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PREFACE.

Turs book describes what has for many years been the
most important part of the regular course in the Caleulus
for Mechanical and Electrical Engineering students at the
Finsbury Technical College. It was supplemented by easy
work involving TFourier, Spherical Harmonic, and Bessel
Functions which T have been afraid to describe here because
the book is alrcady much larger than I thought it would
become.

The students in October knew only the most clementary
mathematics, many of them did not know the Binomial
Theorem, or the definition of the sine of an angle. In July
they had not only done the work of this book, but their
knowledge was of a practical kind, ready for use in any
such engineering problems as I give here.

One such student, Mr Norman Endacott, has corrected
the manuscript and proofs. He has worked out many of
the exercises in the third chapter twice over. I thank him
here for the care he has taken, and I take leave also to
say that a system which has, year by year, produced many
men with his kind of knowledge of mathematics has a
good deal to recommend it. I say this through no vanity
but because I wish to encourage the earnest student. Besides
I cannot claim more than a portion of the ecredit, for I
do not think that there ever before was such a complete
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harmony in the working of all the departments of an
educational institution i lectures and in tutorial, labora-
tory, drawing officc and other practical work as exists in
the Finsbury Technical College, all tending to the same
end; to give an engineer such a perfeet acquaintance with
his mental tools that he actually uses these tools in his
business.

Professor Willis has been kind enough to read through
the proofs and I therefore fecl doubly sure that no important
mistake has been made anywhere.

An experienced friend thinks that T might with advantage
have given many more illustrations of the use of squared
paper just at the beginning. This is quite possible, but if
a student follows my instructions he will furnish all this sort
of illustration very much better for himself. Again I might
have inserted many easy illustrations of integration by
numerical work such as the exercises on the Bull Engine
and on Beams and Arches which are to be found in my book
on Applied Mechanics. I can only say that I encourage
students to find illustrations of this kind for themselves;
and surely there must be some limit to spoon feeding.

JOHN PERRY.

Rovan Corrran oF ScInNCE,
Loxnoy,
16¢h Muarch, 1897.
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CALCULUS FOR ENGINEERS.

INTRODUCTORY.

1. THE Engineer has usually no time for a general mathe-
matical training—more’s the pity—and those young engineers
who have had such a training do not always find their mathe-
matics helpful in their profession. Such men will, I hope,
find this book useful, it they can only get over the notion
that because it is elementary, they know already all that it
can teach,

But I write more particularly for readers who have had
very little mathematical training and who are willing to work
very hard to find out how the calculus is applied in Engineer-
ing problems., I assume that a good engineer needs to know
only fundamental principles, but that he needs to know these
very well indeed.

2. My reader is supposed to have an elementary know-
ledge of Mechanics, and 1f he means to take up the Electrical
problems he is supposed to have an elementary knowledge of
Electrical matters. A common-sense knowledge of the few
fundamental facts is what is required; this knowledge is
seldom acquired by mere reading or listening to lectures;
one needs to make simple experiments and to work easy
numerical exercises,

In Mechanics, I should like to think that the mechanical
engineers who read this book know what is given in the
elementary parts of my books on Applied Mechanics and the
Steam and Gas Engine. That is, I assume that they know

P 1
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9 CALCULUS FOR ENGINEERS.

the elementary facts about Bending Moment in beams, Work
done by forces and the Efficiency of heat engines. Possibly
the book may cause them to scek for such knowledge. I take
almost all my examples from Enginecring, and a man who
works these easy examples will find that he knows most of
what is called the theory of engineering.

3. I know men who have passed advanced examinations
in Mathematics who are very shy, in practical work, of the
common formulac used i Kngineers’ pocket-books. How-
ever good a mathematician a student thinks himself to be,
he ought to practise working out nuwmerical values, to find
for example the value of «® by means of a table of logarithms,
when « and b are any numbers whatsoever. Thus to find
V014, to find 2:365-"%, &c., to take any formula from a
pocket-book and use it.  He must not only think he knows ;
he must really do the numerical work, He must know that
if a distance 2454 has been measured and if one is not sure
about the last figure, it is rather stupid in multiplying or
dividing by this number to get out an answer with many
significant figures, or to say that the indicated power of an
engine is 324°65 Horse power, when the indicator may be in
error 5 per cent. or more. He must know the quick way of
finding 3:216 x 4571 to four significant figures without using
logarithms. He ought to test the approximate rule

(1 +a)*=14na,
or (L+a)* (L + By =1 + na+ mp,

if @ and B are small, and see for himself when ¢ =01 or
—~0l,0or 8=+4-025 and n=2 or $or —1},and m=4 or 2
or — 2 or 1 or any other numbers, what errors are involved in
the assumption,

t As to Trigonometry, the definitions must be known., For
example, Draw BAC an angle of, say, 35°, Take any point B
and drop the perpendicular. Measure A B and B¢ and AC
as accurately as possible. Is AC:4 BC:= AB*? Work

)

Al
this out numerically. Now BC = sin 35°, iC = cos 35°,
Lo . o AB 4B
E:tan 35°. Try if the answers are those given in the
tables. Learn how we calculate the other sides of the
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triangle A BC' when we know one side and one of the acute
angles. Learn also that the sine of 130° is positive, and the
cosine of 130° is negative. Also try with the book of tables if

sin(A4 4 B)=sin 4 .cos B+cos 4 .sin B,

where 4 and B are any two angles you choose to take.
There are three other rules like this. In like manner the
four which we obtain by adding these formulae and subtract-
ing them, of which this is one,

2 sin a . cos B =sin (a+ B) + sin (a — B);
also cos24=1—2sin*4 =2cos* 4 — 1.

Before readers have gone far in this book I hope they will
be induced to take up the useful (that is, the elementary
and interesting) part of trigonometry, and prove all rules for
themselves, if they haven’t done so already.

Calculate an angle of 16 degrees in radians (1 radian is
equal to 57-296 degrees); see how much the sine and tangent
of this angle differ from the angle itself Remember that
when in mathematics we say sin 2, @ is supposed to be in
radians,

I do not expect a man to know much about advanced
algebra, but he 1s supposed to be able to give the factors of
#* 4Tz + 12 or of a* — a? for example; to be able to simplify
expressions. It is not a knowledge of permutations or com-
binations or of the theory of equations, of Geometrical Conics
or tangent planes to quadrics, that the Engineer wants.
Happy is the Engineer who is also a mathematician, but
it is given to only a few men to have the two so very different
powers,

A prolonged experience of workshops, engineers and
students has convinced me that although a Civil Engineer
for the purposes of surveying may need to understand the
solution of triangles, this and many other parts of the
Engineer’s usual mathematical training are really useless to
the mechanical or electrical engineer. This sounds un-
orthodox, but I venture to emphasise it. The young engi-
neer cannot be drilled too much in the mere simplification
of algebraic and trigonometrical expressions, including ex-

pressions involving »/— 1, and the best service done by
12
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elementary calculus work is in inducing students to again
undergo this drilling.

But the engineer needs no artificial mental gymnastics
such as is furmshed by Geometrical Conics, or the usual
examination-paper puzzles, or by evasions of the Calculus
through infinite worry with clementary Mathematics. The
result of a false system of tralning is seen in this, that not
one good engineer in a hundred believes in what 1s usually
called theory.

4. I assume that every one of my readers is thoroughly
well acquainted already with the fundamental notion of the
Calculus, only he doesn’t know it in the algebraic form. He
has a perfect knowledge of ¢ rate, but he has never been
2'(/; he has a perfect knowledge of an

¥

area, but he has not yet lewrnt the symbol used by us,

ff(l“)(]l He has the idea, but he does not express his

accustomed to write

1dea in this form.

1 assume that some of my readers have passed difficult
examinations in the Calculus, that they can differentiate any
function of @ and integrate many; that they know how to
work all sorts of difficult exercises about Pedal Curves and
Roulettes and Elliptic Integrals, and to them also I hope to
be of use. Their difficulty is this, their mathematical know-
ledge seems to be of no use to them in practical engineering
problems. Give to their a’s and s a physical meaning,
or use p’s and v's instead, and what was the easiest book
exercise becomes a difficult problem. I know such men
who hurriedly skip in reading a book when they sec a

Zl%)’ or a sign of integration.

5. When I started to write this book I thought to put
the subject before my readers as T have been able, I think—
I have been told—very successfully, to bring it before some
classes of cvening students; but much may be done in
lectures which one is unable to do in a cold-blooded fashion
sitting at a table. One misses the intelligent eyes of an
audience, warning one that a little more explanation is needed
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or that an important idea has already been grasped. An
idea could be given in the mere drawing of a curve and
illustrations chosen from objects around the lecture-room.

Let the reader skip judiciously; let him work up no
problem here in which he has no professional interest.  The
problems are many, and the best training comes from the
careful study of only a few of themn.

The reader is expected to turn back often to read again
the early parts.

The book would be unwicldy if 1 included any but the
more interesting and illustrative of engineering problems. I
put off for a future occasion what would perhaps to many
students be a more interesting part of my subject, namely,
illustrations from Enginecring (sometimes ealled Applicd
Physics) of the solution of Partial Differential Lquations.
Many people think the subject one which cannot be taught
in an elementary fashion, but Lord Kelvin showed me long
ago that there ix no useful mathematical weapon which an
engineer may not learn to use. A man learns to use the
Calculus as he learns to use the chisel or the file on actual
concrete bits of work, and it i3 on this idea that I act in
teaching the use of the Calculus to Engineers.

This book is not meant to supersede the more orthodox
treatises, it 1s rather an introduction to them. In the
first chapter of 160 pages, I do not attempt to differentiate
or integrate any function of 2, except an  In the second
chapter I deal with "%, and sin (v + ). The third chapter
is more difficult. :

For the sake of the training in clementary Algebraic
work, as much as for use in Engineering problems, I have
included a set of exercises on general é(jli erentiation and
integration.

Parts in smaller type, and the notes, may be found too
difficult by some students in a first reading of the book. An
occasional exercise may need a little more knowledge than
the student already possesses. His remedy is to skip.



CHAPTER 1.
x2,

6. EVERYBODY has already the notions of Co-ordinate
Geometry and uses squared paper. Squared paper may
be bought at sevenpence a quire: people who arc 1gnorant
of this fact and who pay sevenpence or fourteen pence a
sheet for it must have too great an idea of its value to use
it properly.

When a merchant has in his office a sheet of squared
paper with points lying in a curve which he adds to day by
day, each point showing the price of iron, or copper, or cotton
yarn or silk, at any date, he is using Co-ordinate Geometry.
Now to what uses does he put such a curve? 1. At any
date he secs what the price was. 2. He sees by the slope of
his curve the rate of increase or fall of the price. 8. If he
plots other things on the same sheet of paper at the same
dates he will note what effect their rise and fall have upon
the price of his material, and this may enable him to pro-
phesy and so make money. 4. Examination of his curve for
the past will enable him to prophesy with more certainty
than a man can do who has no records.

Observe that any point represents two things; its
horizontal distance from some standard line or axis is called
one co-ordinate, we generally call it the # co-ordinate and it
is measured horizontally to the right of the axis of y; some
people call it the abscissa ; this represents time in his case.
The other co-ordinate (we usually call it the y co-ordinate or
the ordinute, simply), the vertical distance of the pomt above
some standard line or axis; this represents his price. In the
newspaper you will find curves showing how the thermometer
and barometer are rising and falling. T once read a clever
article upon the way in which the English population and
wealth and taxes were Increasing; the Teasoning was very
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difficult to follow. On taking the author’s figures however
and plotting them on squared paper, cvery result which he
had laboured so much to bring out was plain upon the
curves, so that a boy could understand them. Possibly this
is the reason why some writers do not publish curves: if they
did, there would be little need for writing.

7. A man making experiments is usually finding out
how one thing which I shall call ¥ depends upon some other
thing which I shall call . Thus the pressure p of saturated
steam (water and steam present in a vessel but no air or
other fluid) is always the same for the same temperature.
A curve drawn on squared paper enables us for any given
temperature to find the pressure or vice versa, but it shows
the rate at which one increases relatively to the increase of
the other and much else. Idonot say that the curve is always
better than the table of values for giving information ; some
information is better given by the curve, some by the table.
Observe that when we represent any quantity by the length
of a line we represent it to somc scale or other; 1 inch
represents 10 lbs. per square inch or 20 degrees centigrade
or something elsc; it is always to scale and according to a
convention of some kind, for of course a distance 1 inch is a
very different thing from 20 degrees centigrade.

When one has two columns of observed numbers to plot
on squared paper one does it, 1. To see if the points lie in
any regular curve. 1If so, the simpler the curve the simpler
i the law that we arc likely to find. 2. To correct errors of
observation. For if the points lie nearly in a simple regular
curve, if we draw the curve that lies niost eveuly among the
points, using thin battens of wood, say, then it may be taken
as probable that if therc were no errors of observation the
points would lie exactly in such a curve. Note that when
a point is — 5 feet to the right of a line, we mean that it is
5 feet to the left of the linc. T have learnt by long ex-
perience that it is worth while to spend a good deal of time
subtracting from and multiplying one’s quantities to fit the
numbers of squares (so that the whole of a sheet of paper is
needed for the points) before beginning to plot.

Now let the reader buy some squared paper and without
asking help from anyone let him plot the results of some
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observations. Let him take for example a Whitaker's
Almanack and plot from it some sets of numbers; the average
temperature of every month last year; the National Debt
since 1688; the present value of a lease at 4 per cent. for
any number of years; the capital invested in Railways since
1849 ; anything will do, but he had better take things in
which he is interestcd. If he has made laboratory ohserva-
tions he will have an absorbing interest in seeing what sort
of law the squared paper gives him.

8. As the observations may be on pressure p and tem-
perature t, or p and volume v, or v and ¢, or Indicated Horse
Power and Useful Horse Power of a steam or gas engine, or
amperes and volts in electricity, and we want to talk generally
of any such pair of quantities, I shall use « and y instead
of the p's and #’s and #'s and all sorts of letters. The short
way of saying that there is some law connecting two variable
quantities « and y is F (%, y) =0...(1), or in words “ there
s some equation connecting z and y.” Any expression
which contains # and y (it may contain many other letters
and numbers also) is said to be a function of z and y and we
use such symbols as F'(z, y), f(z, y), Q («, y) ete. to répresent
functions in general when we don’t know what the expres-
sions really are, and often when we do know, but want to
write things shortly. Again we use F(z) or f(x) or any
other convenient symbol to mean “any mathematical ex-
pression containing «,” and we say “let f(2) be any function
of 27 Thus y=f(2)...(2) stands for any equation which
would cnable us when given « to calculate .

The 2z Y

The law 55 T 16
above, whereas if we calculate y in terms of 2 and get
Y= i%«/%‘ a? we bave the form (2). But in either case
we have the same law connecting y and z. In pure mathe-
matics « and y are actual distances; in applied mathematics
@ and y stand for the quantities which we are comparing and
which are represented to scale.

=1 comes under the form (1) given

9. ‘Graph’ Exercises.
L. Draw the curve y = 2 + a2
Take =0 and we find y=2; take # =1, then y = 2:0333;
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take & = 2, then y =2+ 1833 =2-133; and so on. Now plot
these values of # and » on your sheet of squared paper. The
curve is a parabola.

II. Draw the curve y =2~ 1o+ Ja® which is also a
parabola, in the same way, on the same sheet of paper.

IIL  Draw the curve oy =120. Now if w=1, y=120;
fao=2y=60;if =3, y=40; if #=4, y = 30 and so on:
this curve is a rectangular hyperbola.

IV, Draw ya» =100 or y =100a—7# If the student
cannot caleulate ¥ for any value of @, he does not kuow how
to use logarithms and the sooner he does know how to use
Jogarithms the better.

V. Draw y=ax” wherc ¢ Is any convenient number. I
advise the student to spend a lot of time in drawing members
of this great fumily of useful curves. Let him try n=—1
(he drew this in I1L. above), n=~2, n=—1%, n=—1%, n=—01,
n=0,n=4 n=4 n=1, n=1% n=2 (this is No. L. above),
n=38, n=4 &e.

VI. Draw y=asin (bx+c) taking any convenient
numbers for a, b and ¢.

Advice. As bz +c¢ is in radians (one radian is 57-2958
degrees) and the books of tables usually give angles in
degrees, choose numbers for b and ¢ which will make the
artthmetical work easy. Thus take b=1 - 1146, take ¢ the
number of radians which correspond to say 30°

(this is g or '5236) .
Let a =5 say. Now let =0, 10, 20, &c., and calculate -
6 . .
1146 T 523‘)) ; but if the
angle is converted into degrees we have
y =5 sin (46 + 30 degrees) = 5 ¢in 33” = 2:723.

Thus when 2= 6, y=5sin <

Having drawn the above curve, notice what change would

occur if ¢ were changed to 0 or TRy Again, if «
.

were changed. More than a week may be spent on this curve,

very profitably.
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VII. Draw y=ae™™ Try b=1 and w=1; try other
values of ¢ and b; take at least two cases of negative values
for b.

In the above work, get as little help from teachers as
possible, but help from fellow students will be very useful
especially if it leads to wrangling about the subject.

The reason why I have dwelt upon the above seven cases
1s this:—Studcents learn usually to differentiate and integrate
the most complicated expressions: but when the very simplest
of these cxpressions comes before them in a real engineering
problem they fight shy of it. Now it is very seldom that an
engineer ever has to face a problem, even in the most intri-
cate part of his theoretical work, which involves a knowledge
of more functions than these three

y=az®, y=asin(bx+tec), y=ad?
but these three must be thoroughly well understood and the
engineering student must look upon the study of them as his
most important theoretical work.

Attending to the above three kinds of expression is a
student’s real business. I see no reason, however, for his not
having a little amusement also, so he may draw the curves

2t ¢ =25 (Circle), % + 7= (Ellipsc),

16
a* y? )
55 — %6:1 (Hyperbola),

and some others mentioned in Chapter IIL., but from the
engineer’s point of view these curves are comparatively un-
interesting.

10. Haviug studied y=e¢* and y=>sin(ce+g) a
student will find that he can now easily understand one of
the nost important curves in engineering, viz:

y=be**sin (cx + g).

He ought first to take such a curve as has already been
studied by him, y =0bsin (cx + g); plot on the same sheet of
paper y =e % and multiply together the ordinates of the
two curves at many values of # to find the ordinate of the
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new curve. The curve is evidently wavy, y reaching maximum
and minimum values; y represents the displacement of
a pendulum bob or pointer of some measuring instrument
whose motion is damped by fluid or other such friction, # being
the time, and a student will understand the curve much better
if he makes observations of such a motion, for example with
a disc of lead immersed in oil vibrating so slowly under
the action of torsional forces in a wire that many ob-
servations of its angular position (using pointer and scale
of degrees) which is called y, 2 being the time, may be
made in one swing. The distance or angle from an extreme
position on one side of the zero to the next extreme position
on the other side is called the length of one swing. The
Napierian logarithm of the ratio of the length of one swing to
the next or one tenth of the logarithm of the ratio of the
first swing to the eleventh is ovidently « multiplied by half
the periodic time, or it is ¢ multiplied by the time occupied
i one swing. This logarithmic decrement as it is called,
1s rather important in some kinds of measurement.

11. When by means of a drawing or a model we are able to find the
path of any point and where it is in its path when we kuow the
position of some other point, we arc always able to get the saue
information algebraically.

Example (1). A point # and a straight line DD being given ; what
is the path of a point P when it moves so that its distance from the
point F' is always 1n the same ratio to its distance from the straight Iine?

Thus in the figure let PF==ex 770 ... (1), where ¢ is a constant.
Draw EFX at right angles to DD. v
If the distance 2'D is called & and
the perpendicular I’C' is y; our D
problem is this ; ~What is the equa-
tion connecting w and y? Now all
we have to do is to express (1) in
termsof wand . Let Z4 e called .

Thus
PFR=NPGE I =y L (v~ a)? E £ S X

so that, squaring (1) we have

p

_'//2 bl —ay=ota L (2),

This is the answer, If ¢ ix 1 the D
curve is called & parabola. If ¢is N
greater than 1, the curve is called an Fig. 1.
hyperbola. If ¢isless than 1, the curve is called an ellipse.
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Ezample (2). The circle AP¢ rolls on the straight line OX.
‘What is the Path of any point P on the circumference? Tf when P

Y
A
s P,
B 4(;\)”
\ a
N
@) T Q -

Fig. 2,
touched the line it was at 0, let 0.X and OF be the axes, and let SP
be » and P7 be y. Let the radius of the circle be «. Let the angle
PCQ be called ¢ Draw OB, perpendicular to 7. Observe that
PB=a . sin PCB=asin (¢ —90)= —a cos ¢,
BC=acos PCOL=asin ¢.
Now the arc QP=a . ¢p=0Q. Hence as v= 0@ — BC, and
= DT+1 )B,
we have w=ap - asin @)
It oo gy e 3.
If from (3) we eliminate ¢ we got one equation connecting » and 7.
But it is better to retain ¢ and to have two equations because of the
greater simplicity of caleulation. In fact the two equations (3) may

be called the equation to the curve. The curve is called the cycloid
as all my readers know already.

Frample (3). A crank and connecting rod work a slider
in a straight path.  Where is the slider for any position of the crank ?
Let the path be in the direction of the centre of the crank shaft,

P

i
A Q B b 0
Fig. 3.
If 4 is the end of the path, evidently 40 is equal to I+4r, » being
length of crank.
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It is well to remember in all such problems that if we project all
the sides of a closed figure upon any two straight lines, we get two in-
dependent equations. Projecting on the horizontal we see that

s+lcosp+rcosf=0+7)

Projecting on the vertical Isin p=rsind J @
If we eliminate ¢ from these equations we can caleulate s for any

value of 4. The student ought to do this for himself, but I am weak
enough to do it herc. We sce that from the second equation of (1)

cosb=_ /1 _"gure
¢ ’\/1 7 s é,

80 that the first becomes

s={ {1 - ,\/1 —;: si11?8}+7'(1 ~cosé)... ¥ ... (2).

Students ought to work a few exercises, such as;—1. The ends
A4 and B of a rod are guided by two straight slots 0.1 and OB which
are at right angles to one another; find the equation to the path of
any point 2 in the rod. 2. In Watt’s parallel motion there is
a point which moves nearly in a straight path. Find the equation to
its complete path.

In fig. 4 the Mean Position is shown as 04BC. The best place
for P is such that BP/PA=04/CB. Draw the links iu any other

-
;

A
Fig. 4.

4 e
¥ Note that if as is usual, %2 is a small fraction, then slnee A/1-a=1-1a

when « is small, we can get an approximation to the value of s, which can
be expressed in terms of ¢ and 26. This is of far more importance than it
here seems to be. When the straight path of @ makes an angle « with the
line joining its middle point and O, if « is not large, it is evident that s is
much the same as before, only divided by cos a. When a is large, the
algebrajc expression for s is rather complicated, but good approximations
may always be found which will save trouble in caleulation.
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position. The complete path of /” would be a figure of 8. 3. Iind
the equation to the path of a point in the middle of an ordinary con-
necting rod. 4. 4, the end of a link, moves in a straight path C0OC’,
O being the middle of the path, with a simple harmonic motion
Od =asin pt, where ¢ is time; the other end B moves in a straight
path OBD which is in a direction at right angles to COC’; what is B’s
motion ? Show that it is approximately a simple harmonic motion of
twice the frequency of 4. 5. In any slide valve gear, in which there
are several links, &c. driven from a uniformly rotating crank ; note
this fact, that the motion of any point of any link in any particular
direction consists of a fundamental simple harmonic motion of the
same frequency as the crank, together with an octave. The proper
study of Link Motions and Radial valve gears from this
point of view is worth months of one’s life, for this contains the secret
of why one valve motion gives a better diagramn than another.
Consider for example the Hackworth gear with a curved and with a
straight slot.  What is the difference ? Sce Art. 122,

12. Plotted points lying in a straight line. Proofs
will come later; at first the student ought fo get well ac-
quainted with the thing to be proved. I have known boys
able to prove mathematical propositions who did not really
know what they had proved till years afterwards.

Take any expression like y =a + bz, where « and b are
numbers. Thus let y=2+13x. Now take #=0, +=1,
@ =2, x=23, &c. and in cach case calculate the corresponding
value of y. Plot the corresponding values of # and y as the
co-ordinates of points on squared paper. You will find that
they lie exactly in a straight line. Now take say y=2+ 32
or 244z or 2—4x or 2—3x and you will find in every case
a straight line. Men who think they know a little about
this subject already will not care to take the trouble and if
you do not find yourselves interested, I advise you not to
take the trouble either; yet I know that it is worth your
while to take the trouble. Just notice that in every case 1
have given you the same value of « and consequently all
your lines have some one thing in common. What is it?
Take this hint, « 1s the value of y when 2=0.

Again, try y=2+ 1}, y=1+11z, y=0+1}z,
=—1+1}a, y=—241}g,

and so see what it means when J is the same in every case,
You will find that all the lines with the same b have the
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same slope and indeed I am in the habit of calling b the
slope of the line.
If y=a+ ba, when 2=, find y and call it ,,
when 2=, +1, find  and call it v,.

It is easy to show that y, —y,=b. So that what I mean by
the slope of a straight line is its rise for a horizontal distance
1. (Note that when we say that a road rises 45 or 1 in 20,
we mean 1 foot rise for 20 feet along the sloping road. Thus
o 18 the sine of the angle of inclination of the road to the
horizontal; whereas our slope 1s measured in a different way).
Our slope is evidently the tangent of the inclination of the
line to the horizontal. Looking upon y as a quantity whose
value depends upon that of z, observe that the rate of in-
crease of y relatively to the increase of x is constant, being
indeed b, the slope of the line. The symbol used for this

. d - .
rate 1 E% Observe that it is one symbol; it does not mean

gii/o Try to recollect the statement that if y=«+ b,
@=b, and that if ﬁ%:b, then it follows that y=4 + be,

dz d
where 4 is some constaut or other.

Any equation of the first degree connecting # and y
such as Az + By=C where 4, B and C are constants, can

be put into the shape y = lg - % @, so that 1t is the equation

to a straight line whose slope is -5 and which passes

through the point whose & =0, whose y:%, called point

(O’ %} Thus 4x4-2y =15 passes through the point @ =0,

y=2% and its slope 1s — 2. That is, y diminishes as z in-
creases. You are expected to draw this line y = 2§ — 2« and
distinguish the diffcrence between it and the line y = 2§ + 2.
Note what is meant by positive and what by negative slope.
Draw a few curves and judge approximately by eye of the
slope at a number of places.

13. Problems on the straight line.
1. Given the slope of a straight line; if you are also
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told that it passes through the point whose #=3, and whose
y=2, what is the equation to the line? Let the slope be
0-35. »

The equation is y = ¢ + 0352, where @ is not known.

But (3, 2) is a point on the line, so that 2=« + 0'35 x 3,
or a =095 and hence the line is y =095 + 0852,

2. What is the slope of any line at right angles to
y=a-+bx? Let AB be the given line, cutting 0X in C. Then

Y

4 C < %
A E
Fig. 5.

b=tan BCX. If DE is any line at right angles to the first,
its slope is tan DEX or — tan DEC or — cot BCE or ——%.

So that y= 4 —

to y=a+bx; A being any constant.

3. Where do the two straight lines da+ By+ (=0
and Mz + Ny+S=0 meet? Answer, In the point whose x
and y satisfy both the equations. We have therefore to do
what is done in Elementary Algebra, solve simultaneous
equations.

# 1s typical of all lines at right angles

4. When tana and tan 8 are known, it is easy to find
tan (a — (), and hence when the straight lines y=a+ b
and y =m +nx are givew, it is easy to find the angle between
them.

5. The line y=a+be passes through the points 2 =1,
y=2,and =3, y=1, find ¢ and b.
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6. A line y=a+ba is at right angles to y = 2 4 3z and
passes through the point 2 =1, y=1. Find ¢ and b.

14. Obtaining Empirical Formulae.

‘When in the laboratory we have made measurements of two
quantities which depend upon one another, we have a table showing
corresponding values of the two, and we wish to see if there is a simple
relation between them, we plot the values to convenient scales as the
co-ordinates of points on squared paper. If some regular curve (a
curve without singular points as I shall afterwards call it) scems as if
it might pass through all the points, save for possible errors of
measurement, we try to obtain a formula y=7(x), which we may call
the law or rule connecting the quantities called y and .

If the points appear as if they might lie on a straight line, a
stretched thread may be used to help in finding its most probable
position. There is a tedious algebraic method of finding the straight
line which represents the positions of the points with least error, but
for most engineering purposes the stretched string method is suffi-
ciently accurate.

If the curve seems to follow such a law as y=a+-ba? plot y and
the square of the observed measurement, which we call #, as the co-or-
dinates of points, and see if they lic on a straight line. If the curve

X Co
seems to follow such a law as y= &E ...... (1), which is the same as

'qé +by=a, divide each of the guantities which you call y by the corre-

sponding quantity » ; call the ratio X. Now plot the values of X and
of y on squared paper; if a straight line passes through the plotted

points, then we have such a law as XN=d4+By, or % =4+ By, or

Ax P
ey that (1) is true.
Usually we can apply the stretched thread method to find the
probability of truth of any law containing only two constants.

Thus, suppose measurements to be taken from the expansion part
of a gas engine indicator diagram. It is important for many purposes
to obtain an empirical formula connecting p and o, the pressure and
volume. I always find that the following rule holds with a fair amount
of accuracy pve=C where s and C are two constants. We do not
much care to know €, but if there is such a rule, the value of s is very
important®, To test if this rule holds, plot log p and log » as the co-

* There is no known physical reason for expecting such a rule to hold.
At first T thought that perhaps most curves drawn at random approximately
like hyperbolas would approximately submit to such a law as ya*=C, but I
found that this was by no means the case. The following fact is worth
mentioning. When my students find, in carrying out the above rule that
logp and logv do not lie in a straight line, I find that they have

P. 9
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ordinates of points on squared paper (common logarithms will do),
If they lie approximately ‘in a straight line, we see that

log p4+slog v=e
a constant, and thercfore the rule holds.

When we wish to test with a formula containivg three independent
constants we can often reduce it to such a shape as

Av+But+Ce=1 oo iiiienii (2),
. . . . b
where v, w, z contain @ and y in some shape.  Thus to test if 3/=a+c;§ ,
o l ’ RTY
we have y+cey=a-+bz, or g + "( ay ~ i a=1. Here y itself is the old »,
"

2y is the old w, and & itsclf is the old 2.

If (2) holds, and if », w and z were plotted as the three co-ordinates
of a point in space, all the points ought to lie in a plane. By means
of three sides of a wooden box and a number of beads on the ends of
pointed wires this may be tried directly ; immersion in a tank of water
to try whether one can get the beads to lie in the plane of the surface
of the water, being used to find the plane. I have also used a descrip-
tive geometry method to find the plane, but there is no 1nethod yet
used by me which compares for simplicity with the stretched thread
method in the other case.

But no hard and fast rules can be given for trying all sorts of em-
pirical formulris upon one’s observed numbers. The student s warned
that his formuia is an empirical one, and that he must not deal with it
as if he had discovered a natural law of infinite exactness.

When other formulae fail, we try

y=a+dbr+ex?+ i+ &e.,
because we know that with sufficient terms this will satisfy any curve.
When there are more than two constants, we often find them by a
patient application of what is called the method of least squares. To
test if the pressure and temperature of saturated steam follow the
rule p=a(6+B)".. (3), where 6 is temperature, Centigrade, say, three
constants have to be found. The only successful plan tried by me is
one in which I guess at 8. I know that 8 is nearly 40. T ask one
student to try 8=40, another to try 8=41, another 8=39 and so on;

made A mistake in the amount of clearance. Too much clearance and too
little clearance give results which depart in opposite ways from the straight
line, It is convenient in many calculations, if there is such an empirical
formula, to use it. If not, one has to work with rules which instruet us to
draw tangents to the curve. Now it is an excellent exercise to let a number
of students trace the same curve with two points marked npon it and to let
them all independently draw tangents at those points to their curve, and
measure the angle between them. It is extraordinary what very differcnt
lines they will draw and what different angles they may obtain, ~Let them
all measure by trial the radius of curvature of the curve at a point; in this
the discrepancies are greater than before,
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they are asked to find the rule (3) which 1nost accurately represents

p and 6 between, say p=71b. per sq. inch, and p=150. He who gets

a straight line lying 1nost evenly (judging by the eye) among the points,

when log p and log (8+8) are used as co-ordinates, has used the best
value of 8. The method may be refined upon by ingenious students.

(See end of Chap. L)

15. We have now to remember that if y =g+ bx, then

d "/ .

&% =}, and if (7:% =0, then =4 +br, where 4 1is some

(.0

constant.
Let us prove this algcbraically.
Ify=a+be. Take a particular value of & and calculate
y. Now take a new value of «, call it @ + 8z, and calculate
the new y, call it  + &y,
y 40y =u+b (w4 8.
Subtract y = « + bx and we getb

Sy = bduw, or gi{ =0,

and, however small 8z or 8y may become their ratio is b, we

therefore say dy_ b.

dw
y
F
S
B s He
A

c

D

© R Q a R

Fig. 6.
'16. In the curve of fig. 6 there is positive slope
(y ncreases as x increases) in the parts AB, DF and HI and
2—2
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negative slope (y diminishes as » increases) in the parts
BD and FH. The slope is 0 at B and ¥ which are called
points of maximum or points where y is a maximum; and it
1s also 0 at D and H which are points of minimum. The
point K is one in which the slope ceases to increase and
begins to diminish: it is a point of inflexion.

Notice that if we want to know the slope at the point P
we first choose a point ¥ which
1s near to F. (Imagine that v
in fig. 6 the little portion of
the curve at P is magnitied a N
thousand times.) Call PS=ux, i
PQ=y; NF=2+82, FL=y+3y, s EL Iy
so that PM =3z, FM=38y. Now
FM{PM or 8y/8x 1s the averuge
slope between P and F. It is
tan FPM. Imagine the same
sort of figure drawn but for n 0 Q L X
point F’ nearer to P. Again, Fig. 7.
another, still nearer 2. Ob-
serve that the straight line FP or F'P or F'P gets gradually
more and more nearly what we mean by the tangent to the
curve at P.  In every case 8y/8x is the tangent of the angle
which the line F'P or F'P or F”P makes with the horizontal,
and so we see that in the limit the slope of the line or dy/dx
at P is the tangent of the angle which the tangent at P
makes with the axis of X. 1If then, instead of judging
roughly by the cyc as we did just now in discussing fig. 6, we
wish to measure very accurately the slope at the point P
Note that the slope is independent of wherce the axis of X is,
so long as it is a horizontal line, and T take care in using my
rule here given, to draw OX below the part of the curve
where 1 am studying the slope. Draw a tangent PR {o
the curve, cutting OX in R. Then the slope is tan PR.Y.
If drawn and lettered according to my instructions, observe
that PRX is always an acute angle when the slope is
positive and is always an obtuse angle when the slope is
negative.

Do not forget that the slope of the curve at any point
means the rate of increase of y there with regard to a, and
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that we may call it the slope of the curve or tan PRQ or by
d

the symbol jz or ‘“the differential coefficient of y with

regard to x,’” and all these mean the sanie thing.

Every one knows what is meant when on going up a
hill one says that the slope is changing, the slope is diminish-
ing, the slope is increasing ; and in this knowledge he already
possesses the fundamental idea of the caleulus.

17. We all know what is meant when in a railway train we
say ‘““we are going at 30 miles per hour.”” Do we mean
that we have gone 30 miles in the last hour or that we are
really going 30 miles in the next hour? Certainly not. We
may have only left the terminus 10 minutes ago ; there may be
an accident in the next sccond. What we mean is mcrely this,
that the last distance of 3 miles was fraversed in the tenth
of an hour, or rather, the last distance of 00003 miles was
traversed in 000001 hour. This is not exactly right; it is
not till we take still shorter and shorter distances and divide
by the times occupied that we approach the true value of
the speed. Thus it is known that a body falls freely
vertically through the following distances in the following
intervals of time after two seconds from rest, at London.
That is between 2 seconds from rest and 2-1 or 2:01 or 2:001,
the distances fallen through are given. Each of these
divided by the interval of time gives the average velocity
during the interval.

Intervals of time in seconds | 0L 001
Distances in feet fallen through  6:601 | 6456 | 064416
Average velocities L 6601 : 6456 64416

We see that as the interval of time after 2 seconds is
taken less and less, the average velacity during the interval
approaches more and more the true value of the velocity at
2 seconds from rest which is exactly 644 feet per second.

We may find the true velocity at any time when we know
the law connecting s and ¢ as follows.

Let 8 =16+1t% the well known law for bodies falling
freely at London. If ¢ is given of any value we can calculate
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s. If ¢ has a slightly greater value called ¢+ 8¢ (here 8t
is a symbol for a small portion of time, it is not & x ¢, but a
very different thing), and if we call the calenlated space
s+ 0s, then s+8s=161(t+4 8ty ov 161 [+ 2¢. 864 (St}
Hence, subtracting, 8s = 16-1 (2¢. &t 4 (8¢}, and this formula
will enable us to calculate accurately the space 8s passed
through between the time ¢ and the time ¢+8t. The average
velocity during this interval of time is 8s + 8¢ or
Ss

- =922 1616t
5 32:2¢ -+ 16°18¢

Please notice that this is absolutely correct ; there is no
vagucness about it.

Now I come to the important idea; as &8¢ gets smaller
8s ,
and smaller, 5 approaches more and more nearly 32:2¢ the

other term 16:18¢ becoming smaller and smaller, and hence
we say that in the limit, 8s/8¢ is truly 32:24.  The limiting

value of g as 8t gets smaller and smaller is called :1[: or the

rate of change of s as ¢ increases, or the differential coefficient
of s with regard to ¢, or it is called the velocity at the time ¢.

Now surely there is no such great difficulty in catching
the idea of a limiting value. Some people have the notion
that we are stating something that is only approximately
true; it is often because their teacher will say such things as
“reject 16:18¢ because it is small,” or “let d¢ be an infinitely
small amount of time” and they proceed to divide something
by it, showing that although they may rcach the age of
Methuselah they will never have the common sense of an
engineer.

Another trouble is introduced by people saying “let

Os ds. .
8t =0 and 57 OF 77 18 80 and so.”  The true statement is, “ as
’ ) . .. Os
8t gets smaller and smaller without limit, 5 approaches more

and more nearly the finite value 32-24” and as I have alveady
sald, everybody uses the important idea of a it every day

of his life,



SLOPE AND SPEED, 23

p . ds
From the law connecting s and ¢, if we find 7 °F the
velocity, we arc said to differentiate s with regard to the
time . When we arc given ds/dt and we reverse the above
process we are said to integrate.

If I were lecturing I inight dwell longer upon the correct-
ness of the notion of a rate that one already has, and by
making many sketches illustrate my meaning. But one may
listen intently to a lecture which seems dull enough in a
book. I will, therefore, make a virtue of nccessity and say
that my readers can illustrate my meaning perfectly well to
themselves if they do a little thinking about it. After all
my great aim is to make them less afraid than they used to be
of such symbols as dy/da and [y . da.

18. Given s and ¢ in any kind of motion, as a set of num-
bers. How do we study the motion 7 For example, imagine
a Bradshaw’s Railway Guide which not merely gave a few
stations, but some hundred places between Euston and Rugby.
The entries might be like this: s would be in miles, ¢ in
hours and minutes. s =0 would mean Euston.

s . t

10 o’clock
.10
10..15
10..20
10..28
10..33

w
—
<

DD O ~T ~3 Ut &
[y
(=

—

One method is this: plot ¢ (take times after 10 o'clock)
horizontally and s vertically on a sheet of squared paper and
draw a curve through the points, '

The slope of this curve at any place represents the velocity
of the train to some scale which depends upon the scales for
g and ¢,
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Observe places where the velocity is great or small,
Between ¢=10.20 and ¢=10.23 observe that the velocity
is 0. Indeed the train has probably stopped altogether,
To be absolutely certain, it would be necessary to give s
for every value of ¢, and not merely for a few values, A
curve alone can show every value. I do not say that the
table may not be more valuable than the curve for a great
many purposes,

If the train stopped at any place and travelled towards
Euston again, we should have negative slope to our curve
and negative velocity.

Note that acceleration being rate of change of velocity
with time, is indicated by the rate of change of the slope of
the curve.  Why not on the same sheet of paper draw a curve
which shows at every instant the velocity of the train?
The slope of this new curve would evidently be the accelera-
tion. I am glad to think that nobody has vet given a name
to the rate of change of the acceleration,

The symbols in use ave
s and ¢ for space and time
velocity v or %%, or Newton’s symbol §;
2

. dv o dis .
acceleration — or —— , o1 Newton’s s,

dt de’

2

S
e

Rate of change of acceleration would be

2

Note that g;

with such an algebraic exXpression as OEX)%;S The symbol is
dx

supposed merely to indicate that we have differentiated s
twice with regard to the time,

is one symbol, it has nothing whatever to do

I have stated that the slope of a curve may be found by
drawing a tangent to the ewrve, and henee it is easy to find
the aceeleration from the velocity curve,
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19. Another way, better than by drawing tangents, is
illustrated in this Table:

j ’ ) |
I . acceleration

t J v !in feet per
b S pecond P
: or Js/st 50/3¢ :
— ‘,AGVhﬁww__vgg\_/ ) i
06 ' 0880
14074 |
07 . 2354 125
| 1349 |
‘08 3703 - 197
Po12:22
09 4925 — 127
v 1095 |
10 16020 L - 129
9-66
11 6986 131
‘ 835
‘12 7821 | — 131
z 704 | |

18| 8523

w l

In a new mechanism it was necessary for a certain
purpose to know in every position of a point A4 what its
acceleration was, and to do this I usually find its velocity
first. A skeleton drawing was made and the positions of
A marked at the intervals of time ¢ from a time taken
as 0. In the table I give at each instant the distance
of A from a fixed point of measurement, and I call it s.
If I gave the table for all the positions of A till it gets
back again to its first position, it would be more instructive,
but any student can make out such a table for himself
for some particular mechanism. Thus for example, let s
be the distance of a piston from the end of its stroke.
Of course the all-accomplished mathematical engineer will
scorn to take the trouble. He knows a graphical rule
for doing this in the case of the piston of a steam
engine. Yes, but does he know such a 1rule for every
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possible mechanism? Would it be worth while to seek
for such a graphical rule for every possible mechanism ?
Here is the straightforward Engineers’ common-sense way
of finding the acceleration at any point of any mechanisn,
and although it has not yet been tried except by myself
and my pupils, I venture to think that it will commend
itself to practical men. For beginners it is invaluable.

Now the mass of the body whose centre moves like the
point A4, being m (the weight of the body in pounds at
London, divided by 32-2)*, multiply the acceleration in
feet per second per second which you find, by m, and you
have the force which is acting on the body tncreasing the
velocity. The force will be in pounds.

* I have given elsewhere my reasons for using in books intended for
engineers, the units of force employed by all practical engineers. I have
used this system (which is, after all, a so-called adsolute system, just as
much as the ¢. 6. 5. system or the Poundal systemn of many text books) for
twenty years, with students, and this is why their knowledge of mechanics
is not a mere book knowledge, something apart from their practical work,
but fitting their practical work as a hand does a glove. One might as well
talk Choctaw in the shops as speak about what some people call the
Eunglish system, as if a system can be English which speaks of so many
poundals of force and so many foot-poundals of work, And yet these same
philosophers are astonished that practical engineers should have a contempt
for book theory. I venture to say that there is not one practical engineer
in this country, who thinks in Poundals, although all the books have used
these units for 80 years.

In Practical Dynamics one second is the unit of time, one foot is the
unit of space, one pound (what is called the weight of 1 1b.in London) is the
unit of force. To satisfy the College men who teach Engineers, 1 wounld sny
that *‘The unit of Mass is that mass on which the foree of 1 1b. produces
an acceleration of 1 ft. per sec. per sec.”

We have no name for unit of mass, the Engineer never has to speak
of the inertia of a body by itself. His instructions are * In all Dynamical
calculations, divide the weight of a body in 1bs. by 32:2 and you have its
mass in Engineer’s units—in those units which will give all your answers in
the units in which an Engineer talks.” If you do not use this system every
answer you get out will need to be divided or multiplied by something before
it is the langnace of the practical man.

. Force in pounds is the space-rate at which work in foot-pounds is done,
it is also the time-rate at which momentum is produced or destroyed.

Ezamplel. A Hammer head of 24 lbs. moving with a veloeity of 40 ft.
per sec. is stopped in ‘001l sec. What is the average force of the blow?
Here the mass being 24322, or -0776, the momentum (momentum is
mass x velocity) destroyed is 8:104. Now force is momentum per see. and
hence the average force is 3:104---001 or 3104 1bs.

Lzample 2. Water in a jet flows with the linear velocity of 20 ft. per sec,
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20. We considered the case of falling bodies 1n which
space and time are connected by the law s =4 g, where g
the acceleration due to gravity is 322 feet per second per
second at London. But many other pairs of things are con-

nected by similar laws and I will indicate them generally by
y= ax?

Let a particular value of « be taken, say « = . Now take
z=0, v=1, 2=2, =3, &c. and In every case calculate 7.

Plot the corresponding points on squared paper. They

lie on a parabolic curve. At any point on the curve, say

where 2 =3, find the slope of the curve (I call it g?/)’ do

£

the same at @ =4, = 2, &c. Draw a new curve, now, with the

same values of x# but with Z—Z
shows at a glance (by the height of its ordinate) what is

the slope of the first curve. It you ink these curves, let

as the ordinate. This curve

the ¥ curve be black and the gi curve be red. Notice that
the slope or g% at any point, is 2¢ multiplied by the » of the
point.

We can investigate this algebraically. As before, for
any value of z calculate y. Now take a greater value of «
which I shall call #+ 8 and calculate the new y, calling it
y+6y. We have then

Y+ 8y=u(x+ Su)?
= {;(,'"’ + 2. o -+ (8‘%)2}

Subtracting; Sy = 2w, du + (Sz ).
Divide by &, % =2ax +«. dr.

(velatively to the vessel from which it flows}, the jet being 0-1 sq. ft. in cross
section ; what force acts upon the vessel ?

Here we have 20x -1 cn. ft. or 20x 1% 62-3 Ibs. of water per sec. or
8 mass per second in Eingineers’ units of 20 x -1 x 62-3+32-2. This mass is
8'87, its momentum is 774, and as this momentum is lost by the vessel
every second, it is the force acting on the vessel.

A student who thinks for himself will see that this force is the same
whether & vessel is or is not in motion itself.
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Imagine 8« to get smaller and smaller without limit and
use the symbol % for the limiting value of %, and we have
(TZ' =2ax, a fact which is known to us already from our
squared paper*.

21. Note that when we repeat the process of differentiation

d? .
we state the result as =2 and the answer 1s 2a. You must

become familiar with fﬁese symbols. If y is a function of
z, %% is the rate of change of y with regard to «; ;%Z 1s the
rate of change of Z—;{ with regard to a.

Or, shortly; Z;—y is the differential coefficient of %
with regard to «; % is the differential coefficient of y with
regard to .

Or, again ; integrate @ and our answer is glg; inte-

di da? dz

grate dj and our answer is .
x

You will, T hope, get quite familiar with these symbols
and ideas. I am only afraid that when we use other letters
than #’s and y's you may lose your familiarity.

* Symbolically. Let y:f (x)"(l), where f (x) stands for any expression
containing #. Take any value of z and caleulate y. Now take a slightly
greater value of & say @ + 8z and calculate the new ¥ ; call it y + oy
then YOy =f(x+0r) .o, 2).

Subtract (1) from (2) and divide by éz.

by _f (w+32) - f (v) R
Py B e (3).

What we mean by ?i% is the limiting value of fﬁ%_f(x) as oz is

made smaller and smaller without limit. This is the exact definition of dTU .
dw

It is quite easy to remember and to write, and the most ignorant person may
get full marks for an answer at an examination, It is easy to see that the
differential coefficient of af (z) is a times the differential coefficient of f (x)
and also that the differential coefficient of f (z) + F' () is the sum of the two
differential coefticients,
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The differential coefficient of
y=a+bx+ca?,
where ¢, b and ¢ are constants, is

d
(—{%[=O+b+2cm
i

The integral of 040+ ke with regard to @ is A + bw + Lha?,
where A4 1s any constant whatsocver.
Similarly, the integral of b+ kz with regard to z is
A+ bz + Lhen
The integral of b+ kv with regard to v, is A + by + Lhv,
It is quite casy to work out as an exercise that if y=a?3 then
j»;:aaxﬂ, and again that if y=aat then %:4{&'3. All these are

examples of the fact that if y=«a, then %%:nu.v"*l.

In working out any of these examples we take it that g—g becomes d

da
7
or that 83/=6J;><ZT‘Z more and more ncarly as v gets smaller and
smaller without limit.
o

This is sometimes written y4-8y=y -+ . (T)/ , Or

P b= ()00 L) (L.

‘—-2 lﬂ)— .....................

22. Uniformly accelerated motion.
d’s

If acceleration, JE= e (1).

d: .
Integrate and we have (7;: =b 4 at = velocity v.  Obscrve

that we have added a coustant b, because if we differentiate
a constant the answer is 0. There must be some information
given us which will enable us to find what the value of the
constant b is. Let the information be »=v,, when £=0.
Then b is evidently u,.

So that velocity v == g; = Vb Aleeiieiinni s (2).
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Again integrate and s =c+ vt + fat?.  Again you will notice
that we add an unknown constant, when we integrate. Some
information must be given us to find the value of the constant
¢. Thus if s=s5, when t=0, this s, is the value of ¢, and so
we have the most complete statement of the motion

s=8 ot Fal (3).
If (3) is differentiated, we obtain (2) and if (2) is differen-
tiated we obtain (1).

23. We see here, then, that as soon as the student is
able to differentiate and integrate he can work the fol-
lowing kinds of problem.

I If s is given as any function of the time, diffcrentiate
and the velocity at any instant is found; differentiate again
and the acceleration is found.

IL.  If the acceleration is given as some function of the
time, integrate and we find the velocity; integrate again
and we find the space passed through.

Observe that s instead of being mere distance may be
the angle desceribed, the motion being angular or rotational.
Better then call it 4. Then 6 or a4 is the angular vclocity

s df . .
and 6 or T the angular acceleration.

24. Exercises on Motion with constant Accele-
ration.

1. The acceleration due to gravity is downwards and is
usually called ¢, g being 322 feet per second per second at
London. If a body at time 0 is thrown vertically upwards
with a velocity of V, feet per second; where is it at the end
of ¢ seconds? If s is measured upwards, the acceleration is
—gand s=V¢—1gt (We assume that there is no resist-
ance of the atmosphere and that the true acceleration is g
downwards and constant.)

Observe that v=V, — gt and that v=0 when V, —gt=0
or t:Yf’. When this is the case find s. This gives the

highest:. point and the time taken to reach it.
When is s=0 again ? What is the velocity then?
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2. The body of Exercise 1 has been given, in addition
to its vertical velocity, a horizontal velocity w, which keeps
constant. If « is the horizontal distance of it away from

I d .
, E{; =0 and ?Z? =uy, x=ut. If we
call s by the new name y, we have at any time ¢,
’!/ = ],70 - ijt:‘)

= U,

the origin at the time ¢

c

ip . . V. af c g
and if we eliminate ¢, we find g/::q—‘?x~l2=g - which is a
lo Uy

Parabola.

3. If the body had been given a velocity V' in the
direction a above the horizontal, we may use V sina for V,
and V cose for u, in the above expressions, and from them
" we can make all sorts of useful calculations concerning pro-
jectiles.

Plot the curve when I7= 1000 feet per sccond and a = 45°,

Again plot with same V' when a=60° and again when
a=30°

25. Kinetic Energy. A small body of mass w iy ab
8=0 when =0 and its velocity is w,, and a force F acts
upon it causing an acceleration F/m. As in the last case
at any future time

-

F, ¥
J —_— H =1 Y, :1,‘— e b
v=rvpt = (1), and s =0 fuf+1 -8 (2),

. ' o
2) may be written s=1¢{2v, +> ¢) and 1t is casy to sec
y 2 m )

from (1) that this is s=4t (2 +2), and that the average
velocity in any interval is half the sum of the velocities at
the beginning and end of the mterval. Now the work done
by the force /" in the distance s is Fs. Calculating F from

1), F=(v—1v) %L and multiplying upon s we find that the
work is 4m (v* — %) which expresses the work stored up in a
moving body in terms of its velocity. In fact the work
done causes §m2,? to Increase to $me? and this is the reason
why 3ma? is called the kinetic energy of a body.
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Otherwise. Let a small body of mass m and velocity v
pass through the very small space & in the time & gaining
velocity 8v and let a force F be acting upon it. Now

. v
F=m x acceleration or F=m~ and 8s =v. 8 so that

ot
I, 8s = muvdt glt) =m.vdv =0k,

if 8% stands for the increase in the kinetic energy of the body

oK

Sy e But our cquations arve only entirely true when
v
8, ot, &c., are made smaller and smaller without limit
dE . . . . .
Hence as g, =™ orin words, “the differential coefficient of
v

B with regard to v 1s me,” if we integrate with regard to v,
E=4mv*+ ¢ where ¢ is some constant. Let K =0 when
v=0 s0 that ¢ =0 and we have K = Jme>
Practise differentiation and integration using other letters
dy

than @ and . In this case dfy stands for our old 2. If we
dv de

had had % =m 1t might have been seen more easily that
y= yma? -+ ¢, but you must escape from the swaddling bands
of & and v.

26. Excrcise, If x is the elongation of a spring
when a force &' is applied and if » = g, @ vepresenting the

stiffness of the spring; ¥#.8x is the work done in elongating
the spring through the small distance 8z. If F is gradually
inereased from 0 to ¥ and the elongation from 0 to a, what
strain encrgy is stored in the spring ?

The gain of energy from @ to a+ 8w is 8E=F . du, or

dl .

rather - dn = F=ax, hence K =faz+¢. Now if =0 when
@=0, we sce that ¢=0, so that the energy K stored is
B =1aa*=LFz...(1).

It is worth noting that when a mass M is vibrating at the
end of a spiral spring; when il is at the distance & from its
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position of equilibrium, the potential energy is dua? and the
kinetic energy is 1/s? or the total energy is M+ daa?,. .,

Note that when a force F is required to produce an
elongation or compression #in arod, or a deflexion 2 in a beam,
and 1f F' = ax where ¢ is some constant, the energy stored up
as strain energy or potential energy is Tau? or LFur,

Also if a Torque 7' jis required to produce a turning
through the angle € in a shaft or spring or other structure,
and if 7'=ad, the encrgy stored up as strain energy or
potential energy is a2 or 17'¢. If 1"is in pound-feet and 6
1s in radians, the answer is 1n foot-pounds.

Work done = Force x distance, or Torque x angle.

27. If the student knows anything about electricity let
him translate into ordinary language the improved Ohm’s Luw

V=RC+L.dC/dt.................. (1),
Observe that if B (Ohms) and L (Henries) remain con-
stant, if ' and %]i( are known to us, we know ¥, and if the
law of V, a changing voltage, is known you may sce that there
must surely be some means of finding (' the changing current.

Think of L as the back electromotive force in volts when the
current ircreases at the rate of 1 ampere per second.

If the current in the primary of a transformer, and there-
fore the induction in the iron, did not alter, there would be
no electro-motive force in the sccondary. In fact the EMF.
in the secondary is, at any instant, the number of turns of
the secondary multiplied by the rate at which the induction
changes per second. Rate of increase of I per second is what
we now call the differential coefficient of I with regard to
time. Although L is constant only when there is no iron or
else because the induction is small, the correct formula being

V=RC+ N%{ ...... (2), it is found that, practically, (1) with
L constant is of nearly universal application. Sce Art. 183,
28. If y =ax™ and you wish to find Eg‘g, I am afiaid that

r. S
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I must assume that you know the Binomial Theorem
which is:—

(24 0y = a" 4 nbgn—1 4- 7}77(91;0—" b b

4

— -2
+ ?7“@_36)__(7}____) [)Swn-s + &(3,

It is easy to show by multiplication that the Binomial
Theorem is true when =2 or 3 or 4 or 5, but when 2 =} or
¥ or any other fraction, and again, when % is negative, you
had better perhaps have faith in my assertion that the
Binomial Theorem can be proved.

It is however well that you should see what it means by
working out a few examples. Illustrate it with 2 =2, then
n=3, n=4%, &c, and verify by multiplication. Again try
n =—1,and if you want to sec whether your scries is correct,

.1 . . .
just recollect that (z+0)1s- -~ and divide 1 by w4+ b in
y 2+ b R

the regular way by long division.
Let us do with our new funefion of =z ag we did with wa2
Here y=ax", y+8y=u (2 +8zy'=a (a"+n. 8u . am

2 (n—1 \ . . .
+ {?»7(720_“ }(Bm)ﬂ #"* + terms nvolving higher powers of 8]

Now subtract and divide by éz and you will find

8 w(n—1
gz =q {n Catl g i(\%f D (8ury am=2 4 &(}
We sce now that as 8« is made smaller and smaller, in
the limit we have only the first term left, all the others
having in them 82 or (w)* or higher powers of 8z, and they
must all disappear in the limit, and hence,
iz = nax?1 (Sce Notes p. 150.)
dx
Thus the differential coefficient of 2% is 645, of 4% it is
2421 and of £t it is — sk
When we find the value of the differential coefficient of
any given function we are said to differentiate it. When
. dy . . ..
given ’7‘; to find y we are said to dntegrate. The origin of
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the words differential and integral need not be considered.
They are now technical terms.

Differentiate aa™ and we find naz™

Integrate naz™? and we find az® + ¢c.  We always add a
constant when we integrate.

Sometimes we write these, Ie (@x™) = naa™* and

f naa™ ', die = ax”,

Observe that we write j before and dx after a function

when we wish to say that it is to be integrated with regard
to . Both the symbols are needed. At present you onght
not to trouble your head as to why these particular sorts of
symbol are used*,

You will find presently that it is not difficult to learn
how to differentiatc any known mathematical function. You
will learn the process easily ; but entegration is a process of
guessing, and however much practice we may have, ex-
perience only guides us in a process of guessing. To some
extent one may say that differentiation is like multiplica~
tion or raising a number to the 5th power. Integration is
like division, or extracting the 5th root. Happily for the
engineer he only needs a very few integrals and these are

* When a great number of things have to be added together in an
engineer’s office—as when a clerk calculates the weight of each little bit of a
casting and adds them all up, if the letter w indicates generally any of the
little weights, we often use the symbol Zw to mean the sum of them all.
When we indicate the sum of an infinite number of little quantities we

replace the Greek letter s or = by the long English s or [. It will be seen
presently that Integration may be regarded as finding a swin of this kind.
Thus if y is the ordinate of a curve; a strip of area is y . dv and [y . da

means the sum of all such strips, or the whole area. Again, if dm stands for
a small portion of the mass of a body and r is its distance from an axis, then
7%, dm is called the moment of inerbia of dm about the axis, and 212, §m or

72 . dm indicates the moment of inertia of the whole body about the axis,
Or if 6V is a small element of the volume of a body and m is its mass per

unit volume, then / r*m . dV is the body’s moment of inertia.
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well known.  As for the rest, he can keep a good long list of
them ready to refer to, but he had better practise working
them out for himself.

Now one is not often aslked to integrate nazt—1. It is too

nicely arranged for one beforchand.  One is usually asked to
. i J’,1/2+1
mtbegrate ba™...(1). I know that the answer is 5721}-1"'(2)'

How do I prove this? By differentiating (2) I obtain (1), there-
fore I know that (2) is the integral of (1). Ounly T ought to
add a constant in (2), any constant whatever, an arbitrary
constant as it is called, because the differential coefficient of
a constant 1s 0. Students ought to work out several
examples, integrating, say, 47, bat, bad, aad, ¢t azt. When
one has a list of differential coefficients it is not wise to use
them in the reversed way as if it were a Jist of integrals, for
things are scldom given so nicely arranged.

For instance [4.1'3.d.'1'=w‘. But one scldom is asked to

integrate 44% more likely it will be 32 or 5%, that is given.
We now have a number of Interesting results, but this
last one includes the others.  Thus if
y=ua* or y=a' or y=a' or y=a"¥
we only have examples of y=ua" and it is good for the
student to work them out as examples. Thus
dy
dx
If n=1 this becomes 12® or 1. If n =0 it becomes 0z~!
or 0. But we hardly need a new way of sceing that if y is a
constant, its diffcrential coefticient is 0. We know that if

= na™l,

Y=+ bx + cr® 4 ex® + &c. + ga

Then f-l% =0+ b+ 2ex 4 3ea® + &e. + nga,

with this knowledge we have the means of workiug quite

¥ T suppose a student to know that anvthing to the power 0 i8 unity. It
is instructive to actually caleulate by lozarithms a high root of any number
to sce how close to 1 the answer comes. A high root means a small power,
the higher the root the more nearly does the power approach 0.
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half the problems supposed to be difficult, that come before
the engineer,

The two important things to remember now, are: If

y=az", then dy =naz" ' and if El"/: ba™. then
d.r ’ du ’
b
77777 1
9= + 1 ' to

where ¢ is some constant, or

fbwmdw — ‘b"’l" 1 +e

e+

I must ask students to try to discover for themselves
illustrations of the fact that if 4 =« then ?;—ll/ =qpa? 1 Ido
not give here such illustrations as happened to suit myself;
they suited me because they were my own discovery. I
would suggest this, however:

Take y=0o%" Let #=102, calculate y by logarithms.
Now let & =103 and calculate . Now divide the increment
of 4 by 01, which 1s the increment of «.

Let the second  be 1021, and repeat the process.

Let the second i« be 10201, and repeat the process.

. Sy . .
It will be found that - ]Z 1s approaching the true value of

S
odlg which is 5 (1:02)%

Do this again when y = 2" for example. A student need
not think that he is likely to waste time if he works for
weeks in manufacturing numerical and graphical illustrations
for himself. Get really familiar with the simple idea that

dy

if y=2a" then -" = nan1;
y dx ’

that f ax’ . de = v a8t 4 constant ;
s+1

that favg Cdv= % pn + constant.
g1

Practise this with s=-7 or "8 or 1'1 or =5 or —8, and use
other letters than  or v,
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29. Exercises. Find the following Integrals. 'The
constants are not added.

[ @*.dz.  Answer, {a%, ’ v'.dv.  Answer, Jo5
—3 e : ‘l‘ S
v=*.dv. The answer is —— ¢
1—s
3,0 3,8
f\/v- .dv or [vg. dv. Answer, gv'g
1
ft_% .dt. Answer, 2%

f% dx or /x‘l .dxz.  Here the rule fails to help us for

a® Ly .
we get 0 which is @, and as we can always subtract an in-

finite constant our answer is really indeterminate. In our
work for some time to come we nced this integral in only
one case. Later, we shall prove that

1 C 1
[—;{- dx = log x, and /m dx =log (x+ a),

. dy 1 1
and if y=log a, i and {{— dv =log v.

If p=w?, then gﬁ}) = 3
If v =mt* then %% = - :}—mz“g.

30. If pv=Rt, where R is a constant. Work the

following exercises. Find 7}; , if v 1s constant.  Answer, — .,
d v

Find dv , if p is constant. Answer, Ij
dt P

The student knows already that the three variables P, v
and ¢ are the pressure volume and absolute temperature of a

“dp

gas. It is too long to write dt when v 1s constant.”  We
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shall use for this the symbol <§}t)) , the brackets indicating that

the variable not there mentioned, is constant.
Find (%) Answer, As p=Rt. v we have (:—%) > =— Rtv—?,
and this simplifies to — py~.
Find (glg) Answer, As v=Rt.p™" we have (Qv) = — Rip=3,
dp dp
and this simplifies to —ep™".

. dt 7 _/dt v
Find <@> Answer, As t= B D W have <dj3> =5
Find the continued product of the second, fifth, and third of

the above answers and meditate upon the fact that

iv) dt dy))____]
) ) ()=

Generally we may say that if w is a function of two
variables # and y, or as we say

u=f(z y);

du
dz
efficient of u with regard to = when y is considered to
be constant.

These are said to be partial differential coefficients.

then we shall use the symbol < ) to mean the differential co-

31. Here is an excellent excreise for students ;—
Write out any function of @ and 3 enll it .

. e
Find {=-).
! da"/
assuming that « Is constant. The symbol for the result is

du
dy.d«’
It will always be found that one gets the same answer if
one differentiates in the other order, that is
d%u d%u
e S e <(3)
dy.dx dx.dy

Now differentiate this with regard to y,
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Thus try w=2a + V4 arty + bay?,
duwy N
(cix = 322+ 0+ 2azy + b2,

d*u
R YR
dy - do 0+ 0+ 2ax + 20y.
. duw o )
Agmn, <Z?/) =0+ 3y +ax® + 2b.cy,
and dfi—:O+0+2aa;+26y
dz . dy ’

which is the same as before.

A student ought not to get tired of doing this. Use other
letters than « and y, and work many examples. The fact
stated in (3) is of enormous importance in Thermodynamics
and other applications of Mathematics to eungineering. A
proof of it will be given later. The student ought here to
get familiar with the importance of what will then be
proved.

32. One other thing may be mentioned. Suppose we
have given us that v is a function of 2 and y, and that

dw R . o,
<(TJ; = ax® + byt + ety + gyt
Then the integral of this is
w= {az’ + by’w +fexty + Fgatyt + 1 (),
where f(y) is some arbitrary function of y. This is added

because we always add a constant in integration, and as y is

regarded as a constant in finding (%> we add f(y), which
may contain the constant y in all sorts of forms multiplied
by constants.

33. To illustrate the fact, still nnproved, that if v = log «,

dy 1
then dr=a" A student ought to take such values of # as 3,

3:001,3:002, 3:003 &c., find y in cvery case, divide increments
of y by the corresponding inerements of «, and see if our rule

holds good.
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Note that when a mathematician writes log # he always
means the Napierian logarithm of a.

34. Example of / th:longrconsmnt.

It is proved in Thermodynamics that if in a heat engine the work-
ing stuff’ receives heat / at temperature ¢, and if ¢, is the temperatire
of the refrigerator, then the work done by a perfect heat engine would

- ¢
be H.%EO,OI‘H<I—?O>.

If one pound of water at # is heated to ¢;, and we assume that
the heat reccived per degree is constant, being 1400 foot-1bs.; what is
the work which a perfect heat engine would give out in equivalence
for the total heat ? Heat energy is to be expressed in foot-pounds,

To raise the temperature from ¢ to ¢4 8¢ the heat is 14008¢ in foot-1b.
This stands for H in the above cxpression. Hence, for this heat we

¢
have the equivalent work & == 14008¢ <1 - ?“> , or, rather,

an
dt
Hence 1W=1400¢ — 1400¢, log ¢ 4- constant.
Now W=0 when ¢,
0=1400¢, - 1400¢, log ¢,+ constant,
therefore the constant is known. Using this value we find equivalent

work for the heat given frowm 7, to #;=1400 (¢, —¢,) — 1400¢, log ;—1 .
o

=1400— 1400—29.

If now the pound of water at ¢ receives the heat Z; foot-1b, (usually
called Latent Heat) and is all converted into steam at the constant
temperature ¢;, the work which is thermodynamically equivalent tothis

. 14 .
is L, <1 - ?O> . We see then that the work which a perfect steam

: 1 . . . .
engine would give out as equivalent to the heat received, in raising
the pound of water from ¢, to ¢, and then evaporating it, is

1400 (1, ~ ¢,) — 14007, log. ;J+ I ( - f#) .
0 1
Exercise. What work would a perfect steam engine perform per
* pound of steam at £, =439 (or 102 Ib. per sq. inch), or 165° C, if 7,=374
or 100°C.  Here Z,=681,456 foot-pounds.
The work is found to be 107,990 ft.-1b. per 1b. of steam. Engineers
usually wish to know how many pounds of steamn are used per hour
.o 107,99
per Indicated Horse Power, # Ib. per hour, means - é’(;)—o w ft.-1b. per
minute. Putting this equal to 33000 we find w to be 18:35 b, of steam
per hour per Indicated Horse Power, as the requirement of a perfect
steam engine working hetween the temperatures of 165° C and 100° C,
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35. Exercises. It is proved in Thermodynamics when
ice and water or water and steam are together at the same
temperature, if s, is the volume of unit mass of stuff in the
higher state and s, is the volume of unit mass of stuff iz the
lower state. Then

L=1t(s,— ) %}g s
where ¢ is the absolute temperature, being 2744 6°C., L
being the latent heat in unit mass in foot-pounds. If we
take L as the latent heat of 1 1b. of stuff, and s, and s, are
the volumes in cubic feet of 1 Ib. of stuff, the formula ig
still correct, p being in Ib. per sq. foot.

I. In Ice-water, s,= 01747, s, =-:01602 at t= 274 (cor-
responding to 07 C.), p being 2116 Ib. per sq. foot, and

L=179 x 1400. Hence ((%) = — 278100.

And hence the temperature of melting icc is less as the
pressurc Iucreases ; or pressure lowers the melting point of
ice ; that is, induces towards melting the ice. Observe the

.o . ) . .
quantitative meaning of L. the melting point lowers at the

dt’
rate of “001 of a degree for an increased pressure of 278 lb.
per sq. foot or nearly 2 lb. per sq. inch.

IL - Water Steam. Tt seems almost impossible to
measure accurately by cxperiment, s, the volmme in cubic
feet of one pound of steam at any temperature. s, for water
is known. Caleualate s, — s, from the above formula, at a fow
temperatures having from Regnault’s experiments the follow-
ing table. [ think that the figures explain themselves.

: | pressure in P ‘ 1 assumed L
C 1 peolute | Ib. per sq. | 1b. per | dp in foot- | & —x,
inch I sq. foot | 8t dt pounds

| k I
100 874 | 1470 211G+

1051 879 | 1733 2524 87°8 ;740,710 2226

1101 354 | 2080 | 2994 | !
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It is here assumed that the value of d; /de for 1057 C. is
half the sum of 815 and 94. The more correct way of
proceeding would be to plot a great number of values of
-9p/8 on squared paper and get dp/dt for 105°C. more
accurately by means of a curve. +

8 — 8, for 105° C. =T740710 = (379 x 87'8) = 2226. Now
8 =016 for cold water and it is not worth while making any
correction for its warmth. Hcence we may take s, = 2228
which is sufficiently nearly the correct answer for the present
purpose.

Example. Find s, for 275° I, from the following, /. being

t°F.‘ 948° ! 357 | 2660 | 9750 | 9840 | 293 ’ 302° ’1

p | 4152 | 4854 | 5652 ¢ 6551 | 7563 | 8608 | 9966 l

Example. If the formula for steam pressure, p=ad® where ¢ and b
are known numbers, and 4 is the temperature measured from a certain
zero which is known, is found to be a useful but incorrect formula
for representing Regnault’s experimental results; deduce a formula for
the volume ¢, of one pound of steam. We have also the well known
formula for latent heat L=c —et, where ¢ is the absolute temperature

d
and ¢ and ¢ are known numbers.  Hence, as Z‘Z
dp . , . ¢
L is bagh L 8y — s, =(c—et)+thadh-1.

dt

which is the same as

After subjecting an empirical formula to mathematical operations
it is wise to test the accuracy of the result on actual experimental
numbers, as the formula represents facts only approximately, and the
small and apparently insignificant terms in which it differs from fact,
may become greatly magnified in the mathematical operations,

36. Study of Curves. When the equation to a new
curve 1s given, the practical man ought to rely first upon his
power of plotting it upon squared paper.
dy
du

gives us a good deal of information.

Very often, if we find or the slope, everywhere, it

If we are told that @, y, is a point on a curve, and we are
asked to find the equation to the tangent there, we have
simply to find the straight line which has the same slope
as the curve there and which passes through w,, »,. The
normal is the straight line which passes through ay, », and
whose slope is minus the reciprocal of the slope of the curve
there. Sce Art. 13.



44 CALCULUS FOR ENGINEERS.

P (fig. 8) is a point in a curve APB at which the
tangent S and the normal PQ are drawn. 0OX and 0Y are

Y
B
P
A
5 s R a X
Fig. 8.

the axes. OR=u, RP =y, tan PSR = %’ the distance SI¢
is called the subtangent; prove that it is equal to y + Z——Z .
The distance R¢) is called the submormal; it is evidently

equal to y ((% The length of the tangent PS will be found

to be y\/l—i— (Zg;, the length of the normal PQ is
dy\? . S dz
y \/1 + (Ja_:) . The Intercept OS is m—yd—y.

Ezample 1. Find the length of the subtangent and sub-
normal of the Parabola vy = ma?

Hence Subtangent = ma? + 2ma or L.
, Subnormal =y x 2ma or 2m=us
Lzample 2. Find the length of the subtangent of y = ma®,

di )
- a1,

da
Subtangent = ma” + mug" = z/n,
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Ezample 3. Find of what curve the subnormal is constant

in length,
y o O 1'1
Yde™ d;?/-(lr‘/'

. 1 . . 1
The integral of oY with regard to y is = ;- 4* + a con-
«w”

stant b, and this is the equation to the curve, where b may
have any value. It is evidently one of a family of parabolas.
(See Art. 9 where &’s and y's are merely interchanged.)

Example 4. The point 2 =4, y =3 is a point in the para-
bola y =42%  Find the cquation to the tangent there. ~ The
. di .
slope 18 d-‘i =} x 327t or, as # =4 there, the slope 1s 2x§ or 3.
The tangent is then, y=m + 22, To find m we have y =3
when @ =4 as this point is in the tangent, or 3=1m+ $ x 4,
so that m 1s 13 and the tangent is y = 14 + .

Ezample 5. The point 2 = 32, y = 3 is evidently a point in
the curve y =2 + 4% Find the equation to the normal there.
) 2 1

dy .
k: 15 — _ 1
o~ %=1l and the

The slope of the curve there is do

slope of the normal is minus the reciprocal of this or — 160.
Hence the normal is y = — 1602, But it passes through
the point &= 32, ¥y = 3 and hence 3 =m — 160 x 32. -

Hence m = 5123 and the normal is y = 5123 ~ 160

Example 6. At what point in the curve y = aa""is there
the slope 67 dy

== = — naa VL

dz

The point is such that its « satisfies — ngz =150 or,
1

na\*+1 . . .
o= (—— . Knowing its z we know its y from the

b
equation to the curve. It is easy to sec and well to remem-
ber that if @, y, is & point in a straight line, and if the slope
of the line is b, then the equation to the line most quickly
written is
Y~—%h_y
& —
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Hence the equation to the tangent to a curve at the
point @, 4, on the curve is

Y=Y the W i
s the T at the point.
And the equation to the normal is

Y= _ do .
o—m the & at the point.

Fazercise 1. Find the tangent to the eurve @y =« at
mn + n N

x+ — y=m +n.
& Y1

the point @y, ¥, on the curve. Answer,
FEaercise 2. Find the normal to the same curve,
n m ,
Answer, —(#—a) — — (y — y,) = 0.
n £y

Egercise 3. ¥ind the tangent and normal to the parabola
y?=4aw at the point where # = «.

Answer, y =z + ¢, y=3u —a.

Erercise 4. Find the tangent to the curve

Y=+ be+ cat + ex®
at a point on the curve z,, v,.
Ty . )
Answer, Y=h + 2eay + et
@ —ay

37. When g increases to a certain value and then

diminishes, this is said to be a maximum value of 7:
; Lok 4 : e
when ¥ diminishes to a certain value and then increages,
this is said to be o minimum value of % It is evident
. dy . . .
that for either case EZEZ =0. Sec Art. 16 and fig. 6.

Fzample 1. Divide 12 into two parts such that the
product is a maximum. The practical man tries and easily
finds the answer. IHe tries in this sort of way. Let z be onc
part and 12 — 2 the other. He tries 2 =0, 2=1, 2 =2, &e,

i every case finding the product. Thus
0] 1| 2 3] 4 ‘ 5
S -

a }
- 3
i

Product

011

20 ' 27 132135 | 36 | 35| 32| 27
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It seems as if « = G, giving the product 36, were the correct
answer. But if we want to be more exact, it is good to get
a sheet of squared paper; call the product y and plot the
corresponding values of # and y. The student ought to do

“this himself.

Now it is readily seen that where % has a maximum or a
minimum value, in all cases the slope of a curve is 0. Find
then the point or points where dy/d is 0.

Thus if a number a is divided into two parts, one of them
# and the other « — &, the product is y = 2 (a — z) or az — a?,
dy
dx
2z =a or x=13a.

The practical man has no great difficulty in any of his
problems in finding whether it is a maximum or a mmimum
which he has found. In this case, let @ =12. Then =6
gives a product 36. Now if @ = 5999, the other part is 6:001
and the product is 35999999, so that « =6 gives a greater
product than # = 5999 or # = 6001, and hence it is a maxi-
mum and not a minimum value which we have found. 'This
is the only method that the student will be given of dis-
tinguishing a maximum from a minimuam at so early a period
of his work.

and =a—2x Find where this is 0. Evidently where

FErample 2. Divide a number « into two parts such
that the sum of their squares is a minimum. If # is one
part, @ —z is the other. The question is then, if

y =ua*+ (a— ), when is y a minimum ?
y =22+ a* — 2ax,

d: .
d_y: 42 — 2¢, and this is 0 when =4«
z
Erample 3. When is the swun of a number and its

1

reciprocal a minimum ? Let @ be the number and y =o +=.
x
When is y a minimum ?
The differential coefticient of = or «~! being — 22, we have
x

d; CoL
({l: 1- ~1;, and this is 0 when z=1.
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The student ought to take numbers and a sheet of squared
paper and try. Trying «= 100, 10, 4 &c. we have

100 110 4] 2 |1 31312

&

!
‘ SR AN (RN M (S S A
|

y | 100001 | 101 |425] 25 | 2 | 25 | 3% | 4%

| i

Now let him plot # and y and he will sce that y is a
minimum when z=1.

FKeample 4. The strength of a rectangular beam of
given length, loaded and supported in any particular way, is
proportional to the breadth of the section multiplied by the
square of thedepth. If the diameter « is given of a cylindric
tree, what is the strongest beam which may be cut from it ?
Let « be its breadth. Then if you draw the rectangle inside
the circle, you will see that the depth is o/ —a*. Hence
the strength is a maximum when y is a maximum if

Y=z (a® —a?),
or Y = (% — a?,

dy C
Elé =« — 327, and this is 0 when » =
In the same way find the stgffest beam which may be cut
from the tree by making the breadth x the cube of the depth
a maximum,
This, however, may wait till the student has read
Chap. ITI1.

Example 5. Experiments on the explosion of mixtures
(at atmospheric pressure) lead to a roughly correct rule

p=83—~32, 1

where p 1s the highest pressure produced in the explosion,
and  is the volume of air together with products of previous
combustions, added to one cubic foot of coal gas before ex-
plosion. Taking p.c as roughly proportional to the work done
1n a gas engine during explosion and expansion ; what value
of & will make this a maximum ?
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That is, when 1s 832 — 3: 222 & maximum 2 Answer, When
83 — G4r=0, or i 1s about 13 cubic feet.

I am afraid to make Mr Grover responsible for the above
result which I Lave drawn from hLis experiments. His most
Interesting result was, that of the above 13 cubic feet 1t is
very much better that only 9 or 10 should be air than that
it should all be air.

Lrample 6. Prove that aw —? is & maximum when

w=1a.

Faowmple 7. Prove that @ —2® is o maximum when

w= 143

Ezample 8. The volume of a circular cylindric cistern
belng given (no cover) when is its surface a minimum ?

Let @ be the radins and y the length: the volume is

T =, SAY e (L)
The surface is T A 2T0Y (2).

When 1s this a mininmm /

Cu . .
From (1), ¢ 13 s WINE this 1t (2) we see that we
: TS )

must make
L 2a ..
TRt~ - @ U,
@

20 s
2w — =0 or @f =,
® ™

@b = = or @=L

The radius of the base is equal to the height of the cistern.
Example 9. Lot the cistern of Ex. 8 be closed top and
bottom, find it of minimum swrface and given volume.
The surface is 2mz? + 27y, and procecding as before we
find that the diameter of the cistern 1s equal to its height.
 Lwample 10, 1f v is the velocity of water in a river and
z 1s the velocity against stream of a steamer relatively to the
water, and if the fuel burnt per hour is o + b2%; find the
P, ¥
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velocity @ so as to make the consumption of fuel a minimum

for a given distance 11, The velocity of the ship relatively

to the bank of the river is # — v, the time of the passage is
m

PRt and thercfore the fuel burnt during the passage is

m ((L + Z)zl"")
e

Observe that « + ba? with proper values given to « and &
may represent the total cost per hour of the steanier, in-
cluding interest and depreciation on the cost of the vessel,
besides wages and provisions.

You cannot yet differentiate a quotient, so I will assume

«=0, and the question reduces to this: when is ——~— a
@ —v

minimum 7 Now this is the same question as:—when is
T—v : 7 : o P : r
—— a maxmium ? or when 1s 27 — pa—# a maximum 7 The
@

differcutial coefficient 1s — 247 4 3y, Putting this equal
to 0 we find & = $u, or that the speed of the ship relatively to
the water is half as great again as that of the current.

Notice here as in all other cases of maximum and mini-
mum that the engiuecr ought not to be satistied merely with
such an answer. o= 4y is undoubtedly the best velocity, it
makes #%/(# — v) w winimum.  But suppose one runs at less
or more speed than this, does it make much difference ¢ Let
v =0, the best w1s 9,

=243 1 =0,

=250 1f & =10,
=256 if @#=8§;

and these figures tell us the nature of the cxtra expense in
case the theorctically correct velocity is not adhered to*.

* Assuming that you know the rule for the differentiation of a quotient
—usually learnt at the very beginning of one’s work in the Calculus, and
without assuming a to be O as above, we have

(v ~v) Bbr*=a+ba?,

202" =8bva’=a ... P (1).
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Ezample 11. The sum of the squares of two factors of «

. L . . . « .
1s & mnlmum, find them. 1f 2 is one of them, - is the
x

, 0P . dy o 2
other,and y = 2’4 — is to be a minimum, it e aud

« - " A
this is 0 when o* = @2 or & =a.

. Example 12, To wrrange » voltaic cells so as to obtain

the maximum current through a resistance E. Let the ey
of each cell be ¢ and its internal resistance ».  If the cells
are arranged as @ in scries, n/w in parallel, the EALE. of the

. o . . &
battery is we, and its internal resistance is ~— . Heuce the
a k13
. a-r
current ' = g¢ <~— + R> .
n

As the student canuot yet differentiate a quotient, we
shall say that ¢/ is & maximum when its reciprocal is a
R

.. . xr ar
mmimui, so we ask when is [~ + R)+ae or =+ 27 g
n

H K4

Given the valnes of «, b and v the proper value of i can be found by trial.
Thus let the cost per day in pounds be 30+ x% so that a=30, b= and
let v=6. Find 2 from (1) which becomes

28--902-300=0 ........cooiiii (2).

1 find that £ =113 is about the best answer.

This is a cubic equation and so has three roots. But the engineer needs
only one root, he knows about how much it ought to be aud he only wants
it approximately. He solves any equation whatsoever in the following
sort of way.

Let 23--942—300 be called f{r), - The question is, what value of x
- makes this 0?2 Try =10, f () turns out to be - 200,

@ g 108 | 13 11

Fle) | 200 | 860 | 4276 | -57 | —6

whereas we want it to be 0. Now I try z=8, this gives — 360 whicl: is
further wrong. Now I try 12 and T get 176 co that o evidently lics between
10 and 12, Now I try 11 and find ~57. It is now worth while to use
equared paper and plot the curve y=f(z) between =10 and x=12. One
can find the true answer to any number of places of decimals by repeating
this process. In the present case no great accuracy is wanted and I take
@=11'3 85 the best answer. Note that the cld answer obtained by assuming
a=01is only 9. A practical man will find much food for thought in thinking
of these two answers. Note that the captain of a river steamer must always
be making this sort of calculation although he may not put it down on
paper.

113

4—2
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. e . U S . o
nminunum ¢ s differential cocfficient is — — = and this 15 0
2, n L
zr L, . .
when R = o which is the internal resistance of the battery.

~ Henee we have the rule: Arrange the battery so that its
internal resistance shall be as nearly as possible equal to the
external resistance.

Laumple 13, Voltaic cell of ELF. = e and internal re-
. . . . e
sistance »; cxternal resistance . The current is €= - TR
»
The power given out is P= R(C?% What value of R will make
eﬁ

=0R.- - .

(7. + R).'
To make this suil such work as we have already done we may

. . 4 Ry . .

say, what value of B will make V(ngl 2 minimum, or
74+ 2Ry + R? N .
e Toor 12814 2, + R a minimumn ?

Putting its differential coefficient with regard to R equal
to 0 we have —»2R—* 41 =0 so that R =+, or the external
resistance ought to be equal to the internal resistance.

£’ a maximum ? P

Lizample 14, What is the volume of the greatest box
which may be sent by Parcels post? Let « be the length,
y and z the breadth and thickness. The P. O. regulation is
that the length plus girth must not be greater than 6 fees.
That is, we want v=wyz to be a maximum, subject to the
condition that #+2(y +2)=6. It is evident that ¥ and 2z
enter into our expressions in the same way, and hence y=2z
So that @ + 4y = 6 and v=wy* is to be a maximum. Here as
2 =04y we have v= (6 — 4y) 3° or 642 — 4y* to be a maxi-

mum. Puttin (JE =0 we have 12y — 1242=0. Rejecting
g dy Y ¥ ] g

y =0 for an obvious reason, ¥ = 1, and hence our box is 2 feet
long, 1 foot broad, 1 foot thick, containing 2 cubic feet.

Find the volume of the greatest cylindric parcel which may

be sent by Post. Length being ! and dizmeter d, [ + 7wd = 6
. . 4

and ’g Id*is to be a maximuin, Answer, [ =2 feet, d = - feet,

volume = 8§ =7 or 2°55 cubic feet.
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Ezample 15. Ayrton-Perry Spring. Prof Ayrton and
the present writer noticed that in a spiral spring fastened at
one end, subjected to axial force F, the free end tended to
rotate. Now it was easy to get the general formula for the
elongation and rotation of a spring of given dimensions, and
by nothing more than the above principle we found what these
dimensions ought to be for the rotation to be great.

Thus for example, the angle of the spiral being a the
rotation was proportional to sin« cosa. It at once followed
that a ought to be 435"

Again, the wire being of elliptic section, # and y being
the principal radii of the ellipse, we found that the rotation
was proportional to

vty 8
x:;yz Sa !/:: *

To make this a maximum, the section (which Is propor-
tional to wy) being given. Let 2y =s, a constant, then the
above expression becomes

5. .. -
: < - o, and this 1s to be a maximum.
sy*

3
st 5

Here we see that there is no truc maximum. The larger
we make y or the smaller we make y (for small values of y
the rotation 1s negative but we did not care about the direc-
tion of our rotation, that is, whether it was with or against
the usual direction of winding up of the coils) the greater is
the rotation. This is how we were led to make springs of
thin strips of metal wound in spirals of 45°. The amount
of rotation obtained for quite small forces and small axial
elongations is quite extraordinary. The discovery of these very
useful springs was complete as soon as we observed that any
spring rotated when an axial force was applied. Students
who are interested in the practical application of mathematics
ought to refer to the complete calculations in our paper
published in the Proceedings of the Royal Society of 1884.

Ezample 16. From a Hypothetical Indicator Diagram
the indicated work done per cubic foot of steam is

w = 1ddp, (1 4 log») — 14dop, — 2,
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where p, and p, are the initial and back pressures of the
steam ; » is the ratio of cut off (that is, cut off is at 1th of
o

the stroke) and z is a loss due to condensation in the
cylinder. & depends upon 7

Ist. If @ were 0, what value of » would give most
indicated work per cubic foot of steam ?
. 4
We must make @lé:(), and we find IL[L—FI)l—léfl*p;;=0

dr
or =Lt If it is brake energy which is to be a maximum
)

per cubic foot of steam, we must add to p; a term represent-
ing engine friction.

2nd. Mr Willans found by experiment in non-condensing

engines that 7':2) ]_;'10 gave maximum Indicated w. Now
3
. . 1 4 i
if we put in the above o we have Lidp, — Tddp, -—(]—0 =0,
dr 7 dr
. de  144p, , da .
So that = 2;17 (ps +10) ~ 144p, o1 = 1440. So

that « = 14407 + constant. Hence Mr Willans’ practical rule
leads ws to the notion that the work lacking per cubic foot of
steam Is a linear function of 7.

This is given here merely as a pretty exercise in maxima
and minima. As to the practical enginecring value of the
result, mtuch might be said for and against. It really is as if
there was an extra back pressure of 10 Ib. per sq. inch which
represented the effect of condensation,

My Willans found experiimentally in a non-condensing
engine that the missing water per Indicated Horse Power
hour is a linear function of + using the same steam in the
boiler, but this 15 not the same as our . We sometimes
assume the ratio of condensed steam to indicated steam to
be proportional to log 7, but a linear function of # will agree
just as well with snch experimental results as exist.

Erample 17. The weight of gas which will flow
per second through an orifice {rom a vessel where it 1s at
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pressure p, into another vessel where it is at the pressure p

I t
is proportional to a¥ \/ 1—av; where ais p/p, and v is a
known constant, when is this a maximum ? That is, when is
8 1
2 14l . . .
oY ~a Y a maximum? Scc Art. 74, where this example
is repeated.

Differentiating with regard to « and cquating to 0 we
find y
2 >v—1

ren (i

In the case of air y =141 and we find p = '527p,, that is,
there is a maximum quantity leaving a vessel per second
when the outside pressure is a little greater than half the
inside pressure.

Bzample 18.  Taking the waste going on in an electric
conductor as cousisting of (1) the ohmie losg; the value of
C*r watts, wherc » is the resistance in ohms of a mile of going
and coming conductor and ! is the cuwrrent in amperes;
(2) the loss due to interest and depreciation on the cost of
the conductor. I have taken the price lists of manufacturers
of cables, and confractors’” prices for laying cables, and I find
that in every case of similar cables, similarly laid, or suspended
if overhead, the cost of a mile of conductor is practically
proportional to the weight of copper in it, that is, inversely
proportional to the resistance, plus a constant. The cost of
it per year will depend upon the cost of copper per ton,
multiplied by the number taken as representing rate per
cent. per anmum of interest and depreciation. We can state
this loss per year or per second, in money per year or per
second and the ohmic loss is in watts, We cannot add them
together until we know the mouney value per year or per
second of 1 watt. There are three things then that decide
the value of the quantity which we call # I prefer to
express the total waste going on in watts rather than in

pounds sterling per annum and I find it to be y = (% + £ +0,
o

where b is some constant.  The value of ¢ may be taken as
anything from 17 to 40 for the working of exercises, but
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students had better take figures of their own for the cost of
power, copper and interest*.

For a given current (), when is the y, the total waste, a
minimum ? that is, what is the most economical conductor for

a given current ? %y = (J—f and this is 0 when r= (7
Thus if t=40, »= ‘%) .

Now if @ is the cross section of the conductor in squarc
. ‘04 ..
inches, »=-— nearly, so that '=1000a, or it is most cconorm-
a
ical to provide one square inch of copper for cvery 1000
amperes of current.
When « is a function of more than one independent

* The weight of a mile of copper, a square inches in eross section, is to
be figured out. Call it ma tons. If p is the price in pounds sterling of a
ton of copper, the price of the cable may be taken as, nearly, pma + some
constant. If R is the rate per cent. per annum of interest and depreciation,
then the loss per annum due to cost of cable may be expressed in pounds as

2 ma+some constant.  If £1 per annum is the value of w watts, (ob-
i00? 1

serve that this figure w must be evaluated with cave. If the cable ig to
have a constant current for 24 hours a day, every day, w is easily evaluated),
D

then the cost of the cable leads to a perpetnal loss of 1—010 wpma + some

. 2 i . 04 . Tepm
constant. INow taking a= , o Ve see that our 2 is 3500

Men take the answer to this problem as if it gave them the most econom-
ical current for any conductor under all circumstances. DBut although the
above items of cost are most important, perhaps, in long cables, there are
other items of cost which are not here included. The cost of nerves and
eyesight and comfort if a light blinks ; the cost in the armature of a dynamo
of the valuable space in which the current has to be carried,

If a man will only write down as a mathematical expression the total
cost of any engineering contrivance as a function of the size of one or more
variable parts, it is quite easy to find the best size or sizes; but it is not
always easy to write down such a fanction. And yet this is the sort of
problem that every clever engineer is always working in his head; increasing
something has bad and good effects; what one ought to do is a question in
maxima and minima.

Notice also this. Suppose we find a value of 2 which makes 7 & maxi-
mum; it may be, that quite different values of = from this, give values of
% which are not very different from the maximum value. The good practical
engineer will attend to matters of this kind and in snch eases he will not
insist too strongly upon the use of a particular value of .
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variable, say « and y. Then C%) =0, y being considered
constant during the differentiation, and <%> =0, @ being

considered constant during the differentiation, give two equa-
tions which enable the values of # and y to be found which
will make % a maximum or a minimum. Here, however,
there i1s more to be said about whether it is a minimum or
a maximum, or a maximum as to # and a minimum as to y,
which one has found, and we cannot here enter into it.

Sometimes in the above case although « is a function of
% and y, there may be a law connecting @ and y, and « little
exercise of common scnse will enable an engineer to deal
with the case. All through our work, that is what is wanted,
no mere following of custom; a man’s own thought about his
own problems will enable him to solve very difficult oncs
with very little mathematies.

Thus for example, if we do not want to find the best conductor
for a given current of Electricity ; if it is the Power to be
delivered at the distant place that is fixed. If the distance is # miles,
and the conductors have a resistance of » ohms per mile (go and return),
if 7} is the potential, given, at the Generating end, and ¢ is the
current. Then the potential at the receiving end being 17; ¥, — V= (Yur.

)

- s q o -
CV=2L1is fixed, and the cost per mile is y=( ~/'+;‘...(1), where ¢ is
known. When is 7 a minimun?

Here both (! and » may vary, ut not independently. V=71, Cr
and P=CV-- ("np...(2). One simple plan is to state y in terms of »

'V T P
alone or of ¢/ alone. Thus 7 from (2) is r= '~(' Lt (3.
' 2, )

Substituting for this in (1), we get

(/'l'];l’+ (% "
= - THF gy reerrectiesiissnneiiions .
Y=y r-r /

Here everything is constant except (7, so we can find the value of ¢
to make y a minimum, and when we know ¢ we also know » from (3).

At present the student is supposed to be able to differentiate only
a™ 50 he need not proceed with the problem until he has worked a few
exercises in Chap. TT1.*

v * '_'I[‘/o di(ﬁ('e;'entilztte) (/é) is & very easy exercise in Chap. III. and leads to
y 7 = P) 22 Cn — 2C2n Y. . .
ac= Tzl =1 '(A()j‘f’;ff’?é ---" 1, and on putting this equal to 0 we obtain

the required value of €. It would not be of much use to proceed further
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In my Cantor loctures on Hydraulic Machinery, [ wrote out an
expression for the total loss in pounds per annum in Hydraulic
transmission of power by a pipe. I gave it in terms of the
maximum pressure, the power scut in, and the diameter d of the pipe.
It was easy to choose d to make the total cost a minimum. If how-
ever I had chosen p, the pressure at the receiving end as fixed, and the
power delivered as fixed, and therefore @ the cubic feet of water per
second, and if T had added the cost of laying as proportional to the
square of the diameter, I should have had an expression for the total
cost like 3 202

y=a Zgo— +b Z*C?i +cld?

when the values of @, b and ¢ depend upon the cost of power, the
interest on the cost of iron, &c. This is & minimum when its differen-
tiul coefficient with regard to d is zero or 2uvid=>5al(}’d=6+3bBQPd 4,
and d can be obtained by trial. The letters b and ¢ also involved the
strength of the material, so that it was possible to say whether wrought
iron or cast iron was on the whole the cheaper. But even here a term
is neglected, the cost of the Engine and Pumps.

The following cxawple comes in conveniently here, although it is
not an example of Maximum or Minimum.

An Electric Conductor gives out continuonsly ¢ amperes
of current in every mile of its length. Let = be the distauce of any
point in miles from the end of the line remote from the generator, let
C be the current there and 17 the voltage. Let r ohms per mile be the
resistance of the conductor (that is, of one mile of going and one mile
of coming conductor). The current given out in a distance dz is 8¢,

dC . dC . .
or rather dx T and the power is 8x. V. 79, so that if 2 is the
dee da:
power per nile (observe the meaning of peir),
P=V O e e .
dx
Also if V7 is voltage at » and F48V at z+8x ;-

As the rosistance is . 8.« the current is 8 V-7 . 8., or rather, since
these expressions arc not correct until da is supposed smaller and
smaller without limit,

rar

r dr

unless we had numerical values given us. Thus take V; =300 volts,
n =10 miles, P=20000 watts, t*=1600, find C and then 7.

Consult & Paper in the Journal of the Institution of the Socicty of Tele-
graph Engincers, p. 120, Vol. xv. 1836, if there is any further difficulty.

It has not yet been sufficiently noted that if ¥, and P and » are given,
there is a limiting length of line

n=1>2/4rP,
and when this is the ease P is exactly equal to the ohmie loss in the econ-
ductor,
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ac

As s—=a, C=arif ('is 0 when =0,
de

Hence if » is constant (2) becomes

dav . ;o . \
rar= 80 that V= Vp+draa2 .. (3),

dx
¥V, being the voltage at the extremity of the line.
(1) becomes P=alV+dra2a®..con.n . v (4).

Taking Fy=200 volts, ¢ =25 amperes per mile, 7=1 ohm per mile,
it is easy to see by a numerical example, how the power dispensed per
mile, and the voltage, diminish as we go away from the generator.

e VP
e ———— | _
0 200 5000
121251 5312
2250 | 6250
3 ) 3125 | 7812

P 400 | 10,000

If P, is the voltage at the Dyuamo and the line is n# miles long
Vi=V,+% arn? from (4).
The power per mile at the extremity being 7=« T, if we are given
Ty and £ to find 17, we shall find that 2 cannot be greater than
Ve 200
and this gives the limiting length of the line.

If we wish, as in Electric traction to get a neuarer approach
to uniform /2’, let us try

C=ar—=ha" . (5),
where «, b, ¢ arc constants,
1 dV
v e T b,
V= T4 4 ra — TR T (8).
= e+1

ac . .
As P= V{ﬁ" or V{a—cbat-1), we can easily determine the three

constants a, b, ¢ so that I shall be the same at any three points of
the line. Thus let #=1 olun, 1,=100 volts, and let =10000 watts,
where =0, £=1 mile, =1} miles.

We find by trial that
=100 - 14°THe2 15,
and from this it is easy to calculate ¢ at any point of the line.
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Ezample 19. A machine costs @ + by, its value to me is
1)1'01)0111011@1 to wy, find the best values of « and y if the cost
1s fixed.  Here 2y is to be a maximum. Let ¢ = az + by, so

¢« . C a . .
that y=- — 7, and @y is ;o — 7 2% This is a maximum
b b b b
¢ a c
when 3= 2 o we=g. Hence ax = by = ¢/2 makes 2y a
2
maximum.

Erample 20. 'The electric time constant of a cylindric

coil of wire is approximately
w=mayz/(ax + by + cz),

where « Is the mean radius, y 1s the difference between the
internal and external radii, z 1s the axial length and e, «, b, ¢
are known constants.

The volume of the coil is 27rays.

Find the values of 2, y, z to make v a maximum if the
volume of the coil is fixed. Let then 27 .2yz =g ; when is
a

c . ) . o
— 4+ —+-— aminiwmum ? “That is, substituting for 2z, when
yz @z oy
ge

18 az + by + 70 =, say, o minimam 4 As @ and g are per-
2y .

. ) dv dey
fectly independent we put (;&) =0 and ((?y) =0,

or o+ 0 — ge

S/ 2mryat -
4 ge
b3 and O+ 06— - =),
______ I T 2aracy?
————————————— e mm e e
gc
o that  afy = g R
" J a2
Fig. 9. 5 gc
ol Yyt =
" b2’
d & . av L ur_ 9o
an ;—(‘i()l :l/-——~;, [) (1271_,

3 .

. bge &/ bge

anr = = e
a2 a2’
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38 The chain of a suspension bridge supports a load
by weans of detached rods; the loads are about equal and
equally spaced. Suppose a chain to be really contmuously
loaded, the load being w per unit length horizontally.  Any
very {lat uniform chain or telegraph wire is nearly in this
condition.  What is its shape /  Let O be the lowest point.
0X is tangential to the chain
and horizontal at 0. O0Y is kf
vertical. Let £ be any point
in the chain, its co-ordinates
being @ and 4. Cousider the T
equilibvium of the portion x p
OP. OP 1is 1 equilibrium,
under the action of 7%, the v
horizontal tensile force at 0, T, 8
T'the inclined tangential force l X

wX

at P and wa the resultant
> et oy

lgad upon O acting vex ¥ig. 10.
tically.  We employ the laws
of forces acting upon rigid bodies. A rigid body ix a body
which is acted on by forces and is no longer altering its
shape.

If we draw a triangle whose sides arve parallel to thesce
forces they are proportional to the forces,

and if @ 1s the imeclination of 7 to the ¢ Jo A
. T,
horizontal ~ %l=cos 6. ............ (1},
1 wX £
and Q# =tanf........ (2),
1,
L. dy dy w . Fig. 11,
but tan @ is (7;/ , w0 that El!a{' = (3); 8
h S 1w/___,+. 4,
ence, integrating, Y= 27 a® + constaut,

Now we sce that y is 0 when « is 0, so thai the constant
is 0. Hence the equation to the curve is

1w
yzzjﬁ.’l}“ ........................... (‘i),

40
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and 1t is a parabola. Now tané is o S0 that sec*d 1s
0
w?

. —
1_*_71%302. And as T'= T sec 8, T:To\/l+ﬁ
1y T

From this, all sorts of calculations may be made. Thus
if [ is the span and D the dip of a telegraph wire, if the whole
curve be drawn it will be seen that we have only to put in
(4) the information that when & =4, y= D,

Lawl, . wb
Q‘EIZ or IU—SD)

and the greater tension elsewhere is easy to find,

or D=

In the problem of the shape of any uniform chain, loaded
only with its own weight, the integration is not so easy. I
give 1t in a note*.  When 1t is so Hat that we may take the

* The integration in this note requires a knowledge of Chapter III

If the weight of the portion of chain OP, instead of being wz is ws,
where 5 is the length of the curve from O to P, the curve y is called the
Catenary, Kquation (3) above becomes

dy ws s dy s
e T; , or letting 1'y=1wc, dp T e (1).
If 8s is the length of an elementary bit of chain, we see that in the limit

(092 = (5% + (3y)?

so that A \/<,d;"'>'+1,
dy dy
and hence %‘g =-,— -, This being integrated gives y+c:~/c”m...(2),
A/
the constant added in integration being such that s=0 when y=0. From 2

we find s*=y2+ 2y¢...(3), and using this in (1), we have

o)
It

dx _ c o
&y Nyrreye
the integral of which is

r=c¢log? ,

Y+ etny 2y
[

as when y=0, x=0, if 0 isthe origin, no constunt is to be added. Putting
this in the exponential form

ce’/c:y +e+ \/!j‘3 +2y¢,
transposing and squaring we find
y +c:».1_,c(ex/c+e_x/c),



HEATING SURFACE OF BOILER 63

Joad on any piece of it as proportional to the horizontal pro-
jection of it, we have the parabolic shape. +

39. Efficiency of Heating Surface of Boiler.
If 11b. of gases in a boiler flue would give out the heat
0 in cooling to the temperature of the water (6 may be taken
as proportional to the ditference of temperature between
gases and water, but this is not quite correet), we find from
Peclet’s experiments that the heat per hour that flows through
a square foot of flue swrface is, roughly, m@:. Let 0 =6, ab
the furnace end of a flue and 6 =46, at the chimney end.
Let us study what oceurs at a place in the flue.

The gases having passed the arca S in coming from the
furnace to a ccrtain place where the temperature is 8, pro-

Or changing the origin to a point at the distance ¢ below 0, as at O in fig. 12
where SPis i  and BP is a, we have

y=5e (en'/u +€ —a’/c) .............................. 4).
This is sometinics called §' =c¢coshuie,
Using (1) we find e (e —.r/v)’
sometimes called s=¢sinhufe.
Q

R —

A

O S

Fig. 12

Note that tables of the values of sinh and cosh « have been published.
Returning to the original figure, the tension at P being T,

T 4B s ds
s T BT 30 and from (3), . (—w:y +e

T y4e
%o that v :/‘s_ . Henee I'=w(y+c) or P=wy’
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ceed further oy ta place where S has become N+ 88 and 0
has become 04850 (really 86 is negative as will be seen).
A steady state 1s maintained and during onc hour the gases
lose the heat mg?. 89 through the arca 8S. If during the
hour TV Ib. of gases lost at the place the amount of heat
— 1. 80, then

— W.860 =mé*. S,

75 w1 ,
r rather s T TTVUTURRUUURRUURRO 1).
o b a0~ w6 )
That is, integrating with regard to 6,
w1
N o= e S G 2),
m 0 +o (=)

where ¢ 1s sone constatt,
Putting in 6=46, the temperature at the furnace cnd
when S=0, we have
Wl w1
U= z

= — s 4¢ or g=—— -
m 0, m 6’

so that (2) becomes

L .
)\ = m‘ (g) - 91) ..................... (-;).

This shows how @ diminishes as & increases from the
furnace end, and it is worth a student’s while to plot the
curve connecting S and 8. If now S is the whole area of
heating surface and 8 = 8, at the simoke-box end,

. W < 1 1 )

92 91/
The heat which one pound of gases has at the furnace
end is 6,, it gives up to the water the amount 6, ~6,.
Therefore the efficiency of the heating surface may be
taken as
i Hl - 0‘.:

== g, e (5),

and 1t follows from (4) that

1
oS
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Now if W’ is the weight of coals buint per hour;
W=13W’ if air is admitted just sufficicnt for complete
combustion ; W= about 20W’ in the casc of ordinary
forced draught ; W =about 26W’ in the case of chimney
draught. In these cases 6, does not seem to alter inversely
as W, as might at first sight appear: but we do not know
exactly how 6, depends upon the amount of excess of air ad-
mitted. We can only say that if W' Sis the weight of coal per
hour per square foot of heating surface and we call it w, there

seems to be some such law as K = .- , where o depends

1+ aw
upon the amount of air admitted. In practice it is found
that @ = 05 for chimney draught and 0-3 for forced draught,
give fairly correct results. Also the numerator may be taken
as greater than 1 when there are special means of heating
the feed water.

Instead of the law given above (the loss of heat by
gases in a flue o 6%), if we take what is probably more likely,
that the loss 1s proportional to 0,

Then (1) above becomes

ds w1

d—g = - ‘/'—); —é ........................ (1),

w :
or S=— pon log @ + constant ............... (2).

Let 0= 0, at furnace end or when S= 0 so that our con-

stant 1s Zi;log 6, and (2) becomes
}

If S is the area of the whole flue and 6, is the temperature
at the smoke-box end, then

w 0,
S= P log /AL ILETSPPP PRI PR PRPR (4),
Sm
eV = Zi ,
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The efficiency =" SRR (5)
1

0 _Sm
becomes F=1 ———52= 1—e W (6).
1

Or if w is the weight of fuel per square foot of heating
surface as above (6) becomes

E=1l-¢ .. ORI ¢ )

40. Work done by Expanding Fluid*. If p is the
pressure and » the volume at any instant, of a fluid which
has already done work 1" in expanding, one good definition of

. amw . . .
pressure Is p=-7= ... (1), or in words, pressure is the rate at which

work is done per unit change of volume. Another way of putting this
is; if the fluid expands through the volume 8» there is an increment

w
81 of work done so that p.8sv=41, or pz%
strictly true when 8» is made smaller and smaller without limit, and so
(1) is absolutely true. Now if the fluid cxpands according to the law

pri=ec, a constant ... (2); p=cos~t and this is the differential coefficient
7
of T with regard to » or, as we had better write it down, (y—‘:cv"’.

, but this is only

dv
‘We therefore integrate it according to our rule and we have
r__te —g+1 4
U-_s+1w +C Cerrereneans (3),

where € is some constant. To find ¢, let us say that we shall only
begin to count W from v=v»,. That is, W=0 when v=v,. Then

4

¢ ]
0= i » =4 () so that ('=— 1= R
Insert this value of ('in (3) and we have
. ¢ - -
W =i (=017 T (4),

which is the work done in expanding from »; to 2.
Now if we want to know W when v=v,, we have

¢ -
Wiy= = (07— 00 e, e (B).

* Observe that if for p and v we write y and = this work becomes very
easy.
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This answer may be put in other shapes. Thus from (2) we know that
G=p0;° OT povy,
4

2N
80 that ]Vm: 1,118 (Z’zl-s_ l"ll—s),

y 20 vy 1-9
. e (5

.\ 8=1
or iifm:f#j;i {1 - <11%> } ....... i (6),

a formula much used in gas engine and steam engine caleulations.

There is one case in which this answer turns out to be useless; try
it when s=1. That is, find what work is done from », to », by a fluid
expanding according to the law (it would be the isothermal law if the
fluid were a gas)

pr=c.

If you have noticed how it fails, go back to the statement

You will find that when you integrate &™ with regard to m, the
general answer has no meaning, cannot be evaluated, if m= -1. DBut
1 have already said, and T mean to prove presently that the integral of
z1lis loga. So the integral of (7) is

W=clog v+ C.
Proceeding as before we find that, in this particular case,

Wig=c10g 2 oo\ ioverecrern, e (8).
1

41. Hypothetical Steam Engine Diagram.

Let steam be admitted to a cylinder at the constant pressure p,,
the volume increasing from 0 to P
?, in the cylinder. The work done
is #,p;. Let the steam expand
to the volume v, according to the
law pr*=c. The work done ig
given by (6) or (8). Let the back
pressure be p,, then the work done
n driving out the steam in the
back stroke is pgw,. We neglect o
cushioning in this hypothetical < il ]
diagram. Let v,—v, be called » Py
the ratio of cut-off. Then the T
nett work done altogether is Fig. 13.

- - V] -

-
P10y +'§i i {1~918 - pyry.
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If p, is the effective pressure so that Pety 1s equal to the above nett
work (pe is measured from actual indicator diagrawns, ag the average
pressure); putting it equal and dividing by «, we have on simplifying

Doy — e LU ey
pe=piy+ B (g g
PN\
Ts-1 <7' ! ) Ps.
In the special case of s=1 we find Pe=p, ljjl?gfa;o3 in the same
o

way.
‘a
42. Definite Integral. Definition. The symbol / J(@) . da
b

tells us:—“ Find the general integral of £ («); insert in it the
value @ for @, insert n it the value b for @ ; subtract the
latter from the former value*.” This is said to be the

b
* The symbol} / w, deody... (1), tells us to integrate « (which is a
@ Jfn funection of z and y), with regard
Y -~ to y, as if x were constant; then
& insert F(z) for y and also f(z) for
A,f‘ y and subtract. This result is to

be integrated with regard to @
and in the answer a and b are in-

gc*) serted for z and the results sub-
y tracted.

I If u=1, dz. dy evidently
means an element of area, a little

vectangle. The result of the first
process leaves

still to be done. vidently we
have found the area included between the curves y=I'(z) and y=f(z) and
two ordinates at x=« and w=>. Beginners had better always use form (2)
in finding areas, see fig. 14.

II. If uis, say, the weight of gold per unit arca upon the above men-
tioned arca, then w.dx.dy is the weight upon the little elementary area
dz . dy, and our integral mcans the weight of all the gold upon the area I
have mentioned.

When writers of books wish to indicate generally that they desire to
integrate some property u (which at any place is a function of z, ¥, z),
throughout some volume, they will write it with a triple integral,

-

jj/u.da;.dy.dz,

and summation over a surface by / / v.de.dy.
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integral of #(x) between the limits « and b Observe now
that any constant which may be found in thc general
integral simply disappears in the subtraction.

In integrating between limits we shall find it convenient
to work in the following fashion.

a

Example, to find f @*.dx. The general integral is ia?
2

o a

and we write j a?. dxz[

m} =100 ~ 11,
b b
Symbolically. If F(x) is the general wtegral of j'(#)
then f J(@).de= [ ra (z)] = I (a) — F(b).
b b

Note as cvidently true from our definition, thab

1= [ 0

and also that
fb S@).dz =fb J@).dx +]c J(x).da

43. Area of a curve. Let y of the curve be known as
some function of # and
let PS be the curve. It v
18 required to find the
area MPQT.

Nowif thearca HPQT
be called 4 and 07T =,
QT =y, OW =2 4 8,
WR=y+38y, and the area
MPRW be A+ 84 then o M TW N x
84 =arca TQRW. Tig. 15,

Indeed some writers use ffv . dS to mean generally the summation of

v over an arca, and [w .ds to mean the summation of w along a line or

what is often ealled ‘the line integral of w. The line integral of the pull
exerted on a tram car means the work done. The surface integral of the
normal velocity of a fluid over an arca is the total volume flowing per
second. Enginecrs are continually finding line, surface and volume integrals
in their practical work and there is nothing in these symbols which is not
slready perfectly well known to them,
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If the short distance QR were straight,
84 = 6w (1Q + BW) =8z (y + 48y).

Therefore 8é: y 4+ 8y, as ¢ gets smaller and smaller

oz

and in the limit Ellf A et (1)

Heunce A is such a fanction of # that y is its diffcrential
coefficient, or 4 is the integral of y.

In fig. 16 CQD is the curve y =« + ba? {mgl MG is the
v D curve showing

A =C+ax+ Lba?,
so that 4 is the integral of
y.  In what sense does 4
represent the area of the
curve CD? The ordinate
of the A curve, GT, repre-
sents to somescale or other,

the area of the y curve
E/i MPQT from some s{andard
Fig. 16. ordinate MP.

The ordinate TQ represents to scale, the slope of
EF at G. Observe, however, that if we diminish or increase
all the ordinates of the A curve by the same amount, we do not
change its slope anywhere, and ¥, which is given us, only tells
us the slope of 4. Given the y curve we can thercfore find
any number of A curves; we settle the one wanted when we
state that we shall reckon arca from a particular ordinate
such as MP. Thus, in fig. 16 if the general integral of y is
F)y+e 1f we use the value 2= OM we have, area up to
MP from some unknown standard ordinate = ¥ (0M) + c.

Taking 2= ON, we have area up to NR from some
unknown standard ordinate = F(ON)+c. And the area
between MP and NR is simply the difference of these
F(ON)— F(OM), the constant disappearing.

X

"ON
Now the symbol J y . d tells us to follow these instruc-
o

tions :—integrate 1 ; insert ON for « in the integral ; insert
OM for 2 in it; then subtract the latter. We sce thierefore
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that the result of such an operation is the area of the curve
between the ordinate at OM and the ordinate at ON.

If y and x represent any quantities whatsoever, and a
curve be drawn with y as ordinate and « as abscissa, then the

integral f y . dw is represented by the area of the curve, and

we now know how to proceed when we desire to find the sum
of all such terms as y . 62 between the limits 2= and v =a
when 8z is supposed to get smaller and smaller without
Hmit.

Ezample. Find the area enclosed between the parabolic
curve 0OA, the ordinate AB
and the axis OB. Tet the Y
equation to the curve be

where PQ =y and 0Q=2 M 5 A
Let QR = 8z &
The area of the strip PQRS

ig more and more nearly

axt, du,

X
as 8z is made smaller and © QR B
smaller; or rather the whole Tig. 17.
0B
area 1s [ azt . dx, which is
<0
]
« [ §1”] =20, 0B% (2).
0 —

Now what is @ in terms of AB and OB? When y=AD,
#=0B. Hence by (1)

AB=qu. OB so that ¢ =
2 4B
3 0Bt
that is, Zrds of the area of the rectangle OMAB.

' Observe that the area of a very flat segment of a circle is
like that of a parabola when OB is very small compared
with BA.

AB
0B

Therefore the area = OBt=2AB.0UB;
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Erercise 1. Find the area between the curve y=mx®
and the two ordinates at z =g and z = b.

The answer is
b ; b
m mo
{ mz" . dy = al-n | = (b1~n__ aI-n)_
Ja 1—mnl, 1-—n

Observe (as in Art. 40) that this fails when n =1 that
is, in the rectangular hyperbola.

In this case the answer is

v b b
mf ;.dx=m { logx] =m loga.

a a@

The cquation to any curve being
y=a+bx+ca®+ ex® + far,
the arca is 4 =ax + Jba? + lca® + leat + 1 o2,

Here the area up to an ordinate at = is really measured from
the ordinate where 2 =0, because 4 =0 when 2=0. Weo
can at once find the area between any two given ordinates.

Ezercise 2. Find the area of the curve y=a v between
the ordinates at # =a and 2 = 8.

8 8 5
af x??.dx=a[§x%:| :§§(B%~a§).

Frercise 3. Find the area of the curve ya&* =« between
the ordinatcs at # =« and = 8.

8 R .
Answer: « [ ™ de=ua I:— w*l} =a(at—B7).
Joa @

4. Work dope by Expanding Fluid. When we use
definite integrals the work is somewhat shorter than it was in Art. 40.
Yor if p=cs~ %, the work done from volume », to volume vy Is

(v, vy 1 c
cv=8 . dvorel ——wl-8for . (ryt=3—w1-9)
v 2 l—3 l—s'~

The method fails when s=1 and then the integral is

Uy ,
e| logev [=cloge =,
vt vy
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45. Centre of Gravity. Ouly a few bodies have
centres of gravity. We usually
mean the centre of mass of a
body or the centre of an area.

If each little portion of a
mass be multiplied by its dis-
tance from any plane, and the
results added together, they arc
equal to the whole mass multi- Fig. 18.
plied by the distance of its centre, '

, from the same planc. Expressed algehraically this is

RV
[—H}

Sma =Z3m.

If each little portion of a planc area, as in fig. 18, be
multiplied by its distance from any linc in its plane and the
results added together, they are equal to the whole area
multiplied by the distance of its centre # from the same line.
Expressed algebraically this is  Zaz = #3a.

Ezample. Tind the centre of mass of a right cone. It
is evidently in the axis OB of the
cone. Let the line 04 rotate
about 0X, it will gencrate a
cone. Consider the cireular slice
PQR of thickness 8z Let
0Q =2, then PQ or

Y=oB"

The mass of PIl multiplied R
by the distance from O to its
centre is equal to the sum of the Y,
masses of all its parts cach mul- Fig. 19.
tiplied by its distance from the
plane YOY). The volume of the slice PR being its area Ty’
multiplied by its thickness 82 ; multiply this by m the mass
per unit volumc and wec have its mass mmy®. 8z, As the
slice gets thinner and thinner, the distanee of its centre from
0 gets more and more nearly . Hence we have to find the
sam of all such terms as waray? | 8z, and put it equal to the
whole mass ({mm . AB*, OB) multiplied by &, the distance of
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its centre of gravity from 0. Putting in the value of y*in
terms of & we have

o8 ABY .
/ mar <OB> 2. dw equated to frmd B 0B, .

0

0B oB )
Now f ¢, de = '— %w‘} =10DB",
0 LO
By _
and henee mrr <Z)1—B) 10B'=}tmm . AB*.OB. .7,
Hence @#=30B. That is, the centre of mass is & of the

way aloug the axis from the vertex towards the base.

46. It was assumed that students knew how to find the
volume of a cone. We shall now prove the rule,

The volume of the slice PR is 7. 4%, 82 and the whole
volume is

0B FOR s 4 PN\? AB\2T0B
dom [ (A1 o dom e (A5 7]
fo Y. dw jo ™ oB) “-="\gp Osuc

:w(‘g%g. OB =1m. AB. OB,
or § of the volume of a cylinder on the same base 4C and of
the same height OB. If we Lad taken y = aa all the work
would have looked simpler.

Lizample. Find the volume and centre of mass of
uniform material (of mass m per

Y p_——A unit volume) bounded by a para-
] boloid of revolution.
Let PQ=y, OQ=x, Q8= 8s.
Let the equation to the curve
ot a8 X OPA bey=aqzt ... (D).

The volume of the slice PSR
is wy*. dx; so that the whole
0B

Fl,
(@]

volume is / T, & . dx or
0

Fig. 20. dmat. OBz ..., (2).
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Now what is ¢ ? When

y=AB, 2= 0B,
. . 4B
so that from (1), AB=a.OB} and « is OB Hence the
volume is 7 %fi; OB or
dm o AB OB 3).

That is, halt the area of the circle A€ multiplied by the
height OB. Heuce the volume of the paraboloid is half the
volume of a cylinder on the same base and of the same height.
(The volumes of Cylinder, Paraboloid of revolution, and Cone
of same bases and heights are as 1 :14: 1)
Now as to the centrc of mass of the Paraboloid. It is
0n
evidently on the axis, We must find f mr .y . de, or

i
f mare . a’x | de, or mara? / a?, dx,

"B
or mmu®, [%&*J and this is ymma®. OB, Inserting as before
0

3

the value of « or £ we have the integral equal to

mmw. OB A% This is equal to the whole mass multiplied
by the « of the centre of mass, 7, or mym . AB. OB .7 so that
#=%0B. The centre of mass of a paraboloid of revolution
is 3rds of the way along the axis towards the base from the
vertex.

Eaangple. The curve y = ax® revolves abont the axis
of z, find the volume enclosced by the surface of revolution
between =0 and «=0.

The volume of any surface of revolution is obtained by
integrating my*. de.  Hence our answer is

b 2 b 2
T /. @ do = "0 | g o T e
0 2n +1 0 2n +1

Find its centre of mass if s is its mass per unit volume,
For any solid of revolution we integrate . amy® . de and
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divide by the whole mass which is the integral of mary?da.
If m s constant we have

b b
mm [ 22 . da = mara? f aH e

Jo Jo
. m'zr_cgi bmea _— 717L'7Ta,2 b2n+2
Tm+2], T4 2 !
P 7"’77(1’2# 2141 h P - 2n + 1
and the whole mass 1s o 11 01 so that # = L

Suppose m is not constant but follows the law
m = my, + ca’.

To find the mass and centre of mass of the above solid.  Our
first integral is

T f (mgx + ety @™, dee, or @ f (m, @+ 4 ga2ivtstry dg,

b an, ¢
o 2 2 aende _ avtste ) o 1 ,
or aw[o2n+2@ +2n+s+2w (1)

b
The mass 1s a®r f (Mo + ca®) 2™ . da
0

° M ey © . gentstl 2
or “7[211+1@ +2n+8+1$ N ¢}
Substituting b for « in both of these and dividing (1) by (2),
we find Z.
An ingenious student can manufacture for himself many

exercises of this kind which only involve the integration
of a™,

2 2
An arc of the ellipse ;%+ 3’15 =1 revolves about the axis of

b
#, find the volume of the portion of the ellipsoid of revolu-
tion between the two plancs where o =0 and where z=c.

b s .
Here y?= 2@ =), The ntegral of y® is

Z)Q

¢ Z)z
L [a‘-’w - lﬂ:‘ = @ (a2 —L¢®).

0
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"
The volume of the whole ellipsoid is %T i and of a sphere

it is %'Lr as.

47. Lengths of Curves. In fig. 21 the co-ordinates of
P are & and y and of @ they

are  + 0z and y+8y. If we Y
call the length of the curve
from some fixed place to I by
the name s and the length >, B xedx 9
8s, then (8s)=(8x)4-(8y)* more A ®
and more nearly as 8z gets
smaller, so that
s /1 Sy\? ety
VAR
o X

-5 the Jimit
or rather, in the Jimit Fig. o1,

ds /o /dp\:

de Vl * <(7J> '

g - . ‘ dy\*

To find s then, we have only to integrate, / 1 + («{; .
d.

It is unfortunate that we arc only supposed to know as
yet | a®. dz, because this does not lend itsclf much to exer-

cises on the lengths of curves.

Frample. Find the length of the curve y=a+ bz (a
straight line) between the limits =0 and @ =c.

_dy ds /AN —
Here dx—b and (E—/\/1+<£‘> :\/l +I)',

cds [ — €
S=fog‘£‘dl=Jo \/1+()2d”l,= [-g”\/l-f-l)J

— NI TTE
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Eazercise. There is a curve whose slope is Sz =1,
2a

find an expression for its length. Answer: s = w2 2T,

Other exercises on lengths of curves will be given later.

48. Areas of Surfaces of Revolution. When
Y the curve APB revolving

B about the axis 0X de-
pQ/

scribes a surface of revo-
Af'_/ Iution, we have scen that
/ the volume between the
ends ACA"” and BDRB is
the integral of my* with
5 &S X regard to o between the
Imits OC and OD.
Again the elementary
area of the surface is what

A | | 13 traced out by the ele-
T Ul\,\ mentary length P@Q or 8s

B and is in the limit 27y . ds.

Tig. 22. Hence we have to integrate

0D ds .
2wy .5~ . dz, and as the law of the curve is known, y.

S
oc da dz

AN
or g/«/ 1+ <%> can he expressed in terms of .

Ezxample. The line =« + bz revolves about the axis of
x; find the surface of the cone between the limits # = 0 and
z=c.
¢ T e
g"z = b, so that the area i1s 27 fo g/\/l 4+ (Z«‘D L da

= 97 A1 :{-z;ﬂfc(a +ba) do =27 V1 + 0* [0 aw + %bm‘-’]
0

0
=27 V14 b*(ac + Lbc?).

The problem of finding the area of a spherical surface is
here given in small printing because the beginner is supposed
to know only how to differentiate " and this problem
requires him to know that the differential coefficient of 32
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with regard to « is the differential cocfficient with regard to
. dy dy ..
y multiplied by 750 OF 2y . de As a matter of fact this is

not a real difficulty to a thinking student. The student can
however find the area in the following way, Let V be the

volume of the sphere of radius », V =4377rr7’ Art. 46, Let

V + 8V be the volume of a sphere of radius » + 8», then
SV =2ar. %}?: or (4,

which is only true when 8 is supposed to be smaller and
smaller without limit. Now if S is the surface of the
spherical shell of thickness &, its volume is &r.8. Hence
or, 8 =0r.4mr* and hence the area of a sphere is 4772

Erample. Find the arca of the surface of a sphere. That
is, imagine the quadrant of a circle 4B of radius @, fig. 23, to

Y

o A

Fig. 23,

revolve about OX and take double the area generated. We
have as the area, 47 ] ay «/ 1+ (d—y>ﬂdx.
0 dz.

In the circle 24yi=a?, or y=nat—a?,
. dy dy &
2~’/+2_7/ . Zﬂ_—(), or (T@'H —*:’—/ .
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N2 ) a2 a’
)

(e ’T} « «
477} j/\/l-i-((%]/) . (h‘:4ﬂ/ I a,’.z':‘ln[‘ax =4mal
0 (l]? ) 0

49. If cach clementary portion 8s of the length of a
curve be multiplied by @ its distance from a plane (if the
curve is all in one plane, # may be the distance to a line in
the plane) and the sum be divided by the whole length of
the curve, we get thc # of the centre of the curve, or as it is
sometimes called, the centre of gravity of the curve. Observe
that the centre of gravity of an area is not necessarily the
same as the centre of gravity of the curved boundary.

Hence as 1+ <dl/
ot

o

Guldinus’s Theorems. I. Volume of a Ring.
B, fig. 24, is any plane
area ; 1f 1t revolves about

B P c an axis OO0 lying in its
own plane it will generate
a ring. The volume of
this ring is equal to the
- arca of S multiplied Ly
the cirecumference of the
circle passed through by
the centre of arca of B(.

o 0 Imagine an exceed-

Fig. 24, ingly small portion of the
area a at a place P at the distance 7 from the axis, the
volume of the elementary ring generated by this is «. 2
and the volume of the whole ring is the sum of all such
terms or V= 2r3ar. But Sar=74, if 4 is the whole area
of BC. The student must put this in words for himselt; 7
means the r of the centre of the area. Hence V=277 x 4
and this proves the proposition.

II. Area of a Ring. The arca of the ring surface is
the length of the Perimcter or boundary of BC multiplied
by the circumference of the circle passed through by the
centre of gravity of the boundary.

Imagine a very short length of the boundary, say 8s, a$
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the distance » from the axis; this generates a strip of area
of the amount 8s x 27r. Hence the whole area is 27285 . r,
But 38s.7 =7 x s if 7 is the distance of the centre of gravity
of the boundary from the axis and s is the whole length
of the boundary. Hence the whole area of the ring is
2mr X 5.

Ezample. Find the arca of an anchor ring whose sce-
tion is a circle of radius a, the centre of this circle being
at the distance R from the axis. Answer:—the perimeter
of the section is 27a and the circuinference of the circle
described by its centre is 2w R, hence the area is 47%R.

Ezercise.  Find the volume and arca of the rim of a fly-
wheel, its mean radius being 10 feet, its section being a
square whose side is 1'3 feet. Answer:

Volume = (1'3)* X 27 X 10; Area=4 x 1'3 x 27 x 10.

50. If every little portion of a mass be multiplied by the
square of its distance from an axis, the sum is called the
moment of inertia of the whole mass about the axis.

It is easy to prove that the moment of inertia about any
axis is equal to the moment of inertia about a parallel axis
through the centre of gravity together with the whole mass
multiplied by the square of the distance between the two
axes. Thus, let the plane of the paper be at right angles
to the axes, Let there be a little mass
m at P in the plane of the paper.
Let O be the axis through the centre of
gravity and O be the other axis. We want ©
the sum of all such terms as m ., (O'P)

Now (0P =003+ 0P+ 2.00". 0Q,
where @ 1s the foot of a perpendicular from
P upon 00, the plane containing the two
axes, Then calling Son. (0O'P)* by the name
I, calling 3m.0P* by the name 7, the J
moment of inertia about the axis O through Fig, 25.
the centre of gravity of the whole mass,
then, 7=(0'0¢2m+1,+2.00 .%m.0Q. But Smn.0Q
means that each portion of mass m is multiplied by its
distance from a plane at right angles to the paper through

P 0
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the centre of gravity, and this must be 0 by Art. 45. So
that the proposition 1s proved. Or letting ¥m be called M
the whole mass
I=1,+M. (O'0).
Find the moment of inertia of a circular cylinder of
length { about its axis.

N ° Let fig. 26 be a section,
& 3 the axis being 00. Con-

o -0 sider an elementary ring
shown in section at TQPR
of inside radius 7, its out-
side radius being 7+ &
Its sectional area is . &r
so that the volume of the ring is 27r.1. 8r and its mass is
m27rrl. 8r.  Its moment of inertia about 00 is 2wml. . dr
and this must be integrated between the limits r=R
the outside radius and 7=0 to give the moment of inertia
of the whole cylinder. The answer is I,=i7mlR% The

Tig. 26.

, L MR
whole mass M=mlr R So that I, = 5 If we define the
radius of gyration as %, which is such that Mi*=171,, we
. have here A2 =4R? or k= —/1_) R.
NZ

The moment of inertia about
the axis NS is

I=1,+M.R=3MR,

so that the radius of gyration about
NS is RV3.

Moment of inertia of a circle
about its centre. Fig. 27. Con-
sider the ring of area between the

TFig. 27, circles of radui v and » + &, its area

is 277, 8r, more and more nearly

as 8r is smaller and smaller,  Its moment of inertia is 27% . dr

and the integral of this between 0 and R is LmR* where R

1s the radius of the circle. The square of the radius of
2

. R
o 1 4. —
gyration 1s 7'~ the area = 5

P4
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At any point O in an area, fig. 28, draw two lines OX
and OY at right angles to one
another. Lect an elementary area Y
a be at a distance z from one of
the lines and at a distance y from
the other and at a distance » from X

- 0. Observe that «a?+ ay*= ar,
so that if the moments of inertia
of the whole area about the two X
lines be added together the sum 9 ~
is the moment of incrtia about the
point 0. Hence the moment of
inertia of a circle about a diameter is half the above, or
3mR.  The square of its radius of gyration is LR

The moment of inertia of an ellipse about a principal
diameter A0A. TLect OA =, OB=1D.

B

TN

1

B
Fig. 29.

The moment of inertia of cach strip of length S77 is @

times the moment of inertia of each strip PQ of the circle,
MT «
MQ™ b
This is o property of ellipse and circle well known to all
engineers. But the moment of inertia of the circle of radius
b about 404 is =¥, so that the moment of inertia of the
ellipse about A04 is {wd'a. Similarly its moment of inertia
about BOB is }mrah.

The above is a mathematical device requiring thought,
not practical cnough perhaps for the cngincer’s every-day
work; it is given because we have not yet reached the inte-

6—2

because it 1s at the same distance from A04 and
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gral which is needed in the straightforward working. The
integral is evidently this. The arca of the strip of length
ST and breadth 8y is 22.8y, the equation to the cllipse
.3[2

2 S
being ;% t= 1, so that @ = % N b=

b b
Then Qf y*. 2z . dy or 4%[ Vb= dy=1.
0 0

The student ought to return to this as an example in

Chap. III1.

51. Moment of Inertia of Rim of Fly-wheel. If
the rim of a fly-wheel is like a hollow cylinder of breadth
l, the inside and outside radii being R, and R,, the moment

. R, R, R4
of inertia is 2mml f #5. dr or 2mrml [ ZJ =Lmml(R}t—RY).
R, R
The mass is w(R2—Rz®) Im =M say, so that T=3(R2+R?) M.
The radius of gyration is Vi(Rj+ B2, It is usual to
calculate the moment of inertia of the rim of a fly-wheel as
if all its mass resided at the mean radius of the rim or

R, + R,

=== The moment of inertia calculated in this way is

2 R,+ Ry
to the true moment of insrtia as 22&;?}2:) Thus if

R,=R+a, R, =R — «, the pretended 7 divided by the true
nu+@+§%m3m“mnmmm—%mmflf
the whole mass of a fly-whecl, including arms and central
boss, be M, there is usually no very great crror in assuming
that its moment of inertia 18 1 = R}

52. A rod so thin that its thickness may be neglected
is of length I, its mass being m per unit length, what is
its moment of incrtia about an axis at right angles to it,
through one end O? Let @ be the distance of a point
from one end. An clementary portion of length 8z of mass
m . &z has a moment of incrtia *.m.de and the integral of
this from #=0 to @ =113 Iml’ which is the answer. As ml

P Xeo P850 is the whole mass, the
o= — >R square of the radius of
Fig. 30. gyration is L% I, the
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moment of inertia about a parallel axis through the middle
of the rod, at right angles to its length, is

2

‘ A% 4
%mk—fml.( > ov mB (L —1) or fyml.

So that the square of ¢his radius of gyration is 1%
We shall now see what error is involved in ncglecting the
thickness of a cylindric rod,

If OO0 is an axis in the planc of the paper at right angles to the
axis of a circular cylinder,
through one end, and OPis 4
x# and R is the radius of the
cylinder, its length being Z; x
if p is the mass of the cylin- A
der per unit volume; the
moment of inertia about 00 O
of the disc of radius £ and Fig. 81,
thickness dv is w2282 . 22+
the moment of inertia of the disc about its own diameter. Now we
saw that the radius of gyration of a circle about its diameter was

R and the radius of gyration of the disc is cvidently the same. Hence
2 b c.Y y

its moment of inertia about its diameter is Jtlz’znli??. dz. p, or Fapltt. du.
Hence the moment of inertia of the disc about 0 is

W]A,Zl) <.l/‘"}‘ . BZ'—}-i Rz, dl’)

If 04, the length of the rod, Is {, we must integrate between 0 and ¢,
and so we find

I=nlt% <g+i’]fg ) .

The mass m per unit length is w B2, so that
1 3 (2]

BN B 3R
T=m (\3+ilﬁ~l>,or i <1+1 7)

I,=m <1lz +1 R‘—’Z) .

This is the moment of inertia about an axis through the centre of
gravity parallel to OO.

93.  LKwzample. Where is the Centre of Area of the
parabolic segment shown in fig. 202 The whole avea is
2AC % OB,

The centre of arca is evidently in the axis.
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The arca of a strip PSR is 2y.8z and we muse
integrate 2zy .6x. Now y=aat wherc « = AR =~ OB

OB.AB & v 2 i r : 1

Hence 2. , Com” .de=3A4C.0B.% 'The integral is
AB [0 AB

= 2 pd A 4 el 3 g at 4 2 __. 4 . N7

ZOB% [og x} or § o m OB%, so that 44B. OB =4A4B.0B.%

or z=20D.

Find the centre of area of the scgment of the sym-
metrical area bounded by + ¥ = aa® between 2 = b and # = c.

4
We must divide the integral 2 | ».aa". dz by the area
b

2 / az™ . du.
b

Or % (C),L,H —,,bn,“> Lo, <cn+1 _
- n+ 2 o ) —>ﬁ
I ek AR o |

£

Tl Lt ﬂ? .

3!

&

>

Many interesting cascs may be taken. Obscrve that if
the dimensions of the figure be given, as in fig. 20: thus if
4B and P@) and BQ arc given, we may find the position of the
centre of the area in terms of these magnitudes.

Y A
P ]
%) Q' Ts B X
L]
R C
Fig. 82.

54. Moment of Inertia of a Rectangle.

The moment of inertia of a rectangle about the line 00
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through its centre, parallel to onc side. Let AD =D,
BC=d.

A B

Consider the strip of area betwecn
OP=yand 0Q=y+38y. Itsareaisb.8y g a
and its moment of inertia about 00 is P p
b.y*. 8y, so that the moment of inertia of
the whole rectangle is e S o

id 3d bd?
2 Ly8 S
b/_%dy dy or b[iﬁj or

This is the moment of inertia which is D (@

so important in calculations on beams, Fig. 3.

55. Force of Gravity. A uniform spherical shell of
attracting matter exercises no force upon a body inside it.
On unit mass outside, 1t acts as if all its mass were gathered
at its centre.

The carth then exercises a force upon unit mass at any
point P outside it which is inversely proportional to the
square of » the distance of P from the centre. But if P is
- inside the earth, the attraction there upon unit mass is the
mass of the sphere inside P divided by the square of 7.

1. If the earth were homogencous. If m is the mass per
unit volume and R is the radius of the earth, the attraction

. N o . !
on any outside point is - 3 mIts = 12,

The attraction on any iuside point is

[
BT

1 <+ % or

?_71’ mr.  The attraction then at the surface befng called 1, at

any outside peint it is R*+2? and at any inside point it is
r =+ R. Students ought to illustrate this by a diagram.

2. If m 1s greater towards the centre, say m=u —0r,
then as the area of a shell of radius » is 471 its mass is
4r®.m . 8, so that the whole mass of a sphere of radius »

. " 47
is 4 f r2(a—brydr, or - @ = wbrt.  Hence on any
0

.. . . . Ar
inside point the attraction is 5 ar—=br® and on any

e

outside point it is (4; allt — wbR‘) / 72
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. . . 4
Dividing the whole mass of the earth by its volume ?’F R,

we find its mean density to be @ — 3bR, and the ratio of its
mean density to the density at the surface is

(4a — 3bR)/(4a — 4bR).
56. Strength of thick Cylinders.

The first part of the following is oue way of putting the
well known theory of what goes on in a thin cylindric shell
of a boiler. It prevents trouble with 4 and — signs after-
wards, to imagine the fluid pressure to be greater outside
than inside and the material to be in compression,

Consider the elementary thin cylinder of radius » and of
thickness & Let the pressure
inside be p and outside p + 8p
and let the crushing stress at
right angles to the radii in the
material be ¢. Consider the
portion of a 11ng PQSE which
18 of unit length at right angles
to the paper.

Radially we have p + &p
from outside acting on the area
RS or (r+6r) 68 if QOP =86,
because the arc RS is equal to
radius multiplied by angle; and

Fig. 34. p. 7. 80 from inside or
(p+8p)(r+8r) 80— pr. 30
iy on the whole the radial force from the outside more
and more nearly as 80 is smaller and smaller. This is
balanced by two forces cach ¢.&r inclined at the angle 66,
g aud just as in page 165 if we

draw a triangle, each of whose

A<::j sides U4 and AR is parallel

Fie. 35 ©  toq.8r, the angle BAC being

e 80, and BC representing the

radial force, we see that this radial force is q.6r.80, and

this expression is more and more nearly true as 86 is
smaller and smaller.  Hence

(p+8p)(r+68r) 80 — pr.80=q.8r.86,
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or p.Or+r.8p+8p.r=yq.dr
d
or rather p+r dlr) = (1),

since the term &p is 0 in the limit.

When material is subjected to crushing stresses p and ¢
in two directions at right angles to one another in the plane
of the paper, the dimensions at right angles to the paper
elongate by an amount which is proportional to p + ¢.

We must imagine the clongation to be independent of
if a plane cross section is to remain a plane cross section, and
this reasonable assumption we make. Hence (1) has to be
combined with PAHq=24u i (2),

where 24 1s a constant.
Substituting the value of ¢ from (2) in (1) we have

p+7‘@=2./1—]),

dr
or dp_24_2p
dr 7 7
Now it will be found on trial that this is satisfied by
B
p=A+ JE (3),
. v B
and hence from (2), g=d — pRLIEITEN NN (4).

To find these constants A and B. In the case of a gun
or hydraulic press, subjected to pressurc p, inside where
r=1, and pressure 0 outside where 7 =1 Inscrting these
values of p in (3) we have

B
po=4A +;0—2>
O0=d+ —=;
=
Poiry?
so that B =P+ (—' — *) = Po 27
0 7 [y
712
A=—p,———,;
2
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Pole® 7®
and -—(1:7_‘]2_»%_2 1_;_72, .
1 Ty
The compressive stress — ¢ may be called a tensile stress /
7 4t ~
f:po a 77_;‘52 "—277 .................... (l)),
=7, 7

S 1s greatest at r= 17, and is then

7 2+74 2 s
ﬁ):])o ! e, rrrereenens (())

Pyt e 2

This 18 the law of strength for a cylinder which is initially
unstrained. Note that p, can never be equal to the tensile
strength of the material. We see from (5) that as » increases,
J diminishes in proportion to the inverse square of the
radius, so that it is casy to show its value in a curve. Thus
a student ought to take 1, =1'2, »,= 0'8, p, = 1500 1b. per sq.
inch, and graph f from inside to outside. £ will be in the same
units as p. (5) may be taken as giving the tensile stress
n a thick cylinder to resist bursting pressure if it is initially
unstrained.  If when p,= 0 there are already strains in the
material, the strains produced by (5) are algebraically added
to those already existing at any place. Henee in casting
a hydraulic press we chill it internally, and in making a gun,
we build it of tubes, cach of which squeczes those inside it,
and we try to produce such initial compressive strain ab
=1, and such initial tensilc strain at =, that when the
tensile strains due to p, come on the material and the eylinder
is about to burst there shall be much the same strain in the
material from 72, to »,.¥

* In the case of a eylindric body rotating with angular velocity a, if p is
the mass per unit volume; taking into account the centrifugal force on the
element whose equilibrinm is considered, above the equation (1) becomes

) . ..
P+ %’ —1%pa?=q and the solution of this is found to be p=A + Dr24 3patr?
and by inserting the values of p for two values of r we find the constants A
and B ; g is therefore known. If we take p=0 when r=r, and also when
r=ry,
g=dpa® [ =124 {ry B = 2 (g2 = (2 - 0B
This is greatest when r=r,.

If the eylinder extends to its centre we must write out the condition that
the displacement is 0 where =0, and it is necessary to write out the values
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Thin cylinder. Take r,= R and », = R +¢, where ¢ is very
small compared with I,

2B +2Rt+t¢ p,I2 tr t
F=poppy ="y (gt i) (14 51)

Fig. 36.

t 2
Now % and 2%{5 and .‘ZtR become all smaller and smaller

as ¢ is thought to be smaller

and smaller. We may take f:][]f ............ 0
(7) as a formula to be used ¢ ’
when the shell is exceedingly . pR p

thin and (8) as a closer ap- J= P S TIRRREE (8).

proximation, which is the
same as 1if we used the average radins in (7). In actual
boiler and pipe work, there is so much uncertainty as to the
proper valuc of f for ultimate strength, that we may neglect
the correction of the usual formula (7).

b7. Gas Engine Indicator Diagram. It can be
proved that when a perfeet gas (whose law is pv = Rt for a
pound of gas, K being a constant and equal to K~/ the
difference of the important specific heats; o is used to
denote K/k) changes in its volume and pressure in any

of the strains. Radial strain=pa—q8 if a is the reciprocal of Young’s
Modulns and g/a is Poisson’s ratlo, generally of the value 0-25.

In this way we find the strains and stresses in a rotating solid cylinder,
but on applying our results to the case of a thin disc we see that equation
g) above is not correct. That is, the solution is less and less correct ag the

ise i thinner. Dr Chree’s more correct solution is not difficult.
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way, the rate of reception of heat by 1t per unit change

of volume, which we call 1 (in work units) or Ty is
dv

1
b= y i(iﬁ<pv)+p .................. (1),
or b= ry%l {v (Z]ll: + 'yp} .................. (2).

Students ought to note that this dlzj 1s a very different

. dp . .

thing from (({1—> , because we may give to it any value we
v

please.

We always assume Heat to be expressed in work units so as
to avoid the unnecessary introduction of J for Joule’s equiva-
lent.

Ezercise 1. When gas expands according to the law
P =c...(3) a constant, find A.

Answer: b= ;'_ s Poreirrerienenanins (4).

Evidently when s=1+, h = 0, and hence we have prY=con-
stant as the adiabatic law of cxpansion of a perfect gas.
v is 141 for air and 137 for the stuff inside a gas or oil
engine cylinder. When s=1, so that the law of expansion is
pv constant, we have the isothermal expansion of a gas, and
we notice that here /i = p, or the rate of reception of heat
cnergy is equal to the rate of the doing of mechanical energy.
Notice that in any case where the law of change is given by
(3), A is exactly proportional to p. If s is greater than « the
stuff is having heat withdrawn from it.

If the equation (1) be integrated with regard to v we

have H, =fyi i (psty — pove) + Wer...(3). Here H,, is the heat

given to a pound of perfect gas between the states p,, v, ¢,
and p,, vy, t;, and Wy is the work done by it in expanding
from the first to the second state.

This expression may be put in other forms because we
have the connection pv= Rt...(6). It is very useful in cal-
culations upon gas engines. Thus, if the volume keeps
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constant W, is 0 and the change of pressure due to ignition
and the gift of a known amount of heat may be found. If
the pressure keeps constant, W, is p (v — ) and the change
of volume due to the reception of heat is easily found.
%g:]ugz +p...(7) where k
is a constant, being the specific heat at constant volume.
" Integrating this with regard to v we find

Hy=J(t—t) + Wy v, (8).

This gives us cxactly the same answer as the last method,
and may at once be derived from (5) by (6). In this form
one sees that if no work is done, the heat given is L (¢, —¢,)
and also that if there is no change of temperature the heat
given is equal to the work donc.

Another useful expression is

58. Elasticity is defined as increase of stress — increase
of strain. Thus, Young’s modulus of elasticity is tensile or
compressive stress (or load per unit of cross section of a tle
bar or strut) divided by the strain or fractional change of
length. Modulus of rigidity or shearing elasticity is shear
stress divided by shear strain. Volumetric clasticity e is
fluid stress or increase of pressure divided by the fractional
diminution of volume produced. Thus if fluid at p and v,
changes to p+9dp, v+38v: then the volumetric stress is
op and the volumctric compressive strain is — Su/v, so

. ) b
that by definition e:—81)+85, or e=—1 S%' The
definition really assumes that the stress and strain are
smaller and smaller without limit and hence e=—v f% (1)

Now observe that this may have any value whatsoever.
Thus the elasticity at constant pressurc is 0. The elasticity
at constant volume is —%. To find the elasticity at con-

pr=DRt, p=Rtr". Here Rt is to be constant, so thak

d s .
<07’;> =—Rtv? and e=Rw T =p.
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It is convenient to write this e, and we sce that K, the
elasticity at constant temperature, is p. This was the value
of the clasticity taken by Newton ; by using it in his calcu-
lation of the velocity of sound he obtained an answer which
was very different from the experimentally determined velo-
city of sound, because the tempcrature does not remain
constant during quick changes of pressure.

Exercise.  Tind the elasticity of a perfect gas when the
gas follows the law po? =¢, some constant. This is the
adiabatic law which we found Art. 57, the law connectin g pand
v when there is no time for the stuff to losc or gain heat by

. dp
conduction. p=cv™7, so that dlv =—rner Y, and
¢ =+ vycv™Y7! or qcuTY, or p.

It is convenicnt to write this ey, and we sce that in a
perfect gas ey=re. When this value of the elasticity of
alr is taken in Newton's calculation, the answer agrees with
the experimentally found velocity of sound.

59. Friction at a Flat Pivot. If we have a pivot of
radius R carrying a load W and the load is uniformly
distributed over the surface, the load per unit area is
w= W+aR* Let the angular velocity be a radians per
second. On a ring of arca between the radii 7 and #+8r
the load i1s w2wr. or, and the friction is ww2mr. &, where
# 1s the coefficient of friction. The velocity is v = ar, so that
the work wasted per sccond in overcoming friction at this
elementary area 1s p2mwwar®.8r, so that the total energy
wasted per sceond is

R
27r'wa,udf 1. dr = grwep B = Ju JWVER.
0

Ou a collar of internal radins R, and external R, we have
1 2

R,
2 wau f 7. dr = imwap (R — RP), W=mw (R — R and
R, 3_ 23
hence, the energy wasted per second is Zau W §~~§1~
B — R
60. Exercises in the Bending of Beams. When
the Bending moment M at a section of a beam is known,
we can calculate the curvature there, if the beam was
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straight when unloaded, or the change of curvature if the
unloaded beam was originally curved. This is usually written

1 1 1 M

— OF — — — = ——

r oo, KD
where I is the moment of inertin of the cross scetion
about a line through its centre of gravity, perpendicular
to the plane of bending, and ¥ is Young’s modulus for the
material. Thus, if the beam has a rectangular section of
breadth b and depth o, then = Lbd? (sce Art. 54); if the

beam is circular in section, I =£R4, if R is the radius of
the section (sec Art. 50). If the beam is clliptic in scction,
I= gcﬁb, if ¢ and b arc the radii of the section in and at
right angles to the planc of bending (see Art. 50). t

Curvature. 'The curvature of a circle is the reciprocal
of its radius, and of any curve it is the curvature of the circle
which best agrees with the curve.  The curvature of a curve
is also “the angular change (in radians) of the direction of
the curve per unit length.” Now draw a very flat curve, with

. . dy . .
‘very little slope.  Observe that the change in 8“/ in going
from a point £ to a point § is almost exactly a change of

angle |change in %.’[ is really a change in the tangent of
dw
an angle, but when an angle is very small, the angle, its sine
and its tangent arc all cqual | . Hence, the increase in %
from P to @ divided by the length of the curve PQ is the
average curvature from P to @, and as P@ is less and less
we get more and more nearly the curvature at . But the
curve being very flat, the length of the arc PQ is really 8a,
and the change in g% divided by 6z, as 8= gets less and less,
is the rate of changc of gﬂl with regard to 2, and the symbol
) T

Pl

. 2 : @
for this is Z‘y Henee we may take 7 7/ as the curvature of
X e

a curve ab any place, when its slope is everywhere small,
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If the beam was not straight originally and if »' was its small
) . . . d%y/ . s
deflection from straightness at any point, then d’é was its original
& 2
curvature.  We may goneralize the following work by using i G~y

. Ay
instead of T everywhere.
%

Tt is casy to show, that a beam of uniform strength, that is a beam
in which the maxinmm stress f (if compressive ; positive, if tensile,
negative), in every section is the same, has the same curvature cvery-
where if its depth is constant.

If & is the depth, the condition for congtant strength is that

M
% .3d=4f a constant. But 7:E x curvature, hence curvature

2f
=*E.a
Exercise.  In a hcam of constant strength if d= ’1-
a+bx
2y 9f
Then Z:/": j{;f(a-ﬁ—lr.v). Integrating we find

E dy 1. 101 7 s
97 (‘»{}—ch-a.oJ,-—.jb.o "o y=etertyari4 kb,

where ¢ and ¢ must be determined by some given condition. Thus

SZL:/ =0 there, and

if the beam is fixed ab the end, where #=0, and

also y=0 there, then ¢=0 and e=0.

In a beam originally straicht we know now that, if
« s distance measurced from any place along the beam to
a section, and if y is the deflection of the beam at the
section, and [ is the moment of inertia of the section, then

d?y M
GRS R e (1),

where M 1s the bending moment at the section, and £ is
Young’s modulus for the material.

. d* . . . . ce .
We give to d:;/ the sign which will make it positive if
M is positive. 1t M would make a beam convex upwards
and y is measured downwards then (1) is correct. Again,
(1) would be right if M would make a beam concave up-
wards and y is measured upwards.
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Lwample I, Uniform beam of length 1 fixed at one
end, loaded with weight W at the other. Let & be the
distance of a section from the fixed end of the beam. Then
M =W (=), so that (1) becomes

KT doy ,
*ﬁ/ﬁ c_ixz ==& i, (2)

Integrating, we have, as & and I are constants,

El dy 1o
W %—lx——{_,a, + ¢

From this we can calculate the slope everywhere.

To find ¢, we must know the slope at some one place.

Now we know that there is no slope at the fixed end, and
d . .
hence ?cli/ =0 where 2 =0, hence ¢=0. Integrating again,
z

]iVIg/ =3l — 1 + O

To find C, we know that y=0 when 2=0, and hence
C=0, so that we have for the shape of the beam, that is, the
equation giving us v for any point of the beam,

W ‘
Y= 77 Glor = 3a®) i 3).
We usually want to know y when z=1, and this value of y
is called D, the deflection of the beam, so that

D= Wi

Ezample II. A beam of length ! loaded with W at
the middle and supported at the ends. Observe that if
half of this beam in its loaded condition has a casting of

P 7
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cement made round it so that it is rigidly held; the other
half 1s simply a beam of length 3/, fixed at one end and

V_Y<- --------------- I >
2

ST

Fig. 88.

loaded at the other with $W, and, according to the last
example, its deflection is

IW@G W )
D = —gE-j‘*- or ‘iSTEI ............... (D)

The student ought to make a sketch to illustrate this method
of solving the problem.

Example I1I. Beam fixed at one end with load w per
unit length spread over it uniformly.

The load on the part PQ is w X PQ or w(l —z).

Fig. 39,

The resultant of the load acts at midway between P and Q
so, multiplying by ¥ ({ ~ ), we find M at P, or

M=3w(l—a). . eiiiirinnnnnnn (6).
Using this in (1), we have
2EI dy _7
w  da?
Integrating, we have
28T dy _
dz

w

H

2 — 2z + a2

Po~ 2 4 1o+

This gives us the slope everywhere.
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Now Q‘Z:O where @« =0, because the beam is fixed

da
there. Ilence ¢=0.

Again integrating,

. gfl y =kl — Yo + fyat + O,

and as y=0 where =0, C'=0, and hence the shape of the
beam 1s

v = s5q57 (600 —H& + 29 o (7),

y 18 greatest at the end where # =1, so that the deflection is

w . 1 W ,
5471 304 or D—g 17 LR (8),

if W=wl, the whole load on the beam.

Lyample IV. Beam of Iength [ loaded uniformly with
w per unit length, supported at the ends.

Each of the supporting forces is half the total load. The
moment about P of 4w, P a
at the distance PQ, is [~ I
against the hands of a
watch, and I call this é“’lT
direction positive; the
moment of the load
w (3l — ) at the average distance £1Q) is therefore negative,
and hence the bending moment at £ 1s

wl (5 —«) — fw (3 — @), or Jwl — Jwa® ...(9),

R
3

Tig. 40.

hat, f 1Y v
so that, from (1), A dop = S0E = dwat,

y being the vertical height of the point P vbove the middle
of the beam, see Art. 60. Integrating we have

El gg = lwle — fwa® 4 ¢,

a formula which enables us to find the slope everywhere.

72
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d‘l/ =0 where =0,

¢ is determined by our knowledge that d
¥

and hence ¢=0. Integrating again,

Ely = Jowla?* — Jqwat + C,
and C=0, because y=0, where #=0. Hence the shape of
the beam is y = 4%1 (88 — 2a)...(10), y is greatest where
2 =14, and is what is usually called the deflection D of the

beam, or D= SWE if W=1lw the total load.
: 3845 T
61. Beams Fixed at the Ends. Torques applied
at the ends of a beam to fix them (that is, to keep the end
scetions in vertical planes) are cqual and opposite if the
loading 1s symmetrical on the two sides of the centre of the
beam. The torques being equal, the supporting forces are
the same as before. Now if sm is the bending moment
(positive if the beam tends to get concave upwards) which
the loads and supporting forces would produce if the ends
were not ficed, the bending moment is now m—c¢ because
the end torques ¢ are equal and opposite, and the supporting
forces are unaltered by fixing.

dy m—c
Thus 7 iy 37 LTETLEPIITPITPPRII, (1).
If the beam 1s uniform and we Integrate, we find
Lr. :51/ = /m Ldie—cax+const. oL (2).
@

Take x as measured from one end. We have the two
Z .
“Y ~0 where =0, and —d‘—l’!z 0 where =1, if ]
dx dz

is the length of the beam. Hence if we subtract the value
of (2) when #= 0 from what it is when @ = {, we have

: 1t
0=f m ., dx —cl, or c=—/ m . dz,
[} Z 0

conditions :

that is, ¢ is the average value of m all over the beam.
The rule is then (for symmetric loads):—Draw the diagram
of bending moment m as if the beam were merely supported
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at the ends. Find the average height of the diagram and
lower the curved outline of the diagram by that amount.
The resulting diagram, which will be negative at the ends, is
the true diagram of bending moment., The beam is concave
upwards where the bending moment is positive, and it is
convex npwards where the bending momens is negative, and
there ate points of inflexion, or places of no curvature, where
there is no bending moment.

Ezample. Thus it is well known that if a beam of length
! is supported at the ends and loaded in the middle
with a load W, the bending moment is } Wi at the middle
and is 0 at the ends, the diagram being formed of two
straight lines. The student is supposed to draw this diagram
(see also Bzample 11.). The average height of it is half the
middle height or LT, and this is ¢ the torque which must
be applied at cach end to fix it if the ends are fixed.
The whole diagram being lowered by this amount it is
evident that the true bending moment of such a beam if its
ends are fixed, is LW/ at the middle, 0 half-way to each end
from the middle so that there are points of inflexion there,
and —{ W/l at cach end. A rectangular beam or a beam of
rolled girder scction, or any other scction symmetrical above
and below the neutral line, is equally ready to break at the
ends or at the middle.

Lzample. A uniform beam loaded uniformly with
load # per unit length, supported at the ends; the dingram
for m is a parabola (see Kuample I'V. where M = Lwl> — Lwa?);
the greatest value of m is at the middle and it is Lwl2; m is 0
at the ends. Now the average value of m is £ of its middle
value (see Art. 43, arca of a parabola). Hence ¢= fywlx
This average value of m is to be subtracted from every value
and we have the value of the real bending moment every-
where for a beam fixed at the ends.

Hence in such a beam fixed at the ends the bending
moment in the middle is Jfal, at the ends — fywi2 and the
diagram is parabolic, being in fact the diagram for a beam
supported at the ends, lowered by the amount JLuwl? every-
where. The points of inflexion arc ncarer the ends than In
the last case.  The beam is most likely to break at the ends.

Students ought to make diagrams for various examples of
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symmetrical loading. Find m by the ordinary graphical
method and lower the diagram by its average height.

When the beam symmetrically loaded and fixed
at the ends is not uniform in section, the integral
of (1) is

gy _[m g /d_“
) i Tda, 5 RLRTEII PRI (3),

and as before this is 0 between the limits 0 and [, and hence
to find ¢ it is necessary to draw a diagram showing the value

of ? everywhere and to find its area. Divide this by the

. . 1
area of a diagram which shows the value of + everywhere,

I

or the average height of the M/l diagram is to be
divided by the average height of the 1// diagram and
we have ¢.  Subtract this value of ¢ from every value of
m, and we have the true diagram of bending moment of the
beam. Graphical exercises are much more varied and interest-
ing than algebraic oncs, as it is so casy, graphically, to draw
diagrams of m when the loading is known.

The solution just given is applicable to a beam of which
the I of every cross section is scttled beforchand in any
arbitrary manner, so long as I and the loading are symmetrical
on the two sides of the middle. Iect us give to I such a
value that the beam shall be of uniform strength every-
where; that is, that %[z = f.or f...(4), where 2 is the greatest
distance of any point in the section from the neutral line on
the compression or tension side and f, and f; arc the constant
maximum stresses in compression or tension to which the
material is subjected in every scction. Taking £, as
numerically equal to f; and z=4d, where d is the depth

M

of the beam, (4) becomes Td = 1 2f...(5), the + sign being

taken over parts of the beam where M is positive, the — sign
!

where M is negative. As [O%[dwz 0, or, using (5),

2f
/i— ¥ die=0..cc0iiirinrrnaonnns (6),
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the negative sign being taken from the ends of the beam to
the points of inflexion, and the positive sign being taken
between the two points of inflexion. We see then that to
satisfy (6) we have only to solve the following problem.
In the figure, EATUCGE is a diagram whose ordinates

represent the values of é or the reciprocal of the depth of

the beam which may be arbitrarily fixed, care being taken,
however, that d is the same at points which are at the same
distance from the centre. ZFGE is a diagram of the values
of m easily drawn when the loading is known. We are re-
quired to find a point P, such that the area of ZPTA = arca

£

Fig, 41.

of POO'T, where O is in the middle of the beam. When
found, this point P is a point of inflexion and PR is
what we have called ¢. That is, m — PR is the real
bending moment A at every place, or the diagram EFG
must be lowered vertically till R is at P to obtain the
diagram of M. Knowing M and d it is easy to find I
through (5).

It is evident that if such a beam of uniform strength
is also of uniform depth, the points of inflexion are half-
way between the middle and the fixed ends. Beams of
uniform strength and depth are of the same curvature
everywhere except that it suddenly changes sign at the
points of inflexion.

61. In the most general way of loading, the bending
moments required at the ends to fix them are different
from one another, and if =, is the torque against the hands of a
watch applied at the culd A, and s, is the torque with the hands of a
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watch at the end B, and if the bending moment in case the beam were
merely supported is m :—

Consider a weightless unloaded beam of the same length with the
torques m; and m, applied to its ends; to keep it in equilibrium it is
necessary to introduce equal and opposite supporting forces P at the

m, C m,
iy tmmmemEmmmesB
[am— ys -
P P
Fig. 42.
ends as shown in the figare. Then Pl+my=m,, the forces &e. being
My — My

as drawn in fig. 42, so that P=«-~7~—v .

If then these torques m, and m, are exerted they must be balanced
by the forces Pshown ; that is, at B a downward force must be exerted ;
this means that the beam at B tends to rise, and hence the ordinary
supporting force at B must be diminished by amount P. At any place
C the bending moment will be m (what it would be if the beam were
merely supported at the ends) —my~ P. BC...(1). If one does not carc
to think much, it is sufficient to say:—The beam was in equilibrium
being loaded and merely supported at the ends ; the bending moment
at any place was m ; we have introduced now a new set of forces which
balance, the bending moment at ¢ due to these new forces is

—(my+P. DO
So that the true bending moment at € is m — i, — P. BC.

1

m . .
Suppose m,=0, then ]):f’ and the bending moment at ¢ is

m.—?-)Z—‘ L BCor m—D. B

62. Beam fixed at the end A, merely supported at
B which is exactly on the samne level as 4. As my=0 and letting
BC'=w, we have the very case just mentioned, and

Y
b]d;v.‘,:m—]’.v ........................... (2).

We will first consider « uniform beam uniformly loaded
as in Example 1V.; Art. 60. It will be found that when » is measured
from the end of the beam, the bending moment m =L wls — wa?, if the
beam is merely supported at its ends and  is the load per unit length.
Hence (2) is

Y Ay Sule—%wa?—DPo (3),

dv? -

7] (C%z}l—w-l.z:? —duat =y Palde il (4).
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We have also the condition that @-/:O where x={...(5), for 1t is to be

observed that we measure fromd;bhe unfixed end.
Again integrating,
Lly=d50la’ — Jpwat = L PaP+one . oieeeennn.. (6).
‘We need not add a constant becausc # is 0 when # is 0.
We also have y=0 when x=1 Using this condition and also (5)

we find
O=y4wlB3~3Pl+c......... e, (1),

O=yJpwlt X PB4el i iiiiirene. 8,
and these enable us to determine Pand e.
Divide (8) by 7 and subtract from (7) and we have
O=Frwl®~§ P2 or P=]wl,
hence from (7), O= s wld~ fewlP+to, ¢= ~ fgul’
We have the true bending morment,
Swle—$wa? —Lwls,

and (6) gives us the shape of the beam.

63. If the loading is of any kind whatsoever and
if the section varies in any way a graphic method of inte-
gration must be used in working the above example. Now if the value
of an ordinate z which is a function of = be shown on a curve, we have
no instrument which can be relied upon for showing in a new curve

%. dx, that is, the ordinate of the new curve representing the avea of

the z curve up to that value of & from any fixed ordinate. I have
sometimes used squared paper and counted the number of the squares.
I have sometimes used ‘a planimeter to find the areas up to certain
values of 2, raised ordinates at those places represcuting the arcas to
scale, and drawn a curve by hand through the ten or twelve or more
points so found. There are integrators to be bought; I have not cared
to use any of them, and perhaps it is hardly fair to say that 1 do not
believe in the accuracy of such of them as I have seen.

A cheap and accurate form of integrator would not only be very
useful in the solution of graphical problews ; it would, if it werc used,
give great aid in enabling men to understand the calculus.

Let us suppose that the student has some method of showing the
x
value of | z.dxin anew curve ; the loading being of any kind what-

Jo
soever and / varying, since
2y
MH=m—-Lr=FEI" "
dx?’
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we have on integrating,

L:Z~ ”;d iy *LLJ‘Z‘?—C .................. ().

We see that it is necessary to make a diagram whose ordinate cvery-

where is Z}} and we must integrate it. Let f da be called p; when

x=={, u becomes the whole area of the 7 diagram and we will call
this p.
It is also necessary to make a diagram whose ordinate everywhers

» £
is ¥ and integrate it. Lot f "—;d‘v be called .X. When «={, .\” hecomes
0

1

the whole arca of the "gdiagmm and we will call this ..

7
Then as in (9), (d'/;:(), when w=1,
O=p;— L X4, (10).

Integinting (9) again, we have
]::yz-/p, Lde— l’fX cdutcet+C.
In this if we use y=0 when »=0, we shall find ¢'=0, and again if

¥=0 when »—/, and if we use M and X, as the total arcas of the "
and X curves we have

0= - P. Xy4el¥ i (11),
from (10} and (11) £ and ¢ may be found, and of course I’ enables us
to state the bending moment ovelywherc —¢ is the slope when &

is O.

64. Zrample. Beam of any changing section fixed

* Without using the letters u, X, 1, X; &e. the ahove investigation Is:—

=1 dy tm Tz, dx
7 PSS R 7. d
[ " (lr] 0= ]0 dx Pfo L (10).

Integrating again between the limits 0 and I and recollecting that y is
the same at both limits

la.,d
(Fy1=0= } / ’ﬁdc-z’ el (11).

=0 ]

The integrations in (10) and (11) being pe1iormed the unknowns P and ¢
can be calculated; the true bendmg moment everywhere is what we started
with,

m— Pz,
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at the ends, any kind of loading. Measuring # from one
end where there is the fixing couple m,,

M=m—mg—Dv .. (1),
Ay o ey 2
e Tl ot L S @)
Ly m dy @y
F Ze= 17 dv—my I —I’f ‘jﬁlﬁ“c()lltﬁt{ult ...... (3)
(. dz . v
Let p= 7 and g, the whole arca of the z}p curve;
dx - . 1
Let Y= Ve and ¥, the whole area of the 7 oourve; Let
c.da , z
X= T and X the whole area of the %curw; then

O=pm—mY,—PX ..., (4).

Again integrating
y=|p.de— '//12/1’. dw — P[X . v + const.

Calling the integrals from 0 to { of the g, ¥ and X curves
M,, Y, and X, wc have

O=M,—m, Y, —PX* ... (3),

and as m, and P are casily found from (4) aud (5), (1) is
known.

* We have used the symbols 4, X, ¥, w, X3, Y1, M, Y, M;, X, Y, fearing
that students are still a littfe unfamiliar with the symbols of the calculus;
perhaps it would biave been better to put the investigation in its proper
form and to ask the student to make himself familiar with the usual symbol
instead of dragging in eleven fresh symbols.

After (3) above, write as follows ;—

L dy [ e Lode
g L | =0= —de—~m, — =P — e, 4).
]0 d.v] 0 jo I ¢ m‘j“ I 1/0 1 ’ ()

Again integrating between limits

x=1 (1t Ul U ade
—0= Zde—m, \ﬁl’/ i 5)
Cog=o= . [Joem o [ 7 2]

The integrations indicated in (4) and (5) being performed, the unknowns m,
and P can be calculated and used in (1). The student must settle for
himself which is the better course to fake; to use the formidable looking
but really easily understood symbols of this note or to introduce the eleven
letters whose meaning one is always forgetting, Sce also the previous note.
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65. In Graphical work. Let ACB (fig. 43) reprosent m,
the bending moment, if the beam were merely supported at
the ends; let AD represent m, and let BE represent m,.
Join DE. Then the difference between the ordinates of

e ) S

Fig. 43.

ACB and of ADEB represents the actual bending moment;
that is the vertical ordinates of the space between the straight
line DE and the curve AFCRB., 1% is negative from A to
H and from I to B, and positive from H to . F and G arc
points of inflexion.

66. Useful Analogies in Beam Problems. If w
is the load per unit length
on a beam and M is the bend-
Ing moment abt a scction
(positive when it tends to
FETRREATYALY make the beam convex up-
wards¥), @ being horizontal
SNB —-—~ distanee, to prove that

S S+5S d’'M
dax?

SASR [ SHS S S o) I .
If at the section at PP

fig. 44, whose distance to the
right of some origin is 2z there
> .« 1s a bending moment M in-
dicated by the two equal and

Fig 44, opposjte arrow heads and a

shearing force S as shown,

being positive if the material to the right of the section is

* This convention is necessary only in the following generalization.
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acted on by downward force, and if PQ is 8z so that the load

on this piece of beam between the scetions at P and Q is

w.8x; if the bending moment on the § section is M +8M

and the shearing force S+ 85, then the forces acting on this
iece of beam are shown in the figure and from their equili-
rium we know that

88 =w.8z or g—i:w ............... (2),

and taking moments about @),
M+ 8.6z + tw (dz)= M+ SM,

oM
=S lw. Sa
or S S dw. 8,
and In the limit as d« is made smaller and smaller
dM
— e, 3),
= 3)

and hence (1) is true.
Now 1t is well known that in beams if v is the deflection

dy M
T RN (4).

If we have a diagram which shows at every place the
value of w, called usually a diagram of loading, it is an
exercise known to all students that we can draw at once by
graphical statics a diagram showing the value of 3 at every
place to scale; that is we can solve (1) very easily graphi-
cally*. We can see from (4) that if we get a diagram

. 4
showing 7 b every place, we can use exactly the same

method (and we have exactly the same rule as to scale) to
find the value of y; that is, to draw the shape of the
beam. Many of these exercises ought to be worked by all
engineers.

* We find M usually for a beam merely supported at the ends. Let it
be 4CB, fig. 43. If instead, there are bending moments at the ends we
let AD and BE represent these and join DE. Then the algebraic sum of
the ordinates of the two diagrams is the real diagram of bending moment.
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Ezample. In any beam whether supported at the ends
or not : if w is constant, integrating (1) we find
dM

?Z;: b+ wz and M =a +ba+ 3w ......(5)

In any problem we have data to determine ¢ and b.
Take the case of a uniform beam uniformly loaded and
merely supported at the ends.
Measure ¥ upwards from the middle and # from the
middle. Then M =0 where & =4/ and — }/,
0=a+ bl +fuwl,

and 0 =040l + fwi=
Tlence b= 0, @ = — Jwl* and (5) becomes
M=—Fwl+ Jwat ..o, (6),

which is cxactly what we used in Kzample IV. (Art. GO)
where we afterwards divided 3 by &7 and integrated twice
to find .

Let z'begl

di/ or the slope of the beam,

dy . di M dM_ . dS
de™" dv " EI’ de =" da
we have a succession of curves which may be obtained
from knowing the shape of the beam y by differentiation, or
which may be obtained from knowing w, the loading of the
beam, by integration. Knowing w there is an easy graphical
rule for finding M/EZ, knowing M/EI we have the same
graphical rule for finding y. Some rules that are obviously
true in the w to M/ET construction and need no mathematical
proof, may at once be used without mathematical proof in
applying the analogous rule from M/Z7T to y. Thus the area
of the M/EI curve between the ordinates ;, and a, is the
increase of ¢ from @, to «,, and tangents to the curve showing
the shape of the beam at 2; and 2, mect at a point which
is vertically in a line with the centre of gravity of the
portion of area of the M/EI curve in question. Thus the
whole area of the M/EI curve in a span HJ is equal to the

increase in dy from one end of the span to the other, and

dz

Since =w,
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the tangents to the beam at its ends H, J meet in a point
P which is in the same vertical as the centre of gravity of
the whole M/EI curve. These two rules may be taken as
the starting point for a complete treatment of the subject
of beams by graphical methods.

If the vertical from this centre of gravity is at the
horizontal distance HG from H and GJ from ./, then P is
higher than H by the amount H@ X 4y, the symbol 1, being
used to mean the slope at H; J is higher than P by the
amount GJ x4 at J. Hence J is higher than H by the
amount

HG . ig+ GJ .4y,

a relation which may be useful when conditions as to the
relative heights of the supports are given, as in continuous
beam problems.

67. Theorem of Three Moments. For some timc,
Railway Engineers, instcad of using scparate girders for
the spans of a bridge, fastened together contiguous ends
to prevent their #ilting up and so made use of what
are called continuous girders. It is easy to show that
if we can be absolutely certain of the positions of the
points of support, continuous girders are much cheaper than
separate girders.  Unfortunately a comparatively small
settlement of one of the supports alters completely the
condition of things. In many other parts of Applied
Mechanics we have the same difficulty in deciding between
cheapness with some uncertainty and a greater expense with
certainty. Thus there is much greater uncertainty as to the
nature of the forces acting at riveted joints than at hinged
joints and therefore a structure with hinged joints is pre-
ferred to the other, although, if we could be absolutely
certain of our conditions an equally strong riveted structure
might be made which would be much cheaper.

Students interested in the theory of continuous girders
will do well to read a paper published in the Proceedings of
the Royal Society, 199, 1879, where they will find a graphical
method of solving the most general problemst I will take
here as a good example of the use of the calculus, a uniform
girder resting on supports at the same level, with a uniform
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load distribution on each span. Let 4BC be the centre line
of two spans, the girder originally straight, supported aOt
A,BandC. The distance from A to B is {, and from B to

Fig. 45.

is I, and there arc any kinds of loading in the two spans.
Let A, B and € be the bending moments at 4, B and
respectively, counted positive if the beam is concuve upwards.

At the section at P at the distance z from 4 let m be
what the bending moment would have been if the girder
on each span were quite separate from the rest. We have
already seen that by introducing couples m, and m, at 4 and
B (tending to make the beam convex upwards at A and B)
we made the bending moment at P really become what
is given in Art. 61. Qur m,=—4, m, =— B, and hence the
bending moment at P is
B—-4 dy

ll = _EI d@g ............ (1),

m+ 4+

where m would be the bending moment if the beam werc
merely supported at the ends, and the supporting force at 4
is lessened by the amount

Assume £1 constant and integrate with regard to z and
we have

fm'd“Aer%wﬂB_A ta=ELY. . )
A dz

Using the sign -/ f m . dz.dz to mean the integration of

the curve representing fm.dw we have

fm.dw.dx+%Ax3+%stl A+clw+e=EI.y...(4).
1
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As 9 is 0 when =0 and it is evident that ffm.da;. dr=0
when =0, ¢ is 0. Again y=0 when z=1I,. Using the
symbol w, to indicate the sum / fm.dzr. de over the whole
span,

pat+ AR+ U (B-A)+¢l,=0............ (3).

From (3) let us calculate the value of EI(%Z‘ at the poing

B, and let us use the 1e17:ter a, to mean the area of the m

curve over the span, or f . da, so that BT gZ at B is
0

t+ AL+ 3L (B=A)+ v, (6).

But at any point @ of the sccond span, if we had let BQ =«
we should have had the same equations as (1), (3) and (4)
using the letters B for 4 and € for B and the constant c,.

Hence making this change in (3) and finding E7 g?;/ at the

point B where 2 = 0, we have (6) equal to ¢, or

e—a=a+ AL+, (B—4)............ (M),
and instcad of (5) we have
Mo+ B UA(C = By +ely=0 ... (8).

Subtracting (5) from (8) after dividing by !, and I, we
have

cz—cl=%—lli"’+%All-—%Blﬁ-%ll(B—A)—M_,(O’—B)...(Q).

The equality of (7) and (9) is

AL+2B (L, +1) + (=6 (’li — - %)...(10),
1 2
an equation connecting A4, B and C, the bending moments
at three consecutive supports. If we have any number of
supports and at the end ones we have the bending moments
0 because the girder is merely supported there, or if we have
two conditions given which will enable us to find them in
case the girder is fixed or partly fixed, note that by writing

P, 8
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down (10) for every three consecutive supports we have a
sufficient number of equations to determine all the bending
moments at the supports.

Lzample. Let the loads be w, and w, per unit length
over two consecutive spans of lengths [, and [,, Then

o o= %wlw — dna?, fm dae= %wlaﬂ — %571,’.1'?’,

Wy, .
Henee o= TQI 3 and f?lb cdz . di = Lwla? — FWat,

Henee o = gpunld p, = Ll
U
g 1 1 a
Hence ’f; a,— ’lli becomes gpw,l’ + 3 12— Jpwlp,
2 1
or oy wlt + wl,Y),

and hence the theorcm becomes in this case
AL+ 2B (L + L) + CL+ 1 (wld +w,l?) = 0...... (10).
If the spans arc similar and similarly loaded then
A+4AB+ 0+ twl=0.................. (11).

Case 1. A uniform and uniformly loaded beam rests on
three equidistant supports. Here 4 = C'=0 and B= — Jwl2
m = w (lz — «*), and hence the bending moment at a point
P distant @ from 4 1s

3w (le—a®) +0— % Lwl
The supporting force at 4 is lessened from what it would be
if the part of the beam AB were distinct by the amount

shewn 1n (2), [oor Twl. Tt would have been il so now

1
it is really Jwl at cach of the end supports, and as the total
load is 2wl, there remains 10wl for the middle support.

Case 2. A uniform and uniformly loaded beam rests on
four equidistant supports, and the bending moments at
thesc supports are 4, B, ¢, D. Now A4 =0D=0 and from
symmetry B =C. Thus (11) gives us

O+ 5B+ 3wl=0 or B=0C=—wl
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If the span AB had been distinet, the first support would
have had the load Jwl, it now has Jwl — Ll or 4wl The

supporting force at D is also fawl. The other two supports
divide between them the remainder of the total load which
is altogether 3wl and so each rcceives 11wl. The supporting
forces are then fuwl, wl, Hawl and 4wl

68. Shear Stress in Beams. Lot the distance
measured from any section of a beam, say at O, fig. 46,
to the section at . be #, and let OB=ux+ 8z Lct the
bending moment at ("AC be M and at 'BD be M+ 8M,

cD Cc C D
H L N —
.- s e P ] _
e P A y N
c'p EF
Fiz. 46, Fig. 47. Fig. 48.

04B (fig. 46) and AA (fig. 47) represent the neutral
surface.  We want to know the tangential or shear stress f
at & on the plane (AC". Now it is known that this is
the saniec as the tangential stress in the direction ZF on
the plane EF which is at right angles to the paper and
parallel to the ncatral surface at AB. Consider the equi-
librium of the piece of beam ECDF, shown in fig. 47 as ECE,
and shown magnified in fig. 48. We have indicated only
the forces which are parallel to the neutral surface or ab
right angles to the scctions.  The totul pushing forces on DF
are greater than the total pushing jforces on CE, the tangential
Jorces on LF maling up jor the difference. 'We have only to
state this mathematically and we have solved our problem.
At a place like H in the plane CAC at a distance y from
the neutral surface the compressive stress is known to be

M . . , }
P=FY and if b is the breadth of the section there, shown

as HH (fig. 47), the total pushing force on the area ECE is

e

o
P:J R

AE I AE
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Observe that 1f b varies, we must know it as a function of
y before we can integrate in (1). Suppose we call this total
pushing force on KC by the name P, then the total push-

ing force on DF will be P 4+ 8a. %

The tangential force on

LF is fx arca of F or f. 8z . KE, and hence
. dp . 1 dP )
v BE =8 "5 or Fe . DA
f.8x, KI = éa. dn or f BE - do (2D,

Irample. Beam of uniform rectangular section, of
constant breadth b and constaut depth d. Then

12410 [ 1217 [#
> _ o . — T L,e
P= bds AE!/ . dy a3 |:}l!é/:i >
6M
B 102 9'2
1 7 > — A1),
s , - 16 1,72 v (U” L
and hence j_B pE Qdz— AL?) ds e (B)

so that 7 1s known as soon as 3 is known.

As to M, let us choose a case, say the case of a beam
supported at the ends and loaded uniformly with w lb.
per unit length of the beam. We saw that in this case, #
being distance from the middle

M= Jwl— Jwa?

Henee SlM: — ., 50 that (3) 13

e }f (Ydie ABY i oo (4).

If we like we may now use the letter  for the distance A%,
and we sce that at any point of this beam, 2 inches measured
horizontally from the middle, and % inches above the neutral
line the shear stress is

6w

f=- Bcﬁgdz — YD, (5).

The —sign means that the material below EF acts on
the material above KF in the opposite sense to that of the
arrow heads shown at KF, fig. 4.
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Observe that where y=0 the shear stress is greater
than at any other point of the section, that is, at points
in the neutral line. The shear stress is 0 at €0 Again, the
end sections of the beam have greatest shear. A student
has much food for thought in this result (3). It is interest-
ing to find the directions and amounts of the principal
stresses at every point of the beam, that is, the interfaces at
right angles to one another at any point, across which there
is only compression or only tension without tangential stress,

We have been considering a rectangular section. The
student ought to work exercises on other scetions as soon as
he is able to integrate by with regard to 4 in (1) where b is

4

c
any function of . He will notice that f by.dy 1s equal to

the area of EHCUHE, fig. 47, multiplied by the distance of its
centre of gravity from AA.

Taking a flanged scction the student will find that £ is
small in the flanges and gets greater in the web. Even in a
rectangular section f became rapidly smaller further out
from the nentral line, but now to obtain it we must divide by
the breadth of the section and this breadth is comparatively
so great in the flanges that there is practically no shearing
there, the shear being confined to the web; whercas in the
web itself f does not vary very much. The student already
knows that 16 is our usual custom to calculate the arcas of
the flanges or top and bottom booms of a girder as if they
merely resisted compressive and tensile forces, and the web
or the diagoual bracing as if it mercly resisted shearing.
He will note that the shear in a scction is great only where

(iljg or rather ,(% (17[[) is great. But inasmuch as in Art. 66

we saw that %Tzs, the total shearing force at the scction,

there is nothing very extraordinary in finding that the actual

. . M
shear stress anywhere in the section depends upon i . In

dz

a uniformly loaded beam dlz Is greatest ab the ends and gets
less and less towards the middle and then changes sign,
hence the bracing of a girder loaded mainly with its owu
weight is much shghter in the middle than at the ends,
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Deflection of Beams. If o bending moment M acts at a
4’12. 8
B
beeause M . dx/EX1 is the angular change (sec Art. 26), and therefore
the whole strain-encrgy in a beam due to bending momient is

L[ i
5375'/ T A i (6).

If /iy a shear stress, the shear strain-encrgy per unit volume is

S2N...(T), and by adding we can therefore find its total amount for
the whole beam.

By equating the strain-energy to the loads multiplied by half the
displacements produced by them we obtain interesting relations. Thus
in the case of a beam of longth /, of rectangular section, fixed at one
end and loaded at the other with a load TF; at the distance & from the
end, M= Wx and the energy due to bending is

1 (27722 i
s ] —F . de=WEBBEL. ... ..coov..oiiiil &),
24@'_[(, 7 do=WIPBEL............ (8)

The above expression (5) gives for the shearing stross

scetion of a beam, the part of length $a gets the strain-encrey &

. 16 o1 Py '
J=p B =) W (9).

The shear strain-cnergy in the elomentary volume b. 8x. 8y is
b.bx.8y. f%2N. Integrating this with regard to y from —4d to +1d
we find the energy in the slice between two sections to be

3W3H. dx/5Nbd,
s0 that the shear strain-energy in the beam is 3 W2/55bdl...(10).
If now the load 1 produces the deflection z at the end of the bewrn
the work done is & Tz, (11).
Equating (11) to the sum of (8) and (10) we find
we wi

8

'?ET]‘F SAVI);Z ........................ <12)

Note that the first part of this due to bending is the deflection as
calculated in Art. 60, Example I We believe that the other part due
to shearing has never before been caleulated,

If the deflection due to bending is 2z, and to shearing is Zy,
2, /7, =108} 3Ld>

Taking &'=2 F as being fairly correct, then z,/z,=412/3d2.  If a beam
is 10 inches deep, when its length is 86 inches the deflections due to
bending and shear are equal ; when its length is 86 inches, the deflection
due to bending is 100 times that due to shear ; when its length is 079
inch, the deflection due to bending is only 1/100th of that due to
shear.  Probably however our assmed laws of bending do not apply
to so short a beaw,

z=
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69. ‘Springs which Bend. Lot fig. 49 show the centre
line of a spring fixed at 4,
loaded at B with a small

load W in the direction

shown. To find the

amount of yiclding at B. Q
The load and the deflee- :

tion are supposed to be %}‘ S

very small.  Consider % R

the piece of spring Lig. 49.

bounded by ecross sec-

tions at £ and €. TLet PQ=23s, the length of the spring
between 5 aud £ being called .

The bending moment at 22 is W. PR or W,z if 2 is the
length of the perpendicular from P upon the dircction of W.
Let BR be called y. Consider first that part of the motion
of B which is due to the change of shape of QP alone; that
is, imagine A() to be perfectly rigid and PB a rigid pointer.
The section at ¢} being tixed, the section at P gets an angular

i

change equal to 8s x the change of curvature there, or 8s P
Ss. Wz . .
Or = (1), where £ is Young’s modulus and 7 is the

moment of inertia of the cross section. The motion of B due

to this is just the same as if PB were a straight pointer ;

in fact the pointer PB gets this angular motion and the

motion of B is this angle, multiplied by the straight
distance I’/ ov

ds. Wa .

B PB o (2).

Now how much of B's motion is in the direction of W ?

It is its whole motion x %ﬁ or XI?B and henee B's
motion in the direction of W is
5. Wa?

~~gF
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Similarly B's motion at right angles to the direction of

W is ‘?“—g[—“" ........................ (4).

In the most general cases, it is easy to work out the
integrals of (3) and (4) graphically.

We usually divide the whole length of the spring from B
to 4 into a large number of equal parts so as to have all the
values of 8s the same, and then we may say (s being the

whole length of the spring) that we have to multiply ‘S—'EIK
"2
upon the average values of be— and? for cach part. Ina well

made spring if b is the breadth of a strip at right angles to
the paper and ¢ its thickness so that /=10 we usually
have the spring equally ready to break cverywhere or
()wbl;fv‘% =/, a constant. When this is the case (3) and (4)

become
9 .
A ESS . % and gf#(g . %
And if the strip is constant in thickness, varying in
breadth in proportion to , then
.2
)7

. 2f.8s .
. 1s (3) and Y (4).

If @ and ¥ are the « and y of the centre of gravity of
the curve (see Art. 48)

215 . . e .
T the total yielding parallel to W,

Q@t ¥ is the total yielding at right angles to W.

70. Bxercises. The curvature of a curve is

1 _dy dg/>'215 A
=L {1 +<d7) [ (e Art224)

When the equation to a curve is given it is casy to find
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dxy° 1 . . X
% and (ﬁ%and calculate - where 7 1s the radius of curvature.
This is mere exercise work and it is not neeessary to prove
SSATY P
beforehand that the formula for the curvature is correct.
1. Find the curvature of the parabola y=aa* at the
point 2 =0, y = 0.

2. The cquation to the shape of a beam, loaded uui-

formly and supported at the ends is y= 3l2a® — 2a4),

w
8ETL
see Art. 60, where the origin is at the middle of the beam ;
I is the whole length of the beam, w is the load per unit
length, & is Young’s modulus for the material and 7 is the
moment of inertia of the cross section. Take I = 200, w = 3,
E =29 x10% I =80, find the curvature where 2z =0. Show

that in this case <(%/)2 may be neglected, in comparison Wi;;h
1, and that rcally the curvaturce is represcuted by Zl‘(/
Show that the bending moment of the above beam is
M= 8%2@2_ 42%). Show that this is greatest at the middle
of the beam.

3. Find the curvature of the curve y=aloga+be+c
at the point where « = a,.

71. Force due to Pressure of Fluids. FKrercise 1.
Prove that if p, the pressure of a fluid, is constant, the
resultant of all the pressure forces on the planc area 4 is Ap
and acts through the o
centre of the area. = E

2. The pressurc in ™
a liquid at the depth A “
being wh, where w 1s the “
weight of unit volume, ~
what is thetotal force due
to pressure on any im-
mersed plane area? Let Q
DE be the surface from
which the depth 2 is c
measured and where the Fig. 50.

,
N
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pressurc is 0. Let BC be an edge view of the area; imagine
1ts planc produced to cut the level surface of the liquid DI
in /). Let the angle EDC be called «. Let the distance
DP be called & and let DQ be called &+ 8z, and let the
breadth of the area at right angles to the paper at P be
called z.  On the strip of area z.8x there is the pressurc
wh if b is PH the depth of P, and & ==z sina, so that the

pressurc force on the strip is
wx.sina.z. o,

e
and the whole force is F = w sin af .z dw (D).
DB

Also if this resultant acts at a point in the area at a distance
X from D, taking moments about D,
DC

FX =wsin af 2 zudae . (2).

DB
) DC

Observe in (1) that f z.z.dz= Az,
DB

if A is the whole area and & is the distance of its centre of
gravity from 0. Hence, the average pressure over the
area is the pressure at the centre of gravity of the
area.
DC
Observe in (2) that] 2%z . de =TI the moment of inertia

DB
of the area about D. Letting I =24, where k is called the
radius of gyration of the arca about D, we sce that

F=wsna. Az, FX=wsma, A

Hence X=ii: ...(3), the distance from D at which the
resultant force acts.

Ezample. If DB=0 and the area is rcctangular, of
constant breadth b; then

DC b
1:&[ o ds =2 DO
. 3

and 4 =b.DC so that k*=1DC* Also 2=4DC. Hence
X =2DC, that is, the resultant force acts at § of the way
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down the rectangle from D to € and the average pressure is
the pressure at a point half way down.

It is an casily remembered relation that we find in (3).
For if we have a compound pendulum, whose radius of
gyration is k and if # is the distance from the point of
support to its centre of gravity and if X is the distance to -
its point of percussion, we have the very same equation (3).
Again, if X is the length of the simple pendulumm which
oscillates in exactly the same time as the compound one,
we have again this same relation (3). These are merely
mathematical helps to the memory, for the three physical
phenomens have no other relation to one another than a
mathematical one.

Whirling Fluid.

72. Suppose a mass of fluid to rotate like a rigid body about
an axis with the angular velo-
city of a radians per second. 4
Let OO be the axis. Tet P
be a particle weighing w lbs.
Let OP=u.

The centrifugal force in 5 R
pounds of any mass is the
niass multiplied by the square
of its angular velocity, multi-

plied by «. Here the mass ” T
is;i) and the centrifugal force o

LW

18 — oL, Fig. 51.

Make PR represent this to scale and let PS represent w
the weight, to the same scale, then the resultant force, repre-
sented by PT, is easily found and the angle RPT which PT

makes with the horizontal. Thus tan RPT =w =" o’ or

g + oz, being independent of w; we can therefore apply our
results to heterogeneous fluid. Now if y is the distance of
the point P above some datum level, and we imagine a curve
drawn through P to which P1 is (at I’) tangential, and if at
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every point of the curve its direction (or the direction of its
tangent) represents the direction of the resultant force; if

. dy . . g
such a curve were drawn its slope jll is evidently — L and
« o’
1ts equation 1s y=— '7n log & + constant ............ (1).
o

The constant depends upon the datum level from which ¥ is
measured. This curve is called a line of force. Its direction
at any place shows the direction of the total force there. We
sec that it is a logarithmie curve.

Level Surfaces. If there i1s a curve to which T is a
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normal at the point P, it is evident that its slope is positive
and in fact

de™ g~
2
so that the curve is Y= ;L @* + constant............ (2),

the constant depending upon the datum level from which y
is measured. This is a parabola, and if it revolves about the
axis we have a paraboloid of revolution. Any surface which
Is everywhere at right angles to the force at every point is
called a level surface and we see that the level surfaces in
this case arc paraboloids of revolution. These level surfaces
are sometimes called equi-potential surfaces. It is easy to
prove that the pressure is constant cverywhere in such a
surface and that it is a surface of equal density, so that if
mercury, oil, water and aiv are in a whirling vessel, their
surfaces of separation are paraboloids of revolution.

The student ought to draw onc of the lines of force and
cut out a template of it in thin zinc, OO0 being another edge.
By sliding along OO0 he can draw many lines of Force, Now
cut out a template for one of the parabolas and with it draw
many level surfaces. The two sets of curves cut each other
everywhere orthogonally. Tig. 52 shows the sort of result
obtainable where aa, bd, cc are the logarithmic lines of force

and A A, BB, CC are the level paraboloidal surfaces.

73. Motion of Fluid. If A5 isa stream tube, in the

Fig. 53.
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vertical plane of the paper, consider the mass of fluid between
sections at P and @ of length 8s feet along the stream, and
cross-section @ square feet, wherc @ and &8s are in the limit
supposed to be infinitely small. Let the pressure at P be
p lbs. per square foot, the velocity v feet per second, and let
P be at the vertical height h feet above some datum level,

At @ let these quantities be p + 8p, v+ év and & + &k,
Let the fluid weigh w lbs. per cubic foot.

Find the forces urging PQ along the stream, that is,
forces parallel to the stream dircction at P@Q.

pa acts on one end P iIn the dircction of motion, and
(p+8p)a acts at @ retarding the motion. The weight of
the portion between P and ¢ is «¢.8s.w and, as if on an
inclined plane, its retarding component is

height of plane &h

Welght X mine or ¢.ds.w 55

Henee we have altogether, accclerating the wmotion from I
towards (),

p“_(PW“Sj))a—a.Bs.w.—gg,

@.08 . w

. dv . . .
But the mass is ,and — 18 its acceleration, and we

di :
have merely to put the force equal to @.0s.w . i%) . We have
then, dividing by a,
Sh  8s.wdv

Now if 8 be the time taken by a particle in going from
8s . .
I to @, v:si: with greater and greater accuracy as 6s is

. v .
shorter and shorter. Also, the acceleration -, is more and

dt

) N . ; .
more nearly 8%) (It is more important to think this matter

out carefully than the student may at first suppose.)
Hence if 8s is very small, s. % =%. dv=wv. 0y, so that

we have 8p+w.8h+%v.8v:0 ............... (1),
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or as we wish to accentuate the fact that this is more and
more nearly true as ds is smaller and smaller, we may
write it as

D bl =0 (2)%,
w g
. . v dp
or integrating, h+ % = constant............... (2).

l

. . . 25

We leave the sign of integration on the ‘L because w may
w

vary. In a liquid where w is constant,

P P onsh:
b+ 5 + = constant ............... (3).

74 In a gas, we have w o pif the temperature could be
1

kept constant, or we have the rule for adiabatic flow w p:/,
where « is the well-known ratio of the specific heats. In either

of these cases it is easy to find f (fu—p and write out the law. This

law is of universal usc in all cascs where viscosity may be
neglected and is a great guide to the Hydraulic Engineer.

1
Thus in the case of adiabatic low w=cpy, the integral of p Is
w

dp 1{ _1 1 1 :
/Eﬁ/ or— /p y-dp or . TZI 7y, and hence, if s stand for (y—1)fy
we have A+ v + l * = constant (4)
5 == ANt . conne{d)

In a great many problems, changes of level are insignificant and we

* After a little experience with quantities like 8p &c., knowing as we do
that the equations are not true unless dp, d&e. are supposed to be smaller

dp

and smaller without limit and then we write their ratios as an’ &e., we
get into the way of writing dp, &e. instead of p, &e.

Again, if @) de+F(y)dy+¢ (2) de=0..................... (1),
then ff(ac) .dz +/F ). dy +f¢ (2) . dz=a constant,......... 2.

There is no harm in getting accustomed to the integration of such an
equation ag (1), all across.
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29
cs
pressure and w, the weight of a cubic foot of gas inside a vessel at
places where there is no velocity and if, outside an orifice, the pressure

often use v?+4°Y pt=constant......(4) for gases. Thus, if p, is the

5]
is p; the constant in (4) is evidently 0+%§ ps% and hence; outside the
1
surface, 02=i-'sq G ) (5), and as e is wy-p,y it is easy to make
all sorts of calculations on the quantity of gas flowing per second.

Observe that if p is very little less than p,, if we use the approxi-

mation (1+a)*=14na, when a is ¢mall, we find
2 .
172=;0‘—’(I)(p0 ) e e e (6),
a simple rule which it is well to remember in fan and windmill problems,
In a Thomson Water Turbine the velocity of the rim of the wheel is
the velocity due to half the total available pressure; so inan air turbine
when there is no great difference of pressure, the velocity of the rim of
the wheel is the velocity due to half the pressure difference.

Thus if p, of the supply is 7000 lbs. per square foot and if p of the
exhaust is 6800 lbs. per square foot and if we take w,=028 lb. per
cubic foot, the velocity of the rim ¥ is, since the difference of pressurc
i3 200 lbs. per square foot,

/ 22‘% (100) =151 feet per second.

Returning to (5); neglecting friction, if there is an orifice of area
4 to which the flow 1s guided so that the strearns of air are parallel, ¢
the volume flowing per seoond is @=v4 and if the pressure is p, the
weight of stuff flowing per second is

W=vduw,
1 1
or since w=cpY, and wy=cp,",
1
W=vduw, <Ji>¥ .
Po

If the student will now substitute the value of » from (5) and put
a for p/p, he will obtain

1 o T 44
= 20y W, Y2
[ et A i Ik
W= _darp, /\/7_1})0(1 ay ) .................. (7).

Problem. Find p the outside pressure so that for a given inside
pressure there may be a maximum flow.
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It is obvious that as p is diminished more and more, » the velocity
increases more and more and so does ¢. But a large @ does uot
necessarily mean a large quantity of gas. We want IV to be large.
When is 17 a maximum? That is, what value of a in (7) will make

a maximum? Differentiating with regard to a and equating to O

2

1
%a“/_l—(l +l> ar =0
Y Y.

y
L 1-y
dividing by a7y we find « =<7_*;-1> .

2 \r-1
Or P=Py (-;Tl) .
In the case of air y=1-41 and we find p=-527p,,

That is, there is a maximum quantity leaving the vessel per
second when the outside pressure is a little greater than half the inside
Ppressure.

Problem. When p is indefinitely diminished what is » ?

EVN
Answer : ¢'='\/ =9y Po
y—1 1w,

This is greater than the velocity of sound in the ratio

2
: y=1
being 221 for air. That is, the limiting velocity in the case of air is

2413 feet per sccond x where ¢ is the absolute temperature

inside the vessel and there is a vacuum outside,

Students ought to work out as an example, the velocity of flow
into the atmosphere.

Returning to equations (2) and (4), we assumed % to be of little
importance in many gaseous problems of the mechanical engineer. But
there are many physical problems in which it is necessary to take
account of changes in level. For example if (2) is integrated on the
assumption of constant temperature and we assume v to keep constant,
we find that p diminishes as 4 increases according to the compound
interest law considered in Chap. 1. Again under the same condition
as to v, but with the adiabatic law for  we find that p diminisles with
k according to a law which may be stated as ¢ the rate of diminution
of temperature with 4, 1s constant.” These two propositions seem to
belong more naturally to the subject matter of Chapter 11

. 9
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75. A great number of iuteresting examples of the use of
(2) might be given. It enables us to nnderstand the flow of
fluid from orifices, the action of jet pumps, the attraction of
light bodies caused by vibrating tuning-forks, why some
valves are actually sucked up more against their seats
instead of being forced away by the issuing stream of fluid,
and many other phenomena which are thought to be very
curious.

Ezample 1. Particles of water in a basin, flowing very
slowly towards a hole in the centre, move in nearly cireular
paths so that the velocity v is inverscly proportional to the

. a .
distance from the centre. Take v= - where @ is some con-

stant and @ is the radius or distance from the axis. Then (3)
(Art. 73) becomes
o )
o+ E'; +1‘ =(/
292 w
Now at the surface of the water, p is constant, being the
pressure of the atmosphere, so that, there

a?

h=c— 29’
and this gives us the shape of the eurved surface. Assume
¢ and a, any valucs, and it is casy to calculate % for any value
of z and so plot the curve. This eurve rotated about the axis
gives the shape of the surface which is a surface of revo-
Iution.

Ezample 2. Water flowing spirally in a horizontal planc

b . .. .
follows the law v=- if  is distance from a central point.
b2

Note that p=C, — :}7»0 .
g &

The ingenious student ought to study how p and v vary
at right angles to stream lines. He has only to consider
the equilibrium of an elementary portion of luid PQ, fig. 53,
subjected to pressures, centrifugal force and its own weight
in a direction normal to the stream.

He will find that if (%: means the rate at which p
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varies in a direction of the radius of curvature away from
the centre of curvature and if « is the angle QPR, fig. 53, the
streamn being in the plane of the paper, which is vertical,

Ei}) _w

b g WSIN G vorvvrerennnen.. (1)
If the stream lines are all in horizontal planes
dp w
ZZ;‘ _ E ; ------------------------ (2).

Ezample 3. Stream lines all circular and in horizontal
planes in a liquid, so that A is constant.

b .
Ifv= = where b is a constant,

p_wv b
dr— g %’
w b .
p=—1 s +constant ............... 3).

We see therefore that the fall of pressure as we go out-
ward is exactly the same as in the last example. Show that
this law, v = b/r, must be true if there is no ‘rotation’ (See
Example 5).

Example 4.  Liquid rotates about an axis as if it were a
rigid body, so that v =0r, then

P _ e,
dr g "

=%Q£b2r2+c.
=9

This shows the law of increase of pressure in the wheel of a
centrifugal pump when full, but when delivering no water.

Exercise. The pressure at the inside of the wheel of
a centrifugal pump 1s 2116 lbs. per sq. foot, the inside radius
is 05 foot, the outside radius 1 foot. The angular velocity
of the wheel is b =30 radians per second; draw a curve show-
ing the law of p and r from inside to outside when very
little water is being delivered. If the water leaves the wheel
by a spiral path, the velocity everywhere outside being

9—2
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inversely proportional to 7, draw also the curve showing
the law of p in the whirlpool chamber outside.

Ezample 5. The expression
U | ]
= — =N,
2 +wp T h
which remains constant all along a stream line, may be
called the total store of energy of 11b. of water in the
stream if the motion is steady.

dig_ L dv Ldp + fll—fl becomes from equation (1),

Now dr —‘avﬁo'ﬂ_w dr

i _ 20 1 (’z +f@>
o=y St
. 1w dey . ’
This expression 3 (;-{— (?7) is called the “average angular

velocity ” or “the rotation” or the ‘spin’ of the liquid.
Hence

adE 2y .

—— = — X rotation.

dr

When liquid flows by gravity from a small orifice in a

large vessel where, at a distance nside the orifice, the liquid
may be supposed ab rest, it is obvious the £ is the same in

all stream lines, so that C(Zl—E 15 0, and there is no ‘rotation’
anywhere, !

If when water is flowing from an orifice in a vessel we
can say that across some section of the stream the velocity is
everywhere normal to the section and that the pressure is
everywhere atmospheric, we can caleulate the rate of flow.
It is as well to say at once that we know of no natural
foundation for these assumptions. However wrong the
assumptions may be, there is no harm in using them in mere
exercises on Integration. There being atmospheric pressure
at the still water level, if v 1s the velocity at a point at the
depth b, if @ is an element of area of the section, Q= Sq Vgh
the summation being effected over the whole section, Q being
the volume flowing.  Thus if the section is a vertical plane
and if at the depth A it is of horizontal breadth z, through
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the area 2.8k water is flowing with the velocity v/2gh, so
that \/Zr’ﬂ—z. 2 . 8k is the elementary volume flowing per second,
and if h; and k, are the depths of the highest and lowest

—{h
points of the orifice, the total flow is Q=+ 2q f zh¥ . dh.
hy
Ezample 6. Rectangular section, horizontal breadth b,

. Ry —]"l‘ .

Q= N/Zgb hE.dl = 2bV 2y L{t"] =2) N/?.g (ht — 2.
]l‘ 1

Ezample 7. Triangular scction, angle at depth h,, base

horizontal of length b at depth Z,. Then within the limits

of integration it will be found that z= b (=h+ 1)

R
P 5— hy
Hence = 2%{{ f (= byl + 1) dh = 11:1:}? [7(— 2hih? + ghf)].
2 2 1LA

If the ratio A,/h, be called », 1t will be found that

1 W3
Q= ;I)—]_ll—l ﬁ/lgg {61"3 100 1 251,
When the student has practised integration in Chap. III., he
may in the same way find the hypothetical flow through
circular, elliptic and other sections,

Returning to the rectangular section, there is no case
practically possible in which A; is 0, but as this is o mere
mathematical exercise let us assaume b, =0, and we have
Q=2b~2ght. Now further assume that if there is a rect-
angular sharp-edged notch through which water flows, its
edge or sill being of breadth b and at the depth k., the
flow through 1t is in some occult way represented by the
above answer, multiplied by a fraction called a coefficient of
contraction, then @ =cb /292 Such is the so-called theory
of the flow through a rectangular gaunge notch. A true
theory was based by Prof. James Thomson on his law of flow
from shmilar orifices, one of the very few laws which the
hydraulic engineer has to depend upon. We are sorry to
think that nearly all the mathematies to be found in standard
treatises on Hydraulics is of the above character, that is, it
has only an occult connection with natural phenomena.
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76. Magnetic Field about a straight round wire.
There are two great Jaws in Electrical Science. They concern
the two circuits, the magnetic circuit and the electric cireuit,
which are always linked through one another.

I 'The line integral (called the Gaussage whatever the
unit may be) of Magnetic Force round any closed
curve, is equal to the current [multiplied by 4= if the
current is in what is called absolute c.G.s. units (curious
kind of absolute unit that needs a multiplier in the most
important of all laws); multiplied by 4m/10 if the current
is In commercial units called Amperes].

II. The line integral (called the Voltage whatever
the unit may be) of Electromotive Force round any
closed curve is equal to the magnetic current (really,
rate of change of induction) which is enclosed. [If the in-
duction is in absolute c.6.s. units, we have absolute Voltage
in c.G.s.; if the induction is in Webers the Voltage Is
in Volts.

We are to remember that in 2 non-conducting medium
the voltage in any circuit produces electric displacement, and
the rate of change of this is current, and we deal with this
exactly as we deal with currents in conducting material.
When we deal with the phenomena in very small portions
of space we speak of electric and magnetic currents per unit
area, in which case the line integrals are called ¢ curls.
Leaving out the annoying 4o or 4m/10, we say, with Mr
Heaviside, “ The electric current is the curl of the magnetic
force and the magnetic current is the negative curl of the
electric force” When we write out these two statements in
mathematical language, we have the two great Differential
Equations of Electrical Analysis.

The Electrical Enginecr is continually using these two
laws. Many examples will be given, later, of the use of the
sccond law. We find it convenient to give here the following
easy example of the first Jaw,

Field about a round wire. A straight round wire of
radius ¢ centimetres conveys current (f [or A amperes, so

A
that O = f()} .
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If H is the magnetic force at a distance 7 from the centre
of the wire, the Gaussage round the circle of radius » is
H x 27rr, because I is evidently, from symmetry, the same
all round. Hence, as Gaussage = 47(C,

f 5] |
H= 4‘77'0—' 277'7":_2——(—) 01-: A .
” r 10
Inside the wire, o circle of radius + encloses the total

7 . . .
current P (!, and hence If inside the wire at a distance 7

721(4_" ~0' 2 A
a? 10 & |

If BC is a cross section of the round wire of radius @,
and if 0D is any plane B
through the axis O of the 7\ POQ D /N
wire, and \0/ T \ 0/

UP:‘?', 0(2:7'-[—8)‘2 © F'i-lg. 54.
then through the strip of area P, which is I centimetres
long at right angles to the paper, and & wide, area 1.&r,
there is the induction H per sq. em. [We take the perme-
ability as 1. If u is the magnetic permeability of the me-
dium, the induction is B=pH per sq. cm.}, or H.l. 8r
through the strip of area in question. If there are two
parallel wires with opposite currents, and if O is the plane
through the axes of the two wires, the fields due to the two
currents add themselves together. If () is the centre of the

other wirc, the total H at I is 2 (

\

from the axis is

L1
ortor)

77. Self-Induction of two parallel wires. ILet the
radius of cach wire be «, and the distance between their centres
b, the length of each being { between two planesat right angles
to both. The wires are supposed to be parts of two infinite
wires, to get rid of difficulties in lmagining the eireuit com-
pleted at the ends,

The total induection from axis to axis is the sum of the

two amounts, 4 {

. @

o

.dr . . .
227 from the outside of cach wire to the
>
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ad g
axig of the other and 4] /- Zag dr from the axis of each wire
Jo

to its own surface. This is

b 204
210 {z log +1} o
Dividing by 10 we have it in commercial units.
This total field when the current is 1, is the self-induction
1 of the circuit (we imagine current to be uniformly distri-
buted over the section of the wire), and

{2 logg + 1} in absolute units.

2
L =2 {logkn + 1} in ¢.G.S. units,
{ «@?
L 2

1 62 *
7= 100 o 51}
in Henries per centimetre length of the two circuits.

78. Function of Two Independent Variables.
Hitherto we have been studying a function of one variable,
which we have generally called . In trying to under-
stand Natural Phenomena we cndeavour to make one
thing only vary. Thus in observing the laws of gases, we
measure the change of pressure, letting the volume only
change, that is, keeping the temperaturc constant, and we

find p 5 Then we keep v constant and let the tempera-

ture alter, and we find p « ¢ (where t=6°C. 4 274).  After

* Notice that one Henry is 10° absolute units of self-induction; our
commercial unit of Induction called the Weber is 108 absolute units of
Induction.

14
The Henry suits the law: Volts=RA+ L Sdi ,
- . dI
The Weber suits Volts =R.[ 4 N, a

where R is in ohms, 4 amperes, I. Henries, N the number of turns in a
circuit, 7 Weber’s of Induction.

In Elementary Work such as is dealt with in this book, T submit to the
use of 4r and the difficulties introduced by the unseientific system now in
use. In all my higher work with students, such as may be dealt with in a
succeeding volume, I always use now the rational units of Heaviside and I
feel sure that they must come into general use.
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much trial we find, for one pound of a particular gas, the law
pv= Rt to be very nearly true, R being a known constant.

N_ ow observe that any one of the three, p,vortisa
function of the other two; and in fact any values what-
soever may be given to two, and the other can then be found.

Thus p=R— (1),

we can say that p is a function of the two independent vari-
ables ¢ and v.

If any particular values whatsoever of ¢ and » be tuken
in (1) we may caleulate p.  Now take new values, say ¢+ 8¢
and v+ 8v, where & and 8v are perfoctly independent of one
another, then

t t+ 8t t

+ &

dp=R —-7" 4 = e — A2 -
p+op o1 wnd p Rv+51) Rv'
We sce therefore that the change 8p can be caleulated if the
independent changes 8t and &» arc known.

When all the changes are considered to be smaller and
smaller without limit, we have an casy way of expressing 8p
in terms of 8¢ and Sv. Tt is

5y = <(’[1[’> 3 + (‘IJ’> 80 oo ().

dv

This will be proved presently, but the student ought first
to get acquainted with it. Let him put it in words and
compare his own words with these: “ The whole change in p
is made up of two parts, 1st the change which would occur
in p if @ did not alter, and 2ud the change in p if ¢ did not
alter.” The first of these is & x the rate of increase of p
with ¢ when v s constant, or as we write it <($> ot, and the
second of these is 8v x the rate of increase of p with v if ¢
is constant.

This idea is constantly in use by every practical
man. It is only the algebraic way of stating it that is
unfamiliar, and a student who is anxious to understand the
subject will manufacture many familiar examples of it for
himself.
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Thus when one pound of stuff which is defined by its p, v and ¢,
changes in state, the change is completely defined by any two of the
changes 8p and v, or 8» and 8¢, or 8p and 8¢, because we are supposed
toémow the characteristic of the stuff, that is, the law connecting p, v
and £,

Now the heat 8H given to the stuff in any small change of state
can be calculated from any two of 84, 8 and 8p, and all the answers
ought to agree. As we wish to accentuate the fact that the changes
are supposed to be exceedingly small we say

dH=1Fk. dt+ 1.dv
=K. dt+L.dp
=D .dp+V.dy

where the cocfficients £, {, A, L, P and V are all functions of the state
of the stuff, that is of any two of 2, £ and p. Notice that £. d¢ is the
heat required for a small change of state, defined by its change of
temperature, if the volume is kept constant: hence Z is called the
specific heat at constant volume. In the same way K is called the
specific heat at constant pressure. As for [ and L perhaps they may
be regarded as some kinds of latent heat, as the temperature is supposed
to be constant.

These coefficients are not usually constant, they depend upon the
state of the body. The mathematical proof that if 8H can be calcu-
lated fronm 8¢ and 8o, then dH =k. dt+1. dv, where £ and I are some
numters which depend upon the state of the stuff, is this:—If 8H can
be calculated, then 8H/ =£. 8t+1. Sv+a (86)2+0(8v)2+ (5t . 8v)+e(88)% +
terms of the third and higher degrees in 8¢ and v, where &, I, a, b, ¢, ¢
&c. are coefficients depending upon the state of the body. Dividing by
either 8¢ or 8v all across, and assuming &8¢ and & to diminish without
limit, the proposition is proved.

INlustration. 'Take it that for one pound of Air, (1) is
true and R is, say, 96, p being in lb. per sq. foot and v in
cubic feet.

.t rdpy 96 dp 96¢ P
3 = S -— —_— ] = - Rt = — /= =,
As p =00 p’ ‘\dt) v’ <dv> v? v
Heunce, from (2), &p = %fi . Ot —Jg YL (4).

Lzample.  Let £ =300, p= 2000, v=144.

If ¢ becomes 301 and v becomes 1475 1t is easy to show
that p will become 1992:83. But we want to find the change
in pressure, using (2) or rather (4),

96 2000
¥ e T
whereas the answer ought to be — 7-17.

x 1 =—T221b. persq. ft.,
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Now try 5¢="1 and dv="01 and test the rule. Again, try
3t="01 and &v =001, or take any other very small changes.
In this way the student will get to know for himself what
the rule (1) really means. It is only true when the changes
are supposed to be smaller and smaller without limit.

Here is an exceedingly interesting exercise :—Suppose
we pubt 8p=0in (2). We sce then a connection between 8t
and &v when these changes occur at constant pressure. Divide
one of them by the other; we have 2%)

when p is constant,
or rather

<(1p> '
dv dt .
<E> = — @175 ...................... (D).
dv
At first sight this minus sign will astonish the student
and give him food for thought, and he will do well to manu-

facture for himself illustrations of (5). Thus to illustrate
it with py= Rt Here

(dv>_f_€ (dzz _ B <@> B
dt)  p’ 7dt> T \dv, @ v’

and (5) states the truth that
R R < p>

P v v
The student cannot have better cxercises than those
which he will obtain by expressing &v in terms of & and 8p,
or 8t in terms of 8p and 8v for any substance, and illustrating
his deductions by the stuff for which pv= Rt. T

79. Further Illustrations. In (3) we have the same answer
whether we caloulate from d¢ and do, or from dt and dp, or from dp
and dv. Thus for example,

Fodt+l.do=N.de+ L. dpecioiieennnn.. (6).

We saw that L[]?:(%) dt+<§§}—)> dr, and hence substituting this
‘ dv

for dp in (6) we have

Eodt41.de=K.dt+ 1, ((fg) dt+ 1 <EZ;)) do.
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This is true for any independent changes d¢ and dv; let dv=0, and
again let d¢=0, and we have

=K+, <%) ............ R ™,
(P 8
=1, <&;> .................................... ®

Again, in (6) substitute dv= <€h> dt+< >dp, and we have

.alt+l<dt>dt+l ‘Z”>dp K.di+L.dp.

Equating cocflicients of d¢ and of dp s before we have
k41 <d”> SV e s )

do
b= e 0).
z< dp) Lo (10)
Again, putting &.de+0. do=P.dp+ 1. dv, and substituting

dp-(?) dt+<gp> d,

wehave  F.dt4l. do—D <flff> de4 D <Z—f’> Lo 1. do,

dt

. p ,
and k=D <@§ .............................. (11),
also [P @p) T L (12)

Again, putting K. dt+ L. dp=P. dp+ V. do, and substituting

dt
dt_<~—>d +< )d,
ap) -

wo have 1< )<z,,+11< {>dv+L dp="0.dp+ V. do,

and K <dt>+L P oo (13),
ap

L [dt . )
A <du>= | S PN (14).

The relations (7), (8), (9), (10), (11), (12), (13) and (14) which
are not really all independent, of one another (and indeed we may get
others in the same way) are obtained merely mathematlcally
and without assuming any laws of Thermodynamics. We have called
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H, heat; ¢ temperature &c., but we need not, unless we please, attach
any physical meaning to the letters.

The relations are true for any substance. Iind what
they become in the case of the stuff for which pv=Rt (the mathe-
matical abstraction called a perfect gas). We know that

<(le]zo> = 7];, so that (7) becomes b=A+ L%? ______ (7Y*,
(Zf): - i—), 50 that (8) becomes (= —-L% ............ (8)*,
<%;>= —, so that (9) becomes k+l%: o, (9)*,

; 2, 50 thy bec 101, 10)*
@)= p so that (10) becomes — o= s (10%,
gt >= %’ so that (11) becomes /c=Pf—f ............ a1)%,
<EZ)>= — Z,f; so that (12) becomes I= _p%’_,_ 1 (12)%,

1t is evident that these are not all independent; thus using (10)*
in (9)* we obtain (7)*.

80. Another Illustration. The Elasticity of our stuff is
defined, see Art. 58, as
dp

e=—p 1,
de

N\
Now if ¢ is constant, we shall write this e¢=—-v<g€ ) or the

elasticity when the temperature remains constant.
If it iy the adiabatic elasticity e, which we require, we want to

know the value of T{) when the stutl’ neither loses nor gains heat. In
de

the last expression of (3) put d& =0, and the ratio of our dp and our

dv will then be just what is wanted or <%l%)> = —}_, the A being
"

affixed to indicate that A is constant or that the stuff neither loses
nor gains heat, Hence e, =eg-
. ew_ _ 1V (dp
Thus 'ez_ Vo <dv>
Taking V from (14) Art. 79 and 2 from (11),

L (deN (dp
o X () ()

& 2 (gg) ’
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d, ' dt
but we have already seen as in (5) that <d—‘§> = <6-(—lg)= - <%> and

hence for any substance el:% .............................. (15).
€

This ratio of the two specific Heats is usually denoted by the
letter y. Note that neither of the two laws of Thermodynamics nor a
Scale of temperature is referred to in this proof.

81. Greneral Proof. If « is a function of # and y, we may
write the statement in the form u=f(x, ). Take particular values
of 2 and y and calculate w. Now take the values x+8» and y+ 8y,
where 8x and 8y are perfectly independent of one another, and calculate
the new w, call it w+8u. Now subtract and we can ouly indicate our
result by

du=f(z+dz, Y+0y) —f (% ¥
Adding and subtracting the same thing f(z, »4-8y) we have
Su=f(w+8u, y+08y)—f(x, y+8y)+f (v, y+8y)—f (&, )

This is the same as

PACE 2203 yﬁg;;i(% Ul AW A ﬂ_+~3g;—-f 9 by..016).

Now if 8x and 8y be supposed to get smaller and smaller without,
limit, the coefficient of 8y

or L& IFID =T ) oo W0 0) ()

By dy dy
the x being constant. In fact this is our definition of a differential
coefficient (sce Art. 20, Note). Again, the coefficient of dx becomes
the limiting value of f@,‘é’aw’ because 8y is evanescent.

Writing then « instead of f(», y) we have

_ f[du du .
du—(a) dX+(Ty-) dy .................. (11).
Thus if uw=aw?+by’+exy, du=(2ar+cy) da+(2by + cx) dy.
82. Notice that although we may have
de=M.de+ . dy

where M and N are functions of # and ¥ ; it does not follow that z is a
function of @ and y. For example, we had in (3)

AH=k.dt+1. dv,

where £ and [ are functions of ¢ and ». Now H the total heat
which has been given to a pound of stuff is not a function of v and ¢;
it is not a function of the state of the stuff. Stuff may
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receive enormous quantities of heat energy, being brought back to its
original state again, and yet not giving out the same amounts of heat as
it received. The first law of Thermodynamics states however chat if
dE =dH —p . dv, where p.dv is the mechanical work done, we can
give to & the name Intrinsic FEnergy because it is something
which is a function of the state of the stuff. It always comes back to
the same value when the stuff returns to the same state.

Our Z is then some function of # and #, or of £ and p, or of p and »,
but # is not!

The second Jaw of Thermodynamies is this:—If dZT be divided by
¢ where ¢ is 0°C. 4274, ¢°C. being measured on the perfect gas thermo-

meter, and if dTH be called dep, then ¢ is called the Entropy of the
stuff, and ¢ is a fanction of the state of the stuff,

83. Tt is very important, if
de=M.dr+N . dy coisvann.... certeeieas (18),

where M and N are functions of & and ¥, to know when z is a function
of wand y. 1If this is the case, then (18) is really

£ dz\
=) 2o+ (1)

) . (dz e
that is, M s (oTz) and & is ((»{7/) ,
dM dN
and hence ( Ej-r-) = ( a;) ........................... (19),
d* Jz ¥

because it is known that Ay dv :-‘?77{[/ .

d2u _ dlu
dy.dax dx.dy’
We gave some illustrations of this in Art. 81, and if the student is not yet

familiar with what is to be proved, he had better work more examples, or
work the old ones over again.

* Proof that

Let u=f{z, y);
(%) ig the limiting value of f—f(x—téﬁ;':.)—_f—(ic’}/) as dr gets smaller and

d [du d%u .
- J ig i 3 Rl e [l ¥ defini-
smaller. Now thisisa function of y, so v lae) oF ay e is, by our defini

tion of a differential coefficient, the limiting value of
1 [flz+de,y+dy) -fle, y+0u) flrtdry) L )|
oy | oz ou J
as Sy and dx get smaller and smaller.
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Here we have an exceedingly important rule: —If
de=M . Ao+ V. dy eeeeeiiiivnninenn, (18),

and if 2 is a function of » and y (another way of saying that z is a
function of » and y is to say that de=M.do+N.dy is a complete

differential), then
(‘L”>:<‘ﬂ)* e e (19).
dy dz

a2

Working the reverse way, we find that v dy is the limiting value of
1 [fletdm, ytoy)—f(z+dn, y) f(z, y+0y)-f(z:y)
ox oy oy

as oy and dv get smaller and smaller. Now it is obvious that these two are
the same for all values of sr and 3y, and we assume that they remain the
same in the limit.

® Mode+N.dy oo, (1},

where M and N are functions of z and %, can always be multiplied by
some function of x and y which will make it a complete differential.
This multiplier is usually ecalled an integrating factor. For, whatever
functions of « and y, 4 and N may be, we can write

ay_

- 2
T TN e (2),
and this means that there is some law connecting « and . Call it
B dF\  (dF\ dy _
F (2, y)=¢, then <71;> + <(Ty> =0 (3),
dy - s oy s Ay | [di'\ _ M
and as o from (3) is the same as in (2) it follows that <7l’b/ - <d—y~> =N

7
and hence <‘~{ll—l) = ud, (gf) = uN, where u is a function of x and y or

else a constant.
Multiplying (1) by x we evidently get

[ dF
<E) dr+ <@><1y ........................... (4),

and this is a complete differential. It is easy to show that not only is
there an integrating factor u but that there are an infinite number of them.
As containing one illustration of the importance of this proposition I will
state the steps in the proof which we have of the 2nd law of Thermo-
dynamics.

1. 'We have shown that for any substance, of which the state is defined
by its t and v,
dH=F.dt+1.dv
where k and [ are functions of ¢ and v.
Observe that ¢ may be measured on any curiously varying scale of tempera-
ture whatsoever. We have just proved that there is some function u of ¢ and
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84. The First Law of Thermodynamics is this:
If dE=dH—p.dv, or dE=Fk. dt+(—p) dv, then dF
is a complete differential that is, % returns to its old value when

v by which if we multiply (5) all across we obtain a complete differential ;
indeed there are an infinite number of such functions. Then calling the
resulf de, dp=p.dH=pk . dt+pl.dv ...........coiene . (8).

Let us see if it i possible to find such a value of « that it is a funetion
of ¢ only. If so, as the differential coeflicient of uk with regard to v (¢ being
supposed constant) is equal to the differential coefficient of ul with regard to
t (v being supposed constant),

dk du dl
# (o) =t en (),

| arN  /dl U du
or (E>t = <(if>;) + ,L_L. ﬁ; ....................... (7).

But the first law of Thermodynamics (see Art. 84) gives us

arN  rdl dp
di;>¢ = (ﬁ)u - (dt) ....................... ®),

1/dp\ _ 1 au y
and hence i (dt) = - F CTE e 9).

This then is the condition that x. JdII is a complete differential, « being a
function of temperature only. Obviously for any given substance (9) will
give us a value of 4 which will answer ; but what we really want to know is
whether there is a value of x which will be the same for all substances.

2. Here is the proof that there is such a value. I need not here give to
students the usual and well-
known proof that all rever-
sible heat engines working
between the temperatures ¢
and t¢-4¢t have the same
efficiency. Now let ABCD ) J
be a figure showing with in- &
finite magnification an ele- SIGN\C
mentary Carnot cycle. Stuff L
at 4 at the temperature i
t—5t; AI shows the volume a A
and 4K the pressure. Let >
4D be the isothermal for N C)
t -8t and BC theisothermal F o>
for t, AB and CD being
adiabatics.

Notice carefully that the
distance A or WB (WWis in
DA produced to meet the
ordinate at B) is (dp/dt) 5¢. )

Now the area of the o X K oz
parallelogram 4 BCD which Fig. 55
represents the work done, is
BW x XZ (if parallelograms on the same base and between the same parallels
be drawn, this will become clear). Call X% by the symbol 8v (the increase
of volume in going along the isothermal from B to C), and we see that

P, 10

D
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the nett work done in the Carnot cycle is (dp/dt)st, sv. Now the Heat
¢ and ¢ return to their old values, (or another way of putting it is that

/ dE for a complete cycle is 0).
We have secn that the differential coefficient of 7 with regard to v,

¢ being constant, is equal to the differential coefficient of {—p with
regard to ¢, v being constant, or

dk\  fdl dp® .
<%>t = <a}>v - <dt vt iareastiarseaes (20).

This statement, which is true for any kind of stuff] is itself sowctimes
called the first law of Thermodynamics.

The Second Law of Thermodynamics is this; d%[ or

taken in at the higher temperature is, from (3), Art. 78, equal to 1. 6v and
nett work . 1 /dp s .
hence —Tiga—t—zeﬂiuenc) =7 (&—t> 8t...(10), and this is the same for all

substances.

As it is the same for all substances, let us iry to find its value for any
one substance. A famous experiment of Joule (two vessels, one with gas at
high pressure, the other at low pressure with stopcock between, immersed
in a bath all at same temperature; after equalization of pressure in the
vessels, the temperature of the bath keeps its old value) showed that in
gases, the intrinsic energy is very nearly constant at constant temperature,
or what is the same thing, that [ in gases is very nearly equal to p, and it is
also well known that in gases at constant volume, p is a linear function of
the temperature. Whether there really is an actual substance possible for
which this is absolutely true, is a question which must now be left to the
higher mathematicians, but we assume that there is such a substance and

in it
1/dp\ _ 1 /dp\ _ 1
T(E?.) ._.i; (dt) SRR e (11,

if 0 is the Centigrade reading on the Air Thermometer. If then we take
t=0+274 as our scale of temperature and (11) as the universal value of
1 /dp ) 1 1 dp dt  du ‘

7 (flf) , then, from (9), i~ —}: “ar o1 - = ——/L— or logt-+logu=a constant,
or /.L:f— » where ¢ is any constant. This being an integrating factor for (5),

. 1 -
we usually take unity as the value of ¢ or p=7as Carnot’s function.

It is not probable that, even if there is one which is independent of p or
v, there really is so simple & multiplier as 0+1271 (where ¢ is the Centigrade

temperature on the air thermometer) or that there is such a substance as we
have postulated above. Calling our divisor ¢ the absolute temperature, we
believe that for ordinary values of 6, t is 0+ 274, and the greater 8 is, the
more correctly is ¢ represented by 6+274; but when 6 is very small, in all
probability the absolute temperature is a much more complicated function
of 8. The great discoverers of the laws of Thermodynamies never spoke of
~ 274° C. as the absolute zero of temperature.
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dp =" !

differential coefficient of 7 with regard to », ¢ being considered

~do ... (21), is a complete differential, and hence the

constant, is equal to the differential coeflicient of tl with regard to ¢,

ol
' <CE>L,_J

Hence % (4‘): = 2 ,

dk dl 1 .
o (G T — @

Thix statement, which is true for any kind of stuff, is itself sousc-
times called the second law of Thermodynamics.

» being constant +.

Combining (20) and (22), we have for any stuft’

d 1 o
(ag) = E .............................. (23),
a most important Taw. T

Applying these to the case of a perfect gas we find

that (23) becomes = {—f, or Z:{;j, O {=Puiiiniiinivieinicinan. (24).

Hence (20) is cili =0. It is not of much importance perhaps,
¢

practically, but a student ought to study this last statement as an
exercise. 1 is, for any substance, a function of v and ¢, and here we are
told that for a perfect gas, however £ may behave as to temperature, it
does not change with change of volume. Combining (24) with (9)* &e.
(p. 141), alrcady found, we have A — =R, and as Regnault found that
A is constant for air aud other gases, £ 1s also constant, so that
{=p, L= —u, P:'yTl’ l'—_——);]iiy—l, where y=7

We can now make evect caloulations on the Thernodynamics of a

perfect gas if we know A and R.

85, The statements of (3) Art. 78 becone for a pound of perfect
gas
dH=k.dt+p.dv )

=K.dt-v.dp r

+ The rule for finding the differential coeflieient of a quotient is given in
Art., 197.

10—2
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I often write this last in the shape l—i d{pey+p.de. ... (2),
y—

also dE=k.dt, or E=Fkt4constant................... (3).

It is easy to obtain from this other forms of % in terms of p and ».
To the end of this article, I consider the stuff to be a perfect gas.

Lvample 1. dp=~. (ft +]t—) - dv, or as 1;: {;«
dt R
dp =1 ra + R de.
Hence, integrating,
¢ =klog ¢t + 2 log v+ constant, or ¢p=log v+ constant, ... (4).
Again dd)xl% . rlt——i . dp, but ; L .
Hence dep= 121 ot —g dp.

Integrating
¢ =K log t - R log p + constant, or ¢p=1og t*p~* + constant...(5).
po

- we have (5) becoming

i
¢ =log pFo¥+constant ..., (6)-

Substituting for ¢ its value

‘The adiabatic law, or ¢ constant, may be written down at
once. Reducing from the above forms we find

to¥—l=constant,

i
or 17 p=constant,
or prY=constant.
Students may manufacture other interesting exercises of this kind
for themselves.

Example 2. A pound of gas in the state p,, v,, £, receives the
amount of heat A, what change of state occurs? We get our informa-
tion from (1),

1. Let the volume v, keep constant. Then JH=1%.dt
from (1).

The integral of this between ¢, and ¢ is Hy =% (¢, —¢,), and we may
calculate the rise of temperature to ¢,.

. ©
Or again, (l][:y _01 dp.
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. A
Hence, the integral, or f[m:_—y{] (1~ Po), and we may calculate
the rise of pressure.

II. Let p, the pressure, keep constant.
dH=K.dt, hence Hy=K (t;—1,).

Again (l[[:‘fi’% dv, hence H :‘yp_f}vli (7 = vy).

IIT. At constant temperature.
dH=p.dv or Hm:/vlp.dv:: 7, the work done Ly the gas in ex-
vy
panding.

1V. Under any conditions of changing pressure and
volume.

m =k (¢, ~ ty)+ work done.
Also from (2), H,;= -—1 {(p1vy — pyry) +work done,
y—

If H=0, the work done=1% (¢, —¢,)
We often write the last equation of (1) in the convenient shape

dH 1 { dp
av ._Y—_-T dv+yp} Ceeiereenaes terreaeen (7).
If in this we have no reception of heat,
dH
or e =0, then » o;p+y p=0
dp , dv
or JS +y- g—() or, integrating, log o+ log » = constant,

or pa‘/zconstant.
This is the adiabatic law again.

Ezample 3. Tn a well known gas or oil engine cycle of

D

t:% C

p3

M

;1 ty

8
ts
b,
v,

H
=
&
o
&
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operations, a pound of gas at p,, v,, ¢,, indicated by the point A is
compressed adiabatically to B, where we have p,, #,, ;. The work
done wpon the gas is evidently (from 1v.) £(2, —¢,), being indeed the
gain of intrinsic energy.
Heat given at constant volume from B to € where we have

Pas vy, By is H=k (t, - 1,).

Work done in adiabatic expansion CD=F (¢,—1,).

Nett work done =work in ¢'D—work in 4 B=

W=k (ty+t,— 1, =1,

Lih—h=t | t-t

ts—t -ty

% =cfficiency e=

But we saw that along an adiabatic £Y~1 is constant, and hence
1o -1
to Tl=t2Y 7L

—1. -1
foY 1=t ¥ 1

L t ¢ y-1
From this it follows that f: 2 <131> , and each of these
t—t, o IR N
:t“ —il - Using this valuc in (8) we have
FRRS
. 7-1
efficiency =1 — (%) ..................... (9),

2

a formula which is useful in showing the gain of efficiency produced by
diminishing the clearance #,.

Students will find other good exercises in other eycles of gas engines.

Change of State.

86, Instead of using equations (3) Art. 78, let us get out equations
specially suited to change of state. Let us consider one pound of
substance, s being vapour, 1 - being liquid (or, if the change is from
solid to liquid, m liquid, 1 ~m solid), and let

s,=cubic feet of one pound of vapour,
=, , of one pound of liquid,
p=pressure, ¢ temperature.  p is a function of ¢ only.
If s the volume of stuff in the mixed condition,
r=msy+ (1 —m)s,
=(3,—3) 3, OF V=TRU+S..eeeriinreiirnnnn (L),

if we write u for ¢,—s,.

When heat dH is given to the mixture, consider that z and m
alter. In fact, take ¢ and m as independent variables, noting that ¢
and m define the state. If o, and ¢, be specific heats of vapour and
liquid, when in the saturated condition (for example, gy, is the heat given
to one pound of vapour to raise it one degree, its pressure rising at
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the same time according to the proper law), then the i 1b. of vapour
needs the heat ma,.df, and the 1-—m of liquid nceds the heat
(1—=m)ay,.dt and also if dm of liquid becomes vapour, the heat L. dim
18 needed, if 7 is latent heat. Henee

dll={{o,—a)ym+afdt+L.dm. ..o veennn(2),
If I/ is the Intrinsic Energy, the first law of Thermodynamics gives
dli=dll~p.de ... e e ereeas (3).

Now if s and ¢ define the state, » must be a function of m and ¢, or

de dv
do= <},ZZ> . dt+ <Zi;z> dni.

Using this in (3) and (2) we find

dB = {(M— o) Moy —p <‘£~;)} dt + {L —p <%1>} din .. (4).

Stating that this is a complete differential, or

d | ] dn\] _d |, dv\)
i frmwenp () =G e (G5))

we have, noting from (1% that <¢§l%> =,
‘L _ ( dv\ LA 5
B R G Xy m—— 5).

Now divide (2) by ¢ and state that d(j):%l—[ is a complete dif-
ferential,

d [loy—oy)m+ (rl} d (L)*

o |‘ I3 AN
or AL = e, o)
It ITOT .
Hence, with (5) we have === EB .............................. (8),
t dt
dp

87. 'To arrive at the fundamental Equation (8) more
rapidly. Infig 57 we have an elementary Carnot cycle for one pound

a/ry o %“ L
* qi\7)= —p—as will be seen later on when we have the rule for

differentiating a quotient. But indeed we may as well confess that to
understand this article on change of state, students must be able to perform
differentiation on a produet or a quotient,
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of §tllﬂ'- The co-ordinates of the point B are FB=s, the volume, and
BG the pressure pof 1 pound of liquid. At constant temperature ¢, and

b
B c
F ~N
A D
-
T G

also constant pressure, the stuff expands until it is all vapour at F'C=s,;
CD is adiabatic expansion to the temperature 1 - 8¢t at 1. 1A is iso-
thermal compression at ¢~ 8¢ and A2 is the final adiabatic operation.

"The vertical height of the parallelogram is 3¢ (gg , and its area, repre-
senting the nett work, is 8¢. ;1‘%) (s4—5,). The heat taken in, in the
operation B¢ is L, and the efficiency is 8¢ (dit‘ (s,—8y =7 DBut as it is

.. &t . e
a Carnot cycle this is equal to n and so we obtain (8). 7

d /L

88, 'The Entropy. From (6 we find o,— ¢ =¢ W 7), sl
¢ A
we can write (2) as ‘
Al =g dt+1.d <i"/ o OO (8.
\ /
Hence, the entropy J(/):fl—:[: ‘?[’1 dt+d <{';L )y
A
or ¢ :f{;!, + [ 'a;‘ dt+constant ......... s (10).
Ju

In the case of water, oy is nearly constant, being Joule’s equivalent.
(We have already stated that all our heat is in work units), and

I ¢
b :”% +0o, log <;> Feonstant o, (1),
[

Henee the adiabatic law for water-steain is

mkL 4+ log - constant.................. (12),
t i

It is an excellent exercise for students to take a numerical example,
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Let steam at 165°C. (or 1=439) expand adiabatically to 85°C. (or 7= 359).
Take o, =1400 and L in work units, or take ¢, =1 and take Z in heat
units.  In any case, use a table of values of ¢ and 7.

1. At the higher 7,=439 let m,=="7. (This is chosen at random.)
Caleulate m, at, say ¢, =394, and also m, at #,=359.

Perhaps we had better take Z in heat units as the formula
L="796 - -695¢
is easily remembered.
Then (12) becomes
moe _—
iy = ‘695 | +log ’1: ., 1—2’ ~ 695 ) +Jog i
t ty S\t Sy’

2

2

log b + <ﬂ — '695>
Z, t

9y =

If we want m, we use 4, instead of #,.

Having done this, find the corresponding values of ». Now try if
there is any law like

pv*=constant,

which may be approximately true as the adiabatic of this stuff
Repeat this, starting with n,="8 say, instead of 7.

‘The t, $ diagram method is better for bringing these matters
most clearly before students, but one or two cxamples like the above
ought to he worked.

89. When a complete ditferentinl du is zero, to solve
the equation du =0, We sce that in the case,

(* ~ dary — 207y dic + (i — dory — 2%y dy = 0,

we have a complete differential, becanse

(l o / —_ 3y — v
0y (o — dry — 21") = — dr — 4y,

d(l' (i — day — 2a%) = — dy - dur,

50 that they are equal.  Henee it is of the form

du du
<H.;‘> . (‘[.l’ + <a?/> (]ll/.

Integrating a® — 4ay — 247, sinee 1t is ( %”), with regard to
\air
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@ assuming ¥ constant, and adding, instead of a constant, an
arbitrary fanction of y, we get w as
1= 1" — 2ty — 2P0 + G ().
du

To find ¢ (y), we know that <d§> =42 — day — 2u*,
, {
Hence —2a® — 4y + ;(l?/ ¢ (y)=y* — day — 222

d
— a2 » | —_ 3

Hence @¢(y)—-g/° or ¢ (y)=1i

— 13 L D2y, 2 1,3 —
Hence w=%a" — 2%y — Dy + Liyf =c.
We have therefore solved the given differential equation when
we put this expression equal to an arbitrary constant.

Solve in the same manuer,

<1 + ;J‘;> d(l} -9 g (l!/ = 0. ADS\VGY 22 — yg = ca.
g &

. 2x.dx 1 32 Y .
Solve — + <y— — ?> dy=0. Answer a? — 1 = ¢y,

Qo 4 : 8 Lo
Solve (o(r + 3y — y;{) dx+ <3J) ~y + g}g/-> dy=0.
Answer a2%y*+ oy + 4a® 4 2 + SupyP = catyp,

90. In the general proof of (17) given in Art. 81, we assumed that
x and y were perfectly independent. We may now if we
please make them depend either upon one another or
any third variable z. Thus if when any independent quantity 2
becomes 248z, # becomes z-+8+ and y becomes ¥+0y, of course «
becomes w48u. Let (16) Art. 81 be divided all across by 8z, and let
8z be diminished without limit, then (17) becomes

du _ (duNde | (du\ dy
’“E - <CT.Z‘> (’i‘z‘ + (@) C?;Z_ ........................ ” ).
Thus let w=ax?4+by?+ cuy,
and let a=e, Y=g

Then C%) =2ax+cy, <g§> =2by+cx, zg =ne "1 g'g =gl

and consequently

gg =Qax4-cy) nez* 1+ (2hy + ex) mgzm—1,
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Iu this we may, if we please, substitute for # and 7 in terms of z
and so get our answer all in terms of z.

This sort of example is rather interesting because it can be worked
out in our earlier way. In the expression for u, substitute for # and y
in terms of z, and we find u=«e?%? 4-bg%2» 4 cogzn+™ and

%& =2nae’s’

It will be found that this is exactly the same as what was obtained
by the newer method. The student can easily manufacture esamples
of this kind for himself.

For instance, let y=wu» where « and » are functions of #, then (1)

tells us that
dy _ __dv du
StV
a formula which is usually worked out in a very different fashion.
See Art. 196.
In (1) if  is really a constant, the formula becomes
du_du dx
dz ~dx " dz’
which again is a formula which is usually worked out in a very different
fashion. See Art. 198,

In (1) assume that z=2 and that y is a funetion of x, then

dw  (du du\ dy
Z = (E) -+ <d§/ EI,’.Z’ ........................... (2)

The student need not now be told that g% is a very different thing

du
from ((fi) .

w14 2mbg%® =14 (n +m) cegan ™1,

Example. Let w=ax?+ by’ +cxy,
and let Cy=gam™,
du d d;
Then <(TL> =2ax+cy, <(1T;> =2by + e, a? =mgam=1,

. du
Hence (2) is, a2z +cy)+ @by +cx) mgam=1,
More directly, substituting for ¥ in w, we have
U= ax? 4 byt 4 pgam -+ 1,
du
7= 202+ 2mbg%®™ 4 (1 4 1) egam,

and this will be found to be the same as the other answer.
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If w is a function of three independent variables it is easy to prove,
as in Art. 81, that

du du du
m= e % —_ i vas bt . 3).
du (d.'l)) J.L‘—l—(dy) dy+ <dz> d (3)

91, LEwrumple. When a mass m is vibrating with one degree
of freedom under the control of a spring of stiffness o, so that if # is
the displacement of the mass from its position of equilibrium, then ax
18 the force with which the spring acts upon the mass; we know that
the potential energy is 4 @a? (see Art. 26), and if v is the velocity of the
mass at the same time ¢, the kinetic energy is §mv?, and we neglect the
mass of the spring, then the total store of energy is

E=m2+}as®

When a is 0, » is at its greatest; when # is 0, » is at its greatest.

1. Suppose this store £ to be gonstant and differentiate with
regard to ¢, then

v da
O=mu ’72—}- e 7R L E PP RPN PN 1),
or as ¢ is d"L writing d‘r for dv have
as v s, writing - pg for - we have
d2x , a
ae + mX= O i (2),

which is (see Art. 119) the well known law of simple harmonic motion.

2. If the total store of energy is not constant but diminishes at
a rate which is proportional to the square of the velocity, as in the case
-=— Fv? then (1)

of Fluid or Electromagnetic friction, that is, if

ot
odw &
becomes - - I?— e El%-{— “ n—fg[; , or (2) hecomes
dzx Fdx, a
dt2+!Tl E+mx—-0 ..................... 3)

Compare (1) of Art, 142,

92. Similarly in a cireuit with self induction Z and resistance £,
joining the coatings of a condenser of capacity X, if the current is ¢, and
if the guantity of electricity in the condenser at time ¢ is KV so that
C=-K Cfﬁv, § LC* is called the kinstic energy of the system, and K772
is the potential energy, and the loss of energy by the system per second
is RC%  So that if & is the store of energy at any instant

E=§ LO*+$ K173
Al ; dC dy

e ROt L )
ot =10 dt +AT dt’
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LdC ]
0=~ V. C+R(E=0
or L 7 V.C0+ ,
ac ..

s i T 1 [t0= 0,
o i

L2V AV
or LK i + K p7 + V=0,

@2V R4V, 1 =
or Et_2+r HE-'-I—:KV_O ..................... s
. LAV .

Differentiating this all across and replacing A %,t— with € we have a
similar equation in ¢! Compare (4) of § 145.

93. A mass m moving with velocity » has kinetic cnergy §mos
If this is its total store Z,

E=%m

If £ diminishes at a rate proportional to the squarc of its velocity
as in fluid friction at slow speeds,

ar__ Bt =anp v
dt di’

or e = — l—ﬂz' ©)
b7 o TP R PP P TR .

We have a similar equation for the dying cut of current in an
electric conductor, § LZO? being its kinetic energy, and R(? being the
rate of loss of encrgy per second.

94.  Tn (2) of Art. 90, assume that « iy a constant and we find for
example that if w=f (v, y)=¢

(dﬂ"’ﬂ> + ( 9 (o )y dy
dx dy de 7
so that if f'(«, y)=¢ or =0, we easily obtain g¥
1. Thus if w*+y*=¢, 20+2y. i[’i/=() or di/=—-£.
’ dv 7 7 dr oy’
et 2z 2y dy 7y b »
20 Alsoif 2 47 120,28 L8 oy WP
Also if u? + s 1=0, a? + b d;l.'—‘o’ o Ta oy’
3. Again if w=A4™ 4 By,

du - dy
;l}=711,‘1.z Lk Byn-1 aT: .

Hence if #=0, or a constant, we have
dy  mdam-1
dx nlye-1
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4 If u='§1+%2,
9
dw:gj dr+i€dy
4 dy &*—ay
- R S «y wwep: W _v oAy
3. IE a4 3= Bwey=">, find P Answer: A= amm gt
6. If wlog y—~ylog w=0,

dy_y (vlogy =y
de ™ x \ylogw—x)"

95. Lwample. Find the equations to the tangent and normal
) 2 g2
to the ellipse i: +‘%z: 1, at the poiut 2, y, on the curve.

-', 1/,, —(l"?[:(), or at the point, fi'y_—-: - Zf‘, 1
a0t dw . a” i1

Hence the equation to the tangent is

Yoy Dy
£—ay atyy’
” Y
N /L Niohg Y=
. Sy YK YT
or -~ = = s
a? + [ZRE + b2

and as 2y and g, are the co-ordinates of a point in the curve, thisis 1,
2y

Y _
u? B

Heunce the tangent is I

-+ L

a’ y

The slope of the normal is 5 2! and hence the equation to the
I
&y
L Y= u? 3
normal is ‘/r—‘/;l =2 I
Z— a

APPENDIX TO CHAP. T.

Luge 19, 1n an engineering investigation if oue arrives at mathe-
watical expressions which cannot really be thought about because
they are too complicated, une can often get a simple empirical formula
to replace them with small error within the limits between which they
have to be used.  Sometimes even such a simple expression as a4 b,
or z¢ will replace a complicated portion of an expression with small
error. Expertness in such substitution is casily attained, especially in
calculations where sowme of the terms can be expressed numierically or
when one makes numerical experiments.
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Ezxercise 1. The following observed numbers are knowix' to follow
a law like y=a bz, but there are errors of observation. Find by the
use of squared paper the most probable values of @ and b.

.73‘2{3(45(6’7 9 12‘13
¥ J 56 ' 685 J 927 ‘ 1165 | 1275 | 1632 | 2025 22-33]

Ans. y=25415a.

Exercise 2. The following numbers are thought to follow a law like
y=ax/(1+sr). Find Ly plotting the values of yfx and y on squared
paper that these follow a law y/c+sy=a and so tind the most probable
values of @ and s.

v | §1 j 2 }o~3 l 14 ' 2 ‘

y ( 78 ( 07 ( 1-22 ( o] / 11 ( 124 {

Ans. y=32/(1+22).

Jzercise 3. If p Is the pressure in pounds per square inch and if ¢
is the volutie in cubic fect of 1 1b. of saturated steamn,

p! 686 I 1470 1633 ’ 2503 |

25383 ] 6040 ! 101-9

1400 J 6992 J 128

2748 J 1853 '\

v, 5392 / 2636

Plotting the common logarithms of p and v on squared paper test
the truth of ppl 066 =479,

Ezercise 4. The following ave results of experiments cach lasting for
four hours ; 7 the indicated horse-power of an engine, transmitting
B horse-power to Dynamo Machines which gave out 4 horse-power
(Electrically), the weight of steam used per hour being T1h, the weight,
of coal used per hour being € Ib. (the regulation of the engine ‘was by
changing the pressure of the steam). Show that, approximately, -
W=800+211, [}="95]~18, E="93B 10, C=42]— 63,

1B ‘\ ¢ |

100 163 | 143 | 4800 | 730 |

1421y |96 | 3770 5t |

108 | 86 69 | 3080 | 387

65 | 43 20 | a1sa | 218
} 1220 —

9 | 0 . 0

Page 34, 1t has been sugeested to me by many persons that I
ought to liave given a proof without assuming the Binomial Theorem,
and then the Binomial hecomes only an example of Taylor’s, In spite
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of the eminence and experience of my critics, T believe that my method
is the better—to tell a student that although I know he has not proved
the Binomial, yet it is well to assume that he knows the theorem to be
correct. The following seems to me the simplest proof which does not
assume the Binowial.

Let y=a wddr=wx, y+dy=y,.
(1) Suppose » a positive integer ; then
K —J/ — ‘Elnr_ 'Zv#:wln‘l_{,_lv‘,vln 72+ e 1
By -2 oy -
In the limit, when 8z is made smaller and smaller, until ultimately
Ly d . S
&, =2x, the left-hand side is o-l% and the right-hand side is an~t4-zn-1
d,
+...to n terms ; so that Y a1,
da
(2) Suppose n a positive fraction, and put u——-}f—b where £ and m are
1

A

_ o lm dfw PR =

e -y atm—p AR

positive integers. We have D= AT A where wtt =1,
Ty =& X=X G-z

& =2z™, and 50 on.

dg:limit of (__ ﬁzlelil +i4 _2 RaRITTIVE
. (51—Z)<Zlm_l+5.31""_")‘—}—......+Zm—1)

dw
— -t 4 - é_l n—1
= et = o AT = =nyt L
(3) Suppose n any negative number= —m say, where m is positive,
.. x"b - n
then noticing that oy =m—p-m=""___"1_
atgn !
14
T 1 QLM it
we have i S U SR S
'”1 —r ""I "y vvl -

M ey

Now the limit of ** - =)upm=1 by cases (1) and (2) whether m

2=
. [ O
be integral or fractional.
dy 1
AT e MM L= gl g1,

d .
Thus we have shown that Tn (emy=na"~1 where n is any constant,

positive or negative, integral or fractional.
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CHAPTER II

e* and sin x.

97. The Compound Interest Law. 'T'he solutions
of an enormous number of enginecring problems depend
only upon our being able to differentiate 4™ I have given
a few examples. Surely it is better to remember that
the differential coefficient of 2" is na™, than to write
hundreds of pages evading the necessity for this little bit
of knowledge.

We come now to a very different kind of function, e=,
where it is a constant quantity e (¢ is the base of the
Napierian system of logarithms and i1s 2:7183) which is
raised to a wariable power. We calculate logarithms and
exponential functions from serics,and it is proved in Algebra
that
@ a? a? e
12ttt e aty

The continuous product 1.2.8.4 or 24 is denoted by 4
or sometimes by 4!

Now if we differentiate e® term by term, we ecvidently
obtain

=142+

0+1 at at ¢

ety trag e
so that the ditferential coefficient of ¢ is itself ¢%. Simi-
larly we can prove that the ditferential coefficient of ¢ is
ae*”.  This is the only function known to us whose rate of
Increase is proportional to itself; but there are a great many
phenomena in nature which have this property. Lord
Kelvin’s way of putting it is that “they follow the compound
interest law,”

P. 11
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. . dy
Notice that if AV i, 1),
1ce that 1 T ay (1)

that is, the rate of increase of y is proportional to y itself,
then
y=be*™ ... (2),

where b is any constant whatsoever; b cvidently represents
the value of ¥ when = 0.

Here again, it will be well for a student to illustrate his
proved rule by means of graphical and numerical illustrations.
Draw the curve y=e¢? and show that its slope is equal to its
ordinate.  Or take values of z, say 2, 2001, 2:002, 2003, &c.,
and calculate the corresponding values of y using a table of
Logarithms.  (This is not a bad exereise in itself, for practical
men are not always quick enough in their use of logarithms.)
Now divide the increments of y by the corresponding incre-
ments of 2. An ingenions student will find other and
probably more complex ways of getting familiar with the
1dea.  However complex his method may be it will be
valnable to him, so long as it is his own discovery, but lot him
beware of irritating other men by trying to teach them
through his complex discoveries.

98. It will perhaps lighten our study if we work out a
few examples of the Compound Interest Law.

Our readers are either Electrical or Mechanical En-
gineers. 1f Electrical they must also be Mechanical, The
Mechanical Engineers who know nothing about electricity
may skip the electrical problems, but they are advised to
study them ; at the same time it is well to remember that
one problem thoroughly studied is more instructive than

_ thirty carclessly studied.

Fzample 1. An electric condenser of constant capacity
K, fig. 58, discharging through great resistance £. If v is the
potential difference (at a particular instant) between the
condenser coatings, mark one coating as v and the other as
0 on your sketch, fig. 568. Draw an arrow-head representing
the current C in the conductor; then ('=y+~ R,

But g the quantity of electricity in the eondenser is Ko
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e { Ldv .
and the rate of diminution of ¢ per second or — (dz or — XK (_;—; 18
the very same current. Hence K
rP_ =
de I’ c c
or dv 1 ” 4
dt~ KR~ Fig. 58.

That is, the rate of dimimdion of v per sceond, is propor-
tional to v, and whether it is a diminution or an increase we
call this the compound interest law. We guess therefore that
we are dealing with the exponential function, and after a little
experience we see that any such cxample as this is a case of
(1), and hence by (2)

1
~- ot
v=>0e K1 (3).

It is because of this that we have the rule for finding the
leakage resistance of a cable or condenser.

¢

For (log b — log v) = Ki

So that if v, is the potential at time ¢, and if o, is the
potential at time 2,

KE (logb-—logu)=t,
KE(logb—loguw,)=1t.
Subtracting, AR (logv,—logw,)=t,—1,

So that R=(t,—t,)/K log :71

It is hardly necessary to say that the Napierian logarithm
of a number n, logn, is cqual to the common logarithm

log,,n multiplied by 2:3026.

Such an example as this, studied carefully step by step by
an enginecr, is worth as much as the careless study of twenty
such problems.

Ezample 2. Newton’s law of cooling. Imagine a
body all at the temperature v (above the temperature of sur-

112
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rounding bodies) to lose heat at a rate which is proportional
to v.

Thus let %1; = —av,
where ¢ is time.  Then by (2)
=06 (%),
or log b—logv=at.

Thus let the temperaturc be v, at the time ¢, and », at
the time t,, then logv —log v, =a(t,—¢), so that @ can be
measured experimentally as being cqual to

log % +(ty—t).

Kzample 3. A rod (like a tapering winding rope or like
a pump rod of iron, but it may be like a tie rod made of
stone to carry the weight of a lamp in a church) tapers
gradually because of its own weight, so that it may have
everywhere in it exactly the same tensile stress flbs. per
square inch. If #y 1s the cross section at the distance
# from its lower end, and if y+8y is its cross section
at the distance #+4 8z from its lower end, then f.8y is
evidently equal to the weight of the little portion between
z and #+ 86z, This portion is of volume &z x v, and if w is
the weight per unit volume

dy w
J.éy=w.y.dx or rather de™ 7 .

w
Hence as before, y=be’ e, (5).

If when #=0, y=y,, the cross section just sufficient to
support a weight W hung on at the bottom (evidently
fyo=W), then 7,=0 because ¢"=1.

It is however unnecessary to say more than that (5) is
the law according to which the rod tapers.

Egample 4. Compound Interest. £100 lent at
3 per cent. per annum becomes £103 at the end of a year.
The interest during the second year being charged on the
increased capital, the increase is greater the second year, and
is greater and greater every year. Here the addition of
interest due is made every twelve months; it might be
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made every six or three months, or weekly or daily or every
second.  Nature’s processes arc, however, usually more
continuous even than this.

Let us imagine compound interest to be added on to the
principal continually, and not by jerks every year, at the rate
of r per cent. per annum. Let P be the principal at the

end of ¢ years. Then 8P for the time & is —— .8t or
L _ " P and hence by (2) we | 0
2 ool and henee y (2) we have

P= beﬁ’ t ,
where b= P, the principal at the time ¢ = 0.

Example 5. Slipping of a Belt on a Pulley. When
students make experiments on this slipping phenomenon,
they ought to cause the pulley to be fixed so that they may
see the slipping when it occurs,

The pull on a belt at W is 7}, and this overcomes not only
the pull 7} but also the
friction between the belt
and the pulley. Consider
the tension 7' in the belt
at P, fig. 59, the angle
QOP being 8; also the
tension 7'+ 81" at S, the
angle QOS being 6+ 36.

Fig. 60 shows part of
OPS greatly magnified,
86 being very small. In
calculating the force pres-
sing the small portion of Fig. 59.
belt PSagainst thepulley
rim, as we think of P8 as a shorter and shorter length, we sec
that the resultant pressing force is 7'. 86*, so that p.T.801s

¥ When two equal forces 7 make a small angle 3 with one auother,
find their equilibrant or resultant. The three forces are parallel to the sides
of an isosceles triangle like fig. 61, where 4D =C4 represents 1, where

A—<}B

(o}
Fig. 61.
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the frietion, if 15 the coefficient

T £ S Tuy,, Of frietion. Tt is this that 87
/\’T\\ 7 is required to overcome, When
4 / w. T80 is exactly equalled by

Fig. 60. 8T sliding 1s about to begin.

Then p. 1", 80 = 81 or % = T, the compound interest law.,

Hence I'=10e%. Insert now I'=7T, when =0, and T'="1T,
when §=QO0W or 6, and we have 1,=0, 1\, = T,e5.

In calculating the horsc-power H given by a belt to a
pulley, we must remember that H = (7, — 7,) V' < 33000, if
7} and T} are in pounds and V" is the velocity of the belt in
feet per minute.  Again, whether a belt will or will not tear
depends upon 7%; from these considerations we have the
well-known rule for belting.

Fzample 6. Atmospheric Pressure. At a place
which is A fect above datum level, let the atmospheric
pressure be p lbs. per sq. foot; at A+ 8k let the pressure
be p+8p (8p is negative, as will be seen). The pressure
at A is recally greater than the presswre at b+ 84 by the
weight of air filling the volume 84 cubic feet. If w 1s the
weight in Ibs. of a cubic foot of air, —8p=w. 8h. Butw=c¢p,
where ¢ is some constant if the temperature is constant.

Hence —8p=c.p. 8h...(1), or, rather ggﬁ = —¢p. Henee, as

before, we have the compound interest law; the rate of fall of
pressure as we go up or the rate of increase of pressure as we
come down being proportional to the pressure itself.  Hence
p=ae"" where ¢ is some constant. It p=p,, when 7 =0,
then @ = p,, so that the law is

. . W, . .
As for ¢ we casily find it to be })-0, w, being the weight
0
of a cubic foot of air at the pressure p,.  If ¢ s the constant
pressure p, . \ b
(absolute) temperature, and v, is now the weight of a cubic
w, 274

foot of air at 0°C. or 274° absolute, then ¢ is ZT o
0

BAC=350 and BC reprcsents the equilibrant. Now it is cvident that as
80 is less and less, BC+ADB is more and more nearly 80, o that the
equilibrant is more and more nearly 1'. 3¢,
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If w follows the adiabatic law, svo that pw=7 is
constant or w=cp'” where y=1414 for air. Then (1) be-

, b
comes — 8p = cp'v Sh or — }—)% = ¢8h or rather — ;%: ch or
— y-1 j
g=1 pr =ch+C. If p=p, wherc h =0, we can find ¢, and
_1 1 -
we have 1)1 1 :pl,] Y — 7—;}— el (3),

as the more usually correet law for pressure diminishing
upwards in the atmosphere.
Observe that when we have the adiabatic law p?r =0, a

constant, aud pv = I¢; it follows that the absolute temperature
1

. . 1-
18 proportional to p 7.

So that (3) becomes

80 that the rate of diminution of temperature is
constant per foot upwards in such a mass of gas.
Compare Avt. 74, (4),1f v is 0.

Ezample 7. Fly-wheel stopped by a Fluid Frictional
Resistance.

Let o be its veloeity in radians per second, [ 1ts moment of
inertia. Lot the resistance to motion be o torque proportional
to the velocity, sny Fa, then

Fo=—1 x angular acceleration......... (1),
) da B o
or ]dt—f-Foc—— ..................... (2),
or da_ _F o
dt— 1

Here rate of diminution of angular veloeity a, is proportional
o A ’ ]
to a, so that we have the compound interest law or

where a, is the angular veloeity at tinie 0.
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Compare this with the case of a fly-wheel stopped by
solid friction. Let o be the constant solid-frictional torque.

(1) becomes =— Ida/dt,

or da/dt + a/T =0,

or = — ¢t/] +a constant,

or a=dy—at{l ... (4),

where a, is the angular velocity when ¢ = 0.

Returning to the casc of fluid frictional resistance, if
M is a varying driving torque applied to a fly-wheel,
we have

da .
]'[—Fa-*—_[?ii ..................... ())
Notice the analogy here with the following electric circuit
law.
Lzample 8. Blectric Conductor left to itself.

Ohm’s law 1s for constant currents and is V= R, where
R is the resistance of a cirenit, €' is the current flowing in ib;
V the voltage. We usually have R in ohms, ¢ in amperes,
¥ in Volts. When the current is not constant, the law
becomes

dcC
V_RC+LE- .......................... (1),

dC . :
where il the rate of increase of amperes per second, and

Lis called the self-induction of the circuit in Henries. It is
evident that L is the voltage retarding the current when the
current increases at the rate of one ampere per sceond.

1. IfV=0in(1)
a R,
&= LY

which is the compound interest law.

Consequently C=Ce “ ., (2).
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2. If C=a+be,
ac
e = — —yt
g = e
o that from (1) V= Ra + (Rb — Lgb) e .
Now let R=Lg or g= % and we have V= Rq, so that the

voltage may kecp constant although the current alters.
Putting in the values we have found, and using V; for the
constant voltage so that « = V= R, we find

Vo
R

v
If we let =0 when t=0, then b= — 7,'7, and hence we may
v

R
Fbe Ll (3).

(=

write C= Ij;“(l — eﬁg t) ........................ (4).

The curve showing how C increases when a constant voltage
is applied to a circuit, ought to be plotted from ¢ = 0 for some
particular case. Thus plot when V,=100, R=1, L="01.
What is the current finally reached ?

99. Easy Exercises in the Differentiation and Integration
of €%,

1. Using the formula of Art. 70, find the radius of
curvature of the curve y = ¢% wherc = 0. Answer: r=4/8,

xz
2. A point «,, % Is in the curve y=0be, find the
equation to the tangent through this point.
Answer: T D
r—a a

Find the equation to the mormal through this point.
Answer: YZh__ ¢ .
& — A

Find the length of the Subnormal. Answer: y 3‘2 or y*/a.

Find the length of the Subtangent. Answer: 4 + gz or a.
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3. Find the radius of curvature of thc catenary
C v o .

Y= §<em +e7%¢), at any place.  Answer: r=y/c.
At the vertex when 2 =0, r=c.

4. If y= Ae* where ¢ stands for vV =1. Show that if
© behaves as an algebraic quantity so that 2= —1, 3 =—4,

*=1, ©» =41, &e. then % = — aly.

5. Find a so that y = 4¢** may be true when
&y
Show that there are two values of a and that

y=de* + Be,

dy

T

+12y=0.

6. Tind the subtangent and subnormal to the
¢ , .. . .
Catenary y = 5(6‘””“4—9‘“), or, as 1% 18 sometimes written,
y=ccosha/c
Answer:
the subtangent is ¢ coth = or ¢ (e¥/¢ + ¢2/¢)/(¢¥¢ — ¢ /o),
. )

. C . Qu 4] . N
the subnormal is - sinh == or 2 (e®/le — g22/t),
2 c 4

7. The distance PSS, fig. 8, being called the length of the
tangent, the length of the tangent of the above catenary 1s

¢ cosh ‘E/sinh <
2 ¢ ¢
The length of P may be called the length of the normal,
and for the catenary 1t 1s ¢ cosh‘-’f or e
8. Find the length of an arc of the catenary
z -a: . . . .
y:% (e¢+e ¢). The rule is given in Art. 38. Fig. 62

shows the shape of the curve, O being the origin, the distance
A0 being ¢.  The poiut I has for its co-ordinates « and .
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dy - ) . .

Now % = 4 (e¢ —e ¢). Synaring this and adding to 1
dz M @

and extracting the s<1u<uu 10()‘5 gives us $(¢f 4+ ¢ ¢).  The

integral of this is ; (e‘ —e ’) which is the length of the

arc 4P, as it 15 0 whgn w=0. We may write it, s = ¢ sinh a/c.

Rl
N
S~ \AJ‘/
) 5

Fig. 62.
9. Find the area of the catenary between 04 and
SP, fig. 62.
OSC @& _117 ,
Area = 5 (e +e ) da,
0 2

e [os @ a- e 08 08
or 5[ ec—ecJ O(e”—e o),

= Lo

Or the area up to auy ordinate at @ is ¢ sinh @/c.

¢ o .
The Catenary y=7 (¢#+ ¢~ revolves about the wads of », find

the arca of the hour-glass-shaped surfice éenu':Lted. Sce Art. 48,

ZZZ (crrc_(, x/r and /\/1 <IZ/> ']2<01;/E+G—1HC>_

e .\
Arezmzz3 f(c-v/%—c“*'c)l . du

we?

= 4, (02110_0_2116)+ oL
between the ordinates at 2= and 4=0.
It 1 curious that the forms of somc voleanoes arc as if
their own sections obeyed the mmpmmd mterest law like an
inverted pump rod.  The radii of the top and base of such a
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volcano being @ and b respectively and the vertical height ,
find the volume. Sce Art. 46. Taking the axis of the
voleano as the axis of «, the curve y = be® revolving round this
¢

“
7

axis will produce the outline of the mountain if ¢ = % log

. h b |
The volume is o j 0. e, dao= % i
0 0

. s T ,
Now a =be*, so that our answer is - (a* — 62).
2

100. Harmonic Functions.

Students ought to have already plotted sine curves like
y=asin(bz+ ¢)...(1) on squared paper and to have figured out
for themselves the signification of @, b and e. It ought to be
unnecessary here to speak of them. Draw the curve again.
Why is it sometimes called a cosine curve? [Suppose e to

be % or 90°.] Note that however great « may be, the sine of
(bx + ¢€) can never exceed 1 and never be less than —1.  The

student knows of course that sin 0 =0, sing (or 45°)="707,

sin g (or 90°) =1, sin 3; (or 135°) = T0T, sin  (or 180°) =0,

sin % (or 225%) = — 707, sin ?217 (or 270°) = — 1, sin %r
(or 3157y = —-707, sin 27 (or 360") =0 again and, thereafter,
sin @ =sin (8 — 27). Kven these numbers ought almost to
be cnough to let the wavy naturc of the curve be secn.
Now as a sine can never exceed 1, the greatest and least
values of y are @ and —a. Hence « is called the amplitude
of the curve or of the function.

When #=0, y=asine. This gives us the signification
of e. Another way of putting this is to say that when bz

e .. .
Was = —¢ or @ = — AL 0. When « indicates time or

when bx is the angle passed through by a crank or an
ecoentric, e gets several names; Valve-motion engineers call
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it the advance of the valve; Electrical engineers call it the
lead or (if it is negative) the lag.

Observe that when bz =2m we have everything exactly
the same as when z# was 0, so that we are in the habit of

calling %}Z" the periodic value of 4.

Besides the method given in Art. 9, T advise the student
to draw the curve by the following method. A little know-
ledge of elementary trigonometry will show that it must
give exactly the same result. It is just what is donc in
drawing the elevation of a spiral line (as of a screw thread)
in the drawing office. Draw a straight line OM. Describe

ERNENHNEEE

T |
T

o

1
2 T T TN
_7Z//* — - =1
10 T

T T i T

gr[
8
9
Fig. 63,

a circle about O with a as radius. Set off the angle BOC
equal to e. Divide the circumference of the circle into any
number of equal parts numbering the points of division
0, 1, 2, 3, &. We may call the points 16, 17, 18, &c., or
32, 33, 34, &c., when we have gone once, twice or more times
round. Set off any equal distances from B towards M on
the straight line, and number the points 0, 1, 2, &&. Now
project vertically and horizontally and so get points on the
curve. The distance BM represents to some scale or other
the periodic value of @ or 27/0.

If OC is imagined to be a crank rotating uniformly
against the hands of a watch in the vertical plane of the
paper, ¥ in (1) means the distance of € above OM, bz means
the angle that OC makes at any time with the position OM,
and if « means time, then b is the angular velocity of the
crank and 27/ means the time of one revolution of the crank

/ \3,14VR 112 I3 14 \ — 10 7 16 4p
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or the periodic time of the motion. v is the displacement at
any instant, from its mid position, of a slider worked vertically
from C by an infinitely long connecting rod.

A simple harmonic motion may be defined as one which
is represented by s=asin (bt + ¢), where s is the distance
from a mid position, @ is the amplitude, ¢ the lead or lag or
advance, and b 1s 27/7 or 27f where T is the periodic time or
J is the frequency. Or it may be defined as the motion of a
point rotating uniformly in a circle, projected upon a diameter
of the circle (inuch as we see the orbits of Jupiter’s satellites,
edge on to us), or the motion of a shider worked from a
uniformly rotating crank-pin by means of an infinitely long
connecting rod. And it will be secn later, that it is the sort
of motion which a body gets when the force acting upon it is
proportional to the distance of the body from a position of
equilibrium, as in the up and down motion of a mass hanging
at the end of a spring, or the bob of a pendulum when its
swings arc small It is the simplest kind of vibrational
motion of bodies. Many pairs of quantitics arc connected by
such a sine law, as well as space and time, and we discuss
simple harmonic motion less, I think, for its own sake, than
because it is analogous to so many other phenomena. Now
let it be well remembered although not yet proved that if

d
y =asin (bx +¢) then 3;3: =ab cos (bx + c)
and ]y cdx =~ % cos (bx + c).

101, Whene=0 and b=1 and «=1; that is when
Y=SIMZooiiiiiiin i, (1),
let us find the differential coefficient.
As before, leta be increased to #4 82 and find v+ 8y,
y+oy=sin(x+8z) ... cooeuran.... (2).
Subtract (1) from (2) and we find
8y = siu (x + bz) - sin «;,
or 2 cos (v + $ow) sin 6o (See Art. 3.)
sin 18z

O _ wos (a4 184 ¢
Henee 5 = €O (z+ 30x) Ty e 3).
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see by drawing a small angle ¢ and recollect-

ing what sina and « are, to find the value of sin a+ « as «
gets smaller and smaller. Thus in the figure, let POA be
the angle. The arc P4

divided by OP

angle in radians. And 0.///_h
the perpendicular PB !

is a, the P

BA

and 1t 18 evident that this is more and more

sine of the angle. Hence
sina _ PB
o DA

nearly 1 as a gets smaller and smaller. In fact we may
take the ratios of «, sin « and tan « to one another to
be 1, more and more nearly, as a gets smaller and
smaller. If we look upon }8x as a in the above expression,
we see that in the limit, (3) becomes

* The proof of

Here it is:

dy _ i
&_cosxﬁy_smx.

the more general casc is of exactly the same kind.

y=a sin (bx+c),
ytoy=asin {b{r+dr)+el,
dy=2acos(br+c+4b.dx)sin (4. 6x). Sce Art. 3.

8
6!1/' =ab.cos(br+c+ 1. o)

sin (4b . 67)
0.6z

Now make dz smaller and smaller and we have

:—:=ab cos (bx 4 ¢) and hence /a cos (bx4c) . dx =§ sin (bx +¢).

Again, to take another case :—

If y=acos (bx+e), this is the same as

y=asin <I/.z'+ e+

Hence

T

§> =asin (bx +c¢), say.

(f
U~ 4y cos (bt c)
dx

=uab cos <bw+£+§>

:—::—ab sin (bx 4 e).

Hence /a. sin (bx + €) .ax =—% cos (bx +c).
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And hence f cos @ . dz = sin «.

102. Now it is not enough to prove a thing like this, it
must be known. Therefore the student ought to take a book of
Mathematical Tables and illustrate it. It is unfortunate that
such books are arranged either for the use of very ignorant
or else for very learned persons and so it is not quite easy to
convert radians into degrees or wvice versa. Do not forget
that in sin # or cos 2 we mean « to be in radians. Make out
such a little bit of table as this, which is taken at random.

. z | Average
‘33?19 1Sn or angle in y=sinz 3y 8y +dx dy
gree radians 3z
’ a |
40 ‘6981 6427876

!
0132714 | 7583
41 7156 ‘6560590 7547
0130716 | 7512
42 7330 6691306 |

If it is remembered that 8y + 8« in each case is really the

average value of% for one degree or ‘01745 of a radian, it
will be seen why it is not cxactly equal to the cosine of .
Has the student looked for himself, to see if ‘7547 is really

nearly equal to cos 41°?

103. Tt is easy to show in cxactly the same way that if

d
y=cosx,a¥=—sinx and fsinx.dx:—cosx. The —

sign is troublesome to remember. Here is an illustration :

: Average
Angl . 5 5 g
degr?eelg or angle in y=cosx neg:?zjtive 5-'_/ 1 3y
radians & 52
I
1
20 3491 | 9396926

0061122 |—-3513
21 3665 0335804 — 3584
0063965 |—-3656

22 ‘3840 0271839
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Notice that y diminishes as # inercascs. Notice that

sin 217 or sin (-3665) = "358+4.

104. Here is another illustration of the fact that the
differential coefficient of sin z is cosz.  Let AOP, fig. 65, be
0. Let AOQ be 6 +80. Let PQ be a short arc drawn with
0 as centre. Let OP=0Q=1. PR is perpendicular to QB.

Q
p

Fig. 65.

Then AP =y =sin 6, BQ=sin (0 + 86) =y + Sy, QP> =86
and REQ=23y. Now the length of the arc P() becomes
more and more nearly the length of a straight line between
P and @ as 86 is made smaller and smaller.

Thus gg or g% 1s more and more nearly equal to cos PQR

or cos 0.
In the limit 3 = cos @ if y=sin6
@ .
Similarly if z=co80 = 0.4, 8 = — B.l = — RP and

dz R .
W QP=-—sm0.

Tllustrations like these are however of most value when a
student invents them for himself. Any way of making the
fundamental ideas familiar to oneself is valuable, But it is
a great mistake for the author of a book to give too many
illustrations, He 1s apt to give prominence to those illustra-
tions which he himself discovered and which were therefore
invaluable in his own education,

105.  Olserve that if y=_d sin aw+ 5 cos a.,
Ay 2y
d= Y and Sa=a
4
-

P. 12

Compare this with the fact that if y=eo, ;%/_,zw{y, %y =aly. In



178 CALCULUS FOR ENGINEERS.

the higher applications of Mathematics to Engincering this resemblance
and difference between the two functions e and sin axz Leoome im-

portant. Note that if ¢ stands for 1/ —1 so that 2= —1, ¢*=1, &c.
. e Y d'y . . . .
Then if y=e¢iex, e a?y, T =qty just as with the sine function.
z

Lt
Compare Art. 99.

106. Ezercise. Men who have proved Demoivre’s theorem
in Trigonometry (the proof is easy ; the proofs of all mathe-
matical rules which arc of use to the engineer are easy;
difficult proofs are only useful in academic exercise work) say
that for all algebraic purposes, cosaz=%(e® +¢*) and

. 1 . . ..
sin a4z = g (e® — e, If this is so, prove our fundamental

propositions.

107. Kzample. A plane electric circuit of arca 4 sq.
em. closed on itself, can rotate with uniform angular velocity
about an axis which is at right angles to the field, in a uni-
form magnetic field H. H is supposed given in C.G.S. units;
measuring the angle 6 as the angle passed through from the
position when there is maximum induction /74 through the
circuit; in the position @, the induction through the circuit is
evidently A.H.cosf. If the angle € has been turned
through in the time ¢ with the angular velocity ¢ radians
per second, then 6 = gt. So that the induction /= AH cos gt.
The rate of increase of this per sccond is — AqH sin ¢t, and
this is the clectromotive force in each turn of wire. If there
are n turns, the total voltage is — ndqH sin ¢f in C.G.S. units;
if we want 1t in commercial units the voltage is

—~nAgH 10-85sin qt volts,

being a simple harmonie function of the time. Note that the
term voltage is now being employed for the line integral of
electromotive force even when the volt is not the unit used.

Example. The coil of an alternator passes through a
field such that the induction through the coil is

I=A4,+4,sin(0+¢)+ A4,sin(rf +¢,),
where 6 is the angle passed through by the coil. If ¢ is the



ILLUSTRATIONS. 179

relative angular velocity of the coil and field, 6 =¢t. If there

aré n turns of wire on the coil, then the voltage is » 3 O

ng {4, cos (qt + &) + A7 cos (rqt + €,)].

So we see that irregularities of r times the frequency in
the field are relatively multiplied or magnified in the
electromotive force.

108. In Bifilar Suspension, if 1 is the weight of
the suspended mass, @ and b the distances between the
threads below and above, b the vertical height of the threads;
if the ditference in vertical component of tension is n times
the total weight W, and € is the angle turned through in
azimuth, the momental resistance offered to further turning is

Td-)W (}hé SING (1).

Note that to make the arrangement nore  sensitive” it is
only necessary to let more of the weight be carried by one of
the threads than the other.

The momental resistance offered to turning by a body
which is 6 from its position of equilibrium, is often propor-
tional to sin §. Thus if W is the weight of a compound
pendulum and OG is the distance from the point of support
to its centre of gravity, W.OG .sin @ is thc moment with
which the body tends to return to its position of equilibrium,
If M is the magnetic moment of a magnet displaced @
from equilibrium in a field of strength H, then HM sin @ is
the moment with which it tends to return to its position of
equilibrinm. A body constrained by the torsion of a wire or
a strip has a return moment proportional to 8. When
angular changes are small we often treat sin 6 as if it were
equal to 6. Somectimes a body may have various kinds of
constraint at the same time. Thus the ncedle of a quadrant
electrometer has bifilar suspension, and there is also an elec-
trical constraint introduced by bad design and construction
which may perhaps be like a6 + 06% If the threads are stiff,
their own torsional stiffness introduces a term proportional to
€ which we did not include in (1). Sometimes the constraint
is introduced by conmccting a little magnetic needle rigidly

122
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with the clectrometer needle, and this introduces a term
proportional to sin 8. In some instruments where the
moving body Is soft iron the constraint s nearly propor-
tional to sin20.  Now if the resisting moment is M
and a body is turned through the angle 88, the work
done is M.80. Henee the work done in turning a

body from the position €, to the position 8,, where 6§, is
¢

greater than ), is [ . de.

-

Leaneple. The momeutal resistance offered by a body

to twming is @ sin@ where 6 is the angle turned through,
what work is donc In turning the body from 8, to 8,7

0
Answer, /

w.sin 0. d6=—q (cos 8, —cos B)=u (cos 0, — cos 8,).
6,

Fzample. The resistance of a body to turning is partly
a constant torque « due to friction, partly a term 06 4 6,
partly a term esin €5 what is the work done in turning from
=0 to any angle ?
A the torque =« + 00 + ¢6° + ¢ sin 0 = /() say,
V the work done
=af + 500 + {6+ ¢ (1 — cos 0) = F(6) say.
This is called the potential energy of the body in the
position 6.

o e . . . do:
The kinetic energy in a rotating body is 17 {2} where
o SR\t

I is the body’s moment of inertia about ibs axis,  When a
. . by adgy:
body is at 0 its total cnergy £ is LT <?]t) + Ko

It the total energy remains constant and o body m the
position 8 1% moving in _ﬂm direetion in which @ inereases,
and no force acts upon 1t exeept its constraint, v will cou-
tinue to move to the position 4, such that

deN: o, ,
¥4 w) + B ()= F0,).

So that when the form of #(6) 1s known, 4, can be calculated,
if we know the kinctic cnergy at 6.
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Thus let M = esin @, <o that F7(0) = e (1 ~ cos @), then

‘dB\*
11 (([t) 4e(l —cosb)y=e(l —cos ),
24\
from which ¢, the extreme swing can be calculated.

Ezercise.  Show that if the righting moment of o ship
is proportional to sin4€ where € 1s the hecling angle, and
if a wind whose momental effect would maintain o steady
inelination of 112 degrees suddenly sends the ship from rest
at @=0 and remains acting, and if we may negleet friction,
the ship will heel beyond 831 degrees and will go right over.
Discuss the effect of friction.

A body is in the extreme position §,, what will be
its kinetic energy when passing through the position
of equilibrium 2 Answer, I (6)).

Thus let M =060 4 c62 4+ esin 6.

Calculate a, the angular velocity at 6 =0, if’ ils extreme
swing iy 45°.  Here

0, :;l and F(8)= 106" + Let + e (1 —cos ),

s 3p () + e (T e (1= 35,

from which we may caleulate a.
ProBLrM.  Suppose we desire to have the potential
energy following the law
V=F(6)= a6 + b6 + ce™ + b sin 20,
and we wish to know the necessary law of constraint, we sce
av
g’
b a5) p
M =3a6? + 306° + mce™® - 21 cos 26.

ProBLEM. A body in the position 6, moving with the
angular velocity «, in the direction of increasing 6, has a
momental impulse m in the direction of increasing 6
suddenly given to it; how far will it swing ?

The moment of momentum was Ta, 1t is now Ja + m and

o e . n
if o is its new angular velocity o = o + 7

at once that as M =
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The body is then in the position 6, with the kinetic
energy 1/ <a+7}—b>~ and the potential energy F(6,), and the

sum of these equated to F (6,) enables 6, to be calculated.
The student will easily see that the general equation
of angular motion of the constrained body is
a0 1.,
gp T7/0)=0;

JS(8) may include a term involving friction.

109. Every one of the following exercises must be worked
carefully by students; the answers are of great practical use
but more particularly to Electrical Engineers. Inworking

them out it is necessary to recollect the trigonometrical
relations

c08260=2co0s?0 —1=1~—2sin24,
25in 6. cos ¢ =sin (6 + ¢) + sin (6 — ),
2cos 6. cos = cos (8 + ¢p) + cos (0 — ),
2sin 0. sin ¢ = cos (0 — ) — cos (8 + ¢).
Such exercises are not mercly valuable in illustrating the
caleulus; they give an acquaintance with trigonometrical

expressions which is of great general importance to the
engineer.

The average valuc of f(x) from 2= to z=ua, is
Ty
cvidently the area f f(@).dz divided by a,— ;.
z
_ Every exercise from 6 to 20 and also 28 ought to be
illustrated graphically by students. Good hand sketches of

the curves whose ordinates are multiplied together and of the
resulting curves will give sufficiently accurate illustrations.

2 sin 2ax
4a -

+ gjn 2uw
2 4a

fsin az . cos ba . dp — % (a+bz  cos(a—Db)a

1. |sin® azde =

| TR S Y

2. fcos‘l azxdr =
3.

2(a+b) 2(-b) -



EXERCISES. 183

sinaz. sin be . do = S0 e sine+b)s
4. Jblll ax.sin bz . de =" F(a—b) FEb)
sin(u+ ) | sin (4= 1) s

2(a+b) 2 (a—b)
6. The arca of a sine curve for a whole period is 0.

2w 2m
[ sinx.duﬂ:—[cost =—(1-1)=0.
0

5. |cosax.cosbir. dw =

EN)

7. Find the area of the positive part of a sine curve,
that is

/ sinz. de=— [cos xJ =—(-1-1)=2,
0 0
Since the length of base of this part of the curve is ar,
2 . S
the average height of it is . Its greatcst height, or ampli-
tude, is 1.

8. The area of y=a+bsinz from 0 to 27 is 2wa and
the average height of the curve is a.

9. Find the average value of sin®z from =0 to # = 2.

As cos 2z=1—2sin?ux, sin*w =} (1~ cos 22). Theintegral
of this is Lu —~ ] sin 2, and putting in the lmits, the area is
(327 —4sindr —0+$sin0)=7. The average height is
the area + 27, and hence it is 4.

10. The average value of cos®z from @ =0 to # =27 is §.

In the following exerciscs s and » arc supposed to be
whole numbers and unequal :

11, The average value of «sin®(sqt 4 ¢) from ¢=0 to
t="T1is %, s being a whole number and ¢=27/1. T is the
periodic time.

12. The average value of wcos?(sqt+e) from t=0 to

t==Tis%.

7
13. j cos sqt . sin sqt. dt = 0.
0
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T
14 ” sin sqt . st rgt . dt = 0.
Jo

T
15, f cos sgt . cosrqt . dt = 0.
0

T
16. f sin sgt . cos ¢t . dt = 0.
0
17. 'The average value of sin?sqt from 0 to 17 is 3.
18, The average value of cos® sgt from 0 to 47" 1s 1.

ey .
19. f sin sgt . sinrgt. dt =0,
Jo

i
20. f cos sqt . cos rqt . dt = 0.
0

21. F¥ind [sina.sin(z -+ e). de.

Here, sin (2 + €) = sin @ cos ¢ 4 cos &, sin e,

Hence we must integrate sin*@ . cose 4 sin . cos # . sin e,

- z sin 2z
sina.de =, ——— "

fsinx Lcos @, dm:%[sin 2z . dw = -} cos 2,

and hence our integral is
<w sin 2

2 4

) cos e — 3 cos 2z, sine

22. Prove thntfsin gt.sin (gt +¢). dt

¢ sin 2q8\ 1 .
= <§ — Tq > cos e — ‘Tg cos 2¢t . sin e.

23.  Prove that the average value of sin ¢t . sin (¢f + ) or
of sin (¢t + a)sin (¢t + « + €) for the whole periodic time 7'

(if q= 2%) is L cose.
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This becomes cvident when we notice (calling ¢t + a = ),
sin g . sin (¢ + ¢) =sin ¢ (sin peos e + cos ¢ . sin e)
=5 . cose tsing. cox . sine
Now the average value of sin? ¢ for & whole period is 4,
and the average value of sin ¢ . cos ¢ is 0.
By making « = 7; in the above we see that the average
2

value of cos gt. cos (¢t £ ¢) is § cose, or the average value
for a whole period of the product of two sine functions
of the time, of the same period, each of amplitude 1 , is
half the cosine of the angular lag of either behind the
other.

24,  Referring to Art. 106, take

{af —fut,
cosuf =% (e + o7,
. 1 ias — e
s af = ( g ),
or take e =cos af +7sin b,

,/'aﬂ . -
e =cosaf —1sin ub,

and find ‘/ew cos ad . do.

. b+ai —ai)o,
This becomes j(e (tai)e +e® MM) dé

Lo

1;71 e(b+m’)0+ ¥17 - e(),&ai)g
I) + av b—ar

a1 aio 1 ~m’0}
)

=5€ . yr————
2C W+ w’ +b~—(u

and on substituting the above values it beeomos

1 .
febecos ab.df = @1 B e’ (b cos @b + a sin 16) (1),

Similarly we have

1 .
6 o P S o .
/e % sin ¢8d 6 G e (bsinud ~acosad). ... .. (2).



186 CALCULUS FOR ENGINEERS.

110. Notes on Harmonic Functions. In the fol-
lowing collection of notes the student will find a certain
amount of repetition of statements already made.

111, A function @ = ¢ sin ¢¢ is analogous to the straight
line motion of a slider driven from a crank of length «
(rotating with the angular velocity ¢ radians per second)
by an infinitely long connecting rod. # is the distance of the
slider from the middle of its path at the time £ At the zero
of time, # =0 and the crank 1s at right angles to its position
2
ok
if f is the frequency or number of revolutions of the crank
per second, taking 1 sccond as the unit of time.

of dead point, q = 27rf = if 7"1s the periodic time, or

112. A function « = « sin (¢t + €) is just the same, except
that the crank is the angle € radians (one radian is 572957
degrees) in advance of the former position; that is, at
time O the slider is the distance a sin e past its mid-position*.

* The student is here again referred to § 10, and it is assumed that he
has drawn a curve to represent

r=be” ¥ 5in (qt+e) coviiiiiiii i, (1).

Imagine a crank to rotate uniformly with the angular velocity ¢, and to
drive a slider, but imagine the crank to get shorter as time goes on, its
length at any time being ae” b,

Another way of thinking of this motion is:—

Imagine a point P to move with constant angular veloeity round O,

Fig. 66.

keeping in the equiangular spiral path APBCDEF j the motion in question
is the motion of P projected upon the straight line MON and what we have
called the logarithmic decrement is m cot o if @ is the angle of the spiral,
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113. A function @ = asin (gt + €)+ ' sin (¢t +¢’) is the
same as X = A sin (¢t + £); that is, the sum of two crank
motions can be given by a single crank of proper
length and proper advance. Show on a drawing the
positions of the first two when £ =0, that is, set off

YOP =¢ and OP =g,
YOQ=¢ and 0Q =«

Complete the parallelogram OPR@Q and draw the diagonal
OR, then the single crank OR = A, with angle of advance
YOR = E, would give to a slider the sum of the motions
which OPF and 0@ would separately give. The geometric

X proof of this is very easy.
Imagine the slider to have
a vertical motion. Draw

R 0Q, OR and OP in their

R
, relative positions at any
2 _la time, then project P, R
and @ upon OX. The
crank OFP would cause
the slider to be OP’ above
pr’_ its mid-position at this

instant, the crank O0Q
would cause the slider to
) be 0@ above its mid-po-

Fig. 67. sition, the crank OR would
cause the slider to be OR’ above its mid-position at the same
Imstant; observe that OR’ is always equal to the algebraic
sum of OP’ and 0@

We may put it thus:—“The $.1.M. which the crank OP
would give, + the s.H.M. which 0@ would give, is equal to
the S.H.M. which OR would give.” Similarly “the s 1.
which OR would give, — the s.#.M. which OP would give, is
equal to the s.H.M. which 0@ would give.” We sometimes
say:—the crank OR is the sum of the two cranks OP and 0Q.
Cranks are added therefore and subtracted just like vectors.

Y

that is, the constant acute angle which OP everywhere makes with the eurve,
or weot a=a7/2 and ¢=2x/1, so that cot a=afq. Iffig. 66 is to agree with
fig. 67 in all respects NM being vertical and P is the position at time 0, then
e=angle NOP — (2.
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114, These propositions are of great importance in dealing
with valve motions and other mechanisms.  They are of so
much importance to electrical engincers, that many practical
men say, “let the crank Of” represent the current.” They
mean, © there is a current which alters with time aceording
to the law ('=asin (¢t + ), its magnitude is analogous to
the displacement ot a slider worked vertically by the crank
OF whose length is « and whose angular veloeity is ¢ and
OP is its position when ¢=0."1

115, Inasmuch as the function o=« cosgf is just the
. T\ . .
saane as ¢ sin <(1t -} —9>, 1 represents the motion duc to a

crank of length « whose angle of advance is 90°. At any
time ¢ the velocity of o slider whose motion is

=« sin (gt + €),

. L de
1s v=uqgcos(gt + €)= g or @

. w
= (f(f 11 (rjt + €+ ~2> ,
that is, it can be represented by the actual position at any
instant of a slider worked by a crank of length representing
aq, this new crank being 90° in advance of the old one.
The acceleration or ((Z’fi or % or 9 is shown at any instant
by a crank of length «g® placed 907 i advance of the
crank, or 180° in advance of the @ crank, for
Accel. = — ag? sin (gt + €)

=ag®sm (gt + e+ 7).
The characteristic property of S.H. motion is that, numerically,
the accelovation is ¢* or 4o/ times the displacement, f being
the frequency.

If anything follows the law a sin (¢f + €), 1t is analogous
to the motion of a slider, and we often say that it is repre-
scuted by the crank ()17 its rate of increase with time
is analogous to the velocity of the slider, and we say that it
is represented by a crank of length «q placed 90° in advance
of the first. In fact, on a su. function, the operator d/d¢
multiplies by ¢ and gives an advance of a right angle.
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?-16. Somctimes instead of stating that a function is
A sin (qt + €) we state that it is a sin qt + b cos qt.
EVidently this 1s the sanc statement, if «* +0°= A2 and if

X  tan e = <

1t i easy to prove this
trigonometrically, and gra-
phically in fig. 68. Let
P Q 05 =a, 0Q=10.
The erank OPF is the sum
of 0OS and 0, and tan ¢ or

l
s o i Yor=".
Fig. 68. «

117.  We have alveady in Art. 100 indicated e casy
graphical method of drawing the curve
z=asin(qt + ¢),
where « and ¢ are the ordinate and absciss.
Much information ix to be gained by drawing the two of
the same periodic time,

w=q sin (gt + €) and w=« sin (gt + ¢)

>

and adding their ordinates together. This will illustrate 113.

118. If the voltage inan Electric Circuitis V volts, the
current € ampéres, the resistance 2 ohins, the self-induction
L Henries, then if ¢ is time in sceonds,

(!

== ! P T R R L R T ] .
V—]€C+I(Zt (1)
Now if ('= (!, «in yt.
der
= g vos gt
so that V= RO, sin gt + Ly . cos gt,

and by Art. 116 this is
V= C, VI + /f(f sl (4t + e)
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VRZ L I is called the impedance ;

tan e = Lg =g1r!zf , if fis frequency ;

R k
¢ is lag of current behind voltage.
Hencee again if V=Vysingt................venn, (3),

then C= yﬁ% sin (qt —tan1 %‘2)7L ........ (4).
q

Notice that if V' is given as in (3) the complete answer
for ¢ includes an evanescent term due to the starting
couditions sec Arts. 98, 147, but (4) assumes that the simple
harmonic V has been established for a long time. In practical
clectrical working, a small fraction of a second is long enough
to destroy the evanescent term.

119. We may write the characteristic property of a simple
harmonic motion as

(compare Arts. 26 and 108) and 1f (1) is given us we know
that 1t means

x=asingt+bcosqt or x= A sin (gt +¢)...... (2),

where 4 and ¢, or ¢ and b are any arbitrary constants.

Ezample. A body whose weight is 1V Ib. has a simple
harmonic motion of amplitude « feet (that is, the stroke is
2a feet) and has a frequency f per second, what forces give
to the mass this motion ?

If @ feet is the displacement of the body from mid-
position at any instant, we may take the motion to be

x=wsingt or asin2nf.t,

and the numerical value of the acceleration at any instant is
472f*x and the force drawing the body to its mid-position is
in pounds 47%f % W-322, as mass in engineer’s units is weight
in pounds in London =+ 822, and force is acccleration x mass.
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120. Ifthe connecting rod of a steam or gas engine were
long enough, and we take W to be the weight of piston and
rod, the above is nearly the force which must be exerted
by the cross-head when the atmosphere is admitted to both
sides of the piston. Observe that it is O when # is 0 and is
proportional to », being greatest at the ends of the stroke.
Make a diagram showing how much this force is at every
point of the stroke, and carefully note that it is always act-
ing towards the middle point.

Now if the student has the indicator diagrams of an
engine (both sides of piston), he can first draw a diagram show-
ing at every point of the stroke the force of the steam on
the piston, and he can combine this with the above diagram
to show the actual force on the cross-head. Note that steam
pressure is so much per square inch, whereas the other is the
total force. If the student carries out this work by himself
it is ten times better than having it explained.

Since the acceleration is proportional to the square of the
frequency, vibrations of engines are much more serious than
they used to be, when speeds were slower.

121. Aswe have been considering the motion of the piston
of a stcam cnginc on the assumption that the connccting rod is
infinitely long, we shall now study the effect of shortness of
connecting rod.

In Art. 11, we found s the distance of the piston from the
end of its stroke when the crank made an angle 6 with its dead
point. Now let 2 be the distance of the piston to the right
of the middle of its stroke in fig. 8, so that our & is the old s
minus 7, where 7 is the length of the crank.

Let the crank go round uniformly at ¢ radians per second.

Again, let ¢ be the time since the crank was at right

angles to its dead point position, so that  — g = qt, and we
find -

e
x:—o'cos0+l{1—«/l—z—gsinﬂﬂ},

or r= 'rsinqt+l{l——\/1—?005’(]4.
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Using the approximation that VIog=1-da if a is
small enough we have

a

@ =1 sl gt + Z)—L cos® gt.
But we know that 2 cos® gt — U=cos 2¢f.  (Sec Art. 109).)
He =rsin qt + r s (2qt X 1)
ence X= qt+ 5 co (2qt) a1 (1).

We sce that there is a fundamental simple harmome motion,
and 1ts octave of much smaller amplitude.

TFind @ and also Q This latter is
dt dt*
. L 7:_'(1: .
acceloration = — ¢ sin ¢t —- ] oS Zqt.

It will be seen that the relative importance of the octave
term s four times as great in the acceleration as it was in
the actual motion.  We may, if we pleasc, write 8 again for

qt +g and get

*r o
(;ll; = rg*cos 0 -4 7;— cos 20,
When 6 = 0, the acceleration is 74+ ',21
22

When € = 90°, the acceloration is — =2

l

When 8 =180°, the accelevation is — r¢* + ! 21 ,
(q 18 2mf, where fis the frequency or number of revolisions
of the crank per second).

If three points be plotted showing displacement @ and
acceleration at these places, 1t is not difticult by drawing a
curve through the three points to get a sufficiently aceurate
idea of the whole diagram. Perhaps, as to a poiut near the
middle, it might be better to notice that when the angle
OPQ is 907, as P is moving uniformly and the rate of change
of the angle @ is zero, there is no acceleration of @ just then.
This position of @ is easily tound by construction.
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The most Important things to recollect are (1) that
accelerations, and therefore the forces necessary to cause
motion, are four times as great if the frequency is doubled,
and nine times as great if the frequency is trebled ; (2) that
the relative importance of an overtone in the motion is
greatly exaggerated in the acceleration.

122. Take any particular form of link motion or radial
valve gear and show that the motion of the valve is always
very nearly (¢ being time from beginning of piston stroke or
qt being angle passed through by crank from a dead point),

Z=a, 8in (gt + ) + & 8in (2gf + €).vnnen.... (1).

(There is a_very simple method of obtaining the terms a,
and a, by inspection of the gear.) When the overtone is
neglected, @, is the half travel of the valve and e, is the angle
of advance. In a great number of radial valve gears we find
that ¢,=90°. The best way of studying the effect produced
by the octave or overtone is to draw the curve for each term
of (1) on paper by the method of Fig. 63, and then to add
the ordinates together. If we subtract the outside lap L
from « it is easy to see where the point of cut-off is, and how
much earlier and quicker the cut-off is on account of this
octave or kick in the motion of the valve.

In an example take o, =1, ¢ =40°, a,="2, ¢ =90,

The practical engincer will notice that although the
octave is good for one end of the cylinder it is not good for the
other, so that it is not advisable to have it too great. We
may utilize this fact in obtaining more admission in the up
stroke of modern vertical engines; we may cause 1t to correct
the inequality due to shortness of connecting rod.

Links and rods never give an important overtone of
frequency 3 to 1. It is always 2 to 1.

In Sir F. Bramwell’s gear the motion of the valve is,
by the agency of spur wheels, caused to be

= a, sin (gt + €) + @, 850 (3¢t + &) ...... {2).
Draw a curve showing this motion when
a; =115 inch, e, = 47°, a, = 435, e, = 62°,
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If the outside lap is 1 inch and there is no inside lap, find
the positions of the main crank when cut-off, release, cushion-
ing and admission occur. Show that this gear and any gear
giving an overtone with an odd number of times the funda-
mental frequency, acts in the same way on both ends of the
eylinder.

123. If z=a,cos (gt + &)+ @ cos (qf + €) venre (3),
where ¢ =2nf, and ¢, =27f,,

there being two frequencies; this is not equivalent io one
S.H. motion. Suppose g, to be the greater. The graphical
method of study is best. We have two cranks of lengths ¢,
and a, rotating with different angular velocities, so that the
effect is as if we had a crank A rotating with the average
angular velocity of a,, but alternating between the lengths
a, + a, and a, — a,; always nearer g,’s position than a,’s; in
fact, oscillating on the two sides of a,’s position. If ¢, is
nearly the same as ¢, we have the interesting cffect like
beats in music*.

Thus tones of pitches 100 and 101 produce 1 beat per
second. The analogous beats are very visible on an in-
candescent lamp when two alternating dynamo-electrical
machines are about to be coupled up together. Again, tides
of the sea, except in long channels and bays, follow nearly
the s. H. law; @, is produced by the moon and a, by the sun
if a,=21a,, so that the height of a spring tide is to the
height of a neap tide as 31 to 1'1. The times of full arc
times of {unar full. The actual tide phase never differs more
than 0:95 lunar hour from lunar tide; 0°95 lunar hour = 0-98
solar.

124. A Periodic Function of the time is one which
becomes the same in every particular (its actual value, its
rate of increase, &c.) after a time 7. This 7' is called the

* Analytically, Take cos(2mfyt + e;) =cos {2mfit ~ 2w (f, - )t + o},
therefore 2=7cos (2rfit+6),
where 1=a+ a2+ 2ma, 008 {27 (f,—~f) t+ e -6},

and the value of tan 8 is easily written out.
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periodic time and its reciprocal is called f the frequency.
Algebraically the definition of a periodic function is

fO=f(@+nD),

where 7 is any positive or negative integer.

125. Fourier’s Theorem can be proved to be true. It
states that any periodic function whose complete period is 7'
(and ¢ is 27/1" or 2xf) is really equivalent to the sum of a
constant term and certain sine functions of the time
SO =4,+ Ad;sin (gt + E)-+ A, sin (2¢t + E,) +

Ay sin (3gt + L) + &e......... (1).

In the samc way, the note of any organ pipe or fiddle
string or other musical instrument consists of a fundamental
tone and its overtones. (1) is really the same as

S @) =A,+ a,sin gt + b, cos gt + a,sin 2qt + b, cos 24t + &e,,

ifa?+02=A4;2 and tan I, = %, &e. t
1

126. A varying magnetic field in the direction # follows
the law X =qasingt where £ is time. Another in the
direction y, which is at right angles to , follows the law

Y=uacosqt
At any instant the resultant field is
R=VX*}Y?=q=a constant
making with y the angle 6, where tan 8 = Y/X, or 8= qt.

Hence the effect produced is that we have a con-

stant field R rotating with angular velocity q.

When the fields are
X =a,sin (gt +¢) and ¥ =a,sin (¢t + ¢,),
it is better to follow a graphical method of study. The
resultant field is represented in amount and direction by the
radius vector of an ellipse, deseribing equal areas in equal
times.

Let OX and 07, fig. 69, be the two directions mentioned.
Let 04, in the direction OX = a,. With OA, as radius describe

13—2
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a circle. Let Y00 be the angle ¢;. Divide the circle into
many equal parts starting at 0 and naming the points of
division 0, 1, 2, 3, &c.  Draw lines from these points parallel
to OY. Let OA, in the dircction OY be a,. Describe a
circle with 04, as radius. Set oft the angle X’00as ¢, and

15
Two
13
o A ll_
2\

12 15T

11

13
N A4
/ lz\ 5 3
10 A

10 7

X

Fig. 69.

divide this circle at O, 1, 2, 8, 4, &ec., into the same number
of parts as before. Let lines be drawn from these points
parallel to O.X, and where each meets the corresponding linc
trom the other circle we have a point whose radius veector
at any instant represents, in direction and magnitude, the
resultant magnetic field.

If OX and OY are not at right angles to one another,
the abuve instructions have still to be followed.

If we divide the circle 04, mto only half the number of
parts of 04, we have the combination of X = a,sin(gé+ ¢)
and Y = a,sin (2¢¢ +¢,).

If we wish to see the combination X =any periodic
function and ¥ any other periodic function, let the curve
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from M, to N, show ¥, M,N, being the whole periodic time; and
let the curve from M, to N, show X, the vertical distance M N,

~LP E’\ /{

12

Ny

Fig. 70,

being the whole periodic time. If 2 and P, are points on the
two curves at identical times, let the horizontal line from P,
meet the vertical line from P, in P. Then at that instant
OP represents the resultant field in direction and
magnitude.

Carry out this construction carefully. It has a bearing
on all sorts of problems besides problems on rotating mag-
netic fields.

127. The area of a sine curve for a whole period or for
any number of whole periods is zero. This will be evident if
one draws the curve. By actual caleulation; let s be an

integer and ¢ = 7
7 17 1 /
fo smsqt.dt———;q;[gowgt] ~ g\ 1, " cos O) 0,

27
because cos s - 7 T or cos s27r =1 and cos 0 = 1.

. T 1]~
Agmn,f cos sqt. dt =—~ 5 |:‘s1n sqt}
0
1 <sins %’IT— sin 0>=O,
8 T

O
because sin s v T'=sin 827 =0 and sin 0 = 0.
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128. If the ordinates of two sine curves be multiplied
together to obtain the ordinate of a mew curve: the area of
it 1s O for any period which is a multiple of each of their
veriods. Thus if s and » are any integers

- T
/ sinsqt.cosrqt.dt=0 ............ (1),
1)
T
f sinsgt.sinrqt. dt=0 ............ (2),
o
/T cossqt.cosrqt.dt=0 ......... .. (3).
A ]

These ought to be tried carefully. 1st as Exercises in
Integration. 2nd Graphically. The student cannot spend
too much time on looking at these propositions from many
points of view. He ought to sec very clearly why the
answers arc 0. The functions in (1) and (2) and (3) really
split up into single sine functions and the integral of each
such funetion is 0. Thus

2 sin sgt. cos rqt = sin (s + 1) ¢t +sin (s — 1) ¢t,
and by Art. 127, cach of these has an area 0.

The physical importance of the proposition is enormous,
Now if s = the statements (2) and (3) arc untrue, but (1)
continues true. For

~T T
/ sin’sqt . dt = / cos’sqt.dt=4T ...... (4),
0 J O

whereas (1) becomes the integral of | sin 2sgt which is 0. (4)
ought to be worked at graphically as well as by mere inte-
gration. Recollecting the trigonometrical fact that

cos 20 =2cos*0 —1 or 1 —2sin® 4,
and therefore that
costqt = F cos 2qt 4+ 4, sin® gb =4 — 1 cos 2¢¢,

the integration is casy and the student ought to use this
method as well as the graphical method.

129. 'To illustrate the work graphically. Let 00, fig. 71,
be I' Taking s=2, the curve OPQRSC represents sin sqt.
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Its maximum and minimum heights are 1. Now note that
sin?sqt is always + and it is shown in OP'QR,S.C. It
fluctuates between 0 and 1 and its average height is § or

P R:

Fig. 71.

the area of the whole curve from O to € is }7. The fact
that the average value of sin sqt. x sinrqt is 0, but
that the average value of sinsqt x sin sqt is 1, is one of
the most important in practical engineering work.

130. Illustration in Electricity. An eclectric dynamo-
meter has two coils; one fixed, through which, let us suppose,
a current C flows; the other moveable, with a current ¢. At
any instant the resultant force or couple is proportional to
Cc and enables us to measure Cc. But if C' and ¢ vary
rapidly we get the average value of Ce. Prof. Ayrton and
the author have carried out the following beautifully illus-
trative experiment. They sent a current through the fixed
coll which was approximately, C=C,sin2mft. This was
supplied by an alternating dynamo machine. Through the
other coil they sent a current, ¢ = ¢, sin 27/t whose frequency
could be increased or diminished. It was very interesting to
note (to the average practical engineer it was uncanny,
unbelievable almost) that although great currents were
passing through the two coils, there was no average force—
in fact there was no reading as one calls it in the laboratory.
Suppose f was 100 per second, f* was gradually increased
from say 10 to 20, to 30 to 40 to 49. Possibly about 49 to
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51 a vague and uncertain sort of action of one coil on the
other became visible, a thing not to be measured, but as
increased the action ceased. No action whatever as f
became 60, 70, 80, 90, 97, 98, 99, but as f’ approached 100
there was no doubt whatever of the large average force;
a reading could be taken and it represented according to the
usual scale of the instrument $Cic,; when f” increased beyond
100 the force suddenly ceased and remained steadily 0 until
/ became 200 when there was a small force to be measured;
again it ceased suddenly until f” became 300, and so on. We
know that if €' and ¢ had been true sine functions there
would have been absolutely no force except when the
frequencies were exactly equal. In truth, however, the
octaves and higher harmonics were present and so there were
slight actions when fand £ were us 2 to L or 1:2 or 1:3, &ec.
This is an extremely important illustration for all electrical
enginecrs who have to deal with alternating currents of
electricity.

131. Exercisein Integration. C and ¢ being alternating
currents of electricity. When ¢'=C, sin ¢¢ and ¢ = ¢, sin(qt + e)
and these two currents flow through the two coils of an
electro-dynamometer, the instrument records 4 Cic, . cos e as
this is the average value of the product Ce.

When € and ¢ are the same, that is, when the same
current (/= C,sin (¢t +¢€) passes through both coils, the
instrument records the average value of C*.dt, or

-
%f Csin® (gt +e).db.....oocuvnnnn.. (1),
0

which we know to be £0% The square root of any such
reading is usually called the effective current, so that

\/—ZC" is what is known as the effective value of C, sin qt.
Effective current is defined as the square root of
mean square of the current. Thus when an electrical
engineer speaks of an alternating current of 100 amperes he
means that the effective current is 100 amperes or that
C=141"4sin (gt +a). Or the voltage 1000 means

v = 1414 sin (g¢ + B).
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Ezercise.  What is the effective value of
ay+ A, sin (gt + &) + A, sin (2¢t + ) + &e. ?

Notice that only the squares of terms have an average
value, the integral of any other product being 0 during a
complete period. Answer: Vag +% (4.2 + 42 + &c.).

Observe the small importance of small overtones.

Tf o= 2% (sin gt +  sin Sgt + § sin 5gt &£0.)..vvveveren @)

>

we shall see from Art. 135 that this is the Fourier expression
for what is shown in the curve (fig. 72) the distance OM being
called v, and the distance 0@ being the periodic time 7', where

2 . .
q= —Zz,r , and v is measured upwards from the line 0Q.

M
o Q
N
Fig. 72.
¢ eftective 7)—7‘]_7\/5\/1 +i+dtaHt&e L (3)

Again in fig. 73, where PM = v, and 0Q =T,

8uy , . . .
v= #" (sin gt — § sin 3qt + o5 sin 5¢t — &e.) ...(4).

°§

=

\/Q

Fig. 73.

. 8 _
The effective » = 7;;,\%2 V14 ol t&c (5)
Again note the small importance of everything cxcept

the fundamental term,
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Ezercise. 1f = Cy+ A, sin gt + B, cos gt
+ A, sin 2qt + B, cos 2¢t + &e. ...(6),
and if
¢ = ¢+ t; sin ¢t + b, cos ¢t + a, sin 2¢¢ + b, cos 2¢t + &e. ...(7).
Average Cc= Uy, + % (<Lia, + B, + A,a, + Bob, + &e.)...(8).
It will be seen that there are no terms like 4.5, or A.b,

132. Let AB and BC be parts of an electric circuit. In
AB let the resistance be R
STNeh T Voo -2 and let there be no self-in-

TN T T T TS B duction. In BC let the re-

o sistance be r and Iet there be

Fig. 74. self-induction &. If ('=C,sin ¢t
Is the current passing. Let Vip &c. represent the voltage
between the points 4 and B, &c. Let V,, mecan the effective
voltage between 4 and B.

V4p = RC, sin ¢,
Ve = C, 7o I*¢* sin (qt + tan™! l%) , see Art. 118,

T o !
Vie=0C, \/(R +7F + Pg* sin (qt+ tan—* Rﬁ-??*?-) )

. Eq®
VAB—_,\T‘jR(/ VL(,—‘}\/?70\/ q
2

T/ = — (R 3 \/ - .
Ac V2(»+o) o +(R+7)

Observe that Vae is always less than Vg + Vg, or
the effective voltage between A and C is always less
than the sum of the effective voltages between A and
B and between B and C.

Thus take Cf,=1414, R=1, r=1, ly=1, and illustratc
a fact that sometimes puzzlcb electrical engineers,

133. Rule for developing any arbitrary function
in a Fourier Series.

+The function may be represented as in fig. 75, PE repre-
sents the value of y at the time ¢ which is reprcbented by
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OF, OC represents the whole periodic time 7. At C the
curve is about to repeat itself. (Instead of using the letter

)

M-~y

Nen/ I

Fig. 75.

t we may usc « or any other. We have functions which are
periodic with respect to space for example.) Assume that y
can be developed as

Y= @y + @, sin qt + b, cos gt + @, sin 2g¢ + b, cos 2q¢
+ 5 8in 3q¢ + b, cos 3¢t + &e. ... (1),

where q= ?17;

It is evident from the results given in Art. 127 that a,
is the average height of the curve, or the average
value of . This can be found as one finds the average
height of an indicator diagram. Carry a planimeter point
from O to FPHGFC0, and divide the whole area thus found by
0C. If we have not drawn the curve ; if we have been given
say 36 equidistant values of y, add up and divide by 36.
The reason is this; the arca of the whole curve, or the
integral of y between the limits 0 and T, is a,7, because
the integral of any other term such as @, singt or b, cos 3¢t
is0. In fact

7 7
{ sin sqt . dt or ’ cos sqt . dt 1s 0,
) S0

if 5 is an integer.

a, 18 twice the average height of the curve which results
from multiplying the ordinates y by the corresponding
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ordinate of singt; for, multiply (1) all across by singt,
and integrate from 0 to 7, and we have by Art. 128

2' 11
[ ¥ . sin qt.dt=0+axf sin® gt . dt + 0 + 0 + &e.=3a,T...(1);
0 0

dividing by 7" gives the avcrage value, and twice this is
evidently ;. Similarly

T
[ y.ocosqt.dE=3bT.................. (2).
S0

In fact, by the principles of Art. 128, a; and b, are twice
the average values of y sin sqt and y. cos sqt, or

277
as=~,1—,/y.smsqt.dt)
0
9 7 e (3).
l)s:T/ y.cossqt.dtj
0

134. In the Electrician newspaper of Feb, 5th, 1892, the
author gave clear instructions for carrying out this process
numerically when 36 numbers are given as equidistant
values of .

In the same paper of June 28th, 1895, the author de-
scribed a graphical method of finding the coefficients.
The graphical method is particularly recommended for de-
veloping any arbitrary function.

Students who refer to the original paper will notice
that the abscissac are very quickly obtained and the curves
drawn.

In this particular case we consider the original curve
showing y and time, to be wrapped round a circular cylinder
whose circumference is the periodic time. The curve is pro-
jected upon a diametral plane passing through ¢=0. Twice
the area of the projection divided by the circumfercnce of
the cylinder is @,. Projected upon a plane at right angles to
the first, we get b, in the same way. When the curve is
wrapped round s times instead of once, and projected on
the two diametral planes, twice the areas of each of the
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two projections divided by s times the circumference of the
eylinder give a; and b, *

Prof. Henrici's Analyzers, described in the Proceedings
of the Physical Society, give the coefficients rapidly and
accurately. The method of Mr Wedmore, published in the
Journal of the Institution of Electrical Engineers, March 1896,
seems to me very rapid when a column of numbers is given as
equidistant values of y.

135. When a periodic function is graphically represented
by straight lines like fig. 72 or fig. 783 we may obtain the
development by direct integration. Thus in fig. 76, the
Electrician’s Muke and Break Curve;

j:__w
e Q
Tig. 76,

y =04, or 29, say, from ¢ =0 to £ = OP — 37
y=0 from {=37or OP, to t =1 or 0.

Evidently ay=n,, ¢= g,},-r ;
2 [T . 2 [T
(g = 7 {0 2u,. sinsgt . dt, b, = P . 2v, cos sqt . dt,
4o, T T 29 = oy 43T 27
as=— 7 . QE#[l()oss.thJ, bs—~T— - :ms.th ,

* The method is based upon this, that
2 [T

“

. 2 1 .
a'“:T_}oy . ginsqt 'dt—_éqTfy . d (eos sqt) = —s;fy. d (cos sqt).

Drawing a complete curve of which y (at the time ¢) is the ordinate and
cossqt is the abscissa, we see that its area as taken by a Dlanimeter
divided by s gives u;. This graphical method of working is made use of
in developing arbitrary functions in series of other normal forms than sines
and cosines, such asg Spherical Zonal Harmonics and Bessels.

By the above method, b, :;];/y . d (sinsgqt).



206 CALCULUS FOR ENGINEERS.

20, L0) = 2,/ 01f s s even)
o= o (cos s = C08 0) = — <—2 if 5 is odd

= i) if s 18 odd,
s
2 , . .
by="""(sinsm —sin 0) = 0.
s
Hence the function shown in fig. 76 becomes

Y =1+ %‘—’ (sin g¢ + Lsin 3qt + L sin gt + &e.) .....(1).

M
o) Q

N
Fig. 77.

If the origin is half-way between O and 4 (fig. 76), as in
fig. 77, so that instead of what the electricians call a make
and break we have v, constant for half a period, then — 2,
for the next half period, that is, reversals of y every halt
period, we merely subtract ,, then

Y = 4%‘1 (sin gt + § sin 8gt + L sin 5¢¢ + &c.) ...(2),
Let the origin be half-way between 0 and P, fig. 76; the
¢ of (1) being put cqual to a new ¢ + 17,

sin sqt where s is odd, becomes sin sq (t + 17,
.2 . \
or sin s 77: (t+47) or sin <sqt +s g) ,
where s=1,5, 9,13 &c. this becomes cos sqt,
» =317, 11,15 &e.

and consequently with the origin at a poin half-way between

O and P,

» ’ — €08 sqt,

y=uv,+ 4%)0 (cos gt — % cos 3¢t + £ cos 5gt — } cos Tqt + &ec.).
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136. To represent a periodic function of # for all values
of # it is necessary to have series of terms each of which
is itself a periodic function. The Fourier series is the
simplest of these.

137. If the values of ¥, a function of =z, be given for all
values of z between =0 and # =c; y can be expanded in a
series of sines only or a series of cosines only. Here
we regard the given part as only half of a complete periodic
function and we arc not concerned with what the series
represents when # is less than O or greater than c¢. In
the previous case y was completely represented for all
values of the variable.

I Assume y=gq, sinqz + a,sin 2qz + &c. where ¢ =/e.

Multiply by sinsgz and integrate between the limits 0
and ¢. It will be found that all the terms disappear except

¢ .
a, sin? sqz . dz which is 1a,c, so that a; is twice the average
Q
value of y. sin sqx.

Thus let y be a constant m, then

2 (e 2m[* i
a;=—1 msmsqz.dr=— ="} cos sqz
cJog CS([ 0

2 o
______a;,g(cossw-—-l):t—lg/lfs 18 Odd,

. =0 1f s is even,
H _dm . 1 L x *
ence = (sin gz + 1 sin 3gz + L sin 5qz + &c.)*,

I Assume y=0b,+ b, cos gz +b, cos 2qz + &c. Here b,
1s evidently the mean value of % from 2 =0 to @ =¢. In the

¥ Ezgercise. Develope y=mx from £=0 to .x=c in a series of sines.

. . ™
mr=a, sin g + a, sin 2qx + &e., where q= o
. 2 fc . 2m e,
agis — | mx.sinsge. de=-_ [ sin sqx - sqx . cos sqx |
e /o s%gc Lo

For this integral refer to (70) page 365.

Qme [ . w 1 .2 1
Hence mr="""{gin T & ~ = sin 2" g +~sin3—7rx~&e. .
T c 2 ¢ 3 ¢
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same way as before we can prove that b, is twice the average
value of y cos squ*.

138, In Art. 118 we gave the equation for an electric
circuit. The evancscent term comes in as before but we shall
neglect it. Obscrve that if ¥ is not a simple sine function of
t, but a complicated periodic function, each term of it gives
rise to a term in the current, of the same period. Thus if

V=Vi+ 3 Vsin(sqgt+e).cunnnnn..... (1),

Ve, « V. . < sLq
Y=+ Y ==t sin [sqt + ¢, — tan—1 >2
B VR + Lrstg® M R @)
If Lq is very large compared with B we may take
Vi s Vs .
C= R Z Lsg cos (Sqt+ ;) eueernn.... (3).
Thus, taking the make and break curve for V, fig. 76,
V=V, + 4% *(sin gt + 18I0 3gt + &C.) Levvvriirriiennen, .(4),
r 7
C = }€9 - 2:"1111 (cos gt 4 4 008 3¢t + o cos Bgt + &e) ...(5),
which is shown by the curve of fig. 73, 0 being at i

139. When electric power is supplied to a house or
contrivance, the power in watts is the average value of C'V
where € is current in amperes and V the voltage.

* Thus let y=mz between £=0 and r=c. Evidently by=4me, and we

mmr 4m 1 1
= = iy ; il £
find y=- - (cos qr «)-9 cos 3(1304—25 cos uq:v+&c.> .
There are many other normal forms in which an arbitrary function of
x may be developed. Again, even of sines or cosines there are other forms
than those given above. For example, if we wish generally to develope ¥ a
function of # between 0 and ¢ as y=Za,, sin a,,x by the Fourier method, the

¢
essential principle of which is f sln a,z . 8in a2 . dz=0, where m and n
0

. ac ¢os ac .
are different; we musthave «,, and a,, roots of sinas =% In the ordinary
1N ac

Fouricr series s is oo,
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Let V= V,sin qt and (' = C; sin (¢t — ¢).

Then P = 4C,V, coset, or half the product of the ampli-
tudes multiplied by the cosine of the lag. When the power
is measured by passing (' through one coil of a dynamometer
and allowing V to send a current ¢ through the other coil, if
this coil’s resistance is » and self-induction 7

¢ = \/i'”]fljf sin (gt — tan™! %q > ......... (6).

What is really measured therefore is the average value
of Cc¢, or o L
———" cos (e — tan™! —l> .

1
2 Vg + l2q~z . r

Usually in these special instruments, large non-inductive
resistances are included in the fine wire circuit and we may
take 1t that [y is so small in comparison with » that its square
may be neglected.  If so, then
I
oS (e — tan™! 1}
apparent power 7/
true power cos e '
ly

(] . .
Observe that tan™ = is a very small angle, call it o,
r

apparent,fpowm _cosecosatsinesina_ cos 04 Sin &, tan e,
true power cos e

Now cos a is practically 1, and sin & is small, and at first
sight it might seem that we might take the answer as
nearly 1.

But if ¢ is nearly 90° its tangent may be exceedingly
large and the apparent power may be much greater
than the true power.

It is seldom however that e approaches 90° unless in coils
of great diameter with no iron present, and precautions taken
to avoid eddy currents. Even when giving power to a
choking coil or unloaded transformer, the effect of hysteresis
i3 to cause e not to exceed 74"

140. True Power Meter. Let K¢ and G be coils
wonnd together as the fixed part of a dynamometer, and let

P, 14
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DB be the moveable coil. The current ¢'+ ¢ passes from £
to G. Part of it ¢ goes along the
non-inductive resistance GF which
has a resistance B. The part ¢
flows from G to D and D to B and
through the house or contrivance.
The instantaneous value of Re.C
is the instantaneous power.

The coils £G and GD are care-
tully adjusted so that when ¢=0
Fig. 78, and the eurrents are continuous
currents, there shall be no deflec-
tion of the moveable coil DB. Henece the combined action
of C'4+¢ in G and of ¢! in ¢D upon € in DB is force
or torque proportional to ¢C, and hence the reading of the
mstrument is proportional to the power. With varying
currents also there will be no deflection if there is no metal
near capable of forming induced currents.

141, The student ought to get accustomed to translating
into ordinary language such a statement as
(1) of Art. 119. Having done so, consider a
mass of W Ib.* hanging from a spring whose
stiffness is such that a force of 11b. elongates
it & feet. If there is vibration; when Wisat
the level C'C, fig. 79, x feet below (we imagine
it moving downwards) its position of equili-
brium OO0, the force urging it to the position
of equilibrium is « + % pounds, and as the

Fig. 79. moving mass is — (neglect the mass of the

spring itself or consider one-third of it as being added to the
moving body),

L X the nceeleration =l£p

The acccleration :% . The acceleration is then pro-

¥ The name ¥ 1b. is the weight of a certain quantity of stuff ; the inertia
of it in ngineers’ units is W +322.
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portional to @, and our I/‘g, , stands for ¢* in (1) of Art. 119, and

(2) shows the law connecting # and ¢.
Notice carefully that the + sign in (1) is correct. The
body is moving downwards and « is increasing, so that de/d¢

is positive. But 3—; is negative, the body getting slower in

its motion as z increases.

142. Imagine the body to be retarded by a force which
is proportional to its velocity, or b ((ll'; . Obscrve that this acts

as y acts, that is upwards, towards the position of equi-

h

librium.
Hence we may write

W dx do  »
bﬁ?lz._,-kbdt-ﬂuﬁ_o .................. (1).

We shall presently sec what law now connects « and ¢ in
this damped vibration.

143. Suppose that in the last exercise, when the body is
displaced « fect downwards, its point of support B is also y feet
below its old position. The spring is really only clongated

by the amount # — ¥, and the restoring force is ‘,",",/_LJ,/' Con-
sequently (1) ought to be

Wdw ,de = y

!7 diz +bdt+7b—/& .................. (2).

Now imagine that the motion y is given as a function of
the time, and we are asked to find z as a function of the time.
y gives rise to what we call a forced vibration. If y=0
we have the natural vibrations only.

We give this, not for the purpose of solving it just now,
although it is not difficult, but for the purpose of familiar-
izing the student with differential equations and inducing
him to translate them into ordinary language.

142
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144, Notice that if the angular distance of a rigid body
from its position of equilibrium is 6, if I is its moment of
inertia about an axis through the centre of gravity, if H6 is
the sum of the moments of the forces of control about the

sane axis, and if F 6@ is the moment of frictional forces

dt
which are proportional to velocity,
dx dé .
ZW+F%+H9=H0, ............ 3)
if @ is the forced angular displacement of the case to which
the springs or other controlling devices are attached.

145. The following is a specially good example. Referring
back to Example 1 of Art. 98, we had CR, the voltage in
the circuit, connecting the coatings of the condenser. If we
take into account sclf-induction L in this circuit, then the
voltage v is

ac
ROFL G =0 i, (4).

We may even go further and say that if there is an
alternator in the circuit, whose electromotive force is e at any
instant (e, if a constant electromotive force would oppose (f
as shown in the figure)

ac <
RO+Ld—t=v—e ................... (5).
But we saw that the current (= — K %) ............ (6).
a
Using this value of ' in (5) we get
dv d*
—RK%_LK({TZZU—&
. dv dv
or LKdt5+RKd‘t+”=e ............... (7).

Now imagine that ¢ is given as a function of the time and
we are asked to find v as a function of the time.

. egives rise to what we call a forced vibratory current
n the system. If ¢=0 we have the natural vibrations only
of the system. Having v, (6) gives us C.
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146. If (7) is compared with (2) or (3) we see at once
the analogy between a vibrating mechanical system
and an electrical one.

They may be put

Wda de « vy . )

7 dF +0 T Mechanical ......... (8),
d*v dv v e .

L aet R pri el Electrical ......... 9).

The mass gf corresponds with self-induction 7.

The friction per foot per second b, corresponds with the
resistance R.

The displacement @, corresponds with voltage », or to be
seemingly more accurate, v is  the electric displacement
divided by K.

The want of stiffness of the spring % corresponds with
capacity of condenser K.

The forced displacement 7 corresponds with the forced
E.M.F. of an alternator. T

147. The complete solution of (8) or (9), that is, the
expression of z or v as a function of ¢, will be found to
include:—

(1) The solution if y or e were 0,

This is the natural vibration of the system, which dies
away at a rate which depends upon the mechanical friction
in the one case and the clectrical friction or resistance in the
other case. We shall take up, later, the study of this vibra-
tion. It ought to be evident without explanation, that if y
or ¢ is 0, we have a statement of what oceurs when the
system is left to itself.

(2) The solution which gives the forced vibrations
only.

The sum of these two is evidently the complete answer.t

148. Forced Vibration. As the Mechanical and
Electrical cases are analogous, let us study that one about
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which it is most easy to make a mental picture, the mechanical
case. Weshall in the first place assume no friction and neglect
the natural vibrations, which are however only negligible
when there is some friction. Then (8) becomes
diw ¢ g
RF -+ '.W;/L €= W?[, y ..................
Let y = asin g¢ be a motion given to the point of support
of the spiral spring which carries W'; y may be any compli-
cated periodic function, we consider onc term of it.

We know that if » were 0, the natural vibration would
be @ = b sin (t \/ ”g% + m) , where b and m might have any

values whatsoever. It is simpler to use n* for g/Wh as
we have to extract its squarc root. = is 27 times the
frequency of the natural vibrations of W. We had better
write the equation as

o

7 +n*w=ny=n'asingt ....... ceriiees (11).
Now try if there is a solution, 2= A sin ¢t + Beosgt. If so,
since (cilt? =—Ag*sin ¢t — Bg?cos ¢t ; equating the coefficients
of singt and also those of cos g, — A¢*+n24 = n*a, so that
4 =n:lth2 ; and —By*+ 2B =0, so that B =0 unless n=yq.
We see that we have the solution
ne
@ e SNl 2
w= NN qt (12)

This shows that there is a forced vibration of W which is
synchronous with the motion of the point of support; its

amplitude being times that of the point of support.

14
n?
Now take a few numbers to illustrate this answer. Let ¢ =1,

let % be great or small. Thus ;{: {7 means that the forced

frequency is one tenth of the natural frequency.
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q Amplitude of 1| q Amplitude of
n W’s motion M n 17’8 motion
1 oL 41 o

1333 | 101 | —30

8 2778 | 103 | — 164

9 5263 11 — 4762
95 . 1026 15 - 08
97 [.10-92 20 — 0333
98 | 25925 50 — 0042
99 | 5025 100 -~ 0010

Note that when the forced frequency is a small fraction
of the natural frequency, the forced vibration of W is a
faithful copy of the motion of the point of support B; the
spring and W move like a rigid body. When the forced is
increased in frequency the motion of W is a faithful magni-
fication of B's motion. As the forced gets nearly equal to the
natural, the motion of W is an enormous magnification
of B’s motion, There is always some friction and hence the
amplitude of the vibration cannot become infinite, When
the forced frequency is greater than the natural, W is always
a half-period behind B, being at the top of its path when
B is at the bottom. When the forced is many times the
natural, the motion of IV gets to be very small; it is nearly
at rest.

Men who design Earthquake recorders try to find a
steady point which docs not move when everything else is
moving. For up and down motion, observe that in the last
case just mentioned, W is like a steady point.

When the forced and natural frequencies are nearly equal,
we have the state of things which gives rise to resonance
in acoustic instruments ; which causes us to fear for suspen-
sion bridges or rolling ships. We could easily give twenty
interesting examples of important ways in which the above
principle enters into engineering problems. The student
may now work out the electrical analogue for himself and
study Hertz' vibrations.

149. Steam engine Indicator vibration. The
motion of the pencil is to faithfully record the force of
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the steam on the piston at every instant; this means that
the natural vibrations of the instrument shall be very quickly
destroyed by friction. Any friction as of solids on solids will
cause errors. Indeed it is easy to sce that solid friction
causes diagrams to be always larger than they ought to be.
Practically we find that if the natural frequency of the
instrument is about 20 times that of the engine, the diagram
shows few ripples due to the natural vibrations of the indi-
cator. If the natural frequency is only 10 times that of the
engine, the diagram is so ‘upset’ as to be useless.

The frequency of a mass —g] at the end of a spring whose

yieldingness is &, see Art. 141, is %r g/ Wh,neglecting friction,

We shall consider friction in Art. 160. What is the frequency
of a mechanism like what we have in an indieator, controlled
by a spring? Answer: If at any point of the indicator

mechanism there js a mass —, and if the displacement of

this point is s, when the displacement of the end of the spring
(really the piston, in any ordinary indicator) is 1; imagine

that instead of% we have a mass szy—; at the end of

. .1 g
the spring. Thus the frequency 1s 9 \/m

To illustrate this, take the case shown in fig. 80; OAB is
a massless lever, hinged at 0, with
e the weight W at B. The massless
spring is applied at A.
When 4 is displaced downwards
from equilibrium through the dis-
@ tance «, the extra pull in the spring
° A 5 is % The angular displacement of
Fig. 80. the lever, clockwise, is -

oA Mo-

ment of Inertia x angular acceleration, is numerically equal

to moment of force., The Moment of Inertia is ? OB
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2
()iA where & stands for %t—f,

.04 =0,
‘ . 04 g
or .L‘l‘m.'Whn@—O.
And »0 B is what we called s, so that s* I takes the place

0A
of our old W when W was hung directly from the spring.

The angular acceleration is %0

W, ., &
that;OB.Oj+ﬁ

150. Vibration Indicator. Fig. 81 shows an in-
strument which has been used for indicating quick vertical
vibration of the ground.

A
N\ /\ﬁ?”‘
N

<

Fig. 81.

n

The mass CP(Q) is supported at I by a knife edge, or by
friction whecls. The centre of gravity ¢ is in a horizontal
line with P and Q. Let PG=a, GQ=0, PQ=a+b=1
The vertical spring AR and thread R support the body at
@ As a matter of fact AR is an Ayrton-Perry spring, which
shows by the rotation of the pointer R, the relative motion of
A and Q; let us neglect its inertia now, and consider that
the pointer faithfully records relative motion of 4 and (.
It would shorten the work to only consider the forces at I
and @ in excess of what they are when in cquilibrium, but for
clearness we shall take the total forces.

When a body gets motion in any direction parallel to
the plane of the paper, we get one equation by stating
that the resultant force is equal (numerically)
to the mass multiplied by the linear acceleration
of the centre of gravity in the direction of the
resultant force. We get another cquation by stating



218 CALCULUS FOR ENGINEERS.

that the resultant moment of force about an axis
at right angles to the paper through the centre of
gravity is equal to the angular acceleration, multi-
plied by moment of inertia about this axis through
the centre of gravity. I shall usc z, & and & to mean
displacement, velocity and acceleration, or z, d ; and d i

Let P and 4 get a displacement downward. Let Q
be displaced « downward. Let the pull in the spring be
Q=0Q,+c(z—a) where ¢ is a known constant (¢ is the
reciprocal of the % used in Art. 141). Let W be the weight
of the body. Then if P, and , be the upward forces at the
points marked P and ¢ when in the position of equilibrium,

Qo (w+b)=Wu and P, + Q,= W.
bW 0 el
+ b Y T a4+
Q:Q0+C(w_xl)'

Henee P,=

R b a
Now (¢ is displaced downwards s @+ —— &, so that
a+b @

+0

_w, 1 9
W-Pr—-Q= 7 {0, + wii} oy SRR (2).

The body has an angular displacement 9 clockwise about its
- ; ) ..
centre of mass, of the amount Y. So that if 7 15 its

w+b
moment of inertia about

! ,
- = (B =) 3).
h 4 Pa a+h (& — ). (3)

Hence (2) and (3) give us, if M stands for l}, and if
I = Ml where k is the radius of gyration about &,

& (I b
(Z-I-I)( +(LJ[>+.L(/ <(—L+1>
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If k, is the radius of gyration about P, we find that (4)
simplifies to
i+ we=e, + n'w,

if » stands for —24\/ ﬂ%——- 27 x natural frequency, and ¢* stands
3

l .
for 1 — Z? Call # — =, by the letter y because it is really ¥
that an observer will note, if the framework and room and
observer bave the motion #;. Then as y=2~a,ora=y+a,

&+ (y+ a) = %, + n¥e,.

So that GHnty=(—=1)& ..coociieiiii (5),
or i+ ny + 75 =0 e, (6).
vl

Let @, = 4 sin ¢t.
We are neglecting friction for ease in understanding our

results, and yet we are assuming that there is enough
friction to destroy the natural vibration of the body.

We find that if we assume y= asin ¢¢, then
_d ¢
- ]\'12 02— (1-_'

That is, the apparent motion y (and this is what the
pointer of an Ayrton-Perry spring will show; or a light
mirror may be used to throw a spot of light upon a screen),
. al P . .
8o ﬁ;q 7 times the actual motion of the framework and

2t
room and observer. If ¢ is luge compared with n, for
example if ¢ is always more than five times », we may take
it that the apparent motion is % times the real motion and

1
is independent of frequency. Hence any periodic motion
whatever (whose periodic time is less say than Jth of the
periodic time of the apparatus) will be faithfully indi-
cated.

Note that if al =4? so that @ is what is called the point
of percussion, @ is a motionless or ‘steady’ point. But in
practice, the instrumnent is very much like what is shown in
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the figure, and @ is by no means a steady point. Apparatus of
the same kind may be used for East and West and also for
North and South motions.

151. Any equation containing g%or %g or any other
differential coefficients is said to be a ¢ Differential
Equation.” It will be found that differential eguations

contain laws in their most general form.

3,
Thus if # is linear space and ¢ time, the statement %;:: 0
means that (Zl{tt, (the acceleration), does not alter. It is the

most general cxpression of uniformly accelerated motion.
. d? .
When we integrate and get a%: @, we have introduced

the more definite statement that the constant acceleration is
known to be a.  When we integrate again and get

%ﬁ=at+b,

we arc more definite still, for we say that b is the velocity
when ¢ =0.
When we integrate again and get
o =1%at+ bt +c,
we state that @ =¢ when ¢=0.

Later on, it will be bettcr seen, that many of our great
general laws are wrapped up in a simple looking expression
in the shape of a differential equation, and it is of enormous
mmportance that when the student sees such an equation he
should translate it into vrdinary language.

152. An equation like

dy | &y dy dy _
J@4+1 dl.z'i_Q%‘}'R&zj‘v*l'Sy—X ......... (1),

if P,Q, R, Sand X are functions of « only, or constants, is
said to be a linear differential equation.
Most of our work in mechanical and electrical engineering

leads to linear equations in which P, @, &c., are all constant
with the exception of X. Thus note (8) and (9) of Art. 146.
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Later, we shall see that in certain cases we can find the
complete solution of (1) when X is 0; that is, that the solu-
tion found will include every possible answer. Now suppose
this to be y=f(z). We shall see that it will include four

Yy
dat
coefficient in (1), and we shall prove that if, when X is not 0
Wwe can guess at one solution, and we call it y = F (=), then

y=f@)+F(z)
is a solution of (1). We shall find in Chap. 1IL that this is
the complete solution of (1).
In the remainder of this chapter we shall ouly consider
P, @, &c., as constant ; let us say
&y Py oy dy
P TR AR F
where 4, B, C, E are constants and X is a function of .
We often write (2) in the form
d

d* s ) d i .

arbitrary constants, because is the highest differential

3

+ 0 v By=X ... 2),

153. Taking the very simplest equation like (8). Let
dy

d =AY =0 (4),
it is obvious (see Art. 97) that
y=Me® (5)
is the solution, where 3 is any constant whatsoever.
- . dy ,
154. Now taking g~ @Y= O i (6),
we sce by actual trial that
Yy=Me® 4+ Ne=® ., ......coiinne. (7)
is the solution, where M and NV are any constants whatsoever.
But if we take gly +iy=0 ..o (8),
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we sec that as the « of (6) is like 4 in (8) if ¢ means o/ — 1,
then
y=DMe" 4 Ne™® ... (9

is the solution of (8). If we try whether this is the case, by
differentiation, assmning that ¢ behaves like a real quantity
and of course ?=—1, ¥ = —1, #*=1, * =1, &c., we find that
16 1s so. But what meaning are we to attach to such an
answer as (9)? By guessing and probably also through re-
collection of curious analogies such as we describe in Art, 106,
and by trial, we find that this 1s the complete solution also,

=23 sinnw+Nycosnz............... (10).

As (10) and (9) arc both complete solutions (Art. 152) be-
causc they both contain two arbitrary constants which may be
unrcal or not, we always consider an answer like (9) to be the
same as (10), and the student will find it an excellent exercise
to convert the form (10) into the form (9) by the exponential
forms of sinwz and cosaw, Art. 106, recollecting that the
arbitrary constants may be real or unreal. Besides, it is im-
portant for the engineer to make a practical use of those
quantities which the mathematicians have called unreul,

155. Going back now to the more general form (3) when
X =0, we try if y = Me™ is a solution, and we sec that it is
so 1f
mdhAdmF+ Bt Om+ E=0............ (1).

This is usually called the qusiliary cquation. Find the
four roots of it, that is, the four values of m which satisfy it,
and 1if these are called my, m,, m,, m,, we have

y:ﬂ[le”’x"+ﬂ[_,e’"2”+ ﬂ[3€9n3m+1;[461;1‘x
as the complete solution of (3) when X =0; M, &c., being

any arbitrary constants whatsoever.

156. Thus to solve
(l*y+ Py Ly L dy

«

At P a0 gm0, =0

if we assume y = €, we find that m must satisfy

mr 45 +5mP-dm—6=0.
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By guessing we find that m =1 is a root; dividing by

m~—1 and again guessing, we find that m=~1 is a root’;
again dividing by m+ 1 we arc left with a quadratic expres-
ston, and we soon see that m=—2 and m=—3 are the

remaining roots. Hence
y=Me®+ Me* + Me 4 M

is the complete solution, M;, M,, &e., being any constants
whatsoever.

157. Now an cquation like (1) may have an unreal root like
m + nt, where ¢ is written for o/ — 1, and if so, we know from
algebra, that these unrcal roots go in pairs; when there is
one like m 4 nd there is another like m —ni.  The corre-
-sponding answers for y are

Y= ][[lem—nz‘; L Arle(m+ni) .m,
or eme {‘][Ie&nix_*_ ]\Tle-mix}’
and we sce from (10) that this may be written
y= € {M sin nx + N cos na},

where M and N are any constants whatsoever.

158. Suppose that two roots m of the auxiliary cquation,
happen to be cqual, there is no usc in writing
y =A™ 4 M e,
because this only amounts to (M, + M,) em= or Mem® where M
is an arbitrary constant, whereas the general answer must
have two arbitrary constants. In this casc we adopt an

artifice ; we assume that the two roots are m and . + A and
we imagine % to get smaller and smaller without limit:

Y= Jl,[lemz + J‘[__}e(m-hh) F

= "% (ﬂ[l +ﬂ[:€hx),
but by Art, 07, ebe =1 4 ho 4 0 PP o
Yy AThOT, €= g Tra gt

therefore g v < M4 Mot Mo 2,7 4 &c.) .

Now lct M4 be called N and imagine A to get smaller
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and smaller, and M, to get larger and larger, so that M,k may
be of any 1equ1red mlue we please, say &V, and also
A+ My= A
as h gets smaller and smaller without limit we find
y =€ (M + Nu).

If this reasoning does not satisty the reader, he is to
remember that we can test our answer and we always find it
to be correct.

159. It 1s in this way that we are led to the fol-
lowing general rule for the solving of a linear differential
equation with constant coeflicients. Let the equation be

(Z”LI/ dn—1 J dr—2 Y

CZ(L‘"+ 1({ n—1 Bdnﬂ
Form the auxiliary cquation

At Bu 4 &e 4 G+ H = 0.

¢ 4y -0..01).

+ &e. +
dw

The complete value of y will be expressed by a series of
terms —For each real distinct value of m, call it a;, there will
exist a term M,ex®; for each pair of imaginary values a, + 3.,
a term

e*® (M, sin By + N, cos B);

each of the cocfficients M, M,, N, being an arbitrary
constant if the corresponding root occurs only once, but a
polynomial of the »—1th degrec with arbitrary constant
coefficients if the root oceur » times.

dy 12 5@ty o

66 524206 ‘ZJ

FExercise. 2+
ol dt

(l[

+345 57 4234y = 0.

Forming the auxiliary equation, I find by guessing and
trying, that the five roots arc
—-3,-3,—-2,—-243¢ -2 -3
Conscquently the answer is

Y= (M, + Nyw) e + M + e~ (M sin B 4 N, cos 3).
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Ezercise. 1. Integrate d——i/ —4 .‘Zﬁ + 3y =0,
dat de
Answer: y= A&+ Be®
@y 0

QT L —10- 4 34y =0.
2. Integrate e 10 It 34y

Answer: y = &% (4 sin 3u + B cos 3],

I

Y6 g,
dr T O g, 0=0

Answer: y =(A4 + Bx) e,

3. Integrate

dy dy dy | 1a
4. Integrate (’:1/; —-12 d.,ljg ZZ.;; + 1()9!/ =0.

Here m* — 120 + 62m* — 156m + 169 = 0, and this w'il_l be
found to be a perfect square. The roots of the auxiliary
equation will be found to be

3420, 3+, 3—2¢, 324
Hence the solution is
y = e {(4, + Byr) sin 2a + (4, + Byr) cos 2},

We shall now take an example which has an important
physical meaning.

+62§§1%—156

Natural Vibrations. Example.

160. We hadin Art. 146, a mechanical system vibrating
with one degree of freedom, and we saw that it was analogous
with the surging going on in an Electric system consisting of a
condenser, and a coil with resistance and self-induction. We
neglected the friction in the mechanical, and the resistance
in the electric problem. We shall now study their natural
vibrations, and we choose the mechanical problem as before,
If a weight of Wlb. hung at the end of a spring which
elongates x feet for a force of x+hlb., is resisted in its
motion by friction equal to b x velocity, then we had (8) of

Art. 146, or dex dx z
gaE et
dix by dv  xg
o dE T TR O (1).
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by g .. <
Let W be called 2f and let T“/—/; =n?; (1) becomes

Forming the auxiliary equation we find the roots to be
m=—f+ N/f 2,

We have different kinds of answers depending upon the
values of f and n. We must be given sufficient information
about the motion to be able to calculate the arbitrary con-
stants. I will assume that when ¢ 1s O the body is at =0
and 18 moving with the velocity v,
I Let f be greater than n, and let the roots be —a

and — 3.

1L Let f be equal to n, the roots are — fand — 1.

IIL. Let f be less than n, and let the roots be — a + be.

IV. Let f=0, the roots are + ns.
Then according to our rule of Art. 159,

In Case I, our answer is
x= Aet 4 BeFt,
and if we are told that # =0 when =0 and (ditc
t=0, we can calculate 4 and B and so find # exactly in
terms of ¢

=1, when

In Case 11, our answer 1
a= (4 + Bt) e,
In Case III, our answer is
w=e{A sin bt + B cos bt} ;
In Case IV, our answer is
= A sinnt + B cos nt.

161. We hadbetter take a numerical example and we assure
the student that he need not grudge any time spent upon it
and others like it. Let n =3 and take various values of f.
For the purpose of comparison we shall in all cases let =0

when ¢ = 0; and di = 20 feet per second, when ¢ = 0.
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Case IV, Let /=0, then o= 4 sinnt + B cosnt,
0=d x0+4+Bx1, sothat B=0,
da

- =nd cosnt — B sin nt,
dt
20 =34, so that A4 = 22
Plot therefore @ = 6667 sin 3¢.
This is shown in curve 4, fig. 82. It is of cowrse the
ordinary curve of sines: undamped $.H. motion,

4

Time

Fig. 82,
Case ITT.  Let f=-3. The auxiliary cquation gives
m=—3 £ V09 =9 =—"3 £ 2085/
Here ¢ =8 and b = 2:985 in
w=e"{Asinbt+ Bcosbt] ............ (1).

You may not be able to differentiate a product yet, although
we gave the rule in Art. 90. We give many exercises in
Chap. ITL and we shall here assume that

du

= ae~ (A sin bt + B cos bt)

4+ bem " (A cos bt — B sin bt)
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Put =0 when t=0 and gLf: 20 when ¢=0. 'Then

dt
B =0 from (1) and

20 20
20 = : == — =
W=bdor A== 5455 = 07
and hence = 673 sin 2°985¢.

This is shown in curve 3 of fig. 82. Notice that the period
has altered because of friction.

Case II. Let f=3. The roots of the auxiliary cquation

are m =~ 3 and — 3, equal roots. Hence
a=(Ad +Btye® (1).
Here again we have to differentiate a product and
(f{; = B —3(A 4 B H e, (2).

Putting in @=0 when =0 and %: 20 when t=0,
A =0 from (1) and B =20 from (2).
Hence x=20t.e "
This is shown in curve 2 of fig. 2.
Case I. Let f=5. The roots of the auxiliary equation
arc — 9 and — 1,
w=Ae + Bet,
da
dt
Putting in the initial conditions we have

0=4+B 20=-94 —B.

=— 94" —~ Bet,

Hence d=-21 B= 21,
@ =2} (et — ),

This is shown in curve 1 of fig. §2.

Students ought to take these initial conditions

d—w—O when ¢t =0,

# =10 when ¢=0 and i



VIBRATTONS. 229

This would represent the case of a body let go at time 0
or, in the electrical case, a charged condenser begins to be
discharged at time 0.

Notice that if we differcutiate (1), Art. 160, all across we
. d‘L
have (ublng v for %> ,
dv by dv, g
dez - Wdt " Wh-o
We have therefore exactly the same law for veloeity or
acceleration that we have for & itself.

=+ v={.

dv
dt
if we differentiate all across we find oxactly the sane
law for current as for voltage. Of course differences arc
produced in the solutions of the equations by the initial
conditions,

Again, in the electrical case as K —- represents current,

162. When the 1ight-hand side of such a lincar differential
equation as (2) Art.152 is not zero and our solution will give the
forced motion of a system as well as the natural vibrations, it
is worth while to consider the problem from a point of view
which will be illustrated in the following simple example.

To solve (11) Art. 148, which 1s

5

@ + i =nfasingt.....oon (1),
the equation of motion of a system with one degree of
freedom aud without friction.

Differentiate twice and we find

C,Z.L'lf‘_*_,zdj“v__ 20 sin ot
Ji T gp = T e singt.
T LA y
Hence from (L), (dtf F () ((th' +EPnte=0 (2).
To solve (2), the auxiliary equation is
()t + et =00 (3),

and we know that 4 77 are two roots and + ¢¢ are the other
two roots.  Hence we have the complete solution

w = sinut 4+ B cosnt+ Csingt +.D cos gt (+).
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Now it was by differentiating (1) that we introduced
the possibility of having the two extra arbitrary constants €
and D, and evidently by inserting (4) in the original equation,
we shall find the proper values of (' and D, as they are really
not arbitrary. It will be noticed that by differentiating
(1) and obtaining (2) we made the system more complex,
gave it another degree of frecedom, or rather we made it
part of a larger system, a system whose natural vibrations
are given in (4). When we let a mass vibrate at the end of
a spring, it is to be remembered that the centre of gravity of
the mass and the frame which supports it and the room,
remain unaltered. Hence vibrations occur in the supporting
frame, and there is friction tending to still the vibrations.
If there is another mass also vibrating, this effect may be
lessened.  For example in fig. 83, if M vibrates at the end of
the strip M4, clamped in
the vice A, any motion
of M to the right must be
accompanied by motion of
A and the support, to
the left. But if we have
two masses M, and M, (as
in a tuning fork), moving
in opposite directions ab
each instant there need be
1o motion of the supports,
consequently the system
MM, vibrates as if there
were less friction, and this
principle 1s uttlized in
tuning forks. Should a

Tig. 83, motion be started, different

from this, it will quickly

become like this, as any part of the motion which

necessitates a motion of the centre of gravity of the

supports, is very quickly damped out of existence.

The makers of steam engines and the persons who use

them in cities where vibration of the ground is objected to,
find it important to take matters like this into acconnt.

163. If yis a known function of @, we are instructed by
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(3), Art. 152, to perform a complicated operation upon it.
Sometimes we use such a symbol as

(B + AP+ B+ 00+ E)y= X,

to mean exactly the same thing; 6y meaning that we differ-
entiate y with regard to », §*y meaning that we differentiate
¥ twice, and so on,

0,6 &c., are symbols of operation easy enough to under-
stand. We need hardly say that 6% does not mean that
there is a quantity 6 which is squared and multiplied upon
y: it is merely a convenient way of saying that y is to be
differentiated twice. 66y would mean the same thing.
On this same system, what does (6 + @)y mean ? It means

dZ+ ay. What does (62+ A0+ B)y mean? It means

d
21
ga% + A Z—Iq/ + By. (8 + a) y instructs us to differentiate 4 and

add a times y, for « is a mere multiplier although 6 is not so,
and yet, note that (6 + a) y = 8y +ay.

In fact we find that 6 enters into these operational
expressions as if it were an algebraic quantity, although it is
not one.

If % and v are functions of & we know that
8 (u+v)= Gu+ 0.
This is what 1s called the distributive law.

Again, if @ 1s a constant, aw = «fu, or the operation Ou 1s
equivalent to the operation a8 This is called the com-
mutative law.

Again 670" = 6"+, this Is the index law. When these
three laws are satisied we know that @ will enter into
ordinary algebraic cxpressions as if it werce a quantity, 6
follows all these laws when combined with constants; but note

. . ) . du .
that if % and v arc functious of ., v@u nmeauning o an’ 18 a
: @

very different thing from 6 .ue.  When we arc confining our
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attention to linear operations we are not likely to make
mistakes.

Thus operate with 6 + b upon (8 +«) y. Now
B+wyy==0y+uy or Z;{ + ay.

Operating with @ 4+ b means “differentiate (this gives us

@y, dy res W o cauontly it oives

T +a (?5) and add b times T +ay”  Consequently it gives
dy dy o dy . @y dy

us ot it b de T aby or gt (e« +0) as aby or

162+ (0 +0) 6 + abdl v.
We sce, therefore, that the double operation
(B+0)(0+w)
gives the same result as
{02+ (a + D) 0 + «b).

In this and other ways it is easy to show that although 8 is
a symbol of operation and not a guantity, yet it enters into
combinations as if it were an algebraic quantity, so long as all
the quantities @, b, &c. are constants. Note also that

B+ a)(0+10b)
is the same as (8+0)(8+0).

The student ought to practise and see that this is so and

get familiar with this way of writing. He will find that it

saves an enormous amount of uunecessary trouble. Thus
compare such cxpressions as

(@B+0) (@d+B)y
with {wal + (B + ab) 9 + 0B} v,
or (o Z;l(/ + (ufB + ab) Z—% +03y.

164. Suppose that Dy is used as a symbol for some curious
operation to be performed upon y, and we say that Dy = X ;
does this not mean that if we only knew how to reverse the
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operation, and we ine‘]icute the reverse operation by )t or D’
then y =D""X or } 5 ! We evidently mean that if we operate
with D upon D' X, we annul the effect of the D~ operation.
Now if % +ay=2X, or (d% + u) y=X,or (+a)y=2X, letus

indicate the reverse operation by

Y= <E§l7 + (L>_1 Xor (O+uw)* X ... (1),

X X

or —— () |*

. 1 .
Keeping to the last of these; at present —  Is a mere

symbol for an inversc operation, but Ot
Ny
T e (3
Y=04 . (3)

submits to the usual rules of multiplication, because (3) is
the same as B+Dy=X (4);

and yet (4) is derived from (3) as ¢/ by the multiplication of
both sides of the equation by (8 + «).

. d? «dy . »
Again, take d;:+ {«+0) di Faby=X......o.........(H),
or W4 (e+0)0 +abl y=X ... (6),
or @+ @+ y=X ..o (7).

Here the direct operation € 4« performed upou (6 + b) y
gives us .Y ; hence by the above definition

and repeating, we have
1 A
= . S IUUORIOURRRTN £
I= 0+ (Ww) )
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But it is consistent with our way of writing inverse operations
to write (6) as
X
0 =— - - e a1
I= 0 (wrbyd+ab
and so we see that there is nothing inconsistent in our treating
the 8 + b and 6 + « of (9) as if § were an algebraic quantity.
165. We know now that the inverse operation
(P4(a+b)0+abl™ (1),
may be effected in (wo steps ; first operate with (6 + )~ and
then operate with (€4 @)™
Here is & most interesting question.  We know that it ¢
were really an algebraic quantity,
1 1 /1 1

Gt @h)0rad h—a Bra o4
And 1t is important to know if the operation
1 1 1 .
b——a;(r8+a.—9+b) ..................... (3),

is exactly the inverse of @24 (@ +1b)@+ab?...(4). Our
only test is this; it is so, if the dircct operation (4) com-
pletely annuls (3).  Apply (8) to X and now apply (4) to

the result; if we apply (4) to ﬁid—ﬁr, we ovidently obtain

@+b)X or (di +0X ;5 if we apply (4) to | L X we evi-
. i d‘ 4 0 + b
dently obtain (8 + «) X or “dn T X, and
1 (dX ., dX )y
boa de T T g T ) =

We see therefore that (3) is the inverse of (4), and that we have
the right to split up an inverse operation like the left-hand
side of (2) into partial operations like the right-hand side of
(2). We have already had a nuber of lustrations of this
when the operand was 0. For it 1s obvious that if a;, a,, &e.
are the roots of the auxiliavy cquation ot Art. 159, it really
means that
O+ A8 ' BO + &e + O+ H
splits up mto the factors (8 — o) (0 — a.), &e.
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Observe that if (i!/ =X, 00 0y=X,ory="5,0ory=01X,

dx
the inverse operation 71 simply means that X is to be inte-
grated. Agam, 6% means integrate twice, and so on*,

X
6 >

. . . i3 ~t
* Buppose in our operations we ever meet with the symbols 6% or § ~ 5
P Y

or 6% &e., what interpretations are we to put upon them? It is not very
necessary to consider them vow. Whatever interpretations we may put
upon them must be consistent with everything we have already done. For

example 6% will be the same as 0% and 6~ % will be the same as 6L g-1

or 0-16%. We have to recollect that all this work is integration and we use
symbols to help us to find answers; we are employing a scientific method of
guessing, and our great test of the legitimacy of a method is to try if our
apswer is right; this can always be done. Most of the functions on
which we shall be operating are either of the shape 4e®* or B sin by or sums
of such functions, Observe that

2] 13— N BT
* A e = dures”,

if n is an integer either positive or negative. There is therefore a likelihood
that it will help in the solution of problems to assnme that

g8 derm— Aa‘%e“‘,
or that OVARE = patd® (1.
Again 68 sin bx = Bb cos b =Bb sin (b.l' + ;) ,
021 sin b = ~ BU? sin be = Bi?sin (he + ),
and "3 sin b= BI™ sin (b.v +n 7:;> ........................ (2).

Evidently this is true when u is a *positive or negative integer; assume it
true when # is a positive or negative fraction, so that

1 1 ™ "
0B sin bx = Bb? sin (bx+-;) ..................... ().

There are certain other uscful functions as well as € and sin b such

1
that we are able to give a meaning to the effect of operating with ¢Z upon
them. It will, for example, be found, if we pursue our subject, that we shall
make use of a function which is 0 for all negative values of x and which is a
constant a for all positive values of 2. It will be found that if this function
is called f(x) then

. o 2 3 1 —~ 8 . . . ,
and the meaning of 0¥ or 62 or #7% or §7 % &e.is easily obtained by
differentiation or integration. The Mnemonic for this, we need not eall it

i
proof or reasou, is 0’%5”‘:{';; }L‘1:”b"’. Let n—4, m=0 and wc have
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166. Electrical Problems. Circuit with resistance
R and self-induction L, .
dC
V=RCO+ L di

let % be indicated by 8, then
v
R+ Lo
In fact in.uH our algebraic work we trcat R 4 L as if it
were a resistance.
Condenser of capacity K farads. Let V volts, be voltage

between coatings. Let C' be current in amperes into the
condenser, that is, the rate at which @), its charge in coulombs,
is Increasing. Or C= (gg = (% (KV) or as K 1is usually
av
dt
The conductance of a eondenser is K6, therefore

1
Ka-

Hence the current <nto a condenscer is as if the condenser

V=(R+ L& or (=

assumed to be constant, = K
C=K.0.V=V+

. 1
had « resistance .
Ka

c R L K. ¢
2000000900000 =5
Fig. 84.

Circuit with resistance, self-induction and capacity,fig. 84.
All problems are worked out as if we had a total resistance

R+L0+§%.“m“m”m“ma)

1 I . .. . .
02a"= Ei 27 % But |- 1 has no meaning. Give it a meaning by assuming
-3 -
that what is true of integers, is true of all numbers, and use gamma function
of § or |4 which is /= instead of |- % It is found that the solutions
effected by means of this are correct.
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167. In any network of conductors we can say exactly
what is the actual resistance (for steady currents) between
any point A and another point B if we know all the resist-
ances 7y, 7, &c. of all the branches. Now if each of these
branches has sclf-induction {,, &c. and capacity A,, &ec.
what we have to do is to substitute » + L0 + T(l_(? mstead of

1
ryin the mathematical expressions, and we have the resistance
right for currents that are not steady.

HOW are we to Under‘ﬂtﬂnd ouar 1'(‘5111&4? HO\V(‘VQI‘ com-
plicated an operation we may be led to, when cleared of
fractions, &e. 1t simplifies to this; that an operation like

@+ 00 + 06 + d6° + eb* + f + &e (1)

@ +VO+ AP+ e+ 0+ &e. T ’
has to be performed upon some voltage which is a function
of the time. On some functions of the time which we have
studied we know the sort of answer which we shall obtain.
Thus notice that if we perform (@408 4 &e.) upon et we
obtain

(@ +bx+ca + da* + ex* + fa' + &e) et ... (2).
Consequently the complicated operation (1) comes to be a
mere multiplication by A and division by A4’, where 4 is the
number @ + ba + co® + &e. and A4’ is the number

a + Va4 ot + &e.
Again, if’ we operate upon m sin (uf + ¢), obscrve that

¢ would give —mn®sin (af + €),

and ¢ s Fontsin (al + e),

and so on ;

whereas ¢ would give mn cos(nt + e),
o wo —md cos (nt + €),
e, »  mad cos (nt 4+ €).

And hence the complicated operation (1) produces the same

effect as 2 :’;9,,6, , where

u+ B0
p=a—cn®+ent—&e, q=">b—dw+ fint — &e.
a=a —cwdent —&e.,  B=¥—dn+ 0t — &e.
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Observe Art. 118, that p + 46 operating upon m sin (st + €)
multiplies the amplitude by v/ + ¢ and causes an advance

of tan— L%, The student ought to try this agam for himself,

although he has already done it in another way.  Show that
(p + g6) sin nt = Vp* + ¢*n* sin ('Ht + fan— %n> ‘

Similarly, the inverse operation 1/(a + B6) divides the
: 9y (342 3 n
amplitude by ¥ 4+ B2 and produces a lug of tan™ B , and

‘ o
hence

g;—gg . sin (nt + €)

P EnE N "
= \/‘D ‘/é s St 4 €4 tan™ 2 - — fan™! @'—— s

o + 3% P o
a labour-saving rule of enormous importance.

168. 1In all this we are thinking only of the forced
vibrations of a system. We have already noticed that
when we have an cquation like (1) or (2) Art. 152, the
solution consists of two parts, say y = f(r) + F(x); where
S (&) is the answer if X of (2) is 0, the natural action of
the system left to itself, and F («) is the forced action.
If in (2) we indicate the operation

N

(d +4 i;+B;Zi+(;,%+E)y by Dy,

dat da fa*
then D (y) = X gives us
y=D"1(0) + U (X).
Where D= (0) gives f(«) and D (X) gives F(x).

, .. di ,
Thus 1f d%/" +ay =0, or <(§ZI + (L) y=0,0r (8 +w)y=0,we

know Art. 97, that y = de-a,

Henee we see that 92— is not nothing, but is 4e™*%
a

o dy . ..
so that if —d%’/ +ay =4, the complete solution is
v
y = 4 eax I,
Y €Tty +a

e
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We are now studying this latter part, the forced part, only.
In most practical engineering probletns the exponential terms
rapidly disappear.

169. Thus in an electric circutt where 1= (R + L&) (!, if
V =V,sinqt,
we have already found the forced value of €,
o Vosingt
R+ L6
and according to our new rule, or according to Art. 118, this
becomes
Vv

. Lq .
J=me o2 _sin ( t — tant J) ............. 1).
VR ¥ L : 1 "R )

But besides this term we have one
00
“R+L6 T L
0+~
L
and according to the above rule (Art. 168) this gives a term

By

Ave 7 ).
Or we may get this terin as in Art. 97,

1 dC R
RO+ LY =0, or & =—20(!
Rl Ak N i )
This is the compound interest law and gives us the answer (2),
and the sum of (2) and (1) is the complete answer. If we
know the value of (! when ¢ =0, we can find the value of the
constant 4,; (2) is obviously an evanescent term.

Thus again, suppose V to be constant = V,

Y
U=r¥re

. . . V. .
It is evident that ('= ) is the forced current, for if we

R
operate on (/= »R" with R + L& we obtain 17, and the evanes-



240 CALCULUS FOR ENGINEERS.

cent current is always the same with the same R and L
R

whatever ¥V may be, namely 4,e” 7 £

The complete answer is then

_E Vs
U=A e L’ o e (2).
Let, for cxample, €= 0 when ¢= 0, then
v, v,
O—A1+R or Al———ji—,
and (2) becomes (= R’ (1=€Z%) i (3).

The student ought to take V,=100, K=1, L="1 and
show how (f increases.  We have had this law before.

170. Ewample. A condenser of capacity K and a
non-inductive resistance r in parallel; voltage V at
their terminals, fig. 85. The two currents are ¢= V/r,

C'= K6V, and their sum is O+c=VG 4 K&) or V (1 i:_l]‘ 9),

. . - 7
so that the two in parallel act like a resistance 19K

—ANAAN
v lo C+e
e
I—K—:]’ c
Fig. 85

If V= V,sin nt,

(C+e= gijjieyﬁ/ﬁ sin /nt, and by Art. 167,

C+e= J?" VT 4 210 sin (nt 4 tan= rKn),

vV, . o
c= —7—“ sinnt, C=V,Knsin (nt + Z;) .
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171. A circuit with resistance, self-induction and
capacity (tig. 86) has the alternating voltage V=V, sin ¢
established at its ends; what is the current ¢

Answer, (/= l , and by Art. 167
R+ 16 + %0
= -—- K.0.V B C V
TSN RK OLLK .6~ (I=LK&) ¥ RKY
KnV, . T RKn
C=-- . 7 . . = — tan~ —*v) .
VALK + Refcpe ™ <"t+2 b

The earnest student will take numbers and find out by
much numerical trial what this means. If he were only to
work this one example, he would discover that he now has a
weapon to solve a problem in a few lines which some writers
solve in a great many pages, using the most involved mathe-
matical expressions, very troublesome, if not impossible, to
follow in their physical meaning. Here the physical mean-
ing of every stcp will soon become casy to understand.

T Numerical Evercise. Take V, = 1414 volts, K = 1 micro-
farad or 1075, R =100 ohms and n = 1000, and we find the
following effects produced by altering L. We give the
following table and the curves in fig. 87:

o R L K o
00009900 C=y s
Fig. 86.

ABCD shows how the current increases slowly at first from
A where L. = 0 as L is increased, and then it increases more
rapidly, reaching a maximum when L=1 Henry and diminish-
ing again exactly in the way in which it increased. EFE
shows the lead which at L=1 changes rather rapidly to a
lag. The maximum current (when LKn?*=1) Is the same as
if we had no condenser and no self-induction, as if we had a
mere non-inductive resistance K. It is interesting to note
in the electric analogue of Art. 160 that this LAn*=1 is the
relation which would hold between L, K and n (neglecting the

. 16
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small resistance term) if the condenser were sending surging
currents through the circuit R, L, connecting its two coatings.

7., in ‘ng.e\ctiv'a lLleadtof. 7o in |Effect€\c' -L’C-mltﬂf'
Henries. | a0 e | Heics ;il‘n‘xilféi-éif’ “legrees.
N ! . |
0 0995 \ 84028 1 103 ¢ 8044 | —26'57
01 1110 © 8367 || 11 | 7071 + —450
02 1240 | 8287 | 12 | 4472  —6343
03 1-414\ 8187 | 13 3162 | —T157
04 164+ | 8033 || 1+ ]2-429 —7597
05 1961 | 7867 l 15 11061 | —7867
06 2425 | 7597 | 16 | 1644 ~80'53
07 3162 | TLST 17 | 1414 | —81-87
08 4472 | 6343 1-8 | 1240 | —8287
09 7071 | 450 \ 19 | 1110 | —83-67
095 8944 | 2657 1 20 0995 } —8428
0975 9-701; 1403 || 25 | 0665 —86118
1:00 [ 1000 | 0 | 30 | 0499 | —8713
1025 | 0701 | 1403 ! ;

| fi |

10
10
g =
8
7
H
£6
3
wb
=
G4 2
L
ks 05
24— 605
Al e e =X
3
[ i ! 03
0 4 6 8 1012 14 1618 202224262830

BELF~INDUGTION IN HENRIES,

Fig. 87.

hxpu imenting with numbers as we have done in this example
is mwuch cheaper and much more conclusive in prdlmnnl_y
work on a new problew, than experimenting with alternators,
coils and condensers.
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172. Even if a transformer has its secondary open there
is power being wasted in hysteresis and eddy currents, and the
effect 1s not very different from what we should have if there
was no such internal loss, but if there was a small load on.
Assume, however, no load. Pind the effect of a con-
- denser shunt in supplying the “Idle Current.”

The current to an unloaded transformer, consists of the
fundamental term of the same Cro v
frequency as the primary voltage,
and other terms of three and five R
times the frequency, manufactured K L
by the iron in a curious way. C
With these “other terms” the con-
denser has nothing to do; it cannot
disguise them in any way ; the total
current always contains them.  We shall not speak of them,
as they may be imagined added on, and this saves trouble,
for if the fundamental term only is considered we may
imagine the permeability constant ; that is, that the primary
circuit of an unloaded transformer has simply a constant
 self-induction.

C+c o
Fig. 8s.

In fact between the ends of a coil (tig. 88) which has
resistance £ and self-induction L, place a condenser of capacity
K. Let the voltage between the terminals, be V= V, sin nt,
Let € be the instantancous cwrrent through the coil and
let ¢ be the current throngh the condenser, then !+ ¢ is the
current supplied to the system.

N c V, sin ut
W = — o
o R+Lo”
I 1 . s
and c= V,sinnt + e O 6= KV, cos nt,

\

1 4 Tl
C+c= (R:VL@_FA(Q) Vy sin e

_ L+ RI6+ LKG* |, | — LEw+RK .0
= T R+L§

R+ 10

by our rule of Art. 167. '

It 15 quite casy to write vut by Art. 167 the full value of
16—2

V.
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C +¢, but as we are not concerned now with the lag or lead,
we shall only state the amplitude. It is evidently

a

v \/(1 ~ LKn?? 4 R
’ R+ Lon? ’
and the effective value of €+ ¢ (what an ammeter would
give as the measure of the currcnt), is this divided by v/2,
Observe that (Y4 ¢ is least when
K =L/(R+ Lu3).

(Note that if' L is in Henries and n= 27 X frequency (so
that in practice n = about 600), K 1s in farads. Now even a
condenser of { microfarad or & x 107% farad costs a number of
pounds sterling. We have known an unpractical man to
suggoest the practical vse of a condenser that would have cost
millions of pounds sterling.)

When this is the case, the effective current C'+c, is
R/JR+ L times the effective value of C.

The student ought to take a numerical case. Thus in an
actual Hedgehog Transformer we have found R = 24 ohms,
L=628 Henries n =509, corresponding to a frequency of
about 811 per second. The effective voltage, or V,++'2
is 2400 volts. In fig. 89 we show the effective current cal-
culated for various values of . The current curve ABCD is
a hyperbola which is undistinguishable except just at the

‘1."

]

N

|
|

|
I
i

L4
\
\

i

[

O

N

|

LA
A
Zann
RN
e ':,Tgui-ﬂ?)_’o ov3
NG
AS
{ i
-
|
I
(= T~ R SRS L R -~ R -
LAG OF CURRENT DEG

EFFECTIVE CURRENT AMPERES
DD A S b A

N

B

s

N/ T -

17310
0 1 2 3 4 56 7 89 1011121311475
CAPACITY tN MICROFARADS

Fig. 89.

vertex, from two straight lines. The total current is a
minimum when K= L/(t*+ L%?), in this case 0°618 micro-
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farad ; and the effect of the condenser has been to diminish
the total current in the ratio of the resistance to the im-
pedance. It is interesting on the curve to note how the
great lag changes very suddenly into a great lead.

173. If currents are steady and if points 4 and B are
connected by parallel resistances o, r,, 7, if V is the
voltage between A and B, and if the three currents are
€1, Cs, C;, and if the whole current is (!; then

v V v
=7, G=—, =—,
A T e

Ty 1Ty

In fact the three parallel conductors act like a conductance

1 1 1
(Ael]),
vy Ay

Also if ! is known, then
«
1 1 1y -
< e st ; Iy

(RN

=

Now let therc be a self-induction { and a condenser of
capacity & in each branch, and we have exactly the same
mstantaneous formule if, for any value of », we insert

1
410+ .
r+i0+ 9
The algebraic expressions are unwieldy, and hence nu-
merical examples ought to be taken up by students.

174. Two circuits in parallel. They have resistances
7, and 7, and self-inductions {,

and ,, how does a total current ri gl G

C divide itself between them ? v ) ctres
If the current were a con-

tinuous current, ¢, (fig. 90) in LG

the branch », would be Fig, 90,

e

€= - (L
7.1_*_7.?
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Hence 1t 1s now ¢, = - Jﬁ—lL
A+ G+ )0

If =, sinat, then by Art. 167
f M el
11— Ly (,7.1 + 7.2)2 _+_ (ll + l._,)j ,“‘l

S11L <nt + tan? bar tan—! bt b ?l> .
P (A

C.

In the last case suppose that for some instrumental
purpose we wish to use a branch part of C, but with a
o L)
lead. We arrange that tan™ b _ tan™ Gtbin shall be
s iU i
equal to the required lead, and we use the current in the
branch #, for our purpose.

175. Condenser annulling effects of self-induction.
When the voltage between points 4 and B follows
any law whatever, and we wish the current flowing into

7
A and out at B to be exactly %, whatever V7 may be, and

when we have already between 4 aud B a coil of 1esistance
R and sclf-induction I, show how to arrange a condenser
shunt to effect our object.

Connect A and B by a circuit containing a resistance 7,
self-induction { and condenser of capacity A, as in tig. 91,
The total current is cvidently

g )

m R+ L6 1
v o

or, bringing all to a common
Fig, 91. denominator and arranging
terms, 1t is
OGN+ RE) + O (K + LK)
R+ O0(RrK + 1)+ ¢ (RIK+ LrK) + LIK 6
Observe that as 1" may be any function whatsoever of the
time we caunot simplify this operator as we did those of

V.
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Art. 167. Now we wish the effect of the operation to be the

1 . . .
same as 5 V. Equating and clearing of fractions we sec that

R
R+ 0(RrK + R) + ¢ (RIK+ RLK)
must be identical with
R+ 60(RrK + L)+ ¢ (RIK + 1K) + LIK ¢,
As V may be any function whatsoever of the time, the

operations arc not equivalent unless LIK = 0; that 18, I=0;
so there must be no self-induction in the condenser cireuit,

RrK + RK = ReE 4+ ; that is, K = ]fi :
RIK + RLK = RIK + LrI; that is, R =y,

s0 the resistance in the condenser circuit must he equal to

that in the other.

In fact we must shunt the circuit R + L6 by a

condenser circuit R 4 Ely where K = il'.'g .

176. If in the last case V=V, sinnt, the operator may
be simplitied into
1-K(+TL)yw+Kr+R)o
R— K(Rl+vl)yn+0 (Rrk + L — LIKn2)’
R=K(Rl+rLyn  RrK+ L— LIKn
I-K{+Lynr = K@+R
then although the adjustment alters when frequency alters,

we have for a fixed value of n the current flowing in at A and
out at B proportional to ¥ and without any lag. If R=»

and 1f

the eurrent is equal to —.

I

177. To explain why the effective voltage is some-
times less between the mains at a place D, fig. 92, than
at a place B further away from the generator. This
15 nsually due to a distributed capacity (about ! microfarad
per mile is usual) in the mains. We may consider a dis-
tributed capacity later; at present assume one condenser of
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capacity A between the mains at . Let the non-inductive
resistance, say of lamps, between

D RLC B the mains at B be » Let the
resistance and self-induction of

KUgr the mains between I and B be

B and L. Let v be the voltage

A at B, and C the current from D

Fig. 92. to B.
The current into the condenser is v + ]}9 or K.
The ewrrent through + 1s :—'ﬂ, 8o that
('=<K9+%>?? ........................ (1).

The drop of voltage between I and B is
(I +16) (' o (R+18) KO+ j

. (R )
o o KJ\:A WL )9+L1(9 e

Now if v= v, sin nt, the drop is
5<Z‘f — LK)+ (RK + fi) ol .
(\r ’ \ 7.

The voltage at 1) is the drop plus v, or

{(1 + R — LK»® > (R’\ + - > 91 v

so by Ay, 167, TIUNEE 2 erlechive
also by Art. 167, square of oﬁectlvc voltage at 3

= (1 re) s (Rac Y e
and there are values of the constants for which this is less
than 1. As a numerical example take

r=10, R="1, X=1x10"% »=1000,
and let L change from 0 to 05, *01, 02, -03 &,
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The student will find no difficulty in congidcripg this
problem when # + 16 is used instead of 7 in (1); that s, when

not merely lamps arc being fed beyond B, but also coils
having self-induction.

Most general case of Two Coils.

178. Let there be a coil, fig. 93, with electromotive force
E, resistance R, self-induction I,

capacity K'; and another with e, 7, RLC
l, k. Let the mutual induction
be m.

m rle

Using then B for R+ L6+ 47,
i

ko

k

and 7 for » + 160 +

the equations are
¥ = RC + 6o,
e=mbC +rc

Notice how important it is for a student not to trouble

himself about the signs of €' and ¢ &e. until he obtains his
answers.

From these we find

Re— mbF .
o s e (2),
Ry — 267
J — e o
(= T .
Ry —m2@+ " (3

We can now substitute for R, r, % and e their values and
obtain the currents.

Observe that £ may be a voltage established at the

terminals of part of a ewrcult, and then R is only between
these terminals.

The following cxercises are examples of this general case.

There are a great-many other examples in which mutual
induction comes in.

179. Let two circuits (fig. 94), with self-inductions,
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be in parallel, with mutual induction m between
them.

Tig. 94.
(1) At thetr terminals let v =, sinné; (2) of last exercise
R —m8 . .
becomes ¢ = R g v. Or, changing B into R+ /160 and »
Y

into » 186,
o Btl=mp
°= {Rr — (Ll =) 02+ (Lr +[RYG
(2) How does a current 4 sin nt divide itsclf between two
L ¢ R—mb ¢
such circuits? Since —="-— we can find at once ., -~—
C r—mb C+e
C L R+(L—-m)8
and ?j?c . Answer: ¢ = (Ri-*— )‘)7—{— (L :{—l —%) g
on A sin nt.

operating

We think 1t 1s hardly necessary to work such examples
out more fully for students, as, to complete the answers they
have the rule in Art. 167.

180. In the above example, imagine each of the
circuits to have also a mutual induction with the com-
pound circuit. We shall use new letters as shown in fig. 95.

If vis the potential differcnice hetween the ends of the
two circuits which are in parallel.  Using #, g and m to stand

for » 416, pn@ and w8,
=1, + uc, + m (¢, +c,).



ROTATING FIELD. 251

Hence the equations arve
v= (1 1) ¢+ (0 + vty G,
V= (/L + 0/1-.») c + (7'-_» + 7”3) Cay

o= o et —(pmy 1)
o) (et )~ () (et my) T

with a similar expression for c,.

Also a total current ¢ divides itself in the following way

o= (’f‘ﬂfg‘ ”"2), ﬁ(‘f e (2)
Ve — 20

If we write these out in full, we have exceedingly pretty
problems to study, and our study might perhaps be helped by
taking numerical values for some of the quantities. If we care

. . 1T .
to introduce condensers, we need only write » 416 + 5 with

0
U
proper affixes, instead of cach »; p becomes wpé and m
becomes 6.

To what extent may we make some of the m’s negative?
I have not considered this fully, but some student ought to
try various values and afterwards verify his results with
actual coils, Taking (2) without condensers

Pyt O (LA m, — p—my) o

TRy (h+1,- 2u)

1

181. Rotating Field. Current passcs through a coil
wound on a non-conducting bobbin; the same cwrrent
passes through a coil wound on a conducting bobbin. The
colls are at right angles and have no mutual induction;
find the nature of the fields which are at right angles at the
centre of the two bobbmns.  Let the nmmbers of turns be n,
and n,. Iustead of a conducting bobbin imagine a coil closed
on itself of resistance »,, and #, turns and current ¢ For
simplicity, suppose all three mean radii the same, and the
cotls n, and n, well intermingled. Oue field #, is propor-
tional to 7,C per square centimetre, call it n,(. The other 7,
is proportional, or let us say equal to, n,0' 4+ ne per square e,
Take the total induction 7 through cach of the coils as
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proportional to the intensity of ficld at its centre, say b times,
Then for the thivd coil, we have
0 =rc+ 0,00 ov =+ nd (n,C+ ),
_ b 6C
B 7+ ong’
b n,0C n1,C

and hence F,=a,C— o bl = 4 b

so that —c

If then /= (!, sin ¢t,
F = nCysin gt,

o 1w,Cosin gt 1,0,

—= sin { gt — tan™? bt ql:
7y 4 7
14+524 /\/1+b2?}iq2 i

3 e

Art. 126, shows the nature of the rotating field. We
can assure the student that he may obtain an excellent
rotating field in this way.

I¢ is evident that bn,? really means the self-induction of the
. . bn? N .
third coil, and —n means its time constant. A coil of one

Ty
turn,—that is, a conducting bobbin, will have a greater time
constant than any coil of more than one turn wound in the
same volume. It is evident that if the bobbin is made large
enough in dimensions, we can for a given frequency have an
almost uniforin and uniformnly votating field by making

25
n,+b-=qg=m,.
Ty

This is one of a great number of examples which we
might give to illustrate the usefulvess of our sign of vpera-
tion 4.

182. In Art. 178 let /=¥ the primary voltage of a trans-
former, the primary circuit having internal resistance R and
self-induction I ; let the secondary have no indepeudent
E.M.F.in it; let its internal resistance be o, and self-induction
I and let it have an outside non-inductive resistance p, of
lamps.  Let the voltage at the secondary terminals be ¢ = cp.
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Then in (1), (2) and (3) Art. 178, let =V, ¢=0; instead of R
use B+ L0. Instead of r use » + [0 which is 1eally 7+ p + 16,
B —méV 1

S Rr+ (R4 LY+ (DL =y @2 (1
(r+i)yV )
R7+(Rl+7L)9+(Ll—m2)92 ......... (2).

Note that the second equation of (1) Art. 178 jx

0=m8C+(r+10)c ..oovvvvnnns (2)*.

* g =gt g =l
I From (2)%, if C = Cpe?t, c= r+la

—-c¢_ ma I 1
¢ " r+le 1 < )>
1+ -
lu

If » is small compared with {u c

—C n

¢

s
m&wﬁﬂﬂ
22T

Fig. 96.
II. If © = Csin qt, again using (2)*
/
IRV e ( ) siu <qt + 5 — tan™! fl—) .
ANt 4 l 7

cffectivec

effective O \/ Ty
1+
lq

Except when the load on the secondary is less than it
ever 18 usually in practice, » is insignificant compared with
lq (a practical example ought to be tried to test this) and we
may take

Hence

U= C,sin g,

¢= (;;% sin (gt — ),

........................ (3).

—Cc_m
or —_
1
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It may become important in some application to re-
member that the ratio of the instantancous values of — ¢ and
(' is that of

rsin gt Iy cos gt to ag cos gt,
and this sometimes s » . T

Returning to (1). Let L{=ue* (this is the condition
called no magnetic leakage) and lot R» be negligible.  In
any practical case, fir is found to be negligible even when »
is 50 great as to be several thmes the resistance of only one
lamp.

mV
Then G e 4
B+l (4,
so that — ¢ 1s a faithtul copy of V as a function of the time.
C 1s so0 also.

It ¥ and » arc the numbers of windings of the two coils

on the same iron,

weor Lorl=Nn o N* ot (3),
»
v .
so that —¢= — (6);
r4 R4y

that 1s, the secondary current is the same as it the trans-
n . .

formed voltage <— ¥ V ) acted in the secondary circuit, but

as 1f an extra resistance were introduced which I call the

. . . "

transformed primary resistance <R N’) .

If the volumes of the two coils were equal, and if the
n?
T,
e
to 7, the Internal resistance of the secondary. Assume it
s0 and then

volumes of their insulations were equal, B - would be equal
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also pc or Vo — i (8).

As 7, 1s usually small compared with p,

0 2
—_?):W V(1—7> ,

2r, . .
and —1 is called the drop in the secondary voltage

due to load.
v? . 1 P
As —= P, the power given to lamps; ;= e and the

fractional drop is 2;;1 P and is proportional to the Power, or
v
to the number of lamps which are in circuit.

183. The above results may be obtained in another way.

Let I be the induction, and let it be the same in both
coils. Hcere again we assume no magnetic leakage,

VeRO+NEOL.......o..ooo . (1),
O=re+nll ... (2).
Multiplying each equation by its & or # and dividing by its
E or » and adding
NV /N a ;
T =d (R S L) S 3),
where A = NC' +ne, and is called the curvent turns.

Now when we know the nature of the magnetic circuit,
that is, the nature of the iron and its section, a square centi-
metres, and the average length A centimetres of the magnetic
circuit, we know the relationship between 4 and T, 1
have gone carefully iuto this matter and find that whatever
be the nature of the periodic law for 4, so long as the
frequency and sizes of iron &ec. are what they usnally ave in
practice, the term 4 is utterly insignificant m (3). Reject-
ng it we find

-V 1 n? R : .
1= m = N (1 —_ _EV'J *?"' /) eV very DC&I'ly .- (“L).
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Thus, in a certain 1500-watt transformer, = 27 ohms,
N =460 turns, internal part of =067 ochms, n =24 turns,
effective V' is 2000 volts or V'= 2828 sin ¢t where ¢ = 600 say,
o= 360, A=31. When there is no load r= o« ; on full load
r=nearly 7 ohms.

We have called B~ the transformed resistance of the

LA 24\
primary. It is in this case 27 < > or *073 vhms.

460

If the primary and secondary volumes of copperthad been
equal, no doubt this would have been more nearly identical
with "067, the internal resistance of the secondary.

? 073 . . . .o

}va or 77 15 the fractional drop in 7 from what it is at
no load.  When at full load » =7 ohms the fractional drop is
greatest, and it 13 only 1 per cent. in this case. Because of
1ts smallness we took a fractional increase of the denominator
as the same fractional diminution of the numerator of (4).

1 .
' 7 V is the
integral of V or — " cos 600f. So that the amplitude
e 2828 000

OF 118 600 %460

Multiply this, the maximum value of I in Webers, by 10*
to obtain C.6.s. units, and divide by a= 360, and we find
2856 ¢. G, 8. units of induction per sq. cm. in the iron, as the
maxinum in this transformer every cycle.

01 being %TV ,"<1 +%:I]—.z>, we have from (2) the same
value of — »¢ that we had before in (6) of Art. 183.

Consider I at its greatest, that is, at no load

184. Returning to (7) of Art. 182. Let us suppose that
there is magnetic leakage and that 1, is really » 406
If one really goes into the matter it will be seen that this
is what we mean by magnetic leakage. Then we must
divide by

p+2r + 200,
mstead of p+2r,. In fact our old answer must be divided by
20

_ffp-}—‘lrr1

>
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or neglecting 27, as not very important in this connection ;
. . ar .
our old answer must be divided by 1+ =64, This means

P
that the old amplitude of v must be divided by

T AR Q772,,2
\/1 + i A,q or 1+ ig- nearly,
P p

if the leakage is small, and there is a lag produced of the amount
2lq

tan—! We must remember that ¢ is 2af if f is the

p
frequency. We saw that P, the power given to the lamps, is
inversely proportional to p, so we sec that the fractional

, . 2nP
drop due to mere resistances is —_

"2

, the fractional drop

due to magnetic leakage is j«*/*P and the lag due to
magnetic leakage is an angle of «fP radians where « is a
constant which depends upon the amount of leakage, aud f
is the frequency.

185. Only one thing need now be commented upon in
regard to Transformers. If V'is known, it has only to be inte-
grated and divided by & to get /. Multiply by 10° and divide
by the cross-section of the iron in square centimetres, and we
know how f, the induction per sq. cm. in the iron, alters with
the time. The experimentally obtained B, H curve for the
iron enables us to find for every value of 38 the corresponding
value of H, and H multiplied by the length of the magnetic
47
10
turns 4. Hence the law of variation of 4 is known, and if
there is no secondary current, we have the law of the
primary current in an unloaded transformer or choking
coil. This last statement is, however, inaccurate, as one
never has a truly unloaded transformer, even when what is
usually called the secondary, has an infinite resistance.

186. Sir W. Girove’s Problem ; the effect of a condenser

in the primary of an induction coil when using alternating
currents,

circuit in the iron gives the gaussage, or x the ampere

ADB, fig. 97, is the primary with clectromotive force
L= F,sinnt, resistance R and self-induction L. BA is a

P. 17
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condenser of capacity K, and » is a non-inductive resistance
in parallel with the condenser. ¢

RL . .
5) e B {he current in the primary, has an
amphitude ¢4, say.
Kitzr The condenser has the resist-
ance =
A 0"
Tig. 97. KO

‘ It is quite easy to write out
the value of (', when » and K have any finite values*,

But for our problem we suppose =0 or else r=w. When
7= 0, the resistance is B+ L& and the current is £/(R + 1),
Ly ,
fo— 29
Cp= Jg L e (1).
When »=x, the resistance is
1 14+ BKO+ LKE

I+ LG—!—J(O or e
or (L:L*Kg)i @]‘9 , by Art. 167,
e v
FORTNETE hor
and G = 4"7”&27 P T - 2"'(2)-
(1 — LKn*y + R:K R9+< 17—1471.)
Kn

Now (2) is greater than (1) if 2K Ln? is greater than 1,
so that the primary eurrent is increased by a condenser of

capacity greater than Again, there is a maximum

25"
current if K= = ; in this case the condenser completely

I

destroys the self-induction of the primary.

* When both » and K have finite values, the parallel resistances between
B and 4, together form a resistance 7/(1+7K6), and the whole resistance of

.. . v

the circuit for ¢ is R+ L6+ 14 rig S0 that
(1+7K6) E,sinnt

W -Lrknd) + (K ¥ Tye°
(L +r2K%2) B2

¥

YN SR
Cy T(R+r-LrKn?)?+ (RrK + L)’

and the lag of C is casily written.
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187. Alternators in series. ILet their By, be ¢ and
¢, and let C be the current through both, The powers exerted
are e,C and e,C. Now if
e;=FE sin (né+a) and e,= E'sin (nt — ),V e, +-¢,=2F cos «. sinud.

If 1 is the self-induction of each machine, # its internal
resistance, and if 2R is the outside resistance and if P, and
P, are the average powers developed in the two machines,
0= 2Kcosa.sinnt I cosa

200+ 2r + 2R V(B + 7P+ P
= M cos asin (nt — €) say,
Py =E{ME cos a.cos(a+e),
P,=3ME cos a.cos (a—e).
Hence P, is greater than P,, and machine 2 is retarded
whilst machine 1 is accelerated ; hence a increases until

sin (nt — tan™

ln_)
R+

T ..
=, and when this is the case, cos ¢ =0, so that P, =0,

P, =0 and the machines neutralize each other, producing no
current in the circnit. Alternators cannot therefore be
used in series unless their shafts are fastened together,

188. As we very often have to deal with cireuits in
parallel we give the following general formula ; if the electro-
motive forces e, e, and e, fig. 98, are constant,

V=G — P =@y = o'y = @y 'y eeverannnnns (1),
and et te=0.............. .

Given the values of ¢, e, e, and 1y, 7, 7, we eastly find
the currents, because

€, 6 &
?1:<"’+ Nalnahen
Ty

17—2
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Now if the ¢’s are not constant, we must use », + 1,6, &ec.,
instead of mere resistances.

189. Alternatorsin Parallel. Let two alternators, eaclh
of resistance » and self-induction I, and with electromotive
forces, e, = K'sin (nt +a), and e,= Ksin(nt —a), be coupled
up in parallel to a non-inductive circuit of resistance K.
What average electrical power will cach of them create,
and will they tend to synchronism ? If ¢, and e, were con-
stant or if [ were 0, then v=¢, —cr=re¢,~ cr= (¢, +c) R.

And hence

I 2N P SR
“T2 Rt e‘( +R>"eﬁ ’

I 147 {
01—727_1{4_1.._,{62( +R> —61j .
Now alter » to »+16, because the e's arc alternating.
The student will see that we may write
e, = e, (0 —b0),
ey =e,(a + 00),

where @2 + b2 =1, « = cos 2a, bn = sin 2a.  Then

7 l
€= 5] TPt —C eeeens (1),
(27- 40— ”-) + 621 (1 + —7>
R R - R
with a similar expression for ¢, in terms of e, except that b
is made negative. If we write out (1) by the rule of Art. 167,

there i1s some such simplification as this:—

2n (B +r I+ UR
Let tan ¢ = 5 Rl;lq(:oiét?lz;iz‘l and tan {r, = j({l—:q__)a%{
(I-=bR)n

tan = = R
Then e =Msin (nt+ a— ¢+ r),
co=M sin (nt —a — ¢ + ),

the angles ¢, ¥, Yo being all supposed to be between 0
and + 90°,
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The average powers are
L= ME cos (¢ — ),
Po=ME cos (d — ),

/

V. Y eos 2 e
(1+ R) 2<1+ 1{>L).>~ot+l.+R2

(2)' +7f~; — %3>‘ + 4i2p? <1 + }é)-’
J)I _ COs ((f))'—\\lf]\)

P, cos(p—n)’
If B = we sce that

In
fan ¢ = ; , tan = 1—511(1— = — tan .

— CUsS &

Ly cos(p—1)

Hence = v .
])L, Cos (¢+"l/\1)
In this casc it is obvious that P, is greater than P,

. : r
The author has not c¢xamined the general expression for P—l

where M=

with great care, himself, but men who have studied it say
that it shows P, to be always greater than P,. Students
would do well to take values for =, I, R and « and try for
themselves. If P, is always greater, it means that the
leading alternator has more work to do, and it will tend to go
slower, and the lagging one tends to go more quickly, so that
there is a tendency to synchronisin and hence alternators
will work in Parallel.

190. Struts. Consider a strut perfectly prismatic, of
homogeneous material, its own weight neglected, the resultanst
force F at each end passing through the centre of ecach end.
Let ACB, fig. 99,show the centre line of the bent strut.  Let
PQ =y be the deflection at P where 0Q =a. Lot O4d =0B =1,
y s supposed everywhere small in comparison with the length
21 of the strut.

Iy

Fy is the bending moment at I’, and Bl 15 the curva-
4

ture there, if /7 1s Young’s modulus for the material and 7 is



262 CALCULUS FOIR ENGINEERS.

the least moment of inertia of the cross section everywhere,
F about a line through the centre of area of the sec-

. . . d*,
A tion. Then as in Art. 60 the curvature being — (—h{*

we bave

Fy  d¥y
Q —E—I-— E}—(’i ..................... (1)

Now if the student tries he will find that, as in
cl—o the many cases where we have had and again shall
have this equation, (sce Arf. 119)

L /F 2)
5= o COS & /\ ]2,7- ............... (..4

satisfies (1) whatever value o may have.  When
=0 we sce that y=aq, so that the meaning of « is
known to us; it 1s the deflection of the strut in the
F niddle.  The student is instructed to follow carcfully
Fig. 99.  the next step in our argument.

When =1, y=0. Hence

AB

e Nrps a3 .

* Notice that when we choose to call Ef"/’ the curvature of a curve, if the
£

expression to which we put it equal is essentially positive, we must give such

. & . . .
a sign to (Tcli as will make it also positive. Now if the slope of the eurve of
fig. 99 Dbe studied as we studied the eurve of fig. 6, we shall find that
Py . . . Fy. -
zlvl is negative from x=0 to =04, and as y is positive so that jf"}/ 1s positive,
2
ye must use — ihli on the right-hand side.

It will be foun 1 that the complete (soe Arts. 154 and 159) solution of any
such equation as (1) which may be written

&y R
— L wly =0
qae Ty

is y=dAeosnr+ I sinne

where 4 and B are arbitrary constants. 4 and I are chosen to suit the
particular problem which is being solved. In the present case it is cvident
that, as y=0 when x={ and also when &= -,

0=A cos nl+ Isin nl,
O=dcosnl - Lsinul, sothat I is 0.
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Now how can this be true? Either ¢ =0, or the cosine
is 0. Hence, if bending occurs, so that « has some value,
the costne must be 0.  Now if the cosine of an angle is 0 the

angle must be g or 3?7 or .%r) &c. It is casy to sce why we
confine our attention to g *,
Hence the condition that bending occurs is
Foox EIr?
E]— 2 , O F —~71’2‘ ............... (4‘)

1s the load which will produce bending. This is called
Euler’s law of strength.  The load given by (4) will produce
etther very little or very much bending “equally well. T
is very easy to extend the theory to struts fixed ab both ends
or fixed at one end and hinged at the other.

For equilibriin under cxceedingly great bending, the

. . dy .
equation (1) is not correct, as —%/ 15 not equal to the curva-

"2

ture when the curvature is great, but for all engineering
purposes 1t may be taken as correct.

191, We may take it that # given by (4), is the load
which will break a strut if it breaks by bending. If f is
the compressive stress which will produce rupture and
4 is the arca of cross section, the load f4 will break the
strut by direct crushing, and we must take the smaller
of the two answers. In fact we sec that f4 is to be
taken for short struts or for struts which are artificially+
protected from bending, and (4) is to be taken for long struts.
Now, even when great care is taken, we find that struts are
neither quite straight nor homogencous, nor is it easy to
load them in the specified manner. Consequently when
loaded, they deflect with even small loads, and they break
with loads less than cither fd or that given by (4).

* This gives the least value of W. The meaning of the other cases is
that y is assumed to be 0 one or more times between =0 and z=1, so that
the strut has points of inflexion.

1 This casual remark containg the whole theory of struts such as are used
in the Yorth Bridge.
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Curiously enough, however, when struts of the same section
but of different lengths are tested, their breaking loads
follow, with a rough approximation to accuracy, some rule as
to length. Let us assume that as F=f4 for short struts,
and what is given in (4) for long struts, then the formula

B f4 .
F= I—T—fm ..................... (3)
Elr?

may be taken to be true for struts of all lengths, because it is
true both for short and for long ones. For if [ is great
we may neglect 1in the denominator, and our (5) is really (4);
again, when [ is small, we may regard the denominator as
only 1 and so we have W=74. We get in this way an
empirical formula which is found to be fairly right for all
struts.  To put it in its usual form, let 7= A2, k being the
least radius of gyration of the scction about a line through
its centre of gravity, then
ﬁ7= .fA
1+a e

where @ is 4f/E7% or rather f and @ are numbers best
determined from actual experiments on struts.

If F does not act truly at the centre of cach end, but at
the distance 4 from it, onr end condition is that y =/ when
z =1 This will be found to explain why struts not perfectly
truly loaded, break with a load less than what is given in (4).
Students who wish to pursue the subject are referred to
pages 464 and 513 of the Engineer for 1886, where initial
want of straightness of struts is also taken account of.

192. Struts with Lateral Lioads. Wehad better confine our
attention to a strut with hinged ends. If the lateral loads are such
that by themselves and the necessary lateral supporting forces, they
produce a hending moment which we shall call ¢ (&), then (1) Art. 190
becomes
. d*y
, wp=—FI
Lyt (e [(l.'L'”

Thus let a strut be uniformly loaded laterally, as by centrifugal force
or its own weight, and then ¢ (x) =%/ ({— )2 if @' 1s the lateral load
per unit length.,



STRUTS LATERALLY LOADED. 265

T
21
where 1 iy the total lateral load; this is not a very difterent law.
Hence

We find it slightly more convenient to take ¢ (#)=F Wl cos

d¥y I J Wy
d[3+]$'['7/+1]3'7 coN Q,l.l——-() .................. Q).
We find here that
LW
= -—Ll—ii— cos 7} LN (2)
r "i -

Observe that when #=0 this gives the shape of the beam.
The deflexion in the middle is

L
Wy = ‘?
BT ¥
4
and the greatest bending moment g is

p=Fy+3 Wi, or

Eln? [/ Elx®
N | T bl = _ B
p=t Wi, P /< 7 1) ..................... ).

If W=0 and if p has any value whatever, the denominator of (4)
must be 0. Putting it equal to 0, we have Kuler’s law for the strength
of strnts which are so long that they bend bofore breaking, If REuler’s
value of I be called U, or U= EIn%/4{ (1) becomes

., U )
p=1 UZAU—-—F.... .................... RN ).

If 2. is the greatest distance of a point in the section from the
neutral line on the compressive side, or if 7+z,=Z, the least strength
modulus of the section, and 4 is the area of eross section, and if £ is
the maximum compressive stress to which any part of the strut is

subjected, p P
zt i

. . L r A .
Using this expression, if 8 stands for b (that is Buler’s Breaking
. . o P
loadl per square inch of section), and if « stands for g (the true break-

ing load per inch of section), then

(1—%)(1—%’):;—%’-‘2 .................. (6).

This formula is not difficult to remember.  From it w may be found.

Evample. Every point in an iron or steel coupling rod, of length
2b inches, moves about a radius of » inches.  Tts section is rectangular,
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d inches in the plane of the motion and b at right angles to this. We
may take W=ldrn?262940, in pounds, where z=number of revolu-
tions per minute, Take it as a strut hinged at both ends, for both
directions in which it may break.

1st. For bendmg in the direction in which there is no centrifugal

3

. d
force where [ is 71‘2/ s

N . Fdipm:
Euler’s rule gives 18’151 ....... et ra e (7).

Now we shall take this as the eudlong load which will cause the
strut to break in the other way of bending also, so as to have it equally
ready to break hoth ways.

2nd.  Bending in the direction in which bending is helped by
contrifugal force.  Our w of (6) 1s the above quantity of (7) divided by
by or taking

Fl=3x 107,

oo b ‘

w== (17 XZ:; x 108,
Taking the proof stress f for the steel used, as 20000 b, per sq. inch
(remeniber to koep f low, because of reversals of stress), and recollecting

the fact that 7 in this other direction is ZJ’% , we have (6) becoming

8dx 108 <1 - 308 %)(1 - I’é) =02 e, (8).

Thus for example, if =1, 1=30, r=12, the following depths d inches,
are right for the following speeds. It is well to assume d and caleulate
% from (8).

c”l‘]'i’)! 2253 —Lw‘ 6

REVRESE

\
B
10205 | 277 | 327

368

Jrereise. A round bar of steel, 1 inch in diameter, 8 feet long, or
(=48 inches. Take £7=1500 1h. Show that an endlong load only
sufticient of itself to produce a stress of 1910 1h. per sq. in, and a
Fending moment which by itseltt would only produce a stress of 816 Ib.
1)01".'5q.} ineh; if both act together, produce a stross of 23190 1b, per
(. inch.

For other juteresting examples the student is rvefared to e
Phalosophical Maguzine for Mavch, 1892. T



CHAPTER III.
ACADEMIC EXERCISES.

193. IN Chapter L we dealt only with the differentia-
tion and integration of 2" and in Chapter IL with e and
sin ¢z, and unless one is really intending to make a rather
complete study of the Caleulus, nothing further is nceded.
Our knowledge of those three functions is sufficient for
nearly cvery practical engineering purpose. It will be found,
indeed, that many of the examples given in this chapter might
have been given in Chapters L and TI. For the differen-
tiation and integration of functions in general, we should
have preferred to ask students to read the regular treatises,
skipping difficult parts in a first reading and afterwards
returning to these parts when there is the knowledge
which it is mecessary to have before one can understand
them, If a student hasno tutor to mark these difficult pacts
for him, he will find them out for himself by trial.

By means of a few rules it is casy to become able to
differentiate any algebraic function of &, and in spite of our
wish that students should read the regular treatises we are
weak cnough to give these rules here.  They are mainly used
to enable schoolboys to prepare for examinations and attain
facility in differentiation.  These boys so seldom learn more
of this wonderful subject, and so rapidly lose the facility in
question, because they never have learnt really whab ((Z
means, that we are apt with beginners to discourage much
practice in differentiation, and so crr, possibly, as much as the
older teachers, but in another way. If, however, a man sees
clearly the object of his work, he ought to try to gain this
facility in differentiation and to retain it. The kvack is
easily lcarnt, and in working the examples he will, at all
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events, become more expert in manipulating algebraic and
trigonometric expressions, and such expertness is all-important
to the practical man.

In Chapters I. and IL we thought it very important
that students should graph several illustrations of

y=ax", y=ae¥, y=asin(be+ c)
So also they ought to graph any new funetion which comes
before them. But we would again warn them that it is better
to have graphed a few very thoroughly, than to have a hazy
belief that one has graphed a great number.

The engineer discovers himself and his own powers in
the first problem of any kind that he is allowed to work out
completely by himself. The nature of the problem does not
matter; what does matter is the thoroughness with which
he works it out.

Graph ¥ =tan ax. We assume that the student has
already graphed y = ae” sin .

194, If y =f (), so that when a particular value of z is
chosen, ¥ may be calculated ; let a new value of # be taken,
z+ 8, this cnables us to calculate the corresponding value
of y,

or Y+ 8y =f(w+ Su).
Now subtract and divide by 8, and we find

S8y _[fle+dr)—f(r)
dx Sw

We are here indicating, generally, what we must do with
any function, and what we have already done with our famous
three, and we sce that our definition of dy/dx is, the
limiting value reached by (1) as 8« ix made smaller and
smaller without limit,

195. Tti1sevident from this definition that the differential
coefficient of af(»), is ¢« multiplied by the differential co-
efficient of f(«), and it is easy to show that the differential
coefficient of a sum of functions is equal to the sum of the
differential cocfficients of cach. Iu some of the examples of
Chapter I. we have assumed this without proof.
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We may put the proof in this form :—

Let y=u+v+ w, the sum of three given functions of 2.
Let « become x + 3z,tlet « become wu 4+ du, » become v + 8v,
and w become w + dw. It results that if y becomes y +8y, then

Sy = du + dv + dw,
nd Sg = B-M + By Bug
2 IR VLI T Yo
dy du  dv  dw

and 1 o limi Jal AP W T
and in the Imit dr dzc+dw+d{v

196.  Differentiul Coefficient of a Product of two Func-
tions.

Let y=wv where w and v are functions of @. When &
becomes = + 8z, let

Y+dy=(u+6u)(v+ dv)=wv+u.8v+v. 8+ du, bu.
Subtracting we find
Sy=u.6v+v.0u+ duw. dv,
8y v du du
%:z¢§;+v 5o 5

We now imagine 8z, and in consequence (for this is
“always assumed in our work) 3u, 8v and &y to get smaller

and + . Su.

du
-~ may
i

and smaller without limit. Consequently, whatever J

du . ..
be, da dv must in the limit become 0, and hence

dg _dw du

do= %da T du

The student must translate this for himself into ordinary
language. It is in the same way easy to show, by writing
uvw as uv X 1w, that if ¥ = wew then
dv
dx’

fl_y_2 (iw_*_ deg_*_
R Ll e L L

Tllustrations.  If y = 1027 then, directly, g.% =705, But

we may write it y = 52° x 2zt
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Owr new rule gives

dy
/ =527 (8a%) + 2t (15a%) = 40a° + 30a° = T0".

The student ought to manufacture other examples for
himself.

197, Differential Coeflicient of « Quotient.
2
Let y= . when » and v are funetions of 2.

ou
Then Sy=1T9 i
¢ y+dy="
Subtract and we find

U+ b w v.du—w.dv
B =~ — = Lo
vy o v" + . dv
Su Sv
8y ow S
——
¢ 4. by
Letting 8o get smaller and smaller without Init, .8
becomes 0, and we have

y B,
dy de” " du
de 22 ’

Here again the student must translate the rule into
ordinary language, and he must get very well used indeed to

. .. { .
the 1dea that 16 1s » ;]M which comes first - —
s

Denominator into differential coefficient of nume-
rator, minus numerator into differential coefficient
of denominator, divided by denominator squared.

A few illustrations ought to be manufactured. Thus

7
= 2j4°b 1s really 8a2, and dy = 40a,
Bt dx

2 By 94,7
By our rule, dj A QCS() - L—l'l <6‘L) = 404,

Qut
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de " ds " dax’

The student ought to work a few like y = 3_’;_ =5x? or
) ot . ) ) S
again y = Wik Za~i, and verify for himself.
— &

198. If yis given as a function of z, and z is giveu as a
{unction of «, then it is casy to express y as a function of 2.
Thus if y=blog (¢z* + ¢) and z= ¢ + d.x + sin ex, then

y="0blog {a(c+ duv+ sin ex)? + gl.

Now under such circumstances, that is, y=7(z) and
z=F (), if for = we take & + 8z, and so ealeulate z + 8z, and
with this same 2+ 82 we caleulate y+ 8y, then we can say
that our 8y is in consequence of our 8z, and

83/__811/ oz
é;b‘g X & -------------------------- (1)-

This is evidently true because we have taken care that the
two things written as 8z shall be the same thing. On this
supposition, that the two things written as 8z remain the
same however small they become, we sce that the rule (1) is
true even when 8z i1s madc smaller and smaller without
limit, and as we suppose that 8z also gets smaller and
smaller without limit,

dy dy dz (2)
il il ALLTPPTTEPPITPPPPRTRS 2).

This is such an enormously important proposition that
a student ought not to rest satisfied until he sces very
clearly that it is the case. For we must obscrve that the
symbol dz cannot stand by itself; we know uothing of dz by
itself; we only know of the complete symbols dy/dz or dz/d.

We are very unwilling to plague a beginner, but it would
be fatal to his progress to pass over this matter too easily.
Therefore he onght to illustrate the law by a few examples.

Ay o, dz

Thus let y =az® and z=bs®  As -2 = 3uz% 5 = 2bwx, we have
dz d
dy dz_ Gabz®z or Gal’z’. But by substitution, y=abs,

dz *dx

and if we differentiate directly we get the same answer. A
student ought to manufacture many exanples for himself.
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An ingenious student might illustrate (2) by mecans of three
curves, one connecting z and «, the other connecting z and y
and a third produced by measurements from the other two,
and by means of them show that for any value of « the slope
of the y, 2 curve is equal to the product of the slopes of the
other two. But in truth the method is too complex to be
instructive. By an extension of our reasoning we see that

dy _dy dw du dv

d.’lj— (YQI} . ?i;l: . % . (7.‘1:’ .................. (-)).
199. It is a much easier matter to prove that
dy dx
—_—Xe——=L 4),
= X3 (4)

by drawing a curve, because it is easy to see that g; is the
cotangent of the angle of which Zl% is the tangent.
Otherwise :—if by increasing z by 8z we obtain the

increment 8y of 4, and if we take this same 8y, so found, we
ought to be able to find by calculation the very same 8z with
which we started. Hence

Sy dw -

g;} X g‘[/ =1t e, (-)).

On this proviso, however small 82 may become, (5) is
true and thercfore (4) is true,

200. To illustrate (2). If n gas engine indicator
diagram is taken, it is easy to find from it by applying
Art. 57, a diagram for A, the rate at which the stuff shows
that it is receiving heat in foot-pounds per unit change of
volume, on the assumption that it is a perfect gas receiving
heat from some furnace. (In truth it is its own furnace;

the heat comes from its own chemical encrgy.) Just as
r

pressure is (%2 , the rate at which work is done per unit
change of volume ; so £ is % . Observe that % is in the
same units as p, and to draw the curve for 4 1t is not necessary
to pay any attention to the scales for either p or v. They
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may be mecasured as inches on the diagram. We know of
no better exercise to bring home to a student the meaning
of a differential coefficient, than to take the indicator
diagram, enlarge it greatly, make out a table of many values

of p and v, and find approximately ((llpv for cach valuc of w.

This is better than by drawing tangents to the curve. Using
dH

these valucs, and having found the values of b or o at
v

every place, suppose we want to find the rate per second at

which the stuft is recciving heat. If ¢ represents time,

dil_ &y

dt ~ dv " dt’
dv

and hence it is only necessary to multiply %

dv . . . .

As PR represented by the veloeity of the piston, and as
the motion of the piston is, as a first approximation, simple
harmonie, we describe a semicircle upon the distance on the
diagram which represents the stroke, and the ordinates of the

.. dv .
semicircle represent T We have therofore to multiply
overy value of . by the corresponding ordinate of the semi-
circle, and we obtain, to a scale easily determined, the

diagram which shows at every instant —d[ .

. dy dy dv di dx
Having seen that Elli :d—‘v/ T and that dzf =1+ dy we
shall often treat dw or dy as if it were a rcal algcbraic
quantity, recollecting however that although dy or dv may
appear by itself in an expression, it is usually only for
facility in writing that it so appears; thus the expression

M.de+N.dy=0...c..oveeeninnn. (1),
may appear, where 4 and N are functions of @ and y; but
this really stands for M+ N% =0 (2).

Again, if y = a2?, we may write
dy=2ax.dv...... ... (3),
P 18



274 CALCULUS FOR ENGINEERS.

but this only stands for %{ =2AL i (4).
Uz

Our main reason for doing it is this, that if we wish to
integrate (3) we have only to write in the symbol f, whereas,
if we wish to integrate (4) we must deseribe the process in
words, and yet the two processes are really the same. We have
already used de and dy in this way in Chap. L.

Mere mathematical illustrations of Art. 198 may be manu-
factured in plenty. But satisfying food for thought on the
subject, i1s not so easy to find. The law is true; it is not
diffieult to prove it; but the student needs to make the law
part of his mental machinery, and this necds more than
academic ‘ proof.’

Let us now use these prineiples.

201. Let y =logx; this statcment is exactly the same as
(1.’ ' Z 1 .
w=¢. Hemee - =¢ =z and L ==, We used the idea
dy dv «
that the integral of &~ is log, in Chap. I, without proof.
It is the exceptional case of the integration of a.

202. If the differential coefficient of sin is known to
be cos «, find the differcntial coefficient of sin aa.

y=sin ax = sinu if 1u = ax,

i'y =cosu and Oﬁc =aq,
du dz
dy dy du

so that — = CoS U X (¢ = (b COS A,

de ™~ du ' dx

Find the diffevential coefficient of y=cosax, knowing
that the differential coetficient of sin @ 1s cos ,

_ o ' . _ her du
Yy =cosax=sin{ux + g |=sinusay, where —==aq,

dy _dy du
dz du dz

a .
=COS U X a4 =@ CoS (aw+é>=—CL81nm.
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203. Lot y=1log (x+ a).

Assame  + @ =u, or y=logu, then gﬁ{ =1 and % =—,
dy dy du 1 1

de” du'de uw a4a’

. . sl
204. y=tanx. 'Ircab this as a quoticnt, y= cosa’
dy cosa.cosz—sin z(~sin x) 1
de cos & Tcos*a’

The student ought to work this example in a dircct
manner also.

205. y=cotx. Wc now have choice of many methods,

. . cos &
Treat this as a quotient, y = .=
sin &
dy _sina(—sin x) —cos 2 (cos ) 1
de ™ sin o T sina’

or we might have treated it  this way,
y=u"t if u=tanuz,

ig: —u? X du

dz de” X cos? &
1 1 1

= — ., =-—cosecta.
siny

tanz © cos?

206. Let y=sinaa®, say y=sin u, and o = qa

diu
Then ~~ = .z,
dx
d)
and “T — cos i,
du
dy .
50 that (?Z = oS X 2w = 2ua cos wat,

Let y=e"% say y=¢" and w=«sin «, 50 that
dy . du
—- =€" S= @ Cos
du > da ’

dy, .
so that ‘z;/; =¢"q cusw, or @cosw, e?ing,

18—2
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207. y=secx. We may cither freat this as a quotient,
or as follows; y=(cosz)?=u if u=cosa.

du . dy dy du

= - sl &, s —=—u"(—sin
dz de du ' dx ( )
sin @
= T =Seca. tan g,
cos? &

208. In Art. 11 the equation to the cycloid was given in
terms of an auxiliary angle ¢ o = adp —asin, y=a — a cos ¢.
Find a;:i and lJ at any point.

dy _dy dé dy  dx

Here G0=do ds~ 33 a3

. ) in ¢
= sin ¢/(w—u cos p) =
¢ /(w—wcos p) Zeosd’

4 dy _d (dy d_(dy\ _d¢

Also do* ™ du <dx> @ (d L> i
(1—- cos sin ¢ (sin

= S %%Tﬁ) ¢)> (((/ — (b COS (]S)

. L

Ta(l—cospy o
209. If Y= e, (1),

o dy di @
24 2y = 0 or chlz —}/l: ............ (2).

If we want (5/ in terms of & only we must find 4 a from (1)

and use it in (2). But for a great many purposes (2) is
useful as 1t stands.

In the same way, 11 - + ‘éz 1,
2w 2y dl_ oo W__ Ve
b dz d.'c_— N E 5 ’
Again, if o P e
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Also if oF gyt = af,
dy dy y
e v 42y =0 ,,;:__\/_.
s STy da @
3 1lqin2 1« , d]/ 4
If y = 8w+ + sin 2o + ; sin 4, gy = o8t
. . dy .
If = tan® @4 tan @, 7= seeta
e 1 oap L dw
Let y=Vu +a*=ut if wu=u?+ 2 -—=2r 50 that
Y > daw
dy &z
J Tt x 20 or o=
d(l) '\/.’L‘? + a?

210. Let y =sin~'x. In words, ¥ is the angle whose
sine is . Hence « = sin y,
dz Y
- —=c0.~;y:«/l —sinty =1 —a”
dy
dy 1
Hence /A
de V1T —a2
We have extracted a squarc root, and onr answer may

dy

. 7 . .
be + or —. W must give to T the sign of cos 4.
dz '

211. Similauly if v =cos1x,

dy 1
de Wi_a2

212. Let y=tanlx, so that » =tany,

do = '*1,;—= 1+ tan?y=1+a?
dy cosy .
dy 1

de 1 4a

LS B : —_ —1 (LIZ:_,‘,]'*
213. Similarly if y=cot1x, then T TFa
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214. 1t will be scen that (2) and (4) of Arts. 198 and
199 give us power to differentiate any ordinary expression,
and students ought to work many examples. They ought
to verify the list of intcgrals given at the end of the book,
A student ought to kecp by him a very complete list of
integrals. He cannot hope to remember them all. Some-
times it is advisable to take logarithms of both sides before
differentiating, as in the following case:

y=a" Here logy=2aloga,

1 dy 1
5 . aw=¢l, X;-&-l()gu)
Z——{ = 2% (1 +log &). 7

215. In the following examples, letters like 2, v, 2, », w,
0, &c. are used for the variables; letters like a, b, ¢, m, n, &ec.
are supposed constant. A student gets too familiar with =
and y. Let him occasionally change « into ¢ or 8 or v, and
change ¥ also, before beginning to differentiate.  He ought
to test the answer of every integral by differentiation.

List or FUNDAMENTAL CASES.

d 1

at = ,)L,l.u—l’ /il/.1ib . (]',,, —_ (I,’"H'l ;
da J m 41
d 1 l
— (loga) == ’7 o= loo
dx (og ) w’ Ja A
d . . 1.
l—(sm PAY= N COS M, cos ma, de= s ma;
dux .

v . . 1
— (cosma)=—msi e, [sin mae, do=—-— cos mr;
dz . m
d a dx 1
— (tan ) = - — =-tan vx;
da ( ) cost aar’ costawr o ’
d a de 1
S (cobaw)y=— — | -— o =—=cobax;
dw sin? v Jsin? ax «
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—‘i (sin"'z) = 1 /, _ @L, —sin 1.
dx l V]:ﬁ ' J \/((j-’ — a2 «’
d 1 1 [ d 1 @
— )= -——- . =" tan— <.
o (tan—1x) 1 lot o™ a an e
d 2 x " , a®

Té’) ((l )— w l“g @, ‘/(l“t . (]Jl = ]Fg& .

_ Many integrals that at first sight look different ave really
those given above, Even the use of 77 or ¥/~ iostead of
the numerical symbol of power or root, disguises a function
to a beginner. Thus

and its integral is

1/ a2 3 .
E(:(-——%t—{—i> or -~ as,

216. In some of the following integrals certain substitu-
tions are suggested. The student must not be discouraged if
he cannot see why these are suggested ; these suggestions are
the outcome of, perhaps, wecks of mental effort by some
dead and gone mathematician. Indeed, some of them are no
better than this, that we are told the answer and are merely
asked to test if 1t is right by differentiation.

Just here, in learning the knack of differentiation and
integration, the student who has a tutor for a few lessons has
a great advantage over a student who works by himself from
a book. Nevertheless the hardworking student who has no
tutorial help has some advantages; what he learns he learns
well and dves not forget. The man who walks through
England has some advantages over the man who only takes
railway journeys, In learning to bicyele, I think that on
the whole, it is better to be held on for the first few days;
learning the knack of differentiation and integration is not
unlike learning to bicycle.

Exercises and Examples.

1. y=uwloga, ;(51/ =1+ log
@
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— a
= / 3 —‘/ =
2. y=uVNg, de Sy
dy 2

3. y=logtana), === ———-.
Y g (tan ), drx  sin 2z

_l—tana dy

4y “wecz  de (sin & + cos o).
- dy 1
5. = log (log @), de QTOgﬁqi
6. w=e"sm bt as Va2 407 e sin (bt + ¢),
b
where tan ¢ = — .
a

We here use the simplification of Art. 116. The student will
note that by page 235, 8 (standing for d/dt), operating n times
upon sin b¢, multiplies its amplitude by b* and gives a lead
of n right angles. He now sees that if 8 operates n times
upon e sin bt, it multiplias by (¢ + 0™ and produces a
lead ne.

Thus (g; = (t* 4+ D) e sin (bt + 2¢);
and ‘gtf = (a+ b)Y et sin (D6 -+ ).

7. p=2tan™ «/?;“g, % = ;/1_,1;;

8. y=log (e + ¢7?), % = Z::-E:j

— d) . —
9. yu=Nad (—l{ =3 a.

10. y=wa?+ bu+ec, Z—Zc 20 + b.

dr
1-1‘ = i —_—— = ‘2.
= 2%, T 6t
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12. p=o7, g]{? = — 137 ™™,

1
13. {E“” Cdy == ™.
| @
14. [ av ¥ dy = — —_(L 7,
J 37

15. [('((t"‘ + 0t + ) dt = Tut® + $t* + et 4 1.

16. {\/aﬂ dir == f:“ dw = Zut,

It . t—3+1 —
17. /%Z—t is ft"“.(ltz t.,_‘_] =—4t* or 52}‘
o - ) = ‘
|
18 f@ Sﬁ‘% =1 s
IVt —5+l 7

1 "
or - at.m‘:\ —.

'\/ e m

20. [< e+v.dv. Herelet @ +v=y so that do = dy, and
we have ﬁ/}‘ LAy =3yF =3 (0 40t

BLodi »
21. {(t iy ryn . Lett+4a= Y, dt = (Z!/,

(i/——u)" = Bay® + 3ty — o
7)1 y')ll

— M 3(,/,] 211 + 3(1‘21 S (LY e d,
X . ) g

dy

ad—m 33— 2—m 1—m
P e, U e VT e YT

¢
4—m 3 —m 2—m 1—m’

and In this it is easy to substitute ¢ + « for y.
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w.de
(LL 4+ ()4,)

1 (Y-« 1 [ 2 1
w4t dy = U?f’dz/—fay *Ydy} 5 Gt =30

Let @+ be =y so that b. dw = dy,

= ;%2 [t (a +b2)% — § (« + ba)?).

dt =— V@? — 2, evidently.

]«/w—t‘

94, f dx ) Let & — = Y, d;/f::(ly

€Xr—

/fl—'/]/ — l()g Y = ng (J} —_ (L).
I

25, Since —; l-' «L (vl _ 114)

a?—u? 2a\w—a a+a
de ‘ , l LT
f,rz-“: - 2}& {log (. — a) — log (& + a); = o e
.. d; 1 r—
Similasly TR (e iy log 7
dw

26. If a4 24w+ B has real factors, then / EAeF B
is of the form just given.
But if there are no real factors, then the integral may

- and if y=a+ A4 and

be written e P vy S

di L
=B — A% we have [—; g which is }L tan!

Y
Dot @

—sin e . .
27, ftanw.de=—| — ="dy This is our first example
Cos &
of a great class of integrals, where the numerator of a fraction
is seen to be the differential coefficient of the denominator.

Let 7/.— cos », then dy = — sin #. du;, so that the above integral

is ——j 2 , or —log y, or — log (cos a).
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28. Let f (x) stand for the differential coefficient of f (),
and we are asked to find f f (x) 9 Let S(z)=y, then
S (2).de=dy, so that the 1nte0fra1 becomes

d
[ ?/l/ =logy=log f(x).

Hence, if the numerator of a fraction is seen to be the differ-
ential coefficient of the denominator, the answer is

log (denominator).

2be . dw
9 2bx. dw _
29, ¥ ba log (a+ ba?).
.dx 2
30. a+b: )bfrH-ba =»blog(u+br)

(m + nr) di o e
31. Reduce f ¥ brt cat to a simpler form. If the

numerator were 2ca + b, the integral would eome under our
rule in Ex. 28, Now the numerator can be put in the shape

nog .o nb
5 (2¢a 4+ b) + %

80 we may write the integral as

2+ D d <//1 ’nb> [ dx
r — —_—
@+ b + ca 2/ ) «+ba + ca?

7 . N R nb dx
=g log (@ +ba + cr?) + <m — %> f(ti()ﬂ/az .
The latter integral is given in Example 26,
39, fﬂ;r—!—b (]I_,l[..b da b({:

; D NP
at + @ a* + 2 a® + a*

=1 log (0?4 %) + f)_z tan‘lg

fsin . dx 1 [—bsine. de
(

1
T et a{—+rba)sz=——zlog(u,+bcos x),
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24 f {]/1;: [1'{- g @ —100'1'

o1 ds
aloga - lmw
(1 +log «)dr,ﬂﬁ
/ IW »

=log (= h)g a) — log a
=log &+ ]ng (log @) — log a:
=log (log ).

When expressions involve a™ and (10 + by, try substi-

. t
tuting y =0 + bz or Y= (; + 0.

dx 1
35. Thu: S T
5 hus (@ + ba)" b(asb)”

o v. dx 1
36. {((b—{—bl)“’ i {1\) ((L+b )+([ _':b,}

/‘)EZL __;]‘_+él((b+bl
2 (a+bry ax ' @ o
{a 1 i
38, Aus R Sl U
o g v j ((L+I)L Ny T .:'I)L(L ((L + b‘z.z)m

2m —~1 / dx

2 ) (007"

and so we have a formula, of reduction.
When expressions involve Vg + ba try y* =« + b
y; a /C) . "
39. Thus f ede | 2(20—be),
a+ba ?
1,
40. [7 V1 + logw.de. Tryy=1+ log a.

Answer: £ (1 +log )%,

©ods !
41. / et Try e*=v9. Answer: tan—1¢®

217. Integration by Parts. Since, if » and v are
functions of «,

'v du
(zw) "o v

au :/u. (Z1!+J v.du,

>
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or [u.dv:uv—lv.du ............... (1).
du )
We may write (1) as {u. Ie du = 1wy — ’U du

By means of this formula, the integral Iu.du may be

made to depend upon { v. du.

42. Thus to find j;v’”.lugw.d.’u Let u=loga and (jf =g’

dw
gt (1"+l g
so that o = — .. Formula (1) gives us 10\}_) @ J ~ o du,
n+1 n4+1

g 1 1
o en (=)

43, fx L= da
dv i 1 . s
Let v =w; &= €™ 50 that » = ” ¢ then formula (1) gives

1 1 1 1
us f‘b €@ duw=—uwe® — = | T dp == pet® — = gt
“ o

1 M( 1)
= e (gy— ]},
@ 17
44, /e"‘ .8in bx . de. Call the answer 4.

. 1 .
Lot w=sin b, v=-~ ¢, then formula (1) gives us
«
1 , b } 1 . b
A=="esin be— = | e, cosbx.dw==e¢®ginbr—=- D,
o « a o

But blmﬂdl]\’J % _cos ba . dw, which we have called B,

1
may be converted, if we take « = cos bz and v == €%;
a

B———e“‘cosbvc-k bJ * sin ba, da;—%te” coab,c—i—bfl
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1 . b /1 b
Hence 4 == ¢ gin b — — (— e cos ba + " A ) , so thabt
a o \a (

at 4+ b

A =f e®sin bx , du = € (wsin ba — b eos [M)

Similarly B = / 2% 0os bx . dx=© . (&(&ZQE%M

218. By means of Formulae of Reduction we reduce
integrals by successive steps to forms which are known to us,
They are always deduced by the mcthod of integration by
parts. Thus

ahe® | da = l.z”e‘”' ILJ Tl et d.t
2 a

If then we have to integrate «*¢®, we make it depend
upon #%¢™; again using this formula of reduction we make
#2e"® depend upon 2%, and so on, till we reduce to #%“* or ¢,
whose integral we know,

Thus [ a%e®  do = ate® — 3 f a?e®
= %% — {J»—G — 2 |we®. ([.L'}

= a%e® — 3a%% + 6 (;L'ex —f €% . Jw)

= (2* — 34* + B — () €%

SOME GENERAL EXERCISES,

. . d;, .
45. y=asinba, -d'i/ = «b sin 20
¢ X

. . ody
46.  y=bsinau”, d—/ = bnaa! cos aw”.

I

47. Y= ((L-{—-[)/,n)m a:;‘_.”b,n Lo ((L—(—Z)x'”‘)""“l_

48. y=(u+bx)e?, d—— =& (b + ac + bew).



56.

57.

58.

59.

60.

61.

62.

dy

y=a*,

dy _
y= lt)g’a x, d;, =

” a—t dJ
t 0 dt
— dv
v=Va*—¢, 3=
7 du
U= T .y 30—
(1— o)t dv
_ Natt dv_
’\/(L + vt odt
1+ 1/ dw
w= -
1 -y’ (lg/
tan~t
y=tan™'y— .,

EXERCISES.

dz 1

=a®. log a.
x g

z logc‘t'

LG
(I—w)t
'\/w(\/t—\/q,)

‘)\/t’\/(a—kt)(\/a—*-\/t)z.

=1+ [\/T:g/'-’. 1 -y
dy _

2
+ i’

y =log (sin &), % = cot a.

w=1log Ja*—1

v
/l—lrv2
Jive+d1—¢ de_ ¢

Fe—J1—¢’

J—\ln —1

@ =tan™!

dx
> dt

x=sec ¢

y = sin (log v),

d,
& dt ~

~1 (,¢1—f£i§
Y=192A/ T cost’

dy 1
dv 1+

t
az_tz'

dy _ 1
dt ~ sint’

dt — Ji—¢

1

Tife-1

El

{
v

L cos (log v).
v

287
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e _9
64 pzmrﬁll,‘ﬁz .

L+p2" dp 149
L+w dy 1—20—u?

65, y= 1+ de ({ii—i1,’2)2
o B _ dp 2
()()' _Z‘) = 1()0 (C()t Z), d'y = — ;ill 2(’) .
. ds . ) y
67. s=¢(1—1), e et (1 — 3¢ — ¢).
P dp nyl
68 p= (T oy dv (1 Foyt
ef— et du 4
09 w=Grie & T @ ety
8 dp e{(1—-0)—-1
0. p= f—17 do  (ef—1)
AT cos @
71, If w=tan § +sccl, prove that 26~ (1= sin 0"
72, Ifw=6log 0 hat T _ 2
2. z=0%log 6, prove that =8
. . I dty
78. If y=e*cosa, prove that -t[wi+4y=0.

. & diy 24
 Ify = e ove that oY — _ .
74 Ity Loy Drove that dot = (= 5y

%-PHM+WWWh

(1) If p/y be a positive integer, expand, multiply, and
integrate cach term.
(2) Assume « + b= y7; and if this fails,
(3) Assume e+ 0 =y?: this also may fail.
76. jz (a+a) . de. Let ¢+ 2=197 then de=2y.dy, and
w=1y*—a, so that we have 2 f (= 2ap*+ a®) o . dy, or
2 f (ff = 2uy* + «*y®) dy, which is easy.
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F(h_g "'ry a2 = 2 — ,1,,,_ 2
77. w2(1+x‘~’)%' Try « +1—y,y2_1_—m,
— 2u7% . dz =2y . dy so that we have

=—fdg/=—3/=—~ E

1dt 1 _ z

e at erta

79. If = A sinnt + B cosnt, prove that &z +n%=0.

d 2
B dnu dn dn—1 Y
80. If u=uay, prove that T = +n%ﬁ;]r.
81. Illustrate the fact that du diu (see Art. 83)
dy . da = da. dy

in the following cases:
@ .
w = tan! n w=sin (aa™ + by?),
u=sin (a%), u=esiny +ysine,
1,

u=batlog ay, u=log (tan é) ,

_ayt—

~ by —az?’

ary

W —y"

u=uamy log (1 + ),
%=
dy

82, y=e®sin™ bz, I~ €% sin™1 bz (a sin bx + mb cos bz).

83. x=¢“cosbt dw_ =(a*+ bz)" e~ cos(bt —nb) where

’dtn
tan():é.
a
dty 1.2.3.4
84. y=uatloge, Q=T .
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. dy 2cosw
85. y=log(sinx), I { Ty
86. Ifv=Aa"yb + datyh + &e., where
t,+ b =a,+b,=&c.=n,
v is called a homogeneous function of # and y of # dimensions.
Show that = <%—> +y kd ) =nv. Illustrate this whenv= {:_Jy
and v = fa? + 32

87. In general if u=f(y + az)+ F (y — ax), where f and
F are any functlons whatsoever, prove that
duw  dhu
fralla (75/-0 ,
the differentiation of course being partial.

d?v  dqu
dat

88. Ifwu=(a*+4*+ 2% prove that -

92

1y~+ dz2—

2a
89. If s=ue* sin Bt satisfies %{i + 2/'?5 + n%s=0, find f

and »* in terms of a and B, or find & and B in terms of f
and 22

90. If y = e** is a solution of

§]{+ dJ+Bd'/—+Od/+DJ—<»
find . As an example take
Z; 3
¢ o @y d/+)dJ_()

da‘ 2 de da?” “daz
and find its solution.
Answer: y=ae®+be* + ce* + ¢, where a, b, ¢, ¢ are any
constants whatsoever.
219. To integrate any fraction of the form
Az™ - Bamt + (™2 4 &e. (1)
PP i o NSRRI ,

where m and n are pl)SltIVC 1ntegers.
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If m is greater than or equal to », divide, and we have a
quotient together with a remainder. The quotient is at once
integrable and we have left a fraction of the form (1)in which
m 1s less than n. Now the factors of the denominator can
always be found and the fraction split up tuto partial
fractions.

For every factor of the denominator of the shape & —a

assume that we have a partial fraction ; for cvery
a

factor of the shape % + az + B8 assume that we have a partial
dz+ B .

of the shape - B there are n equal factors each of

them being z~ ¢ assume that we have the corresponding
partial fractions

4, 4,

T e

((l,' — a)n (I — a)n 1

Thus for example, suppose we have to deal with a fraction

AQ)

" and that ¥ (z) splits up into factors

+ &ec.

which we shall eall

F(x)
z—a,r—B, 2+ ax+b, (x—y); we write
J@_ A B exD K
Fl) z—a +—pB T +ar+b " (m—g)
G
+ A‘ﬁ + &C ....... 2 N
(=) @

Now multiply by F(a) all across and we can either
follow certain rules or we can exercise a certain amount of

mother wit in finding 4, B, C, D, I, F, G, &c.

Notice that as we have an ddentity, that 1s, an equation
which is true for any value of «, it 1s true if we put 2=« or
o= oraz=q or 2+az+b=0. Do all these things and
we find that we have obtained 4, B, E, ¢ and D. To
find ¢ we may have first to differentiate our identity and
then put 2=« and so on. You will have found it more
difficult to understand this description than to actually carry
out the process.

Having split our given fraction into partials the integra-
tion 18 easy.
19—2
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o, . 2 _ A4 B Ce+D
L D@D T @1 e T
Hence 2*=A (#*+ 1) + B(z — 1) (a* + 1)+ (Cr + D) (& — 1)%.
Let 2°+1=0, and we have with not much difficulty
(=—14 D=0. Put w=1,and we have 4 =4. To find B,
make #=0, and we find B=1 Hence we have to inte-
grate
r 1 +1 1 1 @
2@—1p " 22—-1 21+av
and the answer is

1 1

When there are 7 equal quadratic factors, we assume the
partials
C D Cu+ D,
‘,:,,l@,} - + ,‘£+ . “,:,__ + &C.
(@*+oaz+ L) (24 ax + BY !
It is not difficult to see how all the constants are deter-

mined. We seldom, however, have complicated cases in our
practical work.

*4x—1 PFrr—1
92. Integrate g —6w O (vcif—+3) (‘;:72_);
assume it to be equal to
M N r
@ Tat3 a9’
so that a*+ 2 — 1= (x+ 3)(@—2) + No(z— 2) + Py (z+ 3).
As this is true for all values of #, put =0 and find M,

put #=— 3 and find ¥, put = 2 and find P, Thus we find
that the given fraction splits up into
111111
e B2+3 22-—-2°
so that the integral is
oga+ L log (w4 3)+ 4 log (= —2),
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Bat 41 3)90—29
93. f 3x+c)da&—[(ox+1 + - +C)>d

™~ . 6 41 N
—f(\o»v-{—l.)—w_l +w—2> du

6 log (x — 1) + 41 log (& — 2).

a?
94! ‘[m (],.l/

1 I 82 1 243 1
—_ 2 e — e e
‘f(“+7+4x+1 5ar2 20 bb—s)d”'

F o w.de
O e
=Ltan™ o+ % log (1 +4*) — 4 log (1 + ).
2 4 9 — 128 ,
Rt 4 Yo B B;,
P-bP+Bu+9 @+l ‘3)

and we find A=-38, B1=—o, B,=17;
so that the integral is

—8log (w+1)+ Z5+17log (s —3).

L
97- ‘—;‘i:‘z)'(‘a—:’— log(l +3)+1l()(7'(l—~1)
de L@
- Lan=la— 4 &
98. [9“4 e 4= Ltan™ tan—! 5

(2 + 3) de 4 s , o
99. f-’;—xz—’)a, —~3loga + 2log (w— 1) — L log (.« + 2).

100. f gD tanm ";‘: +ilog P72

at - a?— 12 7 z+2

101 z.dx — 11 1+

< + & tanta,
(T a) (1 +a) ™ HEA

8y

. de . . )
102. f ,E:f‘)‘pzi_-o = 3 log (w+3) + 1 log (@ —1).
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0 4 T G 3210g (w + 4)— dlog (442
103. fw_+m+s 3 g (@t 4) = dlog (2 +2).
7:.({?9 21 ) 1
: = gw—2)+il e+ 1
104 s og (w—2) og (w+ 1).
o @= DA e 8y g Lo (o 4 2
105. ](my(w+2) ¢ log( ) Ué(" )
) - dax =1 log &+ 2
106. JT;&HS SRR
,L._o)d.b 7 _‘10’«11}-7{—”]_4
1o7. j<tb+3)<m+1) T2t )T By
d‘l’ —.‘;‘Zt 1“12‘%’—};‘1
108. leJ;”?«‘w V3
© o dw . w+1
- —:—ﬁl f—
109 J;+4jx+3 - Ug‘,,/,_'_g
) de =1lo x_——S
110. ]L-4E—12 LI
- da
» M —tan™ 2
111 ]&2+4w+ an~ (¢ +2).
, dx e bar—1 (9
B

220. Maxima and Minima. If we draw any curve
with maxima and minima points, and also draw the curve

dy
showing the value of di

dy
where y is a maximumn, 2n=0 and '2 1s megative; whereas,

n the first cmve we notice that ;—

. .. d d"« . .. -
where y Is a minlmum, aﬁ:() and “ iy positive.  If 1n

da?
any practical example we can find no easier way of diserimi-
nating, we usc this way.
Notice, however, that what 1s here called a maximum
value, means that y has gradually increased to that value
and begins to diminish. » may have many maximum and
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. di
minimum values, the curve being wavy. Notice that dé
d* . . .
may be 0 and E;—/=O so that there is neither a maximum
1

nor a minimum value, y ceasing to increase aud then begin-
ning to increase again. See M, fig. 6.

1. Find the maximum and minimum values of eri
Answer: 4 and — £
2. Find the greatest value of - Y .
(@ +x) (0* + )
Answer: ——

(a+0)

3. Prove that « sec @+ b cosec @ is a minimum when

M.
tan€=\/9-
a

. L4+ 3e .
4. Whenis 52 4 naximum?  Answer: o= 12

e

Vi 527
5. When is 2 (¢ — #)* a maximum or minimum ?
me .
Answer: x= - -~ | a maximuni
m+n

6. Given the angle ¢ of a triangle, prove that
sin? A +sin? B 15 a maximum and cos? 4 + cos? B is a mini-
mum when 4 = B,

7. y=¢sinz+beose. What are the maximum and
minimum values of y?
Answer: maximum is y = v¢? + I?, minimum is — Va® + b

8. Find the least value of ¢t @ + b cot 4. B
Answer: 2Vab,

9. Find the maximum aud minimum values of
2?20 411

a2t +da 4107
Angwer: 2 a maximum and £ a minimun.

[
Students ought to plot the function as a curve on squared
papcr.
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10. Find the maximum and minimum values of
a*—z+1
s+z—-1"
Answer : maximum, — 1.
. . =Tz +6
11. Find the values of # which make y= 10
- —

a maximum and a minimum,
Answer: @#=4 gives a maximum, # =16 a minimum,

12. What value of ¢ will make v & maximum if » :%logc?

Answer: ¢=e
13. Ifp= %ﬁi@ ,t=~ab gives a minimum value
of p.

sin® 0
S S
15. What value of ¢ will make v a minimum if

S
T14c—c*’

T . -
4 =—§- glves a maximumnl value to a.

Answer: ¢ = }.

16, When is 4@*—~15224+122 —1 a maximum or minimum ?
Answer: =1 a maximum ; «= 2 a minimum.

17, tan™ ztan® (¢ — «) is a maximum when

n—am
tan (a — 22) = - tan a.
n—+tm
18, s— 3t t=3 a maximum,
’ 94’ t=-—3a minimum,

19. Given the vertical angle of a triangle and its arca,
find when its base is a minimum.

20. The characteristic of a serics Dynamo is

- al .
J—1+6'0 ------------------------ ( v),
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where @ 1s a number proportional to the angular velocity of
the armature, and « and s depend upon the size of the iron,
nutmber of turns &c., I is the B.M.F. of the armature in volts
and ¢ the current in amperes, If r is the internal vesistance
of the machine in ohms and B is an outside resistance,
the current

and the power given out by the machine is

P=CR.. ... (3).
What value of B will make P a maximum ?
all 1

Trs0r+ R

Herc (2) and (1) give

1 a
Sothat  14sC=_% ,'=;<Am >
' + r+~ R’ ¢ s \r+L L)

R/ a E . dP
» R _ — a ¥ D—
I =3 (7__{_1{ 1> , and if IR = (),

LY Y L ><_J>=
we have <7‘+R 1>+-R(T+R 1 D 0.

a

"+ R

Rejecting — 1 =0 Dbeecause it gives (=0, we have
e 3 =] ’

a 2Ra . o .
oy -l o+ R’ and from this K may be found if r and

a are given, Take a=12, s=003, »="05 and illustrate
with curves.

21. A man is at sea 4 miles distant from the nearest
point of a straight shore, and he wishes to get to a place 10
miles distant from this nearest point, the road lying along
the shore, He can row and walk. Find at what point he
ought to land, to get to this place in the minimum time, if he
rows at 3 miles per hour and walks at 4 miles per hour.
Assume that he can equally well leave his boat at one place
as at another.
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Fig. 100, AC=4, CB=10. Let him land at I where
CD =2 Then AD=+16 +2a* and DB= 10 — 2.

. VI6+a7 10 —a
Hence the total time in hours = -——;ll +___I_a, .

A

c 5 &

Fig. 100.

This is a minimum when {z (16 4+ a*)" =1, or L65*=16+2?,
or w= 4335 miles.

22. The candle power ¢ of a certain kind of incandescent
lamp x its probable life / in hours, was found experimentally
to approximate on the average to

¢ = 1Qwem—oossso

where v is the potential difference in volts. The watts w
expended per candle power were found to be

w=37 + Q8 -007— 076670

The price of a lamp being 2s, the lamps being lighted
for 560 hours per year, and one electrical horse-power (or
746 watts) costing £2 for this year of 560 hours, find the
most economical v for these lamps, so that the total cost in
lamps and power may be a minimun.

560

l
per year is then < in pounds, and this is for ¢ candles, so that

lamps arve nceded per year, each costing £0°1.  Cost

~

. .50
cost per year in pounds per candle is e Now £1 per year
> C v

means = watts, so that the cost per year per candle is
50 j
B VAU I ‘.
I X 9 watts

This added to w gives total cost in watts.
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We have lc and w as functions of v. Hence

56 x T46
2

is to be made a minlimum.

. 10—11-697+0 075450+ 37 + 108‘0117—‘07“670

Answer: v=101"15 volts.

221. Sometimes when a particular value is given to « a
function takes an indeterminate form. Thus for example
in Art. 43, the area of the curve y=ma~" between the ordinates

b ”
ab o = q and @ = b being f ma™ ., do was i "l_;i O — g,
" oy
Now when =1 the area becomes 1—% i (1 —1)or g, and
this may obviously have any value whatsoever.
In any such case, say F‘i{) ,if fla)y=0 and F(«) =0, we

proceed as follows, We take a value of @ very near to ¢ and
find the limiting value of our expression as » is made nearer
and nearer to ¢ 1n value. Thuslet z =« + da.

Now as 8z 1s made smaller and smaller it is evident

that f (2 + 8) is more and wore nearly f(z) + 8z @XQT If

dx
I this we put #=q, () or f(u) disappears, and conse-
quently our fx'eLct‘,ion‘]:(——“—{——8——0Q becomes more and more nearly
y F(a+5r) ' '

d

?Z:f;f (@)

~ .

PG

The rule then adopted is this :—Differentiate the numerator
only and call it & new numerator; differentiate the denomi-
nator only and call it a new denominator; now insert the
eritical value of 2, and we obtain the critical value of our
fraction. The proeess may need repetition.

log a

\ . log a
Foample 1. Find the value of -2 when w =1,

w—1
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First try, and we see that we have 0/0. Now follow the
1

above rule, and we have T and inserting in this 2 =1 we get

1 as our answer.
— 2ucr + ac?

2. Fmd b " Sbew + b - when a4 =c¢.
First try @ =c¢, and we get 0/0.
2a;c -

Now try g, , aud again we get 0/0,

2b
. . «w
Now 1'0peat1ng our process we geb

b

. 1
3. Fmd when 2=1. Abswer: -

. a® — bz
4. Find — when #=0. Answer: 1()(T -
x

°b°
Try th'e example referred to above. The area of a

(O —amy=A. If m, b, ¢ are constants,

,U(

curve 1s

1-n
what 1s the value of 4 when n=1? Writing it as
Z)l—n —_ gl
)
L~n 7
differentiate both numerator and denominator with regard
to n, and we have, since

«gf. (=) = b= log b x (= 1),
e e 1T 95 d
and if we insert # =1 in this, we get
m (log b—loga) or mlog 0’
which i3 indeed the answer we should have obtained if
instead of taking our integral f."b‘“ . da as following the rule

=L

&z Ipe 2
./l 0 —/H—l
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we had remembered that in this special case
fw“’ . da = log .

2221 GQlossary and Exercises.

Asymptote. A straight line which gety closer and closer
to a curve as x or y gets greater and greater without limit.

b oyt . -
Thus v = aJw—— «* 1s a Hyperbola. Now as « gets greater
and greater, so that @ is less and less important, the equation
z

approaches more and more y = - which is the asymptote.

. d .
The test for an asymptote is thas ~‘/—/' has a limiting value

dx
for points further and further from the origin, and the inter-

. d: o
cept of a tangent on the axis of @, 2 —y Zi—?’ has o limiting

value, or the intercept on the axis of y, ¥ ~2 flil/ has a limit-
ing value. v

Point of Inflection. A point where g—xi/ changes sign.

Point of Osculation. A point where there are two or
dy
more equal values of (Ta/ .
Cusp. Where two branches of a curve meet at a comnion
tangent.

Conjugate Point. An isolated point, the coordinates
of which satisfy the cquation to the curve.

Point d’Arrét. A point at which a single branch of a
curve suddenly stops.  Faample, the origin in y==zlogz.

The Companion to the Cycloid. x=qa (1 —cos ¢),
Y= agp.
The Epitrochoid. &= (a+b)cos ¢ — mbcos (g +1> ¢,

y=(¢ + b)sin ¢ — mb sin <% +1> o,



302 CALCULUS FOR ENGINEERS.

where b 1s the radius of the rolling circle, « is the radius of
the fixed circle, and mb=distance of tracing point along
radius from centre of rolling circle. Make m =1, and this is
the Epicycloid.

The Hypotrochoid. == (a—D) cos¢+mbcos (% - 1) ¢,

y=(a—b)sing—mbsin (% —1) ¢.
Make m =1, and we have the Hypocycloid.
Take a = 4d, and obtain a Hypocycloid in the form
2t +yt=db

Take «=2b, and obtain the Hypocycloid which is a
straight line,

In obtaining the Cycloid, Art. 11, let the tracing point be
anywhere on a radius of the rolling circle or the radius pro-
duced and obtain x =a(l-mcos¢), y=a(P+msind).
If m>1, or <1, we have a prolate or a curtate Cycloid.

The Lemniscata (2? +37%)?= a? (4? — %) becomes in polar
coordinates 7% = a* cos 20,
and taking successively 8=0, 8 =-1, &c., we calculate » and
graph the curve easily.

The Spiral of Archimedes. 7= uf,

The Logarithmic or Equiangular Spiral. = ae”.

The Logarithmic Curve. y=alogbx+ c.

The Conchoid 2% = (a + 2)* (b* — 22) becomes

=+ bsecf.

The Cissoid y*=a*/(2¢ — 2)) becomes 7 = 2¢ tan . sin 4.

The Cardioide. 7=« (1~ cos@).

The Hyperbolic Spiral. 76 =¢.

The Lituus is 720 = ¢

The Trisectrix. 7= (2cos d +1).

7 )

1. In the curve y = show that there are points of
inflexion where 2is 0 and eV3; the axis of z is an asymptote
on both sides ; there are points of maxima where z =« and
—a; the curve cuts the axis of w at 45°%
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2. In @y =38bs* — a* show that there is » point of inflexion
2b
where z =0, y=".
P
3. If y»=4¢* (20 — o), show that there are two points of
3 2a

" inflexion when 2 ==, y=+ ~=.
2173
4, If 4*(a® - a?) =« show that the equations to the
asymptotes are y=+ 2 and y=—

5. 'The curve #* — 3" = o cuts the axis of 4 at right angles
at @ = ¢ where there is a point of inflexion,

6. Show that y=c/(ab+a*) has three points of in-
flexion.

7. Prove again the statements of Exercise 2, Art. 99,
and work the exercises there.

8. Find the subtangent and subnormal to the curve Y= e,

1
Answer: subtangent o subnormal ae%e,
1

9. Tind the subnormal and subtangent to the catenary

y=Cle y e
J—Qe € .

2 2
C - -
Answer : subnormal = i {e" —~ € c},

x @

Cre e
subtangent = ¢ .GE_'."LE )
e —e @
10. Find the subtangent of the curve

@ — Baym + y* =0,

84* — Bay — 3ax dy + 3y dy _ 0.

dz de
Hence dy =W .
de o — ax

Subtangent at point «, Yisy %@:yyf —ax
ay

ay —az’
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11.  In the curve 7° —{;t‘(zzb find the equation to the
a
142
4 2a  2a?
asymptote. Here y*=a? 2 (1 422 _‘1 + &e. )
1 -2

@
. . 2a
by diviston. As 2 is greater and greater, - &c. get smaller

and smaller and in the limit (see Art. 3)
22
y=ztx <1 + 7) ,

y=1 (x+a).
So we have a pair of asymptotes y =2 + ¢, y=—2 —qa.
_Again, the straight line #=a, a line parallel to the axis of

y, is also an asymptote, y becomm greater and greater as
« gets nearer and nearer to « in value,

12, Find the tangent to y¥ +at = b
W g B
dz ¥ de~ -

Hence at the point «,, 7, the tangent is it/ - \/l/l .

&= &y iy

P

2,
3

13. In the curve y — 2=(x—1) Vo — 2, where is %Z=

At what angle does the curve cut the %xis ?

~—\/z—2+(z—])%(L—2)“

=5
9«/

This is infinity where #=2 and then y=2; that is, the
tangent at (2, 2) is at right angles to the axis of «.

Where y= 0, it will be found that =3 and %: 2.

14, In the curve o* = wa® + 4, find the intercept by the

tangent on the axis of y, that is, find y — 2 ZVZ

32 %‘Z = 2qa + 322
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Yow+ 3uF By — 2au? — Bud
So that we want y—wx WL‘+03L or 3y Qflvi 3¢ and
3t 32
this will be found to be 5 ( hd \\g
A

15. The length of the subnormal ab w, y, is 2a% what 1s
the curve ?

d;
Here ya—‘jz 2w’.  Hence dy*=dair or y=us® is the

&€
equation to the curve, a parabola. The subtangent is ‘(/I,
Y aa? Y

Ie) .
vy 2z ' Yaiap

16, Show that the length of the normal to the catenary®

—

5

Is =

o

17, Show that g — u* 4+ 202y = 0 has the two asymptotes

y=w—3 and y=—w—3-

18, Show that the subtangent and subnormal to the cirele
)auc —

‘/“—"au,—a, } and « — » respectively, and to the

o —a
2ux — a2

ellipse 3/2— - (2((L —a) they are S

be
p and g (¢ — @)

ad

19. Find the tangent to the cissoid 3 = 50—

Answer: y= {(2“ )y } B — 2wy — aw}.
20. What curve has a constant subtangent ?

dy

7 du @ or d ,or w=ql +¢ or C’x
— = e = -2 = ) o)
y d[/ C [ J og Yy cory=

the logarithmic curve.

21, Show that @ — ¢ + we? = 0 has the asymptote

1. 20
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22, Show that a curve 1s convex or concave tov the
. d* . .
axis of @ as y and FZJQ have the same or opposite signs,  See
‘ P
Art. GO,

223.  The circle which passes through a point in a curve,
which has the same slope there as the curve, and which has
also the same rate of change of slope, is said to be the
circle of curvature there. If the centre of a circle has
« and b for its co-ordinates, and if the radius is », it is easy
to see that its equation is

(@—apP+(y—02=17 ., (1).

Differentiating (1) (and dividing by 2) and again dif-

ferentiating we have

dy _

a—u+(y—"0) du O, (2),
and 1+(y—10) EZ/, + <%> =0 .. 3),
. dy &ty o
writing p for 2 and ¢ for oz VO have from (3)
__t+p V-
y—b=— T e (4);
using this in (2) we have
w—w:l_;p P o (3).

Now p and ¢ and @ and y at any point of the curve being
known, we know that these are the same for the eirele of
curvature there, and so « and 6 can be found and also . If
the subject of evolutes were of any interest to engineers, this
would be the place to speak of finding an equation connecting
« and b, for this would be the equation of the evolute of the
curve. The curve itself would then be called the involute to
the evolute.  Any practical man can work out this matter
for himseclf. It 1s of more interest to find # the radius of
curvature, Inserting (4) and (53) in (1) we find the curvature

1 G

U gy (6).
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A better way of putting the matter is this:—A curve
turns through the angle 86 in the length &, and curvature
18 defined as the limiting value of

Y 1 dé
S—é_ , O ;: = ilé ..................... (7).
Now tan = 5—- =p, say, so that @ = tan 'p. Hence
dd 1 dp
ds — 1T+ p* " ds’

coods e ds dp _ds dy
Now Z“Z?vﬁx/l_F Tdpde dp dut

1 _dé _a%y dy .
Hence bl {1 + (Zi-;:) } ............... (8).

Euwercises. 1. The cquation to a curve is
x® — 15002* + 30000 — 3000000y = 0.
Show that the denominator of% in (8) is practically 1
from #=0 to £=100. Find the curvature where 2= 0.

2. In the curve y=a*— 44® —182* find the curvaturc
at the origin. Answer: 36.
3. Show that the radius of curvature at @ =a, y=0 of
bz
the dhpse = % =1, is o
4, Fmd the radius of cuvvature where x=0, of the
parabola, y*=4ax.  Answer: r= 2a.

5. Find the radius of curvature of y = be®,

1+ 2])%e “)
SWer — 2b<(w 1) == ay . ( R S .
Answer: g =ae™ p = abe™ 1= i that
1
where 2 =0, 1 Li(bél
a*b
6. Find the radius of curvature of y = sin b
of2 52 b )t
Answer: r= A+ b cos %) Where =0, r=w, or
—ab®sin bx
. T 1
curvature 1s 0; where bw =<, r=—>-
2 —al?’

20—2
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7. Find the radius of curvature of the catenary

c - -
Z/=5<f° te >

—

yﬂ

Answer: »=*, At the vertex wherc w=0, y=¢, r=c.
c

8. sShow that the radius of curvature of
(@ — dm) = e (w — 3m),

. . 3m 3
at one of the points where y =0, is S and at the other, *_;LL .

9. Find the equation of the circle of curvature of the
curve yt=4dna? — ot where 2 =0, y=0.

10. The radius of curvature of 3u?y = a¥, s 11 =""5 -
11. In the cllipse show that the radius of curvature is
2
(«* = ¢2)? = ab, where e=1— = ¢ being the cccentricity.
@

12, Find the radius of curvature of wy = a.
Answer: (a# 4 ) + 2.

13. Find the radius of curvature of the hyperbola

@y
@ b t

e

y , )
Answer: (¢2* — a*)? + ab, wherc e2 =14 -
«?

14 In the catenary the radius of curvature is equal and
opposite to the length of the normal.
15. Find the radius of curvature of the tractrix, the
cquation to which is ¥ d =Jar— 2
Py d'!/
224. Let Sy, a)y=00 (L)

be the equatiou to a family of curves, @ being a constant for
cach eurve, but called a variable parameter for the family,
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as 1t is by taking different values for « that one obtains
different members of the family. Thus

fle,y,a4+8e)=0..................... (2)

is the next member of the family as 8¢ 1s made smaller and

smaller. Now (2) may be written (see (1) Art. 21)

Sz y, a)+8a. i]l‘f(év, Y, a)=0....0.0us 3),

and the point of intersection of (2)t and (1) is obtainable by
solving them as simultaneous equations in « and y; or again,
if we eliminate @ from ( 1) and

f(: Yy a) =0, (4),

we obtain a relation which must hold for the values of z and
y, of the points of ultimate interscetion of the curves formed
by varying « continuously ; this is said to be the equation of
the envelope of the mmlly of curves (1) and 1t can be
proved that it is touched by every curve of the family.

(ch

Example. If by taking various values of ¢ in
v=" 1
Y=g

we have a family of straight lines, find the envelope. Here
f (@, y, @) =0 is represented by

M

——r=0 (4)*,
«* ‘
1 L
or S= o =
aom 7

Using this im(1)*we have

- m
iy — Vma — a \/T =0,

or y—2 Ving =0, or i =4maz,
a parabola.
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Example. In Ex. 3, Art. 24, if projectiles are all sent out
with the same velocity V, at different angular elevations a,
their paths form the family of curves,

Vsin a a?
Y=y — & =% i,
Veos a Y V2 cos? a
or y—xa+ mat (@?+ 1) =0,
where a stands for tan a and is a variable parameter, and
7 Ly
L= =5
2V

Differentiating with regard to e,

—a42mazfa=0 or ¢ =+ =—

1 Fo1
", —_ 7 [ — = ()
J 2m o kéLm‘Za;Z + 1)

is the equation to the envelope, or

o 1
y=—ma+ - .
Y 4m 1
This is the equation to a parabola whose vertex is == - or
1 4

2‘(]; above the point of projection.

225.7 Polar Co-ordinates. If instead of giving the
position of a point P in & and y co-ordinates, we give it in
terms of the distance OP called
7, the radius vector, and the angle
QOP (fig. 101) called 6, so that
what we used to call # is rcos 8
and what we used to call y is
rsind, the equations of some
curves, such as spirals, become
simpler. If the co-ordinates of
- P are v+ 8r and 6+ 88, then

Fig. 101. in the limit PSP may be looked
upon as a little right-angled triangle in which PS=r. 84,
8P is &, PP’ or 8s= /1 (80) + (67)* so that

ds _ :—7]7 \ 2
'(7'9‘\/7 +<¢w) ‘
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Also the elementary area POP’ is in the limit 372, 66, and
the area enclosed between a radius vector at 8, and another

9, _
at 8, 1s %f 12, d@, so that if r can be stated in terms of 8 1t

0]
is easy to find the area of the sector. Also the angle ¢
between the tangent at P and » is cvidently such that
tan = PS/P'S or, rgg = tan ¢. This method of dealing

with curves is interesting to students who are studying
astronomy.

If r = a® (the equiangular spiral)

% =0 log a, and so, 1%? , 0T == (cl—Z% = 1/blog a,
so that tan ¢ is a constant; that is the curve everywhere
makes the same angle with the radius vector.

Let & =7cos @ so that z is always the projection of the
radius vector on a line, z =a% cos @& Now imagine the radius
vector to rotate with uniform angular velocity of — ¢ radians
per second starting with 6 =0 when =0, so that §=— ¢t,
then @ = a9 cos ¢t.

Thus we sce that if simple harmonic motion is the pro-
jection of uniform angular motion in a circle; damped
simple harmonic motion is the projection of uniform
angular motion in an equiangular spiral. See Note, Art. 112.

Ex. 1. Find the area of the curve r=a (1 +cos ). Draw

w

the curve and note that the whole area Isf 2. d8, or $mad
o b

Ex. 2. Findthe area of r=a(cos20+s1126). Answer: mrq2
Ex. 3. Tind the arca between the conchoid and two radii
vectores. Answer:

b*(tan 0, — tan 6,) + 2ab log {tan (7 /4 — $0,) + tan (7/4 ~ 16)).

226. [Kwercises. 1. Find the area of the surface gener-
ated by the revolution of the catenary (Art. 38) round the
axis of #.

2. Prove that the equation to the cycloid, the vertex
being the origin, is

z=a(f+sin 6) y=a{l —cos @),
if (fig. 102) PB=w, PA =y, 0CQ=0.
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Show that when the cycloid revolves about 0V it generates

3 8

a volume ’mt“< - ——) , and when it revolves about OX it

E M F
c
B Q v
[¢] A X

Fig. 102.

generates the volume w%® If it revolves about KF it
generates the volume 5artg®

3. Find the length of the curve Yuy* = 4a".

Answer, s = f \/1 + 2 e = ta {(1 -l-§>A~ - 1)‘ .
0 « « j‘

4. Find the length of the curve 2= 2a2 — 22
Answer: s =« vers™ a/a,
5. Find the length of the cycloid.  See Art. 47,
Answer: s =8a (1 — cos ) = Su— 4+ Via? —~ 22Ly.
6. Find the length of the parabola y=x/4a{v; from the
vertex.
Vo +va+w

Answer: s= '\/({JL' + a4« 10g - 7
Na

7. Show that the whole area of the companion to the
cycloid is twice that of the generating circle.

8. Find the area of 7= e between the radii +, and ,,

0‘2
wsing 4 = [ 37, d6.

r

o

c a )
Answer: 3 (12 —r2).
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2
9. Show that in the logarithmic curve z = «e’,

s=clog - 4Nt a4 ()

TNt at

10. Show that in the curve 7*2(0(1 + cos ), using

§ = (70\/ d'

s = 4 sin 5

11. Show that in the eurve r== be¥e,
s=rNl4+c4+C.
12, Show that in the eycloid,

dy _ «/;’E.
ds T 24

and consequently s = 4Na®—Fay — 20.

13, Show that in the curve of + 9 = df,

x
K

e

S§=5Q%%

W

14.  The ellipsc, (: + y—?:] revolves about the axis of g,

bz

Prove that the avea of the surface generated is
2rrab {vl L f} ,

whera Ef=1— v

az’

15. Show that the whole area of the curve, _~+./ =1
is Prrad, as = obt

16. Find the arvea of the loop of the enrve, y/:;,;\/{{j— @

-’

Answer: 20 Ql — ——)



314 CATLCULUS FOR ENGINEERS,

17. Find the whole area of y =a ++/a2— 42,
Answer: a2
18.  TFind the area of a loop of the curve #2= 12 cos 20.

Answer: fa2

12 2
19. Find the area of the ellipse 3,, + %/;= 1; that is, find

four times the value of the integral

al [
“Nat— &, de.
[\

20. Find the area of the cyeloid in terms of the angle ¢

(Art. 11).
. da
jy.(lw=fy.d%.d¢.

Answer: a* (3¢ — 2sin ¢ + 1 sin 2¢); and if the limits are

¢ =0 and ¢=27 we have the whole arca cqual to 3 times
that of the rolling circle.

227. A body of weight W acted upon by gravity,
moves in a medium in which the resistance =, where
v 1s the velocity and ¢ and n are constants.

W do }
Then ? d—t‘—— IV'—(LU .

What is the velocity when acceleration ccases? Let o
be this terminal velocity. ar,»= W, or our ¢ = Wy,

a1 1
n 2
dv gvf 1 <2)
W 7
1
so that t== / &
J1-3)
)
Thus let =2, t= M og Ut ,
29 =Y
t da
or =1, tanh 7L

o, dt°
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If & is the depth fallen through,
gt

0,2
w="=log. cosh<-.
g U

228. Our old Example of Art. 24,

A point moves so that it has no acceleration horizontally
and its acceleration downward is ¢ a constant, Let y be
measured upwards and 2 horizontally, then

de d*y
o, o
de= " qe =0
de _

=

dy dy de  dy

dt " de dt T Cdn
féjﬂ; dy dz o8 gl?]/

de ™ e A T de

Hoenee ,(Z.Jf[ -9
dar ¢’
dy —g
Pl
1
y=—sLo e b (1),

which is a parabola. Compare Art. 24.

If we take y=0 when #=0,5=0. Also we sce that « is the
tangent of the angle which the path makes with the hori-
zontal at #=0and ¢ is the constant horizontal velocity. If a
projectile has the initial velocity ¥ with the upward inclina-
tion a, then ¢ = Vcos @, and tan a= «, so that (1) becomes

1 ga®
Y=— 2 m; & + o tan a.

229. Exercises on Fourier.

1. A periodic function of  has the value /() =, from
=0 to w=c¢ where ¢ is the period, suddenly becoming O
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and increasing to mc in the same way in the next period,

. 2m
Here, sce Art. 133, ¢is =,
¢
M = 1y ay M gt by cos qa + &e.
+ e S10 8qa + b, cos sqa + &e
a, 1s Lme,
2 [e . 2 e
ug="| mx . sinsqe . de, by== f e, cos sqa, da,
cJo CJa
Answer:

me, . . . )
ma = me — ;—(Slll g +% sin 2q.0 + 1 sin gz 4+ ] sin dga +&e.).

2. Expand @ in a series of sines and also in a series of
cosines.

Answer: » =2 (sinz — }sin 2« + isin 3- — &c.) from — 7
to o,

|

o

4 . o .
also o= - (sina — & sin 3o + JLsin S — &c.) from 0 to

[}

T 4 . .
and =g~ = (cus & +§cos 3w s cos S 4 &),
Z ki = :

. T . . ..
3. Prove - =sina+ 1sinde+ Lsin b+ &
4 s b
4., Show that
9 T3 e D win D . )
3 — ¢ = ;’_(E“"—-e‘""\) {E{Il & :El{}ﬁzd' 3 s 3z & } .

1+w 224 Bt

5. Imtegrate each of the above expansions.

230. 1. The radius of gyration of a sphere about a
diameter being k and the radius a, prove that
k= gal
Here, since 22+ 4*=¢?, and the moment of inertia of a
circular slice of radius y and thickness éx about its centre, is
T

5 Y. o,
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The mioment of Tuertia is
F

[
[ ey . e Xyt = J . de =,
Lo 0

and the mass is mgmra’,

2. In a paraboloid of height £ and radins of base ¢, about
the axis, k* = la

About the diamecter of the base &* =1 (a2 + 72).

3. In a triangle of height %, about a line through the
vertex parallel to the base, L -—%h

About a line throngh centre of tri: mghu parallel to base
]u —'———L][/

231. Taylor’s Theorem.

If a function of w4 &, be differentiated with regard to «,
I being supposed constant, we get the same answer as if we
differentiate with regard to A, « being supposed constant.
Thls 1s ev 1dcnt Call the functlon f(u) where u = 4 h.
du

Then o f(zc)( du j( 1) X T def( ) LS 15 1, and this is
the samc as }f(z() because

/f() if<)xdl and%ﬁisl.

Assume that f(z+h) may be expanded in a series of
ascending powers of b,
Slr+l)y =X+ X+ X2+ X3+ &e.......... (1,
where X, X, X, &c. do not contain .
1 /
4 (§}+ D0+ X, 42X+ BXJ+ &c. .. (2)
df (e+ h) _dX, Xm dX,
e T dz T ds et da P& (3)
As (2) and (3) are identical
o _dX, o 1dX, 1 &X,
Y= Ty T e
LdX, 1 (f"X

Lo=5 0 TT808 de

d
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Also if =0 in (1) we find that X, = £(z). If we indicate
di/ J (@) by (), then Taylor’s Theorem ix

. ; h2 "
f(x + h) = f(x) + hf (X} + -i—'-é f (X)
h3
1.2.3
After having differentiated f(2) twice, if we substitute O for )
let us call the result £ (0); if we imagine 0 substituted for
a 1n (4) we have

Sy =70+ Lf (0) + 1]% S70)

I 1t S e
4 1_-—3j O)+&c. oo ().

+

£ (x) + &e. ... ().

9
Observe that we have no longer anything to do with the
quantity which we call 2. We may if we please use any
other letter than % in (5); let us use the new letter #, and
(5) becomes

F@=F O +af" O+, £ 0)
gy O s e (6);

which is called Maclaurin’s Theorem.

The proof here given of Taylor’s theorem is icomplete,
as we have used an infinite series without proving it con-
vergent.  More exact proofs will be found in the regular
treatises.  Note that if @ is time and s= () means distance
of a body from some invariable planc in space ; then if at the
present time, which we shall eall £, we know s and the

E1
velocity and the acceleration and g;, &e.; that is, it we know
all the circumstances of the motion absolutely correctly at
the present time, then we can predict where the body will be
at any future time, and we can say where the body was at
any past time, It is a very far-reaching theorem and gives
food for much speculation.
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232.  Lzercises on Taylor. 1, Expand (w4 k) in
powers of k.
Here jf(a)=" f (#)=na f7 () = n(n—1)am2 &

and henee
(4 W)= a™ 4 nha 1 4 ZL(F: D I+ &

This is the Binomial Theorem, which is an example of

Taylor.
2. Lxpand log (e + h) i powers of A.

Hoe  f@=log(, =],
f/’ (I) =—a 3 f’” (,) =4 273
. 1 w1 1
and hence log(z+ M) =logo+h~-" = L% - _
hence log (@ + 1) logwtho -5 S+55—%
If we put =1 we have the useful formula
log (1 +h)= 0+h—}~§+}-§—&c.
3. Show that
. . b 3
sin (z+A)=sing + b cos x — 1 gSinz— T ; -5 cos z + &e.
4.  Show that
cos (#+ h)=cosx—hsinx — i Cos @ + }"3 sin z 4 &e
1.2 1.2.3 :

5. What do 3 and 4 become when z = (2

233. ELwercises on Maclaurin, 1, Expand sin # in
powers of .
S () =sin o, S0y =0,
F(2)=cosw, SO0y=1.
J () =—sinw, S (0)y=0,
f{'/(ar):—cosw, S0y =1,
JV(r) =sinr, S0y =0,
&e. S0y =1.
. as o oadt
Hence sinw =& — E—I— 5 37 + &e.
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3

.. o e e ___'I_'__ ‘E_,"H
2. Similarly cosa=1 !2+,é 16

+ &e.

Calculate from the above series the values of the sine and
cosine of any angle, say 0'2 radians, and compare with whai
Is given in books of mathematical tables.

3. Expand tan"'z. Another method is adopted.

. . L . .1

The differential coefficient of tan—'zis T3 and by actual
division this 1s 1 — a2 4 a* — 2% + a8 — &e.

Integrating this, term by term, we find

tan™tuw = — Lud 4+ Lad — LaT 4 Jat — &
We do not add a constant because when 2= 0, tan—' x=0.

4. Expand tan (1 — z) directly by Maclauriu.

5. Show that

i "3
a®=1+.rlog a+ % (log a)* + .% (log )+ &e.
[ <

l

P Qi
6. Show that tan & =2 +% + ;L. + &e.
Ps 2]

234. Expand € compare with the cxpansions of siné
and cos 8, and show that
€9 = cos 0+ sin 8,
e =cos  —1sin b,
cos @ =1 (e + ),
sin @ = 21L (€% — e ),
Evidently (cos 8 4+ 4 sin 8)" = cos 16 + ¢ sin né,
which is Demoivre’s Theorem.

In solving eubic equations when there are three real roots,
we find it necessary to extract the roots of unreal quantities
by Demoivre. To find the gth root of @+ bi where « and
b are given numerically, First write

4 b7 =7 (cos 8 + ¢ sin ).
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Then rcos @ =, rsin = b, » = Va2 + (2, tan § = g Cal-

culate  and @ therefore.

1
Now the ¢th roots are, ¢ <cus% 841 sin 1 <9> ,
q
1

3 1 .
rd {COS 5(277' -+ 9) -+ 7 sin —3-1- (277' + 9)} 5
1

e {cos%} (4 + 6) + i sin % (47 + 6)} &e.

We easily see that there are ouly ¢, ¢th roots,

Frercise. Find the three cube roots of 8.

Write it 8 (cos 0+ sin 0), 8 (cos 27 + 1 sin 2a7),
8 (cos 4 + ¢ sin dar) and proceed as directed.

235. The expansion of " 1y
1 202 1 343 -
1+ hé + 1——2* 1504 + TT; 16 + &e.

Now let 8 stand for the operation and we see that

@
da’
d
Jle+h)=e™ f(x); or ¢ J(@), symbolically represents Taylor’s
Theorem.

236. An equation which connects #, y and the differ-
ential coefficients is called a Differential Equation. We
have already solved some of these equations.

The order is that of the highest differential coefficient.

The degree is the power of the highest differential coeffi-
ciecnt. A differential equation is said to be linear, when it
would be of the first degree, it i (the dependent variable), and
all the differential coefficients, were regarded as unknown
quantities. It will be found that if several solutions of a
linear equation are obtained, their sum is also a solution.

Giiven any equation connecting « and y, containing
constants; by differentiating onc or more times we obtain
sufficient equations to enable us to eliminate the constants,

P. 21
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Thus we produce a differential equation. TIts primitive
evidently contains n arbitrary constants if the equation is of
the nth order,

FEaxercise.  Eliminate « and b from

Y=aa®+ba. i (1),
%%:2&&04— b, %: 2a, b =%—wgv}g
Hence (1) becomes
or P2 9y @).

If we solve (2) we find y = 4a®+ Bx, where 4 and B arc
any arbitrary constants.

237. In the solution of Differential Equations we begin
with equations of the First Order and the First Degree.

These are all of the type M+ N%: 0, where M and N

are functions of # and . We usually write this in the shape
M.dx+N.dy=0.

Eramples.

L (a+a)b+y)de+dy=0or (e +a)de+ b iy dy=0.
Integrating we have the general solution
aw + et +log(b+y)=C,
where C is an arbitrary constant.
It is to be noticed here, as in any case when we can
separate the variables, the solution is easy.

Thus if f(2) F (y) . do + ¢ («). ¥ (y). dy=0 we have
L@ de ¥ (y).dy _
b@ TEG

and this can be at once integrated.
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2. A+a)y.de+(1—~y)u.dy=0,
or (1 +1>dw+<1-— 1> dy = 0.
& Y
Hence logw+r+logy—y=0C,
or logay = C4y — .,
3 de_ _dy

ie Vi
Integrating, we have sin™z+sin~ly=c.
This may be put in other shapes. Thus taking the sines
of the two sides of the equation we have
eNT =yl —ar=(
4. Z{ = ;} . ii; becomes (y + ) dy = (. + a2) du.
Answer: §y°+ 3y® = Lo + Lo* 4 constans.
g {ZfiZQ) = % Answer: (1 + a2) (1 4 %)= ca™
6. sina.cosy.ds—cosa.siny, dy=0.
Answer: cosy = ccosa.

7. (P +ay)de + (o2 — ya?) dy = 0.

Answer : ]og‘/f: ¢ +?/;|-_7
L + ¥ ay
, ydy 1+y avor: V1a o N[ L=
S wde™T \/1 +at Answer: V14a®+ 81+ =0l

238. Sometimes we guess and find a substitution
which answers our purpose.  Thus to solve

~- . . de i .
we try y = Vav, and we find 7‘7 + dv =0, leading to
ot
log a: +- Pl

Solve (y — ) V1 + a2 g/i)/' =n(l+ (’(/")2
21—-2
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239. If M and N are homogeneous functions of &«
and y of the same degree: assume y =vx and the equation
reduces to the form of Art. 237.

Erample 1. yde+2Nwy —a)dy=0. Assume y= vz,
dy=v.dz+x.dv,
ve . de+ (e Vv —a) (v.de+ 2. dv)= 0,
(200%) da 4 (202 Vv — 22) dv = 0,

2log &+ 2log w4 207 = (),
log av +v 4= C,

log 7+ ,\/ § =0

x

Answer: y=ce \/?/ ,

where ¢ is an arbitrary constant.

Lzample 2. %’ = «/Q_*_ 1 —«/'f.
A w ‘/]/

T.et 4 = vr and we find the answer

1

a . ) , .
Aoy 0Bl =) =yl = €.

i

d

Lrxample 3. (l':/ =Y +,.'\/'i+llg_

a
Answer: ot =24y 4 A4
Remember that two answers may really be the same
although they may seem to be altogether different.
4. Solve («*+ Bay®) dz + (3 + 3a%y) dy = 0.
Answer : a* + 627y + ' = C.
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e

Solve 2+ (ry + a?) gz = (),
Answer: 3xy +a® + 2y = U (2y + »/L)1

. R Y 4

6. Solve k.l'—— 1 Cos Dy de+ weos? dy =0.
o o'

- sing-

Answer : o =ce

2

Loy~ a)dy+y.de=0. Answer: 2y=ce .
8 ady—y.de Va4 . de=0. Answer: .:=¢'+ 2y

d , L
9.ty di{ =2y Anpswer: (w—py)ed V= ("

240. Of the form (aw+by+c)da+ (w'w+by+¢ydy=0.
Assume x=w 4 a, y=v+ £, and choose a and 8 so
that the constant terms disappear.

Thus if Bz — 2y +4)da+ (20— y+1)dy=0: as dr=dw
and dy = dv, we have

3w+ 32— 20— 28+ d)ydw + (2w + 20— v~ B + 1)de=0.
Now chouvse « and 8 so that
32—2B8+4+4=0 and 2« —B3+1=0,

or —a+2=0, ov u=32, B=243.

Therefore the substitution ought to be w=w42, y=v+5,
and the equation becomes a homogeneous one.

Exercise. (3y—Te+T)dr+(Ty — 30+ 3)dy=0.

Answer: (y— o+ 1p(y+a—1y=c

Ereicise.
Answer: o —ay+yita—y=c.

241. Exact Differential Equations are those which
have been derived by the differentiation of a function of =
and y, not being afterwards multiplied or divided by any
function of w and y.  Cuusult Art. 83,
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Mdz+ Ndy =0 is an exact differential equation if
AM AN ‘ _df@e ) v d o
k dj}) = (ZZ.JT) because M= R P N = d—yj (e, ),
the primitive being f(«, y)=c. It will be found that
(a* — 3a*y) dx+ (3 — «*) dy =0,
is an exact differential equation.

dF (o
Then a? — Baty = %ﬂ }

Integrating therefore, as if y were constant, and adding ¥V
an unknown function of ¥, instead of a constant,

Fl ) =di—iy+ Y,
Differentiating as if & were constant, and equating to XV,
(=} )
we have

_(l,;:+,6l};7= L,/::_J.;:
dy ’
ay 1 hence Ved44 o
-(717—3/ and hence ¥V=1y+c
Hence =ty + o= 0,

where ¢ is any arbitrary constant.

242. Any equation M.de+ N.dy=0 may be made
exact by multiplying by some function of « called an Inte-
grating Factor. See Art. 83. For the finding of such
factors, students are referred to the standard works on
differential equations.

243. Linear equations of the first order,
These arc of the type
dy .
HTFPY=Q (L)
where P aud @ are functions of «.
The general solution is this.  Let [Z—’ .dr be ealled X,
then ‘

y=e"x{fex.Q.dx+C} ............... (2),

where € 1s an arbitrary constant.
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No proof of this need be given, other than that if the
value of y is tried, it will be found to satisfy the equation.
Here is the trial :—

(2) is the same as ye¥ =J XQdz+C ... (3).
. . . dxX
Differentiating, and recollecting that = P, (3) becomes
Z—%EY—%—{/eXP:e‘Q .................. (4),

or gu% + Py =@, the original equation.

To obtain the answer (2) from (1), multiply (1) by ¥ and
we get (4); integrate (4) and we have (3); divide by €X and
we have (2).

We have, before, put (1) in the form

O+ Pyy=0Q or y=(0+DL)y'Q,

and now we sece the general meaning of the inverse operation

0+ Py TIn fact if f P.da be called X,

(¢ +P)~! Q means, ¢ * {fe" .Q.dx+ c} ..(3).
Thus if @ is 0, (+ ) 0=Ce Y. Again, it P is a con-
stant «, and if @ is 0, then (§ 4 «) 0 = Ce=e= where (' is an
arbitrary constant. We had this in Art. 168.
Again, if ) is also a constant, say »,

O+ ay'n=e* Une“’«' L da 4 (j}

where (fis an arbitrary constant.  See Art. 169.
Again, if Q = ¢,

(O+u)y et =et? { / eiirhe (f, 4 (}'}

=™ e (7).
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1t is easy to show that when ¢=—0, y = (U + ) e
If Q= bsin(ce+e),
(B+a)ybsin (e +e) =™ {b J e“sin (e +e) . dw + (,7}

b ./ .
= (™™ 4 —/TA s1n (c,r+ ¢ —tan—! S) ..(81).
Na?+ ¢? \

244. Example. In an electric circuit let the voltage
at the time ¢ be V, and let € be the current, the resistance
being R and the self-induction L. We have the well-known
cquation

dC

V=RC+ LS,

dC R 1

or

_ R R
Now ff'dt— It,

R 0
and hence ('=¢ "t{%/ AR + constant A} ...... (1).

Of this we may have many cases.

1st.  Let 17 at time 0, suddenly change from having been

a constant V), to another constant V,.  Put V=1V, therefore
in the above answer, and we have

_Bt 1 Ly

(e T (1 V,el '+ A

r R,
=~1§+Ae Lt

To determine 4 we know that O=% when {=0; there-

7 v
fore % = }; + A so that 4 = "

R
Ve V,-T1, - 2 ¢

R R

v
% and hence

(o2 22 DAL (2).
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. V, —»l‘-t\
Thus it V, was 0, <,'=«~-<1 A T 3,
R )
showing how a current rises when a circuit is closed.
V%
.. . ,
Again if V,1s 0, U= e L (4),

showing how a current falls when an electromotive force is
destroyed.

Students ought to plot these values of (! with time.

Take as an example, V,=100 volts in (3), R=1 ohm,
L =01 Henry.

Again take V= 100 volts in (4). Compare Art. 169,

2ud.  Let ¥V at timne 0 suddenly become

¥, sin g,

TS AR
("=¢ Lt{%q'}el‘t.!*ill(jt.dt‘f-lq.}J
R

_Bt(vel‘ (%singt—qcosgt) )‘

(J’:G L ~zo R2 +A‘

S Y )
This becomes (/= de™ 7' O 5
his becomes (f=Ae I+;/}E:?IL;(["SHI((1t_8)'“(”)}

wherc tane= "7

v

E
. X B,
The constant 4, of the evanescent term de £, depends
upon the initial conditions; thus if =0 when ¢ =0,

0=A—7-l9 — sine,
VR 4+ I 7
. O zfi —_ '/—~-Ko,,, = . A*——;,L‘?*—:’
NRE A L2 VR4 IR
or A =V, Lqg/(R* + L¢%).

Students ought to plot curves of several examples, taking
other initial conditions.
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245. Eaxzample. A body of mass M, moving with velocity
v, in a fluid which exerts a resistance to its motion, of the
amount fv, is acted upon by a force whose amount is F at
the time ¢.  The equation is

dv . .
M dt + fo=1F.

Notice that this is exactly the electrical case, if M stands
for L, f for R, F for Volts V, v for '; and we have exactly the
same solutions if we take it that F is constant, or that F
alters from one constant value ¥, to another F,, or that F
follows a law like F,sin gt.

This analogy might be made much use of by lecturers on
electricity. A mechanical model to illustrate how electric
currents are created or destroyed could easily be made.

The solutions of Linear Differential Equations with
constant coefficients have such practical uses in engineering
calculations that we took up the subject and gave many
examples in Chap. II. Possibly the student may do well
now to read Art. 151 over again at this place.

246. Ewumple. « dz,/ =ay+w+1,

d
) dy a
ot de V=T

—u ,
’ e =X=—qulog ..

Obscrve that OIRT — yma Ga108T —

Hence Y =t {/:IJ_" (], + }> du + C’} s
s
Y= % [ () du + 0} :
B = gt Y "lf“a 'j“ ’)
! lll—u+—w+(V
1 .

_= e — e

J @ + o

the answer, where ¢ is an arbitrary constant.
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247. There being continuous lubricating liquid between the surfaces
AD and EF as of a brass and a journal.
0C = hy the nearest distance between theni.
At the distance ., measured along the arc
04, let the thickness be & Anywhere in
the normal line there, representing the
thickness, let there be a point in the liquid
at the distance y from the jowrnal, and
let the velocity of the liquid there be .
Then if p be the pressure it can be shown

2, ;
that P _Ldp o, (1),
dy* pdx s
if u is the coefficient of viscosity of the
lubricant, and #, the lincar velocity of Fig. 103,

the journal, and w« is the velocity of the
liquid at auny place; we have no space for the reasoning from (1)

d*p [ 3 dhdp  6pu, dh

leading to dr T h T de T T = (2).
d
Let L’l}: = ¢,

dop 3 dh Gy dh

do T hdn Ot =

This iy of the shape (1) Art. 243, 2 in terms of x being given,
3 dh

Let X:f]’ Ldr= B de dw=31ogh, eX=7% Hence

then

Buery dh | dp  6uu,
w=p-3d R S g ol e P - n_Opu '
¢)-]L {f A e C[");(ll +C . (,?’)7” L/.:‘_.“]L <G#N0]¢+(')'—'/L;;O+'/L;;'

The solution depends upon the law of variation of 2. The real case
Is most simply approximated to by A=/, + 2 nsing this we tind

. By, <.’L‘ 1 ) «
Y T R A PN a
» 2h, \i + \/(l/'(, u '\’//"o>
&£ 3 [/ 1 o
- ( l(,- + <» 4 ctan- i L’)l
V™ 20\ Vah, ’\//1U N
1

o e _ @\ [(6pu, 3O
=0 - <i + = tan Tl /1> 2ry
2 W \nt yar, N i) Cony Fang)
If students were to spond. a few weeks on this example they micht
be induced to consult the original paper by Prof. O, Ruynoldé in the

Phal. Y.'rccn..s. \'('ﬂ. 177, in which he first explained to engincers the theory
of lubrication. T

Numerical Krereise. Let OB=2-59, .1 =11-09 centimetres.

,1,;2'16, /{0 or U0 =-0001135, o0 - 000DOR, = 80 en per second,
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Caleulate ¢ and €7, assuming p=0 at B and at ..

Now calculate the pressure for various values of v and graph it on
squared paper. The friction per square cm. being p— at =0, the
total friction #7 will be found to be

[k dp ‘e
—F / 0 duc+yuo</—h«

between the limits 4 and 5. The total load on the bearing is | p. e

du
*dy

between the limits, if 45 covers only a small part of the jouwrnal, and
may be calculated e(mlg in any case.

The bearing is supposed to be infinitely long at right angles to the
paper in fig. 103, but forces are reckoned per cm. of lentrth

248. Ezample. Solve

Py dy o
s LL(LU 3y =2

Writing this in the form (62— 46 + 3) y = 265,
y=(0°— 40 + 3)7' 2>,
. 2 3)yt=1 . . .
Now (F—40+3 <0_3 0_1>
Indeed we nced not have been so careful about the 4 as
it is obvious that the general solution is the sum of the
two (60— 3)7 and (€ — 1), each multiplied by an arbitrary
constant.
6313 eli.l?
=371
and this by (7) Art. 243 is
(C4w)e® — {(Vev 4§ L6,
or y= (0 4r) e + (e

Anyhow, ¥ =

249. Equations like %—i—]’y = Qy", where I’ and (),
as before, are functions of « only.

Divide all across by y* and substitute z= """, and the
equation becomes linear.

Lzawmple. (1—2%) ZZ — 2y =y
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Substituting z = we find

dz a2z wr

—

S DEPT R

e—Hoghi—a?) (1 _ ',,.2)‘1"

z=(1— ) {f(] — ) (— wr) d +C’} .
Answer: ’
yt= (1~ .':,-‘3){‘ {—a(l— R Ol=—a+0Vl—a2
dy

Euwercise. w T +y =1y log s
aw ¢ =

Answer: L 1+ Cz+log o

v
950. 1. Given (:%Q_ ay = 0,
This is an equation of the first order and second degree.

Solve for gi/ and we find two results,
Z

dy

Q== 0, so that log y — aw— A, =0,
»

dy
da
Hence the solution is
(logy —aw— Ay Jog y + wr — A4,) = 0.
It will be found that each value of y only involves one
arbitrary constant, although two are shown in the equation.

+ay =0, so that logy + az— A, =0,

3
2. (iven 1+ (Ell/> =g
du
This is an equation of the first order and third degree.
dy "
Hence 7= (=D,

and y:i(\.v—l)"*"—’r—a
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R dy\' o dy
3. Given (E;> d +12=0.

This is an equation of the first order and second degree.
dy dy _ 4\ _
(@) (&-2) =
(y — 4+ ) (g/ —3x+¢,)=0.

251, Clairaut’s equation is of the first order and of any

degree

Y=+ (P) i (1),
where p is g;l—/ and f(p) 18 any fanction of gllj

Differentiate with rogfn'd to @, and we find

for ! 70 »} D _ @

{
So, either @ =0 (3)
dz '
or .l‘—i-if(p):O ........................ (4)
d}). [

will satisfy the equation,

1f ZP, =0, p=c.

Substituting this in (1) we have

Y=cr+{C) oo (5),

which is the complete solution.

Eliminating p now between (1) and (4) we obtain another
solution which contains no arbitrary constant. Much may
be said about this Singular Solution as it is called. Tt 1s
the result of eliminating ¢ from the family of curves (5), and
is, therefore, their Envelope. See Art. 224

Lrwmple of Clairaut’s equation.
y=ap+ m
»

We have the general solution (5) ... y = cx 47 oo family
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of straight lines the members of which differ in the values of
their c.

(4:)isx=——i<7—'—l> orw:-}—qﬁ;orp:\/@..
dp\p P @

Hence y=2 Jma or y* = 4, a parabola which we found
to be the envelope of the family in Art. 224,

This curve satisfies the original equation, because in any

infinitesimal length, the valucs of #, ¥ and é‘l/ are the same

dz

for it as for a member of the family of straight lines.

252. If a differential equation is of the form

it can be at once solved by successive integration. We
have had many examples of this in our work already.
d*y

. . d
253. Equations of the form T J(y); multiply by 2 (7‘%

and integrate and we have

dy\? [ . :
= = 2 i . /’.
(dw> j/‘(z/) dy + (

Extracting the square root, the equation may be solved,
as the variables are separated.

d*y

L4 . Td gt

Thus let L= Y-

Proceeding as above,

dgz_f)] 2 f _ ] 1
(dw) =2 @y .dy+ 0=+ O

N
dy
JdeQ + 0

Integrating we find

= .

w=(l—l log {ay + Jd“??d} O (D).
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If this equation (1) is put in the shape
ce™ = iy + \/(L”I 2 ;*_\(/r;
Y Y
1t becomes e — 2y o6 = (|
Y=gy = O,

or Y = Ae® 4 Be=ox (2),

which looks different from (1) but is really the same, (2) is
what we obtain at once if we solve according to the rule for
linear cquations, Art. 159.

254. Solve ‘ﬁl[: a,@:y-, an equation of the third order
da?  da?
and first degree.
Y _ o then Y
Let = g, then I =
g = be"” so that % = 3 e ()

y= ;[fs"“” + Cle 4 (7,

or y = Ae®+ Cu+ (*, where 4, €, (" are arbitrary constants.
This also might have been solved by the rule for linear
equations, Art. 159.

. dy (dy\?) ¢
255. Solve  agf= {1 + \}1.f1§> ,

(’;%’“‘(1—*_1} )") lt p—'dwy
Gy i o (o 1
S o e so that = =log {p 4+ 1+
V14t @
x .
Cet—p=wp + 1.
i 1 % _dy

e w o

Squaring, we find p = $Ce" — 20¢ T d.

or
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Integrating this we have
&£

_u 15 Ta
]/—566 -+ + ¢,

a
20 €
where C and ¢ are arbitrary constants.
2566. GENERAL EXERCISES ON DIFFERENTIAL KQUATIONS.
(1) (@ + ) de+Jat =2 dy=0.
T |
Auswer: sin 't ad + — talrll— c.
«  of
1
@ S =
de’ 14 a2 2 (1 +a*)
1 1442
Answer: y= ((, — 3 log +~/ e ) .
it @

) dy 2u;
(3) d——-l—Ju)b a __1[“123:

Answer: y=sina — 1 4 (e—sine,

1y /d
@ LG y) =t

Aunswer: 2y — . —c¢) log(w+y—1+a—¢; =0,

{
(5 Zlg + 2wy = 2080
Answer: y= {Ue®™ 4§ (22 + 1)1,
6y L= \iﬁ-ﬁ + " ([?:/ Answer: y* = 2cx + ¢

M g—‘l/-*- y=vloga. Answer: y=(cv+loga+ 1),

(RN — d!/ '_' d!/ § awer: o= der ]
8) y= (Tl+‘l/ ((-{—’»> Answer: y*= 2cr + ¢

(9) Solve (1 n é”;) dis— 2V dy =,
o= a

1st, atter the manner of the Exercise of Art. 241,

2nd, as a homogeneous equation.
Answer: a® ~ 2= ¢
r, 29
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2z dr 1 3«
(10) Solve = +<§/,_, ;

Art. 241, Answer: «* — y?= .

) dy =0 after the manuer of

!/ J/, — 3
Answer: y=(r+ 1y} (x+ 1)+ C}.

(12) (= + J/)Z—Il =¢% Answer: y —q tan™? 7T+?/ =
P

1

=2 — y? 4 ce i

R

(13) ay(l+ w(f’) c_i;y =1. Answer:

(14) (‘il?—/)—f 0.

dx z?
Answer: (y —aloga —c¢) (y+aloga —o) =0.

5 By Py qYy Ay
15) i+t drestralpy—o

Answer: = (de+ wpr -+ e a* + au) e,

16 gl;x__ (]w—{-)“x—
(16) de dt ¢
, €t
WL e = 1) et )
) Answer: @ = (¢, + wt) e/t + (F=1
_ Y .,
amn de 11 (e 1)y
Answer : y = (JL + 1)” (e® +c¢)
a9 . T
(18) s =sin (¢p—0). Answer: cot {f -t j ¢+c
, : N . 1 5
19y - .'r,'-) T Y = Gy Answer : & =cal=a' =
N (]7/
(20) a2 dy + 4y = €% cos .
P gy e A2 @ ( ! @
Answer: y=Cie ¥ 4¢ 1(( ——%/ | cos @ +< 20)5111.75
(21) Change the independent variable from # to ¢ in

(1 — a9 gz/—r gj{ =0, if #=5in ¢, and solve the equation.
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N d: d
(22) Also m (¢ +a?) d; 4 2 dZ =0, if w =« tant, and

solve the equation.

oo L4y
257. 1. Prove w0\ )
. o s _(dt dt_, ’f’f’f‘fl;(‘lé”
and TodeT {(/s'((s” v (\(/.s2 ) (Z.s-)'

ly dy de
3. Prove as (Lff: ((/Z / ZZ;’ w0 we have also

&y (/(lw diy _ d= J}/‘) N (d.v)“

det \dt dez ™ de " dt dt
. . .. dy
and find the cquivalent expression for A
4. If o= ¢, show that as .« % =g (EZZZ + ((% this equals :% .
. Ly dy dy /d \ dy
Also e T A T At (E[t e
By d d dy
B — ——— Y o — —Z
and Y \rlt Z> <(lt 1> dt”
5. Change the independent variable from @ to ¢ it w = ¢,

9

dy

. d? ' .
m 254 + @5 Fnty = 0, and solve the equation.
da* " da

258. If we try to find by the method of Avt. 47 the length of the are
of an ellipse, we encounter the second class Elliptic Integral which is
called K (k, x). It may be evaluated in an infinite series. Its value
has been caleulated for values of k and x and tabulated in Mathemati-
cal tables.

When the angle through which a pendulum swings is not small, and
we try to find the periodic time, we encounter the first class Elliptic
Integral which is called F'(k, x). It cau be shown that the integral of
any algebraic expression involving the square root of a polynomial of
the third or fourth degree may be made to depend ou one or more of
the three integrals

” i "
e I AT N eI
o (L= (L =127 Jon 1 - A2sing

222
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2 LA T VAT
cdoy or Kk )= / A1 =12sin?d.dé

Jo

. x d
w (o, kyay=| - W Ty O
Jo{l+nat)A/(1-a%) (1=

w(n, by 0)= J
0\1+7Lblll 9) x/l —L sin? 6
Kk, which is always positive and less than 1, is called the modulus.
n, which is any real number, s called the parameter.
The change from the  form to the 8 form is effected by the substi-
tution, x =sin 6. When the limits of # and £ are 1 and 0 In the & case,
or 5 T and 0 iu the 8 case, the integrals are called complete, and the letters

A and 4 werely are used for them. 8 is called the amplitude and
A1 = 12sind is c.xlled by the name aé.

If w=F(k )y=F{(k, ), then in dealing with functions which have
the same £ if we use the names

=amu,
w=snw (in words, « is the sine of the amplitude of u),

Nipie

=cnu (or A1 —a¥ is the cosine of the amplitude of w),
N1-FaZ=dnw (or 4/1~%0? is the delta of the amplitude of w),
it 15 found that

snfutente=1, dn?u+2, sntu=1, -~ (mw)=dnw, &c.

s
Also am (— )= —am. 4, &
sna.env.dnedenw.sne.dn.
Also sn{udv)="-—"= ——,

1T—IZsnt . snv
and similar relations for en (w+7) and dn (x4 2).
Expressions for su{u+ ) 4sn (v —2), &, follow,  Also for
sn2u, cn2u, dne.

So that there is as complete a set of formulae connecting these
elliptic functions, as connect the Trigonometrical functions, and there are
series by means of which tables of them may be calculated. Legendre
published tables of the first and second class integrals, and as they have
known relations with those of the third class, special values of these
and of the various elliptic functions may be worked out. 1f complete

tables of them existed, it is possible that these functions might be
familiar to practical men.

259. To return to our differentiation of functions
of two or more variables.
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1. Ifu=z43+zy and 2z =gin 2 and =,
then <du> =3+ 2 <‘sz> =2z 44 by _ o o _ S &
dy) =75 \de Y e = 3y T8
d . ..
and hence d: =3y +2) € + (22 + y) cos & Ifthisis expressed
all in terms of & we have the same answer that we should

have had, if we had subs"oituted for y and z in terms of # in
u originally, and differentiated directly.

o — w? . .
2 If w= ,\/i/,,, ,» Where » and w are functions of w,
Ak U
du

da
3. If sin (ay) = ma, find dy
3. sin (ay) = ma, o

find

4. If w=sin 5, where z and » are functions of «+, find
dy |
dz’
.z y.dz—z.dy
5. Ifw=tan™ =, show that die="""-"174
Y ¥yt
260. JFwercise. 'Try if the equation
(,ZL‘]' — 1 glv 1)
== G s (

has a solution like v =e*sin (¢ + ye), and if 5o, find a and +,
and make it fit the case¢ in which v=0 when 2= w0, and
v=qasin gt where 2=0. We leave out the brackets of

dv
( (z’rt7> &e.

gv = ae® sin (gt 4 yar) + € oy eos (gt + ),
o

(5'1; = %% «in ((jt + r\/’l) + e cos (qt + )
dur ’

+ arye™ cos (gt + ) — e*'y* sin (gt 4 yar).

Also ((][;) = e cos (qf + yr),
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so that to satisfy (1) for all values of ¢ and »
= =0 o0ra=+r,
q
and ay tay=".

q .
As s not 7ero, o =+ ¢ only,
K

2 2:.(!_ = /\/izr\
Zo K,O( + 9 Y-

Hence we have
v=Aesin (gt + ax) + Be ¥ sin (gt — o),

2mn ™
where 4 and B are any constants, and ¢ = \/ 5o or -
“K

K
if g=2mn. Now if v=0 when &= oo, obviously 4 =0. 1If
v = asin gt where = 0, obviously B =u.

Hence the answer Is

1:17 T
Sa, [ Th
v = e '\/" sin (27t — ——>

K

(2).
261. Let a point I’ be moving in a curved path

SPQ; let AP =w, BP =y,

d.'l?

dae ™

(%f and t(i;g

and OY.
Let OP=r, BOP =0, v =1cosf, y=rsind. The acceler-

ation or velocity of P in any

d d%j being the velocities in the directions OX and 0F,

being the accelerations in the directions OX

direction is to be obtained just
as we resolve forces. Thus the ™ Q
velocity in the direction o is Y AN
dx dy . A Ap
——cos §+ -2 sind...(1),
dt + (1) /
and 1n the direction P71 which >
is at right angles to 7, the BJ X
veloeity is Tig. 104. g
de . dy
—~ - N -necos Ol 2
g5 5 0+ gy CO8 a (2).
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Now differentiating 2 and 7, as functions of the variables

» and 6, since <g:> =cos # and l\_%> = — psin 6,

de  dr ., do .

(?t = ("Zz COs 0 — 1" 811 9 dz ............... (-;),

dy _dr o ,de ,

= (—Zmn(9+7cts0m ............... (4).
Solving (3) and (4) for i and » d[(:, we find

drdr dy . «

i T g+ Jp S g ... (),

f{f ‘fét' 19+d P R (6).
From (1) and (2) we sce therefore that %’t is the veloeity

in the direction OP and that » glif is the veloeity in the

direction P7T. Some readers may think this obvious.

Now if we resolve the w and y accelerations in the
direction of OP and P71, as we did the velocities, and if we
agamn differentiate (3) and (4) with regard to ¢, we find

Acceleration in direction 0P = (1{[ cos ¢ + d %111 0...(7),

Acceleration in direction P71 = — %? sin 6 + l‘/ cos 8...(8).
And

{dt, _ ((33)25 cos  — ( Z; Cf{? + 7 ‘th(D sind ...(9),
d2 d dé\?) drdf = d6 :
{dt <c7t) (\1119+ ( i di T e >Cus 8...(10).

Aud hence, the acceleration in the direetion #» 1s (and
this is not very obvious without our proof),
d*r , '¢Z€>
de T \dt
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and the acceleration in the direction PT is

pdrdd @0 1d( o
dt dt " ag’ dt( dt)
.46 is usually called . It is evidently twice the area per

dt . 1dh
second swept over by the radius vector, and (12) is - 0

P

262. If the force causing motion is a central Force,
an attraction in the direction PO, which is a function of
7 per unit mass of P, say f(r); or mf(r) on the mass m at

P then (12) is 0, or 7? Fi constant, or . constant. Hence

under the influence of a central force, the radius vector
sweeps oub equal areas in equal times.

Equating mf(r) to the mass multiplied by the accelera-
tion in the direction PO we have

do\:  daw .
Foy=r (dt> e, (13).
,do . .
But »? i I o constant.  As # is a function of 6
dr dr df _drh
Td6dt T der
d% d% b 2 h d;) A A
dt: = \dé* 1 (dﬁ IEs
and we can use these values in (] 3) to climinate ¢.
If we use ]1( for , (13) simplifies into
d?u :
f (r) = h?u? (W-'- u) ............... (14).
If f()=w or au”, an attraction varylng inversely as
the nth power of the distance, 716‘ +u= ? W = bu ) say.

Multiplying by 2- du and integrating, we have

dé

du e 2 -
(?ZH) -+ u = L O RO (15).
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Thus let the law be that of the inverse square,
F()=ar™or a*; (14) becomes

drue
= htu? <*

)
a6t

_d%+u U
ae? T T
Let w =u—~ D, then

d*w

(‘{9‘2 + W = 0.

The solution of this is,
w=A4 cos (0 + B),
and 16 may be written
1 «a
r k2

This 1s known as the polar equation to a conic section,
the focus being the pole. The nature of the conic section
depends upon the initial conditions.

(15) enables us, when given the shape of path, to
find the law of central force which produces it. Thus if a
particle describes an ellipse under an attraction always
directed towards the centre, it will be found that the force of
attraction is proportional to distance. It is easier when given
this law to find the path. For if the force is proportional
to PO, the & component of it is proportional to @, and the y
component to . If the accelerations in these directions are
written down, we find that simple harmonic motions of the
same period are executed in these two directions and the
composition of such motions is well known to give an
celliptic path. 1f the law of attraction is the inverse cube

H = =

{1+ecos(f@—a)y ......... (16).

2
or f{ir) = ar =’ (14) becomes g‘; = /(/L .
1t ;t cl=a? w=de? + Be
2
If 1—%:B{w=/umbH+BmmB&
2

giving curionsly different answers according to the initial
conditions of the motion,
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263. If z=17cosf, y=rsin g, so that if ¥ is a function
of @,7 must be a function of @; if v is any function of 2 and Y,
1t 1s also a function of » and 4.

, ‘d Tuy . .
KExpress (?Z_Tit) and ( z]:j/) n terms of the polar co-ordinates
7 and 6.
du\ _ sdu\dz  duy dy ,
(d_> = (gzﬁ ar T <d“/> i (),
@ being supposed coustant, and
du ‘duy de | duy dy
<%> = <d") ot (\@) = S (2),
7 being supposed constant,
Now i—(‘; if » is constant = — » sin ¢,
dy .. . ,
70 if 9 1s constant = » cos 6,
g? if 8 1s constant = cos 6,
2?7/ if 4 is constant = sin 4,
Treating Gﬁ—q—&) and <ng> in (1) and (2) as unknown, and
finding them, we have
du duy 1 . /du .
<EZ—|Z') =cos 4. <ZZ;> - /'_ sin @, <@> ......... (3),
rdwy (duwy 1 duw
k;[j) =sinf. Ld7> + 7 cos a. (2{9) ......... (4).

d

Notice that in <Z{ff,> , the bracket means that y is supposcd
A

to be constant 1n the differentiation.

In (%) , 1t is @ that is supposed to be constant,
T ]
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In (3) or (4) treat (d_u> or (du) as 1 is treated, and find
d’u d2u da dy
— and -—.
da? dy®
likely to occur, and this practice is excellent as one must
think very carefully at every step. Prove that

d’u  d%u _d2u+ 1 du+ 1 d%2u (
e +dy2 = F T ar ) d02 ............

However carefully one works, mistakes arve

5).

264. Sometimes instead of #, y and z, we use », 6, ¢
co-ordinates for a point in space. Imagine that from the
centre of the earth O (Fig. 105), we have OZ the axis of the
earth, OX a line at right angles to 0Z, the plane ZOX being
through Greenwich; OY a line at right angles to the other
two. The position of a puint P is defined by « its distance

IRy

~

!
d
-Seg
\
A
\
«

N

ey
~

LT - ¥ L ARy

Tig. 10

from the plane Z0Y, y its distance from the plane ZOX, z its
distance from the equatorial plane YOX. Let » be OP the
distance of the point from 0. Let ¢ be the west longitude
or the angle between the planes POZ and X0Z; or if @ be
the foot of the perpendicular from P upon XOY, the angle
QOX is ¢. Let 8 be the co-latitude or the angle POZ.
Then it is easy for anyone who has done practical geometry
to see that, drawing the lines in the figure, QRO is a
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right angle and OR ==, QR =1y, also PQO is a right angle,
a=7rsinf.cosp, y=rsinf.sing, z=rcosd If u is a
given function of @, y and z, it can be expressed in terms of
r, 0 and ¢, by making substitutions. It is an excellent
exercise to prove

duw cosf.cospdu  sing du

du .
dn o 0 cos ¢ dr * » d0 rsin 6 8(7‘[) ’

du . . du cos@. sig [ du  cos¢  du
dy S OsIG p  in 0 dg
du du _ sin 8 du

i =

It will be noticed that we easily slip into the habit of
leaving out the brackets indicating partial differentiation.

The average student will not have the patience, possibly
he may not be able to work sufficiently accurately, to prove
that

d?u d2u+d2u_d2u+_1_<_lfL1
dxz-"'dy2 dzZ ~ ar? | 2 det

1 d2u+2du+cot0du
rzsin20'dgz§2 r dr rr d@ (

This relation is of very great practical importance.

+

265. The foundation of much practieal work consists in
understanding the equation
d*u + A dru 1 du
d Yt s T e d
where ¢ is time. For example, we must solve (1) in Heat
. . . . da
Conduction Problems if u is temperature, or in casc E:()
d
and w is electric or imagnetic potential, ov velocity potential,
in Hydrodynamics.
(1) is usnally written
1 du

Vi = ——. . ... A(2).
u pir LRI ITIITEP RO (
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We see then in (A) the form that Ve takes, In terws of »,
0 and ¢ co-ordinates.

We know that if « is symmetrical about the axis of z,
that is, it w is independent of ¢, the above expression

becomm

o Ldie | 2du | cot @du .
‘- l(,—a;"; + 7—.:20—‘)“{— (‘]) + ‘/’lz""'d‘é ......... (-)).

266. Students are asked to work out every step of the
following long example with great care. The more time
taken, the befter. This example contains all the essential
part of the theory of Zonal Spherical Harmonics, so
very useful in Practical Problems in Heat, Mfwnetlbm,
Electricity, Hydrodynamics and Gravitation. When w is
independent of ¢ we sometines write (2) in the form

de _« (d du) 1 d du\)

di (d)< dr) T sm gdo (b“gde) """ (1,
w being a function of time ¢, » and 6. The student had
better see 1f 1t is correct according to (3).

du

If i 0, show that the equation becomes
d T du di  d*u
* e 9
(/)— + 2 i +¢ tﬂd(} Tt =0......... (2).

Try if there is a solution of the form u = RP where R is
a function of » only, and I’ is a function of @ only, and show
that we have
AR 2rdR 1dP 1 &P )
B +IL o= ntgl) a0 " Pdg (3).

Now the left-hand side contains only » and no 6, the
right-hand side contains only 8 and no 7. Consequently each
of them must be a constant. Let this constant be called ¢
and we have

AR 2dR  RC

Dt T =0 (4),
d2P ar .
T +cot 8 - 10 +PC=0.000......... . (5).
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There is no restriction as to the value of (! and it must
be the same in (4) and (5), and then the product of the two
answers 1s a value of « which will satisfy (2). The solutions
of many linear Partial Differential Equations arc obtained
in the form of a product in this way. There are numberless
other solutions but we can make good practical usc of these,

We have then reduced our solution of the Partial Differ-
ential Equation (1), to the solution of a pair of ordinary
differential equations (4) and (5). Now a solution of (4) may
be found by trial to be ™, and when this is the case we have
a method (see Art. 268) of proving the general solution to be

B=Apm Bp—tmtn (6),
where (i 7 (m 4+ 1); anyhow (6) will be found by trial to
answer. Using this way of writing ¢ in (5) and letting
cos 0= p, we find that we have an equation called Legendrc’s
Equation, an ordinary linear equation of the 2nd order

d dp
-— — 112} — = (7
d,u.{(l /,A)d’u}+m(m+1)P_O ...... (7).

We now find it convenient to restrict m. Let e be a
positive integer, and try if there is a solution of (7) in the
form

LP=14 A+ du2+ A p® + &e.

Calling it P, () or P, (8), the answers are found to be
P, (0)=1, if w is put 0, P {(0) =y, if m is put 1,
P.(60) =3p*— %, if i is put 2, Py(8) = 5w — 3p, if mis put 3,
Py (0) =355 — 3047 + 3 1f i is put 4.

A student will find it a good exercise to work out these
to Py, My pupils have worked out tables of values of P,, P,
Py, &ec., to I, for every degree from 6=0to §=180". See
the Proceedings of the Physical Society, London, Nov. 14,

1890, where clear instructions are given as to the use of
Zonal Harmonics in solving practical probleras.

We see then that

(Arm + lf‘il) N TR (8)
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is a solution of (1). A practical problem usually consists in
this :—Find w to satisfy (1) and also to satisfy certain limit-
ing conditions. In a great number of cases terms like (8)
have only to be added together to give the complete solution
wanted,

In the present book I think that it would be unwise to do
more in this subject than to set the above very beautiful
exercise as an example of casy differentiation.

(8) is usually called The Solid Zonal Harmonic of

the mth degree, P, () is called the Surface Zonal
Harmonic of the mth degree.

267. In many axial problems, w is a function only of
time and of » the distance of a point from an axis, and we
require solutions of (1) which in this case becomes

w1 du 1du

e o p gl; .................. (.
Let us, as before, look for a solution in the form
w=RT. (2),

where R is a function of 7 only and 7'is a function of ¢ only.
(1) becomes )
@R 1, dR 1 dYf
Tae Tl =2
Dividing by RT
Ld'R 11dR 11d7 .
Rde iR dr el de T TR

where u® 1s a constant.

”r

" dl m
Then Y iate reprdt or log 1'=— wut + ¢, or

T="Ce=t i, (3),
where €' is an arbitrary constant.  We must now solve
B 1dLi
;’[?": ;« E* R = O .................. (“1‘)
Let » =;-L and (4) becomes
@*R 1dR

=t
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Assume now that therc is a solution of (5) of the shape
R=1+Ax+ Ba?+ Co?+ Dot + Eni + Fub + Ga? + &,
we find that A =('= E = G'=0 and in fact that

x?  xt x5 x5 )
k=1 ~;t pyrie m+m— &c....(6).

This is an important series first used by Fourier, although
it has Bessel’s name. It is called the Zeroth Bessel and
the symbol J, (z) is used for it. Tables are published which
enable us for any value of & to find J,(«). Thus then
B =J,(pr) is a solution of (4), and hence

w= et J (wry oo (7)

is a solution of (1). Any solution of (1) needed in a practical
problem is usually built up of the sum of terms like (7), where
different values of 4 and different values ot (f are selected to
suit the given conditions.

268. In the lincar differential equation

(fy )@ Ny —
d:’i'5+1 d$+(3y—() .................. (L),

when P and ) are functions of z, if we know a particular
solution, say y =v, we can find the general solution.

Substitute y = vu, and we get

+ Pu) D (2).

¥ 2
S+ dn

ax= \ (L

du (dv

Calling g%: ', (2) becones

du’ ;_de .
0o (2o F Pou =
‘ de Q @ U) “ ),

,Z / d
or A2 Pde=0,

or log ' + log v? +j P . dx = constant.
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Let [ dz =X then v or (fl-ig 1 £e~ X
da v?
1 _
w=2>01+ A[?; e Yodo (3).

Thus we find the general solution
1
y:Bu-{—A'uf;e Yodw o, (4),

where 4 and B are arbitrary constants. Even if the
right-hand side is not zero, the above substitution will
enable the solution to be found, if v is a solution when the
right-hand side is 0.

Fasy Ezample.  One solution of
lo

= +a—ao—0 18 = cos ax.

dz?
Find the general solution.
Here P =0 so that J P de=X=0.

[ de
Heunce y =1 cos ar+ A cos (ij —

costaw’

da

1
and as ’ — =~ tan ax,
Jeostax  a

we have as the general solution
y =B cos ax + ('sin ax.

Ezercise.  We find by trial that y = 2" is a solution 