
MATHEMA TICS: M. H. A. NEWMAN

5 Cf. abstract, Bull. Amer. Math. Soc., 34, 1928 (551). Whyburn's paper, "Con-
cerning Points of Continuous Curves Defined by Certain im Kleinen Properties," which
contains this example in full, is to appear in an early issue of Math. Ann. My ability
to reproduce it here is due to Professor Whyburn's kindness in communicating it to me.

6 Hausdorff, Grundzuge der Mengenlehre, Leipzig, 1914, p. 213.
7 If K is a set of points, by K' we denote the set consisting of K together with its

limit points.
8 These PROCZECDIGS, 12, 1926 (761-767).
9 Compare the first part of this proof with that given by Whyburn for the case cited

above.
10 Wilder, R. L., Bull. Amer. Math. Soc., 32, 1926 (338-340). It is clear from its

proof that this theorem is true in any topological space.
21 Moore, R. L., Math. Zs., 15, 1922 (254-260).
12 Wilder, R. L., Bull. Amer. Math. Soc., 34, 1928 (649-655). The theorem quoted

here was proved for euclidean spaces, but it is clear that it holds in any locally compact
metric space, and, indeed, may be proved directly by use of the imbedding theorem
employed in proving Theorem 4 below, and hence so that N is of the same dimension
(Menger-Urysohn) as H, etc.

13 Kline, J. R., abstract, BuU. Amer. Math. Soc., 34, 1928 (263).
14Wilder, R. L., these PROCXEDINGS, 11, 1925 (725-728). Although the proof is

given in the terminology of the plane, it is clear that the theorem referred to is true in
any localy compact metric space; in fact, the necessity proof holds in any topological
space.

COMBINATORY TOPOLOGY OF CONVEX REGIONS
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In a recent paper' I have shown that a set of rectilinear simplexes
filling a convex region in R. (Euclidean n-space) form an En, i.e., an
n-element in the combinatory sense. The first part of the proof there
given may be replaced by the considerably shorter argument which follows.
For the idea of this simplification I am indebted to Professor J. W. Alex-
ander.
The theorem to be proved is as follows:
If An is afinite collection of (closed) rectilinear n-simplexes in R& satisfy-

ing the conditions: (R,) any two simplexes have either nothing or a k-com-
ponent in common (O < k < n - 1); (R2) the points of An form a convex
region in 1?,; then the set of simplexes form an En.

Consider a convex region divided into convex rectilinear n-cells of any
type, where by a convex rectilinear n-cell is meant a closed bounded
region cut out of R, + 1 by a finite number of flat (n - 1)-folds. A set
of simplexes satisfying R, and R2 can be obtained from such a collection of
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cells by regular subdivision, i.e., by replacing the 1-, 2-, . . ., n-cells suc-
cessively by 1-, 2-, ..., n-stars of simplexes. An argument used in the
paper referred to2 shows that if it could be proved that regular subdivision
of any such convex collection of convex cells (in particular of A.), leads
to an E,, it would follow that A,, itself is an E,. We wish then to prove
THJORJM A. If K,, is a set of convex rectilinear n-cells filling a convex

region in R, in such a way that the common part of two cells is either nothing
or a k-cell of both (O . k . n - 1), then the set of simplexes obtained by
regular subdivision of K,, is an E..
The theorem being trivial if n = 1, suppose it true of sets of cells in R-,.1
We can derive from K. another collection of cells K*, of a more special

type, by "producing" all the (n - l)-dimensional faces, i.e., introducing
as barriers the complete intersection of K,, with all flat (n - 1)-folds
containing an (n - 1)-face of an n-cell. This has the effect of replacing
each n-cell of K.. by a collection of n-cells of the type of K, itself. By
the argument already referred to2 if Theorem A can be proved for Kn
its truth follows for Kn.
Kn has these properties: (P1) no two boundary (n - 1)-cells of the

same n-cell lie in the same flat (n - 1)-fold, (P2) if a flat (n- 1)-fold
contains an (n - 1)-cell all its points in Kn belong to (n - 1)-cells.

(a) Suppose K* consists of a single cell. Let C,,_1 be any boundary
(n - 1)-cell, II,,.- l the sum of the remaining (n - 1)-cells,3 r,,.-1 the (n - 1)-
fold containing C,,,. Let V be a point separated from the interior of
Kn by 7r-, but so near the center of gravity of C,,. that if a straight
line through V meets K. it meets C,,-. Since Kn is convex it follows
that every line through V which contains a point of K. contains one point
of C,, -.1 and one point of H.- Thus projection of IInl,- on to xn- from
V gives a (1,1)-continuous representation of H. - as a set of convex recti-
linear (n - 1)-cells filling the convex region C..-1. The conditions of
Theorem A are satisfied (with n - 1 for n) and Il-,,l on regular sub-
division, becomes an E.-1. Hence, by a known theorem,4 C,,_.1 + ]E[,
the complete boundary of K, becomes on regular subdivision a Z,",
a combinatory (n - l)-sphere. It now follows5 that regular subdivision
of K*-the join of a central vertex to a M.- 1-gives an En.

(b) The proof for any set of cells K* satisfying (P1) and (P2) now
proceeds by induction through the number of cells. Let P,,_- be any
(n - 1)-fold containing an (n - 1)-cell interior to K*. No cell of Kn is
divided in two by p,,-: two cells lying on its two sides form two collections
of n-cells satisfying (P1) and (P2), which by an inductive hypothesis, may
be assumed to become two E.'s on regular subdivision. Their common
points form a set of (n - 1)-cells, satisfying (P1) and (P2), i.e., on regular
subdivision they form an E,,-,. Hence6 the sum of the two E,,'s is itself
an E,
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This completes the proof of Theorem A.
1Proc. Lond. Math. Soc., 30, 1930 (339-346). For definitions of combinatory

entities see two papers, Proc. Roy. Soc. Amsterdam, 29, 1926 (610-641), here cited as
FI and FlI.

2 Loc. cit., p. 343, par. (d).
3 All simplexes and cells in this paper are closed sets.
4 F II, Theorem 6, Coroll. 1.
'FF, 12.
6 F II, Theorem 8a, Coroll.

SOME REMARKS ON THE PROBLEM OF PLATEA U

BY TIBOR RAD6
D&PARTMSNT OF MATHUiATIcs, HARvARD UNIVERSITY

Communicated December 19, 1929

1. The following remarks are concerned with a recent paper of R.
Garnier on the problem of Plateau.' This problem, as investigated by
Gamier according to the ideas of Riemann, Weierstrass and Schwartz,
may be stated in the following analytic form:

Given, in the xyz-space, a simple closed curve r*. Determine three
functions x(u,v), y(u, v), z(u, v) with the following properties.

I. x(u, v), y(u, v), z(u, v) are harmonic for u2 + v2 <1
II. Satisfy for u2 + v2 < 1 the relations

XU++ y2+ ZU = XD + yV + Z2V,
XuX, + YuYD + ZuZv = 0.

III. x(u, v), y(u, v), z(u, v) remain continuous on the unit circle u2 + v2= 1
and carry the unit circle in a one-to-one and continuous way into the
given curve r*.2
We shall see (§11), that at least for a certain class of curves r* the

surface x = x(u, v), y = (u, v), z = z(u, v) is uniquely determined by the
above conditions; therefore it is not advisable to restrict the problem
by any further conditions.

2. The solution, given by Gamier, of the problem of Plateau, can be
greatly simplified by the following

Theorem of Approximation.-Let rT be a sequence of simple closed
curves in the xyz-space with the following properties.

(a) The length l(r*) of r* is uniformly bounded: l(r*) _ L.
(,) The problem of Plateau (as stated above) is solvable for rI (n =

1, 2, ...).
(-y) The sequence r* converges in the sense of Frechet toward a simple

closed curve r*.3
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