the 'that ' of thinge which we have to conaider.

[^34]: ${ }^{1}$ Cf. e. g. J. Grote, Exploration Philowophiea, PL. I, p. 60-s work and by an author lees known than they deserve to be; the oxpreations 'knowledge of acquaintance' and 'knowledge about ' are borrowed thence.

[^35]: ${ }^{1}$ Concepte do not necemarily realize this laat requirement; but whereas the indiridual cannot be completely known, a concept might be underatood completely.
 : Or doee it (as some have beld) exist apart at once from particular thinge and from our minde?

 - Supra, p. 41.

[^36]: ${ }^{1}$ This does not of conree mean inaide onr akalle.

 - The word thing here is used first of the individual, the arbject of predication, then of the oniveral, the character predicated. It hee been used slready in both these ensees. The Englinh idiom allows both awes-we may say, for example, 'sbout that thing I Enow nothing'; and it may be worth while to use the word closely together in both senses, in order to direct notice to the ambiguity.

[^37]: ${ }^{1}$ But ef. p. 62, n. 1, inf. The Porphyrian list of predieable will be considered later.

 And therefore, of conme, neither of anything of which the other cannot be prediceted.
 Only if it is a predicate which from its nature can belong to no more ; than one indiridual, es e.g. the attribates of God.

[^38]: ${ }^{1}$ The bonest man, however, commands in many situations a higher price, and so far some economints would reckon honerty as wealth.

 This muat be received sabject to modification from what is asid below as to the genus being in itself indeterminate, and actually different in esch of it species. Cf. pp. 69-78, 128.

 - In the plural if the genus has divers determinable points that have to be opecified differently in the different apecies. Cf, inf, p. 86.

[^39]: ${ }^{1}$ The aubject boing. it must be remembered, an 'universal', not an individus. I cannot apeak of yelping as an attribute common to Tray, but I can speak of it an an attributt common to the dog-i. e. belonging to the dog in overy inotance. Aristotle cometimes apole of an attribute peculiar to an individual, and not to a kind or universal, as a property ; and aleo of attributes peculiar to ane out of a certain definite number of kinds, and therefore serving to distinguiah it from them (though found perhape again ontaide their number) as relatively propertiea; thus it is a property of man relatively to any quadruped to g° on two legs; but $s 0$ aleo doee a bird. He recogrized that this use of the term 'property' whe not the same an that given in the text, and not (in his view) so proper a use. Ce. Top. e. i.
 'Cf. Ar. Top. a. v. 102' 4 14. Cf. Top. с. i.

[^40]: Ar. Top. a. v. $102^{\text {b }} 4$.

 - Coincident is really a better tranalation of oumpeßpurs than accident.

[^41]: ${ }^{1}$ The illastration of this forms a considerable part of what is called Indactive Logic; we shall find that many connexions are inductively eatablisbed whow necemity remains noconceived.

[^42]: ' Thing being bere again thing of a kind, or univeral, not individual.

[^43]: ${ }^{1}$ So far as a cow is a body, and only a body can be knocked down, it must be allowed that the nature of a cow contributes something to the accident; but the mecond eentence will atand without qualification.

 I It is necemary to say of the subject as such, in order to keep in view that it is not the individual, bat the eabject as eomething of a kind, about which we eak whether its nature containg in any degree the ground of the predicate. To be knocked down by a looomotive may be an accident, as regserda a cow ea rach, i.e. ce cow; but it would be absurd to my that the particular cow contribated nothing to the accident, aince it could not have been knocked down if it had not been there.

[^44]: ${ }^{2}$ e. g. Mill, Jogic, I. viii. 5.
 ${ }^{3}$ On ' connotation ' ef. infra, c. vi.

 - That the parts of a defnition are one is a thing on which Aristotle frequently inciata. and may that the main problem about definition is to ahow how that oan be. Cf. e. g. Met. Z. xii, H. i.

[^45]: ${ }^{1}$ Though the relation of a apecies to individuale is not the amme with that of genus to upecies in all respecta, yet what is aid here upon the vice of calling the genus clase in which opecies are included applies equally to the babit of calling the apecies a clese including individage.

[^46]: 'i.e. the motion which the phree 'to be included in a clen' muat bear in logio, if it is to be used in any applicable sonse at all. But oven a cless at achool is not a chance collection, but a collection of boys supposed to share the mame level of attainmenta.

[^47]: ${ }^{1}$ The extent to which, in abbordinating epecies and genera to a eaperior genus, a common type or plan can be definitely traced through them all, may vary at different itagee of s clasification. The seme functions of animal lifo are diversely provided for in protozos and metacos; and within the comparetive complexity of metazos, in coelentera and coelomata; but it would be difficult to give any one diagrammatic repreaentation of the structore of all these, or even of all metazou. Such representations are given for coelenters in general, and coelomsta in general ; yet they are a mere outline, in which ovon the principal organs of meny important types ere tacrificed. On the other hand, for each meparate phylum among the coelomates soologista can give a representation, in which a place is found for overy principal organ that all the apecies of that phylum, though with manifold variation of development, at come stage of life or other alike exhibit; and for the aubdivisions of the vertebrata this can be done more edequately than for the subdiviaions of the chordete.

[^48]: ${ }^{1}$ Ariatotle woald exprese this by meying that ed x^{λ} epoby may be rexpripenor,
 ness is not equaroben; wherese triangulerity is threesided-rectilinearfigurehood.

[^49]: ${ }^{1}$ v. Eseay, Bk. III. c. iii. § 15.

[^50]: ' Such complex abatract notions were called by Locke 'mixed modes'; which he asid we could definc, because we had firt made them by putting together simplo notions (or in his language, simple ideas) with which we were perfectly acquainted. The exprewion 'mixed mode' hes not extablinhed iteelf; perhape beoause the worde are not well adapted to convey the meaning which Locke intended by their combination; but it would be useful to heve an eppropriate expresion to indicate what he meant. Cf. Ereay, Bk. II. c. xxii.

 - We have, however, seen. in discussing genus and differentig, that theoe cannot well be called attribates. But it might be arged, that although they cannot be attributed to any other 'univeral' as qualifying it, they muat be attributed to some substance which in any individual object is what hae the character, in virtue of which we call it a dog or gold, as well an having such other attributes as mangy or fine-drawn; of, however, pp. 11-44, empra.

[^51]: ${ }^{1}$ Yet where thare are alternative modea of conatracting a figure (e. g. sn ollipee) it will be arbitrary which of them wo select to define it by; we can only eay that the dofnition must ensble us to congtruct the figure.

[^52]: ${ }^{1}$ Or perhspe, regralar aolid.
 ${ }^{2}$ On what find of evidence particular attributes are hald to be connected, it is the business of the theory of the inductire sciences to show.

[^53]: inpos axi moti.

[^54]: ${ }^{1}$ This mey eeem inconsiatent with the occurrence of the so-callod 'allotropic forms of elementa; but 2 a 2 matter of fact, tho speculation as to the arrangement of the atom ind a molecule, to which the phenomens of allotropy have given rise, confirm the remark in the taxt it is fonnd necemary to acconnt for the divervity of properties in the allotropic forms by enpposing that atoms indiatinguiahable in their own nature are capable of divers combinations; it is not the elementary mbatance, but the combination of stoms of the elementary zubetance, to which the propertice are now attributed; and that combination is not supposed the same in the allotropic forms, though the elementary subatance is.

[^55]: ${ }^{1}$ There is a anggestion in Aristotle's Topict of this point of view, for he sllown that tany may mean a peculiarity that diatingoiahes an individual from others; of. the paseage quoted, p.87, n. 1 anpro and e. i. 1890 8-5. But his doctrine as a whole implies that the aubject torm is general.

 I In technioal language, what is an infima apocies and what a opeeies mbalterna; it wes maid thet a species subalterns 'preedicatur de differentibas opecio', sn inflms opecies 'de differentibus nomero tantam'. But it is clear that this does not help ns to solve the problem: how are wo to dotermine whether men differ in number only and not in hind ? It is no eacier than to determine whether man or Zula is the inflmasecies; being in fact the mane problem reotated. Eooked at from the other inde, tho rpecies unbalterna can of conre be called the genus mballernum : cf. Crackenthorpe's Logic, BL. L. c. iv.

[^56]: ${ }^{1}$ If sometimes tranalated what happens ($\sigma 0 \mu \beta a i y e n$) to an individual, yet it is aid to happen, just because it need not belong to him aocording to the conception we have so far formed of him; and it is therefore only coincident in him with the characters incladed in that conception. Cf. aupro, p. 62, n. 2.

 iк rpaúpнror ivoruppediva, Porph. Ieag. c. iii, init. (One thing is maid to diffor peculiarly from another when it differs by an inseparable accident. And an insoparable accident is such as greyness of the oye, hook-noeedness, or the ecar of a woond.) Porphyry indeed asye that accidents in general

[^57]: mponvovuiver iqioraral, ib. c. x; and also that they are predicated pri-

 c. vi. But he does not reem to see that it is not from their relation to the individual that they are called accidenta. For his account of the distinction betwoen separable and inmeparable accidenta, cf. c. V ov β ßapr

 xpordr x coole ϕ doopacs roi imouruivivov. (Accident is what comes and goes without the dearraction of the subject. It is of two kinds, separsble and ineeparable. To aleep in a separable accident, to be bleck is an ineoparable mecident of a crow or an Ethiopian ; a crow can be conceived to be white or an Ethiopian to bave loat his coloar without the dentraction of the mubject.) That he regarded inseparable accidente as predicated both of apecies and of individuals as sabject is clear from c. vi rò odi pilap roù ri fidous rür

 dicated both of the apeciet of crown and of crown neverally, being an inseparable accident, and to more of man and horse, being a separable accident.)

[^58]: ${ }^{1}$ Cf. Ar. Top. C. V. 142b 22-29. But propertien, according to Arintotle (Δn. Poat. $\beta . x$), are defined by opecifying the subjects in which they inhere, and the cause of their inherence in their subjects.

[^59]: ${ }^{1}$ Top. 5. iv. 142* 84.

 * Logic, III. v. § 6.

[^60]: ' In Logic, if Diviaion is spoken of without any qualification, Logical Divicion is meant; though there are other operation of thought, to be mentioned later, to which the name Division is also epplied.

[^61]: ${ }^{1}$ Cf. p. 92, i. 2, mpra. According to one doctrine, natore has determined where division should stop, and infmes opecies are fixed by nature. Cf. p. 81, enpra.

 1 In Latin, membrc dividentia, as the apecies are conceived to share the genus amongot them.

[^62]: ' Cf. infro, p. 116.
 ${ }^{3}$ Cf. supra, c. iv. pp. 72, 87.

[^63]: ' Cf. supra, c. iv. p. 86.

[^64]: ${ }^{1}$ Perhape orchards (if they masy be held to include all ground uned for raising fruit from permanent stooks) ahould be divided according as they

[^65]: grow buab-froit, tree-fruit, or bines ; and bine-orchards might be aubdivided info hop-yarde and rineyarda. Even then it is not clear where strawberrygardene would come. Buch are the practical difficultien of making a perfeot diviaion. In the text momething has been mecrifioed to compendiousneme, eleo nunsory-grounds, brick-fielde, and other varietien of land distinguighed acoording to une would need to be included.

[^66]: ${ }^{1}$ Cf. 8. H. Mellone, Introductory Tert-book of Logic, c. vi. § 10, who points out that although division by dichotomy 'has been adopted by the medienval and formal logricians because it appears to provide a theory of divinion which does not make the proces depend entirely on the matter of our knowledge, as clamification does', yet this sppearance is illosory. I know on formal grounde that of any genus x the apecies either are or are not characterized by any sttribute a; but I cannot therefore divide x into the two species a and not-a, since in fact a masy be an attribute never found in the genna at all. Every circle must ba either rectilinear or not; but there are not two species of circle, the rectilinear and the non-rectilinear.

[^67]: ${ }^{1}$ Anal. Poat. B. xiii. 97s 28 sq.

[^68]: ${ }^{1}$ Thus in the Arbor Perphyriana the enamerntion of the iroma Boorstea, Plato, ac., in the inflms apecies man is no part of the logical divition. Cf.

 individuals aro meant auch thinge an are constitated aech by peouliarities, the precise collection of which could never bo the anme in any second particular; for the peculiaritien of Socraten oould mever oecer identically in any other particular individual.)

[^69]:
 δ ardpetior, Cat. i $1^{4} 12$. (That is paronymous which receives its denignation from something with s difference in inflexion, as grmmarian from grammar and a courageona man from courage.) The Latin for mapinvune is denominatum or denowinatioum, according as the aubject or ita attribute is meant.

[^70]: ${ }^{1}$ Principlet of Scienct, c. xx. p. 689, 2nd ed.

[^71]: ${ }^{1}$ Physe o. iii. 2100 17-19. Cf. p. 118, aupra.
 'I do not wish to imply that wo may not 'intend' the ame by a term when it is sobject of a proponition, an when it it prodicato. But an in the subject the extencion may be more prominent than the intension, while the predicate is alwaye ondentood primarily in intencion, the expreation in the tort is lem ambiguous than if I mid 'What we mean by it in a propovition. Cf. inftra, c. Ix.

 - For another use of. P. 128 A8., infra.

[^72]: C1. p. 69, aupra.

 * And therefore the introduction of differentive into a division which art not differentiee of those before them is not nard rd $6 \rho 06 y$, cf. mpra, p. 116. though they may atill be such of which only the genus from which we itarted is auceptible.

[^73]: ${ }^{1}$ There are, however, eminent names on the other nide, e.g. Mr. F. H. Bradley, Prof. Bomanquet, and R. L. Nettleahip. Cf. especially eection xi of the 'Lecturee on Logic' in The Philooophical Romains of R. L. Natrictitip.

[^74]: ${ }^{1}$ Philosophical Remaine, i. p. 220. The italice are mine.
 ${ }^{2}$ Plat. İew. 71 D-72 D ; Ar. Pol. a. хiii. 1260*20-28.

[^75]: ${ }^{1}$ Bradley's Lagio, p. 158
 2 If intension and ertension varied inversely, and by extension were meant the various individualn, then the intension of dodo should become infinite when the species became ertinct. Perhape it might be replied that pant as well es present individuals are incladed in the extention; bat if there never has been nor can be a body moving frealy in spece, that term at least should have an inflinte intention.

[^76]: ${ }^{1}$ Mill moang that in the case of ouch terms as these, the sahoolmen spoke of attributea being connoted; but not that his ase of the word connote conforme generally with that of the achoolmen: cf. infro, pp. 140-142.
 ${ }^{3}$ Mill inatances 'slownem in a horse' as an attribute denoted by the word 'fault'. It is clear that if 'farlt' is connotative, 'virtue' should not have been given an en example of a non-connotative neme. The italics in this quotation are his.

[^77]: ${ }^{2}$ i. a one of which we do not distingaish and name sabordinate apecies.

[^78]: ${ }^{1}$ I ose the word attributo becanse Mill usea it; bot it inclodes moch complex 'attributes' en a political conatitation. And what is and in this parngraph is trme as wall of conarete termeso long as they are general.

[^79]: ${ }^{3}$ Except, indeed, that of individuality : to be an individual is an attribate of the indiridual denoted, and Mill ahould have allowed that this wea connoted.

 - Mont proper namea are selected for a definite reamon; a child christoned Beptimus is generally the seventh child; a mountain may be named aftar ite discoverer, scollege eftar ite fondor, or acioty efter come one of whom ite members wish to be considered the disciplea.

[^80]: 1 The case of derivative nemes is, of course, different.
 'Artionlate sound having eignification by convention.'-de Interp. ii. $16^{2} 19$.

[^81]: ' CE. Prof. Boomnquet, Ementiche of Lagic, Lect r. $\$ 6$

[^82]: ${ }^{1}$ Very often the form eren of a proper name gives a clue to the nature or antionality or vex of the objeet denoted; and arrnamen, to far as they denote the members of one family, are not altogether equirocal. Every one known too how proper names come to acquire a general meaning: Csemr is a familiar inatance; and we have all heard of a Daniel come to judgement, and that Copman Bannibali Cannan frisem. The reador will eacily allow for all ruch conniderations, none of which support the riew impagned in the tert; but so a propor name may be used without any such aequirod rignification, tho quention has been argued independently of them.

[^83]: ${ }^{1}$ i.e. to use J. 8. Mill's terme, it denotes 'id pro quo mupponit', and connotes 'id quod appellat '. For appellatio cf. Prentl), vol. III. xiii. 59 (' propietas secundum quam signifcatum termini poteat dici de aliquo mediante hoo varbo "eot" "). Cf. sloo ib. xiz 875.

 - Occam means that, e. g., mow can be referred to mabwm, but not an albedo.

[^84]: ${ }^{1}$ This antithesis must not be prosed too far, an was pointed out above, e. i, pp. 6-7. To regard it as absolnta, as if what wo judged of made no differance to the manner of judging, is the error of thoes who attempt to treat Logic an a 'purely formal' science. But I do not think that, with this caution, the statement in the taxt need minlead.

[^85]: 'The reasoning which would make all exclamations imply a judgement wes extended to actions by Wolleaton, when in his Redigion of Nature Delineated he regarded all wrongdoing as a paticular mode of telling a lie.

[^86]: ${ }^{1}$ C. 8. Calverley, Lines on the St. Jahn's Hood Omnibue.

[^87]: ${ }^{1}$ Properitions in which the verb of existence wes predicato naed to bo called propositione acwadi adicontio; and thome which had aome other predicate, where the verb to be whe prement or implied as copple only, were called proponitione tertii adiacontio.

 - Cf. J. 8. Mill, Logic, I. iv. I.

[^88]: 'Some writars have used the notion of as aniverse of discourse' to exprese the foregoing contention. In the whole univerne fact and fable, asargea und Roumeans concoption of seragea alike have their place; but I can make statemente which are true ebont Rouspeau's conception which would be faleo about earages themselven. It is and that theee are different 'univerues' of diecourse; and that propositions which do not eseert the existence of anything in the material universe may easert it in some other. 'The royal dragon of Ching hee five olaws'-I do not affirm its existonce in the univerve of soology, bat in that of Chinese heraldic design. Cf. p. 82, м. 1, supra.

[^89]: ${ }^{1}$ The view that Reality is the oltimate metaphysical enbject of judgement is of course familiar to all readern of Mr. F. H. Bradiej's or Profemor Bomaquat'a logical work.
 i. i.e. the logical robject.

 - Bigwart his pointed oat that the movement of thought in a jodgement is different for a apeater commanicating information and for hia hearer. The speaker knowe the whole fact, when he atarts putting for ward one aspect of it in enunciating the subject, and sopplementa it with the otber by adding the predicate: if I may.'This book took a long time to write', the whole fact is prement to my mind in its onity before I bagin opeaking. To the hearer I prement a aubjoot of thought, 'this book,' which awitu mapplementation: to him the predicate comes an now information, which be hane now to combine with the concept of the mbject hitherto formed by him. Tho jodgement is for him an act of ayntheris irat, and in retrospeet. when ho bas completed it, of analysia; to the apeaker it is an act of analysis firat, and in retroopect, when he hat completed it, a ayntheais by which he recoven the whole fact from which ho marted. V. Loglc, § 5. 1.

[^90]: ${ }^{1}$ Of course any other indifferent symbols will serve, such an X and Y or S and P.

[^91]: ${ }^{1}$ Cf. infre, p. 159, n. 1.

[^92]: ${ }^{1}$ The Aristotalian diviaion (or rather Platonic-for it oconr in Plato's Politicus) of political conatitations is another orample in which differences not really quantitative have been premented noder a quantitative form. Δ monarchy, an ariatocracy, and a democrncy, though aid to differ eocording ae power is in the hands of one man, of the fow, or of the many, really difier, as Ariatotio himealf pointed ont, in quality or tind. It muat be added that Aristotle doee not put formard any puroly quantitative diviaion of
 rie oi nat' icosroo-since of thinge some are univeral and some meveral), though in expounding the syllogiom in the Prior Ancigtice he ofton lays ctren on the quantitative implicationa of the contrett between univeral and particalar jodgementa.

[^93]: ${ }^{1}$ A form lize 'Man is mortal' is clearly umivernel; but represented in symbols it will not unambiguously show ita nniversality.
 'Cf. Bradley's Logic, Bl. I. c. ii. $\$ \$ 6$ and 45. In the Table of Contents he eqpentr of 'collective' judgements in this cense.

[^94]: ${ }^{1}$ Cf. Bradlej': Logic, BL. L. c. ii. $\$ 45$.

[^95]: ${ }^{1}$ Or, an some logicians would add, none. Sach a view maken the universal judgement, however, purely bypothotical : of. Loibnis, Noweeame Eseaie, IV. xi. 14; Bradley, Logic, Bk. I. c. ii. 5§ 48-6; Bomnguet, Lopic, vol i. pp. 278-292; a. also Bradley, Appearomes end Reality, p. 881.

[^96]: ${ }^{1}$ It will be remembered that in diacussing the ertension and intension of terms, it wa pointed out how the extenaion of a term meant, properly, asbordinate terms conceptually dirtingainhed, and not merely tho inntances of a kind reqarded as only nomerically distinct. Thes in the ertension of the term ahilling would be incladed ahillinge of different die or atandard fnenesa; but the extension of the Queen Victoris Jabilee shilling would not be mabdivided. At the ame time it wat recognised that we may fix oor attention either on tho common character which all shillings of that inue have, or on the multitade of different ehillinge haring that character: for thinge of a kind are a one in many, or a many in one-one form in many instances, many individuslo in one type. When we think of the many more than of the one, we may be enid to consider the term in its extension; when of the one more than of the many, in ite intemaion And indeed individuale of a kind, in order to be dirtingniahed at all in thought, most be conceptaslly distinguished: whether only by number (newo might think of the fint, econd, third, esc. ahilling truck from the dio) or by plece (ee we

[^97]: 1 Moreover this would really mean that I now judged a previous judgenent to be false : sbout which the originsl question would st once srise.

[^98]:
 soror, did' irepor porov. ('About each Form then there is moch that it is, but an infinite amount that it is not. . . . When we speak of not being, we speak, it seems, not of what is contrary to being but only of what is different.)

[^99]: ${ }^{1}$ Buch jodgementa, with an infinite term (cf. p. 30, suprs) for predicate, have been called infinite jodgements.

 - For any given rock, theme are alterastives: for rocks collectively, they are three forms which are all realized : cf. p. 168.

[^100]: ${ }^{1}$ This oracle ahows that the outward or grammatical form of a judgement is no sure guide to the meaning; for it may be tranglated 'Croenn will croes the fialys and ruin a great power, in which case it becomen categorical: the two tranalations are clearly different, though the ame Greel line covers both menees.
 ${ }^{3}$ Cf. Mansel, Prolegomena Lagica, pp 282, 251.

[^101]: ${ }^{1}$ Logic, Bk. I. c. ii. § 50 : cf. § 52.
 *The reader muat not suppose that these paragraphs deal at all completely with the probleme raised by the hypothetical form of judgement. Nothing, for example, ha been said about the quantity of hypothetical judgementa. It hae been urged by some that they are all universal; and doubtlese they imply an universal connexion somewhere. Yet they can clearly be mado about individuals.

[^102]: ${ }^{1}$ This might be equslly expressed 'He either fears his fato too much. or deserves little': indeed in senee the alternative predicates are predicated of the same subject, not (as in the proposition Either Tacitue wos a slanderer or Tiberiue a villain) of different aubjecta. This afforde another exsmple of the fact that the logical character of a judgement cennot alway be inferred from the grammatical form of the proposition.

[^103]: ${ }^{1}$ Of course there is a dispunction in the facts, in the former case as vell, so far an that a jear muat be either the 429th or the 427th or come otber number, from any point of time whence we choose to begin our reckoning.
 ${ }^{2}$ For the fuller treatment of this form of judgement also the reader is referred to more advanced worke.

[^104]: ${ }^{1}$ Except so far as in come aubjects, like arithmetic, a judgement is nearly alwaye made with consciounnem of ite necesity: of. infra, p. 175. Even here however I might eny, before I had made the calculntion, that 87596 may be a equare number.

 2 For the aske of brevity, I ahall not throughout consider negative ae well as affirmative judgements. It should be noted that the problematic affirmative ' X may be \bar{Y} ' is not contradicted by the problematic negative ' X may not be Y^{\prime}, bot by the apodeictic ' X cannot be Y ': and similarly the problematic negative by the epodeictic affirmative.

[^105]: Soph. 259 E . (${ }^{+}$All speoch vanishes altogether if each thing be severed from everything else.')

[^106]: ${ }^{1}$ I have tranalated cognoscendi by 'acknowledging', becanose in the full sense of knowledge I do not know a fact which I do not see in ite own natore to be necemary.

[^107]: ' We may oymbolise thus the jodgements whoee subject and predicato are \boldsymbol{X} and Y, and which are thin 'materisilly' the asme, but whow 'formal' character-modality, quality, quantity-may differ.

[^108]: 1 We msy call the necesity of a judgement, which wo see to follow from certain grounds, but whose grounds we cannot afirm neceasarily, an hypothetical necessity. The consequent of every hypothetical judgement is amerted en bypothetically neceasary - if 4 is B, X is Y^{\prime} might be written 'If A is B, X mut be Y^{\prime}. When the grounds can be affirmed necenarily, then the judgement referred to them may be called spodeictically necenatry. It should, homever, be noted that in the bypotheticsl judgement' if A is B, \boldsymbol{X} is \boldsymbol{Y}^{\prime}, we may or may not see that the consequent in involved in the condition; the connexion mag be s bare fect for us, or one that we see to be necemary: and necenesry, either immedistely, or on further and angignsblo grounds.
 ${ }^{2}$ No truth is isolated: and there is none (not even woch a trath as $2 \times 2-4$) which would otill be equally true if all other thinge per imposenibide were different (e.g. if $2+2=5$ and $2 \times 8=7$). So far, no jodgement is unmediated, or immediately neceasary. But there aro judgemente whowe

[^109]: nocesity is seen in a particular came, se we see that 2×2 must be 4 in a particular connting, though it is not seen to be anconnected with all other judgementa, but rather to be bound op with others. And the matter of fact in which we find necenity might be something much more complex-a far bigger system - than the namerical relations of 2×2.

 Almost all; for a few judgements, such an formalae for the finding of prime numbera, have been believed to be nivernal, and turned out to break down for certain values. These were not apodeictic. If it had been seen that the formuls must yield s prime for any ralue, it could not have broken down.

[^110]: 'There are other viewe of haman froedom which make the future acts of men as certain in themsalves as any other.

[^111]: ${ }^{1}$ Or of any other being that hee freedom in the mame conee.

[^112]: ${ }^{1}$ In this nense, the region of concrete facta, where such ever-ahifting combinations are found, is somotimes called 'contingent' matter, as opposed to the 'neceseary matter' e.g. of mathematica: cf. p. 175, oupru.

[^113]: ${ }^{1}$ e.g. 'A man may call at every public-house from John o' Groata to Land's End.'

[^114]: ${ }^{1}$ To asy that an event is nncertain of course often means only that we are ancertain about it.

[^115]: ${ }^{2}$ Hence we cannot accept auch a definition as Aldrich offers of modality: 'Modalis, quee oum Modo, h. o. vocabalo exprimente quo modo praedicatum insit subiecto.' Artie Logicae Rudimenta, c. ii. § 2.1 (Mancel's 4th ed., p. 47).

[^116]: ${ }^{1}$ Kritik of Pure Reason, E.T. (Meiklejohn), p. 7.
 2 In qpeaking of the connerion between the predicate and mabject an cogitated throngh identity, Kant means that the predicate concept is identical with some part of the aubject concept: where it is cogitated without identity, the $t w o$ concepte are quite distinct.

 - Or ampliatios.

[^117]: ${ }^{1}$ Bynthetic of alementa, or analytic of a whole.
 ${ }^{3}$ Arbitrarily, not becaun there is no motive, but becanse there is no neceenity.

[^118]: ${ }^{1}$ Arbitrary becane what we are defining is comething of our own institution, or becanse our so-called definition is a compromice of the nature explained pp. 85-88, awpro. In the atrict sence of definition, nono is arbitrary : thinge are what they are.
 1.e. in Kantian language, whether they are mythetic a pouteriori or a priori.

 In strictnees, of what would otherwise be the subject: as the part excepted cannot be called part of the subject of a judgement which expreesly doee not epply to it.

[^119]: ${ }^{1}$ We have already men, in discusaing the oxtension, or denotation, of terma, that confosion may arive between the relation of a generic concept to the more apecific concepta included under it and the relation of the univernal to the individual. Bat in considering the distribation of terme, it is not alway necemary to bear in mind this distinction. I may therefore my indifferently that a term is uned with reference to ita whole extension, or to all that it can denote, even if we reverre the latter expremion (denotation) to signity the individuals of which a term can be predicated.

[^120]: ' i. e. denote anivocally: an equirocal tarm is to be regarded as a different term in each sense.

 The proporition must be taken to refer to Enropean books and movable type: the firtit dated eramplea being of 1454.

[^121]: ${ }^{1}$ I do not deny that a particular 'ropresentative' triangle muat be conceived in meting the judgement.

[^122]:

 (indperof, man, is an onivernal: whan I asy 'All men are animals', I predicate of an universal univernally; when I bay'Some men are white', I predicate of an univernal particularly, or in part. Aristotle goee on to aty, in the worde quoted, that the predicate cannot be aimilarly taken nniverally [i.e. not 'an an aniveral', bat 'in ite whole extension'f. 'Bat in the caes of the univernal which is predicate, it is not true to predicate universality; for no

[^123]: aflimation is true when univernality [in extenaion] is amigned to the prodicated univeral, ag. All men are all animaln.' Cf. Ammanias in loc. 1.82, who pointe out that then each man would be all animala.) Anal. Pri.

 màr (iou, h decauooinny Áray dradoy. ('Bat the attribate must not be taken to be attributed in coto. I mean for ormple snimal as a whole to man, or acience as a whole to music, but juut simply to follow on the eabject, es our promise cays ; for the other is both unelene and impomible, e.g. that all man are all animale, or that jartice is all good.')

[^124]: ' We might make them a present of certain forms which they appear to have overlooked. If the extenaion of Y be p, q, r, then ' $N o X$ is any Y ' uneans ' No X is either p or q or r '. But the parte of the extension are taken diajunctively: why ahould they not be taken togetber? Then we ahould have the fonn ' $N o x$ is all Y '-meaning that no X is both p and q and r. So we might have 'Some X are not all Y '. It is true these forms are uneleas; and in that they rosemble the affirmative forms 'All X are all Y ' and 'Some X are all Y '. But they have the adrantage orer thoee of being trae. Cf. p. 204, n. 1.

[^125]: ${ }^{1}$ Aristotlo notices this in Anal. Pri. 日. xv, 68b 27 rod rdp rand Tif od rul
 are nel ').

[^126]: ${ }^{1}$ Or, more generally, elementr, if we allow (with Bradley, Logic, pp. $870-$ 378 that, e.g., $2+2=4$ is inference. But the above is not intended at a fnal deflition of inferenco.
 : For the function of the middle term in syllogism, ef. infro, c. xi.

 - All inference is immediate in the sense that from the prowiene wo pace without the help of anything olve to the conclocion; but this is called immediste in the wase that from the given relation of two terms in a single proposition we pane without the bolp of anything eleo to a difforent proposition. It is doabtfal, however, whether, 30 far an there is any inference in it at all, it is really alweys immedisto, aitber in this or in the etymological sense. Cf. the diecresion pp. 217 aq.

[^127]: ${ }^{1}$ The matter of mome judgemente renders their converaion annataral, even where the form allow of it: e. g. Civilization epreade by the extermination of lower racee.' Cf. Pp. 218, infra.

 - Another role for converion is somolimes given, to the effect that the terms (or the subject and predicate) of the converse muct be the mane as the terms (or the predicats and rabject) of the convertend. But this is not s rale to observe in converting ; it expleins the process of convertion itself.
 ${ }^{3}$ v. M. Arnold, Lecturne on Tramelating Homer, Popalar Edition, 1896, p. 171 : the queation before us is not whether the proposition may be rightly contradicted, but how it mey be rightly converted.

 Then the predicate of the convertend is not a anbetantive or teobstantivel term, we mast either substitute for it in the converse a subatantive, if there be one of equivelent meaning (an in this ease), or import eome rabstantival expression like 'one who (m in the previons example) for the original predicate, now introduced into the subject, to qualify. We often chooes the genus of the anbject about which wo are spenting, an in the fint erample of the conversion of I.

[^128]: ${ }^{1}$ With this partgreph, ef. mpra, pp. 190, 200.

[^129]: ${ }^{1}$ Even when the predicate is known to be of the eesence of the subject, we must convert per accidens, if the predicate is the genus: e. g. 'all men are animals' - 'come snimals are men'. We csnnot call animal an socident of man, but we may any that it is an accident that an animal should be a man, in this sonse, that the conditions necessary to the generstion of an animal mut coincide with the epecial conditions necesary for the generation of a man, if the animal is to be a man. The oxpreation coincide is not strictly suitable (nor therefore can the relation of man to animal be at rictly called accidental), becanse it is only in thought that the conditiona neceeary to the generation of an animel can be separated from the special condition necesmary to the generation of some particular opecies: there is no coincidence of independent eeries, at when one seriea of events bringe a train to a point whither another series has brought a flood and wahed awny the metals, and the reanlt is a 'railway accident'. Bat the uago is analogous.
 : Though certain pernom on the Continent reem to believe otherwise.

[^130]: ${ }^{1}$ Jovons, in his Elementary Lasons, calls it Immodiato Inference by Privative Conception. Earlier writers dealt with it under the head of Equipollency of Propositions: cf. Sandermon, II. 6 'Aequipollentia communiter sumpta eat duaram propotitionum, verbo tenus, quoquomodo diecrepantium omnimods in sencu conspiratio ".

[^131]: ${ }^{1}$ Contraporition hae not always been dirtingainhed from converion by negation: e. g. Wallis, II. 7.

[^132]: ${ }^{1}$ Logic, II. i. 2.
 ' Cf. Bradley's Logic, Bk. IIL. Pt. I. c. ii. $\$ 5$ 80-87.

[^133]: ${ }^{1}$ Cf. Bredley, loc. cit.

[^134]: ${ }^{1}$ Cf, infra, pp. 284, 257.

[^135]: ${ }^{1}$ Otherwise, the term in Y, and the form not \bar{Y} only showt that Y is being deaied of momething in a judgement.

[^136]: ${ }^{1}$ The reader may be reminded, that among the range of altornatives which the denial of a poaitive term lesves open, the correaponding negative term has often come to aignify one only. Not-blue may cover all oolours bat blue; bat wnfriendly does not cover all the alternatives to friendly; it implies a definite degree of hortility which may be absent in thome who are not ponitively friendy to us. But this is a matter of the interpretation of language rather than one of Logic.

 This is no doubt why Wallis (cf p. 216, n. 1, nupra) did not dirtingainh contraposition from convorsion by negation. 'Hanc formulam locum habere docent in Particolari negative. Aique huins potimimum, causa videtur faime introducta: at quae per nentram reliquarum converti ponait. Puta. Aliquod animal non eat homo: ergo, Aliquod non-homo non eat nananimal; een (quod tantondem eat) Aliquod non-homo animal; ven, Aliquod quod non eat homo, eat tamen animal.' loc. cit.

[^137]: ${ }^{1}$ Thomeon, Lave of Thought, § 55.

[^138]: 1. Manhall's Principles of Ecomomics, BL. IV. c. ix. § 4.
[^139]: ${ }^{1}$ Aral. Pri. a. i. 24b 18 : cf. Top. a. i. $100^{\circ} 25$, where the same definition recnrs, with the subatitution of hid rây ncuiver for rị raira alhan.
 'Putting two and two together'is often a procete which leade people to conclations of a highly conjectural charscter. In such cases, their reasoning doen not come under the Aristotelian definition: for it is expremaly stated by him that the conclusion muat be ineritable- $d \xi$ dvira η.
 ${ }^{3}$ Bradley's Logic, Bk. II. PL. I. o. iv. § 10, et alibi.

[^140]: 104 wer

[^141]: ${ }^{1} \mathrm{i} e$. in a wider reme than it is ased in when the attribater of anything are dirtingrished from ite subatance or kind.

[^142]: ${ }^{1}$ By a domain here ie meant a certain order or ayotem of relations, of a aingle hind : we might asll epace a domain in which all materisl thinge are related, and time a domain in which all evente are related. The domain of subject and attribute is far less unilled than thet of apece and time. A thing related to one other thing in space, or an event related to one other ovent in time, is necessarily related in thoee weys to all others But a term related to a second term in the domain of subject and attribute is thereby necemarily rolated in that way only to thone farther terme, if any, to which the socond is related in that manner (and not necesesrily to all of them). The domain of aubject sad attribate is, sa it were, a little syatem of relations ombrecing group efter group of terme, but not necesearily connecting any of the termi of separate groupa; wheran time and opace, Whioh connect gronp after group of eventa or objects, necemarily connect alco any two members of any two proupe. The word category might have been employed inatead of domain. in the Kantion sense of a principle of symheois or relation. But it was employed on the last page in the Arietotelisn sense of a kind of predicate as deterswined by the principla (or principles) of aymheris emploved. and has been genernlly employed in the text in that seape; and it would have introdaced confuan either to employ it without notice in a different eense, or to intarrapt the present subject in order to point out the distinction between them.

[^143]: ${ }^{1}$ a.g. Hobbea, Art of Rhetoric, BL. I. c. i, 'all inferences being ayllegisme': a. Moleeworth's ed., Einglich Works, vi. 428.

[^144]: ${ }^{1}$ Not necessarily, becaume, as we shall soe, from two false premises may follpw a true conclusion. But a conclasion correctly drawn from faleo pirininea, implies ignorance in the reasoner, though not ignorance of remonlpe:

[^145]: ${ }^{1}$ Cf. Mill's Logic, III. iil. 9.
 ${ }^{2}$ An J.S. Mill does in expounding hia Inductive Mothode: bat his symbole are very inadequate.

[^146]: ${ }^{1}$ Or rather, to be prosed or disproced: it was a theris, which might form the rubject of debete between two parties; one of them, the oppagner, theld ont'to the other, the upholder, various propositiona, which he anked him to admit, in hope to obtain admimions wherefrom there followed ayllogistically a conclusion contradictory of the theais of the upholder.

 3 Theee expremions are bseed upon what occurb in the firs figwre, where the major term is commonly of greater extencion than the middle, and the middle than the minor : and the major premian, an compared with the minor, is a more general proposition. But being tranaferred to the other figurea, in which they cannot any longer be so interpreted, they muet be axplained genarilly $e a$ in the taxt: of infra, pp. 295 seq., where this is explained at length.

[^147]: ${ }^{1}$ Anal. Pri. a. vii. 29e 19-27 (of. p. 258, n. 8, infra).

[^148]: ${ }^{1}$ If the premin had to be true, the olergy muat be aroepted.
 2 In the second and third fgares, where the middle term oocuples the same position is both premisees, either premise may be regarded as major, without affecting the eituation of the middle term: and hence there in no ponibility of oreoting a aeparato figure bearing the ame relation to them th the fourth does to the firit.

[^149]: ${ }^{1}$ Tnlewe a definite particular colour is meant.
 ${ }^{2}$ Terms, though they be general concrete tarma, like atateeman or fiahmonger, may yet exprese only a apecial or 'abstract' aspect of the natare

[^150]: proper subject of which to predicate attributes was in his view onbstance, and of which to predicate any genus, its species or the averal aramples of thee. Where thin order was inverted, the judgement did not atate what ita subject was in its own nature, but to what it was incident. Doubtless this is oftan what wo want to state, as in such a judgement es "The composer whe Handel '; bat in ayllogiom a torm predicated of that to which another is mubject is not naturally made the aubject whereof to afirm or deny this last.

[^151]: ${ }^{1}$ With actual terms, an onivernal proposition is often more natarally expresed without the use of the mark of quantity, All men or No coloure. Where this is so, and the content makes it plain that the proposition is

[^152]: ${ }^{1}$ The indirect moods of the first are the mane at the moode of the foorth figure : cf. note, pp. 257-262, infrs.

[^153]: 'Conversely, the middle term may be really the aame, though verbally different, in the two premiseas; and then there is a are pertebrate, and the crocodile is a lisard \therefore The crocodile is certabrata.

[^154]: ${ }^{1}$ This is nometimes expremed as follow: though the expresion is apt to be misleading (cf. pp. 249, 250). It in asid that the premisees asert agreement (or disagreement, if negative) between the major or minor, and the middle, terms; that if the middle term be andirtributed in both premimes, the major and minor may reapectively agree (or agree and dizagreo) with a different part of ite extencion; and therefore we cannot toll that they agree (or dimgroe) with one another. The vogue of auch langage is perhapt to be traced to Locke : cf. e. g. Eseay, IV. xvii 4: 'It is by virtae of the parceived agreement of the intermediate idea with the extremea, that the extremes are concluded to agree'; cf. aleo Bacon, Nov. Ory., Disfrib. Operie, ${ }^{4}$ tametai enim nomini dubium esee posait quin, quase in medio termino conveniunt, et ot inter se conveniant," acc.

[^155]: ${ }^{1}$ The fourth figure has not been considered in this note, but in this matter it raises no question that is different from those that srise on the other flgures.

[^156]: ${ }^{1}$ It may happen, where the premimes justify no inference, that an afilrmative concluaion would in fact be true; e. g. if some M is not P, and all S is M, it may be trae that all S in P. Here of courne the middle term is ondistributed, and therefore there is no real point of identity in the ergoment. However, it is worth while noticing that the proof of thia rule alco is difficult to exprese in a quite abstract way. The notion of agrsement is employed here again, but merita the zame proteat as before: if one term agrees with a seconil, and that disagrees with a third, tho first will disagree with the third; but the relation between subject and predicate is too loosely described ea one of agreement or dimgreement.

[^157]: ${ }^{1}$ Beginner imagine sometimee that the fallecy of illicit procesa is oommitted, if a term which is distributed in the promien is undiatributed in the conclasion. This is of coures, not the case. I mast not presume on more information than is given me, but there is no reasen why I ahould not nse less.

 It will be noticed, therefore, that no particular conclusion can be vitiated by an illicit process of the minor term : and no affirmative conclusion by an illicit process of the major.

[^158]: ${ }^{1}$ Por this depends on the distribation of terms in the premimea, which varies according to the fgare: whether the conclusion is affirmetive or negative depende on whother both premieses are affirmative or not, a point which can be determined without asking where the middle term stands, i.e. whet the figure is
 " It is hardly necesary to give inotances to show that these combinations of premises are imposible: bat a beginner should invent instances for himeolf, in order to beoome familiar with the meaning of the symbols.

[^159]: ${ }^{1}$ e.g. from the premisses Contemporary noidence is of great hietorical ralue, Tradifion is not (or Some inacriptione are not) contemporary avidence, it cannot be inforred that Tradition is not (or Some inseriptions arv not) of great hidorical calue (AE, AO): from the premimes Some pointed arches are (or ary not) four centrod, All Goihic arches are pointed, it cannot be inferred that $\mathbf{A l l}$ Gothic arches are (or are not) foumeentred (IA, OA).

[^160]: ${ }^{1}$ Prantl, i 570-574.
 ${ }^{1}$ And by others, 0. g. Lambert of Anxerre, thirteenth centary med, quoted Prantl, iii 80, Abechn. xvii. Anm. 121.

 means 'when there is no natural, direct, or proper ayllogiom or conclucion'.

[^161]:

 would cover the Subeltern Moods (cf. p. 262, infra); but he had not got them in his mind; ho would not have regarded them an drawing a different, but part of the mme, conclution.

[^162]: ${ }^{\text {' }}$ o. Prantl, i. 365, Abschn. v. Anm. 46, where the pasaagea from Alexander, who accribes the addition of these moods to Theophastas, are quoted.

[^163]: ${ }^{1}$ e. g. Petrus Mantranna, quoted Prantl, iv. 178. Petrus, in the edition of 1482, gives an an example of a syllogism in Cesare, ' Nullus homo eat lepis, omne marmor eat lepis, igitur nullam marmor cort homo.' If the conclusion drawn is 'Nullus homo est marmor', he calls the mood Cesaren ; but he comes later to Camestrea, as a different mood. By such and other even more questionsble methods, Petrus compiles fifteen mooda in Fig. 1, sixteen in Pif. 2, eighteen in Fig. 8, and eleven in Fig. 4. Cf. aleo Crackenthorpe, p. 197 (ed. 1670), who eppean to treat the moods of Fig. 4 and the indirect moods of Fig. 1 as two different thinge.
 ${ }^{\prime}$ e.g. from the premisses Some change is not motion. All motion is change. it cannot be inferred that Some change is not change (OA) : nor from All great enitics are seholars, Some echolars are pedants, that Some pedants are great eritice ($A D$: nor from $A I$ mombere of the Gooernment belong to the party in poner, Some of the party in power are not in the Cabinet, that Some of the Cabinet are not members of the Gooernment.

 - I have not been able to trace this form of the mnemonic versea any further back than to Aldrich's Artis Logicae Rudimenta. A good many writers have tried their ingenuity in devising variations upon the original lines. Watt has a veraion recognizing only fourteen moods, the indirect

[^164]: moods of Fig. 1 appearing neither in that capacity nor as moods of Fig. 4. Sir William Hamilton (Discustione, p. 668) aleo offers 'an improvement of the many rarious casta of the common mnemonic vormea.: But the reader will probably wioh for no more. In various modern tertbooke, Baroco and Bocardo are spelt with a k, in order that c medial may not occar with a different meaning from c initial.

[^165]: ${ }^{1}$ This method of establishing the velidity of a syllogiem per impossibile is applicable to all the imperfect moods; but the direct method is preferred where it is available.

[^166]: ${ }^{1}$ Though it would follow by an 'indirect concluaion' in Frisesomoram that some invects ere not spiders.

[^167]:

[^168]: ${ }^{1}$ Except the initials, these are explained in the old linesSimpliciler verti vult S, P verti per aeci, \boldsymbol{L} vult tranaponi, C per imposaibile duci

[^169]: ${ }^{1}$ It is poserible to validate the moode Baroco and Bocardo by the direct method, if we employ the processes of permatation, and converion by negation. From Baroco we obtain a syllogism in Ferio, thus: Baroco, All P is M, Some S is not $M \therefore$ Some S is not P : Frio, No not- M is P. Some S is not $M \therefore$ Some S is not P; from Bocardo we obtain a syllogiam in Darii : Hocardo, Some M is not P, All M is $S \therefore$ Some S is not P : Darii, $A 11 M$ is S, Some not-P is $M \therefore$ Some not- P is $S . \therefore$ Some S is not P. Namee have been given to the two mooda in place of Baroco and Bocardo, by logicians who considered these mothode of reduction to be prefersble, in which the prooespes to be followed are indicated. These processes have been relegsted to a note, and the names anppresed, because there is no purpose in bordening what may be called the mechanical part of the theory of ayllogiam with any freah refnements. 'Barbara Celarent' may be rotained and explained, on historical grounds; we need not add to it. On the other hand, the queation es to whether the imperfect moods need ralideting, and if so, what is the most proper way of doing it, will be discuesed in the nert chapter.
 Though for Fig. 4 the eyllogiam which employs the contradictory of the original conclusion an one of ita preminees will yield a conclucion contradicting the converse of one of the original premiseen.

[^170]: ' Todhunter's Euclid, for example, is written ander the impremion that thin is the right way of atating such an argument.

[^171]: 'I have quoted Zabarella's formulation of the Dictum de Omni, do Quarta Figure Syllogiemi Liber, Opera Iogica, Coloniae, 1597, p. 115 A. The worda in aquare bracketa are not bis. There are numerous variants of no particular importance. Crackenthorpe (III. 16, p. 202 in ed. of 1670) gives 'Quidquid afirmatur (s . negetur) univermaliter de aliquo, idem affirmatur (a negatur) etiam do omni de quo illud proedicatur'. This form seems (an Alansel

[^172]: ${ }^{1}$ Cf., o. g. Mill's Logic, II. c. iii. Mill's own way of avoiding the charge is not very succeaful.

 - Where general rules are made by men, as in the cave of lawn, we can of course kow them, in adrance of any knowledge about the particular acts

[^173]: ' It will now be meen why a ryllogiem wae explained to beg the question, if it presupposed the conclanion not in the premimes together, but in

[^174]: either of them singly; all ayllogisms in a sense presuppose it in the premisses taken together (though they do not presuppose a knowledge of it).
 ${ }^{1}$ The doctrine of the Posterior Analytics must in this reapect be taken as overriding the more formal and external treatment of ayllogrm in the Prior.

[^175]: ${ }^{1}$ But we cannot give this reacon for the equality of the units.
 : Anal. Poat. a. xiv. 79a 17. The reat of the chapter is by no means all of it true.

[^176]: ${ }^{2}$ Or the exclasion of A as such from B as such, if the syllogiam is negative.

[^177]: ${ }^{1}$ Cf. Heqel's Logic, $\$ 185$. E.T., p. 298: 'There in no more atriking mark of the formalion and decay of Logic than the favourite category of the "mark".

 I J. B. Mill (Logic, II. ii 4 and note) otrangely misinterpreta the marim Nota motas est mota rri ipeivs. He underatands by me ipeo the major term, and by mote the miner; so that the whole, instead of meaning that what

[^178]: ${ }^{1}$ Cf. an article on ' What the Tortoise maid to Achilles ', by 'Iowis Carroll', in Mind, N. 8. iv. 278 (April, 1895). It is obvions that the ralidity of the latter of these two ayllogirms cannot require to be deduced from the principle which stande as major premies in the former. For if until that is done ite validity is doubtful, then the principle by which we are to establish its validity is equally doubtful. Berides, what proves the validity of the former, or validating, oyllogien? The validity of a syllogiam cannot be deduced from its own major premisa; else the fact that all organime are mortal would ahow that the syllogiam, of which that is the major premisa, is valid. If it be said that the validating syllogism needs no proof of ita velidity, the same can be maid of the ryllogism which it validates. But if it needs a proof, the syllogim which validates if will need validating by another, and 10 ad infinifum. No form of inference can have ita validity guaranteed by another inference of the mame form with itself; for we shonld be involved at once in an infinite procesa.
 ${ }^{2}$ Cf. Ar. Poef. An. B. vi. 92^11-16.
 ${ }^{2}$ e. g. Locke, Esexy, IV. zvii. 4.

[^179]: ${ }^{1}$ Cf. aspre, p. 878

[^180]: ${ }^{1}$ e.g. in this aylogiam in Featino, "No fragrant flowers are marlet, Bome geraniums are ccarlet \therefore Bome geraniuma aro not fragrant,' I think a man world probebly subatitato in thought for the major its converso, 'No ecerlet flowers are fragrant, and argue to himeolf in Ferio. With auch a premine, where there is no priority as between the two accidente, fragrant and soarlet, that is the more natarl way to argue. But this doee not show that all syllogisms in Peatino ought to bo thus treated.

 * Called by Ariatotle eireyerif cis ro ddimeros.

[^181]: ${ }^{1}$ It must not be forgotten that most reasoning which explaing facts through their canes is not syllogistic at all; bat if it is ayllogistic, it will be in the fint figure.

[^182]: ${ }^{1}$ Hence the datement, frequently quoted from Iambert (Nowes Organen, vol. ii p. 189 ; Dianoiologie, iv. $\$ 229$. Leiprig, 1764), that the acond figure pointa us to the differences between thinge: "Die sweite Figur fuhrt enf den Unterschied der Dinge, and hebt die Verwirrang in den Begrifon anf.'

[^183]: ${ }^{1}$ Except, of coarse, whers the major premisa is a partioular negative and the mincr o onivarel affirmative proposition (Bocardo), in which case we can only proceed ger impoenibile or by exposition. Anal. Pi. a. vi.28b 15-21.

 - Anal. Pri. a. vi. 280 24-26.

[^184]: ${ }^{1}$ It may be objected that it is only in some particular mpecimen that the coincidence of theee two characters is ever sotually realired, and that therefore it is to a specimen that we must at bottom be reforring. Thie raises a quabtion that is not pecaliar to the third figare. If I argue that the rhododendron is popular becaue it flowers brilliantly, it may be aid that this trath is only realised in particular abrubs. The relation of the oniveral truth to pertioular existence, here raised, is importiant; but it need not complicato the prorent ispue.
 ${ }^{2}$ Not alwaya, oven there; I may argue that all breeds of dog are domenticatod, and come are arage, mad therefore some domenticatod breeds of animal are sarggo (Disamis). Here I am speating, and thinking, throughout not of individgal saimals but of thair kinde.

[^185]: ${ }^{1}$ This note may, of course, be equally well regarded as a dincusaion of the indirect moode of the firt figare. Bat if anew type of inference were involved in them, the erection of a foorth figure would be jugtifled As that is the queation undor discusion, it seems fairer to call them moode of the fourth figure at the ontset.

[^186]: ${ }^{1}$ i.e. of Fapermo and also Fresieon = Frisesomorum: v. Amal. Pri. a vii. 29*21-27.

 3 It woold complicate the illustration too much to make the oxception required by methylated spirita.

[^187]: ${ }^{1}$ Bat ef. infra, iii p. 810.

[^188]: ${ }^{1}$ This is the denial of a hypothotical judgement, but notiteell hypothetical : being equivalent to asying 'It is not true that if', \&c.

[^189]: ${ }^{1}$ A namber of modern textbooks teach this doctrine. For an older suthority of. 7abarella, In Lib. Prior. Ancl. Tabulae, p. 158, 'ayllogiamve hypotheticus an valeat necne cognoscitur per ein rednctionem ad categoricum.' -Opera Logica, Coloniec, 1597.

[^190]: ${ }^{1}$ Had I writton, for the cast, all cases, the proporition would have been atill more sbard. But the contention chould be examined in ite strongest form.

[^191]: ${ }^{1}$ The cae of A is the case of B : the existing case of A is the cace of A : therefore the exinting case of \boldsymbol{A} is the care of \boldsymbol{B}.

 I It will be seen that in this minor premies not only is the moon 'subsumed' under the more general notion of a body rotating, \&cc.: but

[^192]: the earth is also sobaumed under the more general notion of the other body. Hence it is difficult to arpress the argument completely in aymbole Suppose that we write 'Any X is Y, the moon is $X \therefore$ the moon is Y ': now here, in the major promisa, $X=$ 'body rotating in the ame period an it revolves in roand another body'; in the minor premise, $X=$ 'body rotating in the atme period as it revolvee in round the earth "; and similarly with Y. The argument is none the lesa a syllogiam; the difficulty is linguistic; but we are really bringing the case of the moon in ite rolation to the ear th under the condition of a ralo. Aristotle recogrises this: cf. Pow. An. A. xi. 94* 86-Ь7.

 Cf. p. 166, n. 1, supra.

[^193]: ${ }^{1}$ The inference in a hypothetical argament might hence be ealled immediate; but anch en expression would readily give rise to mironderatanding. It is immediate in the senne of having no true middle term: and in this it differs from ayllogiam; it is aloo immediato in the cenme, that given the premiseen, nothing more is needed in order that wo may see the necesaity of the conclucion: and in this sense, ayllogiem, and indeed every atep of valid argument when fully stated, is immediate. But it was in yot another sence that the procemes of converion, \&c., were called immediate, and distingriabed from ayllogism: vis that in them we passed from asingle propocition to another inferred therefrom, without anything further being

[^194]: 1 The argument masy be valid even though the oonclunion be false: the trath of the conclusion farther presupposes that of the minor proming.

[^195]: ${ }^{1}$ It might be aid that we could give an unambigrone form to the argament by writing it thus: ' A is either B only, or C only, or both B and C : it in B only \therefore it is neither C only, nor both B and C.' But here there seems to be no inference; for if we already know that it is B only, we mut already know that it in not C. The inference resta apon the fnowledge that A is B, and that B and C are matoally exclusive: if wo are doubtfol of the latter point, and only lonow that A is B. we cannot toll whether it is C or not : and this information is all that we have; we mont not subatitate for the minor premies ' Δ is B ' s different one, ' A is B only.'

 The subnumption involved may be orpresed if we lize in separate

[^196]: 'scientific'): where it could, the argement-as Ariatotle recognizee-is not really ralid; it may be true that percona in a fever breathe rapidly, bat I cannot eafely infer that a perion who breathes rapidly has fever (ib. $1857{ }^{\circ}$ 19); there are, of courme, ay mptoms of dimease that are of doabtfal interpretation. The inoimpun is eaid to be a rhetorical demonatration, or rhetorical ${ }^{5 y}$ logism (Rhet. a. i. $1855^{\circ} 8$, ii. $1858^{\mathrm{b}} 4$), becanse public speakers mate ane of the appeal to such probable promisees or sigan, and do not expect or provide more strictly demonatrative or ucientific argamenta. We might ay the asme of the entinymeme in the later senue of the torm, in $s 0$ far an it is not held necemary, except in the mort formal statement of an argament, alwaya to enunciate both premissea and the concluaion. It in pomible that the later sense arose through mininterpretation of the pamage in $\Delta \mathrm{mal}$. Pri.

 mean, that if I say 'Pittacras is generona, because be is ambitions', I only otate the rign: if I add that the ambitione are generous, I make a syllogism; but this oyllogism was implied all along, and in an intipqua becanse of the character of the prominees, whether it be atated explicity or only implied.
 ' This example is used in the Port Royal Logic, Pt. Ill. c. xiv.
 ' I am inclined to thint it would be foond that the major premine it more

[^197]: ${ }^{1}$ The echoolmen gave the name of syllogiomut ergpticus to a ayllogism which lay so concealed in the wording of an argament, that some proceso like converaion, or other subatitution of equivalent propositions, was necessary in order to show clearly the terms of the ayllogiam, and their relation: as, here, 'rich men may be unhappy' is taken as equivalent to 'wealth is no guarantee of happinem'.

 - The name is derived from $\sigma u p$ ós 2 heap.

[^198]: A series of ayllogisms, one proving a pramis of another, is called a polyoyllogism: while eech single step of syllogintic reseoning is called - momongllogiom.

 - Where the order in which the promisee are ennnciated is reversed, otarting with the major and proceeding alwaye to one which in relation to the preceding is a minor premise, the eorites is called a Goolenian Sorites, after Rodolphus Goolenias, Profemor at Marbarg at the end of the airteenth century, who firt called attention to this form of the argament. But though it is important to notice that the order in which the premimes are commonly pleced in aserites is the opposite of that whioh is customary in a simple syllogism, it mast not be tupposed that the character of the argament is affected by reversing the order, or that the Goclenian coriten is a thing, an auch, of any importance. The Goclenian is known aloo at a ragrasive, and the other, or 'Aristotelian', an a progresaice soritea. Aristotle, however, doee not diecus the sorites (though clearly believing it to occur in acience, of. An. Post. a. xiv. 790 20, xx-xiiii), so thet the progreesive is not ontitied to be called Arintotelian. Bir W. Hamilton states that he could not trace the term back beyond the Dialectica of Leurentius Valls, publiahed in the middle of the fifteenth century. From the sirteenth century onward it found a regalar plece in logical treatives. CE his Lectures on Logic, xix. p. 877.
 - Soritee est syllogiamus multiplex . . . Bat enim eoritee progreasio enthy* memstica, ayllogismos continens proporitionibue [$=$ prsomisis] uno tantum peuciores.' Downam's Commentarii in Patri Rami Dialecticam, 1510, p. 658.

[^199]: ${ }^{1}$. Erdmann's ed., p. 47.

[^200]: ${ }^{1}$ Either an E or an I proposition may be converted simply. With an I premis for the first, if it be converted, the sorites may be broken ap into a series of ayllogiame in the third figore; with an E premis for the late, if it be converted, the sorites way be broken ap into a mariee of syllogiome in the second figure. Yet, except for the premise thus converted, the middle terms stand throughout in the premines as in the fint figare. A eeries of premises in the second or in the third figare will not form a eorites: because there would be no series of middle terms, but only one middle term throughout ; hence ae coon as we come to combine the oonclusion of two premises with the next premise, we should be involved in quaternio ferminorum. The sorites is therefore ementially confined to the firat figure, though its resolvtion may involve the second or third.
 : See below, pp. 882-884.
 ${ }^{3}$ The hypothetioal premins in eometimes called the major, in accordance

[^201]: with the nomenclature used aloo of hypothetical reasoning: and the other premise the minor.
 ${ }^{1}$ Anteoedent and consequent may, of courno, all have the aeme sabject (if A is B, it is D; and if it is C, it is D): or the ame arbject in one case and different aubjecta in the other; and the minor premie will vary accordingly. It would be tedions to give each time all these varietien, which iavolve no difference of principle.

[^202]: ${ }^{1}$ So Minto takes it, Logic, Induction and Deductives, p. 824.

[^203]: ${ }^{1}$ The solution is easy unleas we suppose that no Cretan ever spoze the truth; in which cace the sitantion imagined contradicta the amumption which it makes.
 'Cf. Lacian, Vit. Auct. $\oint 22$ (cited Mansel's Aldrich, p. 151).

[^204]: ${ }^{2}$ See an article on The Age of the Inhabited Earth, by Bir Edward Fry, in the Mondlly Reviev for Jenuary, 1903.

[^205]: ${ }^{1}$ Some might maintain that it is never quite the mame when the matter is different, any more than the nature of min is quite the eame in any two individaals. I do not wiah to anbecribe to this viev; but even its apholdere would admit that such differencee may be negligible.

[^206]: t Though formally a true conclorion may be got from false promisese, the orror still infecta the mind, and will lead to a fileo conclusion somewhere.
 ' CE. Logic, VL i. and Autobiography, p. 286.

[^207]: ${ }^{1}$ Chanmides 171 D.

 - The popuinr antitheris between Deductive snd Inductive Logic hae been so far avoided, and that deliberately; we ahall have to conaider precently What the nature of the difference betreen deductive and inductive reaeoning is; but it may be asid at once that it does not lie in using the form or inference that are commonly expounded under the titles of Deductive and of Inductive Logic reapectively. For inductive reaconing uess forms of inference with which treatices that would be called Deductive alwhy deal; and treatives called Inductive discuss forms of inference which are certainly deductive.

[^208]: ${ }^{1}$ Minto, Logic, Inductive and Deductire, p. 248.

[^209]: ${ }^{1}$ Nev. Org. I. 82

[^210]: ${ }^{1}$ Cf. Begehot, Phytice and Politices.
 ' e. Prantl, Ganchichte der Logik, IIL p. 8.

[^211]: ${ }^{1}$ The history of the term Deduction also remains to be written. divajerí in Aristotle meant something very difforent (v. Awal. Pi. B.xIv: there is also the use cited p. 290, n. 2, supra), and the neareat Aristotelien equivalent to Dedaction is $\sigma u \lambda_{\text {operous. }}$
 ${ }^{3}$ An. Poat. a i. 71" 21, 24 : a. Tviii $81^{\text {b }} 5$.
 ${ }^{2}$ Top. a. mviii $108^{\circ} 11$: cf. Soph. ER1. xv. $174^{\circ} 84$.

 - So apparently Bonitz: v. Inder Arizold, at v. irajeyi..

[^212]: ${ }^{1}$ Induction certainly starts in one eenso, eccording to Ariatotle, with individuals; for it starts with what we can porceive with the aenses, and only the individual can be perceived: cf. e.g. An Poot. a. Iviii 81 ${ }^{b} 5-9$. But it may be aaid that what we apprehend in the individual is ita character or type, and that it is to the indindan as auch and anch an individanal that we sppeal : cf. 4 n. Pomf. a. xmii 87b 29. In An. Ponf. A. xiii $97^{\text {h }} 7$ eeq., however, Anstotle describes a method of searohing for defnitione-the example which he nees is proaloquxla (magranimity)-in which the ingtancen cited in anpport of the definition of μ yadovuxin are not cited as types at all. This has come traditionally to be called the method of obtaining definitions by induotion; and the description of it seems based on thoee discourses of Socrates to which Arigtotle refers as imnerani λ ójot; but the term imajey' dose not occur in the pasage. Still in the argument from Eismple, or rapdontym, the indance appealed to is not cited ga the opecimen of a kind; and he calla this the rhetorical form of Indaction. Hence, though the atalement in the tert is true, 00 far an concerne the proof by induction of the propertien of nataral binds (for in regard to that, Ariatotle's particalers are infimee species), it is difficult to maintain that he never regards indaction as starting with individush as auch. How you are to tell what properties in as epecimen aro propertios of the apecies is a question which is dineuned in the Topics; and certainly he would not have thought of proponing to prove that by a complete onumeration. The species of a genus are limited in number, and can all be cited; but not so the individual member of s specioe. Cf. infra, pp. 356-857.

[^213]: ${ }^{1}$ 'For induotion proceeds through all ' : Anal. Pri. A. xxiv. 68b 15-29.

[^214]:

[^215]: ${ }^{1}$ Cf. What was mid above, in diseneming the Dietwm de ommi at nanf.
 : Bee e.g. An. Poat. ps. rix. $100^{\circ} 4$.

[^216]: ${ }^{1}$ An. Poet a. iii.

[^217]: There are philosophers who would not agree with what has been said of the natare and grounds of our amarance of the truth of mathematical principlea. Some hold that they are only generalisations from experience, deriving their high degree of certitude from the great number and variety of the instances in which they have been found to be trae. This doctrine is maintained in a well-known perage of Mill's Logic, Bk. II. cc. v-vii, to whioh be refers in his Autobiography as a crucial teat of his general philonophical poaition. For a partial eramination of the peosage, cruehing $s 0$ far at it goes, see Jovont's Part Logic and ocher Minor Wrorks, pp. 204-221.

[^218]: ${ }^{1}$ With this proriso, that for perfect knowledge all the parta of truth ought to seem mutually to involve each other. In mathematice, where alone we meem to achieve this inaight into the necemity of the relations between the parts of asyatematic body of trath, wo find our theoreme reciprocally demonstrable; and if twice two could be three, the whole system of namerical reletions would be revolationized. Yet we do not need to wait till we discover how all other numerical relations are bonnd up with the truth that twice two is forr, before we are at fally convinced of this truth at wo are capeble of becoming. Whether in every science we ahould deaire that each principle should thus be apprehended as necesarily true, eren when cat off from ita inplications, may be doubted.

 - Cf. Top. a. ii. 101a 94-b4.

[^219]: ${ }^{1}$ I think this contrast is substantially true; though it is possible to bring many acientific investigations to-day under one or other of the types of quertion which Aristotle enys wo enquire into, yet looking to his examples, one must confeas that (as is natural) be pot the problems of science to himeelf in a very different manner from that in which scientific men pat

 I One science does often to some extent use the reaulta of snother. In particular, of course, all the other sciences resolve all they can into terms of chomistry and physics. Yet looking (eay) to Physica, Chemiatry, Phyoiology, and Political Economy, no one will deny thet they muat continue to reat each in part on different priaciples, even if the later mentioned may have to take note of some facts whose explanation involves the principles of the earlier mentionel. Aristotle noted auch partial use by one acience of the results of another; though the atate of the sciencesin his day prevented

[^220]: ${ }^{1}$ Cf. Top. s. vii. $196^{\circ} 15$.

[^221]: ${ }^{1}$ Anal. Pri. a. xII .

[^222]: ${ }^{1}$ It wes also given to Induction by simple enumeration-ie. to any attempt to prove a general propocition by merely citing a nomber of instances of ite truth ; but this is not a formally valid proces.

[^223]: ${ }^{1}$ Now. Org. II. 4.
 ' Ib. I. 46. Cf. Aristotle, Anal. Pri. a. xivi. 48e 14 ama ot aipion bn mal rb

[^224]: ' There are many very viluable remarks in Bacon'e accountof his 'Excloniva' about the lind of instancen which are of most evidential value (and he therefore calls them Prerogatioe Inatances); but a diacusaion of them would hardly be relevant to the present argument.
 ${ }^{3}$ Noe. Ong. I. 14.

[^225]: ${ }^{1}$ The second part of Jevons'a Pineiples of Science ought perhape to have been incladed along with the four works mentioned above (cf. aleo Lotze' Logic, BL. II. c. 71. Among contribations on the part of living writers to the criticism of Mill's doctrines (for the great acceptance which his riews obtained hee mede criticiom of him a prominent featore of rauch srowequant writing on Induction) may be montioned Bradloy's Logic, Bk. II. Part iu. cc. 2 and 8, and an excellent discussion in Professor Welton's Manwal of Lopie, vol. ii. 8155.

[^226]: 'The two antithones are not quite identical, becanse some dialoctical arguments are nod inductive, and explanation is not demonatrative unlesa the premises from which it proceeds are known to be true. The reasoning from thowe premines is however the same, whether the promises are trown or only believed to be true (cf. c. xiiii, infra).

 Induction is often regarded es proceeding from particular facts to the eatablighment of geners principles, under which thowe facts are then brought by eubeumption, and so accounted for. And though we may aleo inductively eatabliah from one particaler fact the exiatence of unother conditioning it, yet auch a concluaion does imply a general principle of connexion. But it must be remembered that this reasoning starta from the amumption that there are univeral connexions (cf. next ch., and p. 502, infra). Moreover to have written general principles for conditions in the text would have narrowed onduly the scope of Dedaction, which frequently, as in Masthematica, proceeda from ons fact to another wit hont any applicm tion of a genernl principle to a particular ceee anbeumed under it. Cr. infra, pp. 401 n. 1, 487 n. 2, 505 n. 2.

[^227]: ${ }^{1}$ Mill's Logic, III. iii. 8, conclading paragraph. Strictly epeating. e single instance never is suffient-if we had really to rely on it alose without help from conclusions slready drawn from other parts of our experience. Cf. Jevons, Pure Logic and other Minor Worke, pp. 295-299; and aleo Lotze, Logic, $\$ \oint 252,253$.

 The third figure, when both premisess are singular propositions, may soam to furnish an exception to this atatement, and it would hardly be asaficient snawer to recall the fact that this is the inductive figare; for

[^228]: tbe queation is whether a syllogism can generalize, and it in hardly consistent with asying no, to add that it can only do 20 when ite charucter is indoctive. But the atatement may etand, becaue all conclations in this figure are particular or contingent. We may aim at generalising-at finding a judgernent which is true univerally; but we have failed, with such premimes, to do it.

[^229]: ${ }^{1}$ Treatise, Of the Underatanding, Part III ; and Enquiry concerning Human Underkanding, §今 iv-viii.
 ${ }^{2}$ Logic, III. v. $6 . \quad{ }^{2}$ Ib. III. v. 3.

 - Mors precisely, when there is nothing preventing it; and by the notion of preventing Mill presupposes the relation be is trying to erplain; but if we are to aroid this petitio, we muat interpret his atatementa as above.

[^230]: ${ }^{1}$ Anal. Ponf. a. xi. 77* 5-9.

[^231]: ' Strictly speaking, even sequence could not be a featare common to two succemiona.

[^232]: ' Ct. J. S. Mill's definition of Lews of Nature in the atrict sense as 'the fowest and cimpleat amumptions, which being granted, the whole existing order of nature would reault ' (Logic, III. iv. 1).

[^233]: ${ }^{1}$ Cf. c. xxii, infra; the non-reciprocating cousal relations there discused are all conditional.

[^234]: ${ }^{1}$ Principica of Paychology, i. 182.

[^235]: ${ }^{1}$ Hence M. Poincaré has recently said that a phyaical law is a differential equation. Addresp on the Principlet of Mathematical Fhypica, St. Lodis, U.SA, Sept, 19M: a the Momiat, Jan. 1905, p. 8.

[^236]: ${ }^{1}$ Cf. Poincaré, op, cit.

[^237]: ' Metaphysic, Introd, §

[^238]: ${ }^{2}$ The last ergument may be put in a way thst will perhape to eome reem clearer as follows :

 1. An event which is equally comsistent with two hypothesen affords no ground for deciding between them.
 e. g. if A and B leep a common atock of boots, and each uses every pair indifferently, footprinta that fit one of these paire afford no ground for deciding whether \boldsymbol{A} or \boldsymbol{B} has pased that way.
 2. It is admitted by thoes who rogard wniformity in nature 20 empirical, that antecedently to experience all manes, wo far as regularity and irregularity in the succession of events are concerned, are equally probsble. By an isfue is meant a certain course of events, however long.
 3. These alternative insues must be regarded as perfectly detached alter nstives: i.e., antecedently to experienco, the rejection of one imue would not give any groand for or againat the rejection of any other. To asrame that it would is to amame, sntecedently to experience, the existence of auch degree of uniformity as ensbles you to way that if one opecific isuve happens, snother must or cannot.
 4. That evente should occur with any apecifed degree of regularity down to the end of the year $2000 \mathrm{~A} . \mathrm{D}$., and with leas or no regularity, or in apparent conformity to different rules, thenceforward, is one anch isane;
[^239]: i. e. one thing in called a cause on the ground of ite relation to another.

[^240]: ${ }^{2}$ It may be maid that an ovent of to-day may be due partly to come event that occurred a long time ago: for orample, a man may inherit a fortane on hie twentr-first birthday in virtue of a will made before be wae born. We chall see later that it is by no means alwaya practically conveniont to call the immediately preceding conditions the canes: and the remoter cane may without offence uarp the name. But the legatee becomes posessed of his fortune because he has just attained the age of twenty-one to-day; and the will may be regarded ac having initiated a persiatent legal poaition as regards the money; 0 that the ntatement in the text may bo deemed sunfiently accurste in the contert which it is intended to elncidete.

[^241]: ${ }^{1}$ I use the word phenomenon on account of ite generality: an event, like the fall of a thunderbolt, may be called a (natural) phenomenon: or a thing, like the thanderbolt iteolf: or an attribute, like the aelocity of its fall : or oven a law, like gratitation. The word certainly doee not mean in its current asage, as is neverthelesa sometimes atated, anything that can be perceived by the senses; it seems to be used to cover any particular thing. property, pripciple, or event which can be made matter of scientific in ventigation or ased in explaining, what is inveatigated. It is convenient to hare a comprehensive term of this lind, and the context will frequently indicate, i where necemary, whether thing or proporty, ovent or principle, is meant.
 ${ }^{2}$ Cf. Poete, Sophietici ETenchi, Appendir D, p. 221.

[^242]: ${ }^{1}$ Logic, III. viii.

 - o.g. ib. § 8 init.
 - Ib. $\$ 1$ init.

[^243]: ${ }^{1}$ Logic, III. viii 1 ad fin.
 1 Noo. Ory. II. 22, where ingtancen mach as are required by Mill's Method of Agreament and by his Mothod of Difference are deacribed ander this name. And this is the proper wry to treat them-not as inatances the use of which conatitutes a diatinct method of inductive reeeoning.

[^244]: ' Jevong, Elementary Lresome, p. 241 (1880).

[^245]: ${ }^{1}$ Mill's canon for the 'Joint Method' is by no means carefully worded (Logic, III. viii. 4). It would be better if for 'the circumetance in which alone the two sets of instances differ' we read 'the circumatance in which alone the second set of instances agrees to differ from the first net'. Note that Mill represents it an necessary, ander the terms of the Joint Method, to show of every other circumstance than thet which is alleged is canse in the conclumion both that it is absent in wome instance whare the phenomenon occurs and that it is present in come instance where it does not. This is because he developa it as an anawer to the objection, that although a circumstance b is abeent in a particalar instance of x there is no reaeon why it thould not canse x on another occasion. The dificulties created by the so-called Plurslity of Ceusee will be considered later. The point in the text here is, that it is quite possible, and very common, to ahow that one circumatance is not the cause on one ground-ay that the phenomenon occurs withoat it, and another on another ground-ay that it occurs without the phenomenon, and a third on a third ground-ay that it is variable while the phenomenon is constant, all in the ame inventigation.

[^246]: ${ }^{1}$ Of course this, like mont maxime with regard to buman nature, is not an universal trath : what kind of men hate thove who have conforred a benefit on them woold be the next abbject for enquiry.

[^247]: ${ }^{1}$ Or, in another sence, illustrated in moat mathematical reasoning because the premises, without being more general than the concluaion, or giving the cause why it is true, are not baed upon an appeal to facte which might conceivaly have been otherwise: cf. p. 305, n. 2, infra.

[^248]: ' De Principio atque Originibus, Ellin and Spedding's ed., III. p. 80.

[^249]: ${ }^{1}$ Or mutatis mutamdis the effect. I shall not complicate the exposition by alwaye edding this.

[^250]: ${ }^{1}$ Cf. What Aristotle mas of the asmumption of the Law of Contradiction implied in all ryllogisms, An. Post. a. xi. 77e 22-24.

 Mill, Logic, III. iii. §̧ 1 mod.

[^251]: 'This axample in taken from Dr. Vernon's Variation in Animals and Plante (Internat. Scient. Seriea), pp. 255 req.

[^252]: ' To spesk atrictly, rays are not differently coloured, but of different vave-length.

[^253]: ${ }^{1}$ Becaum Lamarck (174-1829) had propounded a theory which ascribed the gradual modification of species largely to the inherited and accumulated effecte of use and disose of organs.
 'The following argument is taken from G. J. Romanes' Darwin and after Davcin, vol. 1I. ch. iv.

[^254]: ${ }^{1}$ In the Prior 4 nalytica Aristotle discraser at groat length modal ryllogiems, i.e. ajllogiams where one or both promisees are problematic or apodeictic; ahowing under what conditions the concluaion will be problematic or apodeictic. We have here an ezample of what might be called a modal induction; the parallelimm may be commended to the notice of any who think, with Mill, that an inductive argument which can be represented in aymbole (like his 'Inductive Methods') is the leas formal because it is inductives

[^255]: ${ }^{1}$ Bk. L. c. xi, rol. i. p. 865, 7th ed., 1798.

[^256]: ${ }^{1}$ v. the Blue-book, eap. pp. 186-216.

[^257]: ${ }^{1}$ i. e. specinl principles, or isıa d $\rho x^{a i}$ Cf. supros, p. 859.

[^258]: ${ }^{1}$ Mill dealo with the subject of this chapter for the moot part in his Fourth Book, Of Operations arberidiary to Induction. In the nenee that the reasoning deacribed in the Third Book cannot be profitably performed till they bave taken place, they may be called aubsidiary; bot Indoction ie perhape rather the whole process of oliciting from facts the principlos that account for them than merely the form of reasoning inyolved therein; and theso operations certainly hold no subordinate place in that procem.

[^259]: ${ }^{1}$ Professor Welton's Imdwetion Logic, 0. v.

[^260]: ${ }^{1}$ Nop. Ong. L 55.

[^261]: ${ }^{1}$ Logic, III. xiv. 4.
 ' Facte, as we have aeen, cannot prove an hypothesia by their agreement with it, except so far as at the aame time they disprove its rivals by their dimpreement.
 ${ }^{3}$ Cf. Newman's Parockial and Plain Sermone, vol. ii, Sermon xxix, on The Faat of S. Michaed and all Angels.
 ' De Principite atque Originibus, Ellis and Spedding, III. p. 80.

[^262]: ${ }^{1}$ Origin of Species, c. riv. 6th ed. p. 396. The italica are mine.
 ' Lotse would explain this by ssying that our hypotheses must conform to our poatalates. He drawe a diatinction (Logic, $\$ 273$) between a parfulate as 'an aboolutely necemary earumption, without which the content of the observation with which we are dealing would contradict the lawa of our thought', snd an hypotheris ae 'a conjecture, which seeks to fll op tho postulate thus abstractly etated by specifying the concrete causes, forces, or procemes, out of which the given phenomenon really aroee in this particular case, while in other casen maybe the mame potulate ir to be eatisfled by atterly different though equiralent combinations of forees or active elements'. It should be edded, that in asying that hypotheses must be thinkable consistendy with the fundamontal asmumptions of the acience which makes it we are onlerging as well an reatricting the liberty of the mind in

[^263]: ${ }^{1}$ Upon the whole, becanse the historian has often to rediscover principlesconetitutional, legal, eocial, or economic; and hidtory advences by changes in men's way of conceiving the relations of past facta to one another as well as by changee in their view of what the facte were. We no longer believe in William Tell; but the Patriarchal Theory has aleo changed oar views as to the relations between the individaal and the State in ancient aciety.

[^264]: ${ }^{1}$. Noown Organmm Renovatwm, Bk. II. a. iv: Philowphy of Diecovery, c. $\mathbf{x i i}$. $\$ 8$ 1-87.

[^265]: ${ }^{1}$ Now. Org. I. 180.

[^266]: ${ }^{1}$ Romanee, Darain and after Darnein, i 285 of al.

 - The other procen, of nuthematical calculation, there reforred to, falls rether to be considered later: as belonging to a stage of acience in which deductive reaeoning playa a larger part than in the application of the rales discused in the laet chnpter.

[^267]: ${ }^{1}$ r. Podmore's History of Modern Spiritualions, i. 184, 185.

[^268]: ${ }^{1}$ e.g. it may be the textare of pumice-stone that fita it to remove inkstains from the akin; but it would be of more use to tell a man with inky fingers to get a piece of pamicestone, than to give him a deacription of the finenes of texture which would render a body capsble of mating his fingers clean.

 It is juat the fect that we know no more about the etber than its form of elapticity which makee it as somewhat unsatiafactory conception; and led the late Iord Salisbury, in his Preaidential Address to the British Associstion at Oxford in 1894, to eay of it that it merely 'fornished a nominative caso to the vorb to undulate'.

[^269]: ${ }^{1}$ The elasticity of the sir is employed alno in the telephone: but not continuously. It is hardly necenary for the present purpose to go into the detail of the apparatue.

 2 Not in any brach of parely mathematical atudy ; nor egain in Logic.

[^270]: ' Let nobody object that in such a matter we must ask what experience tesches, and not what it is posaible to conceive. Experience can teach nothing inconceivable. All thinking is an attempt to make experience more intelligible, and so far as it is not intelligible, we esvame our eccount of it to be ontrue. It is for this reacon that चe are slwaye recasting in thought the appearances which experience presenta. The very earch for causal connexions is an example of this operation. It reate on the principle

[^271]: that change is only intelligible if it embodies aniversal prinoiples of change: but these principlea are not presented to our obeervation. Therafore we believe that evente occurred, which have not fallen within our experience: as Robinson Crusee, seeing footprints, concluded that men must have been to the ialand whom he had not seen. And if we deny that the events 'experienced ' are all that occur, on the ground that their anccesaion would then be without principle and unintelligible, we may equally deny that bistory can consist of stresme of discontinuous eventa, even though these succeeded one another according to the most constant rulea, on the ground that auch a auccestion would be uniatolligible.

[^272]: ${ }^{1}$ Beaides the formal snd the eficient, Aristotle distinguished the materia! canse, or matter of which a thing in made, and the final cause, or purpose of ita being. These wers all cauces in the eense of being necessary to the existence of what they are the cause of. Cf. e.g. Phys. 阝. iii. 194 16-195* 8.

[^273]: ' J. W. Crompton: v. Danoin and after Danoin, iii. 170.

[^274]: ${ }^{1}$ The term was introdaced by Mill, who sometimes apeake as if he thought the Plarality of Canses more than an appearance: as if he thought that, in the atricteat sense of the term cause, the same phenomenon may have different causes on different occaions. The Plurality of Causes must be distinguiahed from the Composition of Canses: which meane that a complex phenomeson, which we call one, may be due to a number of canses acting together on one occarion. Clearly none of thees is the caume in the full sense, but only part of the cause.

[^275]: ${ }^{1}$ Or 'phyciological ieolstion'-i. e. that certain members of a species z which happen to exhibit some modification mare more fortile with one another than with the reat of the apecien in which thin modification hee not appesred. This would prevent swamping by intercrosaing, and so, for breeding purpoees, isolate the new variety.

[^276]: ${ }^{2}$ Elementary Lemons, XXV, 'New Edition,' p. 213 : Principlen of Science, 2nd ed. pp. 146-152.

[^277]: ${ }^{1}$ Prosidential Addrase at the Britlet Amociaction, Cambridiga, 1904, by the Et. Hon. A. J. Balfour (Times of Ang. 18). He illuatratee his etatament by reference to two cases, the pernirtant beliof that the chomical elemente will be found to have a common origin, and the pertintent refanal to believe in

[^278]: action at a distance. It may however be doabted whether this refusal is as well juotifed ae that belief by the maxims in question.
 ${ }^{1}$ William of Occam , ob. 1847.

[^279]: ${ }^{1}$ Logic, III. iv. 1.

 - Bat cfi infro, p. 487, n, g.

[^280]: ${ }^{1}$ n. Maine's Barly Inetitutiont, pp. 187-205, from which the above example is abridged.

 3 Groted Romanet, Darwin and after Darwin, i 248.

[^281]: ${ }^{1}$ Danvin and after Danoin, rol. iii. c. i.

[^282]: 1 I add these words, becance it is important to realise that an hypotheris is not really proved by marely explaining the facta. But many hypothews are provicionally sccepted, which are not proved, on the groond that they explain the facts, and without the performance of what would often be the impracticable tank of showing that no other hypotheais could equally well do $\boldsymbol{\text { en }}$

[^283]: ${ }^{1}$ According to Aristotle, every body left to iteelf hed a natural motion, dependent on its own nature: that of the heavens was round a centro, that of earth and water to a centre, that of air and fre from a centre. The centre was the centre of this globe, and $s 0$ (on his view) of the physical nnjverse. Bodies need not be left to their own motion; s stone, for example, may be thrown towards the siky; but in such caes their motion was not natural, but violent.
 ${ }^{1}$ Supra, c. xix, p. 435.

[^284]: ${ }^{1}$ Strictly apeaking, that acceleration should not be the same at 1,000 feet from the earth and at 100 feet: and in virtae of atmoepheric reairtance a cricket-ball should not fall as far in a given time as a cannon-ball; but the theoretical differences woald be mo amall ae to eacape observation, and therefore the fact that acceleration is empirically found to be 82 feet per mecond for all bodiea in the neighbourhood of the earth createa no difficulty. On the other hand, in the oacillations of a pendalum, which mary in the plains and in the neighbourhood of mountaina, we do find evidence agreeable to the theory, of the same kind an those minate differences would afford if we could mearare them. The logical bearing of these considerations will be reen if it is remembered that a theory, though not proved by ite conformity with facte, is disproved by any clearly establinhed unconformity.

[^285]: ${ }^{1}$ ie if it whe to ombody a mimple ratio: cf. pp. 485-436, 470, supra.

 - It was pomible to thow that no other nite of attraction would give remita conformable to the ficts, because the problem was a mathematical one; and in mathematice it is eacier than eleowhere to prore not only that if a is true, b is true, bat also the converse.

[^286]: ${ }^{1}$ J. 8. Mill gave the mame of 'homogeneone intormixture of effects' to those cases where the joint effect of ecreral causes acting together is the sum (or difference) of their asparate effecta, and differs in quantity only and not in quality from the effecte which the same asucee would produce aingly; this happens, e. g., in the mechanical composition of forces-for which reason he spore also of Comporition of Carses in such a case. Where the joint effect differs in quality from the eoparate effocts (and so cannot be calculated from a knowledge of thom) he called it heterogeneous or heteropathic. He illuatrated this from chemical combination, in which the chemical properties of the componnd (unlike ite weight) are not homogeneous with thoee of its conatituentr, and not deducible from them; though he quite overlooked the fact that elementa were not the 'cause' of a componend in his uasal senve of thet term. Cf. Logic, III. vi.

[^287]: ${ }^{1}$ Cf. p. B55, infro.

[^288]: ${ }^{1}$ Diecours de la M(4hode, Troisiome Partie.

 - Noe. Org. II. 20.

[^289]:

[^290]: ${ }^{1}$ Nov. Ong. I. 105. Cf, espra, pp- 858, 864.
 : Romanes, Danvin and after Darnoin, ii. 282.
 ' o. Jevone, Elementary Lesane, Pp. 221-829

[^291]: ${ }^{1}$ a. Derwin, Origin of Speciet, c. i, 6th ed. p. 9.

[^292]: ${ }^{1}$ Cf. infra, pp. 547-549.
 'Troatice of Human Natwre: Of Morals, Part J. § 1, Green and Grose'e ed. vol ii. p. 248.

[^293]: ${ }^{1}$ Romanes, Darwin and aftor Darwin, i. 279.

 - M-Taggart, Stwdias in Elegelian Commology, § 118.

[^294]: ${ }^{1}$ It was called by Aristotlo mapiontyna: ef. Amal. Pri. B. xciv, Bhat. a. ii 1857b 25-36, and p. 501, infra.
 'Custom and Myth, p. 125, ed. 1901 ('The Silver Library').

[^295]: ${ }^{1}$ Early Law and Custom, p. 107.

[^296]: ${ }^{1}$ I give in a note another poesible explanation of the ohange that has taken plece in the logieal use of the tarm analogy; brit one that seema to me lem likely than the forogoing. The 'rule of three' is in s sense an argroment from analogy. 8tarting with the conception of an analogy, in the atriet sense, it supplies from three given terms the foarth term which will complete the analogy. It is therefore an argument from the general conception or form of anslogy to the actual analogy (or complete terme of the analogy, in a particalar casa. Now when I argue that becaume and b both exhibit the property x, and a exhibita beaidea the property y, therefore b will also exhibit the property y, I masy be anid to be completing an anslogy. The presence of x in a is to the presence of y in a, as is the presence of x in to Lhat of y in b. In this cape, the argament would be from the existence of an analogy to the foorth term of it. Bat if the loover angeg of the term br interpreted thos, it bears leas revemblance to the earlier unge than opon the interpretation in the text.

 - Metaphyaical criticiam conld encily raise difficaltien againat the view that relations an anoh are extrinaic and attribatea intrinsic to their aubject. But we are concerned here rether with a common way of regarding the matter than with ita ullimate temability; and I think wo do commonly to regard it.
 - Engic, \$ 214.

[^297]: ${ }^{1}$ It in true that the argament in already found in ahortor form in the tenth book of the Republic; Rep. x. 597 C, Parm 182 D-198 A.

 - Cf. D. G. Ritchie, Plate, pp. 108, 120. I have not reproduced the exect use which he matee of the andogies.

[^298]: ${ }^{1}$ III. 5x. 8 med.

[^299]: ${ }^{1}$ Ox, from the intersection of one aide with the beee, a line parallel to the other side.

 - It is true that in mathematice different trathe about the syatem of spatial or quantitative relations mutually condition one another; and therefore the order of demonatration is oftan indifferent, and condition and consognance may change plecel. Still the reasoning is deductive, since our preminen dirplay to us the rational necestity of the conclusion, and do not leave it reting on a mere neceerity of inference: cf. p. 401, n. 1, suprs.

[^300]: ${ }^{2}$ Epeaking generally; but of course we may mometimen fail at first to discover the truly commensarate aubject of a predicato; as if one were to prove that the external angles of a square woro equal to four right angles, when it is true for any rectilinear figure. Here the number of eides, and the magritade of the internal englea, would be falsely included among the conditions on which the property depende.

[^301]: ${ }^{1}$ Mill, Logic, II. v-vii. Cf. Awtobiography, p. 226.
 ${ }^{3}$ Or for that matter, of any form of inferonce.

[^302]: ${ }^{1}$ Cf. p. 491, awpra.
 ${ }^{2}$ Cf. p. 400, meprs.

[^303]: ${ }^{1}$ Principles of Logic, p. 285. 'The procen is a construction and the result an intuition, while the union of both is logical demongtration.'

 - Not that all diajunctive argument involves that conception; bat only diajunctive argoment spplied to the discovery of csusen.

[^304]: ${ }^{3}$ Cf. Kant, Introduction to Logic, ii. 4(T. K. Abbott's tr., p. 8), who gives a different sence to the term, bat notices this use of it.
 ${ }^{3}$ Iogic, VI. vii-工

[^305]: ${ }^{1}$ Mill givea to thin order of procedure the name of the 'Inverve Deductive, or Historical Mothod': by which he meams the method eppropriste to the stady of history. The Bistorical Method now however commonly meaps interpreting present fecte in the light of their peat hirtory.

 - Jevons, Elomentary Lespone in Logie, XXIX.

[^306]: ${ }^{1}$ The 'Perfectibilitarians', like Godwin, at the beginning of the lat centary, hold very nearly this.

[^307]: ${ }^{1}$ From crux, a sign-poat: as directing our choice between two (or more) theories: ©. Becon, Nov. Org. II. 86. \mathbb{C} crucial ingtance, though it can diaprove, can never prove a theory, except upon the easumption that there is no other theory with which it agrees. And it is easior to imagine instances fatal to the view that all vaistion is non-adaptive than to the riev that adaptive variation sometimee ocours.

[^308]:

[^309]: ${ }^{1}$ Logic, p. 159, 8th ed.
 ${ }^{3} \mathrm{lb} .175^{\mathrm{a}} 9$.
 ${ }^{3}$ Soph. E7. xivi. 175* 28.

 - Ib. $175^{-14 .}$

[^310]: ${ }^{1}$ Eth. Nic. η. iii $1146^{\circ} 24$.

 - Cf. de Morgan, Formal Logic, p. 287. "There is no mach thing an a clasification of the weys in which men may arrive at an error: it is mech to be doubted whether there ever can be'
 ${ }^{3}$ Logic, p. 150, 8 th ed.

[^311]: moxenplas $\mathrm{I}_{\mathrm{X}} \mathrm{Cu}$, and $\mathrm{x} \times \mathrm{xiii}$. $182^{\mathrm{b}} 10$.

[^312]: ${ }^{1}$ a the Levis Carroll Pictwre Book, edited by S. Dodgwon Collingwood (London, 1899), Pp. 266-267. (GK must really fall to the right of C.)
 ${ }^{\prime}$ Let $\triangle B C D$ bo a square. Biect $\triangle B$ at E, and throagh E drsw $E F$ at right angles to $A B$, and cutting $D C$ at F. Then $D P=F C$.

 Prom C draw $C G=C B$. Join $A G$, and bisect it at F, and from F dav FIF at right angles to $\boldsymbol{A} G$.
 'Since AB, AG are not parallel, EF, HK are nod
 parallel. Therefore they will meet if produced. Pro duce EF, and let them meet at K. Join KD, KA. $K G$ and $K C$.
 'The triangle KAB, $\bar{K} G H$ are equal, becaone $\Delta H=H G, H K$ is common, and the anglea at B art right. Therefore $\boldsymbol{K A}=\boldsymbol{K} \boldsymbol{G}$.
 'The triangles KDF, $K C F$ are equal, becance $D F=$ $F C, F K$ is common,and the anglee at F are right Therofore $K D=K C$, and angle $K D C=$ angle $K C D$.
 'Also $D A=C B=C G$.
 'Hence the triangles KDA, KCG have all their aides equal. Therefore the anglen $K D A, K C G$ are equal. Prom these equala take the equal angles $K D C, \mathcal{K C D}$. Therefore the remainders are equal: i.e. the angle $G C D=$ the angle $A D C$. Bat $G C D$ is an obtuse angle, and $A D C$ is a right angle.
 ' Therafore an oblose angio is sometimes $=8$ right angle.
 ' \mathbf{C}. E. B.'

[^313]: ${ }^{1}$ Soph. El. ix, $\mathbf{x i}$.
 2. Poate's ed of Sopin. R., App. P, pp. 245-247. 1 m 2

[^314]: ${ }^{1}$ Thus the fallacy of Accident han practically been identified with Secundum Quid by many writers: that of Consequent has, e. g. by do Morgan and Jevona, been explained as 'the simple affirmation of a conclusion which does not follow from the premisses' (de Morgan, Formal Logic, p. 267): divers form of Ignoratio Elenchi have received special namen: Whatoly hae explicitly included under fallecies, in defiance of his own definition, 'any faleo amamption employed as a Premian' (Logic, 8th ed. p. 168: cf. def. on p. 158): Mill inclodes smong fallacies such sources of orror as MaJ-obwarration-i.e. mingling infarence with the report of what is perceived (Logic, V. iv. 5); and his tirst great group of fallscies, to which he gives the title 4 priori Fallacies, or Pallecies of Simple Inspection, consists of a number of marime which he considers erroneons (though it in not equally clear that they all are eo), such aa that what is inconcaivable cannot be troe, that effecte must resemble their causea, that motion can only be produced by motion, that the asme effect mast ways have the ance canse (V. iii) ; in iv. 1, Fallacies of Simple Inspection are called 'Praiudioes, or presumptions antecedent to and ruperseding proof, and in ii. 2 they are oalled suppoeed connezions or repugnances betwreen facts, 'sdmitted, as the phrase is, on their own evidence, or at self-evident. Whataly (op. cit. p. 208) apeaks of the fallecy of References, i.e. giving references in support of a otalemont to pasmagee which do not really bear it out, in the trust that readers will not look ap the references and discover this. Profemor William James gives the name of the Prychologist's Fallacy to the mistake of suppoaing that aman who hes a given peychioal experience knows it when he hae it, to be sll that I an a paychologist know or believe it to be (Primeiptes of Prychology, vol. i. p. 196). Locke's argumenta ad perecundiam, ad ignorantiam, ad hominem, which he opposes to an argmenentum ad indicimm, might be called heads of fallucies (Esay, IV. xvi. 19-22).

[^315]: ${ }^{1}$ Cf. oupres, pp. 107-109.

[^316]:

 from premisese really endorical (i.e. probable or supported by opinion, and allowable in non-ecientific discuasion); but this can hardly be supposed to be deliberate. The expreaion twice used in Soph. El. i. $1184^{*} 23$ ort μ iv oiy

 $\mu i v$ oin $\Delta y d i$) might perhapa by itself be more naturally underatood to refor only to fallecious argumenta, and not to include argamente that have no fand oxoept in the falaity of their promimes.

[^317]: ${ }^{1}$ de Morgan, Formal Logic, p. 240.

 ? Whately, as was observed above, regroupe the falleoies here enumerated to suit his division. It is of conrso inadmisaible to adopt the nomenclatare of his divition, and retain Aristotle's grouping, as is done by Jevons in hin Elementary Lesome, XX and XXI. He treate as purely logical fallacies the four breachea of ayllogistic rule above mentioned; an acmi-logical, Aristotle's aix fallacies in dietione ; and as material, Ariatotle's maven fallecies extro dictionem. He does not therefore anderstand the diatinction between logical and material as Whately does. 'The logical fallacies,' he arya, 'are those which occur in the mere form of the statement. . . The material fallacies, on the contrary, arime outaide of the mere verbal datement, or an it in said, extre dictionem' (p. 170). This is not of coune what those words meant. But clearly Jovons means by a logical fallacy one which can be detected in the form without consideration of the matter; it should therefore be capable of illustration in symbols, as his 'purely logical 'fallaoiee are. A moterial fallacy, on the contrary, needs that we ahould understand

[^318]: ${ }^{1}$ Many argamenta refernble to Aristotlo'i headeof fallecy are not afllogiatic.
 : Ar., Soph. EL iv. $165^{\text {b }} 89$.

 - Quoted by Aadtin, Jurieprudence, i. 489.

[^319]: ${ }^{1}$ Bk. II., c. riii $\$ 8$.

 1690 22). Hence arove the compoand d $\mu \phi$ 人弓eloh orie, which became corrapted into Amphibology, as alomadarpetia became corrapted into Idolatry. There neema to be no reason for not maying Amphiboly in English; Amphibolis is frequent in Latin (e. g. Crackenthorpe, Aldrich).
 ${ }^{\prime}$ Cf. Cic. de Dieinatione, ii 58. Ciocro reasonably obserree that Apollo

[^320]: ${ }^{1}$ Cf. the fancy in Plato's Symporium, 189 D E.

[^321]: ' It illuatrates how mach akin the different fallacies in dictione are, and how the eame oxample may from diferent pointa of viow bo regarded as falling onder different heade, that any one who likee can call the ahowman' trick, or others where words like all and both figare cimilarly, fallecien of Equivocation. Aristotle does not give any such instances ander the heed of oindears or haipacs; it has been however done by divers writers, and if we look to the nature of the thought involved, justly. And the fallecies in queation might beve been defined above at ariaing, when a conclucion is reached by taking those things together which we are only entitled to take eeparately, or vice veras (cf. Crackenthorpe, Logic, ed. quart. p. 858, ousm guis ab is coniunctis arguat, quae eqparation pera sunt, non coniwnta); for even where worde are taken together or aeparately in one part of the argument. which were intended to be taken eeparately or together in the other, it is only as this lesds to our $n 0$ taking what they signify that fallacy remite. But as this is reflected often in a definite combination and division of words. and as that probably led to the erection of theas as particular apecies of fallsoy besed on ambiguous language, it eeemed right to make expree mention of such cases in describing them.
 ${ }^{2} \mathrm{Ar}_{\mathrm{r}}$ Sephe ER iv. $166^{\circ} 1$.

[^322]: :This example was given me from personal recollection. Not anlike this fallacy, underntood as consisting in beaing on a wrong emphasis a conclasion not intended by the openker or writer, is the error of inforring from the atrem which a man laya on one element of a truth that he necesarily overlooke another. It might be said to be Hegel's conception of the progress of apecalative thought, that it adrances by emphasising firto ore and then the other side of a contrat in anch a way that the emphasis on one leads to overiooking the other: antil a new conception is reached which anites the twa. This indeed he contiders inevitable in the development of philomphy. Bat many writers have been erroneoualy interpreted, because it was thought thet when they insiated upon one aspect of a truth they intended to deny come other espect. This error of interpretation however could hardly be clamed with fallecies in dictione, aince the misinterprotation doea not arise through the doubtful atrenescentuation of particular worde.
 'A lady once obeerved: 'The quertion is, is he a poetor or an impostor ?
 p. 62 (Routledge's ed., 'New Univernal Library,' p. 66).

[^323]: ${ }^{1}$ Noo. Org. I. 48. The false idens abo $: t$ nature generated through langayg Becon called idola fori. These falee ideas or idots were clavified by him secording as they had their sources in univertal properties of homan nature. in idionyncrasien of the individual, in language, or in falee theoriea of science and philowophy. The division wan not logioally perfoch, and the enumeration in each group is doubtlees not complets. This illustratea in a parallel feld the difficolties above acknowledged to render a perfock clasification of fallacios impracticable. Becon himself calls attention to the parallel that exista between his undertaking and a clasification of fallacies: 'Doetrina enim de idolis similitar ae habet od interpretalionem astarse. sicut doctrina de sophiaticis clenchis ad dialecticam oulgarem' (1. 40). Tbe 'interpretation of neture' involved more than reasoning; it required the nee of the sences in obeervation, the recording of facts, the formation of conceptions, or hypothesis, the invention of a nomenclature, \&c. There are obstacle in the way of the succesful periormance of these operations, mo lest than of reasoning. The fallecies of the common Logic maylay na in the work of reasoning. His idola arise from circumstances that waylay as in all theee task.
 ${ }^{2}$ Formal Logic, p. 244.

[^324]: ${ }^{1}$ Minto, in the trat chepter of his Logic, Indwetive and Dedwative, speaks as if Aristotle worked out his ayatem of logic as a whole chiefly with the conduct of diaputation in riew. He seems to me to have very much over stated hit case; but so far sathe treatise on Sophistical Confutation is ooncerned, it is true.

 Soph. El. xii. $172^{\text {b }}$ 16-24.
 Ib. 175° 8-10. CL on the fallacy of Many Queations, p. 556, infire, - Ib. xv. 174 19-28.

[^325]: ${ }^{1}$ Ercept perhaps 'Many Queations' : but ef. Infra, p. ${ }^{557}$.
 -Soph. 太. v. 166b 80-82, xiv. 179• 97-81.

[^326]: ${ }^{1}$ The phrase is from Porto's ed. of Soph. ER. (o. p. 78) : ef. eop. his remaribs on p. 158, from which the above interpretation and critician are borrowed.
 ${ }^{3}$ Soph, ER. xiv.
 ${ }^{3}$ Op. cit. p. 158.

[^327]: ${ }^{2}$ Cf. Dicey, Law and Opinion in England, p. 487, on the extonaion of principles to freeh canen in 'judge-made law'. Cf. also Ar., Eth. Nice e. I \& 1187 14-19.

[^328]: ${ }^{2}$ Soph. EX. v. 167* 11.
 The fallecy here lies in referring to men over eighty a propoaition which is only true of men simpliciter, vin that fow of them die over eighty. Solations however are poesible, which would bring the argument under other beads.

 - The qualiflcation may conaint either in the presence of oonditions not contemplated in making the statement, or in the absence of some that were contamplated (or at least that ought to have been contempleted). To argre that beoanes it is wrong to till, a man should not fight for his country, is a caes of the former sort; to argue that because wine is pernicioug therefore ita nae abould be forbidden (ef. de Morgan, Fonnel Sogic, p. 251), of the lettor. The former would be called the direot, and the latter the converse fallacy. Bat it is clear that there is no difierence in principle between them.
 ${ }^{*}$ Cf. Soph ER. vi. 168" 17 eq.

[^329]: ${ }^{1}$ For the general statement see Sir Henry Maine, Barly Imatitutione, p. 6.
 ${ }^{2}$ p. 282, nupra.

 - Studies in Hegelian Conmology. \& 142. By punishment hore is meant 'the infliction of pain ons person becanse he hae done wrong' ($\$$ 187). And it is of corporal panishment that we most often hear this view orprosed.
 - Darneir and after Daroin, ii. 807.

[^330]: ${ }^{1}$ Cf. de Morgan, Budget of Paradante, p. 827.
 ${ }^{2}$ Janes Bmith ergued, not that 'if A is fales, B will be trae: but B is false, $\therefore A$ is true'; but 'if A is trae, B will be falso-(20 to which nothing wee known)- A^{4} is true .

[^331]:
 on thir pereage.

 1 Noo. Org. I. 46. Becon citen the atory in illuntration of one of the 'Idols Tribus', the tendency to overlook or deapies facte which do not agree with an opinion which we have once adopted. J. S. Mill would call thia the fallacy of Non-observation (Syyten of Logic, V. iv).

[^332]: ${ }^{1}$ The Sophistici Etenchi in the conclading book of Aristotlo's Topice.
 ' e. g. de Morgan, Formal Logic, p. 287 ; Jevona, Elomentary Leswons, p. 181.
 ' p. 486, supra.

[^333]: while the does include, under the name of the fallacy of the Consequent, the corresponding though not identical errore which may be committed in hypothetical resconing. It may be noted that meh inferencee would only not be fallecious where condition and consequent reciprocated -a rolation Which corresponds to that of commenourato torme in an univernal affirmative judgement. Hence Aristotle may that the fallacy of the Consequent is s case of that of Accident (Soph. El, ri. 168 ${ }^{\circ}$ 27). Under it in tura might be brought Pouk hoc, propter hoc. If Goodwin Sands were censed by building Tenterden Stoeple, they would have appeared, an thoy did, so soon an the teeple wan buils; but they might equally have done s_{o}, if the building of the oteople had nothing to do with their appeerance.
 : Cf. p. 486, mupra.
 This fallaoy in 'logical', or formal; it can be expromed in efmbola. So can an argament in a oircle nometimes be; e. g. if it in of the form ' A is B, B is $C \therefore A$ in C : and B is C becanese A is C and B in A^{\prime}.

[^334]: ${ }^{2}$ Bryce's Ameriean Commonsealth.

