Elastizität und Festigkeit

von

A. Shte A. uflage

Elastizität und Festigkeit.

Die für die Technik wichtigsten Sätze und deren erfahrungsmäßige Grundlage.

Von

Dr.-Ing. C. Bach,

Württ Staatsrat, Professor des Maschinen-Ingenieurwesens, Vorstand des Ingenieurlaboratoriums und der Materialprüfungsanstalt an der Technischen Hochschule Stuttgart.

Achte, vermehrte Auflage.

Unter Mitwirkung von Professor R. Baumann, Stellvertreter des Vorstandes der Materialprüfungsanstalt an der Technischen Hochschule Stuttgart.

Mit in den Text gedruckten Abbildungen, 2 Buchdrucktafeln und 25 Tafeln in Lichtdruck.

Springer-Verlag Berlin Heidelberg GmbH 1920.

Der Verfasser behält sich das Recht der Übersetzung in fremde Sprachen vor.

Copyright by Springer-Verlag Berlin Heidelberg 1920 Ursprünglich erschienen bei Julius Springer in Berlin 1920 Softcover reprint of the hardcover 8th edition 1920

ISBN 978-3-662-27316-6 ISBN 978-3-662-28803-0 (eBook) DOI 10.1007/978-3-662-28803-0

Additional material to this book can be downloaded from http://extras.springer.com

Vorwort zur ersten Auflage.

Die vorliegende Arbeit, welche in zwei Lieferungen erschienen ist, von denen die erste, bis § 40 reichend, Ende Februar und die zweite Ende September 1889 abgeschlossen wurde, war — in beschränkterem Umfange und mit Hinweglassung dessen, was sonst anderwärts zusammengestellt zu finden ist — ursprünglich nur für die Zuhörer meines Vortrags über die Elastizitätslehre bestimmt, mit dem Ziele, ihnen die erfahrungsmäßigen Grundlagen der technischen Elastizitäts- und Festigkeitslehre zu bieten, ohne hierzu die für die Vorlesung verfügbare Zeit (3 Stunden im Sommersemester), welche mit Rücksicht auf die Behandlung der schwierigen Aufgaben dieses Gebiets an und für sich knapp bemessen erscheint, in Anspruch nehmen zu müssen. Wiederholten Anregungen schließlich Folge leistend, übergebe ich dieselbe mit den hierdurch bedingten Erweiterungen an die Öffentlichkeit.

Siegeht davon aus, daß es in erster Linie auf die Erkenntnis des tatsächlichen Verhaltens der Materialien ankommt.

In Gemäßheit dieses Standpunktes war zunächst der unanschauliche Begriff des Elastizitätsmoduls fallen zu lassen. Selbst wenn man von der verbreiteten und angesichts des wirklichen Verhaltens der Stoffe höchst bedenklichen Begriffsbestimmung absieht, nach der unter Elastizitätsmodul diejenige Kraft zu verstehen ist, welche ein Prisma vom Querschnitte 1 um seine eigene Länge ausdehnen würde, falls dies ohne Überschreitung der Elastizitätsgrenze möglich wäre, so erweist sich der Umstand, daß der als Maß der Elastizität für die Betrachtungen und Rechnungen geschaffene Elastizitätsmodul umgekehrt proportional der Elastizität ist, als außerordentlich Durch Einführung des Dehnungskoeffizienten (§ 2). störend. dessen Größe in geradem Verhältnise zur Formänderung steht, läßt sich dieser Übelstand auf einfache Weise beseitigen. Demgemäß sind sämtliche Rechnungen und Erörterungen mittels des Dehnungskoeffizienten durchgeführt. Die Gewinnung von Maßen für den Dehnungsrest und für die Federung, d. i. die eigentliche Elastizität zum Unterschied von dem Maße für die Gesamtdehnung, ist damit ohne weiteres gesichert.

An die Stelle des der Anschauung unzugänglichen Schubelastizitätsmoduls tritt der Schubkoeffizient (§ 29), dessen Bedeutung unmittelbar aus dem Vorgange der Schiebung folgt.

Sodann war der mit der Längsdehnung (Zusammendrückung) verknüpften Querzusammenziehung (Querdehnung) (§ 1) und deren Einfluß (§ 7, § 9, Ziff. 1, § 14, § 20, Ziff. 2, S. 82 usw.) mehr Beachtung zu schenken, als dies sonst zu geschehen pflegt; zumal in weiten Kreisen z. Z. noch die Auffassung besteht, daß die Proportionalität zwischen Dehnungen und Spannungen innerhalb gewisser Spannungsgrenzen allgemein gültig sei, gleichgültig, ob außer der Zug- und Druckkraft, welche in Richtung der Stabachse wirkt, auch noch Kräfte senkrecht zu letzterer tätig sind oder nicht.

Ferner mußten aus der meist ganz unbeachtet gelassenen Tatsache, daß die eben erwähnte Proportionalität überhaupt nicht für alle der Technik wichtigen Materialien vorhanden ist, die nötigen Folgerungen gezogen werden. Dies trifft beispielsweise zu für das dem Maschinenbau unentbehrliche und daselbst so vielfach verwendete Gußeisen, bei dem die Dehnungen rascher wachsen als die Spannungen; für das als Kraftübertragungsmittel so wichtige Leder, bei welchem das Umgekehrte stattfindet, usf. (insbesondere § 2, § 20, Ziff. 4, S. 85 u. f., § 22, Ziff. 2, § 26, S. 113, Fußbemerkung 1, § 35 und § 36, § 40, § 41, § 56, S. 324 u. f., § 58, S. 344, Fußbemerkung usw.).

Was Einzelheiten anlangt, so glaubte ich Wert legen zu sollen auf die Klarlegung von Begriffen wie Festigkeit (§ 3), Proportionalitäts- und Elastizitätsgrenze (§ 2, § 4), Knickbelastung (§ 23), Zerknickungskoeffizient (§ 26), zulässige Anstrengung (§ 48, Ziff. 1), Einspannung (§ 53) usw. sowie auf die Beseitigung von eingebürgerten Irrtümern. Wie oft wird beispielsweise die Berechnung auf Schub vorgeschrieben, wo Biegung maßgebend ist (§ 40, § 52); wie allgemein ist bei Ermittlung des Dehnungskoeffizienten (Elastizitätsmoduls) aus Biegungsversuchen der Einfluß der Schubkraft vernachlässigt worden (§ 22, Ziff. 1, § 52, Ziff. 2b); wie verbreitet ist die Auffassung der unbedingten Gültigkeit der Gleichung der einfachen Zugund Druckfestigkeit, nach welcher es nur auf die Größe des Querschnittes ankommt (§ 9, § 13, § 14); wie selten wird erkannt, daß die Druckfestigkeit bei Materialien, wie weichem Stahl usw., die Fließ- oder Quetschgrenze ist (§ 11, Schluß; § 27, Ziff. 1, S. 122 usf.).

Die bedeutende Abhängigkeit der Biegungsfestigkeit des Gaßeisens von der Querschnittsform war so weit festzustellen, daß sie rechnungsmäßig berücksichtigt werden kann (§ 20, § 22, Ziff. 2).

Das immer dringender gewordene Bedürfnis, die Anstrengung auf Drehung beanspruchter Körper von nichtkreisförmigem Querschnitt mit mehr Sicherheit feststellen zu können, als dies bisher möglich war, verlangte eine eingehende Behandlung der hierher gehörigen Aufgaben (§ 32 bis § 36, § 43, § 47, § 49, § 50, § 52, Fußbemerkung S. 281 und 282). Dabei ergab sich die Notwendigkeit, Formänderungen ins Auge zu fassen, die bisher bei Beurteilung der Materialanstrengung ganz unbeachtet gelassen worden waren (§ 34, Ziff. 3).

Dem Umstande, daß die zulässige Schubspannung zur zulässigen Normalspannung ziemlich häufig nicht in dem Verhältnisse steht, wie dies die Elastizitätslehre ermittelte (Gleichung 101, 102 [§ 31, Gleichung 5 und 6]), habe ich — wie bereits in meinen Maschinenelementen 1880 getan (S. 11, S. 205 u. f. daselbst) — durch Einführung des Anstrengungsverhältnisses Rechnung getragen (α_0 in § 48 Ziff. 2, auch β_0 in § 45, Ziff. 1).

Die Außerachtlassung der schon ursprünglich vorhandenen Krümmung der Mittellinie bei auf Biegung beanspruchten Körpern erschien nicht mehr in dem Maße zulässig, wie dies bisher bei Berechnung von Kettenhaken und dergleichen ziemlich allgemein üblich war. Wenn auch die Endergebnisse der mit Rücksicht hierauf in § 54 angestellten Erörterungen nichts Neues bieten, so dürfte doch der hierbei eingeschlagene Weg zur Gewinnung eines besseren Einblicks in die Anstrengungsverhältnisse sowie dazu beitragen, daß mancher, welcher bisher die ursprüngliche Krümmung nicht berücksichtigte, sie mindestens schätzungsweise bei Wahl der zulässigen Anstrengung in Betracht zieht.

In § 60 war die Anstrengung der elliptischen Platte zu bestimmen; außerdem waren bisher nicht beachtete Einflüsse festzustellen. Weitergehende Ermittlungen mußten namentlich bei den großen Schwierigkeiten, welche hierauf bezüglichen Versuchen begegnen, zunächst unterbleiben.

Gern hätte ich Versuche der in § 56 behandelten Art in größerem Umfange sowie auch solche zu § 57 durchgeführt. Da mir aber weder für meine Lehrtätigkeit noch für meine Versuchsarbeiten ein Assistent zur Verfügung steht, und der eigenen Arbeitskraft durch die Natur eine Grenze gezogen ist, auch die übrigen Mittel sehr knapp bemessen sind, so mußte wenigstens vorerst Beschränkung geübt werden. Dieselbe Bemerkung hat auch Geltung für andere Abschnitte, insbesondere für § 61.

Im ganzen habe ich mich namentlich im Hinblick auf die Bedürfnisse der mitten in der Ausführung stehenden Ingenieure bestrebt, die einzelnen Entwicklungen so viel als tunlich für sich allein verständlich durchzuführen und den hierzu erforderlichen mathematischen Apparat unter Heranziehung von Versuchen nach Möglichkeit zu beschränken. Daß sich auf diesem Wege Aufgaben, welche sonst trotz ihrer großen Wichtigkeit gar nicht oder nur ganz ausnahmsweise behandelt zu werden pflegen, recht klar und dazu fruchtbringender, als es bisher geschehen ist, erörtern lassen, davon dürften beispielsweise die § 33, 34 und 43, S. 220 u. f., sowie § 52, Ziff. 2, Zeugnis ablegen. Die Tatsache, daß die vor vier Jahrzehnten von de Saint Venant gegebene Lösung der Torsionsaufgabe — ungeachtet ihrer wissenschaftlichen Strenge — nur ganz vereinzelt Eingang in die technische Literatur gefunden hat, dürfte vorzugsweise in dem Mangel an verhältnismäßiger Einfachheit der zur Lösung führenden Rechnung begründet sein.

Um den Umfang des Buches innerhalb einer gewissen Grenze zu halten, wurde die zweite Lieferung etwas weniger umfassend gestaltet, als ursprünglich geplant war, wodurch übrigens die Anschauung über die wirklichen Vorgänge, über das tatsächliche Verhalten des Materials eine Beeinträchtigung nicht erfährt. Es erschien dies um so mehr zulässig, als seit Abschluß der ersten Lieferung das v. Tetmajersche Werk: "Die angewandte Elastizitäts- und Festigkeitslehre" mit einer Fülle von Beobachtungsmaterial zur Ausgabe gelangt ist (siehe auch des Verfassers Besprechung dieses Buches in der Zeitschrift des Vereines deutscher Ingenieure 1889, S. 452-455 und S. 473-479), und überdies die wertvollen Arbeiten von Mehrtens vorliegen. Beispiele und Erfahrungszahlen glaubte ich ohnehin als naturgemäß in meine Maschinenelemente gehörig dahin verweisen zu sollen.

Möge auch diese Arbeit, welche nicht mehr als ein Schritț in neuer Richtung sein soll, zur Förderung der Technik und damit der Industrie beitragen, indem sie die Bedeutung der Erkenntnis des tatsächlichen Verhaltens der Materialien klarlegt, und indem aus ihr erhellt,

daß es nicht genügt, von dem Satze der Proportionalität zwischen Dehnungen und Spannungen allein ausgehend, das ganze Gebäude der Elastizität und Festigkeit auf mathematischer Grundlage aufzubauen,

daß es vielmehr für den Konstrukteur — namentlich wenn er in voller Erkenntnis der wirklichen Verhältnisse die Abmessungen festsetzen und sich nicht in dem Geleise hergebrachter Formen halten will — notwendig erscheint, immer und immer wieder die Voraussetzungen der einzelnen Gleichungen, welche er benützt, im Spiegel der Erfahrungen, soweit solche vorliegen, sich zu vergegenwärtigen und die auf dem Wege der Überlegung, der mathematischen Ableitung gewonnenen Beziehungen hinsichtlich des Grades ihrer Genauigkeit zu beurteilen, soweit dies bei dem jeweiligen Stande unserer Erkenntnis überhaupt möglich ist,

und daß da, wo die letzteren und die Überlegung — Aufsuchung und Ausbildung neuer Methoden eingeschlossen — nicht ausreichen, in erster Linie durch den Versuch Fragestellung an die Natur zu erfolgen hat.

Stuttgart, den 30. September 1889.

Vorwort zur zweiten Auflage.

Die zweite Auflage unterscheidet sich von der ersten — abgesehen von der Umarbeitung des Abschnittes über die plattenförmigen Körper — in der Hauptsache durch Ergänzungen, entsprechend einer Vermehrung des Textes um 56 Seiten. Beschränkung in dieser Hinsicht zu üben, erschien schon deshalb angezeigt, um dem Buche das Eindringen in weitere Kreise zu sichern, wozu gehört, daß der Preis desselben eine gewisse Grenze nicht überschreitet. Hierin lag auch der Grund, der veranlaßte, davon abzusehen, die ursprüngliche Idee, eine Anzahl von Aufgaben nebst Lösungen aufzunehmen, zur Ausführung zu bringen.

Die Grundgedanken, welche bei Abfassung der ersten Auflage maßgebend waren, sind die leitenden geblieben, weshalb ich in dieser Beziehung nichts hinzuzufügen habe. Daß die Ersetzung des Elastizitätsmoduls durch den Dehnungskoeffizienten nicht ohne Bemängelung abgehen würde, war vorauszusehen. Demgegenüber kann ich nur auf die Arbeit selbst, insbesondere auf die Fußbemerkung zu § 2, verweisen, welche durch Übernahme einer bereits in der zweiten Auflage meiner Maschinenelemente gegebenen Darlegung ergänzt worden ist. Im Laufe der Zeit wird sich von selbst entscheiden, ob die Begriffe "Elastizitätsmodul" und "Schubelastizitätsmodul" das Feld behaupten, oder ob die Begriffe "Dehnungskoeffizient" und "Schubkoeffizient" an deren Stelle treten werden.

Im ganzen hat sich die Arbeit einer so wohlwollenden Aufnahme seitens der Fachgenossen zu erfreuen gehabt, daß ich nicht umhin kann, für die außerordentliche Förderung, welche hierin liegt, zu danken. Die Arbeitskraft des einzelnen ist eine begrenzte und das Arbeitsfeld des Maschineningenieurwesens ein so ausgedehntes, daß der einzelne selbst nur einen kleinen Beitrag durch das in seinen Arbeiten enthaltene Neue zu leisten vermag, infolgedessen dieses der entschiedenen Förderung durch die Fachgenossen bedarf, soll der Fortschritt ein allgemeiner und damit ein erheblicher werden.

Stuttgart, den 1. Juni 1894.

Vorwort zur dritten Auflage.

Die dritte Auflage ist, abgesehen von einer Anzahl rechnerischer Ergänzungen, vorzugsweise durch Aufnahme von Versuchsergebnissen und den hierzu gehörigen Darlegungen in Zahl, Wort und Bild ergänzt worden. Ich halte es für zweckmäßig, den Leser geistig teilnehmen zu lassen an den wesentlichen Einzelheiten des Versuchs und ihn auf diese Weise zu befähigen, sich nach Möglichkeit ein eigenes, auf die tatsächlichen Verhältnisse gegründetes Urteil zu bilden. Dem jungen Fachgenossen kommt dabei von Anfang an zum Bewußtsein, daß es sich nicht um ein Gebiet handelt, das zu einem großen Teil bereits abgeschlossen ist, wie man vielfach anzunehmen pflegt, sondern daß er sich auf einem Gebiet befindet, welches selbst hinsichtlich der Feststellung seiner erfahrungsmäßigen Grundlagen noch in lebhafter Entwicklung begriffen ist.

In dieser Richtung weiterzuschreiten, dazu veranlaßte nicht bloß der leitende Grundgedanke des ganzen Buches (vgl. Vorwort zur ersten Auflage), sondern auch der Umstand, daß in mathematischer Hinsicht ausführliche und vorzügliche Werke vorliegen: die Arbeiten von Grashof, Keck, Müller-Breslau, Ritter, Weyrauch, Winkler u. a.

Eine vorurteilsfreie Überprüfung des Standes der Elastizitätsund Festigkeitslehre zeigt, daß die physikalische Seite gegenüber der mathematischen Behandlung in gewissen Richtungen recht erheblich zurückgeblieben war. Damit hängt es dann auch teilweise zusammen, daß mancher der an und für sich richtigen, aber nicht auf ausreichend sicherer physikalischer Grundlage ruhenden mathematischen Entwicklungen der Vorwurf des Zuweitgehens oder gar der Unbrauchbarkeit gemacht werden konnte. Andererseits ließ man bei der mathematischen Bearbeitung Aufgaben von großer praktischer Bedeutung so gut wie unbeachtet, oder man sah bei ihrer Einkleidung in das mathematische Gewand von Wesentlichem ab, ließ wohl auch im Laufe der Rechnung mehr oder minder weitgehende Vernachlässigungen eintreten, ohne dann die Ergebnisse durch den Versuch einer Prüfung und nötigenfalls einer Berichtigung zu unterziehen.

Auf diesem Boden gedieh der Satz von dem Widerspruch zwischen Wissenschaft und Praxis. Man übersah dabei allerdings, daß eine Wissenschaft, die im Widerspruch steht mit der Wirklichkeit, d. h. mit dem, was tatsächlich ist, oder deren Folgerungen zu solchen Widersprüchen führen, nicht den Anspruch machen kann, wirklich Wissenschaft zu sein, mindestens nicht in Beziehung auf diejenigen Punkte, welche der Wirklichkeit zuwiderlaufen. Wo ein Gegensatz zwischen Wissenschaft und Praxis in die Erscheinung tritt, da zeigt eine scharfe Untersuchung meist sehr bald, daß entweder die Annahmen, die Grundlagen, von denen die wissenschaftliche Betrachtung ausgegangen ist, fehlerhaft waren, oder daß die Schlußfolgerungen mit Mängeln behaftet sind.

Ich habe es mir von vornherein, d. h. mit Eintritt in die Lehrtätigkeit im Jahre 1878, zur Aufgabe gestellt, mein bescheidenes Teil dazu beizutragen, daß solche Gegensätze verschwinden¹). Wissenschaft und ausführende Technik müssen naturgemäß Hand in Hand gehen. Wo dieser Zustand nicht besteht, da muß von beiden Seiten mit Eifer und Ausdauer daran gearbeitet werden, ihn herbeizuführen. Wer in dieser Richtung kräftig strebt, wird sehr bald zu der Erkenntnis gelangen, daß den Ingenieurwissenschaften in erster Linie eine Sicherung und Erweiterung ihrer erfahrungsmäßigen Grundlagen, d. h. eine besondere Pflege ihrer physikalischen und chemischen Seite, not tut. Die Mathematik wird hierbei nicht nur ein sehr oft außerordentlich wertvolles Hilfsmittel sein, sondern sie wird häufig das Werkzeug bilden, ohne dessen Vorhandensein eine tiefere Erkenntnis überhaupt unerreichbar bliebe.

Die ausführende Technik ist nach meinen Erfahrungen immer dankbar, wenn ihr die Wissenschaft Hilfe leistet: sie läßt sich nicht ---wie wohl zuweilen gemeint wird - durch das Schlagwort von dem Widerspruch zwischen Theorie und Praxis abhalten, die wissenschaftlichen Darlegungen zu studieren und zu verwerten, vorausgesetzt, daß diese die Anforderung der Klarheit und genügender Einfachheit befriedigen. Sie weiß ihr Interesse, welches die volle Beachtung der Wissenschaft verlangt, wohl wahrzunehmen. Aber sehr empfindlich ist sie, wenn ihr von wissenschaftlicher Seite Darlegungen geboten werden, durch deren Befolgung Schaden entsteht. Bei der unmittelbaren und oft recht weitgehenden Verantwortlichkeit, welche die ausführende Technik zu tragen hat, erscheint dies durchaus begreiflich. Jeder Verstoß, den der Ingenieur gegen die Wirklichkeit begeht, pflegt bei der Ausführung seines Werkes als Fehler an das Tageslicht zu treten und in irgendeiner Form Strafe nach sich zu ziehen. In der hieraus folgenden Notwendigkeit, möglichst zuverlässig zu arbeiten, liegt auch einer der Gründe, weshalb schon seit längerer Zeit die Technik und ihre wissenschaftlichen Vertreter nicht bloß manche in das Gebiet der Physik und Chemie gehörige Zahl genauer festgestellt haben, als dies von der Physik beziehungsweise von der Chemie selbst geschehen ist, sondern daß sie auch manches bisher überhaupt nicht Erkannte auf-

¹) Vgl. z. B. Zeitschrift des Vereines deutscher Ingenieure 1894, S. 1361 und 1362; 1895, S. 1215 und 1216; 1896, S. 268 und 269, S. 1571.

gefunden sowie manchen ins Dunkle gehüllten Vorgang aufgeklärt und ganz wesentlich zur Entwicklung und Förderung dieser Wissenschaften an sich beigetragen haben. Ein weiterer Grund dafür, daß die Technik der Wissenschaft an sich häufiger vorauseilt, als man anzunehmen pflegt, ist dadurch gegeben, daß ihr Aufgaben entgegengebracht werden, die sie lösen muß — möglichst vollkommen, namentlich auch in wirtschaftlicher Beziehung —, ohne sich auf wissenschaftlich Erkanntes stützen zu können. Die deutsche Industrie und die technischen Staatsbetriebe Deutschlands besitzen eine vergleichsweise große Anzahl von Ingenieuren, die in einer Weise streng wissenschaftlich arbeiten, wie vielfach selbst von Vertretern der Wissenschaft nicht vermutet wird.

Inwieweit es mir mit der Bearbeitung der dritten Auflage gelungen ist, zur Klarstellung schwebender oder aufgeworfener Fragen (vgl. z. B. den Inhalt von § 4 und § 5, ferner S. 116 u. f., S. 192 u. f., S. 211 u. f., S. 470 u. f., usw.) zur Vertiefung unserer Erkenntnisse auf dem Gebiet der Elastizität und Festigkeit beizutragen, muß ich dem wohlwollenden Urteil der Fachgenossen zur Entscheidung anheimstellen. Gern hätte ich noch weiteres aufgenommen, aber die starke Inanspruchnahme durch die unmittelbare Berufstätigkeit, zu welcher sich z. Z. noch die Errichtung eines Laboratoriums für Maschineningenieure gesellt hat, im Zusammenhange damit, daß das Buch schon seit längerer Zeit vergriffen ist, nötigten zur Beschränkung.

Stuttgart, Anfang Januar 1898.

Vorwort zur vierten Auflage.

Die vierte Auflage wurde, abgesehen von einer größeren Anzahl von Ergänzungen in allen bisher vorhandenen Abschnitten des Buches (vgl. z. B. § 13, Ziff. 3, § 22, Ziff. 4 'usw.), durch Aufnahme eines neuen (achten) Abschnittes: "Allgemeine Beziehungen über Spannungen und Formänderungen im Innern eines elastischen Körpers" erweitert. Hierzu veranlaßte in erster Linie der Umstand, daß ich seit Erscheinen der dritten Auflage infolge des wachsenden Umfanges der mir sonst obliegenden Verpflichtungen u. a. auch die Vorlesung über Elastizitätslehre abgegeben habe. In diesem Vortrag, der im Jahre 1878 an unserem Polytechnikum mit besonderer Rücksichtnahme auf die dem Maschinenkonstrukteur sich bietenden Aufgaben zur Einführung gelangte, habe ich in den 21 Jahren, während deren ich ihn gehalten, auch das gegeben, was der genannte Abschnitt bietet. Die Aufnahme in das Buch ist bisher unterblieben, weil, wie schon in dem Vorwort zur ersten Auflage ausgesprochen, dasselbe ursprünglich nur für die Zuhörer dieses Vortrages bestimmt war.

Ich weiß recht wohl, daß die Anzahl derjenigen Studierenden und Ingenieure, welche sich mit den allgemeinen Betrachtungen über den Spannungs- sowie Formänderungszustand und insbesondere den aus ihnen sich ergebenden Gleichungen zu beschäftigen pflegen, verhältnismäßig gering ist, und ich bin der Überzeugung, daß dies auch voraussichtlich so bleiben wird, ohne daß hierin ein schwerwiegender Nachteil für die Technik erblickt werden kann. Es setzt dies allerdings voraus, daß sich eine, wenn auch kleine, Minderzahl erfolgreich mit Bearbeitung des hier zur Erörterung stehenden Gebietes befaßt. Der großen Mehrzahl der mitten in der Ausführung stehenden Ingenieure, welche auf den Gebieten des wirtschaftlichen Lebens leitend oder auch noch schöpferisch tätig sein müssen, liegen andere Aufgaben ob¹), und bei der Begrenztheit der Arbeitskraft des einzelnen einerseits und angesichts der ungeheueren Ausdehnung des Ingenieurwesens andererseits wird die Arbeitsteilung zur Notwendigkeit.

Diese Verhältnisse haben mich jedoch niemals abgehalten, mit meinen Zuhörern die Betrachtungen durchzunehmen, welche zu den allgemeinen Gleichungen der Elastizitätslehre führen. Der zukünftige Ingenieur muß — auch wenn er keine Neigung hat, an der Entwicklung der wissenschaftlichen Grundlagen des Ingenieurwesens mitzuarbeiten-. die allgemeinen Grundlagen der Gebiete, die er studiert, ausreichend kennen. Im vorliegenden Sonderfalle heißt dies, daß ihm die allgemeinen Gleichungen der Elastizitätslehre, wenn sie ihm in der Literatur entgegentreten, nicht fremd sein dürfen. Er soll — wenn auch nur in beschränktem Sinne - ein Urteil darüber haben, wie sicher oder unsicher die Grundlagen sind, auf denen sich derartige Rechnungen aufbauen, und ob aus der einen oder anderen solcher Rechnungen ein brauchbares Ergebnis für das Ingenieurwesen zu erwarten steht. Es ist für den ausführenden Ingenieur nicht selten außerordentlich wichtig, ein Urteil, wenn auch nur einigermaßen, darüber zu haben, was man überhaupt nicht oder doch nicht sicher weiß, gegebenenfalls nicht sicher ermitteln kann.

Außerdem kommt in Betracht, daß eine strenge Behandlung verschiedener, für die ausführende Technik wichtiger Aufgaben von den allgemeinen Gleichungen der Elastizitätslehre auszugehen oder doch auf sie zurückzugreifen hat, wenn auch nur, um zu prüfen, ob die ge-

¹) Vgl. z. B. das Vorwort zur achten Auflage der Maschinenelemente des Verfassers.

machten Annahmen mit ihnen in Widerspruch stehen oder nicht. Es sei hier erinnert an die Aufgaben der Drehungselastizität, deren strenge Lösung allerdings bisher nur für wenige der in Betracht kommenden Querschnitte ausreichend gelungen ist, sowie an die Aufgaben, bei denen Normal- und Schubspannungen in den Querschnitten stabförmiger Körper gleichzeitig auftreten, an die Aufgaben, welche plattenförmige Körper und Gefäße vielfach bieten usw.

Wenn auch manche Entwicklungen in dem bisherigen Inhalt des Buches (Abschnitt 1 bis 7) auf die Ergebnisse des neuen achten Abschnittes hätten gestützt werden können, so habe ich dies doch absichtlich unterlassen, weil ich es für den Ingenieur als wertvoll erachte, jede Untersuchung für sich so weit selbständig durchzuführen, als es die Verhältnisse gestatten und als im Einzelfalle zweckmäßig erscheint, und zweitens, weil ich der Überzeugung bin, daß die Elastizität und Festigkeit am erfolgreichsten zunächst in der Weise studiert wird, daß man von den einfachen Fällen ausgeht und unter Benutzung der hierbei gewonnenen Ergebnisse zu zusammengesetzteren fortschreitet. Ich halte dieses Vorgehen auch dann für richtig, wenn der Studierende über gute Kenntnisse auf dem Gebiete der höheren Mathematik verfügt. Die Auffassung, daß der wissenschaftliche Gang bei der Behandlung der Elastizitäts- und Festigkeitslehre auch für den Ingenieur vom Allgemeinen zum Besonderen zu führen habe, vermag ich nicht zu teilen. Derjenige Studierende, welcher beim erstmaligen Studium des Gebietes zunächst, die seinem Verständnis näher liegenden Sonderfälle mit den verschiedenen Abweichungen von den Voraussetzungen, welche die Elastizitätslehre bei ihren allgemeinen Entwicklungen notwendigerweise machen muß, gründlich studiert hat und sodann fortschreitend schließlich bis zur Klarheit über die allgemeinen Beziehungen der Elastizitätslehre gelangt ist, wird bei demselben Zeitaufwand in der Regel einen weiter- und tiefergehenden Einblick gewonnen haben als derjenige. welcher den umgekehrten Weg eingeschlagen hat. Insbesondere wird dies zutage treten, wenn es sich um die Verwendung der Kenntnisse auf dem Gebiete des Ingenieurwesens handelt, also um das Können gegenüber den tausendfältigen Aufgaben, die das Leben fortgesetzt bietet.

Stuttgart, Anfang September 1901.

Vorwort zur fünften Auflage.

Die neue Auflage hat verschiedene Ergänzungen erfahren, so z. B. im ersten Abschnitt durch die Klarstellung, daß im allgemeinen eine untere und eine obere Streckgrenze zu unterscheiden ist, und daß diese Spannung in erheblichem Maße von der Querschnittsform beeinflußt wird (§ 2, § 4), ferner durch die Aufnahme von Versuchsergebnissen über die Änderung der Festigkeitseigenschaften von Metallen bei höheren Temperaturen (§ 10) usw. Allerdings konnten die Ergänzungen nicht in dem Umfange stattfinden, wie ich es selbst gewünscht hatte. Das Buch war schon seit einiger Zeit vergriffen und ich sonst recht stark in Anspruch genommen; infolgedessen mußte Beschränkung geübt werden.

Im übrigen darf ich wohl auf das zu den früheren Auflagen Gesagte verweisen; die daselbst niedergelegten Gesichtspunkte sind auch jetzt wieder für mich leitend gewesen.

Die wohlwollende Aufnahme, welche das Buch gefunden hat, im Zusammenhange mit dem Umstande, daß ein großer Teil dessen, was ich in den früheren Auflagen dargelegt habe, bereits Allgemeingut geworden ist oder doch anregend und klarstellend gewirkt hat, läßt mich hoffen, daß auch die neue Auflage zur Förderung der Erkenntnis des tatsächlichen Verhaltens der Materialien beitragen wird.

Meinem früheren Assistenten, Herrn Ingenieur Braun, habe ich für die Unterstützung bei der Arbeit (vgl. z. B. S. 498) bestens zu danken.

Stuttgart, den 15. März 1905.

Vorwort zur sechsten Auflage.

Die neue Auflage weist in allen Hauptteilen Ergänzungen auf. Vgl. z. B. S. 53 und 54, S. 66 u. f., S. 81, S. 115, S. 129, S. 155 u. f., S. 163, S. 171 u. f., S. 195 sowie S. 227 u. f., S. 255 u. f., S. 302, S. 317 sowie S. 343 und 346, S. 341, S. 467 u. f., S. 477 u. f., S. 482, S. 508 u. f., S. 587 u. f., S. 638; ferner Taf. I, III, VI, VIII, XI, XVI, XVIII und XIX. Durch dichteren Druck wurde angestrebt, Unhandlichkeit des Buches zu vermeiden.

Bei den Versuchen sind in der Regel diejenigen genannt, von denen sie durchgeführt wurden; wo das nicht geschehen ist, handelt es sich um eigene Versuche. Die Heranziehung eines Mitarbeiters war bei meiner großen Inanspruchnahme im Interesse der Sache geboten.

Die früher ausgesprochenen Grundgedanken (vgl. Vorwort zur ersten, dritten und vierten Auflage) sind auch jetzt wieder leitend gewesen.

Stuttgart, Ende April 1911.

Vorwort zur siebenten Auflage.

Die siebente Auflage mußte während der Kriegszeit hergestellt werden: in der zweiten Hälfte des Jahres 1916 und in dem ersten Drittel des Jahres 1917. So sehr ich mich mit meinem Mitarbeiter auch bemüht habe, die nachteiligen Einwirkungen dieser Zeit abzuschwächen, so ist dies doch nicht ganz gelungen. Immerhin hat eine bedeutende Zahl von Ergänzungen stattgefunden, wie ein Blick auf den Umfang des Textes, der von 642 Seiten auf 703 Seiten gestiegen ist, sowie ein Vergleich der Lichtdrucktafeln, deren Anzahl von 20 auf 26 vermehrt wurde, erkennen lassen.

Zu den eigentlichen Prüfungsarbeiten, die uns in der Materialprüfungsanstalt obliegen: Prüfung der Materialien, Untersuchung von Konstruktionsteilen und ganzen Konstruktionen hat sich bald nach Beginn des Krieges - bei sehr weitgehender Verminderung der Arbeitskräfte infolge der Einberufung zum Heeresdienste - noch eine an Umfang und Tiefe stetig gewachsene Beratung der Antragsteller gesellt: zu einem Teil die Folge der Absperrung vom Auslande, also die Folge der Notwendigkeit, andere Materialien und andere Konstruktionen zu verwenden als bisher, zu einem anderen Teile die Folge des Umstandes, daß für die Heereslieferungen eine große Zahl von Werkstätten herangezogen werden mußte, die vorher auf ganz anderen Gebieten tätig gewesen waren und denen daher für die Herstellung der von den Militärbehörden verlangten Gegenstände zunächst die Erfahrungen fehlten, die erforderlich sind, um den ungewohnten und scharfen Abnahmebestimmungen zu entsprechen, die von der Heeres- und der Marineverwaltung gestellt werden. Dazu kamen die gesteigerten Anforderungen in bezug auf die Raschheit, mit der die Untersuchungen gemäß den Bedürfnissen der Antragsteller und ihrer Auftraggeber durchgeführt werden mußten. Die neue Auflage weist infolgedessen nicht alle die Ergänzungen, überhaupt nicht diejenige Vollkommenheit auf, die wir ihr unter anderen Verhältnissen gern gegeben hätten. Inwieweit es uns und

dem Verleger gelungen ist, die Schwierigkeiten bei der Herstellung guter Abbildungen im dritten Jahre des Krieges zu überwinden, sei dem Urteil der Fachgenossen anheimgestellt.

Die Kriegszeit und ihre Anforderungen haben in noch weit höherem Grade als die Entwicklung während der Friedenszeit gezeigt, daß die Grundgedanken, die für das vorliegende Buch von Anfang an maßgebend gewesen sind, recht fruchtbar gewirkt haben. wie ein kurzer Rückblick erkennen läßt. Als ich mich vor nahezu drei Jahrzehnten zur Abfassung und Herausgabe des Buches entschloß, da war der Stand im allgemeinen der, daß man auf dem Gebiete der Elastizität und Festigkeit der Konstruktionsmaterialien die mathematischen Entwicklungen als die Hauptsache und das Material, für das diese Entwicklungen gemacht wurden, als Nebensache behandelte. Ausgehend von dem Satze der Proportionalität zwischen Dehnung und Spannung, den man als allgemein gültiges Gesetz für das Material annahm und diese Annahme der heranwachsenden Jugend, durch Worte, wie "Hookesches Gesetz: ut tensio sic vis" als ein Naturgesetz¹) hinstellte, während es in Wirklichkeit nur eine Minderzahl von Stoffen ist, für welche diese Proportionalität gilt, wurde mit solchen Rechnungen der ganze Bau aufgeführt. Wie ich in dem Vorwort zur ersten Auflage ausgeführt habe, hatte das Buch u. a. den Zweck, diesem für die ausführende Technik, namentlich für die Industrie, unhaltbaren Zustand ein Ende zu machen. Ich glaube, daß das zu einem großen Teile gelungen ist, und daß man heute das Material, mit dem sich die Elastizitäts- und Festigkeitslehre befaßt, mindestens ebenso als eine Hauptsache ansieht, wie die Entwicklungen der mathematischen und zeichnerischen Me-Daß ich diese Entwicklungen hoch einschätze, ergibt sich thoden. aus dem im Vorwort zur dritten und vierten Auflage Gesagten. Sie würden nicht selten einen weit größeren Wert besitzen - zuweilen haben sie solchen für den Ingenieur überhaupt nicht -, wenn man sich nicht mit ihrer Aufstellung begnügen, sondern sie auch prüfen. namentlich in ihren Konsequenzen verfolgen würde. Damit soll kein Vorwurf ausgesprochen, sondern nur eine Feststellung gemacht werden; denn der Grund, weshalb das nicht geschieht, liegt eben in der Verschiedenheit der Berufsziele. Der Vertreter der reinen Wissenschaft begnügt sich mit der Erkenntnis, zu der ihn die Entwicklungen geführt haben, während der Ingenieur das nicht kann. Dem Ingenieur stellt sein Beruf das Ziel, durch Beherrschung des Stoffes

¹) Eine geschichtliche Klarstellung, die recht lehrreich ist, bietet in dieser Hinsicht der Vortrag "Wissenschaft, Geschäftsgeist und Hookesches Gesetz", veröffentlicht in der Zeitschrift des Vereines deutscher Ingenieure 1917, S. 117 u. f.

dem Einzelnen oder der Allgemeinheit — in der Regel gemäß eines bestimmten Auftrages, der ausgeführt werden muß — zu dienen. Er hat Werke oder Teile solcher zu entwerfen und auszuführen, für die er eine oft recht weitgehende Verantwortlichkeit — nicht nur in wirtschaftlicher, sondern auch in strafrechtlicher Hinsicht übernehmen muß.

Dabei ist es von Interesse, zu beachten, daß, während zur Zeit der ersten Herausgabe des Buches der Mangel an Erfahrungsmaterial, an Versuchsergebnissen es war, der die mathematischen Entwicklungen häufig von vornherein nicht fruchtbar werden ließ, heute und schon seit längerer Zeit ein solcher Mangel nicht mehr besteht, vielmehr die Sachlage derart ist, daß recht viele Versuchsergebnisse der weiteren mathematischen oder, allgemeiner gesprochen, der zusammenfassenden geistigen Verarbeitung harren¹).

Der Umstand, daß bei Ausbruch des Krieges dank der Schulung Ingenieure vorhanden waren, welche die Fähigkeit besaßen, neue Aufgaben planmäßig und selbständig zu bearbeiten, die das tatsächliche Verhalten der Materialien ausreichend kannten und die insbesondere auch wußten, daß ein und dasselbe Metall in vergütetem Zustande weit höheren Anforderungen gerecht werden kann, als in natürlichem Zustande (vgl. z. B. sechste Auflage, S. 157 u.f.: Fig. 16 bis 21, siebente Auflage, S. 57: Fig. 16, S. 65: Fig. 20, S. 177 u.f.: Fig. 16 bis 18, 21 bis 24, 29 bis 32), erleichterte den Übergang von der Friedens- zur Kriegsindustrie ganz bedeutend.

Es genügt für den heutigen Ingenieur nicht mehr, daß er die Elastizitäts- und Festigkeitseigenschaften eines bestimmten Metalls, z. B. eines Stahles, für den Zustand kennt, in dem das Material von ihm gekauft wird. Es ist vielmehr nötig, daß er weiß, was sich aus dem gegebenen Material bei verschiedener Behandlung machen läßt. Die Entscheidung darüber, welche Behandlung dem gewählten Material zuteil werden soll, um einen Höchstwert der Widerstands-

¹) Dieser Umstand hat mich schon seit rund zwei Jahrzehnten veranlaßt, zu solcher Verarbeitung anzuregen. Siehe z. B. die Zeitschrift für Mathematik und Physik 1897, S. 280, oder aus neuerer Zeit das Jahrbuch der Schiffbautechnischen Gesellschaft 1915, S. 546 (Vortrag vom 27. Mai 1914). Dasselbe bezweckt der von mir im Deutschen Ausschuß für Eisenbeton (mit dem Sitze im Ministerium der öffentlichen Arbeiten in Berlin) am 2. Mai 1917 gestellte Antrag, betreffend Zusammenstellung unserer derzeitigen Erkenntnisse auf dem Gebiete des Eisenbetonbaues und Feststellung dessen, was noch fehlt. um die wissenschaftlichen Grundlagen für die Berechnung der einzelnen Konstruktionselemente des Eisenbetonbaues (Säulen, Balken, Platten usw.) als ausreichend gesichert betrachten zu können. Der Antrag wurde angenommen und ihm durch Ausschreiben entsprochen (vgl. z. B. Zentralblatt der Bauverwaltung, Anzeiger vom 16. Mai 1917, S. 350).

fähigkeit zu erzeugen, ist nicht unabhängig von der Gestalt (Form und Größe) des Gebrauchsstückes und von den Einflüssen, die sich im Betriebe auf das Gebrauchsstück geltend machen. Auf diesem Wege der dem jeweiligen Verwendungszweck angepaßten Materialbehandlung wird es auch möglich, weniger teueres Material zu benützen und dem Gebrauchsstück doch eine ausreichende Widerstandsfähigkeit zu sichern.

Die Absicht, dem mitten in der ausführenden Technik stehenden Ingenieur die Möglichkeit zu bieten, sich tunlichst rasch über das Tatsachenmaterial zu unterrichten, das auf dem Gebiete der Elastizität und Festigkeit der Konstruktionsmaterialien vorhanden ist, haben mich und meinen Mitarbeiter zur Herausgabe der im Jahre 1915 erschienenen Schrift "Festigkeitseigenschaften und Gefügebilder der Konstruktionsmaterialien" veranlaßt. In die Darlegungen eines Lehrbuches über Elastizität und Festigkeit kann dieses Material nur zu einem kleinen Bruchteil aufgenommen und auch nicht derart angeordnet werden, wie es die rasch zu befriedigenden Bedürfnisse des Ingenieurs verlangen. Dem gleichen Zweck, dessen Bedeutung durch die Anforderungen, die der Krieg an die Industrie stellt, noch ganz außerordentlich gesteigert worden ist, dient ferner der gegen Ende 1916 gehaltene und 1917 im Buchhandel erschienene Vortrag meines Mitarbeiters über das Vergüten von Eisen und Stahl.

Stuttgart, Mitte Mai 1917.

Vorwort zur achten Auflage.

Die neue Auflage hat in verschiedenen Hauptteilen diejenigen Ergänzungen erfahren, welche bei der Kürze der Zeit und unter den derzeitigen Verhältnissen gegeben werden konnten. Vgl. z. B. § 3 (Fig. 9 bis 13), § 4 (Ziff. 13), § 13 (Ziff. 1, h), § 22 (Ziff. 5, B), § 35 (Ziff. 3 bis 5), § 48 (Ziff. 2), § 53 (Fig. 13, 14), § 54 (Ziff. 5, g und Ziff. 6, II), § 56 (Ziff. 3), § 57 (Ziff. 2), § 58 (Ziff. 2); ferner Tafel I, II, VI, XVIII und XXIV.

Bei dieser Vermehrung des Inhaltes wurde angestrebt, der Papiernot durch dichteren Druck Rechnung zu tragen.

Stuttgart, Anfang 1920.

C. Bach.

C. Bach, Elastizität. 8. Aufl.

XVII

Erster Abschnitt.

Die einfachen Fälle der Beanspruchung gerader stabförmiger Körper durch Normalspannungen (Dehnungen).

Einleitung.

						Linte	Tem	n R -												-	
e		W		Q																Se	lite
8	1.	Formande	erung.	opai	inung	. .	••	۰,	•	••	•	•	•••	•	•	•	•	•	•	•	1
ğ	z.	Dehnung.	Denn	ungs	zani.	Propo	rtio	nal	ita	tsgi	en	ze	• :	•	٠	۰.	۰.	•	•	•	3
8	3.	Fließgren	ze. Bru	chDe.	lastung	ζ. Zug	test	igk	eit.	. Q	uei	sci	nit	tsv	/er	mi	nd	er	an	g.	•
_		Bruchdeh	inung.	Arb	eitsver	mögen	•		•	• •	•	•	•••	•	•	•	•	·	•	•	8
ş	4.	Längenär	derung	en v	erschie	dener	Sto	ffe.	•		_										
		Gesamte	, bleibe	ende	und	federn	de	Lä	ing	enä	nd	eru	nge	n.]	Els	sti	izi	tät	8 -	
		gren	ze.																		
		1. V	ersuche	\mathbf{mit}	Gußei	sen.			•									•		•	19
		2.	"	"	Fluße	isen															46
		3.	"	"	Flußs	tahl								•							54
		4.	"	"	Kupfe	9r															5 9
		5.	π	"	Bronz	е															63
		6.	n	"	Messin	ıg.															67
		7.	"	"	Leder	· · ·														•	68
		8.	"	n	Gumn	ы		•													71
		9.	"	"	Zeme	nt. Zer	nen	\mathbf{tm}	örte	el.	Be	tor	ι.								84
		10.	"	"	Grani	t				. ´.											90
		11.	"	**	Marm	or .														÷	92
		12.	 m	"	Sanda	tein		÷				÷				÷	Ż		Ż		96
		13	<i>"</i>		Kiefe	rnholz									÷		·			÷	96
		14			Esche	nholz		•	·			·			·	Ĩ			·	Ţ	98
e	ĸ	Consta de	" Täna		domm	ton lis	•••	•	•	•••	•	•	• •		•	•	·	·	·	•	••
8	J .		otr Lang	Tä	uerung	domm.	w.														00
			o J. N	7~111-	igenan	uerun	gen			 7_2	۰. ۵.		. τ					•	•	•	97 109
		2, 1418	b der	OUR	Cesete	nneit i	laad	ue	55 V 1	JIU	be	ue	9 Г I	2196	sun	216	10	•	٠	•	100
		5. All	gemeine	res	Gesetz	der e	188	MSC NT-	ner	1 1	en	nu	ug	•••	•	•	•	•	•	•	104
		4. En	nnus ae	er Ze	eit. E	lastisc	ne .	na	cnv	VILE	un	g	•	•••	•	•	•	•	٠	•	110
						I.	Zuį	g.													
e	ß	Glaichung	ron don	7	alastiz		nd i	7	rfac	+10	bai	4									

Gleichungen der Zugelastizität und Zugfestigkeit.	
1. Stab mit gleichem Querschnitt	113
2. Stab mit veränderlichem Querschnitt	115
3. Beispiel der Zugelastizität mit Rücksicht auf den Einfluß	der
Temperatur	118
Maß der Zusammenziehung. Kräfte senkrecht zur Stabachse.	Ge-
hinderte Zusammenziehung	122
	 Gleichungen der Zugelastizität und Zugfestigkeit. 1. Stab mit gleichem Querschnitt

§ 8. § 9.	Zugproben Probestäbe und deren Einspannung Einrichtungen zum Messen der Längenänderungen bei Zug und Druck Brucherscheinungen Bruchdehnung	Seite 125 125 127 141 146 151
	 Zusammenziehung) hinderlich ist. Einfluß der Länge und des Durchmessers Finfluß der Länge und des Durchmessers 	153 161
§ 10	. Versuchsergebnisse über den Einfluß der Zeit auf Festigkeit, Dehnung und Querschnittsverminderung. Einfluß der Temperatur und der	102
	Behandlung des Materials. 1. Einfluß der Zeit	168
	2. Einfluß der Temperatur	173
	3. Einfluß der Behandlung des Materials 🤌	181
	II. Druck.	
§ 11	Formänderung. Druckfestigkeit	193
§ 12	Gleichungen der Druckelastizität und Druckfestigkeit	197
§ 13	. Druckversuche. Einfluß der Gestalt des Körpers auf die Druck-	100
	1 Die Belastung trifft die ganze Stimfläche des Probekörners	200
	2. Die Belastung trifft unmittelbar nur einen Teil der Quer-	. 200
	schnittsfläche des Probekörpers	213
	3. Die Belastung trifft einen Körper mit gewölbter Oberfläche	
	(Kugel, Zylinder)	217
§ 14	Hinderung der Querdehnung	228
8 19	Theorien der Drucktestigkeit	230
	III. Biegung.	
§ 16	Gleichungen der Biegungsanstrengung und der elastischen Linie unter	
	der Voraussetzung, daß der Stabquerschnitt symmetrisch ist und daß	
8 17	die Ebene des Krattepaares in die Symmetrieebene des Stabes fällt	232
811	1 Rechteok	237
	2. Drejeck	200 238
	3. Kreis	239
	4. Ellipse	239
	5. Zusammengesetzte Querschnitte.	
	a) Rechnerische Bestimmung	240
	b) Zeichnerische Bestimmung	241
	6 Zusammenstellung	243
8 18	Fälle bestimmter Belastungen.	244
5 1.7	1. Der Stab ist an dem einen Ende eingespannt, am freien Ende	
	mit P belastet $\ldots \ldots \ldots$	246
	2. Der Stab liegt beiderseits auf Stützen	247
	3. Der Stab ist beiderseits wagrecht eingespannt	251
	4. Der Stab werde als senkrecht stehende, an den Enden frei	
	bewegnene und mit n Umdrenungen in der Minute um-	254
	maitende weite witzenommen	40 %
	D ¹	

XIX

0 10	T7 9	Seite
8 19.	Korper von gleichem widerstande	255
	1. Der Stab mit rechteckigem Querschnitt von gleicher Breite	
	ist einerseits eingespannt, am anderen, freien Ende belastet.	256
	2. Der Stab wie unter 1, jedoch von konstanter Höhe h	257
	3. Der Stab liegt beiderseits auf Stützen und ist zwischen beiden	
	belastet	258
§ 20 .	Die bei der Entwicklung der Gleichungen in § 16 gemachten Vor-	
	aussetzungen und ihre Zulässigkeit. Der durch Biegung in Anspruch	
	genommene Stab auf Grund des Gesetzes $s = \alpha \sigma^m$	25 9
	1. Die äußeren Kräfte ergeben nur ein Kräftepaar	26 3
	2. Die Fasern üben einen gegenseitigen Einfluß aufeinander	
	nicht aus	263
	3. Die Querschnitte bleiben eben	266
	4. Der Stabquerschnitt ist symmetrisch	267
	5. Die Dehnungszahl ist unveränderlich. Der gehogene Stah auf	- · ·
	Grund des Gesetzes $\varepsilon = \alpha \sigma^m$	271
	6. Zusammenfassung	280
8 21.	Biegungsanstrengung und Durchbiegung unter der Voraussetzung	
0	daß die Ebene des Kräftepaares keine der beiden Hauptachsen des	
	Querschnittes in sich enthält.	
	1. Hauptachsen Hauptträgheitsmomente	281
	2. Biegungsanstrengung	283
	3 Durchhiegung	285
8 22	Biegungsversuche	200
5	1 Biggungsversuche im allgemeinen	286
	2 Abhöngigkeit der Biegungsfestigkeit des Gußeisens von der	200
	Querschnittsform	201
	3 Durchhiegung und Festigheit von Gußeigen hei gusdratischem	201
	und kroisförmigen Ouerschnitt	905
	Ind Kreistormigem Querschmot	007
	4. Elillub der Gubliaut	201
	U. Versuche zur massenung des zusammennanges zwischen zug-	
	and Diskunkersukers as.	900
		290
		909

IV. Knickung.

ş	23.	Wesen der Knickung		 •	 308
Š	24.	Knickbelastung (Eulersche Gleichung)		 •	 311
š	25.	Zulässige Belastung gegenüber Knickung		 • •	 315
š	26.	Naviersche (Schwarzsche) Knickungsformel	•	 	 31 9
ş	27.	Knickungsversuche	•	 • •	 325
~					

Zweiter Abschnitt.

Die einfachen Fälle der Beanspruchung gerader stabförmiger Körper durch Schubspannungen (Schiebungen).

Einleitung.

ş	28.	Schiebung	131
š	29.	Schubspannung. Schubzahl	133
š	30.	Paarweises Auftreten der Schubspannungen	335

XX

§

31.	Schiebungen und Dehnungen. Schubzahl und Dehnungszahl.	Seite
	1. Mit der Schiebung verknüpfte Dehnung und deren größter Wert	337
	2. Beziehung zwischen Dehnungszahl und Schubzahl	339
	V. Drehung.	

§ 32. § 33.	. Stab von kreisförmigem Querschnitt	343
	1. Formänderung	34 8
	2. Schubspannungen	349
§ 34 .	Stab von rechteckigem Querschnitt.	
	1. Formänderung	354
	2. Schubspannungen	356
	3. Gehinderte Ausbildung der Querschnittswölbung	363
§ 35 .	Drehungsversuche.	
-	1. Abhängigkeit der Drehungsfestigkeit des Gußeisens von der	
	Querschnittsform	365
	2. Versuche mit Stahl	384
	3. Versuche zur Ermittlung der Drehungsfestigkeit von Hohl-	
	zvlindern aus Flußeisen	385
	4. Versuche zur Ermittlung des Einflusses von Schlitzen bei	
	Hohlzvlindern aus Flußeisen	386
	5. Versuche mit Stahlrohren zur Ermittlung des Einflusses	
	kleiner Bohrungen	388
	6. Versuche mit Beton- und Eisenbetonkörpern	394
	7. Versuche mit Rundstäben und mit Schrauben aus Schweiß-	· · ·
	und Flußeisen	394
	8. Drehungswinkel.	395
8 36.	Zusammenfassung	308
3 30.	Kreis Ellinse Sechseck Bechteck Tranez Drejeck III. Oper-	000
	schnitt, Kreuzouerschnitt I I-Querschnitt, Winkelguerschnitt	

VI. Schub.

§ 37.	Allgemeines. Schubanstrengung unter der Voraussetzung gleich-	
	mäßiger Verteilung der Schubspannungen über den Querschnitt.	401
§ 38.	Schubspannungen im rechteckigen Stabe	403
§ 39.	Schubspannungen im prismatischen Stabe von beliebigem, jedoch	
	hinsichtlich der Kraftebene symmetrischem Querschnitt	406
§ 40 .	Schubversuche	413

Dritter Abschnitt.

Formänderungsarbeit gerader stabförmiger Körper bei Beanspruchung auf Zug, Druck, Biegung, Drehung oder Schub.

§ 41.	Arbeit	der	Längenänd	ler	ur	ıg			•	•	•	•	•		•		•								420
§ 42.	Arbeit	der	Biegung .	•	•	•	•	•	•	•	•	•		•	•		•	•		•	•	•	•		423
§ 43.	Arbeit	der	Drehung.	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	426
§ 44 .	Arbeit	der	Schiebung	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	431

XXI

Vierter Abschnitt.

Zusammengesetzte Beanspruchung gerader stabförmiger Körper.

VII. Beanspruchung durch Normalspannungen (Dehnungen). Zug, Druck und Biegung.

		Seite
§ 4 5.	Allgemeines. Der Stab ist nur durch Kräfte beansprucht, welche in Richtung seiner Achse wirken. Allgemeines	433
	 Die Kraft wirkt ziehend	435 436 437
	 zu den Abmessungen des Querschnittes groß c) Die Querschnittsabmessungen des Körpers sind im Vergleich zur Länge desselben und zur Größe des Hebelarmes so bedeutend, daß eine Biegung von Erheblichkeit 	440
§ 46.	nicht eintritt Einfluß von Kräften, welche in Richtung der Stabachse oder parallel zu ihr wirken, während der Stab durch Querkräfte durchgebogen wird. 1. Einfluß des Widerstandes beim Gleiten der Oberfläche des beiderseits gelagerten und in der Mitte durch P belasteten	440
	Stabes gegenüber den Stützen infolge der Durchbiegung . 2. Der an den Enden drehbar befestigte und hier durch Zug-	443
	über ihn verteilte Querkraft $Q = pl$ belastet	447 450
	VIII. Beauspruchung durch Schubspannungen (Schiebungen).	
§ 4 7.	Schub und Drehung	452
	IX. Beanspruchung durch Normalspannungen (Dehuungen) und Schubspannungen (Schiebungen).	
§ 4 8.	Größte Anstrengung bei gleichzeitig vorhandener Dehnung (Normal-	
	1. Begriff der zulässigen Anstrengung des Materials 2. Ermittlung der größten Anstrengung	45 4 461
§ 49.	Zug (Druck) und Drehung	468
§ 50.	Biegung und Drehung	46 9
	1. Kreisquerschnitt	470
	kleinen Achse der Ellipse	470
	b) Die Ebene des biegenden Kräftepaares läuft parallel zur	
	großen Achse der Ellipse	471

		Seite
	3. Rechteckiger Querschnitt.	
	a) Die Ebene des biegenden Kräftepaares läuft parallel zur	
	kurzen Seite des Rechtecks	472
	b) Die Ebene des biegenden Kräftepaares läuft parallel zur	
	langen Seite des Rechtecks	472
	c) Die Ebene des biegenden Kräftepsares hat keine der	
	beiden unter a) und b) bezeichneten Lagen	472
§ 51.	Zug (Druck) und Schub	473
§ 52.	Biegung und Schub.	
	1. Anstrengung des Materials	474
	a) Kreisquerschnitt	475
	b) Rechteckiger Querschnitt	481
	c) $\underline{\mathbf{T}}$ -Querschnitt	483
	2. Formänderung.	
	a) Im allgemeinen	484
	b) Durchbiegung mit Rücksicht auf die Schubkraft	489
§ 53.	Frage der Einspannung eines Stabes	498

Fünfter Abschnitt.

Stabförmige Körper mit gekrümmter Mittellinie.

	I. Die Mittellinie ist eine einfach gekrümmte Kurve, ihre	
	Ebene Ort der einen Hauptachse sämtlicher Stabquer-	
	schnitte sowie der Richtungslinien der äußeren Kräfte.	
§ 54.	Dehnung. Spannung. Krümmungshalbmesser	508
	1. Anstrengung des Materials	510
	2. Werte von $\varkappa = -\frac{1}{f} \int \frac{\eta}{r+\eta} df$ für verschiedene Querschnitte.	
	a) Rechteck	516
	b) Kreis, Ellipse	519
	c) Trapez	520
	d) Dreieck	521
	e) Zusammengesetzte Querschnitte	521
	3. Krümmungshalbmesser	523
	4. Änderung der Koordinaten der Mittellinie	525
	5. Zeichnerisches Verfahren zur Ermittlung der Formänderung	529
	6. Ermittlung der Formänderung, wenn die Dehnungszahl α	
	veränderlich ist	544
§ 55.	Fälle bestimmter Belastungen.	
-	1. Offener Haken trägt eine Last Q.	545
	2. Hohlzylinder, welcher als Walze dient, ist auf die Längen-	010
	einheit durch den Druck 2Q belastet	548
§ 56.	Versuchsergebnisse.	
U	1. Versuche mit Hohlzvlindern	554
	2. Versuche und Darlegungen zur Frage der Spannungsverteilung	001
	über die Querschnitte gekrümmter stahförmiger Körner	559
	Schlußbemerkung	566
	3. Versuche zur Prüfung der Anwendharkeit der Gleichung 8 854	000
	auf Körper mit scharfen oder ausgerundeten Felon	560
		909

XXIII

	II. Die Mittellinie ist eine doppelt gekrümmte Kurve.	Seite
§ 57.	Die gewundenen Drehungsfedern	572
	1. Die zylindrischen Schraubenfedern	574
		911

Sechster Abschnitt.

Gefäße.

§ 58.	Hohlzylinder.																				
	1. Innerer und äußerer	I)rı	ıcl	Σ.		•			•				•	••		•				580
	2. Innerer Überdruck											•									585
	3. Äußerer Überdruck	•			•		•		•		•	•	•	•					•		594
§ 59.	Hohlkugel				•						•					•					596
	1. Innerer Überdruck	•		•		•	•		•	•			•	•		•				•	597
	2. Äußerer Überdruck	•	•	•				•				•	•		•			•	•	•	597

Siebenter Abschnitt.

Plattenförmige Körper.

ş	6 0.	Ebene kreisförmige Platte (Scheibe)	598
-		1. Ermittlung der Anstrengung auf dem Wege der Rechnung.	599
		2. Vergleichung der Voraussetzungen, welche bei den unter Ziff. 1	
		durchgeführten Rechnungen gemacht worden sind, mit den	
		tatsächlichen Verhältnissen	612
		3. Versuchsergebnisse	615
		4. Näherungsweg zur Ermittlung der Anstrengung	620
8	61.	Ebene elliptische Platte	623
š	62.	Ebene quadratische Platte	632
š	63.	Ebene rechteckige Platte	635
š	64.	Versuchsergebnisse.	
č		1. Verlauf der Bruchlinie. Sonstiges Verhalten	640
		2. Gesetz der Widerstandsfähigkeit	644
		3. Schlußbemerkung	645

Achter Abschnitt.

Durch die Fliehkraft beanspruchte Körper.

§ 65.	Ring und Arm.
0	1. Der frei umlaufende Ring
	2. Der frei umlaufende Arm
§ 66.	Umlaufende Scheiben.
•	1. Die Scheibe gleicher Festigkeit
	2. Die Scheibe von gleicher Dicke
	3. Die Wirkung von Kräften (Spannungen), welche am Rand
	der Scheibe von gleicher Dicke angreifen
	4. Kranz und Nabe

XXIV

Neunter Abschnitt.

Allgemeine Beziehungen über Spannungen und Formänderungen im Innern eines elastischen Körpers.

0 0-		Deire
§ 67.	Spannungen in einem beliebigen Punkte eines festen Körpers.	
	1. Begriff der Normal- und Tangential- oder Schubspannung .	664
	2. Spannungen in drei zueinander senkrechten Ebenen	665
	3. Gleichgewicht der Kräfte an einem unendlich kleinen Parallel-	
	epiped	667
	4. Gleichgewicht der Kräfte an einem unendlich kleinen Tetraeder	671
	5. Geometrische Darstellung der Spannungen	673
	6. Hauptspannungen	674
§ 68 .	Formänderingen in einem beliebigen Punkte eines festen Körners	•••=
0	1. Die Dehnungen nach einer hestimmten Richtung als Funktion	
	von den Dehnungen dreier ursprünglich zueinander senk-	
	rechten Richtungen und von Änderungen der Winkel dreier	
	ursprünglich sich rechtwinklig schneidenden Ehenen	677
	2 Darstellung der Formänderung	690
	2. Daistenung der Formänderung	680
8 69	Beziehungen gwischen Spannungen und Formänderungen	002
8 00	1 Die Heuntdehnungen und die Heuntenennungen.	COL
	1. Die Hauptdemäungen und die Hauptspannungen	000
	2. Spannungen und Formanderungen für drei benebige, zuein-	e07
	ander senkrecht stenende Kichtungen	001
0 70	5. Dedeutung der Große ρ	000
8 11	J. Aligemeine Aufgabe der Elastizitätsiehre und weg zur Losung der-	000
0 71		099
§ 71	. Anwendung auf den Sonderfall der Belastung eines geraden stab-	0.1
	formigen Korpers	691
Do-J	autung dar in dan Glaiahungan auftratandan Buahatahangrößen	60×
Deu	euvung der in den Gielenungen auftretenden Duchstabengroben	090

Tafelverzeichnis.

Tafel I, zwischen S. 10 und 11. Zugversuche (Flach- und Rundstäbe).
Fig. 2 bis 4, § 3, zum Text auf S. 9 gehörig,
n 5 und 6, § 3, n n n S. 10 n ,
n 13 bis 17, § 8, n n n S. 14-2 n.
Tafel II, zwischen S. 134 und 135. Meßgeräte, Zugversuche (Rundstäbe).
Fig. 3 und 4, § 8, zum Text auf S. 133 gehörig,
$n 12, \S 8, n n n S. 141 n ,$
n 19, 23 und 24, 88 n n n S. 143 und 144 n ,
Tafel III, zwischen S. 144 und 145. Zugversuche (Flach- und Rundstabe).
Fig. 18, 20, 21, 22, 25, 26, 31, § 8, zum Text auf S. 143 u. 144 gehörig.
Tafel IV, zwischen S. 144 und 145. Zugversuche (Rundstäbe, Stäbe mit Eindrehungen).
Fig. 27 bis 30, § 8, zum Text auf S. 144 gehörig,
n 5a. bis 6b, §9, n n n S. 155 n.
Tafel V, zwischen S. 162 und 163. Zugversuche (Rund-, Flach-, I-Stäbe, Stäbe mit Eindrehungen).
Fig. 9 bis 11, § 9, zum Text auf S. 158 gehörig, n 23 bis 26, § 9, n n n S. 162 n .
Tafel VI, zwischen S. 190 und 191. Zugversuche (vergütetes und eingesetztes Material). Druckversuche (Rohre).
Fig. 23 und 24, § 10, zum Text auf S. 184 gehörig,
n 29 bis 32, § 10, n n n S. 189 n ,
n 11 bis 17, § 13, n n n S. 212 ".
Tafel VII, zwischen S. 190 und 191. Zugversuche (Rundstäbe aus Bronze,
geprüft bei verschiedenen Temperaturen).
Fig. 14 bis 19, § 10, zum Text auf S. 181 gehörig.
Tafel VIII, zwischen S. 196 und 197. Druckversuche (Sandstein, Hartblei).
Fig. 1 und 2, § 11, zum Text auf S. 194 gehörig.
Tafel IX, zwischen S. 196 und 197. Druckversuche (Hartblei, Gußeisen, Lagermetall, Schweißeisen, Sandstein bei teilweiser Belastung).
Fig. 3 und 6, § 11, zum Text auf S. 195 gehörig,
" 7 und 8, § 11, " " " S. 196 ",
n 25, § 13, n n n S. 217 n.

Tafelverzeichnis.

Tafel X, zwischen S. 196 und 197. Druckversuche (Bronzewürfel). Fig. 9 und 10, § 11, zum Text auf S. 196 gehörig. Tafel XI, zwischen S. 210 und 211. Druckversuche (Flußeisen-Rohrabschnitte, Holz). Fig. 3 bis 5, § 13, zum Text auf S. 207 u. 208 gehörig, " 7 und 8, § 13, " » S. 209 " , " 18 und 19, § 13, " » S. 213 " " Tafel XII, zwischen S. 348 und 349. Drehungsversuche (Hartbleikörper, Kreis, Ellipse). Fig. 3, § 32, zum Text auf S. 343 gehörig, n 1, § 33, n n n S. 348 ** Tafel XIII, zwischen S. 348 und 349. Drehungsversuche (Hartbleikörper und Schweißeisenstab: Rechteck). Fig. 6, § 32, zum Text auf S. 348 gehörig, *n* 1, § 34, *n* n n S. 354 Tafel XIV, zwischen S. 348 und 349. Drehungsversuche (Hartblei und Beton: Quadrat; Stahlguß: Rundstäbe). Fig. 7, § 32, zum Text auf S. 348 gehörig, n 2, § 34, n » S. 355 77 » S. 367 n 15, § 35, n " Tafel XV, zwischen S. 366 und 367. Drehungsversuche (Gußeisen: Rechteck, Drähte). Fig. 8 und 9, § 35, zum Text auf S. 366 und 367 gehörig. " 48 und 49, § 35, " " " S. 394 Tafel XVI, zwischen S. 366 und 367. Drehungsversuche (Gußeisen: Kreis, Kreisring). Fig. 10 und 11, § 35, zum Text auf S. 367 und 368 gehörig. Tafel XVII, zwischen S. 366 und 367. Drehungsversuche (Gußeisen: Hohlquadrat, Kreuz); zersprungene Feile. Fig. 3, § 22, zum Text auf S. 290 gehörig, " " S. 368 und 375 " 12 und 13, § 35, " Tafel XVIII, zwischen S. 386 und 387. Drehungsversuche (Flußeisen- und Stahlrohre mit und ohne Bohrungen und Schlitze). Fig. 22, § 35, zum Text auf S. 385 gehörig, 27 und 28, § 35, 30 und 31, § 35, ກ່ S. 387 " " ,, " " " " " S. 389 und 390 " 33 und 34, § 35, S. 391 " " " " 37 36, § 35, » S. 393 ** " n Tafel XIX, zwischen S. 394 und 395. Drehungsversuche (Rundstäbe und Schrauben). Fig. 37 bis 47, § 35, zum Text auf S. 394 gehörig. Tafel XX, zwischen S. 454 und 455. Biegungsversuch (Flußeisen). Fig. 8 und 9, § 47, zum Text auf S. 453 gehörig. Tafel XXI, zwischen S. 484 und 485. Biegungsversuch (Hartbleikörper: I-Träger). Fig. 5, § 52, zum Text auf S. 484 gehörig.

XXVIII

Tafelverzeichnis.

Tafel XXII, zwischen S. 484 und 485. Biegungsversuche (Schub und Biegung).

Fig	. 2,	8	40,	zum	Text	auf	8.	415	gehörig,	
n	9,	ş	52,	n	n	"	S.	487	",	
n	12,	§	52,	77	"	n	8.	488	»,	
**	13,	ŝ	52,	n	"	n	S.	489	"•	

- Tafel XXIII, zwischen S. 570 und 571. Stäbe mit Ansätzen (Gußeisen). Fig. 7 bis 9, 12, § 56, zum Text auf S. 569 u. f. gehörig.
- Tafel XXIV, zwischen S. 592 und 593. Hohlzylinder (Flußeisen, Gußeisen); aufgedornte Ringe.
 - Fig. 6, 7, 9, 11, 13, 15, § 58, zum Text auf S. 591 bis 593 gehörig.
- Tafel XXV, zwischen S. 636 und 637. Quadratische Eisenbetonplatte. Fig. 3 bis 17, § 62, zum Text auf S. 633 gehörig.
- Tafel XXVI, zwischen S. 636 und 637. Rechteckige Eisenbetonplatte. Fig. 2 bis 10, § 62, zum Text auf S. 636 gehörig.
- Tafel XXVII, zwischen S. 642 und 643. Rechteckige Platte aus Hartblei. Fig. 10, § 64, zum Text auf S. 642 gehörig.

Druckfehlerverzeichnis.

Seit	e 16,	Zei	ile 4	und	l 5 vor	ı ol	ben lies f in qcm ⁴ statt f in cm ⁴ .
n	16,	n	11	von	oben	lies	"zu kurz genommen" statt "kommen".
"	25,	n	24	n	unten	n	"σ-Achse" statt "α-Achse".
"	53,	n	4	n	oben	n	"26 cm" statt "20 cm".
n	65,	n	1	n	\mathbf{unten}	n	"1477" statt "1747".
n	6 8,	n	8	n	"	n	"5,5" statt "3,5".
n	71,	n	17	n	oben	n	"1909 und 1910" statt "1909 und 1900".
n	90,	n	2	n	"	n	", unter 1, g^{μ} statt ", unter 1, d^{μ} .
n	97,	n	19	n	unten	"	"1,57" statt "1,75".
"	120,	n	5	n	"	"	", von t_0 auf $t^{"}$ statt " t_0 auf t_0 ".
n	126 ,	n	20	n	oben	"	"unter e" statt "untere".
"	148,	"	16	n	"	"	"zwei Fälle" statt "drei Fälle".
"	155,	"	12	n	"	n	"Fig. 5" statt "Fig. 2".
n	220,	in	Gl. 1	5)		n	im Nenner unter der Wurzel $\pi \cdot l^{\mu}$ statt π^{μ} .
n	237,	Zei	le 1	von	unten	n	", Achse $QQ^{"}$ statt ", Achse $OO^{"}$.
n	243,	n	9	n	oben	"	"- Fläche $A CB_{10}$ " statt "= Fläche $A CB_{10}$ ".
n	262,	n	6	n	unten	. "	$_{n}\varepsilon'$ statt $_{n}\varepsilon$.
"	318,	n	5	n	oben	n	"Fig. 1, § 24" statt "Fig. 1".
n	34 8,	n	8	n	unten	n	"Ziff. 7" statt "Ziff. 3".
n	357 ,	n	13	n	n	n	"ebenso τ_z " statt " τ ".
n	359,	"	13	n	oben	n	$_{n}\tau_{x}$ statt $_{n}\tau_{y}$.
"	374,	n	5	n	n	n	"16,9" statt "16,8".
n	429,	"	10	n	unten	n	"Gleichung 1" statt "Gleichung 4".
n	44 6,	n	2	n	"	n	"224" statt "244".
"	5 43 ,	n	4	n	"	n	"Ende B " statt "Ende C ".
"	545,	n	2	und	3 von	ob	en lies " M_{b} " statt " M_{v} ".
'n	616,	n	5	von	unten	lies	r_0 statt r' .
n	620,	n	4	n	n	n	$n \leq k_{\delta} \cdot \frac{1}{6} 2 r h^{2}$ statt $n \leq k_{\delta} \cdot \frac{1}{3} 2 r h^{2}$.
n	669,	n	1	**	n	n	$-\tau_{zx} dx dy^{\mu}$ statt $-\tau_{zx} dz dy^{\mu}$.
n	676,	, "	15	n	\mathbf{oben}	n	$_{n}$ $ \tau_{y}^{2}$ $ \tau_{z}^{2}$) $\sigma^{"}$ statt $_{n}$ $ \tau_{y}^{2}$ τ_{z}^{2}) $\sigma^{"}$.

Erster Abschnitt.

Die einfachen Fälle der Beanspruchung gerader stabförmiger Körper durch Normalspannungen (Dehnungen).

Einleitung.

§ 1. Formänderung. Spannung.

Der gerade stabförmige Körper, Fig. 1, den wir uns als Kreiszylinder vorstellen wollen, besitze die Länge l und den Durch-

messer d, also den Querschnitt $f = \frac{\pi}{4} d^2$. Von seinem Material wird vorausgesetzt, daß es das Stabvolumen stetig erfüllt und in allen Punkten, sowohl in Richtung der Stabachse als auch senkrecht dazu, je gleiches Verhalten zeigt. Der Körper werde jetzt – Fig. 2 – von zwei ziehenden Kräften *PP* ergriffen, die gleichmäßig über die beiden Endquer-

schnitte verteilt angreifen, und deren Richtung mit der Stabachse zusammenfällt. Ihre Größe liege unterhalb der Grenze, bei welcher eine Aufhebung des

Zusammenhanges des Stabes, ein Zerreißen des letz-

Fig. 1. Fig. 2.

teren, eintreten würde, sie halten sich demnach an dem Stabe das Gleichgewicht.

Unter der Einwirkung dieser Kräfte

a) vergrößert sich die Länge des Stabes von l auf l_1 , d. h. um $l_1 - l = \lambda$

und

b) vermindert sich der Durchmesser des Stabes von d auf d_1 , d. h. um $d - d_1 = \delta$.

Es finden also gleichzeitig zwei Formänderungen statt: eine Ausdehnung in Richtung der Stabachse und eine Zusammenziehung (Kontraktion) senkrecht zu derselben. Die letztere erweist sich übrigens weit kleiner als die erstere (vgl. §7).

C. Bach, Elastizität. 8. Aufl.

Einleitung.

Wirken die beiden Kräfte *PP* nicht ziehend, wie in Fig. 2 angenommen, sondern drückend auf den als kurz vorausgesetzten Körper, wie in Fig. 3 dargestellt ist, so besteht die eintretende Formänderung

a) in einer Verkürzung der Länge des Zylinders von l auf l_2 , also um $\lambda = l - l_2$,

und

Fig. 3.

b) in einer Vergrößerung des Durchmessers des Zylinders von d auf d_2 , also um $\delta = d_2 - d$.

Es findet somit gleichzeitig eine Zusammendrückung in Richtung der Zylinderachse und eine Ausdehnung senkrecht zu derselben, eine Querdehnung, statt.

Der Vergleich dieser bei der Druckwirkung auftretenden Erscheinungen mit den bei der Zugwirkung sich einstellenden zeigt, daß die Umkehrung der Kraftrichtung auch die Formänderung umkehrt. Wird die Richtung der ziehenden Kraft als positiv, diejenige der

drückenden Kraft als negativ bezeichnet, so hat zur Folge

+P eine positive Ausdehnung in Richtung der Stabachse und ,, negative ", senkrecht zur ", , -P eine negative Ausdehnung in Richtung der Stabachse und ,, positive ", senkrecht zur ", .

Wir denken uns in dem Stabe, an welchem sich die Kräfte *PP* das Gleichgewicht halten, einen Querschnitt. Die auf beiden Seiten desselben liegenden Stabteile werden infolge des Vorhandenseins dieser äußeren Kräfte mit gewissen über den Querschnitt verteilten Kräften aufeinander einwirken. Diese inneren Kräfte, bezogen auf die Flächeneinheit, heißen Spannungen, und zwar Zugspannungen, Spannungen im engeren Sinne, positive Spannungen, wenn die äußeren Kräfte ziehend wirken (Fig. 2), oder Druckspannungen, Pressungen, negative Spannungen, wenn die äußeren Kräfte drückend tätig sind (Fig. 3).

Insoweit zum Ausdruck gebracht werden soll, daß diese inneren Kräfte senkrecht zum Querschnitt, d.h. senkrecht zu den Flächenelementen, in denen sie wirken, gerichtet sind, werden sie als Normalspannungen bezeichnet.

Unter den Voraussetzungen gleichmäßiger Verteilung der Kräfte PP über die Endquerschnitte des Stabes und durchaus gleichartiger Beschaffenheit des Stabmaterials wird auch die Spannung für die einzelnen Teile des in Betracht gezogenen Stabquerschnittes, d. h. für die einzelnen Flächenelemente desselben, gleich groß sein. Be-

2

zeichnen wir dieselbe mit σ , so erscheint sie bestimmt durch die Gleichung

$$\sigma = \frac{P}{f} \quad . \quad 1)$$

Streng genommen müßte hierin f denjenigen Querschnitt bedeuten, den der Stab tatsächlich besitzt, während er durch P belastet ist. Wie wir oben (S. 1 und 2) bei b) sahen, ändert sich unter Einwirkung der äußeren Kräfte nicht bloß die Länge, sondern auch der Durchmesser des Körpers und damit auch der Querschnitt. Unter Umständen kann diese Querschnittsänderung, die abhängt von der verhältnismäßigen Größe der Belastung und der Art des Materials, von Bedeutung werden. Aus diesem Grunde ist es notwendig festzuhalten, daß die Gleichung 1 die Spannung σ bezogen auf-den ursprünglichen Stabquerschnitt liefert, sofern, wie oben angenommen, f den Querschnitt des unbelasteten Stabes bezeichnet.

§ 2. Dehnung. Dehnungszahl. Proportionalitätsgrenze.

Die absolute Größe λ der Längenänderung (vgl. §1, a) hängt ab von der ursprünglichen Länge l des Stabes. Um sich für Zwecke der Rechnung von dieser Abhängigkeit zu befreien, pflegt man die auf die Längeneinheit bezogene Längenänderung

anzugeben. Diese verhältnismäßige (spezifische) Längenänderung e wird dann kurz mit Dehnung bezeichnet, und zwar als positive oder negative, je nachdem es sich um Verlängerung (durch eine Zugkraft) oder um Verkürzung (durch eine Druckkraft) handelt.

Die Bestimmung der Dehnung durch die Gleichung 1 setzt voraus: es sei die Dehnung an allen Stellen der Strecke l gleich groß.

Hinsichtlich des Zusammenhanges zwischen der Dehnung ε und der zugehörigen Spannung σ (vgl. § 1) pflegt angenommen zu werden, daß innerhalb gewisser Belastungsgrenzen Proportionalität zwischen ihnen bestehe, entsprechend der Gleichung

$$\varepsilon = \alpha \sigma, \ldots, \ldots, \ldots, 2$$

worin

$$\alpha = \frac{\epsilon}{\sigma} = \frac{\lambda}{l} \frac{1}{\sigma} = \frac{\lambda}{l} \frac{f}{P} \cdot \dots \cdot \dots \cdot \dots \cdot 3)$$

eine innerhalb der erwähnten Belastungsgrenzen konstante Erfahrungszahl bedeutet. nämlich diejenige Zahl, die angibt, um welche Strecke ein Stab von der Länge 1 bei einer Belastung gleich der Krafteinheit (Kilogramm) auf die Flächen-1* einheit (Qaudratzentimeter) seine Länge ändert; oder kurz: die Änderung der Längeneinheit, d. h. die Dehnung, für das Kilogramm Spannung. Diese Erfahrungszahl sei demgemäß als Dehnungszahl bezeichnet.

Diese Begriffsbestimmung liefert die Dehnung unmittelbar als Produkt aus Spannung und Dehnungszahl, und die Änderung der Länge des Stabes, die ursprünglich l betrug,

sowie die Spannung als den Quotienten: Dehnung durch Dehnungszahl, d. i.

Die Spannung, bis zu der hin die Proportionalität zwischen Dehnungen und Spannungen als vorhanden vorausgesetzt wird, führt den Namen Proportionalitätsgrenze. Je nachdem es sich hierbei um Zug- oder Druckspannungen handelt, kommt die Proportionalitätsgrenze gegenüber Zug bzw. Druck in Betracht. α pflegt innerhalb dieser beiden Spannungsgrenzen als gleichbleibend, also unabhängig von der Größe und dem Vorzeichen von σ vorausgesetzt zu werden. Inwieweit diese Voraussetzungen zutreffend sind, darüber gibt das in §4 enthaltene Versuchsmaterial Auskunft. Bemerkt sei jedoch schon hier, daß es nur eine Minderzahl von Stoffen ist, für die

innerhalb gewisser Belastungsgrenzen Proportionalität zwischen Dehnungen und Spannungen besteht, und daß demzufolge die große Mehrzahl der Körper auch keine Proportionalitätsgrenze besitzt. Je nachdem bei der Feststellung, ob für ein gegebenes Material die Proportionalität besteht, die gesamten oder die federnden Dehnungen (vgl. § 4 und 5) zugrunde gelegt werden, kann das Ergebnis verschieden ausfallen. Da die Entwicklungen der Elastizitätslehre nur auf elastische Formänderungen sich zu erstrecken pflegen, so ist es das Gegebene, die federnden Dehnungen zu grunde zu legen. Der Unterschied kann sehr bedeutend ausfallen ; unter Umständen über die Hälfte des Wertes

betragen, der sich bei Zugrundelegung der federnden Dehnungen ergibt. Vgl. z. B. C. Bach und R. Baumann, Festigkeitseigenschaften und Gefügebilder der Konstruktionsmaterialien, Fig. 1 und 2.

Behufs Gewinnung eines anschaulichen Bildes über das Gesetz, nach dem sich Dehnungen und Spannungen ändern, greifen wir zur bildlichen Darstellung.

§ 2. Dehnung. Dehnungszahl. Proportionalitätsgrenze.

Auf der Abszissenachse OX, die senkrecht angenommen sein soll, werden die Belastungen P aufgetragen, auf der wagrechten Ordinatenachse OY die durch diese Belastungen veranlaßten Verlängerungen λ . Der Betrachtung werde ein Körper aus zähem Flußeisen zugrunde gelegt und der Maßstab für die Verlängerungen verhältnismäßig sehr groß gewählt. Wir erhalten die in Fig. 1 dargestellte Schaulinie OQAB. Für den beliebigen Punkt Q ist $\overline{OQ}_1 = \overline{Q_2Q}$ die Belastung P und $\overline{OQ}_2 =$ $\overline{Q_1Q}$ die zugehörige Verlängerung λ .

Wie ersichtlich verläuft die Linie bis zum Punkte A als Gerade. entsprechend dem Umstande, daß von der Belastung P = 0 bis $P = OA_1$ Proportionalität zwischen Belastungen (Spannungen) und Verlängerungen (Dehnungen) besteht. Bei höherer Belastung (über $P = OA_1$ hinaus) beginnt die Verlängerung rascher zu wachsen: lie Schaulinie löst sich tangential von der Geraden OQA nach der Ordinatenachse OY hin, den Punkt A als Grenze der Proportionalität kennzeichnend.

Dehnungszahl und Elastizitätsmodul.

Der Ausdruck Gl. 4 entspricht ganz demjenigen, der sich für die Ausdehnung eines Stabes durch die Wärme oder auch für die Zusammenziehung infolge Abkühlung ergibt, wie folgende Betrachtung zeigt.

Ein Stab von der Länge l_a und der Temperatur t_a wird auf die Temperatur t_e gebracht. Hierbei dehnt sich derselbe aus um

$$\alpha_{w} (t_{e} - t_{a}) l_{a},$$

sofern a_w die Längenausdehnungszahl durch die Wärme, d. h. die Zunahme der Längeneinheit für 1° Erwärmung bedeutet.

Ein Stab, welcher anfangs so belastet ist, daß in seinen Querschnitten die Spannung σ_a herrscht, besitzt in diesem Zustande die Länge l_a . Durch Vermehrung der Belastung steigt die Spannung auf σ_a . Hierbei dehnt sich der Stab aus um

$$\alpha \left(\sigma_{e}-\sigma_{a}\right) l_{a},$$

worin a die oben erörterte Dehnungszahl bedeutet.

Wie ersichtlich, tritt einfach an die Stelle des Temperaturunterschiedes $t_e - t_a$ der Spannungsunterschied $\sigma_e - \sigma_a$ und an die Stelle der Längenausdehnungszahl durch die Wärme die Dehnungszahl. Beide Erfahrungswerte sind hierbei allerdings als unveränderlich vorausgesetzt, wenigstens innerhalb dieser Temperatur- beziehungsweise Spannungsunterschiede.

Es ist bis zum Erscheinen der ersten Auflage dieses Buches in der technischen Literatur ganz allgemein üblich gewesen, nicht mit der Dehnungszahl *a*, sondern mit dem reziproken Werte derselben, d. h. mit $\frac{1}{\alpha}$, zu rechnen und für diesen den Begriff des Elastizitätsmodul einzuführen. Derselbe ist dann erklärt worden als diejenige Kraft, die ein Prisma vom Querschnitt 1 um seine eigene Länge ausdehnen würde, falls dies ohne Überschreitung der Elastizitätsgrenze möglich wäre. Das liefert für das schmiedbare Eisen rund 2000000 kg. Man hat sich also diese Kraft von zwei Millionen Kilogramm auf ein schmiedeisernes Prisma von 1 qcm Querschnitt wirkend vorzustellen. In Wirklichkeit würde bei etwa 1500 kg schon die Proportionalitätsgrenze, innerhalb der überhaupt die Gleichungen 2 bis 5 für schmiedbares Eisen als gültig angenommen werden dürfen, überschritten und voraussichtlich bei 4000 kg der Stab bereits zerrissen sein! Wie man sich die Zusammendrückung eines Körpers um seine ganze Länge vorstellen soll, darf unerörtert bleiben.

Verfasser ist der Ansicht, daß eine solche, mit dem tatsächlichen Verhalten des Materials nicht im Einklang stehende Begriffsbestimmung höchst bedenklich erscheint und jedenfalls nicht ohne den dringendsten Zwang oder ohne durchschlagende Nützlichkeitsgründe als zulässig bezeichnet werden kann. Seines Erachtens muß der Grundbegriff der ganzen Elastizitäts- und Festigkeitslehre, d. i. nach dem bisherigen Stande dieses Teiles der Mechanik die Erfahrungszahl, die Dehnung und Spannung verbindet, so erklärt werden, wie es dem tatsächlichen Verhalten des Materials entspricht. damit dieser Grundbegriff und mit ihm die Hauptgesetze dieses Verhaltens in Fleisch und Blut übergehen. Das ist für den mitten in der Ausführung stehenden, zu raschen Entschlüssen veranlaßten Techniker eine Notwendigkeit. Die Bedeutung von a als Zunahme des Längeneinheit für das Kilogramm Spannung ist eine so einfache und natürliche, daß, wenn nicht die Macht der Gewohnheit in Betracht käme, es nicht erklärlich erscheinen würde, daß der unanschauliche Begriff des Elastizitätsmodul - dieses bleibt er, auch wenn andere Erklärungen als die oben besprochene aufgestellt werden - nicht schon längst von der gesamten technischen Literatur über Bord geworfen ist. Zu einem bedeutenden Teile ist dies allerdings seit Erscheinen der ersten Auflage dieses Buches geschehen.

Der Umstand, daß es an einzelnen Stellen für Rechnungszwecke bequemer erscheint, an Stelle von α mit $\frac{1}{\alpha}$ zu rechnen, wobei übrigens wieder die Macht der Gewohnheit, und zwar ganz erheblich, einwirkt, berechtigt noch lange nicht dazu, $\frac{1}{\alpha}$ zum Grundbegriff der Elastizitätsund Festigkeitslehre zu machen, deren Aufgabe doch schließlich darin besteht, das wirkliche Verhalten des Materials gegenüber der Ein-
§ 2 Dehnung. Dehnungszahl. Proportionalitätsgrenze.

wirkung äußerer Kräfte klarzulegen und nicht bloß der Rechnung, sondern namentlich auch der Anschauung möglichst zugänglich zu machen.

Weiter kommt in Betracht, daß die Zahl, welche Dehnungen und Spannungen verbindet, naturgemäß ein Maß für die Formänderung des Materials zu bilden hat, und zwar derart, daß sie, je nachgiebiger ein Stoff ist, um so größer sein muß. Nun ist aber der Elastizitätsmodul, d. h. $\frac{1}{\alpha}$, umgekehrt proportional der Größe der Längenänderung, so daß einem Material, das eine größere Dehnung ergibt, dessen Nachgiebigkeit also bedeutender ist, ein kleinerer Elastizitätsmodul entspricht, und umgekehrt. Dies erweist sich oft recht unbequem, namentlich für den, der sich mit dem Material selbst zu beschäftigen hat. Die Dehnungszahl α dagegen steht in geradem Verhältnisse zur Formänderung, ist also tatsächlich ein unmittelbares Maß derselben.

Gegenüber dem für die Beibehaltung des Begriffs "Elastizitätsmodul" geltend gemachten Grund, daß sich seine Größe leichter dem Gedächtnis einprägt — man pflegt seinen Wert in abgerundeten Zahlen anzugeben: für Holz 100000, für Gußeisen 1000000, für Schmiedeisen 2000000 usw. — sei darauf hingewiesen, daß bei zweckmäßiger Schreibung der Dehnungszahl sich noch mehr erreichen läßt. Schreibt man, wie das im späteren geschehen soll, die Dehnungszahl in Milliontel, so erhält man beispielsweise

für	Holz	$10 \\ 1000000$	== 10	Milliontel ¹)
,,	Gußeisen	1 1 000 000	→ 1	
,,	Flu Beisen	$\frac{0,5}{1000000}$	=0,5	,;
,,	Stahl, der bei der Prüfung a	$\frac{1}{2170000}$ lieferte,	=0,46	З,.

Die Zahlen 10, 1, 0,5 und 0,46 lassen in gerader Linie anschaulich die verschiedene Größe der Elastizität der bezeichneten Stoffe erkennen und sich dem Gedächtnis mindestens ebenso leicht und bleibend einprägen wie die Werte 100000, 1000000, 2000000, 2170000.

1) Man könnte diese Zahlen auch schreiben:

 $10 \cdot 10^{-6}$, $1 \cdot 10^{-6}$, $0, 5 \cdot 10^{-6}$, $0, 46 \cdot 10^{-6}$,

doch verdient die oben angegebene Schreibweise den Vorzug, wie man sofort erkennt, wenn man sich daran gewöhnt, auch die Wärmeausdehnungszahlen in Milliontel anzugeben, beispielsweise

bei Gußeisen, für das in runden Zahlei ermittelt wurde,

 $a_{r} = 0.000010 = 10$ Milliontel,

Diese Schreibweise hat überdies den Vorteil, daß in den Zahlen 10, 1, 0,5 und 0,46 die Genauigkeit sichtbar zum Ausdruck gebracht werden kann, mit der die Erfahrungszahl α bestimmt worden ist, und daß sie bei Versuchen mit dem gleichen Material Mittelbildungen der gemessenen Elastizität ohne weiteres zuläßt. In dieser Hinsicht werden bei Angabe des Elastizitätsmodul nicht selten Fehler gemacht; beispielsweise findet man in der Literatur angegeben für die beiden aus Versuchen ermittelten Einzelwerte des Elastizitätsmodul $E_1 =: 2120\,000$ und $E_2 =: 2035\,000$

als Mittelwert

$$E_{\rm m} = \frac{2120\,000 + 2035000}{2} = 2077\,500.$$

Bei Benutzung dieses Mittelwertes erhält man jedoch nicht den Mittelwert der gemessenen elastischen Dehnungen, wie man eigentlich haben will, sondern einen davon abweichenden Wert. Um die mittlere elastische Dehnung zu erhalten, ist der mittlere Elastizitätsmodul zu berechnen aus

Bei Verwendung des Mittelwertes aus den Dehnungszahlen wird kein Fehler begangen.

§ 3. Fließgrenze. Bruchbelastung. Zugfestigkeit. Querschnittsverminderung. Bruchdehnung. Arbeitsvermögen.

Die bisherigen Betrachtungen setzten stillschweigend vollkommen elastische Formänderungen voraus, derart, daß, wenn der Stab von $P = \overline{OQ_1}$ entlastet wird, er sich um den vollen Betrag $\lambda = \overline{OQ_2}$, um den er sich gedehnt hatte, federnd verkürzen, also seine ursprüngliche Länge l wieder annehmen würde. In Wirklichkeit stellen sich jedoch außer der federnden Dehnung auch solche Verlängerungen ein, die nach Aufhören der belastenden Kraft nicht wieder verschwin-

- bei Kupfer, für das in runden Zahlen ermittelt wurde, $a_w = 0,000016 = 16$ Milliontel,
- bei Aluminium, für das in runden Zahlen ermittelt wurde, $a_{w} = 0,000024 = 24$ Milliontel.

Die Zahlen 10, 11,5, 16 und 24 zeigen ein sich leicht einprägendes Bild über das Verhältnis der Längenänderungen der verschiedenen Stoffe zueinander, herbeigeführt durch die Anderungen der Temperatur. Dazu kommt, daß es für den Ingenieur zweckmäßig ist, Längenänderungen, herbeigeführt durch Temperaturänderungen, möglichst vergleichen zu können mit Längenänderungen, herbeigeführt durch die Anderung der Spannungen.

8

bei Flußeisen, für das in runden Zahlen ermittelt wurde,

 $a_n = 0,0000115 = 11,5$ Milliontel,

den und deshalb als bleibende Dehnungen bezeichnet werden (Näheres § 4). Diese pflegen um so größere Bedeutung zu erlangen, je höher die Belastung gesteigert wird. Während sie zu Anfang der Belastung so klein sind, daß sie nicht festgestellt werden können, so daß also nur federnde Dehnungen ermittelt werden, erreichen sie z. B. bei Flußeisen für starke Belastungen Werte, die die federnden Dehnungen weit überschreiten.

Um das Verhalten des Flußeisenstabes bei starker Belastung zu verfolgen, messen wir bei fortschreitender Belastung die gesamten Verlängerungen und stellen diese dar, wie in Fig. 1, §2, geschehen. jedoch mit weit kleinerem Maßstab der Dehnungen, und erhalten auf diesem Wege Fig. 1 auf S. 11. Wie ersichtlich, nehmen die gesamten Verlängerungen des Stabes anfangs langsam zu. Die Dehnungslinie verläuft zunächst steil und geradlinig, biegt hierauf unter etwas rascherer Zunahme der Dehnung in leichter Krümmung ab bis zum Punkte B, von B an verläuft sie (auf eine längere Strecke) fast parallel zur Achse der Verlängerungen, wie zunächst angenommen werden möge, entsprechend einem außerordentlich starken Wachstum der Verlängerungen bei sehr geringer Steigerung der Belastung: der Stab streckt sich. Der Eintritt des Streckens zeigt sich beispielsweise bei den Materialprüfungsmaschinen mit Waghebel durch Fallen desselben, bei den Maschinen mit Messung der Belastung mittels Quecksilbersäule (Bauart Amsler-Laffon) durch Sinken der letzteren usw. Der Stab streckt sich weiter unter einer Belastung, die häufig kleiner zu sein pflegt als diejenige, bei der das Strecken begann. Verfolgt man den Verlauf des Linienzuges in solchen Fällen näher, so zeigt sich z. B. für zähes Flußeisen ein ziemlich plötzlicher Abfall bei B und darauffolgendes langsames Ansteigen, etwa wie in Fig. 1 durch den gestrichelten gebrochenen Linienzug BDC angedeutet ist. Häufig wird wiederholter Abfall und darauffolgendes Ansteigen, d. h. mehrfaches Auf- und Niederschwanken im Verlauf der Dehnungslinie während der Streckperiode beobachtet.

Die Spannung, bei der dieses bedeutende Verlängern, das Strecken oder Fließen des Materials beginnt, also die zum Punkt B gehörige Spannung, wird als Streck- oder Fließgrenze bezeichnet.

Nach dem Eintreten der Streckgrenze lassen sich auf der vorher glatten Staboberfläche Linien beobachten, die gegen die Richtung der Stabachse unter etwa 45° geneigt sind. Sie werden als Streck- oder Fließfiguren bezeichnet. Besaß der Flußeisenstab die Walzhaut, so springt diese längs der Linien ab, wie z. B. aus Fig. 2, Taf. I, deutlich zu erkennen ist; war die Staboberfläche glatt, so treten die Streckfiguren als Furchen hervor, vgl. Fig. 3, Taf. I. Fig. 4, Taf. I, zeigt die 4 Seiten eines quadratischen Stabes nach Eintreten der Streck-

grenze, Fig. 5 und 6, Tat. I geben einen Rundstab von zwei Seiten gesehen wieder. Deutlich ist zu erkennen, daß jeweils mehrere Systeme von Streckfiguren entstehen. Die Beobachtung der Streckfiguren besitzt eine größere Bedeutung deshalb, weil sie ermöglicht, festzustellen, ob und unter Umständen bei welcher Belastung in einem solchen Stabe die Streckgrenze erreicht oder überschritten worden ist. Gibt man z. B. einem Konstruktionsteil veränderlichen Querschnitt und beobachtet, bis zu welchem Querschnitt die Streckfiguren eintreten, so läßt sich mit Annäherung von dem Produkt aus der Größe des betreffenden Querschnittes und der bekannten Spannung an der Streckgrenze auf die Höhe der Kraft schließen, welche gewirkt hat.

Streckfiguren treten in entsprechender Weise auch bei Beanspruchung auf Biegung, Drehung usw. auf. Dabei ist es wesentlich zu beachten, daß sie mit der Richtung der größten auftretenden Dehnung einen Winkel von ungefähr 45° einschließen, sodaß aus dem Verlauf der Streckfiguren auch auf die Richtung der Beanspruchung geschlossen werden kann, welche gewirkt hat.

Streckt sich der Stab weiter unter einer Belastung, die erheblich kleiner ist als diejenige, bei der das Strecken begann, wie in Fig. 1 durch den gebrochenen Linienzug *BDC* angedeutet wird, so kann eine obere und eine untere Streckgrenze unterschieden werden derart, daß die obere Streckgrenze aufgefaßt wird als diejenige Spannung, bei der das Strecken beginnt, und die untere Streckgrenze als der kleinste Wert der Spannung, auf den die Belastung während des Streckens sinkt, oder als die kleinste Spannung, unter der das Strecken noch vor sich geht. (Erstmals dargelegt Zeitschrift des Vereines deutscher Ingenieure 1904, S. 1040 u. f.)

Handelt es sich um Druckbelastung, so tritt an die Stelle des Streckens des Körpers ein Zusammenquetschen desselben. Man spricht dann von Fließ- oder Quetschgrenze und versteht darunter diejenige Druckspannung, bei der das Material verhältnismäßig rasch nachzugeben beginnt, ohne daß Zerstörung eintritt.

Wie bereits erwähnt, besitzen nicht alle Stoffe Proportionalitätsgrenzen. Dasselbe ist auch hinsichtlich der Streck- und Quetschoder Fließgrenze zu bemerken. In ausgeprägtem Maße pflegt sie nur bei wenigen Stoffen aufzutreten, so z. B. bei zähem Flußeisen.

Es ist üblich geworden, bei Metallen, auch wenn sie keine ausgeprägte Streckgrenze besitzen, doch von einer solchen zu sprechen. Als Streckgrenze pflegt dann die Spannung angesehen zu werden, die eine bleibende Verlängerung von bestimmter Größe im Vergleich zur ursprünglichen Länge hervorruft. Das Maß dieser bleibenden Verlängerung ist willkürlich. Nach dem heutigen Stand schwanC. Bach, Elastizität. 8 Aufl.

Fig. 15, § 8 S. 142

Fig. 16, § 8, S. 142.

ken die Annahmen zwischen 0,2 und 0.5 $^{\circ}_{0}$. Die Firma Fried. Krupp A.-G. in Essen nimmt 0,3 $^{\circ}_{0}$ an.

Die Fließgrenze und die Proportionalitätsgrenze werden nicht selten als nahe beieinander liegend ermittelt, so z. B. bei weichem Stahl.

Wird die Belastung des Stabes, die wir uns im folgenden zunächst nur als Zug vorstellen, fortgesetzt gesteigert, so findet schließlich eine Trennung desselben, ein Zerreißen (Zerbrechen), statt.

Denken wir uns den in §2 erwähnten Flußeisenstab in eine Mate rialprüfungsmaschine eingespannt, welche die Linie der Verlängerungenselbsttätig aufzeichnet derart, daß die Belastungen die senkrechten Abszissen bilden, während die Verlängerungen λ die zugehörigen wagrechten Ordinaten liefern, und sodann die Belastung allmählich bis zum Zerreißen gesteigert, so erhalten wir die Schaulinie *OBDCEF* in Fig. 1.

Zuverlässiger als durch eine solche mechanische Vorrichtung. die Selbstzeichner genannt wird, läßt sich die Dehnungslinie dadurch festlegen, daß für verschiedene Belastungen die zugehörigenVerlängerungen bestimmt und damit die erforderlichen Punkte für die Kurve erlangt werden. Nach Überschreitung der Streckgrenze verfährt man dabei zweckmäßig derart, daß jeweils die Belastung abgelesen wird, bei der eine angenommene Verlängerung eintritt. Nach einiger Übung läßt sich auf diese Weise die Dehnungslinie bis in die Nähe des Bruches mit ausreichender Genauigkeit feststellen. Eine gewisse Unsicherheit pflegt nur an den in Fig. 1 durch Strichelung hervorgehobenen Stellen, d. i. auf der Strecke BC (Fig. 1), und in der Nähe des Bruches zu bestehen. Doch läßt sich der Verlauf an der zuerst bezeichneten Stelle mit ausreichender Genauigkeit feststellen, wenn man den Selbstzeichner verwendet und für die in der Mitte des Stabes gelegene Meßstrecke das soeben angegebene Verfahren benutzt. Die Dehnungslinien Fig. 13 und 14 in §4 sind auf diese Weise gewonnen.

Von der Verlängerung $\lambda = OE_2$, welche die der Messung unterworfene Stabstrecke unmittelbar bei der Belastung $P = E_2E$ ergibt, wird angenommen, daß sie sich gleichmäßig über die ganze Länge dieser Strecke verteilt.

Nachdem diese Verlängerung OE_2 eingetreten ist, beginnt der Stab an einer Stelle sich einzuschnüren, also hier seinen Querschnitt stärker zu vermindern, Fig. 7 (vgl. auch Fig. 13 auf Tafel I und Fig. 23 auf

Tafel V). Die Belastung P, die von jetzt an zu weiterer Verlängerung erforderlich ist, nimmt ab, bis sich schließlich der Stab bei $\lambda = \overline{OF_2}$ trennt¹). Die Belastung im Augenblicke des Zerreißens ist $F_2F < \overline{E_2E}$.

Die größte zur Aufhebung des Zusammenhanges des Stabes erforderlich gewesene Kraft $\overline{E}_2 \overline{E} = P_{max}$ wird als Bruchbelastung bezeichnet²). Die Spannung, die dieser zum Zerreißen nötigen Belastung entspricht, heißt Zugfestigkeit. Dieselbe ist hiernach unter der Voraussetzung gleichmäßiger Lastverteilung über den Querschnitt

$$K_z = rac{\mathrm{Bruchbelastung}}{\mathrm{Stabquerschnitt}}$$
.

Materialprüfungsmaschinen mit Waghebel lassen den Eintritt der höchsten Belastung dadurch erkennen, daß nach Überschreitung derselben der Waghebel zu sinken beginnt, je nach dem Material mehr oder minder rasch.

Hierbei erhebt sich die schon bei Gleichung 1, §1 berührte Frage, mit welchem Querschnitt die Bruchbelastung zu teilen ist: Soll der ursprüngliche Querschnitt des Stabes, oder soll derjenige Querschnitt

¹) Es ist noch nachzuweisen, ob der Größtwert der Belastung des Stabes genau mit dem Beginn der örtlichen Einschnürung zusammenfällt (vgl. hierzu Fig. 9, S. 14). Für die Notwendigkeit eines solchen Nachweises spricht auch die Beobachtung, daß zuweilen bei zähem Material, wie z. B. weichem Stahl, Bronze, Kupfer usw. die Erscheinung mehr oder minder großer Einschnürung an mehreren Stellen des Stabes nacheinander auftritt; es bilden sich, wie Fig. 8, Taf. II deutlich zeigt, gewissermaßen Knoten, bis schließlich der Bruch an der zuletzt oder am stärksten eingeschnürten Stelle erfolgt. Hierbei nimmt die Geschwindigkeit, mit der das Strecken erfolgt, sowie der Grad der Gleichartigkeit des Materials Einfluß.

²) Liegt die Veranassung vor, diese Belastung von derjenigen im Augenblicke des Bruches, d. h. von $P = F_2 F$ zu unterscheiden, so muß das ausdrücklich hervorgehoben werden. In der Regel wird nur $P_{max} = \bar{E}_2 \bar{E}$ angeführt und als Bruchbelastung bezeichnet. Zutreffender wäre die Bezeichnung Höchstlast; bei den Versuchen auf dem Gebiete des Eisenbetonbaues pflegt Verfasser diese Bezeichnung zu verwenden, um volle Klarheit zu erzielen.

gewählt werden, den der Stab an der Bruchstelle in dem Augenblicke besaß, in welchem die Bruchbelastung wirkte? Streng genommen wäre der letztere Querschnitt in die Rechnung einzuführen, da der Quotient durch gleichzeitig vorhandene Größen gebildet werden sollte. Dieser Querschnitt ist jedoch schwer zu ermitteln. Tatsächlich benutzt man den ersteren Querschnitt als Nenner und erhält in

$$K_{z} = \frac{P_{max}}{f} \quad . \quad . \quad . \quad . \quad . \quad 1)$$

die Zugfestigkeit, bezogen auf den ursprünglichen Stabquerschnitt.

Dieses Verfahren pflegt im Sinne des Zweckes unserer Festigkeitsrechnungen zu liegen, die von dem ursprünglichen Querschnitt auszugehen oder diesen zu ermitteln haben.

Handelt es sich um die technologische Aufgabe der Ermittelung der Materialeigenschaften an sich, so kann die Bestimmung des Quotienten: Zugkraft geteilt durch den kleinsten zugehörigen Stabquerschnitt, geboten erscheinen. Dabei wird allerdings die Eigenartigkeit der Beanspruchung im kleinsten Querschnitt im Auge zu behalten sein.

Um den Unterschied, der sich für den Verlauf der Dehnungslinie ergibt, wenn die Spannungen das einemal auf den ursprünglichen, das anderemal auf den jeweils kleinsten Stabquerschnitt bezogen werden, zu veranschaulichen, sind in Fig. 9 die beiden Linienzüge für denselben Stab aus Flußstahl aufgezeichnet. Deutlich ist zu erkennen, daß sie sich an der Streckgrenze zu trennen beginnen und nach Überschreiten der Höchstlast völlig auseinanderstreben.

Der größere Teil der Konstruktionsstoffe zeigt keine örtliche Einschnürung; er liefert Schaulinien, die Wachstum der Spannungen bis zum Zerreißen aufweisen. Dann fallen die Punkte E und F (Fig. 1) zusammen. Vgl. hierüber z. B. § 4, Fig. 8, 19, 20 und 21¹).

¹) Die scharfe Beachtung des Vorstehenden sowie der späteren Erörterungen über Festigkeit läßt deutlich erkennen, daß die durch den Versuch bestimmten Zugfestigkeiten abhängen müssen von den Umständen, unter denen der Versuch durchgeführt wurde, und von den Voraussetzungen, die bei der Ermittlung gemacht worden sind. Dasselbe gilt auch für die später zu erörternde Druckfestigkeit. Es gibt keine tatsächlich bestimmte Zug- oder Druckfestigkeit, die als vollständig losgelöst von diesen Umständen und Voraussetzungen angesehen werden darf.

Ganz allgemein empfichlt es sich, folgenden vom Verfasser bereits früher an anderer Stelle (Zeitschr. des Vereins deutscher Ingenieure 1895, S. 417, S. 489 Fußbemerkung) ausgesprochenen Satz im Auge zu behalten, wenn es sich um Übertragung von Versuchsergebnissen auf Ausführungen handelt: Die Versuche sind in der Regel unter solchen Verhältnissen anzustellen. wie sie bei den wichtigeren technischen Anwendungen vorzuliegen pflegen, so daß die ermittelten Erfahrungszahlen auf diese mit ausreichender Sicherheit übertragen werden konnen.

Fig. 9.

Wird der Querschnitt des Stabes an der Bruchstelle (an der Stelle der Einschnürung, Fig. 7) mit f_{t_i} bezeichnet, so findet sich in

die Verminderung des Querschnittes an der Bruchstelle in Hundertteilen des ursprünglichen Querschnittes, die Bruchzusammenziehung oder Bruchkontraktion oder kurz die Zusammenziehung, Einschnürung oder Kontraktion genannt. Klarer und schärfer erscheint die Bezeichnung Querschnittsverminderung des zerrissenen Stabes, da f_{μ} an dem zerrissenen Stabe gemessen wird.

Bezeichnet l_b die Länge, die das ursprünglich l lange Stabstück nach dem Zerreißen besitzt, wobei man sich vorstellt, der Bruch erfolge in der Mitte von l^1), so wird in

$$q = 100 \frac{l_b - l}{l} \qquad \dots \qquad \dots \qquad 3)$$

die Verlängerung der der Messung unterworfenen Stabstrecke in Hundertteilen der ursprünglichen Länge, die Dehnung des zerrissenen Stabes, die Bruchdehnung oder auch kurz die Dehnung erhalten²).

Die mechanische Arbeit, die das Zerreißen des ursprünglich l langen Stabes, dessen Verlängerungen der Dehnungslinie OBDCEF zugrunde liegen, fordert, wird dargestellt durch die Größe der Fläche OBDCEFF,. Die mechanische Arbeit bis zum Eintritt der größten Belastung gemäß der Zugfestigkeit wird durch die Fläche OBDCEE, gemessen. Nach Aufnahme dieser Arbeit ist die der Zugfestigkeit entsprechende Widerstandsfähigkeit des Stabes erschöpft; denn nach Überschreitung des Punktes E sinkt die Widerstandsfähigkeit, der Stab schnürt sich ein, und die mechanische Arbeit, wie sie durch die Fläche EFF_2E_2 bestimmt erscheint, wird in der Hauptsache auf die örtliche Formänderung an der Einschnürungsstelle verwendet, also vorzugsweise nur von demjenigen Material verbraucht, das an der sich zusammenziehenden Stelle vorhanden ist³). Die mechanische Arbeit, welche die Dehnung des zylindrischen Stabes bis zum Eintritt der Bruchbelastung P_{max} für die Kubikeinheit der ursprünglichen Stabmasse fordert, wird als Arbeitsvermögen des Materials be-

¹) Über das Vorgehen, wenn dieses nicht der Fall ist, vgl. das S. 150 Bemerkte.

²) Da l_{b} nach dem Zerreißen des Stabes gemessen wird, so enthält es nur die bleibende Verlängerung in sich, wird also um die federnde Verkürzung kleiner sein müssen als die Verlängerung, die die Dehnungslinie Fig. 1, gültig für die gesamten Verlängerungen, liefert.

³) Von dem Ausnahmefall, daß sich der Stab an mehreren Stellen nacheinander einschnürt, darf hier abgeschen werden.

zeichnet. Seine Größe ergibt sich zu

Kilogrammeter für das Kubikzentimeter Material, sofern die Belastungen P in kg, die Verlängerungen λ in maufgetragen, der Querschnitt fim cm und die Stablänge l in cm eingeführt werden.

Das häufig anzutreffende Vorgehen, das Arbeitsvermögen durch die ganze Fläche $OBDCEFF_2$ zu messen und zu beurteilen, erscheint unrichtig. Da die Einschnürung sich auf eine ganz bestimmte, vom Stabmaterial und vom Durchmesser abhängige, dagegen von der Länge des verwendeten Stabes unabhängige Länge erstreckt (sofern die Meßlänge nicht zu kurz kommen wird), so ist ihr Einfluß auf die gesamte Streckung verhältnismäßig um so größer, je kurzer die Meßlänge gewählt wurde. Erfolgt, was zur Erlangung vergleichbarer Bilder erforderlich ist, Aufzeichnung der Verlängerung in Hundertteilen der Meßlänge, so fällt nur das Stück *OBDCE* der Dehnungslinie bei kurzen und langen Stäben gleich aus, während das Stück *EF* um so kürzer wird, je länger der Stab ist.

Um dies nachzuweisen, wurden Versuche mit 7 Stäben aus derselben Stange Siemens-Martinstahl vorgenommen, deren Ergebnisse in der folgenden Zahlentafel zusammengestellt sind. Durchmesser je 20,0 mm.

Q 1	Meß-	Streck-	Zug-	Bruch- dehnung	Quer- g schnitts-	Arbeitsvermögen			
Nr	längeL mm	grenze kg′qcm	testig- keit kg/qcm	auf 100 mm	vermin- derung ⁰ / ₀	0BDCEE ₂ kgm/cem	OBDCEFF. kgm/ccm	EFF ₂ E ₂ kgm ccm	
ł	100	5207 o. 4994 u.	8732	20.4	37,6	8,78	16,30	7.52	
2	100	5303 o. 5000 u.	8656	21,7	38,2	9,04	16,50	7.46	
7	100	5439 o. 5032 u.	8583	19,5	36.0	8,59	14.39	5.80	
	Durch- schnitt	5316 o 5009 u	8657	20.5	37,3	8,80	15,73	6,93	
3	200	5255 o. 5000 u.	8592	16.6	37,6	9.19	13.04	3.85	
4	200	5382 o. 4968 u.	8631	16.0	37.6	9,04	12,60	3,56	
	Durch- schnitt	5319 o. 4984 u	8612	16.3	37.6	9.12	12.82	3,70	

§3.	Fließgrenze.	Bruchbelastung.	Zugfestigkeit	usw.
-----	--------------	-----------------	---------------	------

Stab	Meß-	Streck-	Zug-	Bruch- dehnung	Quer- schnitts-	Art	eitsvermöger	1
Nr.	längeL mm	grenze kg/qcm	keit kg qcm	auf 100 mm ⁰ /0	derung ⁰ / ₀	OBDCEE ₂ kgm/ccm	OBDCEFF ₂ kgm/ccm	EFF_2E_2 kgm, cem
5	1000	5121 o. 5010 u.	8503	11,6	39,2	8,19	8,84	0,65
6	1000	5194 o. 5000 u.	8516	12,5	34,4	8,37	9,74	1,37
	Durch- schnitt	5158 o. 5005 u.	8510	12,1	36,8	8,28	9,29	1,01

Werden die Durchschnittswerte ins Auge gefaßt, so zeigt sich, daß die Werte des Arbeitsvermögens der Fläche $OBDCEE_2$ in allen drei Fällen sich nur soweit unterscheiden, als der Ungleichförmigkeit des Materials entspricht — inbezug auf diese geben die Werte von Streckgrenze, Zugfestigkeit, Bruchdehnung und Querschnittsverminderung Auskunft — während das Arbeitsvermögen der ganzen Fläche $OBDCEFF_2$ in kgm/ccm umso größer ausfällt, je kürzer die Meßlänge ist: 15,73 für l = 100 mm, 12,82 für l = 200 mm, 9,29 für l = 1000 mm. Ebenso ist die zusätzliche Fläche EFF_2E_2 um so größer, je kürzer der Stab.

Um dies zu veranschaulichen, sind in Figur 10, 11 und 12 die Dehnungslinien für die Stäbe Nr. 7 (100 mm), 4 (200 mm) und 6 (1000 mm) wiedergegeben. (Aufzeichnung der Verlängerungen in Teilen der ursprünglichen Länge). Außerdem wurden in Fig. 13 zu den Meßlängen als wagrechten Abszissen die Werte des Arbeitsvermögens aufgezeichnet. Der für die Fläche $OBDCEE_2$ gültige Linienzug ist ausgezogen; er verläuft nahezu wagerecht, d. h. eine Abhängigkeit des Arbeitsvermögens von der Meßlänge ist nicht zu erkennen. Dagegen fallen die Linienzüge für das gesamte Arbeitsvermögen $(- \cdot - -)$ und für die Überschußfläche EFF_2E_2 (---) stark; die Werte hängen also in hohem Maße von der Größe der Meßlänge ab.

Da verlangt werden muß, daß die an verschieden langen Stäben ermittelten Werte des Arbeitsvermögens vergleichbar sind, so erscheint es geboten, seiner Bestimmung die Fläche $OBDCEE_2$ zugrunde zu legen. Dazu kommt noch folgendes. Einmal ist die Widerstandsfähigkeit des Materials unter der Belastung EE_2 erschöpft. Sodann ist die Fläche EFF_2E_2 weniger genau zu ermitteln als die Fläche $OBDCEE_2$. Daß die — nach Maßgabe des Erörterten mit der Stablänge veränderliche — Fläche EFF_2E_2 zu einem Teile einen gewissen Arbeitsüberschuß darstellt, ist nicht zu verkennen; die Nichtberücksichtigung

C. Bach, Elastizität. 8. Aufl.

 $\mathbf{2}$

dieses Teiles erscheint jedoch ganz im Sinne des Zweckes unserer technischen Rechnungen gelegen.

Angaben von Zahlenwerten für Zugfestigkeit, Querschnittsverminderung, Bruchdehnung, Arbeitsvermögen usw., welche die für den

Konstrukteur vorzugsweise in Betracht kommenden Materialien liefern, finden sich außer in § 4 in des Verfassers Maschinenelementen im ersten Abschnitt unter "E. Zahlenwerte der Elastizität und Festigkeit". Eine umfassende Zusammenstellung mit zahlreichen Abbildungen enthält das Buch von C. Bach und R. Baumann, Festigkeitseigenschaften und Gefügebilder der Konstruktionsmaterialien.

§ 4. Längenänderungen verschiedener Stoffe. Gesamte, bleibende und federnde Längenänderungen. Elastizitätsgrenze.

1. Versuche mit Gußeisen.

Gußeisenkörper I. (1895.)

(Druck.)

Wir nehmen einen aus zähem, grauem Gußeisen, wie es zu Maschinenteilen Verwendung findet, hergestellten sowie abgedrehten Zylinder und unterwerfen ihn in einer senkrechten Prüfungsmaschine der Druckprobe.

Die vor	her stattge	habte I	Messun	g erg	ibt:					
Durchmesser	des Zylin	ders .	• •	• •				d =	8,00	cm
Querschnitt					•	. <i>†=</i>	π 4	8 ²	50,27	qcm
Länge			•						62,15	cm
Länge der m	ittleren Stre	æke, für	welche	e die Z	Zusa	mmer	1-			
drückung	bestimmt	werden	soll,	d. i.	die	Mef	3-			
länge .								l = l	50.00	cm ¹)

Belastung	in kg	Länge der	Zusammendrückungen in $1/_{1200}$ cm						
Р	$\sigma = \frac{P}{f}$	Meßstrecke in cm	$\operatorname*{gesamte}_{\lambda}$	bleibende λ'	federnde $\lambda - \lambda'$				
1	2	3	4	5	6				
0	0	l			_				
10000	198,9	$l-\frac{13,86}{1200}$	13,86						
0	0	$l = \frac{0,75}{1200}$		0,75	13,11				
10000	198,9	$l = \frac{13,94}{1200}$	13,94						

Temperatur unveränderlich 16,3°C.

¹⁾ Die Meßlänge ist mindestens um einen Betrag etwa gleich d kleiner zu wählen als die Stablänge, um die Unregelmäßigkeiten auszuscheiden, die in der Nähe der Druckflächen auftreten (vgl. § 13, § 14). Letztere sind sorgfältig eben, parallel zueinander und senkrecht zur Stabachse zu bearbeiten, so daß gleichförmige Druckverteilung erwartet werden 'kann; andernfalls sind mehr oder minder ungenaue Versuchsergebnisse zu verzeichnen, was auch heute noch häufiger eintritt, als man geneigt ist anzunchmen.

Einleitung.

Belastung in kg		Länge der	Zusammendrückungen in ¹ / ₁₂₀₀ cm						
Р	$\sigma = \frac{P}{f}$	Meßstrecke in cm	gesamte ì	bleibende λ'	federnde $\lambda = \lambda'$				
1	2	3	4	5	6				
0	0	$l=\frac{0,89}{1200}$		0,89	13,05				
10000	198,9	$l = rac{14,00}{1200}$	14,00						
0	0	$l = rac{1,00}{1200}$		1,00	13,00				
10 000	198,9	$l = rac{14,03}{1200}$	14,03						
0	0	$l = \frac{1.04}{1200}$		1,04	12,99				
10 000	198,9	$l = \frac{14,03}{1200}$	14,03						
0	0	$l = \frac{1,04}{1200}$		1,04	12,99				
				i					

Der neue, noch keiner Belastung unterworfen gewesene Zylinder wird abwechselnd in Zeiträumen von 1,5 Minuten zunächst mit der Kraft P = 10000 kg belastet und bis auf P = 0 entlastet¹). Hierbei ergeben sich aus den Beobachtungen die vorstehend zusammenges tellten Zahlen.

Wie hieraus ersichtlich, erfährt der Zylinder durch die erstmalige Belastung mit $P = 10\,000$ kg aut die Erstreckung von 50 cm eine Zusammendrückung um $\lambda = \frac{13,86}{1200}$ cm. Nach der hieran sich schließenden Entlastung zeigt sich noch eine Verkürzung um $\lambda' = \frac{0,75}{1200}$ cm.

¹) Eine vollständige Entlastung des in der Prüfungsmaschine senkrecht stehenden Zylinders ist, streng genommen, nicht möglich, da er durch das eigene Gewicht sowie durch das in Betracht kommende Gewicht der Meßvorrichtung belastet wird. Diese Belastung beträgt im vorliegenden Falle für den mittleren, d. h. in der halben Höhe liegenden Querschnitt rund 17 kg, entsprechend $\frac{17}{50,27} = 0.34 \text{ kg/qcm}$. Sie wurde hier vernachlässigt; bei späteren Versuchen wird sie Berücksichtigung erfahren.

Der Zylinder hat also infolge der einmaligen Belastung eine bleiben de Zusammendrückung um diesen Betrag erlitten. Die sich wieder verlierende, d.h. federn de Zusammendrückung beträgt hiernach $\frac{13,86-0.75}{1200} = \frac{13,11}{1200}$ cm.

Die erste Wiederholung des Belastungswechsels mit P = 10000 kg ergibt die gesamte Zusammendrückung zu $\frac{13,94}{1200}$ cm, die bleibende zu $\frac{0,89}{120}$ cm und die federnde zu $\frac{13,94-0,89}{1200} = \frac{13,05}{1200}$ cm. Hiernach ist gewachsen:

die	gesamte 2	Zusammendrückung	um	$\frac{13,94 - 13,86}{1200} =$	$=\frac{0,08}{1200}$ cm
,,	bleibende	,,	,,	$\frac{0,89-0,75}{1200} =$	$=\frac{0,14}{1200}$,,

dagegen hat abgenommen:

die federnde Zusammendrückung um $\frac{13,11-13,05}{1200} = \frac{0,06}{1200}$ cm.

Die fernete Wiederholung des Wechsels zwischen Belastung mit P = 10000 kg und Entlastung führt schließlich zu dem Ergebnis, daß sich nach viermaliger Belastung und Entlastung die gesamten, bleibenden und federnden Zusammendrückungen nicht mehr oder -mit Rücksicht auf den Genauigkeitsgrad unserer Messungen — doch nur noch unerheblich ändern¹). Ihre Endwerte betragen

$$\lambda = \frac{14,03}{1200}$$
 cm, $\lambda' = \frac{1,04}{1200}$ cm, $\lambda - \lambda' = \frac{12,99}{1200}$ cm.

Wir unterwerfen jetzt den Zylinder einem Belastungswechsel zwischen P = 20000 kg, entsprechend

$$\sigma = \frac{P}{f} = \frac{20000}{50,27} = 397,9 \text{ kg/qcm}$$

und P = 0 mit dem Erfolg, daß der erste Wechsel

$$\lambda = \frac{30,42}{1200}$$
 cm, $\lambda' = \frac{3,06}{1200}$ cm, $\lambda - \lambda' = \frac{27,36}{1200}$ cm

ergibt, und daß der elfte Wechsel zu den Endwerten

$$\lambda = \frac{31,20}{1200}$$
 cm, $\lambda' = \frac{3,95}{1200}$ cm, $\lambda - \lambda' = \frac{27,25}{1200}$ cm

¹) Rasches Erreichen des Endzustandes pflegt sich — selbst wenn es der Natur des Materials entspricht — nur im Falle sehr sorgfältiger Durchführung des Versuchs einzustellen. Bei Fehlern in dieser Richtung schwanken die Werte für λ bei den einzelnen Belastungswechseln mehr oder minder auf und nieder, ohne daß diese Abweichungen durch das untersuchte Material bedingt werden.

führt. Die Temperatur im Versuchsraum steigt während des 12 maligen Belastungswechsels von 16,3 auf 16,4° C, also um $1/10^{\circ}$ C.

Der Belastungswechsel zwischen $P = 30\,000$ kg, entsprechend

$$\sigma = \frac{30000}{50,27} = 596,8 \text{ kg/qcm}$$

und P = 0 liefert zu Anfang die Zahlen

$$\lambda = \frac{48,66}{1200}$$
 cm, $\lambda' = \frac{6,18}{1200}$ cm, $\lambda - \lambda' = \frac{42,48}{1200}$ cm,

nach zwölfmaliger Wiederholung, die noch immer eine geringe Neigung zum Wachsen der gesamten Zusammendrückungen erkennen läßt, die Werte

$$\lambda = \frac{49,50}{1200}$$
 cm, $\lambda' = \frac{7,49}{1200}$ cm, $\lambda - \lambda' = \frac{42,01}{1200}$ cm.

Die Temperatur bleibt während des ganzen Versuchs unveränderlich 16.4° C.

Aus dem Vorstehenden erkennen wir folgendes.

Es sind dreierlei Längenänderungen zu unterscheiden: die gesamte, die bleibende und die federnde Längenänderung.

Werden für den untersuchten Gußeisenzylinder die Endwerte ins Auge gefaßt, so beträgt die bleibende Längenänderung

bei
$$\sigma = 198.9 \text{ kg/qcm} \frac{1.04}{14.03} 100 = 7.4\%$$
 der Gesamtlängenänderung,

Je größer die Belastung des Stabes, um so bedeutender fällt die bleibende Längenänderung aus; sie beginnt bei dem untersuchten Gußeisen schon für sehr kleine Belastungen. Um so mehr Belastungswechsel werden auch unter sonst gleichen Umständen zur Erreichung des Endzustandes (Ausgleichs) erforderlich.

Die federnden Längenänderungen bleiben um so mehr hinter den gesamten zurück, je stärker der Körper belastet wird. Wir sehen, daß die Änderungen, die die Zylinderlänge infolge der Belastung erfahren hat, um so vollständiger verschwinden, je weniger groß sie waren.

Jedem Körper wohnt die Eigenschaft inne, unter der Einwirkung äußerer Kräfte eine Änderung seiner Gestalt zu erfahren und mit dem Aufhören dieser Einwirkung die erlittene Formänderung mehr oder minder vollständig wieder zu verlieren. Insoweit er die erlittene Formänderung wieder verliert, d. h. zurückfedert, wird er als elastisch bezeichnet. Ist die Rückkehr in die ursprüngliche Form

 $\mathbf{22}$

eine vollständige, so spricht man von "vollkommen elastisch". Bei den vorstehend besprechenen Versuchen ist die federnde Längenänderung diejenige, die hiernach als die elastische gelten kann.

Stellen wir die für den untersuchten Gußeisenzylinder gewonnenen Ergebnisse in Fig. 1 bildlich dar derart, daß zu den Belastungen oder Spannungen als senkrechten Abszissen (nach abwärts

Fig. 1.

gehend, da es sich um Druckspannungen handelt) die jeweils erhaltenen Endwerte der Zusammendrückungen als wagrechte Ordinaten aufgetragen werden, so erhalten wir den strichpunktierten $(-\cdot-\cdot)$ Linienzug als Linie der gesamten Zusammendrückungen, den gestrichelten (----) als Linie der bleibenden und den ausgezogenen als Linie der federnden Zusammendrückungen. Deutlich erhellt aus dieser Darstellung, daß die Zusammendrückungen, sowohl die gesamten als auch die federnden — jedenfalls innerhalb der Spannungsgrenze, bis zu der sich die Untersuchung erstreckt hat — stärker wachsen als die Belastungen, daß also bei dem untersuchten Gußeisen Proportionalität zwischen beiden nicht besteht. Ebenso scharf zeigt dies die folgende Zusammendrückungen für das Fortschreiten der Belastung um je 10000 kg angibt.

Einleitung.

	Zusammendrückungen auf 50 cm in $1/_{1200}$ cm									
Belastungsstufe	gesa	mte	blei	bende	federnde					
kg/qcm		Unter- schied		Unter- schied		Unter- schied				
1	2	3	4	5	6	7				
0 0 und 198,9 0 ,, 397,9 0 ,, 596,8	0 14,03 31,20 49,50	14,03 17,17 18,30	0 1,04 3,95 7,49	1,04 2,91 3,54	0 12,99 27,25 42,01	12,99 14,26 14,76				

Berechnet man die durch Gleichung 3, §2 bestimmte Dehnungszahl α unter Zugrundelegung der federnden Zusammendrückungen¹) für die erste Belastungsstufe, so findet sich:

für die Belastungsstufe 0 und 10000 kg $\alpha = \frac{12,99}{1200 \cdot 50} \frac{1}{10\,000:50,27} = \sim \frac{1}{919000} = 1,088 \text{ Milliontel,}$ für die Belastungsstufe 0 und 20000 kg $\alpha = \frac{27,25}{1200 \cdot 50} \frac{1}{20\,000:50,27} = \sim \frac{1}{876000} = 1,142 \quad ., \quad ,$ für die Belastungsstufe 0 und 30000 kg $\alpha = \frac{42,01}{1200 \cdot 50} \frac{1}{30\,000:50,27} = \sim \frac{1}{852000} = 1,173 \quad ., \quad ^2).$

¹) Sofern im späteren nicht ausdrücklich etwas anderes bemerkt wird, sollen der Bestimmung des Zusammenhanges zwischen Dehnungen und Spannungen immer die federnden (elastischen) Dehnungen zugrunde gelegt werden.

In Sonderfällen kann Veranlassung vorliegen, neben der so bestimmten Dehnungszahl auch noch diejenige für die gesamten Dehnungen oder die Dehnungsreste zu verwenden; dann wird allerdings eine Unterscheidung notwendig: etwa Dehnungszahl der Federungen, Dehnungszahl der gesamten Dehnungen und Dehnungszahl der Dehnungsreste oder der bleibenden Dehnungen. Der Begriff Elastizitätsmodul würde für diese Unterscheidung nicht wohl verwendet werden können.

Dabei ist im Auge zu behalten, daß die Entwicklungen der Elastizitätslehre nur elastische Formänderungen vorauszusetzen pflegen, von denen überdies angenommen wird, daß sie bei Wiederholung der Belastung die gleiche Größe behalten.

²) Wie ersichtlich, läuft dieses Verfahren darauf hinaus, daß die Kurve der Dehnungen $OP_1P_2P_3$, Fig. 2, für diese Belastungsstufe durch die gerade Strecke (Schne) OP_3 ersetzt wird. Die so ermittelte Dehnungszahl

$$\alpha == \frac{\varepsilon_3}{\sigma_3}$$

d. i. ausgesprochen wachsend mit höher liegender Spannungsstufe d. h. mit zunehmender Spannung.

Hiernach ist festzustellen, daß durch Gleichung 2, §2, d. h. durch $\varepsilon = \alpha \sigma$, worin α als Konstante gilt, der Zusammenhang zwischen den Dehnungen ε und den Spannungen σ für das untersuchte Material nicht zum Ausdruck gebracht wird.

Legt man die allgemeinere Gesetzmäßigkeit (vgl. S. 104 u. f.)

$$\varepsilon = (: \sigma^m \quad . \quad 1)$$

zugrunde und wählt man für das geprüfte Gußeisen

$$\alpha = \frac{1}{1320\,000}, \qquad m = 1,0385,$$

setzt also

so zeigt fclgende Zusammenstellung:

ist dann gleich der Tangente des Winkels, unter dem die betreffende Sehne gegen die α -Achse geneigt erscheint, während der richtige Wert für Punkt P_3 der Dehnungskurve die Neigung der Tangente an dieselbe sein wird, d. h.

$$\alpha = \frac{d\,\varepsilon}{d\,\sigma}.$$

Um eine bessere Annäherung zu erhalten, kann man auch so vorgehen, daß die Kurve $OP_1P_2P_3$ durch gerade Strecken ersetzt wird, die Sehnen derselben bilden. Beispielsweise für die Stufe der Spannungen σ_1 und σ_2 , denen die Dehnungen ϵ_1 und ϵ_2 entsprechen,

$$\alpha = \frac{\epsilon_2 - \epsilon_1}{\sigma_2 - \sigma_1}.$$

Je kleiner man die Strecken, d. h. je niedriger man die Höhe der betreffenden Spannungsstufe wählt, umso genauer erhält man α für diese Strecke. Im Grenzfall wird $\alpha = \frac{d \epsilon}{d \sigma}$.

Im Falle von vornherein keine ausreichende Sicherheit dafür besteht, daß die Dehnungslinie $OP_1P_2P_3$ unabhängig von der Art der Versuchsdurchführung erhalten wird (Belastungswechsel zwischen O und P_1 , O und

 P_2 , O und P_3 oder zwischen O und P_1 , P_1 und P_2 , P_2 und P_3), so empfiehlt es sich, die Berechnung der Dehnungszahl der Versuchsdurchführung entsprechend vorzunehmen (vgl. in bezug hierauf S. 28 und 29, sowie S. 111 und 112). Um die Krümmung der Dehnungslinie in der Rechnung deutlicher hervortreten zu lassen, wird trotzdem häufig anders verfahren.

miller fund.

Spannungsstufe	Federung auf 50 cm in $1/_{1200}$ cm							
in kg/qcm	beobachtet	berechnet nach Gl. 2						
0 und 198,9	12,99	12,99						
0 ,, 397,9	$27,\!25$	27,25						
0 ,, 596,8	42,01	42,03						

eine sehr gute Übereinstimmung zwischen dem, was beobachtet wurde, und dem, was die Rechnung liefert.

Die Linie der bleibenden Zusammendrückungen in Fig. 1 löst sich schon bei kleinen Spannungen von der senkrechten Abszissenachse, um sich nach der Achse der Zusammendrückungen zu krümmen. Das vorliegende Gußeisen, in dem Zustande, in dem es sich befindet, erweist sich demnach selbst für diese kleinen Spannungen nicht als vollkommen elastisch.

Die Linie der bleibenden Zusammendrückungen kann insofern von praktischer Wichtigkeit erscheinen, als sie Auskunft darüber gibt, welche bleibende Zusammendrückung bei einer bestimmten Inanspruchnahme des Körpers zu erwarten ist. Zu diesem Zwecke ließe sich in ganz gleicher Weise, wie dies oben für die federnden Zusammendrückungen durch Gleichung 2 geschehen ist, eine Beziehung zwischen Spannung und bleibender Zusammendrückung feststellen.

In der Regel muß von den Konstruktionen gefordert werden, daß bleibende Formänderungen so gut wie nicht auftreten oder wenigstens eine gewisse Grenze nicht überschreiten. Dementsprechend kann man in der Linie der bleibenden Zusammendrückungen (vgl. Fig. 1) einen Punkt, den wir Z nennen wollen, annehmen, bis zu dem hin die bleibenden Zusammendrückungen als verschwindend oder doch genügend klein erscheinen; man erhält dadurch in dem zugehörigen Höhenabstand einen Spannungsgrenzwert, unterhalb dessen die bleibenden Zusammendrückungen vernachlässigbar erscheinen. Diese Spannung kann in Übereinstimmung mit bisheriger Auffassung als Elastizitätsgrenze bezeichnet werden.

Wie klar ersichtlich, ist der Punkt Z nicht durch die Natur des Materials allein bestimmt. Diese setzt nur seinen geometrischen Ort — die Linie der bleibenden Zusammendrückungen — fest; seine Lage auf dieser Linie erscheint, sofern die bleibenden Zusammendrückungen nicht verschwindend klein sind, zu einem bedeutenden Teile von dem persönlichen Ermessen desjenigen abhängig, der über die höchste noch für zulässig erachtete Größe der bleibenden Zusammendrückung zu entscheiden hat. Daß hierbei auch der besondere Zweck des Gegenstandes, um den es sich handelt, sowie die gewählte Meßlänge der Probestäbe und der Genauigkeitsgrad der verwendeten Meßinstrumente Einfluß nehmen können, ist selbstverständlich. In neuerer Zeit bezeichnen einzelne Werke, wie z. B. die Firma Fried. Krupp A.-G. in Essen, als Elastizitätsgrenze diejenige Spannung, bei der die bleibende Dehnung den Betrag von 0,03% der Meßlänge des Probestabes erreicht.

Über ähnliche Festsetzungen hinsichtlich der Streckgrenze vgl. S.11.

Ganz das gleiche, was hier zunächst hinsichtlich Zusammendrückungen gesagt worden ist, gilt auch in bezug auf Verlängerungen, weshalb in den folgenden Bemerkungen ganz allgemein von Dehnungen (positiven und negativen) gesprochen werden soll.

Die Vermengung der Elastizitätsgrenze mit der Proportionalitätsgrenze, indem man ausspricht: die Elastizitätsgrenze ist diejenige Spannung, bis zu der die Dehnungen nach dem Entlasten vollständig oder doch nahezu ganz wieder verschwinden, d. h. sich also das Material vollkommen oder doch nahezu vollkommen elastisch verhält, und ferner, daß innerhalb der Elastizitätsgrenze Proportionalität zwischen Dehnungen und Spannungen bestehe, erscheint hiernach mindestens im allgemeinen unzulässig. Sie läuft selbst in den meisten derjenigen Fälle, in denen Proportionalität zwischen Dehnungen und Spannungen besteht, darauf hinaus, daß durch das mehr oder minder willkürliche Festlegen des oben genannten Punktes Z auf der Linie der bleibenden Dehnungen oder Dehnungsreste gleichzeitig der Linie der Federungen oder auch der Gesamtdehnungen, falls man diese zur Grundlage nehmen will, vorgeschrieben wird, auf welche Strecke sie mit einer Geraden zusammenzufallen hat, oder daß dem Punkte Z der Dehnungsrest-Linie dieselbe Abszisse aufgezwungen wird, die der Endpunkt der geraden Strecke in der Kurve der Federungen bzw. der Gesamtdehnungen besitzt.

Gußeisenkörper II. (1910.)

(Zug.)

Material: Graues Gußeisen, wie es zu Maschinenteilen Verwendung findet, in Form eines abgedrehten Rundstabes.

Durchmesser	des	mittle	ren	zyl	lindri	\mathbf{schen}	Teile	s		$2,00 \mathrm{~cm}$
Querschnitt					• .•		• ••			3,14 qcm
Meßlänge .			•							10,00 cm
Don Stab	don	achon		.h.m	lach	7h			1	 î. •

Der Stab, der schon mehrfach Zugbeanspruchungen bis zu 637 kg/qcm erfahren hatte, wurde in einer liegenden Prüfungsmaschine der Zugprobe unterworfen. Die Belastung und Entlastung wurde – wie beim Gußeisenkörper I – jeweils so oft wiederholt, bis die gesamten, bleibenden und federnden Verlängerungen sich nicht mehr änderten. Als Anfangsbelastung des Stabes diente nicht, wie beim

Gußeisenkörper I, P == 0, sondern P == 400 kg entsprechend $\sigma == 400:3,14 == 127$ kg/qcm, um Bewegungen (Verschiebungen) des wagiecht liegenden Stabes, die sich bei vollständiger Entlastung einzustellen pflegen, fernzuhalten. Bei der ersten Spannungsstufe fand Wechsel statt zwischen P == 400 und P == 800 kg, bei der zweiten zwischen 800 und 1200 kg, bei der dritten zwischen 1200 und 1600 kg und bei der vierten zwischen 1600 und 2000 kg. Im Gegensatz zu dem Verfahren beim Gußeisenkörper I begann hier jede Belastungsstufe mit derjenigen Kraft, mit der die vorhergehende Stufe geendet hatte. Die Schlußergebnisse sind im folgenden zusammengestellt:

	Verlän	gerungen auf	10 cm Lä	inge in ¹ /1000	em	
Spannungsstufe kg/gcm		bleibe	nde	federnde		
	gesamte	Einzelstufe	Summe	Einzelstufe	Summe	
1	2	3	4	5	6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1,24 \\ 1,38 \\ 1,46 \\ 1,46$	0,02 0,09 0,14 0,16	$0,02 \\ 0,11 \\ 0,25 \\ 0,41$	1,22 1,29 1,32 1,30	1,22 2,51 3,83 5,13	

1. Versuchsreihe.

Derselbe Stab wurde hierauf nochmals geprüft, jedoch derart, daß jeweils beim Entlasten auf die Anfangsbelastung P = 400 kg, entsprechend $\sigma = 127$ kg/qcm, zurückgegangen wurde, oder Wechsel stattfand zwischen

P = 400 und 800 kg, P = 400 und 1200 kg, P = 400 und 1600 kg, P = 400 und 2000 kg.

Die Endergebnisse sind die nachstehenden:

2. Versuchsreihe.

	Verlä	ingerungen auf	10 cm in 1/	₁₀₀₀ cm
Spannungsstufe kg/gem		blaibanda	fed	ernde
kg/qem	gesamte	oreneede	Summe	Unterschied
1	2	3	4	5
127 und 255 127 ,. 382 127 510 127 637	$ \begin{array}{r} 1,22\\2,57\\4,04\\5,53\end{array} $	0,00 0,00 0,00 0,00	$1,22 \\ 2,57 \\ 4,04 \\ 5,53$	$1,22 \\ 1,35 \\ 1,47 \\ 1,49$

§4. Längenänderungen verschiedener Stoffe.

Vergleicht man die Werte der Spalte 6 der ersten Zusammenstellung mit denjenigen der Spalte 4 der zweiten Zusammenstellung. so erkennt man, daß der erste und zweite Versuch das gleiche nur für die erste Spannungsstufe ergeben haben. Dagegen zeigt der Vergleich der Spalten 2 fast genau denselben Endwert, nämlich

1,24 + 1,38 + 1,46 + 1,46 = 5,54 gegen 5,53.

Berechnet man die durch Gleichung 3, §2, bestimmte Dehnungszahl α unter Zugrundelegung der 'federnden Verlängerungen für die 4 Belastungsstufen, so findet sich aus dem 1. Versuch für die einzelnen Belastungsstufen:

erste
$$\alpha = \frac{1,22}{1000 \cdot 10}$$
 $\frac{1}{(800 - 400):3,14} = \sim \frac{1}{1044000} = 0,958$ Milliontel
zweite $\alpha = \frac{1,22}{1000 \cdot 10}$ $\frac{1}{(1200 - 800):3,14} = \sim \frac{1}{987500} = 1,013$...
dritte $\alpha = \frac{1,32}{1000 \cdot 10}$ $\frac{1}{(1600 - 1200):3,14} = \sim \frac{1}{965000} = 1,036$...
vierte $\alpha = \frac{1,30}{1000 \cdot 10}$ $\frac{1}{(2000 - 1600):3,14} = \sim \frac{1}{980000} = 1,021$...

Die Dehnungszahl wächst also zunächst und nimmt später wieder ab. Das Potenzgesetz $\epsilon = \alpha \sigma^m$ würde daher in diesem Falle nur dann anwendbar sein, wenn die oberste Belastungsstufe nicht in Betracht gezogen wird.

Gußeisenkörper III. (1896.)

(Druck.)

Material: Graues, zähes Gußeisen, wie es zu Maschinenteilen Verwendung findet, in Form eines Hohlzylinders, der innen sorgfältig ausgebohrt und außen abgedreht ist.

Äußerer Du	rch	nm	ess	\mathbf{er}									$20,50~{ m cm}$
Innerer Du	reh	me	esse	\mathbf{r}									18,54
Mittlere Wa	ınd	stä	irk	e	•								0,98
Querschnitt		•				•	π 4	(20	$,5^{2}$	 18	,54	²)	=== 60,1 qcm
Länge .													100,00 cm
Meßlänge													75,00 ,.

Der Zylinder, der bereits vorher mehrfach Druckversuchen bis reichlich 1000 kg/qcm Belastung unterworfen worden war, wurde in einer senkrechten Prüfungsmaschine der Druckprobe unterzogen. Die Belastung und Entlastung wurde dabei — ganz wie beim Gußeisen-

¹⁾ Vgl. Fußbemerkung 2, S. 24.

körper I — jeweils so oft wiederholt, bis die gesamten bleibenden und federnden Zusammendrückungen sich nicht mehr änderten. Die Endergebnisse der 6 Versuchsreihen sind im folgenden zusammengestellt.

Spannungsstufe	Zusammendrückungen auf 75 cm Länge in $^{1/_{600}}\mathrm{cm}$							
\mathbf{kg}/\mathbf{qcm}	gesamte	bleibende	federnde					
0 und 166	7,72	0,12	7,60					
0 ,, 333	16,07	0,19	15,88					
0 ,, 499	24,79	0,19	24,60					
0 ,, 666	33,65	0,23	33,42					
0 ,, 832	42,61	0,27	42,34					
0 ,, 998	51,67	0,36	51,31					

Hiernach betragen die Unterschiede der federnden Zusammendrückungen

für	den	Spannungsunterschied	0	und	166	kg/qcm	7,60
,,	,,	,,	166	,,	333	,,	8,28
,,	,,	,,	333	,,	499	,,	8,72
,,	,,	,,	49 9	,,	666	,,	8,82
,,	,,	,,	666	,,	832	,,	8,92
,,	,,	",	832	,,	9 98	,,	8,97

zeigen also – ganz in Übereinstimmung mit dem für den Gußeisenkörper I Gefundenen – namentlich zu Anfang ausgeprägt stärkere Zunahme als die Spannungen.

Die bleibenden Zusammendrückungen sind hier weit kleiner, was eine Folge davon ist, daß der Zylinder bereits vorher mehrfach stark belastet worden war.

Werden zur Prüfung der Brauchbarkeit der durch Gleichung 1 ausgesprochenen Gesetzmäßigkeit die mittels der Methode der kleinsten Quadrate bestimmten Werte

$$\alpha = \frac{1}{1\,381\,700}, \quad m = 1,0663$$

in die Rechnung eingeführt, wird also

$$\boldsymbol{\varepsilon} = \frac{1}{1\,381\,700}\,\sigma^{1,0663}\,\ldots\,\ldots\,\ldots\,3)$$

gesetzt, so findet sich die folgende Zusammenstellung:

30

§4.	Längenänderungen	verschiedener	Stoffe.
-----	------------------	---------------	---------

Spannung	Federung auf 75 cm in $\frac{1}{600}$ cm									
σ	beobachtet	berechnet nach Gl. 3	Unterschied							
166 kg/qcm	7,60	7,59	-0.01 d.s. $-0.13^{0}/_{0}$							
333 ,	15,88	15,94	+0.06 , -0.38 ,							
499 .,	24,60	24,54	-0.06 ,, -0.24 ,,							
666 ,,	33,42	33,38	-0.04 ,, -0.12 ,,							
832 .,	42,34	42,32	-0.02 , -0.05 ,							
998 , ,	51, 31	51,38	+0,07 , $+0,14$,							

Die Übereinstimmung der Werte in der zweiten und dritten Spalte muß ebenfalls als eine sehr gute bezeichnet werden.

In Fig. 3 sind nach dem durch Fig. 1 gegebenen Vorgange zu den Spannungen als senkrechten Abszissen die Federungen als wagrechte Ordinaten aufgetragen und so die durch Kreuze hervorgehobenen Punkte erhalten worden. Die ausgezogene Kurve ist die durch Gleichung 3 bestimmte Linie. Wie ersichtlich, treffen die durch Beobachtung erhaltenen Punkte fast ganz genau auf diese Linie.

Gußeisenkörper IV. (1898.)

Material wie unter I und III bezeichnet, durch Bearbeitung am prismatischen, der Messung unterworfenen Teile von der Gußhaut befreit.

Querschnit	t (des	m	ittle	eren	p	ris	ma	tisc	he	n T	'eile	es	6,9	9.	7,0)0 =	=	48,9	qcm
Länge		,,		,,				,	,			,,							54,	5 cm
Meßlänge												••							50,0),, (
Gewicht																			29.5	65 kg

Belastung und Entlastung wurden - ganz wie im Fall I, II und III - so oft gewechselt, bis die gesamten, bleibenden und federnden Dehnungen sich nicht mehr änderten.

Der vorher noch nicht belastet gewesene Körper wurde zunächst in einer senkrechten Maschine auf

Zug

beansprucht und dabei jeweils vollständig von der Zugkraft der Maschine entlastet, so daß sein Querschnitt in der Mitte nur noch belastet war durch das halbe Eigengewicht und durch die in Betracht kommenden Teile der Meßvorrichtung.

Diese Belastung des mittleren Querschnittes durch das Eigengewicht und durch den Anteil des Gewichtes der Meßvorrichtung betrug rund 21 kg, entsprechend

$$\frac{21}{48,9} = 0.43 \text{ kg/qcm}.$$

1. Versuchsreihe.

Belastungss	tufe in kg	Verlängeru	Verlängerungen auf 50 cm in $1/_{600}$ cm				
Р	σ	gesamte	blei bende	federnde			
21 und 1000 21 ,, 5000 21 ,, 10000 21 ,, 15000 21 ,, 20000	0,43 und 20,4 0,43 ,, 102; 0,43 ,, 204,1 0,43 ,, 306, 0,43 ,, 409,0	$\begin{array}{c cccc} 5 & 0,575 \\ 25 & 3,405 \\ 5 & 7,55 \\ 75 & 12,405 \\ 18,255 \end{array}$	$\begin{array}{c} 0,00\\ 0,105\\ 0,565\\ 1,385\\ 2,82 \end{array}$	$\begin{array}{c} 0,575\\ 3,30\\ 6,985\\ 11,02\\ 15,435\end{array}$			
Der Versuch	wird wiederholt	_					

Temperatur nahezu unveränderlich 19,2° C.

2. Versuchsreihe.

Belastungs	stufe in kg	Verlängerungen auf 50 cm in 1/600 cm				
Р	σ	gesamte	bleibende	federnde		
21 und 500 21 ,, 1000 21 ,, 5000 21 ,, 10000 21 ,, 15000 21 ,, 20000	0,43 und 10,22 0,43 ,, 20,45 0,43 ,, 102,25 0,43 ,, 204,5 0,43 ,, 306,75 0,43 ,409 5	0,245 0,59 3,37 7,105 11,14	0,00 0,00 0,01 0,02 0,035	0,245 0,59 3,36 7,085 11,105		

Temperatur nahezu unveränderlich 19,1° C.

§4. Längenänderungen verschiedener Stoffe.

Hiernach ergibt die zweite Versuchsreihe eine ganz bedeutende Herabminderung der bleibenden Dehnungen, eine Folge des Umstandes, daß der Körper bereits einmal den Belastungen ausgesetzt gewesen ist. Ungefähr den Beträgen entsprechend, um welche die bleibenden Dehnungen zurückgegangen sind, erscheinen die gesamten Dehnungen kleiner. Die federnden Dehnungen haben sich nur wenig geändert, wie folgende Zusammenstellung erkennen läßt:

1. Ver	such 0,575	3,30	6,985	11,02	15,435
2 Ver	such 0,59	3,36	7,085	11,105	15,365
Untersc	hied $+0,015$	+0,06	+0,100	+0,085	- 0,070
in %	/0 2,6	1,8	1,4	0,8	- 0,45.

Bis auf das letzte Zahlenpaar zeigt sich eine kleine Zunahme der Federung. Bei Beurteilung dieser Ausnahme muß im Auge behalten werden, daß das Material bei dem zweiten Versuch bereits allen Belastungen bis 20000 kg (409 kg/qcm) vorher unterworfen gewesen war, infolgedessen, wie schon bemerkt, seine Neigung zu bleibenden Formänderungen vermindert worden ist. Sein Zustand erscheint deshalb nicht mehr als der gleiche wie bei der ersten Versuchsreihe. Erwartet darf werden, daß der Unterschied in den Federungen verhältnismäßig um so kleiner ausfällt, je mehr sich die Beanspruchung der Endbelastung nähert, die bereits vorher wirksam gewesen war. Das zeigen aber auch die Zahlen, die den Unterschied-in Hundertteilen angeben.

Ferner darf bei Beurteilung des Unterschiedes nicht übersehen werden, daß die Beobachtung nur bis zur Feststellung der Zahlen der zweiten Dezimalreihe reicht, daß also nur bis 0,01 abgelesen werden kann, und daß die hierbei auftretenden Unsicherheiten, sofern noch der Grad der Genauigkeit, mit der die belastende Kraft bestimmt werden kann, Berücksichtigung findet, bei kleinen Belastungen 1 $%_0$ recht erheblich überschreiten können.

Werden für die Koeffizienten α und m der Gleichung 1 solche Werte eingeführt, daß

$$\varepsilon = \frac{1}{1338000} \sigma^{1,083} \quad \dots \quad \dots \quad 4)$$

und sodann die aus Gleichung 4 berechneten Längenänderungen mit den arithmetischen Mitteln aus den federnden Dehnungen der beiden Versuchsreihen in Vergleich gestellt, so ergibt sich:

C. Bach, Elastizität. 8. Aufl.

3

- m - 1	
Him	0111000
1/1/1	CILUITY.

Spannungsstufe in kg/qcm		1 '	Versuchsmittelwert	Berechnet nach Gl. 4	Unterschied	
0,43	und	10,22		0,245	0,269	- 0,024
0,43		20,45	÷	0,58	0,580	0,000
0,43	.,	102.25		3,33	3,357	-0,027
0.43		204,5	ŧ	7,035	7.122	0,087
0.43		306,75		11,06	11,054	- 0.006
0.43		409.0		15.40	15,097	0,303

Die Übereinstimmung zwischen den Versuchsmittelwerten und den berechneten Größen befriedigt hier, namentlich bei der untersten und der obersten Belastungsstufe, nicht ganz.

Der Körper wird hierauf in einer senkrechten Prüfungsmaschine auf Druck

beansprucht und darauf jeweils ganz vom Druck der Maschine entlastet, so daß als Belastung des mittleren Querschnittes sein halbes Eigengewicht und das Gewicht des oberen Teiles der Meßvorrichtung verbleibt. zusammen 24 kg, entsprechend

21

$$\frac{1}{48.9} = 0.49 \text{ kg/qcm}.$$

Die Ergebnisse, welche die zunächst durchgeführten zwei Versuchsreihen 3 und 4 lieferten, sind im folgenden zusammengestellt.

Die 3. Versuchsreihe zeigt sehr bedeutende bleibende Zusammendrückungen, was zu erwarten stand, nachdem der Körper vorher Zugbelastungen ausgesetzt' worden war. Während der darauf folgenden Belastungen der 4. Versuchsreihe wurden bleibende Zusammendrükkungen nur noch bei der höchsten Belastung beobachtet. Die federnden Zusammendrückungen stimmen gut überein, wie die folgende Zusammenstellung erkennen läßt.

Belastungsstufe in kg		3. Ve Tempera veränd Zusamn auf 50	rsuchs atur na lerlich l nendrüc em in	sreihe hezu un- 19,3° C. ekungen 1 ₆₀₀ cm	4. Versuchsreihe Temperatur nahezu un- veränderlich 19,2° ('. Zusammendrückungen auf 50 cm in $\frac{1}{600}$ cm					
Р	0	gesamte	bleiben de	federnde	gesante	bleibende	federnde			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{r}\\ 3.75\\ 8.11\\ 12.75\\ 17.555\\ 22.335\end{array}$	$0.285 \\ 1.095 \\ 2.02 \\ 3.005 \\ 4.01$	3.465 7.015 10.73 14.55 18.325	$\begin{array}{c} 2.05 \\ 3.45 \\ 7.02 \\ 10.75 \\ 14.48 \\ 18.34 \end{array}$	0.00 0.00 0.00 0.00 0.00 0.09	2,05 3,45 7,02 10,75 14,48 18,25			

3.	Versuchsreihe	3,465	7,015	10,73	14,55	18,325
4.	••	3, 45	7,02	10,75	14,48	18,25
	Unterschied	-0.015	-0,005	+0,02	- 0.07	-0,075
	in %	0,4	+0.07		- 0,5	- 0,4

Werden für die Zahlen aund m der Gleichung I die Werte

$$x = \frac{1}{1\,043\,000}$$
 und $m = 1.035$

eingeführt, also

gesetzt und sodann die hiermit berechneten Zusammendrückungen mit den arithmetischen Mitteln aus den federnden Zusammendrückungen der beiden Versuchsreihen in Vergleich gebracht, so findet sich:

Spannungsstufe in kg/qcm	Versuchsmittelwert	Berechnet nach Gl. 5	Unterschied
0.49 und 61,84	2,05	2,04	- 0,01
0,49 ., 102,74	3,46	3,46	0,00
0,49 204,99	7,02	7,09	+0,07
0,49 307,24	10.74	10.78	-0,04
0,49 409,49	14,515	14,52	+0,005
0.49 ., 511.74	18.288	18.297	-0.009

Die Übereinstimmung zwischen den Versuchsmittelwerten und den berechneten Größen muß als eine gute bezeichnet werden.

In Fig. 4 sind nach dem durch Fig. 1 gegebenen Vorgange für den ersten Zug- und für den ersten Druckversuch (Versuchsreihe 1 und 3) die Linienzüge der gesamten, bleibenden und federnden Dehnungen eingetragen: Zugspannungen nach oben, positive Dehnungen nach rechts und Druckspannungen nach unten, negative Dehnungen nach links. Fig. 5 gibt die gleiche Darstellung für den zweiten Zugund für den zweiten Druckversuch (Versuchsreihe 2 und 4).

. Fassen wir den ausgezogenen Linienzug von Fig. 4 ins Auge. so zeigt sich. daß die Linie der Federungen auf der Zugseite zu Anfang. d. h. in der Nähe des Koordinatenanfangs, also für kleine Spannungen. etwas steiler verläuft als auf der Druckseite. Für größere Spannungen kehrt sich das Verhältnis um. Zu dem gleichen Ergebnis führt eine scharfe Betrachtung von Fig. 5.

Das gleiche lehren auch die Gleichungen

$$\epsilon = \frac{1}{1338000} \sigma^{1.083}$$
, gültig für Zugbelastung . . . 4)

und $\varepsilon = \frac{1}{1043000} \sigma^{1.035}$, gültig für Druckbelastung . . . 5)

35

Aus ihnen folgt, daß die Federung für die Spannung 1 beträgt

also im letzten Falle erheblich mehr als im ersten.

Für Spannungen größer als 1 wird der größere Exponent 1,083 auf rascheres Wachstum der durch Zugkräfte veranlaßten Federungen hinwirken. Aus

§4. Längenänderungen verschiedener Stoffe.

$$\frac{1}{1\,338\,000}\,\sigma^{1,083} = \frac{1}{1\,043\,000}\,\sigma^{1,035}$$

ergibt sich die Spannung

$$\sigma = 179,4 \text{ kg/qcm},$$

nach deren Überschreitung die Federungen gegenüber Zugkräften größer werden als diejenigen gegenüber Druckbelastungen.

Die gemachte Feststellung, betreffend den anfänglich steileren Verlauf der Linie der Federungen gegenüber Zugkräften, widerspricht dem, was man bisher angenommen hatte. Sie widerspricht auch den

Werten der Koeffizienten aund m. welche Verfasser früher für einen der Zugprobe unterworfenen Gußeisenstab in der Zeitschrift des Vereines deutscher Ingenieure 1897, S. 250. Gl. 9, sowie in der 6. Auflage seiner Maschinenelemente. S. 687. veröffentlicht hat. Eine dahin gehende Untersuchung hat dazu geführt, daß hinsichtlich dieses Gußeisenstabes sich ein Irrtum eingeschlichen hat, so daß dieser Widerspruch entfällt. Es muß zunächst dahingestellt bleiben, ob die bezeichnete Feststellung allgemeine Gültigkeit für Gußeisen besitzt oder nur für den untersuchten Körper gilt¹). Andere Versuche sprechen dafür, daß in der Mehrzahl der Fälle bei Gußeisen ein anfänglich steilerer Verlauf der Zug-Dehnungslinie nicht vorhanden ist, daß vielmehr für kleine Spannungen die Zug-Dehnungslinie fast genau so verläuft wie die Druck-Dehnungslinie. Die sich ergebenden Abweichungen dürften - jedenfalls zu einem Teile - auf den schon früher vom Verfasser festgestellten Umstand zurückzuführen sein, daß das gegenseitige Verhältnis zwischen Zug- und Druckelastizität bei Gußeisen stark beeinflußt wird davon, ob und in welchem Maße der untersuchte Körper vorher belastet worden war. In dieser Hinsicht seien noch die folgenden Versuchsergebnisse mitgeteilt.

Der zu den Versuchsreihen 1 bis 4 verwendete

Gußeisenkörper IV. (1898.)

wurde einem Druck von P = 90000 kg, d. i. 1841 kg/qcm, 15 Minuten lang ausgesetzt und sodann den aus folgender Zusammenstellung ersichtlichen Belastungswechseln unterworfen. Da bei der Höhe der Belastung der Meßbereich des Instrumentes für eine Meßlänge des Körpers von 50 cm nicht mehr ausreichte, so wurde eine kürzere Meßlänge, und zwar l = 15 cm – in der Mitte der früheren liegend –, gewählt.

¹) Um über diesen Punkt sowie über einige andere Verhältnisse Klarheit zu schaffen, hat Verfasser Herrn Dr.-Ing. Otto Berner, damals Assistenten der Materialprüfungsanstalt an der Techn. Hochschule Stuttgart, Anregung gegeben, Elastizitätsversuche mit Gußeisen und Flußeisen derart durchzuführen, daß ein und derselbe Körper der Zug- und Druckprobe unterworfen wird, wie in §8 näher angegeben ist. Die Ergebnisse dieser Versuche sind in der 1903 erschienenen Schrift von Berner: "Untersuchungen über den Einfluß der Art und des Wechsels der Belastung auf die elastischen und bleibenden Formänderungen" veröffentlicht worden. Hinsichtlich der Klarstellungen, die die Schrift bringt, muß auf diese verwiesen werden.

	Belas	stungsstufe in kg	Zusammendrückungen auf 15 in 1/600 cm					
	P	σ	gesamte	bleibende	federnde			
24	und 5024	0,49 und 102,74	0.96	0,00	0,96			
24	10024	0,49 204,99	2,00	0,00	2,00			
24	20024	0,49 409,49	4,15	0,00	4,15			
24	30024	0,49 613,99	6,375	0,04	6,335			
24	40024	0,49 818,49	8,61	0,065	8,545			
24	50024	0,49 1022,99	10,92	0.10	10,82			
24	60024	0,49 1227,48	13,265	0,14	13,125			
24	., 70024	0,49 1431.98	15.66	0,21	15,45			

Temperatur schwankt zwischen 19,3 und 192° C.

Werden für die Koeffizienten α und m der Gleichung 1 solche Werte eingeführt, daß

und werden sodann die hieraus berechneten Zusammendrückungen mit den beobachteten verglichen, so ergibt sich die folgende Zusammenstellung.

Spannungsstufe in kg qem	Versuchswert	Berechnet nach Gl. 6	Unterschied
0,49 und 102,74	0,960	0,963	+0,003
0,49 204,99	2,00	1,995	-0,005
0,49 409,49	4,15	4,137	-0,013
0,49 613,99	6,335	6,336	+ 0,001
0,49 818,49	8,545	8,575	+0,030
0,49 1022,99	10,82	10,814	-0,006
0,49 1227,48	13,125	13,136	+0,011
0.49 1431.98	15, 45	15.449	- 0.001

Auch hier ist die Übereinstimmung der beobachteten und der auf Grund der Gleichung 6 berechneten Zusammendrückungen eine sehr gute.

Gleichung 5 verglichen mit Gleichung 6 lehrt. daß durch vorhergegangene starke Druckbelastung a von $\frac{1}{1043000}$ auf $\frac{1}{1217000}$ vermindert. *m* dagegen von 1,035 auf 1,052 vergrößert wird. Hierdurch wird die Federung gegenüber Druck (Gleichung 5 und 6) der Federung gegenüber Zug (Gleichung 4) genähert.

Gußeisenkörper V. (1895.)

Zug.

Nach vorhergegangener Belastung mit 40000 kg, entsprechend 818 kg/qcm, was in der Regel bei Gußeisen für Zug als Überlastung bezeichnet werden muß, wurde der Körper den aus folgender Zusammenstellung ersichtlichen Belastungswechseln unterworfen.

Belastu in	ngsstufe kg	Federnde Verlängerungen auf 50 cm in ¹ / ₆₀₀ cm					
Р	σ	beubachtet berechnet Unterschied					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					

Temperatur schwankt zwischen 19,5 und 19,6° C.

Die Übereinstimmung der beobachteten Federungen mit den auf Grund der Gleichung

berechneten muß als eine befriedigende bezeichnet werden.

Der Vergleich der Zahlenwerte in Gleichung 7 mit denjenigen in Gleichung 4 zeigt, daß sich für den vorher überlasteten Körper sowohl α als auch m größer ergeben haben.

Druck.

Nach vorhergegangener Belastung durch 90000 kg, entsprechend 1841 kg/qcm.

Belast	ungsstufe 1 kg	Federnde auf	Zusammendi 15 cm in ¹ / ₆₀	rückungen ₀ em
Р	б	beobachtet	berechnet nach Gl. 8	Unterschied
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,49 und 102,74 0,49 ,, 204,99 0,49 ,, 409,49 0,49 ,, 613,99 0,49 ,, 818,49 0,49 ,, 1022,99 0,49 ,, 1227,48 0,49 ,, 1431,98	$\begin{array}{c} 1,012\\ 2,122\\ 4,445\\ 6,80\\ 9,11\\ 11,47\\ 13,845\\ 16,245\end{array}$	$1,024 \\ 2,115 \\ 4,373 \\ 6,687 \\ 9,039 \\ 11,420 \\ 13,824 \\ 16,247$	+0,012 -0,007 -0,072 -0,113 -0,071 -0,050 -0,021 - $+0,002$

Temperatur schwankt zwischen 19,3 und 19,2° C.

Eine Prüfung der dritten und vierten Spalte zeigt auch hier, daß die aus

berechneten Werte befriedigend mit den beobachteten übereinstimmen.

Der Vergleich von Gleichung 7 mit Gleichung 8 bestätigt sodann die früher gemachte Beobachtung, daß die Linie der Federungen auf der Zugseite in der Nähe des Koordinatenanfanges etwas steiler verläuft als auf der Druckseite.

Doch ist der Unterschied hier weit geringer als im Falle des Gußcisenkörpers IV (s. Gl. 4 und 5). Es steht dies damit in Übereinstimmung, daß auch bei letzterem durch vorherige starke Belastung der Unterschied vermindert wurde (s. Gl. 5 und 6).

Zusammenstellung der für die besprochenen Gußeisenkörper I, IV und Verhaltenen Elastizitätsgleichungen:

Für Zug,

wenn vorher nicht belastet

(Körper IV)	$e = \frac{1}{1338000}$	$\sigma^{1,083}$	•				•	•	4)
wenn vorher stark	belastet					t			

(Körper V) $\epsilon = \frac{1}{1} \frac{1}{150} \frac{\sigma^{1,1}}{000} \sigma^{1,1}$	7)
---	----

Für Druck,

wenn vorher nicht belastet
wenn vorher auf Zug und noch nicht durch Druck belastet

(Körper IV)	$s = \frac{1}{1043000} \sigma^{1,035}$.	•						5)
wenn vorher	stark durch Druck belastet							
(Körper IV)	$\varepsilon = \frac{1}{1217000} \sigma^{1.052}$				•		•	6}
(Körper V)	$\varepsilon = rac{1}{1124000}\sigma^{1,048}$		•	·				8)

Wie bereits oben bemerkt, muß es zunächst noch dahingestellt bleiben, inwieweit die Ermittlungen, betr. das Verhältnis zwischen Zug- und Druckelastizität, allgemeine Gültigkeit haben, oder ob sie nur für die untersuchten Gußeisenkörper Geltung besitzen.

Bei Beurteilung der für α und m der Gleichung 1 gewonnenen Zahlenwerte ist überdies im Auge zu behalten. daß sie sich unter der Voraussetzung ergeben, das Material sei auf der Meßlänge l von gleicher Beschaffenheit und gleich dicht, es seien also bei prismatischer Form des Versuchskörpers vom Querschnitt j sowohl die Spannung

42

 $\sigma = \frac{P}{l}$ als auch die Dehnung $\epsilon = \frac{\lambda}{l}$ an allen Stellen der Strecke l gleich groß. Daß diese Voraussetzung namentlich bei gegossenen Körpern von größerem Querschnitt, die Hohlstellen im Innern besitzen können und auch hinsichtlich der Dichte Veränderlichkeit zu zeigen pflegen derart, daß dieselbe von außen nach innen abnimmt, im allgemeinen nicht – jedenfalls nicht streng – erfüllt sein wird. liegt bei der Natur solcher Gußstücke auf der Hand.

Im allgemeinen ist festzuhalten, daß die Dehnungszahl auch mit der Beschaffenheit des Gußeisens ganz erheblich schwankt. und zwar viel stärker als bei dem schmiedbaren Eisen und Stahl. Dies

ist in erster Linie der verschiedenen Größe des Graphitgehaltes zuzuschreiben. Gußeisen, das von Graphit frei wäre, würde sich ähnlich wie Stahl verhalten, also eine kleinere und weniger veränderliche Dehnungszahl besitzen. (Vgl. das unten zu Hartguß Bemerkte.) Auch die Dichte des Gusses, soweit sie von der Druckhöhe beim Gießen abhängt, scheint die Dehnungszahl zu beeinflussen. Vgl. C. Bach, Die Widerstandsfähigkeit von Rohren mit und ohne Rippen, Zeitschrift des Vereines deutscher Ingenieure 1907, S. 1700 u. f.

1898 und 1899 durchgeführte Versuche mit Gußeisen von hoher Festigkeit (hochwertiges Gußeisen), ferner mit Gußeisen, das für Hartguß bestimmt, und mit solchem, das durch ganze oder teilweise Abschreckung in Hartguß übergeführt worden war, gewähren einen lehrreichen Einblick nach dieser Richtung hin. So fand sich beispielsweise für das hochwertige Gußeisen (durchschnittliche Zugfestigkeit bis rund 2400 kg/qcm, durchschnittliche Biegungsfestigkeit unbearbeiteter Quadratstäbe bis rund 4400 kg/qcm) bei der Zugprobe die Dehnungszahl der Federung:

Spann	ungss	tufe		Dehnungszahl	
160,1	und	480,3 l	kg/qem	$rac{1}{1143000} = 0,875 ext{ Milliont}$	æl
480,3	•,	800,5	••	$\frac{1}{970306} = 1,031$,,	
800,5		1120,7		$rac{1}{835300} = 1,197$	
1120.7	<i>,.</i>	1440,9	••	$\frac{1}{687100} = 1,455$	
1446.9		1761,1	••	$\frac{1}{545200} = 1,834$	

Das zu Hartguß bestimmte Gußeisen zeigt kleinere Werte, wäh rend das Gußeisen, wie es für gewöhnlich zu gutem Maschinenguß Verwendung findet, erheblich größere Werte und besonders zähes Gußeisen noch größere Werte besitzt. Fig. 6, welche die Linienzüge der gesamten Dehnungen, und Fig. 7, die diejenigen der federnden Dehnungen, je in $\frac{1}{1000}$ cm für 15 cm Meßlänge gültig, enthält, lassen dies deutlich an der mehr oder minder großen Steilheit des Verlaufes erkennen.

Der Hartguß ergab bei der Zugprobe weit kleinere und weniger veränderliche Dehnungszahlen, z. B.

Spannungsstufe	Dehnungszahl
13,3 und 133,0 kg/qcm	$\frac{1}{1870000}$ == 0,535 Milliontel

Spai	nur	ngsstufe		Dehnungszał	ıl
133,0	,,	266,1 kg/	զշու	$\frac{1}{1775000} = 0,563$	Milliontel
266,1	<i>,</i> .	532,2		$\frac{1}{1750600} = 0,571$, ;
532,2	,,	798 ,3 ,		$\frac{1}{1710000} = 0,585$;,

Hiernach hat das Abschrecken des Gußeisens einen sehr großen Einfluß auf die Größe der Dehnungszahl. Näheres vgl. in § 10 unter 3.

Hinsichtlich weiterer Einzelheiten, namentlich über die Elastizitätsverhältnisse der nur einseitig abgeschreckten Stäbe, muß auf des Verfassers Arbeiten in der Zeitschrift des Vereines deutscher Ingenieure 1899, S. 857 u. f. (Hartguß), und 1900, S. 409 u. f. (hochwertiges Gußeisen), verwiesen werden.⁴ (Vgl. auch Mitteilungen über Forschungsarbeiten, Heft 1).

Für die Dehnungslinie bis zum Bruch ergibt sich bei Gußeisen, wie es für gewöhnlich zu gutem Maschinenguß verwendet wird, die Linie OG in Fig. 8¹). Für andere Gußeisensorten ergeben sich

Linien von dem gleichen Verlaufe. Das Arbeitsvermögen $(\S 3)$ wird demnach bei Gußeisen durch eine Fläche von der Gestalt OGG_2 gemessen. Ihre Größe — etwa 0,08 kgm/ccm für das in den Fig. 6 und 7 als gewöhnliches Gußeisen bezeichnete Material und etwa 0,14 kgm/ccm für das daselbst genannte hochwertige Gußeisen — beträgt nur einen sehr kleinen Bruchteil von der Fläche, welche z. B. das Arbeitsvermögen des Flußeisens (Fig. 10) liefert (Fig. 10 und 8 sind in demselben Maßstab gezeichnet).

or Gr

Querschnittsverminderung und Bruchdehnung sind selbst bei zähem Gußeisen so gering, daß für gewöhnlich eine Bestimmung unterbleiben kann.

Über die Ergebnisse neuerer Versuche mit Gußeisen, das von fünf verschiedenen Filmen geliefert wurde, ist in der Zeitschrift des Vereines deutscher Ingenieure 1908, S. 2061 u. f., 1909, S. 299 u. f., sowie § 22 unter Ziff, 3 berichtet.

Im Zusammenhange werden die Versuchsergebnisse mit Gußeisen behandelt in der Schrift von Nonnenmacher "Über den der-

¹) In dieser Darstellung ist genau bestimmt die Höhe G_2G und der Verlauf der Linie OG, soweit sie ausgezogen ist. Vor Eintritt des Bruches müssen die Instrumente zum Messen der Verlängerungen abgenommen werden, damit sie durch den Bruch nicht beschädigt werden; infolgedessen kann die Bestimmung der Verlängerungen in der Nähe des Bruches nicht mehr genau erfolgen, was durch Strichelung in Fig. 8 angedeutet ist. Doch läßt sich der Verlauf der Dehnungslinie ausreichend festlegen.

zeitigen Stand unserer Erkenntnisse hinsichtlich der Elastizität und Festigkeit von Gußeisen", Stuttgart 1916.

2. Versuche mit Flußeisen.

Rundstab I. (1895.)

Wir unterwerfen den aus zähem Flußeisen hergestellten Stab in einer liegenden Prüfungsmaschine der Zugprobe.

Durchmesser	•	\mathbf{des}	m	itt	ler	en	zy	lind	lris	che	n	Tei	\mathbf{les}		2,007 cm
Querschnitt		.,			;,				••						3,16 qcm
Meßlänge															15.00 cm

Der neue, noch keiner Belastung unterworfen gewesene Stab wird zunächst mit P = 1000 kg und sodann abwechselnd mit P = 3000 kg belastet und bis auf P = 1000 kg entlastet¹). Hieran schließt sich der Belastungswechsel P = 1000 und 5000 kg sowie P = 1000und 6000 kg. In jedem Falle wurden Belastung und Entlastung so oft gewechselt, bis sich die gesamten, die bleibenden und die federnden Verlängerungen nicht mehr änderten, somit der Wechselzwischen Belastung und Entlastung zu einem bestimmten Endzustand führte, also Ausgleich eintrat. Dazu ist auch hier schon zu Anfang mehrmaliger Belastungswechsel erforderlich²).

¹) Wenn ein Stab in liegender Maschine der Prüfung unterworfen wird, und man entlastet ihn vollständig, d. h. bis die in der Einspannvorrichtung gehaltenen Stabköpfe sieh zu lösen beginnen, so liegt die Gefahr vor, daß die Anzeigen der Meßeinrichtung (hier Spiegelapparat, vgl. Fig. 2 und 4, § 8, S. 127 u. f.) ungenau werden. Das läßt sich dadurch vermeiden, daß man mit der Entlastung nicht bis Null zurückgeht, sondern einen erheblichen Betrag darüber bleibt. Hierfür wurde im vorliegenden Falle P = 1000 kg gewählt, entsprechend

 $\sigma = \frac{1000}{3,16} = 316.5 \text{ kg/qcm}.$

Beim Entlasten ist die Vorsicht zu gebrauchen, daß man jeweils etwas unter die Anfangsbelastung, d. i. hier 1000 kg, zurückgeht und alsdann vorwärtsschreitend auf dieselbe einstellt. Dadurch wird erreicht, daß die Meßeinrichtung innerhalb des Meßbereichs sich stets in der gleichen Richtung bewegt; Fehler infolge toten Ganges usw., die bei den üblichen Einrichtungen in der Regel befürchtet werden müssen, werden auf diese Weise von den Ergebnissen ferngehalten.

²) Wird dieser vom Verfasser bereits seit 1885 geübte Belastungswechsel nicht angewendet, der Berechnung der Dehnungszahl c also die gesamte Dehnung zugrunde gelegt, so erhält man für c einen zu großen Wert. Auf diese Weise erklären sich die in der älteren Literatur und leider auch in der neueren Literatur für die Dehnungszahl von schmiedbarem Eisen zu findenden viel zu großen Werte von c. Der Belastungswechsel läßt auch den Einfluß von Temperaturänderungen auf die Ablesungen leichter erkennen und damit das Versuchsergebnis zuverlässiger gestalten.

Die Ablesungen der Dehnungen erfolgen in Zwischenräumen von 3 Minuten.

Belastungs	Verlängeru	ngauf 15cm in 1'1000 cm	
Р	σ	- gesamte	bleibe nde federn de
1000 und 3000 kg 1000 5000 ,. 1000 6000	316,5 und 949,4 316,5 ., 1582,3 316,5 ., 1898,7	4,61 9,21 11,90	0.17 4,44 0.22 8,99 0.63 11.27

Temperatur schwankt zwischen 17,6 und 17,8° C.

Wie ersichtlich, wachsen die federnden Dehnungen etwas rascher als die Spannungen, denn es beträgt

für die erste Stufe von 2000 kg die Federung 4,44 zweite 2000 .. 8.99 - 4.44 = 4.55. . .. dritte 1000 ... 11.27 - 8.99 = 2.28•• • • In Fig. 9 sind die Verlängerungen nach dem in Fig. 1 u. f. gegebenen Vorgange einge--11,27 0,0007313 tragen, und zwar von $\sigma = 316.5 \text{ kg/qcm}$ an 1698 gerechnet (vgl. Fußbemerkung 1, S. 46). ۴ 4

Unter der Belastung von 6850 kg sinkt der Waghebel der Maschine auf seine Unterlage; beim Nachspannen verschwindet die Skala in den beiden Spiegeln der Meßvorrichtung: die Fließ- oder Streckgrenze (§ 3) ist erreicht. Sie liegt demgemäß bei

 $\sigma = \frac{6850}{3.16} = 2168 \text{ kg/qcm}^{-1}$).

Nach dieser Feststellung wird der Stab entlastet und hierauf der Versuch, wie vorher durchgeführt, wiederholt. Dabei ergibt sich

 $\begin{array}{cccccc} {\rm für \ den \ Belastungswechsel} & \\ & 1000/3000 & 1000/5000 & 1000/6000 \ {\rm kg} \\ {\rm die \ Federung} & \\ & 4.50 & 9.01 & 11.28 \\ {\rm somit \ Unterschied} & \\ & & 4.51 & 2.27 \end{array}$

1582.3 949.4 316.5 Fig. 9.

also die Federung nur wenig stärker wachsend als die Spannung.

¹) Auf die Ermittlung auch der unteren Streckgrenze (vgl. § 3, 8, 10) wird S. 52 bis 54 eingegangen werden.

Mit der Federung 4,50 für die erste Belastungsstufe der zweiten Versuchsreihe findet sich die durch Gleichung 3, §2 bestimmte Dehnungszahl zu

 $\alpha = \frac{4,50}{1000 \cdot 15 (949,4 - 316,5)} = \frac{1}{2\,109\,700} = 0.474$ Multiontel

Bei erneuter Steigerung der Belastung über 6000 kg hinaus ist die Streckgrenze — durch Sinken des Waghebels auf seine Unterlage — jetzt bei P = 6500 kg zu bechachten, entsprechend

$$\sigma = \frac{6500}{3.16} = 2057 \text{ kg/qcm}.$$

Nachdem durch Nachspannen eine Verlängerung der Meßstrecke l = 15 cm um 0,14 cm erfolgt ist, beginnt der Waghebel wieder zu steigen und einzuspielen, hierdurch anzeigend, daß die inneren Kräfte mit denen der Stab der Verlängerung widersteht, die Größe von 2057 kg/qcm wieder erreicht haben und zu überschreiten anfangen Bei Fortsetzung des Nachspannens steigt die Belastung stetig, bis sie mit $P_{max} = 11840$ kg ihren Größtwert erreicht hat (vgl. § 3, Fig. 1). Alsdann sinkt der Waghebel — nachdem er vorher einige Zeit hindurch eingespielt hatte —, der Stab beginnt sich einzuschnüren (vgl. § 3), und schließlich erfolgt der Bruch an der stark eingeschnürten Stelle unter rund P = 8700 kg Belastung. Eine genaue Feststellung dieser Belastung begegnet Schwierigkeiten. (Vgl. S. 11.)

In Fig. 10 ist der Verlauf der Linje der gesamten Dehnungen, wie

sie sich für den untersuchten Flußeisenstab bei dem zweiten Versuch ergab, unter Zugrundelegung der Meßlänge von ursprünglich 15 cm

48

eingetragen. Derselbe ist nicht unabhängig von der Geschwindigkeit, mit der die Belastung gesteigert, d. h. von der Raschheit, mit der der Stab gedehnt wird.

Die Zugfestigkeit beträgt

$$K_z = rac{11\,840}{3,16} = 3747 \; \mathrm{kg/qcm}.$$

Die Messung des mittleren Durchmessers

des Bruchquerschnittes liefert 1,23 cm, entsprechend $f_b = \frac{\pi}{4}$ 1,23 ² = 1,19 qcm (vgl. §3); somit ist nach Gleichung 2, §3 die Querschnittsverminderung

$$\psi = 100 \frac{3,16 - 1,19}{3,16} = 62,3 \ 0/_0.$$

Nach dem Bruche zeigt das mittlere, ursprünglich 20 cm lange Stabstück 25,48 cm Länge; infolgedessen ergibt sich nach Gleichung 3, § 3 die Bruchdehnung zu

$$\varphi = 100 \frac{25,48 - 20,0}{20,0} = 27,40/_0.$$

Das nach Maßgabe der Gleichung 4, §3 bestimmte Arbeitsvermögen beträgt A = 6,76 kgm/ccm.

Rundstab II. (1895.)

Durchmesse	er des	mittleren	zylindrischen	Teiles	•		$2,495\mathrm{cm}$
Querschnitt	,,	,,	,,	;,			4,89 qcm
Meßlänge .	• •			• •			15,00 cm
Der Stab,	der a	us ausgeg	lühtem Mater	ial best	teht	5 1	und vorhei
la in an Daii	£		· ····································		1		11

noch keiner Prüfung unterworfen worden ist, wird in derselben Weise wie Rundstab I geprüft und liefert folgende Ergebnisse:

Versuchsreihe 1.

Belastungs	stufe in kg	Verlängerung auf 15cm in ¹ / ₁₀₀₀ cm							
Р	σ	gesamte	blei be n de	federnde					
1000 und 3000 kg 1000 ,, 5000 ,, 1000 ,, 7000 ,, 1000 ,, 9000 ,,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2,99 \\ 5,98 \\ 8,95 \\ 11,\$2 \end{array}$	$0,05 \\ 0,11 \\ 0,16 \\ 0,21$	$2,94 \\ 5,87 \\ 8,79 \\ 11,71$					

Temperatur schwankt zwischen 17,0 und 17,2° C.

Die Wiederholung des Versuchs liefert:

C. Bach, Elastizität. 8. Aufl.

4

Temperatur	schwank	t zwische	n 17,2 uno	1 17,4º C.	
Belastungsstu	fe in kg		Verlängei	ungauf 15cm	in ¹ / ₁₀₀ cm
Р	σ		gesamte	bleibende	federnde
1000 und 3000 kg 2	0 4 ,5 und	613,5	2,93	0,00	2,93
1000 ,, 5000 ,, 2	04,5 ,,	1022,5	5,89	0,02	5,87
1000 ,, 7000 ,, 2	04,5 ,,	1431,5	8,85	0,06	8,79
1000 ,, 9000 ,, 2	04,5 ,,	1840,5	11,80	0,09	11,71
Hiernach betragen	die ges	amten	Verlänger	ungen:	
1. Versuchsreihe	2,99	5,98	8,95	11,92	
Unterschied	2,99	2,99	2.97	2.97	
2. Versuchsreihe	2.93	5.89	8 85		1
Unterschied	2,93	2,96	2,96	2,95	5
Die federnden V	Verlängeru	ingen:			
1. Versuchsreihe	e 2.94	5.87	8.79) 11.7	
Unterschied	2.94	2.93	2.92	2 2.92	2
2 Versuchsreihe	2 93	5.85	879	-,-,-	-
Unterschied	2,93	2,94	2.92	2 292	2
6 1.35	Mit \vec{x} keit, mit Einstellu folgt, ur ermittelt des Einfl kleinen $0,2^{\circ}$ C - die Unv $\sigma = \frac{9000}{4,89}$ den ang ¹) E in Betrau Querschn rascher fr	Rücksich o der bei ng auf e ad mit de werden lusses de Tempera – währer veränderl) = 1840 gesehen v dei dem v eht komm ittsabmess olgen als d	t auf der den Prü eine besti er sodann kann, s r nicht g turänderu nd einer ichkeit d ,5 kg/qcm werden. 1 erwendeten nende Teil ungen den er verhältn	n Grad der fungsmasc. mmte Bela die Dehnu owie in A anz fernzu ngen ¹) — Versuchsre ler Federu als wirklic Fig. 11, die Meßinstrum e wegen d Temperatur ismäßig diel	Genauig- hinen die stung er- ing selbst nbetracht haltenden hier um eihe, darf ingen bis ch vorhan- e mit den nent, desser er geringer ränderunger

Versuchsreihe 2.

204,5 + 8 O Fig. 11.

n n n \mathbf{r} · 2, kleinen Temperaturzunahme in einer solchen Weise, daß eine kleine Abnahme der beobachteten Dehnungen zu erwarten steht. Tatsächlich zeigt sich auch eine solche Abnahme. Vgl. auch das in § 8, S. 130 u. f. Gesagte bei der ersten Versuchsreihe gewonnenen Verlängerungen hergestellt wurde, bestätigt dies.

Mit der Federung 2,93 folgt nach Gleichung 3, §2: $\alpha = \frac{2,93}{1000 \cdot 15 (613,5 - 204,5)}$ $= \frac{1}{2.094\,000} = 0,478 \text{ Milliontel.}$

Die bleibenden Dehnungen ergeben sich für die zweite Versuchsreihe weit geringer als bei der ersten, was zu erwarten war.

Bei Steigerung der Belastung über P = 9000 kg hinaus zeigt sich plötzliches Sinken des Waghebels der Maschine bei P = 10500 kg, die obere Streckgrenze wurde somit bei

$$\frac{10\,500}{4,89} = 2147 \text{ kg/qcm}$$

erreicht.

Um die Kraft festzustellen, welcher der sich streckende Stab unmittelbar nach Sinken des Waghebels das Gleichgewicht hält, wird die Wage stetig entlastet, bis wieder Einspielen stattfindet¹). Dies tritt ein bei P = 9900 kg, d. i. für $\sigma = \frac{9900}{4,89} = 2025$ kg/qcm. Bei längerer Fortsetzung des Nachspannens beginnt die Widerstandsfähigkeit des Stabes zu steigen, wie dies Fig. 12, die auch den Belastungs-

abfall von 10500 kg auf 9900 kg zeigt, erkennen läßt. Nach Erreichung der Belastung von 11000 kg, d. i. $\frac{11000}{4,89} = 2249$ kg/qcm, fällt der

¹) Im Falle der Fig. 10 geschah diese Feststellung nicht.

Waghebel zum zweiten Male plötzlich, und zwar auf P = 9800 kg, entsprechend $\frac{9800}{4.89} = 2004 \text{ kg/qcm}$. Bei dem nun folgenden Nachspannen steigt die Belastung ziemlich rasch, wie Fig. 12 deutlich angibt.

 P_{max} tritt bei 17050 kg ein, entsprechend der Zugfestigkeit $K_z = \frac{17050}{4.89} = 3487 \text{ kg/qcm}.$

Die Belastung hält sich ziemlich lange auf dieser Höhe, wie ebenfalls aus Fig. 12 zu ersehen ist. Die letzte Belastung, die unmittelbar vor dem Bruche und nach weitgehender Einschnürung des Bruchquerschnittes beobachtet werden konnte, beträgt P = 13500 kg.

Da $f_b = \frac{\pi}{4}$ 1,54² = 1,86 qcm, so liefert Gleichung 2, § 3 die Quer-

schnittsverminderung

$$\varphi = 100 \, \frac{4,89 - 1,86}{4,89} = 62^{\circ}/_{\circ}$$

und wegen $l_b = 323,7$ bei 250 mm ursprünglicher Länge findet sich nach Gleichung 3, §3 die Bruchdehnung

$$\varphi = 100 \ \frac{323,7-250}{250} = 29,50/_0.$$

Rundstab III. (1904.)

Durchmesser	des	mittleren	zylindrischen	Teiles	•	•	$2,60~\mathrm{cm}$
Querschnitt	,,	,,	,,	,,			5,31 qcm
Meßlänge '							26,00 cm.

Der Stab, der aus geglühtem Material besteht, wird der Prüfung insbesondere behufs Ermittlung der oberen und unteren Streckgrenze (§3) unterworfen; weiter sollen festgestellt werden: Zugfestigkeit, Bruchdehnung und Querschnittsverminderung.

Zu dem bezeichneten Zweck wird ein Selbstzeichner verwendet, d. h. eine Vorrichtung angeordnet, die die Dehnungslinie selbsttätig aufzeichnet¹).

¹⁾ Die Einrichtung ist derart, daß der in senkrechter Richtung sich bewegende Schreibstift von dem Laufgewicht der Wage, dessen Stellung die Größe der Belastung bestimmt, betätigt wird, während die um eine senkrechte Achse sich drehende Papiertrommel ihre Bewegung von dem fortschreitenden Einspannkopf der Prüfungsmaschine erhält. Es werden also nicht bloß - wie zu wünschen ist - die Dehnungen des mittleren zylindrischen Teiles des Versuchsstabes auf die Papiertrommel übertragen, sondern auch die übrigen Formänderungen, die sich unter der jeweiligen Belastung einstellen, insoweit sie die Lage des unteren Einspannkopfes der stehenden Maschine beeinflussen. Die Darstellung der Dehnungen ist somit keine reine und auf die Meßlänge des Stabes beschränkte, ganz abgesehen von den etwaigen Unvollkommenheiten der Übertragung der Bewegung von dem Einspannkopf auf die Papiertrommel. Um die

Der Versuch liefert die in Fig. 13 dargestellte Dehnungslinie mit den eingetragenen Spannungen. Die Dehnungen sind zurückgeführt

Fig. 13.

auf die in der Mitte des Stabes gelegene Meßstrecke von ursprünglich 20 cm Länge (vgl. S. 15).

letzteren zu vermindern, ist die Trommel leicht drehbar zu lagern (Kugellager, Spitzenlagerung) und zur Übertragung der Bewegung ein wenigelastischer Faden (Draht, dünnes Drahtseil, Kette) zu verwenden.

In bezug auf die Darstellung der Belastungen ist zu beachten, daß das Laufgewicht, von dem aus der Schreibstift seine Bewegung erhält, jeweils von Hand so eingestellt werden muß, daß die Wage einspielt. Bei rasch vor sich gehender Änderung der Kraft, die eben durch Verstellung des Laufgewichts gemessen werden soll, kann die Einstellung des letzteren mit einiger Schwierigkeit verknüpft sein. Aus diesem 'Grunde werden in solchen Fällen Ungenauigkeiten hinsichtlich der Darstellung der Belastungsänderungen nicht zu vermeiden sein. Bei vorhandener Übung und bei sorgfältigem Verfahren desjenigen, der den Versuch durchzuführen hat, pflegen diese Ungenauigkeiten übrigens nicht bedeutend zu sein. Vorrichtungen zur selbsttätigen Verstellung des Laufgewichtes geben häufig größere Fehler, namentlich an solchen Stellen der Dehnungslinie, an denen die Belastung rasch wechselt, wie das der Fall ist bei Material mit ausgeprägter Streckgrenze.

Ist hiernach die Darstellung des Verlaufs der Dehnungslinie während der Streckperiode durch den Selbstzeichner nicht vollständig genau, so gewährt sie doch ein anschauliches Bild von dem eigenartigen Verhalten des Materials unter den Verhältnissen, bei denen die Streckung vor sich geht.

Die Zurückführung auf die Meßlänge des Stabes, also die Ausscheidung der außerhalb dieser Strecke auftretenden Formänderungen, erfolgt nach Maßgabe des auf S. 11 und 12 angegebenen Verfahrens oder dadurch, daß an den Enden der Meßstrecke des Stabes Bügel angeklemmt werden, deren gegenseitige Bewegung auf den Schreibstift übertragen wird.

Wir erkennen: Beginn des Streckens bei 2465 kg/qcm Belastung, sofortiges Fallen der letzteren auf 1895 kg/qcm, Fortsetzung des Streckens unter dieser Belastung, später geringes Ansteigen und folgendes Schwanken der Belastung, bis sich schließlich wieder stetiges und ausgeprägtes Wachstum der letzteren einstellt, das bis zur Überwindung der Zugfestigkeit von 3578 kg/qcm andauert.

Somit ergibt sich

die	obere	Stree	kgrenze	zu	$\sigma_{o} =$	2465	kg/qen	a,	
,,	unter	е	,,	,,	$\sigma_u =$	1895	,,	,	•
,,	Zugfe	stigke	it	;,	$K_z =$	3578	,,	•	

Die Querschnittsverminderung und die Bruchdehnung werden auf dem bereits für Rundstab I und II angegebenen Weg ermittelt zu $\psi = 71,0^{9}/_{0}$ $\varphi = 31,9^{9}/_{0}$.

Rundstab IV. (1904.)

Abmessungen und Untersuchung des Stabes IV genau wie bei Rundstab III; beide sind derselben Stange Flußeisen entnommen.

Der Versuch (vgl. Zeitschrift des Vereines deutscher

$$\sigma_o = 2407 \text{ kg/qcm}$$

 $\sigma_u = 2075 ,,$
 $K_z = 3667 ,,$
 $\psi = 69,79_0,$
 $\varphi = 33,89_0$

und die Dehnungslinie Fig. 14, deren Vergleich mit Fig. 13 erkennen läßt, daß sich das Material aus einer und derselben Stange innerhalb der Periode des Streckens oder Fließens nicht gleich verhält. Die Unterschiede sind oft noch weit erheblicher. Ausnahmsweise ist sogar die obere Streckgrenze höher als die Zugfestigkeit festgestellt worden, die nach weiterer Streckung des Stabes für diesen ermittelt wurde.

3. Versuche mit Flußstahl.

Rundstab I. (1895.)

Durchmesser	r	\mathbf{des}	n	\mathbf{nitt}	lere	n	zyl	inc	lris	che	en	Tei	les	$2,00~{ m cm}$
Querschnitt		,,		,	,				,,			,,		3,14 qcm
Meßlänge	•		•			•	•					•	•	15,00 cm

Der Stab wird in einer liegenden Prüfungsmaschine der Zugprobe unterworfen, jeweils unter Wechsei zwischen Belastung und Entlastung, so oft, bis sich die gesamten, bleibenden und federnden Dehnungen nicht mehr ändern. Die Ablesungen der Längenänderungen erfolgen in Zeiträumen von 3 Minuten. Die Ergebnisse sind in folgender Zusammenstellung angegeben.

Belastung	sstufe in kg	Verlängerung auf 15 cm in $1/_{1000}$ cm						
P	σ	gesamte	bleibende	federnde				
1000 und 3000 1000 ,, 5000 1000 ,, 7000 1000 ,, 9000 1000 ,, 11000 1000 ,, 13000 1000 ,, 14000 1000 ,, 15000	$\begin{array}{c} 318,5 \ \text{und} \ 955,4 \\ 318,5 \ ,, \ 1592,4 \\ 318,5 \ ,, \ 2229,3 \\ 318,5 \ ,, \ 2866,2 \\ 318,5 \ ,, \ 3503,2 \\ 318,5 \ ,, \ 4140,1 \\ 318,5 \ ,, \ 4458,6 \\ 318,5 \ ,, \ 4777,1 \end{array}$	Unter- schied 4,47 4,47 9,19 4,72 13,73 4,54 18,49 4,76 23,28 4,76 23,28 4,60 27,88 4,60 30,19 3,55	$\begin{array}{c} 0,00\\ 0,25\\ 0,30\\ 0,57\\ 0,88\\ 1,00\\ 1,07 \end{array}$	4,47 (8,94 13,43 17,92 22,40 26,88 29,12	Unter- schied 4,47 4,47 4,49 4,49 4,48 4,48 2,24			

Temperatur schwankt zwischen 16,4 und 16,5°C.

Nachdem P = 15000 kg eingestellt und die Verlängerung abgelesen ist, sinkt der Waghebel plötztich, so daß die Streckgrenze bei

$$\sigma = \frac{15000}{3,14} = 4777 \text{ kg/qcm}$$

erreicht ist.

Bei Fortsetzung des Nachspannens beginnt die Belastung wieder zu steigen und erlangt mit $P_{max} = 22720$ kg ihren Größtwert; alsdann sinkt der Waghebel, der Stab beginnt sich einzuschnüren, und schließlich erfolgt der Bruch.

Wie die letzte Spalte der Zusammenstellung zeigt, wachsen die Federungen bis P = 14000 kg unter Berücksichtigung des tatsächlich erreichbaren Genauigkeitsgrades recht befriedigend in gleichem Verhältnis wie die Spannungen. Die gesamten Verlängerungen tun dies weniger. Fig. 15, die nach dem Vorgange von Fig. 1 u. f. die Schaulinien der gesamten, bleibenden und federnden Dehnungen enthält, zeigt den geradlinigen Verlauf der Federungen. Wir haben demgemäß Proportionalität jedenfalls bis zur Spannung'

$$\sigma = \frac{14000}{3.14} = \sim 4459 \text{ kg qcm.}$$

Da auf der folgenden Belastungsstufe P = 15000 kg die Erscheinung des Fließens eintrat, so ist anzunehmen, daß die Proportionalität sich nur unerheblich über P = 14000 kg hinaus erstreckt

haben wird, weshalb die Proportionalitätsgrenze als nur wenig oberhalb 4459 kg/qcm liegend angenommen werden kann¹).

Die Dehnungszahl berechnet sich mit $\frac{4,48}{1000}$ cm Federung auf 15 cm bei 2000 kg Belastungsunterschied nach Gleichung 3, § 2 zu

$$x = \frac{4,48 \cdot 3,14}{1000 \cdot 15 \ 2000}$$

= $\frac{1}{2133000} = 0,469$ Milliontel.
Die Streckgrenze ist bei

$$\frac{10000}{3.14}$$
 = 4777 kg/qcm

$$K_z = \frac{22720}{3.14} = 7236 \text{ kg/qcm}.$$

Die durch Gleichung 2, § 3 bestimmte Querschnittsverminderung ergibt sich, da

$$f_{b} = \frac{\pi}{4} 1,51^{2} = 1,79$$
 qcm,

$$\psi = 100 \ \frac{3.14 - 1.79}{3.14} = 43^{\circ}/_{\circ}$$

und die Bruchdehnung nach Gleichung 3, § 3 mit l = 238 mm auf 200 mm ursprüngliche Länge zu

$$\varphi = 100 \ \frac{238 - 200}{200} = 19\%_0$$

¹) Scharf tritt hier die Unzulässigkeit hervor, die Begriffe der Proportionalitäts- und Elastizitätsgrenze (vgl. S. 26 und 27) mit einander zu vermengen. Die erstere liegt hier nahe bei 4459 kg, während die letztere, aufgefaßt als diejenige Spannung, bis zu der die bleibenden Formänderungen Null' oder doch verschwindend klein sind, weit tiefer liegt (vgl. die Werte in der Spalte der bleibenden Verlängerungen). Die gleichfalls nicht selten anzutreffende Verwechslung der Elastizitätsgrenze mit der Streckgrenze ist natürlich ebenso unzulässig.

Rundstab II. (1910.)

Da beim Rundstab I Proportionalitäts- und Streckgrenze nahezu zusammenfielen, so seien noch die Ergebnisse eines Stabes aus Chromnickelstahl angeführt, die den Unterschied deutlich erkennen lassen.

$\operatorname{Durchmesser}$	des	mitt.	leren	zyli	indris	schen	Te	$_{\mathrm{iles}}$	•	•	•	1,99 cm
${ m Querschnitt}$,,		,,		,,			,,				3,11 qcm
Meßlänge .						•					•	15,00 cm

Spannungsstufe	Verlängerung auf 15 cm in $1/_{1000}$ cm								
in kg/qcm	gesa	mte	bleibende	fede	rnde				
322 und 965 322 ,, 1608 322 ,, 2251 322 ,, 2894 322 ,, 3537 322 ,, 4180	4,54 9,19 13,85 18,55 23,91 39,69	$\begin{array}{c} \text{Unter-} \\ \text{schied} \\ 4,54 \\ 4,65 \\ 4,66 \\ 4,70 \\ 5,36 \\ 15,78 \end{array}$	$\begin{array}{c} 0,09\\ 0,29\\ 0,49\\ 0,65\\ 1,39\\ 12,33\end{array}$	$\begin{array}{r} 4,45\\ 8,90\\ 13,36\\ 17,90\\ 22,52\\ 27,36\end{array}$	Unter- schied 4,45 4,45 4,46 4,54 4,62 4,84				

Unter der Belastung P = 13000 kg, entsprechend 4180 kg/qcm, dehnt sich der Stab langsam und fortgesetzt, so daß ein Ausgleich nicht mehr erreicht wird. Unter P = 13280 kg, d. i. 4270 kg/qcm, sinkt der Waghebel entsprechend dem Eintritt der oberen Streckgrenze; die untere Streckgrenze ergab sich zu 4248 kg/qcm.

Bei Inbetrachtziehung der federnden Dehnungen war die Proportionalität zwischen Dehnungen und Spannungen bei $\sigma = 2251$ kg/qcm noch vorhanden, bei $\sigma = 2894$ sicher verschwunden. Für die gesamten Dehnungen läßt sich überhaupt keine Proportionalität erkennen.

Bei der Fortsetzung des Versuchs bis zum Bruch ergab sich

Zu	gfestigkeit	•		•	•	•	•	•	6640 kg/qcm
Br	uchdehnung	auf	200) mm			•		18,6%
Qu	erschnittsve	rmiı	ıder	ung					61,7 "

Rundstab III. (1910.)

Abmessungen und Material wie unter II, jedoch nach Angabe bei 780° C gehärtet (vergütet).

Einleitung.

Spannungsstufe	Verlängerung auf 15 cm in 1/1000 cm								
in kg/qem	ges	amte	bleibende	federnde					
325 und 1299 325 ,, 2273 325 ,, 3247 325 ,, 4221 325 ,, 5195 325 , 6169	6,77 13,63 20,51 27,49 34,53 43,21	Unter- schied 6,77 6,86 6,88 6,98 7,04 8,68	0,00 0,01 0,01 0,01 0,01 1,35	6,77 13,62 20,50 27,48 34,52 41,86	Unter- schied 6,77 6,85 6,88 6,98 7,04 7,24				

Von besonderem Interesse scheint das fast vollständige Fehlen der bleibenden Dehnungen bis $\sigma = 5195 \text{ kg/qcm}$, sowie daß sowohl

Fig. 16.

bei den gesamten wie für die federnden Dehnungen Proportionalität überhaupt nicht festgestellt wurde; die Proportionalitätsgrenze, falls eine solche vorhanden ist, muß somit unterhalb $\sigma = 1299 \text{ kg/qcm}$ liegen. Die Elastizitätsgrenze war bei $\sigma = 5195 \text{ kg/qcm}$ noch nicht erreicht. Bei Fortsetzung des Versuchs ergab sich die Streckgrenze zu 6494 kg/qcm (nicht ausgeprägt, sehr kurzes Stehenbleiben des Waghebels bei Steigerung der Belastung), die Zugfestigkeit zu 8136 kg/qcm; die Bruchdehnung betrug (Meßlänge 20 cm) $13,2^{\circ}/_{\circ}$, die Querschnittsverminderung 52 $9^{\circ}/_{0}$. Die Linie der gesamten Dehnungen ist in Fig. 16 dargestellt. In dieselbe Abbildung ist auch die Dehnungslinie für den Rundstab II (aus dem gleichen Material, jedoch ungehärtet) eingetragen. Sie zeigt obere und untere Streckgrenze bei 4270 bzw. 4248 kg/qcm, also weit unterhalb der des gehärteten Stahles, bedeutend größere Dehnung und weit geringere Festigkeit.

Über den Einfluß verschiedener Behandlung des Materials auf die Festigkeitseigenschaften vgl. § 10.

Über die Ergebnisse der Untersuchung von Stahlguß hat Verfasser in der Zeitschrift des Vereines deutscher Ingenieure 1898, S. 694 u. f. berichtet. Bei diesem Material pflegen sich bleibende Dehnungen bei weit geringeren Spannungen in größerem Maße einzustellen als bei Flußeisen von gleicher Festigkeit. Auch das Aussehen der Oberfläche zerrissener Stahlgußstäbe ist nicht selten ein ganz anderes als dasjenige von Flußeisenstäben. Vgl. S. 176 u. f.

4. Versuche mit Kupfer.

Rundstab I. (1895.)

Material: weiches Kupfer.

Durchmesser des mittleren zylindrischen Teiles 2,502 cm Querschnitt ", ", ", ", ", 0,25 π 2,502²== 4.92 qcm Die Prüfung erfolgte zunächst ganz wie unter Ziff. 3 bemerkt, und wurde sodann wiederholt. Die Ergebnisse sind im folgenden zu-

sammenges tellt.

Belastur	igsstufe in kg	1. V Te 16,8 Verlä	ersuchs mperat bls 17,	reihe ur 1ºC g auf	2. Versuchsreihe Temperatur 17,4 bis 17,5 ° C Verlängerung auf			
Р	σ	$\begin{array}{c c} gesamte \\ \lambda \\ \hline \lambda \\ \lambda \\$			$\begin{array}{c c} gesamte \\ gesamte \\ \lambda' \\ federnde \\ \lambda-\lambda' \\ \lambda-\lambda' \end{array}$			
750 und 1500 750 ,, 2250 750 ,, 3600 750 ,, 3750	152,4 und 304,9 152,4 ,, 457,3 152,4 ,, 609,8 152,4 ,, 762,2	1,41 3,18 5,38 8,05	$0,11 \\ 0,53 \\ 1,33 \\ 2,52$	$1,30 \\ 2,65 \\ 4,05 \\ 5,53$	$1,32 \\ 2,68 \\ 4,11 \\ 5,68$	0,00 0,00 0,04 0,15	1,32 2,68 4,07 5,53	

In Fig. 17 sind die Schaulinien, die sich hiernach tür die gesamten, die bleibenden und die federnden Dehnungen aus der 1. Versuchsreihe ergeben, dargestellt.

Wie ersichtlich, stellen sich bei der ersten Versuchsreihe bleibende Dehnungen außerordentlich früh und überhaupt von bedeutender Größe ein. Bei der zweiten Versuchsreihe dagegen treten die bleibenden Dehnungen ganz in den Hintergrund, eine Folge davon, daß der Stab schon einmal den Belastungswechseln ausgesetzt gewesen ist.

Proportionalität zwischen Dehnungen und Spannungen besteht nicht; denn es betragen die Unterschiede

				der gesamten				der federnden				
				Verlängerungen				Verlängerungen				
\mathbf{bei}	der	1.	Versuchsreihe	1,41	1,77	2,20	2,67	1,30	1,35	1,40	$1,\!48$	
,,	,,	2.	,,	1,32	1,36	1,43	1,57	1,32	1,36	1,39	1,46	
d. h	. aus	sge]	prägt wachsend	mit (den S	pann	ungen.					

Wird den Federungen die durch Gleichung 1 ausgesprochene Gesetzmäßigkeit zugrunde gelegt, und werden dabei die Koeffizienten α und m so gewählt, daß für die erste Versuchsreihe

$$\varepsilon = \frac{1}{2195000} \sigma^{1,098} \ldots \ldots \ldots 9$$

und für die zweite Versuchsreihe

$$\varepsilon = \frac{1}{1\,865\,000}\,\sigma^{1,074}, \quad \ldots \quad \ldots \quad \ldots \quad 10)$$

so zeigt folgende Zusammenstellung:

	Federungen auf 10 cm in 1,1000 cm								
Spannungsstufe	1. Versu	chsreihe	2. Versuchsreihe						
in kg/qcm	beobachtet berechnet nach Gl. 9		beobachtet	berechnet nach Gl. 10					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 1,30\\ 2,65\\ 4,05\\ 5,53\end{array}$	$1,30 \\ 2,66 \\ 4,07 \\ 5,52$	$1,32 \\ 2,68 \\ 4,07 \\ 5,53$	$1,32 \\ 2,69 \\ 4,09 \\ 5,52$					

eine befriedigende Übereinstimmung zwischen Beobachtung und Rechnung.

Der Unterschied in den Zahlenwerten der Koeffizienten α und m der Gleichungen 9 und 10 läßt den Einfluß der vorhergegangenen Belastung auf die Federung deutlich erkennen.

Über die Anzahl der Spannungswechsel, die jeweils erforderlich waren, um festzustellen, daß sich die gesamten, die bleibenden und die federnden Dehnungen nicht mehr ändern, gibt die folgende Zusammenstellung Auskunft. Ebenso darüber, wie sich die Verlängerungen bei dem erstmaligen Wechsel (Anfangswerte) von denjenigen bei dem letzten Wechsel (Endwerte) unterscheiden.

	1. Versuchsreihe									
Spannungsstufe in kg/qcm	Zahl der Span-	An	fangswe	rte	Endwerte					
	nungs- wechsel	λ	λ'	λ—λ'	λ	λ'	λλ'			
$152,4/304,9\\152,4/457,3\\152,4/609,8\\152,4/762,2$	2 5 7 7	$1,41 \\3,10 \\5,13 \\7,60$	$0,11 \\ 0,47 \\ 1,16 \\ 2,15$	$1,30 \\ 2,63 \\ 3,97 \\ 5,45$	1,41 3,18 5,38 8,05	$0,11 \\ 0,53 \\ 1,33 \\ 2,52$	1,30 2,65 4,05 5,53			
		I	2. Ver	suchsreil	ne	<u> </u>				
$\frac{152,4/304,9}{152,4/457,3}\\152,4/609,8\\152,4/762,2$	$\begin{vmatrix} 2\\ 2\\ 4\\ 4\\ 4 \end{vmatrix}$	$\begin{array}{ c c c } 1,32\\ 2,68\\ 4,13\\ 5,60\\ \end{array}$	$\begin{array}{c} 0,00\\ 0,00\\ 0,03\\ 0,07\end{array}$	$1,32 \\ 2,68 \\ 4,10 \\ 5,53$	$\begin{array}{c} 1,32\\ 2,68\\ 4,11\\ 5,68\end{array}$	$0,00 \\ 0,00 \\ 0,04 \\ 0,15$	$1,32 \\ 2,68 \\ 4,07 \\ 5,53$			

Für die zweite Spannungsstufe findet sich die durchschnittliche Dehnungszahl zu

 $\alpha = \frac{2,68}{10 \cdot 1000 \ (457,3 - 152,4)} = \frac{1}{1138000} = 0,879$ Milliontel.

Die weitere Untersuchung des Stabes führte zur Erlangung der Dehnungslinie Fig. 18 sowie zur Feststellung:

der Zugfestigkeit

$$K_z = rac{10\,980}{4,92} = 2232 \; \mathrm{kg/qcm},$$

der Querschnittsverminderung

$$\psi = 100 \ \frac{4,92 - 1,89}{4,92} = 61,6^{\circ}/_{\circ},$$

da

$$f_b = \frac{\pi}{4} 1,55^2 = 1,89 \text{ qcm},$$

und der Bruchdehnung auf 200 mm

$$\varphi = 100 \frac{292,2 - 200}{200} = 46,1^{\circ}/_{\circ}.$$

Die unmittelbar vor dem Bruch beobachtete Belastung betrug rund 8200 kg.

Eine ausgeprägte Streckgrenze in dem Sinne, wie in § 3 erklärt, und wie wir sie bei Flußeisen und bei Flußstahl kennen lernten, besitzt hiernach das Kupfer nicht.

Da Arbeitsvermögen gemäß Gleichung 4, §3, ergibt sich zu A = 7,11 kgm/ccm.

Rundstab II. (1895.)

Material: weiches Kupfer, jedoch von anderer Herkunft als Stab I, bereits einmal bis $\sigma = 964.4$ kg/qcm beansprucht gewesen.

Durchmesser	des	mittleren	zylindrischen	Teiles	$1,99~\mathrm{cm}$
Querschnitt	,,	,,	,,	,,	3,11 qcm
Meßlänge					10.00 cm.

Die Untersuchung führt ganz wie beim Rundstab I zu dem Ergebnis, daß die federnden Verlängerungen rascher wachsen als die Spannungen, entsprechend

62

Einleitung.

Nachdem für den Rundstab I ausführliche Besprechung stattgefunden hat, wird es genügen, die folgende Zusammenstellung anzuführen.

Spannungsstufe	Federnde Verlängerung in $1/1000$ cm						
kg/qcm	beobachtet	berechnet nach Gl. 11					
160,75 und 321,5 160,75 ,, 482,25 160,75 ,, 643,0 160,75 ,, 803,75 160,75 , 964,6	1,40 2,89 4,39 5,95 7,53	$1,40 \\ 2,87 \\ 4,39 \\ 5,94 \\ 7,52$					

Die Übereinstimmung zwischen dem, was beobachtet wurde, und dem, was Gleichung 11 liefert, muß als eine sehr gute bezeichnet werden.

5. Versuche mit Bronze.

Rundstab I. (1895.)

Material: (Fego	ssene Bro	onze, vorh	ler noch n	icht	be	las	tet.
Durchmesser	$\overline{\mathrm{des}}$	mittleren	zylindris	chen Teil	es.			$2,20~\mathrm{cm}$
Querschnitt	,,	,,	,,	,,				3,80 qcm
Meßlänge .					•	•		$15,00~{ m cm}$

Die Prüfung wurde in gleicher Weise, wie unter Ziff. 3 angegeben, durchgeführt mit den aus folgender Zusammenstellung ersichtlichen Zahlenergebnissen.

Belastungs	stufe in kg	Verlängerun	ng auf 15 cm	in 1/ ₁₀₀₀ cm
Р	σ	gesamte	bleibende	federnde
750 und 1500 750 ,, 2250 750 ,, 3000	197,4 und 394,7 197,4 ,, 592,1 197,4 ,, 789,5	$3,31 \\ 6,61 \\ 10,33$	0,07 0,09 0,48	$3,24 \\ 6,52 \\ 9,85$

Temperatur schwankt zwischen 15,4 und 15,6°C.

Hiernach wachsen die Federungen rascher als die Belastungen Wird

Belastungs	Verlängerung auf 15 cm in $^{1/_{1000}}$ cm			
Р	σ	gesamte	bleibende	federnde
750 und 1500 750 ,, 2250 750 ,, 3000	197,4 und 394,7 197,4 ,, 592,1 197,4 ,, 789,5	3,30 6,60 9,89	0,01 0,01 0,03	3,29 6,59 9,86

Die Wiederholung des Versuchs liefert:

Somit betragen die Unterschiede

\mathbf{in}	den	gesamten	Verlängerungen	3,30	3,30	3,29
,,	,,	federnden	,,	$3,\!29$	3,30	3,27

d. i. in Berücksichtigung aller Verhältnisse nahezu so gut wie Unveränderlichkeit. Hiernach zeigt der Bronzestab, für den die erste Versuchsreihe die Gleichung 12 lieferte, im Falle vorhergegangener Belastung Proportionalität zwischen Dehnungen und Spannungen¹). Mit der Federung 3,29 für das Material in dem Zustande, in dem es sich während der zweiten Versuchsreihe befindet, bestimmt sich die Dehnungszahl nach Gleichung 3, § 2, zu

 $\alpha = \frac{3,2}{15\,000 \cdot 197,4} = \sim \frac{1}{900\,000} = 1,11$ Milliontel.

Wird die Belastung weiter gesteigert, so stellt sich schließlich der Bruch bei 7500 kg ein, entsprechend der Zugfestigkeit

$$K_z = \frac{7500}{3,80} = 1974 \text{ kg/qcm}.$$

Die Querschnittsverminderung nach Gleichung 2, § 3, ergibt sich, da

$$f_b = \frac{\pi}{4} 2,08^2 = 3,40 \text{ qcm},$$

Zu

$$\psi = 100 \frac{3,80 - 3,40}{3,80} = 10,5^{\circ}/_{o}$$

und die Bruchdehnung auf 20 cm nach Gleichung 3, § 3 zu

$$\varphi = 100 \frac{212.0 - 200}{200} = 6 \, {}^{0}/_{0}.$$

¹) Diese Erscheinung, daß durch die vorhergegangene starke Belastung die Krümmung der Linie der federnden Dehnungen stark vermindert, hier die Kurve nahezu in eine Gerade übergeführt worden ist, zeigt sich nach den bis heute vorliegenden Erfahrungen überhaupt bei den Stoffen mit veränderlicher Dehnungszahl, sofern die Vorbelastung genügend hoch war.

Bei den Materialien, die Proportionalität zwischen Spannungen und Dehnungen aufweisen, führt hohe Vorbelastung zur Verschiebung der Proportionalitätsgrenze nach oben.

Über den Verlauf der Linie der gesamten Dehnungen gibt Fig. 19 Auskunft.

Wie eisichtlich, besitzt die untersuchte Bronze gleich dem untersuchten Kupfer keine ausgeprägte Streckgrenze.

Rundstab II. (1895.)

Material wie bei Stab I.

Durchmess	er de	s mi	ittle	erei	n z	yli	n-		
drischen	Teile	es.						1,99 cm	
Querschnit	t des	s mi	ttle	erer	ιz	yliı	n-		
drischen	Teile	s					•	3,11 qcm	
Meßlänge .	•	•••		•	•	•	•	15,00 cm	

Fig. 19.

Prüfung wie Stab I, jedoch ohne Wiederholung des Versuchs.

Belastungs	Verlängerung auf 15 cm in $1/_{1000}$ cm			
Р	σ	gesamte	bleibende	federnde
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	241,2 und 482,3 241,2 ,, 723,5 241,2 ,, 964,6	3,98 8,99 17,81	$0,02 \\ 0,93 \\ 5,63$	$3,96 \\ 8,06 \\ 12,18$

Hiernach wachsen die Dehnungen, ganz wie in Versuchsreihe 1 des Stabes I, rascher als die Spannungen.

Ferner ergibt sich

$$\begin{split} K_z &= \frac{6500}{3,11} = 2090 \text{ kg/qcm}, \\ \psi &= 100 \frac{3,11 - \frac{\pi}{4} 1,91^2}{3,11} = 100 \frac{3,11 - 2,87}{3,11} = 7,7^{\circ}/_{\circ}, \\ \varphi &= 100 \frac{216,2 - 200}{200} = 8,1^{\circ}/_{\circ}. \end{split}$$

Eine große Zahl von weiteren Untersuchungen des Verfassers über Bronze sowohl bei gewöhnlicher Temperatur als auch bei höheren Temperaturen finden sich veröffentlicht in der Zeitschrift des Vereines deutscher Ingenieure 1899, S. 354, 1900, S. 1745 u. f., 1901, S. 1747 5

C. Bach, Elastizität. 8. Aufl.

65

u. f. sowie Mitteilungen über Forschungsarbeiten, Heft 1, Heft 4. Vgl. auch § 10, sowie in "Festigkeitseigenschaften und Gefügebilder", IX. Kupferlegierungen.

Fig. 20.

Um einen Überblick über die bisher besprochenen Metalle zu gewähren, sind in Fig. 20 die Dehnungslinien für verschiedene derselben eingetragen:

das	s untersuchte	Kupfer		zeigt	$K_z =$	2232	kg/qcm,	$\varphi = \mathbf{\overline{\lambda}}$	52	%
,,	,,	Flußeise	en	,,	$K_z =$	3578	,,	$q = \mathbf{\sim}$	34	,,
der	· ,,	Stahl I, av	usgeglüh	nt ,,	$K_{i} =$	5182	,,	$\varphi = \mathbf{\sim}$	25	,,
,,	,,	,, II,	,,	,,	$K_z =$	6656	,,	$\varphi = \mathbf{\sim}$	18,	5,,
, ;	,,	,, 1, kal	t gezogei	n ,,	$K_z =$	6589	,,	$\varphi = \mathbf{\overline{\lambda}}$	8	:,
,,	,,	,, II, v	vergütet							
		(waa	sser-							
		geh	ärtet ur	nd						
		bei	680°C							
		ang	elassen)	,,	$K_{r} \Longrightarrow$	8577	•••	$\varphi = \mathbf{\sim}$	· 13,	5,,
, ,	,,	,, II,ö	lgehärte	t ,,	$\tilde{K_z} =$	9 ő 94	,,	$\varphi = \mathbf{\sim}$, 9	,,

Die letztere Zahl 9694 kg/qcm begrenzt die Zugfestigkeit von Stahl nicht; nach eigenen Versuchen ergeben sich tür Stahl Werte für K_z bis über 20000 kg/qcm.

§4. Längenänderungen verschiedener Stoffe.

6. Versuche mit Messing. (1895).

Rundstab (Messingguß).

$\mathbf{Durchmesser}$	des	mittleren	zylindrischen	Teiles	•	2,20 cm
Querschnitt	,,	••	,,	,,		3,80 qcm

Prüfung genau wie bei Bronzestab I (Ziff. 5).

	l. V Tempera	ersuchsr atur 15,4	eihe 	2. V Tempera	ersuchsr atur 14,8	eihe —15,1°	
Belastung	sstufe in kg	Verläng in	erung ai 1/ ₁₀₀₀ c	if 15 cm m	Verläng in	erung au ¹ /1000 c	ւք 15 cm m
Р	σ	gesamte	bleibende	federnde	gesamte	bleibende	federnde
500 u. 1000 500 u. 1500 500 u. 2000	131,6 u. 263,2 131,6 u. 394,7 131,6 u. 526,3	$2,57 \\ 5,34 \\ 8,61$	$0,21 \\ 0,54 \\ 1,24$	$2,36 \\ 4,80 \\ 7,37$	2,44 4,91 7,39	$0,00 \\ 0,00 \\ 0,02$	2,44 4,91 7,37

Wie ersichtlich, wachsen bei der ersten Versuchsreihe (Stab war vorher noch nicht belastet gewesen) die Dehnungen rascher als die Spannungen; denn es betragen die Unterschiede

der gesam	ten Verl	ängerungen	der federno	den Verlä	ingerunge	'n
2,57	2,77	3,27	2,36	2,41	2,57	

Den Federungen der ersten Versuchsreihe entspricht die Gleichung

$arepsilon = rac{1}{947000} \sigma$	1,085		13)
Sie liefert die Federungen	. 2,36	4,82	7,36,
während die Beobachtung ergab	. 2,36	4,80	7,37.

Die zweite Versuchsreihe (der Stab war vorher durch die Belastungen der ersten Versuchsreihe in Anspruch genommen gewesen) liefert die Unterschiede

der gesamt	ten Verlä	ngerungen	der federn	nden Verl	ängerungen
2,44	2,47	2,48	2,44	2,47	2,46

also nahezu Unveränderlichkeit. Diese Ergebnisse stehen in Übereinstimmung mit dem, was für Bronze festzustellen war.

Die Dehnungszahl für das Material in dem Zustand, in dem sich dasselbe während der Durchführung der zweiten Versuchsreihe befand,

ergibt sich bei Zugrundelegung der Federung von 2,46 nach Gleichung 3, §2 zu

Fig. 21.

Die weitere Fortsetzung der Belastungen bis zum Bruche ergibt für den Verlauf der Linie der gesamten Dehnungen Fig. 21 und

Eine ausgeprägte Streckgrenze ist nicht vorhanden.

7. Versuche mit Leder. (1885 u. f.)

Für einen schon früher vielfach belasteten Riemen von 6,44 qcm Querschnitt ergaben Zugversuche folgendes. Einstellung erfolgte von 3 zu 3 Minuten.

Spannungsstufe in kg/qcm	Federnde Verlängerung in mm
3,88 und 11,65	$3,\!5$
3,88 ,, $19,4$	10,0
3,88 ,, $27,2$	14,0

Hiernach nehmen die Dehnungen mit wachsender Spannung ab.

Unter Zugrundelegung einer ursprünglichen Meßlänge des Riemens von 780,7 mm entsprechen diese Ergebnisse der Beziehung

$$\varepsilon = \frac{1}{415} \sigma^{0,7} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad 14)$$

worin die Zahlenwerte abgerundet worden sind.

68

Die durchschnittliche Dehnungszahl für die erste Spannungsstufe berechnet sich zu

$$\alpha = \frac{5,5:780,7}{11,65-3,88} = \frac{1}{1100} = 907 \text{ Milliontel}$$

Gleichung 14 liefert für die Verlängerungen 5,6 mm gegen 5,5 mm beobachtet 10,1 ,, ,, 10,0 ,, ,, 14,1 ,, ,, 14,0 ,, ,,

Diese Übereinstimmung ist mit Rücksicht auf die vorgenommene Abrundung der Zahlenwerte in Gleichung 14 sowie in Anbetracht des bedeutenden Einflusses, den die Zeit auf die Formänderungen

des Leders äußert, und auf den an anderer Stelle eingegangen werden soll, recht befriedigend.

In Fig. 22 ist die Linie der gesamten Dehnungen für einen anderen, vorher stark gespannt gewesenen Riemen dargestellt; sie kehrt der Achse der Belastungen ihre hohle Seite zu, krümmt sich demnach entgegengesetzt wie die Linie der Dehnungen bei Gußeisen, Kupfer, Bronze, Messing usw.

Fig. 23 zeigt die Linie der gesamten Verlängerungen für einen neuen Riemen von usprünglich 49,6 mm Breite und 6,5 mm mittlerer Stärke, entsprechend $f = 4,96 \cdot 0,65 = 3,224$ qcm, auf 500 mm ursprünglicher Länge. Die Belastungen wurden anfangs je um 25 kg gesteigert, später je um 50 kg. Nach 35 Minuten erfolgte der Bruch unter 760 kg Belastung, wobei unmittelbar vorher die Länge der Meßstrecke des Riemens zu 602,2 mm gemessen worden war. Unmittelbar nach dem Zerreißen zeigte die Meßstrecke, durch Aneinanderstoßen der Bruchflächen hergestellt, 520 mm, 40 Stunden später 516,8 mm, 10 Tage darauf 515,6 mm und 23 Tage später 515 mm Länge.

Bei Beurteilung der Spannungen darf die weitgehende Verminderung des Querschnittes mit steigender Belastung nicht außer acht gelassen werden. So beträgt beispielsweise bei P = 400 kg die Breite

47,5 mm und die Stärke 6,0 mm, also $f = 4,75 \cdot 0,60 = 2,85$ qcm gegen ursprünglich 3,224 qcm. Mit dem ursprünglichen Querschnitt ergibt sich somit die Spannung

$$\sigma = \frac{400}{3,224} = 124 \text{ kg/qcm},$$

dagegen mit dem Querschnitt, der tatsächlich unter der Belastung P = 400 kg vorhanden war,

$$\sigma = \frac{400}{2,85} = 140 \text{ kg/qcm.}$$

Bei $P = 600 \text{ kg war } f = 4,66 \cdot 0,59 = 2,75 \text{ qcm.}$
,, $P = 700 \text{ kg}$,, $f = 4,59 \cdot 0,59 = 2,70 \text{ qcm.}$

Da das Reißen des Riemens unerwartet bei P = 760 kg eintrat, so war f = 2,70 qcm der letzte der bestimmten Querschnitte des gespannten Riemens.

Je nachdem nun dieser Wert f = 2,70 qcm oder der ursprüngliche Querschnitt f = 3,224 qcm zur Ermittlung der Zugfestigkeit in Rechnung gestellt wird, ergibt sich diese zu

$$\frac{760}{2,70} = 281 \text{ kg/qcm},$$
$$\frac{760}{3\,224} = 236 \text{ kg/qcm}$$

bzw.

Über die Elastizität des Leders an den verschiedenen Stellen einer und derselben Haut berichtet Verfasser in der Zeitschrift des Vereines deutscher Ingenieure 1902, S. 1446 und 1447 oder auch in den "Mitteilungen über Forschungsarbeiten", Heft 5.

Ähnlich wie Lederriemen verhalten sich Hanfseile und dergl. Siehe hierüber die Ergebnisse der eigenen Versuche in der Zeitschrift des Vereines deutscher Ingenieure 1887, S. 221 u. f., S. 241 u. f., S. 891 und 892, oder auch "Abhandlungen und Berichte" 1897, S. 5 u. f., S. 59 u. f.

Ausnahmsweise wurde an Riemen, die jahrelang sehr häufige und starke Belastungswechsel erfahren hatten, Proportionalität zwischen Dehnungen und Spannungen gefunden, ja sogar eine gewisse Neigung dahingehend, daß die Dehnungen etwas rascher wachsen als die Spannungen.

Außergewöhnlich hohe Zugfestigkeit ergäben Versuche mit Aalhaut. Zwei Versuche lieferten die Zugfestigkeit, bezogen auf den ursprünglichen Querschnitt, zu 906 und 806 kg/qcm. die Bruchdehnung zu 19,8 und $18,6 \frac{9}{6}$.

8. Versuche mit Körpern aus Gummi. (1909 und 1900.)

A. Körper aus weichem Gummi (Raumgewicht 1,03). a) Zugversuche.

Als Probekörper diente Rundgummi von 1,6 cm Stärke.

Bei	der Belastung	0,5	2,5	4,5	6,5	8,5	10,5	$\mathbf{k}\mathbf{g}$
	betrug							
die	Meßlänge	82,07	89,36	98,16	108,98	121,71	136,48	cm
der	Durchmesser	1,54	1,47	1,40	1,33	1,27	1,20	cm
der	Querschnitt	1,863	3 1,697	1,539	1,389	1,267	1,131	qcm

Mit Rücksicht auf diese bedeutende Veränderlichkeit der Abmessungen des Probekörpers bei steigender Belastung scheint os notwendig, Spannung, Dehnung und Dehnungszahl auf zwei verschiedene Weisen zu berechnen:

1. unter Zugrundelegung der bei der Anfangsbelastung (hier 0,5 kg) vorhandenen "ursprünglichen" Abmessungen des Versuchskörpers, wie es für Festigkeitsrechnungen üblich ist, und

2. unter Verwendung der bei P kg jeweils vorhandenen Abmessungen.

Bei den Versuchen wurde das S. 20 u. f. besprochene Verfahren des Belastungswechsels angewendet. Die angegebenen Zahlen sind die erlangten Ausgleichswerte.

1. Versuchsreihe.

Belastungswechsel innerhalb 2 Minuten (Ausgleichswerte).

a) Spannungen sind bezogen auf den ursprünglichen Querschnitt von 1,863 qcm, Dehnungen sind bezogen auf die ursprüngliche Meßlänge ", 82,07 cm.

	Belastungsstufe		Meß- strecke	Verlängerung der Meßstrecke in cm			Dehnungszahl der Federung
P kg	\mathbf{kg}/\mathbf{qcm}	L	$l \mathrm{cm}$	sesimte	federnde	bleitende	reading
$0,5 \\ 1,5 \\ 0,5$	0,5:1,863 = 1,5:1,863 =	0,268 0,805 0,238	$\begin{array}{c} 82,07 \\ 85,57 \\ 82,37 \end{array}$	3,50	3,20	0,30	$lpha = rac{3,20}{82,07}$: (0,805 - 0,268) = 1:13,8 = 72600 Milliontel
$1,5 \\ 2,5 \\ 1,5$	2,5:1,863 =	$0,805 \\ 1,342 \\ 0,805$	85,57 89,36 85,71	3,79	3,65	0,14	$lpha = rac{3,65}{82,07}$: (1,342 - 0,805) = 1:12,1 = 82800 Milliontel
$2,5 \\ 3,5 \\ 2,5$	3,5 : 1,863 ==	$1,342 \\ 1,879 \\ 1,342$	89,36 93,50 89,58	4,14	3,92	0,22	$\alpha = \frac{3,92}{82,07} : (1,879 - 1,342)$ = 1 : 11,2 = 88900 Milliontel
$3,5 \\ 4,5 \\ 3,5$	4,5:1,863 =	$1,879 \\ 2,415 \\ 1,879$	93,50 98,16 93,82	4,66	4,34	0,32	$lpha = rac{4.34}{82.07} : (2.415 - 1.879) = 1 : 10.1 = 98700$ Milliontel
4,5 5,5 4,5	5,5:1,863 =	$2,415 \\ 2,952 \\ 2,415$	98,16 103,32 98,52	5,16	4,80	0,36	$\alpha = \frac{4,80}{82,07} : (2,952 - 2,415)$ = 1 : 9,2 = 108900 Millionte!
$5,5 \\ 6,5 \\ 5,5$	6,5:1,863 ==	2,952 3,489 2,952	103,32 108,98 103,75	5,66	5,23	0,43	$lpha = rac{5,23}{82,07}$: (3,489 - 2,952) = 1 : 8,4 = 118700 Milliontel
$6,5 \\ 7,5 \\ 6,5$	7,5:1,863 =	3,489 4,026 3,489	108,98 115,15 109,52	6,17	5,63	0,54	$lpha = rac{5,63}{82,07}$: (4,026 - 3,489) = 1:7,8 = 127700 Milliontel
7,5 8,5 7,5	8,5:1,863 ==	4,026 4,563 4,026	115,15 121,71 115,71	6,56	6,00	0,56	$\alpha = \frac{6,00}{82,07} : (4,563 - 4,026)$ = 1 : 7,4 = 136100 Milliontel
8,5 9,5 8,5	9,5:1.863=	$4,563 \\ 5,099 \\ 4,563$	$121,71 \\ 128,89 \\ 122,60$	7,18	6,29	0,89	$lpha = rac{6,2artheta}{82,07}: (5,099-4,563) = 1:7,0 = 143000$ Milliontei
9,5 10,5 9,5	10,5:1,893 ==	5,099 5,636 5,099	128,89 136,48 130,00	7,59	6,48	1,11	$lpha = rac{6,43}{82,07}$: (5,636 - 5,099) = 1:6,8 = 147000 Milliontel

β) Spannungen sind bezogen auf den jeweiligen Querschnitt,

Dehnungen sind bezogen auf die jeweilige Meßlänge.

	Belastungsstufe	Meß- strecke	Verlängerungen der Meßstrecke in cm			Dehnungszahl der Federung
P kg	kg/qem	l em	gesamte	federnde	bleibende	
$0,5 \\ 1,5 \\ 0,5$	$\begin{array}{c} 0,5 \colon 1,863 = 0,26 \\ 1,5 \colon 1,791 = 0,83 \\ 0,26 \end{array}$	8 82,07 8 85,57 8 82,37	3,50	3,20	0,30	$\alpha = \frac{3,20}{82,37} : (0,838 - 0,268)$ = 1: 14,7 = 68200 Million(e)
$1,5 \\ 2,5 \\ 1,5$	$2,5:1,697 = \begin{array}{c} 0,83\\ 2,5:1,697 = 1,4'\\ 0,83\end{array}$	3885,577389,368885,71	3,79	3,65	0,14	$\alpha = \frac{3,65}{85,71} : (1,473 - 0,838)$ = 1:14,9 = 67100 Millionte!
$2.5 \\ 3.5 \\ 2.5$	3.5:1,629 = 2,14 1,4' 1,4'	73 89,36 19 93,50 73 89,58	4,14	3,92	0,22	$a = \frac{3,92}{89,58}$: (2,149 - 1,473) = 1:15,4 = 64700 Milliontel
$3,5 \\ 4,5 \\ 3,5$	$4,5:1,539 = \begin{array}{c} 2,14 \\ 2,99 \\ 2,14 \end{array}$	49 93,50 24 98,16 49 93,82	4,66	4,34	0,32	$\alpha = \frac{4,34}{93,82} : (2,924 - 2,149)$ = 1:16,8 = 59700 Multion fet
$4,5 \\ 5,5 \\ 4,5$	5,5:1,453 = 3,78 $2,92$ $2,92$	24 98,16 5 103,32 4 98,52	5,16	4,80	0,36	$a = \frac{4,80}{98,52} : (3,785 - 2,924)$ = 1:17,7 = 56600 Milliontel
$5,5 \\ 6,5 \\ 5,5$	$\begin{array}{c} 3,78\\ 6,5\colon 1,389 = 4,68\\ 3,78\end{array}$	$5 103,32 \\ 0 108,98 \\ 5 103,75$	5,66	5,23	0,43	$\alpha = \frac{5,23}{103,75} : (4,680 - 3,785)$ = 1 : 17,8 = 56300 Millionte
${\begin{array}{c} 6,5 \\ 7,5 \\ 6,5 \end{array}}$	$7,5:1,327 = 5,65 \\ 4,68 \\ 4,68$	$\begin{array}{ccc} 0 & 108,98 \\ 2 & 115,15 \\ 0 & 109,52 \end{array}$	6,17	5,63	0,54	$c = \frac{5,63}{109,52} : (5,652 - 4,680)$ = 1 : 18,9 = 52 900 Milliontel
7,5 8,5 7,5	$8,5: 1,267 = \begin{array}{c} 5,65\\ 6,70\\ 5,65\end{array}$	$\begin{array}{cccc} 2 & 115, 15 \\ 9 & 121, 71 \\ 2 & 115, 71 \end{array}$	6,56	6,00	0,56	$\alpha = \frac{6,00}{115,71} : (6,709 - 5,652)$ = 1 : 20,4 = 49100 Milliontel
8,5 9,5 8,5	$9,5:1,208 = \begin{array}{c} 6,70\\ 7,86\\ 6,709\end{array}$	$\begin{array}{ccc} 9 & 121,71 \\ 4 & 128,89 \\ 9 & 122,60 \end{array}$	7,18	6,29	0,89	$a = \frac{6,29}{122,60} : (7,864 - 6,709)$ = 1 : 22,5 = 44400 Milliontel
9,5 10,5 9,5	$10,5:1,131 == \begin{array}{c} 7,864 \\ 9,284 \\ 7,864 \end{array}$	128,89 136,48 130,00	7,59	6,48	1,11	$\alpha = \frac{6,48}{130,00} : (9,284 - 7,864)$ = 1 : 28,5 = 35100 Milliontei

In Fig. 24 sind die Linien der bleibenden, federnden und gesamten Dehnungen verzeichnet, und zwar je doppelt: einmal entsprechend der Berechnungsweise α , unter Zugrundelegung der ursprünglichen \overline{Abm} essungen (dünne Linien), das zweitemal unter Bezugnahme auf

Fig. 24.

die jeweiligen Abmessungen, gemäß der Zusammenstellung β (stärkere Linien). Im ersten Falle scheinen die Dehnungen weit rascher zu wachsen als die Spannungen; die Betrachtung der stärkeren Linien zeigt das Gegenteil. Somit erweist sich die Dehnungszahl abnehmend oder wachsend, je nachdem der tatsächliche oder der ursprüngliche Querschnitt bei Bestimmung der Spannungen zugrunde gelegt wird.

Die in Fig. 24 schwach ausgezogenen Linien stellen auch den Zusammenhang zwischen den wirkenden Kräften und den Verlängerungen dar. Sie rufen den Eindruck wach, daß die Dehnungen bei höheren Belastungen rascher als die Spannungen wachsen, während bei Einführung des tatsächlichen Querschnitts in die Rechnung das Umgekehrte der Fall ist.

2. Versuchsreihe.

Derselbe Probekörper wurde einen Tag später derart beansprucht, daß Entlasten jedesmal auf die Anfangslast (hier 0,5 kg) erfolgte, wie beim Versuch 2 mit Gußeisenkörper II auf S. 28 besprochen.

Versuchsergebnisse.

Belastungswechsel innerhalb 2 Minuten (Ausgleichswerte).

 α) Spannungen sind bezogen auf den ursprünglichen Querschnitt von 1,815 qcm, Dehnungen sind bezogen auf die ursprüngliche Meßlänge von 82,27 cm.

	Belastungsstufe	Meß- strecke	Ver Me	längerungen der ßstrecke in cm fedeinde		der m	Dehnungszahl der Federung
P kg	kg ⁷ q cm	$l \mathrm{cm}$	ge- samte		Unter- schied	blel-	
$0,5 \\ 1,5 \\ 0,5$	$\begin{array}{c} 0,5:1,815=0,278\\ 1,5:1,815=0,824\\ 0,278\end{array}$	5 82,27 6 85,79 5 82,32	3,52	3,47	3,47	0,05	$\alpha = \frac{3,47}{82,27} : (0,826 - 0,275)$ = 1:13,1 = 76500 Milliontel
$0,5 \\ 2,5 \\ 0,5$	0,274 2,5:1,815 = 1,37' 0,274	5 82,32 7 89,53 5 82,43	7,21	7,10	3,63	0,11	$\alpha = \frac{7.10}{82.27} : (1.377 - 0.275)$ = 1 : 12.8 = 78300 Milliontel
$0,5 \\ 3,5 \\ 0,5$	$\begin{array}{c} 0,273\\ 3,5:1,815=1,923\\ 0,274\\ \end{array}$	5 82,43 82,43 893,70 82,56	11,27	11,14	4,04	0,13	$\alpha = \frac{11,14}{82,27}$: (1,928 - 0,275) = 1:12,2 = 81 900 Milliontel
$0,5 \\ 4,5 \\ 0,5$	$\begin{array}{c} 0,27\\ 4,5:1,815 = 2,47\\ 0,27\end{array}$	5 82,56 9 98,32 5 82,63	15,76	15,69	4,55	0,07	$\alpha = \frac{15,69}{82,27}$: (2,479 - 0,275) = 1:11,6 = 86500 Million tel
$0,5 \\ 5,5 \\ 0,5$	$\begin{array}{c} 0,274\\ 5,5:1,815 = 3,030\\ 0,275\end{array}$	5 82,63 103,42 5 82,73	20,79	20,69	5,00	0,10	$\alpha = \frac{20,69}{82,27}; (3,030 - 0,275)$ = 1:11,0 = 91300 Milliontel
$0,5 \\ 6,5 \\ 0,5$	$\begin{array}{r} 0,27\\ 6,5:1,815 = 3,58\\ 0,27\end{array}$	$egin{array}{c c} 5 & 82,73 \ 1 & 109,01 \ 5 & 82,89 \ \end{array}$	26,28	26,12	5,43	0,16	$\alpha = \frac{26,12}{82,27}$: (3,581 - 0,275) = 1:10,4 - 96000 Milliontel
$0,5 \\ 7,5 \\ 0,5$	$0,274 \\ 7,5:1,815 = 4,132 \\ 0,274 \\ $	$5 82,89 \\ 2 115,13 \\ 5 83,01$	32,24	32,12	6,00	0,12	$\alpha = \frac{32,12}{82,27}$: (4,132 - 0,275) = 1: 9,9= 101200 Milliontel
$0,5 \\ 8,5 \\ 0,5$	$\begin{array}{c} 0,27\\ 8,5:1,815 = 4,68\\ 0,27\end{array}$	$5 83,01 \\3 121,55 \\5 83,07$	38,54	38,48	6,36	0,06	$\alpha = \frac{38,48}{82,27}; (4,683 - 0,275)$ = 1: 9,4 = 106100 Millionte1
$0,5 \\ 9,5 \\ 0,5$	0,27 9,5: 1,815 \Longrightarrow 5,23 0,27	5 83,07 4 128,41 5 83,22	45,34	45,19	6,71	0,15	$lpha = rac{45,19}{82,27}$: (5,234 $-$ 0,275) = 1: 9,0 = 110 800 Milliontel
$0,5 \\ 10,5 \\ 0,5$	0,27 10,5: 1,815 $=$ 5,78 0,27	$5 83,22 \\5 135,40 \\5 83,26 \\$	52,18	52,14	6,95	0,04	$lpha = rac{52,14}{82,27}$: (5,785 - 0,275) = 1:8,7 = 115000 Milliontel

$\beta)$ Spannungen sind bezogen auf den jeweiligen Querschnitt,

Dehnungen sind bezogen auf die jeweilige Meßlänge.

	Belastungsstufe	Meß- strecke	Meß- strecke Meßstrecke in cm			der cm	Dehnungszahl der	
P kg	$\mathbf{kg}_{l}^{T}\mathbf{qem}$	<i>l</i> cm	ge- samte	feder	nde Unter- schied	blei- bende	Federung	
$0,5 \\ 1,5 \\ 0,5$	$\begin{array}{c} 0.5\colon 1.815=0.275\\ 1.5\colon 1.767=0.849\\ 0.275\end{array}$	82,27 85,79 82,32	3,52	3,47	3,47	0,05	$lpha = rac{3,47}{82,32}$: (0,849 $-$ 0,275) = 1:13,6 = 73400 Milliontel	
$0,5 \\ 2,5 \\ 0,5$	$\begin{array}{c} 0,275\\ 2,5\colon 1,697 = 1,473\\ 0,275\end{array}$	82,32 89,53 82,43	7,21	7,10	3,63	0,11	$lpha = rac{7,10}{82,43}$; (1,473-0,275) $\Rightarrow 1:13,9 \Rightarrow 71900$ Million'el	
$0,5 \\ 3,5 \\ 0,5$	$\begin{array}{c} 0,275\\ 3,5:1,629 = 2,149\\ 0,275\end{array}$	82,43 93,70 82,56	11,27	11,14	4,04	0,13	$lpha = \frac{11,14}{82,56}$: (2,149-0,275) = 1:13,9 = 72000 Milliontel	
$0,5 \\ 4,5 \\ 0,5$	$\begin{array}{c} 0,275\\ 4,5:1,539 = 2,924\\ 0,275\\ \end{array}$	82,56 98,32 82,63	15,76	15,69	4,55	0,07	$\alpha = \frac{15,69}{82,63}$: (2,924–0,275) = 1:14,0 = 71700 Milliontel	
$0,5 \\ 5,5 \\ 0,5$	$5,5:1,453 = \begin{array}{c} 0,275\\ 3,785\\ 0,275\end{array}$	$\begin{array}{r} 82,63 \\ 103,42 \\ 82,73 \end{array}$	20,79	20,69	5,00	0,10	$\alpha = \frac{20,69}{82,73} : (3,785 - 0,275)$ = 1 : 14,0 = 71 300 Milliontel	
$0,5 \\ 6,5 \\ 0,5$	$\begin{array}{c} 0,275\\ 6,5:1,389 = 4,680\\ . 0,275\end{array}$	$\begin{array}{r} 82,73 \\ 109,01 \\ 82,89 \end{array}$	26,28	26,12	5,43	0,16	$lpha = rac{26,12}{82,89}$: (4,680–0,275) = 1:14,0 = 71500 Milliontel	
$0,5 \\ 7,5 \\ 0,5$	$\begin{array}{c} 0,275\\ 7,5:1,327 = \begin{array}{c} 0,275\\ 5,652\\ 0,275 \end{array}$	82,89 115,13 83,01	32,24	32,12	6,00	0,12	$\alpha = \frac{32,12}{83,01}$: (5,652-0,275) = 1:13,9 = 72000 Milliontel	
$0,5 \\ 8,5 \\ 0,5$	$\begin{array}{c} 0,275\\ 8,5\colon 1,267=6,709\\ 0,275\end{array}$	$83,01 \\ 21,55 \\ 83,07$	38,54	38,48	6,36	0,06	$\alpha = \frac{38,48}{83,07}: (6,709-0,275)$ = 1:13,9 = 72000 Milliontel	
$0,5 \\ 9,5 \\ 0,5$	$\begin{array}{c} 0,275\\ 9,5:1,208=7,864\\ 0,275\end{array}$	83,07 128,41 83,22	45,34	45,19	6,71	0,15	$\alpha = \frac{45,19}{83,22} : (7,864 - 0,275)$ = 1:14,0 = 71600 Milliontel	
$0,5 \\ 10,5 \\ 0,5$	$\begin{array}{c} 0,275\\ 10,5:1,131 = 9,284\\ 0,275\end{array}$	$83,22 \\ 135,40 \\ 83,26$	52,18	52,14	6,95 1	0,04	$\alpha = \frac{52,14}{83,26}: (9,284 - 0,275)$ = 1:14,4 = 69500 Millionte.	

Die vorstehenden Ergebnisse sind in Fig. 25 zeichnerisch dargestellt. (Dabei mußte die Linie der bleibenden Dehnungen entsprechend der Berechnungsweise α weggelassen werden, weil sie zu nahe mit

Fig. 25.

der eingezeichneten Kurve nach der Berechnungsart β zusammenfällt.) Bei der Versuchsreihe 2 ergaben sich die bleibenden Dehnungen weit kleiner als bei Versuchsreihe 1.

Zu Fig. 25 sind die gleichen Bemerkungen zu machen wie S. 74 zu Fig. 24.

Die Linie der federnden Dehnungen, bezogen auf den jeweils vorhandenen Querschnitt, bildet hier nahezu eine Gerade.

b) Druckversuche.

Durchmesser des verwendeten Körpers rd. 6,9 cm, Höhe desselben rd. 18 cm, Meßlänge ursprünglich 8,0 cm.
1. Versuchsreihe, durchgeführt wie Zugversuch 1.

Belastungswechsel innerhalb 2 Minuten (Ausgleichswerte).

 α) Spannungen sind bezogen auf den ursprünglichen Querschnitt von 37,28 qcm, Dehnungen ,, ,, ,, die ursprüngliche Meßlänge von 8,00 cm.

Belastungsstufe		Meß- strecke l cm	Zusamu der Me	mendrüc eßstrecke federnde	kungen in cm bleibende	Dehnungszahl der Federung	
0 50 0	$ \begin{array}{c} 0\\ 50:37,28 \Longrightarrow 1,341\\ 0 \end{array} $	8,00 7,31 7,98	0,69	0,67	0,02	$\alpha = \frac{0.67}{8,00} : 1,341$ = 1:16,0 = 62500 Milliontel	
50 100 50	$1,341 \\ 100: 37,28 = 2,682 \\ 1,341$	7,31 6,73 7,25	0,58	0,52	0,06	$lpha = rac{0.52}{8,00}: (2,682 - 1,341)$ = 1:20,6=48500 Milliontel	
100 150 100	$\begin{array}{c} 2,682 \\ 150: 37,28 = 4,024 \\ 2,682 \end{array}$	$6,73 \\ 6,19 \\ 6,65$	0,54	0,46	0,08	$lpha = rac{0.46}{8,00}: (4,024 - 2,682)$ = 1:23,3 = 42800 Milliontel	
150 200 150	$200: 37,28 = \begin{array}{c} 4,024 \\ 5,365 \\ 4,024 \end{array}$	$6,19 \\ 5,70 \\ 6,11$	0,49	0,41	0,08	$lpha = rac{0.41}{8,00}: (5,365 - 4,024)$ = 1:26,2 = 38200 Minliontel	

$\beta)$ Spannungen sind bezogen auf den jeweiligen Querschnitt,

Dehnungen ", ", die jeweilige Meßlänge.

0 50 0	$ \begin{array}{c} 0 \\ 50: 40, 49 = 1,235 \\ 0 \end{array} $	8,00 7,31 7,98	0,69	0,67	0,02	$lpha = rac{0.67}{7.98}: 1.235$ = 1: 14.7 = 68000 Milliontel
$50\\100\\50$	$100: 44,65 = \begin{array}{c} 1,235 \\ 2,240 \\ 1,235 \end{array}$	$7,31 \\ 6,73 \\ 7,25$	0,58	0,52	0,06	$= \frac{0.52}{7.25} : (2,240 - 1,235)$ = 1:14,0 = 71 400 Million tel
100 150 100	$150:48,89 = \begin{array}{c} 2,240 \\ 3,068 \\ 2,240 \end{array}$	6,73 6,19 6,65	0,54	0,46	0,03	$u = \frac{0.46}{6,65}$: (3,068 - 2,240) = 1:12,0 = 83500 Milliontel
150 200 150	$\begin{array}{c} 3,068\\ 200:53,59 = 3,732\\ 3,068 \end{array}$	6,19 5,70 6,11	0,49	0,41	0,08-	$\alpha = \frac{0,41}{6,11} : (3,732 - 3,068) \\= 1:9,9 = 101100$

§4. Längenänderungen verschiedener Stoffe.

2. Versuchsreihe, durchgeführt wie Zugversuch 2.

Belastungswechsel innerhalb 2 Minuten (Ausgleichswerte).

a) Spannungen sind bezogen auf den ursprünglichen Querschnitt von 37,28 qcm, Dehnungen sind bezogen auf die ursprüngliche Meßlänge von 7,99 cm.

Pkg	Belastungsstufe Pkg kg/qom		Zusa der 1 ge- samte	mmenc Meßstre fede	lrücku ecke in rnde Unter- schied	ngen 1 cm blei- bende	Dehnungszahl der Federung
0 50 0	$ \begin{array}{c} 0 \\ 50:37,28 = 1,341 \\ 0 \end{array} $	7,99 7,26 7,97	0,73	0,71	0,71	0,02	$lpha = rac{0.71}{7,99}: 1,341$ = 1:15,1 = 66300 Milliontel
0 100 0	$ \begin{array}{c} 0 \\ 100:37,28 = 2,682 \\ 0 \end{array} $	7,97 6,63 7,94	1,34	1,31	0,60	0,03	$lpha = rac{1,31}{7,99}: 2,682$ = 1:16,3 = 61100 Milliontel
$\begin{array}{c} 0\\150\\0\end{array}$	$ \begin{array}{c} 0 \\ 150: 37,28 = 4,024 \\ 0 \end{array} $	7,94 6,10 7,91	1,84	1,81	0,50	0,03	$\alpha = \frac{1,81}{7,99}$: 4,024 = 1:17,7 = 56300 Milliontel
0 200 0	$\begin{array}{c} 0\\200:37,28=5,365\\0\end{array}$	7,91 5,63 7,89	2,28	2,26	0,45	0,02	$lpha = rac{2,26}{7,99}: 5,365$ = 1:19,0 = 52700 Milliontel

 β) Spannungen sind bezogen auf den jeweiligen Querschnitt, Dehnungen sind bezogen auf die jeweilige Meßlänge.

		· · · · · · · · · · · · ·					Compared as a set of the second se
$\begin{array}{c} 0\\ 50\\ 0\end{array}$	50: 40, 49 = 1,235	7,99 7,26 7,97	0,73	0,71	0,71	0,02	$\alpha = \frac{0,71}{7,97}$: 1,235 = 1: 13,9 = 72100 Milliontel
0 100 0	$0 \\ 100: 44,65 = 2,240 \\ 0$	7,97 6,63 7,94	1,34	1,31	0,60	0,03	$lpha = rac{1,31}{7,94}: 2,240$ = 1:13,6 = 73700 Millionte1
$\begin{array}{c} 0\\150\\0\end{array}$	$0 \\ 150:48,89 = 3,068 \\ 0 \\ 0$	7,94 6,10 7,91	1,84	1,81	0,50	0,03	$lpha = rac{1,81}{7,91}: 3,068$ = 1:13,4 = 74600 Milliontel
$\begin{array}{c} 0\\200\\0\end{array}$	$ \begin{array}{c} 0 \\ 200:53,59 = 3,732 \\ 0 \end{array} $	$7,91 \\ 5,63 \\ 7,89$	2,28	2,26	0,45	0,02	$lpha = rac{2,26}{7,89}: 3,732$ = 1:13,0 = 76800 Milliontel

Der Vergleich der beiden Versuchsreihen führt zu denselben Beobachtungen wie bei den Zugversuchen.

b) Zusammenfügung der Ergebnisse der Zug- und Druckversuche.

Verlängert man in Fig. 24 und 25 die Linien der federnden Dehnungen sinngemäß, bis sie die wagrechte Achse der Dehnungen schneiden — dies ist mit um so größerer Sicherheit möglich, je geradliniger diese Kurven in der Nähe des Ursprungs verlaufen —, so lassen sich die Ergebnisse der Druckversuche an diejenigen der Zugversuche anschließen, wie es in Fig. 26 und 27, gültig für die Versuche 1 bzw. 2, geschehen ist.

Von besonderem Interesse erscheint in Fig. 27 der fast geradlinige Verlauf der stark ausgezogenen Linie.

c) Einfluß des Alters.

Die Probekörper, über die unter a) und b) berichtet ist, waren $\frac{1}{2}$ Jahr früher bereits denselben Versuchen unterworfen worden. Dabei hatten sich für gleiche Beanspruchungen etwas größere Formänderungen ergeben. Bei Zugversuch 1 z. B. war die Dehnungszahl von 77500 Milliontel bis 164000 Milliontel veränderlich gewesen, gegenüber 72600 Milliontel bis 147000 Milliontel bei den späteren Versuchen.

B. Körper aus hartem Gummi. (Raumgewicht 1,48.).

Ein Teil der Ergebnisse ist in den folgenden Zusammenstellungen enthalten.

a) Zugversuche.

- 1. Versuchsreihe, durchgeführt wie Versuchsreihe 1 unter A.
- a) Spannungen sind bezogen auf den ursprünglichen Querschnitt von 1,767 qcm. Dehnungen ", ", ", die ursprüngliche Meßlänge von 80,25 cm.

	Belastungsstufe	Meß- strecke	Verlä Meß	ngerung strecke i	en der n cm	Dehnungszahl der Federung		
P kg	kgʻqem	$l \mathrm{cm}$	gesamte	federnde	bleibende	· · · · · · · · · · · · · · · · · · ·		
$0,5\\ 1,5\\ 0,5$	0.5: 1.767 = 0.283 1.5: 1.767 = 0.849 0.283	80,25 80,78 80,32	0,53	0,46	0,07	$\alpha = \frac{0.46}{80.25}$: (0.849 - 0.283) = 1 : 99 = 10100 Milliontel		
$5,5 \\ 6,5 \\ 5,5$	5,5:1,767 = 3,113 6,5:1,767 = 3,679 3,113	83,21 83,91 83,40	0,70	0,51	0,19	$\alpha = \frac{0.51}{80.25} : (3.679 - 3.113)$ = 1: 89 = 11200 Milliontel		
$11,5 \\ 12,5 \\ 11,5 \\$	$\begin{array}{c} 11.5\colon 1.767 = 6{,}508 \\ 12.5\colon 1.767 = 7{,}074 \\ 6{,}503 \end{array}$	$87,66\ 88,47\ 87,93$	0,81	0,54	0,27	$\alpha = \frac{0.54}{80,25} : (7,074 - 6,508)$ $= 1:84 = 11900 \text{ Milliontel}$		
	C. Bach, Elastizität.	8. Aufi.				6		

β)	Spannungen	sind	bezogen	auf	den	jeweiligen	Querschnitt,
	Dehnungen	,,	,,	,,	die	jeweilige	Meßlänge.

	Belastungsstufe	Meß- strecke	Verla Meßs	ängerung strecke in	der n cm	Dehnungszahl der Federung
P kg	$\mathbf{kg}/\mathbf{q}\mathbf{cm}$	<i>l</i> cm	gesamte	federnde	bleibende	
0,5 1,5 0,5	$\begin{array}{c} 0,5\!:\!1,\!767=\!$	80,25 80,78 80,32	0,53	0,46	0,07	$\alpha = \frac{0.46}{80.32} : (0.860 - 0.283)$ = 1:101 = 9900 Milliontel
5,5 6,5 5,5	5,5:1,710 = 3,216 6,5:1,697 = 3,830 3,216	83,21 83,91 83,40	0,70	0,51	0,19	$\alpha = \frac{0.51}{83.40} : (3.830 - 3.216)$ = 1:100 = 10000 Milliontel
11,5 12,5 11,5	11,5:1,629 == 7,030 12,5:1,606 == 7,783 7,060	87,66 88,47 87,93	0,81	0,54	0,27	$\alpha = \frac{0.54}{87,93} : (7,783 - 7,060)$ = 1:118 = 8490 Milliontel

2. Versuchsreihe, durchgeführt wie Versuchsreihe 2 unter A.

a), Spannungen sind bezogen auf den ursprünglichen Querschnitt von 1,767 qcm. Dehnungen ", ", ", die ursprüngliche Meßlänge von 80,35 cm

P kg	Belastungsstufe kg/qcm	Meß- strecke <i>l</i> cm	y M ge- samte	Verlän Ießstro fe	gerung der ecke in cm edernde für 1 kg	h blei- bende	Dehnungszahl der Federung
$0,5 \\ 1,5 \\ 0,5$	0,5:1,767 = 0,283 1,5:1,767 = 0,849 0,283	80,35 80,82 80,36	0,47	0, 46	0,46:1 = 0,46	0,01	$\alpha = \frac{0.46}{80.35} : (0.849 - 0.283)$ = 1:99 = 10100 Milliontel
$0,5 \\ 6,5 \\ 0,5$	$\begin{array}{r} 0.283 \\ 6,5:1,767 = 3,679 \\ = 0,283 \end{array}$	80,53 83,87 80,57	3,34	3,30	3,30:6 = 0,55	0,04	$\alpha = \frac{3,30}{80,35} : (3,679 - 0,283)$ = 1:83 = 12100 Milliontel
$0,5\\12,5\\0,5$	$\begin{array}{r} 0,283\\ 12,5:1,767=\begin{array}{r} 0,283\\ 7,074\\ 0,283\end{array}$	80,65 88,05 80,69	7,40	7,36	7,36:12 = 0,61	0,04	$\alpha = \frac{7,36}{80,35} : (7,074 - 0,283)$ = 1:74 = 13500 Milliontel

	Representation of the second sec								
	Belastungsstufe	Meß- strecke	V.	erläng Ießstr	erungen ecke in c	der m	Dehnungszahl der Federung		
$P \log \frac{1}{2}$	\mathbf{kg}/\mathbf{qem}	l cm	ge- samte	fe	dernde für 1 kg	bleı- bende			
$0,5 \\ 1,5 \\ 0,5$	$\begin{array}{c} 0.5:1,767==0.283\\ 1.5:1,744==0.860\\ 0.283\end{array}$	80,35 80,82 80,36	0,47	0,46	0,46:1 =0,46	0,01	$a = \frac{0.46}{80.36} : (0,860 - 0.283)$ = 1 : 101 = 9920 Milliontel		
0,5 6,5 0,5	$\begin{array}{r} 0,283\\ 6,5:1,697=3,830\\ 0,283\end{array}$	80,53 83,87 80,57	3,34	3,30	3,30:6 =0,55	0,04	$a = \frac{3,30}{80,57} : (3,830 - 0,283)$ = 1 : 87 = 11500 Milliontel		
0,5 12,5 0,5	$12,5:1,606 = \begin{array}{c} 0,283\\ 7,783\\ 0,283\end{array}$	80,65 88,05 80,69	7,40	7,36	7,36:12 ==0,61	0,04	$\alpha = \frac{7,36}{80,69} : (7,783 - 0,283)$ = 1 : 82 = 12200 Milliontel		

β) Spannungen sind bezogen auf den jeweiligen Querschnitt, Dehnungen ,, ,, die jeweilige Meßlänge.

b) Druckversuch,

durchgeführt wie die Versuchsreihen 2.

 a) Spannungen sind bezogen auf den ursprünglichen Querschnitt von 39,04 qcm, Dehnungen ,, ,, ,, die ursprüngliche Meßlänge von 8,00 cm.

P kg	Belastungsstufe kg/qcm	Meß- strecke l cm	Zusammendrückungender Meßstrecke in cm D ge- fed(rnde blei- samte für 100 kg bende	ehnungszahl der Federung
0 100 0	$\begin{array}{c} 0 \\ 100: 39,04 = 2,561 \\ 0 \end{array}$	8,00 7,70 7,97	$\begin{array}{c c}0,30\\0,27\\ \hline 0,27\\ \hline 0,027\\ \hline 0,03\\ \hline 0,03\\ \hline \alpha = \frac{0,27}{8,00}\\ = 1:7\end{array}$:2,561 :6 = 13200 Milliontel
0 500 0	$\begin{array}{c} 0 \\ 500:39,04 = 12,807 \\ 0 \end{array}$	7,95 6,56 7,93	$\begin{array}{c c c c c c c c c c c c c c c c c c c $: 12,807 /5 == 13400 Milliontel
0 900 0	$\begin{array}{c} 0 \\ 900:39,04 = 23,053 \\ 0 \end{array}$	7,90 5,61 7,86	$2,29 \begin{array}{ c c c c c c c c c c c c c c c c c c c$: 23,053 2 == 12200 Milliontel

Pkg	Belastungsstufe kg/qcm	Meß- strecke <i>l</i> cm	Zusammen Meßstr ge- samte	drückunge ecke in cn edernde für 100 kg	en der n blei- bende	Dehnungszahl der Federung
0 100 0	$\begin{array}{r} 0 \\ 100:39,82 = 2,511 \\ 0 \end{array}$	8,00 7,70 7,97	0.30 0,27	0,27:1 = 0,27	0,03	$lpha = rac{0.27}{7.97} : 2,511$ = 1:74 = 13500 Milliontel
0 500 0	$\begin{matrix} 0 \\ 500:47,29=-10,573 \\ 0 \end{matrix}$	7,95 6,56 7,93	1,39 1,37	1,37:5 = 0,27	0,02	$\alpha = \frac{1,37}{7,93} : 10,573$ = 1:61 = 16300 Milliontel
0 900 0	$0 \\ 900:55,02 = 16,358 \\ 0$	7,90 5,61 7,86	2,29 2,25	2,25:9 = 0.25	0,04	$lpha = rac{2,25}{7,86} : 16,358$ = 1:57 = 17500 Milliontel

β) Spannungen sind bezogen auf den jeweiligen Querschnitt, Dehnungen ,, ,, ,, die jeweilige Meßlänge.

C. Körper aus Hartgummi (Ebonit).

Beim Druckversuch erwiesen sich die Dehnungen den Spannungen fast genau proportional. Die Dehnungszahl ergab sich für Beanspruchungen bis $108 \text{ kg/qcm} \text{ zu } 1:2630 = 380 \text{ Milliontel}^1$).

9. Versuche mit Körpern aus reinem Zement, Zementmörtel, Beton.

Die zahlreichen vom Verfasser mit solchen Körpern durchgeführten Druckversuche, hinsichtlich welcher auf die früheren Veröffentlichungen verwiesen werden muß²), ergeben ausnahmslos, daß die Zusammendrückungen rascher wachsen als die Spannungen.

Die erlangten Versuchsergebnisse lieferten innerhalb der für die ausführende Technik in Betracht kommenden Spannungsgrenzen beispielsweise die aus dem Folgenden ersichtlichen Beziehungen, in denen die Zahlenwerte abgerundet sind.

¹) Die Zugfestigkeit, ermittelt an 2 Streifen, betrug 514 und 590, im Mittel 552 kg/qcm. Die Druckfestigkeit von 2 Würfeln ergab sich zu 875 und 865, im Mittel 870 kg/qcm. Weitere eigene Versuche, namentlich über das Verhalten bei höherer Temperatur s. Zeitschr. des Vereines deutscher Ingenieure 1913. S. 907 u.f.

²) Zeitschrift des Vereines deutscher Ingenieure 1895, S. 489 u. f., 1896,
S. 1381 u. f., 1897, S. 248 u. f.; oder "Abhandlungen und Berichte" 1897,
S. 230 u. f., 268 u. f., S. 289 u. f.; C. Bach, Mitteilungen über die Herstellung und die Untersuchung von Betonkörpern mit verschiedenem Wasserzusatz, Stuttgart,
I. Teil 1903, II. Teil 1906, III. Teil 1909.

§ 4. Längenanderungen verschiedener Stoffe. 85

Körper aus reinem Zement.

$$\varepsilon = \frac{1}{250\,000} \,\sigma^{1.09} \,\ldots\,\ldots\,\ldots\,$$
 15)

Körper aus Zementmörtel.

1 ... 3 ...
$$\epsilon = \frac{1}{315000} \sigma^{1,15}$$
 ... 17)¹)

1 .,
$$4^{1/2}$$
 .. $\varepsilon = \frac{1}{230000} \sigma^{1 \ 17}$. . $18)^{1}$

Körper aus Beton.

1 Zement, $2^{1}/_{2}$ Donausand, 5 Donaukies:

$$\epsilon = \frac{1}{298000} \sigma^{1,145} \quad \dots \quad \dots \quad 19)$$

- 1 Zement. 5 Donausand, 6 Donaukies: $\varepsilon = \frac{1}{280000} \sigma^{1 \ 137} \quad \dots \quad \dots \quad 21)$
- 1 Zement. 3 Donausand, 6 Kalksteinschotter: $\epsilon = \frac{1}{380000} \sigma^{1,161} \dots \dots \dots 22)$

¹) Es ist von Interesse, zu beachten, wie ausgeprägt sich der Einfluß des Sandzusatzes auf die Größe der Exponenten m und die Größe von α äußert. Darin liegt überhaupt ein Vorteil der Beziehung 1, daß ihre beiden Koeffizienten α und m sehr empfindlich sind gegenüber Verschiedenheiten in der Zusammensetzung des Materials (Gußeisen, Kupfer, Bronze, Messing, Zementmörtel, Beton, Granit usw.) sowie gegenüber den Verschiedenheiten des Zustandes, in dem es sich jeweils in dem untersuchten Körper befindet (z. B. ob – bei Eisen – vorher ausgeglüht, ob kalt bearbeitet, oder vorher belastet ob – bei Beton – trocken oder feucht usw.). Es erscheint wahrscheinlich, daß durch genaue Feststellungen in dieser Richtung in manche Materialien Einblicke erlangt werden können, die bisher auf physikalischem Wege sich nicht gewinnen ließen.

1 Zement, 5 Egginger Sand, 10 Kalksteinschotter:

$$\varepsilon = \frac{1}{367000} \sigma^{1,207} \quad \dots \quad \dots \quad \dots \quad \dots \quad 24)$$

Eigene Druckversuche mit Zementmörtel lieferten für die Dehnungszahl der Federung im Alter von 100 Tagen für die Spannungsstufe 0, 1-15 kg/qcm folgende Werte (Armierter Beton, 1911, Heft 9).

				1	Dehnungszahl der Federung									
Zusammensetzung			nach	feuchter 1	Lagerung	Raum- ge- wicht	a- nach feuchter Lagerung wäh- rend 7 Tagen und anschließen- der trockenen Lagerung		Raum- ge- wicht					
1	Zemen	t,0,5	Rheinsand	1:236	800 = 4.22	2 Milliontel	2.16	1:201700=497	Milliontel	2 14				
1	.,	1	,,	1:273	100 = 3,6	6.,	2,20	1:247500=4.04		2.19				
l	· ·	1,5	,,	1:284	600 = 3,52	2	2,20	1:263200=3,80	.,	2,19				
1	٠,	2	••	1:283	900 = 3,5	2 ,.	2,20	1:277800=3,60) .,	2,19				
1	••	3	,,	:1:276	700 = 3,6	2,,	2,22	1:248300 = 4,02	, ,	2,17				
1	••	5	,,	1:228	800 = 4,3	7 ,	2,19	1:208900=4,79),	2,14				
1	۰,	7	••	1:190	800 = 5,2	4 .,	2,14							
1	.,	10	٠,	1:158	800 = 6,3	io .,	2,10			1				

Für Beton ergab sich nach feuchter Lagerung:

				Zu	Isamn	ense	tzung			Spannungs- stufe kg/qem	Dehn	ungszał	ıl der	Federung
]	Zem	ent	. 21	Rheins	and.	3Rh	ieinkie	s. Stampfbeto	$\mathbf{n}^{ }$	0.1 - 24.5	1:37	2500 =	=2,68	Milliontel
]			2			3		Gußbeton		0.1 - 24.7	1:31	0700=	= 3,22	••
]	. ,	,	3			4	,,	Stampfbet	on	0,1-24,5	1:33	3100=	=2,96	·
]	- ,		3	••		4	••	Gußbeton		0,1-24,4	1:30	1 900=	= 3,32	2
]		,	2,5	Sand,	2,25	i Fe	inkies,	3 Grobkies.	.	<i>, ,</i>			,	
				Í	Stam	pfbe	oton			0,2-20,5	5 1:3'	71000=	=2,70)
1	L.		2,5	••	2,251	Feins	$\mathbf{schotte}$	r, 3 Maschine	m-	,			,	
			,		grobs	schot	tter, S	tampfbeton		0,2-20,	7 1:4	91000=	= 2,0	4 ,.

Umfangreiches Zahlenmaterial über die Elastizität und Festigkeit von Beton verschiedener Zusammensetzung unter Anwendung verschiedenen Wasserzusatzes findet sich in den in Fußbemerkung 2 auf Seite 84 zuletzt genannten Schriften, ferner in Heft 22, 29, 39, 45 bis 47, 72 bis 74, 90, 91, 95, 122, 123 und 166 bis 169 der Mitteilungen über Forschungsarbeiten, herausgegeben vom Vereine deutscher Ingenieure, sowie in den Heften des deutschen Ausschusses für Eisenbeton: 9, 10, 12, 16, 19, 20, 24, 27, 30, 38, 43, 44 und A.

Von den Feststellungen, zu denen diese Versuche geführt haben, seien mit Rücksicht auf die Bedeutung, die der Beton an sich und sodann in Verbindung mit Eisen erlangt hat, die folgenden angeführt.

a) Probekörper aus Beton müssen ausreichend große Abmessungen erhalten, wenn die Versuchsergebnisse zuverlässig ausfallen sollen und Übertragung der erlangten Erfahrungszahlen auf Bauten beabsichtigt wird (1895).

b) Für die Ermittlung des elastischen Verhaltens ist das S. 19 u. f. sowie in der Fußbemerkung 2 S. 46 hervorgehobene Belastungswechselverfahren anzuwenden. Zur Erreichung des Ausgleichszustandes sind um so mehr Lastwechsel erforderlich, je höher die Belastung ist. Der Einfluß der Belastungszeit macht sich insbesondere bei stärkerer Beanspruchung geltend (1895).

c) Die gesamten, bleibenden und federnden Längenänderungen wachsen ausgeprägt rascher als die Spannungen. Die Größe und die Veränderlichkeit der Dehnungszahl hängen in hohem Maße von dem Alter ab, in dem die Prüfung erfolgt; die Krümmung der Dehnungslinie nimmt ab und diese nähert sich der Geraden, wenn der Beton älter wird, die federnden Dehnungen fallen kleiner aus, dasselbe gilt von den bleibenden Dehnungen (1906).

d) Die Zusammensetzung beeinflußt die Dehnungen in verschiedenartiger Weise. Kiesbeton ergab z. B. größere Dehnungen als Beton aus Muschelkalkschotter (1895). Das Verhalten von Mörtelkörpern mit verschiedenem Sandzusatz unter Druck geht aus der oben angeführten Zahlentafel sowie aus folgenden älteren Versuchswerten hervor.

Zusammensetzung]	Reiner Port- landzement	1 Zoment, 1 Sand	1 Zement, 3 Sand	$\begin{array}{ccc} 1 & \text{Zement,} \\ 4^1 & \text{Sand} \end{array}$
Durchschnittliche)			
Dehnungszahl <i>u</i> ,	4,74	3,56	4,31	6,29 Milliontel
auf der Spannungs-	}			
stufe $0-7.8 \text{kg/qcm}$				
Raumgewicht	J 2,07	$2,\!12$	2,04	1,91 kg/cdm

Die Dehnungszahl nimmt also zunächst ab, bei weiterem Sandzusatz aber rasch zu. Bemerkenswert ist das umgekehrte Verhalten der Werte des Raumgewichts. Näheres s. Zeitschrift des Vereines deutscher Ingenieure 1896, S. 1381 u. f. Neue Versuche: Armierter Beton 1911, Heft 9.

Die Druckfestigkeit nimmt mit steigendem Sandgehalt ab (Armierter Beton 1914, Heft 6 und 7).

Von sehr bedeutendem Einfluß erweist sich die Größe des Wasserzusatzes. Bei geeigneter Zusammensetzung des Betons liefert die geringste Wassermenge, die eben noch ausreicht, um einen vollkom-

menen Stampfbeton zu erzeugen, bei sachgemäßer Herstellung die größte Festigkeit. Zur Verarbeitung eines solchen Betons gehören aber zuverlässige und geübte Arbeiter. Beton mit größerem Wasserzusatz ist leichter zu verarbeiten; seine Festigkeit ist im Alter von 28 Tagen je nach der Größe des Wasserzusatzes mehr oder weniger bedeutend kleiner, doch nimmt der Unterschied mit zunehmendem Alter ab (1906, 1909). Bei Beton mit sehr größem Wasserzusatz tritt die Gefahr der Entmischung ein, d. h. der Beton erweist sich an verschiedenen Stellen sehr verschieden zusammengesetzt, hat somit nicht die Zusammensetzung, die ihm zu geben beabsichtigt war. Andererseits darf nicht übersehen werden, daß sehr geringer Wasserzusatz zu unvollkommenem Beton führen kann.

Bei der Beurteilung des Wasserzusatzes kommt es nicht darauf an, wieviel Wasser zugesetzt wird, sondern darauf, wieviel Wasser schließlich im Beton verbleibt (dichte und undichte Formen). Trockene Holzformen entziehen dem Beton Wasser, eiserne Formen tun das nicht. Beton, in letzteren hergestellt, enthält also mehr Wasser; er weist deshalb unter sonst gleichen Umständen eine geringere Druckfestigkeit auf als Beton in Holzformen. Mangelhafte Holzformen lassen durch Risse und Spalten Zementbrühe verloren gehen, wodurch Verminderung der Festigkeit sich einstellen kann.

Zahlenmäßig geht der Einfluß des Wasserzusatzes z. B. aus folgenden Werten der Druckfestigkeit hervor, denen auch die Raumgewichte beigefügt sind. (Beton aus 1 Raumteil Zement, 2 Raumteilen Rheinsand und 3 Raumteilen Rheinkies; Heft 72/74 der Mitteilungen über Forschungsarbeiten.)

Wasserzusatz	6,8	7,8	9,0	10,0 °/ə
Druckfestigkeit	274	224	201	166 kg/qcm
Raumgewicht	2,34	2,33	2,33	$2,32~\mathrm{kg/cdm}$

e) Je größer die auf die Raumeinheit entfallende Stampfarbeit ist, desto dichter und fester fällt der Beton aus. Kleine Probekörper weisen bei gleichem Stampfverfahren unter sonst gleichen Umständen größere Werte der Druckfestigkeiten auf als größere. Es fanden sich z. B. folgende Werte für Körper aus 1 Teil Zement und 3 Teilen Sand:

Handmischung:	Wü ^r fel 50 q m Querschnitt	Zylinder, 25 cm hoch 480 qcm Querschnitt	Verhältnis- zahlen
Druckfestigkeit, kg/qcn	n 285	165	1:0,58
Raumgewicht, kg/cdm	$2,\!28$	2,23	1:0,98
Maschinenmischung:			
Druckfestigkeit, kg/qcr	n 292	203	1:0,70
Raumgewicht, kg/cdm	2,32	2,25	1:0,97

Die Eigebnisse lassen auch die Überlegenheit guter Maschinenmischung gegenüber der Handmischung erkennen.

Näheres s. Zeitschrift des Vereines deutscher Ingenieure 1898, S. 238 u. f. Über neuere eigene Versuche mit Betonwürfeln von 12,5, 30 und 40 cm Seitenlänge berichtet O. Graf unter: Druckversuche mit Betonwürfeln. Zusammenfassung von Ergebnissen, ermittelt in der Materialprüfungsanstalt an der K. Technischen Hochschule Stuttgart, in Armierter Beton 1914, Heft 6 und 7. Diese Arbeit enthält eine Zusammenstellung aller Einflüsse, die für die Druckfestigkeit des Betons von Bedeutung sind.

Ähnlich wie vermehrte Stampfarbeit wirken Erschütterungen der Betonmasse. Die erste Veröffentlichung über diesbezügliche Beobachtungen aus dem Jahr 1904 ist in Heft 22 der Mitteilungen über Forschungsarbeiten erfolgt.

f) Die Druckfestigkeit wächst mit zunehmendem Alter. Mit Annäherung kann die Druckfestigkeit K in kg/qcm, die nach A Monaten Erhärtungsdauer vorhanden ist, aus der Beziehung

$$K = a \left(1 - \sqrt[6]{\frac{1}{mA - 1}} \right)$$

berechnet werden, in der a und m Erfahrungszahlen bedeuten. Sie betragen z. B.

a = 786, m = 9 (Beton $1: 2^{1}/_{2}: 5$; $5,7^{0}/_{0}$ Wasser, Maschinenmischung) a = 897, m = 6 (... $1: 2^{1}/_{2}: 5, 3,5^{0}/_{0}$,, ...) a = 874, m = 6 (... $1: 2^{1}/_{2}: 5, 3,5^{0}/_{0}$,, ...)

Näheres s. z. B. in der Zeitschrift des Vereines deutscher Ingenieure 1909, S. 828 u. f.

g) Die Art der Lagerung (trocken oder feucht) äußert verschiedenen Einfluß, je nachdem es sich um fette oder magere Mischungen handelt. Auch das Alter ist hierbei von Bedeutung.

Von sehr bedeutendem Einfluß kann die Behandlung der Körper unmittelbar vor dem Versuch ausfallen, insbesondere bei Zugversuchen. Werden die Körper z. B. aus dem Wasser genommen und einige Zeit vor der Prüfung liegen gelassen, so trocknen sie an der Oberfläche aus. Infolgedessen schwindet der Beton an der Oberfläche (Näheres hierüber s. Mitteilungen über Forschungsarbeiten, Heft 72/74, Anhang). Dies hat das Auftreten großer Zugspannungen in den äußeren Schichten zur Folge, die sich zu den durch die Belastung bei der Prüfung hervorgebrachten Zugspannungen addieren und die Tragfähigkeit bedeutend vermindern. Dasselbe tritt ein, wenn trockene Körper vor der Prüfung befeuchtet werden. Zugspannung stellt sich dann im Innern ein. Näheres s. das eben erwähnte Heft 72/74, Anhang.

h) Über den Einfluß der Höhe der Probekörper vgl. § 13 unter 1, d.

i) Die Belastungsgeschwindigkeit äußert ebenfalls Einfluß, wie z. B. aus folgenden Zahlen hervorgeht:

Würfel aus Normalsand, Mörtel 1:3, 7 cm Kanten	länge.		
Steigerung der Belastung in 1 Sek. um 1	3	13	kg/qcm
Druckfestigkeit	319	326	,,
Würfel aus Kiesbeton, 1:4, 30 cm Kantenlänge.			
Steigerung der Belastung in 1 Sek. um. 1	4	12	kg/qcm
Druckfestigkeit	267	276	,,

10. Versuche mit Granit. (1896.)

Die vom Verfasser durchgeführten Versuche liefern bei Zug Dehnungslinien, wie z. B. in Fig. 28 dargestellt "Druck """""""""29 "

Fig. 28.

Hiernach kehrt die Linie der gesamten und der federnden Zusammendrückungen (Fig. 29) der Achse der Spannungen zunächst ihre erhabene Seite und später ihre hohle Seite zu, d. h. zu Anfang wachsen die Zusammendrückungen rascher als die Spannungen und später langsamer. Die Linienzüge besitzen demnach Wendepunkte; diese liegen oberhalb der für die ausführende Technik in Betracht kommenden Spannungsgrenze, die gegenüber Druck in der Regel bei etwa 50 kg/qcm angenommen werden darf. Innerhalb dieser Grenzen fand sich, wenn die Zahlen abgerundet werden

für Granitkörper I (Druck)
$$\varepsilon = \frac{1}{250000} \sigma^{1,132}$$
 . . . 25)

für Granitkörper II (Druck)
$$\varepsilon = \frac{1}{340000} \sigma^{1,109}$$
 . . . 26)

,, ,, III (Zug)
$$\epsilon = \frac{1}{235000} \sigma^{1.374}$$
 . . . 27)

Mit welcher Genauigkeit diese Beziehungen die beobachteten Federungen wiedergeben, darüber gibt die in der Fußbemerkung angeführte

Stelle Auskunft, auf die auch hinsichtlich der weiteren Einzelheiten verwiesen werden $darf^{1}$).

¹) Zeitschrift des Vereines deutscher Ingenieure 1897, S. 241 u. f., oder auch des Verfassers "Abhandlungen und Berichte" 1897, S. 281 u. f.

Übrigens ergeben sich nach Versuchen des Verfassers selbst für Granit aus einem und demselben Bruch die Federungen recht verschieden1).

11. Versuche mit Marmor. (1897.)

Querschnitt	des	mittle	ren	pri	\mathbf{sm}	ati	isc	he	n '	Te	ile	s () ,1	15	. 🤅	9,1	3	83,2	qcm,
Länge																		54	cm,
Meßlänge .																	•	50	cm,
Gesamtlänge	e de	s Kör	pers	•														74,5	cm,
Gewicht des	Kċ	pers																17,71	$15 \mathrm{kg}$.

Der Körper wird zunächst in einer stehenden Prüfungsmaschine auf Druck beansprucht uud dabei jeweils vollständig von der Druckkraft der Maschine entlastet, so daß als Belastung des mittleren Querschnitts sein halbes Eigengewicht und das Gewicht des oberen Teiles der Meßvorrichtung verbleiben, zusammen rund 18 kg, entsprechend 18

 $\frac{10}{83.2} = 0,22 \text{ kg/qcm}.$

Hierin schließt sich Beanspruchung auf Zug in einer zweiten stehenden Maschine, ganz wie dies bei dem Gußeisenkörper IV (S. 31 u. f.) beschrieben worden ist. Die Belastung des mittleren Querschnitts durch das halbe Eigengewicht und durch den Anteil des Gewichts der Meßvorrichtung beträgt hierbei rund 15 kg, d.i. $\frac{15}{83.2} = 0,19 \text{ kg/qcm}.$

Der Zugversuch wird wiederholt.

Darauf folgt abermals Druckbelastung usw., wie dies aus den folgenden Zusammenstellungen der Versuchsergebnisse erhellt.

1. Versuchsreihe.

Druck.

Der Körper war vorher mit rd. 6000 kg belastet, entsprechend 72.1 kg/qcm.

Belastung	gsstufe in kg	Zusammendrückungen in ¹ / ₆₀₀ cm auf 50 cm			
Р	σ	gesamte	bleibende	federnde	
18 und 2018	0,22 und 24,25	4,10	0,25	3,85	
18 ., 4018	0,22 ,, 48,29	7,265	0,315	6,95	
18 ., 6018	0,22 ,, 72,33	10,0 3 5	0,33	9,705	

Temperatur 20,0 bis 20,1°C.

1) Zeitschrift des Vereines deutscher Ingenieure 1903, S. 1445 u. f., oder auch "Mitteilungen über Forschungsarbeiten", Heft 17, S. 78 und 79.

§4. Längenänderungen verschiedener Stoffe.

Die Unterschiede der Federung sind 3.85

$$3,10$$
 $2,755,$

sie nehmen also ausgeprägt ab bei wachsender Spannung. Der Marmor verhält sich hiernach umgekehrt wie z. B. das Gußeisen.

2. Versuchsreihe.

Zug.

Der Körper wurde kurze Zeit mit rund 2000 kg belastet, entsprechend 24 kg/qcm.

Belastung	gsstufe in kg	Verlängerungen in $^{1}/_{600}$ cm auf 50 cm				
Р	σ	gesamte	bleibende	federnde		
15 und 300 15 ,, 600 15 ,, 900 15 ,, 1200	0,19 und 3,61 0,19 ,, 7,21 0,19 ,, 10,82 0,19 ,, 14,42	0,82 1,935 3,365 4,96	$\begin{array}{c c} 0,085\\ 0,115\\ 0.18\\ 0,215\end{array}$	0.735 1,820 3,185 4,745		

l'emperatur	$20,0^{0}$	С
-------------	------------	---

Eine Wiederholung des Versuchs -3. Versuchsreihe - ergab nahezu die gleichen federnden Dehnungen.

Die Unterschiede der Federungen

1.085 1.365 1.560 0.735deutliche Zunahme der Verlängerungen mit wachsender zeigen Spannung.

4. Versuchsreihe.

Druck.

Temperatur 20,0 bis 20,1°C.

Belastungs	stufe in kg	Zusammendrückungen in 1/600 cm auf 50 cm				
P	σ	gesamte	bleibende	federnde		
18 und 2018 18 ,, 4018 18 ,, 6018	0,22 und 24,25 0,22 ,, 48,29 0,22 ,, 72,33	$7,77 \\11,63 \\14,54$	3,295 3,795 4,125	$\begin{array}{c} 4,475 \\ 7,835 \\ 10,415 \end{array}$		

Die großen bleibenden Zusammendrückungen sind die Folge des Vorhergehens von Zugbelastung. Auch die federnden Zusammendrückungen zeigen größere Werte als Versuchsreihe 1. Doch hat sich daran, daß sie langsamer als die Spannungen wachsen, nichts geändert. Denn es betragen die Unterschiede:

> 2,5804,475 3,360

Dieselben unterscheiden sich hier noch bedeutender voneinander als bei der Versuchsreihe 1.

5. Versuchsreihe. Druck. Temperatur 20,1° C.

Belastun	gsstufe in kg	Zusammendrückungen in 1/600 cm auf 50 cn				
Р	σ	gesamte	bleibende	federnde		
18 und 2018 18 ,, 4018 18 ,, 6018	0,22 und 24,25 0,22 ,, 48,29 0,22 ,, 72,33	$ \begin{array}{r} 4,185 \\ 7,54 \\ 10,30 \end{array} $	0,025 0,05 0,09	4,16 7,49 10,21		

Fig. 30.

§4. Längenänderungen verschiedener Stoffe.

Die bleibenden Zusammendrückungen ergeben sich jetzt klein; die federnden haben sich ebenfalls etwas geändert, sie sind aber noch etwas größer als bei der 1. Versuchsreihe. Von Interesse ist, zu beachten, daß sich die Federung der obersten Stufe derjenigen genähert hat, die bei der 1. Versuchsreihe erhalten wurde; dort waren die Unterschiede

	3,85	3,10	2,755
sie			
	4,16	3,33	2,72.

hier betragen

Eine Wiederholung des Versuchs-6. Versuchsreihe - ergab die gleichen federnden Zusammendrückungen.

In Fig. 30 sind die federnden Dehnungen der 2. Versuchsreihe (Zug) und die federnden Zusammendrückungen der 5. Versuchsreihe in der mehrfach erörterten Weise eingetragen und die so erhaltenen Punkte verbunden. Der so erlangte Linienzug hat die Eigentümlichkeit, daß er der Achse der Spannungen auf der Zugseite seine erhabene, dagegen auf der Druckseite seine hohle Seite zukehrt. Für $\sigma = 0$ darf nach dem Verlauf der beiden Kurvenzweige mit Annäherung eine gemeinschaftliche Tangente angenommen werden.

Werte der Dehnungszahlen α ,

unter Zugrundelegung der Federungen berechnet für die einzelnen Belastungsstufen. (Vgl. S. 24 und 25, insbesondere auch die Fußbemerkungen daselbst.)

Spannungs- stufe kg/qcm	1. Versuchsr	reihe	4. Versuchsreihe	5. (6.) Versuchsreihe
0,22	3,85	(1:187200	1:161100	1:173300
$24,\!25$	$600 50 \ (24,25 - 0,22)$	= (5,34 Milliontel	6,21 Milliontel	5,77 Milliontel
$24,\!25$	6,95 - 3,85	1:232600	1:214600	1:216600
48,29	$600 \cdot 50 (48, 29 - 24, 25)$	⁼ (4,30 Milliontel	4,66 Milliontel	4,62 Milliontel
48,29	9,705-6,95	(1:261800)	1:279500	1:265100
72,33	$\overline{600 \cdot 50} (72,33 - 48,29)^{=}$	(3,82 Milliontel	3,58 Milliontel	3,77 Milliontel

Druck.

Zug.	
2. (3.) Versuch	sreihe
0,735	(1 : 1396 00
$600 \cdot 50 (3.61 - 0.19)$	= $(7,16$ Milliontel
1,82 - 0,735	(1:99500)
$600 \cdot 50 \ (7,21 - 3,61)$	= $10,05$ Milliontel
3,185 - 1,82	(1: 793 00
$\overline{600 \cdot 50} (10,82 - 7,21)^{-1}$	= $12,60$ Milliontel
4,745 - 3,185	(1:69200)
$\overline{600\cdot 50\left(14,42-10,82 ight)}^{=}$	⁼ (14,44 Milliontel
	2. (3.) Versuch $ \frac{0,735}{600 \cdot 50 (3.61 - 0,19)} = \frac{1,82 - 0,735}{600 \cdot 50 (7,21 - 3,61)} = \frac{3,185 - 1,82}{600 \cdot 50 (10,82 - 7,21)} = \frac{4,745 - 3,185}{600 \cdot 50 (14,42 - 10,82)} = \frac{4,745 - 3,185}{600 \cdot 50 (14,42 - 10,82)} = \frac{1000}{1000} $

77

12. Versuche mit Sandstein. (1898.)

Die vom Verfasser durchgeführten Versuche ergaben für Sandstein im ursprünglichen Zustande ausnahmslos, daß die Dehnungen weit rascher wachsen als die Spannungen. Da grundsätzlich Neues hierbei nicht auftritt, so darf auf die dahingehenden Veröffentlichungen des Verfassers verwiesen werden: Zeitschrift des Vereines deutscher Ingenieure 1899, S. 1402; 1900, S. 1169 u. f. Mitteilungen über Forschungsarbeiten 1901, Heft 1, und 1904, Heft 20.

13. Versuche mit Kiefernholz.

1. Zugversuch.

Durchmesser des Stabes 1,35 cm

Spannungsstufe	Länge	nänderungen	Dehnungszahl				
$\mathbf{kg'qem}$	gesamte	bleibende	federnde	der Federung			
$105 - 245 \\ 105 - 385 \\ 105 - 524$	$0,086 \\ 0,177 \\ 0,304$	$0,002 \\ 0,009 \\ 0,045$	$0,084 \\ 0,168 \\ 0,259$	1:166300=6,01 Milliontel			

Bei Steigerung der Belastung erfolgte der Bruch des Stabes nahe der Einspannstelle unter der Belastung von 1353 kg/qcm, ein anderer Stab ergab 1437 kg/qcm.

2. Druckversuch.

Das Material wurde derselben Bohle entnommen wie das für den Zugstab.

Durchmesser des Probe	ekörpers			•	3,70 cm
Meßlänge				•	10,00 ,,
Gewicht der Raumeinh	eit	•	•		$0,55~{ m g/ccm}$

Spannungsstufe	Länge	in ⁰ / ₀	Dehnungszahl				
kg/qem	gesamte	bleibende	federnde	der Federung			
47 - 140	0,059 [.]	0,001	0,058				
47-233	0,116	0,001	$0,\!115$	1:161700 = 6,18 Milliontel			
47 - 326	0,172	0,001	0,171				
47 - 419	0,231	0,002	0,229	1			

Die Druckfestigkeit ergab sich zu 577 kg/qcm.

3. Biegungsversuch.

Breite des Stabes b = 4,12 cm Auflagerentfernung 80,0 cm Auch dieser Stab bestand aus demselben Holz.

Spannungsstufe	Dehnungszahl					
\mathbf{kg}/\mathbf{qem}	gesamte	bleibende	federnde	der Federung		
90 - 179 90 - 269 90 - 359	$1,75 \\ 3,14 \\ 4,73$	0,04 0,08 0,13	$1,53 \\ 3,06 \\ 4,60$	$1:\!155100=6,\!45\mathrm{M}$ illionted		

Die Biegungsfestigkeit, berechnet aus Gl. 9, §16, ergab sich zu 908 kg/qcm.

Hiernach erweisen sich die Formänderungen den Spannungen beim Zug- und Biegungsversuch nur je auf den beiden ersten Spannungsstufen proportional. Bei höheren Belastungen wachsen die Dehnungen etwas rascher als die Spannungen, doch ist der Unterschied nicht groß. Beim Druckversuch besteht bis zur Spannung 419 kg/qcm angenäherte Proportionalität.

Die Höhe der Dehnungszahlen für Zug, Druck und Biegung ist ungefähr gleich groß, am kleinsten beim Zugversuch. Vergl. jedoch die Versuchsergebnisse auf S. 305.

Die Zugfestigkeit erweist sich, obwohl Zerreißen nahe der Einspannstelle erfolgte, ihr Wert also etwas vermindert erscheint, bedeutend größer als die Druckfestigkeit. Die Biegungsfestigkeit liegt zwischen beiden. Dies rührt zu einem Teile daher, daß sie unter Verwendung der üblichen Gleichungen berechnet worden ist. – Näheres s. § 22.

7

C. Bach, Elastizität. 8. Aufi.

Um zu zeigen, daß auch für ein und dieselbe Holzart sehr verschiedene Werte der Dehnungszahlen und der Festigkeiten erlangt werden, sind im folgenden die Ergebnisse mit gutem und schlechtem Eschenholz besprochen.

14. Versuche mit gutem und schlechtem Eschenholz.

1. Zugversuch.

Gutes Holz.

Durchmesser	des	Stabes				•		$1,\!45\mathrm{cm}$
Meßlänge .			•	•	•	•	•	10,00 ,,

Spannungsstufe	Länge	Dehnungszahl				
kg qcm	gesamte	bleibende	federnde	der Federung		
$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0,116\\ 0,238\\ 0,360\\ 0,485\end{array}$	$\begin{array}{c} 0,002\\ 0,010\\ 0,018\\ 0,029 \end{array}$	$\begin{array}{c} 0,114\\ 0,228\\ 0,342\\ 0,456\end{array}$	$1\!:\!132900\!=\!7,\!53$ Milliontel		

Zugfestigkeit: 1519 kg/qcm.

Ein zweiter Stab ergab 1481 kg/qcm.

Schlechtes Holz.

Spannungsstufe	Länge	nänderungen	Dehnungszahl				
kg/qem	gesamte bleibend		federnde	der Federung			
66 - 99	0,080	0,002	0,078				
66-132	0,170	0,010	0,160	1:40160==24,90 Milliontel			
66 - 164	0,260	0,016	0,244				
66 - 197	0,356	0,028	0,328				
66 - 230	0,466	0,052	0,414				

Zugfestigkeit: 353 kg/qcm.

2. Druckversuch.

Gutes Holz.

Breite und	Di	ick	e	de	3	Ve	rsu	ch	ski	örp	per	\mathbf{s}	7,9	92	un	d 7,96 cm
Meßlänge .																75,00 ,,
Raumgewic	ht															$0,66\mathrm{g/ccm}$

•

Spannungsstufe	Dehnungszahl					
kg 'qcm	gesamte bleibende		fedende	der Federung		
16 - 64	0,035	0.000	0.035	1:137140 = 7.29 Milliontel		
16 - 111	0,071	0,000	0,071			
16-159	0,108	0,001	0,107			
	Druck	kfestigkeit :	592 kg/q	cm.		

Schlechtes Holz.

Breite und Dicke des	Versuchskörpers	3,50 und	3,50 cm.
Meßlänge			$5{,}00~{ m cm}$
Raumgewicht			0,44 g/ccm

Spannungsstufe	Länge	nänderungen	in ⁰ ,0	Dehnungszahl der Federung	
kg/qem	gesamte	bleibende	federnde		
41 - 82	0,098	0,002	0,096	1:42700=23,41 Milliontel	
$\begin{array}{rrr} 41 & - & 122 \\ 41 & - & 163 \end{array}$	$\begin{array}{c}0,204\\0,354\end{array}$	$\begin{array}{c c} 0,014 \\ 0,062 \end{array}$	$\begin{array}{c}0,190\\0,292\end{array}$		
	D	L.C 4 1 4 .	909 1/.	1	

Druckfestigkeit: 392 kg/qcm.

Der Vergleich dieser Zahlen zeigt deutlich, innerhalb welch weiter Grenzen bei Holz gleicher Art die Eigenschaften verschieden sein können. Gutes und schlechtes Eschenholz unterscheidet sich mehr als z. B. Eschenholz und Kiefernholz (vgl. Ziff. 13 und 14).

Bemerkenswert erscheint ferner, daß sich für Holz die Dehnungszahl für Zug- und Druckbeanspruchung ungefähr gleich groß ergibt. Auf den großen Einfluß, den die Faserrichtung auf die Werte der Dehnungszahl und der Festigkeit äußert, kann an dieser Stelle nicht eingegangen werden; über umfassende Versuche wird demnächst in den Mitteilungen über Forschungsarbeiten berichtet werden.

Hinsichtlich des Verhaltens beim Biegungsversuch vgl. § 22.

§ 5. Gesetz der Längenänderungen. Vollkommenheit und Größe der Elastizität. Gesetz der elastischen Dehnung. Einfluß der Zeit. Elastische Nachwirkung.

1. Gesetz der Längenänderungen.

Wie wir in §4 sahen, sind bei einem in Richtung seiner Achse durch Zug oder Druck beanspruchten Körper dreierlei Änderungen der Länge desselben zu unterscheiden:

1.	die	gesamte	Längenänderung	λ,	
2 .	,,	bleibende	,,	λ',	
3.	,,	${\bf federnde}$,,	λ —	$\lambda' = \lambda$

Ein Blick auf Fig. 1, S. 23, in der die Linien der gesamten $(-\cdot--\cdot)$, der bleibenden (----) und der federnden Längenänderungen (-) eingetragen sind, lehrt, daß zur Feststellung des Zusammenhanges zwischen diesen drei Arten von Längenänderungen und den zugehörigen Spannungen im allgemeinen drei Funktionen erforderlich sind:

$$\lambda = f_1(\sigma), \quad \lambda' = f_2(\sigma), \quad \lambda'' = f_3(\sigma).$$

Die erste Funktion bestimmt die Linie der gesamten, die zweite diejenige der bleibenden und die dritte diejenige der federnden Längenänderungen.

Früher pflegte man nur die erste dieser Funktionen zu bestimmen und sie zur Grundlage der Elastizitäts- und Festigkeitslehre zu machen. Daß dies unter Umständen zu recht groben Fehlern führen mußte, liegt auf der Hand. Deshalb ging Verfasser dazu über, λ' und damit auch $\lambda'' \Longrightarrow \lambda - \lambda'$ in der Weise zu bestimmen, wie dies in § 4 mehrfach besprochen worden ist (vgl. z. B. daselbst Ziff. 1, Gußeisenkörper I): man wechselt für jede Spannungsstufe Belastung und Entlastung so oft, bis die gesamten, bleibenden und federnden Dehnungen sich nicht mehr ändern, und erhält so für die betreffende Spannungsstufe in λ'' die Federung, d. h. die eigentliche elastische Dehnung, die der Körper unter den Verhältnissen, unter denen die Untersuchung stattfindet, aufweist.

Die Bestimmung von Maßzahlen für die Federung, d. h. für die Elastizität, die bei mehr oder minder rasch aufeinander folgenden Spannungsänderungen vorhanden ist, wurde vom Verfasser bereits in den Jahren 1885 und 1886 aufgenommen. Seines Wissens waren dies die ersten derartigen Versuche. Als Material wurden zunächst diejenigen Stoffe gewählt, für die das Bedürfnis nach dem Elastizitätsmaß am dringendsten war: Lederriemen. Hanf-Über einen Teil dieser Versuche ist in der Zeitund Drahtseile. schrift des Vereines deutscher Ingenieure 1887, S. 221 bis 225, S. 241 bis 245, S. 891 und 892 (oder auch "Abhandlungen und Berichte" 1897 S. 5 u. f., S. 59 und 60) berichtet. Daselbst findet sich u. a. angegeben. daß in manchen Fällen die Federung nicht viel mehr als die Hälfte der gesamten Dehnung beträgt, übrigens in hohem Maße eine Funktion der Spannung ist (mit Zunahme der letzteren abnimmt), und daß sie auch von der Zeit abhängt. Bis dahin war ganz allgemein mit einer konstanten Dehnungszahl oder mit konstantem Elastizitätsmodul gerechnet worden. Die genannten Versuche wiesen beispielsweise nach, daß die Dehnungszahl der Federung, d. i. die Federung der Längeneinheit für das Kilogramm Spannung, betrug:

für einen neuen Lederriemen

 $\begin{array}{c} 1 \\ 1250 = 800 \, \text{Milliontel bei} \, \text{der Spannungsstufe} \, \sigma_1 = & 7,5 \, \text{u.} \, \sigma_2 = 18,75 \, \text{kg/qcm}, \\ \hline 1 \\ 1890 = & 529 \quad ,, \qquad ,, \qquad ,, \qquad \sigma_2 = 18,75 \, ,, \sigma_3 = 30,0 \quad ,, \quad ; \end{array}$

für einen gebrauchten Lederriemen

$$\begin{split} \frac{1}{2680} &= 373 \, \text{Milliontel beider Spannungsstufe} \, \sigma_1 = -7,2 \, \text{u.} \, \sigma_2 = 21,6 \, \text{kg/qcm}, \\ \frac{1}{3600} &= 278 \quad ,, \qquad ,, \qquad ,, \qquad \sigma_2 = 21,6 \, ,, \, \sigma_3 = 36,0 \quad ,, \quad , \\ \frac{1}{4130} &= 242 \quad ,, \qquad ,, \quad ,, \qquad ,, \qquad \sigma_3 = 36,0 \quad ,, \, \sigma_4 = 50,4 \quad ,, \quad . \end{split}$$

Dabei erfolgten die Wechsel in der Belastung durchschnittlich während der Zeit von 1,5 Minuten, die zur Vornahme der Messungen erforderlich war.

Leder, das vorher nicht gestreckt war (Ledertreibriemen werden vor der Verwendung kräftig gestreckt), lieferte unter Umständen für die gesamte, d. h. bleibende und federnde Dehnung Werte, die die Dehnungszahl von rund 10000 Milliontel ergaben.

Später hat Martens das gleiche Verfahren aufgenommen (vgl. Mitteilungen aus den Königl. Technischen Versuchsanstalten 1888, S. 2, sowie 1904, S. 202.)

Einige Zeit darauf hat sich auch Hartig auf den Standpunkt des Verfassers gestellt und ist dafür eingetreten, daß die federnde Dehnung bestimmt werde. Doch muß dem von Hartig im Zivilingenieur 1893, S. 126 Bemerkten gegenüber hervorgehoben werden, daß es im allgemeinen nicht ausreichend ist, der Bestimmung des Elastizitätsgesetzes nur einen einmaligen Spannungswechsel unmittelbar vorhergehen zu lassen. Für manche Materialien, z. B. Stahl von großer Festigkeit, ist es innerhalb der Belastungsgrenzen, für die die Dehnungszahl bestimmt zu werden pflegt, unter Umständen überhaupt nicht nötig, diesen vorbereitenden Spannungswechsel auszuführen; für Materialien dagegen wie Gußeisen (vgl. z. B. § 4, Ziffer 1), zähes (ausgeglühtes) Flußeisen, Kupfer, Bronze, Messing, Beton usw., also ganz abgesehen von Stoffen wie Leder u. dgl., erweist sich der einmalige Wechsel meist als durchaus ungenügend.

Das Verfahren, die — für die Untersuchung oft recht unerwünschten und Zeitaufwand verursachenden — bleibenden Dehnungen dadurch zu beseitigen, daß man den Versuchskörper von vornherein weit über die Spannung hinaus belastet, mit der das Material später im Gebrauchsstück beansprucht wird, d. h. daß man ihn vorher überlastet, läuft — je nach der Höhe der vorherigen Belastung — unter Umständen auf eine Mißhandlung des Materials hinaus. Jedenfalls wird dasselbe hierdurch oft in einen Zustand versetzt, der von dem mehr oder weniger verschieden ist, in dem sich das normal behandelte Material in den eigentlichen Gebrauchsstücken befindet, während doch die Untersuchung des Materials zu dem Zwecke zu erfolgen pflegt, sein Verhalten in den Gebrauchsstücken möglichst richtig beurteilen zu können. Ziemlich häufig erwidert das überlastet gewesene Material diese Behandlung durch elastische Nachwirkung (§ 5, Ziffer 4), indem es sich dem ursprünglichen Zustand wieder nähert, also den verläßt, für den die ermittelten Zahlen gelten.

Die Zahlenwerte in den Gleichungen 4 bis 8, S. 41, lassen deutlich den Einfluß der vorhergegangenen Belastungen bei Gußeisen erkennen, noch empfindlicher pflegen Steine, insbesondere aber Leder zu sein. Man erhält für solche Stoffe nach vorhergegangenen starken Belastungen Federungen, die sich außerordentlich stark von denjenigen unterscheiden können, die das gleiche Material im ursprünglichen Zustande lieferte.

Vgl. auch die Fußbemerkung 1, S. 85, sowie S. 111 und 112.

Der gemachte Einwand gegen das Verfahren entfällt natürlich in Fällen, in denen das Material auch in den Gebrauchsstücken vorher überlastet wird, was z. B. zu dem Zwecke geschehen kann, bleibende Formänderungen später von ihnen fernzuhalten.

Unter diesen Umständen erscheint es als das Richtige, die Funktion $f_3(\sigma)$ zur Grundlage der Elastizitätslehre zu nehmen.

Die zweite Funktion f_2 (σ), die die Linie der bleibenden Längenänderungen oder kurz der Dehnungsreste bestimmt, kann zur Beurteilung des Materials an sich oder auch des Zustandes herangezogen werden, in dem sich das letztere in dem untersuchten Körper befindet. Insofern die Linie der Dehnungsreste Auskunft darüber erteilt, welche bleibende Dehnung bei einer gewissen Belastung des Körpers zu erwarten steht, kann sie überdies noch weitere Bedeutung erlangen, worauf bereits S. 26 hingewiesen worden ist¹).

¹) In neuerer Zeit ist es in gewissen Kreisen üblich geworden, die bleibende Formänderung als Hysteresis zu bezeichnen in Anlehnung an das Verhalten des Eisens bei der Magnetisierung, also von einer Hysteresis des Leders usw. zu sprechen. Dies sei besonders bemerkt, um feststellen zu können, daß es sich dabei nicht um eine neue Erscheinung handelt. Verfasser hält die alte Bezeichnung "bleibende Formänderung" für anschaulicher und treffender.

Die Erkenntnis der Gesetze der bleibenden Formänderungen bildet vorwiegend eine Aufgabe der mechanischen Technologie. Erst in neuerer Zeit ist derselben die ihr gebührende Wertschätzung zuteil geworden (Tresca, dem wohl die ersten Erkenntnisse hinsichtlich des Fließens fester Körper zu verdanken sind, Kick, Gesetz der proportionalen Widerstände und seine Anwen-

§ 5. Vollkommenheit und Größe der Elastizität.

2. Maß der Vollkommenheit und der Größe der Elastizität.

Wie bereits S. 22 bemerkt, wohnt jedem Körper die Eigenschaft inne, unter der Einwirkung äußerer Kräfte eine Änderung der Gestalt zu erfahren und mit dem Aufhören dieser Einwirkung die erlittene Formänderung mehr oder minder vollständig wieder zu verlieren. Insoweit er die erlittene Formänderung wieder verliert, d.h. insoweit sein Material zurückfedert, wird er als elastisch bezeichnet. Ist die Rückkehr in die ursprüngliche Form eine vollständige, so spricht man von "vollkommen elastisch".

Hieraus erhellt. daß der Grad der Vollkommenheit der Elastizität eines Körpers oder kurz der Elastizitätsgrad desselben zum Ausdruck gebracht werden kann durch den Quotienten:

$\mu = \frac{\text{federnde Dehnung}}{\text{gesamte Dehnung}}$

wenn nur die Längenänderung eines auf Zug oder Druck beanspruchten Körpers ins Auge gefaßt wird. Hiernach würde beispielsweise der in §4 unter Ziff. 1 besprochene Gußeisenkörper IV auf der mit $P = 20\,000$ kg schließenden Belastungsstufe folgende Elastizitätsgrade aufweisen:

bei der ersten Versuchsreihe

	15,435
	$\overline{18,255} = \sim 0,845,$
bei der zweiten	
	15,365
	$\overline{15,465} = \sim 0,990,$
bei der dritten	
	18,325
	22,335 = 100,820,
bei der vierten	
	18,25
	$\frac{1}{18,34} = \sim 0,995.$
Der in 84 unter !	7;ff 1 hohandalta Kun

Der in §4 unter Ziff. 4 behandelte Kupferrundstab weist auf der obersten Belastungsstufe einen Elastizitätsgrad auf

bei der ersten Versuchsreihe von

$$\frac{5,53}{8,05} = \sim 0,687,$$

dungen 1885, sowie die späteren Veröffentlichungen Kicks, Rejtö: Die innere Reibung der festen Körper, 1897, sowie die späteren Arbeiten dieses Forschers (s. "Baumaterialienkunde" 1900 und folgende Jahrgänge), Ludwik: Technische Blätter 1903 und 1904 sowie Elemente der technologischen Mechanik, Berlin 1909, usw.).

bei der zweiten von

$$\frac{5,53}{5.68} = \sim 0,974.$$

Je niedriger die Spannung liegt, mit der die Belastungsstufe abschließt, um so mehr pflegt unter sonst gleichen Verhältnissen sich μ der Einheit zu nähern. Die Spannung, bis zu der hin $\mu = 1$ ist oder sich doch nur sehr wenig von 1 unterscheidet, kann nach Maßgabe des S. 26 und 27 Gesagten als Elastizitätsgrenze bezeichnet werden.

Dieses Maß der Vollkommenheit der Elastizität eines Körpers ist zu unterscheiden von dem Maß der Größe der Elastizität, als das die Federung der Längeneinheit für das Kilogramm Spannung oder allgemein für das Kilogramm Spannungsunterschied, d. i. die Dehnungszahl, angesehen werden kann. So wird beispielsweise von dem unter §4. Ziff. 7. zuerst besprochenen Riemen sowie von den beiden S. 101 angeführten Riemen zu sagen sein, daß die Größe ihrer Elastizität oder kurz ihre Elastizität mit wachsender Spannung abnimmt. Damit wird eben ausgesprochen, daß die Federung, d. i. die Größe der Elastizität für das Kilogramm (Spannungsunterschied) um so kleiner ausfällt, je höher die Spannungsstufe (vgl. S. 24, Fußbemerkung 2) liegt, d. h. in der Sprache des gewöhnlichen Lebens, je stärker der Riemen angespannt ist. In gleicher Weise wird man von einem Gußeisenkörper (vgl. z. B. § 4, Ziff. 1, Gußeisenkörper III, S. 29 u. f.), einem Kupferstab (vgl. z. B. §4, Ziff. 4, Rundstab I und II, S. 59 u. f.), einem Betonkörper usw. sagen, daß die Größe seiner Elastizität, kurz seine Elastizität, mit wachsender Spannung zunimmt. Bei Besprechung der Elastizität von Körpern aus Zementmörtel mit verschiedenem Sandzusatz, wie solche in §4, Ziff. 9 angeführt sind, wird man festzustellen haben, daß die Elastizität mit (über 1¹/, Teile hinaus) wachsendem Sandzusatz unter sonst gleichen Verhältnissen zunimmt, daß beispielsweise Zementmörtel mit 3 Teilen Sandzusatz mehr Elastizität zeigt als solcher mit 1,5 Teilen Sand. Ebenso wird man beispielsweise den Gummi als sehr elastisch, Bausteine als weniger elastisch bezeichnen. Von der Größe der Elastizität eines Körpers zu sprechen, liegt im praktischen Leben vielfach Bedürfnis vor, wie bereits angedeutet worden ist, und wie sich auch ergibt, wenn man der Fälle gedenkt, in denen der Ingenieur bei der Auswahl von Material darauf bedacht sein muß, daß es ausreichende Elastizität besitzt.

3. Allgemeinere Gesetzmäßigkeit der elastischen Dehnung.

Wie bereits in §2 bemerkt, pflegt hinsichtlich des Zusammenhanges zwischen der Dehnung ε , die stillschweigend als vollkommen elastisch vorausgesetzt wird, und der zugehörigen Spannung σ an-

genommen zu werden, daß innerhalb eines gewissen Spannungsgebietes, das nach oben durch die positive Spannung σ' und nach unten durch die negative Spannung σ'' begrenzt werden möge, Proportionalität zwischen ϵ und σ bestehe entsprechend der Gleichung

Hierin wird dann α als eine innerhalb dieser beiden Grenzspannungen σ' (Proportionalitätsgrenze gegenüber Zug) und σ'' (Proportionalitätsgrenze gegenüber Druck) gleichbleibende, somit von der Größe und dem Vorzeichen von σ oder ϵ unabhängige Erfahrungszahl angesehen.

Diese angenommene Gesetzmäßigkeit zwischen ε und σ , bekannt unter dem Namen "Hookesches Gesetz", wurde bis zum letzten Jahrzehnt des vorigen Jahrhunderts noch in weiten Kreisen als allgemein gültig angesehen¹). Das in §4 niedergelegte Erfahrungsmaterial, das

In dem hervorragenden Handbuch der Physik, das von Winkelmann unter Mitwirkung einer größeren Anzahl von Physikern herausgegeben wird, heißt es im ersten Band (1891), S. 218: "Dieses Gesetz ist schon von Hooke, und zwar in der Form "Ut tensio, sie vis" ausgesprochen worden, in die heutige Redeweise übersetzt, lautet es: Zwischen Zwang und Veränderung, zwischen Veränderung und elastischer Kraft besteht Proportionalität. Schon aus dem Umstande, daß man es hier meist mit kleineren Verändungen zu tun hat, könnte man nach dem Prinzipe, daß kleine Wirkungen sich einfach addieren, auf jene Proportionalität schließen, und die Erfahrung bestätigt sie durchaus, vielleicht mit Ausnahme einiger in elastischer Hinsicht anormaler Stoffe (z. B. Kautschuk)".

Diese Auffassung gehört auch heute noch nicht zu den Seltenheiten; ziemlich häufig wird sie stillschweigend als richtig angenommen.

Wie in der Zeitschrift des Vereines deutscher Ingenieure 1917, S. 117 u. f., an Hand der in Betracht kommenden Veröffentlichungen Hookes nachgewiesen, kann die weitverbreitete Annahme, Hooke sei durch Versuche mit verschiedenen Materialien zur Aufstellung des Satzes von der Proportionalität zwischen Dehnungen und Spannungen gelangt, nicht als zutreffend angesehen werden. Er hat solche Versuche nur beschrieben; hätte er sie ausgeführt, so würde er gefunden haben, daß bei vielen der von ihm erwähnten Stoffe (Metalle, Holz, Steine, gebrannter Ton, Haare, Horn, Seide, Bein, Schnen, Glas) dieser einfache Zusammenhang zwischen Kraft und Formänderung nicht besteht, daß die nach ihm benannte lineare Beziehung kein Naturgesetz ist und nur für wenige Stoffe als zutreffend angesehen werden kann. Es wird also richtiger sein, überhaupt nicht von einem "Hookeschen Gesetz" zu sprechen.

¹⁾ Daß dies selbst in den Kreisen der Physiker bis vor einiger Zeit noch der Fall gewesen zu sein scheint, erhellt aus einer Arbeit von Thompson in Wiedemanns Annalen der Physik und Chemie 1891, S. 555 u. f.: "Über das Gesetz der elastischen Dehnung". Er sagt daselbst: "Meines Wissens hat bis jetzt jeder für selbstverständlich gehalten, daß das alte Gesetz gültig sei, und es ist nie versucht worden, dasselbe einer Kritik zu unterziehen." Daß dies nicht ganz zutreffend, daß vielmehr bereits im Jahre 1891 die Erkenntnis in der Tat erheblich weiter vorgeschritten war, ergibt sich aus den Darlegungen des Verfassers in der Zeitschrift des Vereines deutscher Ingenieure 1897, S. 248 u. f., oder in "Abhandlungen und Berichte" 1897, S. 289 u. f.

noch bedeutend hätte vermehrt werden können, wäre nicht Nötigung vorhanden, Beschränkung zu üben, beweist deutlich, daß für die Mehrzahl der Stoffe Proportionalität zwischen Dehnungen und Spannungen nicht besteht, und daß somit die Hookesche Beziehung, d. h. die Proportionalität zwischen Dehnungen und Spannungen, in der Tat nur für wenige Baustoffe, zu denen übrigens die hervorragend wichtigen Materialien: Schmiedeisen und Stahl gehören, als ausreichend zutreffend angenommen werden kann; aber im allgemeinen auch für diese nur mit Annäherung. Denn selbst bei Schmiedeisen und Stahl führt eine scharfe Prüfung nicht selten zu dem Ergebnis, daß die Dehnungslinie von $\sigma = 0$ an eine Kurve, wenn auch eine sehr flach gekrümmte, ist.

Bei dieser Sachlage erscheint es begreiflich, daß das Bedürfnis sich einstellte, die Dehnungszahl α (oder ihren reziproken Wert, den Elastizitätsmodul E) als Funktion der Spannung σ zu kennen, oder auch eine Beziehung zwischen ε und σ aufzusuchen, die die Versuchsergebnisse befriedigt. Bis dahin stellte Verfasser die Veränderlichkeit von α dadurch fest und tut dies zum Teil auch heute noch, daß er die elastischen Längenänderungen für verschiedene Belastungsstufen ermittelt und dafür α berechnet, wie in der Fußbemerkung 2 S. 24 und 25 angegeben ist.

W. Schüle ermittelte auf Grund des ihm vom Verfasser 1896 zur Verfügung gestellten Versuchsmaterials, gewonnen in den Jahren 1885 bis 1896, daß die Gleichung

gute Übereinstimmung ergab. Seine Arbeit beschränkte sich dabei auf Gußeisen, Granit, Körper aus Zement, Zementmörtel und Beton gemäß den Gleichungen 2, 9, 10, 14 bis 16, 18 bis 26 in des Verfassers "Abhandlungen und Berichte", S. 291 u. f., und gemäß dem zugehörigen Versuchsmaterial.

Die Prüfung des Verfassers führte zu dem Ergebnis, daß — wenigstens für die durch das vorliegende Versuchsmaterial gedeckten Gebiete — Gleichung 1, § 4, die gesuchte Gesetzmäßigkeit innerhalb der für die ausführende Technik in Betracht kommenden Spannungsgebiete befriedigend zum Ausdruck bringt¹). Ein großer Teil der in § 4 aufgenommenen Versuchsergebnisse lag damals noch nicht vor.

¹) Verfasser glaubt auch hier hervorheben zu sollen, was er bereits an anderer Stelle ("Abhandlungen und Berichte" 1897, S. 294) bemerkt hat, nämlich, daß das Zutreffen der Beziehung $\varepsilon = \alpha \, o^m$ nach Maßgabe des von ihm Gesagten ausdrücklich beschränkt erscheint: zunächst auf das Gebiet, das durch das vorgelegte Versuchsmaterial gedeckt wird, und sodann auf solche Verhältnisse, die Spannungen liefern, die innerhalb der für die ausübende Technik in Betracht kommenden Grenzen liegen. Die Notwendigkeit der zweiten Beschränkung erhellt schon ohne weiteres — ganz abgeschen von anderem —

Um so lehrreicher ist es, festzustellen, daß, wie die Bemerkungen in § 4 zu den Gleichungen 2 bis 27 zeigen, auch die späteren Untersuchungen von Gußeisen Kupfer, Bronze, Messing usw. die Brauchbarkeit der Gleichung 1, § 4, bestätigen¹).

Für m = 1 geht Gleichung 1, § 4, in Gleichung 2, § 2, über. Die Proportionalität zwischen Dehnungen und Spannungen bildet somit einen Sonderfall der durch Gleichung 1, § 4, bestimmten Gesetzmäßigkeit. Die Abweichung des Exponenten m von der Einheit bringt die Veränderlichkeit der Dehnungen zum Ausdruck. Für m > 1 wachsen die Dehnungen rascher als die Spannungen, für m < 1 langsamer. Je größer die Abweichung des Exponenten m von der Einheit ist, um so mehr wölbt sich die Dehnungslinie Gleichung 1, § 4, gegen die ε -Achse, also dieser ihre hohle Seite zukehrend, wenn m > 1, und hohl gegen die σ -Achse, wenn m < 1.

Der Koeffizient a hat die Bedeutung der Dehnung für

Wie aus den Arbeiten des Verfassers, betr. die Elastizität der Materialien, hervorgeht, handelt es sich für ihn in erster Linie nicht um Auffindung einer neuen Gesetzmäßigkeit, sondern vielmehr darum, durch den Versuch das tatsächliche Verhalten der Stoffe festzustellen und dazu beizutragen, daß die Beziehung $\varepsilon = \alpha \sigma$, die nur für eine Minderheit von Stoffen innerhalb gewisser Grenzen zutreffend erscheint, nicht mehr als allgemein gültiges Gesetz angesehen (vgl. in dieser Hinsicht auch Fußbemerkung S. 105) und ohne weiteres zur Grundlage der gesamten Elastizitäts- und Festigkeitslehre gemacht wird. Die Anforderungen, die die Technik an den Ingenieur stellt, gestatten dies -wenigstens in verschiedenen Fällen der Anwendung - heute nicht mehr. Sollte sich das tatsächliche elastische Verhalten aller Materialien durch irgendeine andere Funktion zwischen ε und σ ausreichend genau zum Ausdruck bringen lassen, die noch dazu den Vorteil böte, für die Entwicklungen, betreffend die Ermittlung der Anstrengung von auf Biegung oder Drehung beanspruchten Körpern, bequemer zu sein als $\varepsilon = \alpha \sigma^m$, so würden seines Erachtens Wissenschaft und ausübende Technik die Aufstellung einer solchen Funktion willkommen heißen.

¹) Vgl. auch die Darlegungen Schüles in der Zeitschrift des Vereines deutscher Ingenieure 1898, S. 855 u. f., sowie die Fußbemerkung Ziffer 1, S. 109.

Ausnahmen wurden festgestellt für Marmor (vgl. S. 92), für Gußeisen (im Falle gewisser Belastung (vgl. S. 29), Gummi (vgl. S. 71 u. f.).

Siehe ferner die klarstellende Mitteilung in der Zeitschrift des Vereines deutscher Ingenieure 1902, S. 25 und 26.

aus dem Vorhandensein von Wendepunkten in den Linienzügen für Granit (vgl. Fig. 29, § 4, oder auch "Abhandlungen und Berichte" 1897, S. 283 u. f.: Fig. 2, 3, 4, und 5). Inwieweit die erste Beschränkung Berechtigung hat, wird durch weitere Versuche, namentlich auch mit anderen Stoffen, festzustellen sein. Bei der großen Masse von Materialien und der Verschiedenheit ihrer Eigenschaften erscheint es wahrscheinlich, daß das elastische Verhalten aller Materialien durch eine einfache mathematische Funktion überhaupt nicht genau zum Ausdruck gebracht werden kann.

die Spannung 1, und nicht für die Spannungszunahme 1, wie bei vorhandener Proportionalität zwischen Dehnungen und Spannungen.

Aus Gleichung 1, § 4, folgt

$$\frac{d \varepsilon}{d \sigma} = m \alpha \sigma^{m-1},$$

d. i. die Tangente des Winkels, unter dem die durch Gleichung 1, § 4, bestimmte Dehnungskurve gegen die σ -Achse geneigt ist.

Für m > 1, was z. B. für Gußeisen der Fall, und $\sigma = 0$ ergibt sich

$$\frac{d\varepsilon}{d\sigma}=0,$$

d. h. die Dehnungslinie hat im Koordinatenanfang die σ -Achse zur Tangente, gleichgültig, wie groß α und m, sofern nur m > 1.

Für m < 1, was z. B. bei Leder zutrifft, findet sich mit $\sigma = 0$

$$\frac{d\varepsilon}{d\sigma} = m \frac{\alpha}{\sigma^1 - m} = \infty,$$

d. h. die ε -Achse ist Tangente im Koordinatenanfang, ebenfalls unabhängig von den Sonderwerten von α und m.

Wir würden also beispieisweise für Gußeisen erhalten, daß die Dehnungslinie in senkrechter Richtung durch den Koordinatenanfang geht¹), und für Leder, daß diese Kurve in wagerechter Richtung den Koordinatenanfang verlassend emporsteigt.

Gerade mit Rücksicht auf diese Eigenschaft der Kurve Gleichung 1, § 4, scheint es angezeigt, die Dehnung auch für verhältnismäßig kleine Spannungen zu ermitteln. Das ist z. B. geschehen für den Gußeisenkörper IV, indem die unterste Spannungsstufe bei Versuchsreihe 1 mit $\sigma = 20,45$ kg/qcm, bei Versuchsreihe 2 mit

¹) Für den ersten Augenblick könnte diese Folgerung wohl befremden, namentlich wenn man sich an die Darstellungen mit übertrieben großem Maßstabe für die Dehnungen hält. Wenn beispielsweise für Schmiedeeisen die Linie $\varepsilon = \alpha \sigma \text{ mit } \alpha = 0,5$ Milliontel als Gerade dargestellt wird, die gegen die α -Achse unter einem Winkel geneigt ist, dessen Tangente gleich 0,5, so entspricht dies einer Vergrößerung der Dehnungen auf das 1000000fache. In Verbindung mit einer so gezeichneten Geraden ist es allerdings schwer, sich $\frac{d \varepsilon}{d \sigma} = 0$ für $\sigma = 0$ vorzustellen. Anders liegt die Sache, wenn man den Maßstab nicht übertreibt, sich also die Gerade unter einem solchen Winkel gegen die σ -Achse gezogen denkt, daß dessen Tangente = 0,5 Milliontel ist.

Uberdies wendet sich die Linie nach Verlassen des Koordinatenanfangs außerordentlich rasch; denn während für $\sigma = 0$ $\frac{d \epsilon}{d\sigma} = 0$, ergibt sich für das Gußeisen IV nach Gleichung 4, § 4, für $\sigma = 1$ kg/qcm bereits $\frac{d \epsilon}{d\sigma} = 0,747$ Milliontel, d. i. erheblich mehr, als der Neigung der Geraden entspricht, die gemäß $\epsilon = \alpha \sigma$

d. i. erheblich mehr, als der Neigung der Geraden entspricht, die gemäß $\varepsilon = \alpha \sigma$ für Schmiedeeisen gelten würde.

 $\sigma = 10,22$ kg/qcm abschließend angenommen wurde. Fig. 5, § 4, läßt erkennen, daß die beobachteten kleinen Dehnungen in der Tat auf starke Näherung an die σ -Achse hindeuten; der Grad der Genauigkeit, mit dem die Längenänderungen bei so kleinen Spannungen festgestellt werden können, ist jedoch nicht sehr weitgehend, weshalb dieser Ermittlung eine durchschlagende Bedeutung nicht zuerkannt werden känn.

Wie S. 106 hervorgehoben, steht die Gleichung 1, §4, in guter Übereinstimmung mit den Ergebnissen der vom Verfasser bisher in großer Anzahl durchgeführten Elastizitätsversuche bis auf die daselbst angegebenen Ausnahmen. Die erste Ausnahme bildet der in § 4 unter Ziff. 11 behandelte Marmorkörper. Fig. 30, §4, zeigt, daß hier die Dehnungslinie der σ -Achse auf der Zugseite ihre erhabene und auf der Druckseite ihre hohle Seite zukehrt. Demgemäß müßte der Exponent m in der Gleichung 1, § 4, für die Zugseite größer als 1 und für die Druckseite kleiner als 1 sein, d. h. nach dem Obigen: auf der Zugseite wäre die σ-Achse im Koordinatenanfang Tangente der Dehnungslinie, auf der Druckseite müßte dies die E-Achse sein. Da ein solcher Verlauf der Dehnungskurve aus dem Gebiete der Zugspannungen in das Gebiet der Druckspannungen nicht angenommen werden kann, - wie ersichtlich, ist der Verlauf der beiden Linienzüge in Fig. 30 vielmehr derart, daß im Koordinatenanfang eine gemeinschaftliche Tangente zu erwarten ist -, so muß geschlossen werden, daß für den untersuchten Marmor die Gleichung 1, § 4, nicht als zutreffend erscheint.

Hinsichtlich der beiden anderen Ausnahmen darf auf die betreffenden Stellen verwiesen werden.

Verfasser muß es unter Bezugnahme auf das S. 106 und 107 Fußbemerkung Gesagte zunächst dahingestellt sein lassen, ob sich im Laufe der Zeit noch andere Ausnahmen zu den bis jetzt ermittelten gesellen werden; ebenso. ob es überhaupt gelingen wird, eine genügend einfache Funktion¹) ausfindig zu machen, die das

¹) Die Zeitschrift für Mathematik und Physik (begründet von Schlömilch) bringt im Schlußheft des Jahrganges 1897 eine Arbeit von R. Mehmke "Zum Gesetz der elastischen Dehnungen", die u. a. eine zeitgemäße Zusammenstellung der bis dahin vorgeschlagenen Formeln zur Darstellung der Abhängigkeit zwischen Dehnungen und Spannungen enthält. Aus derselben geht hervor, daß das Potenzgesetz $\varepsilon = \alpha \sigma^m$ bereits im Jahre 1729 von Bülffinger für die Zugelastizität in Vorschlag gebracht worden war, und daß es 1822 auch Hodgkinson aufgenommen hatte. Das Ergebnis der bis jetzt vorliegenden rechnerischen Untersuchungen von Mehmke besteht darin, daß — soweit diese reichen — das Potenzgesetz die Beziehungen zwischen Spannungen und Dehnungen im ganzen genauer zum Ausdruck bringt als die parabolische Gleichung $\varepsilon = a \sigma + b \sigma^2$.

elastische Verhalten aller Materialien genügend genau zum Ausdruck bringt¹).

4. Einfluß der Zeit. Elastische Nachwirkung.

Wie in §4 hervorgehoben, wohnt jedem Körper – allerdings in verschiedenem Grade – die Eigenschaft inne, unter der Einwirkung äußerer Kräfte eine Änderung der Gestalt zu erfahren und mit dem Aufhören dieser Einwirkung die erlittene Formänderung mehr oder weniger vollständig wieder zu verlieren. Eine klar zutage liegende Folge dieser Eigenschaft ist es, daß der Körper bei plötzlicher Einwirkung der Kräfte oder bei plötzlicher Entlastung in Schwingungen versetzt wird. Aus diesem Zustande geht er, indem die Schwingungen kleiner und kleiner werden, nach mehr oder minder langer Zeit in den Ruhezustand über.

Aber auch dann, wenn die Inanspruchnahme oder die Entlastung des Körpers allmählich erfolgt, wenn also derartige Schwingungen nicht beobachtet werden, erweist sich die Formänderung im allgemeinen nicht unabhängig von der Zeit. Die durch eine bestimmte Belastung erzeugbare Formänderung bedarf zu ihrer Ausbildung einer gewissen, zuweilen kurzen, unter Umständen aber auch sehr langen Zeit. Beispielsweise wird ein Stab aus Werkzeugstahl schon unmittelbar nach allmählich erfolgter Belastung die überhaupt durch diese erreichbare Dehnung aufweisen, während ein belasteter Lederriemen nach Monaten, ja selbst nach Jahren noch Längenzunahmen, wenn auch immer

In neuerer Zeit findet ziemlich häufig das Hyperbelgesetz

$$\varepsilon = \frac{\sigma}{a - b \sigma}$$

Anwendung, worin

$$\alpha = \frac{1}{a - b \sigma}$$
, wenn $\varepsilon = \alpha \sigma$ gesetzt wird.

Auch für diese Gesetzmäßigkeit können innerhalb der durch den Versuch festgelegten Grenzen a und b so gewählt werden, daß die Dehnungslinie dem tatsächlichen Verhalten des Stoffes innerhalb dieser Grenzen befriedigend entspricht.

Die Anwendung über dieselben hinaus kann allerdings zu Fehlern führen; keinesfalls erscheint es zulässig, mit σ bis $\sigma = \frac{a}{b}$ zu gehen, was geschehen ist, um aus Elastizitätsversuchen die Bruchfestigkeit zu berechnen.

¹) Hieraus geht deutlich hervor, daß die Gleichung 1, § 4, in den Augen des Verfassers nichts weiter ist als eine Gesetzmäßigkeit, durch die sich die bis dahin über den Zusammenhang zwischen Dehnungen und Spannungen vorliegenden Versuchsergebnisse innerhalb gewisser Grenzen, mit Ausnahme von Marmor und Gummi, befriedigend zum Ausdruck bringen lassen. S. dagegen Zeitschrift des Vereines deutscher Ingenieure 1902, S. 25 sowie S. 1512; 1903, S. 1014; Dinglers polyt. Journal 1902, Bd. 317, S. 149 u. f.

kleiner werdende, zeigt. In Fällen letzterer Art führt die Zeit asymptotisch zum Endzustand. Ähnlich verhält sich auch Holz. So lieferte z. B. ein Stab aus gutem Eschenholz (Biegungsversuch) nach 1,5 Minuten dauernder Belastung mit 148 kg/qcm eine bleibende Durchbiegung von 0,10 mm. Nach 22stündiger Belastung war die bleibende Durchbiegung auf 0,34 mm gestiegen, entsprechend einer Zunahme um $\frac{0.34 - 0.10}{0.10}$ 100 = 240 Prozent.

Ganz das Entsprechende gilt hinsichtlich der Entlastung: der allmählich entlastete Stab nähert sich dem ursprünglichen Zustande je nach der Art des Materials - mit verschiedener Geschwindigkeit, um so langsamer, je größer die erlittene Formänderung war und je länger sie angedauert hatte. So nahm z. B. bei dem oben erwähnten Holzstab die bleibende Durchbiegung im Laufe von 51 stündiger Entlastung von 0,34 mm auf 0,14 mm ab. Versuche mit anderen Holzstäben zeigten, daß dieser Ausgleich selbst nach 162 Stunden noch nicht zum Abschluß gelangt war.

Diese Erscheinung der allmählichen Ausbildung und der allmählichen Rückbildung der Formänderungen wird elastische Nachwirkung genannt. Sie beeinträchtigt namentlich dadurch, daß sie das Verhalten des untersuchten Körpers unter einer neuen Belastung von den Belastungen oder Entlastungen abhängig macht, denen er vorher unterworfen war, die Genauigkeit der Beobachtungen bei Versuchen zur Bestimmung der Formänderungen mehr oder minder. Insbesondere bei wechselnden Belastungen kann dieselbe zu eigentümlichen Abweichungen führen, entsprechend einem gleichzeitigen, beiderseits mit veränderlicher Geschwindigkeit erfolgenden Verlaufe entgegengesetzter Änderungen, oder kurz entsprechend einem Übereinanderlagern von Nachwirkungen.

Hiermit hängt es auch zusammen, daß die Federung (§4) bei manchen Körpern verschieden erhalten wird, je nachdem man die Untersuchung, wie in der Fußbemerkung 2 S. 24 und 25 angegeben ist, in der einen oder anderen Weise durchführt. Besonders stark tritt dieser Unterschied bei Riemen auf. Beispielsweise fand sich für einen Ledertreibriemen, der in der Weise geprüft wurde, daß für jede Belastungsstufe mit Belastung und Entlastung so oft gewechselt wurde, bis sich die gesamten, die bleibenden und die federnden Dehnungen nicht mehr änderten:

1. Versue	hsreihe	2. Versuchsreihe		
Belastungsstufe	federnde Verlängerung	Belastungsstufe	federnde Veilängerung	
50 und 150 kg 150 ,, 250 ,, 250 ,, 350 ,,	6,0 mm 3,6 ,, 2,7 ,,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5,5 mm 10,0 ,, 14,0 ,,	

Wir erkennen folgendes:

Für die gleiche Belastungsstufe 50 und 150 kg liefert die erste Versuchsreihe eine um 6-5,5=0,5 mm größere Federung als die zweite Versuchsreihe.

Für die Belastungsstufe 150 und 250 kg liefert die erste Versuchsreihe unmittelbar 3,6 mm Federung, während die Ermittlung aus der zweiten Versuchsreihe durch Bildung des Unterschiedes 10,0 - 5,5 zu 4,5 mm führt, also mehr ergibt.

Für die dritte Belastungsstufe 250 und 350 kg liefert die erste Versuchsreihe unmittelbar 2,7 mm Federung, während die zweite Versuchsreihe zu 14,0 - 10,0 = 4 mm führt.

Die Summe der Federungen der ersten Versuchsreihe ergibt 6,0+3,6+2,7=12,3 mm gegen 14,0 mm bei der zweiten Versuchsreihe.

Siehe auch die Angaben über das Kürzerwerden der beiden Bruchstücke eines zerrissenen Riemens mit der Zeit auf S. 69.

Auch bei der Untersuchung von anderen Stoffen fand sich ein, wenn auch meist weit kleinerer Unterschied, z. B. bei Steinen. Selbst Gußeisen ist nicht frei hiervon. (Vgl. S. 28.) Auch bei gehärtetem Werkzeugstahl sind häufig elastische Nachwirkungen zu verzeichnen, was sich z. B. bei der Herstellung genauer Maße, die unveränderlich sein sollen, unangenehm fühlbar macht. Da ein Eingehen an dieser Stelle zu weit führen würde, so muß sich der Verfasser hier auf diese Feststellung beschränken.

Dieser Einfluß der Zeit auf die Formänderungen wie auch auf die Festigkeit des Stoffes macht es notwendig, daß im allgemeinen den Ergebnissen von Versuchen auf diesem Gebiete die erforderlichen Angaben über die Zeit beigefügt werden. Nähere Angaben hierüber finden sich in § 10.

Aus dem Vorstehenden folgt ferner, daß die im §4 erörterten Längenänderungen sowie die aus ihnen ableitbaren Maßzahlen der Gesamtdehnung, des Dehnungsrestes und der Federung, d. h. die Dehnungszahlen, streng genommen Funktionen der Zeit sein müssen. Praktische Bedeutung erlangt diese Abhängigkeit von der Zeit jedoch in der Regel erst für solche Stoffe, bei denen die elastische Nachwirkung von Erheblichkeit ist (vgl. § 10 unter Hanfseile sowie S. 101).

Bei Leder, das für das Maschineningenieurwesen eine große Bedeutung hat, pflegt die elastische Nachwirkung so stark zu sein, daß sich die Frage aufdrängt, ob es überhaupt berechtigt ist, die elastischen Dehnungen in zwei Teile zu zerlegen, von denen der eine als plötzlich oder doch sehr rasch eintretend und wieder verschwindend angesehen, der andere als nachwirkend, d. h. als allmählich mit ab-

nehmender Geschwindigkeit verlaufend aufgefaßt wird. Daß hierin - streng genommen - eine Willkürlichkeit liegt, bedarf keiner Erörterung. Doch wird auf diesem Wege zunächst wohl noch am ehesten Einblick in das tatsächliche Verhalten des Materials erlangt. Zulässig ist es natürlich nicht, elastische Nachwirkung und bleibende Formänderung als identisch zu betrachten, wie es zuweilen geschieht.

I. Zug.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für jeden Querschnitt desselben eine Kraft, deren Richtungslinie in die Stabachse fällt, und die diese zu verlängern strebt.

§ 6. Gleichungen der Zugelastizität und Zugfestigkeit.

- 1. Es bedeute für den prismatischen Stab
- P die ziehende Kraft,
- f die Größe des ursprünglichen Stabquerschnittes,
- l die ursprüngliche Länge des Stabes,
- λ die Verlängerung, die der Stab durch die Einwirkung der Kraft P erfährt. 2

$$\varepsilon = \frac{\lambda}{l}$$
 die Dehnung (§ 2),

- α die Dehnungszahl (§ 2),
- σ die Spannung, die durch die Belastung P hervorgerufen wird, und die mit der Dehnung ε verknüpft ist, bezogen auf den ursprünglichen Querschnitt $(\S 1)$,
- k, die zulässige Anstrengung des Materials gegenüber Zugbeanspruchung.

Dann ist nach Gleichung 1, § 1,

Die Benutzung von Gleichung 2 für einen auf Zug beanspruchten Körper mit k_z als zulässiger Anstrengung des Materials setzt voraus. daß die Inanspruchnahme nur durch die Kraft P veranlaßt wird. Ist der Stab nicht frei, sondern mit andern Teilen derart verbunden, daß bereits vor Angriff von P Spannungen in ihm vorhanden sind, die kurz als Vorspannungen bezeichnet werden sollen, so treten

C. Bach, Elastizität. 8. Auf'.

8
diese zur Spannung $\sigma = \frac{P}{f}$ hinzu: positiv, wenn sie Zugspannungen, und negativ, wenn sie Druckspannungen sind. Diese Bemerkung ist sinngemäß bei allen späteren Entwicklungen, die Spannungslosigkeit voraussetzen, im Auge zu behalten und dabei zu beachten, daß im Material auch von Haus aus Spannungen vorhanden sein können, wie das z. B. bei Körpern aus Gußeisen, gehärtetem Stahl, kalt bearbeitetem Flußeisen usw. in mehr oder minder hohem Maß häufig der Eall zu sein pflegt. In solchen Fällen treten neben den Zugspannungen auch Druckspannungen auf.

Unmittelbar aus dem Begriff der Dehnungszahl folgt

Soll das eigene Gewicht G des senkrecht hängend gedachten Stabes berücksichtigt werden, so ergibt sich für den obersten Querschnitt

$$P + G = \sigma f \quad . \quad . \quad . \quad . \quad . \quad . \quad 4)$$

oder, sofern γ das Gewicht der Raumeinheit des Stabmaterials bedeutet,

Ist P = 0, d. h. wird der Stab nur durch sein Eigengewicht belastet, so findet sich

Der durch Gleichung 7 bestimmte Wert von l gibt diejenige Länge an, die der Stab höchstens besitzen darf, wenn die zulässige Beanspruchung nicht überschritten werden soll. Wird in Gleichung 7 an Stelle von k_z die Zugfestigkeit K_z des Materials eingeführt, so ergibt sich in dem zugehörigen Wert von l gleich dem Verhältnis: Zugfestigkeit durch Gewicht der Raumeinheit die sogenannte "Reißlänge", d. i. diejenige Länge, die der Stab besitzen muß, damit sein Eigengewicht eben zum Zerreißen führt¹). Die Reißlänge bildet ein Maß für die ver-

Raumgewicht Zugfestigkeit Reißlänge Material $2,7 \\ 2,7$ Aluminium geglüht 900 kg/qcm3300 m 14800 .. kalt gewalzt 4000,, 7,8 11500 ,. Stahldraht geglüht. . . 9000 •• 32000 .. 7,8 25000gezogen ,, Gutes Eschenholz . 1700 24300 .. 0,7••

1) Die Reißlänge weist beispielsweise folgende Werte auf:

114

hältnismäßige Tragfähigkeit in Fällen, in denen das Eigengewicht des gezogenen Körpers von Bedeutung wird.

Die Verlängerung λ des Stabes infolge des Eigengewichtes Gund der Last P berechnet sich, wenn ε die Dehnung in dem Querschnitt ist, der um x von dem freien Stabende absteht. Lu

2. Diese zunächst nur für prismatische Stäbe entwickelten Beziehungen werden dann auch auf gerade stabförmige Körper von veränderlichem Querschnitte übertragen.

Es bezeichne, Fig. 1,

- P die Kraft, die den Körper auf Zug in Anspruch nimmt,
- $f\,$ die Größe des beliebigen, um x von der einen Stirnfläche abstehenden Querschnittes,
- f_0 den kleinsten Stabquerschnitt,
- l die Länge des Stabes vor der Dehnung,
- λ die Zunahme der Stablänge infolge der Einwirkung der Kraft P,
- ε die Dehnung im Querschnitt f,
- $\sigma = \frac{P}{f}$ die Spannung im Querschnitt f,
- α die Dehnungszahl,
- $k_{\rm z}$ die zulässige Anstrengung des Materials gegenüber Zugbeanspruchung.

Die Dehnung ε ist hier von Querschnitt zu Querschnitt als veränderlich aufzufassen, weshalb in bezug auf die Größen l und $\hat{\lambda}$ der

Bestimmungsgleichung 1, § 2, die Vorschrift getroffen werden muß, daß die Stablänge unendlich klein, also im vorliegenden Falle dx ist. Wird die Längenänderung, die dx erfährt, mit Δdx bezeichnet, so folgt

$$\varepsilon = \frac{\varDelta dx}{dx}$$

Fig. 1. Dann gelten außer der Gleichung 1) die folgenden Beziehungen:

$$P \leq k_z f_0, \qquad \dots \qquad \dots \qquad \dots \qquad 9)$$

$$\lambda = \int_{0}^{\infty} \varepsilon dx = P \int_{0}^{\infty} \alpha \frac{dx}{f} \quad \dots \quad \dots \quad \dots \quad 10)$$

8*

I. Zug.

Ist α unveränderlich, was bei Spannungen innerhalb der Proportionalitätsgrenze zutrifft, falls dem in Frage stehenden Material eine solche überhaupt eigentümlich (§ 2), so darf α vor das Integralzeichen gesetzt werden.

Soll das eigene Gewicht G des Körpers berücksichtigt werden, so ergibt sich für den obersten Querschnitt von der Größe f_1 in Fig. 1

$$\sigma = \frac{P+G}{f_1}, \qquad k_z \ge \frac{P+G}{f_1}$$

Von dem Querschnitte f (im Abstande x) bis zu dem um dx davon entfernten Querschnitt ändert sich die Gesamtzugkraft $f\sigma$ um $\gamma f dx$, sofern γ das Gewicht der Raumeinheit des Stabmaterials bedeutet. Hieraus folgt

$$d(f\sigma) = \gamma f dx.$$

Wird nun verlangt, die Stabquerschnitte derartig nach oben zunehmen zu lassen, daß σ für alle Querschnitte den gleichen Wert k_z hat, so ergibt sich $k_z dt = \gamma t dx$.

und hieraus

$$lnf = \frac{\gamma x}{k_z} + C_1.$$

Für x = 0 muß sein $f = P:k_z$, d. h.

$$C_1 = \ln \frac{P}{k_z}$$

Hiermit wird schließlich in

$$f = \frac{P}{k_{\star}} e^{\frac{\gamma x}{k_{\star}}} \quad . \quad . \quad . \quad . \quad . \quad 11)$$

die Gleichung erhalten, nach der der gezogene Stab als Körper gleichen Widerstandes zu formen wäre.

Die Voraussetzungen, die den vorstehenden Beziehungen 1 bis 11 zugrunde liegen, sind in manchen Fällen der Verwendung sehr unvollkommen erfüllt. Mit Rücksicht auf diesen Umstand seien sie hier kurz zusammengestellt.

- 1. Die äußeren Kräfte ergeben für jeden Querschnitt nur eine in die Stabachse fallende Zugkraft.
- 2. Auf die Mantelfläche des Stabes wirken Kräfte nicht.

116

- Die Dehnungen und die Spannungen sind in allen Punkten eines beliebigen Stabquerschnittes gleich groß und senkrecht zu letzterem gerichtet. (Gleichmäßige Verteilung der Zugkraft über den Querschnitt¹).)
- 4. Die Form des Querschnittes ist gleichgültig.

¹) Diese Voraussetzung ist in der Mchrzahl der Fälle weit unvollkommener erfüllt, als man anzunehmen pflegt. So ist z. B. – streng genommen – überall da, wo die äußere Kraft in den Stab eintritt, gleichmäßige Verteilung der Spannungen über den ganzen Querschnitt nicht vorhanden, allerdings wird dabei der Grad der Ungleichmäßigkeit sehr verschieden sein können.

Bei den Schrauben, Fig. 2 und 3, tritt die Kraft durch den Kopf in den Schaft über; in dem Querschnitt des Schaftes da, wo dieser an den Kopf anschließt, werden die nach dem Umfange zu gelegenen Fasern mehr zur Übertragung herangezogen werden als die nach der Achse zu gelegenen. Bei Schraube Fig. 3 wird diese Ungleichmäßigkeit noch bedeutender sein müssen als bei Schraube Fig. 2, weil bei der ersteren zunächst nur ein Teil des Umfanges zum Eintritt der Kraft herangezogen wird.

Bei der Kraftübertragung durch Keil oder Splint, Fig. 4, legt sich der Keil oder Splint gegen die angenähert rechteckige Fläche b c e f. Die Beanspruchung der beiden Kreisabschnitte a b f und c d e im Querschnitt x x muß dabei eine ungleichmäßige derart sein, daß die Spannungen in den dem Keilloche, d. h. b fund c e am nächsten gelegenen Flächenelementen größer ausfallen als in den nach dem Umfange, d. h. nach a und d hin gelegenen Elementen.

Weitere Beispiele ungleichmäßiger Spannungsverteilung finden sich in des Verfassers Maschinenelementen, z. B. S. 150, Fig. 127; S. 196, Fig. 244 (12. Auflage).

Mit Rücksicht auf diese Sachlage ist es bei Zugversuchen eine der Hauptaufgaben, die Form der Probestäbe so zu wählen, daß die Zugkraft möglichst gleichmäßig über die Querschnitte des der Messung unterworfenen mittleren Stückes verteilt wird (vgl. § 8). Von besonderer Wichtigkeit erweist sich diese Forderung bei Stäben aus sprödem Material.

Sie wird im Falle der Fig. 1, § 8, für den zylindrischen Teil in der Mitte des Stabes erfüllt durch Anordnung eines ausreichend allmählichen (kegligen) Dabei ist im Auge zu behalten, daß den Entwicklungen der Elastizitäts- und Festigkeitslehre allgemein die Vorstellung stetiger Erfüllung des Raumes durch das Material zugrunde liegt, die streng genommen für kein bekanntes Material zutrifft.

Damit ein Stab nur auf Zug beansprucht wird, reicht es nicht aus, daß die beiden äußeren Kräfte, die sich an ihm das Gleichgewicht halten, genau in die geometrische Achse des Stabes fallen; es wird vielmehr auch noch erforderlich, daß das Material das Stabvolumen stetig erfüllt und in allen Punkten desselben in Richtung der Stabachse gleiches Verhalten zeigt. Nur dann wird die Resultante der inneren Kräfte, die in den Flächenelementen eines Querschnittes wachgerufen werden, für alle Querschnitte in die geometrische Achse fallen.

3. Beispiel der Zugelastizität mit Rücksicht auf den Einfluß der Temperatur.

Der Draht einer elektrischen Leitung zum Zwecke der Arbeitsübertragung wird von Stangen getragen, die je um 2l voneinander abstehen. Die Aufhängepunkte A und B, Fig. 5, liegen in gleicher Höhe.

Mit welcher Pfeilhöhe h muß der Draht bei der Sommertemperatur t ausgelegt werden, damit im Winter bei der niedrigsten Temperatur t_0 die Spannung σ_0 nicht überschritten wird?

Uberganges zwischen dem zylindrischen Teil und dem Kopfe. Ausrundung, welche einerseits an die Meßstrecke, und andererseits an den Kopf anschließt, genügt nicht.

Vergleiche auch den Einfluß der Hinderung der Querzusammenziehung §9, Ziff. 1.

Bei Stäben mit veränderlichem Querschnitt, Fig. 1, können die Spannungen in den sämtlichen Elementen eines Querschnittes nicht die gleiche Richtung haben. Die Spannung im Schwerpunkte des Querschnittes wird allerdings in die Stabachse fallen, also senkrecht zu dem letzteren stehen, dagegen werden beispielsweise die Spannungen in den auf der Umfangslinie des Querschnittes liegenden Flächenelementen die Richtung der Mantellinie des Stabes besitzen, somit geneigt gegen die Stabachse sein müssen. Ahnliches wird auch bei prismatischen Stäben aus zähem Material nach Beginn der örtlichen Einschnürung eintreten.

Es sei

- H die Kraft, mit welcher der Draht im Scheitel O, und
- S ,, ,, ,, ,, ,, ,, ,, beliebigen Punkte P, bestimmt durch die Koordinaten x und y, gespannt ist,
- h die Pfeilhöhe \overline{CO} , d. i. der Höhenabstand zwischen dem Scheitel Ound der durch die Aufhängepunkte A und B bestimmten Wagrechten,
- $q = f \gamma$ das Gewicht der Längeneinheit des Drahtes vom Querschnitt fund dem spezifischen Gewicht γ .

Unter der Voraussetzung, daß der Draht vollkommen biegsam sei und nach einem so flachen Bogen durchhänge, daß das Gewicht des Drahtstückes von der Länge \widehat{OP} mit Annäherung gleich dem Produkte aus q und der Horizontalprojektion des Drahtes, d. h. gleich q xgesetzt werden darf, folgt unter Beachtung von Fig. 6

$$S \sin \varphi = q \cdot OP = \sim q x$$

$$S \cos \varphi = H.$$

Somit

$$\operatorname{tg} \varphi = \frac{q x}{H} = \frac{d y}{d x},$$

wie auch

$$y = \frac{1}{2} \frac{q x^2}{H}, \quad \dots \quad \dots \quad \dots \quad 12)$$

da die Integrationskonstante wegen y=0 bei r=0 zu Null wird. Die Drahtkurve ist hiernach mit der Annäherung, die der Rechnung zukommt, eine Parabel, für die

$$h = \frac{q^{2}}{2H} \quad \text{oder} \quad H = \frac{q l^{2}}{2h} \quad \dots \quad \dots \quad 13)$$

sowie

$$y = \frac{q x^2}{2 \frac{q l^2}{2 h}} = h \left(\frac{x}{l}\right)^2.$$

I. Zug.

Die Länge OB = s ergibt sich aus

Mit der Temperatur der Luft wird sich die Länge des Drahtes ändern, damit auch nach Gleichung 14 die Pfeilhöhe des Bogens und mit dieser nach Gleichung 13 die Spannung $\sigma = \frac{H}{f}$ des Drahtes. Je mehr die Temperatur sinkt, um so höher steigt die Beanspruchung des Materials. Die letztere werde, da es sich um einen flachen Bogen handelt, mit Annäherung als gleich groß in allen Punkten des Drahtes aufgefaßt, und zwar gleich $\frac{H}{f}$ gesetzt.

Nehmen wir an, daß die Größen H, h, s und σ , die bei der Temperatur t gelten, bei der niedrigsten Temperatur t_0 die Werte H_0 , h_0 , s_0 und σ_0 besitzen. Steigt die Temperatur von t_0 auf t, so vermindert sich infolge der Verlängerung des Drahtes aus Anlaß der Ausdehnung des Drahtes durch die Wärme die Spannung von σ_0 auf σ . Diese Verminderung der Spannung wirkt gleichzeitig zurück auf die elastische Dehnung. Der Zusammenhang zwischen den einzelnen Größen läßt sich leicht feststellen, wenn man zunächst die Längenänderung infolge der Spannungsänderung und sodann diejenige infolge der Temperaturänderung in Betracht zieht. Das gibt, sofern α_w die Wärmeausdehnungszahl bedeutet,

$$s = s_0 \left[1 + \alpha \left(\sigma - \sigma_0 \right) \right] \left[1 + \alpha_w \left(t - t_0 \right) \right]$$
$$= \sim s_0 \left[1 + \alpha \left(\sigma - \sigma_0 \right) + \alpha_w \left(t - t_0 \right) \right]^1 \right).$$

$$\frac{s}{s_0} = \frac{1 + \alpha \sigma}{1 + \alpha \sigma_0} \quad \text{oder} \quad s = s_0 \frac{1 + \alpha \sigma}{1 + \alpha \sigma_0}$$

und bei Steigerung der Temperatur von t_0 auf t_0 wobei die Längeneinheit um $\alpha_m (t - t_0)$ zunimmt

$$s = s_0 \frac{1 + \alpha \sigma}{1 + \alpha \sigma_0} [1 + \alpha_w (t - t_0)] = s_0 \left[1 - \alpha \frac{\sigma_0 - \sigma}{1 + \alpha \sigma_0} \right] [1 + \alpha_w (t - t_0)]$$

$$s = \sim s_0 [1 - \alpha (\tau_0 - \sigma)] [1 + \alpha_w (t - t_0)],$$

was sich, wie wir oben sahen, fast unmittelbar anschreiben läßt.

ł

¹) Zu demselben Ergebnis gelangt man, wenn man sich ein Stück spannungslosen Draht von der Länge 1 denkt. Wird derselbe der Spannung σ und sodann der Spannung σ_0 unterworfen, so steigt seine Länge auf $1 + \alpha \sigma$ bzw. $1 + \alpha \sigma_0$ Demnach gilt bei Unveränderlichkeit der Temperatur

§ 6. Gleichungen der Zugelastizität und Zugfestigkeit.

Unter Beachtung von Gleichung 14 folgt hiermit

$$s = l \left(1 + \frac{2}{3} \frac{h_0^2}{l^2} \right) \left[1 + \alpha \left(\sigma - \sigma_0 \right) + \alpha_w \left(t - t_0 \right) \right]$$

= $\sim l \left[1 + \frac{2}{3} \frac{h_0^2}{l^2} + \alpha \left(\sigma - \sigma_0 \right) + \alpha_w \left(t - t_0 \right) \right]$

und unter Beachtung von Gleichung 13, nach der

$$\begin{split} h_0 &= \frac{q l^2}{2 H_0} = \frac{f \gamma l^2}{2 f \sigma_0} = \frac{\gamma l^2}{2 \sigma_0} \,, \\ h &= \frac{\gamma l^2}{2 \sigma} \quad \text{oder} \quad \sigma = \frac{\gamma l^2}{2 h} \,, \end{split}$$

ergibt sich

$$s = \sim l \left[1 + \frac{1}{6} \frac{\gamma^2 l^2}{\sigma_0^2} + \alpha \left(\frac{\gamma l^2}{2h} - \sigma_0 \right) + \alpha_w (t - t_0) \right]$$

= $l \left(1 + \frac{2}{3} \frac{h^2}{l^2} \right)$
 $h^3 - \frac{3}{2} l^2 \left[\frac{1}{6} \frac{\gamma^2 l^2}{\sigma_0^2} + \alpha_w (t - t_0) - \alpha \sigma_0 \right] h = \frac{3}{4} \alpha \gamma l^4 \quad . \quad . \quad 15^{1}$

Hieraus läßt sich die gesuchte Pfeilhöhe berechnen.

Soll der im Winter zuweilen eintretende Fall berücksichtigt werden, daß der Draht noch durch auf ihm hängenden Schnee belastet wird, so läßt sich dies leicht dadurch bewerkstelligen, daß γ oder $q = f \gamma$ entsprechend höher in die Rechnung eingeführt wird.

Will man die — unter den gewöhnlichen Verhältnissen übrigens außerordentlich geringe — Biegungsbeanspruchung, die der Draht infolge der Durchbiegung erfährt, feststellen, so kann das am einfachsten in der Weise geschehen, daß man den Krümmungshalbmesser ϱ für den Scheitel der Parabel, deren Gleichung nach Beziehung 12

$$x^2 = \frac{2H}{q}y$$

ist, als Halbparameter zu

121

¹) Grashof hat diese Aufgabe in seiner 1878 erschienenen Theorie der Elastizität und Festigkeit S. 46 und 47 behandelt, dabei jedoch den Einfluß der Spannungsänderung auf die Drahtlänge außer acht gelassen und kommt infolgedessen für h zu einer quadratischen Gleichung. Hierauf machte zuerst Wehage im Zivilingenieur 1879, S. 619 u. f., aufmerksam und gab daselbst die vollkommene Lösung.

I. Zug.

ermittelt und sodann unter Beachtung von Gleichung 10, §16, und Gleichung 13, § 16, die Biegungsanstrengung für den 2e dicken Draht zu

$$\sigma_b = \frac{qe}{\alpha H} = \frac{\gamma}{\alpha} \frac{ef}{H} = \frac{\gamma}{\alpha} \frac{e}{H:f} \quad . \quad . \quad . \quad 17)$$

bestimmt, also unabhängig von der Spannweite.

Für

$$\gamma = 0,008$$
, $\alpha = \frac{1}{2200\,000} = 0,455$ Milliontel, $H: f = 1000 \text{ kg/qcm}$,
 $e = 0.2 \text{ cm}$.

ergibt sich beispielsweise

$$\sigma_{b} = \frac{0.008}{1} \cdot \frac{0.2}{1000} = 3.5 \text{ kg/qcm}.$$

§ 7. Maß der Zusammenziehung. Kräfte senkrecht zur Stabachse. Gehinderte Zusammenziehung.

Wie wir in § 1, b sahen, findet mit der Ausdehnung des nur in der Richtung der Achse gezogenen Stabes Fig. 2, § 1, gleichzeitig eine Zusammenziehung senkrecht zur Achse statt. Beträgt die durch Gleichung 1, § 2, bestimmte Dehnung ε , so werden die nach jeder zur Achse senkrechten Richtung eintretenden Zusammenziehungen, be-

Fig. 1.

zogen auf die Längeneinheit, d. s. die verhältnismäßigen Zusammenziehungen (im Falle § 1, b gleich $\frac{\delta}{d}$), als gleichgroß betrachtet und durch

gemessen. Die Größe *m* pflegt als eine zwischen 3 und 4 liegende Konstante aufgefaßt zu werden, so daß hiernach die verhältnismäßige Zusammenziehung 1/4 bis 1/3 der Dehnung beträgt.

Der in Fig. 1 dargestellte Würfel, bestehend aus Material, das in jedem Punkte nach allen Richtungen hin gleich beschaffen, also isotrop ist und Proportionalitätsgrenze (§ 2) besitzt, werde innerhalb der letzteren zunächst nur in Richtung der x-Achse auf Zug (durch P_x , P_x) in Anspruch genommen. Die in dieser Richtung eintretende Dehnung sei durch ε_x und die damit verknüpfte Spannung durch $\sigma_x = \frac{\varepsilon_x}{\alpha}$ bezeichnet. Nach Maßgabe des Erörterten beträgt dann:

in Richtung der y-Achse

die verhältnismäßige Zusammenziehung $\frac{\epsilon_x}{m}$, die Spannung 0,

in der Richtung der z-Achse

die verhältnismäßige Zusammenziehung $\frac{e_x}{m}$, die Spannung 0.

Wird der Würfel nur in der Richtung der y-Achse (von P_y , P_y) gezogen, und werden die hierdurch in dieser Richtung veranlaßte Dehnung und Spannung ε_y beziehungsweise $\sigma_y = \frac{\varepsilon_y}{\alpha}$ genannt, so findet sich:

in der Richtung der x-Achse

die verhältnismäßige Zusammenziehung $\frac{\epsilon_y}{w}$, die Spannung 0,

```
in der Richtung der z-Achse
```

die verhältnismäßige Zusammenziehung $\frac{\varepsilon_y}{m}$, die Spannung 0.

Wird schließlich der Würfel nur in Richtung der z-Achse auf Zug in Anspruch genommen (durch P_z , P_z) und die hiermit in dieser Richtung verknüpfte Dehnung durch ε_z , die Spannung durch $\sigma_z = \frac{\varepsilon_z}{\alpha}$ gemessen, so müßte betragen:

in Richtung der x-Achse

die verhältnismäßige Zusammenziehung $\frac{\varepsilon_{\pi}}{m}$, die Spannung 0,

in Richtung der y-Achse

die verhältnismäßige Zusammenziehung $\frac{\varepsilon_z}{m}$, die Spannung 0.

I. Zug.

Wirken die Kräfte $P_{x}P_{x},\ P_{y}P_{y},\ P_{z}P_{z}$ gleichzeitig, so beträgt die resultierende Dehnung

in Richtung der x-Achse
$$\varepsilon_1 = \varepsilon_x - \frac{\varepsilon_y + \varepsilon_z}{m}$$

.... 2)
.... 2)
.... 2)
.... 2)
.... 2)

woraus unter Berücksichtigung, daß

folgt

$$\epsilon_{1} = \alpha \left(\sigma_{x} - \frac{\sigma_{y} + \sigma_{z}}{m} \right) \text{ oder } \frac{\epsilon_{1}}{\alpha} = \sigma_{x} - \frac{\sigma_{y} + \sigma_{z}}{m}$$

$$\epsilon_{2} = \alpha \left(\sigma_{y} - \frac{\sigma_{z} + \sigma_{x}}{m} \right) \text{ oder } \frac{\epsilon_{2}}{\alpha} = \sigma_{y} - \frac{\sigma_{z} + \sigma_{x}}{m}$$

$$\epsilon_{3} = \alpha \left(\sigma_{z} - \frac{\sigma_{x} + \sigma_{y}}{m} \right) \text{ oder } \frac{\epsilon_{3}}{\alpha} = \sigma_{z} - \frac{\sigma_{x} + \sigma_{y}}{m}$$

Die Beziehungen 4 lehren, daß die einfache Proportionalität, die bei dem ausschließlich in der Richtung seiner Achse gezogenen Stabe nach Maßgabe der Gleichungen 2, § 2, und 3 dieses Paragraphen zwischen Dehnungen und Spannungen — unter der Voraussetzung, daß α konstant — vorhanden ist, zu bestehen aufhört, sobald auch Kräfte senkrecht zur Stabachse den Körper angreifen. Die resultierende Dehnung wird durch solche Kräfte, wenn sie ziehend wirken, vermindert; sind Druckkräfte senkrecht zur Stabachse tätig, so wird die resultierende Dehnung vergrößert.

In Anbetracht, daß derartige Kräfte eine mehr oder minder große Hinderung der Zusammenziehung zur Folge haben, erkennen wir, daß Erschwerung oder teilweise Hinderung der Zusammenziehung (Kontraktion) des Stabes (senkrecht zu dessen Achse) die Dehnung (in Richtung der Achse) ver-

$$\epsilon_x = \alpha_1 \sigma_x, \qquad \epsilon_y = \alpha_2 \sigma_y, \qquad \epsilon_z = \alpha_3 \sigma_z.$$

¹) Besitzt das Material keine Proportionalitätsgrenze, so wird die Dehnungszahl α nicht konstant, sondern eine Funktion von σ oder ε sein. Es würde dann heißen müssen etwa:

Hierin würden je nach der Verschiedenheit der Spannungen $\sigma_x \sigma_y \sigma_z$ die Dehnungszahlen $a_1 a_2 a_3$ verschieden große Werte aufweisen, d. h. $\alpha_1 \alpha_2 \alpha_3$ würden Funktionen von σ oder ε sein.

ringert und damit bei solchen Materialien, die im Falle des Zerreißens eine erhebliche Querzusammenziehung erfahren, auch die Festigkeit erhöht, wie Versuche nachweisen¹) (§ 9, Ziff. 1).

§ 8. Zugproben.

Der Zugprobe werden die Metalle, auf die sich das Nachstehende zunächst nur bezieht, meist in Form von Rundstäben (Fig. 1) oder in Form von Flachstäben unterworfen.

Probestäbe und deren Einspannung.

Die Form der Probestäbe muß so gewählt werden, und die zum Einspannen in die Prüfungsmaschine benutzten Vorrichtungen müssen so beschaffen sein,

 daß die Zugkraft möglichst gleichförmig über die Querschnitte des der Messung unterworfenen mittleren Stückes des Probekörpers, d. i. der Meßlänge, verteilt wird (vgl. Fußbemerkung S. 117 und 118),

2. daß der Bruch des Körpers innerhalb der Meßlänge erfolgt, sofern das nicht durch Mängel im Material u. dgl. verhindert wird.

Der ersten Bedingung läßt sich bei Rundstäben oder Flachstäben, die mit Köpfen oder auch durch Gewinde festgehalten werden, durch die kugelige Lagerung oder Aufhängung entsprechen (Fig. 1), bei Flachstäben durch Befestigung mittels Loch und Bolzen, wenn die Löcher genau in der Stabachse liegen, oder durch Einlegen der mit gefrästen Nuten versehenen Enden in Gebißkeile, wenn schiefe Beanspruchung vermieden wird, oder durch Einbeißkeile, wenn sie den Stab in der Mitte der Kopffläche fassen. Die Herstellung und Einspannung der Flachstäbe fordert jedoch unter allen Umständen besondere Sorgfalt, wenn den aufgestellten Bedingungen genügt sein soll.

¹) Hinsichtlich der ersten dahingehenden Darlegung des Verfassers, die sich auf die Ergebnisse der von Kirkaldy 1862 angestellten Versuche stützt über die § 9, Ziff. 1 berichtet ist, s. Zeitschrift des Vereines deutscher Ingenieure 1880, S. 285 u. f.

I. Zug.

In bezug auf die Gestalt des Probestabes sucht man diese Bedingungen dadurch zu erfüllen, das man das prismatische Mittelstück des Stabes etwas länger macht als die Meßlänge, und daß man die Querschnitte des Stabes von dem Mittelstück nach den Einspannstellen hin zunehmen läßt, wie dies Fig. 1 für den Rundstab zeigt. (Vgl. auch Fußbemerkung S. 117 und 118.)

Eine zutreffende Vergleichung der Ergebnisse mehrerer Versuche setzt voraus, daß diese unter den gleichen Verhältnissen durchgeführt worden sind. Wie aus dem in § 9 und § 10 Erörterten hervorgeht, gehört hierzu, daß die Stäbe gleiche oder wenigstens geometrisch ähnliche Querschnitte besitzen und im allgemeinen gleich lange Zeit den Versuchen unterworfen werden.

Die der Messung unterzogene Strecke l, die Meßlänge, pflegt – insoweit es sich um die Ermittlung der durch Gleichung 3, §3, bestimmten Bruchdehnung handelt – zu 200 mm angenommen und das mittlere Stück um wenigstens 20 mm länger, d. h. l + 20 mm, prismatisch gehalten zu werden.

Wird für den Rundstab von 20 mm Durchmesser — wie in Deutschland, Österreich, der Schweiz usw. üblich — l = 200 mm zugrunde gelegt, dann fordert die S. 168 untere ausgesprochene Bedingung für einen Rundstab von d mm Durchmesser als Meßlänge

und für einen Flachstab von f qmm Querschnitt die Meßlänge

$$l = 200 \frac{\sqrt{f}}{\sqrt{\frac{\pi}{4} \cdot 20^2}} = 11,3\sqrt{f} \quad \dots \quad 2)$$

Bei der großen Masse der Zugproben pflegt nur festgestellt zu werden:

- a) die Bruchbelastung P_{max} (§ 3) und damit die Zugfestigkeit K_z (§ 3),
- b) der Querschnitt f_b an der Bruchstelle (an der Stelle der Einschnürung, Fig. 7, § 3, sofern eine solche eintritt),
- c) die Länge l_b , die das ursprünglich l lange Stabstück nach dem Zerreißen besitzt.

Die Beobachtung nach a liefert durch Gleichung 1, §3, die Zugfestigkeit, bezogen auf den ursprünglichen Stabquerschnitt.

Die Ermittlung nach b ergibt durch Gleichung 2, § 3, die Querschnittsverminderung des zerrissenen Stabes.

Die Feststellung nach c liefert durch Gleichung 3, § 3, die Bruchdehnung.

Einrichtungen zum Messen der Längenänderungen bei Zug und Druck.

Zur Bestimmung der Längenänderungen hat Bauschinger den aus Fig. 2a sowie Fig. 3, Taf. II ersichtlichen Apparat ausführen lassen, der zu den besten gehört, die für den Zweck benutzt werden können.

Der zu untersuchende Stab, auf dessen richtige Lagerung in der Prüfungsmaschine besondere Sorgfalt zu verwenden ist, wird an den Enden A und B der Strecke AB, für welche die Längenänderungen bestimmt werden sollen, durch die Reißnadel mit zwei leichten Querrissen versehen. In die Ebene des einen Querrisses, etwa bei A, legen sich pressend die Stahlschneiden der beiden schraubstockartig verbundenen Backen CC, die damit am Versuchsstabe festgeklemmt werden. Diese Backen bilden die Träger zweier rechts und links vom Versuchsstab befindlichen senkrechten Achsen, auf denen unten kleine Rollen (aus Hartgummi) vom Halbmesser r sitzen, während sie oben stellbare Spiegel tragen, wie aus den Abbildungen hervorgeht. An die kleinen Rollen legen sich Stahlstäbchen DE, deren Schneiden durch Kräfte GG, ausgeübt mittels Stellschrauben, in den Querriß des anderen Endes B der Meßlänge gedrückt werden. Damit nun bei einer Änderung der Meßlänge l die beiden kleinen Rollen von den Stahlblättern DE mitgenommen werden, sind diese auf dem Rücken da, wo sie die Hartgummirollen berühren, mit feinem Schmirgelpapier belegt. Einer stetig erfolgten Längenänderung λ des Stabes wird unter diesen Umständen eine Drehung der Rollen und damit auch der Spiegel um den Winkel α entsprechen, derart, daß $\lambda = \alpha r$ ist. Mit den Fernrohren FF sieht man durch die Spiegel auf den im Abstande L aufgestellten geraden Maßstab HJJH. Waren die Spiegel bei Beginn des Versuches so eingestellt, daß man mit dem Fernrohr die Stelle Jdes Maßstabes sah, so wird bei einer Drehung des Spiegels um α der Beobachter mit dem Fernrohr durch den Spiegel die Stelle H des Maßstabes sehen, die dadurch bestimmt ist, daß

$$\overline{JH} = a = L \operatorname{tg} 2 \alpha.$$
Damit ergibt sich
$$\frac{\lambda}{a} = \frac{r \alpha}{L \operatorname{tg} 2 \alpha}$$

$$\lambda = a \frac{r}{L} \frac{\alpha}{\operatorname{tg} 2 \alpha} \dots \dots \dots \dots 3)$$
mus für bleine Worte ren a mus wit Amrikaan

woraus für kleine Werte von α , wenn mit Annäherung

$$\frac{\alpha}{\operatorname{tg} 2 \alpha} = \frac{1}{2}$$

gesetzt wird,

Somit erscheint der Apparat als ein Fühlhebel, dessen kleiner Arm gleich dem Halbmesser r der Rolle und dessen großer Arm gleich der doppelten Entfernung des Maßstabes von dem Spiegel ist. Für r = 3,500 mm und L = 3500 mm ergibt sich somit die Übersetzung $3,500: 2\cdot 3500$ wie 1: 2000. Bei Einteilung der Skala des Maßstabes derart, daß die Teilstriche um 4 mm voneinander entfernt sind, hat demnach der Teilstrichabstand auf dem Maßstabe den Wert von $\frac{1}{500}$ mm für die Längenänderung, und da im Gesichtsfelde des Fernrohres $\frac{1}{10}$ Teilstrichabstand noch mit ausreichender Sicherheit geschätzt werden kann, so geht in diesem Fall die Messung auf $\frac{1}{5000}$ mm, d. i. bei l = 150 mm gleich $\frac{1}{750000}$ der Meßlänge.

Um zu beurteilen, mit welcher Annäherung die Gleichung 4 für den geraden Maßstab zutreffend ist, sei folgende Zusammenstellung angefügt:

 $\alpha = 1^{0} 2^{0} 3^{0} 4^{0} 5^{0}$ $\frac{\alpha}{\operatorname{tg} 2 \alpha} = 0,4998 0,4992 0,4982 0,4967 0,4949$ Fehler gegenüber 0,5 in % = 0,04 0,16 0,36 0,66 1,02

Will man den Fehler bei Rechnung mit Gleichung 4 nach Möglichkeit gering erhalten, so muß der Spiegel bei Beginn des Versuchs ungefähr so eingestellt werden, daß der größte in Betracht zu ziehende Wert von α etwa zur einen Hälfte links von J und zur anderen rechts von J zu liegen kommt. Dann bleibt, da der Gesamtdrehungswinkel der Rolle und des Spiegels kleiner als 4° zu sein pflegt, der Fehler kleiner als $0,16^{\circ}/_{0}$. Gleichung 4 ergibt genau richtige Werte, wenn statt des Maßstabes HJJH zwei nach einem Kreisbogen gekrümmte Maßstäbe verwendet werden, wie Fig. 2b zeigt und zweckmäßigerweise in neuerer Zeit auch geschieht.

Wie aus dem Vorstehenden erhellt, geschieht die Messung der Verlängerung doppelt: auf zwei Seiten des Versuchskörpers. Das arithmetische Mittel wird als die Verlängerung des Stabes angesehen. Die Messung auf nur einer Seite würde in den meisten Fällen zu Irrtümern führen:

1. Weil auf genau zentrische Kraftübertragung von vornherein nicht mit Sicherheit gerechnet werden kann (ein sich einstellendes Biegungsmoment, liefert für die eine Seite eine zusätzliche Streckung und auf der entgegengesetzten Seite eine Zusammendrückung von der gleichen Größe; infolgedessen führt die Bildung des Durchschnitts

C. Bach, Elastizität 8. Aufl.

129

aus beiden Messungen zur Ausschaltung des Einflusses der Biegung. Sind die für beide Seiten ermittelten Einzelwerte bekannt, so geben sie Auskunft über die Größe des Unterschiedes und damit Anhalt über die Bedeutung der Einflüsse, die diese Einseitigkeit veranlaßt haben. Wird die Meßeinrichtung so getroffen, wie es in neuerer Zeit vorgeschlagen und zum Teil auch geübt wird, daß nur die Summe abgelesen werden kann, so geht die Möglichkeit verloren, diese Einflüsse ihrer Größe nach zu beurteilen

2. Weil sich die Manteloberfläche — deren Dehnung doch allein durch den Apparat gemessen wird — nicht an allen Stellen um gleich viel dehnt;

3. Weil das Versuchsstück mit dem aufgeklemmten Meßinstrument einschließlich des letzteren nicht selten kleine Bewegungen ausführt.

Es empfiehlt sich, die beiden Endquerschnitte der Meßstrecke je in mehr als zwei Punkten zu fassen, was durch V-förmige Ausbildung der Schneiden an den Backen C und den Stahlblättern DE geschehen kann.

Für genauere Elastizitätsbeobachtungen ist es nicht bloß notwendig, daß die in der Fußbemerkung S. 46 angegebene Vorsichtsmaßregel beachtet wird, sondern es erweist sich auch als ganz wesentlich, daß Temperaturänderungen während eines Versuches möglichst vollständig vermieden werden, namentlich deshalb, weil die dünnen Stahlstäbchen *DE* viel rascher die neue Temperatur annehmen als der Versuchsstab, und der so entstehende Unterschied in dem Wärmezustand das Ergebnis der Versuchs — selbst wenn der Stab aus dem gleichen Material bestände wie die Stahlstäbchen *DE* — erheblich beeinträchtigen kann. Man muß sich eben immer vergegenwärtigen, daß bei der Wärmeausdehnungszahl von rund $\frac{1}{80\ 000} = 12,5$ Milliontel und der Dehnungszahl von rund $\frac{1}{2000\ 000} = 0,5$ Milliontel die Verlängerung durch 1°C Temperaturzunahme gleich derjenigen ist, die durch 25 kg/qcm Spannung herbeigeführt wird. Selbst $\frac{1}{10}$ °C Temperaturunterschied entspricht noch 2,5 kg/qcm Spannungsunterschied.

Diesem Punkte wird, nach den Erfahrungen des Verfassers, selbst heute noch viel zu wenig Beachtung zuteil. Dabei reicht es nicht aus, daß man die Temperatur im Versuchsraum während einer Untersuchung möglichst unveränderlich erhält. Eine Berührung mit der Hand, ein Anhauchen, ein Luftzug usw. äußern ihren die Genauigkeit der Messung herabsetzenden Einfluß. Im Falle einer solchen Störung des Wärmezustandes, die auch vom Versuchskörper selbst herrühren kann, z. B. dann, wenn dieser eine andere Temperatur besitzt als im Versuchsraum herrscht, ist es angezeigt, zu warten, bis der Apparat in Hinsicht auf seinen Wärmezustand zu ausreichender Ruhe gelangt ist. Dies gilt namentlich auch unmittelbar nach dem Ansetzen des Spiegelapparates, weil hierbei Erwärmungen durch die Berührung mit den Händen einzutreten pflegen, die erst durch Abkühlung wieder verschwinden müssen.

Falls mit ausreichender Sicherheit darauf zu rechnen ist, daß die Raumtemperatur gleichbleibend gehalten werden kann, so empfiehlt es sich, als Material für die Meßstäbchen Nickelstahl mit möglichst geringer Wärmeausdehnungszahl (etwa nur ein Zwölftel des für den gewöhnlichen Kohlenstoffstahl gültigen Wertes) zu verwenden (vgl. des Verfassers Maschinenelemente, 12. Aufl., S. 124 u. f.).

Ist auf Temperaturgleichheit im Versuchsraum nicht zu rechnen, so sollten die Meßstäbchen aus einem Material bestehen, dessen Ausdehnungszahl sich möglichst wenig von derjenigen unterscheidet, die dem Versuchsstab eigen ist. Daß auch dann rasche Temperaturänderungen Fehler von erheblicher Größe hervorrufen müssen, ergibt sich aus dem oben Bemerkten.

Bei Anwendung des S. 19 u. f., sowie S. 100 u. f. hervorgehobenen Verfahrens des Belastungswechsels wird der Versuchsdurchführende durch die Versuchsergebnisse auf das Auftreten von Temperaturschwankungen eindringlich aufmerksam gemacht. Auch auf das Gleichhalten der Belastungszeit ist im allgemeinen zu achten.

Die Sicherheit der Messung hängt natürlich davon ab, daß die Reibung die Rolle mitnimmt. Da nun bei Beschleunigung von Massen durch Mitnahme mittels Reibung unbedingt ein Gleiten eintreten muß, wenn die Reibungskraft kleiner ist als das Produkt aus Masse und Beschleunigung, so muß bei genauen Elastizitätsmessungen, namentlich wenn es sich um eine genaue Bestimmung der bleibenden Dehnungen handelt, mit größter Sorgfalt auf ganz allmähliche Steigerung der Belastung oder Verlängerung geachtet werden.

Auch dieser Punkt, auf dessen Bedeutung man erst dann zu treffen pflegt, wenn zum Zwecke der Ermittlung der elastischen Längenänderungen die bleibenden Dehnungen genau festgestellt werden sollen, ist viel zu wenig beachtet, was den Verfasser veranlaßt, ihn hier besonders hervorzuheben. Erst durch volle Beachtung desselben werden Instrumente, welche die Dehnung oder Zusammendrückung der Versuchskörper unter Zuhilfenahme der Reibung als Übertragungsmittel messen, zu Versuchen mit fortgesetztem Wechsel von Belastung und Entlastung verwendbar. Sie besitzen aber bei sorgfältiger Anwendung einen hohen Grad der Zuverlässigkeit.

Der Spiegelapparat ist seiner Natur nach eine Meßeinrichtung, die eine weitgehende Genauigkeit ermöglicht. Sollen nur Annäherungs-

Fig. 5.

werte erzielt werden, was für praktische Zwecke häufig ausreicht, so können Meßgeräte mit entsprechend geringerer Empfindlichkeit verwendet werden; man wird dann auch nicht mit der großen Sorgfalt arbeiten müssen, wie bei den Feinmessungen.

Fig. 3. Taf. II zeigt den Bauschingerschen Spiegelapparat in seiner ursprünglichen, von C. Klebe herrührenden Gestalt. Die demselben von 0. Haberer in der Materialprüfungsanstalt Stuttgart gegebene Ausführungsform geht aus Fig. 4, Taf. II hervor. Auf Fig. 3 ist eine Schrägstellung der Spiegelachsen zu erkennen, die daher rührt, daß die zur Befestigung des Apparates am Probestab dienenden Spannbacken, die eben angepreßt werden müssen, eine Aufbiegung hervorbringen, womit der Parallelismus verloren geht. Dieser Mangel ist bei Fig. 4 durch die geschlossene Bauart verhindert. Bei ihr sind auch die Spannbacken besser zugänglich, das Eigengewicht ließ sich durch Ausarbeiten bedeutend vermindern. Um beim Anbringen des Apparates an dünnen Stäben gegenseitige Berührung der Spiegel zu verhüten, sind diese bei Fig. 4 in der Höhenlage versetzt angeordnet. Bei Verwendung an stehenden Prüfungsmaschinen werden die langen Spiegelachsen gegen kurze ausgewechselt, die Spiegel rechts und links vom Stabe angeordnet.

Der Bauschingersche Spiegelapparat kann auch zur Ermittlung der Zusammendrückung von Körpern benutzt werden, doch zieht Verfasser hier in der Regel vor, eine andere, für stehende Prüfungsmaschinen und für Versuchskörper von größeren Querschnittsabmessungen geeignete Einrichtung zu verwenden. Die Abbildungen Fig. 5 bis 7 zeigen dieselbe, wie sie zur Bestimmung der Elastizität von Körpern aus Zement, Zementmörtel, Beton, Sandstein usw. in den Abmessungen: rund 250 mm Durchmesser¹) und 1000 mm Höhe¹) seit 1894 benutzt worden ist und heute noch Verwendung findet.

Die Versuchskörper sind mit genau parallelen und zur Körperachse senkrechten Stirnflächen (Druckflächen) zu versehen, so daß bei der vorhandenen kugeligen Lagerung der Druckplatten der Maschine (vgl. Fig. 5) eine gleichmäßige Druckverteilung, soweit sie überhaupt zu erreichen ist, erwartet werden darf. Auf selbsttätiges Einstellen, d. h. Parallelstellen der Druckplatten zu rechnen, erscheint

¹) Verwendet man zu Elastizitätsversuchen mit Betonkörpern Prismen von Querschnitten bis etwa 12 cm Seite und 15 cm Meßlänge, wie dies bis zur Aufnahme der Untersuchung der Elastizität des Betons durch den Verfasser (1894) geschehen war, so können die Versuche bei der Ungleichartigkeit des Materialsman denke an die einzelnen Schotterstücke (Steine, Ziegelbrocken, Kiesel bis Apfelgröße) – wenigstens im allgemeinen nicht zu Ergebnissen führen, die mit ausreichender Genauigkeit auf die praktischen Anwendungen, d. h. auf auszuführende Betonbauten, übertragen werden dürfen.

nicht richtig; diese Stellung ist vielmehr vor dem Versuch mit Sorgfalt herbeizuführen; man stellt zunächst die untere Platte gemäß der Wasserwage und richtet nach Einbauen des Versuchskörpers, wobei besonders darauf zu achten ist, daß dessen Achse in die Achse der Maschine fällt, die obere Platte genau parallel zur oberen Fläche wobei besonders darauf zu achten ist, daß dessen Achse in die Achse der Maschine fällt, die obere Platte genau parallel zur oberen Fläche desselben¹). Die Messung der Zusammendrückung erfolgt stets durch zwei einander gegenüberliegende Instrumente, welche die Endquerschnitte der Meßstrecke in je 4 Punkten fassen. (Über die Berechtigung, die Messung an der Oberfläche vorzunehmen, vgl. A. Menzel, Untersuchungen über das bei der Bestimmung der Druckelastizität übliche Verfahren, die Dehnungen auf der Mantelfläche des Versuchskörpers zu messen, 1902.)

Die Meßvorrichtung, vgl. Fig. 5 bis 7, besteht aus dem oberen Ring AA und dem unteren Ring BB, die je durch 4 im rechten Winkel zueinander stehende Schrauben am Versuchskörper festgestellt werden, und zwar um l (bei Betonkörpern u. dgl. in der Regel gleich 750 mm) übereinander.

Fig. 6 und 7 zeigen die eigentliche Meßvorrichtung. Erfolgt eine Zusammendrückung des Versuchskörpers, so wird der obere Endpunkt der Stange C, die ihre Länge beibehält, gegenüber dem Ringe AA und dem daran befestigten Meßinstrument um den Betrag der Verkürzung nach oben rücken; dadurch dreht sich der Hebel DEF, der gegen das Ende der Meßstange C durch eine Feder gedrückt wird, um seine bei E gelegene Achse und nimmt durch das auf dem segmentartigen Ende F befestigte dünne Metallbändchen das Röllchen Gmit, auf dessen Achse der an einer Bogenskala entlang laufende Zeiger

¹⁾ In neuerer Zeit ist ausgesprochen worden, daß es genügt, wenn nur eine der beiden Druckplatten, und zwar die obere, kugelig gelagert wird. Dies erscheint zutreffend, wenn die Druckflächen am Probekörper genau senkrecht zu dessen Achse stehen. Kann hierauf nicht mit voller Sicherheit gerechnet werden, was in der Mehrzahl der Fälle zutreffen dürfte, so wird der Eintritt von Biegungsspannungen unvermeidlich, und zwar werden diese unter sonst gleichen Umständen von um so größerer Bedeutung sein, je länger die Stabachse ist.

Die Annahme, daß die Druckplatten sich infolge der kugeligen Lagerung selbsttätig den Druckflächen der Probekörper parallel stellen, insbesondere an der oberen Fläche, trifft meist durchaus nicht mit der erforderlichen Annäherung zu; das Moment, welches von der Reibung im Kugelgelenk herrührt, pflegt zu bedeutend zu sein. Mängel in dem Parallelstellen von Druckplatte und Druckfläche vor dem Versuch können zu erheblichen Fehlern führen.

Längere Säulen usf. werden zweckmäßigerweise in stehender Lage geprüft mit Rücksicht auf die Wirkungen des Eigengewichts, es sei denn, daß dieser Einfluß absichtlich zur Geltung gelangen soll.

Fig. 8, § 3, S. 12, § 8, S. 142.

sitzt. Dieser tragt am Ende ment einer Spitze, sondern ist hier flach gehalten und mit einem radialen, deutlich sichtbaren Strich verschen. Die Übersetzungsverhaltnisse sind bei einem älteren Instrument des Verfassers (ausgeführt von C Klebe in München) so gewählt, daß 1 mm Zusammendruckung des Versuchskörpers 300 mm Weg auf der Bogenskala entsprechen. Da nun hier $\frac{1}{10}$ mm noelt abgelesen werden kann so erfolgt die Messung der Zusammendruckung der ursprünglich l = 750 mm langen Strecke bis auf $\frac{1}{3000}$ mm, d i. $\frac{1}{3000 \cdot 750} = \frac{1}{2250000}$ der Strecke, auf der die Zusammendrückung gemessen wird.

135

Fig. 6.

I. Zug.

Bei neueren in der Materialprüfungsanstalt Stuttgart selbst ausgeführten Instrumenten entspricht 1/2 mm Zusammendrückung des untersuchten Körpers einem Skalenweg von 300 mm, das ist 600 mal mehr. Da nun auf der Skala noch 1/10 mm abgelesen werden kann, so erfolgt die Messung der Zusammendrückung der ursprünglich llangen Strecke auf $\frac{1}{6000}$ mm, d. i. bei l = 500 mm, für welche Meßlänge das Instrument meist benutzt wird, auf $\frac{1}{3\,000\,000}$ von l. Für l = 750 mm würde sich $\frac{1}{4\,500\,000}$ ergeben.

Zur Messung größerer Wege werden Bändchen-Instrumente mit der Übersetzung 1:100 verwendet.

Neu ist in der Hauptsache an dem ersten Instrumente die Mitnahme des Röllchens G durch ein dünnes Metallbändchen¹), und an dem zweiten überdies die Anordnung von Kugelzapfen an den Enden der Stange C, die zum Zwecke tunlichster Fernhaltung des Einflusses

¹) Vgl. des Verfassers Vorrichtung zur Messung der Durchbiegung von Platten in der Zeitschrift des Vereines deutscher Ingenieure 1890, S. 1042, Fig. 9 und 10, oder auch die Schrift: "Versuche über die Widerstandsfähigkeit ebener Platten", Berlin, S. 4, Fig. 9 und 10, oder "Abhandlungen und Berichte" 1897, S. 112, Fig. 90 und 91. Da bei diesem Instrument die den Zeiger tragende Rolle mehr als eine Umdrehung auszuführen hat, so ist das Bändchen in Gestalt eines Y ausgeführt.

von Temperaturänderung aus Holz besteht (vgl. das S. 130 hinsichtlich des Einflusses der Temperaturänderungen Gesagte). Die Bänd-

Fig. 8.

cheninstrumente besitzen den Vorteil, daß sie nicht wie Spiegelapparate die getrennte Aufstellung von Ablesefernrohr und Skala erfordern. Ihre Zuverlässigkeit steht nicht hinter der der Spiegelapparate zurück. Verfasser benützt diese Meßvorrichtung auch zur Ermittlung der Zugelastizität. Wie ersichtlich, besteht der einzige Unterschied

darin, daß, während bei Druckbelastung der Zeiger auf der Bogenskala von unten nach oben sich bewegt, er bei Zugbelastung von oben nach unten schwingt. Da die Berührung zwischen Hebel und Stange bei D, Fig. 6, durch Federkraft gesichert ist, so findet in beiden Fällen die Messung mit der gleichen Zuverlässigkeit statt. Dadurch läßt es sich in bequemer Weise ermöglichen, daß ein und derselbe Körper der Zug- und der Druckprobe unterworfen und dabei die Dehnung, bzw. die Zusammendrückung, mit denselben Instrumenten genau auf die gleiche Erstreckung gemessen werden kann. Will man vom Zug- zum Druckversuch oder von diesem

zum Zug versuch übergehen, so bedarf es jeweils nur der Versetzung des Körpers mit den angeschraubten Instrumenten aus der Zug- in die Druckmaschine bzw. aus der letzteren in die erstere. Fig. 8 zeigt den Körper (Marmor) mit dem zweiten der Instrumente in der Zugund Fig. 9 in der Druckmaschine.

Da bei den in Fig. 8 dargestellten Versuchskörpern die genaue Bearbeitung der Keilflächen recht viel Zeit erforderte und der Bruch häufig an der Einspannstelle eintrat, was auch leicht stattzufinden pflegt, wenn die Befestigung der Zugkörper aus Beton, Steinen u. dgl. mittelst Klauen erfolgt, so ist Verfasser in neuerer Zeit zu der in Fig. 10 gezeichneten Einspannvorrichtung übergegangen. Der Körper wird durch die beiden seitlichen, innen geriffelten Stahlplatten, die durch Schrauben gegen ihn gepreßt werden, gepackt; der hierdurch wachgerufene Widerstand gegen Gleiten muß natürlich größer sein als die Kraft, die zum Zerreißen erforderlich ist. Die vier Flächen, gegen die sich die Stahlplatten legen, werden sorgfältig gehobelt.

Neben dem Bauschingerschen Spiegelapparat steht der Spiegelapparat von A. Martens, hinsichtlich dessen auf A. Martens, Materialienkunde, S. 477 u. f. verwiesen werden darf. Der Unterschied zwischen beiden besteht in der Hauptsache darin, daß an Stelle der Rolle vom Halbmesser r eine rhombenförmige Schneide von der Höhe z tritt, deren Ausschlag die Drehung der Rolle ersetzt. Beide Arten von Spiegelapparaten lassen sich nach Form und Größe Sonderzwecken anpassen.

Zur Messung der Verlängerungen und Zusammendrückungen an den Oberflächen von Balken, die durch Biegung beansprucht werden, verwendet Verfasser die von Haberer in der Materialprüfungsanstalt Stuttgart 1902 konstruierte, in Heft 39 der Mitteilungen über Forschungsarbeiten S. 8 u.f. veröffentlichte Einrichtung.

Die ausgedehnten eigenen Untersuchungen mit Platten¹), Wasserkammerplatten²), ebenen und gewölbten Kesselböden³), Flanschenverbindungen⁴), kugeligen Böden, die äußerem Überdruck ausgesetzt sind⁵), Ein- und Zweiflammrohrböden⁶), Wellrohren⁷), Kolben⁸) usf., bei denen die Formänderungen jeweils an einer sehr großen Anzahl von Stellen ausreichend genau zu ermitteln waren, führten seit 1889 zur Anwendung der "Stiftmessung", die später auch bei den umfangreichen Arbeiten auf dem Gebiete des Eisenbetonbaues benutzt wurde.

Bei der Stiftmessung wird die Bewegung des zu untersuchenden Punktes auf einen Stift übertragen, dessen eines Ende in einer Körnervertiefung auf dem Probekörper steht und dessen anderes Ende über einen feststehenden Meßtisch hervorragt. Die Länge x (vgl. Fig. 11) des

¹⁾ Zeitschrift des Vereines deutscher Ingenieure, 1890, S. 1041 u.f.

²) Ebenda 1893, S. 489 u. f., 526 u. f.

³⁾ Ebenda 1897, S. 1157 u. f., 1899, S. 1585 u. f.

⁴⁾ Ebenda 1899, S. 321 u. f., 1912, S. 161 u. f.

⁵) Ebenda 1902, S. 333 u. f.

⁶) Ebenda 1908, S. 792 u. f., 1649 u. f. Mitteilungen über Forschungsarbeiten Heft 51, 52.

⁷) Ebenda 1904, S. 1227 u. f., 1905, S. 2062 u. f.

⁸) Mitteilungen über Forschungsarbeiten, Heft 31.

überstehenden Teiles wird mittels einer Mikrometerschraube, wie sie in Fig. 12, Taf. II abgebildet ist, gemessen. Ihre Änderung gibt die gesuchte Formänderung.

Fig. 11 zeigt die Anwendung des Verfahrens auf die Bestimmung des Betrages, um den das Ende eines einbeto-

nierten Eisens E durch die Kraft P sich gegenüber der Stirnfläche des Betonkörpers B bewegt¹.) Der Meßtisch ist hier auf der oberen Fläche des Betonkörpers befestigt. Bei den S. 140 unter ¹) bis ⁷) erwähnten Versuchen war für zahlreiche Meßpunkte ein gemeinsamer Meßtisch vorhanden.

Die Genauigkeit der Messung reicht bei vorhandener Übung bis etwa 0,005 mm.

In neuerer Zeit ist die Zahl der Meßvorrichtungen im Wachsen begriffen.

Für Sonderzwecke können auch Mikroskope entsprechende Verwendung finden.

Brucherscheinungen.

Die Vorgänge während der Streckung und beim Bruch sind für die einzelnen Metalle verschieden; sie werden auch von Ungleichförmigkeiten und Materialfehlern beeinflußt, worauf jedoch an dieser Stelle nicht eingegangen zu werden braucht. Unter stetiger Strekkung der Stäbe zeigen sich dann in der Hauptsache folgende Erscheinungen.

Bei sprödem Material, wie z. B. Gußeisen, nimmt die Kraft stetig zu, bis die Widerstandsfähigkeit des Stabes erschöpft ist (vgl. die Dehnungslinie Fig. 8, § 4). Der Bruch erfolgt ungefähr in einer zur Stabachse senkrecht verlaufenden Ebene, wie erwartet zu werden pflegt. Nennenswerte bleibende Querschnittsverminderung und erhebliche Bruchdehnung sind nicht zu beobachten. Die ursprünglich glatte Oberfläche erfährt keine sichtbare Veränderung.

Bei zähem Flußeisen tritt, wie in §3 besprochen, eine Unterbrechung der stetigen Belastungszunahme ein, wenn die Streckgrenze erreicht ist (Fig. 1, §3, Fig. 10, 12, 13 und 14, §4). Gleichzeitig sind an der Staboberfläche die auf S. 9, erwähnten Streckfiguren zu beobachten, die schräg, unter ungefähr 45°, gegen die Stabachse geneigt verlaufen und den Beginn der bedeutenderen bleibenden Dehnungen ohne weiteres sichtbar zeigen. Die ursprünglich glatte

B

Fig. 11.

¹⁾ Mitteilungen über Forschungsarbeiten, Heft 22.

Staboberfläche rauht sich auf, vorhandener Walzzunder springt ab usf. Mit Fortschreiten der Streckung, die sich auf den ganzen prismatischen Teil des Stabes auszudehnen pflegt, vermindert dieser seinen Durchmesser, und zwar derart, daß das Stabvolumen nur geringe Veränderung erfährt. Schließlich bei Erreichen der Höchstlast (EE_2 in Fig. 1, § 3) tritt eine Stelle am Stab hervor, die sich mehr streckt als die übrigen Teile der Meßlänge und infolgedessen örtliche Einschnürung erfährt (Fig. 7, S. 12, sowie die Abbildungen gebrochener Stäbe Fig. 13, Taf. I, Fig. 23, Taf. V). In der Regel erfolgt dort nach ausreichender Formänderung der Bruch, begleitet von einer Erhöhung der Temperatur, entsprechend der Umsetzung eines Teiles der aufgewendeten Zerreißarbeit in Wärme. Nach dem Zerreißen pflegen die Stabenden, insbesondere bei Stahl, magnetisch zu sein. Fig. 14, Taf. I läßt das an den anhängenden Eisenspänen erkennen.

Unter Umständen schnürt sich der Stab an mehr als einer Stelle ein (vgl. Fig. 8, Taf. II).

Fig. 15, Taf. I zeigt die beiden Hälften eines zerrissenen Rundstabes. Deutlich ist in der Mitte je eine kreisförmige, zur Stabachse senkrecht stehende Fläche zu erkennen, an die sich am rechten Bruchstück ein kegelförmiger Rand, am linken die entsprechende Hohlform anschließt. In der Regel sind die Flächen nicht so regelmäßig gestaltet, vgl. z. B. Fig. 16 und 17, Taf. I. Der mittlere Teil ist weniger eben, ein Stück des Randes weist die Hohlform. das andere die Kegelgestalt auf. Das deutet darauf hin, daß an beiden Stabenden eine Kegelfläche in der Ausbildung begriffen ist, so daß zwischen diesen beiden Flächen ein wulstartiger Ring mit dreieckigem Dieser Ring pflegt je zu einem Teil an Querschnitt stehen bleibt. einem der Bruchstücke festzusitzen. Fig. 10, Taf. V zeigt den seltenen Fall, daß sich ein Stück des Ringes ganz losgelöst hat.

Ausnahmsweise fehlt auch der ebene Teil der Bruchflächen. Die eine der letzteren besteht dann aus einem Vollkegel, die andere aus einem entsprechenden Trichter.

Die Trennung der Stabhälften erfolgt also nicht oder nicht ausschließlich in der Richtung senkrecht zur größten Zugspannung, sondern schräg dazu, ganz wie das bei den Streckfiguren an der Außenfläche des Stabes zu beobachten war.

Erfährt Flußeisen ausreichende Härtung oder wird es bei hoher Temperatur zerrissen, so verschwindet die ausgeprägte Streckgrenze (vgl. § 10, Ziff. 3 unter B, a), 2, Versuchsreihe 1, Stab 2a, Versuchsreihe 2, Stab 2 und 5, Versuchsreihe 3, Stab 2, 4, 5 und 6, sowie § 10, Fig. 4 gegenüber Fig. 1, 2 und 3). Auch Kupfer und die meisten anderen Metalle zeigen keine ausgeprägte Streckgrenze (vgl. § 4, Fig. 18, bis 21). Im übrigen spielt sich der Streckvorgang und der Bruch ganz ähnlich ab wie bei Flußeisen.

Um die Veränderlichkeit der Dehnung, überhaupt die Formänderung zu zeigen, die ein der Zugprobe unterworfener Flachstab aufweist, wurde (1885) die in Fig. 18 (Taf. III) wiedergegebene Zusammenstellung gefertigt. Auf zwei Flachstäben aus Flußstahl von genau 60 mm Breite und 12 mm Stärke waren durch Längs- und Querlinien im Abstande von 10 mm Quadrate von 10 mm Seitenlänge gezeichnet worden. Alsdann wurde der eine Stab der Zugprobe unterworfen. Derselbe erfuhr die aus Fig. 18 deutlich ersichtliche Formänderung. Der Bruch erfolgte an einer Stelle, die durch eine der eingerissenen Querlinien etwas verletzt worden war. Man erkennt an dem Klaffen in der Mitte der Bruchstelle, daß die Widerstandsfähigkeit des Stabes zuerst in der Mitte überwunden wurde, und daß sich von hier aus der Bruch nach den Kanten hin fortsetzt (vgl. S. 165, sowie Fig. 24 bis 26, Taf. V). Bei zähem Material ergibt sich diese Erscheinung oft noch viel ausgeprägter. Die Bruchflächen weisen bei Flachstäben an Stelle der oben bei den Rundstäben erwähnten Kegelflächen Pyramidenflächen auf. Bemerkenswert ist die Gestalt des Querschnittes am Bruch. Das ursprünglich vorhandene Rechteck hat eine Veränderung seiner Gestalt erfahren, derart, daß die Langseiten nach innen hohl gekrümmt, die kurzen Seiten dagegen nach außen gewölbt sind; Länge und Breite des Querschnittes haben aber infolge der Einschnürung Verminderung erfahren. Für die Berechnung der Größe des Bruchquerschnittes sind also Durchschnittswerte von Dicke und Breite zu verwenden.

Die Prüfung der in Fig. 18 wiedergegebenen Flachstäbe lieferte folgende Ergebnisse:

Höchste Belastung $(EE_2 \text{ in Fig. 1},$	$\S 3)$
ursprünglicher Querschnitt f	$ 6 \cdot 1, 2 = 7, 20 \text{ qcm}$
Bruchquerschnitt f	$ 4,82 \cdot 0,94 = 4,53 \text{ qcm}$
Dehnung auf 100 mm	
Demnach beträgt:	
die Zugfestigkeit	$K_z = 37460:7,20 = 5203 \text{kg/qcm}$
,, Querschnittsverminderung ψ 1	00 $(7,20-4,53):7,20=370/_0$
	00 /107 5 1001.100 07 50/

, Bruchdehnung φ auf 100 mm 100 (127,5 - 100): $100 = 27,5^{\circ}/_{0}$.

Harter Stahl zeigt entweder einen ähnlichen Bruch wie Gußeisen, der oft durch kleine Verletzungen an der Staboberfläche eingeleitet wird (vgl. Fig. 19, Taf. II), oder schwache Kegelbildung; dünne Stahlbänder brechen nicht selten schräg zur Stabachse, wie Fig. 20 und 21, Taf. III zeigen. Dasselbe ist häufig bei Blechbändern, Aluminiumstäben (Fig. 22, Taf. III), bei gewalztem Messing usf. zu beobachten. Vergüteter Stahl zeigt oft das fräserartige Bruchaussehen, das aus Fig. 23 und 24, Taf. II, sowie Fig. 24, Taf. VI hervorgeht.

Material mit ausgeprägten, großen Kristallen läßt diese nach weitgehender Formänderung deutlich sichtbar werden, vgl. Fig. 15 bis 18, Taf. VII.

Bei zäher Bronze, Messing usf. ist häufig bedeutende über die ganze Stablänge gleichförmige Streckung und Querschnittsverminderung zu beobachten. Die örtliche Einschnürung tritt dann nicht mehr ausgeprägt auf.

Einige Prüfungsergebnisse und Bilder zerrissener Stäbe aus verschiedenem Material sind im folgenden zusammengestellt. Zahlreiche weitere Beispiele sind in "Festigkeitseigenschaften und Gefügebilder" enthalten.

Fig. 13 (Taf. I) zeigt einen Flußeisen- und Fig. 25 (Taf. III) einen Schweißeisenrundstab nach dem Zerreißen. Die Verschiedenheit der Oberlfäche der Stäbe kennzeichnet die beiden Materialien. Weitere Unterscheidungsmerkmale liefert die metallographische Untersuchung (s. das eben erwähnte Buch unter VI). Ein zerrissener Stab aus Chromnickelstahl ist in Fig. 26, Taf. III abgebildet.

Fig. 27 und 28 (Taf. IV) geben zwei Stäbe von Aluminiumbronze wieder, die beide nach Angabe 90^{0} Kupfer enthalten sollen.

Fig. 29 (Taf. IV). läßt einen Bronzestab (gegossen) und Fig. 30 einen Messingstab (gegossen) erkennen.

Stab	Fig. 19	Fig. 23	Fig. 24	F ig. 26	Fig. 27	Fig. 28	Fig. 29	Fig. 30
Durchmesser cm	2,00	2,00	2,00	2,00	1,50	1,50	1,99	1,97
Querschnitt qcm	3,14	$3,\!14$	3,14	3,14	1.77	1,77	3,11	3,05
Streck- (obere kg/qcm	6646	6414	4936	8137	Streckgrenze nicht ausgeprägt			
grenze (untere	6156	6111	4713	8121	vorhanden			
Zugfestigkeit "	8057	7914	7029	9398	3983	3232	2090	1472
Bruch- (auf 100 mm ⁰ /0		-		20.2	64	50		
dehnung (, 200 , ,	11,8	15,4	16,0	13,9		·	8.1	11.5
Quersch nitts- verminderung,	27,7	61,5	57,6	53,2	_		7,7	15,7

Die Prüfung dieser Stäbe hat ergeben:

Ein Flußeisenstab mit Fehlstelle ("Naht") ist in Fig. 31, Taf. III abgebildet.

Die Beschaffenheit des Materials wird im allgemeinen beurteilt nach den für K_z , φ und ψ erhaltenen Werten. Dem Arbeitsvermögen (§ 3) wird ein Gewicht namentlich in den Fällen eingeräumt, in denen es sich um Widerstandsfähigkeit gegenüber dynamischen Wirkungen (lebendigen Kräften) oder gegenüber den Einwirkungen von Span-

Fig. 5a.

Fig. 6a.

§ 9, S. 155.

Fig. 6b.

nungen handelt, die durch stark wechselnde Belastungen oder durch große Temperaturunterschiede veranlaßt werden.

Da für ein bestimmtes, gleichartiges Material das Arbeitsvermögen mit Annäherung proportional dem Produkt aus Zugfestigkeit und Bruchdehnung gesetzt werden darf, so kann auch dieses Produkt an Stelle des Arbeitsvermögens als ein Maß der Materialgüte angesehen werden (vgl. Maschinenelemente, 12. Aufl., S. 96 u.f.).

Nach heutigem Stand bieten Zugfestigkeit, Bruchdehnung, Querschnittsverminderung und Arbeitsvermögen keine ausreichende Grundlage zur Beurteilung des Materials. Ob die zur Beurteilung der Zähigkeit vorgeschlagene und auch vielfach gehandhabte Kerbschlagprobe¹)

¹) Stäbe, deren Gestalt aus Fig. 32 hervorgeht, werden im Abstand a = 120 mm auf zwei Auflager gelegt und durch einen Schlag eines pendelnd aufgehängten Hammers zum Bruch gebracht unter Messung der hierfür erforderlichen

Arbeit A. Die Stabbreite *b* soll 30 mm betragen, welche Forderung sich jedoch oft, z. B. bei Blechen, nicht erfüllen läßt. In solchen Fällen wird dann die Breite gleich der Blechdicke gewählt. Reicht das Material zur Herstellung so großer Stäbe nicht aus, so kann L = 120, a = 70, H = 10, d = 1,3, b = 10 mm (oder weniger) gewählt werden. Der Quotient $A_k = A : bh \text{ kgm/qcm}$ wird als "Kerbzähigkeit" bezeichnet und in ihm ein Maß für die Zähigkeit des Materials erblickt.

Wie in der Zeitschrift des Vereines deutscher Ingenieure 1912, S. 1311 u. f. dargelegt, ist der Wert von A_k nicht unabhängig von der Stabbreite, derart, daß diese Abhängigkeit für verschiedenes Material sehr verschieden ausfällt. Die angegebenen kleinen Stäbe liefern Werte für A_k , die kleiner, oft ungefähr halb so groß sind, als die mit den großen Stäben erlangten. Bei Angaben über die Kerbzähigkeit ist also stets die Stabform mitzuteilen.

Wird, wie namentlich im Ausland nicht selten geschieht, der Bruch der Stäbe nicht durch einen Schlag, sondern durch zahlreiche schwache Schläge herbeigeführt, so ergibt sich die Schlagarbeit naturgemäß um so größer, je größer die Schlagzahl, d. h. je geringer die Wucht des einzelnen Schlages gewählt wurde, weil der Anteil des elastischen Arbeitsvermögens ein um so größerer ist.

Ebenso muß im Auge behalten werden, daß, wenn andere Kerbenformen gewählt werden, auch A_k bedeutende Änderung erfahren kann.

Sind hiernach die Ergebnisse der Kerbschlagprobe nicht, wie zu wünschen wäre, unabhängig von der Versuchsanordnung, so liefern sie doch dem Sachkundigen Einblicke in das Verhalten des Materials, die als eine Ergänzung der Aufschlüsse anzusehen sind, die die andern Versuche liefern, namentlich in den Fällen, welche Beurteilung der Widerstandsfähigkeit des Materials gegenüber dynamischer Wirkungen oder häufigen Temperaturänderungen verlangen.

C. Bach, Elastizität 8. Aufl.

die in sie gesetzten Erwartungen befriedigen wird, erscheint noch unsicher. Hat ein und dasselbe Material, z. B. Flußeisen, verschiedene Behandlung erfahren, so pflegt diese Verschiedenheit in den Ergebnissen der Kerbschlagprobe besonders scharf sich auszuprägen. Ferner ergibt sich bei Blechen die Kerbzähigkeit für Querstäbe um etwa $1/_4$ kleiner als für Längsstäbe. Zugversuche lassen so ausgeprägte Unterschiede nicht erkennen. Näheres s. in "Festigkeitseigenschaften und Gefügebilder", S. 14 u. f., 50, 122.

Bei umfassenden Versuchen tritt zu den oben angegebenen Ermittlungen, zu denen sich noch die Beurteilung des Aussehens der Bruchflächen fügen läßt, die Bestimmung

der Längenänderungen (§ 4 und 5) und aus ihnen zutreffendenfalls der Dehnungszahl (§ 2, § 4 Ziff. 1, Fußbemerkung 2, S. 24, § 5 Ziff. 3, und der Proportionalitätsgrenze oder der Koeffizienten α und m der Gleichung 1, § 4 (§ 5, Ziff. 3),

der Elastizitätsgrenze (§ 4 Ziff. 1, S. 26 und 27) und der Dehnungsreste (§ 4 Ziff. 1, S. 27, § 5 Ziff. 1),

der Fließ- oder Streckgrenze (§3),

der Dehnungslinie bis zum Bruch (§3, Fig. 1) und des Arbeitsvermögens (§3).

Zur erschöpfenden Klarstellung gehören im allgemeinen ferner die chemische und metallographische Untersuchung des Materials, sowie die Prüfung des Verhaltens gegenüber Biegung, gebotenenfalls auch im gehärteten Zustand (Hartbiegeprobe), insbesondere gegenüber Schlagwirkungen. Viele hierhergehörige Angaben finden sich in "Festigkeitseigenschaften und Gefügebilder".

Bruchdehnung.

Wie wir in § 3 sahen, dehnt sich zunächst die ganze Stabstrecke mehr oder minder gleichmäßig bis zum Eintritt der Bruchbelastung, dann folgt die Einschnürung des Stabes — falls eine solche überhaupt eintritt —, die mit einer verhältnismäßig großen Ausdehnung an dieser besonderen Stelle verknüpft ist. Diese erstreckt sich über eine Länge, die für ein und dasselbe Material um so größer ausfällt, je größer der Stabquerschnitt ist (vgl. Fig. 13, Taf. I und Fig. 23, Taf. V). Die durch Gleichung 3, § 3, gemessene Dehnung setzt sich hiernach im allgemeinen zusammen: aus der Dehnung der ganzen Strecke bis zum Eintritt der höchsten Belastung und aus der örtlichen Dehnung an der Einschnürungsstelle, vermindert um die (elastische) Verkürzung, die aus Anlaß der mit dem Zerreißen erfolgten Entlastung des Stabes eintritt. Wird zunächst angenommen, der Bruch erfolge in der Mitte der Strecke l, so ergibt Gleichung 3, § 3, bei vorhandener Einschnürung einen um so größeren Wert für φ , je kleiner l ist, weil die örtliche Deh-
nung an der Einschnürungsstelle verhältnismäßig um so mehr ausmacht, je gering er die Meßlänge l ist. Im allgemeinen gehört hiernach zur Angabe von φ auch die Größe von l neben f.

Wie bemerkt, pflegt man in Deutschland, der Schweiz, Österreich usw. l nach Maßgabe der Gleichung 1 bzw. 2 zu wählen. In Frankreich ist es üblich geworden, l kleiner zu nehmen, nämlich l = 7,235 d, bzw. $l = 8.2 \sqrt{t}$; infolgedessen ergeben sich dort im allgemeinen größere Werte für die Bruchdehnung des gleichen Materials; somit liefert ein und dasselbe Material, in Deutschland mit l = 10 d und in Frankreich mit l = 7.235 d geprüft, an letzterer Stelle eine größere Bruchdehnung, erscheint also hier, wenn φ als Maß der Zähigkeit angesehen wird, zäher. Dies muß im Auge behalten werden, wenn man die Angaben über die Bruchdehnung (Zähigkeit) des Materials aus den verschiedenen Ländern vergleichen will. In Nordamerika wird vielfach die Meßlänge noch kleiner gewählt als in Frankreich.Auch in Deutschland sind jetzt Bestrebungen mit Aussicht auf Erfolg im Gange, die Meßlänge kleiner zu wählen, was im Interesse der Ersparnis an Material und Arbeitszeit, sowie dann geboten erscheint, wenn das zu prüfende Material lange Stäbe herzustellen nicht gestattet und aus diesen Gründen vom Verfasser schon 1905 beim Deutschen Verband für die Materialprüfungen der Technik - leider nur mit einem teilweisen Erfolg - angeregt worden ist (vgl. Protokoll der 6. Hauptversammlung des Verbandes am 16. Oktober 1905 in Dresden, S. 8).

Um sich bei kurzen Stäben ein Urteil darüber zu verschaffen, wie groß — wenigstens angenähert — die Bruchdehnung sich ergeben haben würde, wenn die Meßlänge nach Gleichung 2 gewählt worden wäre, kann in der Weise vorgegangen werden, daß man an dem zerrissenen Stab für zwei genügend weit auseinander liegende Meßlängen l_1 und l_2 die Bruchdehnungen φ_1 und φ_2 unmittelbar mißt, alsdann die Gleichung

benutzt, zunächst, um aus

$$\varphi_1 = A + \frac{B}{\sqrt{l_1}}$$
 und $\varphi_2 = A + \frac{B}{\sqrt{l_2}}$

die dem vorliegenden Material entsprechenden Erfahrungswerte Aund B zu ermitteln, und sodann, um durch Einführung desjenigen Wertes von l in Gleichung 5, für den φ bestimmt werden soll, diese Größe selbst zu berechnen. I. Zug.

Beispielsweise ergab sich für Rundstäbe von 26 mm Durchmesser bei l = 50 70 100 150 200 260 mm, durch Messung $\varphi = 62,0$ 53,7 46,3 39,3 35,2 31,9 $\frac{1}{9}$. Wird in Gleichung 5 A = 8,3 und B = 380 gesetzt, so findet

Wird in Gleichung 5 A = 8,3 und B = 380 gesetzt, so findet sich aus ihr

$$\varphi = 62,1$$
 53,3 46,3 39,7 35,3 31,9 $\frac{9}{0}$

(Näheres über diese im Jahre 1905 durchgeführten Versuche siehe des Verfassers Darlegungen in Heft 29 der Mitteilungen über Forschungsarbeiten S. 69 u.f.).

Weitere eigene Versuche (1914) mit 6 Kruppschen Kesselblechen $(K_z = 3800, 4500 \text{ und } 6000 \text{ kg/qcm})$ (Zeitschrift des Vereines deutscher Ingenieure 1916, S. 854 u. f.) bestätigen diese Ergebnisse. Sie zeigen darüber hinaus, daß für das untersuchte Material mit ausreichender Genauigkeit die Umrechnung der Bruchdehnungen auf eine andere Meßlänge auch in folgender, rascher zum Ziel führenden Weise erfolgen kann. Der Übersicht halber seien drei Fälle unterschieden.

a) Die Meßlänge beträgt 200 mm, wie bei Kesselblechen üblich, der Querschnitt ist aber größer als 314 qmm, nach Gleichung 2 wäre also l > 200 mm zu wählen.

Mit Annäherung kann für das untersuchte Material gesetzt werden

$$\varphi_{11,3}\sqrt{\mathbf{f}} = y \cdot \varphi_{200} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \mathbf{6}$$

worin y entsprechend der folgenden Zahlentafel zu wählen ist.

Stab- querschnitt qmm	314	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000	3250	3500
y	1,00	0,93	0,86	0,81	0,77	0,74	0,71	0,685	0,66	0,64	0,63	0,62	0,61	0,60

Für das vorstehende Beispiel findet sich z. B., da $26^2 \frac{\pi}{4} = 531$ qmm,

also (durch geradlinige Interpolation) y = 0.92, mit $\varphi_{200} = 35.2^{\circ}/_{\circ}$

$$\varphi_{260} = 0,92 \cdot 35,2 = 32,40/_0.$$

Beobachtet war (s. o.) $31,90/_0$.

Statt der Zahlentafel kann mit Annäherung die Gleichung

Verwendung finden, in die f in qmm einzuführen ist.

§8. Bruchdehnung.

b) Die Meßlänge l ist von 200 mm verschieden.

Dann ist zu setzen

Hierin ist y der folgenden Zahlentafel zu entnehmen oder aus Gleichung 9 zu bestimmen.

$$\frac{l:\sqrt{f}}{y=1} | 1,3 \\ 1,00 | 0,93 | 0,86 | 0,81 | 0,77 | 0,74 | 0,71 | 0,685 | 4,2 \\ 0,71 | 0,685 | 0,66 | 0,64 | 0,63 | 0,62 | 0,61 | 0,60 \\ y=0,25 + \frac{22,5}{\sqrt{\left(\frac{200}{l}\right)^2 f + 600}}. \quad \dots \quad 9)$$

Dies liefert z. B. für das oben angeführte Beispiel mit f = 531 qmm und l = 100 mm, also $\varphi_{100} = 46,3^{0}/_{0}$

$$y = 0.25 + \frac{22.5}{\sqrt{4 \cdot 531 + 600}} = 0.25 + 0.43 = 0.68$$

$$\varphi_{11,3\sqrt{f}} = \varphi_{260} = 0.68 \cdot 46.3 = 31.5\%_{0}.$$

Beobachtet war (s. o.) $31.9\%_{0}.$

Während das zuerst beschriebene Verfahren nach Gleichung 5 sich auch bei Anwendung auf andere Stoffe als Flußeisen bewährt hat, muß bei Gleichung 8 und 9 abgewartet werden, wie sich anderes Material als das untersuchte verhält.

Ganz allgemein ist festzuhalten, daß brauchbare Werte für die Bruchdehnung nur dann erhalten werden, wenn die Enden der verwendeten Meßlänge so weit von den Einspannköpfen oder von den verdickten Teilen des Probestabes entfernt sind, daß eine Beeinflussung der Streckung durch diese nicht mehr erfolgt. Soll also die Meßlänge z. B. 200 mm betragen, so muß die prismatische Länge des Stabes größer als 200 mm sein. Meist wird etwa 220 mm genügen.

Geht der Bruch außerhalb der Mitte vor sich — was in der Regel der Fall ist —, so wird φ um so kleiner ausfallen, je mehr die Bruchstelle an das Ende von l rückt.

Mit Rücksicht auf diesen Übelstand und sonstige Unsicherheiten hat man in bezug auf die Messung von l_b folgende Vorschriften vereinbart:

Die Dehnung ist auf zwei entgegengesetzten Seiten des Rundstabes so zu messen, daß beiderseits auf jedem der Bruchstücke von dem Ende der Meßlänge bis zur Bruchstelle gemessen und aus den zwei Summen der zusammengehörigen Stücke das Mittel genommen wird I. Zug.

Erfolgt der Bruch außerhalb des mittleren Drittels der Meßlänge, so ist der Versuch auszuschließen oder das folgende Verfahren anzuwenden.

Die Meßlänge l ist von 10 zu 10 mm einzuteilen, Fig. 33 (s. die unterhalb stehenden Zahlen).

Es erfolge der Bruch im Querschnitt bb. Von der Bruchstelle ausgehend, werden zunächst die Teilstriche nach links und rechts hin neu bezeichnet, so wie über der Figur eingeschrieben ist. Sodann wird links die Länge zwischen den Teilstrichen 1-10 gemessen und zu ihr b0 + b1 addiert; hierauf rechts die Entfernung der Teilstriche 03 bestimmt und zu ihr die von links zu entnehmende Strecke 3-10 hinzugefügt. Die Summe der so erhaltenen beiden Größen ergibt l_b . Hiernach ist

 $l_b = [Länge zwischen den Teilstrichen 1-10 (links vom Bruch)$ $+ <math>(\overline{b0} + \overline{b1})]$ + [Länge zwischen den Teilstrichen 0-3 (rechts vom Bruch) + Länge zwischen den Teilstrichen 3-10 (links vom Bruch)].

Würde im vorliegenden Falle die Länge l nicht 200 mm, sondern 100 mm betragen, so würde sein

 $l_b =$ [Länge zwischen den Teilstrichen 1-5 (links vom Bruch)

 $+\overline{(b0}+\overline{b1})]$ + [Länge zwischen den Teilstrichen 0-3 (rechts vom Bruch) + Länge zwischen den Teilstrichen 3-5 (links vom Bruch)].

Auf diese Weise hat man unter der Voraussetzung, daß die Längenänderungen zu beiden Seiten des Bruches einen symmetrischen Verlauf haben, den Stab nahezu so ausgemessen, wie wenn der Bruch in der Mitte erfolgt wäre.

Im Falle sich der Stab an mehr als einer Stelle besonders stark zusammengezogen hat (vgl. die Fußbemerkung 1 S. 12), verliert allerdings das angegebene Verfahren an Wert.

Die Einteilung der Strecke l wie auch die Bestimmung von l_b nach dem Bruche sind immer auf zwei entgegengesetzten Seiten des Stabes vorzunehmen.

Bei Flachstäben wird empfohlen, die Dehnung sowohl auf beiden Schmalseiten als auch auf einer Breitseite zu messen und das Mittel aus den beiden ersteren Messungen sowie das Ergebnis der letzteren getrennt anzugeben.

(Vgl. hiermit das S. 168 unter f Gesagte.)

Über die Veränderlichkeit der Dehnung auf der Meßlänge vgl. Fig. 18, Taf. III sowie Fig. 13, § 9.

Die Bruchdehnung ist hiernach in nicht unerheblichem Grade von den Abmessungen des Stabes und von dem Vorgehen bei der Ermittlung von dessen Verlängerung abhängig.

Ein solches Maß kann, streng genommen, nicht als richtiges bezeichnet werden. Trotzdem ist es heute noch üblich, die Dehnung in der angegebenen Weise zu messen und die erhaltene Größe bei Beurteilung der Güte des Materials zugrundezulegen (s. o.). Ein weniger beeinflußtes Maß würde erhalten, wenn, wie auch von Hartig vorgeschlagen wurde, diejenige Dehnung bestimmt würde, die im Augenblicke des Auftretens des größten Zugwiderstandes oder unmittelbar vor Beginn der Einschnürung vorhanden ist. Es wäre dies die Größe OE_{2} in Fig. 1, § 3. Da es mit den üblichen Prüfungsmaschinen schwer hält oder wenigstens umständlich ist, die Dehnung in dem bezeichneten Augenblick genau festzustellen, so fehlt die Aussicht, daß diese Größe als Maß der Dehnung allgemein angenommen werden wird. Fälle, wie sie nicht selten zu verzeichnen sind, daß der gezogene Stab sich an einer Stelle einschnürt, hierauf eine noch weiter wachsende Belastung verträgt, dann an einer zweiten Stelle eine Einschnürung erfährt und in dieser bei sinkender Belastung zerreißt, würden verlangen, daß das Dehnungsmaß unmittelbar vor Beginn der ersten Einschnürung genommen wird 1).

Über die Abhängigkeit der Dehnung φ von der Querschnittsform, den Abmessungen usw. s. § 9.

§ 9. Einfluß der Form des Stabes.

Die Aufstellungen in §6 enthalten nur die Größe f des Stabquerschnittes; die Form desselben wäre hiernach vollständig gleichgültig. Tatsächlich ist sie es jedoch nicht, wenn auch ihr Einfluß nicht

¹⁾ Über das Vorgehen zur mittelbaren Bestimmung dieser Dehnung bei Duranametall s. Stribeck, Zeitschrift des Vereines deutscher Ingenieure 1904, S. 897 u. f.

Vgl. auch die Darlegungen von P. Ludwik in dessen Schrift "Elemente der technologischen Mechanik", Berlin 1909.

bedeutend erscheint. Daß die Querschnittsform nicht gleichgültig ist, erhellt, abgesehen von Versuchsergebnissen, schon aus folgender Erwägung.

Den Entwicklungen der üblichen Gleichungen für die Zugelastizität und Zugfestigkeit, wie sie in §6 und §8 aufgeführt sind, liegt zunächst die Voraussetzung zugrunde, daß die Dehnungen und Spannungen in allen Punkten des Stabquerschnittes gleich groß sind, daß sich alle Fasern, aus denen der Stab bestehend gedacht werden kann, ganz gleich verhalten und nicht gegenseitig aufeinander einwirken. Es ändert an jenen Gleichungen nichts, ob eine Kraft P – gleichmäßig verteilt – getragen wird von einem Stab, dessen Querschnitt 10 qcm beträgt, oder von 1000 Stäben von je 1 qmm Querschnitt. In dem einen Fall ist f = 10 qcm, in dem anderen $f = 1000 \cdot 0.01 =$ 10 qcm, d. h. in beiden Fällen gleich. In Wirklichkeit aber - immer gleichmäßige Verteilung der Last und gleiches Material vorausgesetztwerden sich die 1000 Metallfäden von je 1 qmm Querschnitt unabhängig voneinander (senkrecht zur Achse) zusammenziehen können; sie werden, wenn sie sich vorher gerade berührten, die Berührung infolge der mit der Dehnung (Belastung) verknüpften Querzusammenziehung aufgeben. Die einzelnen Fasern des Stabes von 10 gcm Querschnitt jedoch besitzen eine solche Unabhängigkeit nicht; sie wirken senkrecht zur Achse aufeinander ein. Das Ergebnis dieser Einwirkung aber muß ein verschiedenes sein, je nach der Form des Querschnittes, es wird ein anderes sein bei einem kreisförmigen als bei einem langgestreckt rechteckigen oder einem I-förmigen, es wird ein anderes sein bei einem dünnwandigen Hohlzvlinder als bei einem Vollzvlinder, bei einem Stab ohne Unterbrechung der Stetigkeit des Querschnittes als bei einem Stab, bei dem sich der Querschnitt sprungweise ändert usw. Daß aber die bezeichnete seitliche Einwirkung Dehnung und Festigkeit beeinflußt, ergibt sich aus den Betrachtungen, die in §7 angestellt wurden.

Derselbe Gedankengang führt zu dem Ergebnis, daß auch die verhältnismäßige Größe der Abmessungen bei einer und derselben Querschnittsform — streng genommen — nicht ganz gleichgültig sein wird.

Bei Beurteilung von Versuchsergebnissen in dieser Hinsicht ist allerdings im Auge zu behalten, daß der Unterschied in der Materialbeschaffenheit, bedingt durch die Verschiedenheit der Querschnittsabmessungen, von großer Bedeutung sein kann (Unterschied der Dichte und Festigkeit bei Gußstücken verschiedener Stärke, Unterschied in der Zusammensetzung von Kern und Randzone bei Flußeisen usw.).

Versuchsergebnisse.

1. Einfluß der Stabform, die der Querschnittsverminderung (Zusammenziehung) hinderlich ist.

Kirkaldy stellte 1862 Zerreißversuche mit Rundstäben aus Schweißeisen nach Fig. 1, 2 und 3 an. Die Stäbe Fig. 2 sind entstanden aus Zylindern Fig. 1, je durch Eindrehen einer schmalen Nute auf den Durchmesser d, die Stäbe Fig. 3 aus solchen Fig. 1 durch Abdrehen auf den Durchmesser d.

Ein Teil der Ergebnisse dieser Versuche ist in folgender Zahlentafel zusammengestellt. Sie zeigen die für den ersten Augenblick schlagende Eigentümlichkeit, daß die Festigkeit, d. h. Bruchbelastung, geteilt durch den kleinsten ursprünglichen Querschnitt, bei den nach Fig. 2 eingedrehten Stäben weit größer ist als bei den nicht eingedrehten.

Material	Form des Stabes	Zugfestigkeit K_z (Gl. 1, § 3) in kg/qcm	Querschnitts- verminderung ψ (Gl. 2, § 3)
Low Moor	Fig. 1, $D = 2,54$ cm	4560	51,0%
Walzeisen,	,, 2, $d = 1,85$,,	6420	8,0 ,,
härteste Sorte	,, 3, $d = 1,85$,,	4920	49,2 ,,

Die Erklärung ergibt sich unmittelbar aus dem in §7 Gesagten. Unter Einwirkung der Belastung dehnen sich die Fasern, die durch den kleinsten Querschnitt bb, Fig. 2, gehen; gleichzeitig tritt eine Zusammenziehung senkrecht hierzu ein. Das bei aa aa an den kleinsten Querschnitt sich anschließende Material setzt dieser Zusammenziehung Widerstand entgegen, d. h. übt in senkrechter Richtung zur Achse des Stabes Zugspannungen auf die durch den kleinsten Querschnitt gehenden und gespannten Längsfasern aus, welche Zugspannungen, wie die Gleichungen 4 in §7 lehren, eine Verminderung derLängsdehnung zur Folge haben. Demnach greift das bei aa aa an den Querschnitt $0,25 \pi d^2$ anschließende Material, indem es der Ausbildung der Zusammenziehung sowie der Dehnung hinderlich in den Weg tritt, gewissermaßen unterstützend gegenüber dem kleinsten Querschnitt ein und erhöht dessen Festigkeit. Daß die Zusammenziehung gehindert wurde, darüber geben die Werte für ψ deutlich Auskunft.

Hieraus folgt im allgemeinen für das untersuchte Material: Erschwerung oder teilweise Hinderung der Zusammenziehung senkrecht zur Stabachse (Querschnittsverminderung) verringert die Dehnung in Richtung der letzteren und erhöht die Zugfestigkeit.

Zur Untersuchung des Einflusses der Länge der Eindrehung sowie der Ausrundung der letzteren hat Verfasser 1889/90 folgende Versuche mit Rundstäben nach Fig. 4 bis 7, je aus dem gleichen Material von bemerkenswerter Gleichartigkeit hergestellt, ausgeführt.

		Flußeisen		Schweißeisen			
Stabform	Zugfestig- keit K _z (Gl. 1, § 3) in kg/qcm	Quer- schnitts- vermin- derung ψ (Gl. 2, § 3)	$\begin{array}{c} \textbf{Dehnung}\\ \textbf{auf}\\ \textbf{100 mm } \varphi\\ \textbf{(Gl. 3, § 3)} \end{array}$	Zugfestig- keit K ₄ (Gl.1, § 3) in kg/qcm	Quer- schnitts- vermin- derung ψ (Gl. 2, § 3)	Dehnung auf 100 mm φ (Gl.3, § 3)	
Fig. 4	4239 4242 4281	66% 66 ,, 65 ,,	33% 36 ,, 33 ,,	$3664 \\ 3674 \\ 3676$	34º/ 27 ,, 28 ,,	28 ⁰ / ₀ 24 ,, 26 ,,	
Durchschnitt	4254	66º/o	34%	3671	30º/c	26%	
Fig. 5 $\left\{ \right.$	4428 4380 4447	$\begin{array}{c} 62^{0/_{0}} \\ 65 \\ 63 \\ ,, \end{array}$	 	3738 3701 3622	13º/ ₀ 12 ,, 10 ,,		
Durchschnitt	4418	63º/o	_	3687	12º/o		
Fig. 6 {	$5082 \\ 4935 \\ 5031$	55% 55 ,, 54 ,,		4154 4029 3925	25°/ 21 ,, 24 ,,		
Durchschnitt	5016	55%		4036	23%		
Fig. 7	5894	50%		4474	14%	_	

Die eingedrehten Flußeisenstäbe rissen sämtlich in der Mitte der Eindrehung oder in der Nähe derselben; gleich verhielten sich die Schweißeisenstäbe nach Fig. 6 und 7. Die Schweißeisenstäbe nach Fig. 5 dagegen rissen nach Angabe der Fig. 8 am Ende der Eindrehung unter Bildung eines größeren Spaltes, wie in der Abbildung angedeutet ist, eine Folge der ausgeprägten Fasernatur des Schweißeisens, wozu sich noch der Einfluß der Schlackeneinschlüsse gesellt. Dadurch erklärt sich auch die vergleichsweise geringe Querschnittsverminderung. Die scharfe Eindrehung führt also hier beim Schweißeisen zum Bruch, bei dem zähen Flußeisen dagegen nicht. Der nachteilige Einfluß, den die Ungleichförmigkeit der Spannungsverteilung in dem Bruchquerschnitt des Schweißeisenstabes äußern muß (vgl. Fußbemerkung S. 117 und 118), wird fast ganz aufgehoben durch den Einfluß der Hinderung der Querzusammenziehung; denn die Festigkeit ist im Falle der Stabform Fig. 4 nahezu die gleiche wie im Falle der Stabform Fig. 2. Bei dem Flußeisen überwiegt in dem Querschnitte der scharfen Eindrehung der Einfluß der gehinderten Querzusammenziehung, eine Folge der Gleichartigkeit und der großen Zähigkeit des Materials. Die Fig. 5a, 5b, 6a und 6b auf Taf. IV geben Bilder der Probestäbe nach dem Zerreißen, und zwar

Fig. 5a einen Flußeisenstab, Fig. 5b einen Schweißeisenstab nach Fig. 5 Fig. 6a ,, , , , Fig. 6b ,, , , , Fig. 6.

Die in vorstehender Zusammenstellung enthaltenen Ergebnisse zeigen, daß bei einer Eindrehungslänge von 25 mm der Einfluß der gehinderten Querzusammenziehung noch nicht erheblich ist, daß er dagegen mit Abnahme dieser Länge rasch wächst. Im übrigen bestätigen sie das oben hinsichtlich dieses Einflusses Ausgesprochene vollständig.

Der letztere ist auch der Grund, weshalb die der Messung unterworfene Strecke der Probestäbe — Fig. 1, § 8 — kürzer gewählt werden muß als der prismatische Teil derselben. Man hat sich eben zu sichern, daß ein solcher Einfluß innerhalb der der Beobachtung unterworfenen Strecke nicht mehr Geltung erlangen kann.

Zur Feststellung des Einflusses solcher Eindrehungen auf die Festigkeit von Stäben aus nichtzähem Material hat Verfasser Versuche mit grauem Gußeisen angestellt, und zwar unter Zugrundelegung

- a) der Stabform Fig. 4, jedoch Durchmesser des mittleren zylindrischen Teils 2 cm,
- b) der Stabform Fig. 5, jedoch Durchmesser der Eindrehung 2 cm bei 2,9 cm Stabstärke,
- c) der Stabform Fig. 7, jedoch Durchmesser der Eindrehung 2 cm bei 2,9 cm Stabstärke.

Die Ergebnisse mit den 10 Stäben, hergestellt bei demselben Guß aus dem gleichen Material, sind dem Folgenden zu entnehmen.

Stabform	·a	b	с
	(Fig. 4)	(Fig. 5)	(Fig. 6)
1	1557	1446	1508
Zugfestigkeit	1557	1583	1350
Zugiostigkett		1417	
	1521	1439	1449
$\mathbf{Durchschnitt}$	1545	1471	1436

Der Bruch erfolgte bei den Stäben a (Fig. 4) innerhalb des zylindrischen Teiles, bei den Stäben b (Fig. 5) am Ende der Eindrehung,

d. h. da, wo der 20 mm starke Zylinder aus dem 29 mm dicken heraustritt, und bei den Stäben c (Fig. 7) in der Mitte der Eindrehung.

Wie ersichtlich, ist die durchschnittliche Festigkeit der Stäbe mit Eindrehung geringer als diejenige der glatten Stäbe, Fig. 4. Der Einfluß, welchen die Ungleichförmigkeit der Spannungsverteilung über den Bruchquerschnitt äußert, überwiegt den hier nicht bedeutenden Einfluß der gehinderten Querzusammenziehung.

Zur weiteren Verfolgung des Einflusses der Länge der Eindrehung bei zähem Material (Flußeisen) wurden 1912¹) eigene Versuche mit Stäben von 48 bzw. 24 mm äußerem Durchmesser D angestellt, die scharfe Eindrehungen auf d cm Durchmesser aufwiesen, wie die folgende Zahlentafel zeigt, aus der auch die Länge l der Eindrehungen hervor-

¹) Zeitschrift des Vereines deutscher Ingenieure 1912, S. 1314 u. f.

geht. Die Probekörper mit gleichem Durchmesser D waren je aus einer Stange herausgearbeitet.

V	on	den	erlangten	Ergebnissen	sind	die	folgenden	Durchschnitts-
werte	ang	gefül	nrt.					

$\begin{array}{c} {\rm Ein-} \\ {\rm drehung} \\ l \\ {\rm cm} \end{array}$	Streck obere kg/qcm	grenze untere kg'qcm·	Zug- festigkeit kg/qcm	Ein- drehung <i>l</i> cm	Streck obere kg/qcm	grenze untere kg/qcm	Zug- festigkeit kg/qcm
D =	4.8 cm w	d = 4	.0 cm	D =	2.4 cm u	nd $d = 2$.0 em
25.10	2423	2182	3543	12.49	3086	2715	4096
10.13	2495	2272	3751	5.01	3021	2694	4054
5,12	2487	2117	3874	2,51	3039	2753	4130
2,60	2510	2406	4049	1,26	3086	2918	4287
1,00	2769	2744	4419	0,53	3405	3288	4804
0,31	2859	2818	4773	0,10	3578	3419	5157
D = 4.8 cm und $d = 2.5 cm$			D =	2,4 cm ur	nd $d = 1,$	25 cm	
25,11	2542	2302	3819	12,49	3295	2868	4250
10,04	2606	2356	3940	5,00	3301	2866	4167
5,06	2579	2374	3981	2,50	3212	2793	4082
2,50	2566	2276	3914	1,26	3102	2712	4163
1,00	2741	2708	4487	0,51	3493	3318	4925
0,30			5622	0,10	5432		6243
D =	4,8 cm u	nd $d = 1$,0 cm	D = 2	2,4 cm u	nd $d = 0$,5 cm
25,12	2474	2156	3627	12,48	3003	2593	3725
10,06	2483	2225	3661	5,01	3290	2545	3745
5,05	2430	2190	3731	2,52	3073	2618	3828
$2,\!52$	2429	2210	3754	1,25	2765	2495	3830
1,00	2388	2251	4019	0,51	2695	2608	4048
0,30	3214		5025	0,10			5918

Die vorstehenden Zahlen lassen erkennen:

- 1. da ß die Zugfestigkeit, bezogen auf den Querschnitt in der Eindrehung, erst dann erheblich größer ausfällt als diejenige prismatischer Stäbe, wenn die Länge l der Eindrehung kleiner ist als ihr Durchmesser d,
- 2. daß die Zunahme der Zugfestigkeit bei gleicher Verminderung des Verhältnisses l:d um so größer ausfällt, je tiefer die Eindrehung ist; z. B. findet sich für die 2,4 cm starken Stäbe bei l:d = rd. 2,5 und rd. 0,2, d. h.
 - bei d = 2,0 cm für l = 5,01 und 0,53 cm, die Zunahme zu 4804 4054 = 750 kg/qcm,
 - bei d = 0.5 cm für l = 1,25 und 0,10 cm, die Zunahme zu 5918 - 3830 = 2088 kg/qcm,

3. daß die Streckgrenze meist in ähnlicher Weise erhöht wird wie die Zugfestigkeit.

Die Zunahme $\varDelta K_z$ von K_z gegenüber dem prismatischen Stab kann durch die Beziehung

$$\Delta K_z = \frac{D}{d+1} \frac{a}{\left(\frac{l}{d}\right)^2 + 0, 1} \, {}^0/_0 \quad \dots \quad \dots \quad 1)$$

zum Ausdruck gebracht werden. In ihr ist zu setzen

Bei letzteren erfuhr der dicke Teil Beanspruchung über die Streckgrenze und weitgehende Formänderung, wie Fig. 9, Taf. V erkennen läßt. In der Regel erfolgte der Bruch der Stäbe, wie Fig. 10, Taf. V zeigt, ausschließlich im eingedrehten Teil. Auch bei Fig. 9 begann der Bruch an den Ecken der kurzen Eindrehung. Dort löst sich der Zusammenhang des Materials, lange ehe die Höchstlast, aus der K_z berechnet wird, erreicht ist, so daß ein Ring entsteht, dessen dreieckiger Querschnitt (nach dem Bruch) aus Fig. 10 links oben hervorgeht. Unter diesem Ring streckt sich das Material noch erheblich weiter, ehe der Bruch erfolgt. Die eintretende Formänderung geht aus Fig. 9 anschaulich hervor.

Auch bei Probekörpern mit längeren Eindrehungen ist deutlich zu beobachten, daß schon bei verhältnismäßig niederer Belastung an den Ecken sehr hohe Beanspruchung stattfindet, indem die Oberfläche dort Aufrauhung erfährt, eine Folge der obenerwähnten Ungleichförmigkeit der Spannungsverteilung.

Fig. 11, Taf. V zeigt die Ansicht der Stirnfläche eines der geprüften Stäbe. Auf der Stirnfläche der Eindrehung sind schräg nach innen verlaufende Streckfiguren vorhanden. Diese sind ein Zeichen dafür, daß der eingedrehte Stabteil, wenn er sich einschnürt, bedeutende Kräfte auch in radialer Richtung auf das außerhalb der Eindrehung gelegene Material ausübt.

In Fig. 12 sind die Dehnungslinien für Stäbe mit D = 4.8 cm und d = 2.5 cm für verschiedene Längen l der Eindrehung wiedergegeben. Als wagrechte Abszissen sind die Verlängerungen von l, als Ordinaten die zugehörigen Spannungen $P:\frac{\pi}{4}d^2$ aufgetragen. Die das Arbeitsvermögen messende Fläche (vgl. Fig. 1, S. 11) nimmt sehr stark ab, wenn l kleiner wird. Dies erscheint nicht nur im

158

Hinblick auf stoßweise Beanspruchung von Bedeutung, sondern überhaupt als eine der am schwersten wiegenden Folgen der Anordnung von kurzen Eindrehungen usf. bei hoch beanspruchten Konstruk-

Fig. 12.

tionsteilen (vgl. § 41). Von Interesse ist auch der Verlauf der Dehnungslinien nach Überschreiten der Höchstlast. Der alsdann noch ver-

Fig. 13.

bleibende Teil des Arbeitsvermögens ist bei kurzen Eindrehungen verhältnismäßig klein.

Trägt man in Fig. 13 auf dem eingedrehten Teil des Stabes von der Eindrehungslänge l = 12,5 cm an den Stellen der vor dem Zer-

reißen angebrachten Teilung die Größe der Querschnittsfläche auf, die sich nach dem Zerreißen je an der betreffenden Stelle vorfindet, so ergibt sich die durch "l = 12,5 cm" gekennzeichnete Linie. Sie zeigt ausgeprägt die Änderungen, welche die Größe der Querschnitte auf der eingedrehten Strecke beim Zerreißen erfährt. Erst gegen die Enden der Eindrehung hin macht sich dagegen die Hinderung der Querdehnung bemerkbar; dort ist auch die Längsdehnung beeinträchtigt. Die Linie bc gilt für einen Stab mit l = 5 cm, die Linie de für einen solchen mit l = 2,5 cm Eindrehungslänge. Ungehinderte Dehnung hat bei diesen an keiner Stelle stattfinden können.

Zusammenfassung.

Bei Stäben mit Eindrehungen, wie erörtert, wird die Zugfestigkeit, d. h.

Bruchbelastung

kleinster Querschnitt

beeinflußt

- 1. von der Ungleichförmigkeit der Verteilung der Spannungen über den Querschnitt in dem Sinne, daß die Festigkeit Verminderung erfährt (vgl. auch §6, S. 117 und 118, Fußbemerkung),
- 2. von der Hinderung der Querzusammenziehung in dem Sinne, daß die Festigkeit erhöht wird.

Bei zähem Material, wie es als Flußeisen, Schweißeisen usw. gegeben sein kann, überwiegt im Augenblick des Bruches der Einfluß Ziff. 2 namentlich dann, wenn die Eindrehung kürzer als der Durchmesser ist (Fig. 2, Fig. 7); die Zugfestigkeit ergibt sich dann bedeutend größer als diejenige prismatischer Stäbe (Fig. 4).

Bei Material, das eine merkbare Querschnittsverminderung im Bruchquerschnitt nicht zeigt, wie z. B. graues Gußeisen, scheint der Einfluß Ziff. 1 das Übergewicht zu erlangen; die durchschnittliche Festigkeit ergibt sich etwas kleiner als bei prismatischer Form, doch ist der Unterschied sehr gering.

Hinsichtlich dieses verschiedenen Verhaltens beider Arten von Material kommt auch in Betracht, daß bei zähen Stoffen die am stärksten angestrengten Fasern — ohne zu reißen — nachgeben, wodurch die weniger stark beanspruchten mehr zur Übertragung herangezogen werden.

Hieraus folgt, daß in bezug auf die Zugfestigkeit von Körpern mit Eindrehungen oder Einkerbungen nicht allgemein gesagt werden kann: sie ist größer oder kleiner als diejenige von prismatischen Körpern aus dem gleichen Material. Es erscheint unstatthaft, das für ein zähes Material gewonnene Ergebnis ohne weiters auf ein weniger zähes

160

161

oder ein sprödes zu übertragen und umgekehrt¹). In bezug auf den Grad der Ungleichmäßigkeit der Spannungsverteilung über den Querschnitt bei Belastungen unterhalb des Bruches ist hiermit kein Urteil ausgesprochen²).

Ähnlich wie bei den Stäben mit Eindrehungen liegen die Verhältnisse bei Stäben mit Bohrungen, seitlichen Kerben usf. Zerreißversuche mit solchen Stäben liefern für zähes Material eine höhere Festigkeit, eine Folge der Hinderung der Querzusammenziehung, wie Verfasser bereits in der Zeitschrift der Vereines deutscher Ingenieure 1889, S. 478 darzulegen veranlaßt war. Bei sprödem Material ist Verminderung der Festigkeit zu erwarten, entsprechend den oben angeführten Ergebnissen mit Gußeisenstäben.

2. Einfluß der Länge und des Durchmessers.

Versuche von Barba, die in der Hauptsache von Coureau und Biguet durchgeführt wurden (Barba, Mémoires et compte rendu des travaux de la Société des Ingenieurs Civils 1880, S. 682 bis 714). sowie von Bauschinger (Mitteilungen aus dem mechanisch-technischen Laboratorium der K. technischen Hochschule in München, 1892, Heft XXI), zeigen:

- a) eine, allerdings nicht bedeutende Abnahme der Festigkeit mit wachsendem Durchmesser, welche Verminderung auch von Ungleichartigkeit des Materials herrühren kann³),
- $\beta)$ Unabhängigkeit der Querschnittsverminderung ψ vom Durchmesser,
- γ) Wachsen der Dehnung φ , wenn bei gleicher Meßlänge der Stab stärker gewählt wird (vgl. die Darlegungen S. 146 u. f.).
- δ) Unabhängigkeit der Dehnung φ vom Durchmesser d und der Länge l, sofern das Verhältnis l:d das gleiche bleibt.

¹⁾ Über die aus dem Einfluß der Stabform auf die Zugfestigkeit hergeleiteten Begriffe "scheinbare" und "wahre" Zugfestigkeit s. des Verfassers Darlegungen in der Zeitschrift des Vereines deutscher Ingenieure 1898, S. 238 u. f. Vgl. auch Fußbemerkung 1, S. 13.

²) Vgl. in dieser Hinsicht § 56, Ziff. 3.

³) Bei Untersuchungen der vorliegenden Art, für die die Probestäbe in der Regel aus Stangen von solchem Querschnitt herausgearbeitet werden, daß der Stab mit den größten Querschnittsabmessungen entnommen werden kann, darf nicht übersehen werden, daß die Beschaffenheit des Materials im Kern der Stange abweichen kann von derjenigen des Randmaterials, wie bereits S. 152 hervorgehoben worden ist.

C. Bach, Elastizität. 8. Aufl.

3. Einfluß der Querschnittsform.

A. Die Versuchsstäbe haben verschiedene Querschnittsform, jedoch gleich große Querschnittsfläche. (Eigene Versuche 1904.)

Aus einer und derselben Stange Flußeisen von 40 mm Quadratseite wurden hergestellt:

3 Rundstäbe von 26 mm Durchmesser,

3 Flachstäbe von 40 mm Breite und 13 mm Stärke,

3 ausgefräste Stäbe mit Querschnitt nach Fig. 14.

Die mittlere prismatische Länge betrug 290 mm, die Meßlänge 260 mm, entsprechend der Gleichung 2 in § 8.

Die Stäbe wurden der Stange so entnommen, daß zunächst ein Rundstab, sodann ein Flachstab, hierauf ein Stab mit Querschnitt nach Fig. 14, alsdann wieder ein Rundstab usw. aufeinander folgten.

Die Ergebnisse der Untersuchung, der das Material in ausgeglühtem Zustande unterworfen wurde, sind in den folgenden Zusammenstellungen und den Schaulinien: § 4, Fig. 13 und 14 sowie Fig. 15 bis 21 dieses Paragraphen niedergelegt.

Fig. 23 (Stab J_1), Fig. 24 (J_8), Fig. 25 und 26 (J_9) Taf. V geben die photographischen Bilder der zerrissenen Stäbe; insbesondere läßt Fig. 23 die Güte des Materials erkennen.

Die Durchschnittswerte der Zusammenstellungen S. 165, die im Fig. 22 zeichnerisch dargestellt sind, lassen beim Vorwärtsschreiten von den Rundstäben zu den Rechteckstäben und von diesen zu den Stäben mit dem Querschnitt Fig. 14 deutlich erkennen:

Fig. 9, § 9, S. 158. Fig. 10, § 9, S. 158. Fig. 11, § 9, S. 158

§ 8, S. 142, 143, 146, § 9, S. 162,

Fig. 26.

- 1. bedeutendes Sinken der oberen Streckgrenze σ_o ,
- 2. weit geringeres Sinken der unteren Streckgrenze σ_u ,
- 3. erhebliche Verminderung des Unterschiedes $\sigma_{o} \sigma_{u}$,
- 4. Abnahme der Zugfestigkeit K_z .

Hiernach erweist sich die Streckgrenze, namentlich der Wert σ_o , abhängig von der Querschnittsform; sie liegt

am höchsten für die Rundstäbe, dann folgen die Flachstäbe und hierauf die Stäbe mit dem Querschnitt Fig. 14. Diese Abhängigkeit besteht auch hinsichtlich der Zugfestigkeit, wenn auch in geringerem Maße.

Nach der S. 152 u.f. angestellten Erwägung steht ein solcher Einfluß der Querschnittsform zu erwarten. Die Fasern, die bei dem Zugversuch das Bestreben haben, sich senkrecht zu ihrer Achse zusammenzuziehen, sind hieran bei dem kreisförmigen Querschnitt mehr gehindert als im Durchschnitt bei dem rechteckigen und bei diesem mehr als bei dem Querschnitt Fig. 14.

Von Interesse ist es, den Einfluß der Querschnittsform auf den Verlauf der Dehnungslinie während der Periode des Streckens des Materials in den Fig. 13 und 14, § 4, und den vorstehenden Fig. 15 bis 21 zu verfolgen.

Lehrreich ist ferner die Verfolgung des Vorganges beim Zerreißen der Stäbe mit dem Querschnitt Fig. 14: zunächst reißt der Steg in der

§9. Einfluß der Querschnittsform.

Mitte, dann erweitert sich der Riß nach den Flanschen hin, diese beginnen in der Mitte zu reißen, und zuletzt erfolgt der Bruch an den Flanschenecken; die beiden photographischen Bilder, Fig. 25 und 26, Taf. V, deuten auf diese Aufeinanderfolge hin.

Querschnittsform	Streck obere _{σo} kg/qcm	grenze untere _{σu} kg/qcm	Zug- festig- keit K _z kg/qcm	Brúch- dehnung ¢ %	$\begin{array}{c} \mathbf{Quer.}\\ \mathbf{schnitts-}\\ \mathbf{verminde-}\\ \mathbf{rung} \ \psi\\ 0_{0} \end{array}$	Schaulinie
Rundstab J_1 ,, J_4 ,, J_7	2407 2465 2134	2075 1895 1972	3667 3578 3525	33,8 31,9 30,0	69,7 71,0 70,2	Fig. 14, § 4 ,, 13, § 4 ,, 15, § 9
Durchschnitt Flachstab J_2 ,, J_5 ,, J_8	2335 2255 2009 2291	1981 1988 1940 2004	3590 3507 3474 3484	31,9 30,4 30,5 26,3	70,3 62,6 63,7 61,4	Fig. 16, § 9 ,, 17, § 9 ,, 18, § 9
Durchschnitt Stab nach Fig. 14 J_3 ,, ,, ,, 14 J_6 ,, ,, ,, 14 J_9	2185 1893 1922 1941	1977 1870 1886 1880	3488 3333 3320 3353	29,1 35,3 30,4 26,6	62,6 62,7 59,5 61,0	Fig. 19, § 9 ,, 20, § 9 Fig. 21, § 9

B. Die Flachstäbe haben verschiedene Breite (1885).

Nummer des Versuchs	Stärke a cm	Breite b cm	Ver- hältnis b:a	Festigkeit <i>Kz</i> kg/qcm	Dehnung $\varphi = 100 \frac{l_b - l}{l}$ ⁰ / ₀	Material
1	1,015	2,000	1,98	4270	29,5	
2	0,995	5,985	6,02	4130	35,0	Fluß-
3	1,017	9,980	9,81	4020	40,0	eisen
1	1,310	2,000	1,53	2400	51,5	
2	1.308	5,980	4.57	2380	55,2	Kupfer
3	1,313	9,990	7,61	2315	59,0	•

Nach diesen Versuchen nimmt die Festigkeit mit der Breite etwas ab. I. Zug.

Hierbei ist nicht außer acht zu lassen, daß dieser Einfluß, wenn von der Möglichkeit geringer Materialunterschiede abgesehen wird, auch von der Einspannung herrühren kann, und daß es überhaupt nicht leicht ist, bei verhältnismäßig breiten Stäben eine gleichmäßige Verteilung der Zugkraft über den Querschnitt zu sichern.

Wir schließen aus den im vorstehenden niedergelegten Versuchsergebnissen, daß Ergebnisse von Zugversuchen, streng genommen, nur dann unmittelbar verglichen werden können, wenn die Versuchsstäbe, sofern sie nicht dieselben Abmessungen besitzen, wenigstens geometrisch ähnlich sind.

> Meß- Querschnitts- Querschnitt länge abmessung

Gelten für 2 Rundstäbe

die Größen $l_1 l_2$ $d_1 d_2$ $f_1 = \frac{\pi}{4} d_1^2$, $f_2 = \frac{\pi}{4} d_2^2$

und für 2 Flachstäbe die

Größen $l_1 l_2 \ a_1 b_1 \ a_2 b_2 \ f_1 = a_1 b_1, \ f_2 = a_2 b_2$

so findet sich als Bedingung der Vergleichbarkeit der ermittelten Dehnungen für Rundstäße

$$l_1: l_2 = d_1: d_2 = \sqrt{\frac{\pi}{4}d_1^2}: \sqrt{\frac{\pi}{4}d_2^2} = \sqrt{f_1}: \sqrt{f_2},$$

und für Flachstäbe mit Annäherung

$$l_1: l_2 = \sqrt{a_1 b_1} : \sqrt{a_2 b_2} = \sqrt{f_1} : \sqrt{f_2}.$$

Der Satz, der soeben hinsichtlich der Vergleichbarkeit der Ergebnisse von Zugversuchen festzustellen war, gilt mit der in § 10 ausgesprochenen Ergänzung dahin gehend, daß auch die Geschwindigkeiten, mit denen die Versuche durchzuführen sind, ausreichend übereinstimmen müssen, gleichfalls für alle anderen Beanspruchungsarten.

Bei den Versuchen, über die im vorstehenden berichtet worden ist, durfte angenommen werden, daß sich das Material in allen Stabteilen im gleichen Zustande befand. Bei Probekörpern, die Querschnittsteile sehr verschiedener Dicke aufweisen, wie z. B. die Schaufeln von Dampfturbinen, ist diese Voraussetzung häufig nicht erfüllt; an den dünnen Stellen besitzt dann das Material oft größere Festigkeit und kleinere Dehnung als an den dickeren (infolge stärkerer Bearbeitung durch Ziehen, Walzen oder infolge rascher Abkühlung, Härtung usw.). Wird der ganze Stab zerrissen, so beginnt der Bruch an der Stelle, an der das Material die geringste Zähigkeit besitzt, und pflanzt sich von dort aus fort; die Festigkeit und die Zähigkeit aller Teile wird nicht ausgenutzt. Zur richtigen Beurteilung des Materials gehört in solchem Falle, daß Stäbe aus den verschiedenen Stellen der Gebrauchsgegenstände entnommen und geprüft werden. (Vgl. auch das unter C sowie auf S. 187 u. f. Gesagte.)

C. Versuche mit Rund- und Flachstäben aus Elußund Schweißeisen.

Bauschinger gelangte hinsichtlich des Einflusses der Form der Probestäbe zu folgenden Ergebnissen.

- a) Die Dehnungszahl (a, Gleichung 3, §2), wie sie durch die üblichen Messungen an der Oberfläche der Stäbe erhalten wird, ist bei Rundstäben etwas kleiner als bei Flachstäben aus dem gleichen Material; bei dicken Flachstäben etwas kleiner als bei dünnen und überhaupt bei größeren Querschnittsabmessungen ein wenig geringer als bei kleineren Querschnitten. Diese Unterschiede sind jedoch nur gering und werden durch zufällige, von Materialungleichheiten herrührende Abweichungen weit übertroffen.
- b) Die Zugfestigkeit (K_z) , Gleichung 1, § 3) erscheint von der Querschnittsform nicht beeinflußt. (Vgl. dagegen die Versuchsergebnisse unter A, insbesondere Fig. 22.)
- c) Die Querschnittsverminderung (ψ , Gleichung 2, §3) ist bei Flachstäben von der Form und Größe des Querschnittes unabhängig. Stärkere Rundstäbe geben etwas kleinere Werte für dieselbe als schwächere aus dem gleichen Material, doch ist der Unterschied nicht bedeutend.
- d) Die Dehnung (φ , Gleichung 3, §3), gemessen für eine bestimmte ursprüngliche Länge, ist von der Querschnittsform, von dem Verhältnis der Breite zur Dicke bei Flachstäben, also davon, ob der Querschnitt überhaupt kreisrund oder rechteckig ist, nicht abhängig; aber sie wächst mit der Größe f des Querschnittes derart, daß

$$\varphi = a + b V f$$

gesetzt werden kann, worin die Koeffizienten a und b wesentlich von der Beschaffenheit des Materials abhängen. (Vgl. hierzu S. 146 u. f.)

e) Vergleichbare Ergebnisse für die Dehnung (φ , Gleichung 3, § 3) werden erhalten, wenn man die Meßlänge der Probestäbe proportional der Quadratwurzel aus dem Querschnitt wählt. Unter Zugrundelegung eines Normal-Rundstabes von 20 mm I. Zug.

Stärke und 200 mm Meßlänge ergibt sich die proportionale Länge eines Probestabes vom Querschnitt f gleich

$$200 \frac{\sqrt{f}}{\sqrt{\frac{\pi}{4} \cdot 20^2}} = 11.3 \sqrt{f} \text{ mm},$$

sofern f in qmm eingesetzt wird.

- f) Das auf S. 149 und 150 zuerst angegebene Verfahren zur Messung der Dehnung erscheint genügend genau, solange die Bruchstelle noch wenigstens ein Viertel der Meßlänge von den Enden der letzteren abliegt. Dabei sind Rundstäbe auf zwei entgegengesetzten Seiten, Flachstäbe auf einer Breitseite gemessen worden.
- g) Querschnittsverminderung (ψ , Gleichung 2, §3) und Dehnung (φ , Gleichung 3, §3) stehen in keinem Zusammenhang.
- h) Proportionalitäts- und Streckgrenze können auch dann, wenn die Probestäbe sorgfältigst ausgeglüht worden sind, in einem und demselben Eisenstück oder in Stücken der nämlichen Erzeugungsfolge in so hohem Grade verschieden sein, daß dagegen alle anderen Einflüsse, diejenigen der Form und der Größe des Querschnittes, falls sie überhaupt vorhanden sind, verschwinden¹).

Wird die Proportionalitätsgrenze von zerrissenen Stäben gleichen Materials bestimmt, so ergibt sie sich nahezu gleich hoch gehoben, wie hoch oder niedrig sie auch ursprünglich gelegen war²).

§ 10. Versuchsergebnisse über den Einfluß der Zeit auf Festigkeit, Dehnung und Querschnittsverminderung. Einfluß der Temperatur und der Behandlung des Materials.

1. Einfluß der Zeit.

Von Untersuchungen, die den schon längst bekannten, auch in § 5, Ziff. 4 bereits erörterten Einfluß der Zeitdauer des Versuchs nachweisen, seien die folgenden angeführt.

¹) Vgl. dagegen die Ergebnisse der unter 3A besprochenen Versuche.

²⁾ Dieses Ergebnis dürfte in erster Linie eine Folge des Umstandes sein, daß das Material beim erstmaligen Zerreißen den weitaus größten Teil der bleibenden Dehnung erfahren hat, deren es überhaupt fähig war, ehe die Einschnürung beginnt.

§ 10. Versuchsergebnisse über den Einfluß der Zeit auf Festigkeit usw. 169

Versuchsreihen mit Rundstäben von 1,6cm Stärke aus Flußeisen

Dauer des	• Versuchs	\mathbf{F} estigl	keit K2	Dehnun	g, gemessei	n auf l	0 cm
2,5 M	linuten	3935 k	g/qcm		$32^{0}/_{0}$		
75	,,	3720	"		34 ,,		
(Barba,	Mémoires	et compte	rendu	des travau	x de la 8	Société	des
		Ingénieurs (Civils 1	880, S. 710.)		

Feinkorneisen.

Dauer des Versuchs	Festigkeit K_z	Dehnung φ	Festigkeit K_z	Dehnung φ
Rasch zerrissen	4990 kg/qcm	22 %	4340 kg q cm	$23,3^{0}/_{0}$
Langsam zerrissen	4493 ,,	25,2 ,,	3770 ,,	28,8 ,,

Gewöhnliches Puddeleisen.

Dauer des Versuchs	Festigkeit K_z	Dehnung φ
Rasch zerrissen	3720 kg/qcm	30,4º/o
Langsam zerrissen	3516 .,	35,2,

Harter Wolframstahl.

Dauer des Versuchs	Festigkeit K_z	Festigkeit K_z	Festigkeit K,
Rasch zerrissen	14350 kg/qcm	13270 kg/qcm	11359 kg/qcm
Langsam zerrissen	12300 ,,	11 339 ,,	10230 ,,
	Dehnung 1 b	is $1,5^{0}/_{0}$.	
		~~~	

(Goedicke, Österr. Zeitschrift für Berg- u. Hüttenwesen 1883, S. 578.)

Hiernach ergaben für schmiedbares Eisen rascher durchgeführte Versuche eine größere Festigkeit sowie eine kleinere Dehnung. Dadurch erklärt es sich, daß die Prüfung eines und desselben Materials, die an der einen Stelle sehr rasch durchgeführt worden ist, daselbst ungenügende Dehnung ergibt, an einer zweiten Stelle, langsamer vorgenommen, die bedungene Dehnung aufweist.

Eigene Versuche mit Rundstäben von 20 mm Durchmesser aus Flußeisen und Flußstahl (1913).

Versuchsdauer	20 Sek.	18 Sek.	2 Min. 14 Sek	2 Min. 56 Sel	x, 23 Min. 53 Se	ek. 19 Min.
$K_{z}$ in kg/qcm	3997	4010	3961	3897	3847	3862
Mittel	4004		39	29	38	55
$\varphi$ in $\theta_0$	35,0	33.8	31.4	30.1	33.8	31.1
Mittel	34	.4	30.8		32	.5
$\psi$ in $\frac{0}{0}$ .	70,4	68,5	70.1	71.1	70.4	70.4
Mittel	69	9,5	70	,6 ́	70	,4

I. Zug
--------

Versuchsdauer	16 Sek.	18 Sek.	2Min. 32Sek.	2 Min. 33 Sek	. 21Min. 39Sek	. 23Min. 41Sek.	
$\overline{K_z \operatorname{in} \operatorname{kg}/\operatorname{qcm}}$	5653	5583	5494	5522	5338	5331	
Mittel	5618		55	08	5335		
$\varphi$ in $\frac{9}{0}$ .	26,9	24.4	25.6	25.4	25.8	28.0	
Mittel	25	5,7	25	.5	26	.9	
$\psi$ in $\frac{1}{0}$ .	52,2	52,2	54.5	, 55.1	58.3	,° 54.5	
Mittel	52	2,2	, 54	,8	56	,4	

Eigene Versuche mit Rundstäben von 8mm Durchmesser aus Flußeisen (1919).

Versuchsdauer	<1 Sek (Fallwerk)				rund	1	rund 20 Min.			
$ \begin{array}{c} K_z  \mathrm{in}  \mathrm{kg/qcm} \\ \mathrm{Mittel} & . \\ \varphi  \mathrm{in}  {}^{0}\!\!\!/_{0}  . \\ \mathrm{Mittel}  . \\ \psi  \mathrm{in}  {}^{0}\!\!/_{0}  . \\ \mathrm{Mittel}  . \end{array} $		28,8 28 61,0 60	29,8 3,7 60,7 ),3	 27,0 61,0	5788 29,6 59,3	5569 55 26,5 28 59,3 59	5495 92 29,0 3,6 58,8 9,1	5515 29,3 58,8	5340 53 29,0 29 60,8 60	5308 524 29,5 9,3 61,0 0,9

Diese Ergebnisse bestätigen für Flußeisen und Flußstahl, daß rascher durchgeführte Versuche größere Festigkeit liefern.

Die Vergleichbarkeit der Bruchdehnungen wird nicht selten dadurch beeinträchtigt, daß einzelne der Flußeisenstäbe ausgeprägt zwei oder mehr Einschnürungen aufweisen. Bei den 1919 durchgeführten Versuchen war letzteres nicht der Fall. Sie lassen bedeutendere Abnahme der Bruchdehnung und Querschnittsverminderung für kurze Versuchsdauer nicht erkennen. Ähnliches gilt für die Flußstahlstäbe. Bei höherer Temperatur pflegt der Einfluß der Zerreißgeschwindigkeit viel erheblicher zu sein (vgl. S. 176, Fußbemerkung 1). Beispielsweise fanden sich für Stahlguß aus eigenen Versuchen (1903) folgende Werte:

	300	0 ° C	400	) • C	500 º C		
Versuchsdauer	wi <b>e übli</b> ch	bedeutend länger	wie üblich	bedeutend länger	wie üblich	bedeutend länger	
$\begin{array}{c} K_z \text{ in } \text{kg/qcm} \\ \varphi  ,,  \frac{0}{0}  \cdot  \cdot \\ \psi  ,,  \frac{0}{0}  \cdot  \cdot \end{array}$	4242 19,0 49,4	4107 23,8 52,8	3473 33,3 58,0	2866 38,5 63,8	$2043 \\ 51,3 \\ 75,7$	$1565 \\ 41,4 \\ 57,0$	

§ 10. Versuchsergebnisse über den Einfluß der Zeit auf Festigkeit usw. 171

## Kupfer.

Den Einfluß der Belastungsdauer bei höherer Temperatur stellte zuerst Stribeck fest (Zeitschrift des Vereines deutscher Ingenieure 1903, S. 559 u.f.). Er fand z.B. bei 317°C

Versuchsdauer 2 Min.  $K_z = 1580 \text{ kg/qcm}$   $\varphi = 41.50/_0$   $\psi = 720/_0$ ,, lang  $K_z = 820$  ,,  $\varphi = 28.40/_0$   $\psi = 300/_0$ . Ludwik (Zeitschrift des Vereines deutscher Ingenieure 1913, S. 209 u. f.) ermittelte bei gewöhnlicher Temperatur für Versuchsdauer von 5 Minuten bis 14¹/, Monate

 $K_z = 2530$  bis herunter auf 2020 kg/qcm.

Auch für die Kupferlegierungen ergibt sich der Einfluß der Versuchsdauer im Falle höherer Temperatur weit erheblicher als bei gewöhnlicher Temperatur.

#### Leder.]

	Dauer	des Versuchs	Festigkeit $K_z$
1	Stunde	26 Minuten	301  kg/qcm
	166	Tage	200 ,,

(George Leloutre, Les transmissions par courroies, cordes et cables métalliques, Paris 1884, oder des Verfassers Bericht hierüber in der Zeitschrift des Vereines deutscher Ingenieure 1884, S. 871. Daselbst finden sich auch Mitteilungen über das asymptotische Wachstum der Verlängerung mit der Dauer der Belastung sowie über das dementsprechende Verhalten bei Entlastung.)

Versuche des Verfassers über den Einfluß der Zeit auf die Festigkeit des Leders bestätigen das von Leloutre Gefundene. Vergleiche auch den dritten, in § 4, Ziff. 7, besprochenen Riemen.

#### Hanfseile (1886).

Die ursprünglich 750 mm lange, der Beobachtung unterworfene Strecke eines 55 mm starken Seiles aus badischem Schleißhanf, das nach und nach bis zu 500 kg belastet worden ist, zeigt, nachdem diese Belastung 10 Minuten gewirkt hat, die Länge 788,4 mm. Das Seil bleibt längere Zeit hindurch derselben Anstrengung ausgesetzt.

Es beträgt nach 10 Minuten 1 7 26 50 82 120 Std. die Seillänge 788,4 789,7 791.8 793,2 794,5 795,8 796,5 mm entsprechend einer

weiteren Verlänge-

rung um 0 1,3 8,1 ,, 3,4 4,8 6,1 7.4

Hierauf wurde das Seil bis auf 100 kg entlastet.

I. Zug.

Es beträgt unmittelbar	nach der Entlastung	nach 34 Stunden
die Seillänge	$791,9~\mathrm{mm}$	$790,8~\mathrm{mm}$
entsprechend einer		
Verkürzung um	4,6 ,,	5,7 ,,

(Des Verfassers Versuche über die Elastizität von Treibriemen und Treibseilen in der Zeitschrift des Vereines deutscher Ingenieure 1887, S. 221 u. f.)

Vgl. auch die Versuche mit Eschenholz auf S. 111.

Hieraus folgt, daß die Gesamtdehnung, der Dehnungsrest wie auch die Federung Funktionen der Zeit sind.

Nach Maßgabe des im vorstehenden enthaltenen Materials wird behufs Erlangung vergleichbarer Versuchsergebnisse davon auszugehen sein, daß auch die Geschwindigkeit bei der Durchführung der Versuche entsprechend gewesen sein muß (vgl. § 9, Ziff. 3). Dabei ist, wie bereits in § 5, Ziff. 4, hinsichtlich des Einflusses der Zeit bemerkt wurde, die Art des Stoffes im Auge zu behalten. Beispielsweise wird ein Stab aus hartem Stahl bei gewöhnlicher Temperatur rasch zerrissen werden müssen, soll ein bedeutender Einfluß der Zeit auf das Ergebnis hervortreten. Dagegen wird sich dieser bei einem Lederriemen auch noch im Falle längerer Versuchsdauer feststellen lassen.

Die unmittelbare Vergleichbarkeit der Prüfungsergebnisse setzt somit voraus: entweder es ist jeweils die Versuchsdauer so lang, daß der Einfluß der Zeit ein unmerklicher, oder es muß die Geschwindigkeit, mit der die Dehnung erfolgt, wenigstens angenähert die gleiche Größe besitzen.

Von Bauschinger ausgeführte Versuche über den Einfluß der Zeit bei Zugproben mit verschiedenen Metallen haben nach dessen Mitteilung zu dem Ergebnisse geführt, daß bei Fluß- und Schweißeisen, bei Kupfer, bei Messingblech und bei Bronzeguß ein Einfluß der Zeit oder der Geschwindigkeit, mit der die Dehnung vorgenommen wird, nicht oder kaum merklich ist innerhalb der Grenzen, in denen diese Versuche durchgeführt worden sind. Bei Messingguß ist er sehr gering und wird, wenn überhaupt vorhanden, leicht durch zufällige Ungleichmäßigkeiten des Materials verdeckt; ebenso bei Zinkguß und Gußeisen. Bei Zinkblech dagegen ist er im Verlaufe der Dehnungslinie (vgl. §3, Fig. 1, S. 11) sowohl als auch bei der Bruchbelastung  $(E_2E, \text{ Fig. 1}, \S 3)$  deutlich erkennbar, nicht aber an der Dehnung ( $\varphi$ , Gleichung 3, § 3) und Querschnittsverminderung (w, Gleichung 2, § 3). Bei Blei (Guß- und Walzblei) ist der Einfluß der Zeit unsicher gegenüber dem Verlaufe des Arbeitsdiagramms, unverkennbar an der Bruchbelastung und kaum bemerkbar an der Bruch§ 10. Versuchsergebnisse über den Einfluß der Temperatur auf Festigkeit usw. 173

dehnung. Am größten erwies sich der in Rede stehende Einfluß bei gegossenem Zinn. (Mitteilungen aus dem mechanisch-technischen Laboratorium der k. technischen Hochschule in München 1891, Heft XX.)

Die Dauer dieser Bauschingerschen Versuche z. B. mit den 4 Flußeisenstäben betrug nach Überschreiten der Streckgrenze und unter Abrechnung der Ruhepausen (von 30 Min., 17 Min., 22 Std., 32 Min., 22 Min.) 26, 41, 46 und 77 Minuten, d. s. Zeiträume, von denen der kleinste noch bedeutend größer erscheint als derjenige, innerhalb dessen sich bei Flußeisen der Einfluß der Dauer des Versuchs durch die Prüfungsergebnisse überhaupt deutlich äußert; sie liegen somit außerhalb des Gebietes, das für die obigen Darlegungen wie auch für diejenigen des § 5, Ziff. 4, in Betracht kommt. Bei Beachtung dieses Umstandes klärt sich der Widerspruch auf, der zwischen den Ergebnissen der Bauschingerschen Versuche und dem oben angeführten zu bestehen scheint. Eigene Versuche aus neuester Zeit (1918) haben auch für Zinkguß erhebliche Zunahme der Zugfestigkeit ergeben, wenn die Versuche rasch durchgeführt wurden.

Zu beachten ist im allgemeinen, daß mit der Formänderung beim Zerreißen eine Erwärmung des Materials verknüpft ist, insbesondere an der Einschnürungsstelle. Diese Erwärmung fällt unter sonst gleichen Verhältnissen um so höher aus, je weniger Zeit für die Ableitung der Wärme zur Verfügung steht; sie ist also bei rascher Versuchsdurchführung größer als bei langsamer Streckung des Stabes. Tritt Erwärmung von Erheblichkeit auf, so wird, auch wenn der Stab ursprünglich die gewöhnliche Temperatur des Versuchsraumes besaß, doch die Festigkeit bei höherer Temperatur ermittelt. Bei manchen Metallen kann hierdurch eine erhebliche Beeinflussung der Festigkeit bewirkt werden (vgl. Ziff. 2).

## 2. Einfluß der Temperatur.

Die Angaben, die über die Elastizitäts- und Festigkeitseigenschaften der Materialien gemacht werden, gelten, sofern nichts anderes bemerkt ist, für die gewöhnliche Temperatur, d. i. bei etwa 20°C. Zur Klarstellung, daß sich diese Eigenschaften bei höheren Temperaturen wesentlich ändern, seien die folgenden Versuche des Verfassers angeführt¹).

¹) Über die Versuche anderer finden sich Angaben in des Verfassers Maschinenelementen, 12. Aufl., S. 89 u. f. Vgl. namentlich auch die daselbst angegebene Schrift von R. Baumann, Die Festigkeitseigenschaften der Metalle in Wärme und Kälte, Stuttgart 1907. Hinsichtlich der Abhängigkeit der Dehnungszahl von der Temperatur s. u. a. Martens, Mitteilungen usw. 1890,

#### I. Zug.

# a) Versuchsreihen mit Rundstäben aus demselben Flußeisenblech (1903).

Bei jeder Temperatur wurden 4 Stäbe geprüft; die angegebenen Größen sind Durchschnittswerte.

Versuchs- tempe- ratur ° C	Streck obere kg'qem	grenze untere kg/qcm	Zug- festigkeit kg/qcm	Bruch- dehnung ⁰ /0	Quer- schnitts- verminde- rung	Be- lastungs- dauer Minuten	Schau- linie
20 200 300 400	2649 2391 1373 —	2176 2105 —	$3561 \\ 5140 \\ 4352 \\ 3200$	28,4 18,9 34,8 38,2	$\begin{array}{c} 69,3\\ 55,1\\ 63,7\\ 64,6\end{array}$	27 22 29 20	Fig. 1 ,, 2 ,, 3 ,, 4



Heft 4; Paul A. Thomas, Annalen der Physik, vierte Folge, Bd. 1, 1900, S. 232 u. f.

Über Versuche bis in die Nähe des Schmelzpunktes von Metallen berichtet P. Ludwik in der Zeitschrift des Vereines deutscher Ingenieure 1915, S. 657 u. f.

Auskunft über die Dehnungszahlen bei Flußeisen und Flußstahl, über die Größe der bleibenden Dehnungen bei verschiedenen Temperaturen gibt das Buch "Festigkeitseigenschaften und Gefügebilder". S. z. B. Fig. 3, 4, 8 usw., Fig. 361, 362, 365, 369, 372 usw., Fig. 424, 425, 547, 574, 577, 632, 641, 642, 646, 660, 672.

174

§ 10. Versuchsergebnisse über den Einfluß der Temperatur auf Festigkeit usw. 175

Eine Betrachtung der Schaulinien Fig. 1 bis 4 zeigt, daß der Vorgang des Streckens oder Fließens (§ 3) mit steigender Temperatur immer mehr an Ausdehnung verliert; die Streckgrenze sinkt und ist bei 400°C überhaupt nicht mehr ausgeprägt vorhanden.



Die Zahlen der Zusammenstellung lassen erkennen

1. zunächst starkes Wachsen der Zugfestigkeit von 3561 kg/qcm (bei 20°C) auf 5140 kg/qcm (bei 200°C), sodann Wiederabnahme derselben,

2. zunächst starke Abnahme der Bruchdehnung von 28,4 auf  $18,9\%_0$ , alsdann Wiederzunahme derselben,

3. Änderung der Querschnittsverminderung in demselben Sinn wie die der Bruchdehnung.

Die Schaulinien Fig. 1 bis 4 zeigen durch ihren Verlauf sowie

in der Größe der umschlossenen Fläche die Änderungen der Festigkeit, der Bruchdehnung und des Arbeitsvermögens (§3) deutlich¹).

## b) Versuchsreihen mit Rundstäben aus dem gleichen Stahlguß (1903).

Bei jeder Temperatur werden 4 Stäbe geprüft. Die angegebenen Größen sind Durchschnittswerte.

Versuchs-	Zug-	Bruch-	Querschnitts-
temperatur	festigkeit	dehnung	verminderung
° C	kg/qcm	º/0	⁰ / ₀
20	4285	25,5	50,4
200	4502	7,7	15,9
300	4788	12,0	15,8
400	3984	15,3	24,1
500	2691	33 3	44,6
550	2071	39,5	49,2

Die Ergebnisse lassen eine sehr bedeutende Abnahme der Bruchdehnung des Materials (Zähigkeit) bei rund 200 ° C erkennen, und zwar auf weniger als ein Drittel²).

1) Über die Einzelheiten dieser Untersuchung sowie über die Ergebnisse der Prüfung von weiteren 14 Flußeisenblechen ist berichtet in der Zeitschrift des Vereines deutscher Ingenieure 1904, S. 1300 u. f. An dieser Stelle ist auch über den Einfluß der Dauer der Belastung berichtet; derselbe beginnt sich zwischen 300° und 400°C geltend zu machen durch wesentliche Abnahme der Zugfestigkeit.

²) Die Ergebnisse der unter a besprochenen Versuche mit Flußeisenblech sowie die angeführten Versuche mit Stahlguß führen u. a. zu der Schlußfolgerung: für Dampfkessel, Dampfgefäße usw., welche Gegenstände im Betriebe höhere Temperaturen annehmen, und von denen man natürlich verlangt, daß sie in diesem Zustande volle Widerstandsfähigkeit besitzen, müssen die Festigkeitseigenschaften der Baustoffe bei diesen höheren Temperaturen beachtet werden. Das Material lediglich nach den Festigkeitseigenschaften bei gewöhnlicher Temperatur zu beurteilen, was jetzt noch geschieht, erscheint nicht richtig. Jedenfalls muß im Falle der Verwendung von Flußeisen und Stahlguß zu Dampfkesseln usw. die Zähigkeit des Materials bei höherer Temperatur und nicht diejenige bei gewöhnlicher Temperatur als maßgebend angesehen werden. (Über Material, das noch in hohen Temperaturen größere Widerstandsfähigkeit besitzt, vgl. "Festigkeitseigenschaften und Gefügebilder", S. 86.)

Gegen die hier ausgesprochene Vorsicht ist der Umstand geltend gemacht worden, daß der Arbeitsverbrauch bei der Kerbschlagprobe für 200 bis 300° C einen Höchstwert erreicht, was darauf hindeute, daß das Flußeisen in diesem Temperaturgebiete zäher, also auch weniger zur Rißbildung geneigt sei, als bei gewöhnlicher Temperatur. Demgegenüber muß festgestellt werden, daß Nietköpfe, die am Übergange des Schaftes in den Kopf nur wenig gerundet sind, § 10. Versuchsergebnisse über den Einfluß der Temperatur auf Festigkeit usw. 177

In Fig. 5 bis 7 sind die Linienzüge der Zugfestigkeiten, der Bruchdehnungen und der Querschnittsverminderungen dargestellt.

Weiteres s. Zeitschrift des Vereines deutscher Ingenieure 1903, S. 1762 u. f., 1904, S. 385 u. f.

Schraubenbolzen usw. in dem bezeichneten Temperaturgebiet viel leichter abspringen. Über die hierhergehörigen Versuche mit Nieten ist im Protokoll der 42. Delegierten- und Ingenieurversammlung des internationalen Verbandes der



Dampfkessel-Überwachungsvereine in München 1912, S. 76 u. f. berichtet. Fig. 8, 9, 10 und 11 zeigen die vom Schaubildzeichner der Prüfungsmaschine gezeich neten Dehnungslinien, die an folgenden Probekörpern erlangt wurden:

- Fig. 8. Nietschaft mit Übergang am Kopf; Niete beim Nieten auf die ganze Länge erwärmt.
  - " 9. Nietschaft mit Übergang am Kopf; Niete beim Nieten nur an dem zur Nietbildung erforderlichen Schaftstück glühend gemacht.
  - " 10. Nietschaft ohne Übergang am Kopf; Niete auf die ganze Länge erwärmt.
  - " 11. Nietschaft ohne Übergang am Kopf; Niete wie bei Fig. 9 erwärmt.

Deutlich tritt die Wirkung der scharfen Ecke am Nietkopf (Fig. 10 und 11), sowie der Einfluß der teilweisen Erwärmung (Fig. 9 und 11) in die Erscheinung.

Bis auf weiteres wird der Konstrukteur gut tun, Anzeichen für weniger günstiges Verhalten voll zu würdigen, gleichgültig ob sie sich bei der Zug oder bei der Kerbschlagprobe gezeigt haben.

Beachtung in bezug hierauf verdient noch der Umstand, daß Flußeisen, das im kalten Zustande Quetschung erfahren hat, oft sich spröde erweist, wenn es später Erwärmung auf 200 bis 400°C erfährt. Vgl. hierüber Zeitschrift des Vereines deutscher Ingenieure 1911, S. 1296; 1915, S. 628 u. f. sowie Jahrbuch der Schiffsbautechnischen Gesellschaft 1915, S. 479 u. f.

C. Bach, Elastizität. 8. Aufl.



Fig. 6.

§10. Versuchsergebnisse über den Einfluß der Temperatur auf Festigkeit usw. 179



c) Versuchsreihen mit Rundstäben aus Bronze (1900).

Die Bronze, deren Analyse die Zusammensetzung: 91,35 Kupfer, 5,45 Zinn, 2,87 Zink, 0,28 Blei, 0,025 Eisen ergab, lieferte unter der üblichen Belastungsdauer im Durchschnitt

	bei	200	100 0	2000	3000	4000	500 º C
Zugfestigkeit	{	$\begin{array}{c} 2395 \\ 1 \end{array}$	2424 1,01	$\begin{array}{c} 2245\\ 0,94 \end{array}$	$\begin{array}{c} 1368\\0,57\end{array}$	$\begin{array}{c} 625\\ 0,26 \end{array}$	441 kg/qcm 0,18
Bruchdehnung	{	36,3 1	35,4 0,98	$\begin{array}{c} 34,7 \\ 0,96 \end{array}$	$\begin{array}{c} 11,5\\0,32\end{array}$	0 0	0 % 0
Querschnitts- verminderung	{	52,1 1	47,4 0,91	48,2 0,93	$\begin{array}{c} 16,2\\0,31 \end{array}$	0 0	0 % 0

Die Verhältniszahlen bringen die Veränderlichkeit deutlich zum Ausdruck. In Fig. 12 und 13 sind die Linienzüge der Zugfestigkeiten und Bruchdehnungen dargestellt.



Nach Überschreiten der Temperatur von 200°C beginnt die Zug festigkeit ausgeprägt abzunehmen, die Bruchdehnung (das übliche Maß der Zähigkeit) außerordentlich stark abzufallen.

§ 10. Versuchsergebnisse über den Einfluß der Behandlung des Materials. 181

Lehrreich ist das Aussehen der Oberfläche der Stäbe:

Fig. 14, Taf. VII zeigt den gedrehten Stab vor dem Versuch

,, 15, ,, VII ,, ,, ,, ,, ,, ,, nach ,, ,, bei  $20^{9}$  C (Der Aufbau des Materials aus Kristallen, die weitgehende Formänderung erfahren haben, tritt deutlich zutage. Näheres s. "Festigkeitseigenschaften und Gefügebilder" unter IX.)

Fig.	16,	Taf.	VII	zeigt	$\operatorname{den}$	gedrehten	Stab	nach	$\operatorname{dem}$	Versuch	bei	100°	С
,,	17,	,,	VII	,,	,,	- ,,	,,	,,	,,	,,	"	200°	$\mathbf{C}$
,,	18,	,,	VII	,,	,,	,,	,,	,,	,,	"	,,	<b>300°</b>	$\mathbf{C}$
,,	19,	,,	VII	,,	,,	,,	,,	,,	,,	"	,,	400°	С

Fig. 18 läßt deutlich die Querrissigkeit erkennen, Fig. 19 (Formänderung der Kristalle nicht mehr erkennbar) zeigt keine Formänderung mehr, wohl aber die Sprödigkeit des Materials.

Das bei gewöhnlicher Temperatur außerordentlich zähe Material hat mit steigender Temperatur seine ganze Zähigkeit verloren.

Weiteres hierüber siehe Zeitschrift des Vereines deutscher Ingenieure 1900, S. 1745 u.f., 1901, S. 1477 u.f.

d) Versuchsreihen mit hochwertigem Gußeisen (1900).

Die Ergebnisse lieferten die in Fig. 12 gestrichelt eingetragene Kurve.

Weiteres s. Zeitschrift des Vereines deutscher Ingenieure 1901, S. 168 u. f.

Mit Kupfer und Duranametall hat Stribeck eingehende Versuche ausgeführt. Näheres hierüber s. Zeitschrift des Vereines deutscher Ingenieure 1903, S. 559 u. f., bzw. 1904, S. 897 u. f.

Eigene Versuche mit Preßmessing ergaben innerhalb des Temperaturgebietes 20 bis 400°C angenähert geradlinigen Abfall der Zugfestigkeit (also nicht den raschen Abfall bei rund 200°C, den Fig. 12 zeigt und Ansteigen der Bruchdehnung; bei der Kerbschlagprobe fand sich zwischen 200 und 300°C rascher Abfall der Widerstandsfähigkeit. Näheres s. "Festigkeitseigenschaften und Gefügebilder" S. 123.

#### 3. Einfluß der Behandlung des Materials.

# A. Gußeisen.

Schon in § 4, S. 44 u. f., war auf den Einfluß hinzuweisen, den das Abschrecken auf die Größe der Dehnungszahl und die Festigkeitseigenschaften äußert. Durch das Abschrecken wird die Ausscheidung
des Graphits mehr oder minder vollständig verhindert. Hartguß muß sich deshalb ähnlich verhalten, wie ein kohlenstoffreicher Stahl, der in gleicher Weise abgekühlt, also einer Härtung unterworfen worden ist. Die in §4 angegebenen Zahlen lassen in der Tat erkennen, daß die Dehnungszahl des Hartgusses klein und mit der Spannung nur wenig veränderlich ist.

#### B. Flußeisen und Stahl.

#### a) Härten und Anlassen.

1. Elastizitätsversuche.

Bei schmiedbarem Stahl tritt eine so starke Änderung des inneren Materialaufbaues durch die Härtung nicht ein wie bei dem Gußeisen durch Abschrecken. Für ihn sind auch nur vergleichsweise unerhebliche Unterschiede der Dehnungszahl festgestellt worden, wenn er im gehärteten und ungehärteten Zustand untersucht wird; und zwar ergibt sich die Dehnungszahl des gehärteten Materials meist größer als die des ungehärteten.

Stribeck ermittelte für Gußstahl, wie er von den Deutschen Waffen- und Munitionsfabriken in Berlin zu Stahlkugeln für Lager verwendet wird, durch Druckversuche mit 48 mm hohen Zylindern (Meßlänge 32 mm):

1. ungehärtet2. in Öl gehärtet $\alpha = \frac{1}{2127000} = 0,470$  Milliontel, $\alpha = \frac{1}{2128000} = 0,470$  Milliontel

3. in Wasser gehärtet

$$\alpha = \frac{1}{2102000} = 0,476 \text{ Milliontel}$$

Dagegen ergab sich die Proportionalitätsgrenze, die im Falle Ziff. 1 zwischen 5500 und 6000 kg/qcm lag, im Falle Ziff. 3 bei etwa 9000 kg/qcm. In ähnlichem Maße zeigte sich die Elastizitätsgrenze nach oben verschoben (Zeitschrift des Vereines deutscher Ingenieure 1901, S. 73 u. f.).

Eine neuere Arbeit Stribecks ergibt aus Druckversuchen für Zylinder je aus derselben Stange Chromstahl

	ungehärtet	vollgehärtet	ungehärtet	vollgehärtet
	1	1	1	1
α=	$=\overline{2206000}$	2096000	2227000	2120000
	= 0,453	= 0,477	= 0,449	=0,472 Milliontel
Elastizitäts- grenze	4400 und 500	0 <10000	3800 und 4000	< 10 0000

#### § 10. Versuchsergebnisse über den Einfluß der Behandlung des Materials. 183

Die Biegungsversuche lieferten (Zeitschrift des Vereines deutscher Ingenieure 1907, S. 1445 u. f.):

Ölhärtung (d = 1,2 cm)  $\alpha = \frac{1}{2044000} = 0,489$  Milliontel Wasserhärtung d =1,21,0 1,21,0 0,8 0,8 1 1 1 1 1 1  $\alpha = \frac{1}{2032000}$ 1988000 2011000 2011000 1984400 1984000 = 0.497= 0.504 = 0.504 Mill. = 0.492= 0.503= 0.497

Zu ähnlichen Ergebnissen führten eigene Versuche, über die in "Festigkeitseigenschaften und Gefügebilder", S. 42 u. f. sowie Fig. 225 berichtet ist. Vgl. auch das am Schlusse von Ziff. 2 Bemerkte.

2. Eigene Zugversuche (1910).

Aus demselben Material wurden durch Drehen auf angenähertes Maß Stäbe hergestellt und sodann folgenden Behandlungen unterworfen.

- 1. Stab: auf Kirschrotglut erwärmt, langsam in Asche abgekühlt ("ausgeglüht");
- 2. Stab: auf Kirschrotglut erwärmt, in Wasser von 15°C abgekühlt ("gehärtet");
- 3. Stab: zuerst gehärtet (wie Stab 2), hierauf dunkelkirschrot erwärmt und in Wasser von 15^o-C abgekühlt;
- 4. Stab: auf Kirschrotglut erwärmt, in Öl abgekühlt ("ölgehärtet");
- 5. Stab: zuerst gehärtet (wie Stab 2), sodann erwärmt, bis blaue Anlauffarbe eintrat, und in Wasser abgekühlt ("gehärtet und blau angelassen").

Die Stäbe wurden alsdann auf den genauen Durchmesser abgedreht bzw. geschliffen und der Zugprobe unterworfen. Die Ergebnisse der letzteren sind in der Zahlentafel, S. 184, enthalten.

Die Dehnungslinien der Stäbe der Versuchsreihe 1 sind in Fig. 20, diejenigen der Stäbe 1, 2, 4 und 5 der Versuchsreihe 2 in Fig. 21 und die der Stäbe 1, 4, 6 und 7 der Versuchsreihe 3 in Fig. 22 dargestellt. Diese Linien lassen den Einfluß der Behandlung auf das untersuchte Material deutlich erkennen. (Vgl. auch Fig. 16, § 4, S. 58, die den Einfluß des Härtens bei Chromnickelstahl zeigt. Die dortigen Linienzüge sind den für die Stäbe 1 und 7 in Fig. 22 dargestellten sehr ähnlich.

Material	Stab	Streckgrenze	Zugfestig- keit	Bruch- dehnung auf 10 d	Quer- schnitts- verminde- rung	Arbeits- vermögen
	Nr.	kg/qcm	kg/qcm	°/o	°/o	kgm/ccm
Versuchs- reihe 1	1	{2445 o. {2252 u.	3498	34,5	72,2	8,3
	<b>2</b>	3344	4538	16,7	70,8	4,5
	2a ¹ )	nicht ausgeprägt vorhanden	5228	16,7	35,3	6,6
Flußeisen	4	<b>(3089</b> o. <b>(2994</b> u.	4169	25,3	69,7	7,4
	5	{3248 o. {3169 u.	4312	21,9	70,8	5,7
Versuchs- reihe 2	1	{3217 o. {2962 u.	5182	26,05	57,0	9,3
	2	nicht ausgep:ägt vörhanden	8945	0,7	0	1,4
Siemens-	3	(5318) ² )	7197	11,0	62,7	nicht ermittelt
Martin- Stahl	4	4554	6847	12,4	59,6	4,7
"Härte III"	5	nicht ausgeprägt vorhanden	7427	8,5	52,3	3,7
Versuchs- reihe 3	1	{3656 o. {3624 u.	6656	18,9	36,7	8,9
	2	nicht ausgeprägt vorhanden	10047	1,05	7,2	1,2
	3	7261	8815	7,5	47,5	nicht ermittelt
Siemens- Martin-	4	nicht ausgeprägt vorhanden	9694	9,4	31,9	6,0
Stahl,	5	,,	12787	0,7	1,0	
"Härte V"	<b>6</b> ³ )	, ,,	13181	5,3	32,0	3,8
	$7^{4}$	7291	8577	13,6	49,5	7,9
	83)	5/14	8754	32,0	49,0	

Das Aussehen der zerrissenen Stäbe 1 und 3 der Versuchsreihe 3 zeigen die Fig. 23 und 24 auf Tafel VI.

1) Gehärtet nach Erhitzung auf rund 860° C, d. i. höher als bei Stab 2.

184

²) Streckgrenze schwach ausgeprägt.

⁻⁾ Behandlung wie bei 5, jedoch mit Anlassen auf rund 450° C.
⁴⁾ Behandlung wie bei 5, jedoch mit Anlassen auf rund 680° C.
⁵⁾ Behandlung wie bei 7, geprüft bei 300° C.



§10. Versuchsergebnisse über den Einfluß der Behandlung des Materials. 185



Von erheblichem Interesse ist auch das Verhalten des in verschiedener Weise gehärteten Materials, wenn zum Zwecke der Ermittlung der Dehnungszahl Feinmessungen vorgenommen und dabei auch die bleibenden Formänderungen bestimmt werden. Je nach der Behandlung gelingt es. zu erreichen. daß bleibende Dehnungen erst bei höheren Belastungen eintreten, so daß die Elastizitätsgrenze höher gelegt erscheint (Federhärtung, vgl. auch S. 58). Wird bei der Här-Temperatur gewählt tung hohe und die Wärme rasch entzogen, so zeigen sich bei verhältnismäßig niedrigen Belastungen bleibende Dehnungen. Überdies ergeben sich sehr häufig die federnden Dehnungen nicht mehr proportional den Spannungen.

I. Zug.

Weitere Einzelheiten s. "Festigkeitseigenschaften u. Gefügebilder" unter 1c und in dem Vortrage von R. Baumann: "Über das Vergüten von Eisen und Stahl", Stuttgart 1917.

#### b) Einsetzen und Härten (1914).

(Jahrbuch der Schiffbautechnischen Gesellschaft 1915, S. 156 u.f.)

Rundstäbe aus Flußeisen von 15 mm Durchmesser wurden durch Glühen in Einsatzpulver (in der Hauptsache aus Kohle von Leder, Horn, Knochen usw. bestehend) außen mit einer Schicht von höherem Kohlenstoffgehalt versehen und zunächst im ausgeglühten Zustande der Zugprobe unterworfen. Die Einsatztiefe betrug ungefähr 0,4, § 10. Versuchsergebnisse über den Einfluß der Behandlung des Materials. 187

1,1 und 1,6 mm. Zum Vergleich wurde auch ein Stab geprüft, der nicht eingesetzt war.

Die für den letzteren erlangte Dehnungslinie (vgl. §3, Fig. 1) ist in Fig. 25 mit a, die zu dem 1,1 mm tief eingesetzten Stab gehörige mit b bezeichnet. Während die Linie a nach Erreichung der Höchstlast  $EE_2$  wieder absinkt, wobei sich der Stab örtlich einschnürt, bricht



Fig. 25.

die Linie b unter der Belastung  $GG_2$  plötzlich ab. Dies erklärt sich aus der Art, wie das Rand- und Kernmaterial zusammenwirken, was im folgenden besprochen sei.

Die am Stab angreifende Kraft überträgt sich, solange vorwiegend tedernde Dehnungen entstehen, ziemlich gleichmäßig auf die Randschicht und das Kernmaterial, weil die Dehnungszahlen für beide ziemlich gleich groß sind (s. u.). Bei weiterer Steigerung der Belastung, wenn die bleibenden Verlängerungen Bedeutung erlangen, findet eine gemeinsame Streckung beider statt. Dies ist aber nur solange möglich, als die Dehnungsfähigkeit der weniger zähen Randschicht nicht überschritten wird. Erfolgt dies, so reißt die Randschicht ein, es bildet sich ein feiner Riß (vgl. Fig. 30, Taf. VI), der sich in das Kernmaterial fortpflanzt und damit den Bruch des ganzen Stabes bewirkt, obgleich der Kern, falls eben der Riß nicht vorhanden wäre, noch eine weit größere Streckung vertragen würde.

Dabei wird auch die Zugfestigkeit des Kernmaterials nicht voll ausgenutzt. Einen Anhalt dafür, welche Spannung im Kern bei Eintritt des Bruches wirksam geworden ist, bietet die Länge  $HG_2$  in Fig. 25, d. i. diejenige Ordinate der Dehnungslinie a, die zu der Streckung  $OG_2$  im Augenblick des Bruches von Stab b gehört.

Hiernach besitzt im ausgeglühten Zustande der eingesetzte Stab zwar eine höhere Zugfestigkeit als das Kernmaterial, aber eine weit geringere Dehnung. Auch seine Querschnittsverminderung ist I. Zug.

sehr klein, weil das Auftreten des Risses in der Außenschicht das Zustandekommen der örtlichen Einschnürung verhindert.



Dies geht anschaulich aus Fig. 26 hervor, in der zu den Einsatztiefen als wagrechten Ordinaten die Werte  $K_z$ ,  $\varphi$  (diese nur für die Stäbe mit 0, 0,4 und 1,1 mm Einsatztiefe, der 1.6 mm eingesetzte Probekörper tief brach außerhalb der Meßlänge) und  $\psi$  als señkrechte Ordinaten aufgetragen sind. Die Zugfestigkeit nimmt mit der Einsatztiefe zu; damit gelangt die größere Festigkeit des mehr Kohlenstoff enthaltenden Randmaterials soweit zur Geltung, als es nach dem zur Fig. 25 Bemerkten möglich ist. Die Werte von  $\varphi$  und  $\psi$ dagegen nehmen mit wachsender Einsatztiefe bis zur Versuchsgröße 1,1 mm stark ab.

Noch viel ausgeprägter treten diese Erscheinungen auf, wenn die eingesetzten Stäbe nicht im ausgeglühten Zustande, sondern ge-



härtet zerrissen werden. Fig. 27 und 28 enthalten die Ergebnisse der Prüfung von Probekörpern, die in gleicher Weise eingesetzt waren

wie oben bemerkt, hierauf jedoch Härtung in Wasser erfahren hatten, gefolgt von Anlassen bei 200° C.

Die Dehnungsfähigkeit der Außenschicht, die dabei große Härte annimmt, ist dann sehr klein. Infolgedessen tritt schon nach geringer Streckung des Stabes Anreißen und damit der Bruch des Stabes ein, was an dem Verlauf der Dehnungslinien b, c und d, Fig. 27, zu erkennen ist. Die Ausnutzung der Zähigkeit sowie der Festigkeit des Kernmaterials ist entsprechend der unbedeutenden Streckung eine sehr

unvollkommene. Ein Bild hierfür wird erlangt, wenn z. B. die Verlängerung des Stabes b, d. i. die Strecke l, in die Dehnungslinie a des nicht eingesetzten, sonst gleich behandelten Stabes übertragen wird. So kommt es, daß die Stäbe mit 0,4 und 1,1 mm Einsatztiefe sogar eine kleinere Zugfestigkeit ergeben haben, als der nicht eingesetzt Stab. Erst wenn die Einsatztiefe so groß ist, daß die höhere Festigkeit der harten Außenschicht die Einbuße an Tragkraft infolge derschlechten Ausnützung des Kernmaterials überwiegt, ist die Festigkeit des 1.6 mm tief eingesetzten Stabes - im gehärteten Zustande höher als die des nicht eingesetzten.



Fig. 28, die in gleicher Weise entstanden ist wie Fig. 26, zeigt, daß dies bei 1,6 mm Einsatztiefe erreicht worden ist. Sie läßt auch erkennen, wie außerordentlich klein die Werte von  $\varphi$  und  $\psi$  für die eingesetzten, gehärteten Stäbe sind. Entsprechend klein ist auch das Arbeitsvermögen solcher Stäbe, was darauf hindeutet, daß sie gegenüber stoßweiser Beanspruchung sehr wenig widerstandsfähig sein werden, obgleich das Kernmaterial große Zähigkeit besitzt.

Diese Eigenschaften gehen auch aus dem Aussehen der zerrissenen Stäbe hervor. Fig. 29 und 30, Taf. VI geben je eine Hälfte von solchen wieder, Fig. 32, Taf. VI zeigt eine Bruchfläche. In Fig. 31 ist ein bei 400°C geprüfter Stab abgebildet, der in der Einsatzschicht zahlreiche Risse enthält.

Die Dehnungszahl erfährt durch das Einsetzen keine nennenswerte Veränderung, wie aus folgender Zusammenstellung hervorgeht.

Einsatztiefe, mm		0,4	1,1	1,6
	Werte d	er Dehnun	gszahl α,	Milliontel
Material ausgeglüht	0,463	0,467	0,452	0,454
Material gehärtet und ange- lassen bei 200° C	0,456	0,462	0,465	0,455

Hiernach beeinflußt auch die Härtung den Wert von  $\alpha$  nicht wesentlich. Dagegen ist dies für die Werte der bleibenden Dehnungen



in ausgeprägtem Maße der Fall, wie ein Blick auf Fig. 33, 34 und 35 zeigt. Sowohl bei den eingesetzten wie bei den nicht eingesetzten Stäben sind die bleibenden Dehnungen für die gehärteten und bei 200°C angelassenen Probekörper weit größer als für das stärker angelassene und für das ausgeglühte Material. Fig. 35 läßt erkennen, daß dies auch für Sondermaterial (Nickelstahl) zutrifft.

Hinsichtlich aller weiteren Einzelheiten, insbesondere des Verhaltens in höheren Wärmegraden — bei diesen ist die Anlaßwirkung zu beachten —, sowie bei Schlagversuchen muß auf das S. 186 angeführte Jahrbuch verwiesen werden. Dort ist auch über Versuche mit Nickel- oder Chromnickeleinsatzmaterial berichtet, sowie über die Eigenschaften eines hochwertigen Sonderstahles, der an Stelle von Einsatzmaterial zu verwenden ist, wenn größere Widerstandsfähigkeit gegenüber stoßweiser Beanspruchung angestrebt wird.

Taf. VI.



Fig 29, § 10, Fig. 30, § S. 189. S. 187, 1





Fig. 24, § 10, S. 184, 144.



Fig. 32, § 10, S. 189.

Fig. 31, § 10, S. 189.

Fig. 12, § 13, S. 212.



Fig. 11, § 13, S 212.



Fig. 14, § 13, S. 212.



Fig. 15, § 13, S. 212.



Fig. 16, § 13,

S. 212.



Fig. 13, § 13, S. 212.



Fig. 17, § 13, S. 212.



Taf. VII.



§ 8, S. 144, § 10, S. 181,

#### § 10. Versuchsergebnisse über den Einfluß der Behandlung des Materials. 191



Material	Streckgrenze kg qcm	Zugfestig- keit kg¦qem	Bruch- dehnung auf 100 mm ⁰   ₀	Querschnitts- ver- minderung ⁰	Arbeits- vermögen kgm ccm
kalt- gezogen	nicht deut- lich aus- geprägt vor- handen	6589	8,8	46,4	3,3
ausgeglüht	3195 о. 3159 ц.	4395	26,6	64,4	8,7

I. Zug.

Die zugehörigen Dehnungslinien sind in Fig. 36 wiedergegeben. Wie ersichtlich, besitzt das ausgeglühte Material weit geringere Zugfestigkeit und bedeutend größere Bruchdehnung als das im gezogenen Zustand belassene Flußeisen.

Durchmossor	Kalt	gezogen	$\mathbf{Ausgegl\"uht}$		
Durchmesser	Kz	$\varphi$ auf 100 mm	Kz	arphi auf 100 mm	
$\mathbf{m}\mathbf{m}$	$\mathbf{kg} \mathbf{qem}$	0	kg qcm	0 0	
1	24560	0,8	7848	7.5	
1	24110	1,2	8608	7,0	
1,5	21 530	1,0	7345	5,5	
1,5	23080	1,5	8814	5,6	
2	18620	3,0	6688	8,7	
2,5	18010	2,2	8859	7,1	
2,5	18560	2,5	<b>94</b> 09	7,7	
3,0	17 540	3,9	8062	8,2	
3,0	17360	3,4	8840	8,5	
4,0	16110	3,7	8274	6,0	
4,0	17600	2.3	8473	7,0	

Eigene Versuche mit Stahldraht (1916) ergaben folgende Werte.

Im allgemeinen wird zu erwägen sein, ob die mit dem Kaltziehen (überhaupt Kaltbearbeiten) verbundene Minderung der Zähigkeit namentlich auch in der Querrichtung — zulässig erscheint oder ob die Anwendung des Vergütens (d. i. Härten und Anlassen s. o.) vorzuziehen ist.

Über den die Zähigkeit stark vermindernden Einfluß der Erwärmung kaltbearbeiteten Flußeisens auf 200 bis 400°C vgl. das S. 177, Fußbemerkung, Gesagte.

Der Einfluß der Versuchstemperatur auf Material, das nach Maßgabe des hier unter a und b Angeführten behandelt (vergütet) worden ist, wird durch besondere Untersuchungen festzustellen sein. Nach den bisher gewonnenen Ergebnissen kann dieser Einfluß recht bedeutend sein.

# II. Druck.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für jeden Querschnitt desselben eine Kraft, deren Richtungslinie in die Stabachse fällt, und die diese zu verkürzen strebt. Die Querschnittsabmessungen werden als so bedeutend vorausgesetzt, daß der Fall der Knickung (§ 23) nicht vorliegt.

## § 11. Formänderung. Druckfestigkeit.

Wie wir in §1 und §2 sahen, erfährt der Stab unter Einwirkung der Druckkraft gleichzeitig eine Zusammendrückung in Richtung der Achse und eine Vergrößerung der Querschnitte, eine Querausdehnung. Die Umkehrung der Spannungsrichtung hat auch eine Umkehrung der Formänderung zur Folge.

Dementsprechend werden für den auf Druck in Anspruch genommenen Körper die zur Beurteilung nötigen Beziehungen sich durch Umkehrung der im Bisherigen für Zugbeanspruchung aufgestellten Gleichungen gewinnen lassen, in welcher Beziehung auf §12 zu verweisen ist.

Wir erhalten so — indem wir zum Teil früher Bemerktes wiederholen — die Größen:

- negative Dehnung, d.i die auf die Einheit der ursprünglichen Länge *l* bezogene Verkürzung,
- Dehnungszahl gegenüber Druck, d. i. die Verkürzung eines Stabes von der ursprünglichen Länge 1 bei der Belastung von 1 Kilogramm auf die Flächeneinheit, oder kurz: die Verkürzung der Längeneinheit für das Kilogramm Pressung, und für den Fall, daß diese Zahl bis zu einer gewissen Pressung konstant ist, in der letzteren die

Proportionalitätsgrenze gegenüber Druck,

- Elastizitätsgrenze gegenüber Druck, d. i. diejenige Druckspannung, bis zu der hin das Material sich als vollkommen oder doch als nahezu vollkommen elastisch erweist,
- Fließ- oder Quetschgrenze, d. i. diejenige Druckspannung, bei der das Material beginnt, verhältnismäßig rasch nachzugeben, ohne daß Zerstörung eintritt.

Hinsichtlich dieser Größen gelten sinngemäß dieselben Bemer-C. Bach, Elastizität. 8. Aufl. 13 kungen, die in §2 und 3 über sie für den Fall gemacht worden sind da $\beta$  es sich um Belastung durch eine Zugkraft handelt.

Wird die Belastung des in eine Prüfungsmaschine gespannten Prisma fortgesetzt gesteigert, so tritt schließlich der Augenblick ein, in dem der Widerstand des gedrückten Körpers aufhört, der Belastung das Gleichgewicht zu halten; der Widerstand erscheint überwunden: das Prisma wird zerdrückt, d. h. mehr oder minder vollständig zertrümmert, wie z. B. harte Gesteine, oder es wird zerquetscht, d. h. sein Material weicht nach den Seiten aus, fließt seitlich ab, wie z. B. Blei. Streng genommen wird in beiden Fällen der Widerstand dadurch überwunden, daß das Material nach den Seiten ausweicht: im ersteren Falle erfolgt diese Ausweichung nach vorhergegangener oder gleichzeitiger Zertrümmerung, im letzteren dagegen behält der Stoff, weil er weich und bildsam ist, seinen Zusammenhang bei.

Beobachten wir einen dem Zerdrücken ausgesetzten Sandsteinwürfel, so sieht man bei normalem Verlaufe an den Mantelflächen Platten sich ablösen, die in der Mitte stärker sind als nach den in die Druckflächen verlaufenden Rändern hin. Im Innern dagegen bilden sich zwei pyramidale Bruchstücke aus, wie dies Fig. 1 auf Taf. VIII deutlich erkennen läßt; die Platten, die sich seitlich lösten, sind hierbei weggenommen. Man erkennt, wie das Material von den beiden Stirnflächen aus je in pyramidaler Form in das Innere gedrückt worden ist. (Vgl. auch § 13, Ziff. 2, a, D.) Werden die Druckplatten der Prüfungsmaschine einander noch weiter genähert, so pflegt sich der Zusammenhang der beiden Pyramiden durch Abschiebung zu lösen.

Ein dem Zerdrücken ausgesetzter Bleizvlinder baucht sich zunächst aus, wie Fig. 2 auf Taf. VIII zeigt, und geht schließlich bei fortgesetzter Näherung der Druckplatten in eine immer dünner werdende Scheibe über. Ursprünglich besaß der wiedergegebene Zylinder einen Durchmesser und eine Höhe von je 80 mm; sein Mantel war durch 7 Parallelkreise in Abständen von je 10 mm und durch 25 senkrechte Gerade in Abständen von je  $\frac{\pi 80}{25}$  = 10,05 mm in 200 Quadrate eingeteilt. Fig. 2 stellt den Zylinder dar, nachdem er auf 64 mm, d. i. 0,8 seiner ursprünglichen Höhe, zusammengedrückt ist. Wie ersichtlich, haben sich die Höhen der beiden End- oder Stirnschichten am stärksten vermindert: von 10 mm auf 6,5 mm, d. h. um 35% gegen  $20^{\circ}/_{0}$  durchschnittliche Verringerung; entsprechend einer Bewegung des Materials in das Innere des Körpers, von wo aus der Stoff nach dem Umfange zu ausweicht. Diese Einwärtsbewegung des Materials in der Richtung des Druckes ist offenbar in der Mitte der Druckfläche am stärksten und nimmt nach außen ab, infolgedessen erscheint auch die Druckverteilung über den Querschnitt - jedenfalls während des

Fließens — nicht mehr als gleichmäßig, sondern derart ungleichförmig, daß die Pressung von innen nach außen  $abnimmt^{1}$ ).

Fig. 3 auf Taf. IX und Fig. 4 geben einen Bleiwürfel wieder, der ursprünglich 80 mm Seitenlänge be-

saß, und dessen 6 Begrenzungsebenen je in 64 gleiche Quadrate eingeteilt worden waren. Fig. 3 zeigt den stark zusammenged rückten Körper und läßt deutlich die Figuren erkennen, in welche die kleinen Quadrate übergegangen sind, sowie den Umstand; daß auch hier die beiden Stirnschichten am meisten zusammengepreßt wurden. oder richtiger, daß deren Material zum Teil in das Innere gedrückt worden ist. Der Grundriß Fig. 4 gibt die eigentümliche Wölbung wieder, die



die ursprünglich ebenen vier Seitenflächen bei der Zusammendrückung angenommen haben.

Fig. 5 zeigt einen Gummizylinder von ursprünglich 6,9 cm Durchmesser und 18 cm Höhe, welchen Abmessungen die gestrichelte Abbildung entspricht. Unter Einwirkung der Druckbelastung geht der Zylinder in die durch ausgezogene Linien dargestellte eigenartige Form über.

Die 3 in Fig. 6 auf Taf. IX dargestellten Bruchstücke gehören Gußeisenzylindern von verschiedener Höhe an. Auch hier ist zunächst eine Ausbauchung zu beobachten, die schließlich in Zerstörung übergeht. Die höheren Zylinder (40 mm bei 19,9 mm Durchmesser) schieben sich ab, die niederen (19,8 mm Höhe bei 19,8 mm Durchmesser) erfahren die aus der Figur ersichtliche eigenartige Zertrümmerung. (Vgl. §13, Ziff. 1a.) Bemerkenswert erscheint, daß das Gußeisen, das beim Zugversuch nur sehr geringe Formänderungen aus-



Fig. 5.

¹) Dies hängt zusammen mit dem Einfluß der Reibung zwischen Druckplatte der Versuchsmaschine und Stirnfläche des geprüften Körpers (vgl. § 14). Die obenerwähnte Druckverteilung zeigt sich auch bei dem Schmiermaterial, das sich zwischen Zapfen und Lagerschale befindet (vgl. Fußbemerkung S. 199).

hält, ehe es bricht, sich beim Druckversuch weniger spröde verhält, eine Folge des Umstandes, daß die Graphitteilchen, mit denen das Gußeisen durchsetzt ist, dem Druck gegenüber widerstandsfähiger sind, als dem Zug gegenüber. Die Zerstörung erfolgt schließlich durch Abschieben längs Flächen, die gegen die Druckrichtung geneigt sind (vgl. das in § 3 zu Fig. 2, Taf. I Bemerkte). Noch ausgeprägter ist das bei Lagermetall zu beobachten, bei dem sich in einem Fall ein Druckkegel ausbildete, wie Fig. 7, Taf. IX erkennen läßt.

Zähes Flußeisen in genügend kurzen Stücken verhält sich ähnlich wie Blei. Die Versuchszylinder nehmen faßartige Gestalt an, ohne daß eine Zerstörung eintritt.

Bei Schweißeisen läßt sich in der Regel Aufspalten in der Längsrichtung beobachten (vgl. Fig. 8, Taf. IX), eine Folge der geringeren Zugfestigkeit quer zur Walzrichtung.

Fig. 9 und 10 auf Taf. X stellen zwei verschiedene Seitenflächen eines Bronzewürfels dar, der, bevor er der Druckprobe unterworfen wurde, durch Hobeln mit ebenen Flächen versehen worden war. Die Gestaltung, die die Seitenflächen unter Einwirkung des Druckes gegen die Stirnflächen angenommen haben, ist eine eigenartige, die inneren Strukturverhältnisse nach außen übertragende und deshalb außerordentlich lehrreich. Der Umstand, daß die vom Hobelstahl herrührenden, ursprünglich genau wagrechten, also parallel zu den Stirnflächen laufenden Striche noch deutlich zu sehen sind, läßt die Formänderungen noch deutlicher hervortreten, als es sonst der Fall sein würde.

Die Belastung, bei der der Widerstand des gedrückten Körpers überwunden wird, dieser also der Zertrümmerung verfällt oder in dem geschilderten Sinne nach der Seite abfließt, heißt Bruchbelastung. Die Pressung, die dieser Belastung, die mit  $P_{max}$  bezeichnet werden mag, entspricht, wird Druckfestigkeit genannt. Dieselbe ist hiernach

 $K = rac{\mathrm{Bruchbelastung}}{\mathrm{Stabquerschnitt.}}$ 

In der Regel pflegt man als Nenner den ursprünglichen Querschnitt f des Stabes in die Rechnung einzuführen und erhält dann in

$$K = \frac{P_{max}}{f} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad 1)$$

die Druckfestigkeit, bezogen auf den ursprünglichen Stabquerschnitt (vgl. das in §3 über die Zugfestigkeit Bemerkte).

Wie aus dem Späteren sich ergibt, ist die so ermittelte Druckfestigkeit abhängig von der Höhe des gedrückten Körpers, derart, daß sie abnimmt mit zunehmender Höhe desselben. In der großen Mehrzahl der Fälle wird das Material der Druckprobe in Form von

Taf. VIII.



Fig. 2, § 11, S. 194.





Fig. 3, § 11, S. 195.



Fig. 8, § 11, S. 196.

Fig. 7, § 11, S. 196.



# Fig. 25, § 13, S. 217.



Fig. 9, § 11, S. 196.



Fig. 10, § 11, S. 196.



Würfeln unterworfen, weshalb man die hierbei ermittelte Druckfestigkeit auch als "Würfelfestigkeit" bezeichnet, falls es zur Vermeidung von Mißverständnis geboten erscheint, das hervorzuheben. Wird die Druckfestigkeit an Körpern von großer Höhe bestimmt, was z. B. dann ein Bedürfnis ist, wenn das Material in Form von Säulen Verwendung finden soll, so kann nach dem Vorschlage des Verfassers von "Prismen-" oder "Säulenfestigkeit" gesprochen werden (vgl. S. 208 u.f.). Wo von Druckfestigkeit schlechthin die Rede ist, darf man annehmen, daß die an Würfeln oder an Zylindern, deren Höhe gleich dem Durchmesser, ermittelte gemeint ist.

Wenn für ein Material das Verhältnis der Säulenfestigkeit zur Würfelfestigkeit zutreffend angegeben werden soll, so muß daran festgehalten werden, daß es sich um das Verhältnis der Druckfestigkeiten zweier Körper handelt, die sich nur durch ihre Höhe voneinander unterscheiden dürfen. Hiergegen wird häufig gefehlt (vgl. "Armierter Beton", Heft 7 und 8, 1916).

Körper aus Materialien, die unter Einwirkung der Druckbelastung nach der Seite ausweichen, ohne daß hierbei eine Zerstörung eintritt, vergrößern ihren Querschnitt; infolgedessen wächst die zu weiterer Zusammendrückung erforderliche Kraft. In solchen Fällen ist es unzulässig, die am Ende einer weitgetriebenen Zusammendrückung beobachtete Kraft  $P_{max}$  durch den ursprünglichen Querschnitt zu dividieren und in diesem Quotienten ein Maß der Widerstandsfähigkeit des Materials erblicken zu wollen.

Diese erscheint gegenüber den Zwecken der Konstruktion erschöpft, sobald das Abfließen nach der Seite beginnt; die Druckfestigkeit ist dann die Fließ- oder Quetschgrenze.

### § 12. Gleichungen der Druckelastizität und Druckfestigkeit.

#### 1. Es bedeuten für den prismatischen Stab

- P die auf Druck wirkende Kraft,
- f die Größe des ursprünglichen Querschnitts,
- l die Länge des Stabes vor Einwirkung der Kraft,
- $\lambda$  die Verkürzung, die der Stab durch P erfährt,
- $-\epsilon = \frac{\lambda}{l}$  die negative Dehnung, d. i. die verhältnismäßige Zusammendrückung oder Verkürzung,
- $\alpha$  die Dehnungszahl gegenüber Druckbeanspruchung, d. i. die Verkürzung der Längeneinheit für das Kilogramm Spannung,
- $-\sigma$  die Spannung, die mit der Dehnung  $-\varepsilon$  verknüpft ist, also durch *P* hervorgerufen wird,

II. Druck.

k die zulässige Anstrengung des Materials gegenüber Druckbeanspruchung.

Dann gilt

$$P \leq k f \ldots 2)$$

$$\lambda = -\alpha l\sigma = \alpha l \frac{P}{t} \dots \dots \dots \dots \dots 3)$$

2. Für einen gedrückten Stab mit veränderlichem Querschnitt, entsprechend der Fig. 1 in §6, jedoch mit auf Verkürzung hinwirkender Kraft P, gelangt man bei Benutzung der daselbst eingeführten Größen  $f_0$  und x zu den Beziehungen

Die Voraussetzungen, die diesen Gleichungen zugrunde liegen, sind:

- 1. Die äußeren Krätte ergeben für jeden Querschnitt nur eine in die Stabachse fallende Druckkraft.
- 2. Auf die Stirnflächen des Stabes wirken nur senkrecht gegen dieselben gerichtete Kräfte.
- 3. Auf die Mantelfläche des Stabes wirken Kräfte nicht.
- 4. Der Einfluß des Eigengewichtes des Körpers kommt nicht in Betracht.
- 5. Die Abmessungen des Querschnittes sind so bedeutend, daß der Fall der Knickung (§ 23) nicht vorliegt.
- Die Dehnungen und Spannungen sind in allen Punkten des beliebigen Querschnittes gleich groß. (Gleichmäßige Verteilung der Druckkraft über den Querschnitt.)
- Die Form des Querschnittes ist gleichgültig (vgl. § 13, 1, h, S. 209).
- 8. Sofern nur die Voraussetzung 5 erfüllt wird, ist die Länge oder Höhe des Stabes ohne Einfluß.

198

# § 13. Druckversuche. Einfluß der Gestalt des Körpers auf die Druckfestigkeit.

Der Probekörper muß so in die Prüfungsmaschine eingespannt werden, daß die Druckkraft sich möglichst gleichmäßig über den Querschnitt verteilt. Zur Erfüllung dieser Bedingung werden die beiden Druckplatten der Einspannvorrichtung möglichst leicht beweglich angeordnet (kugelige Lagerung, vgl. § 8, Fig. 5): außerdem werden die Probekörper je mit zwei möglichst genau parallelen ebenen Druckflächen (durch Hobeln - erforderlichenfalls mit Diamant - oder durch Abdrehen auf der Planscheibe, durch Schleifen usw.) versehen. Das zuweilen noch gebrauchte Verfahren, die Befriedigung der letzteren Forderung dadurch zu umgehen, daß zwischen Druckplatte und Probekörper nachgiebige Scheiben, wie z. B. Bleiplatten, gelegt werden, erscheint unzulässig. Dieses bildsame, unter der hohen Pressung wie dicke Flüssigkeit sich verhaltende Material wird bei Probekörpern aus einigermaßen festen und dichten Stoffen wie Eisen, Basalt u. dgl. herausgequetscht, also nicht nur nichts nützen, sondern vielmehr zu einer ungleichmäßigen Verteilung des Druckes über die Stirnfläche Veranlassung geben¹), bei Probekörpern aus porösen oder Vertiefungen besitzenden Steinen u. dgl. überdies in die Poren sowie Vertiefungen eindringen und auf Sprengung hinwirken, also zu dem Vorgange des Zerdrückens andere Wirkungen hinzufügen.

Die in § 11 besprochenen Erscheinungen beim Zerdrücken der Körper treten in der geschilderten Reinheit nur dann auf, wenn die Probewürfel mit ihren parallelen, ebenen Stirnflächen gleichmäßig und unmittelbar an den Druckplatten anliegen.

Die in den §§ 11 und 12 enthaltenen Gleichungen lassen die Gestalt des Körpers gleichgültig erscheinen, sofern nur nicht der Fall der Knickung (§ 23) vorliegt. Tatsächlich entspricht dies jedoch nicht der Wirklichkeit: die Querschnittsform ist nicht ganz gleichgültig, ganz besonders aber beeinflußt die Höhe des Körpers dessen Druckfestigkeit, wobei die in § 14 erörterte Hinderung der Querdehnung an den Stirnflächen einflußnehmend auftritt. In dieser Beziehung geben die nachstehenden Versuchsergebnisse deutlich Auskunft.

¹) Vergleiche in dieser Hinsicht die Ergebnisse der Versuche von Tower, betreffend die Verteilung des Zapfendrucks bei geschmierten Traglagern über die Länge des Zapfens. Die Pressung nimmt von der Mitte des Zapfens nach den Stirnflächen hin ab, zuerst langsam und später ziemlich rasch. (S. des Verfassers Maschinenelemente im vierten Abschnitt unter "2. Tragzapfen", 2. (1892) bis 10. (1908) Auflage, in letzterer S. 497 u. f.)

Vergleiche ferner im Zentralblatt der Bauverwaltung 1899, S. 590 und 591; sowie 1900, S. 402 und 403 die Darlegungen in der Frage der Verwendung weicher Körper oder von Schmiermaterial zwischen Druckplatte und Versuchskörper, sowie die S. 182 erwähnte Arbeit von Stribeck.

#### 1. Die Belastung trifft die ganze Stirnfläche des Probekörpers.

a) Eigene Versuche mit Gußeisen (1884).

Zylinder aus einem und demselben Gußeisen-Rundstab, der bei 2,00 cm Durchmesser. (bearbeitet) eine Zugfestigkeit von 1860 kg/qcm ergeben hatte.

VersuchsreiheHöheDurchmesserQuerschnittDruckfestigkeit<br/>nach Gl. 1, § 11cmcmqcmkg/qcm

1,99

1,98

1,99

3,11

3,08

3,11

Die Zahlen sind das Mittel aus je 3 Versuchen.

4,00

1,98

1,00

Die Druckfestigkeit wächst hiernach mit abnehmende
Höhe der Versuchskörper, in der Hauptsache eine Folge der in
§14 erörterten Hinderung der Querdehnung an den Stirnflächen, die
gegen die beiden Platten der Versuchsmaschine gepreßt werden, also
nicht einer Eigenschaft des Materials an sich.

7232

7500

8579

Sie beträgt für den Fall, daß die Höhe des Zylinders gleich dem Durchmesser desselben ist, das

$$\frac{7500}{1860} = \sim 4 \text{fache}$$

der Zugfestigkeit.

1

 $\mathbf{2}$ 

3

Bei den Versuchsreihen 1 und 2 erhaltene Bruchstücke sind in Fig. 6, Taf. IX, dargestellt.

Weitere Versuche mit Gußeisen s. S. 204 u.f.

Bei dem hochwertigen Gußeisen, das S. 294 mit  $B_2$  bezeichnet ist, fand sich für Kreiszylinder von 2 cm Durchmesser und 2 cm Höhe

- 1. Druckfestigkeit = (8710 + 8714 + 8762):3 = 8728 kg/qcm=  $8728:2535 = 3,44 \cdot \text{Zugfestigkeit}.$
- 2. Druckfestigkeit = (8133 + 8101 + 8048):3 = 8094 kg/qcm=  $8094:2334 = 3,46 \cdot \text{Zugfestigkeit}.$
- 3. Druckfestigkeit = (8032 + 8127 + 8035): 3 = 8081 kg/qcm = 8081: 2261 = 3,57 · Zugfestigkeit.

Prismen von kreisförmigem und von quadratischem Querschnitt aus einem und demselben Gußeisen-Rundstab, dessen Zugfestigkeit zu 2082 kg/qcm ermittelt worden war.

Querschnitts- form	Durch- messer cm	Quadrat- seite cm	Höhe cm	Quer- schnitt cm	Druckfestigkeit nach Gl. 1, § 11 kg/qcm
0	1,70	1,70	1,70 1,70	2,27 2,89	7771 7509

Die Druckfestigkeit ergibt sich demnach für den kreisförmigen Querschnitt etwas größer als für den quadratischen. Der Unterschied ist jedoch nicht bedeutend:  $3,5^{0}/_{0}$ .

b) Versuche von Bauschinger mit Sandstein.

(Mitteilungen aus dem mechanisch-technischen Laboratorium der Königl. polytechnischen Schule in München. 6. Heft. München 1876.)

Bauschinger stellte auf Grund der Ergebnisse seiner eigenen Versuche (s. S. 202 u. f.) und derjenigen anderer für die Druckfestigkeit die Gleichung

$$K = \left( \alpha + \beta \frac{\sqrt{f}}{h} \right) \left| \frac{\sqrt{f}}{\frac{u}{4}} + \cdots + \frac{1}{2} \right|$$

auf, gültig für Prismen, bei denen

$$h \leq 5 a$$
, sofern  $a^2 = f$ , d. i.  $a = V f$ .

Hierin bedeutet

- / den Querschnitt des Prisma in qcm,
- u den Umfang dieses Querschnittes in cm,
- h die Höhe des Prisma in cm,
- K die Bruchbelastung in kg/qcm,
- $\alpha$  und  $\beta$  Zahlenwerte, die von der Art des Materials abbängen.

Bauschinger hält übrigens die einfachere Gleichung

$$K = \left(\alpha + \beta \frac{\sqrt{f}}{\hbar}\right) \frac{\sqrt{f}}{\frac{u}{4}} \quad \dots \quad \dots \quad 2)$$

für ausreichend: nur wenn die Ergebnisse der Versuche von Rondelet und Vicat einbezogen werden sollen, erscheint es nötig, auf Gleichung 1 zurückzugreifen.

#### II. Druck.

A. Prismen von rechteckigem Querschnitt, hergestellt aus einer und derselben Platte von sehr teinem graublauem Schweizer Sandstein.

Nr.	Seite a	Seite b	Höhe h	Quer-	DruckfestigkeitKinkg/qcm		
	cm	cm	em	a b qem	beobachtet Gl. 1, §11	berechnet nach Gl. 3,§13	
1	2	3	4	5	6	7	
1	9,95	9,85	9,6	98,01	680	666	
2	10,0	9,85	9,7	98,50	685	663	
3	6,0	5,85	5,7	35,10	670	670	
4	5,2	5,2	5,05	27,04	690	666	
<b>5</b>	4,8	4,7	1,1	22,56	1950	1805	
6	5,0	4,6	1,1	23,00	1910	1818	
7	4,4	9,7	1,1	$42,\!68$	2140	2273	

Druckrichtung senkrecht zum Lager.

Die Versuche Nr. 1 bis 4 sind angestellt mit Prismen, deren Querschnitt als quadratisch angesehen werden darf, und deren Höhe angenähert gleich der Seite des Quadrates ist. Die Werte der Spalte 6 für diese 4 Versuche lassen erkennen, daß Würfel von verschiedener Größe, jedoch aus gleichem Material hergestellt, die gleiche Druckfestigkeit besitzen.

Die Versuche Nr. 5 und 6 beziehen sich auf Prismen mit angenähert quadratischem Querschnitt und einer Höhe, die weit kleiner ist als die Querschnittsabmessungen. Die Zahlen in der Spalte 6 lehren, daß die Druckfestigkeit unter sonst gleichen Verhältnissen mit abnehmender Höhe wächst, mit zunehmender Höhe sich vermindert.

Das Ergebnis des Versuches Nr. 7, verglichen mit den Ergebnissen, die für Nr. 5 und 6 erlangt wurden, zeigt, daß die Drucktestigkeit bei gleicher Höhe mit wachsender Grundfläche, d. i. mit verhältnismäßiger Abnahme der Höhe, zunimmt.

Aus 18 derartigen Versuchen (Tab. III, S. 10 der Mitteilungen), wobei die Höhe h die Länge der Seiten nicht überschreitet, berechnen sich die Größen  $\alpha$  und  $\beta$  der Gleichung 1 zu  $\alpha = 310$  und  $\beta = 346$ , so daß diese übergeht in

$$K = \left(310 + 346 \frac{\sqrt{f}}{h}\right) \sqrt{\frac{\sqrt{f}}{\frac{u}{4}}} \dots \dots \dots \dots 3$$

Die Übereinstimmung der hieraus ermittelten und in Spalte 7 eingetragenen Werte mit den beobachteten (Spalte 6) ist eine recht gute.

В.	Prismen	wie	unter	Α.	
----	---------	-----	-------	----	--

Nr.	Seite a	Seite b	Höhe h	Quer-	$\mathbf{Druckfestigkeit} K \mathbf{in} \mathbf{kg} / \mathbf{qcm}$		
	cm	cm cm	cm	a b qcm	beobachtet Gl. 1, §11	berechnet nach Gl. 4, §13	
1	2	3	4	5	6	7	
1	10,0	9,9	29,5	99	444	371	
<b>2</b>	10,0	9,8	9,7	98	602	588	
3	6,6	6,5	4,75	42,9	676	<b>684</b>	
4	4,8	4,6	1,4	22,08	1540	1337	
5	4,7	10,0	1,4	47,00	1850	1767	

Druckrichtung parallel zum Lager.

Aus 17 derartigen Versuchen (Tab. II, S. 9 der Mitteilungen), wobei die Höhe h die Querschnittsabmessungen bedeutend überschreitet, ergibt sich  $\alpha = 262$  und  $\beta = 320$ , also

$$K = \left(262 + 320 \frac{\sqrt{f}}{h}\right) \left| \sqrt{\frac{\sqrt{f}}{\frac{u}{4}}} \dots \dots \dots \right|$$

C. Prismen von kreisförmigem und von rechteckigem Querschnitt, hergestellt aus feinkörnigem gelbem Buntsandstein (Heilbronn).

Aus 18 solchen Versuchen (Tab. V, S. 11 der Mitteilungen) wird unter Anwendung der Methode der kleinsten Quadrate zur Bestimmung der Werte  $\alpha$  und  $\beta$  in Gleichung 1 erhalten

^für die rechteckigen Prismen:

für die Kreiszylinder:

$$K = \left(369 + 115 \frac{\sqrt{f}}{h}\right) \left| \sqrt{\frac{\sqrt{f}}{\frac{u}{4}}} \dots \dots \dots \right|$$

II. Druck.

für sämtliche Prismen:

$$K = \left(358 + 118 \frac{\sqrt{f}}{h}\right) \left| \frac{\sqrt{f}}{\frac{u}{4}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \right|^{7}$$

Im ganzen erweist sich hiernach der Einfluß der Querschnittsform auf die Festigkeit kurzer Prismen — im Gegensatz zu demjenigen der Höhe als nicht bedeutend.

						Quarsabnitt	Druckfes	tigkeit in	kg/qcm
Nr. Que schni for	Quer-	$\begin{array}{c} \text{Quer-}\\ \text{chnitts-}\\ \text{form} \end{array} \begin{array}{c} \text{Durch-}\\ \text{messer} \\ d\\ \text{cm} \\ \end{array} \begin{array}{c} \text{c} \end{array}$	Seite	ite Seite a b m cm	$egin{array}{c} { m H\ddot{o}he} \ h \end{array}$ cm	$\frac{\frac{\pi}{4} d^2}{bzw. a b}$	beob-	berechnet	
	form		er a				achtet Gl.1,§11	Gl. 5 bzw. 6	Gl. 7
1	2	3	4	5	6	7	8	9	10
1			9.25	9.18	36.3	84,91	381	377	387
$\hat{2}$		9.2			36,25	66,47	<b>₫</b> 51	418	407
$\overline{3}$	Ĭ		9,05	9,17	12,45	82,99	440	436	<b>444</b>
4	$\overline{\bigcirc}$	9.22			12,20	66,76	463	473	473
5	ň	_	9.20	9.22	2,73	84,82	790	754	755
6		9,15			2,90	65,75	806	733	729
-				1					

Druckrichtung parallel zum Lager.

Der Vergleich der Ergebnisse für 1 und 2, 3 und 4, 5 und 6 zeigt die Druckfestigkeit bei kreisförmigem Querschnitt größer als bei quadratischem, und zwar um  $15^{0}/_{0}$  bzw.  $5^{0}/_{0}$  bzw.  $2^{0}/_{0}$ .

c) Eigene Versuche zur Prüfung der Gleichungen 1 und 2 (1910).

Gußeisen, je 3 Versuchskörper.

Durchmesser	2,8	2,8	2,8	2,8	2,8 c.	m
Höhe	1,0	2,8	4,0	6,0	15,0 ,,	
Druckfestigkeit nach (	8528	6911	6621	6512	6216kg	g/qcm
Gl. 1, § 11	8585	6956	6789	6537	6208	"
	8325	7065	6732	6325	6166	,,
Durchschnitt	8479	6977	6714	6458	6197	,,
Gleichung 1 liefert mit $\alpha = 5700$ u. $\beta = 920$	8479	6921	6661	6458	6216	,,
Gleichung 2 liefert mit $\alpha = 5365$ u. $\beta = 867$	8481	6920	6661	6458	6215	,,

204

Hiernach ergibt bereits Gleichung 2 eine sehr gute Übereinstimmung mit den Versuchswerten. In Fig 1 ist die Kurve nach Gleichung 2 (mit  $\alpha = 5365$ ,  $\beta = 867$ ,  $\sqrt{f} = 2,4814$ ,  $\frac{u}{4} = 2,1991$ ) dargestellt. Die eingetragenen Punkte entsprechen den Einzelwerten der Versuche.



Das S. 209 besprochene Verhältnis der Säulenfestigkeit zur Würfelfestigkeit (vgl. S. 197) findet sich bei Zugrundelegung der Werte für den 2,8 cm und den 15 cm hohen Körper (15:2.8 = 5,36) zu 6197:6977 = 0,89.

d) Eigene Versuche mit Blei (1884).

Zylinder aus einem und demselben Gußbleikörper durch Drehen hergestellt.

Nr.	Höhe cm	Durch- messer cm	Quer- schnitt qcm	Raum- gewicht	Belastung in kg/qcm, bei der das Material	
					noch nicht ausweicht	ausweicht, d. h. seitlich abfließt
$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	7,05 3,47 1,01	3,525 3,53 3,48	9,76 9,79 9,51	11,37 11,36 11,35	$\begin{array}{c} 46\\59\\105\end{array}$	$51\\69\\126$

Hiernach steigt bei nahezu gleichem Durchmesser von rund 3,5 cm die Belastung, die das Blei erträgt, ohne nach der Seite auszuweichen von 46 kg/qcm auf 105 kg/qcm, wenn die Höhe des Zylinders von 7,05 cm auf 1,01 cm vermindert wird.

Gu ßblei in Würfeln von rund 8 cm Seitenlänge ertrug Belastung von 50 kg/qcm; mit 72 kg/qcm belastet, wich dasselbe fortgesetzt, wenn auch sehr langsam aus.

Gußblei in Form von Scheiben, deren Durchmesser 16 cm und deren Stärke 1,5 cm, vertrug eine Belastung von 100 kg/qcm; bei 150 kg/qcm wich das Material sehr langsam nach der Seite aus.

Weichwalzblei in Form von Scheiben verhielt sich nicht wesentlich anders als Gußblei.

Aus den angeführten Zahlen erhellt deutlich die Zunahme der Druckfestigkeit bei Abnahme der Höhe der Bleikörper.

(S. auch Zeitschrift des Vereines deutscher Ingenieure 1885, S. 629 u. f.)

# e) Eigener Versuch mit Kupfer (1910).

Ein Zylinder aus geglühtem Kupfer von 10,0 mm Durchmesser und 15,00 mm Höhe wurde der Druckprobe unterworfen und dabei



bestimmt 1. die wirkende Kraft, 2. die bleibende Zusammendrückung des Zylinders, nachdem die Lasten von 1000, 2000, 3000 kg usf. je 30 Sekunden lang gewirkt hatten, 3. der Durchmesser des Zylinders

in der Mitte der eingetretenen Ausbauchung. Die Ergebnisse sind in Fig. 2 zeichnerisch dargestellt; gestrichelt ist in dieser die Linie der bleibenden Zusammendrückungen für je 1000 kg eingezeichnet. Diese nehmen zunächst infolge der stärkeren Nachgiebigkeit des Kupfers zu, später jedoch ab, weil der Durchmesser des Zylinders stark gewachsen ist.

Belastung	Höhe des Zylinders	Blei bende Zusammen- drückung	Zunahme der bleibenden Zusammen- drückung für 1000 kg	Größter Durchmesser des Zylinders
kg	mm	mm	mm	mm
0 .	15,00			10,0
1000			0,59	
0	14,41	0,59	,	
2000			1,32	
0	13,09	1,91		
3000			1,68	
0	11, 41	3,59	1	
4000			1,64	
0	9,77	5,23	,	
5000			1,36	
0	8,41	6,59		
6000			1,05	
0	7,36	7,64		14,5
7000		-	0.85	
0	6,51	8,49		
8000			0,66	
0	5,85	9,15		
9000			0,54	
0	5,31	9,69		
10000			$0,\!43$	
0	4,88	10,12		18,0

#### f) Eigene Versuche mit Holz (1910).

a) Würfel aus Buchenholz (Raumgewicht 0,66) in Richtung der Fasern gedrückt. Die Druckfestigkeit ergab sich zu 499 kg/qcm. Das Aussehen des Körpers nach der Prüfung zeigt Fig. 3, Taf. XI. Die einzelnen Fasern sind örtlich ausgeknickt.

b) Würfel aus Tannenholz (Raumgewicht 0,46), in Richtung der Fasern gedrückt. Die Druckfestigkeit ergab sich zu 459 kg/qcm. Fig. 4, Taf. XI, zeigt den Körper nach der Prüfung. Auch hier sind die einzelnen Fasern ausgeknickt. Außerdem ist Spaltung eingetreten infolge der geringen Festigkeit in Richtung quer zur Faser. c) Würfel aus Buchenholz (Raumgewicht 0,77), quer zur Richtung der Fasern gedrückt. Die Druckfestigkeit ergab sich zu 144 kg/qcm. Fig. 5, Taf. XI, zeigt den Körper nach der Prüfung und läßt die längs den Jahresringen eingetretene Verschiebung erkennen.

Weitere Versuchsergebnisse und Zahlenwerte für die häufig zur Verwendung gelangenden Hölzer s. Mitteilungen über Forschungsarbeiten Heft 131 und ein später erscheinendes Heft, sowie "Festigkeitseigenschaften und Gefügebilder", Abschnitt XII.

#### g) Eigene Versuche mit Beton (1913).

Betonkörper quadratischen Querschnitts von a = 32 cm Seite und in Höhen von h = 16 bis 384 cm, somit h:a = 0,5 bis 12, wurden im Alter von 45 Tagen senkrecht stehend, zwischen oben und unten



kugelig gelagerten Druckplatten der Druckprobe unterworfen. Sie ergaben — ohne daß bei den hohen Körpern der Fall des Ausknickens eintrat —

bei der Körperhöhe <i>l</i>	i = 16	32	64	256	384 cm
die Druckfestigkeiten	$ \begin{cases} 416 \\ 427 \\ 438 \end{cases} $	302 306 321	283 283 299	$288 \\ 258 \\ 265$	266 kg/qcm 268 ,, 254 ,,
Mittel für h	427 : a 0,5	310 1	288 $2$	270 8	263 kg/qcm 12

§13. Druckversuche.

Werden zu den Werten von h (oder h:a) als wagrechten Abszissen die zugehörigen Druckfestigkeiten als senkrechte Ordinaten aufgetragen, so findet sich mit den Mittelwerten in Fig. 6 die ausgezogene Linie; die Einzelwerte sind gleichfalls eingetragen.

Die Linie verläuft ganz ähnlich wie diejenige in Fig. 1, gültig für Gußeisen.

Das Verhältnis der Säulenfestigkeit zur Würfelfestigkeit ergibt sich für h = 8a h = 12azu 0.87 0.85

infolgedessen bei sorgfältiger Herstellung des Betons man ausreichend sicher gehen wird, wenn die Säulenfestigkeit zu 0,8 der Würfelfestigkeit angenommen wird. (Näheres s. Deutsche Bauzeitung, Mitteilungen über Zement, Beton- und Eisenbetonbau 1914, Nr. 5.)

## h) Eigene Versuche mit dünnwandigen Hohlzylindern aus Flußeisen (1910).

Wird ein Rohr in Richtung seiner Achse gedrückt, so treten bei nicht zu kurzer Länge des Rohres wellenförmige Wülste auf, die sich zuerst in der Nähe der Rohrenden bilden (vgl. Fig. 7 und 8, Taf. XI): die Rohrwand knickt hier aus. Diese Erscheinung läßt sich der Anschauung näher bringen, wenn man sich das Rohr der Länge nach durch Einschnitte von beiden Enden her in einzelne schmale Streifen, deren Querschnitt Ringsektorenform besitzt, zerlegt denkt, auf die je eine Druckkraft wirkt. Jeder dieser Streifen hat das Bestreben. auszuknicken, dem der in Wirklichkeit vorhandene Zusammenhang mit dem Nachbarmaterial entgegenwirkt. Daß das Ausknicken in der Nähe der Enden zuerst erfolgt, hat seinen Grund in der größeren Nachgiebigkeit der Streifenenden an den Stirnflächen. Die Länge, auf die die Ausbauchung der Rohrwand eintritt, hängt ab von der Wirksamkeit der Versteifung durch den seitlichen Materialzusammenhang (d. h. vom Rohrdurchmesser) und von der Wandstärke: dieselben Größen beeinflußen auch die Widerstandsfähigkeit gegen Druck.

Zum Zwecke der Ermittlung dieser Widerstandsfähigkeit wurden aus Flußeisen von etwa 4800 kg/qcm Zugfestigkeit Hohlzylinder von 34 mm mittlerem Durchmesser bei verschiedenen Wandstärken hergestellt und in der aus Fig. 9, S. 211, ersichtlichen Weise der Druckprobe unterworfen, wobei sich der Druck auf den mittleren Kreis von 34 mm Durchmesser überträgt. Die Versuche mit den 50 mm hohen Zylindern ergaben die in der folgenden Zahlentafel enthaltenen und in Fig. 10 eingetragenen Werte. (Körper mit 100 und 150 mm Höhe lieferten fast genau dieselben Festigkeiten.)

C. Bach, Elastizität. 8. Aufl.

II. Druck.

	Wand- stärke s	Quer- schnitt $f = \pi (D - s)s$	Belastung, bei welcher				
Außerer Durch- messer D			die Quets Materials (Belast vorüberge ste	chgrenze des erreicht ist tung hört hend auf zu eigen)	die Widerstandsfähig- keit des Rohres gegen- über Druck endgültig erschöpft ist (vgl. F1g. 8, Taf. XI)		
em	cm	qem	$P_q  \mathrm{kg}$	$P_q$ :fkg/qcm	P kg	P:fkg/qcm	
3,89 3,89	$0,50 \\ 0,50$	$5,325 \\ 5,325$	$\begin{array}{c} 15000\\ 15200\end{array}$	$\begin{array}{c} 2817\\ 2854 \end{array}$	$36480 \\ 37150$	6851 6977	
3,70 3,70	0,30 0,30	$3,20 \\ 3,20$	$\begin{array}{c} 10800\\9650\end{array}$	$\begin{array}{c} 3375\\ 3016 \end{array}$	$\begin{array}{c} 19280\\ 16800 \end{array}$	6025 5250	
3,60 3,60	$0,20 \\ 0,20$	$2,14 \\ 2,14$	7215 7030	$\begin{array}{c} 3371\\ 3285\end{array}$	$\begin{array}{c} 11340\\11100\end{array}$	5299 5187	
$3,50 \\ 3,50$	0,10 0,10	1,07 1,07	$\begin{array}{r} 3430\\ 3550\end{array}$	$\begin{array}{c} 3206\\ 3318 \end{array}$	4390 4540	4103 4243	
3,43 3,43	0,052 0,053	0,55 0,56	1730 1810	$\begin{array}{c} 3145\\ 3234\end{array}$	$\begin{array}{c} 1730\\1850\end{array}$	3145 3304	
3,40 3,40	$0,020 \\ 0,020$	$0,212 \\ 0,212$			$\begin{array}{r} 462\\ 380\end{array}$	$\begin{array}{c} 2179 \\ 1792 \end{array}$	

Wie ersichtlich, sinkt die Widerstandsfähigkeit gegen Druck von rund 6900 kg/qcm (bei 5 mm Wandstärke) fortgesetzt; bei dem 0,52 mm starken Körper der 5. Versuchsreihe ist P:f nicht größer als  $P_q:f$ , bei dem zweiten 0,53 mm starken Körper dieser Reihe fand sich P:fnur wenig größer als  $P_q:f$ , und bei 0,2 mm Wandstärke ist die Widerstandsfähigkeit des Rohres durch Ausbauchen (Wulstbildung) längst erschöpft, ehe die Quetschgrenze des Materials erreicht wird.

Rohre, die gegenüber Druckbeanspruchung widerstandsfähig sein sollen, dürfen also im Verhältnis zum Durchmesser nicht zu dünnwandig gewählt werden.

Soll die Widerstandsfähigkeit des Hohlzylinders erst mit Erreichen der Quetschgrenze erschöpft werden, und geht man davon aus, daß das der Fall sei bei dem ersten der Versuchskörper der 5. Reihe, so muß für das untersuchte Material die Wandstärke mindestens

 $\frac{0,052}{3,43-0,052} = \frac{1}{65}$  des mittleren Durchmessers

betragen¹). Dabei ist einseitiger Belastung sowie der Möglichkeit des

¹) Im Fahrradbau usw. werden vielfach dünnwandige Rohre angewendet, die nicht selten durch Einknicken zugrunde gehen, weil bei ihnen übersehen wurde, was im vorstehenden festzustellen war. Selbstverständlich darf, um eine

C. Bach, Elastizitat. 8. Aul.



Fig. 7, § 13, S. 209.





Fig. 4, § 13, S. 207.



Fig. 5, § 13, S. 208.



Fig. 8, § 13, S. 209.



seitlichen Eindrückens der Rohrwand durch äußere Kräfte noch nicht Rechnung getragen. Überschreitet dabei die Beanspruchung den Wert, der der Widerstandsfähigkeit entspricht (Kurve in Fig. 10), so knickt das Rohr einseitig ein (vgl. Fußbemerkung), wie aus Fig. 24, S. 244 hervorgeht.

Über das Verhalten bei Biegungsbeanspruchung vgl. §17, S. 244.



Eigene Versuche mit Rohren anderer Abmessungen und aus verschiedenen Materialien bestehend, lieferten Ergebnisse, die sich mit Annäherung durch die Beziehung zusammentassen lassen

$$\frac{P}{f} = 4 \sigma_s \sqrt[3]{\frac{s}{d}} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (8)$$

gewisse Sicherheit zu schaffen, für das vorliegende Material mit s nicht bis auf  $\frac{1}{65}$  d herabgegangen werden. Soll für dasselbe die Druckbeanspruchung ungefähr 5000 kg/qcm, was etwa seiner Zugfestigkeit entsprechen würde, nicht überschreiten, so hätte Wahl des Verhältnisses s:d nach der 3. Versuchsreihe zu erfolgen, d. h.

$$\frac{s}{d} \ge \frac{0,2}{3,6-0,2} = \frac{1}{17}$$
.
worin bezeichnen:

 $\sigma_s$  die Quetschgrenze des Materials,

s und d die Wandstärke, bzw. den mittleren Durchmesser des Rohres.

Fig. 11 und 12, Taf. VI, zeigen die Bruchstücke vergüteten Chromnickelstahlrohres (d = 34 mm, s = 1,5 mm),  $P = 27\,600$  und 30720 kg, entsprechend  $P: f = 16\,932$  und 18847 kg/qcm. In Fig. 13 ist ein nicht vergüteter Abschnitt desselben Rohres nach der Druckprobe dargestellt ( $P = 16\,270$  kg, P: f = 9982 kg/qcm).

Gehärtete Chromnickelstahlrohre von d = 58 mm und s = 2 mm, aus Material mit rund 17000 kg/qcm Zugfestigkeit, ergaben P: f = 14600 kg/qcm.

Ganz ähnlich, jedoch in der Regel noch weit ungünstiger, liegen die Verhältnisse bei Hohlkörpern mit elliptischer oder auch anderer Begrenzung sowie bei aufgeschnittenen Rohren, bei dünnwandigen Profilstäben usw.

Um festzustellen, welche Verminderung die Widerstandsfähigkeit von Rohren durch Aufschneiden erfährt, wurden Rohrabschnitte aus Flußeisen mit 34 mm äußerem Durchmesser bei 1 und 2,5 mm Wandstärke hergestellt. Je einer derselben wurde längs einer Mantellinie aufgeschnitten. Prüfung erfolgte gemäß Fig. 9. Die Versuchsergebnisse gehen aus der folgenden Zahlentafel hervor. Danach vermindert das Aufschlitzen, d. h. die teilweise Aufhebung des seitlichen Zusammenhanges, die Widerstandsfähigkeit, und zwar die Belastung an der Streckgrenze wie die Höchstlast, bedeutend. Die Beanspruchung an der Quetschgrenze  $P_q:t$  erfährt Verminderung um 25 bzw. 29%, die Höchstlast P:t Abnahme um 15 bzw. 16%.

Χ.n.Q.o							
rer Durch- messer D	Wand- stärke s	Quer- schnitt f	die Quetschgrenze des Materials er- reicht ist		die Wider keit des R über Dru ersch	Ab <b>g</b> e- bildet auf Taf. VI	
$\mathbf{cm}$	$\mathbf{cm}$	qcm	$P_q$ kg	$P_q$ :fkg/qcm	P kg	P:f kg/qcm	
		1	Rohr nic	ht geschlitzt	1		
3,40	0,10	1,04	3290	3163	4305	4139	Fig. 14
ŕ			Rohr	geschlitzt			-
3,395	0,10	1,02	2590	$2539^{1}$ )	3770	3676	Fig. 15
	-		Rohr nie	ht geschlitzt			-
3,405	$0,\!25$	2,47	8080	3271	14230	5761	Fig. 16
	,		Rohr	geschlitzt			Ť
3,40	0,25	2,47	6250	2530	12290	4976	Fig. 17

1) Unter der Belastung  $P_q$  beginnt sich der Schlitz an den beiden Rohrenden zu schließen und die Wellenbildung zu entstehen, vergl. Fig. 14 bis 17, Tafel VI. Fig. 18, Tat. XI, zeigt einen Abschnitt eines im Feuer verzinkten Rohres nach Vornahme der Druckprobe. Deutlich ist zu sehen, wie der Zinkbelag an den Stellen abspringt, an denen sich Wülste (Fig. 8) auszubilden beginnen.

Fig. 19, Taf. XI, gibt das Aussehen eines galvanisch verzinkten Rohrstückes wieder. Abspringen des Belags ist hier nicht erfolgt. Die Schweißnaht hat sich geöffnet (Zähigkeitsprobe).

# 2. Die Belastung trifft unmittelbar nur einen Teil der Querschnittsfläche des Probekörpers.

a) Versuche von Bauschinger. Mitteilungen usw., 6. Heft, 1876, S. 13 u. f.

# D. Würfel mit einer durch Abschrägung der Kanten verkleinerten Stirnfläche.

Der Bruch erfolgte immer in der Weise, daß von der kleinen Druckfläche aus eine Pyramide in das Innere des Probestückes hineingetrieben und das umliegende Material auseinandergesprengt wurde.

Würfelque		elquersch	nitt	Ab- schrä-	Stirnfläche			·····	Druckfestigkeit K in kg/qcm bezögen auf		
Numm	h	a	b	a b	gung x:y abge- rundet	a'	b'	a' b'	Be- lastung P	den Quer- schnitt	den Quer- schnitt a'b'
	cm	cm	cm	qcm		cm	cm	qcm	kg	P:ab	P : a' b'
1	2	3	4	5	6	7	8	9	10	11	12
						1				~10	0.0 -
1	9,8	10,1	9,9	100,0	1:1	8,0	7,9	63,2	51000	510	807
2	9,7	9,8	9,9	97,0	2:1	7,9	8,0	63,2	45000	460	712
3	9,7	9,95	9,9	98,5	3:1	8,05	8,05	64,8	45 500	<b>46</b> 0	702
4	9,85	10,0	9,75	97,5	1:2	$_{6,2}$	6,0	37,2	34500	350	927
5	9,90	10,1	10,05	101,5	$2\!:\!2$	6,3	6,25	39,4	35000	345	888
6	9,80	10,1	9,8	99,0	3:2	6,2	6,0	37,2	32000	325	860
-7	9,80	9,9	10,0	99,0	4:2	5,9	6,1	36,0	31500	320	875
8	9,75	10,0	9,8	98,0	1:3	4,4	4,2	18,5	23000	235	1243
9	9,75	9,95	9,9	98,5	2:3	4,2	4,2	17,6	20500	210	1165
10	9,75	10,05	10,0	100,5	3:3	4, 4	4,2	18,5	23000	230	1243
11	9,85	10,10	9,75	98,5	5:3	4,25	4,1	17,4	19700	200	1132
	, í	,		-				·			

# Material, wie oben unter A bezeichnet. Druckrichtung senkrecht zum Lager.

II. Druck.

Bei den Versuchen 1 bis 3 war die Stirnfläche von durchschnittlich 98,5 qcm (Spalte 5) vermindert auf im Mittel 63,7 qcm (Spalte 9); die Festigkeit, die bei Würfelgestalt z. B. nach dem unter 1, b, A, 2 angegebenen Versuch 685 kg (Spalte 6, S. 202) beträgt, sinkt beispielsweise bei Versuch 3 auf 460 kg, sofern sie auf den Querschnitt ab bezogen wird, und steigt auf 702 kg bei Beziehung auf den Querschnitt a'b'. Hiernach würde sich die Druckfestigkeit eines solchen Körpers (Fig. 20) zu groß ergeben, wenn man, von der an Würfeln ermittelten



Fig. 20.

Festigkeit ausgehend, die Fläche ab der Rechnung zugrunde legt, und zu klein, wenn die Fläche a'b' in die Rechnung eingeführt wird. Dieses vorauszusehende Ergebnis tritt um so schärfer hervor, je kleiner die Stirnfläche a'b'. Für Versuch Nr. 11 erscheint die aus Versuchen mit Würfeln gewonnene Druckfestigkeit von 685 kg einerseits vermindert auf 200 kg, andererseits vergrößert auf 1132 kg, je nachdem die Bruchbelastung durch ab oder a'b' dividiert wird.

Der Einfluß des Abschrägungsverhältnisses (Spalte 6) läßt sich zwar erkennen, wie ein Vergleich der Versuche 1 bis 3, 4 bis 7, 8 bis 11 je unter sich lehrt, ist jedoch nicht sehr bedeutend.

E. Würfel aus dem unter A genannten Material.



Fig. 21. Stahlprisma (von 39 mm Höhe) nur auf einer Seite.

Der Druck wird durch Stahlprismen, deren Achsen mit denjenigen der Würfel zusammenfallen, und deren Kanten den Würfelkanten parallel laufen, nur auf einen Teil der Stirnfläche übertragen.

§13. Druckversuche.

		Würfelquerschnitt			Stahlprisma		Bruch-	Druckfestigkeit	
Nr.	$egin{array}{c} \mathbf{H\"\ddot{o}he} \ h \end{array}$	a	Ь	ab	z	<i>z</i> ²	belastung P	P:ab	$P: z^2$
· · · ]	cm	cm	cm	qem	сш 	qem 7	<u>к</u> g	kº/qcm	kg/qem
1		3	4	9		/	0	9	10
1	9.65	10.0	9,9	99,0	3,9	15,21	16000	162	1052
2	9.70	9,85	9,9	97,5	5,7	32,49	30 000	308	923
3	9.75	10,0	9,85	98,5	7,8	60,84	47000	477	772

Der Bruch erfolgte auch hier wieder in der Weise, daß von der Stirnfläche des Stahlprisma aus eine Pyramide in das Innere des Prisma getrieben und das umliegende Material auseinander gesprengt wurde.



Fig. 22. Stahlprismen auf beiden Stirnflächen.

-	1	Würfelquerschnitt			Stahlprisma		Bruch-	Druckfestigkeit	
Nr.	$\begin{array}{c} \operatorname{H\"\ddot{o}he} \\ h \end{array}$	a	b	ab	z	$z^2$	belastung P ·	P:ab	$P: z^2$
	cm	cm	em ,	qem	em	qem	kg	kg/qcm	kg/qcm
1	2	3	4	5	6	7	8	9	10
$\frac{1}{2}$	9,7 9,75	9,9 9,65	10,0 9,9	99,0 95,5	5,7 7,8	$\substack{32,49\\60,84}$	16000 36000	$\begin{array}{c} 162\\ 377\end{array}$	492 592

Wie ersichtlich, ist die Bruchbelastung weit kleiner, wenn der Druck auf beide Stirnflächen durch die Stahlprismen wirkt.

Diese Ergebnisse sind in folgender Beziehung noch besonders bemerkenswert. Wird nach Gleichung 3

$$K = \left(310 + 346 \frac{\sqrt{f}}{h}\right) \left| \frac{\sqrt{T}}{\frac{u}{4}} \right|$$

für ein quadratisches Prisma berechnet, dessen Querschnitt gleich dem der Stahlprismen und dessen Höhe gleich der Würfelhöhe ist, d. h., da dann  $\sqrt{f} = z$  und u = 4z,

II. Druck.

$$K=310+346\frac{\sqrt{f}}{h},$$

so ergibt sich

für Versuch 1
$$K = 310 + 346 \frac{5.7}{9.7} = 513,$$
.,.,2 $K = 310 + 346 \frac{7.8}{9.75} = 587.$ 

Diese Werte unterscheiden sich von den beobachteten Größen 492 bzw. 592 nur um wenig. Hiernach hätte also das Material, das dasjenige Prisma umschließt, das im Innern des geprüften Würfels erhalten wird, wenn man sich die Seitenflächen der aufgesetzten Stahlprismen fortgesetzt denkt, keinen merkbaren Einfluß auf die Druckfestigkeit. Dieses Ergebnis, das Bauschinger auch durch Versuche mit Granit angenähert bestätigt fand, dürfte sich durch die verhältnismäßig geringe Zugfestigkeit des Materials erklären lassen. Mit demselben steht in Übereinstimmung, daß unter D die Zunahme des Wertes x in dem Abschrägungsverhältnis x: y (Spalte 6) bei gleichbleibender Größe von y nur einen untergeordneten Einfluß besitzt.



F. Wird die eine Stirnfläche des Würfels (hier die untere) vollständig, dagegen die andere nur über eine kleinere, im allgemeinen einseitig gelegene Fläche, die in Fig. 23 durch Strichlage hervorgehoben ist, belastet, so gilt nach Bauschinger -- zunächst immer nur für Sandstein --

Hierin bedeutet:

- K die Druckfestigkeit bei Belastung des Würfels in der schraffierten Fläche, bezogen auf die Flächeneinheit der letzteren,
- $K_{w}$  die Druckfestigkeit für den Fall, daß die Belastung über die ganze Stirnfläche gleichmäßig verteilt ist (Würfelfestigkeit).

216

§13. Druckversuche.

b) Eigene Versuche (1887).

Material: Buntsandstein.

Druckrichtung senkrecht zum Lager



Stahlprisma nur auf einer Seite.

Versuchsreihe, je 3 bis 5 Körpe	er 1	2	3	4	<b>5</b>	6
Seite a durchschnittlich	6,03	9,99	10,01	10,03	9,95	10,02 cm
,, b ,,	6, 46	10,04	10,01	10,02	9,99	9,96 ,,
Höhe $h$ ,,	6,00	9,89	9,85	9,82	9,84	9,84 ,,
Breite $z$ des Prisma	6,03	2,50	2,00	1,50	1,00	0,50 ,,
Bruchbelastung auf 1 qcm	1					
des Querschnitts $ab$	653	232	188	156	120	102  kg
Bruchbelastung auf 1 qcm	)					
des Querschnitts bz	653	926	943	1044	1193	2050 ,,
Gleichung 9 liefert	653	1038	1117	1230	1406	1770 ,,

Fig. 25, Taf. JX, zeigt Steine der Versuchsreihen 2 bis 6. Wie ersichtlich, erfolgte der Bruch in der Weise, daß von der Stirnfläche der Stahlplatte aus ein keilförmiger Körper in das Innere des Versuchswürfels getrieben und so das umliegende Material auseinandergesprengt wurde.

# 3. Die Belastung trifft einen Körper mit gewölbter Oberfläche (Kugel, Zylinder).

Die hier vorliegende allgemeine Aufgabe: Ermittlung der Beanspruchung und der Formänderung zweier beliebig gestalteten Körper, die gegeneinander gedrückt werden und sich dabei nur in einem sehr kleinen Teile ihrer gewölbten Oberflächen berühren, ist trotz ihrer großen Schwierigkeit einer strengen Lösung zugänglich, wie zuerst Hertz (1881) gezeigt hat¹). Ausgehend von den Voraussetzungen:

¹) H. Hertz, Gesammelte Werke, Bd. I, S. 155 u. f. oder auch Verhandlungen des Vereins zur Beförderung des Gewerbefleißes in Preußen 1882, S. 449 u. f.

Eine Ergänzung der Hertzschen Arbeit lieferte M. T. Huber in den Annalen der Physik, Bd. 14, 1904, S. 153 u. f.

Über die Kugeldruckprobe s. S. 219, Fußbemerkung.

#### II. Druck.

- 1. die Stoffe beider Körper sind in allen Punkten nach allen Richtungen hin gleich beschaffen (isotrop),
- 2. zwischen Dehnungen und Spannungen besteht Proportionalität, die Dehnungszahl  $\alpha$  besitzt gegenüber Druck denselben Wert wie gegenüber Zug,
- die Größe der Druckflächen, in denen sich die Körper unter Einwirkung der Belastung infolge ihrer Elastizität berühren, ist sehr klein gegenüber den Oberflächen der Körper,
- 4. in den Druckflächen wirken nur Kräfte, die senkrecht zu diesen gerichtet sind (Hertz denkt sich vollkommen glatte, also reibungsfreie Oberflächen),

und den allgemeinen Gleichungen der Elastizitätslehre (vgl. Abschnitt IX) gelangt Hertz zu den im nachstehenden zusammengestellten Ergebnissen.

## a) Zwei Kugeln

werden mit der Kraft P gegeneinander gedrückt. Es seien

- $r_1 r_2$  die Halbmesser der beiden Kugeln,
- $\alpha_1 \ \alpha_2 \ \ \, die \ \, Dehnung szahlen der Stoffe, aus denen die Kugeln bestehen,$
- $m_1 m_2$  die Zahlen, durch die das Verhältnis der Längsdehnung zur Querzusammenziehung bei diesen Stoffen gemessen wird (§ 7, § 14).

Dann beträgt:

die Strecke y, um die sich die beiden Kugeloberflächen unter der Belastung P einander nähern (Summe der Zusammendrückungen an beiden Oberflächen — S. 183 bei Hertz — strenggenommen nicht die Änderung von  $r_1 + r_2$ ),

$$y = \sqrt[3]{\left[\frac{3}{4}P\left\{\left(1-\frac{1}{m_{1}^{2}}\right)\alpha_{1}+\left(1-\frac{1}{m_{2}^{2}}\right)\alpha_{2}\right\}\right]^{2}\left(\frac{1}{r_{1}}+\frac{1}{r_{2}}\right)}, 10)$$

der Halbmesser a der Druckfläche

$$a = \sqrt[3]{\frac{3}{4} P \frac{\alpha_1 \left(1 - \frac{1}{m_1^2}\right) + \alpha_2 \left(1 - \frac{1}{m_2^2}\right)}{\frac{1}{r_1} + \frac{1}{r_2}}, \dots \dots 11}$$

die größte Pressung  $\sigma_{max}$  in der Mitte der Druckfläche

$$\sigma_{max} = 1.5 \frac{P}{\pi a^2}, \ldots \ldots \ldots \ldots \ldots \ldots 12)$$

d. i. 1,5 mal so groß als bei gleichmäßiger Verteilung des Druckes P über die Berührungsfläche.

§13. Druckversuche.

Mit  $m_1 = m_2 = m$   $\alpha_1 = \alpha_2 = \alpha$ 

geht Gleichung 12 nach Einführung von a aus Gleichung 11 über in

$$\sigma_{max} = \frac{1}{\pi} \int_{-\infty}^{3} \frac{2}{2} \frac{P\left(\frac{1}{r_{1}} + \frac{1}{r_{2}}\right)^{2}}{\alpha^{2}\left(1 - \frac{1}{m^{2}}\right)^{2}} \quad \dots \quad \dots \quad 12a)$$

und für  $m = \frac{10}{3}$  (es empfiehlt sich, festzuhalten, daß selbst erhebliche Abweichungen hinsichtlich der Größe von m (vgl. § 7) einen bedeutenden Einfluß auf das Ergebnis nicht äußern; dies gilt auch für die folgenden Gleichungen)

$$\sigma_{max} = 0.388 \sqrt[3]{\frac{P}{\alpha^2} \left(\frac{1}{r_1} + \frac{1}{r_2}\right)^2} \quad \dots \quad \dots \quad 12 \,\mathrm{b})$$

Mit

$$m_1 = m_2 = \frac{10}{3}$$
 und  $\alpha_1 = \alpha_2 = \alpha$ 

folgt aus den Gleichungen 10 und 11

$$y = 1,23 \sqrt[3]{P^2 a^2 \left(\frac{1}{r_1} + \frac{1}{r_2}\right)}$$
 . . . . . . . . . . 10a)

b) Kugel und ebene Platte¹).

Mit  $r_1 = r$  und  $r_2 = \infty$  folgt aus Gleichung 12a

$$\sigma_{max} = \frac{1}{\pi} \sqrt[3]{\frac{3}{2} \frac{P}{\alpha^2 \left(1 - \frac{1}{m^2}\right)^2 r^2}},$$

$$H=P:f.$$

worin bedeutet

- P die Kraft, mit der die Kugel gegen den Probekörper, der in der Regel als eben vorausgesetzt wird, gedrückt wurde,
- f die Oberfläche des erzeugten kugeligen Eindruckes.
- Die so bestimmte Härtezahl hängt in höherem Maße, als man anzunehmen

219

¹) Die gegebenen Ableitungen beziehen sich auf das Gebiet der federnden Formänderungen. Bei der zur Materialprüfung in steigendem Maße verwendeten Kugeldruckprobe dagegen wird die Größe der bleibenden Formänderung als Maß der Härte herangezogen, indem man setzt die Härtezahl

II. Druck.

somit

$$P = \frac{2}{3} \pi^3 \alpha^2 \left( 1 - \frac{1}{m^2} \right)^2 \sigma_{max}^3 r^2$$

und nach Einführung des Kugeldurchmessers d = 2r

wenn

$$k = \frac{\pi^3}{6} \alpha^2 \left( 1 - \frac{1}{m^2} \right)^2 \sigma_{max}^3 \quad . \quad . \quad . \quad . \quad 14)$$

#### c) Zwei Zylinder,

parallel liegend und von der Länge l, werden so stark gegeneinander gepreßt, daß auf die Längeneinheit die Kraft P:l entfällt, gleichmäßige Verteilung der Belastung P über die Länge l vorausgesetzt. Es seien

 $r_1$   $r_2$  die Halbmesser der beiden Zylinder,

 $\alpha_1 \dot{\alpha_2}$  die Dehnungszahlen,

 $m_1 m_2$  die bereits unter *a* bezeichneten Zahlenwerte.

Die Breite b der durch die Belastung erzeugten Berührungsfläche beträgt

$$b = 4 \sqrt{\frac{P^{\alpha_1} \left(1 - \frac{1}{m_1^2}\right) - \alpha_2 \left(1 - \frac{1}{m_2^2}\right)}{\frac{1}{r_1} + \frac{1}{r_2}}}, \quad . \quad . \quad 15)$$

pflegt, ab von der Größe der verwendeten Stahlkugel, der Höhe des Druckes P sowie von der Dauer der Einwirkung des letzteren. Zur Prüfung von Flußeisen wird eine Stahlkugel von 10 mm Durchmesser mit P = 3000 kg eine Minute lang angepreßt. Die so gefundene Härtezahl ist für Flußeisen usw. mit einer für manche Zwecke ausreichenden Annäherung der Zugfestigkeit proportional, wie folgende Zusammenstellung aus eigenen Versuchen erkennen läßt. (Weitere Werte s. in Festigkeitseigenschaften und Gefügebilder.)

	$K_z$	H	$K_2:H$
Flußeisen, ausgeglüht	4006	105	38
Nickelstahl, ausgeglüht	5135	148	35
Chromnickelstahl, ausgeglüht	7918	241	33
Federstahl, gehärtet	14275	401	<b>36</b>
Sonderfederstahl, gehärtet.	19520	<b>534</b>	<b>37</b>

Näheres s. z. B. Brinell, Mitteilungen des Intern. Verbandes für die Materialprüfungen der Technik 1901; Meyer und Kürth, Mitteilungen über Forschungsarbeiten. Heft 65/66 usw. Waizenegger (Dissertation, Stuttgart 1920) führt den Begriff der Größthärtezahl ein, die den einwandfreien Vergleich der Härtezahlen verschiedener Stoffe ermöglicht.

Eine Abänderung der Kugeldruckprobe in eine Kegeldruckprobe wurde von Ludwik vorgeschlagen (vgl. Ludwik, Die Kegeldruckprobe, Berlin 1908).

220

die größte Pressung in der Mitte der Berührungsfläche

$$\sigma_{max} = \frac{4}{\pi} \frac{P}{bl}, \quad . \quad . \quad . \quad . \quad . \quad 16)$$

221

d. i.  $\frac{4}{\pi}$  mal so groß als bei gleichmäßiger Druckverteilung.

Für gleiches Material, d. h. für

$$m_1 = m_2 = m \qquad \qquad \alpha_1 = \alpha_2 = \alpha$$

wird

Die Bestimmung der Strecke, um die sich die beiden Zylinderoberflächen einander nähern, unterläßt Hertz, indem er bemerkt, daß sie nicht allein abhängig von den Vorgängen an der Druckstelle ist, sondern wesentlich bedingt wird durch die Form des ganzen Körpers (a. a. O. S. 187).

d) Zylinder und ebene Platte.

Mit  $r_1 = r$  und  $r_2 = \infty$  ergibt sich aus Gleichung 15a

$$b = 4 \sqrt{\frac{2}{\pi} \alpha \left(1 - \frac{1}{m^2}\right) \frac{P}{l} r} \quad . \quad . \quad . \quad 15 \,\mathrm{b})$$

und damit aus Gleichung 16

$$\sigma_{max} = \sqrt{\frac{P}{2\pi \alpha \left(1 - \frac{1}{m^2}\right) lr}}$$

Nach Einführung des Zylinderdurchmessers d = 2r

sofern

Die Gleichungen 11 und 12, 15 und 16 werden vielfach, namentlich im Bauingenieurwesen, als solche angesehen, die die unmittelbare Ermittlung der zulässigen Belastung ermöglichen, indem man für  $\alpha$ sowie m die den betreffenden Materialien eigentümlichen Werte und für  $\sigma_{max}$  die größte, noch für zulässig erachtete Spannung gegenüber Druck einsetzt¹).

¹⁾ Vgl. z. B. Zeitschrift des Hannoverschen Ingenieur- und Architektenvereins 1894, S. 131 u. f.

II. Druck.

Nun liegen ausgedehnte und gründliche Versuche von Stribec k mit Stahlkugeln vor¹), durch die u. a. nachgewiesen wird, daß bei vorzüglicher Ausführung der Kugeln und ihrer Laufflächen (beiderseits gehärteter Stahl) die zulässige Belastung für ebene Laufflächen noch zu  $P = 50 d^2$  gewählt werden darf, sofern an der Druckstelle nur rollende Reibung auftritt. Nach Maßgabe der Gleichungen 13 und 14 entspricht diese Belastung mit

$$\alpha = \frac{1}{2120\,000} = 0,472$$
 Milliontel,

welchen Wert Stribeck für das Stahlmaterial der Kugeln bestimmte, und mit

$$m = \frac{10}{3}$$

zufolge

$$50 = \frac{\pi^3}{6} \frac{0.472^2}{1000000^2} (1 - 0.3^2)^2 \sigma_{max}^3$$

einer Druckspannung von

$$\sigma_{max} = 37450 \text{ kg/qcm}.$$

Diese Zahl geht weit über das hinaus, was man bisher als zulässige Anstrengung angesehen hat, selbst wenn berücksichtigt wird, daß im vorliegenden Falle nicht die größte Pressung, sondern die betreffende Hauptdehnung als maßgebend anzusehen ist (§ 48, § 69 und § 70). (Bei späteren Versuchen ermittelte Stribeck die Druckfestigkeit vollständig durchgehärteter Zylinder von 12 mm Durchmesserund 12 mm Höhe aus Chromstahl zu durchschnittlich 45 540 kg/qcm [erstes Härteverfahren] und zu durchschnittlich 47 700 kg/qcm [zweites Härteverfahren]. Näheres s. Zeitschrift des Vereines deutscher Ingenieure 1907, S. 1445 u. f.)

Stribeck bestimmte durch unmittelbare Druckversuche die Proportionalitätsgrenze für den in Wasser gehärteten Stahl zu rund 9000 kg/qcm (die Elastizitätsgrenze lag noch ein wenig tiefer).

Dieser Wert wäre unter Berücksichtigung, daß im mittleren Ele-

222

¹) Stribeck, Mitteilungen aus der Zentralstelle für wissenschaftlich-technische Untersuchungen, Heft 1, Mai 1900, oder auch Zeitschrift des Vereines deutscher Ingenieure 1901, S. 73 u. f., 1907, S. 1445 u. f., sowie Schwinning, am gleichen Ort 1901, S. 332 u. f.; ferner Stribeck, Glasers Annalen für Gewerbe und Bauwesen 1901, Bd. 49, Nr. 577.

§13. Druckversuche.

ment der Berührungsfläche zwischen Kugel und Platte drei Hauptspannungen

$$\sigma_{max} = 0.8 \sigma_{max} = 0.8 \sigma_{max}$$

vorhanden sind, infolgedessen die Hauptdehnung senkrecht zur Ober-

fläche nach Gleichung 1, § 69 mit  $m = \frac{10}{3}$ 

$$\alpha (1-2|\cdot 0, 8\cdot 0, 3) \cdot \sigma_{\max} = 0.52 \, \alpha \sigma_{\max},$$

also nur das 0,52<br/>fache der Zusammendrückung beträgt, die die Pressung  $\sigma_{max}$  für sich alle<br/>in erzeugen würde, auf

$$rac{9000}{0,52} = \sim 17\,300 \; \mathrm{kg/qcm}$$

zu erhöhen. Diese Größe führt (Gleichungen 13 und 14) zu

$$k = \frac{\pi^3}{6} \frac{0.472^2}{1000000^2} (1 - 0.3^2)^2 \cdot (17\,300)^3 = \sim 5,$$

 $\operatorname{somit}$ 

 $P = 5 d^2$ ,

gegenüber  $P = 50d^2$ , durch unmittelbaren Versuch ermittelt, d. h. wird in der Hertzschen Gleichung 12 in Verbindung mit 11 für die größte Druckspannung diejenige Zahl eingeführt, die der Zusammendrückung an der Proportionalitätsgrenze, die hier noch oberhalb der Elastizitätsgrenze liegend festgestellt worden ist, entspricht, und die noch eine höhere Anstrengung liefert, als man nach bisheriger Auffassung für zulässig erachtet, so ergibt sich die zulässige Belastung Pder Kugeln zu einem Zehntel derjenigen, die durch unmittelbaren Versuch noch als zulässig festgestellt worden ist.

Daraus folgt, daß die Hertzschen Gleichungen nicht in der eingangs bezeichneten Weise zur Bestimmung der zulässigen Belastung P benutzt werden können, d. h. daß der Wert k der Gleichung 13 nicht aus Gleichung 14 berechnet, sondern daß diese Belastung nur durch unmittelbare Versuche bestimmt werden kann. Daß diese Versuche unter solchen Verhältnissen anzustellen sind, die denjenigen entsprechen, unter denen die Kugeln in den betreffenden Konstruktionen sich befinden, ist selbstverständlich.

Sodann ist in bezug auf die Verwendung der Hertzschen Gleichungen noch folgender Punkt im Auge zu behalten.

Werden gehärtete Stahlkugeln unter steigender Belastung gegeneinander gepreßt, so tritt zunächst ein die Druckfläche umgebender Kreissprung ein, zuweilen unter Belastungen, denen noch weniger als ein Zehntel der Belastung entspricht, bei der die Kugel auseinanderbricht¹). Meridianrisse treten erst später auf.

Das Entstehen der Umfangrisse ist die Folge von Zugspannungen, die sich nach dem Umfange der Druckfläche hin einstellen. In der Tat pflegen auch in Kugellagern stark überlastete Kugeln durch Absplittern kleiner Teilchen unbrauchbar zu werden, nicht aber durch Bruch.

Für die bezeichnete Zugbeanspruchung, durch die die gehärtete Stahlkugel zuerst der Unbrauchbarkeit zugeführt wird, gibt Hertz eine Gleichung nicht; er hat die Rechnung nur für das am stärksten gedrückte Flächenelement durchgeführt. Er sagt, nachdem er über das Verhalten plastischer Körper gesprochen hat (S. 167): "Schwieriger ist es, die Erscheinung in spröden Körpern wie hartem Stahl, Glas, Kristallen zu bestimmen, in denen eine Überschreitung der Elastizitätsgrenze nur als Entstehung eines Risses oder Sprunges, also nur unter dem Einflusse von Zugkräften auftritt. Von dem oben betrachteten Elemente, als von einem allseitig komprimierten, kann ein solcher Sprung nicht ausgehen, und es ist bei unserer heutigen Kenntnis von der Festigkeit spröder Körper überhaupt nicht möglich, genau dasjenige Element zu bestimmen, in welchem die Bedingungen für das Zustandekommen eines Sprunges bei wachsendem Druck zuerst auftreten. Indessen zeigt eine eingehendere Diskussion soviel, daß in Körpern, die in ihrem elastischen Verhalten dem Glase oder hartem Stahle ähnlich sind, bei weitem die stärksten Zugkräfte in der Oberfläche, und zwar am Rande der Druckfläche auftreten²).

¹) Für gute Kugeln bis etwa  $1^{1}/4^{\prime\prime}$  engl. (31,8 mm) Durchmesser ist  $P = 550 \ d^2$  bis 700  $d^2$  als Belastung zu fordern, bei welcher der Umfangssprung eintritt. Grenzzahlen:  $7/8^{\prime\prime}$  (22,2 mm-) Kugeln brachen erst bei P = 38000 bis 40000 kg, entsprechend  $P = \text{rund } 8000 \ d^2$ , während der erste Sprung bereits bei 2700 kg, also bei 550  $d^2$  eintrat.  $1^{1}/4^{\prime\prime}$  (31,8 mm)-Kugeln, deren Bruchbelastung nur  $P = 3500 \ d^2 = \text{rund } 35000 \ \text{kg}$  war, zeigten die hohe Sprungbelastung von 1000  $d^2 = 10000 \ \text{kg}$ . (S. die in der Fußbemerkung S. 222 angegebenen Quellen.) ²) Wenn nun Hertz zur Bestimmung der Härte eines Materials den Vor-

²⁾ Wenn nun Hertz zur Bestimmung der Harte eines Materials den Vorschlag macht, aus ihm zwei Körper herzustellen und ihre Oberflächen dabei so zu wählen, daß die beim Aufeinanderpressen sich bildende Druckfläche kreisförmig ausfällt, sodann (S. 193) bestimmt: "Die Härte eines Körpers wird gemessen durch den Normaldruck auf die Flächeneinheit, der im Mittelpunkte einer kreisförmigen Druckfläche herrschen muß, damit in einem Punkte der Körper die Spannungen eben die Elastizitätsgrenze erreichen" und dann später bemerkt (S. 195): "Im Glase und allen ähnlichen Körpern besteht die erste Überschreitung der Elastizitätsgrenze in einem kreisförmigen Sprunge, der in der Oberfläche am Rande der Druckellipse entsteht", ohne festzustellen, in welchem Punkte des Körpers die Elastizitätsgrenze überschritten wird — der mittlere Punkt der Druckfläche ist es eben nicht — und von welchen Größen die Spannung in diesem Punkte beeinflußt wird, sowie welche Beziehungen zwischen diesen Größen bestehen, so tritt hier mindestens eine Lücke zutage; man

Vorbehaltlich der Prüfung durch Versuche wird man gut tun, anzunehmen, daß die Zugspannung, die am Rande der Druckfläche sich einstellt, namentlich bei Materialien mit geringer Zugfestigkeit, die zulässige Druckbelastung beeinflussen, d. h. diese herabdrücken kann.

Versuche, die Verfasser mit Quadern aus Granit (Mitteilungen über Forschungsarbeiten, Heft 17) und Sandstein (ebenda, Heft 20) zu Brückengelenken (Quader mit zylindrischer Fläche auf ebenem Quader) durchgeführt hat, lehren, daß die Zerstörung der Granitbzw. Sandsteinkörper nicht durch die in der Mitte der Berührungsfläche sich einstellende, von Hertz bestimmte größte Druckspannung

$$\sigma_{max} = \frac{4}{\pi} \frac{P}{bl},$$

worin b durch Gleichung 15b bestimmt ist, sondern durch auftretende Zugspannungen herbeigeführt wird. Die photographischen Abbildungen Fig. 3 und 4 bzw. Fig. 4 und 9 in den beiden Veröffentlichungen lassen das deutlich erkennen.

gelangt damit auf ein Gebiet, das jedenfalls noch der Klarstellung bedarf. Ob diese zur Aufklärung der Tatsache, daß Versuche mit verschieden gekrümmten Körpern aus gleichem Material keine übereinstimmenden Pressungen für die Elastizitätsgrenze und somit keine übereinstimmenden Werte für die Härte des gleichen Materials ergaben, beitragen wird, mag zunächst dahingestellt bleiben.

Hinsichtlich der Versuche, die Härte auf dem von Hertz vorgeschlagenen Wege zu bestimmen, sei insbesondere auf die Arbeiten von Auerbach in Wiedemanns Annalen verwiesen.

In bezug auf die Härteprüfung von Kugeln s. die in der Fußbemerkung 1, S. 222 angegebenen Veröffentlichungen. Stribeck sagt hierüber: "Werden 2 Kugeln aus gleichem Material mit der Kraft P gegen einander gedrückt, so bildet sich eine kreisförmige Druckfläche aus, deren Halbmesser a mm beträgt. Läßt man die Belastung von Null an stetig wachsen, so nimmt die Druckfläche zunächst nach Maßgabe von  $\sqrt[3]{P^2}$ " (vgl. Gleichung 11) "und die durchschnittliche Pressung  $\sigma = \frac{P}{\pi a^2}$  entsprechend  $\sqrt[3]{P}$  zu. Aber schon nach Überschreitung der Proportionalitätsgrenze ändert sich die Abhängigkeit von P in dem Sinne,

der Proportionantatsgrenze andert sich die Abnanggkeit von 7 in dem Sinhe, daß die Druckfläche rascher und demgemäß die Pressung langsamer zunimmt, und zwar so lange, bis sich schließlich die Druckfläche im gleichen Verhältnis wie die Kraft ändert, und demzufolge die Pressung konstant bleibt. Diese konstante Pressung, die sich auch durch eine Steigerung der Belastung bis zum Eintritt des Bruches nicht mehr vergrößern läßt, wird die Druckhärte oder kurz die Härte der Kugeln (Widerstand gegen Eindringen) genannt. Sie ergibt sich für gute Kugeln aus gehärtetem Gußstahl zwischen 780 und 850 kg/qmm. Von kleinen Kugeln wird man die größere Härte, von 2" (50,8 mm-) Kugeln noch etwa 780 erwarten dürfen. Bei Kugeln, die nach innen zu weicher werden, nimmt die Pressung, nachdem sie ihren größten Betrag erreicht hat, sogar wieder ab."

Über die übliche Kugeldruckprobe s. S. 219 Fußbemerkung.

C. Bach, Elastizität. 8. Aufl.

Wie sich aus dem Vorstehenden ergibt, ist die entwerfende und ausführende Technik genötigt, die Koeffizienten k der Gleichungen 13 und 17, die von ihr schon seit langer Zeit auf Grund von gewissen Annahmen entwickelt worden waren, nach wie vor durch unmittelbare Versuche festzustellen.

Mit Rücksicht hierauf und in Anbetracht, daß den älteren Betrachtungen, die zu den Gleichungen 13 und 17 führten, schon wegen ihrer Einfachheit eine gewisse Bedeutung zuerkannt werden muß, sei im nachstehenden der Fall, daß Kugeln gegeneinander gepreßt werden, Fig. 26, in der älteren Weise behandelt.



Infolge der Zusammendrückbarkeit des Materials berühren sich die Kugeln unter der Einwirkung der Belastung in einer kleinen Kreisfläche gemäß der in übertriebenem Maße gegebenen Darstellung Fig. 27, wobei wir die mittlere der drei Kugeln, die gleichen Durchmesser besitzen, ins Auge fassen wollen.

Für den beliebigen Punkt C der utsprünglichen Kreislinie MCA sei die Zusammendrückung in Richtung der Belastung

 $x = r (1 - \cos \varphi_0) - r (1 - \cos \varphi) = r (\cos \varphi - \cos \varphi_0),$ woraus bei Beachtung, daß

$$\cos\varphi = \sqrt{1 - \sin^2\varphi}$$

und  $\varphi$  sowie  $\varphi_0$  sehr kleine Winkel sind, also

$$\cos \varphi = \sim \sqrt{1 - \varphi^2} = \sim 1 - \frac{\varphi^2}{2}$$
$$\cos \varphi_0 \qquad \qquad = \sim 1 - \frac{\varphi_0^2}{2}$$

folgt

$$x=r\frac{\varphi_0^2-\varphi^2}{2}.$$

Unter der Voraussetzung, daß sich diese Zusammendrückung gleichmäßig durch die Kugel hindurch fortpflanzt, fände sich die verhältnismäßige Zusammendrückung in C

$$\varepsilon = \frac{x}{r} = \frac{\varphi_0^2 - \varphi^2}{2},$$

der die Normalspannung

$$\sigma = \frac{\varphi_0^2 - \varphi^2}{2\alpha}$$

entsprechen würde, falls die bezeichnete Voraussetzung erfüllt wäre und Kräfte senkrecht zur Richtung von x nicht einwirkten. Letzteres erkennt man sofort als unzutreffend, da die Faser, die im Punkte C in Richtung der Belastung gedacht werden kann, durch das sie umschließende Material bei der Zusammendrückung gehindert ist, sich quer zu dehnen. Dieser seitliche Zusammenhang mit dem Material wird auch eine gleichmäßige Fortpflanzung der Zusammendrückung der Faser durch die Kugel hindurch hindern. Infolge dieser Umstände muß der Ausdruck für o mit einem aus Versuchen zu bestimmenden Berichtigungskoeffizienten  $\psi$  multipliziert werden, der ganz allgemein den Abweichungen Rechnung zu tragen hat, die zwischen der Wirklichkeit und den gemachten Voraussetzungen bestehen. Aller Wahrscheinlichkeit nach ist  $\psi$  mit  $\varphi$  veränderlich, wohl auch sonst noch von den Umständen beeinflußt. Nichtsdestoweniger wurde der Koeffizient  $\psi$ , um die Rechnung überhaupt und einfach durchführen zu können, als Konstante angenommen und ihre mittlere Größe bis zur Ermittlung durch Versuche auf etwa 3 geschätzt.

Damit ergibt sich

$$\sigma = \psi \frac{\varphi_0^2 - \varphi^2}{2\alpha} \quad . \quad . \quad . \quad . \quad . \quad 19)$$

Den größten Wert erlangt  $\sigma$  für  $\varphi = 0$ , d. i. in der Mitte,

$$\sigma_{max} = \psi \, \frac{\varphi_0^2}{2 \, \alpha} \, .$$

Der Gleichgewichtszustand bedingt

$$P = \int_{0}^{\varphi_0} \sigma \cdot 2 \pi r \varphi \cdot r d\varphi = \frac{\psi \pi}{\alpha} r^2 \int_{0}^{\varphi_0} (\varphi_0^2 - \varphi^2) \varphi d\varphi = \frac{\psi \pi}{4\alpha} \varphi_0^4 r^2,$$

woraus mit

$$\varphi_0 = \sqrt{\frac{2\alpha}{\psi}} \sigma_{max} \quad . \quad . \quad . \quad . \quad . \quad . \quad 20)$$

II. Druck.

$$P = \frac{\pi}{\psi} \alpha \sigma_{max}^2 r^2 = \frac{\pi}{4 \psi} \alpha \sigma_{max}^2 d^2 \dots \dots 21$$

$$P = kd^2, \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad \ldots \quad 22)$$

sofern

Gleichung 22 stimmt mit Gleichung 13 vollständig überein.

In ähnlicher Weise läßt sich auch die Entwicklung für den Zylinder durchführen. Sie führt zu

$$P = kld, \ldots \ldots \ldots \ldots \ldots 24)$$

wenn l die Länge des Zylinders ist, und P die Gesamtbelastung für den Zylinder bedeutet, also ganz zum gleichen Ergebnis, wie oben in Gleichung 17 ausgesprochen. Für den Wert k der Gleichung 24 ergibt sich der Ausdruck

$$k = 0.94 \sqrt{\frac{\alpha \sigma_{max}^3}{\psi}} \quad . \quad . \quad . \quad . \quad . \quad . \quad 25)$$

Dabei ist jedoch die Größe von k ebensowenig aus Gleichung 23 bzw. 25 zu berechnen, wie dies aus Gleichung 14 oder 18 zu geschehen hat, k ist vielmehr durch Versuche unmittelbar zu bestimmen, wie S. 222 u.f. angegeben wurde.

Daß die Gesetzmäßigkeit, wie sie in den Gleichungen 23 bzw. 25 für k zum Ausdruck gelangt, nicht beanspruchen kann, genau zu sein. folgt aus dem Gange der Rechnung.

Eine Beziehung für die größte am Rande der Druckfläche auftretende Zugbeanspruchung liefert die Annäherungsrechnung ebensowenig wie die Hertzschen Entwicklungen; doch läßt, wie schon oben angedeutet, Fig. 27 deutlich erkennen, daß infolge der starken Abbiegung, die die Körperelemente am Rande der Druckfläche (bei A) erfahren, bedeutende Zugspannungen auftreten werden, die bei spröden Materialien zu dem beobachteten Kreissprung (S. 223) führen können.

# § 14. Hinderung der Querdehnung.

Wie wir in §11 sahen, wird der Widerstand, den ein auf Druck in Anspruch genommener Körper leistet, schließlich dadurch überwunden, daß das Material nach der Seite hin ausweicht. Daraus folgt. daß der Widerstand an sich unüberwindbar erscheint, wenn das Material gehindert wird, nach der Seite auszuweichen, d. h. wenn genügend große Druckkräfte auf die Mantelflächen wirken.

Dieser Satz gilt nicht bloß für feste, sondern auch für flüssige

228

Körper. Denken wir uns beispielsweise einen genügend festen Hohlzylinder, zum Teil gefüllt mit Wasser, auf dem ein gegen die Zylinderwandung vollkommen abdichtender Kolben ruht. Wie stark wir auch — innerhalb der Widerstandsfähigkeit des Hohlzylinders den Kolben belasten, das nach allen Seiten hin am Entweichen gehinderte Wasser trägt die Belastung, weist also trotz seiner tropfbar flüssigen Natur unter diesen Umständen eine große Widerstandsfähigkeit gegen Druck auf.

Die Erscheinung ist eine ähnliche wie die in §7 erörterte. Dort handelt es sich um den Einfluß gehinderter Zusammenziehung, hier um denjenigen der Hinderung der Querdehnung, die die Druckkraft zur Folge haben würde, wenn Kräfte auf die Mantelfläche senkrecht zur Achse nicht tätig wären. Die in §7 enthaltenen Gleichungen gelten in sinngemäßer Weise auch hier. Insbesondere folgt daraus, daß die Beziehung

$$\sigma = \frac{\varepsilon}{\alpha} \text{ oder } \varepsilon = \alpha \sigma,$$

die bei dem nur in Richtung der Achse gedrückten Stab zwischen der Spannung –  $\sigma$  (Pressung) und der Dehnung –  $\varepsilon$  (Kürzung) sowie der Dehnungszahl  $\alpha$  gegenüber Druckbeanspruchung besteht, nicht mehr gültig ist, sobald auch Kräfte senkrecht zur Stabachse angreifen¹). Solche Kräfte wirken bei den Versuchskörpern in der Regel auf die Stirnflächen; sie rühren hier her von der Reibung, die bei der Pressung zwischen Druckplatte der Prüfungsmaschine und Stirnfläche des Probekörpers durch das Bestreben des letzteren, sich quer auszudehnen, wachgerufen wird. Infolge dieser Reibung, die die volle Rein-

¹⁾ Damit hängt es dann auch zusammen, daß die zulässige Druckanstrengung im Falle gehinderter Querdehnung größer genommen werden darf. Die in Fig. 1 auf Druck beanspruchte Bleischeibe vom Durchmesser d = 35 mm und der Höhe h = 10 mm würde nach den Versuchen § 13, Ziff. 1 d, eine Belastung von



126 kg/qcm nicht mehr vertragen. Dieselbe Bleischeibe, nach Fig. 2 vertieft eingelegt, so daß das Blei nach der Seite nicht ausweichen kann, verträgt die doppelte Belastung und mehr.

Eingehende Versuche mit Marmorkörpern unter der Einwirkung allseitigen Druckes sind von v. Karmán angestellt worden, über deren Ergebnisse in Heft 118 (1912) der Mitteilungen über Forschungsarbeiten berichtet ist. heit der Erscheinung der Druckelastizität und Druckfestigkeit mehr oder weniger beeinträchtigen muß¹), beträgt die Querdehnung in der Mitte des Probekörpers mehr als an den Stirnflächen, wie die Fig. 2, Taf. VIII, und 3, Taf. IX, deutlich erkennen lassen; ferner muß infolge der an den Stirnflächen vorhandenen Hinderung der Querdehnung die Druckfestigkeit niederer Körper sich größer ergeben als diejenige höherer Körper, bei denen der Einfluß dieser Hinderung um so mehr zurücktritt, je größer die Höhe ist. (Vgl. Fig. 1, S. 205, Fig. 6, S. 208.)

Ist  $\varepsilon$  die durch eine Druckkraft in Richtung der Stabachse veranlaßte Zusammendrückung für die Länge 1, so wird die hiermit verknüpfte Querdehnung  $\varepsilon_q$  nach allen zur Achse senkrechten Richtungen als gleich groß angesehen und, bezogen auf die Längeneinheit, gemessen durch

Für ein und dasselbe Material pflegt man die Größe m in Gleichung 1, § 7, und 1, § 14, als gleich zu betrachten, also das Verhältnis der Dehnung (in Richtung der Stabachse) zur Zusammenziehung (senkrecht zur Achse) bei Zugbeanspruchung gleichzusetzen dem Verhältnis der verhältnismäßigen Zusammendrückung zur Querdehnung bei Druckbeanspruchung. (Vgl. § 7.)

## §. 15 Theorien der Druckfestigkeit.

Über den Vorgang des Zerdrückens sind zwei Hauptanschauungen geltend gemacht worden.

Die ältere, von Coulomb herrührende, denkt sich nach Maß-



¹) Auf der Hinderung der Querdehnung beruht auch die Wirksamkeit der Eisenspiralen, die in Betonsäulen am Umfange derselben eingelegt sind.

Da die Körper, welche Druckversuchen unterworfen werden, verhältnismäßig kurz zu sein pflegen, so wird die Bestimmung der Querdehnung durch unmittelbare Messung derselben für die verschiedenen Querschnitte leicht zu verschiedenen Werten führen können. Man wird deshalb bei Dehnungsmessungen die Meßlänge ausreichend kleiner als die Stablänge, somit diese entsprechend groß wählen müssen.

gabe der Fig. 1 das Zerdrücken durch Abschieben erfolgend und dabei die Druckkraft P in zwei Seitenkräfte

 $P \sin \alpha$ , wirkend in der Gleitungsebene,

 $P\cos\alpha$ , senkrecht dazu,

zerlegt. Wird der Widerstand gegen Gleiten für das Quadratzentimeter mit  $K_s$  (Schubfestigkeit) bezeichnet, so findet sich, sofern fden Querschnitt des Prismas bedeutet:

$$P \sin \alpha = K_s \frac{1}{\cos \alpha}$$
$$\frac{P}{f} = K_s \frac{2}{\sin 2\alpha}.$$

Das Gleiten wird die kleinste Kraft P erfordern, wenn sin 2a am größten ausfällt, d. i., wenn  $a = 45^{\circ}$ ; womit nach Einführung der Druckfestigkeit

$$K = \frac{P}{f}$$

sich ergibt

$$K = 2 K_s$$

d. h. die Druckfestigkeit müßte gleich dem Doppelten der Schubfestigkeit sein.

Diese Theorie wurde später durch Hereinziehung der von  $P \cos a$  veranlaßten Reibung ergänzt.

Die zweite Anschauung faßt die Querdehnung ins Auge (§ 11) und nimmt an, daß das Zerdrücken stattfinde, wenn dieselbe so groß geworden wie die Längsdehnung beim Zerreißen im Falle von Zugbeanspruchung. Mit der Genauigkeit, mit der die Längsdehnung dreibis viermal so groß angenommen werden darf wie die Querdehnung, findet sich auf diesem Wege die Druckfestigkeit gleich dem Dreibis Vierfachen der Zugfestigkeit, was beispielsweise für das Gußeisen § 13, Ziff. 1a, mit Annäherung zutreffen würde.

Beide Lehren haben durch Druckversuche nicht die erforderliche Bestätigung erfahren.

Eine befriedigende Theorie der Druckfestigkeit würde diese jedenfalls als Funktion der Höhe geben müssen (§13) und, wenn sie vollkommen sein soll, auch den Fall der Knickung (§23) einzuschließen haben.

# III. Biegung.

Die auf den geraden stabförmigen Körper wirkenden Kräfte treffen dessen Achse rechtwinklig und geben für jeden Querschnitt ein Kräftepaar, dessen Ebene senkrecht auf demselben steht.

# § 16. Gleichungen der Biegungsanstrengung und der elastischen Linie unter der Voraussetzung, daß der Stabquerschnitt symmetrisch ist, und daß die Ebene des Kräftepaares in die Symmetrie-Ebene des Stabes fällt oder ihr parallel ist.¹)

Bei der Entwicklung dieser Beziehungen pflegt man von der durch Fig. 1 dargestellten Sachlage aus in folgender Weise vorzugehen.

Der bei A als eingespannt vorausgesetzte Balken AB ist am freien Ende B durch die Kraft P belastet, hinsichtlich welcher angenommen wird, daß sie in die Ebene und Richtung der einen Hauptachse des Stabquerschnittes falle. (Über das Kennzeichen der beiden Hauptachsen eines Querschnittes vgl. § 21, Ziff. 1.) Die Kraft P ergibt dann für den beliebigen, um x von A abstehenden Querschnitt CC ein Kräftepaar, dessen Moment P(l-x) ist, und dessen Ebene den Querschnitt senkrecht schneidet, sowie eine in die Querschnittsebene fallende Kraft P. Die letztere wird als nicht vorhanden angesehen und damit die oben als Voraussetzung der einfachen Biegung hingestellte



Bedingung, daß sich die äußeren Kräfte für jeden Querschnitt durch ein Kräftepaar ersetzen lassen, dessen Ebene den letzteren rechtwinklig schneidet, erfüllt.

¹) Den Nachweis, daß die Hauptgleichungen 12 (S. 236) der Biegungslehre Symmetrie des Querschnittes, wie oben angegeben, voraussetzen, hat Verfasser durch die S. 267 u. f. besprochenen Versuche erbracht. Bis dahin wurde allgemein angenommen, daß die Symmetrie nicht nötig sei, daß es ausreiche, wenn die Ebene des Kräftepaares den Querschnitt in einer der beiden Hauptachsen schneide.

Es bezeichne mit Bezugnahme auf die Fig. 1 bis 7:

- $\boldsymbol{M}_{b}$  das Moment des biegenden Kräftepaares hinsichtlich des in Betracht gezogenen Querschnittes,
  - $\eta$  den Abstand eines Flächenstreifens  $df = zd\eta$  im letzteren von derjenigen Hauptachse, die senkrecht zur Ebene des Kräftepaares steht, d. i. hier OO (Fig. 7),
  - $\Theta = \int \eta^2 df = \int \eta^2 z \, d\eta$  das Trägheitsmoment des Querschnittes hinsichtlich dieser Hauptachse,
  - $e_1$  den größten positiven Wert von  $\eta$  (Abstand der am stärksten gezogenen oder gespannten Faser),
  - $e_2$  den größten negativen Wert von  $\eta$  (Abstand der am stärksten gedrückten Faser),
  - $e = e_1 = c_2$ , sofern der Querschnitt so beschaffen ist, daß beide Abstände gleich groß sind,
  - $\sigma$  die durch  $M_b$  im Abstand  $\eta$ , d. h. im Flächenstreifen  $df = z d\eta$  hervorgerufene Spannung,
  - $k_z$  bzw. k die zulässige Anstrengung des Materials auf Zug bzw. Druck,
  - x und y die Koordinaten des beliebigen Punktes O der elastischen Linie, d. h. der Kurve, in die die ursprünglich gerade Stabachse bei der Biegung übergeht, bezogen auf das aus Fig. 2 ersichtliche Koordinatensystem,
  - $\varrho$  den Krümmungshalbmesser der elastischen Linie in dem beliebigen Punkte O,
  - $\alpha$  die Dehnungszahl, d. i. die Änderung der Längeneinheit für das Kilogramm Spannung.



Unter der Einwirkung der Kraft P biegt sich der Stab, wie Fig. 2 erkennen läßt. Infolgedessen werden zwei ursprünglich parallele Querschnitte CC und  $C_1C_1$ , Fig. 1, die um  $dx = \overline{OO_1}$  voneinander abstehen, diesen Parallelismus verloren haben und einen gewissen Winkel  $CMC_1 = d\varphi$ , Fig. 2 und 3, miteinander einschließen. Daß sie eben und senkrecht zur Mittellinie bleiben, wird vorausgesetzt. Die oberhalb einer gewissen Faserschicht, die sich in  $G\overline{H}$ , Fig. 2 und 3, darstellt, liegenden Fasern haben sich gedehnt, die unterhalb gelegenen verkürzt. In der bezeichneten Faserschicht ist die Dehnung gleich Null, weshalb sie "neutrale Schicht" genannt wird.

Für den in Betracht gezogenen Querschnitt *CGC* findet sich die verhältnismäßige Dehnung  $\varepsilon$  im Abstand v von der Geraden, die sich in *G* projiziert, aus der Erwägung, daß bei  $EHP_1E \parallel CGPC$  die Strecke  $\overline{PP_1} = \overline{CE} = \overline{GH} = dx$  infolge der Biegung übergegangen ist in  $\overline{PP_1}'$ , also

$$\varepsilon = \frac{\overline{PP_1' - \overline{PP_1}}}{\overline{PP_1}} = \frac{\overline{P_1P_1'}}{\overline{GH}} = \frac{vd\,\varphi}{dx} \quad \dots \quad \dots \quad 1)^{1}$$

Die hiermit verknüpfte Spannung  $\sigma$  ergibt sich unmittelbar aus dem Begriff der Dehnungszahl  $\alpha$  nach Gleichung 2, § 2, zu

$$\sigma = \frac{\varepsilon}{\alpha} = \frac{v}{\alpha} \frac{d\varphi}{dx}, \qquad \dots \qquad \dots \qquad \dots \qquad 2)$$

sofern Kräfte senkrecht zur Stabachse auf die Faserschicht nicht einwirken (vgl. §7 und §14).

Die so im Innern des Stabes durch das Moment  $M_b$  wachgerufenen Kräfte müssen sich mit diesem im Gleichgewicht befinden. Dazu gehört, daß die algebraische Summe dieser inneren Kräfte in Richtung der Stabachse gleich Null, und daß sie ein Moment liefern, das gleich

¹) Diese Beziehung wird nur dann für sämtliche im Abstande v gelegenen Elemente des Querschnittes richtig sein, wenn die einzelnen Flächenelemente des ganzen Querschnittes ausreichend innig zusammenhängen. Für volle Quer-



schnitte, wie Kreis, Rechteck usw., ist diese Voraussetzung erfüllt, für Querschnitte, wie z. B. Fig. 4, um so unvollkommener, je. dünner die Rippen sind und je weiter sie ausladen. In noch weit höherem Maße kann diese Unvollkommenheit sich einstellen bei getrennten Querschnitten, wie z. B. Fig. 5, deshalb, weil die Flächenelemente der beiden Querschnittsteile bei vorhandener Schubkraft nicht in derselben Ebene verbleiben. (Vgl. § 52.) In solchen Fällen kann die Benutzung der Gleichungen 9 bis 12 unter Umständen zu einer außerordentlich weitgehenden Überschätzung der Widerstandsfähigkeit führen. und entgegengesetzt  $M_b$  ist. Die erste Forderung gibt, wenn der im Abstande v von der neutralen Schicht liegende Flächenstreifen mit df bezeichnet wird,

genommen über den ganzen Querschnitt. Mit Rücksicht auf Gleichung 2 sowie in Anbetracht, daß der Quotient  $\frac{d \varphi}{d x}$  für sämtliche Streifen eines und desselben Querschnittes den gleichen Wert besitzt, findet sich aus der Gleichung 3

Unter der Voraussetzung, daß die Dehnungszahl  $\alpha$  für alle Punkte des Querschnittes gleich groß, also unabhängig von der Größe und dem Vorzeichen der Spannung  $\sigma$  oder der Dehnung  $\varepsilon$  ist, folgt

$$\int v dt = 0, \ldots \ldots 5$$

d. h. die Gerade, in der die Dehnungen und die Spannungen den Wert Null besitzen, die sogenannte "neutrale Achse" oder "Nullachse", geht durch den Schwerpunkt des Querschnittes und ist, da die Ebene der äußeren Kräfte den letzteren in der einen Hauptachse schneidet, die andere Hauptachse desselben. Somit ist unter Beachtung von Fig. 6 und 7, worin  $\overline{OO}$  die Nullachse bedeutet, zu setzen

$$\begin{array}{c} e & b & e \\ 3 & -3 & 3 & -3 \\ 0 & -6 & -3 & 0 \\ e & 6 & -3 & 0 \\ e & 6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ e & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -3 & -3 \\ 0 & -6 & -5 & -3 \\ 0 & -6 & -5 & -3 \\ 0 & -6 & -5 & -3 \\ 0 & -6 & -5 & -3 \\ 0 & -6 & -6 & -5 \\ 0 & -6 & -6 & -5 \\ 0 & -6 & -6 & -5 \\ 0 & -6 & -6 & -5 \\$$

$$v = \eta$$
.

Die zweite Bedingung liefert

und nach Maßgabe der Gleichung 2 unter der bezüglich  $\alpha$  unmittelbar vorher ausgesprochenen Voraussetzung

$$\boldsymbol{M}_{b} = \frac{1}{\alpha} \frac{d\varphi}{dx} \int \eta^{2} df.$$

woraus mit

d. i. das Trägheitsmoment des Querschnittes in bezug auf 00,

III. Biegung.

$$\boldsymbol{M}_{b} = \frac{\boldsymbol{\Theta} \, d\varphi}{\alpha \, dx} \quad . \quad . \quad . \quad . \quad . \quad . \quad 8)$$

der

236

$$\frac{d\varphi}{dx} = \alpha \frac{M_b}{\Theta},$$

womit Gleichung 2 übergeht in

$$\sigma = \frac{M_b}{\Theta} \eta \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad 9)$$

Hiernach sind die Spannungen proportional dem Abstande der Flächenelemente von der Nullachse, wie in Fig. 8 dargestellt ist.



Damit ergibt sich die größte Zugspannung o1 für den größten positiven Wert von  $\eta$ , d. i. nach Fig. 7 für  $\eta = - e_1$ , zu

$$\sigma_1 = \frac{M_b}{\Theta} e_1, \quad \dots \quad \dots \quad \dots \quad 10)$$

die größte Druckspannung  $\sigma_2$  für den größten negativen Wert von  $\eta$ , d. i. für  $\eta = -c_2$ , zu

$$\sigma_2 = -\frac{M_b}{\Theta} e_2, \ldots, \ldots, \ldots, 11)$$

so daß

oder

$$\begin{array}{ccc} k_{z} \geqq \displaystyle \frac{M_{b}}{\Theta} e_{1} & k \geqq \displaystyle \frac{M_{b}}{\Theta} e_{2} \\ \\ M_{b} \leqq k_{z} \displaystyle \frac{\Theta}{e_{1}} & M_{b} \leqq k \displaystyle \frac{\Theta}{e_{2}} \end{array} \right\} \quad . \quad . \quad . \quad 12)$$

Ist  $\varrho$  der Abstand des Punktes M, in dem sich die Durchschnittslinie der beiden Querschnitte (Fig. 3 und 6) projiziert von dem Punkte O, Fig. 6, also der Krümmungshalbmesser der jetzt gekrümmten Stabachse, d. h. der elastischen Linie im Punkte O, so findet sich

7

$$dx = \varrho \, d\varphi$$

$$\varrho = \frac{dx}{d\varphi} = \frac{\Theta}{\alpha \, M_b}$$

$$\frac{1}{\varrho} = \alpha \frac{M_b}{\Theta} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad 13$$

oder

Der reziproke Wert des Krümmungshalbmessers, d. h. die Krümmung, ist hiernach proportional der Dehnungszahl a, dem biegenden Moment  $M_b$  und umgekehrt proportional dem Trägheitsmoment  $\Theta$ .

Mit der Annäherung, mit welcher der allgemein gültige Ausdruck

$$\frac{\left[1+\left(\frac{dy}{dx}\right)^{2}\right]^{\frac{3}{2}}}{\pm\frac{d^{2}y}{dx^{2}}}=\varrho$$

ersetzt werden darf durch

$$\frac{1}{\rho} = \pm \frac{d^2 y_4}{d x^2}, \quad \dots \quad \dots \quad \dots \quad 14)$$

was wegen  $1 + \left(\frac{dy}{dx}\right)^2 = \sim 1$  zulässig erscheint für Durchbiegungen des Stabes, die klein sind im Verhältnis zur Stablänge, findet sich

$$M_b = \pm \frac{\Theta}{lpha} \frac{d^2 y}{dx^2}$$
 oder  $\frac{d^2 y}{dx^2} = \pm \frac{\alpha}{\Theta} M_b$  . . 15)

## § 17. Trägheitsmomente.

Die in §16 entwickelten Hauptgleichungen setzen im Falle ihrer Benutzung die Kenntnis des betreffenden Trägheitsmomentes voraus. Hinsichtlich der Berechnung desselben sei folgendes bemerkt.



- $\Theta$  das Trägheitsmoment des Querschnittes inbezug auf die Schwerpunktsachse OO, Fig. 1, also  $\Theta = \int \eta^2 df = \int \eta^2 z \, d\eta$ .
- $\Theta_1$  das Trägheitsmoment desselben Querschnittes in bezug auf die Achse QQ, die im Abstande *a* zu *OO* parallel läuft, demnach  $\Theta_1 = \int (\eta - a)^2 df$ .

Fig. 1. so ergibt sich

$$\Theta_1 = \int (\eta + a)^2 df = \int \eta^2 df + 2 a \int \eta df + a^2 \int df$$

und unter Beachtung, daß

f die Größe des Querschnittes.

Von diesem Hilfssatz, der ausspricht, daß das Trägheitsmoment in bezug auf die Achse OO gleich ist dem Träg-

237

III. Biegung.

heitsmoment hinsichtlich der zu QQ parallelen Schwerpunktsachse OO, vermehrt um das Produkt aus Querschnittsfläche und Quadrat des Abstandes der beiden Achsen, läßt sich oft mit Vorteil Gebrauch machen.

Bei der Anwendung dieser Beziehung, sowie überhaupt der Trägheitsmomente sind die Voraussetzungen im Auge zu behalten, die in § 16 zur Gleichung 9 führen. (Vgl. Fußbemerkung S. 234, sowie § 20.)



Das Trägheitsmoment in bezug auf die Seite AB beträgt

$$\Theta_1 = \int_{0}^{n} x^2 b \, dx = \frac{1}{3} b \, h^3$$

folglich in bezug auf die um  $rac{h}{2}$  davon abstehende Schwerpunktsachse OO

$$\Theta = \Theta_1 - a^2 f = \frac{1}{3} b h^3 - \left(\frac{h}{2}\right)^2 b h = \frac{1}{12} b h^3 \dots 2$$

und

## 2. Dreieck, Fig. 3.



Für die Achse QQ

$$\Theta_1 = \int_0^h x^2 \left( b \, \frac{x}{h} \right) dx = \frac{1}{4} b \, h^3.$$

Für die um  $\frac{2}{3}$  h davon abstehende Schwerpunktsachse OO

$$\Theta = \frac{1}{4} b h^3 - \left(\frac{2}{3} h\right)^2 \cdot \frac{1}{2} b h = \frac{1}{36} b h^3 \dots (1 + 1)^2$$

# 3. Kreis, Fig. 4.



Für die Schwerpunktsachse OO wegen  $\eta = r \sin \varphi$ ,  $z = 2 r \cos \varphi$ 

$$\Theta = \int_{-r}^{+r} \eta^2 z d\eta = 4 r^4 \int_{0}^{2} \sin^2 \varphi \cos^2 \varphi d\varphi = \frac{\pi}{4} r^4$$
$$\Theta = \frac{\pi}{64} d^4 \qquad \dots \qquad \dots \qquad \dots \qquad 5)$$

$$\frac{\Theta}{e} = \frac{\Theta}{\frac{d}{2}} = \frac{\pi}{32} d^3 = \sim \frac{1}{10} d^3 \quad \dots \quad \dots \quad \dots \quad 6)$$

4. Ellipse, Fig. 5.

Wir denken uns die Ellipse in Verbindung gebracht mit dem sie umschließenden Kreis vom Radius a und beide Querschnitte in



unendlich schmale Streifen senkrecht zur Achse OO geschnitten. Das Trägheitsmoment eines jeden Kreisstreifens verhält sich nach Gleichung 2 zu demjenigen des Ellipsenstreifens wie

$$1: \left(\frac{b}{a}\right)^3.$$

III. Biegung.

Folglich ergibt sich das auf 00 bezogene Trägheitsmoment der Ellipse nach Gleichung 5 zu

#### 5. Zusammengesetzte Querschnitte.

# a) Rechnerische Bestimmung, Fig. 6.



Fig. 6.

Der Querschnitt kann zusammengesetzt gedacht werden aus dem liegenden Rechteck  $14 \cdot 2 = 28$  gcm,

- dem liegenden Rechteck  $14 \cdot 2 = 28$  qer " Dreieck  $\frac{1}{2} \cdot 1 \cdot 1 = 0,5$  "
  - ,, stehenden Rechteck  $1 \cdot (12,05 2 1) = 9,05$  ,,
  - ,, liegenden Rechteck  $2.8 \cdot 1 = 2,8$  ,,

Die Lage der Schwerpunktsachse OO bestimmt sich aus

$$x = \frac{28\frac{2}{2} + 0.5\left(2 + \frac{1}{3}\right) + 9.05 \cdot (2 + 9.05 \cdot 0.5) + 2.8 \cdot (12.05 - 0.5)}{28 + 0.5 + 9.05 + 2.8} = 2,99 \text{ cm}$$

und das Trägheitsmoment in bezug auf diese Achse nach Maßgabe der Gleichungen 2, 4 und 1 zu

$$\begin{split} \Theta &= \frac{1}{12} \, 14,0 \cdot 2,0^3 + 14 \cdot 2 \, (2,99 - 1)^2 \\ &+ \frac{1}{36} \, 1 \cdot 1^3 + \frac{1}{2} \, 1 \cdot 1 \, (2,99 - 2,33)^2 \\ &+ \frac{1}{12} \, 1 \cdot 9,05^3 + 1 \cdot 9,05 \, (6,525 - 2,99)^2 \\ &+ \frac{1}{12} \, 2,8 \cdot 1^3 + 2,8 \cdot 1 \, (11,55 - 2,99)^2 = 500,7 \, \mathrm{cm}^4. \end{split}$$

## b) Zeichnerische Bestimmung, Fig. 7 bis 9.

Bei zusammengesetzten, insbesondere unregelmäßig begrenzten Querschnitten pflegt das folgende, von Mohr angegebene zeichnerische Verfahren rascher zum Ziele zu führen als der Weg der Rechnung.

Die Querschnittsfläche von der Größe f (im Falle des gewählten Beispiels Querschnitt einer Eisenbahnschiene) wird parallel zur Achse,



in bezug auf die das Trägheitsmoment gesucht werden soll, in eine Anzahl Streifen zerlegt; hierauf trägt man die Querschnitte  $f_1f_2f_3...f_{10}$ dieser Streifen als Strecken  $f_1 = \overline{0} \ \overline{1}, f_2 = \overline{1} \ 2, f_3 = \overline{2} \ \overline{3} \ \ldots \ f_{10} = 9 \ 10$ auf einer zur genannten Achse parallelen Geraden auf (Fig. 8) und stellt sich diese Flächen als Schwerkräfte vor, die in den Schwerpunkten der Streifen angreifen; konstruiert mit dem symmetrisch zu 0 10 gelegenen und von dieser Linie um  $\frac{f}{2}$  abstehenden Punkt O als Pol Kräfteund Seilpolygon, Fig. 8 bzw. Fig. 9. In dem Schnittpunkt C (Fig. 9) C. Bach, Elastizität. 8. Aufl.

der äußersten Polygonseiten 1 C und 10 C wird alsdann — wie ohne weiteres aus der Natur des Seilpolygons folgt — ein Punkt der gesuchten Schwerlinie CD erhalten, während die von dem Seilpolygon 1 2 3 ... 10 und den beiden Polygonseiten 1 C und 10 C eingeschlossene Fläche  $F_p$ (in Fig. 9 durch Strichlage, von links nach rechts ansteigend bezeichnet) mit f multipliziert das Trägheitsmoment bezüglich der Schwerachse CD liefert.

Beweis:

Auf den Knotenpunkt 1 des Seilpolygons, den wir uns herausgeschnitten denken, wirken in der Richtung C1 die Kraft  $S_0$ , in der . Richtung 12 die Kraft  $S_1$  und senkrecht abwärts die Schwerkraft  $f_1$ . Dieselben ergeben in bezug auf den Durchschnittspunkt A der Geraden C1 mit der beliebigen, zur Richtung der Streifen und der Schwerpunktsachse CD parallel laufenden Achse  $AB_{10}$  die Momentengleichung

$$f_1 x_1 == H \cdot A B_1,$$

sofern  $S_1$  in der eigenen Richtungslinie nach  $B_1$  verlegt und hier in seine Vertikalkomponente und in seine wagrechte Seitenkraft

$$H=\frac{f}{2}$$

zerlegt wird.

Durch Multiplikation mit  $x_1$  findet sich

$$f_1 x_1^2 = 2H \quad \overline{\frac{AB_1 \cdot x_1}{2}} = 2H \cdot \text{Fläche} \ A \mid B_1 = f \cdot \text{Fläche} \ A \mid B_1.$$

In ganz gleicher Weise folgt für den Knotenpunkt 2

$$f_2 x_2^2 = f \cdot \text{Fläche } B_1 2 B_2,$$

für die folgenden Knotenpunkte

$$f_3 x_3^2 = f \cdot \text{Fläche } B_2 \ 3 \ B_3.$$
  
 $f_{10} x_{10}^2 = f \text{Fläche } B_9 \ 10 \ B_{10}.$ 

Nun ist das Trägheitsmoment  $\Theta_1$  des ganzen Querschnittes in bezug auf die Achse  $AB_{10}$  — streng genommen allerdings nur unter Voraussetzung unendlich schmaler Streifen —

 $\mathbf{242}$ 

§17. Trägheitsmomente.

$$\Theta_{1} = f_{1}x_{1}^{2} + f_{2}x_{2}^{2} + f_{3}x_{3}^{2} + \dots + f_{10}x_{10}^{2}$$

$$= f \cdot (\text{Fläche } A \mid B_{1} + \text{Fläche } B_{1} \mid 2B_{2} + \text{Fläche } B_{2} \mid 3B_{3} + \dots + \text{Fläche } B_{9} \mid 0B_{10})$$

$$= f \cdot \text{Fläche } A \mid 5 \mid 10 \mid CB_{10}$$

und in Hinsicht auf die Schwerpunktsachse CD nach Gleichung 1

$$\Theta == \Theta_1 - f a^2.$$

Unter Beachtung, daß Fläche  $AB_{10}C = a^2$  (wegen  $\measuredangle ACB_{10} = 90^{\circ}$ ), wird

 $\Theta = f \cdot (\text{Fläche } A \ 1 \ 5 \ 10 \ C B_{10} = \text{Fläche } A \ C B_{10})$  $= f \cdot \text{Fläche } 1 \ 5 \ 10 \ C = f \cdot F_n,$ 

wie das Mohrsche Verfahren voraussetzt.

Für die Achse  $EE \parallel CD$  ist, wie nach Maßgabe des Erörterten ohne weiteres klar, das Trägheitsmoment

 $f \cdot (F_n + \text{Fläche} C E G),$ 

d.h. gleich dem Produkt aus Stabquerschnitt und der Summe der beiden in Fig. 9 durch Strichlage hervorgehobenen Flächen.

#### c) Ermittlung durch Instrumente.

Durch Umfahren des Querschnittes mittelst "Integrators" lassen sich die Trägheitsmomente beliebig gestalteter Flächen rasch und ausreichend genau ermitteln. Solche Instrumente werden z. B. von der Firma J. Amsler-Laffon & Sohn in Schaffhausen a. Rh. geliefert.

Nach Zerlegung des Querschnittes in 10 mm hohe Streifen findet sich

$$\begin{split} & \varTheta = \mathbf{\sim} 10 \cdot 28 \cdot 85, 6^2 + 10 \cdot 10 \cdot 75, 6^2 + 10 \cdot 10 \cdot 65, 6^2 + 10 \cdot 10 \cdot 55, 6^2 \\ & + 10 \cdot 10 \cdot 45, 6^2 + 10 \cdot 10 \cdot 35, 6^2 + 10 \cdot 10 \cdot 25, 6^2 + 10 \cdot 10 \cdot 15, 6^2 \\ & + 10 \cdot 10 \cdot 5, 6^2 + 0, 5 \cdot 10 \cdot 0, 35^2 + 0, 5 (10 + 20) 5, 5^2 + 10 \cdot 140 \cdot 14, 9^2 \\ & + 10 \cdot 140 \cdot 24, 9^2 = 4\,970\,000 \,\,\mathrm{mm^4} = 497 \,\,\mathrm{cm^4}. \end{split}$$

Wird der Steg in 20 mm hohe Streifen zerlegt, so ergibt sich

$$\begin{split} \theta = & \sim 10 \cdot 28 \cdot 85, 6^2 + 20 \cdot 10 \cdot 70, 6^2 + 20 \cdot 10 \cdot 50, 6^2 + 20 \cdot 10 \cdot 30, 6^2 \\ & + 20 \cdot 10 \cdot 10, 6^2 + 0, 5 \cdot 10 \cdot 0, 35^2 + 0, 5(10 + 20) \cdot 5, 5^2 + 10 \cdot 140 \cdot 14, 9^2 \\ & + 10 \cdot 140 \cdot 24, 9^2 = 4\,950\,000 \text{ mm}^4 = 495 \text{ cm}^4. \end{split}$$

16*

¹⁾ Gemäß diesem Satze läßt sich beispielsweise für den Querschnitt Fig. 6 das Trägheitsmoment leicht in folgender Weise rechnerisch feststellen:

Bei Anwendung von 20 mm Höhe auch für die untere Fläche findet sich  $\Theta = \sim 488 \text{ cm}^4$ .

## III. Biegung.

Querschnittsform		${f Tr}$ ägheitsmoment ${oldsymbol{arTheta}}$	Schwerpunkts- abstand	Größe des Querschnittes f	
Fig. 10.		$rac{\pi}{64}d^4$	$e = \frac{d}{2}$	$rac{\pi}{4}d^2$	
Fig. 11.		$rac{\pi}{64}(d^4-d_0{}^4)$	$e = \frac{d}{2}$	$rac{\pi}{4} (d^2 - d_0^2)$	
Fig 12.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\frac{\pi}{4}a^{3}b$	e == a	πab	
Fig. 13.		$\frac{\pi}{4}(a^3b-a_0{}^3b_0)$	e == a	$\pi \left( ab - a_0 b_0 \right)$	
Fig. 14.	-20-1 	$\frac{5\sqrt{3}}{16}b^4 = 0.54b^4$	e == 0,866 b	$\frac{3\sqrt{3}}{2}b^2 = 2,6b^2$	
Fig. 15.		$0,54  b^4$	e = b	2,6 b ²	
Fig. 16.	+ 9	$rac{1}{12}  b  h^{\mathfrak{z}}$	$e = \frac{h}{2}$	bh	

## 6. Zusammenstellung.



¹) Ist die Wandstärke verhältnismäßig gering, so ist auf der Druckseite Wellenbildung zu erwarten, ähnlich wie in § 13 für Druckbeanspruchung besprochen. Fig. 24 zeigt den Längsschnitt durch eine dem Biegungsversuch unterworfene Hohlwelle aus vergütetem Chromnickelstahl und läßt die Wellenbildung an der am stärksten auf Druck beanspruchten Stelle deutlich erkennen.

Querschnittsform	Trägheitsmoment Θ	Schwerpunkts- abstand	Größe des Querschnittes
Fig 17. Fig 18. Fig. 19. ¹ )	$\frac{1}{12} (b h^3 - b_0 h_0^3)$	$e=rac{h}{2}$	$bh-b_{0}h_{0}$
Fig. 20.	$\frac{1}{12} \left[h^3 s + (b - s) s^3\right]$	$e = \frac{h}{2}$	h s + (b - s) s
Fig. 21.	$\frac{1}{36}bh^3$	$e_1 = \frac{1}{3}h$ $e_2 = \frac{2}{3}h$	$\frac{1}{2}bh$
Fig. 22. $\frac{4 - b_1 - b_2}{b_1 - b_2} = \frac{1}{b_1 - b_2}$	$\frac{\frac{1}{36}\frac{b^2-4bb_1+b_1^2}{b-b_1}h^3}{b-b_1}$	$e_{1} = \frac{b+2}{b+b_{1}} \frac{h}{3}$ $e_{2} = \frac{2b+b_{1}}{b+b_{1}} \frac{h}{3}$	$rac{b + b_1}{2}h$
Fig. 23.	0,0069 d4	$e_1 = 0.212d$ $e_2 = 0.288d$	$-\frac{\pi}{8} d^2$

Über die beiden Hauptträgheitsmomente eines Querschnittes vgl. § 21, Ziffer 1.

¹) Für Stäbe, deren Querschnitt in bezug auf die Ebene, in der die äußeren Kräfte wirken, unsymmetrisch ist, wie das z. B. bei Fig. 19 zutrifft, liefern die Entwicklungen in § 16, die zu den Gleichungen 12 daselbst führen, die Inanspruchnahme zu gering; vgl. die Darlegungen S. 267 u. f.

In bezug auf Hohlquerschnitte, solche mit Rippen und getrennte Querschnitte, sind die Fußbemerkungen S. 234, 244 zu beachten, auch wenn die Querschnitte symmetrisch gestaltet sind.

III. Biegung.

### § 18. Fälle bestimmter Belastungen.

1. Der Stab (vgl. Fig. 1 und Fig. 2, § 16) ist an dem einen Ende eingespannt, am freien Ende mit P belastet. Außerdem trägt derselbe eine gleichmäßig über seine Länge l verteilte Belastung Q = p l.

Für den beliebigen Querschnitt CC, der um x von der Einspannstelle absteht, ergibt sich

$$M_b = P(l-x) + p \frac{(l-x)^2}{2}$$

Den größten Wert erlangt  $M_h$  für x = 0, nämlich

$$\max(M_b) = Pl + \frac{pl^2}{2} = \left(P + \frac{Q}{2}\right)l.$$

Demnach findet nach den Gleichungen 12, § 16, die stärkste Anstrengung im Querschnitt der Einspannstelle A statt.

Zur Feststellung der elastischen Linie ergibt sich mit Gleichung 15 § 16,

$$\frac{d^2y}{dx^2} = \frac{\alpha}{\Theta} \left[ P(l-x) + p \frac{(l-x)^2}{2} \right]$$

und für Materialien, für welche die Dehnungszahl  $\alpha$  konstant ist – Gleichung 15, § 16, gilt zunächst auch nur für solche – sowie unter der Voraussetzung der Unveränderlichkeit des Trägheitsmomentes  $\Theta$ 

$$\frac{dy}{dx} = \frac{\alpha}{\Theta} \left[ P\left( lx - \frac{x^2}{2} \right) + \frac{p}{2} \left( l^2x - lx^2 + \frac{x^3}{3} \right) + C \right],$$

sofern die Integrationskonstante C genannt wird. Dieselbe bestimmt sich aus folgender Erwägung. Mit der Bezeichnung der Einspannung verknüpft man den Begriff, daß an der Einspannstelle die elastische Linie (in Fig. 2, § 16, AGHB) von der ursprünglich geraden Stabachse (AX) berührt wird¹), d. h.

für 
$$x = 0$$
 ist  $\frac{dy}{dx} = 0$ .

Damit folgt C = 0, so daß

$$\frac{dy}{dx} = \frac{\alpha}{\Theta} \left[ P\left(l-\frac{x}{2}\right) + \frac{p}{2}\left(l^2 - lx + \frac{x^2}{3}\right) \right] x. \quad . \quad . \quad 1)$$

Hieraus läßt sich für jeden beliebigen Punkt der elastischen Linie der Winkel berechnen, den die Tangente an letzterer in dem betreffen

¹) Über die Zulässigkeit dieser nur ausnahmsweise tatsächlich vollkommen erfüllten Voraussetzung vgl. § 53.

den Punkt mit der ursprünglich geraden Stabachse einschließt. Beispielsweise findet sich für das freie Ende *B*, Fig. 2, § 16, dieser Winkel  $\beta$ mit x = l zu

$$\operatorname{tg}\beta = \frac{\alpha}{2\Theta} \left( P + \frac{Q}{3} \right) l^2$$

und angenähert, da es sich nur um sehr kleine Werte von  $\beta$  zu handeln pflegt,

$$\beta = \frac{\alpha}{2 \Theta} \left( P + \frac{Q}{3} \right) l^2 \quad \dots \quad \dots \quad \dots \quad 2)$$

Aus Gleichung 1 folgt unter Beachtung, daß

für 
$$x = 0$$
 auch  $y = 0$ ,

die Gleichung der elastischen Linie

$$y = \frac{\alpha}{\Theta} \left[ \frac{P}{2} \left( l - \frac{x}{3} \right) + \frac{p}{4} \left( l^2 - \frac{2}{3} lx + \frac{x^2}{6} \right) \right] x^2 \quad . \quad . \quad . \quad 3)$$

Die Durchbiegung des freien Endes, also im Punkt B, beträgt, da hierfür x = l,

$$y_{\scriptscriptstyle B} = \frac{\alpha}{\Theta} \left( \frac{P}{3} + \frac{pl}{8} \right) l^3 = \frac{\alpha}{\Theta} \left( \frac{P}{3} + \frac{Q}{8} \right) l^3 \quad . \quad . \quad . \quad 4)$$

Sehr anschaulich läßt sich die Durchbiegung und Winkeländerung mit dem in § 54 unter 5 angegebenen Verfahren ermitteln, wie daselbst gezeigt ist. Dasselbe bietet namentlich bei veränderlichem Querschnitt Vorteile.

2. Der Stab liegt beiderseits auf Stützen, Fig. 1. Er ist belastet durch die gleichmäßig über ihn verteilte Last Q = p(a+b) = plund durch die im Punkte C angreifende Kraft P.



Die Auflagerdrücke der Stützen A und B sind

$$A = P \frac{b}{l} + \frac{Q}{2}, \qquad B = P \frac{a}{l} + \frac{Q}{2}.$$
Für den innerhalb der Strecke AC um x vom Auflager A abstehenden Querschnitt ist das biegende Moment

$$M_{b} = Ax - p\frac{x^{2}}{2} = \left(P\frac{b}{l} + \frac{Q}{2}\right)x - \frac{px^{2}}{2}$$

Dasselbe erlangt innerhalb der Strecke  $\overline{A \cdot C} = a$  einen größten Wert für

$$P\frac{b}{l} + \frac{Q}{2} = px$$
$$x = \frac{P}{Q}b + \frac{l}{2},$$
$$a > \frac{l}{2}.$$

sofern

Der gesuchte Querschnitt könnte hiernach nur in der größeren der beiden Strecken a und b liegen, und zwar zwischen der Balkenmitte und dem Angriffspunkt C der Kraft P, vorausgesetzt, daß

$$rac{P}{Q}b < a - rac{l}{2} \; ext{ oder } \; rac{P}{Q} < rac{2 \, a - l}{2 \, b} = rac{a - b}{2 \, b}$$
 $p \, a > P rac{b}{l} + rac{Q}{2}$ ,

d. h. daß die über die Strecke a gleichmäßig verteilte Last größer ist als der Auflagerdruck A.

Für den Fall, daß

$$rac{P}{Q}\!\ge\!rac{a-b}{2b}$$
 ,

liegt der durch die Biegung am stärksten beanspruchte Querschnitt im Angriffspunkte C der Kraft P.

Demnach ergibt sich,

wenn 
$$rac{P}{Q} \ge rac{a-b}{2b}$$
 ,

für den Querschnitt C

$$\max(M_{b}) = \left(P\frac{b}{l} + \frac{Q}{2}\right)a - \frac{pa^{2}}{2} = \left(P + \frac{Q}{2}\right)\frac{ab}{l}; \dots 5$$

$$\frac{P}{Q} < \frac{a-b}{2b}; \quad \text{für} \quad x = \frac{P}{Q}b + \frac{l}{2}$$

$$\max(M_b) = \left(P\frac{b}{l} + \frac{Q}{2}\right)\left(\frac{P}{Q}b + \frac{l}{2}\right) - \frac{p}{2}\left(\frac{P}{Q}b + \frac{l}{2}\right)^2$$

$$= \left(P\frac{b}{l} + \frac{Q}{2}\right)^2 \frac{l}{2Q} \quad \dots \quad \dots \quad \dots \quad \dots \quad 6$$

Für Q = 0 wird

$$\max\left(\boldsymbol{M}_{b}\right) = P \frac{b}{l} \cdot \boldsymbol{a}$$

und, wenn

Für P = 0 wird

Zur Bestimmung der elastischen Linie innerhalb der Strecke AC ergibt sich nach Gleichung 15, §16,

$$\frac{d^2 y}{d x^2} = -\frac{\alpha}{\Theta} \left( A x - p \frac{x^2}{2} \right)$$

und unter der Voraussetzung der Unveränderlichkeit von  $\alpha$  und  $\Theta^1$ ) (vgl. Ziff. 1)

$$\begin{aligned} \frac{dy}{dx} &= -\frac{\alpha}{\Theta} \left( \frac{1}{2} A x^2 - \frac{1}{6} p x^3 + C_1 \right), \\ y &= -\frac{\alpha}{\Theta} \left( \frac{1}{6} A x^3 - \frac{1}{24} p x^4 + C_1 x + C_2 \right). \end{aligned}$$

1) Ist der Querschnitt des Stabes stetig oder sprungweise veränderlich, so können zur Ermittlung der Durchbiegung und der Neigung der elastischen Linie verschiedene Wege eingeschlagen werden. Die Grundlage für rein rechnerisches Verfahren findet sich z. B. in der Arbeit von Weyrauch: "Die Gleichung der elastischen Linie willkürlich belasteter Stäbe" unter III. "Homogene Stäbe mit sprungweise veränderlichem Querschnitt" (Zeitschrift für Mathematik und Physik 1874, S. 392 u. f. ) Land (Zentralblatt der Bauverwaltung 1886, S. 249: "Die Durchbiegung voller Träger mit veränderlichem Querschnitt") und später unabhängig von ihm Ensslin (Dinglers polyt. Journal 1901, S. 341 u. f.: "Die Durchbiegung ungleich starker Wellen"; ferner: "Mehrfach gelagerte Kurbelwellen mit einfacher und doppelter Kröpfung. Ihre Formänderung und Anstrengung", Stuttgart 1902) gehen von dem Mohrschen Satz aus, daß die elastische Linie des ursprünglich geraden Stabes als Seilkurve aufgefaßt werden kann, während Kloß ("Analytisch-graphisches Verfahren zur Bestimmung der Durchbiegung zwei- und dreifach gestützter Träger". Berlin 1902) Einfachheit der Lösung durch Verbindung von rechnerischem und zeichnerischem Verfahren auf etwas anderem Wege anstrebt. Auch das in § 54 unter 5 besprochene Verfahren kann angewendet werden. In nicht wenigen Fällen führt schätzungsweiser Ersatz des Stabes mit veränderlichem Querschnitt durch einen prismatischen zu genügend genauer Ermittlung der Durchbiegung und der Neigung der elastischen Linie.

Über das Bedürfnis, die Durchbiegung von Wellen oder auch die Winkel zu bestimmen, unter denen die elastische Linie der Welle in den Lagern gegen den Horizont geneigt ist, vgl. des Verfassers Maschinenelemente, 4. Abschnitt unter "B. Achsen und Wellen" (1892, S. 317 u. f., S. 324 u. f., 1908, S. 541 u. f., S. 548 u. f.).

Wegen

$$y=0$$
 für  $x=0$  wird  $C_2=0$ .

Für die Strecke BC findet sich entsprechend

$$\begin{split} \frac{d^2 y_1}{d x_1^2} &= -\frac{\alpha}{\Theta} \Big( B x_1 - p \frac{x_1^2}{2} \Big), \\ \frac{d y_1}{d x_1} &= -\frac{\alpha}{\Theta} \Big( \frac{1}{2} B x_1^2 - \frac{1}{6} p x_1^3 + C' \Big), \\ y_1 &= -\frac{\alpha}{\Theta} \Big( \frac{1}{6} B x_1^3 - \frac{1}{24} p x_1^4 + C' x_1 + C'' \Big), \\ C'' &= 0. \end{split}$$

Die Senkung im Punkte C muß für beide Strecken gleich erhalten werden, d. h.

$$\frac{1}{6} A a^3 - \frac{1}{24} p a^4 + C_1 a = \frac{1}{6} B b^3 - \frac{1}{24} p b^4 + C' b.$$

Ferner muß der Neigungswinkel der elastischen Linie im Punkte Cder Strecke AC gleich dem negativen Wert des Neigungswinkels der elastischen Linie im Punkte C der Strecke BC sein, d. h.

$$\frac{1}{2} A a^2 - \frac{1}{6} p a^3 + C_1 = -\frac{1}{2} B b^2 + \frac{1}{6} p b^3 - C'.$$

Nach Beseitigung von  $C_1$  und C' mittelst der beiden letzten Gleichungen findet sich

für die Strecke AC

für die Strecke BC

$$\beta_{2} - \frac{dy_{1}}{dx_{1}} = \left(\frac{1}{2} Bx_{1}^{2} - \frac{1}{6} px_{1}^{3}\right) \frac{\alpha}{\Theta}$$
  
$$\beta_{2}x_{1} - y_{1} = \left(\frac{1}{6} Bx_{1}^{3} - \frac{1}{24} px_{1}^{4}\right) \frac{\alpha}{\Theta}$$
  
$$\beta_{2} = \left(P \frac{ab (2a + b)}{6l} + \frac{Ql^{2}}{24}\right) \frac{\alpha}{\Theta}.$$

Die Durchbiegung  $y_c$  im Angriffspunkte C der Kraft P ergibt sich zu

Für den Fall, daß

$$a=b=rac{l}{2}$$

folgt

$$\beta_1 = \beta_2 = \beta = \left(P + \frac{2}{3}Q\right) \frac{\alpha}{\Theta} \frac{l^2}{16}, \quad \dots \quad \dots \quad \dots \quad 11$$

und, sofern Q = 0,

In vielen Fällen, namentlich bei Belastung durch zahlreiche Einzelkräfte, führt das in der Fußbemerkung 1, S. 249 erwähnte Mohrsche Verfahren rascher zum Ziele als die Rechnung. Über die Anwendung desselben auf mehrfach gelagerte Wellen, gekröpfte Wellen usw. finden sich Beispiele in des Verfassers Maschinenelementen, 10. Aufl. S. 21 u. f., S. 573 u. f., 11. Aufl. S. 22 u. f., 12. Aufl., S. 25 u. f.

# 3. Der Stab ist beiderseits wagerecht eingespannt, Fig. 2, und belastet durch die gleichmäßig über ihn verteilte Last Q = pl, sowie durch die in der Mitte C angreifende Kraft P.

Wie bereits unter Ziff. 1 erörtert, wird mit der Bezeichnung der Einspannung der Begriff verknüpft, daß die elastische Linie an der



**F**1**g**. 2.

Einspannstelle die ursprünglich gerade Stabachse zur Tangente hat. Die vorausgesetzte Einspannung in A und B bedingt hiernach, daß die gerade Stabachse AB die elastische Linie ACB in A und B berührt. Inwieweit sich dies tatsächlich erreichen läßt, darüber wird

in §53 das Nötige erörtert werden. Bemerkt sei jedoch schon hier, daß nur in sehr seltenen Fällen von wirklicher Einspannung in dem bezeichneten Sinne gesprochen werden kann.

Bei der Symmetrie der Belastung genügt es, nur die Hälfte AC des Stabes in Betracht zu ziehen.

An der Einspannstelle A wirken auf den Balken

ein Kräftepaar vom Moment  $M_A$ 

,, Auflagerdruck 
$$A = \frac{P}{2} + \frac{Q}{2}$$
.

Für den beliebigen, um x von der Einspannstelle A abstehenden Querschnitt ist das biegende Moment

$$M_b = M_A + Ax - \frac{px^2}{2} \cdot$$

Hiermit liefert die Gleichung 15, §16,

$$\frac{da_{z}p}{dx^{2}} = -\frac{\alpha}{\Theta} \Big( M_{A} + Ax - \frac{px^{2}}{2} \Big),$$

woraus unter Voraussetzung, daß  $\alpha$  und  $\Theta$  unveränderlich sind,

$$\frac{dy}{dx} = -\frac{\alpha}{\Theta} \Big( M_A x + \frac{1}{2} A x^2 - \frac{px^3}{6} \Big) \cdot$$

Die Integrationskonstante ist wegen der angenommenen Befestigungsweise der Stabenden, d. h. wegen

$$\frac{dy}{dx} = 0 \quad \text{für} \quad x = 0,$$

ebenfalls gleich Null.

Die unbekannte Größe des Momentes  $M_A$  ergibt sich durch die Erwägung, daß für

$$x = \frac{l}{2} \qquad \frac{dy}{dx} = 0$$

sein muß, aus der Gleichung

$$0 = M_A \frac{l}{2} + \frac{1}{2} \left( \frac{P}{2} + \frac{Q}{2} \right) \frac{l^2}{4} - p \frac{l^3}{t},$$

zu

also links drehend, wie nach der Form der elastischen Linie erwartet werden mußte.

Hiermit das biegende Moment im Abstande x von A

$$M_{b} = -\left(\frac{Pl}{8} + \frac{Ql}{12}\right) + \left(\frac{P}{2} + \frac{Q}{2}\right)x - \frac{px^{2}}{2}.$$

Für die Stabmitte  $x = \frac{l}{2}$  folgt

d. i. absolut genommen  $\frac{Ql}{24}$  we<br/>niger als das Moment  $M_A$  an der Einspannstelle.

Da  $M_b$  für die Mitte C positiv ist, so muß das Moment für einen Querschnitt zwischen A und C Null sein, entsprechend einem Wendepunkt der elastischen Linie. (In Gleichung 13, §16, wird  $\varrho = \infty$  für  $M_b = 0.$ )

Für den Fall, daß Q = 0, ergibt sich das Moment

im Punkte A zu 
$$-\frac{Pl}{8}$$
,  
,, ,, C ,,  $+\frac{Pl}{8}$ ,  
,, Abstande  $x = \frac{l}{4}$  (Wendepunkt) 0.

Für den Fall, daß P == 0, wird das Moment

im Punkte A  
,, ,, 
$$C$$
 $-\frac{Ql}{12} = -\frac{pl^2}{12},$ 
 $+\frac{Ql}{24} = +\frac{pl^2}{24},$ 

,, Abstande x = 0,2113 l (Wendepunkt) 0.

Die Gleichung der elastischen Linie wird erhalten durch nochmalige Integration des für den ersten Differentialquotienten erlangten Ausdruckes unter Beachtung, daß für x = 0 auch y = 0,

$$y = -\frac{lpha}{\Theta} \left( \frac{1}{2} M_A x^2 + \frac{1}{6} A x^3 - \frac{p x^4}{24} \right).$$

Hieraus findet sich die größte Durchbiegung  $y_c$  für  $x = \frac{l}{z}$  zu

$$y_c = \left(P + \frac{Q}{2}\right) \frac{\alpha}{\Theta} \frac{l^3}{192} \quad \dots \quad \dots \quad \dots \quad 17$$

Sehr anschaulich gestaltet sich auch im vorliegenden Falle das in § 54 unter 5 angegebene Verfahren.

4. Der Stab werde als senkrecht stehende, an den Enden frei beweglich gelagerte und mit n Umdrehungen in der Minute umlaufende Welle angenommen, die durch die Fliehkraft eines mit ihr in der Mitte fest verbundenen Körpers, dessen Masse m=G:gist und dessen Schwerpunkt um die sehr kleine Größe a von der Stabachse absteht, belastet wird.

Die eigene Masse der Welle werde vernachlässigt, ebenso der Einfluß des Momentes  $G \cdot a$ .

Infolge der Fliehkraft biegt sich die Welle in der Mitte um y durch, so daß die Fliehkraft beträgt

Ihr entgegen wirkt die Elastizitätskraft der Welle, die nach Gleichung 14 sich zu

$$P = y \frac{48}{\alpha} \frac{\Theta}{l^3}$$

berechnet, also y proportional ist.

Da beide Werte von P einander gleich sein müssen, folgt

$$y \frac{48}{\alpha} \frac{\Theta}{l^3} = (a+y) \left(\frac{\pi n}{30}\right)^2 m$$
$$y = \frac{a \cdot m \left(\frac{\pi n}{30}\right)^2}{\frac{48}{\alpha} \frac{\Theta}{l^3} - \left(\frac{\pi n}{30}\right)^2 m} \cdot \cdots \cdot \cdots \cdot 19)$$

Durch Einführung dieses Wertes in Gleichung 18 ergibt sich die auf Biegung wirkende Kraft und damit auch das biegende Moment. Für

$$\frac{48}{\alpha}\frac{\Theta}{l^3}-\left(\frac{\pi n}{30}\right)^2 m=0, \ldots \ldots \ldots 20)$$

d. i. für

$$n = \frac{30}{\pi} \sqrt{\frac{48}{\alpha} \frac{\Theta}{l^3} \frac{1}{m}}, \quad \dots \quad \dots \quad \dots \quad 21)$$

wird  $y = \infty$ , d. h. das Gleichgewicht zwischen Fliehkraft und Elastizitätskraft hört auf zu bestehen. Diese Umdrehungszahl wird als kritische Umdrehungszahl bezeichnet¹).

¹) Über die eingehende Behandlung dieser für rasch umlaufende Wellen bedeutungsvollen Aufgabe s. Föppl, Civilingenieur 1895, Heft 4; Mitteilungen aus dem mechanisch-technischen Laboratorium der Techn. Hochschule München, 24. Heft, 1896; Klein, Zeitschrift des Vereines deutscher Ingenieure 1895, S. 1191; Kirsch, ebenda 1895, S. 702; insbesondere Stodola, Die Dampfturbinen, ferner Schweizerische Bauzeitung 1916, S. 197 u. f. (kurze Mitteilung in der Zeitschrift des Vereines deutscher Ingenieure 1916, S. 971).

Die vorstehende Rechnung ist natürlich nur mit der Genauigkeit zutreffend, die den Voraussetzungen entspricht, die bei der Entwicklung gemacht wurden. Diese nimmt, ganz abgesehen von anderem, insbesondere auf die Kräfte nicht Rücksicht, die an den Lagerstellen wirksam werden, sobald Durchbiegungen von Erheblichkeit sich einstellen. Die gemachten Voraussetzungen müssen im Auge behalten werden, wenn die vorstehenden Rechnungsergebnisse auf die im Maschinenbau vorkommenden Wellen übertragen werden sollen. Das gilt auch hinsichtlich der Betrachtung, die man anstellen kann, wenn in Gleichung 19

$$\left(\frac{\pi n}{30}\right)^2 m > \frac{48}{\alpha} \frac{\Theta}{l^3}$$

wird. Dann erhält y, das im Falle der Gleichung 20  $\infty$  wurde, plötzlich einen kleinen negativen Wert.

Für kreiszylindrische Wellen aus Flußeisen von der Länge l geht Gleichung 21 mit  $\alpha = 0.47$  Milliontel über in

$$n = 21\,380\,\frac{d^2}{l\,\sqrt{m}\,l} = 670\,000\,\frac{d^2}{l\,\sqrt{G}\cdot\,l}\,\,.\,\,.\,\,.\,\,.\,\,22)$$

# § 19. Körper von gleichem Widerstande.

Körper dieser Art sind so geformt, daß die Belastung in sämtlichen Querschnitten eines und desselben Körpers die gleiche Größtspannung hervorruft. Unter Bezugnahme auf die Beziehungen 12, § 16, heißt dies, daß für sämtliche Querschnitte

$$k_{s} = rac{M_{b}}{\Theta}$$
 bzw.  $k = rac{M_{b}}{\Theta}$ 

konstant ist. Daraus folgt, daß die Querschnitte mit  $M_b$  sich derart ändern müssen, daß der Quotient

$$M_b: rac{\Theta}{e_1}$$
 bzw.  $M_b: rac{\Theta}{e_2}$ 

für alle Querschnitte gleich bleibt.

Hiermit führt Gleichung 13, §16, zu

$$\frac{1}{\varrho} = \alpha \frac{M_b}{\Theta} = \alpha \frac{M_b}{\frac{\Theta}{e_1}} \frac{1}{e_1} = \alpha \frac{k_s}{e_1},$$

woraus ersichtlich, daß im Falle eines konstanten Abstandes  $e_1$  und bei Unveränderlichkeit von  $\alpha$  die elastische Linie zum Kreise wird.

1. Der einerseits eingespannte, andererseits freie Körper mit rechteckigem Querschnitt von konstanter Breite b ist am freien Ende durch P belastet, Fig. 1,



Für den um x von A abstehenden Querschnitt beträgt

$$M_b = P(l-x), \quad \Theta = \frac{1}{12}bz^3, \quad e_1 = e_2 = \frac{z}{2}, \quad \frac{\Theta}{e_1} = \frac{1}{6}bz^2.$$

Folglich

$$k_z = \frac{P\left(l-x\right)}{\frac{1}{6} b z^2} = \text{konstant} ,$$

woraus mit  $l - x = x_1$ 

$$z^{2} = \frac{6 P}{k_{z} b} (l - x) = \frac{6 P}{k_{z} b} x_{1},$$

d. i. die Gleichung einer Parabel. Demnach ist in Fig. 1 die Begrenzung EBD nach einer Parabel zu gestalten, für die BA die Hauptachse, B der Scheitel und E (D) ein zweiter Punkt ist, dessen Lage bestimmt erscheint durch

$$\overline{AE} = AD = \frac{h}{2} = \frac{1}{2} \sqrt{\frac{6Pl}{k_z b}} \cdot$$

Die Durchbiegung  $y_B$  am freien Ende ergibt sich unter Zugrundelegung des Koordinatensystems xy (vgl. Fig. 2, §16) nach Gleichung 12 und 15, §16, unter Beachtung des S. 255 Bemerkten aus

$$\begin{split} \frac{d^2 y}{dx^2} &= \frac{\alpha k_z}{e_1} = \frac{\alpha k_z}{\frac{z}{2}} = \frac{\alpha k_z}{\frac{1}{2}\sqrt{\frac{6\,P}{k_z b}\,(l-x)}} = \frac{2\,\alpha k_z\,\sqrt{l}}{h\,\sqrt{l-x}}, \\ y &= \alpha \left(\frac{16\,Pl\,\sqrt{l}}{b\,h^3}\,\sqrt{(l-x)^3} + \frac{24\,Pl^2}{b\,h^3}\,x - \frac{16\,Pl^3}{b\,h^3}\right), \end{split}$$

sofern  $\alpha$  als unveränderlich betrachtet und im Auge behalten wird, daß für

$$x = 0 \qquad \frac{dy}{dx} = 0 \qquad y = 0$$

zu

$$y_B = \alpha \frac{8 P l^3}{b h^3} \quad \dots \quad \dots \quad \dots \quad 1 \}$$

Für den gleichbelasteten, jedoch prismatischen Stab ergab Gleichung 4, §18,

$$y_{\scriptscriptstyle B} = rac{\alpha}{1} rac{Pl^3}{bh^3} rac{3}{3} = \alpha rac{4Pl^3}{bh^3},$$

d. i. die Hälfte des Wertes von Gleichung 1.

Nach Maßgabe der vorstehenden Rechnung würde der Querschnitt im Angriffspunkte der Kraft P gleich Null sein. Dieses natürlich unzulässige Ergebnis ist die Folge der Vernachlässigung der Schubkraft.

Unter "Biegung und Schub" wird in §52 das zur Feststellung der Querschnittsabmessungen gegen das Ende des Stabes hin Erforderliche bemerkt werden.

## 2. Der Stab belastet wie unter 1, jedoch von konstanter Höhe h, Fig. 2.

Für den um  $x_{\mathrm{i}}$  vom freien EndeBabstehenden Querschnitt ergibt sich

$$\begin{split} M_b &= P x_1, \qquad \Theta = \frac{1}{12} h^3 z, \qquad e_1 = e_2 = \frac{h}{2}, \qquad \frac{\Theta}{e_1} = \frac{1}{6} h^2 z, \\ k_z &= \frac{P x_1}{1} = \text{konstant}, \\ z &= \frac{6 P}{k_z h^2} x_1, \end{split}$$

d. h. die Begrenzungslinien BC und BD sind Gerade, deren Lage durch

$$\overline{AC} = \overline{AD} = \frac{b}{2} = \frac{3}{k_z} \frac{Pl}{h^2}$$

bestimmt wird.

C. Bach, Elastizität. 8. Aufl.

Die elastische Linie ist nach Maßgabe der Gleichung

$$\frac{1}{\varrho} = \alpha \frac{k_z}{e_1} = 2 \alpha \frac{k_z}{h}$$

infolge der konstanten Höhe des Stabes ein Kreis vom Halbmesser



Fig. 2.

Die Durchbiegung  $y_B$  am freien Ende B wird daher

$$y_{B} = \frac{l^{2}}{2 \varrho} = \alpha k_{z} \frac{l^{2}}{h} = \alpha \frac{6 P l^{3}}{b h^{3}} \dots \dots \dots 2$$

d. i. 1,5 mal so groß, wie die Durchbiegung (nach Gleichung 4, § 18) unter sonst gleichen Verhältnissen bei konstanter Breite sein würde.

Vgl. Schlußbemerkung zu Ziff. 1.

3. Der Stab liegt beiderseits auf Stützen, Fig. 3, und ist durch die im Punkte C angreifende Kraft P belastet.



Der Teil AC verhält sich wie ein bei C befestigter und bei A durch  $P \frac{b}{l}$  belasteter Stab, der Teil BC wie ein bei C befestigter und bei B mit  $P \frac{a}{l}$  belasteter Balken (Fall wie bei Ziff. 1 und 2).

Ist der Querschnitt kreisförmig, so findet sich für den beliebigen, um x von A abstehenden Querschnitt der Strecke AC

$$M_b = P \frac{b}{l} x, \qquad \qquad \frac{\Theta}{e_1} = \frac{\pi}{32} z^3.$$

Damit wird

$$k_{z} = \frac{P \frac{b}{l} x}{\frac{\pi}{32} z^{3}} = \text{konstant},$$
$$z^{3} = \frac{32 P b}{\pi k_{z} l} x,$$

d. i. die Gleichung einer kubischen Parabel, für die AC die Hauptachse, A der Scheitel ist, und deren Ordinate im Querschnitt bei Cdurch die Gleichung

$$d = \sqrt[3]{\frac{32\,Pab}{\pi k_z l}}$$

bestimmt wird.

Da sich für die Strecke BC ein ganz entsprechendes Ergebnis findet, so besteht der gesuchte Körper AB aus zwei nach kubischen Parabeln, die sich im Querschnitt bei C schneiden, geformten Umdrehungskörpern.

Vgl. Schlußbemerkung zu Ziff. 1.

# § 20. Die bei der Entwicklung der Gleichungen in § 16 gemachten Voraussetzungen und ihre Zulässigkeit. Der durch Biegung in Anspruch genommene Stab auf Grund des Gesetzes $\varepsilon = \alpha \sigma^m$ .

Die Voraussetzungen, die in § 16 zur Bestimmung der Biegungsanstrengung, Gleichung 12, führten, sind:

- 1. Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für jeden Querschnitt nur ein Kräftepaar.
- 2. Die Fasern, aus denen der Stab bestehend gedacht werden kann, wirken nicht aufeinander ein. sind also unabhängig voneinander.
- 3. Die ursprünglich ebenen Querschnitte des Stabes bleiben eben.
- 4. Der Stabquerschnitt ist symmetrisch, und die Ebene des Kräftepaares fällt mit der Symmetrieebene des Stabes zusammen oder ist ihr parallel.

5. Die Dehnungszahl ist für alle Fasern gleich groß, also auch unabhängig von der Größe und von dem Vorzeichen der Dehnungen oder Spannungen.

Von Fällen, in denen infolge übergroßer Höhenabmessungen des Querschnitts im Verhältnis zu den Breitenabmessungen Ausknicken



zu erwarten steht, oder in denen die auf S. 234, 244, Fußbemerkung, berührten Verhältnisse in Betracht kommen, ist hierbei abgesehen.

Diese Annahmen treten am deutlichsten vor das Auge, wenn wir uns einen Körper so ausgeführt und beansprucht denken, daß sie erfüllt sind. Zu dem Zwecke stellen wir uns vor. der Stab bestehe aus einzelnen, voneinander unabhängigen, ursprünglich gleichlangen Fasern, etwa wie die Fig. 1 und 2 (Durchschnitt) erkennen lassen. Mit dem einen Ende seien dieselben im Boden AB befestigt, mit dem anderen an der Platte CD. Die letztere, die wir uns gewichtslos denken wollen, werde in der Mittelebene von einem Kräftepaar PP, dessen Momont  $M_{h} = Pa$ ist, ergriffen. Sie dreht sich infolgedessen um eine Achse EE. Die links von dieser gelegenen Fasern werden gedehnt, die rechts davon befindlichen erfahren eine Verkürzung. Von den gedrückten Fasern werde vorausgesetzt, daß sie sich nach der Seite hin nicht ausbiegen. Die Auffassung der Fasern als vollkommen gleicher Spiralfedern, etwa wie in Fig. 3 gezeichnet, wird diese Vorstellung erleichtern.

Wie ohne weiteres ersichtlich, sind bei dieser Sachlage die Verlängerungen bzw. Verkürzungen der Fasern proportional dem Abstande von der Achse *EE*.

Bedeutet  $\lambda$  die Längenänderung, welche die ursprünglich l langen und im Abstande  $\eta$ 

von der Achse EE gelegenen Fasern erfahren haben, so ist

$$\epsilon = \frac{\lambda}{l}$$

die verhältnismäßige Längenänderung, d. h. die Dehnung im Ab-

stande  $\eta$ . Wird diese Größe im Abstande 1 mit  $\varepsilon'$  bezeichnet, so findet sich

$$\varepsilon = \varepsilon' \eta$$
.

Hiermit ist eine Spannung

$$\sigma = \frac{\varepsilon}{\alpha} = \frac{\varepsilon'}{\alpha} \eta$$

verknüpft, der bei dem Querschnitt $f_0$ der im Abstande $\eta$ gelegenen Fasern eine Kraft

$$\sigma f_0 = \frac{\epsilon'}{\alpha} \eta f_0$$

entspricht.

Die Gesamtheit dieser inneren Kräfte muß sich mit den äußeren Kräften im Gleichgewicht befinden. Infolgedessen muß sein:

die algebraische Summe dieser inneren Kräfte in Richtung der Stabachse gleich Null, d. h.

$$\Sigma \sigma f_0 = \Sigma \frac{\varepsilon'}{\alpha} \eta f_0 = 0,$$

und ferner die Summe der Momente dieser inneren Kräfte gleich dem Moment des Kräftepaares  $Pa = M_{b}$ , d. h.

$$\Sigma \sigma f_0 \cdot \eta = \Sigma \frac{\varepsilon'}{\alpha} f_0 \eta^2 = M_b$$

Aus der ersten Bedingungsgleichung folgt bei Unveränderlichkeit von  $\boldsymbol{\alpha}$ 

$$\Sigma f_0 \eta = 0,$$

d. h. die Nullachse *EE* geht durch den Schwerpunkt sämtlicher Faserquerschnitte, bildet also die zweite Hauptachse des Gesamtquerschnittes.

Die zweite Bedingungsgleichung führt unter der soeben genannten Voraussetzung,  $\alpha$  betreffend, und bei Beachtung, daß  $\Sigma f_0 \eta^2 = \Theta$ . zu

$$M_b == rac{arepsilon'}{lpha} \Theta$$

Beträgt der Abstand  $\eta$  der am stärksten gezogenen Fasern  $e_1$ , der am stärksten gedrückten —  $e_2$ , so erfahren diese Fasern die Spannungen

 $\sigma_1 = \frac{\epsilon'}{\alpha} e_1 \quad \text{bzw.} \quad \sigma_2 = -\frac{\epsilon'}{\alpha} e_2,$  $\frac{\epsilon'}{\alpha} = \frac{\sigma_1}{e_1} \qquad \frac{\epsilon'}{\alpha} = -\frac{\sigma_2}{e_2}$ 

woraus folgt

und hiermit

$$M_b = \sigma_1 \frac{\Theta}{e_1}$$
  $M_b = -\sigma_2 \frac{\Theta}{e_2}$ 

Bei Berücksichtigung, daß

folgt

$$M_{b} \leq k_{z} \frac{\Theta}{e_{1}}, \qquad \qquad M_{b} \leq k \frac{\Theta}{e_{2}}$$

 $--\sigma_2 \leq k$ ,

oder

$$k_z \geq \frac{M_b}{\Theta} e_1, \qquad \qquad k \geq \frac{M_b}{\Theta} e_2,$$

d. s. die in § 16 entwickelten Gleichungen 12.

 $\sigma_1 \leq k_z$ 

Wir bemerken — wie hervorgehoben sei —, daß bei der vorausgesetzten Sachlage — die einzelnen Fasern sind gelenkig an die Platte angeschlossen — die Stabachse gerade bleibt, daß also das Kräftepaar PP mit dem Momente Pa eine Krümmung derselben nicht veranlaßt.

An die Stelle der Krümmungsachse, die sich im Krümmungsmittelpunkt projiziert, tritt hier der Durchschnitt der Ebenen CDund  $AB^{1}$ ).

Weiter bemerken wir, daß hier die Ebene CD aufhört, senkrecht zur Faserrichtung und zur Stabachse zu stehen.

Die Beziehung 1, § 16, die für den gebogenen Stab, Fig. 2, § 16, unter der Voraussetzung abgeleitet worden war, daß die Querschnitte senkrecht zur gekrümmten Mittellinie stehen, gilt eben auch dann, wenn die Achse gerade bleibt, Fig. 1, nur müssen dann die einzelnen Querschnitte sich gegen die Achse derart neigen, daß ihre Ebenen sich sämtlich in derselben Geraden schneiden, die den Durchschnitt der Ebenen AB und CD bildet.

Es beträgt die Spannung im Abstande 1 von der Nullachse  $\frac{M_b}{\Theta}$  und die Dehnung dieser Faser  $\varepsilon = \alpha \frac{M_b}{\Theta}$ , somit die Längenänderung der ursprünglich l langen Faser im Abstande 1 von der Nullachse

$$\alpha \frac{M_b}{\Theta} l,$$

d. i. aber auch gleich dem Maß des Drehungswinkels der einen Ebene gegen die andere, also

¹) Der Winkel  $\psi$ , den beide Ebenen miteinander einschließen, läßt sich durch folgende Erwägung leicht feststellen.

Die Tangente des Neigungswinkels eines beliebigen, zwischen AB und CD gelegenen Querschnittes ist proportional dem Abstand des Schwerpunktes desselben über AB.  $\varrho$  hat dann hierbei allerdings nicht mehr die Bedeutung des Krümmungshalbmessers, sondern bezeichnet den Abstand der Schwerachse EE von der Durchschnittslinie der Ebenen AB und CD. Eine Ersetzung von  $\frac{1}{\varrho}$  durch  $\pm \frac{d^2y}{dx^2}$  ist dann natürlich unzulässig.

1. Was nun zunächst die Voraussetzung unter 1 betrifft, daß die auf den Stab wirkenden äußeren Kräfte für jeden Querschnitt nur ein Kräftepaar liefern, so ist festzustellen, daß dieselbe nicht erfüllt zu sein pflegt. Die Erzeugung des biegenden Momentes erfordert Kräfte, die nur ganz ausnahmsweise, etwa wie im Falle der Fig. 1, oder im Falle der Fig. 4 oder 5 für den mittleren Teil AB, der dann wegen  $M_b =$  konstant nach einem Kreise gekrümmt ist, nicht mehr als ein Kräftepaar ergeben. In



der Regel ist immer eine Schubkraft oder eine Normalkraft vorhanden (vgl. Einleitung zu § 16), deren Einfluß allerdings in vielen Fällen in den Hintergrund tritt.

Hinsichtlich der Fälle, in denen die Schubkraft Bedeutung erlangt, muß auf "Biegung und Schub" in § 52 verwiesen werden.

2. Was sodann die unter 2 genannte Voraussetzung anbelangt, daß die Fasern eine gegenseitige Wirkung aufeinander nicht ausüben, so erkennt man sofort, daß dieselbe für einen aus dem Ganzen bestehenden Stab nicht erfüllt ist. Wie wir in § 1 bzw. § 7 und 11 sahen, ist verbunden: mit der Dehnung in Richtung der Stabachse eine Zusammenziehung senkrecht zu derselben, also eine Verminderung des Faserquerschnittes, und mit der Verkürzung eine Querdehnung, demnach eine Vergrößerung des Faserquerschnittes. Diese Formänderungen senkrecht zur Stabachse sind um so bedeutender, je mehr die Dehnungen (positive wie negative) in Richtung der Fasern betragen. Da nun hier diese Längsdehnungen mit dem Abstande von der Nullachse in absoluter Hinsicht zunehmen, so werden die von der letzteren weiter abstehenden Fasern sich quer auch mehr zusammenziehen bzw. mehr debnen wollen als

die unmittelbar benachbarten und nach der Nullachse hin gelegenen. Infolgedessen werden diese der angestrebten Querzusammenziehung bzw. Querdehnung zu einem Teile hinderlich sein. Dieser gegenseitige Einfluß der Fasern senkrecht zu ihrer Richtung muß nach dem Früheren (§ 7 bzw. 14) die Beziehung  $\sigma = \frac{\epsilon}{\alpha}$ , also im Falle der Unveränderlichkeit von  $\alpha$  die Proportionalität zwischen Dehnungen und Spannungen beeinträchtigen und die Festigkeit etwas erhöhen (§ 9, Ziff. 1, bzw. § 14). Er wird allerdings nicht bedeutend sein.

Außerdem werden aber auch die fest miteinander verbundenen Fasern noch dadurch aufeinander einwirken müssen, daß sich die weiter von der Nullachse abstehenden mehr ausdehnen bzw. verkürzen und deshalb gegenüber den unmittelbar benachbarten, dieser Achse näher gelegenen, ein Bestreben zu gleiten haben.

In bezug auf den gegenseitigen Einfluß der Fasern werden sich verschiedene Querschnittsformen verschieden verhalten (vgl. auch § 9). Vergleichen wir beispielsweise den rechteckigen Querschnitt (Fig. 6) mit dem  $\vdash$ -förmigen Fig. 7, so erkennt man sofort, daß die auf der Linie *GG* liegenden Fasern des ersteren von ihren benachbarten inneren Fasern mehr beeinflußt werden müssen als die in gleichem Abstand liegenden Fasern *BCCB* des anderen Querschnittes. Diese sind eben zum größten Teile nach innen frei. (Vgl. auch S. 234,



Fußbemerkung.)

Werden aus einem und demselben Material zwei Stäbe vom Querschnitt Fig. 6 und Fig. 7 hergestellt, beide sodann der Biegungsprobe mit stetig wirkender Belastung unterworfen und werden hierauf die beobachteten Durchbiegungen mit denjenigen verglichen, welche die Rechnung liefert, so ergibt sich für den Querschnitt Fig. 6 ein vergleichsweise etwas

geringerer Wert als für den Querschnitt Fig. 7, entsprechend einer etwas größeren Widerstandsfähigkeit gegen Biegung, vollständige Gleichartigkeit des Materials in beiden Stäben vorausgesetzt.

Die Ergebnisse von Versuchen des Verfassers mit breitflanschigen I-Trägern aus Flußeisen deuten darauf hin, daß dieser Einfluß innerhalb des Gebietes der elastischen Dehnungen sehr gering ist (s. Zeitschrift des Vereines deutscher Ingenieure 1910, S. 382 u. f.). Je nach der Stärke des Steges und der Flanschen kann er allerdings auch erheblich werden.

Größer als bei statischer Beanspruchung steht er bei dynamischer Wirkung der belastenden Kräfte zu erwarten.

Aus dem Erörterten folgt weiter beispielsweise für die breit-

basige Eisenbahnschiene, Fig. 8, daß die im Kopfe des Querschnittes zusammengedrängte Masse der Dehnung (positiven wie negativen) einen verhältnismäßig (im Vergleich zu dem, was bei den Entwicklungen im § 16 vorausgesetzt wird) größeren Widerstand entgegensetzt als das Material in dem breiten, wenig hohen Fuß, und daß infolgedessen die tatsächliche Nullachse oberhalb der horizontalen Schwerpunktachse des Querschnittes gelegen sein muß. Wird der letztere so bestimmt, daß diese Achse in halber Höhe liegt, so kann hiernach der Querschnitt nicht als ganz zweckmäßig bezeichnet werden, namentlich dann nicht, wenn der Fuß sehr breit ist. In solchem Falle muß die wagrechte Hauptachse des Querschnittes entsprechend tiefer als in halber Höhe sich befinden. Hierdurch erklärt sich auch eine verhältnismäßig größere Widerstandsfähigkeit starkköpfiger Stahlschienen usw. sowohl gegenüber gewöhnlicher Biegungsbeanspruchung als auch gegenüber Schlagproben.



Fig. 9.

annanannan annan

Je mehr sich die Querschnittfläche in zwei schmale, der Nullachse parallele Streifen zusammendrängt, Fig. 9, um so geringer wird der gegenseitige Einfluß der Fasern aufeinander, um so zutreffender erscheinen unter sonst gleichen Verhältnissen die Beziehungen, die auf Grund der Voraussetzung Ziff. 2 entwickelt wurden, vorausgesetzt, daß nicht ein anderer Umstand in Betracht kommt, der sofort erörtert werden wird.

Ohne den Querzusammenhang der Fasern müßten diejenigen von ihnen, die gedrückt werden, in der Mitte nach der Seite ausweichen (Fall der Knickung, vgl. § 23). In der Tat kann diese Neigung der gedrückten Fasern, nach der Seite auszuweichen, bei verhältnismäßig großer Länge des auf Biegung beanspruchten Stabes und bei entsprechender Querschnittsform des letzteren, wie z. B. Fig. 9, dessen Widerstandsfähigkeit erheblich vermindern. (Vgl. auch § 13 unter h, S. 209 u. f.)

Der Querzusammenhang der Fasern kann infolge des örtlichen Angriffs der Kräfte, welche das biegende Moment liefern, noch einen weiteren, zunächst die Form des Querschnittes und sodann auch die Widerstandsfähigkeit des Stabes ändernden Einfluß äußern.

Überblicken wir das hinsichtlich des gegenseitigen Einflusses der Fasern Gefundene, so erkennen wir, daß im allgemeinen die Anstrengungen  $k_z$  bzw. k, wie sie sich nach den Gleichungen 12, § 16, ergeben, nicht mehr den Charakter der reinen Zug- bzw. Druckbeanspruchung besitzen, und daß es deshalb im allgemeinen als richtig erscheint, bei Ermittelung der Abmessungen eines auf Biegung in Anspruch genommenen Stabes als zulässige Anstrengung des Materials Werte einzuführen, die aus Biegungsversuchen gewonnen wurden. Inwieweit es zutreffend ist, wenn an Stelle dieser Biegungsanstrengung die aus Zugversuchen abgeleitete Größe k, gesetzt wird, muß --streng genommen - durch Vergleichung der Ergebnisse von Zugund von Biegungsversuchen für jedes Material und die einzelnen Querschnittsformen festgestellt werden. Hierbei ist im Auge zu behalten, daß es sich empfiehlt, die Versuche in der Regel unter solchen Verhältnissen anzustellen, wie sie bei den technischen Anwendungen vorliegen, auf welche die ermittelten Zahlen übertragen werden sollen. Der Beschreitung dieses Weges können sich allerdings in manchen Fällen sehr erhebliche Schwierigkeiten entgegenstellen.

Bei zusammengesetzten Körpern wie Gitterträgern usw., die so konstruiert sind, daß die einzelnen Teile fast nur Zug und Druck erfahren, ist naturgemäß mit  $k_z$  und k (falls nicht Knickung in Betracht kommt) zu rechnen.

3. Was die oben unter 3 aufgeführte Voraussetzung anlangt, daß die Querschnitte eben bleiben, so ist festzustellen, daß auch sie nicht genau zutrifft; die Schubkraft, die mit dem biegenden Moment verknüpft zu sein pflegt, wirkt auf Krümmung der ursprünglich ebenen Querschnitte hin (vgl. "Biegung und Schub" in § 52); doch scheint, soweit das bis heute vorliegende Material ein Urteil gestattet, die Annahme des Ebenbleibens der Querschnitte in vielen Fällen bei ausschließlich oder wenigstens in entschieden vorwiegender Weise auf Biegung beanspruchten Stäben, die aus einem Material bestehen, für das die Voraussetzung Ziff. 5 erfüllt ist, zulässig zu sein.

Für einen reckteckigen Stab aus weichem Bessemerstahl von 140 mm Höhe bei 55 mm Breite und 1200 mm Länge, der sich bei einer Auflagerentfernung von 1000 mm um 241,5 mm durchgebogen hatte, ohne zu brechen, stellte Bauschinger fest, daß bei dieser ganz bedeutenden Durchbiegung die ursprünglich ebenen Querschnitte eben sowie senkrecht zur elastischen Linie geblieben waren, und die Länge der früher geraden, 1000 mm langen elastischen Linie sich nicht geändert hatte.

Versuche des Verfassers mit allerdings weniger hohen Stäben rechteckigen Querschnittes aus Schmiedeeisen führten zu dem gleichen Ergebnis. Das Ebenbleiben der Querschnitte bei Materialien, die Proportionalität zwischen Dehnungen und Spannungen überhaupt nicht aufweisen, wird nach dem in der Fußbemerkung 2, S. 289 Bemerkten und nach dem, was aus dem bis heute vorliegenden Versuchsmaterial geschlossen werden kann¹), bis auf weiteres gleichfalls als zulässig



Widerstandsfähigkeit Gesagte wird fest im Auge zu behalten sein.

4. Um die Bedeutung der unter 4, S. 259 angegebenen Voraussetzungen möglichst einfach und deutlich klarzulegen, sollen die folgenden Betrachtungen an einen bestimmten Fall angeknüpft werden. Wir denken uns einen Stab vom Querschnitt Fig. 10, in der Mittelebene der Stegmitte belastet²) gemäß Fig. 5, so daß für den mittleren Stabteil, den wir allein ins Auge fassen wollen, die äußeren Kräfte nur ein Kräftepaar ergeben.

¹) Vgl. in dieser Hinsicht u. a. E. Meyer in der Zeitschrift des Vereines deutscher Ingenieure 1908, S. 197 u. f.

²) Auf den Fall der Belastung in der senkrechten Hauptachsenebene wird S. 270 eingegangen werden.

Der Kern des auf Biegung beanspruchten Stabes ist der Steg. wie in der Abbildung durch Strichlage hervorgehoben ist. Bei der Durchbiegung in senkrechter Richtung werden die Fasern in E verkürzt und bei F gedehnt. Damit wirkt der Steg bei E auf die obere Flansche ED drückend und bei F auf die untere Flansche FCziehend. Die obere Flansche erscheint hiernach als ein Stab. der durch eine exzentrisch angreifende Kraft auf Druck beansprucht wird und infolgedessen eine ungleichmäßige Verteilung der Spannung über den Querschnitt erfährt. Die untere Flansche zeigt sich als Stab, der durch eine exzentrisch wirkende Kraft auf Zug beansprucht wird und deshalb gleichmäßige Verteilung der Spannungen über den Querschnitt nicht aufweisen kann. Die obere Flansche und mit ihr der obere Teil des Steges wird sich daher krümmen müssen, wie in Fig. 11 in übertriebenem Maße für ein mittleres Stück des Stabes angegeben ist, während die untere Flansche sich in entgegengesetzter Richtung zu krümmen bestrebt ist. wie Fig. 12 darstellt. Der Steg selbst wird sich also oben nach links, unten nach rechts ausbiegen, seine ursprünglich eine senkrechte Gerade bildende Mittellinie wird eine S-förmige Gestalt annehmen; er wird eine Verdrehung erfahren, seine Querschnitte werden sich wölben müssen (vgl. Taf. XIII). Durch diese Verdrehung werden natürlich auch die Flanschen in Mitleidenschaft gezogen. Je höher der Steg ist, um so leichter wird sich unter sonst gleichen Umständen seine Formänderung vollziehen können. Die Stegstärke wird den entgegengesetzten Einfluß äußern. je größer sie ist, um so bedeutender wird der Widerstand sein, den der Steg gegenüber der ihm zugemuteten Formänderung leistet.

Um den Grad der Ungleichmäßigkeit der bezeichneten Spannungsverteilung über die Flanschen festzustellen, wurde ein ]-Träger Profil Nr. 30 $\Theta$  = 7975 cm⁴ Fig. 13 in eine stehende Prüfungsmaschine gebracht und darin belastet gemäß Fig. 5 l = 1000 mm, a = 1000 mm. Durch Spiegelapparate wurden gemessen: die Längenänderungen der Fasern auf 200 mm Erstreckung an den in Fig 13 bezeichneten 4 Stellen:  $M_1 M_2 M_3$  und  $M_4$ , die um je 145 mm von der wagrechten Hauptachsenebene abstehen. Die Untersuchung lieferte für die Belastungsstufe P = 250/1750 kg die Beanspruchungen in der Richtung, in der die Dehnungen gemessen worden waren,

Die Zahlen zeigen deutlich die außerordentlich ungleichmäßige Verteilung der Beanspruchung über die Flanschen, während die übliche Rechnung (in §16) im gleichen Abstand von der Nullebene die gleiche Beanspruchung annimmt.

Wenn geradliniger Verlauf der Beanspruchungen von  $M_1$  nach  $M_2$ und von  $M_3$  nach  $M_4$  angenommen werden darf (in Wirklichkeit wird der Verlauf — mindestens durch den Steg hindurch — voraus-



sichtlich ein etwas anderer sein), so wird sich für die obere Flansche die Druckverteilung nach Fig. 14 und für die untere die Zugverteilung nach Fig. 15 ergeben, während die übliche Rechnung (§ 16) den Verlauf der Beanspruchung nach den Geraden  $N_1N_2$  bzw.  $N_3N_4$ voraussetzt, entsprechend  $\sigma = 273$  kg/qcm. Somit führt der Versuch für

 $M_1$  zu einer um 100  $\frac{417-273}{273} = 53^{0}/_{0}$  höheren Druckbeanspruchung

$$M_3$$
 ", ", 100  $\frac{370 - 273}{273} = 36^{0}/_{0}$  ", Zugbeanspruchung.

Außer der Untersuchung mit Belastung des Trägers in der Stegmittelebene wurden noch Versuche durchgeführt mit Belastung in der senkrechten Hauptachsenebene des Querschnitts, wie Fig. 16 andeutet. Dabei ergab sich

 $\begin{array}{ll} & \text{in } M_1 & \sigma_1 = - \ 518 \ \text{kg/qcm} \\ & \text{in } M_2 & \sigma_2 = + \ 104 & , \\ & \text{in } M_3 & \sigma_3 = + \ 456 & , \\ & \text{in } M_4 & \sigma_4 = - \ 16 & , \end{array}$ 

Diese Zahlen liefern die Fig. 17 und 18; sie zeigen noch eine weit größere Ungleichmäßigkeit der Verteilung der Beanspruchungen über die Flanschen, als diejenigen, die sich im Falle der Belastung des Trägers in der Stegmittelebene ergaben; in der gedrückten Flansche zeigt sich außen sogar eine Zugspannung und in der gezogenen Flansche eine — allerdings sehr kleine — Druckspannung. Hier führt der Versuch für

 $M_1$  zu einer um 100  $\frac{518-273}{273} = 90^0/_0$  höheren Druckbeanspruchung

 $M_3$  " " "  $100 \frac{456 - 273}{273} = 67^{\circ}/_{0}$  " Zugbeanspruchung

als die übliche Rechnung.

Hiernach ist festzuhalten, daß die Entwicklungen in § 16 nur unter der Voraussetzung gelten, daß der Stabquerschnitt symmetrisch ist, und daß die Kraftebene (Ebene der belastenden Kräfte) mit der Symmetrieebene zusammenfällt. Die Beurteilung der Widerstandsfähigkeit nach den Gleichungen 12, § 16, kann bei Körpern mit unsymmetrischem Querschnitt — je nach den Verhältnissen — zu einer mehr oder minder großen, unter Umständen zu überaus bedeutender Überschätzung Veranlassung geben.

Werden die infolge der Unsymmetrie oder Einseitigkeit des Querschnittes auftretenden Formänderungen mehr oder weniger (z. B. durch Verbindung mit anderen Teilen) gehindert, so wird dadurch die Widerstandsfähigkeit erhöht. So wird das z. B. eintreten, wenn zwei ]-Träger mit dem Rücken ihrer Stege zusammengenietet werden usw.

Der im vorstehenden besprochene nachteilige Einfluß der Unsymmetrie des Querschnittes ist vom Verfasser auch noch festgestellt

worden durch Bruchversuche mit Gußeisen und aus Durchbiegungsversuchen mit Flußeisenträgern. Näheres hierüber sowie über die oben erwähnten Untersuchungen findet sich in der Zeitschrift des Vereines deutscher Ingenieure 1909, S. 1790 u.f. und 1910, S. 382 u.f. Vgl. auch das nach Durchführung dieser Versuche erschienene Buch von Sonntag, Biegung, Schub und Scherung, Berlin 1909.

5. Die Voraussetzung 5, daß die Dehnungszahl  $\alpha$  konstant ist, also gleich für Zug und für Druck, sowie unabhängig von der Größe der Spannungen oder Dehnungen, erscheint nach Maßgabe der in §4 niedergelegten Versuchsergebnisse und der hierauf bezüglichen Darlegungen in §5 nur für manche Materialien,



beispielsweise für Schmiedeeisen und Stahl, zulässig, solange die Spannungen gewisse Grenzen nicht überschreiten. Bei Gußeisen z. B. ist sie dagegen nicht zutreffend; hier wachsen die Dehnungen rascher als die Spannungen. Dasselbe ist der Fall bei weichem Kupfer; auch bei Legierungen desselben wie Bronze, Messing usw. wird in der Regel rascheres Wachstum der Dehnungen beobachtet. Gleich verhält sich Sandstein, Granit, Zementmörtel, Beton usw.

Nach Maßgabe des Gesagten werden für einen auf Biegung beanspruchten Stab aus Gußeisen unter der Annahme, daß die Querschnitte eben bleiben, zwar die Dehnungen proportional mit dem Abstande  $\eta$  von der Nullachse wachsen, nicht aber die Spannungen; letztere müssen vielmehr langsamer zunehmen, entsprechend dem Umstande, daß  $\alpha$  in  $\sigma = \epsilon : \alpha$  mit wachsender Dehnung (Spannung) zunimmt (vgl. z. B. S. 23). Fig. 19 veranschaulicht dies unter Voraussetzung starker Beanspruchung des Stabes. Für die beliebig um  $\eta$  von der in X sich projizierenden Nullachse¹) abstehende Faserschicht sei  $\overline{PP_1}$  die Dehnung und  $\overline{PP_2}$  die Spannung; dann ist für Gußeisen der geometrische Ort aller Punkte  $P_2$  eine gegen die Achse der  $\eta$ gekrümmte, in  $D_2 X P_2 Z_2$  sich projizierende Fläche, wenn auch die Punkte  $P_1$  auf der durch die Nullachse gehenden Ebene  $D_1 X Z_1$  liegen. Bei Proportionalität zwischen  $\varepsilon$  und  $\sigma$ , d. h. auf Grund der gewöhnlichen Biegungsgleichung

$$M_b = \sigma \frac{\Theta}{\eta},$$

würde sich die Spannungsverteilung nach Maßgabe der gestrichelt eingetragenen Geraden DOZ gestalten. Wie ersichtlich, weicht die Spannungsverteilung, wie sie sich unter Berücksichtigung der Veränderlichkeit der Dehnungen mit den Spannungen ergibt, bedeutend ab von derjenigen, die unter der üblichen Voraussetzung der Unveränderlichkeit von  $\alpha$  gewonnen wird. Die Abweichung ist — unter der Voraussetzung größerer Beanspruchung — hinsichtlich der Lage der Nullachse derart, daß das Material auf der Seite der größeren Dehnung (der größeren Nachgiebigkeit, der geringeren Festigkeit) zur Übertragung des Momentes einen größeren Querschnitt bietet als auf der anderen Seite: in bezug auf die Zunahme der Spannungen zeigt sich, daß das nach der Nullachse hin gelegene Material besser ausgenutzt wird. Die Spannungskurve kehrt der senkrechten Abszissenachse ihre hohle Seite zu, die Spannungen nehmen also nicht mit der ersten Potenz von  $\eta$  zu, sondern wachsen langsamer. Beides hat zur Folge, daß die Widerstandsfähigkeit eines solchen Balkens gegenüber Biegung größer sein muß, als es die übliche Biegungsgleichung erwarten läßt. Infolgedessen liefern die Gleichungen 10 und 12, § 16, die Zugspannungen größer, als sie tatsächlich sind. Ein und dasselbe Gußeisen muß deshalb bei Biegungsversuchen eine höhere Festigkeit ergeben als bei Zugversuchen, wenn dieselbe auf Grund der Gleichung 10, § 16, berechnet wird.

Aus dem Erörterten folgt dann weiter, daß Stäbe mit Querschnitten, bei denen sich das Material nach der Nullachse hin zusammendrängt, widerstandsfähiger sein müssen, als nach Gleichung 12, § 16, zu schließen ist. Beispielsweise wird ein Stab mit kreisförmigem Querschnitt eine größere Bruchbelastung, bestimmt nach Gleichung 10,

¹) Daß diese hier nicht mehr durch den Schwerpunkt des Querschnittes geht, folgt unmittelbar aus dem, was S. 235 und S. 261 in bezug auf die Gleichungen  $\int v df = 0$  bzw.  $\Sigma f_0 \eta = 0$  gesagt ist. Dieselben werden nur erhalten unter der Voraussetzung, daß die Dehnungszahl  $\alpha$  konstant ist.

§ 16, liefern müssen als ein Stab mit quadratischem Querschnitt, dieser wird dagegen eine größere Biegungsfestigkeit aufzuweisen haben als der  $\underline{\Gamma}$ -förmige Querschnitt usw. Hiermit stehen die Ergebnisse der vom Verfasser in den Jahren 1885 u. f. durchgeführten Biegungsversuche mit Gußeisen in voller Übereinstimmung. Siehe "Zeitschrift des Vereines deutscher Ingenieure" 1888, S. 193 u. f., S. 221 u. f., S. 1089 u. f., oder auch "Abhandlungen und Berichte" 1897, S. 60 u. f., sowie § 22, Ziff. 2 dieses Buches.

Will man den Einfluß der Veränderlichkeit der Elastizität mit der Spannung schärfer verfolgen, so hat das unter Zugrundelegung der Gesetzmäßigkeit zu geschehen, die zwischen  $\varepsilon$  und  $\sigma$  besteht. Im nachfolgenden soll das in Kürze ausgeführt und demgemäß

der durch Biegung in Anspruch genommene Stab

auf Grund des Gesetzes

 $\varepsilon = \alpha \sigma^{m1}$ 

rechnerischer Betrachtung unterworfen werden.

#### a) Allgemeine Gleichungen.

Wir gehen von der zu Anfang des § 16 dargestellten Sachlage aus. Der einerseits eingespannte und am freien Ende mit P belastete prismatische Stab biegt sich unter Einwirkung dieser Kraft. Hierdurch werden zwei ursprünglich parallele, um  $dx = \overline{OO_1}$  voneinander abstehende Querschnitte CC und  $C_1C_1$ , Fig. 1, § 16, sowie Fig. 20

Vgl. auch die Arbeit von L. Geusen in der "Zeitschrift des Vereines deutscher Ingenieure" 1898, S. 463 u. f., sowie S. 516; ferner die Arbeit von Fr. Engesser am gleichen Ort, S. 903 u. f.: "Widerstandsmomente und Kernfiguren bei beliebigem Formänderungs- und Spannungsgesetz".

C. Bach, Elastizität. 8. Aufl.

¹) Wie Verfasser bei Veröffentlichung betreffend das Potenzgesetz  $\varepsilon = \alpha \sigma^m$ in der "Zeitschrift des Vereines deutscher Ingenieure" 1897, S. 248 u. f. am Schlusse ausgesprochen, erscheint durch dasselbe eine Grundlage gewonnen, um an Entwicklungen heranzutreten, die sich die Aufgabe zu stellen haben. die Anstrengung von solchen auf Biegung oder Drehung beanspruchten Körpern zu ermitteln, für deren Material Proportionalität zwischen Dehnungen und Spannungen nicht besteht. Verfasser hoffte durch diese Hervorhebung noch besonders zu dahin gehenden Arbeiten anzuregen. In der Tat erwies sich diese Erwartung als berechtigt, denn bereits im Juni 1897 wurde ihm von Ingenieur Ensslin eine Arbeit vorgelegt, die sich mit der Biegungsaufgabe auf Grund des Gesetzes  $\varepsilon = \alpha \sigma^m$  und insbesondere mit der Untersuchung des auf Biegung beanspruchten gußeisernen Balkens mit rechteckigem Querschnitt beschäftigte, und in der "Zeitschrift des Vereines deutscher Ingenieure" 1897, S. 941 u. f. behandelt Latowski die gleiche Aufgabe unter Anwendung der allgemeinen Sätze auf Granitbalken. Beide Arbeiten gelangen in der Hauptsache zu den gleichen Ergebnissen. Eine weitere Darlegung von Latowski s. Zeitschrift des österr. Ingenieur- und Architektenvereins 1898, S. 56, und am gleichen Ort, S. 249, den Aufsatz von W. Carling.

und 21, sich unter einem gewissen Winkel  $OMC_1'$  gegeneinander neigen. Daß sie eben bleiben, werde vorausgesetzt; mit welcher Berechtigung, ergibt sich aus dem am Schlusse von Ziff. 3, S. 267 Bemerkten.

Die oberhalb einer gewissen Linie, die mit xx bezeichnet sein möge, liegenden Fasern haben sich gedehnt, die unterhalb liegenden zusammengedrückt. Demgemäß sind im Querschnitt oberhalb xx Zugspannungen  $\sigma_z$  und unterhalb xx Druckspannungen  $\sigma_d$  wachgerufen worden, für die im allgemeinen die Beziehungen gelten

$$\varepsilon = \alpha_1 \sigma_z^{m_1}, \quad \varepsilon = \alpha_2 \sigma_d^{m_2} \quad \dots \quad \dots \quad 2)$$

Wird der Abstand des Punktes M, in dem sich die Durchschnittslinie der beiden Querschnitte projiziert, von der Linie xx, in der die Spannungen gleich Null sind, und die deshalb "Nullachse" genannt werden soll, mit  $\varrho$  bezeichnet, so ergibt sich für den Querschnitt COC die verhältnismäßige Dehnung im Abstande  $\eta$ von xx zu

$$\epsilon = \frac{\overline{PP_1'} - \overline{PP_1}}{\overline{PP_1}} = \frac{\overline{PP_1'}}{\overline{PP_1}} - 1 = \frac{\varrho + \eta}{\varrho} - 1 = \frac{\eta}{\varrho}.$$

Infolgedessen findet sich für die beliebige um  $\eta$  von der Nullachse xx abstehende Faserschicht

auf der Zugseite  

$$\begin{aligned} \varepsilon &= \alpha_1 \, \sigma_z^{m_1} = \frac{\eta}{\varrho}; \quad \sigma_z = \left(\frac{\eta}{\alpha_1 \, \varrho}\right)^{\frac{1}{m_1}}, \\ \text{auf der Druckseite} \\ \varepsilon &= \alpha_2 \, \sigma_d^{m_2} = \frac{\eta}{\varrho}; \quad \sigma_d = \left(\frac{\eta}{\alpha_2 \, \varrho}\right)^{\frac{1}{m_2}}, \end{aligned}$$

und für die äußersten, um  $e_1$  bzw.  $e_2$  von der Nullachse abstehenden Fasern, sofern deren Dehnungen mit  $\varepsilon_1$  bzw.  $\varepsilon_2$  und deren Spannungen mit  $\sigma_1$  bzw.  $\sigma_2$  bezeichnet werden,

$$\sigma_1 = \left(\frac{e_1}{\alpha_1 \varrho}\right)^{\frac{1}{m_1}} \quad \sigma_2 = \left(\frac{e_2}{\alpha_2 \varrho}\right)^{\frac{1}{m_2}} \quad \cdots \quad \cdots \quad (4)$$

4

woraus durch Division

$$\frac{\sigma_2^{m_2}}{\sigma_1^{m_1}} = \frac{\alpha_1}{\alpha_2} \frac{e_2}{e_1} \qquad \sigma_2 = \left(\frac{\alpha_1}{\alpha_2} \frac{e_2}{e_1}\right)^{\frac{1}{m_2}} \sigma_1^{\frac{m_1}{m_2}} \quad \dots \quad \dots \quad 5)$$

Das Gleichgewicht zwischen dem äußeren biegenden Moment  $M_b$ — von dem Einfluß der Schubkraft P werde abgesehen — und den inneren, durch dasselbe wachgerufenen Kräften verlangt, sofern der

 $\mathbf{274}$ 

im Abstande  $\eta$  liegende und in Fig. 20 durch Strichlage hervorgehobene Flächenstreifen mit df bezeichnet wird,

$$\int_{0}^{\epsilon_{1}} \sigma_{z} df - \int_{0}^{\epsilon_{2}} \sigma_{d} df = 0 \quad . \quad . \quad . \quad . \quad . \quad . \quad 6)$$

und

$$M_{b} = \int_{0}^{t_{1}} \sigma_{z} df \cdot \eta + \int_{0}^{t_{2}} \sigma_{d} df \cdot \eta \quad . \quad . \qquad 7)$$

Aus Gleichung 6 folgt unter Beachtung der Gleichung 3

$$0 = \int_{0}^{e_{1}} \left(\frac{\eta}{\alpha_{1} \varrho}\right)^{\frac{1}{m_{1}}} df - \int_{0}^{e_{2}} \left(\frac{\eta}{\alpha_{2} \varrho}\right)^{\frac{1}{m_{2}}} df = \left(\frac{1}{\alpha_{1} \varrho}\right)^{\frac{1}{m_{1}}} \int_{0}^{e_{1}} \eta^{\frac{1}{m_{1}}} df - \left(\frac{1}{\alpha_{2} \varrho}\right)^{\frac{1}{m_{2}}} \int_{0}^{e_{2}} \eta^{\frac{1}{m_{2}}} df$$

und mit Rücksicht auf die Gleichung 4 sowie Gleichung 5

$$0 = \frac{\sigma_1}{e_1^{\frac{1}{m_1}}} \int_{0}^{e_1} \eta^{\frac{1}{m_1}} df - \frac{\sigma_2}{e_2^{\frac{1}{m_2}}} \int_{0}^{e_2} \eta^{\frac{1}{m_2}} df = \frac{\sigma_1}{e_1^{\frac{1}{m_1}}} \int_{0}^{e_1} \eta^{\frac{1}{m_1}} df - \left(\frac{\alpha_1}{\alpha_2}\frac{1}{e_1}\right)^{\frac{1}{m_2}} \sigma_1^{\frac{m_1}{m_2}} \int_{0}^{e_2} \eta^{\frac{1}{m_2}} df = 8)$$

Diese Gleichung bestimmt durch den Abstand  $e_1$  die Lage der Nullachse. Sie zeigt, daß dieselbe hier abhängt von der Größe der

Spannung  $\sigma_1$ , also von der Größe des biegenden Momentes. Da nun dieses für die verschiedenen Querschnitte des Stabes verschieden ist, so muß bei gleichbleibender Belastung derselben die Nullachse ihre Lage von Querschnitt zu Querschnitt ändern. Wird die Belastung des Balkens eine andere, d. h. ändert sich die belastende Kraft P, so verschiebt sich auch die Nullachse in den auf Biegung beanspruchten Querschnitten.

Bei Voraussetzung von Proportionalität zwischen Dehnungen und Spannungen (§ 16) war die



Lage der Nullachse unabhängig von der Spannung; sie fiel mit der einen Hauptachse zusammen; sie änderte sich deshalb nicht von Querschnitt zu Querschnitt und auch nicht mit der Belastung, wie dies hier der Fall ist.

Infolge der Abhängigkeit der Lage des Nullachse, d. h. der Größe  $e_1$  von dem biegenden Moment, muß Gleichung 7 zur Bestimmung herangezogen werden. Dieselbe ergibt unter Berücksichtigung der Gleichungen 3 und 4

$$M_{b} = \left(\frac{1}{\alpha_{1},\varrho}\right)^{\frac{1}{m_{1}}} \int_{0}^{e_{1}} \eta^{e_{1}} + \frac{1}{m_{1}} df + \left(\frac{1}{\alpha_{2}\,\varrho}\right)^{\frac{1}{m_{9}}} \int_{0}^{e_{1}} \eta^{1 + \frac{1}{m_{2}}} df$$
$$= \frac{\sigma_{1}}{e_{1}^{\frac{1}{m_{1}}}} \int_{0}^{e_{1}} \eta^{1 + \frac{1}{m_{1}}} df + \frac{\sigma_{2}}{e_{2}^{\frac{1}{m_{9}}}} \int_{0}^{e_{2}} \eta^{1 + \frac{1}{m_{2}}} df$$

und nach Ersetzung von  $\sigma_2$  durch den Wert Gleichung 5

$$M_{b} = \frac{\sigma_{1}}{e_{1}^{\frac{1}{m_{1}}}} \int_{0}^{\sigma_{1}} \eta^{1+\frac{1}{m_{1}}} df + \left(\frac{\alpha_{1}}{\alpha_{2}}\frac{1}{e_{1}}\right)^{\frac{1}{m_{2}}} \sigma_{1}^{\frac{m_{1}}{m_{2}}} \int_{0}^{\sigma_{2}} \eta^{1+\frac{1}{m_{2}}} df \quad . \quad . \quad . \quad 9)$$

Für den Fall der Proportionalität zwischen Dehnungen und Spannungen, d. h. für

 $\alpha_1 = \alpha_2 = \alpha \quad \text{und} \quad m_1 = m_2 = 1$ geht Gleichung 9 über in

$$M_{v} = \frac{\sigma_{1}}{e_{1}} \left( \int_{0}^{e_{1}} \eta^{2} df + \int_{0}^{e_{2}} \eta^{2} df \right),$$

d. i. die bekannte Biegungsgleichung, da der Klammerausdruck das Trägheitsmoment des Querschnittes in bezug auf die Hauptachse OO bedeutet.

b) Rechteckiger Querschnitt.

Für einen rechteckigen Querschnitt von der Breite *b* und der Höhe  $h = e_1 + e_2$  gehen die Gleichungen 8 und 9 unter Beachtung, daß  $df = b d\eta$ , über in

$$0 = \frac{\sigma_1}{e_1^{\frac{1}{m_1}}} \int_{0}^{e_1} \eta^{\frac{1}{m_1}} d\eta - \left(\frac{\alpha_1}{\alpha_2}\frac{1}{e_1}\right)^{\frac{1}{m_2}} \sigma_1^{\frac{m_1}{m_2}} \int_{0}^{e_2} \eta^{\frac{1}{m_2}} d\eta,$$
$$M_b = \frac{\sigma_1}{e_1^{\frac{1}{m_1}}} b \int_{0}^{e_1} \eta^{\frac{m_1+1}{m_1}} d\eta + \left(\frac{\alpha_1}{\alpha_2}\frac{1}{e_1}\right)^{\frac{1}{m_2}} \sigma_1^{\frac{m_1}{m_2}} b \int_{0}^{e_2} \eta^{\frac{m_2+1}{m_2}} d\eta.$$

Für die Integralwerte wird erhalten

$$\int_{0}^{e_{1}} \eta^{\frac{1}{m_{1}}} d\eta = \frac{m_{1}}{m_{1}+1} e_{1}^{\frac{m_{1}+1}{m_{1}}}, \qquad \int_{0}^{e_{2}} \eta^{\frac{1}{m_{2}}} d\eta = \frac{m_{2}}{m_{2}+1} e_{2}^{\frac{m_{2}+1}{m_{2}}},$$

$$\int_{0}^{e_{1}} \eta^{\frac{m_{1}+1}{m_{1}}} d\eta = \frac{m_{1}}{2m_{1}+1} e_{1}^{\frac{2m_{1}+1}{m_{1}}}, \quad \int_{0}^{e_{2}} \eta^{\frac{m_{2}+1}{m_{2}}} d\eta = \frac{m_{2}}{2m_{2}+1} e_{2}^{\frac{2m_{2}+1}{m_{2}}}.$$

Damit folgt aus der ersten der beiden Gleichungen

$$\sigma_1 = \left(\frac{\alpha_2}{\alpha_1}\right)^{m_1 - m_2} \left[\frac{m_1 \left(m_2 + 1\right)}{m_2 \left(m_1 + 1\right)}\right]^{\frac{m_2}{m_1 - m_2}} \left(\frac{e_1}{e_2}\right)^{\frac{m_2 + 1}{m_1 - m_2}} \dots \dots 10)$$

oder

$$\frac{e_1}{e_2} = \left\{ \frac{\alpha_1}{\alpha_2} \left[ \frac{m_2 \ (m_1 + 1)}{m_1 \ (m_2 + 1)} \right]^{m_2} \sigma_1^{m_1 - m_2} \right\}^{\frac{1}{m_2 + 1}} \quad . \quad . \quad . \quad 11)$$

Aus der zweiten Gleichung wird

$$M_{b} = \sigma_{1} b \left\{ \frac{m_{1}}{2 m_{1} + 1} e_{1}^{2} + \left( \frac{\alpha_{1}}{\alpha_{2}} e_{1}^{2} \right)^{\frac{1}{m_{2}}} \frac{m_{2}}{2 m_{2} + 1} \sigma_{1}^{\frac{m_{1} - m_{2}}{m_{2}}} e_{2}^{2} \right\}$$

und nach Beseitigung von  $\sigma_1$  mittels der Gleichung 10

$$M_{b} = \begin{pmatrix} \alpha_{2} \\ \alpha_{1} \end{pmatrix}^{\frac{1}{m_{1} - m_{2}}} m_{1} \left[ \frac{m_{1}}{m_{2}} \frac{(m_{2} + 1)}{(m_{1} + 1)} \right]^{\frac{m_{2}}{m_{1} - m_{2}}} b \begin{pmatrix} e_{1} \\ e_{2} \end{pmatrix}^{\frac{m_{2} + 1}{m_{1} - m_{2}}} \left\{ \frac{1}{2 m_{1} + 1} + \frac{m_{2} + 1}{(m_{1} + 1) (2 m_{2} + 1)} e_{2} \right\} e_{1}^{2} \cdots \cdots \cdots \cdots 12)$$

Sind für ein bestimmtes Material die Werte  $\alpha_1 \ \alpha_2 \ m_1$  und  $m_2$  bekannt, so liefert Gleichung 11 mit einem bestimmten Wert von  $\sigma_1$  das Verhältnis  $\frac{e_1}{e_3} = \varphi$ , womit die Lage der Nullachse bestimmt erscheint; denn es ist

$$\begin{array}{ll} \frac{e_1}{e_2} + 1 = q + 1 & \frac{e_1 + e_2}{e_2} = q + 1 = \frac{h}{e_2} \\ e_2 = \frac{h}{1 + q} & \text{und} & e_1 = h \frac{q}{1 + q}. \end{array}$$

Durch Einführung von  $e_1$  und  $e_2$  in Gleichung 12 erhält man den Wert des Biegungsmomentes, der in dem betrachteten Querschnitt die Zugspannung  $\sigma_1$  im Abstande  $e_1$  hervorruft.

Mit dem angenommenen Werte von  $\sigma_1$  (gleich der zulässigen Zuganstrengung) ergibt Gleichung 5 die größte Druckspannung  $\sigma_2$ .

Behufs Gewinnung eines anschaulichen Bildes hinsichtlich der Spannungsverteilung über den Querschnitt ist auf die Gleichungen 3 und 4 zurückzugehen, nach denen

$$\sigma_z = \sigma_1 \left(\frac{\eta}{e_1}\right)^{\frac{1}{m_1}}, \quad \sigma_d = \sigma_2 \left(\frac{\eta}{e_2}\right)^{\frac{1}{m_2}}.$$

Fig. 19, S. 271, zeigt ein solches Schaubild für Materialien, wie z. B. Gußeisen (vgl. das auf S. 272 und 273 zu dieser Abbildung Bemerkte).

Wie oben erkannt wurde, hängt die Lage der Nullachse in dem prismatischen Stab, Fig. 2, § 16, von der Größe des biegenden Momentes für den betreffenden Querschnitt  $ab^{1}$ ). Denkt man sich den Stab stark belastet, so zeigt sich bei näherer Verfolgung, daß ein um so größerer Teil des Querschnittes an der Übertragung der Zugspannungen, gegenüber denen das Gußeisen, der Sandstein, der Granit usw. weniger widerstandsfähig sind, teilnimmt, je größer das biegende Moment ist: die Nullachse rückt aus der Mitte des Querschnittes nach der Druckseite hin, wie in Fig. 19 angenommen ist. Je nach den Zahlenwerten, welche die Größen  $\alpha_1 m_1 \alpha_2 m_2$  der Beziehungen 2 besitzen, kann die Nullachse zu Anfang, d. h. für kleinere Beanspruchung nach der Zugseite hin aus der Mitte gelegen sein und erst mit Steigerung der auf Biegung wirkenden Last durch die Mitte nach der Druckseite hin sich bewegen.

Die Strecke, um welche die Nullachse in dem am stärksten beanspruchten Querschnitt selbst bei hoher Belastung des Stabes aus der Mitte gelegen ist, ergibt sich für Stoffe wie Gußeisen und Sandstein usw. nicht sehr groß. Sie beträgt — soweit das Versuchsmaterial des Verfassers reicht — gegen den Bruch hin noch keine  $10^{0}/_{0}$  der Höhe des rechteckigen Querschnittes.

Indem man z. B. für ein und dasselbe Gußeisen durch Zugversuche den Zusammenhang zwischen Dehnungen und Zugspannungen sowie die Zugfestigkeit, durch Druckversuche die Beziehung zwischen Zusammendrückungen und Druckspannungen, durch Biegungsversuche die zu den einzelnen Belastungen gehörigen Durchbiegungen und

¹) Eine kritische Besprechung über "die bis jetzt vorliegenden Versuche zur unmittelbaren Bestimmung der Lage der neutralen Achse im gebogenen Stab aus Stein und Gußeisen" von E. Roser findet sich in der Zeitschrift des Vereines deutscher Ingenieure 1899, S. 205 u. f., und dazu gehörig die hieran sich schließende Auseinandersetzung am gleichen Ort, S. 371 und 372. Ferner ist die Arbeit von O. Hönigsberg: "Über die unmittelbare Beobachtung der Spannungsverteilung und Sichtbarmachung der neutralen Schichte an beanspruchten Körpern" (Zeitschrift des österr. Ingenieur- und Architektenvereines 1904, Nr. 11) hervorzuheben.

schließlich die Bruchbelastung feststellt, erhält man das zu einer Prüfung nötige Versuchsmaterial. Durch die Zug- und Druckversuche sind  $\alpha_1, m_1, \alpha_2, m_2$  der Gleichung 2 und damit auch die Durchbiegungen bestimmt, die bei dem Biegungsstab für gewisse Belastungen erwartet werden dürfen. Da nun diese Durchbiegungen beim Biegungsversuch unmittelbar gemessen worden sind, so ist eine Vergleichung, d. h. eine Prüfung gegeben. Eine zweite Prüfung ermöglicht der Umstand, daß aus den Zugversuchen die Zugfestigkeit und bei den Biegungsversuchen die Bruchbelastung ermittelt worden ist. Das setzt allerdings voraus, daß die Werte  $\alpha_1 m_1 \alpha_2 m_2$  für genügend hoch gesteigerte Belastungen, d. h. daß insbesondere  $\alpha_1 m_1$  noch für Zugkräfte bestimmt worden sind, die nahe an diejenige Belastung heranreichen, die das Zerreißen herbeiführt. Der Natur der Sache nach sind der vorstehend angedeuteten Untersuchung die gesamten Dehnungen, Zusammendrückungen und Durchbiegungen zugrunde zu legen.

Statt des Potenzgesetzes kann eine andere Funktion verwendet werden, die den Zusammenhang zwischen Dehnungen und Spannungen ausreichend genau zum Ausdruck bringt und die Durchführung der Rechnungen ermöglicht. S. 298 u. f. ist eine zweite Prüfung ohne Zuhilfenahme einer Funktion auf zeichnerischem Wege an zwei Beispielen durchgeführt.

Die auf S. 272 erörterte Abweichung der Spannungsverteilung fällt demnach um so größer aus, je stärker die Beanspruchung wird. Die gewöhnliche Biegungsgleichung  $M_b = \sigma \frac{\Theta}{e}$  wird deshalb um so weniger zutreffende Ergebnisse liefern, je mehr sich die Anstrengung derjenigen beim Bruche nähert.

Aus diesem nach dem Vorstehenden schon lange bekannten Umstand sind in neuester Zeit Bedenken gegen die Verwendung von aus Bruchversuchen mit Gußeisen gewonnenen Versuchsergebnissen erhoben worden; hierbei ist insbesondere auf die Gleichung 1 in § 22 (S. 293) Bezug genommen worden¹), weshalb folgendes bemerkt sein möge.

Die einzige hier in Betracht kommende Folge der Zunahme der Dehnungszahl des Gußeisens mit wachsender Belastung besteht darin, daß die Beanspruchung  $\sigma$  bei niederer Belastung einen größeren Teil der Bruchfestigkeit ausmacht. Die "Sicherheitszahl", die aus den Ergebnissen von Bruchversuchen abgeleitet worden ist, fällt in Wirklichkeit geringer aus. Dieser Unterschied wird mit steigender Belastung immer kleiner; infolgedessen gleicht er sich in den Fällen,

¹) Eingehend ist diese Frage behandelt in der auf S. 45 bezeichneten Schrift von Nonnenmacher.

in denen er von Bedeutung werden könnte, mehr oder minder vollständig aus. Es erscheint deshalb richtiger, die Veränderlichkeit von  $\alpha$  in der Weise, wie in § 22 geschehen ist, zu berücksichtigen, als sie vollständig außer acht zu lassen. (Vgl. auch das in § 48 unter Ziff. 1 über Bruchversuche Bemerkte.)

6. Zusammenfassung.

Bedeutet

- $k_b$  die im allgemeinen aus Biegungsversuchen abgeleitete zulässige Anstrengung des Materials,
- e den Abstand der am stärksten angestrengten Faser des auf Biegung in Anspruch genommenen Stabes,

so wird nach Maßgabe des unter 2 und 5 Erkannten an Stelle der Beziehungen 12, § 16, zu setzen sein

Hierin ist  $k_b$  — streng genommen für alle Materialien — abhängig von der Querschnittsform. Von größerer Bedeutung wird diese Abhängigkeit — wie das vorliegende Versuchsmaterial schließen läßt — jedoch erst bei solchen Materialien, für welche die Dehnungszahl  $\alpha$  veränderlich ist (Gußeisen); bei Materialien mit konstantem  $\alpha$  (Schmiedeeisen, Stahl) tritt sie zurück.

Die Feststellung der elastischen Linie auf Grund der Gleichung 15, § 16, liefert für den Fall, daß  $\alpha$  konstant ist, befriedigende Ergebnisse. Trifft jedoch diese Voraussetzung nicht zu, so kann bei starker Beanspruchung des Materials der Unterschied zwischen Rechnung und tatsächlichem Ergebnis erheblich ausfallen¹).

Streng genommen, wären für Stäbe aus Materialien mit veränderlichen Dehnungszahlen die in §§ 16, 18 und 19 gegebenen Entwicklungen unter Beachtung der zwischen  $\varepsilon$  und  $\sigma$  bestehenden Gesetzmäßigkeit (Gl. 1, § 4, S. 25) durchzuführen, wie es beispiels-

$$y_{C} = \frac{\alpha}{48} \frac{Pl^{3}}{\Theta}$$

----

kommt es bezüglich der Durchbiegung  $y_c$  eines in der Mitte mit P belasteten Stabes nur auf das Trägheitsmoment  $\Theta$  des Querschnittes an; infolgedessen es z. B. gleichgültig erscheint, ob bei einem Querschnitte wie Fig. 6, § 17, die breite oder die schmale Flansche als die gezogene auftritt, wenn nur P und ldie gleichen Werte besitzen. Tatsächlich erweist sich bei gußeisernen Trägern wegen der Veränderlichkeit von  $\alpha$  die Durchbiegung im letzteren Falle entschieden größer als im ersteren. (Vgl. des Verfassers Arbeit "Die Biegungslehre und das Gußeisen" in der Zeitschrift des Vereines deutscher Ingenieure 1888, S. 224, oder auch "Abhandlungen und Berichte" 1897, S. 72 und 73.)

 $\mathbf{280}$ 

¹) Nach Gleichung 14, § 18,

#### § 21. Biegungsanstrengung und Durchbiegung.

weise oben für Gußeisen geschehen ist. Die Rücksicht auf die erforderliche Einfachheit unserer technischen Rechnungen hält jedoch im allgemeinen zurzeit noch davon ab, in dieser Weise vorzugehen; nur in denjenigen Fällen, in denen die Anforderungen der Technik das bisherige Verfahren nicht mehr gestatten, wird die strengere Rechnung anzulegen sein. Hinsichtlich des vom Verfasser vor reichlich drei Jahrzehnten eingeschlagenen Annäherungsweges, der Veränderlichkeit von  $\alpha$  bei Gußeisen Rechnung zu tragen, sei auf § 22, Ziff. 2, verwiesen.

# § 21. Biegungsanstrengung und Durchbiegung unter der Voraussetzung, daß die Ebene des Kräftepaares keine der beiden Hauptachsen des Querschnittes in sich enthält.

Die im nachstehenden wiedergegebenen Entwicklungen sind die üblichen; sie lassen im allgemeinen die unter 4. S. 259 aufgeführte und S. 267 u. f. näher erörterte Voraussetzung der Symmetrie des Querschnittes außer Betracht. Das ist bei Beurteilung oder Verwendung der Ergebnisse, zu denen die Entwicklungen unter Ziffer 2 und 3 gelangen, im Einzelfalle zu beachten.

#### 1. Hauptachsen eines Querschnittes. Hauptträgheitsmomente.

In der durch Fig. 1 dargestellten Fläche sei O ein beliebiger Punkt, OX und OY ein rechtwinkliges, sonst jedoch beliebig gelegenes Achsenkreuz; die Koordinaten des

mit dem Flächenpunkte P zusammenfallenden Flächenelementes df seien x und y. Dann ist das Trägheitsmoment der Fläche

in bezug auf die X-Achse  $\Theta_x = \int y^2 df$ ,

$$y_{1} y_{2} y_{3} y_{3} y_{4} = \int x^{2} df$$

und hinsichtlich der unter dem Winkel  $\varphi$ gegen die X-Achse geneigten Geraden 00, von der P, demnach auch df, um  $z = y \cos \varphi$  $-x \sin \varphi$  absteht,





$$\begin{split} & \Theta = \int z^2 df = \int (y \cos \varphi - x \sin \varphi)^2 df \\ & \Theta = \Theta_x \cos^2 \varphi + \Theta_y \sin^2 \varphi - 2 Z \sin \varphi \cos \varphi, \quad . \quad . \quad . \quad 1) \end{split}$$

sofern

Auf der Achse 00 werde nun von 0 aus die Strecke  $\overline{OQ} = \varrho = \sqrt{\frac{1}{\Theta}}$  aufgetragen und den Koordinaten des so erhaltenen Punktes Q

in bezug auf OX und OY die Bezeichnung  $\xi$  und  $\eta$  erteilt, so daß  $\xi = \rho \cos \varphi$   $\eta = \rho \sin \varphi$ .

Aus Gleichung 1 folgt dann mit Rücksicht darauf, daß

$$\begin{split} \Theta &= \frac{1}{\varrho^2} \\ 1 &= \Theta_x \varrho^2 \cos^2 \varphi + \Theta_y \varrho^2 \sin^2 \varphi - 2 \, Z \, \varrho^2 \sin \varphi \cos \varphi, \\ 1 &= \Theta_x \xi^2 + \Theta_y \, \eta^2 - 2 \, Z \, \xi \, \eta. \end{split}$$

Diese Beziehung zwischen den Veränderlichen  $\xi$  und  $\eta$  ist die Gleichung einer Ellipse. Hiernach findet sich der geometrische Ort aller derjenigen Punkte Q, die erhalten werden, wenn auf jeder durch O möglichen Geraden die Wurzel aus dem reziproken Werte des für diese Gerade sich ergebenden Trägheitsmomentes aufgetragen wird, als Ellipse, mit O als Mittelpunkt, d. i. die sogenannte Trägheitsellipse. Nun sind in einer Ellipse zwei senkrecht aufeinander stehende Achsen vorhanden — die große und die kleine Achse —, für die das Glied mit dem Produkt der beiden Koordinaten verschwindet. Dies tritt ein, wenn Z=0. Werden demnach diese beiden Achsen zu Achsen der x und der y gewählt, so wird der Ausdruck Gleichung 2 zu Null.

Ferner ist bekannt, daß die große Halbachse der Ellipse der größte und die kleine Halbachse der kleinste der möglichen Werte von  $\rho$  ist. Diese beiden ausgezeichneten Richtungen werden als die beiden Hauptachsen der Fläche für den Punkt O bezeichnet. Sie sind nach Maßgabe des Vorstehenden gekennzeichnet durch

und

$$Z = \int xy df = 0$$
  
 $\Theta_x = \text{Max.}, \ \Theta_y = \text{Min.} \text{ oder } \Theta_x = \text{Min.}, \ \Theta_y = \text{Max.}$ 

Dieser kleinste und dieser größte Wert unter den Trägheitsmomenten, die sich für alle Geraden ergeben, die durch den Punkt O in der Ebene der Fläche gezogen werden können, heißen die beiden Hauptträgheitsmomente der Fläche für den Punkt O derselben.

Werden die beiden Hauptträgheitsmomente mit  $\Theta_1$  und  $\Theta_2$  bezeichnet, so findet sich das Trägheitsmoment  $\Theta$  für eine beliebige durch O gehende Gerade, die mit der Achse des Hauptträgheitsmomentes  $\Theta_1$  den Winkel  $\varphi$  einschließt, nach Gleichung 1 zu

$$\Theta = \Theta_1 \cos^2 \varphi + \Theta_2 \sin^2 \varphi \quad \dots \quad \dots \quad \dots \quad \dots \quad 3)$$

Besitzen  $\Theta_1$  und  $\Theta_2$  gleiche Größe, so folgt

$$\Theta = \Theta_1 = \Theta_2,$$

d. h. die Trägheitsmomente für alle durch O möglichen Geraden sind einander gleich. Die Trägheitsellipse geht dann in einen Kreis über. Das Vorstehende gilt für einen beliebigen Punkt der Fläche. Dementsprechend hat eine Fläche unendlich viele Hauptachsen und Hauptträgheitsmomente. Wird von den Hauptachsen oder den Hauptträgheitsmomenten eines Querschnittes kurzhin gesprochen, so sind hierunter die entsprechenden Größen für den Schwerpunkt des letzteren verstanden.

## 2. Biegungsanstrengung.

Wir wählen die beiden Hauptachsen des Querschnittes Fig. 2 zu Achsen der y und z.  $\Theta_1$  gelte als das Trägheitsmoment in bezug auf die Hauptachse OY und  $\Theta_2$  als dasjenige hinsichtlich der Hauptachse OZ. Ferner sei  $\overline{OM_b}$  die Paarachse des biegenden Kräftepaares vom Momente  $M_b$ , d. h. diejenige Gerade, die in O senkrecht zur Paarebene steht, mit ihrer Größe  $OM_b$  das Moment  $M_b$  darstellt und derart eingetragen wird, daß, von  $M_b$  nach O hin gesehen, das Moment  $M_b$  rechtsdrehend erscheint. Die zur Krümmungsachse, die um  $\varrho$  von O absteht, parallele Nullachse besitze die Lage NN, schließe also mit OY den Winkel  $\varphi$  ein, während  $OM_b$  um  $\beta$  gegen OY geneigt ist.

Nach Fig. 6, § 16 ist

$$\overline{P_1P_1'}:\overline{P_1O_1} = \overline{OO_1}:\overline{OM}$$
$$\varepsilon dx: \eta = dx: \varrho$$

und daher mit

 $\varepsilon = \alpha \sigma$ 

für das Flächenelement df, dessen Lage durch y und z bestimmt ist,

$$\sigma = \frac{1}{\alpha} \frac{\eta}{\rho} = \frac{1}{\alpha} \frac{z \cos \varphi - y \sin \varphi}{\rho}.$$

Je die Summe der Momente, die diese Spannung für alle Flächenelemente in bezug auf die y- und die z-Achse ergibt, muß sich im Gleichgewicht befinden mit den Komponenten des Kräftepaares  $M_b$ , d. i. mit

$$M_b \cos \beta$$
 bzw.  $M_b \sin \beta$ 

Folglich

$$M_b \cos \beta = \int \sigma df \cdot z = \int \frac{1}{\alpha} \frac{z \cos \varphi - y \sin \varphi}{\varrho} z df,$$
$$M_b \sin \beta = -\int \sigma df \cdot y = -\int \frac{1}{\alpha} \frac{z \cos \varphi - y \sin \varphi}{\varrho} y df.$$

Unter Voraussetzung der Unveränderlichkeit der Dehnungszahl  $\alpha$ und unter Beachtung, daß OY und OZ die Hauptachsen des Quer-
III. Biegung.

schnittes sind. für welche die Größe Z (Gleichung 2) verschwindet, ergibt sich

$$\begin{split} M_b \cos \beta &= \frac{1}{\alpha \varrho} \, \Theta_1 \cos \varphi \quad \text{oder} \quad \frac{\cos \varphi}{\varrho} &= \alpha \frac{M_b}{\Theta_1} \cos \beta, \\ M_b \sin \beta &= \frac{1}{\alpha \varrho} \, \Theta_2 \sin \varphi \quad \text{oder} \quad \frac{\sin \varphi}{\varrho} &= \alpha \frac{M_b}{\Theta_2} \sin \beta, \end{split}$$

und hieraus

$$\frac{1}{\varrho} = \alpha M_b \sqrt{\frac{\cos^2 \beta}{\Theta_1^2} + \frac{\sin^2 \beta}{\Theta_2^2}}, \quad . \quad . \quad . \quad . \quad 5)$$

$$\sigma = \frac{1}{\alpha} \frac{\eta}{\varrho} = M_b \eta \sqrt{\frac{\cos^2 \beta}{\Theta_1^2} + \frac{\sin^2 \beta}{\Theta_2^2}}, \quad . \quad . \quad . \quad . \quad 6)$$

oder

$$\sigma = \frac{1}{\alpha} \frac{z \cos \varphi - y \sin \varphi}{\varrho} = M_b \left( \frac{z \cos \beta}{\Theta_1} - \frac{y \sin \beta}{\Theta_2} \right) \quad . \quad . \quad . \quad 7)$$

Die Gleichung 6 geht in Gleichung 9, § 16, über, wenn

$$\beta = 0,$$

d. h. wenn die Paarachse mit einer der beiden Hauptachsen zusammenfällt, oder wenn

$$\Theta_1 = \Theta_2 = \Theta$$
,

d. h. wenn die Hauptträgheitsmomente und damit alle Trägheitsmomente gleich sind, was beispielsweise zutrifft für den Kreis, das



gleichseitige Dreieck, das Quadrat, überhaupt für alle regelmäßigen Vielecke, für den kreuzförmigen Querschnitt bei gleichen Abmessungen der Rippen usf.

Für den besonderen Fall des Rechteckes, Fig. 3, folgt wegen

$$\Theta_1 = \frac{1}{12} b h^3 \qquad \Theta_2 = \frac{1}{12} b^3 h$$

aus Gleichung 4

$$\operatorname{tg} \varphi = \left(\frac{h}{b}\right)^2 \operatorname{tg} \beta.$$

Die größte Spannung  $\sigma_{max}$  wird auftreten im Punkte E, für den z = 0.5 h, y = -0.5 b

$$\sigma_{max} = \frac{6 M_b}{b h} \left( \frac{\cos \beta}{h} + \frac{\sin \beta}{b} \right)$$

und mit Rücksicht auf § 20, Ziff. 6,

$$k_{b} \geq \frac{6M_{b}}{bh} \left( \frac{\cos\beta}{h} + \frac{\sin\beta}{b} \right) \quad . \quad . \quad . \quad . \quad . \quad . \quad 8)$$

Zu demselben Wert für  $k_b$  läßt sich gelangen, wenn man  $M_b$ in seine beiden Komponenten, parallel und senkrecht zur Höhenrichtung des Querschnittes, zerlegt, die sich für sie ergebenden Spannungen ermittelt und sie addiert.

#### 3. Durchbiegung.

Die Durchbiegung eines Stabes, dessen Belastungsebene die Querschnitte nicht in einer der beiden Hauptachsen schneidet, pflegt nur insofern praktisches Interesse zu haben, als unter Umständen der Stab gehindert sein kann, sich in der Richtung zu bewegen, in



der er sich durchbiegen will, wodurch Zusatzkräfte wachgerufen werden. Denken wir uns beispielsweise einen l langen Stab von dem in Fig. 4 gezeichneten Querschnitt an einem Ende eingespannt und am anderen Ende mit P belastet, so ergibt sich für die senkrechte Belastungsebene OP die horizontale Paarachse  $\overline{OM_b} = M_b = Pl$ . Unter der Voraussetzung, daß der winkelförmige Querschnitt gleiche Schenkel besitzt, werden die beiden Hauptachsen OY und OZ unter  $45^{\circ}$  gegen den Horizont geneigt sein. Bezeichnet nun  $\Theta_1$  das Trägheitsmoment in bezug auf die Hauptachse OY und  $\Theta_2$  dasjenige hinsichtlich der zweiten Hauptachse OZ, so folgt die Lage der Nullachse NN nach Gleichung 4 unter Beachtung, daß  $\beta = 45^{\circ}$ . Da

die Krümmungsachse parallel zu NN läuft, so ergibt sich die Durchbiegungsrichtung in der zu NN senkrechten Geraden OB. Hiermit wird sich das eine Ende des Stabes unter Einwirkung der vertikalen Belastung P in der Richtung OB durchbiegen.

Wenn nun zwei solche Stäbe miteinander verbunden sind, wie z. B. Fig. 5 erkennen läßt, so wird diese Durchbiegung infolge der Verbindung mehr oder minder vollständig gehindert, d. h. auf die beiden Stäbe wirkt noch je eine horizontale, nach innen gerichtete Kraft H, die unter Umständen, namentlich dann, wenn sie nicht durch den Schwerpunkt des Querschnittes geht — und damit auch auf Verdrehung hinwirkt —, die Anstrengung des Materials wesentlich beeinflussen kann.

Unter der Annahme, daß die Abweichung der Träger in horizontaler Richtung durch ihre Verbindung vollständig gehindert wird, würde sich *H* aus der Erwägung ergeben, daß die Durchbiegungsrichtung mit *OP* zusammenfallen muß. Damit dies eintritt, müßte  $\not \langle YON = \varphi = 45^{\circ}$  sein, also nach Gleichung 4

$$\operatorname{tg} 45^{0} = \frac{\Theta_{1}}{\Theta_{2}} \operatorname{tg} \beta, \quad \operatorname{tg} \beta = \frac{\Theta_{2}}{\Theta_{1}}.$$

Die hierdurch bestimmte Lage der Paarachse OC liefert in der zu ihr Senkrechten OD die Richtung der Belastung (für vertikale Durchbiegung) und damit in  $\overline{PD}$  die gesuchte Horizontalkraft H.

# § 22. Biegungsversuche.

### 1. Biegungsversuche im allgemeinen.

Biegungsversuche werden in der Regel nach Maßgabe der Fig. 1, § 18, angestellt, derart, daß die Belastung P in der Mitte des Stabes angreift. Mit der Genauigkeit, mit der das Eigengewicht desselben vernachlässigt werden darf, ergibt sich alsdann für den mittleren Querschnitt die Durchbiegung  $y_c$  der Mittellinie des Stabes nach Gleichung 14, § 18, zu

$$y_c = \frac{\alpha}{48} \frac{Pl^3}{\Theta}$$

und die Spannung  $\sigma_1$  der um  $e_1$  von der Nullachse abstehenden und am stärksten gespannten Fasern nach Gleichung 7, § 18, und Gleichung 10, § 16, zu

$$\sigma_1 = \frac{Pl}{4\Theta} e_1,$$

unter den Voraussetzungen, die zu diesen beiden Gleichungen führten: Ebenbleiben der Querschnitte und Unabhängigkeit der Dehnungszahl  $\alpha$  von der Größe und dem Vorzeichen der Spannungen oder Dehnungen.

Durch Beobachtung der zu einer gewissen Belastung P gehörigen Durchbiegung  $y_C$  läßt sich für einen bestimmten Stab die Dehnungszahl

$$\alpha = 48 \frac{\Theta}{l^3} \frac{y_C}{P}$$

oder auch deren reziproker Wert (Elastizitätsmodul)

$$\frac{1}{\alpha} = \frac{l^3}{48\Theta} \frac{P}{y_c}$$

innerhalb des Spannungsgebietes, für das  $\alpha$  als unveränderlich angesehen werden kann, ermitteln.

Es ist bis vor nicht zu langer Zeit allgemein üblich gewesen,  $\alpha$  bzw.  $\frac{1}{\alpha}$  in dieser Weise zu bestimmen, gleichgültig, wie groß die Höhe des Stabes im Verhältnis zur Entfernung der Auflager war. Ist sie verhältnismäßig bedeutend, so verliert die Gleichung 14 § 18, an Genauigkeit, da die Durchbiegung des Stabes nicht bloß von dem biegenden Moment, sondern auch von der Schubkraft abhängt. Die Vernachlässigung des Einflusses der Schubkraft liefert  $\alpha$  zu groß und  $\frac{1}{\alpha}$  zu klein. Wie Verfasser in der Zeitschrift des Vereines deutscher Ingenieure 1888, S. 222 u. f., erstmals nachgewiesen hat, beträgt der hierdurch begangene Fehler in Fällen stattgehabter Ermittelung des Wertes  $\frac{1}{\alpha}$  über  $30^{0}/_{0}$ .

Diese Außerachtlassung der Schubkraft vorzugsweise ist es gewesen, die zu dem Irrtum Veranlassung gegeben hat, daß der Elastizitätsmodul, d. i.  $\frac{1}{\alpha}$ , für Biegung entschieden geringer sei als für Zug und Druck¹). Die Erwägung des in § 20 unter 2 Erörterten führt übrigens ohne weiteres zu der Erkenntnis, daß genaue Biegungsversuche und strenge Rechnung  $\alpha$  eher ein wenig kleiner, also  $\frac{1}{\alpha}$ eher etwas größer als Zug- und Druckversuche liefern müssen.

Unter Umständen kann der nach Gleichung 14, § 18, ermittelte Wert von  $\alpha$  noch durch einen anderen Einfluß ungenau geworden

¹) Hiernach ist auch die ältere Angabe zu beurteilen, daß der Elastizitätsmodul für Biegung um etwa ein Zehntel geringer als für Zug und Druck zu wählen sei.

III. Biegung.

sein. Infolge der Durchbiegung gleitet die Staboberfläche auf den Auflagern; hierdurch werden Reibungskräfte wachgerufen, die auf die Größe des biegenden Momentes je nach den Verhältnissen mehr oder minder abändernd einwirken. (Vgl. Zeitschrift des Vereines deutscher Ingenieure 1888, S. 224 u. f.) Sie so klein zu halten, daß ihre Vernachlässigung statthaft wird, ist Aufgabe bei Biegungsversuchen.

Im vierten Abschnitt unter "Biegung und Schub" (§ 52) sowie unter "Zug, Druck, Biegung" (§ 46, Ziff. 1) wird auf den Einfluß der Schubkraft bzw. der zuletzt erwähnten Reibung näher einzugehen sein.

Die Beobachtung der Belastung  $P_{max}$ , bei welcher der Bruch des durchgebogenen Stabes erfolgt, führt mittels der Gleichung

$$K_b = \frac{P_{max}l}{4\Theta} e_1$$

zur Biegungsfestigkeit  $K_b$ , bezogen auf den ursprünglichen Stabquerschnitt.

In Hinsicht auf diese Bestimmung der Biegungsfestigkeit sei Nachstehendes zur Klarstellung hervorgehoben, wobei zähes und nicht zähes Material unterschieden werden soll.

#### a) Zähes Material, wie z. B. Flußeisen.

Der der Biegungsprobe unterworfene Körper, den wir uns der Einfachheit der Betrachtung wegen als Prisma mit rechteckigem Querschnitt vorstellen wollen, sei so belastet, daß die Spannung in



der äußersten Faser gerade der Proportionalitätsgrenze entspricht. Dann erfolgt die Spannungsverteilung im Querschnitt nach Maßgabe der Fig. 1. Steigern wir die Belastung derart, daß in den äußersten Fasern die Streck- bzw. Quetschgrenze überschritten wird, so geben

 $\mathbf{288}$ 

die außen gelegenen Fasern verhältnismäßig rasch nach¹). Die nach innen gelegenen Fasern werden dagegen verhältnismäßig stark zur Übertragung des biegenden Momentes herangezogen: die Spannungsverteilung gestaltet sich etwa, wie in Fig. 2 dargestellt, gleiche Verhältnisse für Zug und Druck vorausgesetzt²). Sie weicht weit ab von derjenigen in Fig. 1, die bei Entwicklung der oben angegebenen Gleichung für K, vorausgesetzt wurde. Durch weitere Erhöhung der Belastung wird diese Abweichung noch gesteigert werden. In dem Maße, wie die Durchbiegung fortschreitet, also die gezogenen Fasern gedehnt, die gedrückten verkürzt werden, beginnt auch noch die Querzusammenziehung der ersteren und die Querdehnung der letzteren eine Änderung der Querschnittsform des Stabes im mittleren Teil herbeizuführen derart, daß sie trapezförmig wird: auf der Zugseite nimmt die Breite ab, auf der Druckseite wächst sie. (Vgl. Fig. 9, Taf. XX.) Ein Bruch tritt meist überhaupt nicht ein, nur eine große Durchbiegung. Dabei erlangt die Belastung eine Höhe, die bei der Beurteilung mittels der Gleichung

$$K_{b} = \frac{P_{max}l}{4\Theta} \epsilon$$

zu Biegungsfestigkeiten führt, die nach den vorstehenden Darlegungen — der Versuch lehrt das gleiche — mehr oder minder weit über die Zugfestigkeit des gleichen Materials hinausgehen müssen.

¹) Vgl. die Dehnungslinien § 4, Fig. 10, 12, 13 usw. (S. 48 bzw. 50 u. f.). Dieses Nachgeben erfolgt allerdings nicht ganz so rasch, als diese Linien schließen lassen, da die nach außen liegenden Fasern durch die benachbarten inneren, noch nicht über die Streck- und Quetschgrenze hinaus beanspruchten Fasern im Fließen eine gewisse Hinderung und damit eine gewisse Erhöhung der Widerstandsfähigkeit erfahren. Biegungsversuche mit Stäben, deren Material bei Zugversuchen Dehnungslinien wie in Fig. 10 oder 12 liefert, also sehr deutlich die Fließgrenze hervortreten läßt, ergeben keine derart ausgeprägte Streck- oder Quetschgrenze; es wird eben zunächst nur in der Mitte des Stabes und hier wieder nur in der äußersten Faserschicht die dieser Grenze entsprechende Spannung eintreten.

²) Es ist von Interesse, zu beachten, daß, wie Versuche Bauschingers und des Verfassers nachweisen, die Querschnitte von Stäben aus zähem Stahl oder Schmiedeeisen (Fluß- oder Schweißmaterial) selbst bei sehr weit getriebener Durchbiegung eben und senkrecht zur Mittellinie bleiben. Wenigstens läßt sich dies mit großer Annäherung aussprechen. Dieses Verhalten — bei einer Spannung-verteilung, wie in Fig. 2 dargestellt — läßt vermuten, daß auch bei Materialien, bei denen Proportionalität zwischen Dehnungen und Spannungen überhaupt nicht besteht, Ebenbleiben der Querschnitte mit Annäherung wird vorausgesetzt werden dürfen, insoweit es sich um den Einfluß eines biegenden Momentes handelt.

Die Zulässigkeit dieser Voraussetzung folgt auch aus den Darlegungen auf S. 298 u. f.

C. Bach, Elastizität. 8. Aufl.

Ähnliches tritt, wenn auch weniger ausgeprägt, bei Flußeisen usw. schon nach Überschreiten der Streckgrenze ein. (Vgl. das in § 48 unter Ziff. 1 Bemerkte, dahingehend, daß die zulässige Biegungsanstrengung höher gewählt werden darf, als die zulässige Zuganstrengung.)

Streng genommen, läuft die obige Rechnung darauf hinaus, daß man die Dehnungslinie bis zum Eintritt der größten Belastung als Gerade ansicht, also beispielsweise im Falle der Fig. 1, § 3, auf S. 11 (gültig für Flußeisen) die Kurve OBCE als gerade Linie auffaßt.

Wird der weitdurchgebogene Stab (vgl. Fig. 2) entlastet, so haben nur die federnden Dehnungen das Bestreben, zurückzugehen; die bleibenden nicht. Die in der Mitte des gebogenen Stabes gelegenen Fasern sind nur innerhalb der Elastizitätsgrenze beansprucht worden; sie haben also das Bestreben, vollständig zurückzufedern. Darin werden sie durch das nach dem Rande zu gelegene Material, das sich bleibend umsomehr gedehnt oder verkürzt hat, je weiter es von der Mitte absteht, gehindert. Infolgedessen entstehen auf der Zugseite des Querschnittes: in der Mitte Zugspannungen, außen Druckspannungen und auf der Druckseite: in der Mitte Druckspannungen, außen Zugspannungen. Diese Spannungen, die im Innern des Stabes nach dem Versuch vorhanden sind und durch diesen wachgerufen wurden, können unter Umständen von Bedeutung werden.

Verwandt mit diesen "inneren" Spannungen sind in gewissem Sinne die "Gußspannungen", die beim Erstarren und Abkühlen von Gußstücken, sowie die Spannungen, die beim Härten von Stahl entstehen.

Welch bedeutende Kräfte im letzteren Falle zur Auslösung gelangen können, läßt Fig. 3, Taf. XVII, erkennen, die eine durch Härtespannungen zum Zerreißen gebrachte Feile zeigt. Die Feile zersprang, nachdem sie längere Zeit nach der Herstellung gelagert hatte. (Länge der Feile 35 cm, Breite 3,5 cm.)

b) Material, wie z. B. Gußeisen, Beton, Granit, Sandstein und dergl.

Biegungsversuche mit Körpern aus solchen Stoffen führen zum Bruch, infolgedessen hier die Beobachtung einer tatsächlichen Bruchbelastung möglich ist. Auch zeigen die Dehnungslinien dieser Materialien einen gleichmäßigeren, stetigeren Verlauf (§ 4, Fig. 8) als zähe Materialien wie Flußeisen (§ 4, Fig. 10, 12, 13 usw.), bei denen an der Fließgrenze eine Stetigkeitsunterbrechung auftritt. Die Formänderung, die der Stab bis zum Bruch erleidet, ist eine weit geringere.

Infolge dieser Umstände gestatten die Ergebnisse von Biegungs-Bruchversuchen mit Körpern aus solchen Materialien — trotz der Veränderlichkeit von  $\alpha$  — in der einen oder anderen Hinsicht meist eher einen — wenn auch beschränkten — Schluß auf die Widerstandsfähigkeit eines Körpers innerhalb der üblichen Anstrengung als die Ergébnisse von Biegungsversuchen mit zähen Körpern. (Vgl. die Spannungsverteilung § 20, Fig. 19, mit derjenigen in Fig. 2, hier.) Immerhin müssen solche Schlüsse auch hier mit großer Vorsicht und mit Rücksicht auf die wesentlichen Einfluß nehmenden Verhältnisse gezogen werden (vgl. S. 278 u. f.); es sei denn, daß man die Veränderlichkeit von  $\alpha$  in der Rechnung oder zeichnerischen Ermittlung berücksichtigt (vgl. den Schluß von S. 278).

# 2. Abhängigkeit der Biegungsfestigkeit des Gußeisens von der Querschnittsform.

Nach § 20, Ziff. 5, muß Gußeisen infolge der Veränderlichkeit der Dehnungszahl gegenüber den Konstruktionsmaterialien, die innerhalb gewisser Spannungsgrenzen konstante Dehnungszahlen besitzen, ein abweichendes Verhalten bei Biegungsversuchen zeigen; namentlich muß trotz der vergleichsweise geringen Formänderungen, die Gußeisen erfährt, die Biegungsfestigkeit  $K_b$ , berechnet auf Grund der Gleichung 10, § 16,

$$M_b = K_b \frac{\Theta}{e_1}$$

wesentlich größer sich ergeben als die Zugfestigkeit und in bedeutendem Maße abhäng[:]g sein von der Querschnittsform.

In diese Verhältnisse gewähren die vom Verfasser in den Jahren 1885 u. f. angestellten Versuche Einblick. Ausführlich ist hierüber berichtet in der Zeitschrift des Vereines deutscher Ingenieure 1888, S. 193 bis 199, S. 221 bis 226, S. 1089 bis 1094; 1889, S. 137 bis 145.

Aus neuester Zeit liegt die S. 45 genännte Schrift Nonnenmachers vor.

Die im folgenden je unter einer Bezeichnung aufgeführten Versuchskörper sind aus dem gleichen Material bei einem und demselben Gusse hergestellt worden.

Gußeisen A. Zug- und Biegungsstäbe bearbeitet. Zugversuche zur Ermittlung der Zugfestigkeit. Zugfestigkeit =  $\frac{1445 + 1355 + 1409 + 1377}{4} = 1396 \text{ kg/qcm}$ Zugfestigkeit =  $\frac{1369 + 1303 + 1355}{3} = 1342$  "  $\overline{K_z = 1369 \text{ kg/qcm}}$ . 19* III. Biegung.

Nr.	Querschnitts- form	Biegung $K_b = $ in kg/qcm	$\begin{array}{c} \text{gsfestigkeit} \\ P_{max} l \\ 4 \Theta \\ e_1 \end{array}$ in Teilen der Zvgfestigkeit	$\frac{{}^{6}_{5} \sqrt{\frac{e}{z_{0}}}}{{}^{b}_{5} w}}$	Bemerkungen
1	2	3	4	5	6
1	Å 	1979	1,45	1.43	
2	+ 30 + 	2081	1,52	1.49	
3	$\begin{array}{c} 1 & - & - & - & - & - & - & - & - & - &$	2076	1,52	1,49	Es zerreißt die schmale Flansche, die breite bleibt unverletzt
4		2395	1,75	1,70	
5	t 30 t	2372	1,73	1,70	
6	, 30-F	2905	2,12	2,05	
7	A - + + 9 - p - + 9 - p - + - + 9 - p + - + - + - + - + - + - + - + - + -	2929	2,14	2.06	
8		3218	2,35	2.31	

47 Biegungsversuche zur Bestimmung der Biegungsfestigkeit.

Die in der bezeichneten Weise ermittelte Biegungsfestigkeit überschreitet hiernach die für dasselbe Gußeisen ermittelte Zugfestigkeit um so bedeutender, je mehr sich das Material verhältnismäßig nach der Nullachse hin zusammendrängt. (Vgl. § 20, Ziff. 5.)

Die hiernach festgestellte Abhängigkeit der Biegungsfestigkeit  $K_b$ von der Querschnittsform und der Zugfestigkeit  $K_z$  läßt sich mit guter Annäherung zum Ausdruck bringen durch die Beziehung

$$K_b = -\mu_0 \sqrt{\frac{e}{z_0}} \cdot K_z \quad . \quad . \quad . \quad . \quad . \quad . \quad 1)$$

die im Jahre 1887 aufgestellt wurde und sich auch bei neueren und den neuesten bis in die Gegenwart reichenden Versuchen mit Gußeisen, dessen Festigkeitseigenschaften von denen des Gußeisens der älteren Untersuchungen bedeutend abweichen, als zutreffend erwiesen hat.



In ihr bedeutet

- $z_0$  den Abstand des Schwerpunktes des auf der einen Seite der Schwerlinie (Nullachse) gelegenen Teiles der Querschnittsfläche von dieser Linie, Fig. 4,
- $\mu_0\,$ einen Koeffizienten, der im vorliegenden Falle (v<br/>gl. die Werte der Spalte $4\,$ und $5,\,S.\,292)$ gewählt werden darf
  - a) für diejenigen Querschnitte, die oben und unten durch eine wagrechte Gerade begrenzt sind, wie Nr. 1, 2, 3, 4, 5 und 7, etwa  $\frac{6}{5} = 1,2$ ,
  - b) für die beiden Querschnitte Nr. 6 und 8, die oben und unten nicht durch wagrechte Gerade begrenzt sind, bei denen streng genommen — nur eine einzige Faser am stärksten gespannt ist, etwa  $\frac{4}{3} = 1.33$ .

Über den Einfluß der Gußhaut auf  $\mu_0$  vgl. Ziff. 4, Schluß.

### Gußeisen B₁.

Zug- und Biegungsstäbe bearbeitet.

Querschnitt kreisförmig, 36 mm Durchmesser.

$$\begin{split} \mathbf{Zugfestigkeit} &= (1893 + 1847 + 1805 + 1846) : 4 = 1848 \ \text{kg/qcm}.\\ \mathbf{Biegungsfestigkeit} &= (4321 + 4148 + 4073 + 3930 + 4295 + 3903 \\ &+ 4513 + 3920) : 8 = 4138 \ \text{kg/qcm} = 2,24 \cdot \text{Zugfestigkeit}. \end{split}$$

#### III. Biegung.

#### Gußeisen B₂ von hoher Festigkeit.

Zeitschrift des Vereines deutscher Ingenieure 1900, S. 409 u. f. (Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Berlin, Heft 1, S. 49.)

Biegungstäbe von 30 mm Quadratseite mit Gußhaut. Zugstäbe von 20 mm Kreisdurchmesser bearbeitet.

Material 1.

Zugfestigkeit = (2535 + 2312 + 2334): 3 = 2394 kg/qcm. Biegungsfestigkeit = (4294 + 4347 + 4305): 3 = 4315 kg/qcm = 1,80 · Zugfestigkeit¹).

Arbeitsvermögen = (0,120 + 0,126 + 0,132): 3 = 0,126 kgm/ccm.

Material 2.

Zugfestigkeit = (2379 + 2354 + 2261): 3 = 2331 kg/qcm.Biegungsfestigkeit = (4392 + 4442 + 4472): 3 = 4435 kg/qcm=  $1.90 \cdot \text{Zugfestigkeit}^1$ .

Arbeitsvermögen = (0,142 + 0,136 + 0,116): 3 = 0,131 kgm/ccm.

Über die Abnahme der Zugfestigkeit dieses Gußeisens für Temperaturen bis 570°C findet sich berichtet in der Zeitschrift des Vereines deutscher Ingenieure 1900, S. 168 u. f. (Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Heft 1, S. 61 u. f.). S. auch Fig. 12, S. 180.

### Gußeisen C.

Zugstäbe bearbeitet, Biegungsstab unbearbeitet (also mit Gußhaut).



Fig. 4a.

$\mathbf{Zugfestigkeit}$	1310  kg/qcm,
Biegungsfestigkeit	2114  kg/qcm,
Verhältnis beider	2114:1310 = 1,61:1.

¹) Diese Verhältniszahlen 1,8 und 1,9 sind ganz erheblich größer, als sie sich für gewöhnliches Maschinen-Gußeisen ergeben (Quadratische Biegungsstäbe mit Gußhaut, kreisförmige Zugstäbe ohne Gußhaut). Inwieweit hierbei der Umstand mitgewirkt haben kann, daß kleine Ungleichmäßigkeiten im Guß die Zugfestigkeit stärker zu beeinflussen vermögen als die Biegungsfestigkeit, muß dahingestellt bleiben.

#### Gußeisen D.

Zug- und Biegungsstäbe bearbeitet.

a) Querschnitt: Fig. 6, § 17.

Die schmale Flansche ist die gezogene, die breite die gedrückte.

Beim Biegungsversuch reißt die schmale Flansche, die breite bleibt unverletzt.

Zugfestigkeit	$1418  ext{ kg/qcm},$
Biegungsfestigkeit	2077  kg/qcm,
Verhältnis beider	2077:1418 = 1,46:1.

b) Quadratischer Querschnitt:

Fig. 4b.

$\operatorname{Biegungsfestigkeit}$	2539  kg/qcm,
Verhältnis	2539:1418 = 1,78:1.

# 3. Durchbiegung und Festigkeit von Gußeisen bei quadratischem und kreisförmigem Querschnitt.

Es war üblich, das Gußeisen nach den Ergebnissen von statischen Biegungsversuchen zu beurteilen, die mit unbearbeiteten, also die Gußhaut besitzenden Stäben von quadratischem Querschnitt, dessen Seitenlänge 30 mm beträgt, bei l = 1000 mm Entfernung der Auflager durchgeführt wurden. Ermittelt wurde dabei die in der Mitte des Stabes wirkende Kraft P, die den Bruch herbeiführt, und die Durchbiegung y des Stabes in der Mitte unmittelbar vor dem Bruch. Hieraus wird gemäß der Gleichung

$$\frac{Pl}{4} = K_b \frac{\Theta}{e} = K_b \frac{1}{6} b h^2,$$

worin b die Breite und h die Höhe des Bruchquerschnittes bezeichnet, die Biegungsfestigkeit  $K_b$  berechnet, in ihr das Maß der Festigkeit und in der Durchbiegung y das Maß der Zähigkeit des Materials erblickt. In neuerer Zeit wurde vorgeschlagen, zur Prüfung kreiszylindrischer Stäbe überzugehen, und zwar

Stäbe von 40 mm Durchmesser bei 800 mm Auflagerentfernung,

••	"	30	"	<b>,.</b>	•7	600	22	**	,
••	"	20	,•	••	••	400	٠.	••	

Drei verschieden starke Stäbe glaubte man wählen zu sollen. weil Gußeisenstäbe, aus derselben Pfanne gegossen, bei größeren Stärken geringere Festigkeit besitzen. Es entstand nun das Bedürfnis, zu bestimmen: welche Werte von  $K_b$  und y ergeben sich für diese runden Biegungsstäbe im Vergleich zu denjenigen Größen, die quadratische Stäbe lieferten, und welche Werte von  $K_b$  und y können von runden Biegungsstäben aus gutem zähen Gußeisen gemäß den Leistungen der heutigen Technik verlangt werden. Zur Befriedigung dieses Bedürfnisses beizutragen, hat Verfasser eine größere Anzahl von Versuchen durchgeführt, über die in der Zeitschrift des Vereines deutscher Ingenieure 1908, S. 2061 u. f., und 1909, S. 299 u. f., berichtet worden ist. Die Hauptergebnisse sind die folgenden, wobei die Biegungsstäbe die Gußhaut besaßen, während die Zugstäbe aus den Bruchstücken der Biegungsproben herausgearbeitet worden waren, also Gußhaut nicht mehr aufwiesen.

Bezeich-		$K_b$ in (	kg/qcm			y in	$\mathbf{m}\mathbf{m}$	
nung des Materials	30 mm	40 mm O	30 mm ()	20 mm	30 mm	40 mm O	30 mm	20 mm
	9091	1970	1500	1057	920	167	11.6	6.9
a	2021	4570	4000	4901	20,0	15.0	11,0	0,0
b	3988	4561	4855	5739	23,7	15,0	11,2	7,5
с	3476	4109	4571	4786	23,4	16,0	$12,\!6$	8,0
d	3013	3011	3678	4793	19,4	10,1	9,5	6,7
e	4072	4264	4138	4991	$25,\!1$	15,1	9,1	6,3

Biegungsversuche.

Bezeich-	$\mathbf{Zugfestigkeit}$			Arbeitsvermögen in kgm/ccm			
nung des Materials	30	40 〇	30 ()	30	40 〇	$\overset{30}{\bigcirc}$	
a	2666	2233	2547	0,140	0,118	0,119	
b	2542	2377	2801				
с	2381	2118	2484				
d	1956	1670	2001	0,100	0,071	0,081	
e	2750	2608	2757	0,197	0,166	0,145	

Zugversuche.

Die vorstehenden Zahlen, die für die 30 mm starken Rundstäbe, auf die man sich geeinigt hat, beim Material b die durchschnittliche Biegungsfestigkeit zu 4855 kg/qcm und die durchschnittliche Zugfestigkeit zu 2801 kg/qcm zeigen, stellen noch nicht die Grenze des Erreichbaren dar. In der Materialprüfungsanstalt Stuttgart wurden für Gußeisen schon Zugfestigkeiten bis 4366 kg/qcm an Stäben von 18 mm Durchmesser ermittelt. § 22. Bicgungsversuche.

# 4. Einfluß der Gußhaut.

# Gußeisen E.

Zugstäbe (3 Stück) bearbeitet.

# Biegungsstäbe (14 Stück), zum Teil bearbeitet (5 Stück), zum Teil unbearbeitet (9 Stück).

Zügfestigkeit  $K_z = \frac{1560 + 1586 + 1640}{3} = 1595 \text{ kg/qcm}.$ 

Der Vergleich der Spalten 4 und 6 (s. folgende Seite) zeigt deutlich, daß die Biegungsfestigkeit der bearbeiteten, also von der Gußhaut befreiten Stäbe entschieden größer ist als diejenige der unbearbeiteten Stäbe. Das Vorhandensein der Gußhaut wirkt demnach auf Verminderung der Biegungsfestigkeit hin.

Diese Erscheinung läßt sich erklären einmal durch den Einfluß etwa vorhandener Gußspannungen und zweitens dadurch, daß die Dehnungszahl — der federnden und der bleibenden Dehnungen für das Gußhautmaterial geringer ist als diejenige für das weiter nach dem Innern des Stabes zu gelegene Gußeisen. Für die letztere Erklärung spricht insbesondere die Beobachtung, daß die Durchbiegungen, namentlich die bleibenden, bei den bearbeiteten Stäben verhältnismäßig weit größer sind als bei den unbearbeiteten. Die geringere Nachgiebigkeit der an und für sich am stärksten beanspruchten äußeren Fasern hat zur Folge, daß die Festigkeit der inneren Fasern weniger ausgenützt wird¹).

Die Größe des hiermit festgestellten Einflusses der Gußhaut auf die Biegungsfestigkeit hängt jedenfalls auch z. B. davon ab, ob die Gußstücke in frischem Sand oder in getrockneten Formen gegossen werden. Unter Umständen wird dieser Einfluß sehr bedeutend werden können.

Hieraus folgt, daß nur bearbeitete Stäbe der Prüfung unterworfen werden sollten, falls man Zahlen erhalten will, die unter sich mit voller Berechtigung verglichen werden können. Rücksicht auf die Kosten veranlaßt häufig, hiervon abzuweichen.

Demgemäß ergibt sich der Koeffizient  $\mu_0$  der Gleichung 1 für unbearbeitete Stäbe kleiner als für bearbeitete. Den Werten in Spalte 6

¹) Den vom Verfasser aus Biegungsversuchen in der Mitte der achtziger Jahre gezogenen Schluß, daß die Gußhaut eine kleinere Dehnungszahl besitze als das weiter nach dem Stabinnern gelegene Material, haben unmittelbare Zugversuche, über die er in der Zeitschrift des Vereines deutscher Ingenieure 1899, S. 857 u. f. (Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, Heft 1, S. 1 u. f.) berichtet. bestätigt.

III. Biegung.

	Quarschnitte	Bieg	ungsfestigke	eit $K_b = \frac{P_{ma}}{40}$	$\frac{x^l}{2} e_1$
Nr.	form	Stäbe be	arbeitet	Stäbe unt	earbeitet
		in kg/qcm	in Teilen von <i>K_z</i>	in kg/qcm	in Teilen von $K_z$
1	2	3	4	5	· 6
1	05- 	2765	1,73	_	
2	3. 4. 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			2295	1,44
3	1 2 3			2390	1,50
4	4-00-4	2254	1,41		
5				2026	1,27

würde ein Wert $\mu_0$ im Mittel reichlich 1 entsprechen, d. i. nahezu $^1/_6$ kleiner als für die bearbeiteten Stäbe.

# 5. Versuche zur Klarstellnng des Zusammenhangs zwischen Zugund Biegungsfestigkeit und der Spannungsverteilung über den Querschnitt des gebogenen Stabes.

A. Gußeisen.

Zu diesen Versuchen wurden von Gußeisen bei dem gleichen Guß (aus derselben Pfanne), also aus dem gleichen Material, soweit sich dies überhaupt erreichen läßt, hergestellt:

Zylinder von 90 mm Durchmesser und rund 950 mm Länge,

quadratische Stäbe von 90 mm Seite und rund 1100 mm Länge.

Durch Bearbeitung dieser Körper auf der Drehbank bzw. Hobelmaschine fand Überführung derselben in Zylinder von 80 mm Durchmesser bzw. in quadratische Stäbe von 80 mm Seitenlänge statt.

Von den Zylindern wurden sodann Stücke in der Länge von ungefähr 320 mm abgestochen und aus ihnen zu Zugversuchen je 4 Rundstäbe von 20 mm Durchmesser im mittleren Teile herausgearbeitet. Das jeweils verbleibende Zylinderstück von rund 620 mm Länge wurde zu Druckversuchen verwendet.

Die quadratischen Stäbe dienten den Biegungsuntersuchungen.

Die Belastung wurde von Stufe zu Stufe gesteigert und dabei — ohne Zurückgehen auf die erste Belastungsstufe — jeweils die gesamte Längenänderung bzw. Durchbiegung festgestellt.

Sowohl bei den Zug- als auch bei den Druck- und Biegungsversuchen wurden die Verlängerungen bzw. Zusammendrückungen und Durchbiegungen je nach 5 Minuten Belastungsdauer abgelesen.

Von den Ergebnissen seien die folgenden hier mitgeteilt.

Belastungsstufe in kg/qcm	Gesamte Verlängerungen in ¹ / ₁₀₀₀ cm auf 10 cm Länge	Unterschied der Verlängerungen
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2,14\\ 4,99\\ 8,83\\ 14,15\\ 21,60\\ 33,31\\ 55,58\end{array}$	2,85 3,84 5,32 7,45 11,71 22,27

a) Zugversuche.

Die Zugfestigkeit des Stabes ergab sich zu

 $K_z = 1315 \, \mathrm{kg/qcm},$ 

diejenige von zwei anderen Stäben zu

1289 und 1273 kg/qcm.

b) Druckversuche.

Belastungsstufe in kg/qcm	Gesamte Zusammen- drückungen ın ¹ / ₂₀₀ cm auf 29,0 cm	Unterschied der Zusammen- drückungen
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 2,13\\ 4,63\\ 7,20\\ 10,45\\ 14,54\\ 18,51\\ 24,10\\ 31,08\\ 41,20\\ 56,72\end{array}$	2,50 2,57 3,25 4,09 3,97 5,59 6,98 10,12 15,52

#### III. Biegung.

c) Biegungsversuche.

Stabbreite b = 8,01 cm, Stabhöhe h = 8,005 cm. Entfernung der Auflager l = 1000 mm.

Belastung erfolgt in der Mitte durch die Kraft P.

Belastung P kg	$\frac{0,25Pl}{1}{6}bh^2$	Gesamte Durchbiegungen der Stabachse in der Mitte in mm	Unterschied der Durchbiegungen in mm
$500 \\ 1000 \\ 2000 \\ 3000 \\ 4000 \\ 5000 \\ 6000 \\ 7000$	$146,1 \\292,2 \\584,4 \\876,6 \\1168,8 \\1461,0 \\1753,2 \\2045,4$	$\begin{array}{c} 0\\ 0,355\\ 1,227\\ 2,226\\ 3,392\\ 4,830\\ 6,698\\ 9,143 \end{array}$	$\begin{array}{c} 0,355\\ 0,872\\ 0,999\\ 1,166\\ 1,438\\ 1,868\\ 2,445\end{array}$

Der Bruch erfolgt bei P = 7380 kg. Die für Proportionalität zwischen Dehnungen und Spannungen gültige Gleichung 10, § 16 würde liefern

$$K_b = rac{25 \cdot 7380}{rac{1}{6} \cdot 8,01 \cdot 8,005^2} = 2157 \ \mathrm{kg/qcm}.$$

d) Prüfung des Zusammenhanges der Versuchsergebnisse.

Es liegt nahe, die Prüfung in der Art auszuführen, daß auf die Entwicklungen S. 273 u. f. zurückgegriffen und ermittelt wird:

aus den Zugversuchen  $a_1$  und  $m_1$ ,

", " Druckversuchen  $\alpha_2$  "  $m_2$ ,

- , Gl. 11 (S. 277) mit  $\sigma_1 = 1315~{\rm kg/qcm}$  die Lage der Nullachse,
- . Gl. 12 (S. 277) die Größe des biegenden Momentes, das mit  $\sigma_1 = 1315 \text{ kg/qcm}$  den Bruch herbeiführen würde.

Dieses Moment wäre sodann mit dem tatsächlichen Bruchmoment

$$\frac{Pl}{4} = \frac{100}{4} \cdot 7380 = 184\,500 \text{ kg} \cdot \text{cm}$$

zu vergleichen.

Die Beschreitung dieses Weges führt zunächst zu der Erkenntnis, daß das Potenzgesetz  $\varepsilon = \alpha \sigma^m$  für die gesamten Dehnungen bis zum Bruch den tatsächlichen Verlauf der Dehnungslinie weder bei Zug noch bei Druck zutreffend genug zum Ausdruck bringt. In Fig. 5 sind auf Grund der unter a und b angegebenen Versuchsergebnisse zu den Spannungen als wagrechten Abszissen die jeweils erhaltenen



Dehnungen als senkrechte Ordinaten aufgetragen und dadurch die ausgezogenen Kurven erhalten worden:  $OZ_1Z$  gilt für Zug und  $OE_1ED$  für Druck.

Der Linienzug, wie ihn das Potenzgesetz mit

$$a_1 = \frac{1}{24956000000}, \ m_1 = 2,623, \ a_2 = \frac{1}{20000000}, \ m_2 = 1.491$$

liefert, ist strichpunktiert eingetragen. Man erkennt deutlich, daß, wenn auch die Werte von  $\alpha_1 m_1$  bzw.  $\alpha_2 m_2$  anders als geschehen gewählt werden, bedeutende Abweichungen der beiden Linienzüge bestehen bleiben.

Unter diesen Umständen verzichten wir auf die Benutzung des Potenzgesetzes sowie auf die Heranziehung einer anderen Funktion und verfahren in einer anderen, schon von W. Schüle angedeuteten Weise¹). Die in Fig. 5 ausgezogene Kurve  $OZ_1Z$  liefert für  $\sigma_r = 1315$  $kg/qcm = \overline{AZ}$  in der Ordinate  $\overline{OA}$  die zugehörige Dehnung. Unter der Voraussetzung, daß der Stabquerschnitt bei der Biegung eben bleibt²), ergibt die Linie  $OZ_1Z$  die Verteilung der Zugspannungen von der durch O gehenden Nullachse bis zu der am stärksten gespannten Faser in A. Die Größe der Fläche OAZ bildet unter Berücksichtigung der Breite des rechteckigen Querschnittes das Maß für die Summe der inneren Kräfte auf der Zugseite. Da nun diese Summe, die mit N bezeichnet sei, gleich sein muß der Summe der inneren Kräfte auf der Druckseite (Gl. 3, S. 235), so ist auf letzterer eine Fläche OBE =Fläche OAZ abzugrenzen, was sich mittels des Polarplanimeters ziemlich rasch ausführen läßt.  $\overline{bE}$  ist alsdann die größte Spannung, die auf der Druckseite eintritt, wenn die größte Spannung auf der Zugseite  $\overline{AZ}$ =1315 kg/qcm beträgt. Die zeichnerische Darstellung liefert die größte Druckspannung  $\overline{BE}$  == 2270 kg/qcm, d. i. um  $100 \frac{2270 - 1315}{1315} = 73^{0}/_{0}$  größer als die größte Zugspannung.

Die Nullachse ist in dem rechteckigen Querschnitt von der Höhe  $\overline{A \cup B}$  so gelegen, daß die Abstände von außen

$$e_1 = \overline{OA}$$
 und  $e_2 = \overline{OB}$ 

betragen. Dies gibt, da der für die Dehnungen — zunächst ohne Rücksicht auf die Höhe des Stabquerschnittes — gewählte Maßstab in der ursprünglichen Zeichnung Fig. 5 zur Strecke  $\overline{OA} = 20,3$  cm und zur Strecke  $\overline{OB} = 14,7$  cm, also zu  $\overline{AB} = 20,3 + 14,7 = 35,0$  cm geführt hat, bei der Querschnittshöhe h = 8,005 cm

$$e_1 = 20.3 \frac{8,005}{35.0} = 4,64 \text{ cm},$$
  
 $e_2 = 14.7 \frac{8,005}{35.0} = 3,36 \text{ cm}.$ 

¹) Wie dem Verfasser später bekannt geworden, hat Ritter schon früher diesen Weg bezeichnet: "Anwendungen der graphischen Statik", I, 1888, S. 134 u. f. unter "Spannungen, welche die Elastizitätsgrenze überschreiten".

²) Vgl. 266, Fußbemerkung 2, S. 289.

Die Nullachse liegt somit im Augenblick des Bruches um 0,64 cm, d. i. um  $8^{0}/_{0}$  der Querschnittshöhe aus der Mitte nach der Druckseite hin.

Sind  $S_z$  und  $S_d$  die Schwerpunkte der beiden Flächen OAZ bzw. OBE, so findet sich zunächst in der Strecke y der Abstand, in dem die beiden resultierenden Innenkräfte N wirkend anzunehmen sind, und damit das Moment der inneren Kräfte gleich Ny.

Aus der Zeichnung entnehmen wir unter Berücksichtigung, daß die Stabbreite 8,01 cm beträgt,

$$N = 37160 \text{ kg}$$
  $y = 21,0 \frac{8,005}{35,0} = 4,8 \text{ cm},$ 

folglich

$$Ny = 37160 \cdot 4, 8 = 178368 \text{ kg} \cdot \text{cm}.$$

Das Moment der äußeren Kräfte, das zum Bruche führte, betrug — wie oben ermittelt — 184500 kg·cm. Somit findet sich der Unterschied zwischen diesem Bruchmoment und dem Moment der inneren Kräfte, wie es im vorstehenden festgestellt worden ist, zu

$$100 \frac{184500 - 178368}{184500} = 3.3^{0}/_{0}.$$

Dieser Unterschied hält sich nicht bloß innerhalb der Grenzen der Abweichungen, die in solchen Fällen zu erwarten sind, sondern er muß sogar als recht klein bezeichnet werden. Hiernach erscheint die Spannungsverteilung im Querschnitt des gebogenen gußeisernen Stabes im Augenblick des Bruches und damit auch der Zusammenhang zwischen der Biegungsfestigkeit und der Zugfestigkeit klargestellt. Man erkennt, daß in dem gebogenen Stabe wesentlich höhere Zugspannungen nicht auftreten, als sie der unmittelbare Zerreißversuch liefert.

Für ein unterhalb des Bruchmomentes liegendes Biegungsmoment, etwa für ein solches, das  $\sigma_z = \overline{A_1 Z_1}$  liefert, welchem Werte dann gemäß der Gleichgewichtsbedingung, daß Fläche  $OA_1 Z_1 =$  Fläche  $OB_1 E_1$ sein muß, die Druckspannung  $\sigma_d = \overline{E_1 B_1}$  entspricht, verschiebt sich wegen des flacheren Verlaufs der Drucklinie  $OE_1 E$ gegenüber demjenigen der Zuglinie  $OZ_1 Z$  die Nullachse nach der Mitte hin, für noch kleinere Momente kann sie aus der Mitte des rechteckigen Querschnittes nach der Zugseite hin gelegen sein¹).

¹) Diese Feststellung sibt nicht nur eine weitgeheude Aufklärung über die Anstrengung von auf Biegung beanspruchten Körpern, deren Material stark veränderliche Dehnungszahlen besitzt, wie Gußeisen, Sandstein, Beton usw.,

Beispielsweise findet sich

für  $\sigma_{s} = 1000 \text{ kg/qcm}$ ,

 $\sigma_d = 1388 \text{ kg/qcm}, \quad e_1 = 4.27 \text{ cm}, \quad e_2 = 3.73 \text{ cm},$ somit die Nullachse um 0,27 cm, d. i. 3,4% der Höhe aus der Mitte nach der Druckseite gelegen,

für 
$$\sigma_{z} = 500 \text{ kg/qcm}$$
.

 $\sigma_d = 525 \text{ kg/qcm}, \qquad e_1 = 3,77 \text{ cm}, \qquad e_2 = 4,23 \text{ cm},$ 

somit die Nullachse um 0,23 cm, d. i.  $2,9^{0}/_{0}$  der Höhe aus der Mitte nach der Zugseite gelegen.

Um für kleine Momente, die auch nur geringe Spannungen (Dehnungen) geben, die Lage der Nullachse auf dem zeichnerischen Wege ausreichend genau feststellen zu können, müssen bei den Zugund Druckversuchen die Dehnungen und Zusammendrückungen für geringere Spannungen mit entsprechend niedrigeren Belastungsstufen

G. Tiraspolsky, Professor in Tomsk, der 1901/1902 in dem Laboratorium des Verfassers tätig war, hat auf dessen Anregung die weitere Verfolgung dieses Verfahrens aufgenommen und eine dahingehende Arbeit veröffentlicht, zufolge der er bei Gußeisen Abweichungen um 4,3% und 3,3% (gegen  $3,3^{\circ}/_{\circ}$  oben) ermittelte.

Größere Abweichungen ermittelte W. Pinegin (Zeitschrift des Vereines deutscher Ingenieure 1906, S. 2029 u. f., Mitteilungen über Forschungsarbeiten, Heft 48, S. 43 u. f.). E. Meyer, der die Versuchsarbeiten von Pinegin eingehender verarbeitete, stellt fest, daß die Durchbiegungen, die sich auf Grund des oben angegebenen Verfahrens aus den Ergebnissen der Zug- und Druckversuche berechnen lassen, mit den von Pinegin gemessenen Durchbiegungen recht gut übereinstimmen, so daß auch die Pineginschen Versuche für dieses Verfahren sprechen (Zeitschrift des Vereines deutscher Ingenieure 1908, S. 167 u. f.). Die Abweichungen, zu denen Pinegin gelangte, dürften sich jedenfalls zu einem Teile — durch die Schwierigkeit crklären, die sich infolge der Plötzlichkeit des Bruches bei der Ermittlung der tatsächlichen Bruchdehnung bietet; auch können kleinere Fehlstellen im Material im Augenblick des Bruches einen Einfluß äußern, den sie vorher bei der Biegung des Stabes nicht hatten usw.

An der angegebenen Stelle zeigt Meyer in Erweiterung unserer Erkenntnisse, daß sich die Durchbiegungen von Flußeisen, das über die Streckgrenze hinaus beansprucht wird, auf dem oben angegebenen Wege mit guter Annäherung berechnen lassen.

Ludwik fand in seiner Arbeit "Zur Frage der Spannungsverteilung in gekrümmten stabförmigen Körpern mit veränderlichem Dehnungskoeffizienten" (Techn. Blätter 1905) die gleiche Übereinstimmung wie Verfasser.

sondern sie beleuchtet auch die Mitteilungen, die in neuerer Zeit hinsichtlich der Lage der Nullachse bei Biegungsbalken aus solchen Stoffen gemacht worden sind. Je nach der verhältnismäßigen Größe des biegenden Momentes konnte man die Nullachse in der Stabachse oder auch mehr oder minder weit außerhalb gelegen ermitteln, ohne damit der eigentlichen Erkenntnis der Spannungsverteilung über den Querschnitt näher zu kommen. "Über diese gibt Fig. 5. S. 301 vollen Aufschluß.

ermittelt und muß für die Dehnungen ein größerer Maßstab gewählt werden, als dies im Falle der Fig. 5 geschehen ist, mit der nur die Aufgabe zu lösen war, die Verhältnisse für den Bruch zu untersuchen.

Zur weiteren Klarstellung sind Versuche mit verschiedenen Gußeisensorten, mit Steinen, Beton usw. durchzuführen; ebenso wird der Einfluß zu ermitteln sein, den Wechsel der Belastungen (Spannungen) äußert.

## B. Kiefernholz.

In gleicher Weise, wie unter A für Gußeisen beschrieben, wurden zunächst mit Probekörpern, die dem sehr gleichförmigen Holz (Pfostenform) nebeneinander entnommen waren, Versuche zur Ermittlung des Verlaufes der gesamten Dehnungen bzw. Zusammendrückungen bei Zug- und Druckbeanspruchung ausgeführt. Die Ergebnisse sind in Fig. 6 niedergelegt. Während beim Zugversuch die

Linie fast geradlinig ansteigt und nur kurz vor Erreichen der Zugfestigkeit stärkere Krümmung aufweist, tritt eine solche beim Druckversuch schon früher ein. Nach die einzelnen Fasern knicken unter Faltenbildung aus, vgl. Fig. 4, Taf. XI --- fällt die Linie sehr langsam ab. (Bei anderem Holz ist nicht selten weit stärkerer Abfall zu beobachten. Meist ist der große, aus Fig. 6 bei geringer Belastung ersichtliche Unterschied in der Zug-Druckelastizität nicht vorund handen.)

Hieran schloß sich ein Biegungsversuch (Höhe des Stabes 5,02 cm,



Breite 5,00 cm, Auflagerentfernung 100,0 cm). Unter der Belastung P = 500 kg, entsprechend einem biegenden Moment von 12500 kg.cm, wurde auf der Druckseite Faltenbilaung beobachtet. Die Beanspruchung kommt dort also der Druckfestigkeit nahe. Bruch des Stabes erfolgte, von der Zugseite ausgehend, unter P = 650 kg (biegendes Moment 16250 kg.cm), bei einer Biegungsspannung, berechnet nach Gl. 10, § 16 (Biegungsfestigkeit)

$$K_b = \frac{16250 \cdot 6}{5 \cdot 5.02^2} = 774 \text{ kg/qcm}.$$

C. Bach, Elastizität. 8. Aufl.

In der auf S. 302 ausführlich beschriebenen Weise wurden nun die zu verschiedenen biegenden Momenten gehörigen Spannungen ermittelt. Fig. 7 zeigt den Verlauf der Spannungen über den Querschnitt, und zwar gilt





Linie	Ι	für ein biegendes Moment von 8180 kg.cm — der Spannungs-
<b>T</b> ···	TT	verlauf ist auf der Zug- und Druckseite fast genau geradlinig
Linie	11	fur ein biegendes Moment von 12 500 kg.cm — Faltenbildung
		auf der Druckseite, Druckfestigkeit nahezu erreicht —
Linie	ш	für ein biegendes Moment von 15830 kg.cm die Span-
		nung auf der Zugseite erreicht die Zugfestigkeit
Linie	IV	für den Augenblick des Bruches unter Zugrundelegung
		der üblichen Rechnung (Gl. 10, §16).

Fig. 7 läßt erkennen, daß sich die Spannungsverteilung von dem durch die übliche Rechnung, welche Proportionalität zwischen Dehnung und Spannung sowie gleiche Dehnungszahlen für Zug- und Druckbeanspruchung voraussetzt, bestimmten Linienzug IV um so stärker unterscheidet, je höher die Beanspruchung steigt, d. h. je stärker die Dehnungslinien gekrümmt sind (Fig. 6). Deutlich ist ferner das Wandern der Nullinie gegen die Zugseite hin zu beobachten.



In Fig. 8 sind zu den biegenden Momenten als wagrechten Abszissen die Werte der größten Zug- und Druckspannungen als senkrechte Ordinaten aufgezeichnet. Die Zugspannungen verlaufen wie in Fig. 6 von vornherein etwas oberhalb der Druckspannungen. Zwischen beiden befindet sich die gerade Linie, die der üblichen Rechnung entspricht. Von dem biegenden Moment an, bei dem sich die Linie der Druckspannungen stärker (nach rechts) zu krümmen beginnt, erfahren die Zugspannungen rascheres Wachstum (Krümmung der Linie nach links). Die größere Nachgiebigkeit auf der Druckseite hat hiernach Erhöhung der Spannungen auf der Zugseite zur So kommt es, daß zwar der Bruch des gebogenen Stabes Folge. eintritt, wenn die Spannung auf der Zugseite die Höhe der Zugfestigkeit erreicht, daß aber trotzdem die Widerstandsfähigkeit gegen Druck dadurch Einfluß nimmt, daß sie das starke Wachsen der Zugspannungen bedingt. Die rechnungsmäßige Biegungsfestigkeit be-

trägt das  $\frac{774}{446}$  = 1,7 fache der Druckfestigkeit.

IV. Knickung.

Die Übereinstimmung des nach Fig. 6 und 7 abgeleiteten Bruchmomentes mit dem Ergebnis des Biegungsversuches ist eine sehr gute. Es stehen sich gegenüber

Dieser Unterschied tritt auch in Fig. 8 durch den Abstand der Enden der Linien III-III und IV-IV zutage.

Hiernach erscheint die Annahme des Ebenbleibens der Querschnitte auch für Holz zulässig.

Dabei wird zu beachten sein, daß im vorliegenden Fall die Auflagerentfernung 100 cm betrug bei einer Stabhöhe von 5,2 cm. Würde das Verhältnis Auflagerentfernung: Stabhöhe bedeutend kleiner, so stünde ein stärkerer Einfluß der Schubspannungen zu erwarten. Diese können bei Holz die Widerstandsfähigkeit begrenzen (vgl. Fig. 13, § 52, Taf. XXII). Auf Grund umfangreicher Untersuchungen, über die in einem später erscheinenden Heft der Mitteilungen über Forschungsarbeiten berichtet wird, darf angenommen werden, daß dieser Einfluß erst dann erheblichere Bedeutung erlangt, wenn die Auflagerentfernung kleiner ist als etwa das 10 fache der Stabhöhe.

# IV. Knickung.

# § 23. Wesen der Knickung.

Es sei AB, Fig. 1, ein prismatischer Stab von großer Länge und geringen Querschnittsabmessungen, belastet durch die Kraft P. Wenn nun die Voraussetzungen,

- 1. daß die Kraft P genau mit der Stabachse zusammenfällt,
- 2. daß diese tatsächlich eine gerade Linie bildet, daß das Material des Stabes durchaus gleichartig ist und an allen Stellen in dem gleichen Zustande sich befindet,
- 3. daß seitliche Kräfte auf den Stab nicht einwirken, daß derselbe überhaupt Einflüssen, die solche hervorrufen würden, nicht unterworfen ist,

zuträfen, so würde der Stab nach § 11 nur eine Zusammendrückung in Richtung der Achse und senkrecht dazu eine Querschnittsvergrößerung erfahren. Eine Veranlassung, mit dem freien Ende seitlich auszuweichen, läge dann nicht vor.

In Wirklichkeit sind die genannten Voraussetzungen, namentlich diejenigen unter Ziff. 1 und 2, genau überhaupt nicht zu erfüllen und angenähert um so weniger leicht, je größer die Länge des Stabes im Verhältnis zu seinen Querschnittsabmessungen ist. Infolgedessen zeigt die Erfahrung, daß ein solcher Stab mit seinem freien Ende auszuweichen bestrebt ist, daß er eine Biegung erleidet. Um uns über das, was hierbei eintritt, ein richtiges Bild zu verschaffen, führen wir folgende Versuche durch.

a) Wir nehmen einen sorgfältig gerade gerichteten Stahldraht von 3,5 mm Durchmesser, spannen denselben möglichst genau senkrecht in den Schraubstock so ein, daß er eine freie Länge von l = 850 mm besitzt, Fig. 2. Hierauf belasten wir ihn in Richtung

seiner Achse mit  $P = P_1 = 0,4$  kg. Sobald Draht und Belastung sich selbst überlassen werden, beginnt das freie Ende des ersteren auszuweichen, bis er bei y' = rund 25 mm zur Ruhe gelangt. In





dieser Lage befindet sich das biegende Moment Py' (sofern von dem Einfluß des Eigengewichtes des Drahtes abgeschen wird) im Gleichgewicht mit den durch dasselbe im Innern des Stabes wachgerufenen Elastizitätskräften. Die wiederholte Zurückführung des ausgewichenen Drahtes in die senkrechte Lage erwidert derselbe durch erneute Ausbiegung um y'. Wird das freie Ende des Stabes mit der Hand etwas weiter, d. h. um mehr als y' ausgebogen und alsdann sich selbst überlassen, so kehrt es in die Lage y'=25 mm zurück. Der Gleichgewichtszustand ist demnach ein stabiler.

Fig. 2.

Fig. 1.

Die Belastung  $P_1 = 0.4$  kg wird entfernt und durch  $P = P_2 =$ 1,1 kg ersetzt. Sobald der Drahtstab mit der Belastung sich selbst überlassen bleibt, beginnt das freie Ende auszuweichen, der Draht biegt sich fortgesetzt, bis das belastende Gewicht die Werkbank, an welcher der Schraubstock befestigt ist, erreicht hat, Fig. 3.

Die Biegung ist naturgemäß an der Einspannstelle am stärksten. Der Stab ist hierbei nicht gebrochen. Nach der Entlastung verschwindet ein ziemlich bedeutender Teil der erlittenen Formänderung wieder; namentlich erlangt die nach dem freien Ende hin gelegene Strecke die Geradlinigkeit wieder.

b) Ein schlanker Holzstab von quadratischem Querschnitt, Seitenlänge 7,5 mm, wird möglichst genau senkrecht in den Schraubstock gespannt, alsdann am freien Ende mit  $P = P_1 = 1,1$  kg belastet, wobei l = 850 mm. Das freie Ende beginnt auszuweichen und gelangt schließlich bei y' = rund 150 mm zur Ruhe.

Die Belastung  $P_1 = 1,1$  kg wird entfernt und durch  $P = P_2 = 1,3$  kg ersetzt. Der hierauf sich selbst überlassene Stab beginnt mit dem freien Ende auszuweichen, auch nach wiederholter Zurückführung in die senkrechte Lage, und biegt sich, bis er bei y' etwa gleich 550 mm bricht.

Die Erscheinungen, welche die beiden Stäbe bei der Belastung mit  $P = P_2$  zeigen, werden unter dem Namen Knickung des Stabes zusammengefaßt: im ersten Falle tritt eine Biegung ein, die — abgesehen von der Möglichkeit, daß es sich um eine Feder handelt mit dem Zwecke des Stabes, ein widerstandsfähiger Konstruktionsteil zu sein, unvereinbar ist; im zweiten Falle erfolgt ein Bruch, der gleichfalls unzulässig erscheint.

Aus den Versuchen a und b erkennen wir folgendes.

Bei der Belastung  $P_1$  weicht der Stab nur um y' aus und ge-Wird das freie Ende des Stabes mit der Hand langt zur Ruhe. noch etwas weiter ausgebogen und sich dann selbst überlassen, so kehrt der Stab in diese Lage zurück. In derselben herrscht demnach stabiles Gleichgewicht zwischen dem biegenden Moment, das die auf den Stab wirkenden äußeren Kräfte, d. h. die Schwerkräfte der Belastung und der eigenen Masse liefern, und den hierdurch im Innern des Stabes wachgerufenen Elastizitätskräften. Bei der Belastung P. dagegen besteht überhaupt ein Gleichgewichtszustand nicht, der Stab biegt sich aus, bis die Belastung zum Aufruhen gelangt, also zum Teil aufgehoben wird (Versuch a), beziehungsweise zum Bruche führt (Versuch b). In beiden Fällen muß es hiernach eine zwischen  $P_1$  und  $P_2$  gelegene Belastung  $P = P_0$  geben, für die der stabile Gleichgewichtszustand, der bei  $P = P_1$  noch zu beobachten war, gerade aufhört zu bestehen.

Diese Kraft  $P_0$  wird als Knickbelastung bezeichnet.

# § 24. Knickbelastung.

(Eulersche Gleichung.)

Für den Stab Fig. 1 bezeichne

- P die in der Richtung der ursprünglich geraden Stabachse wirkende Kraft,
- $P_0$  die Knickbelastung, d. h. diejenige Größe von P, welche die Knickung herbeizuführen imstande ist,
- $\Theta$  das der Biegung gegenüber in Betracht kommende Trägheitsmoment des Stabquerschnittes (in der Regel das kleinere der beiden Hauptträgheitsmomente),
- l die Länge des Stabes,
- $\alpha$  die Dehnungszahl.

In bezug auf den durch den Abstand x bestimmten Querschnitt ist, da die zu x gehörige Ordinate der elastischen Linie y beträgt, das biegende Moment, dessen Ebene den Querschnitt

in einer der beiden Hauptachsen schneide,

$$M_{b} = P\left(a + y' - y\right)$$

und damit unter den Voraussetzungen, die in § 16 zu Gleichung 14 führen, nach Gleichung 15 daselbst

$$\frac{d^2y}{dx^2} = \frac{\alpha P}{\Theta} \left( a + y' - y \right).$$

Wird gesetzt

$$\frac{\alpha P}{\Theta} = n^2 \quad a + y' - y = -z.$$

so folgt

$$\frac{d^2z}{dx^2} = \frac{d^2y}{dx^2} = -n^2z$$

Dieser Gleichung entspricht unter Voraussetzung, daß  $\alpha$  und  $\Theta$  konstant sind, das Integral

$$z == C_1 \sin(nx) + C_2 \cos(nx)$$

oder

$$y - a - y' = C_1 \sin(nx) - C_2 \cos(nx)$$

sofern die beiden Integrationskonstanten mit  $C_1$  und  $C_2$  bezeichnet werden. Dieselben sind bestimmt dadurch. daß für den Punkt A. also für x = 0

$$y = 0$$
 und  $\frac{dy}{dx} = 0$ .

d. h.

$$C_2 = -a - y' \qquad C_1 = 0.$$



X

Hiermit folgt

Für 
$$x = (a + y') [1 - \cos(nx)] \dots \dots \dots 1)$$
  
Für  $x = l$  wird  $y = y'$ , also  
 $y' = (a + y') [1 - \cos(nl)]$   
 $y' = a \frac{1 - \cos(nl)}{\cos(nl)} = a \left[\frac{1}{\cos(nl)} - 1\right]$   
 $= a \left[\frac{1}{\cos\left(l\sqrt{\frac{a P}{\Theta}}\right)} - 1\right] \dots \dots \dots 2)$ 

und damit findet sich die Gleichung der elastischen Linie

$$y = a \frac{1 - \cos(nx)}{\cos(nl)} = a \frac{1 - \cos\left(x \sqrt{\frac{\alpha P}{\Theta}}\right)}{\cos\left(l \sqrt{\frac{\alpha P}{\Theta}}\right)} \quad \dots \quad 3)$$

Denken wir beispielsweise die Gleichung 2 angewendet auf einen schmiedeisernen Stab von 100 cm Länge und 1 cm Durchmesser, so findet sich mit

$$a = \frac{1}{2\,000\,000} \qquad \Theta = \frac{\pi}{64} d^4 = \sim \frac{1}{20} d^4 = \frac{1}{20} \qquad l = 100$$

$$y' = a \left[ \frac{1}{\cos 100 \sqrt{\frac{20}{2\,000}} - 1} \right] = a \left[ \frac{1}{\cos \sqrt{\frac{P}{10}}} - 1 \right].$$

Für den Hebelarm  $\alpha$  wollen wir uns einen kleinen Betrag vorstellen, etwa daher kommend, daß der Stab schon ursprünglich nicht genau gerade war, und daß P nicht genau durch den Schwerpunkt des Querschnittes geht.

Es ergibt sich

für 
$$P = 5 \text{ kg}$$
  $y' = a \left( \frac{1}{\cos 0,707} - 1 \right) = 0,32 a$ ,  
für  $P = 10 \text{ kg}$   $y' = a \left( \frac{1}{\cos 1} - 1 \right) = 0,85 a$ ,  
für  $P = 15 \text{ kg}$   $y' = a \left( \frac{1}{\cos 1,225} - 1 \right) = 1,95 a$ ,  
für  $P = 20 \text{ kg}$   $y' = a \left( \frac{1}{\cos 1,4142} - 1 \right) = 5,54 a$ ,  
für  $P = 22,5 \text{ kg}$   $y' = a \left( \frac{1}{\cos 1,5} - 1 \right) = 13,16 a$ .

Wir erkennen, daß y' anfangs langsam, dann aber außerordentlich rasch mit P wächst; für P = 24,674 kg würde sogar

$$y' = a \left( \frac{1}{\cos 1,5708} - 1 \right) = a \left( \frac{1}{0} - 1 \right) = a \cdot \infty = \infty.$$

Wie klein also auch a sein mag — sofern es nur nicht Null ist —, für P = 24,674 kg liefert die Rechnung  $y' = \infty$ . Dieses Ergebnis ist natürlich nicht so aufzufassen, daß die Ausbiegung des Stabes, der eine endliche Länge besitzt, tatsächlich unendlich sich ergibt, sondern es wird damit nur ausgesprochen, erreicht P den Wert 24.674 kg, so wird bei der geringsten Abweichung der Belastung von der Stabachse oder bei nicht vollkommener Geradlinigkeit derselben oder bei nicht vollständiger Gleichartigkeit des Stabmaterials oder seines Zustandes oder endlich bei der geringsten seitlichen Einwirkung auf den Stab dieser umknicken, das Gleichgewicht zwischen der äußeren Kraft P und den inneren Elastizitätskräften wird aufhören, zu bestehen. Dabei ist P selbstverständlich nur mit derjenigen Genauigkeit bestimmt, die den Voraussetzungen der Rechnung entspricht¹).

Dieser Wert von P kann demnach als diejenige Kraft bezeichnet werden, die imstande ist, die Knickung herbeizuführen, und die sie auch herbeiführen wird, da die Voraussetzungen unter Ziff. 1 und 2 in § 23 nicht streng erfüllbar sind, und deshalb stets ein biegendes Moment vorhanden sein muß.

Diese Kraft ist die Knickbelastung  $P_0$ .

T

Allgemein läßt sich dieselbe aus Gleichung 2 durch die Erwägung bestimmen, daß

$$P = P_0 \text{ für } y' = a \cdot \infty,$$

d. h.

$$\cos\left(l\sqrt{\frac{\alpha P_0}{\Theta}}\right) = 0 \quad l\sqrt{\frac{\alpha P_0}{\Theta}} = \frac{\pi}{2}$$
$$P_0 = \frac{\pi^2}{4} \frac{1}{\alpha} \frac{\Theta}{l^2} \quad \dots \quad \dots \quad \dots \quad (4)$$

Für den Fall der Fig. 2, nach Maßgabe welcher der Stab gezwungen ist, mit seinen sonst beweglichen Enden A und B in der ursprünglich geraden Stabachse zu bleiben, verhält sich jede der beiden Stabhälften genau so wie der ganze Stab in Fig. 1. Demnach

¹⁾ Eine strengere Entwicklung gibt Schneider in der Zeitschrift des österr. Ingenieur- und Architekten-Vereins 1901, S. 633 u. f.

IV. Knickung.

ergibt sich für die Kraft, durch die hier die Knickung erfolgen wird, mittels Einführung von 0.5 l in die Gleichung 4 an Stelle von l

$$P_0 = \frac{\pi^2}{4} \frac{1}{\alpha} \frac{\Theta}{(0,5\,l)^2} = \pi^2 \frac{1}{\alpha} \frac{\Theta}{l^2}, \quad \dots \quad \dots \quad 5)$$

d. i. ein viermal so großer Wert wie für den Stab mit freiem Ende.

Die Beziehung 5 wird nach ihrem Urheber als die Eulersche Gleichung bezeichnet.

Wenn der Stab, Fig. 3, an beiden Enden A und B so befestigt ist, daß bei etwaiger Ausbiegung die Gerade AB Tangente in den



Punkten A und B der elastischen Linie bleibt -wasübrigens in Wirklichkeit nur sehr selten zutreffen wird (vgl. § 53) —, so liegen in den Mitten C und E der Stabstrecken AD und BD Wendepunkte. Die hierdurch entstehenden Endstücke AC und BEverhalten sich wie der ganze Stab im Falle der Fig. 1 (a=0 gesetzt),

während das Mittelstück CDE dem Stabe in Fig. 2 entspricht. Diese Erwägung ergibt für die beiden Endstücke je von der Länge  $\frac{l}{4}$ nach Gleichung 4

$$P_0 = \frac{\pi^2}{4} \frac{1}{\alpha} \frac{\Theta}{\left(\frac{l}{4}\right)^2} = 4 \pi^2 \frac{1}{\alpha} \frac{\Theta}{l^2},$$

¹) Eine einfache, elementare Ableitung dieser Gleichung liefert R. Land in der Zeitschrift des Vereines deutscher Ingenieure 1896, S. 99 u. f. In anderer, auf die Vorgänge bei der Knickbeanspruchung eingehender Weise behandelt W. Schüle diese Aufgabe, Zeitschrift des Vereines deutscher Ingenieure 1899, S. 779.

E. Rasch berichtet in Heft 3 und 4 der Mitteilungen aus dem Materialprüfungsamt zu Berlin-Lichterfelde West 1919 über eine einfache, rein geometrische Ableitung der mit der Eulerschen Gleichung übereinstimmenden Gesetzmäßigkeit

$$P=8\frac{\Theta}{\alpha l^2}.$$

für das Mittelstück, dessen Länge  $\frac{l}{2}$  nach Gleichung 5

$$P_0 = \pi^2 \frac{1}{\alpha} \frac{\Theta}{\left(\frac{l}{2}\right)^2} = 4 \pi^2 \frac{1}{\alpha} \frac{\Theta}{l^2}.$$

Folglich gilt für den ganzen Stab, Fig. 3,

Hiernach verhalten sich die Knickbelastungen für die Stäbe Fig. 1, 2 und 3 unter sonst gleichen Verhältnissen wie

$$\frac{\pi^2}{4}\frac{1}{\alpha}\frac{\Theta}{l^2}:\pi^2\frac{1}{\alpha}\frac{\Theta}{l^2}:4\pi^2\frac{1}{\alpha}\frac{\Theta}{l^2}=1:4:16.$$

Die drei Gleichungen 4 bis 6 lassen sich zusammenfassen in die eine

$$P_0 = \omega \frac{1}{\alpha} \frac{\Theta}{l^2}, \quad \dots \quad \dots \quad \dots \quad \dots \quad 7)$$

worin

$$\omega = \frac{\pi^2}{4} \text{ für die Befestigungsweise Fig. 1} \omega = \pi^2 \text{ für diejenige Fig. 2 und} \omega = 4\pi^2 \text{ für diejenige Fig. 3}$$

# § 25. Zulässige Belastung gegenüber Knickung.

Als zulässige Gesamtbelastung P der in § 24 besprochenen Stäbe wird der S-te Teil von  $P_0$  genommen, d. h.

$$P = \frac{P_0}{\mathfrak{S}}.$$

Insbesondere

oder allgemein

$$P = \frac{\omega}{\mathfrak{S}} \frac{1}{\alpha} \frac{\Theta}{l^2} \quad \dots \quad \dots \quad \dots \quad \dots \quad 2)$$

worin  $\omega$  einen von der Befestigungsweise der Stabenden abhängigen Koeffizienten, den Befestigungskoeffizienten, bedeutet, dessen Größe für bestimmte Fälle am Schlusse von § 24 angegeben ist. Hinsichtlich  $\omega = 4\pi^2$  sei nochmals darauf hingewiesen, daß es nur äußerst selten der Wirklichkeit entsprechen wird, den Stab als beiderseits vollkommen eingespannt anzusehen (vgl. § 53).

Die Benützung der Gleichungen 1 oder 2 bei Feststellung der Querschnittsabmessungen einer Stütze kommt nach Maßgabe des Erörterten darauf hinaus, diese so zu wählen, daß erst durch das S-fache der wirkenden Kraft P die Knickung herbeigeführt wird. Mehr ist hierdurch zunächst nicht erreicht. Insbesondere erscheint es unzutreffend, bei Verwendung dieser Gleichungen zu schließen, daß erst durch das S-fache der Kraft P die Möglichkeit einer Biegung eintreten würde. Die beiden in § 23 unter a und b angegebenen Versuche zeigen deutlich eine ganz bedeutende Ausbiegung bei  $P = P_1 < P_0$ . Die tägliche Erfahrung lehrt ebenfalls, daß Ausbiegung von schlanken Stäben schon bei verhältnismäßig sehr geringer Belastung eintritt. (Vgl. auch die in § 27 unter Ziff. 1 am Schlusse von a gemachten Angaben.) Aus der Unmöglichkeit, die in § 23 unter Ziff. 1 und 2 angegebenen Voraussetzungen genau zu erfüllen, was darauf hinauskommt, daß die Größe a in Gleichung 2, § 24, größer als Null ist, erklärt sich diese Erscheinung ohne weiteres.

Will man das Eintreten solcher weit unterhalb der Knickungsgefahr liegenden Ausbiegungen nach Möglichkeit verhindern, so wird das unter sonst gleichen Verhältnissen um so erfolgreicher geschehen, je größer man S in die Gleichungen 1 oder 2 einführt.

Bei gewissen stangenartigen Maschinenteilen wechseln Zug und Druck, so daß die Stange zunächst auf Zug, hierauf auf Knickung beansprucht ist usf. Folgen nun — wie häufig der Fall — Zug und Druck so rasch aufeinander, daß von einer Ausbildung der Formänderung, wie sie die Entwicklung der Gleichungen voraussetzt, nicht die Rede sein kann, so wird ein geringerer Wert von  $\mathfrak{S}$  genügen, als wenn der genannte Vorgang langsamer vor sich geht¹).

Ferner kommt in Betracht, daß in den meisten Fällen selbst der Anordnung Fig. 2, § 24, schon infolge der Reibung in den Gelenken bei A und B ein (wenn auch nicht bedeutendes) Biegungsmoment vorhanden zu sein pflegt. Bei nicht senkrechter Lage der Stange tritt noch hinzu der auf Biegung wirkende Einfluß des Eigengewichts²) und im Falle ungleichförmiger Bewegung noch derjenige

¹) Vgl. z. B. des Verfassers Maschinenelemente, 1. Aufl. (1881), S. 311, oder 2. Aufl. (1891/92), S. 493, 10. Aufl. (1908), S. 814 und 816.

²) Mit Rücksicht hierauf empfiehlt es sich, Versuche mit Säulen in stehenden Prüfungsmaschinen vorzunehmen. Ferner ist es gemäß der S. 13 im

des Trägheitsvermögens. Nicht selten wird der Wärmezustand des Stabes ein einseitig verschiedener sein, welcher Umstand für eiserne Stützen Bedeutung erlangen kann. Auch diesen Einflüssen, wenn sie sich innerhalb gewisser Grenzen halten, wird in der Regel bei Wahl von S Rechnung getragen.

Unter diesen Verhältnissen ist es natürlich ausgeschlossen, daß für S ein bestimmter Wert angegeben werden kann: es werden vielmehr jeweils die besonderen Umstände in Erwägung zu ziehen sein. Hierzu gehört insbesondere auch die Befestigung der Enden der gedrückten Stange. Eine Säule mit großer und kräftiger Fuß- und Kopfplatte wird sich anders verhalten als eine sonst gleiche Säule mit kleinen Endplatten. Die erstere Säule erscheint in höherem Maße als an den Enden eingespannt wie die letztere und insofern tragfähiger; dagegen wird die belastende Kraft um so mehr von der Achse der Säule abweichen, d. h. die Säule voraussichtlich mit einem um so größeren Hebelarm belasten können, je größer die Kopf- und Fußplatte sind (vgl. auch Fig. 1 und Fig. 2, § 27). Schlanke Stäbe mit sorgfältig bearbeiteten Stirnflächen, die zwischen feststehenden Druckplatten gepreßt werden, ergeben ein mehr oder minder großes Einspannmoment. So wurde z. B. bei Bambusstäben die Befestigungszahl  $\omega = 3\pi^2$  ermittelt. Bei Bleiunterlage wird sich die gleiche Säule leichter nach Fig. 2, § 24, krümmen können, als wenn sie mit Zement untergossen worden ist, der vor der Einwirkung der Belastung genügend erhärtet usw. Streng genommen wäre allerdings diesen Umständen bei Feststellung des Befestigungskoeffizienten w Rechnung zu tragen; doch kommt es, da P proportional dem Quotienten  $\omega$ :  $\mathfrak{S}$ , tatsächlich auf dasselbe hinaus, wenn  $\omega$ , wie es für Stützen, deren Enden seitlich nicht ausweichen können, zu geschehen pflegt, mit  $\pi^2$  eingeführt und  $\mathfrak{S}$  entsprechend kleiner gewählt wird. falls man nicht, durch Erwägungen besonderer Art veranlaßt, vorzieht, statt der ganzen Säulenlänge einen Bruchteil derselben in Rechnung zu stellen. (Vgl. Schluß von § 27.)

Für Säulen von Gußeisen darf, ganz abgesehen von der selbstverständlichen Rücksichtnahme auf die Herstellungsweise (liegend oder stehend gegossen), nicht außer acht bleiben, daß  $\alpha$  tatsächlich veränderlich ist, und zwar zunimmt mit wachsender Spannung oder Dehnung (vgl. § 20, Ziff. 5) sowie überdies für die Gußhaut weniger beträgt als für das im Innern gelegene Material (vgl. § 22, Ziff. 4).

Schließlich wird auch dem Umstand Beachtung geschenkt werden müssen, daß in der Regel schon frühzeitig, d. h. unter verhältnis-

zweiten Absatz der Fußbemerkung ausgesprochenen Richtschnur angezeigt, Versuche mit Säulen aus Eisenbeton u. dgl. in solchen Formen auszuführen, wie sie der Verwendung entsprechen.

mäßig geringer Belastung, bleibende Formänderungen eintreten (vgl. § 4), weshalb die Durchbiegung des auf Knickung beanspruchten Stabes sich größer ergeben muß, als es die Dehnungszahl der Federung  $\alpha$  erwarten läßt, und infolgedessen der einmal durchgebogene Stab sich so verhält, als ob der Hebelarm a (Fig. 1) von vornherein um die bleibende Durchbiegung größer gewesen wäre.

Unter allen Umständen muß bei einem Stabe, der auf Knickung berechnet wird, die in § 12 aufgestellte Forderung bei einfacher Druckbeanspruchung

$$P \leq kf \ldots \ldots \ldots \ldots \ldots \ldots \ldots 3$$

befriedigt sein.





Die Widerstandsfähigkeit einer Säule wird hiernach unter sonst gleichen Umständen je nach ihrer Länge entweder durch Gleichung 3 oder durch Gleichung 2 bestimmt. Wird für verschiedene Stäbe aus dem gleichen Material, von demselben Querschnitt, aber von verschiedener Länge die Bruchlast P auf dem Wege des Versuches ermittelt und werden sodann zu den Werten l als wagrechten Abszissen die zugehörigen Werte von P als senkrechte Ordinaten aufgetragen, so ergibt sich der in Fig. 1 dargestellte Linienzug ABCD (gültig für Säulen aus Beton). Für kurze Säulenstücke gilt der Teil AB (Druckfestigkeit, wie in § 13 ermittelt); hieran schließt sich der schwach geneigte Teil BC (Säulenfestigkeit, gültig für Säulenhöhen, bei denen noch kein Ausknicken stattfindet, wie gleichfalls in § 13 bestimmt), während CD für das Gebiet der Knickung Geltung hat.

Weniger einfach liegen die Verhältnisse bei Stäben, deren Querschnitte nicht voll sind. Werden z. B. Rohre mit verhältnismäßig dünnen Wandstärken geprüft, so kommen die in § 13 unter h besprochenen Formänderungen in Betracht. Ähnliches tritt bei dünnwandigen Profilstäben auf. Auch das in der Fußbemerkung S. 234 Gesagte ist zu beachten.

### § 26. Naviersche (Schwarzsche) Knickungsformel.

Die in den §§ 24 und 25 erörterte Grundgleichung zur Berechnung eines Stabes, welcher der Gefahr des Knickens ausgesetzt ist, hat bis auf unsere Tage in den Kreisen der Techniker des Hochbau- und Bauingenieurwesens vielfach Bemängelung erfahren, deren Wurzel namentlich in dem Umstande zu suchen sein dürfte, daß in ihr nicht die Spannung auftritt, die man sich gewöhnt hat, als Maßstab der Sicherheit einer Konstruktion aufzufassen, und von der man deshalb bei Feststellung der Abmessungen immer auszugehen pflegt¹).

Zunächst hat der Gleichgewichtszustand, wie er im Augenblicke des Beginnes der Knickung vorhanden ist, für den Maschineningenieur nichts Fremdes. Es ist demselben geläufig, daß schon die Herstellung eines längeren schlanken Körpers mit tatsächlich gerader Achse und vollständiger Gleichartigkeit des Materials trotz größter Sorgfalt nicht zu erzielen ist, und daß infolgedessen, ganz abgesehen davon, mit welcher Genauigkeit es möglich erscheint, die Achsialkraft P in die vermeintlich gerade Stabachse fallen zu lassen, bei Belastung durch P eine mit dieser Kraft wachsende Durchbiegung eintreten muß. (Lange Druckstangen, wie sie z. B. bei vertikalen Balanciermaschinen auftreten, sind deshalb auch bei genau senkrechter Lage niemals durchbiegungsfrei zu erhalten, die Erzitterungen lassen sich bei wechselnder Belastung nicht ganz beseitigen.) Daß bis zu einer gewissen Größe von P das mit dieser Kraft und dem Eigengewicht verknüpfte biegende Moment von den inneren Elastizitätskräften des Stabes im Gleichgewicht gehalten wird, und daß bei Überschreitung der bezeichneten Grenze dieses Gleichgewicht aufhört, und der Stab sich umbiegt oder zerbricht, erscheint dann ganz natürlich. Durch Steigerung der Belastung wird der Stab auf einfachstem Wege aus dem Zustand des stabilen Gleichgewichts in den des labilen übergeführt. An den letzteren muß sich dann schon infolge des Einflusses der Zeit auf die Ausbildung der Formänderungen der Vorgang des Knickens anschließen.

Das Verhalten des unter äußerem Überdruck stehenden Flammrohres eines Dampfkessels, Fig. 1, ist ein ganz entsprechendes. Erfährt die Pressung der Flüssigkeit, die das Rohr umgibt, eine Steigerung, so

wird das letztere schließlich eingedrückt oder zusammengedrückt. Eine eigentliche Zerstörung des Materials tritt hierbei häufig nicht ein. Die Größe der Pressung, die das Ein- oder Zusammendrücken herbeiführt, hängt in erster Linie mit ab von der Vollkommenheit der Kreisform des Rohrquerschnittes. In ganz gleicher Lage befinden sich nicht wenige Gefäße und Rohrleitungen der Industrie, die der Regel nach oder auch nur ausnahmsweise äußerem Überdruck Widerstand zu leisten haben.



Fig. 1.

In solchen Fällen sind eben die Abmessungen so zu wählen, daß unzulässige Formänderungen ferngehalten werden. Allgemein von einer zulässigen Spannung auszugehen, erscheint dann unzutreffend. Die üblichen Sicherheitskoeffizienten S haben, wie oben (§ 25) bereits erörtert, hierbei den allgemeinen Rücksichten und den besonderen Umständen des gerade vorliegenden Falles Rechnung zu tragen.

¹) Im Maschineningenieurwesen war nichts oder verhältnismäßig nur wenig von einersolchen Bemängelung zu bemerken, und zwar aus verschiedenen Gründen.
IV. Knickung.

Ferner zeigten die Ergebnisse von Knickungsversuchen keine Übereinstimmung mit dem, was die Eulersche Gleichung

$$P_0 = \pi^2 \frac{1}{\alpha} \frac{\Theta}{l^2}$$

lieferte¹).

Auf diesem Boden war die von Navier herrührende Knickungsformel

entstanden²).

Im Maschinenbau ist auch in anderen Fällen als bei Knickbeanspruchungvon einer höchstens zulässigen Formänderung auszugehen, selbstverständlich unter Festhaltung der Forderung, daß die Anstrengung des Materials in keinem Punkte den höchstens für zulässig erachteten Wert überschreitet. Bei stark belasteten Wellen usw. gestattet man nur eine bestimmte Durchbiegung oder eine gewisse Abweichung der Richtung der elastischen Linie von der ursprünglich geraden Stabachse an bestimmten Stellen; in anderen Fällen wird von einer höchstens zulässigen Verdrehung ausgegangen. Die zulässigen Belastungen unserer Treibriemen usw. bezwecken, die Dehnungen innerhalb gewisser Grenzen zu halten usf. Andererseits werden Federn u. dgl. so konstruiert, daß mit Sicherheit auf eine gewisse Formänderung gerechnet werden darf. (Vgl. des Verfassers Maschinenelemente 1881, Vorwort S. IV, S. 35, 37, 202, 279, 317 usf. oder 1891/92, Vorwort S. IV, VIII. S. 61, 64, 232, 317, 318, 323 u. f., S. 427 u. f., S. 498, 504, 540 usw.)

Die oben erwähnten Bemängelungen der Eulerschen Gleichung in den Kreisen des Baufachs haben von H. Zimmermann im Zentralblatt der Bauverwaltung 1886, S. 217 u. f. eine klafe und eingehende Beleuchtung erfahren.

¹) Man übersah hierbei, daß, während die Entwicklung dieser Gleichung freie Beweglichkeit der Stabenden voraussetzt (Fig. 2, § 24), bei den Versuchen diese freie Beweglichkeit nicht vorhanden war. Hätte man in der Erwägung, daß die vollständige Aufhebung dieser Beweglichkeit, d. i. die Einspannung des Stabes, dazu führt, in Gleichung 5. § 24, an Stelle der Länge l nur deren Hälfte einzusetzen, in jedem einzelnen Fall zu ermitteln gesucht, welcher Bruchteil von l oder welcher Wert von  $\omega$  in Gleichung 7, § 24 (Gleichung 2, § 25) den Befestigungsverhältnissen der Stabenden ungefähr entsprochen haben würde, das Ergebnis würde ein anderes gewesen sein.

Auch der Einfluß der Veränderlichkeit der Dehnungszahl des Gußeisens, derjenige der Gußhaut und etwaiger Gußspannungen durften bei der Beurteilung der Versuchsergebnisse, die gußeiserne Stützen lieferten, nicht übersehen werden (vgl. § 20, Ziff. 5 und § 22).

Die Versuche von Bauschinger und v. Tetmajer (§ 27) liefern den Nachweis, daß der Wert

$$P_0 = \pi^2 \frac{1}{\alpha} \frac{\Theta}{l^2}$$

der Knickbelastung bei freier Beweglichkeit der Stabenden entspricht.

³) Rühlmann stellt in seinem Werk: Vorträge über die Geschichte der technischen Mechanik, Leipzig 1885, S. 364 und 365 fest, daß diese Gleichung,

Hierin bedeutet

- P die zulässige Gesamtbelastung des Stabes,
- k die zulässige Druckanstrengung des Materials,
- f den Querschnitt des Stabes,
- l dessen Länge,
- $\Theta$  das kleinere der beiden Hauptträgheitsmomente des Stabquerschnittes,
- r den Trägheitshalbmesser derart, daß  $\Theta = fr^2$ ,
- $\varkappa$  eine Erfahrungszahl, den sogenannten Zerknickungskoeffizienten.

Die von Navier dem Wesen nach gegebene Begründung erhellt aus dem Folgenden.

Der in Fig. 2 gezeichnete Stab ist im mittleren Querschnitt durch das Moment Pa, dessen Ebene den letzteren senkrecht zu derjenigen Hauptachse schneidet, für die  $\Theta$ gilt, auf Biegung und durch die Kraft P auf Druck in Anspruch genommen; infolgedessen erfährt die im Abstande evon der Nullachse gelegene Faserschicht eine Pressung

$$k=\frac{P}{f}+\frac{Pa}{\Theta}e,$$

woraus

$$P = f \frac{k}{1 + \frac{aef}{\Theta}} \dots \dots \dots \dots 2)$$

In dieser Gleichung tritt die Unbekannte a auf, deren Zweck nach § 23 und 24 darin zu bestehen hat, die Möglichkeit des exzentrischen Angreifens der Kraft P bei auf Knickung in Anspruch genommenen Stäben sowie die Ungleichartigkeit des Materials, die etwaige Verschiedenartigkeit des Wärmezustandes usw. und den Um-

321

Fig. 2.

die auch als Gordon- und Rankinesche Formel bezeichnet wird, von Navier zuerst entwickelt wurde, daß später 1854 Schwarz sie in anderer Weise ableitete usf.

Sie hat, wenn es sich darum handelt, ihre Richtigkeit durch die Ergebnisse von Knickungsversuchen zu prüfen, den Vorteil, zwei Koeffizienten kund  $\varkappa$  zu besitzen, durch deren Wahl leichter eine Anschmiegung der Versuchsergebnisse erreicht werden kann, als wenn nur ein Koeffizient vorhanden ist.

Die Eulersche Gleichung 5, § 24, scheint in dieser Hinsicht allerdings weniger gut daran, weil angenommen zu werden pflegt, daß außer der Befestigungszahl  $\omega$  auch  $\alpha$  unabänderlich festgelegt sei. Eine genauere Betrachtung zeigt, daß dies nicht zutrifft und daß natürlich auch diese Gleichung durch entsprechende Wahl von  $\omega$  und  $\alpha$  den tatsächlichen Verhältnissen mit gleicher Berechtigung angepaßt werden kann, wie Gleichung 1.

C. Bach, Elastizität. 8. Aufl.

stand zu berücksichtigen, daß die Stabachse keine genau geradlinige ist. Um diese — offenbar außerhalb des Rahmens der wissenschaftlichen Elastizitäts- und Festigkeitslehre liegende — Größe nicht willkürlich wählen zu müssen, worin überhaupt die hauptsächlichste Schwierigkeit bei der Berechnung eines auf Knickung beanspruchten Stabes liegt, hat Navier folgender Erwägung stattgegeben.

Durch das Moment Pa (allein) tritt in den um e von der Nullachse abstehenden Fasern die Spannung

$$\sigma = \frac{Pa}{\Theta}e$$

auf. Zu dieser Spannung oder Pressung gehört die Dehnung oder Zusammendrückung

$$\varepsilon = \alpha \sigma$$
.

Hiermit wird aus der vorigen Gleichung

$$P = \varepsilon \frac{\Theta}{\alpha \, a \, e} \quad . \quad 3)$$

und durch Gleichsetzung dieses Wertes mit der rechten Seite von Gleichung 5, § 24,

$$P = \varepsilon \frac{\Theta}{\alpha \, a \, e} = \pi^2 \frac{1}{\alpha} \frac{\Theta}{l^2},$$

woraus folgt

$$a = \varepsilon \frac{l^2}{\pi^2 e}.$$

Durch Einführung dieses Wertes in die Gleichung 2 findet sich

$$P = f \frac{k}{1 + \frac{\varepsilon}{\pi^2} \frac{f l^2}{\Theta}}.$$

Mit  $\frac{\epsilon}{\pi^2} = \kappa$  ergibt sich wie oben

Richtiger erscheint es, die Gleichung 3 nicht mit Gleichung 5, § 24, sondern mit Gleichung 2, § 25, in Verbindung zu setzen, so daß

$$P = \varepsilon \frac{\Theta}{\alpha a e} = \frac{\omega}{\Im} \frac{1}{\alpha} \frac{\Theta}{l^2},$$

woraus dann mit

$$\kappa = \frac{\mathfrak{S}}{\omega} \epsilon \ldots \ldots \ldots \ldots \ldots 4$$

ebenfalls folgen würde

Hiernach bedeutet der Koeffizient  $\varkappa$  das  $\frac{\mathfrak{S}}{\omega}$ fache derjenigen Dehnung (Zusammendrückung), die im maßgebenden Faserabstande *e* vorhanden ist, insoweit dieselbe von dem biegenden Momente allein herrührt.

Die Einführung von  $\varkappa$  als einem Erfahrungskoeffizienten heißt demnach nichts anderes als die Festsetzung eines bestimmten Wertes für die Dehnung, insoweit diese durch das vorhandene biegende Moment hervorgerufen wird. Ob es leichter ist,  $\varkappa = \frac{\mathfrak{S}}{\omega} \varepsilon$  anzunehmen oder *a* unter Beachtung der besonderen Verhältnisse schätzungsweise zu wählen, mag hier dahingestellt bleiben.

Soll nun  $\varkappa$  — wie unter dem Vorbehalt, die etwaige Veränderlichkeit des Befestigungskoeffizienten besonders zu berücksichtigen, angegeben wird — eine vom Material abhängige Konstante sein, so wird damit festgesetzt, daß diese Dehnung (oder die ihr entsprechende Kantenspannung), soweit sie von der Biegung herrührt, für ein bestimmtes Material konstant anzunehmen ist, also beispielsweise unter sonst gleichen Verhältnissen unabhängig davon, ob es sich um eine Stütze von 10 m Höhe oder um eine solche von 3 m Höhe handelt.

Greifen wir auf die Gründe zurück, die überhaupt dazu veranlaßten, die Größe *a* einzuführen, so finden wir. daß diese Größe folgenden Umständen Rechnung tragen sollte:

- a) die Achse ist bei längeren Stäben keine gerade Linie,
- b) das Material ist nicht vollkommen gleichartig, sein Zustand nicht an allen Stellen der gleiche,
- c) die Kraft P fällt nicht genau mit der Stabachse zusammen.

Naturgemäß wachsen die Abweichungen unter a und b vom normalen Zustande mit der absoluten Länge der Stütze verhältnismäßig rasch, so daß nicht Unveränderlichkeit, sondern Abnahme der für das biegende Moment zugelassenen Kantendehnung oder Kantenspannung angezeigt erscheint. Knickungsversuche werden den Nachweis erbringen müssen, daß  $\varkappa$  nicht konstant sein kann, sondern mit l zunehmen muß, und zwar bedeutend, wenn schlanke hohe Stützen in das Bereich der Prüfung gezogen werden. Tatsächlich glaubte man, diesen Einfluß der Stützenhöhe bereits voll bei der Entwicklung der Gleichung 1 berücksichtigt zu haben.

IV. Knickung.

Laissle & Schübler (Bau der Brückenträger, 4. Auflage, 1876, S. 70), die wohl am meisten zur Verbreitung der Navierschen Knickungsformel beigetragen haben dürften, ausgehend von der Gleichung 2

$$P = f \frac{k}{1 + \frac{aef}{\Theta}}$$

setzen in der Erwägung, daß *a* "für ein und dasselbe Material mit zunehmender Länge sich sehr vergrößern, dagegen bei zunehmenden Querschnittsdimensionen abnehmen wird",

$$a = \varkappa \frac{l^2}{e},$$

"worin  $\varkappa$  ein durch die Erfahrung für jedes Material festzustellender Koeffizient ist", und erhalten damit

$$P = f \frac{k}{1 + \varkappa \frac{f l^2}{\Theta}}$$

Eine scharfe Betrachtung des Zweckes, zu dem überhaupt die Gleichung 1 dienen soll, sowie dessen, was von dem Zerknickungskoeffizienten  $\varkappa$  verlangt wird, führt zu der Erkenntnis, daß  $\varkappa$  selbst bei dem gleichen Werte von  $\omega$  — nicht bloß Materialkonstante sein kann, sondern in der Hand eines rationell arbeitenden Konstrukteurs — falls derselbe die Gleichung 1 überhaupt benutzt — eine von verschiedenen Umständen zum Teil sehr stark beeinflußte Größe sein muß. (Vgl. das in § 25 über  $\mathfrak{S}$  Bemerkte.)

Laissle & Schübler setzen (S. 71 ihres Werkes "Der Bau der Brückenträger", 4. Auflage, 1876) für an den Enden drehbare Stäbe (Fig. 2, § 24)

≈=0,0001 für Schmiedeeisen (zutreffendenfalls auch für weichen Stahl),
≈=0,0003 für Gußeisen,
≈=0,0002 für Holz.
Es entspricht dies, wenn ω = π² = ~ 10 genommen wird,

$$\varepsilon = \frac{0,001}{\mathfrak{S}}, \text{ bzw. } \frac{0,003}{\mathfrak{S}}, \text{ bzw. } \frac{0,002}{\mathfrak{S}}$$

Scharowski gibt in seinem Musterbuch für die Säulen der Eisenkonstruktionen

	$k_z$	k	×	
	(§ 6)	(§ 12)		
bei Schmiedeeisen	1000 kg/qcm	1000 kg/qcm	0,0001,	
bei Gußeisen	250 7	500 ["]	0,0002.	

Wenn bei gußeisernen Säulen  $\varkappa fl^2: \Theta > 3$ , so wählt Scharowski

$$P = \frac{250 f}{-1 + \varkappa \frac{f l^2}{\Theta}}.$$

Hierbei ist freie Beweglichkeit der Säulenenden nicht vorhanden, andererseits kann aber auch nicht Einspannung derselben angenommen werden.

Möller — Über die Widerstandsfähigkeit auf Druck beanspruchter eiserner Baukonstruktionsteile bei erhöhter Temperatur, von M. Möller und R. Lühmann, vom Vereine zur Beförderung des Gewerbfleißes in Preußen mit einem Preise gekrönte Arbeit. Berlin 1888. — Abdruck aus den Verhandlungen des Vereines zur Beförderung des Gewerbfleißes 1887 (siehe daselbst S. 603 u. f.) empfiehlt für gußeiserne und schmiedeiserne Säulen, die im Falle eines Brandes dem Feuer ausgesetzt sein können, zu nehmen

$$k = 1000$$
 bis 1200 kg/qcm  $\varkappa = 0,0004$ , d. i.  $\varepsilon = \frac{0,0004}{\Im} \omega$ .

Krohn entwickelt im Zentralblatt der Bauverwaltung 1885, S. 400 bis 401, für an den Enden bewegliche Säulen die Beziehung

$$x=\frac{1}{8}\alpha k,$$

worin  $\alpha$  die Dehnungszahl bedeutet.

Dies würde beispielsweise geben

für Schmiedeeisen mit  $\alpha = 0.5$  Milliontel, k = 800

 $\kappa = 0,00005,$ 

für Gußeisen mit  $\alpha = 1,11$  Milliontel k = 800

 $\varkappa = 0,00011.$ 

Über die Größe z vergleiche auch § 27.

### § 27. Knickungsversuche.

### 1. Versuche von Bauschinger.

(Mitteilungen aus dem mechanisch-technischen Laboratorium der Königl. Technischen Hochschule in München, Heft 15. München 1887.)

Von der großen Anzahl von Versuchen mit Stützen aus [-]-, []-, []-, []-, []-Eisen greifen wir diejenigen heraus, die sich auf Stäbe mit Querschnitten beziehen, die zwei Symmetrieachsen besitzen.

Material: Walzeisen. Querschnittsform: |--|.

Nr.	Querschnitt		Träg-		Knickbelastung		Be-	Ab-	
	Breite	Höhe	Inhalt f	$\begin{array}{c} \text{mo-} \\ \text{mo-} \\ \text{ment} \\ \Theta \end{array}$	Länge l	beob- achtet $P_0'$	berechnet $P_0 = \frac{\pi^2 \Theta}{\alpha l^2}$	$\begin{array}{l} { m lastung} { m auf 1 qcm} { m \sigma} = {P_0}':f \end{array}$	$\frac{\text{weichung}}{\frac{P_0' - P_0}{P_0'}} \frac{100}{100}$
	cm	em	qem	$\mathrm{cm}^4$	em	kg	kg	kg	°/0
1	2	3	4	5	6	7	8	9	10
1	25,2	13,8	63,55	$575,\!6$	405,5	70500	69000	1105	+ 2
<b>2</b>	12,4	7,2	20,7	37,99	89	61000	94500	3035	s. u.
3			18,22		151	30250	33000	1662	9
4			$18,\!22$		223	17250	15000	948	+13
<b>5</b>	9,93	4,92	11,16	11,7	186,1	10650	9500	956	-11
6			11,38		270	4100	3200	360	+22
7	-		11,76		465	1 300	1100	111	+15
8	9,99	5,01	10,58	$12,\!2$	254,3	3900	3700	369	+ 5
9	9,98	5,01	10,58	12,2	254,3	4000	3700	378	+ 8
10	9,95	5,00	10,55	$12,\!2$	254,4	3900	3700	370	+ 5
11	10,00	5,00	10,56	12,2	254,4	4050	3700	384	+ 9'
12	9,96	4,99	$ 10,\!55 $	12,2	254,3	3900	3700	370	+5

a) Die Enden der Versuchsstäbe sind in Spitzen, also frei beweglich gelagert, Fig. 2, § 24.

Bis auf den Versuch Nr. 2, der bei der Belastung von 3035 kg/qcm (Spalte 9) schon infolge der Anforderungen der einfachen Druckfestigkeit hier auszuscheiden hat (vgl. § 25, Bemerkungen zu Gleichung 3), also nicht in Betracht kommt, sind die Abweichungen zwischen den beobachteten Knickbelastungen  $P_0'$  (Spalte 7) und den mit  $\alpha = 0.5$  Milliontel berechneten Werten  $P_0$  (Spalte 8) durchschnittlich nicht so groß, daß das in der Gleichung

$$P_0 = \frac{\pi^2}{\alpha} \frac{\Theta}{l^2}$$

ausgesprochene Gesetz als unzutreffend erschiene, namentlich wenn noch berücksichtigt wird, daß die Querschnittsform, die hier vorliegt, gegenüber Knickung sich nicht ganz so widerstandsfähig verhalten dürfte, wie dies die Entwicklung voraussetzt.

Hiernach ist in den Ergebnissen der vorstehenden Versuche eine Bestätigung des in Frage stehenden Gesetzes zu erblicken.

Zum Zwecke der Klarstellung, daß die Ausbiegungen schon bei verhältnismäßig sehr geringen Belastungen beginnen, sei ein Teil der auf den Versuchsstab Nr. 12 bezüglichen Ermittelungen angeführt.

Belastung $P$	P:f	Ausbiegung	der	Mitte	
$\mathbf{k}\mathbf{g}$	$\mathbf{kg}/\mathbf{qcm}$	mm			
0	0	0,00			
200	19	0,00			
400	38	0,04			
600	<b>õ</b> 7	0,11			
800	76	0,20			
1000	95	0,34			
2000	190	1,25			
3000	<b>284</b>	3,8	8		
3200	303	5,08			
3400	322	6,86			
3600	341	9,9	<b>2</b>		
3800	360	17.1	4		

b) Die Versuchsstäbe liegen mit ihren ebenen Stirnseiten an den festen Druckplatten.

Hier gestalten sich die Vorgänge bei der Biegung weniger einfach als unter a. Zu der Schwierigkeit, den Stab so einzuspannen, daß die Richtung der Druckkraft mit der Stabachse zusammenfällt, tritt die weitere hinzu, ein gleichmäßiges Anlegen der Stirnflächen an die Druckplatten herbeizuführen und zu sichern. Die Erfüllung



der letzteren Bedingung mußte sich naturgemäß als unmöglich erweisen. Sobald der Stab seine Ausbiegung — etwa nach A, Fig. 1, hin — begonnen, hat er das Bestreben, sich bei bb von den Druckplatten zu lösen. Damit aber muß dann eine Änderung der Verteilung des Druckes über die Stirnflächen eintreten: die Pressung wird hier von der Stabmitte aus gerechnet nach a hin wachsen, nach bhin abnehmen. Tatsächlich beobachtete Bauschinger, daß sich am Schlusse des Versuches die Stirnflächen bis auf die bei a zusammengedrückten Kanten von den Druckplatten lösten, Fig. 2.

Bei dieser Sachlage erscheint es nicht wahrscheinlich, daß es möglich sein werde, für Stäbe, die mit ihren ebenen Stirnflächen an festen Druckplatten anliegen, den Vorgang rechnerisch genau zu verfolgen. Bauschinger hat deshalb zum Zwecke der weiteren Betrachtung seiner Versuchsergebnisse die Naviersche Gleichung 1, § 26, herangezogen, derart, daß in

$$P_0 = f \frac{K}{1 + \varkappa \frac{fl^2}{\Theta}}$$

IV. Knickung.

unter K die Druckfestigkeit verstanden und hierfür 4500 kg/qcm eingeführt wird. Dann findet sich

- a) für die in Spitzen gelagerten Stäbe  $\varkappa$  schwankend zwischen 0,00009 und 0,000614,
- b) für die Stäbe mit flachen Enden  $\varkappa$  schwankend zwischen 0,000041 und 0,00031,
- d. i. überaus veränderlich.

Werden K und  $\varkappa$  aus den Versuchsergebnissen mittels der Methode der kleinsten Quadrate berechnet, so ergibt sich

- a) K = 2270 kg/qcm  $\varkappa = 0,000058,$
- b) K = 3100 "  $\varkappa = 0,000029$ .

Die für K gefundenen Werte bestätigen die Richtigkeit der Schlußbemerkung des § 11. Die Fließ- oder Quetschgrenze war von Bauschinger für das untersuchte Eisen als schwankend zwischen 2150 und 3690 kg/qcm festgestellt worden.

Ferner weisen die Ergebnisse darauf hin, daß die aus Knickungsversuchen bestimmten Werte  $\varkappa$  ebenfalls mit einem Sicherheitskoeffizienten mulipliziert in die Rechnung einzuführen sind, ganz wie das bei K geschieht, wie es auch oben bei der Entwicklung, welche die Gleichung 4, § 26, ergab, vorgenommen worden ist.

Die mit K = 2270 kg/qcm und  $\varkappa = 0,000058$  berechneten Werte  $P_0$  für die Stäbe mit beweglichen Enden stimmen mit den beobachteten Werten nicht gerade gut überein; besser ist dies der Fall bei den mit  $K = 3100 \text{ und } \varkappa = 0,000029 \text{ ermittelten Werten } P_0$ für die Stäbe mit flachen Enden.

Auf Grund der Bauschingerschen Versuche kann geschlossen werden:

- a) für Stäbe mit drehbaren Enden ist die Eulersche Gleichung 5, § 24, zutreffend, sofern die Beziehung 3, § 25, befriedigt erscheint,
- b) für Stäbe mit ebenen, an festen Druckplatten anliegenden Stirnflächen bietet die Naviersche Knickungsformel 1, § 26, brauchbare Werte.

### 2. Versuche von v. Tetmajer¹).

Schweizerische Bauzeitung 1887, Bd. X, S. 93 u. f.

"

1888, Bd. XI, S. 110 u. f.

a) Versuche mit Schweiß- und Flußeisen in Rundstäben bis 5 cm Stärke.

(30 Stäbe Schweiß- und 30 Stäbe Flußeisen, bearbeitet.)

¹) Hinsichtlich der Ergebnisse der späteren Versuche v. Tetmajers sei auf dessen Arbeit: "Die angewandte Elastizitäts- und Festigkeitslehre", 1905, verwiesen.

Einspannung der Versuchsstangen zwischen Spitzen. v. Tetmajer fand:

- Übereinstimmung der beobachteten Knickungsbelastungen mit denjenigen, die sich auf Grund der Eulerschen Gleichung berechnen ließen.
- Veränderlichkeit des Zerknickungskoeffizienten », falls die Gleichung 1, § 26, von Navier zugrunde gelegt wird;

es müßte dann sein  $\varkappa = 0,0001 \sqrt{0,00867 \frac{l}{r} - 0,6936}$ 

- in  $\frac{P_0}{f} = \frac{2650}{1 + \varkappa \left(\frac{l}{r}\right)^2}$  für Flußeisen (2650 kg/qcm Fließgrenze),  $\frac{P_0}{f} = \frac{2350}{1 + \varkappa \left(\frac{l}{r}\right)^2}$  für Schweißeisen (2350 kg/qcm Fließgrenze).
  - b) Versuche mit Bauhölzern.

DehnungszahlDruckfestigkeitBemerkungenLärche und Föhre im<br/>Durchschnitt . . .1<br/>104230318 kg/qcmastfreies HolzRot- und Weißtanne .285 "astiges "

v. Tetmajer stellte zunächst für die zwischen Spitzen gelagerten Stäbe fest:

- 1. das gleiche wie unter a, Ziff. 1, genügend große Länge der Stäbe vorausgesetzt,
- 2. die starke Veränderlichkeit von  $\varkappa$ , falls die Naviersche Gleichung in Betracht gezogen wird:

$$\varkappa = 0,0001 \sqrt{0.05 \frac{l}{r} - 0.80}$$

$$\frac{P_0}{f} = \frac{318}{1 + \varkappa \left(\frac{l}{r}\right)^2} \text{ für Lärche und Föhre,}$$

$$\frac{P_0}{f} = \frac{285}{1 + \varkappa \left(\frac{l}{r}\right)^2} \text{ für Rot- und Weißtanne.}$$

Für die mit ebenen Stirnflächen an festen Druckplatten anliegenden Hölzer beobachtete v. Tetmajer den Abstand der Wendepunkte voneinander zwischen  $0.5 l_0$  und  $0.6 l_0$ , sofern  $l_0$  die Entfernung der beiden Druckplatten ist. Er empfiehlt, um sicher zu rechnen, in den soeben gegebenen Gleichungen 0,6 $l_0$  für l einzu-führen, im übrigen jedoch nichts zu ändern.

Was in § 26 aus der Natur von  $\varkappa$  zu schließen war, nämlich Wachstum dieses Koeffizienten mit zunehmendem Verhältnisse l:rbestätigen die von v. Tetmajer sowohl für Holz als auch für Eisen erlangten Versuchsergebnisse.

### 3. Neuere Versuche.

Zu erwähnen sind die sehr sorgfältig durchgeführten Laboratoriumsversuche von v. Karmán, über die in den Mitteilungen über Forschungsarbeiten, Heft 81 (1910), berichtet ist, sowie die eigenen Versuche mit Eisenbetonsäulen, hinsichtlich welcher auf die Zeitschrift des Vereines deutscher Ingenieure 1913, S. 1969 u. f. verwiesen sei.

Hinsichtlich der Gültigkeit der Eulerschen Gleichung kann ein Zweifel nicht bestehen, solange die Voraussetzungen, unter denen sie entwickelt worden ist, ausreichend erfüllt sind. Bei ihrer Verwendung für zusammengesetzte Druckstäbe, wie sie z. B. bei Eisenkonstruktionen vielfach auftreten, ergibt sich jedoch die Unsicherheit, welcher Wert bei gegebener Konstruktion des Druckstabes für das Trägheitsmoment  $\Theta$  wirksam wird. Zur Lösung dieser Aufgabe erscheinen der Sachlage entsprechend gewählte Biegungsversuche, an die sich später Knickungsversuche anzuschließen haben, geeignet. Dieser Weg ist vom Verfasser schon seit einer längeren Reihe von Jahren beschritten worden. Ein Eingehen hierauf würde über die Grenzen des vorliegenden Buches hinausgehen.

Handelt es sich darum, das Verhalten eines Stabes bei verschiedener Länge zu untersuchen, so kann der folgende, bei eigenen Versuchen seit 1916 beschrittene Weg Anwendung finden.

Der Stab wird zunächst in voller Länge geprüft und stufenweise belastet sowie entlastet unter Messung der gesamten, bleibenden und federnden Ausbiegungen in zwei zu einander senkrechten Richtungen. Durch Bildung der Resultierenden beider wird so die Linie der Ausbiegungen in Abhängigkeit von der Belastung ermittelt, aus deren Verlauf mit Annäherung auf die Belastung geschlossen werden darf, die das Ausknicken herbeiführen würde, ohne daß die Belastung diese Kraft erreicht.

Hierauf erfolgt Kürzung des Stabes und Wiederholung des Versuches. So gelingt es, den Verlauf der Linie Fig. 1, § 25, für das untersuchte Material, die gewählte Ausführung des Stabes usf, unter Aufwendung eines einzigen Stabes zu ermitteln.

### Zweiter Abschnitt.

# Die einfachen Fälle der Beanspruchung gerader stabförmiger Körper durch Schubspannungen (Schiebungen).

# Einleitung.

### § 28. Schiebung.

Die im vorhergehenden (§ 1 bis § 27) betrachteten Änderungen der Form waren Änderungen der Länge (vgl. die §§ 1, 6, 11 usf.). Damit sind die auftretenden Formänderungen jedoch noch nicht erschöpft, wie aus folgender Betrachtung erhellt.

Wir denken uns in dem von äußeren Kräften noch nicht ergriffenen Körper, welcher der Betrachtung unterworfen werden soll, einen kleinen Vierflächner (Fig. 1). Begrenzt von den drei in den Kanten OA, OB und OC sich rechtwinklig schneidenden Ebenen AOB, BOC, COA und der weiteren Ebene ABC,

erscheint derselbe bestimmt durch die drei Kantenlängen OA, OB und OC, sowie durch die Kantenwinkel, welche die Ebenen der körperlichen Ecke miteinander bilden, nämlich



 $\begin{array}{c} \swarrow BOC \text{ (an der Kante } OA), \\ \swarrow COA ( , , , , OB), \\ \bigstar AOB ( , , , OC). \end{array}$ 

Wenn nun jetzt auf den Körper äußere Kräfte, die sich an ihm das Gleichgewicht halten mögen, einwirken, so erleidet er in allen seinen Teilen Formänderungen. Hierbei werden auch die den Vierflächner bestimmenden Größen sich ändern: die Kanten werden eine Änderung ihrer Länge, die Kantenwinkel eine Änderung ihrer Größe erfahren.

Die Möglichkeit, daß die Ebenen AOB, BOC, COA und ABC in gekrümmte Flächen übergehen können, darf unter der Voraussetzung, daß der Vierflächner unendlich klein gedacht wird, unberückSchub.

sichtigt bleiben, weil ein unendlich kleines Flächenelement — solche liegen dann in den vier Begrenzungsflächen vor — immer als eben angesehen werden kann, und weil die Änderungen der Lage der vier Flächenelemente bereits durch die Änderungen der Kanten und der Winkel bestimmt sind.

Hiernach treten zu den im früheren allein betrachteten Änderungen der Länge noch Winkeländerungen hinzu.

Zur Klarstellung des Wesens dieser Änderungen denken wir uns einen Würfel OADBCGFE (Fig. 2) von einer nach OA gerichteten, in der oberen Ebene CGFE liegenden und über dieselbe gleichmäßig verteilten Kraft ergriffen und unten (in der Ebene OADB) festgehalten. Dann wird sich die obere Begrenzungsebene CGFEnach  $C_1G_1F_1E_1$  verschieben, der rechte Winkel  $EBD = \swarrow COA$ wird in den spitzen Winkel  $E_1BD = \measuredangle C_1OA$  übergehen, sich also um  $\measuredangle EBE_1 = \measuredangle COC_1 = \gamma$ 





Fig. 3.

ändern. Diese Winkeländerung ist bestimmt durch

$$\operatorname{tg} \gamma = \frac{\overline{EE_1}}{\overline{BE}} = \frac{\overline{CC_1}}{\overline{OC}},$$

wofür unter Voraussetzung, daß es sich nur um kleine Änderungen handelt, gesetzt werden darf

$$=\gamma = \frac{\overline{EE_1}}{\overline{BE}} = \frac{\overline{CC_1}}{\overline{OC}} = \frac{\overline{FF_1}}{\overline{DF}} = \frac{\overline{GG_1}}{\overline{AG}}$$

Dieser Quotient ist aber auch gleich der Verschiebung, die unter den gleichen Verhältnissen eine in der Richtung OC um 1 von der Kante BO abstehende Ebene (abstehendes Flächenelement, abstehender Punkt) erfahren haben würde. Aus diesem Grunde wird die Änderung  $\gamma$  des ursprünglich rechten Winkels auch als verhältnismäßige (spezifische) Verschiebung und kurz als Schiebung oder Gleitung bezeichnet. Zur weiteren Klarstellung der Schiebung  $\gamma$  werde noch die folgende Betrachtung angestellt.

Zwei ursprünglich unter rechtem Winkel sich schneidende Ebenen OX und OZ, Fig. 3, gelangen durch die Formänderung in die Lagen  $OA_1$  und  $OC_1$ . Der ursprünglich rechte Winkel XOZ hat sich hierbei geändert um die Winkel  $XOA_1$  und  $ZOC_1$ , deren Tangenten betragen

$$\frac{A\overline{A_1}}{\overline{OA}} \quad \text{bzw.} \quad \frac{\overline{CC_1}}{\overline{OC}},$$

wenn  $A_1A$  und  $CC_1$  senkrecht zu OX bzw. OZ stehen. Da es sich nur um sehr kleine Winkeländerungen handelt, so darf die Gesamtänderung  $\gamma$  gesetzt werden

$$\gamma = \frac{\overline{AA_1}}{\overline{OA}} + \frac{\overline{CC_1}}{\overline{OC}}.$$

Bei dem betrachteten Vorgange hat sich der ursprünglich in der OX-Ebene gelegene Punkt  $A_1$  gegen die jetzt nach  $OC_1$  gekommene OZ-Ebene verschoben um  $\overline{OA_2}$ , sofern  $A_1A_2$  das von  $A_1$ auf  $OC_1$  gefällte Lot ist, und der ursprünglich in C der OZ-Ebene gelegene Punkt  $C_1$  gegen die jetzt nach  $OA_1$  gelangte OX-Ebene um  $OC_2$ , wenn  $C_1C_2 \perp OA_1$ . Hiernach ergibt sich für die Schiebung

$$\gamma = \sim \frac{\overline{OA_2}}{\overline{A_1A_2}} = \frac{\overline{OC_2}}{\overline{C_1C_2}} = \frac{\overline{AA_1}}{\overline{OA}} + \frac{\overline{CC_1}}{\overline{OC}}.$$

Das Vorstehende zusammenfassend, finden wir, daß mit Schiebung bezeichnet ist:

die Änderung des rechten Winkels (im Bogenmaß) zweier ursprünglich senkrecht zueinander stehenden Flächenelemente,

oder auch

die Strecke, um die sich zwei um 1 voneinander abstehende Flächenelemente gegeneinander verschieben.

#### § 29. Schubspannung. Schubzahl.

Der in § 28 der Betrachtung unterstellte sehr kleine Würfel OADBCGFE gehöre dem Inneren eines festen Körpers an und nehme unter Einwirkung der äußeren Kräfte, von denen dieser ergriffen wird, die Gestalt  $OADBC_1G_1F_1E_1$  an. Die innere Kraft, mit der aus diesem Anlaß die an den Würfeln anschließenden Körperteile in der Ebene CGFE auf denselben einwirken und dadurch dio Schub.

Verschiebung der letzteren nach  $C_1G_1F_1E_1$  herbeiführen, heißt, bezogen auf die Flächeneinheit, Schubspannung. Sie unterscheidet sich von der in § 1 besprochenen Spannung dadurch, daß ihre Richtung in das Flächenelement hineinfällt, auf das sie wirkt, während die im früheren betrachteten Spannungen senkrecht hierzu standen und deshalb zum Unterschiede als Normalspannungen (Zug- oder Druckspannungen) bezeichnet werden.

Die Schubspannung, die zur Schiebung  $\gamma$  (§ 28) gehört, werde mit  $\tau$  bezeichnet.

Die Schiebung, die sich für die Schubspannung gleich der Krafteinheit, d. i. für das Kilogramm ergibt, soll Schubzahl genannt und mit  $\beta$  bezeichnet werden. Sie beträgt

Die Schubzahl ist demnach derjenige Winkel (in Bogenmaß ausgedrückt), um den der rechte Winkel zweier ursprünglichsenkrecht zueinander stehenden Flächenelemente unter Einwirkung der Schubspannung von 1 Kilogramm sich ändert, oder kurz: die Änderung des rechten Winkels für das Kilogramm Schubspannung,

oder auch

diejenige Strecke, um die sich zwei um 1 voneinander abstehende Flächenelemente unter Einwirkung der Schubspannung von 1 Kilogramm gegeneinander verschieben.

Diese Begriffsbestimmung liefert unmittelbar die Schiebung als Frodukt aus Schubspannung und Schubzahl, d. h.

wonach die Schubzahl auch als diejenige Zahl erklärt werden kann, mit der die Schubspannung zu multiplizieren ist, um die Schiebung zu erhalten.

Die Schubspannung ergibt sich als der Quotient: Schiebung durch Schubzahl, d. i.

$$\tau = \frac{\gamma}{\beta} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad 3)$$

Der reziproke Wert von  $\beta$  wird als Schubelastizitätsmodul bezeichnet.

Der Vergleich mit § 2 läßt erkennen, daß zwischen Schiebung, Schubspannung und der Schubzahl genau dieselben Beziehungen bestehen wie zwischen Dehnung, Normalspannung und der Dehnungszahl.

Die vorstehenden Gleichungen 1 bis 3 setzen voraus, daß  $\beta$  innerhalb eines gewissen Spannungsgebietes konstant ist, ganz wie dies die Gleichungen 1 bis 4, § 2, hinsichtlich  $\alpha$  tun. Im allgemeinen wird diese Voraussetzung wohl ebensowenig zutreffen, wie dies bei  $\alpha$ der Fall ist. Doch liegen dahingehende Versuche nach Wissen des Verfassers nur in bezug auf Gußeisen und Beton vor. Unter diesen Umständen bleibt, insoweit es sich um allgemeine Entwicklungen handelt, nichts anderes übrig, als  $\beta$  konstant anzunehmen¹).

### § 30. Paarweises Auftreten der Schubspannungen.

Wir denken uns aus dem betrachteten und von äußeren Kräften ergriffenen Körper ein unendlich kleines Parallelepiped OADBCGFE, Fig. 1, dessen Kanten

$$\overline{OA} = a, \qquad \overline{OB} = b, \qquad \overline{OC} = c$$

sind, herausgeschnitten, und die Kräfte eingetragen, mit denen die an dasselbe anschließenden Körpermassen in den Schnittflächen auf den Würfel einwirken. Dabei sei zunächst angenommen, daß nur Schubspannungen vorhanden sind, und zwar treten auf:

- 1. in der Begrenzungsfläche OADB von der Größe ab die Schubspannung  $\tau_1$ , also die Kraft  $\tau_1 \cdot ab$ ;
- 2. in der hierzu parallelen Fläche CGFE von dem Inhalte ab die Schubspannung  $\tau_1'$ , also die Kraft  $\tau_1' \cdot ab$ ; da CGFE unendlich nahe an OADB liegt, so kann sich  $\tau_1'$  nur um eine unendlich kleine Größe, die mit  $\Delta_1$  bezeichnet sein mag, von  $\tau_1$  unterscheiden, d. i.  $\tau_1' = \tau_1 + \Delta_1$ ;



- 3. in der Begrenzungsfläche OBEC von der Größe bc die Schubspannung  $\tau_2$ , demnach die Kraft  $\tau_2 \cdot bc$ ;
- 4. in der hierzu parallelen Fläche ADFG von dem Inhalte bc die Schubspannung  $\tau_2'$ , demnach die Kraft  $\tau_2' \cdot bc$ ; da beide Flächen unendlich nahe beieinander gelegen sind, so kann sich  $\tau_2'$  nur um eine unendlich kleine Größe  $\Lambda_2$  von  $\tau_2$  unterscheiden, d. i.  $\tau_2' = \tau_2 + \Lambda_2$ .
- ¹) Vgl. auch Fußbemerkung S. 345.

Schub.

Soll Gleichgewicht bestehen, so muß u. a. auch die Summe der Momente in bezug auf die Achse YY, die durch den Schwerpunkt des Parallelepipeds geht und mit der Kante OB gleich gerichtet ist, Null sein, d. h. unter Bezugnahme auf Fig. 2:

$$\begin{aligned} &\tau_1 a b \frac{c}{2} - \tau_2 b c \frac{a}{2} + \tau_1' a b \frac{c}{2} - \tau_2' b c \frac{a}{2} = 0, \\ &\tau_1 a b c + \frac{1}{2} \varDelta_1 a b c - \tau_2 a b c - \frac{1}{2} \varDelta_2 a b c = 0, \end{aligned}$$

Hieraus unter Vernachlässigung der unendlich kleinen Größen  $\Delta_1$ und  $\Delta_2$  gegenüber den endlichen Größen  $\tau_1$  und  $\tau_2$ 

$$\begin{aligned} \mathbf{r_1} &= \mathbf{r_2} = \mathbf{0}, \\ \mathbf{r_1} &= \mathbf{r_2}, \quad \dots \quad \dots \quad \dots \quad \mathbf{1} \end{aligned}$$

d. h. die beiden senkrecht zur Kante OB = b stehenden Schubspannungen  $\tau_1$  und  $\tau_2$  sind einander gleich. Ist die eine vorhanden, so muß es auch die andere sein; sie treten also paarweise auf.

Zu diesem Ergebnis gelangten wir unter der Voraussetzung, daß lediglich Schubspannungen auf den Würfel einwirkten, und zwar nur in den vier Ebenen OADB, CGFE, OBEC und ADFG des Körperelementes, Fig. 1.

Im allgemeinen werden die Körperteile, die das Parallelepiped umgeben, auf dasselbe in den sechs Begrenzungsflächen je mit einer Normalspannung und einer Schubspannung einwirken. Außerdem können noch Massenkräfte (Schwere, Trägheitsvermögen) ihren Einfluß äußern.

Was zunächst die Normalspannungen anbelangt, so erkennen wir, daß dieselben für die oben aufgestellte Momentengleichung nicht in Betracht kommen: die Normalspannungen in den Begrenzungsflächen OADB, CGFE, OBEC und ADFG liefern je eine Kraft, welche die Momentenachse YY senkrecht schneidet, also ein Moment gleich Null gibt; die Normalspannungen in den Begrenzungsflächen OAGC und BDFE ergeben in die Momentenachse fallende Kräfte, sind also einflußlos. Die etwaigen Massenkräfte greifen im Schwerpunkte des Würfels an, gehen demnach durch die Achse, liefern also ein Moment gleich Null.

Von den Schubspannungen entfallen die in den Flächen OAGCund BDFE wirkenden ohne weiteres, da die ihnen entsprechenden Kräfte die Achse YY schneiden. Hiernach verbleiben noch die Schubspannungen in den vier Flächen OADB, CGFE, OBEC und ADFG.

Wir zerlegen jede derselben nach den Richtungen der Kanten in zwei Komponenten. Momentgebend treten hiervon nur auf die

senkrecht zu den Kanten OB und GF wirkenden Spannungen, d. s.  $\tau_1 \tau_2 \tau_1'$  und  $\tau_2'$ . Für diese aber fanden wir den oben ausgesprochenen Satz. Derselbe gilt demach allgemein, gleichgültig, welche Formänderung das Körperelement unter Einwirkung von Normalspannungen. Schubspannungen und Massenkräften erfährt:

> immer sind für zwei rechtwinklig sich schneidende Ebenen die senkrecht zur Durchschnittslinie gerichteten Komponenten der Schubspannungen einander gleich.

oder auch mit Rücksicht darauf, daß diese Durchschnittslinie eine ganz beliebige Lage im Körper haben kann:

> wird in einem Körper eine beliebige Gerade gelegt und dieselbe als der Durchschnitt zweier sich rechtwinklig schneidenden Ebenen angesehen, so ist die senkrecht zur Geraden gerichtete Schubspannung in der einen Ebene gleich der senkrecht zu derselben Geraden stehenden Schubspannung in der anderen Ebene.

Die Schubspannungen treten also paarweise auf.

Es entspricht dies ganz der Natur der Schiebung, eine Änderung des ursprünglich rechten Winkels zu sein. Die auf die Flächeneinheit der beiden Winkelebenen wirkenden Kräfte, welche diese Änderung herbeiführen, müssen in der Richtung des einen Schenkels so groß sein wie in derjenigen des anderen, da keine der beiden Schenkelrichtungen in irgendeiner Weise vor der anderen ausgezeichnet ist.

### § 31. Schiebungen und Dehnungen. Schubzahl und Dehnungszahl.

### 1. Mit der Schiebung verknüpfte Dehnung und deren größter Wert.

ABCD, Fig. 1, sei der Durchschnitt durch ein Parallelepiped. Der Körper, welchem dieses angehört, werde nun durch äußere

Kräfte ergriffen; infolgedessen ändert er seine Gestalt. Hierbei geht das Rechteck in das Parallelogramm AEFD über: die Ebene, die ursprünglich in BC sich darstellte, erleidet eine Verschiebung um  $BE = \overline{CF}$ , so daß die Schiebung

$$y = \frac{\overline{CF}}{\overline{CD}}$$
.



Gleichzeitig erfährt die Diagonale  $\overline{AC}$  eine Vergrößerung auf  $\overline{AF}$ . Wird von  $\Lambda$  aus mit  $\overline{AF}$  ein Kreisbogen beschrieben, so schneidet 22 Bach, Elastizität. 8. Aufl.

dieser die Verlängerung von AC in G. Die sehr kleine Strecke  $\overline{FG}$ darf dann als Senkrechte zu AG angesehen werden, während  $\overline{CG}$ die Zunahme der Länge der Diagonale ist. Damit findet sich die Dehnung in Richtung der letzteren

$$\varepsilon = \frac{\overline{CG}}{\overline{AC}} = \frac{\overline{CF}\cos\varphi}{\frac{\overline{CD}}{\sin\varphi}} = \frac{\overline{CF}}{\overline{CD}}\frac{1}{2}\sin 2\varphi,$$

und wegen

$$\frac{\overline{CF}}{\overline{CD}} = \gamma$$
$$\varepsilon = \frac{1}{2}\gamma \sin 2\varphi$$

Für  $\varphi = \frac{\pi}{4}$ , d. h. für  $\overline{CD} = \overline{AD}$ , also für die quadratische Form des Rechteckes, erlangt  $\varepsilon$  seinen größten Wert

$$\varepsilon_1 = \frac{1}{2}\gamma$$
 . . . . . . . . . . . . . . . 1)

Gleichzeitig erfährt die andere, wegen  $\varphi = \frac{\pi}{4}$  dazu rechtwinklige Diagonale *DB* eine Zusammendrückung —  $\varepsilon_2$  von der gleichen Größe

$$-\epsilon_2 = \frac{1}{2}\gamma$$

Hiernach ist die Schiebung  $\gamma$  mit einer größten Dehnung  $\varepsilon_1$  und einer gleichzeitigen, dazu senkrechten größten Verkürzung (Zusammendrückung)  $\varepsilon_2$  verknüpft¹), die absolut genommen je halb so groß sind als die Schiebung. Die Richtung dieser größten Dehnung zweiteilt den rechten Winkel, dessen Änderung die Schiebung mißt.

¹) Hieraus folgt, daß, wenn ein aus durchaus gleichartigem Material bestehender Körper lediglich infolge von Schubspannungen zum Bruche, d. h. zum Zerreißen, gebracht wird, die Rißbildung senkrecht zur Richtung von  $\varepsilon_1$  (der Diagonale AC des Quadrates), also in der Richtung von  $\varepsilon_2$  (der Diagonale DBdes Quadrates) stattfinden muß, sofern das Verhalten des Materials bis zum Bruche hin — wenigstens mit Annäherung — der gleichen Gesetzmäßigkeit folgt. (Vgl. Taf. XVI.) Bei zähen Materialien ist dies infolge des Fließens nicht zu treffend (vgl. Taf. XVIII, sowie das zu Fig. 2 S. 9 Bemerkte), ebenso nicht bei Material, das sich in allen Richtungen nicht gleich verhält (Schweißeisen, Draht, Holz usf.). Dieselben Gesichtspunkte gelten für  $\varepsilon_2$ , wenn die Druckbeanspruchung maßgebend wird (vgl. § 32—35).

Hieraus würde zu folgern sein, daß der zuzulassende Wert  $\gamma_1$  der Schiebung höchstens doppelt so groß sein darf als die äußersten Falles noch für zulässig erachtete Dehnung  $\epsilon_1$ . d. h.

$$\gamma_1 \leq 2 \varepsilon_1$$

Nach Einführung der zulässigen Zuganstrengung

$$k_z = \frac{\varepsilon_1}{\alpha}$$

sowie der zulässigen Schubanstrengung

$$k_s = \frac{\gamma_1}{\beta}$$

ergibt sich

$$k_s \leq 2 \frac{lpha}{eta} k_z, \quad \ldots \quad \ldots \quad \ldots \quad 2)$$

allerdings unter der Voraussetzung, daß das Material in allen Punkten nach allen Richtungen hin gleich beschaffen, also isotrop ist, und  $\alpha$ sowie  $\beta$  als unveränderlich angesehen werden können. Wenn die Beziehung 2 benutzt werden soll, um von der zulässigen Normalspannung eines Materials auf die zulässige Schubspannung desselben zu schließen, so erscheint es nötig, überdies zu beachten, daß hierfür Gleichartigkeit der Beanspruchungsweise Vorbedingung ist. (Vgl. S. 465 u. f.)

#### 2. Beziehung zwischen Dehnungszahl und Schubzahl.

Auf einen Würfel ABCD, Fig. 2, von der ursprünglichen Seitenlänge 1 wirken in den Seitenflächen AD und BC die Normalspannungen  $\sigma$ . Hierdurch werden die Seitenlängen AB und DC um  $\varepsilon$ gedehnt, also auf die Größe  $\overline{A_1B_1} = \overline{D_1C_1} = 1 + \varepsilon$  gebracht werden, während sich die rechtwinklig hierzu stehenden Kanten AD und BCum  $\frac{\varepsilon}{m}$  verkürzen (§ 7), demnach die Länge  $1 - \frac{\varepsilon}{m}$  annehmen.

Die beiden Diagonalebenen AC und BD schlossen ursprünglich einen rechten Winkel miteinander ein. Unter Einwirkung der Normalspannungen  $\sigma$  hat sich dieser Winkel um  $\gamma$  geändert, entsprechend einer Verschiebung z. B. des Punktes C der Diagonalebene ACgegenüber der anderen Diagonalebene um



Fig. 2.

$$\gamma = \frac{MC'}{\overline{C'C_1}},$$

sofern  $C_1 C' \perp D_1 B_1$ .

22*

Schub.

Die Größe y folgt unter Berücksichtigung des Umstandes, daß der halbe rechte Winkel sich um  $\frac{\gamma}{2}$  geändert hat, aus

$$\operatorname{tg}\left(\frac{\pi}{4}-\frac{\gamma}{2}\right) = \frac{\frac{1}{2}\left(1-\frac{\epsilon}{m}\right)}{\frac{1}{2}(1+\epsilon)}$$

Die Benützung des Satzes



und unter Beachtung, daß  $\gamma$  und  $\varepsilon$  sehr kleine Größen gegenüber 1 sind, zu

$$1 - \gamma = 1 - \left(1 + \frac{1}{m}\right)\varepsilon,$$
$$\gamma = \frac{m+1}{m}\varepsilon.$$

Denken wir uns jetzt den Würfel in der Diagonalebene AC auseinander geschnitten, Fig. 3, so wird die Aufrechterhaltung des Gleichgewichts die Anbringung einer Normalspannung  $\sigma_1$  und einer Schubspannung  $\tau$  fordern, derart, daß die Resultante der Kräfte

$$\sigma_1 \cdot \overline{AC} = \sigma_1 \sqrt{2}$$
 und  $\tau \cdot \overline{AC} = \tau \sqrt{2}$ 

gleich der Kraft

$$\sigma \cdot \overline{BC} = \sigma \cdot 1 = \sigma,$$

d. h.

$$\sigma_1 \sqrt{2} \cdot \sqrt{\frac{1}{2}} + \tau \sqrt{2} \cdot \sqrt{\frac{1}{2}} = \sigma$$
$$\sigma_1 + \tau = \sigma$$

und ferner

$$\sigma_{\mathbf{i}} \sqrt{2} \cdot \sqrt{\frac{1}{2}} - \tau \sqrt{2} \cdot \sqrt{\frac{1}{2}} = 0$$
  
$$\sigma_{\mathbf{i}} = \tau,$$

womit

$$\tau = \frac{\sigma}{2}$$

Nach dem früheren ist

$$\tau = \frac{\gamma}{\beta}$$
 und  $\sigma = \frac{\varepsilon}{\alpha}$ .

so daß

$$\frac{\gamma}{\beta} = \frac{1}{2} \frac{\varepsilon}{\alpha}$$

und mit

$$\gamma = \frac{m+1}{m} \varepsilon.$$

$$\frac{1}{\beta} \frac{m+1}{m} = \frac{1}{2\alpha},$$

$$\beta = 2 \frac{m+1}{m} \alpha, \dots \dots \dots \dots 3)$$

d.h. die Schubzahl ist das  $2\frac{m+1}{m}$ -fache der Dehnungszahl.

Gleichung 3 kann, wenn  $\alpha$  und  $\beta$  durch Versuche ermittelt worden sind, in der Form

$$m = \frac{2}{\frac{\beta}{\alpha} - 2}$$

zur Berechnung von m benutzt werden; doch ist die Bestimmung von m durch unmittelbare Messung der Änderung des Durchmessers von Rundstäben bei Zug- oder Druckversuchen vorzuziehen.

In der Regel pflegt m als eine zwischen 3 und 4 liegende Zahl betrachtet zu werden; hiermit findet sich

$$\beta = \frac{5}{2} \alpha \text{ bis } \frac{8}{3} \alpha = 2,5 \alpha \text{ bis } 2,67 \alpha$$

$$\alpha = \frac{3}{8} \beta \text{ bis } \frac{2}{5} \beta = 0,375 \beta \text{ bis } 0,4 \beta.$$

oder

Aus Gleichung 2 wird alsdann wegen

$$\frac{\alpha}{\beta} = \frac{m}{2(m+1)}$$

$$k_s \leq \frac{m}{m+1} k_z \quad \dots \quad \dots \quad \dots \quad 5)$$

V. Drehung.

und für m = 3 bis 4

unter den Voraussetzungen, die zur Beziehung 2 ausgesprochen wurden, und unter der weiteren Voraussetzung, daß m einen festen Wert besitzt. Treffen dieselben nicht zu, so erscheint die Gleichung 6 nicht ohne weiteres gültig. Dann kann es auf Grund von Versuchsergebnissen und sonstigen Erfahrungen notwendig werden, davon abzuweichen).

# V. Drehung.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für jeden Querschnitt desselben ein Kräftepaar, dessen Ebene senkrecht zur Stabachse steht.

Es bezeichne

 $M_d$  das Moment des drehenden Kräftepaares,

- $\Theta_1$  und  $\Theta_2$  die beiden Hauptträgheitsmomente des Stabquerschnittes (§ 21, Ziff. 1),
- $\Theta$  das kleinere der beiden Hauptträgheitsmomente,

 $\Theta' = \Theta_1 + \Theta_2$  das polare Trägheitsmoment,

f den Inhalt des Querschnittes,

- $\tau$  die Schubspannung in einem beliebigen Punkte des Querschnittes,
- $k_d$  die zulässige Anstrengung des Materials gegenüber Drehungsbeanspruchung,
- $\beta$  die als unveränderlich vorausgesetzte Schubzahl (§ 29), (reziproker Wert des Schubelastizitätsmoduls),
- $\gamma = \beta \tau$  die Schiebung oder Gleitung in einem beliebigen Punkte des Querschnittes (§ 28),
- $\vartheta$  den verhältnismäßigen Drehungswinkel, d. h. den Winkel, um den sich das Hauptachsenkreuz eines Stabquerschnittes gegenüber demjenigen des um 1 davon abstehenden Querschnittes verdreht,
- *l* die Länge des Stabes.

### § 32. Stab von kreisförmigem Querschnitt.

Durch die beiden Kräftepaare KK, Fig. 1, deren Ebenen die Stabachse senkrecht schneiden, und die, das Moment  $M_d$  besitzend, sich an dem Kreiszylinder das Gleichgewicht halten, werden die ein-

des Stabes Querschnitte zelnen gegeneinander verdreht. Um uns ein Bild über diese Formänderung zu verschaffen, teilen wir die Mantelfläche des Zylinders, Fig. 2, bevor dieser von den äußeren Kräften ergriffen wird, durch n Gerade aaparallel zur Achse in n(25) Rechtecke, je von der Breite  $\pi d: n$  $(40 \pi: 25 = 5.0 \text{ mm}, \text{da} d = 40 \text{ mm}),$ und diese durch Parallelkreise im Abstand  $\pi d: n$  (5.0 mm) in Qua-Seitenlänge  $\pi d: n$ drate. deren (5,0 mm) beträgt. Auf diese Weise erhalten wir die Fig. 2. Wird nun der so gezeichnete Zylinder der Verdrehung unterworfen, so geht er in Fig. 3, Taf. XII über. Aus derselben ist zu entnehmen:

- a) daß die auf den unbelasteten Zylinder gezeichneten Quadrate in unter sich gleiche Rhomben übergegangen sind,
- b) daß die Ebenen der Parallelkreise, d. s. die Querschnitte des Stabes, eben und senkrecht zur Achse des letzteren geblieben sind,
- c) daß sich je zwei aufeinander folgende Querschnitte

immer gleich viel gegeneinander verdreht haben, daß also beispielsweise der Bogen, um den sich ein Punkt des Parallelkreises XX, Fig. 2, gegenüber dem ursprünglich gleich gelegenen Punkte im Stabquerschnitt AA bewegt hat, proportional dem Abstande x ist.







V. Drehung.

Sind nun  $f_1$  und  $f_2$  zwei um 1 voneinander abstehende Querschnitte des Stabes und  $P_1P_2$  zwei ursprünglich gleich gelegene Umfangspunkte in denselben, so wird sich unter Einwirkung der äußeren Kräfte  $P_2$  gegen  $P_1$  um eine Strecke  $\gamma_1$  verdreht haben, die nach Maßgabe des in § 28 Erörterten als die Schiebung im Punkte  $P_1$  zu bezeichnen ist. Für die Schiebung  $\gamma$  in einem auf dem Halbmesser  $OP_1$ , Fig. 4, im Abstande  $\overline{OP} = \varrho$  von der Achse gelegenen Punkt P erscheint auf Grund der oben angeführten Erfahrungen die Annahme zutreffend, daß sie sich zu derjenigen im Umfangspunkte  $P_1$  verhält wie  $\varrho:r$ , also

 $\gamma: \gamma_1 = \varrho: r$ 

d. h.

Wird in Fig. 4 die tangentiale Linie  $\overline{P_1P_1}' = \gamma_1$  und die hierzu parallele Strecke  $\overline{PP'} = \gamma = \gamma_1 \frac{\varrho}{r}$  gemacht, so liefert die zeichnerische Darstellung der Schiebungen in allen Punkten der Geraden  $OP_1$  die Gerade  $OP'P_1'$ .



Fig. 4.

Nach § 29 sind die entsprechenden Schubspannungen

im Punkte 
$$P_1 \quad \tau_1 = \frac{\gamma_1}{\beta}$$

im Punkte 
$$P \quad \tau = \frac{\gamma}{\beta} = \frac{\gamma_1}{\beta r} \varrho.$$

 $\tau_1$  muß naturgemäß tangential zum Kreise, also senkrecht zum Halbmesser  $OP_1$  gerichtet sein. Das letztere gilt auch für  $\tau$ .

Wird die Schubspannung  $\tau$  durch die Strecke  $\overline{PP''}$ , die senkrecht zu OP steht, dargestellt, und ist die Schubzahl  $\beta$  konstant, so ergibt sich als geometrischer Ort aller Punkte P'' eine durch den Mittelpunkt O gehende Gerade. Dies trifft z. B. mit großer Annäherung zu für Schmiedeisen und Stahl innerhalb der Proportionalitätsgrenze. Ist dagegen  $\beta$  veränderlich, und zwar derart, daß  $\beta$  zunimmt mit wachsender Schiebung oder Spannung, wie dies beispielsweise bei Gußeisen der Fall, so liegen die durch

$$\tau_1 = \overline{P_1(P_1'')} \qquad \tau = \overline{P(P'')}$$

bestimmten Punkte  $(P_1'')$  und (P'') auf einer gegen die Gerade  $OP_1$  gekrümmten Kurve  $O(P'')(P_1'')$ . Die Spannungen nehmen dann nach außen hin langsamer zu als bei Unveränderlichkeit von  $\beta$ .

Die im Querschnitte durch das Kräftepaar vom Momente  $M_d$ wachgerufenen Schubspannungen müssen sich mit  $M_d$  im Gleichgewicht befinden. Wird das in P liegende Flächenelement mit dfbezeichnet, so spricht sich diese Forderung aus in

$$\int \tau \, df \cdot \varrho = M_d,$$
$$M_d = \frac{\gamma_1}{r} \int \frac{1}{\beta} \, \varrho^2 \, df$$

und, wenn  $\beta$  konstant¹),

$$M_d = \frac{\gamma_1}{\beta r} \int \varrho^2 df.$$

Unter Beachtung, daß

$$\varrho^2 = y^2 + z^2,$$

sofern y und z die rechtwinkligen Koordinaten des in P liegenden Flächenelementes sind, und mit

$$\int y^2 df = \Theta_1$$
 und  $\int z^2 df = \Theta_2$ 

wird

$$M_d = \frac{\gamma_1}{\beta r} (\Theta_1 + \Theta_2) = \tau_1 \frac{\Theta_1 + \Theta_2}{r} = \tau_1 \frac{\Theta'}{r}.$$

Die beiden Trägheitsmomente  $\Theta_1$  und  $\Theta_2$  sind für den vollen Kreisquerschnitt

$$\Theta_1 = \Theta_2 = \frac{\pi}{64} d^4 = \frac{\pi}{4} r^4.$$

¹) Für die Beurteilung von Fällen, in denen die Veränderlichkeit von  $\beta(\alpha)$  eine größere Bedeutung besitzt, sowie im Falle der Beanspruchung von zähem Material über die Proportionalitätsgrenze hinaus, ist es zweckmäßig, von folgender Überlegung Gebrauch zu machen.

Es ist, wenn  $\tau$  die Schubspannung im Abstande  $\varrho$  bedeutet und  $df = \varrho \, d \, \varphi \cdot d \, \varrho$  gesetzt wird,

$$M_d = \int \int \tau \cdot \varrho \, d\varphi \, d\varrho \cdot \varrho = \int_0^{2\pi} \varrho \, d\varphi \int_0^r (\tau \varrho) \, d\varrho \, .$$

a)  $\beta(\alpha)$  ist unveränderlich.

Die Größe  $\tau \varrho$ , als Ordinate zur Abszisse  $\varrho$  aufgefaßt, liefert gemäß  $\tau \varrho$   $= \frac{\tau_1}{r} \varrho^2$  eine Parabel und das Integral  $\int_{0}^{r} (\tau \varrho) d\varrho$  den Inhalt der Fläche, die von der  $\varrho$ -Achse und der Parabel bis  $\varrho \stackrel{o}{=} r$  eingeschlossen wird. Damit ergibt sich alsdann  $M_d$  gleich dem Inhalt des Rotationskörpers, der entsteht, wenn die Linie der  $\tau \varrho$  (Parabel) um die Stabachse eine volle Drehung ausführt.

b)  $\beta(\alpha)$  ist veränderlich.

Während im Falle a die Linie der  $\tau$  eine gegen die Achse der  $\varrho$  geneigte Gerade war, tritt hier an die Stelle der Geraden die Kurve, die den Zusammenhang zwischen Schubspannung und  $\varrho$  wiedergibt; aus ihr ist die Kurve  $\tau \varrho$  abzuleiten, die dann keine Parabel mehr ist, usw.

V. Drehung.

Demnach

$$M_d = r_1 \frac{\pi}{16} d^3 = r_1 \frac{\pi}{2} r^3 \dots \dots \dots 2$$

$$M_d \leq rac{\pi}{16} k_d d^3$$
 oder  $k_d \geq rac{16}{\pi} rac{M_d}{d^3} \dots \dots \dots 3$ 

Für den Kreisringquerschnitt ergibt sich, sofern d der äußere und  $d_0$  der innere Durchmesser ist,

$$\begin{split} \Theta_1 &= \Theta_2 = \frac{\pi}{64} (d^4 - d_0^4) \\ M_d &= \tau_1 \frac{\pi}{16} \frac{(d^4 - d_0^4)}{d} \\ M_d &\leq \frac{\pi}{16} k_d \frac{d^4 - d_0^4}{d} \quad \text{oder} \quad k_d \geq \frac{16}{\pi} M_d \frac{d}{d^4 - d_0^4} \quad \dots \quad 4) \end{split}$$

Bei Anwendung dieser Gleichung muß beachtet werden, daß, wie aus § 31, Gl. 1 hervorgeht, an jeder Stelle zwei größte Dehnungswerte auftreten, von denen der eine positiv, der andere negativ ist, entsprechend einer Verlängerung bzw. einer Verkürzung. Während im allgemeinen die erstere zum Bruch durch Zerreißen führt, kommt bei verhältnismäßig dünnwandigen Rohren auch die Gefahr des Ausknickens infolge der letzteren, d. h. Wellenbildung in Betracht, ähnlich wie in § 13, S. 209 u. f. für Druckbeanspruchung festgestellt. Vgl. auch S. 385 u. f., wo über neue Versuche berichtet ist.

Der Drehungswinkel  $\vartheta$  folgt unmittelbar aus der gegebenen Begriffsbestimmung

beziehungsweise

Hiernach beträgt der im Abstande 1 von der Achse gemessene Verdrehungsbogen der beiden um l voneinander abstehenden Querschnitte des Kreiszylinders

$$\vartheta_l = \vartheta l = \frac{32}{\pi} \beta \frac{M_d}{d^4} l$$
, bzw.  $\frac{32}{\pi} \beta \frac{M_d}{d^4 - d_0^4} l$ .

Bei den vorstehenden Betrachtungen wurden nur Schubspannungen im Stabquerschnitte ins Auge gefaßt; so z. B. im Punkte P, Fig. 4, nur die Schubspannung  $\tau$ , die, senkrecht zu  $OP_1$  angreifend, in der Bildebene wirkt. Nach § 30 treten jedoch die Schubspannungen immer paarweise auf, derart, daß in demselben Punkte P senkrecht zur Bildebene, d. h. senkrecht zum Querschnitte, eine der oben er-

wähnten Spannung  $\tau$  gleiche Schubspannung vorhanden ist. Das Flächenelement, in dem sie wirkt, liegt im Punkte P derjenigen Ebene, die durch den Halbmesser  $OP_1$  und die Stabachse bestimmt wird. So findet sich beispielsweise im Punkte  $P_1$  die Schubspannung  $\tau_1$  nicht bloß im Querschnitt (tangential zum Kreisumfang gerichtet), sondern auch in der Achsialebene  $OP_1$  mit der Mantellinie des Zylinders zusammenfallend.

Der Übergang der Quadrate, Fig. 2 (bei Verdrehung des Zylinders), in die Rhomben, Fig. 3, Taf. XII, beweist dies auch unmittelbar aus der Anschauung. Wie wir in § 28 sahen,

ist die Änderung des ursprünglich rechten Winkels gleich der Schiebung. Diese Winkel-

änderung mißt demnach wegen  $\tau = \frac{\gamma}{\beta}$  die

Schubspannung unmittelbar. Sie betrifft sowohl den wagrechten wie auch den senkrechten Schenkel des rechten Winkels. Die entsprechende Schubspannung ist deshalb ebensowohl in senkrechter wie in wagrechter Richtung vorhanden. Sie muß, da die Rhomben unter sich gleich sind, für alle



Stellen der Mantelfläche des Zylinders dieselbe Größe besitzen, sowohl tangential zur Umfangslinie als auch in Richtung der Achse des Stabes. Die größte Schubspannung, die im Querschnitt stattfindet, tritt also auch in Richtung der Stabachse auf.

Schneiden wir aus dem Zylinder ein kleines Körperelement ACDBEF, Fig. 5, heraus, mit den Querschnittsebenen ACD, BEF und den Achsialeben ABFD, ABEC, so ergibt die zeichnerische Darstellung der in den Ebenen CDA und BFDA wirkenden Schubspannungen unter Voraussetzung einer unveränderlichen Schubzahl je ein Dreieck. Sie zeigt deutlich das paarweise Auftreten der Schubspannungen in den beiden Ebenen, die AD zur Durchschnittslinie haben¹).

¹) Die Betrachtung von Fig. 5 gestattet, nach dem Vorgange von Bredt einen allgemeinen Satz über die Schubkräfte eines auf Verdrehung beanspruchten Stabes abzuleiten.

Die Gleichgewichtsbedingung des Körperelementes in Richtung der Stabachse AB: Summe der Schubkräfte in der Ebene ADFB + Summe der Schubkräfte in der Ebene ACEB muß gleich Null sein, führt bei Wahl von  $\overline{AB} = 1$ unter Berücksichtigung der Gleichheit der Schubspannungen in zwei senkrecht zueinander stehenden Ebenen zu dem Satz: Werden in einem Querschnitt zwei Gerade AD und AC nach dem Umfange gezogen, so ist die Summe der Schubkräfte, die sich für die in AD gelegenen Flächenelemente senkrecht zu AD wirkend ergeben, gleich der Summe der Schubkräfte, welche die in ACgelegenen Flächenelemente senkrecht zu AC liefern.

#### V. Drehung

Bei gewalztem Schweißeisen oder Draht aus solchem Material usw. findet infolge der ausgeprägten Faserrichtung die achsiale Schubspannung häufig einen verhältnismäßig geringen Widerstand, weshalb dann Längsrisse eintreten, wie Fig. 6, Taf. XIII für ein der Verdrehung unterworfenes Stück Walzeisen erkennen läßt¹). Die achsial gerichteten Schubspannungen sind auch Ursache, daß bei auf Drehung in Anspruch genommenen Körpern nicht selten schon frühzeitig bleibende Verdrehung eintritt, wie dies z. B. bei gewalztem Schweißeisen ausgeprägt der Fall zu sein pflegt. Die gewöhnlichen Hölzer haben aus diesem Grunde nur eine geringe Drehungsfestigkeit.

Bei mehr isotropem und sprödem Material erfolgt die Rißbildung nach Maßgabe der Fußbemerkung zu § 31, Ziff. 1, S. 338 unter  $45^{0}$ gegen die Richtungen der Schubspannungen, wie dies der Verlauf der Bruchlinien in den Abbildungen auf Taf. XVI deutlich erkennen läßt. In Fig. 3, Taf. XII müßte die Bruchlinie als rechtsgängige, unter  $45^{0}$  geneigte Schraubenlinie verlaufen, sofern die in der Fußbemerkung zu § 31, Ziff. 1, S. 338 bezeichnete Voraussetzung erfüllt ist.

Bei zähem Material erfolgt Trennung in einer Ebene ungefähr parallel zu derjenigen des drehenden Momentes, vgl. Taf. XIX, Fig. 44 bis 47. Bei Material wie Stahlguß, dessen Zähigkeit nicht groß ist, sind zuweilen Bruchformen zu beobachten, die beide Erscheinungen vereinigen; in Fig. 7, Taf. XIV sind solche Stäbe wiedergegeben.

### § 33. Stab von elliptischem Querschnitt.

### 1. Formänderung.

Nach dem in § 32 gegebenen Vorgange wird ein Zylinder mit elliptischem Querschnitt (große Achse = 2a = 50 mm, kleine Achse = 2b = 25 mm) hergestellt und seine Mantelfläche in Quadrate eingeteilt.

Unter Einwirkung der beiden Kräftepaare, die sich an ihm das Gleichgewicht halten, geht derselbe in die Gestalt Fig. 1, Taf. XII über²). Die beiden ursprünglich geraden Mantellinien, welche die

¹) Wird die Verdrehung weiter fortgesetzt, so liegen die Längsrisse auf mehr oder minder stark geneigten Schraubenlinien, wie z. B. die betreffenden Abbildungen auf Tafel XV und XIX erkennen lassen. Vgl. hierzu das in § 35, Ziffer 3 Gesagte.

²) Das Material des Zylinders ist wie bei Fig. 3, § 32, Tafel XII und Lei Fig. 1, § 34, Tafel XIII, sowie Fig. 2, § 34, Tafel XIV, Hartblei. Dasselbe behält die bleibende Formänderung fast vollständig bei und gibt deshalb auch nach der Lösung des Stabes aus der Prüfungsmaschine ein gutes Bild dieser Änderung. Bei Verwendung von stark elastischem Material wie Gummi ist die Formänderung eine ähnliche, nur verschwindet sie mit der Entlastung des Probekörpers zu einem großen Teile und entzieht sich so der dauernden



Fig. 1. § 33, S. 348.



Fig. 1, § 34, S. 354, 355. Fig. 6, § 32, S. 348.







Taf. XIV.







Endpunkte der großen Halbachsen aller Querschnitte enthalten, sind durch die Bezeichnung aa hervorgehoben, während diejenigen zwei Linien, die von den Endpunkten der kleinen Halbachsen sämtlicher Querschnitte gebildet werden, die Bezeichnung bb tragen. Wir erkennen bei genauer Untersuchung des verdrehten Zylinders:

- a) daß die Quadrate in Rhomben übergegangen sind,
- b) daß die Winkel derjenigen Rhomben, die mit der einen Seite in der jetzt schraubenförmig gekrümmten Linie bb liegen, am meisten von dem ursprünglich rechten Winkel abweichen, während diejenigen Rhomben, deren eine Seite von der Schraubenlinie aa gebildet wird, die geringste Abweichung von ihrer früheren Gestalt, dem Quadrate, zeigen,
- c) daß die ursprünglich ebenen Querschnitte sich gewölbt haben,
- d) daß jedoch die beiden Hauptachsen eines Querschnittes in der ursprünglichen Ebene verblieben sind und den rechten Winkel beibehalten haben,
- e) daß sich je die beiden Hauptachsen zweier aufeinander folgenden Querschnitte immer um gleich viel gegeneinander (um die in ihrer Lage unverändert gebliebene Stabachse) verdreht haben¹).

### 2. Schubspannungen.

Fassen wir zunächst einen Umfangspunkt P' des Querschnittes, Fig. 2, ins Auge, so muß die Schubspannung  $\tau'$  in dem zu P' gehörigen Querschnittselement naturgemäß tangential zur Umfangslinie gerichtet sein, sofern hier äußere, eine andere Richtung der Schubspannung bedingende Kräfte nicht angreifen.

Wir zerlegen  $\tau'$  in die beiden Komponenten

 $\tau'_{y'}$ , senkrecht zur y-Achse wirkend,  $\tau'_{z'}$ , , , ,  $z^{-}$  , ,

und.

bezeichnen durch  $\psi$  den Winkel, den die Tangente im Punkte P' mit der y-Achse einschließt, sowie durch y' und z' die Koordinaten des Umfangpunktes P'. Dann folgt zunächst

$$\operatorname{tg} \psi = \frac{\tau_y'}{\tau_z'}$$

und sodann aus der Gleichung der Ellipse

$$\frac{y'^2}{b^2} + \frac{z'^2}{a^2} = 1,$$

Darstellung. Versuche mit anderem Material führen zu einem ganz entsprechenden Ergebnisse, doch muß an allen in Betracht kommenden Stellen die Streckgrenze überschritten werden, was bei Blei am leichtesten erreicht wird.

¹⁾ Die Bestimmung dieses Verdrehungswinkels erfolgt in § 43.

durch Differentiation

$$\frac{y'}{b^2}dy' + \frac{z'}{a^2}dz' = 0$$
$$\frac{dz'}{dy'} = -\frac{a^2}{b^2}\frac{y'}{z'}.$$

Aus Fig. 2 ergibt sich unmittelbar

f

$$\psi g \psi = \frac{d z'}{-d y'}$$

Folglich durch Gleichsetzen der beiden für t $g \psi$  erhaltenen Werte

$$\frac{\tau_{y'}}{\tau_{z'}} = \frac{a^2}{b^2} \frac{y'}{z'} \quad \dots \quad \dots \quad \dots \quad 1)$$

Hiernach erscheint  $\tau_y'$  proportional y'und  $\tau_z'$  proportional z'.

Denken wir uns für den im Inneren des Querschnittes liegenden Punkt P, bestimmt durch die Koordinaten y und z, die entsprechende (ähnliche) Ellipse konstruiert, so wird auch hier die Schubspannung  $\tau$ , deren Komponenten  $\tau_y$  ( $\perp OY$ ) und  $\tau_z$  ( $\perp OZ$ ) seien, tangential gerichtet sein. Demgemäß erhalten wir

$$\tau_y = Ay$$
  $\tau_z = Bz$ , . . . 2)  
worin A und B Konstante bedeuten.

Die im Querschnitte wachgerufenen Schubspannungen müssen sich nun mit dem Momente  $M_d$  im Gleichgewicht befinden. Wird das in P liegende Flächenelement mit df bezeichnet, so ergibt sich die Bedingungsgleichung

$$\int (\tau_y df \cdot y + \tau_z df \cdot z) = M_d,$$

woraus unter Beachtung der Gleichungen 2 und mit Rücksicht darauf, daß nach § 17, Ziff. 4

$$\int y^2 df = \frac{\pi}{4} a b^3 \qquad \int z^2 df = \frac{\pi}{4} a^3 b$$
$$M_d = A \frac{\pi}{4} a b^3 + B \frac{\pi}{4} a^3 b.$$

Die Verbindung der Gleichungen 1 und 2 ergibt

$$\frac{a^2}{b^2}\frac{y'}{z'}=\frac{Ay'}{Bz'},$$

woraus

$$\frac{A}{B} = \frac{a^2}{b^2} \qquad \text{oder} \qquad A = B \frac{a^2}{b^2}.$$



Durch Einführung dieses Wertes in die Gleichung für  $M_d$  findet sich

$$\begin{split} M_{d} &= B \frac{a^{2}}{b^{2}} \frac{\pi}{4} a b^{3} + B \frac{\pi}{4} a^{3} b = \frac{\pi}{2} a^{3} b B, \\ B &= \frac{2}{\pi} \frac{M_{d}}{a^{3} b}, \\ A &= B \frac{a^{2}}{b^{2}} = \frac{2}{\pi} \frac{M_{d}}{a b^{3}}. \end{split}$$

Hiermit nach den Gleichungen 2 die Schubspannungen für den beliebigen Querschnittpunkt P

$$\tau_{y} = Ay = \frac{2}{\pi} \frac{M_{d}}{a b^{3}} y,$$
  
$$\tau_{z} = Bz = \frac{2}{\pi} \frac{M_{d}}{a^{3}b} z,$$

$$\tau = \sqrt{\tau_y^2 + \tau_z^2} = \frac{2}{\pi} \frac{M_d}{a^3 b^3} \cdot \sqrt{a^4 y^2 + b^4 z^2} \quad . \quad . \quad . \quad 4)$$

Dieser Ausdruck wächst mit y und z, erlangt also für bestimmte Umfangspunkte den größten Wert. Zur Feststellung, in welchen Punkten des Umfanges dies der Fall ist, werde  $a \ge b$  vorausgesetzt und dem Ausdruck für  $\tau'$ , gültig für den Umfangspunkt y'z', die Form

$$\tau' = \frac{2}{\pi} \frac{M_d}{a b^2} \sqrt{\left(\frac{y'}{b}\right)^2 + \left(\frac{z'}{a}\right)^2 \left(\frac{b}{a}\right)^2} \quad \dots \quad \dots \quad \dots \quad 5)$$

gegeben. Da

$$\left(\frac{y'}{b}\right)^2 + \left(\frac{z'}{a}\right)^2 = 1,$$

so muß wegen  $a \ge b$ 

$$\left(\frac{y'}{b}\right)^2 + \left(\frac{z'}{a}\right)^2 \left(\frac{b}{a}\right)^2 \leq 1$$

sein. Demnach ergibt sich der größte Wert der Schubspannung für  $y' = \pm b$  und z' = 0 zu

d. h. die größte Schubspannung tritt in den Endpunkten BB der kleinen Achse, also in denjenigen Punkten auf. die der Stabachse am nächsten liegen.

Hiermit folgt

V. Drehung.

In den Endpunkten AA der großen Achse ist die Schubspannung, da hier

d. i. im Verhältnis der Halbachsen kleiner als die Spannung in den Punkten  $BB^{1}$ ).

Dieses gegenüber der älteren Auffassung, der zufolge die Spannungen mit dem Abstande von der Achse wachsen, für den ersten Augenblick überraschende Ergebnis steht in voller Übereinstimmung mit der S. 349 unter Ziff. 1, b angeführten Beobachtung. Die Winkeländerungen, die nach § 28 die Schiebungen  $\gamma$  messen, die ihrerseits nach § 29 zu den Schubspannungen in der Beziehung

$$\tau = \frac{\gamma}{\beta}$$

stehen, sind — Fig. 1, Taf. XII — am größten in den Endpunkten der kleinen und am kleinsten in den Endpunkten der großen Achse der Ellipse.



Hinsichtlich des Gesetzes, nach dem sich die Schubspannungen im Innern ändern, ist die ohne weiteres aus den Gleichungen 3 und 4 folgende Bemerkung von Interesse, daß für alle auf der Geraden OP', Fig. 2, liegenden Querschnittselemente die Spannungen parallel gerichtet und proportional dem Abstande von der Stabachse sind. In Fig. 3 ist das Änderungsgesetz der Schubspannungen dargestellt für die Punkte der großen und der kleinen sowie für diejenigen einer beliebigen Halbachse OP'. Die in Fig. 3 gezeichneten Kräftedreiecke müssen inhaltsgleich sein (S. 347, Fußbemerkung 1). Für

¹) Dieses Verhältnis läßt sich auch unmittelbar unter Zuhilfenahme des in der Fußbemerkung 1, S. 347 ausgesprochenen Satzes ableiten.
die Umfangspunkte läßt sich das Änderungsgesetz unmittelbar der Gleichung 5 entnehmen.

Handelt es sich nicht um einen Voll-, sondern um einen Hohlstab, Fig. 4, so gilt unter der von dem Gange der obigen Entwicklung bedingten Voraussetzung, daß die innere Begrenzungsellipse der äußeren ähnlich ist, d. h.

$$a_0: a = b_0: b = m,$$

wegen

$$\begin{split} \int y^2 df &= \frac{\pi}{4} \left( a b^3 - a_0 b_0^3 \right) \qquad \int z^2 df = \frac{\pi}{4} \left( a^3 b - a_0^3 b_0 \right) \\ M_d &= A \frac{\pi}{4} \left( a b^3 - a_0 b_0^3 \right) + B \frac{\pi}{4} \left( a^3 b - a_0^3 b_0 \right), \end{split}$$

woraus dann mit

$$A = \frac{a^2}{b^2} B$$
$$B = \frac{2}{\pi} \frac{M_d}{(1 - m^4)a^3b}$$

und schließlich

$$\tau = \frac{2}{\pi} \frac{M_d}{(1 - m^4) a^3 b^3} \sqrt{a^4 y^2 + b^4 z^2} \quad . \quad . \quad . \quad . \quad . \quad 9)$$

Für die Punkte B des Umfanges erlangt  $\tau$  seinen Größtwert, nämlich

$$\tau'_{max} = \frac{2}{\pi} \frac{M_d}{(1-m^4) a b^2} = \frac{2}{\pi} \frac{M_d}{a b^3 - a_0 b_0^3} b, \quad . \quad . \quad . \quad 10)$$

so daß

$$k_{d} \ge \frac{2}{\pi} \frac{M_{d}}{a b^{3} - a_{0} b_{0}^{3}} b \quad \text{oder} \quad M_{d} \le \frac{\pi}{2} k_{d} \frac{a b^{3} - a_{0} b_{0}^{3}}{b} \ . \ . \ . \ 11)$$

Die Gleichungen 7 und 10 zeigen deutlich, daß die Widerstandsfähigkeit eines elliptischen Voll- oder Hohlstabes gegenüber der Drehungsbeanspruchung abhängt von dem kleineren der beiden Hauptträgheitsmomente, also nicht von der Summe beider, wie die ältere Lehre von der Drehungsfestigkeit angab.

Die letztere schuf ursprünglich ihre Entwicklungen, die davon ausgingen, daß die Schubspannungen proportional mit dem Abstande des Querschnittselementes von der Stabachse wachsen und senkrecht zu diesem Abstande stehen, allerdings nur für die in § 32 behandelten Querschnitte; hierfür war sie auch zutreffend. Ihre Übertragung auf andere Querschnitte war unzulässig.

C. Bach, Elastizität. 8. Aufl.

Die Gleichung 11 enthält die Beziehung 3 und 4, § 32, je als besonderen Fall in sich. Es wird für

$$a = b = \frac{d}{2} \qquad a_0 = b_0 = \frac{d_0}{2}$$
$$M_d \leq \frac{\pi}{16} k_d \frac{d^4 - d_0^4}{d}$$

und für  $d_0 = 0$ 

$$M_{d} \leq \frac{\pi}{16} k_{d} d^{3}.$$

Die Schlußbemerkungen zu § 32, betreffend das paarweise Auftreten der Schubspannungen usw., gelten auch hier, überhaupt sinngemäß für alle auf Drehung beanspruchten Körper. Auch das auf S. 346 und 385 über die Widerstandsfähigkeit von Hohlstäben Bemerkte gilt hier.

Hinsichtlich der Folgen, die eine Hinderung der oben unter Ziff. 1, c festgestellten Querschnittswölbung mit sich bringt, sei auf § 34, Ziff. 3 verwiesen.

# § 34. Stab von rechteckigem Querschnitt.

## 1. Formänderung.

Nach dem Vorgange in den Paragraphen 32 und 33 wird ein Prisma von rechteckigem Querschnitt (60 mm breit, 20 mm stark) hergestellt und jede seiner 4 Mantelflächen in Quadrate von 5 mm Seitenlänge eingeteilt. Unter Einwirkung der beiden Kräftepaare, die sich an dem Stabe das Gleichgewicht halten, geht dasselbe in die Form Fig. 1, Taf. XIII über.

Wir erkennen folgendes:

a) Die Quadrate haben ihre ursprüngliche Form mehr oder minder verloren und rhombenartige Gestalt angenommen.

Die Querlinien schneiden mit ihren äußersten Elementen die 4 Eckkanten des Stabes senkrecht, wie dies ursprünglich jede der früher geraden Querlinien in ihrer ganzen Erstreckung tat; dagegen ändert sich die Rechtwinkligkeit zwischen Quer- und Längslinien um so mehr, je näher die letzteren der Seitenmitte liegen. Die Änderung des rechten Winkels, d. h. die Schiebung (§ 28), beträgt hiernach in den Kanten des Stabes Null, wächst von da zunächst ziemlich rasch, sofern die breite Seitenfläche ins Auge gefaßt wird, und erreicht für sämtliche Seitenflächen in deren Mitten ausgezeichnete Werte, von denen derjenige in der Mitte der breiten Seitenflächen der größere ist. Die größte Schiebung findet hiernach

in denjenigen Punkten des Stabumfanges statt, die der Achse am nächsten liegen, ganz wie bei dem elliptischen Querschnitt.

- b) Die ursprünglich ebenen Querschnitte haben sich gewölbt.
- c) Die beiden Hauptachsen eines Querschnittes sind in der ursprünglichen Ebene geblieben. (Für einen Querschnitt ist dessen ursprüngliche Ebene gestrichelt eingetragen.)
- d) Je die beiden Hauptachsen zweier aufeinander folgenden Querschnitte haben sich immer um gleichviel gegeneinander verdreht¹).

Hinsichtlich der Wölbung der Querschnitte ist es von Interesse zu beachten, daß der Abstand derjenigen Punkte des gewölbten Querschnittes, die von den Seitenmitten ab und nach den Stabkanten hin gelegen sind, von der ursprünglichen Querschnittsebene (vgl. Ziff. 3) sich als ziemlich bedeutend erweist, und daß infolgedessen die Ausbildung dieser gewölbten Form eine verhältnismäßig große Zurückziehung (positive im ersten und dritten, negative im zweiten und vierten Quadranten) der von den Seitenmitten abgelegenen Fasern gegenüber der früheren Querschnittsebene zur Folge Wie ersichtlich, ist die Wölbung erhaben, d. h. der Abstand hat. der einzelnen Querschnittselemente von der Grundebene hat sich vergrößert in denjenigen diametral zueinander liegenden beiden Querschnittsvierteln, gegen deren lange Seiten die Kräfte des drehenden Kräftepaares gerichtet sein müßten, wenn hierdurch die stattgehabte Verdrehung bewerkstelligt werden sollte. In den beiden anderen Querschnittsvierteln ist die Wölbung vertieft, d. h. der Abstand der einzelnen Querschnittselemente von der Grundebene hat sich verkleinert.

Die Stirnflächen des verdrehten Prisma werden hiernach zeigen (vgl. Taf. XIII, Fig. 1 unten rechts)

im Viertel 1 erhabene Wölbung, im Viertel 2 vertiefte Wölbung

" " 3 erhabene " " " 4 vertiefte "

Ist für den rechteckigen Stab b = h, d. h. handelt es sich um einen quadratischen Querschnitt, so nimmt derselbe bei der Verdrehung die Form Fig. 2, Taf. XIV an. Dieselbe bestätigt das oben unter a) bis d) Erkannte durchaus. Nur hinsichtlich der Wölbung der Querschnitte tritt insofern eine Änderung ein, als hier alle Seiten gleich groß sind, und deshalb kein Grund vorliegt, weshalb sich das eine Viertel anders verhalten soll wie das andere, wenn die Kräfte,

¹) Die Bestimmung dieses Verdrehungswinkels erfolgt in § 43. Vgl. auch die erste Fußbemerkung zu § 52, Ziff. 2, b, S. 490.

die das vorhandene Kräftepaar liefern, auf den durch die Verdrehungsrichtung bestimmten 4 Halbseiten wirkend gedacht werden. Tatsächlich weist Fig. 2, Taf. XIV nach, daß für quadratischen Querschnitt (vgl. Fig. 2) bei der angenommenen Verdrehungsrichtung die Wölbung eine erhabene ist in den Achteln 1, 3, 5 und 7, dagegen eine vertiefte in den Achteln 2, 4, 6 und 8. Außer den beiden Symmetrieachsen verbleiben noch die zwei Diagonalen in der ursprünglichen Querschnittsebene und damit auch die vier Eckpunkte. Die hierdurch ausgezeichneten vier Linien weisen nach Ziff. 2 noch die weitere Eigenschaft auf, daß die in ihren Punkten wirkenden Schubspannungen senkrecht zu ihnen gerichtet sind.

Die Erkenntnis dieser eigenartigen Formänderungen der Querschnitte ist unter Umständen von großer praktischer Bedeutung, wie unter Ziff. 3 am Schlusse dieses Paragraphen näher erörtert werden wird.

#### 2. Schubspannungen.

Da die Schubspannungen in den Querschnittselementen der Umfangslinie unter der Voraussetzung, daß äußere Kräfte hier nicht auf die Mantelfläche des Stabes wirken, nur tangential an diese Linie gerichtet sein können, so müssen sie auf der Begrenzungsstrecke AC, Fig. 1, Taf. XIII oder Fig. 3, in die Richtung AC fallen, ebenso auf der Strecke BC in die Richtung BC. Demgemäß ergeben sich im



Flächenelement C (Eckpunkt) des Querschnittes, da dasselbe sowohl der Linie AC wie auch der Linie BC angehört, zwei senkrecht zueinander gerichtete Schubspannungen, die eine Resultante liefern müßten. Dieselbe hätte jedenfalls die Forderung zu befriedigen, daß sie gleichzeitig in die Richtungen von AC und BC falle. Dieser Bedingung kann sie nur entsprechen, wenn ihre Größe Null ist. Infolgedessen muß die Schubspannung in C selbst Null sein. Aus diesem Grunde werden sich die in den Querschnittselementen AC wirkenden Schubspannungen von A nach C hin bis auf Null vermindern müssen; ebenso werden die in BC tätigen Schubspannungen von B nach C bis auf Null abzunehmen haben.

Die Richtigkeit dieser Erwägungen wird voll bestätigt durch die oben unter Ziff. 1, a angegebene Beobachtung. Dort war festzustellen, daß die Schiebungen in den Kantenpunkten, d. h. in C Null waren, nach der Mitte der Seite, d. h. nach A bzw. B hin erst rasch und dann langsamer wuchsen, entsprechend einem Verlaufe etwa nach der Kurve CH, Fig. 3, die erhalten wird durch Ermittlung der Änderungen der ursprünglich rechten Winkel; demgemäß werden sich auch die Schubspannungen von C nach A hin ändern.

Zum Zwecke der Bestimmung der letzteren erinnern wir uns, daß beim elliptischen Querschnitt (§ 33) die im beliebigen Punkte P wirkende Spannung  $\tau$  die beiden

Komponenten  $\tau_y$  und  $\tau_z$  lieferte, für die galt

 $\tau_y = A y \qquad \tau_z = B z.$ 

Hier werden  $\tau_y$  (senkrecht zur y-Achse) und  $\tau_z$  (senkrecht zur z-Achse) in entsprechender Weise von y und z abhängen müssen. Dort waren A und B konstante Größen, während sie hier veränderlich sein müssen, da ja



 $\tau_y$  für  $y = \frac{b}{2}$  nach *C* hin bis auf Null abzunehmen hat, ebenso  $\tau$  für  $z = \frac{h}{2}$ .

Wird die Schubspannung in der Mitte der langen Seite, d. h. in A mit  $\tau'_a$ , diejenige in Punkt P', der im Abstande z von A auf der Strecke AC gelegen ist, mit  $\tau'$  bezeichnet,  $\overline{AH} = \tau'_a$ ,  $P'P'' = \tau'$ gemacht; wird ferner in Anlehnung an § 38, Fig. 4, dem Änderungsgesetz der Schubspannungen in der Linie AC, d. h. dem Verlaufe der Linie CP''H, die einfachste Kurve, die gewöhnliche Parabel mit H als Scheitel und HA als Hauptachse zugrunde gelegt, so folgt nach dem bekannten Satz, daß sich bei der Parabel die Abszissen verhalten wie die Quadrate der Ordinaten

$$\begin{aligned} (\tau_a' - \tau') : \tau_a' &= z^2 : \left(\frac{h}{2}\right)^2 \\ \tau' &= \tau_a' \left[1 - \left(\frac{2z}{h}\right)^2\right]. \end{aligned}$$

Demgemäß setzen wir für den Faktor A in der Gleichung  $\tau_y = Ay$ 

$$A = c\tau_a' \left[ 1 - \left(\frac{2z}{h}\right)^2 \right] = m \left[ 1 - \left(\frac{2z}{h}\right)^2 \right]$$

und ganz entsprechend für B in dem Ausdruck  $r_z = Bz$ 

$$B = d\tau_b' \left[ 1 - \left(\frac{2y}{b}\right)^2 \right] = n \left[ 1 - \left(\frac{2y}{b}\right)^2 \right],$$

wenn c, d, m und n Konstante sind, und  $\tau_b'$  die Schubspannung im Punkte B bezeichnet.

Die Gleichungen

$$\tau_y = Ay$$
  $\tau_z = Bz$ 

liefern, da A für z=0 und B für y=0 konstant, die in Fig. 4 dargestellte Spannungsänderung. Somit nach dem in der Fußbemerkung 1, S. 347 ausgesprochenen Satz

$$\frac{1}{2}\tau_b'\frac{h}{2} = \frac{1}{2}\tau_a'\frac{b}{2}$$
$$\tau_b' = \tau_a'\frac{b}{h}.$$

Es ergibt sich

$$\tau_{y} = m \left[ 1 - \left(\frac{2z}{h}\right)^{2} \right] y,$$
  
$$\tau_{z} = n \left[ 1 - \left(\frac{2y}{b}\right)^{2} \right] z \right\} \qquad (1 - 1)$$

und in ganz gleicher Weise wie in § 33, Ziff. 2

$$\int \left(\tau_y df \cdot y + \tau_z df \cdot z\right) = M_d$$

$$= nt \int \left[1 - \left(\frac{2z}{h}\right)^2\right] y^2 df + n \int \left[1 - \left(\frac{2y}{b}\right)^2\right] z^2 df,$$

$$M_d = \frac{1}{12} m b^8 h + \frac{1}{12} n b h^8 - 4 \left(\frac{m}{h^2} + \frac{n}{b^2}\right) \int y^2 z^2 df.$$

Wegen

$$\int y^2 z^2 df = \int \frac{y^2 dy}{2} \int z^2 dz = \frac{1}{144} b^3 h^3$$
$$-\frac{b}{2} - \frac{h}{2}$$

wird

$$M_{d} = \frac{1}{12} m b^{3} h + \frac{1}{12} n b h^{3} - \frac{1}{36} \left( \frac{m}{h^{2}} + \frac{n}{b^{2}} \right) b^{3} h^{3} \dots \dots 2$$

Nun ist

für den Punkt A, d. i. 
$$y = \frac{b}{2}$$
 und  $z = 0$ ,  
 $\tau_y = \tau_a'$ ,

womit nach der ersten der Gleichungen 1

$$\tau_a' = m \frac{b}{2}$$
 oder  $m = \frac{2\tau_a'}{b}$ 

und

für den Punkt *B*, d. i. 
$$y = 0$$
 und  $z = \frac{h}{2}$ ,  
 $\tau_z = \tau_b'$ ,

infolgedessen nach der zweiten der Gleichungen 1

$$au_b' = n rac{h}{2}$$
 oder  $n = rac{2 au_b'}{h} = rac{2 beta}{h^2} au_a'$ 

Hiermit gehen die Gleichungen 1 und 2 über in

$$\tau_{y} = 2\tau_{a}'\frac{1}{b}\left[1-\left(\frac{2z}{h}\right)^{2}\right]y,$$
  

$$\tau_{y} = 2\tau_{b}'\frac{1}{h}\left[1-\left(\frac{2y}{b}\right)^{2}\right]z$$
  

$$= 2\tau_{a}'\frac{b}{h^{2}}\left[1-\left(\frac{2y}{b}\right)^{2}\right]z$$

beziehungsweise

$$M_d = \frac{2}{9} \tau_a' b^2 h \quad . \quad . \quad . \quad . \quad . \quad . \quad 4)$$

Gleichung 4 führt zu

$$M_d \leq \frac{2}{9} k_d b^2 h \quad \text{oder} \quad k_d \geq \frac{9}{2} \frac{M_d}{b^2 h} \quad . \quad . \quad . \quad 5)^{(1)}$$

¹) Dieses Ergebnis ist nur mit der Annäherung richtig, die aus dem Gange der Entwicklung folgt. Es entspricht deshalb auch den im Abschnitt 9 enthaltenen allgemeinen Gleichungen nicht. Die strenge Lösung, wie sie auf Grund der letzteren zuerst von Saint-Venant gegeben worden ist, wurde bereits im Vorwort zur ersten Auflage berührt (vgl. auch S. 396 u. f. sowie die Arbeit des Verfassers in der Zeitschrift des Vereines deutscher Ingenieure 1889, S. 137 u. f.).

Nach der Lösung von Saint-Venant ist der Zahlenwert 4,5 der zweiten der Gleichungen 5 abhängig von dem Seitenverhältnis h:b. Wird allgemein für die Schubspannung im Querschnittspunkt A (Mitte der langen Seite) gesetzt



Die größte Anstrengung tritt hierbei auf in denjenigen Punkten der Umfangslinie des Querschnittes, welche der Stabachse am nächsten liegen¹).

Um ein Bild der Spannungsverteilung über den rechteckigen Querschnitt zu erhalten, sind in Fig. 5 die Spannungen für einige Flächenstreifen eingetragen. Es werden dargestellt die Schubspannungen

Fig. 5.

für die in der Linie CA liegenden Querschnittselemente durch die wagrechten Ordinaten der Kurve CH,

so kann aus den Ergebnissen der Saint-Venantschen Entwicklungen mit Annäherung

gesetzt werden. Es ist

für			h: b = 1	<b>2</b>	4	10
nach Saint-Venant	•	•	$\psi = 4,80$	4,07	3,55	3,20
nach Gleichung 7.	•	•	$\psi = 4,79$	4,06	3,58	3,25

Für die Gesetzmäßigkeit, nach der sich die Schubspannungen in der Linie AC Fig. 3 ändern, ergibt die Saint-Venantsche Lösung gleichfalls eine von der oben zugrunde gelegten Parabel erheblich abweichende Kurve. Für den um z von der Mitte A abstehenden Punkt der langen Seite AC nähern wir uns den Werten Saint-Venants, wenn gesetzt wird

worin  $\tau_{max}$  die Schubspannung in A nach Gleichung 6 und 7 bezeichnet.

In neuerer Zeit haben sich die Arbeiten von Prandtl (Physikalische Zeitschrift 1903, S. 758 u. f., Jahresbericht der deutschen Mathematiker-Vereinigung 1904, S. 31 u. f.), Henneberg (Zeitschrift für Mathematik und Physik, 51. Bd., 1904, S. 225 u. f.), Götzke (Zeitschrift des Vereines deutscher Ingenieure 1909, S. 935 u. f.), u. a. mit der Aufgabe befaßt. Doch ist ein wesentlicher Fortschritt gegenüber dem, was bereits de Saint-Venant ermittelt hatte, in ihnen nicht enthalten.

¹) Dementsprechend muß der Bruch in der Mitte der Seitenflächen beginnen, was sich bei der Durchführung von Verdrehungsversuchen mit Eisenbetonkörpern rechteckigen Querschnittes in recht anschaulicher Weise beobachten läßt. Ein solcher Körper mit rechteckigem Querschnitt bei einem Seitenverhältnis von 1:2 ergab unter dem Drehmoment 157500 kg·cm den Riß in der Mitte der langen Seite, wie ihn Fig. 6 zeigt. Unter dem Moment 165000 kg·cm vergrößerte er sich, und zwar 1 Minute nach Wirkung dieses Momentes gemäß Fig. 7. Nach 3 Minuten zeigte sich das Bild Fig. 8, nach 4 Minuten dasjenige Fig. 9 und bei Fortsetzung der Verdrehung, wobei sich das Moment nicht steigerte, das Bild Fig. 10. Näheres s. Zeitschrift des Vereines deutscher Ingenieure 1912, S. 440 und ausführlicher in Heft 16 des deutschen Ausschusses für Eisenbeton.

- für die in der Linie CB liegenden Querschnittselemente durch die senkrechten Ordinaten der Kurve CJ,
- für die in der Linie OA liegenden Querschnittselemente durch die zu OA senkrechten Pfeillinien,



- für die in der Linie OB liegenden Querschnittselemente durch die wagrechten Ordinaten der Geraden OK,
- für die in der Linie OC liegenden Querschnittselemente durch die geneigten Ordinaten der Kurve OMC.

Die letztere Linie folgt aus den Gleichungen 3 unter Beachtung, daß für die Punkte der Diagonale OC

$$\frac{y}{z} = \frac{b}{h}$$

ist. Hiermit ergibt sich dann für die einzelnen in OC gelegenen Flächenelemente

$$\tau_z:\tau_y=b:h,$$

d. h. die Schubspannungen sind parallel gerichtet, und

$$\tau = \sqrt{\tau_y^2 + \tau_z^2}$$
$$= 2 \tau_a' \left[ 1 - \left(\frac{2 y}{b}\right)^2 \right] \frac{y}{b} \sqrt{1 + \left(\frac{b}{b}\right)^2}.$$

Für

$$y = 0,577 \frac{b}{2}$$

erlangt  $\tau$  seinen größten Wert.

Im Falle b = h, d. i. für den quadratischen Querschnitt, stehen die Schubspannungen senkrecht auf den Diagonalen.

Hierbei ist im Auge zu behalten, daß diese Schubspannungen immer paarweise auftreten und deshalb gleichzeitig in der Ebene des Querschnittes und in senkrecht dazu stehenden Ebenen wirken.

(Vgl. Schlußbemerkung zu § 32.)

Die Beziehungen 3, § 32 (Kreis), 4, § 32 (Kreisring), 7, § 33 (Ellipse), 11, § 33 (Ellipsenring) und 5, § 34 (Rechteck) lassen sich auf die gemeinsame Form

$$M_d \leq \varphi k_d \frac{\Theta}{b}$$
 . . . . . . . . . . . 9)

bringen, worin bedeutet

M_d das Moment des drehenden Kräftepaares,

- $\Theta$  das kleinere der beiden Hauptträgheitsmomente,
- b für den Kreis den Halbmesser, für die Ellipse die kleine Halbachse, für das Rechteck die kleinere Seite,
- $k_{d}$  die zulässige Drehungsanstrengung,
- $\varphi$  einen Zahlenwert, welcher beträgt

für den Vollkreis und den Kreisring mit  $b = \frac{d}{2}$   $\varphi = 2$ , für die Vollellipse und den Ellipsenring  $\varphi = 2$ , für das Rechteck  $\varphi = \frac{8}{3}^{1}$ .

Auf dieselbe Form, Gleichung 9, läßt sich auch der Ausdruck für das gleichseitige Dreieck

$$M_d == \frac{1}{20} k_d b^{3 \ 2})$$

sowie derjenige für das gleichseitige Sechseck

$$M_{d} = \frac{1}{1,09} k_{d} b^{3 2}),$$

worin je b die Seitenlänge bezeichnet, bringen.

Es ist dann

$$\varphi = 1,385$$
 (Dreieck),

beziehungsweise

 $\varphi = 1,694$  (Sechseck).

Die Gleichung 9 spricht deutlich aus, daß die Widerstandsfähigkeit gegenüber Drehungsbeanspruchung von dem kleineren der beiden Hauptträgheitsmomente bestimmt wird, daß also das größere nicht in Betracht kommt.

# 3. Gehinderte Ausbildung der Querschnittswölbung.

Unter Ziff. 1 erkannten wir, daß die ursprünglich ebenen Querschnitte des rechteckigen Prisma infolge Einwirkung des Drehungsmomentes in gekrümmte Flächen übergehen. Für den Fall, daß der Querschnitt langgestreckt war wie bei Stab Fig. 1, Taf. XIII, fand sich, daß die Strecken, um die hierbei die einzelnen, von den Seitenmitten abgelegenen Querschnittselemente aus der ursprünglichen Querschnittsebene herausgetreten waren, verhältnismäßig bedeutend ausfielen. (Vergleiche daselbst die gestrichelte Linie, welche die ursprüngliche Ebene des jetzt gewölbten Querschnittes angibt; das Achsenkreuz ist beiden gemeinsam.)

¹) Vgl. Fußbemerkung S. 359.

Nach eigenen Versuchen, über die S. 383 berichtet wird, kann für das gleichschenklige Dreieck und für das Trapez die Beziehung 5, gültig für das Rechteck, verwendet werden, somit auch die Beziehung 9 mit  $\varphi = \frac{8}{3}$ .

²) S. u. a. Hermann, Zeitschrift des österr. Ingenieur- und Architektenvereines 1883, S. 172.

Solange der auf Drehung in Anspruch genommene Körper durchaus prismatisch ist, hat diese Krümmung der Querschnitte in der Regel ein bedeutendes Interesse für den Ingenieur nicht¹). Ganz anders gestaltet sich jedoch die Sache, sobald diese Voraussetzung nicht mehr erfüllt ist.

Handelt es sich beispielsweise um einen Körper, wie in § 35, Fig. 1, dargestellt, der an seinen Enden Platten trägt, durch welche die beiden Kräftepaare, die sich an ihm das Gleichgewicht halten, auf den mittleren prismatischen Teil wirken, so bietet sich da, wo dieser an die Platte anschließt, der Querschnittskrümmung ein Hin-Insbesondere sind die nach den Stabkanten zu gelegenen dernis. Fasern, Fig. 1, Taf. XIII, gehindert, um den verhältnismäßig bedeutenden Betrag, den die erhabene Wölbung verlangt, von der Platte Infolgedessen entstehen in allen denjenigen sich zurückzuziehen. Querschnittselementen, die unter Einwirkung des Drehungsmomentes bestrebt sind, ihre Entfernung von der Grundebene zu vergrößern (sich erhaben zu wölben, d. s. die Rechtecksviertel 1 und 3, Fig. 1), Zugspannungen, während in allen denjenigen Querschnittspunkten, die bestrebt sind, den bezeichneten Abstand zu verringern (sich vertieft zu wölben, d. s. die Rechtecksviertel 2 und 4, Fig. 1), Druckspannungen wachgerufen werden. Sind diese Normalspannungen genügend groß, so kann der Bruch, obgleich die äußeren Kräfte nur ein auf Drehung wirkendes Kräftepaar ergeben, durch Zerreißen der am stärksten gespannten Fasern veranlaßt werden.

Einer äußeren Zug- oder Druckkraft bedarf es nicht, da die Zugspannungen in gewissen Querschnittsteilen (Rechtecksviertel 1 und 3, Fig. 1) durch Druckspannungen in den anderen Querschnittselementen (Rechtecksviertel 2 und 4, Fig. 1) im Gleichgewicht gehalten werden.

In solchen Fällen der mehr oder minder vollständig gehinderten Ausbildung der Querschnittswölbung rücken die gefährdetsten Stellen, die bei Nichthinderung dieser Ausbildung mit denjenigen Punkten des Querschnittumfanges zusammenfallen, die der Stabachse am nächsten liegen, von der letzteren fort; beispielsweise in Fig. 1 von A nach C hin. Bei langgestreckten Querschnitten werden sie sehr rasch von A nach C hin vorwärtsschreiten.

Beim quadratischen Querschnitt, Fig. 2, Taf. XIV, bleibt Cin der ursprünglichen Querschnittsebene; infolgedessen ist es ausgeschlossen, daß bei Gleichartigkeit des Materials die größte Anstrengung in oder nahe bei C auftritt. Sie ist — allgemein — da zu suchen, wo die Gesamtinanspruchnahme, herrührend von den

¹) Vgl. den Schluß dieses Paragraphen.

Schubspannungen, die durch das Drehungsmoment verursacht werden, und von den Normalspannungen, die infolge der Hinderung der Querschnittswölbung ins Dasein treten, den größten Wert erlangt. Bei dem quadratischen Querschnitt wird sie — soweit dies hier ohne Anstellung besonderer Rechnungen beurteilt werden kann — der Mitte der Seitenflächen viel näher liegen als den Stabkanten. Ihre Bestimmung, die überdies von dem Grade der Vollständigkeit der mehrfach erwähnten Hinderung der Querschnittskrümmung abhängt, gehört in das Gebiet der zusammengesetzten Elastizität und Festigkeit.

(Vgl. auch den vorletzten Absatz von § 32 sowie die Bemerkungen zu Gleichung 2, § 31, Ziff. 1.)

Die zur Berechnung von Stäben, die durch Drehung beansprucht werden, in diesem und den vorhergehenden Paragraphen aufgestellten Gleichungen sind unter der stillschweigend gemachten Voraussetzung entwickelt, daß die Querschnittswölbung sich ungehindert ausbilden kann. Diese Voraussetzung trifft auch für genau prismatische Stäbe streng nicht zu; denn denken wir uns einen solchen Stab von der Länge l an den Enden je auf die Erstreckung x von den beiden Kräftepaaren ergriffen, die sich an ihm das Gleichgewicht halten, so erkennt man, daß für die beiden Stirnflächen des Stabes das verdrehende Moment gleich Null ist und erst zu Ende der Strecke xdie volle Größe erreicht, die es für den mittleren Stabteil von der Länge l-2x besitzt. Es besteht somit eine gewisse Hinderung gegenüber der Querschnittswölbung, die sich auf einer Strecke größer als x geltend machen muß.

# § 35. Drehungsversuche.

# 1. Abhängigkeit der Drehungsfestigkeit des Gußeisens von der Querschnittsform.

Diese Abhängigkeit muß bei Gußeisen wegen der Veränderlichkeit der Schubzahl  $\beta$  in ziemlich bedeutendem Maße vorhanden sein. (Vgl. § 32.)

Verfassser hat nach der bezeichneten Richtung hin eine Anzahl von Versuchen angestellt. Über einen Teil derselben ist in der Zeitschrift des Vereines deutscher Ingenieure 1889, S. 140 bis 145 und 162 bis 166 ausführlich berichtet worden (s. auch "Abhandlungen und Berichte" 1897, S. 80 u. f.).

Die je unter einer Bezeichnung aufgeführten Versuchskörper sind aus dem gleichen Material (bei demselben Gusse) hergestellt worden.

Gußeisen A.

Zugstäbe bearbeitet.

Zugfestigkeit  $K_z = \frac{1655 + 1480 + 1601}{3} = 1579 \text{ kg/qcm}.$ 

a) Stäbe mit rechteckigem Querschnitt, unbearbeitet.

Die Bruchfläche, Fig. 8, Taf. XV, läßt vermuten, daß bei den quadratischen Stäben der Bruch, der plötzlich erfolgt, in der Mitte der Seitenfläche oder wenigstens in deren Nähe begonnen habe, wie dies nach § 34, Ziff. 3, der Fall sein soll.



Fig. 1.

Bei den Stäben mit langgestreckter Form des Querschnittes scheint es dagegen, als ob der Bruch, Fig. 9, Taf. XV, der immer in der Nähe einer der beiden zum Einlegen in die Prüfungsmaschine dienenden Endplatten erfolgte, von außen, d. h. von einer Ecke oder in deren Nähe, seinen Anfang genommen habe.

Soiten	Durchschnittliche Abmessungen			Drehungs- festigkeit	T	
verhältnis	ı	b	h	$K_d = 4.5 \frac{M_d}{b^2 h}$	$\frac{K_d}{K_z}$	Bemerkungen
	em	em	em	kg/qcm		
4 Stäbe b:h == 1:1	53	3,15	3,20	2228	1,42	Bruch erfolgt im prismatischen Teil, Fig. 8, Tafel XV. (Vgl. auch Fig. 15, Tafel XIV, Beton- körper.)
4 Stäbe b:h==1:2,5	56	3,13	7,82	2529	1,60	Bruch erfolgt in der Nähe der einen oder anderen End- platte, Fig. 9, Tafel XV.
4 Stäbe b∶h == 1:5	56	3,08	15,07	2366	1,50	Desgl.
3 Stäbe b:h == 1:9	54	1,66	15,13	2508	1,59	Desgl.









Jedenfalls ist hieraus zu schließen, daß  $K_d$  für die Stäbe mit langgestrecktom Querschnitt zu klein ermittelt wurde. Ferner erkennen wir, als durch den Versuch nachgewiesen, daß ein auf Drehung beanspruchter Körper, dessen Querschnitt in der einen Richtung eine wesentlich größere Erstreckung besitzt als in der anderen, da, wo in Richtung der Stabachse der schwächere prismatische Teil an einen stärkeren anschließt — wie im vorliegenden Falle das rechteckige Prisma an die Endplatten — die Anstrengung keine reine Drehungsbeanspruchung mehr ist, daß vielmehr daselbst auch Normalspannungen auftreten. (Vgl. § 34, Ziff. 3.)

b) Stäbe mit kreisförmigem Querschnitt.



Fig. 2.

Bezeichnung	$egin{array}{c} { m Durch-}\ { m messer}\ d \end{array}$	Drehungs- festigkeit $K_d = rac{16}{\pi} rac{M_d}{d^3}$	$\frac{K_d}{K_z}$	Bemerkungen	
	em	kg/qcm			
3 Stäbe, unbearbeitet	10,23	1618	1,02	Bruch erfolgt plötz- lich im prismatischen	
1 Stab, bearbeitet	9,6	1655	1,05	Teil. Desgleichen siche Fig. 10, Taf. XVI.	

Von hohem Interesse erscheint die Bruchfläche des linken Stückes der Fig. 10, Taf. XVI. Deutlich sprechen hier die kleinen, der Längsfuge anhängenden Bruchstücke dafür, daß die Trennung schließlich nach vorhergegangener Rißbildung unter  $45^{\circ}$  — unter Mitwirkung der Schubkraft in angenähert axialer Richtung erfolgt ist (vgl. Fig. 5, § 32, sowie das in § 32 am Schlusse Bemerkte).

Ein Einfluß der Entfernung der Gußhaut auf die Drehungsfestigkeit kann nicht festgestellt werden, da diese für die drei unbearbeiteten Stäbe zwischen 1574 und 1683 kg/qcm schwankte. c) Hohlstäbe mit kreisförmigem Querschnitt, unbearbeitet.



Fig.	3.
	υ.

Bezeichnung	Durch d cm	messer d _o cm	Drehungsfestigkeit $K_d = rac{16}{\pi} rac{M_d}{d^4 - d_0^4} d$ kg/qcm	$\frac{K_d}{K_z}$	Bemerkungen
3 Stäbe	10,2	6,97	1297	0,82	Bruch erfolgt plötz- lich im prismatischen Teil.

Hinsichtlich der Bruchfläche vgl. die zu "Gußeisen B" gehörige Fig. 11, Taf. XVI.

Die Drehungsfestigkeit nähert sich dem Werte, der nach Gleichung 6, § 31, zu erwarten ist, entsprechend dem Umstande, daß die Drehungsbeanspruchung hier der einfachen Schubanstrengung ziemlich nahe gekommen ist. Für  $d_0 = d$  würde die Drehungsanstrengung vollständig dieselbe sein wie die Inanspruchnahme auf Schub (vgl. jedoch S. 346 und 385 u. f., betreffend Wellenbildung in den Rohrwandungen).

d) Hohlstäbe mit quadratischem Querschnitt, unbearbeitet.



Fig. 4.

Die Bruchfläche, Fig. 12, Taf. XVII, berechtigt zur Vermutung, daß der Bruch in der Mitte der Seite begonnen habe.

	Seitenlänge		Drehungsfestigkeit M.	K,	D	
Bezeichnung	a	$a_0$	$K_d = 4.5 \frac{m_d}{a^4 - a_0^4} a$	K ₂	Bemerkungen	
	em	em	kg/qem		<u> </u>	
4 Stäbe	6,21	3,16	1788	1,13	Bruch erfolgt plötz- lich im prismatischen Teil, Fig. 12, Taf. XVII.	

Vergleicht man die Drehungsfestigkeit bei vollquadratischem Querschnitt (a) mit derjenigen bei hohlquadratischem, so findet sich 2228:1788 = 1.25:1.

Derselbe Vergleich für Vollkreis (b) mit Kreisring (c) ergibt 1618:1297 = 1.25:1.

also dasselbe.

Beide Vergleiche lehren, daß das nach der Stabachse zu gelegene Material (Gußeisen) bei der Drehung durchaus nicht so schlecht ausgenützt wird, wie man dies anzunehmen pflegt.

Nach § 32 war, da für Gußeisen die Schubzahl  $\beta$  mit zunehmender Spannung wächst, dieses Ergebnis zu erwarten.

Es entspricht dies ganz dem Ergebnisse, zu dem die Erörterungen in § 20, Ziff. 5, sowie die Versuche § 22, Ziff. 2, bei Biegungsbeanspruchung des Gußeisens führten.

e) Stäbe mit F-förmigem Querschnitt, unbearbeitet.



Fig. 5.

Der Bruch beginnt damit, daß gleichzeitig oder unmittelbar aufeinander folgend die beiden Querrippen von außen einreißen, und zwar die eine bei m, die andere bei n, also diametral gegenüberliegend. Die Drehrichtung des Momentes ist hierbei derart, daß --von Platte A nach B gesehen — A in der Richtung des Uhrzeigers verdreht wird.

		Bruchmoment			
Nr.	b	h	$b_0$	$h_0$	$M_d$
	cm	cm	em	cm	kg · cm
1	10,3	15,1	8,6	11,9	34 000
2	10,25	15,15	8,6	11,95	33750
3	10,3	15,2	8,6	12,0	35500
ach El	aetizität 8 A	nfl			24

a) Verhältnis  $b:h=\sim 1:1,5.$ 

C. Bach, Elastizität. 8. Aufl.

Die oben eingetragenen Werte von  $M_d$  sind die Drehungsmomente, die sich unmittelbar vor diesem Einreißen der Querrippen ergaben. Sobald letzteres erfolgt, sinkt die Schale der Kraftwage, entsprechend einer Verminderung des Momentes, das auf den Stab wirkt. Für den Stab Nr. 3 wurde diese Verminderung bestimmt, weshalb dessen Verhalten noch kurz beschrieben werden soll.

#### Stab Nr. 3.

Bei  $M_d = 35500 \text{ kg} \cdot \text{cm}$  reißen die Querrippen an den zwei Stellen m und n von außen ein, das Drehungsmoment sinkt auf  $25250 \text{ kg} \cdot \text{cm}$ . Unverletzt ist in dem Querschnitt bei m beziehungsweise n noch der innere Teil der nur außen (auf reichlich die Häffte) gerissenen Querrippe, der Steg und die andere Querrippe bei o beziehungsweise p. Bei fortgesetzter Verdrehung steigt das Moment auf  $35250 \text{ kg} \cdot \text{cm}$  und nimmt dann wieder ab. Der Bruch der Querrippe bei n beginnt sich in den Steg hinein zu erstrecken, schließlich bricht dieser und bald auch die andere Querrippe bei p.

a y m _{an} palant and	President de la companya de la compa	Abmes	Bruchmoment			
Nr.	b cm	h cm	$b_{ m o}$ cm	<i>h</i> 0 cm	$M_d$ kg·cm	$M_d' \ { m kg\cdot cm}$
1 2 3	$5,2 \\ 5,2 \\ 5,2 \\ 5,2$	$15,2 \\ 15,2 \\ 15,3$	$3,5 \\ 3,5 \\ 3,5 \\ 3,5$	12,0 12,0 12,0	$27250 \\ 26750 \\ 24000$	27 750 25 500

 $\beta$ ) Verhältnis  $b:h=\sim 1:3.$ 

Bruch erfolgt in ähnlicher Weise, wie unter  $\alpha$  erörtert.

Bei dem Drehungsmoment  $M_d$  reißen die Querrippen an zwei einander diametral gegenüberliegenden Stellen (m und n, Fig. 5) von außen ein, das Drehungsmoment sinkt ein wenig (z. B. bei Nr. 3 von 24000 auf 23000, also um weit weniger als beim Einreißen der Stäbe unter  $\alpha$ , für welche die Breite *b* rund noch einmal so groß ist). Mit Wiederaufnahme der Verdrehung steigt es auf  $M_d' > M_d$ , den Bruch herbeiführend. Der Bruch des Steges, welch letzterer noch unterstützt wird durch die zweite unverletzte Querrippe desselben Querschnittes, fordert also ein etwas größeres Drehungsmoment, als zum Einreißen der einen Querrippe des unverletzten Stabes nötig ist; der Stab trägt demnach mit eingerissener Querrippe mehr als im unverletzten Zustande. Für den Versuch Nr. 1 unter  $\alpha$  würde Gleichung 9, § 34, mit  $\varphi = \frac{8}{3}$  und bei Ersetzung von  $k_d$  durch  $K_d$  liefern

$$K_d = \frac{3}{8} \frac{M_d}{\Theta} b = \frac{3}{8} \cdot \frac{34\,000}{528} \cdot 10.3 = \sim 290 \text{ kg/qcm}.$$

Für den Versuch Nr. 1 unter  $\beta$  würde die Gleichung 9, § 34, ergeben

$$K_d = rac{3}{8} rac{M_d}{\Theta} b = rac{3}{8} \cdot rac{27250}{70.5} \cdot 5.2 = \sim 880 \; \mathrm{kg/qcm}.$$

Werden diese beiden für  $K_a$  erlangten Werte mit der Drehungsfestigkeit rechteckiger Stäbe verglichen (a), so ergibt sich, daß die Gleichung 9, § 34, für Körper mit Querschnitten der hier vorliegenden Art unbrauchbar ist; denn um auf eine Spannung zu gelangen, wie sie der Drehungsfestigkeit rechteckiger Stäbe entspricht, müßte  $\varphi$  im ersteren Falle (290 kg/qcm) 8 mal, im letzteren (880 kg/qcm) dagegen reichlich  $2^1/_2$  mal so groß genommen werden.

Würde man beim Stab Nr. 1 unter  $\alpha$  die Querrippen umlegen und an den Steg anschließen, so daß ein rechteckiger Querschnitt erhalten würde von der Höhe  $h + 2b_0 = 15, 1 + 2 \cdot 8, 6 = 32, 3$  cm bei einer durchschnittlichen Breite von

$$\frac{h(b-b_0)+2b_0(h-h_0)}{h+2b_0} = \frac{15,1\cdot 1,7+17,2\cdot 1,6}{32,3} = 1,64 \text{ cm},$$

so wäre mit  $K_d = 2500 \text{ kg/qcm}$  (wie unter a für rechteckige Stäbe von 15,1 cm Höhe und 1,66 cm Stärke gefunden) nach Gleichung 5, § 34, auf ein Drehungsmoment von

$$M_{d} = \frac{2}{9} b^{2} h K_{d} = \frac{2}{9} 1,64^{2} \cdot 32,3 \cdot 2500 = \checkmark 48200 \text{ kg} \cdot \text{cm}$$

zu rechnen. Das würde

$$100 \frac{48200 - 34000}{34000} = 42^{\circ}/_{\circ}$$

mehr sein, als der rippenförmige Querschnitt tatsächlich vertrug.

Wird die Festigkeit des Stabes Nr. 1 unter  $\beta$  in Vergleich gesetzt mit der Widerstandsfähigkeit, die sein Steg allein besitzen würde, d. h. mit

$$M_{d} = \frac{2}{9} (5, 2 - 3, 5)^{2} \cdot 15, 2 \cdot 2500 = \sim 24\,400 \text{ kg} \cdot \text{cm},$$

so findet sich, daß der Stab Nr. 1 unter  $\beta$  nicht wesentlich mehr trägt ( $M_d = 27250 \text{ kg} \cdot \text{cm}$ ) als der Steg für sich ohne Querrippen.

24*

```
V. Drehung.
```

Wir erkennen hieraus, daß die untersuchten Stäbe mit  $_$ -förmigem Querschnitt gegenüber Drehungsbeanspruchung verhältnismäßig wenig widerstandsfähig sind. (Vgl. unter Gußeisen B, d).

f) Stäbe mit T-förmigem Querschnitt, unbearbeitet.



Fig. 6.

#### a) Verhältnis $b:h = \sim 1:1,5.$

		Abmes	Bruchmoment			
Nr.	b cm	h cm	<i>b</i> 0 cm	h ₀ cm	$M_d$ kg·cm	$M_{a}'$ kg·cm
1 2 3	10,1 10,2 10,3	$15,1 \\ 15,2 \\ 15,2 \\ 15,2$	8,6 8,6 8,7	11,9 12,0 12,0	$\begin{array}{r} \mathbf{45000} \\ \mathbf{55000} \\ \mathbf{46500} \end{array}$	52500 63000 59000

Bruch gesund.

Bei  $M_d$  reißen gleichzeitig oder unmittelbar aufeinander folgend die Querrippen an 4 Stellen von außen ein. Ist der Drehungssinn des Momentes derart, daß beim Sehen von der Platte A gegen die Platte B hin A in der Richtung des Uhrzeigers gegenüber B verdreht wird, so reißt die untere Rippe rechts bei n, links bei u, die obere rechts bei m, links bei v von außen ein. Mit diesem Einreißen sinkt das Moment nur sehr wenig. Bei Fortsetzung des Versuchs steigt das Moment auf  $M'_d$ , das wesentlich größer ist als  $M_d$ , führt in dieser Größe den Bruch des Steges und damit des Stabes herbei. Derselbe trägt demnach mit eingerissenen Querrippen bedeutend mehr als im unverletzten Zustande.

With the state of the second		Abmess	sungen	Bruchmoment		
Nr.	b cm	h em	$b_0$ cm	h ₀ cm	$M_d \ { m kg \cdot cm}$	$M_d' \ { m kg\cdot cm}$
$egin{array}{c} 1 \\ 2 \\ 3 \end{array}$	5,0 5,0 5,0 5,0	$15,1 \\ 15,2 \\ 15,1$	$3,4 \\ 3,4 \\ 3,4 \\ 3,4$	$ \begin{array}{c} 11,9\\ 12,0\\ 11,9 \end{array} $	32 500 30 750 28 750	33750 32250 30750

 $\beta$ ) Verhältnis  $b:h=\sim 1:3$ .

Bruchfläche bei 1 und 2 gesund, bei 3 gesund bis auf eine unbedeutende Stelle.

Bruch erfolgt in ganz ähnlicher Weise, wie unter  $\alpha$  erörtert. Bei  $M_d$  beginnt das Einreißen der Querrippen,  $M_d'$  bringt den Steg und damit den Stab zum Bruche.

		Bruchmoment						
Nr.	b cm	h cm	b ₀ cm	$h_{ heta}$ cm	$M_d$ kg.cm			
1	2,5	15,1	0,9	12,0	25250			

 $\gamma$ ) Verhältnis  $b:h=\sim 1:6.$ 

Bruch erfolgt plötzlich. Bruchfläche bis auf eine sehr kleine Stelle gesund.

Wird  $K_d$  auf Grund der Gleichung 9, § 34, mit  $\varphi = \frac{8}{3}$  für die Stäbe Nr. 3 unter  $\alpha$ , Nr. 1 unter  $\beta$  und Nr. 1 unter  $\gamma$  berechnet, so findet sich

$$\begin{split} K_{d} &= \frac{3}{8} \frac{46500}{295} \cdot 10{,}3 = 609 \text{ kg/qcm}, \\ K_{d} &= \frac{3}{8} \frac{32500}{37} \cdot 5 = 1641 \text{ kg/qcm}, \\ K_{d} &= \frac{3}{8} \frac{25250}{8.13} \cdot 2{,}5 = 2912 \text{ kg/qcm}. \end{split}$$

Aus der Verschiedenartigkeit und der absoluten Größe dieser Werte erkennen wir, daß auch für <u>I</u>-Querschnitte die Gleichung 9, § 34, nicht verwendbar erscheint.

Würde man die Querrippen umlegen und an den Steg anschließen, so daß je ein rechteckiger Querschnitt von

sich ergäbe, so wäre mit  $K_d = 2500 \text{ kg/qcm}$  nach Gleichung 5, § 34, auf ein Drehungsmoment zu rechnen von

$$M_{d} = \frac{2}{9} b^{2} h K_{d} = \frac{2}{9} \cdot 1,6^{2} \cdot 32,6 \cdot 2500 = \sim 46360 \text{ kg} \cdot \text{cm},$$

bzw.

$$M_d = \frac{2}{9} \cdot 1.6^2 \cdot 21.9 \cdot 2500 = \sim 31\,150 \text{ kg} \cdot \text{cm},$$

bzw.

$$M_d = \frac{2}{9} \cdot 1.6^2 \cdot 16.9 \cdot 2500 = \sim 24\,040 \text{ kg} \cdot \text{cm}$$

Der Versuch ergab

46500, bzw. 32500, bzw. 25250,

also nur wenig hiervon verschieden, so daß ausgesprochen werden darf, daß die untersuchten <u>I</u>-förmigen Querschnitte hinsichtlich des Widerstandes gegen Bruch durch Drehung nahezu gleichwertig erscheinen mit rechteckigen Querschnitten, deren Breite gleich der Steg- und gleich der Rippenstärkes und deren Höhe gleich der Summe  $h + 2b_0$ , d. h.

$$M_d = \frac{2}{9} K_d s^2 (h + 2 b_0) \quad . \quad . \quad . \quad . \quad . \quad . \quad 1)$$

und wenn die Stegstärke s bedeutend abweicht von der Stärke s<br/>, der Flansche

¹) Der durch die vom Verfasser 1889 aufgestellte Gleichung 1 a) zum Ausdruck gebrachte Gedanke, daß die Widerstandsfähigkeit des Stabes von **I**-förmigem Querschnitt der Summe der Widerstandsfähigkeiten der Rechteckstäbe gleich ist, aus denen der **I**-Querschnitt sich zusammensetzt, kann nach Föppl (Sitzungsberichte der K. Bayer. Akad. d. Wissenschaften 1917) auch hinsichtlich der Verdrchung angewendet werden. Föppl setzt

$$\vartheta = rac{eta}{\zeta} rac{M_d}{rac{1}{2} \sum s^3 b}$$

und gibt an, daß bis auf weiteres  $\zeta = 1$  genommen werden könne. Vgl. hierzu Fußbemerkung 1, S. 397.

g) Stäbe mit kreuzförmigem Querschnitt, unbearbeitet.



Fig. 7.

	Abmes	Abmessungen		Frägheits- Bruch-	
Nr.	8	h	$\begin{array}{c} \mathrm{moment} \\ \Theta \end{array}$	$egin{array}{c} {f moment} \ M_d \end{array}$	Bemerkungen
	$\mathbf{cm}$	cm	$\mathrm{cm}^4$	kg∙cm	
1	2,14	15,2	637	72500	Bruch gesund.
2	2,11	15,1	616	73750	Bruch gesund bis auf eine ganz unbedeutende Stelle.

Der Bruch erfolgt in beiden Fälle plötzlich.

Über die Bruchfläche vergleiche Fig. 13, Taf. XVII. Wie ersichtlich, entstehen je bei dem Bruche 6 Stücke: die beiden Endkörper sowie vier Dreiecke, die aus den Rippen herausbrechen.

Die Gleichung 9, § 34, würde mit  $\varphi = \frac{8}{3}$  liefern für Nr. 1  $K_d = \frac{3}{8} \frac{72500}{637} \cdot 15,2 = 719$  kg/qcm, für Nr. 2  $K_d = \frac{3}{8} \frac{73750}{616} \cdot 15,1 = 676$  kg/qcm,

also viel zu kleine Werte.

Aber auch eine einfache Überlegung zeigt, daß die Gleichung 9, § 34, für Stäbe mit kreuzförmigem Querschnitt nicht brauchbar sein kann.

Ein kreuzförmiger Querschnitt mit verhältnismäßig geringer Rippenstärke *s* kann in der Weise entstanden gedacht werden, daß man zwei gleiche rechteckige Querschnitte sich rechtwinklig kreuzend aufeinander legt. Aus der Natur der Inanspruchnahme auf Drehung folgt dann ohne weiteres. daß der Widerstand dieses kreuzförmigen Querschnittes doppelt so groß sein muß wie derjenige jedes der beiden Rechtecke, sofern zunächst davon abgesehen wird, daß sich in der Mitte Teile der beiden Rechtecke decken. Nachdem nun für rechteckigen Querschnitt die Gleichung

$$M_d = \frac{2}{9} K_d b^2 h$$

als zutreffend erkannt worden ist, nach der die Breite b des Querschnittes das Drehungsmoment im quadratischen Verhältnisse beeinflußt, während die Höhe nur mit der ersten Potenz wirksam ist, so ergibt sich auf Grund der eben angestellten Erwägung für den kreuzförmigen Querschnitt

$$\begin{split} M_{d} &= \frac{2}{9} K_{d} s^{2} h + \frac{2}{9} K_{d} s^{2} (h - s), \\ &= \frac{2}{9} K_{d} s^{2} (2 h - s) \\ &= \frac{2}{9} K_{d} s^{2} h \left( 2 - \frac{s}{h} \right) \bigg\}, \quad \dots \quad \dots \quad \dots \quad 2) \end{split}$$

d. h. wie für einen rechteckigen Querschnitt, dessen Breite gleich der Rippenstärke und dessen Höhe durch Aneinandersetzen der Rippen erhalten wird.

Zur Prüfung der so gewonnenen Gleichung 2 ziehen wir die Versuchsergebnisse heran. Dieselben liefern

 $\begin{array}{ll} \mbox{für Nr. 1} & K_{a}\!=\!4,\!5\,\frac{72\,500}{2,\!14^{2}\left(2\cdot15,\!2-2,\!14\right)}\!=\!2520\ \mbox{kg/qcm}, \\ \mbox{für Nr. 2} & K_{a}\!=\!4,\!5\frac{73\,750}{2,\!11^{2}\left(2\cdot15,\!1-2,\!11\right)}\!=\!2655\ \mbox{kg/qcm}, \\ \mbox{Durchschnitt} & 2587\ \mbox{kg/qcm}. \end{array}$ 

Das sind Werte, die denjenigen entsprechen, die unter a für rechteckigen Querschnitt erhalten worden sind. Die auf dem Wege einfacher Überlegung gewonnene Gleichung 2 liefert demnach Zahlen, die mit den Versuchsergebnissen in guter Übereinstimmung stehen.

#### Gußeisen B.

a) Stäbe mit quadratischem Querschnitt.

S. Fig. 1; l = 530 mm.

\	<b>T T</b>				•		
a		nh	6.8.	$\mathbf{r}\mathbf{b}$	e1'	t e	t.
u.	· ·	<b>TT</b> 10	000		~ .	~ ~	•••

Nr.	Breite b cm	Höhe h cm	Bruch- moment $M_d$ kg·cm	Drehungsfestigkeit $K_d = 4,5  rac{M_d}{b^2 h}$ kg/qcm	Bemerkungen
	9 1 0	2 2 2 2	20.750	2776	Bruch gesund
1 •)	210	0,04 2.99	19000	2110	bruch gebund.
2	2 20	3,40	21 250	2501	77 77
3	3,30	0,41	21200	2000	" "
-Ŧ	3,10	3,26	17500	2014	auf eine blasige Stelle.
Durch- schnitt	3,19	3,33		2595	

Aus den hierbei erhaltenen Bruchstücken wurden 3 Zugstäbe herausgearbeitet.

Nr.	Durch- messer d cm	$\begin{array}{c} \text{Quer-}\\ \text{schnitt}\\ \frac{\pi}{4} d^2\\ \text{qcm} \end{array}$	Bruch- belastung Z kg	Zugfestigkeit $K_{s} = Z: rac{\pi}{4} d^{2}$ kg/qcm	Bemerkungen
1 2 3	$2,38 \\ 2,37 \\ 2,38$	$\begin{array}{c c} 4,45 \\ 4,41 \\ 4,45 \end{array}$	$7860 \\ 7150 \\ 7340$	$1766 \\ 1621 \\ 1649$	Bruch gesund. """
		Durch	schnitt	1679	

 $K_d: K_z = 2595: 1679 = 1,55:1.$ 

#### $\beta$ ) Bearbeitet.

Aus Rohgußstäben von 38 bis 39 mm Seite gehobelt.

Nr.	Qu'adrat- seite b cm	$egin{array}{c} { m Bruch-}\ { m moment}\ {M_d}\ { m kg\cdot cm} \end{array}$	${f Drehungsfestigkeit} \ K_{d} == 4,5  {M_{d}\over b^3} \ kg/qcm$	Bemerkungen
1	3,00	17250	2875	Bruch gesund.
<b>2</b>	3,03	16750	2710	22 27
3	3,22	21000	2830	" "
4	3,20	19250	2643	Bruch gesund bis auf eine blasige Stelle.
	Durch	schnitt	2764	

$$K_d: K_s = 2764: 1679 = 1,65:1$$

Hiernach erscheint die Drehungsfestigkeit der bearbeiteten, also von der Gußhaut befreiten Stäbe um

$$100 \frac{2764 - 2595}{2595} = 6.4^{\circ}/_{\circ}$$

größer als diejenige der unbearbeiteten Stäbe von quadratischem Querschnitt.

Die Verdrehung, namentlich auch die bleibende, die der bearbeitete Stab bis zum Bruche erfährt, ist wesentlich größer als diejenige des unbearbeiteten.

(Vgl. § 22, Ziff. 4, das folgende unter b,  $\beta$ , sowie in diesem Paragraphen unter "Gußeisen A", b Schlußsatz.)

#### b) Hohlstäbe mit kreisförmigem Querschnitt.

# S. Fig. 3.

	Durch	messer	Bruch	Drehungsfestigkeit	100 yan ana ana
Nr.	d	$d_{0}$	$M_d$	$K_d = \frac{16}{\pi} \frac{M_d}{d^4 - d_0^4} d$	Bemerkungen
	em	em	kg∙cm	kg/qcm	
1 2	$10,2 \\ 10,25$	7,0 6,9	$\begin{array}{r} 231500\\ 243750\end{array}$	$1428\\1451$	Bruch gesund. Bruch bis auf eine kleine Stelle gesund.
	•	Durch	schnitt	1439	Ì

α) Unbearbeitet.

 $K_d: K_z = 1439: 1679 = 0.86: 1$ .

### $\beta$ ) Außen abgedreht.

Ursprünglicher Durchmesser 102 mm.

Nr.	Durch	messer	Bruch-	Drehungsfestigkeit	Bemerkungen	
	d em	$d_{_0}$ cm	M _d kg∙cm	$K_d = \frac{10}{\pi} \frac{M_d}{d^4 - d_0^4} d$ kg/qcm		
1	9,65	7	173500	1360	Bruch bis auf eine ganz unerhebliche Stelle gesund, Kern um 1 mm verlegt, Bruchfläche siehe Fig. 11, Taf. XVI.	

 $K_d: K_c = -1360: 1679 = 0.81: 1.$ 

Hiernach würde der bearbeitete Hohlzylinder eine etwas geringere Drehungsfestigkeit aufweisen als die unbearbeiteten; doch kann ein Urteil hierüber nicht gefällt werden, da der Einfluß ungleicher Wandstärke (einerseits reichlich 12. andererseits reichlich 14 mm) das Ergebnis trübt, und da überdies durch Verringerung des äußeren Durchmessers das Verhältnis  $d_0:d$  größer geworden ist. (Vgl. unter Gußeisen A, c letzten Absatz, sowie Bemerkung 1 am Schlusse des § 36.) c) Stäbe mit L-förmigem Querschnitt, unbearbeitet.



Fig. 14.

Nr.	Abmessungen b h s		Bruch- moment M _d	Drehungsfestigkeit $K_d=4.5rac{M_d}{s^2(b+h-s)}$	Bemerkungen	
	em	em	em	kg∙cm	$\mathbf{kg}/\mathbf{qem}$	
1	10,2	10,4	2,15	47250	2494	Bruch gesund bis auf eine ganz un- erhebliche Stelle.
<b>2</b>	10,2	10,2	2,15	47250	2520	Desgleichen.
			Durch	${ m schnitt}$	2507	

 $\alpha$ ) Seitenverhältnis b: h = 1:1.

Bruch erfolgt plötzlich, ein dreieckiges Stück in der Nähe einer der beiden Endplatten bricht heraus.

(Vgl. die Versuche unter "Gußeisen A", g, Fig. 13, Taf. XVII.)

Nr.	Abmessungen			Bruch- moment M.	Drehungsfestigkeit $K_d = 4.5 \frac{M_d}{M_d + 1}$	Bemerkungen	
	cm	n em	cm	kg∙em	s(o+n-s)kg/qcm		
1	6,3	10,4	$2,\!15$	37750	2526	Bruch gesund.	
2	6,0	10,3	2,10	35000	2515	Desgl. bis auf eineunerhebliche Stelle.	
-			Durchs	l chnitt	2520		

 $\beta$ ) Seitenverhältnis b:h=0,6:1.

Bruch erfolgt plötzlich; ein Dreieck bricht aus wie unter  $\alpha$ .

	Abmessungen		Bruch- Moment	Drehungsfestigkeit		
Nr.	Ь	h ·	Moment M _d	$K_d = 4.5  \frac{M_d}{b^2  h}$	Bemerkungen	
	$\mathbf{cm}$	cm	kg∙cm	kg/qcm		
1	2,00	10,3	24500	2700	Bruch gesund bis auf eine sehr kleine Stelle.	
<b>2</b>	2,02	10,35	24500	2611	Desgl.	
3	$2,\!02$	10,35	25250	2679	"	
		Dure	hschnitt	2663		

 $\gamma$ ) b = s, Querschnitt: Rechteck.

Bruch erfolgt plötzlich in der Nähe einer der beiden Endplatten.

 $K_d: K_z = 2663: 1679 = 1,59:1.$ 

Werden die unter  $\alpha$  und  $\beta$  auf Grund der Gleichung

erhaltenen Drehungsfestigkeiten verglichen mit den unter  $\gamma$  erzielten, so ergibt sich das Mittel aus den ersteren allerdings um

$$100 \frac{2663 - 0.5(2507 + 2520)}{2663} = 5.7^{0}/_{0}$$

geringer. Dieser Unterschied ist aber verhältnismäßig so gering, daß die Gleichung 3, die auf dieselbe Weise wie Gleichung 1 gebildet wurde, als brauchbare Ergebnisse liefernd bezeichnet werden muß. Hierbei wird allerdings festzuhalten sein, daß die Rippenstärke wenigstens  $\frac{1}{5}$  der Höhe beträgt.

# d) Stäbe mit **□**-förmigem Querschnitt, unbearbeitet. Fig. 5.

Die untersuchten Stäbe unterscheiden sich von den Prismen, die aus dem Gußeisen A gefertigt worden waren, und über deren Prüfungsergebnisse dort unter e) berichtet wurde, dadurch, daß hier die Rippen- und Stegstärke verhältnismäßig größer ist.

Nr.	b cm	Abmes h cm	sungen b _o cm	h _o cm	$egin{array}{c} { m Bruch-}\ { m moment}\ M_d\ { m kg\cdot cm} \end{array}$	Bemerkungen
1	6,1	10,2	4,0	6,1	38500	Bruch gesund.
2	6,2	10,3	4,1	6,1	39000	

# $\alpha$ ) Höhe $b_0$ der Querrippen gleich der doppelten Rippenstärke.

Der Bruch beginnt damit, daß gleichzeitig oder unmittelbar aufeinander folgend die beiden Querrippen von außen einreißen, und zwar die eine bei m, die andere bei n, Fig. 5, also diametral gegenüber liegend.

Wird nach dem Einreißen der Rippen der Stab weiter verdreht, so setzt sich der Riß durch den Steg hindurch fort bei nahezu derselben Belastung, die das Einreißen der Querrippen herbeiführte.

 $\beta$ ) Höhe  $b_0$  der Querrippen gleich der Rippenstärke.

Die Versuchsergebnisse lassen erkennen, daß die Stäbe unter  $\alpha$ mit  $b_0 = \sim 4 \,\mathrm{cm}$  nicht viel mehr halten als diejenigen unter  $\beta$  mit  $b_0 = \sim 2 \text{ cm}.$ 

Nr.		Abmes	sungen	Bruch-		
	Ь	b h		$h_0$ $M_d$		Bemerkungen
	em	cm	$\mathbf{cm}$	em	kg∙cm	
1	4,1	10,1	2,1	5,9	34750	Bruch gesund.
2	4,2	10,0	$2,\!05$	<b>5</b> ,9	36250	,, ,,

Bruch erfolgt plötzlich an den Enden.

Die Prüfung der Ergebnisse auf Grund der Gleichung

worin s die mittlere Steg- und Rippenstärke bezeichnet, führt zu folgenden Werten, wenn hierbei für s die Stegstärke gesetzt wird,

1 
$$\alpha$$
)  $K_d = 4.5 \frac{38\,500}{2.1^2\,(10.2 + 2.4)} = 2159 \text{ kg/qcm},$ 

00 = 00

2 
$$\alpha$$
)  $K_d = 4.5 \frac{39000}{2.1^2 (10.3 \pm 2.4.1)} = 2151 \text{ kg/qcm},$   
Durchschnitt 2155 kg/qcm.

senniti 2150 ⊾g/q

1 
$$\beta$$
)  $K_{a} = 4.5 \frac{34750}{2^{2}(10,1+2\cdot2,1)} = 2734 \text{ kg/qcm},$ 

2 
$$\beta$$
)  $K_{d} = 4.5 \frac{36250}{2.15^{2}(10+2\cdot2.05)} = 2502 \text{ kg/qcm},$   
Durchschnitt 2618 kg/qcm.

.......

Der für die Stäbe 1 $\alpha$ ) und 2 $\alpha$ ) erhaltene Mittelwert von 2155 kg/qcm bleibt um

$$100 \frac{2663 - 2155}{2663} = \sim 19^{\circ}/_{\circ}$$

unter der Drehungsfestigkeit der Stäbe mit rechteckigem Querschnitt (c,  $\gamma$ ), während der Durchschnittswert für die Stäbe 1 $\beta$ ) und 2 $\beta$ ) nur um

$$100\frac{2663-2618}{2663} = \sim 1.7^{\circ}/_{o}$$

davon abweicht.

Der Widerstand, den die Stäbe unter  $\beta$  dem Bruche durch Drehung entgegensetzen, ist demnach so groß wie für einen Stab mit rechteckigem Querschnitt, dessen Breite gleich dem Mittel aus der Steg- und der Rippenstärke und dessen Höhe gleich  $h + 2 b_0$ . Die Stäbe unter  $\alpha$  dagegen leisten einen wesentlich geringeren Widerstand.

Hieraus und in Erwägung des bei dem Gußeisen A unter e) gefundenen Ergebnisses schließen wir: Wenn Stäbe mit  $_$ -förmigem Querschnitt gegenüber Drehungsbeanspruchung widerstandsfähig sein sollen, so müssen der Steg und die Rippen (Flanschen) verhältnismäßig kräftig und überdies die Höhe  $b_0$  der letzteren gering gehalten werden. Dann erreicht die Widerstandsfähigkeit diejenige eines rechteckigen Stabes, dessen Breite gleich der Steg- und Rippenstärke s und dessen Höhe gleich  $h + 2b_0$  ist.

#### Gußeisen C.

Stäbe mit dreieckigem und trapezförmigem Querschnitt.

Über diese Versuche ist in der Zeitschrift des Vereines deutscher Ingenieure 1906, S. 481 u. f. sowie in Heft 33 (1906) der Mitteilungen über Forschungsarbeiten ausführlich berichtet.

Nach den Ergebnissen kann zur näherungsweisen Ermittlung der Drehungsbeanspruchung von Körpern mit dreieckigem oder trapez-

förmigem Querschnitt, Fig. 16 bzw. Fig. 17, die für das Rechteck aufgestellte Gleichung



angewendet werden. Die in die Rechnung einzuführende Breite bergibt sich dadurch, daß vom Schwerpunkt S des Dreieck- oder Trapezquerschnittes Lote SE und SF auf die Seiten gefällt werden und daß  $b = \overline{EF} = \overline{GH} = \overline{JK}$  gesetzt wird.

Zusammenstellung der Drehungsfestigkeit gußeiserner Körper für die Querschnittsgrundformen des Kreises, Rechtecks, Trapezes und Dreiecks.

Zugfestigkeit	$\mathbf{des}$	Gußeisens	A	1579	kg/qcm
**	"	**	B	1679	**
,	"	,,	C	2252	**

	Querschnittsform	Drehungsfestigkeit						
Nr.		$K_d$ in kg/qcm			in Teilen der Zugfestigkeit			
		A	· B	C	Α	В	С	
1	Kreis	1618			1,02			
<b>2</b>	Kreisring	1297	1439		0,82	0,86		
3	Rechteck							
	b:h=1:1	2228	2595		$1,\!42$	$1,\!55$		
	1:2,5	2529	-	3353	<b>1,6</b> 0		1,42	
	1:5	2366	2663		$1,\!50$	1,59		
	1:9	2508	—		$1,\!59$			
4	Hohlquadrat	1788			1,13			
<b>5</b>	Trapez			3498			1,55	
6	Dreieck		1	1			1	
	gleichseitig	-		3430			1,52	
	gestreckt	-		3097			1,38	

Hierbei ist für die rechteckigen Querschnitte  $K_d$  nach Gl. 5, § 34, berechnet.

Die Hohlquerschnitte sind verhältnismäßig starkwandig, was im Vergleich mit den unter Ziff. 3 angeführten Versuchen im Auge zu behalten ist.

# 2. Eigene Versuche mit Stahl (1914).

Die Hauptergebnisse dieser Versuche sind:

Die Schubzahl  $\beta$  beträgt durchschnittlich 1: 835000 = 1,2 Milliontel.

Die Dehnungslinie, gültig für den Drehungsversuch, zeigt die Gestalt der Fig. 18 mit Streckgrenze. Sie entsteht dadurch, daß zu den



Größen des verdrehenden Momentes als senkrechten Abszissen die Verdrehungen des Stabes als wagrechte Ordinaten aufgetragen werden. (Durchmesser des Stabes 2,00 cm.)

Das Arbeitsvermögen, entsprechend der auf Fig. 18 eingeschlossenen Fläche, ist für zähe Stoffe weit größer als beim Zugversuch. Um dies anschaulich darzustellen, ist für einen Stab aus demselben Material die Dehnungslinie für den Zugversuch in Fig. 19 wiedergegeben. Die Flächen gelten bei Fig. 18 und 19 je für dasselbe Stabvolumen.

Querschnitt		Moment   Spannung an der Streckgrenze kg.cm   kg/qcm		Moment beim Bruch kg.cm	Bemerkunge <b>n</b>	
Fig. 20	19,4	2300	1603	6800	Bruch wie Fig. 47. Taf. XIX.	
Fig. 21	19.4	1095	1561		größtes aufgebrachtes Moment 1920kg.cm, vgl. Fig. 22, Taf. XVIII.	

# 3. Eigene Versuche zur Ermittlung der Drehungsfestigkeit von Hohlzylindern aus Flußeisen (1919).

Bis zur Streckgrenze (Stehenbleiben der Kraftanzeige trotz Steigerung der Verdrehung) hat sich das Material des Vollkörpers und das des Hohlkörpers ungefähr gleich verhalten. Die Spannung an der Streckgrenze berechnet sich nach den üblichen Gleichungen zu 1603 und 1561 kg/qcm. Während nun bei dem Vollkörper eine Steigerung des verdrehenden Momentes von 2300 auf 6800 kg cm, d. i. im Verhältnis 1:2,96, möglich war, ehe Bruch erfolgte, trat an dem Hohlkörper unter dem Moment 1920 kg.cm, d. i. das 1920:1095 = 1,75 fache der Belastung an der Streckgrenze, so starke Wellenbildung ein, daß der Probekörper krumm zu werden begann und der Versuch abgebrochen werden mußte. Die Widerstandsfähigkeit des Materials war also durch die Wellenbildung begrenzt, ganz ähnlich, wie in § 13 für Druckbeanspruchung erörtert und daselbst auf S. 209 u. f. besprochen.

Bei Fig. 21 beträgt das Verhältnis Wandstärke: mittlerer Durchmesser (1,94 - 1,64):(1,94 + 1,64) = 1:12; ungefähr ebensogroß ist dieses Verhältnis bei der zweiten in § 13 angeführten Versuchsreihe, nämlich 0,30:3,40 = 1:11,3. Es liegt daher nahe, das Verhältnis Höchstlast: Belastung an der Streckgrenze für die beiden Versuchsreihen zu vergleichen. Es findet sich

	Druckversuch		${\bf Drehungs versuch}$
$\operatorname{H\"o}chstlast$	19280 + 16800	1 76	1920 1 75
Strecklast	10800 + 9650 =	1,70	$\frac{1}{1095} = 1,75,$

also in beiden Fällen fast genau gleich groß, wobei aber zu beachten ist, daß die Belastung beim Drehungsversuch sich noch hätte steigern lassen, wenn der Stab nicht krumm geworden wäre.

C. Bach, Elastizität. 8. Aufl.
Wenn auch die vorliegenden Versuche nicht ausreichen, um die Frage der Widerstandsfähigkeit von Rohren zu klären, so zeigen sie doch anschaulich, daß diese bei Drehungsbeanspruchung in ganz ähnlicher Weise durch die Wellenbildung, d. h. das Aufhören des stabilen Gleichgewichts zwischen dem äußeren Moment und den inneren Spannungen — Knicken der Wandung infolge der unter  $45^{\circ}$ zur Stabachse geneigten Hauptspannung — begrenzt ist, wie bei Druckbeanspruchung (§ 13). Die Festigkeit des Materials kann also auch in Rohren, die einer Drehungebeanspruchung unterworfen sind, nur mehr oder weniger unvollkommen ausgenützt werden, umso weniger, je dünner die Wand im Verhältnis zum Durchmesser ist.

# 4. Eigene Versuche zur Ermittlung des Einflusses von Schlitzen bei Hohlzylindern aus Flußeisen (1919).

	Querschnitt	Moment an der Streckgrenze kg.cm	Größtes aufgebrachtes Moment kg.cm	Pemerkungen
Fig 21	19.4	1095	1920	vgl. Fig. 22, Taf. XVIII (Wellen).
Fig. 23	15,2	<b>400 bis 5</b> 00	670	
Fig. 24	15,2	350 " 440	525	
Fig. 25	16.2 1914	175	235	

Fig. 21, 23, 24 und 25 zeigen die Querschnitte der Versuchskörper. Fig. 26 gibt die Ansicht eines derselben wieder.

Die Aufhebung des seitlichen Zusammenhanges durch den einen, aus Fig. 23 hervorgehenden Längsschlitz hat hiernach die Widerstandsfähigkeit an der Streckgrenze um reichlich die Hälfte vermindert. Die Streckgrenze war nicht deutlich ausgeprägt zu be-

C. Bach, Elastizität. 8 Aufl.

Taf. XVIII.

§ 35, S. 385 u. f. Fig. 22, S. 385. Fig. 27, S. 387. Fig. 28, S. 387. Fig. 36, S. 393.





Fig. 30, S. 389. Fig. 31, S. 390.

Fig. 33, S. 391.





Fig. 34, S. 391.





obachten, wahrscheinlich deshalb, weil an den Schlitzrändern Formänderungen einsetzten, die bei Steigerung der Verdrehung zum Schließen des Schlitzes führten. Unter dem Moment 670 kg.cm begannen sich die beiden Schlitzränder zu berühren; der Versuch wurde abgebrochen, weil der Körper krumm zu werden begann.

Anbringen eines zweiten Schlitzes — Fig. 24 — hatte weitere Abnahme der Widerstandsfähigkeit zur Folge. Das Moment an der Streckgrenze betrug reichlich ein Drittel der bei dem ganzen Rohr beobachteten Größe. Bei  $M_d = 525$  kg.cm begannen sich die Schlitzränder zu berühren. Der Versuch wurde nicht fortgesetzt, weil der Körper etwas krumm zu werden begann und andere Versuche gezeigt hatten, daß bei Steigerung der Verdrehung die beiden Rohrhälften sich flachdrücken. Fig. 27. Taf. XVIII zeigt einen

derartigen weit verdrehten Versuchskörper und läßt dies deutlich erkennen. Derselbe hatte an der Streckgrenze ein verdrehendes Moment von 500 kg.cm. bei Beginn des Berührens der Schlitzränder  $M_d = 650$  kg.cm und bei der aus Fig. 27 hervorgehenden Verdrehung  $M_d = 970$  kg.cm ausgehalten.

Der Versuchskörper mit 4 Schlitzen, Fig. 25, ergab abermals eine schr bedeutende Verminderung der Widerstandsfähigkeit an der Streckgrenze — 175 kg.cm, d. i. rund  ${}^{1/}{}_{6}$  des Wertes bei vollem Kreisringquerschnitt. — Auch hier wurde der Versuch nach geringer Verdrehung abgebrochen. Fig. 28, Taf. XVIII zeigt einen anderen Körper mit gleichem Querschnitt, der bis zum Bruch verwunden worden ist. Dieser erfolgte durch Abreißen eines der 4 Bänder, in die sich die Zylinderviertel ausgebreitet hatten, bei a, am Ende des Schlitzes (Moment an der Strackgenenge  $\psi_{50}$  kagem bei Apligeren der Schlitzränder



Fig. 26.

Streckgrenze 250 kg.cm, bei Anliegen der Schlitzränder 285 kg.cm beim Bruch 980 kg.cm).

Die Versuche zeigen, daß sich die Momente an der Streckgrenze ungefähr verhalten wie

$$1095:\frac{400+500}{2}:\frac{440+350}{2}:175=1:\frac{1}{2,4}:\frac{1}{2,8}:\frac{1}{6}.$$

Es liegt nahe, nach dem auf S. 371 gegebenen Vorgang zum Vergleich die Widerstandsfähigkeit eines rechteckigen Querschnittes heranzuziehen, der gleiche Dicke wie die Rohrwand hat und dessen Länge dem Umfang entspricht. Wird unter Anwendung von Gl. 7, § 34, gesetzt 26

$$\psi = 3 + \frac{2,6}{0,45 + \frac{h}{b}} = 3,07,$$

so kommt aus Gl. 6, § 34 mit  $\tau_{max} = \sigma_s = 1603 \text{ kg/qcm}$ 

$$1603 = \frac{M_d \cdot 3,07}{1,79 \pi \cdot 0,15^2} \qquad M_d = 66 \text{ kg.cm.}$$

Der flache Streifen hat also weit geringere Drehungsfestigkeit als das aufgeschnittene Rohr. Der Unterschied ist um so größer, je größer der Zentriwinkel ist, den die einzelnen Rohrteile umschließen.

Bemerkenswert erscheint noch, daß, sobald die Verdrehung beginnt, die Mantellinien sich schräg stellen. Infolgedessen treten am Anfang jedes Schlitzes starke Biegungsspannungen auf, die bei sprödem Material zum Bruch führen würden — vgl. auch Fig. 28, Taf. XVIII.

## 5. Eigene Versuche mit Stahlrohren zur Ermittlung des Einflusses kleiner Bohrungen (1918).

## a) Körper aus Chromnickelstahl.

Die Abmessungen des Versuchskörpers gehen aus Fig. 29 hervor. Wie ersichtlich, sind in der Mitte des zylindrischen Teiles 4 Löcher von 6,7 mm Durchmesser enthalten.

Zunächst wurden die Verdrehungen im zylindrischen Teil auf l = 80 mm gemessen. Die folgende Zahlentafel läßt die Ausgleichs-



werte erkennen. Die federnden Verdrehungen sind bis  $M_d = 150\,000$  kg.cm den Momenten proportional. Werden zunächst die 4 kleinen Löcher vernachlässigt, so ergibt sich für dieses Gebiet

 $\beta = 1:790150 = 1,27$  Milliontel.

Nach den unter c) besprochenen Versuchen ist für das Material ohne Bohrungen

 $\beta = 1:823600 = 1,21$  Milliontel.

Dies deutet darauf hin, daß die Löcher auf die geringe, ihrem Durchmesser entsprechende Länge eine viel bedeutendere Vermehrung der Verdrehung hervorbringen, als der Verminderung des

Querschnittes daselbst entsprechen würde. Diese beträgt

$$\frac{4 \cdot 0,67 \cdot (7,5-5,7)}{2} = 2,4 \text{ qcm}$$
(ganzer Querschnitt  $\frac{7,5+5,7}{2}\pi \cdot \frac{7,5-5,7}{2} = 18,7 \text{ qcm}$ ).

Hierauf weist auch das Aussehen der Oberfläche des Versuchskörpers an den Löchern nach stärkerer Verdrehung hin. Fig. 30,

Taf. XVIII zeigt deutlich, wie die ursprünglich gerade Mantellinie an dem durch die vier Löcher geschwächten Ringstück eine weit stärkere Neigung erfahren hat als im übrigen Verlauf. Anschaulich ist auch zu erkennen, daß das Loch in der Richtung unter 45[°] zur Rohrachse gestreckt worden ist.

Unter  $M_d = 175000$  kgcm begannen die bleibenden Verdrehungen rascher zu wachsen; starkes Unrundwerden der Löcher wurde bei  $M_d = 275000$  kg.cm beobachtet. Bruch erfolgte unter  $M_d = 328500$  kg.cm in einer senkrecht zur Stabachse gerichteten Ebene, ausgehend von einem Loch, vgl. Fig. 30, Taf. XVIII.

Wird Gl. 4, § 32 angewendet, wie wenn die 4 Löcher nicht vorhanden wären, so ergeben sich im zylindrischen Teil folgende Spannungen:

beim	$\operatorname{Beginn}$	$\mathbf{der}$	stärkeren	bleibenden	Verdrehungen	3171 l	xg/qcm
••	••	$\mathbf{des}$	Unrundwe	rdens der L	löcher	4983	,.
••	Bruch					5952	"

Ein Körper ohne die vier Löcher stand nicht zur Verfügung.

	V	erdrehungen,	mm,	gemessen	$\mathbf{am}$	Bogen	von	r =	13,00	$\mathbf{cm}$
--	---	--------------	-----	----------	---------------	-------	-----	-----	-------	---------------

.Moment	25000	25000	25000	25000	25000	25000	25000	25000	25000	25000
kg.cm	50000	75 000	100 000	125000	150000	175000	200 000	225000	250 000	275 000
						1		1		

#### a) Körper aus Chromnickelstahl (vgl. Fig. 29).

gesamte	0,159	0,318	0,478	0,642	0,837	1,092   1,420	0 1,850	2,500	3,662
bleibende	0	0	0,001	0,009	0,042	0,134 0,300	0,559	1,037	2,000
federnde	0,159	0,318	0,477	0,633	0,795	0,958 1.120	)   1,291	1,463	$1,\!662$

b) Körper aus Maschinenstahl (vgl. Fig. 29).

gesamte	0,155	0,311	$0,\!656$	6,295
bleibende	0	0,001	0,188	$5,\!586$
federnde	0,155	0,310	0,468	0,709

c) Körper aus Chromnickelstahl (vgl. Fig. 32).

gesamte	0,122	0,245	0,380	0,563	0,836	1,366	2.948	10,360
bleibende	0	0	0,013	0,072	0,221	0,615	2,032	9,245
federnde	0,122	0,245	0,367	0,491	0,615	0,751	0,916	1,115

d) Körper aus Maschinenstahl (vgl. Fig. 35).

gesamte	0,185	3,979 11,547	ļ	1	:
bleibende	0,035	3,631 11,001			
federnde	0,150	0,348  0,546			1

## b) Versuchskörper aus Maschinenstahl.

(Abmessungen wie bei Fig. 29.)

Die Zahlentafel zeigt die in gleicher Weise wie unter a) erlangten Ergebnisse. Die Verdrehungen sind den Momenten ungefähr bis  $M_d = 100000$  kg.cm proportional. Unter denselben Voraussetzungen wie unter a ergibt sich

 $\beta = 1:810500 = 1,24$  Milliontel.

Da für das Material an sich (vgl. die Versuche unter d)  $\beta = 1,21$  Milliontel ist, so liegen die Verhältnisse ganz ähnlich, wie unter a. Wird, um einen gewissen Einblick zu erlangen, die Schubzahl auf der durch die Löcher verschwächten Strecke von 6,7 mm Länge gleich x Milliontel gesetzt, so ergibt sich aus der Betrachtung der Verdrehung auf 80 mm Länge die Beziehung

$$(80 - 6,7)$$
 1,21 + 6,7 · x = 80 · 1,24  
x = 1,57 Milliontel

Hiernach erscheint die Verdrehung im Gebiet der Bohrungen durchschnittlich um

$$\varphi = \frac{1,57 - 1,21}{1,21} 100 = 30^{\circ}/_{0}$$

größer, während die Verschwächung des Querschnitts in der am stärksten geschwächten Mittelebene

$$\frac{2,4}{18,7}$$
 100 = 13°/₀

beträgt.

Beim ersten Versuchskörper (vgl. a) würde sich auf dieselbe Weise  $\varphi = 60^{0}/_{0}$ 

ergeben.

Bei genauerer Betrachtung wird erkannt, daß der Einfluß am Rand der Löcher noch erheblich größer ausfällt, als nach den Werten von  $\varphi$  anzunehmen wäre, am größten vermutlich in der Mittelebene. Hierauf deutet der allmähliche Übergang der starken Neigung der Mantellinie in die schwächere Neigung, die im zylindrischen Teil herrscht.

Das Moment konnte bis  $M_d = 243\,000$  kg.cm gesteigert werden und sank dann; Bruch erfclgte unter  $M_d = 230\,000$  kg.cm.

Wie unter a ergaben sich folgende Spannungen:

beim	Beginn	der	stärkere	n bleiber	ıden	Verdrehu	inge	en.	1812	kg/qcm
"	"	$\mathbf{des}$	Unrund	werdens	$\operatorname{der}$	Löcher		. •	2174	,,
,,	größten	wi	rkenden	Moment	(24	3000 kg.	cm)		<b>4403</b>	"

#### § 35. Drehungsversuche.

## c) Versuchskörper aus Chromnickelstahl. (Material wie bei a.)

Aus einem Körper der aus Fig. 29 hervorgehenden Abmessungen wurde durch Abdrehen das in Fig. 32 wiedergegebene Stück hergestellt, dessen zylindrischer Teil schwächer ist, so daß der die Bohrungen enthaltende Teil einen verstärkenden Bund aufweist.

Im zylindrischen Teil wurden zunächst auf l = 40 mm die Verdrehungen bestimmt. Die Zahlentafel läßt erkennen, daß die Ver-

drehungen den Momenten proportional sind bis  $M_d = 150\,000$  kg.cm. Für dieses Gebiet findet sich

 $\beta = 1:823\,600 = 1,21$  Milliontel.

Größere bleibende Verdrehungen stellten sich von  $M_d = 125000$  kg.cm an ein (entsprechend 3371 kg/qcm). Die Streckgrenze war ausgeprägt zu beobachten bei  $M_d = 150000$  kg.cm, entsprechend 4046 kg.qcm. Dabei begannen die Löcher in dem Bund unrund zu werden.

Beim Versuchskörper unter a waren größere bleibende Verdrehungen (unter Einschluß der verschwächten Stellen) entstanden bei einer Spannung von

3171 kg/qcm; die unter e beobachtete Spannung von 3371 kg/qcm ist nicht erheblich größer.

Das höchste Moment. das der Körper trug, war 241500 kg.cm (Spannung im zylindrischen Teile 6514 kg/qcm). Hierauf begann starkes Abschieben in Richtung der Stabachse, bis schließlich unter  $M_d = 220\,000$  kg.cm Bruch in der aus Fig. 33, Taf. XVIII, hervorgehenden Weise erfolgte. Fig. 34, Taf. XVIII, zeigt ein anderes der 4 Löcher und läßt erkennen, daß an ihm weitgehendes Abschieben in der Richtung eingesetzt hat, in der bei Fig. 33 der Bruch begann. Durch das Abdrehen des zylindrischen Teils ist die Widerstandsfähigkeit gegenüber derjenigen Schubkraft, die parallel zur Achse wirkte, bedeutend vermindert worden, während die senkrecht dazu, d. h. in Richtung des Umfangs wirkende Schubkraft die ausgeprägte Wirkung des verstärkenden Bundes erfuhr. Das geht auch deutlich aus der Betrachtung des eingeritzten Liniennetzes hervor. Im zylindrischen Teil hat ziemlich weitgehende, gleichförmige Verdrehung stattgefunden. Der Bund zeigt solche nicht. Nur am Loch ist Verschiebung, fast ausschließlich parallel zur Stabachse, zu beobachten.



Der Vergleich der beiden Versuchskörper a und c zeigt, daß das höchste Moment betrug

ohne Abdrehen	nach Abdrehen
328500 kg.cm	241 500 kg.cm.

Soll festgestellt werden, wie weit ein durch Löcher verschwächtes Rohr durch Anordnung eines Bundes verstärkt wird, so sind nicht diese höchsten Momente, sondern die Spannungen im zylindrischen Teil unter dem höchsten Moment zu vergleichen. Sie betragen

ohne Abdrehen	nach Abdrehen
5952 kg/qcm	6514 kg qcm.

Der Bund hat hiernach, sofern angenommen werden darf, daß die Wandstärke der Rohre ohne Einfluß auf das Maß der Verschwächung durch die Löcher bleibt, eine Erhöhung der Ausnützung des Rohrmaterials im zylindrischen Teil um

$$\frac{6514 - 5952}{5952} 100 = 9^0_{0}$$

bewirkt.

Fig. 33 und 34 zeigen deutlich, daß Verbreiterung des Bundes die Widerstandsfähigkeit des Versuchskörpers erhöht haben würde, sofern diese nicht durch andere Ursachen begrenzt erschiene. Hierüber siehe unter d.

### d) Versuchskörper aus Maschinenstahl.

(Material wie unter b.)

Mit Rücksicht auf die unter cangeführten Versuchsergebnisse wurde bei diesem Versuchskörper eine der beiden zylindrischen Strecken noch etwas mehr abgedreht, wie aus Fig. 35 hervorgeht.



Fig. 35.

Nach der Zahlentafel, die die Ergebnisse der auf l = 40 mm vorgenommenen Messungen enthält, findet sich für die erste Belastungsstufe

 $\beta = 1:825000 = 1,21$  Milliontel.

Stärkere bleibende Verdrehungen wurden beobachtet unter  $M_d = 75\,000$ kg.cm (entsprechend 2424 kg/qcm). Dabei begannen die Löcher leicht unrund zu werden.

Das höchste Moment, das aufgebracht werden konnte, betrug 144000 kg.cm (entsprechend 4654 kg/qcm). Der Körper begann nun Wellen zu bilden.

wie aus Fig. 36, Taf. XVIII, hervorgeht. Bruch erfolgte unter  $M_d == 143\,000$  kg.cm.

Der Bund hat, ähnlich wie bei Fig. 33, 34 besprochen, Abschieben erfahren, doch reichte dieses nicht zur Rißbildung aus. Vielmehr erfolgte die letztere infolge der Wellenbildung im stärker abgedrehten zylindrischen Teil.

Hieraus geht hervor, daß für ein Rohr, dessen Wandstärke und Durchmesser dem unteren Teil der Fig. 35 entspricht, bei 4 Bohrungen von 6,7 mm Durchmesser ein Bund von 15 mm Breite und 3,5 mm Höhe eine ausreichende Verstärkung gegenüber der Verschwächung durch das Loch bildet. 2,5 mm Höhe des Bundes würden gemäß dem Versuch unter c noch nicht genügen.

Für den Teil, in dem bei dem Versuch unter d der Bruch eintrat, beträgt das Verhältnis Wandstärke: mittlerer Durchmesser 5,5:62,5 = 1:11. Wird der auf S. 385 eingeschlagene Weg auch hier beschritten, so steht zu erwarten, daß das Verhältnis der Momente an der Streckgrenze und bei der Wellenbildung (Höchstlast) etwa 1:1,8 beträgt. Der besprochene Versuch ergibt 75000:144000oder 1:1,9.

Wird nun der unter c betrachtete Versuchskörper ins Auge gefaßt, so ergibt sich die Wahrscheinlichkeit, daß, falls nicht Aufreißen gemäß Fig. 33 erfolgt wäre, nach weiterer Steigerung des verdrehenden Momentes Wellenbildung und Bruch im zylindrischen Teil eingetreten sein würden. Die genaue Betrachtung des Probekörpers ließ in der Tat Ansätze zur Wellenbildung erkennen. Verstärkung des Bundes hätte diese nicht verhütet.

### Zusammenfassung.

Die im vorstehenden unter a bis d besprochenen Versuchsergebnisse lassen deutlich den erheblichen Einfluß selbst kleiner Löcher auf die Widerstandsfähigkeit bei Drehungsbeanspruchung erkennen. Sie zeigen, daß durch Anordnung von Verstärkungsbunden diesem Einfluß begegnet werden kann.

Andererseits weisen sie darauf hin, daß auch bei Drehungsbeanspruchung die Widerstandsfähigkeit von Hohlkörpern in weit stärkerem Maße durch die Möglichkeit der Wellenbildung begrenzt ist, als angenommen zu werden pflegt, worauf schon unter Ziff. 3 hinzuweisen war.

Weitere Versuche in dieser Richtung sind in Aussicht genommen.

# 6. Eigene Versuche mit Beton- und Eisenbetonkörpern (1910 und 1911).

Über die Versuche ist in Heft 16 der Veröffentlichungen des deutschen Ausschusses für Eisenbeton ausführlich berichtet. Kurze Angaben sind in der Fußbemerkung 1, S. 360, enthalten.

## 7. Eigene Versuche mit Rundstäben und mit Schrauben aus Schweiß- und Flußeisen (1894).

Über diese vom Verfasser in erster Linie zu dem Zweck durchgeführten Untersuchungen, den Einfluß der Gewindegänge auf die Widerstandsfähigkeit der Schrauben festzustellen, ist ausführlich in der Zeitschrift des Vereines Deutscher Ingenieure 1895, S. 854 bis 860 und S. 889 bis 894 berichtet¹). Unter Hinweis auf diese Veröffentlichung muß sich Verfasser hier auf die Anführung einiger der Hauptergebnisse beschränken.

Rechtsgängige Schrauben aus Schweißeisen, durch ein linkssinniges Moment verdreht, erfahren Einreißen bzw. Zerreißen der Gewindegänge von außen, wie die Fig. 37 bis 40, Taf. XIX, deutlich erkennen lassen, und zwar bei einer Beanspruchung, durch welche die Drehungsfestigkeit des Kernquerschnittes noch nicht erschöpft ist, im Durchschnitt bei rund 0,8 der Drehungsfestigkeit des Kernquerschnittes.

Fig. 37 und 39 gelten für Schrauben aus kalt gezogenem, Fig. 38 und 40 für Schrauben aus gewöhnlichem (vorher nicht überanstrengtem) Schweißeisen.

Linksgängige Schrauben aus Schweißeisen zeigen bei linksdrehendem Momente diese Rißbildung nicht, ebensowenig rechtsgängige Schrauben aus Schweißeisen bei rechtsdrehendem Momente.

Bei Schrauben aus zähem Flußeisen tritt eine Rißbildung überhaupt nicht auf. Hierin liegt — nebenbei bemerkt — ein Beitrag zur Wertschätzung des Flußeisens gegenüber dem Schweißeisen; einen weiteren liefert der Vergleich des Aussehens der Oberflächen der verdrehten Schweißeisenstäbe Fig. 41 bis 45, Taf. XIX, mit dem Aussehen der Oberflächen der verdrehten Flußeisenstäbe Fig. 46 und 47, Taf. XIX²).

Fig. 48 und 49, Taf. XV, zeigen Stahldrähte, die durch weitgehende Verdrehung zum Bruch gebracht wurden. Fig. 49 erinnert scheinbar an das Aus-

¹) S. auch "Abhandlungen und Berichte", 1897, S. 244 u. f.

²) Der Wert der Verdrehungsprobe zur Feststellung der Güte des Materials erscheint heute noch nicht ausreichend gewürdigt. Sie kann jedoch nur mit sorgfältig prismatisch bearbeiteten Stäben vorgenommen werden, selbst Reißnadelrisse führen oft vorzeitig den Bruch herbei.



Rundstäbe erfahren durch die Verdrehung eine Zunahme der Länge und eine Verminderung des Durchmessers.

Bei Schrauben hat die Verdrehung durch ein linksdrehendes Moment zur Folge eine Verlängerung, wenn sie rechtsgängig sind, und eine Verkürzung, wenn sie linksgängig sind. Die Ganghöhe wird im ersteren Falle kleiner, im letzteren größer.

Die Zugfestigkeit der Schrauben ist größer als diejenige der Rundstäbe aus dem gleichen Material (Schweißeisen, Flußeisen), eine Folge der Hinderung der Querzusammenziehung¹).

Die Drehungsfestigkeit der rechtsgängigen Schrauben aus Schweißeisen ist bei linksdrehendem Momente kleiner als diejenige der Rundstäbe aus dem gleichen Material (bezogen auf den Kerndurchmesser).

Bei Flußeisen, das durch ein linkssinniges Moment verdreht wird, ist die Drehungsfestigkeit der rechtsgängigen Schrauben nahezu gleich derjenigen der Rundstäbe, diejenige der linksgängigen Schrauben dagegen kleiner.

Während die Zugfestigkeit der Schrauben aus gezogenem Schweißeisen bedeutend größer ist als diejenige der Schrauben aus nicht gezogenem Schweißeisen, erscheint dies bei der Drehungsfestigkeit nur in geringem Maße der Fall.

#### 8. Drehungswinkel.

In dieser Hinsicht liegen eine größere Anzahl von Versuchen Bauschingers vor. (Zivilingenieur 1881, S. 115 u. f.)

Bauschinger hatte sich die Aufgabe gestellt, die von de Saint-Venant herrührende Gleichung

zu prüfen. In derselben haben  $\vartheta M_d \Theta' f$  und  $\beta$  die unter V, S. 342

sehen von Fig. 10, § 35, Taf. XVI. Der Bruch erfolgte entlang der ursprünglichen Ziehrichtung, die durch die Verdrehung in eine Spirale übergegangen ist. Bei Fig. 48 sind zahlreiche Stellen des Drahtes ohne bedeutende Verdrehung geblieben, die Formänderung hat sich also sehr ungleichförmig auf die ganze Stablänge verteilt.

¹) Daß bei häufig wechselnder Kraftrichtung die in § 9, Ziff. 1 besprochene Ungleichförmigkeit der Spannungsverteilung über den Querschnitt (die am Gewindegrund eine um so stärkere Spannungserhöhung zur Folge hat, je schärfer das Gewinds ausgebildet ist) um so leichter zum Bruch führt, je weniger die Gewindegänge ausgerundet sind, steht hiermit nicht im Widerspruch. Vgl. auch § 56, Ziff. 3.

angegebene Bedeutung, während  $\psi$  einen Koeffizienten bezeichnet, der rechnungsmäßig betragen soll¹)

für	den	Kreis und	die	Ellipse	$\psi = 4$	$\pi^2 = 39,5,$
für	das	Rechteck,	wen	an $h:b=1$	:1;	$\psi = 42,68$ ,
			77	h:b=2	::1,	$\psi = 42,0,$
			"	h:b == 4	::1,	$\psi = 40,2,$
			**	h:b = 8	3:1.	$\psi = 38,5,$
für	das	gleichseitige	e Di	reieck		$\psi = 45$ ,
für	das	regelmäßige	e Se	chseck		$\psi = 41$ ,
für	den	Kreisaussc	hnitt	, wenn de	r Zentriwi	nkel
				4	15°,	$\psi = 42,9,$
				ę	90 <b>°</b> ,	$\psi = 42,4,$
				18	30°,	w = 40.8.

Wird das gleichseitige Dreieck außer acht gelassen, so unterscheiden sich die Werte von  $\psi$  nicht bedeutend, infolgedessen bereits de Saint-Venant für  $\psi$  den abgerundeten Mittelwert 40 vorgeschlagen hat.

Eigene Versuche (1910) lieferten für das I-Eisen Normalprofil 20

1) Comptes rendus 1878, t. LXXXVII, S. 893 u. f.

" 1879, t. LXXXVIII, S. 143.

Gleichung 5 ist auch auf andere Querschnitte angewendet worden, wohl infolge des Umstandes, daß de Saint-Venant von ihr sagt: "La formule peut être appliquée non seulement à des sections elliptiques, mais à des sections de toute forme, en faisant varier fort peu la fraction que nous avons appelée  $\psi$ ." Das kann ohne Nachweis im einzelnen Falle zu großen Fehlern führen. So ergibt sich beispielsweise für den kreisförmigen Hohlzylinder mit einer im Verhältnis zum Durchmesser geringen Wandstärke bei Einführung der Bezeichnungen S. 342 und 346

$$\Theta' = \frac{\pi}{4} d_m^3 s \qquad f = \pi d_m s,$$

folglich nach Gleichung 5, wenn  $\psi = 4\pi^2$  gesetzt wird,

 $\vartheta = \frac{1}{\pi} M_d \beta \frac{1}{d_m s^3}$ , ..., 5a)

während Gleichung 6, § 32, liefert

Beispielsweise findet sich für  $d_m = 20$  cm, s = 1 cm

nach Gleichung 5a

$$d_m = 20 \text{ cm}, \ s =$$
  
$$\vartheta = \frac{1}{\pi} M_d \beta \frac{1}{20},$$

nach Gleichung 5 b  $\vartheta = \frac{1}{\pi} M_{\sigma} \beta \frac{1}{2000}$ ,

d. i. im ersteren Falle 100 mal mehr!

Gleichung 5 gilt eben nicht für den Hohlzylinder, wie Verfasser aus Anlaß einer geltend gemachten gegenteiligen Meinung in der Zeitschrift des Vereines deutscher Ingenieure 1905, S. 960, dargelegt hat. (also von der Höhe 200 mm) aus zähem Flußeisen die Größe von  $\psi$  zu 40 bis 42¹).

1909 hat Bretschneider in der Materialprüfungsanstalt der Techn. Hochschule Stuttgart Versuche mit rechteckigen Stäben aus Flußeisen durchgeführt, aus denen sich, wenn in Gleichung 5 gegesetzt wird

$$\Theta' = \frac{1}{12} (b h^3 + b^3 h) \quad \text{und} \quad f = b h.$$
  
$$\vartheta = \psi_0 M_d \frac{b^2 + h^2}{b^3 h^3} \beta, \quad \dots \quad \dots \quad \dots \quad 6)$$

so daß

folgende Vergleichswerte für  $\psi_0$  ergeben

	nach de Saint-Venant	nach den Versuchen	nach Gleichung 7a
h: b == 1	: 1 3,56	$3,\!58$	$3,\!585$
h: b = 2	:1 3,50	3,53	3,525
h: b == 4	:1 3,35	3,40	$3,\!405$
h: b = 6	: 1 3,26	3,29	$3,\!285$

Hierbei waren die geraden Stäbe, wie es auch die Entwicklungen von de Saint-Venant voraussetzen, reiner Verdrehung unterworfen.

Der nach Maßgabe der Gleichung 9 in § 43 ermittelte Näherungswert  $\psi_0 = 3,6$  liefert somit ausreichend genaue Ergebnisse für h:b bis 2:1. Die Abweichung beträgt in diesem Falle von dem Versuchswert 3,53 rund  $2^0/_0$ . Bei h:b=4:1 steigt sie auf rund  $6^0/_0$ .

Die Abhängigkeit der Werte  $\psi_0$  von dem Seitenverhältnis h:bläßt sich mit ziemlicher Genauigkeit bis h:b=6:1 durch

zum Ausdruck bringen, wie Verfasser schon bei Schraubenfedern vor längerer Zeit festgestellt hat (vgl. § 57 unter Ziff. 1). Wird A = 3,645 und B = 0,06 gesetzt, d, h.

$$\psi_0 = 3,645 - 0,06 \frac{h}{b}, \dots, 7a$$

so ergeben sich die in der letzten Spalte der Zusammenstellung enthaltenen Werte.

1) Somit ist für das untersuchte Profil

$$\vartheta = 40 \ M_a \frac{117 + 2142}{33,5^4} \beta$$
 bis  $42 \ M_a \frac{117 + 2142}{33,5^4} \beta = 0.072 \ \beta \ M_a$  bis  $0.075 \ \beta \ M_a$ .

Die in Fußbemerkung 1, S. 374 angeführte Gleichung von Föppl würde mit  $\zeta = 1$ liefern

$$\partial = \beta M_d \cdot \frac{3}{2 \cdot 9 \cdot 1, 13^3 + 17, 74 \cdot 0, 75^3} = 0,09 \ \beta M_d,$$

was darauf hindeutet, daß statt  $\zeta = 1$  zu setzen wäre,

 $\zeta = 1,18$  bis 1,25.

# § 36. Zusammenfassung.

Nach Maßgabe der in den Paragraphen 32 bis 34 enthaltenen Erörterungen sowie auf Grund der in § 35 niedergelegten Versuchsergebnisse lassen sich folgende Beziehungen zusammenstellen.

Der in der letzten Spalte auftretende Wert  $K_d$  ist für den rechteckigen Querschnitt aus Drehungsversuchen nach Gl.5 in § 34 berechnet.

Nr.	Querschnittsform	${ m Drehungsmoment}\ M_d$	Drehungswinkel ປ	K _d : K _z für Gußeisen
1		$rac{\pi}{16} k_d d^3$	${32\over \pi}{M_d\over d^4}eta$	reichlich 1
2		$\frac{\pi}{16}k_a\frac{d^4}{d}-\frac{d_0^4}{d}$	$\frac{32}{\pi}\frac{M_d}{d^4-d_0^4}\beta$	reichl. 0,81)
3		$rac{\pi}{2}k_{d}ab^{2}$	$\frac{1}{\pi}M_d\frac{a^2+b^2}{a^3b^3}\beta$	1 bis 1,25°
4	$\begin{array}{c} \begin{array}{c} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \\ \bullet & \bullet &$	$\frac{\pi}{2}k_d\frac{ab^3-a_0b_0^3}{b}$	$\frac{1}{\pi} M_d \frac{a^2 + b^2}{a^3 b^3 (1 - m^4)} \beta$	0,8 bis 1 ³ )
5	$a_0: a = b_0: b = m$	$rac{1}{1,09}k_db^3$	$0.967 \frac{M_d}{b^4} \beta$	-

¹) ²) ³) s. S. 401.

Nr.	Querschnittsform	Drehungsmoment $M_{d}$	${f Drehungswinkel}\ artheta$	K _d : K _z für Gußeisen
		$\frac{1}{\psi}k_{d}b^{2}h$ worin	$\psi_0 M_d  {b^2 + h^2 \over b^3  h^3} eta$ worin	
6		$\psi = 3 + \frac{2.6}{h}$	$\psi_0 = 3,645 - 0,06 \frac{h}{b}$	1,4 bis 1,6 ² )
	h > b	$\frac{1}{b} + 0,43$	Üher die Ergebnisse der Versuche mit Schraubenfedern vgl. S. 575 u. f.	
7		$\frac{2}{9}$ - $k_d b^2 h$		1,5
8		$\frac{2}{9}k_ab^2h$	_	1,5
9	10 × 10 × 10	$\frac{1}{20}  k_d b^3$	$46.2{M_d\over b^4}eta$	
10		$\frac{2}{9}k_a\frac{b^3h-b_0^3h_0}{b}$		1 bis 1,25 ³ )
	$h > b$ $h_0: h = b_0: b$			
11		$\frac{2}{9} k_d s^2 (h + 2 b_0)^{-4}$	$\psi M_{d} \frac{\Theta'}{f^{4}} \beta$ $\psi = 40 \text{ bis } 42^{5})$	1,4 bis 1,6 ²

²) ³) ⁴) ⁵) s. S. 401.

Nr.	Querschnittsform	Drehungsmoment $M_d$	$\mathrm{Drehungswinkel} \ artheta$	K _d : K _z fü <b>r</b> Gußeisen
12	4	$\frac{2}{9} k_d s^2 (h+b-s)$		1,4 bis 1,6 ² )
13	$s = b - b_0 = 0.5 (h - h_0)$	$\frac{2}{9} k_d s^2 (h + 2 b_0)$		1,4 bis 1,6 ²)
14		$\frac{2}{9}k_{d}s^{2}(h+b-s)$		1,4 bis 1,6 ² )

Die Zugfestigkeiten  $K_z$  und die Drehungsfestigkeiten  $K_d$  setzen Gußeisen voraus, wie es zu zähem, festem Maschinenguß Verwendung findet. Die Drehungsfestigkeiten wurden an unbearbeiteten Stäben, Fig. 1 bis Fig. 7, § 35, und Fig. 14, 16, 17, § 35 (in getrockneten Formen gegossen) ermittelt.

Die Versuchsstäbe Nr. 6 (sofern h > b), Nr. 11 bis 14 brachen immer in der Nähe der Endplatten, entsprechend dem Umstande, daß sich an diesen Stellen der Ausbildung der Querschnittswölbung ein Hindernis bietet, das trotz der Hohlkehle, mit welcher der prismatische Teil an die Endplatten anschließt, hier zum Bruche führt. Der letztere ist die Folge einer gleichzeitigen Inanspruchnahme durch Schub- und durch Normalspannungen, wie in § 34, Ziff. 3, erörtert worden ist. (Vgl. auch § 35, Gußeisen A, a.) Der ermittelte Wert von  $K_d$  muß deshalb kleiner sein als die tatsächliche Drehungsfestigkeit. In denjenigen Fällen der Anwendung, in denen die Sachlage hinsichtlich des Anschlusses eines auf Drehung in Anspruch genommenen Stabes an einen solchen mit größerem Querschnitt eine ähnliche ist wie bei den Versuchskörpern, schließen die angegebenen Werte von  $K_d$  die Berücksichtigung der gleichzeitigen Inanspruchnahme durch Normalspannungen in sich. In Fällen der reinen

²) s. S. 401.

Drehungsanstrengung (ohne Hinderung der Querschnittswölbung) führt die Verwendung dieser Werte zu einer etwas größeren Sicherheit, was im Sinne des Zweckes unserer Festigkeitsrechnungen zu liegen pflegt.

Die Gleichungen für Nr. 13 und Nr. 14 bedingen kräftige Rippen, etwa von s:h=1:5 an. Außerdem ist für Nr. 13 noch zu fordern, daß  $b_0$  nicht wesentlich mehr als  $s=b-b_0$  d. i.  $=\frac{b}{2}$  beträgt.

- ¹) Dieser Wert hängt ab von dem Verhältnis  $d_0:d$ . In dem Maße, in dem sich dasselbe der Null nähert, steigt er etwa bis reichlich 1. Die Zahl 0,8 gilt für  $d_0:d$  ungefähr gleich 0,7. Vorausgesetzt ist, daß die Wandstärke im Vergleich zum mittleren Durchmesser ausreicht, um vorzeitige Wellenbildung zu verhüten (vgl. § 35, 3, 4, 5). Über die Wirkung von Längsschlitzen und Querbohrungen vgl. S. 386 u. f.
- ²) Es sind um so geringere, der kleineren Zahl näher kommende Werte zu wählen, je mehr sich je beziehungsweise die Ellipse dem Kreise, das Rechteck dem Quadrate, der <u>I</u>- und der <u>I</u>-Querschnitt der Quadratform  $(b_0 = 0, h = s)$ , ebenso der <u>H</u>- und der <u>I</u>-förmige Querschnitt der letzteren (h = b = s)nähern.
- ³) Hier sind die Bemerkungen ¹) und ²) zu berücksichtigen. Je kleiner verhältnismäßig  $a_0$  und  $b_0$  (gegenüber a und b) beziehungsweise  $b_0$  und  $h_0$  (gegenüber b und h) sind, um so mehr nähert sich unter sonst gleichen Verhältnissen der Koeffizient der oberen Grenze. Das gleiche gilt, je langgestreckter der Querschnitt ist.
- ⁴) Nach eigenen Versuchen mit <u>T</u>-Eisen Normalprofil Nr. 20 (Flußeisen) kann gemäß Gleichung 1 a, § 35. gesetzt werden

$$M_d = \operatorname{rund} \frac{1}{3} k_d \left[ s^2 h + 2 s_0^2 b_0 \right],$$

worin  $s_0$  die mittlere Flanschenstärke bezeichnet.

 ⁵) Nach eigenen Versuchen mit <u>T</u>-Eisen Normalprofil Nr. 20 (Flußeisen), vgl. S. 397 sowie Fußbemerkung ¹) daselbst.

## VI. Schub.

## § 37. Allgemeines.

# Schubanstrengung unter der Voraussetzung gleichmäßiger Verteilung der Schubspannungen über den Querschnitt.

Der Fall der Inanspruchnahme auf Schub wird dann als vorhanden betrachtet, wenn sich die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte für den in Betracht gezogenen

C. Bach, Elastizität. 8 Aufl.

Querschnitt ersetzen lassen durch eine Kraft (Schubkraft), die in die Ebene des letzteren fällt und die Stabachse senkrecht schneidet.

Erfüllt erscheint diese Voraussetzung nur bei einer Sachlage, wie sie in Fig. 1 dargestellt ist, entsprechend dem Arbeitsvorgange bei einer Schere zum Schneiden von Eisen. Aber auch hier nur in dem Augenblick, in dem der Stab von den Kanten der beiden Scherblätter A und B gerade berührt wird; denn sobald das obere Blatt sich weiter vorwärts bewegt, dringen beide Blätter in den Stab ein, Fig. 2: an die Stelle der Berührung des letzteren in zwei Linien durch A und B tritt eine solche in zwei Flächen.

Damit rückt die obere Kraft S nach rechts, die untere nach links; es entsteht neben der Schubkraft S ein rechtsdrehendes Kräftepaar, dessen Moment noch dadurch gesteigert wird, daß sich die Kraftrichtung neigt. Dieses Moment ruft Biegungsbeanspruchungen wach, die bedeutend werden können. Aus Scherversuchen mit



sprödem Material pflegen sich erheblich zu geringe Werte für die Schubfestigkeit zu ergeben¹).

Wir erkennen, daß — streng genommen — Schubinanspruchnahme allein niemals vorkommen kann, daß vielmehr die Schubkraft S immer von einem biegenden Moment begleitet sein wird.

Die Schubkraft S ruft in dem betrachteten Querschnitt Schubspannungen wach, die im allgemeinen von Flächenelement zu Flächenelement veränderlich sein werden, und bezüglich welcher zunächst nur bekannt ist, daß sie, je multipliziert mit dem zugehörigen Flächenelement und zusammengefaßt, eine Resultante geben müssen, die gleich und entgegengesetzt S ist. Mit der Unterstellung, daß die Schubspannungen in den verschiedenen Flächenelementen entgegengesetzt S gerichtet, also unter sich parallel sind, und die gleiche Größe  $\tau$  über den ganzen Querschnitt von der Größe fbesitzen, findet sich

¹) Vgl. z. B. Zeitschrift des Vereines deutscher Ingenieure 1906, S. 1757 u. f.

woraus mit k, als zulässiger Schubanstrengung folgt

Hinsichtlich der gemachten Annahme, betreffend die Richtung und die Größe der Schubspannungen, ist folgendes zu bemerken.

Greifen wir den kreisförmigen Querschnitt, Fig. 3, heraus, so müßte hiernach beispielsweise im Querschnittselement des Umfangspunktes C bei senkrecht nach unten wirkender Schubkraft S die Schubspannung vertikal aufwärts gerichtet sein, während sie tatsächlich in die Richtung der Tangente im Punkte C des Kreises fallen muß, es sei denn, daß in diesem Umfangspunkte eine äußere Kraft tätig wäre, die eine andere Richtung von  $\tau$  bedingen würde. In



den Punkten C bis D des rechteckigen Querschnittes, Fig. 4, wird die entgegengesetzt S gerichtete Schubspannung in Wirklichkeit Null sein müssen — sofern äußere Kräfte hier nicht angreifen — während sie nach der obigen Voraussetzung in allen Flächenelementen die gleiche Größe besitzen sollte usf.

Hieraus folgt, daß die Unterstellung, die zu der Beziehung 1 und 2 führte, wenigstens im allgemeinen unzutreffend ist.

# § 38. Die Schubspannungen im rechteckigen Stabe.

Wir erkannten in der Einleitung, daß die Schubkraft immer von einem biegenden Moment begleitet sein wird. Davon ausgehend, stellen wir uns die Aufgabe, für die in Fig. 1 und 2 gezeichnete Sachlage - Balken einerseits eingespannt, am anderen freien Ende belastet — die Größe der Schubspannungen im Abstande  $\eta$  von der y-Achse, die hinsichtlich der Inanspruchnahme auf Biegung als Nullachse erscheint, zu ermitteln.

Zu dem Zwecke denken wir uns ein Körperelement ABCD, Fig. 1 bis 3, von der Länge  $x_1 - x$ , der Breite b und der Höhe  $e - \eta$ aus dem Stabe herausgeschnitten. Auf die Stirnflächen AB und CD desselben, Fig. 3, wirken Normalspannungen  $\sigma$ , die mit dem Abstande  $\eta$  wachsen. Nach § 16 darf unter der Voraussetzung, daß die Dehnungszahl unveränderlich ist, diese Zunahme proportional 26*

der ersten Potenz von  $\eta$  gesetzt werden, wie auch Fig. 8, § 16 daselbst erkennen läßt.

Nach Gleichung 9, § 16, ist für den Querschnitt AB, da hier  $M_b = Px$ , die Normalspannung im Abstande  $\eta$ 

$$\sigma_{\eta} = \frac{Px}{\Theta} \eta$$

und die Normalspannung im Abstande e

$$\sigma_e = \frac{Px}{\Theta}e,$$

sofern  $\Theta = \frac{1}{12} b h^3$  das Trägheitsmoment des Querschnittes in bezug auf die y-Achse.



Die auf die Querschnittsfläche AB von der Größe  $b(e - \eta)$ wirkenden Spannungen liefern zusammengefaßt eine Normalkraft

$$N = \frac{\sigma_{\eta} + \sigma_{e}}{2}b(e-\eta) = \frac{Px}{\Theta}\frac{e+\eta}{2}b(e-\eta) = \frac{Px}{\Theta}\frac{e^{2}-\eta^{2}}{2}b.$$

Für den Querschnitt CD findet sich wegen  $M_b = Px_1$  auf ganz gleichem Wege diese Normalkraft zu

$$N_1 = \frac{P x_1}{\Theta} \frac{e^2 - \eta^2}{2} b.$$

Da infolge  $x_1 > x$  auch  $N_1 > N$  ist, so muß die Kraft  $N_1 - N = \frac{P}{\Theta} (x_1 - x) \frac{e^2 - \eta^2}{2} b$ 

durch Spannungen in der Fläche CA, deren Größe gleich  $(x_1 - x)b$ , übertragen werden, sofern an der Mantelfläche BD äußere Kräfte nicht angreifen, was vorausgesetzt werden soll. Diese in der Richtung CA wirkenden und über die Stabbreite b als gleich groß angenommenen Schubspannungen seien mit  $\tau$  bezeichnet. Dann gilt

$$N_1 - N = \tau \left( x_1 - x \right) b = \frac{P}{\Theta} \left( x_1 - x \right) \frac{e^2 - \eta^2}{2} b,$$

woraus

$$\tau = \frac{P}{\Theta} \frac{e^2 - \eta^2}{2} = 6 \frac{P}{b h^3} (e^2 - \eta^2) = \frac{3}{2} \frac{S}{b h} \left\{ 1 - \left(\frac{\eta}{h}\right)^2 \right\} \dots \dots 1)$$

unter Beachtung, daß hier P = S.

Die Schubspannung erlangt ihren größten Wert für  $\eta = 0$ , d. i. für die Stabmitte (Nullachse). Derselbe beträgt

$$\tau_{max} = \frac{3}{2} \frac{S}{bh} = \frac{3}{2} \frac{S}{f}, \dots \dots \dots \dots \dots 2$$

sofern bh = f gesetzt wird.

In der Nullachse ist hiernach die Schubspannung um 50% größer als bei gleichmäßiger Verteilung der Spannungen über den Querschnitt.

Für  $\eta = \frac{h}{2}$ , d. i. für die am weitesten von der Nullachse abstehenden Punkte, wird  $\tau = 0$ .

Werden in Fig. 4 die zu den einzelnen Abständen  $\eta$  gehörigen Werte von  $\tau$  als wagrechte Ordinaten aufgetragen, so wird eine Linie EFE erhalten, die das Änderungsgesetz von  $\tau$  klar veranschaulicht. Diese Linie ist für das Rechteck eine Parabel, deren Scheitel F um  $\overline{OF} = \tau_{max} = \frac{3}{2} \frac{S}{bb}$  von O abliegt, wie sich ohne weiteres ergibt, wenn die Senkrechte FG als Ordinatenachse gewählt wird und der Glei-





oder

gegeben wird.

Die vorstehende Betrachtung ermittelte die Schubspannungen in Ebenen, die parallel zur Stabachse laufen und senkrecht zur Richtung der Schubkraft S stehen, so z. B. in einem beliebigen Punkt P der Linie P'P', Fig. 4, immer diejenige Schubspannung  $\tau$ , die senkrecht zu P'P' wirkt und parallel zur Stabachse (demnach senkrecht zur Bildebene, Fig. 4) gerichtet ist. Nach § 30 (vgl. auch Fig. 5, § 32) treten die Schubspannungen immer paarweise auf, derart, daß die obenerwähnte Spannung  $\tau$  auch im Punkte P der Querschnittsebene, also in der Bildebene liegend, vorhanden ist. Infolge-

dessen ergibt die Gleichung 1 gleichzeitig die Schubspannungen in der Querschnittsebene, und zwar diejenigen, die im Abstande  $\eta$  in dem Flächenstreifen  $bd\eta$  wirksam sind. Damit ist in Gleichung 1 ebenfalls das Gesetz gewonnen, nach dem sich die Schubspannungen in der Ebene des Querschnittes verteilen.

Die Forderung, daß diese Spannungen in den Umfangspunkten des Querschnittes immer mit der Tangente an die Begrenzungslinie zusammenfallen müssen, sofern äußere, eine andere Richtung bedingende Kräfte hier nicht angreifen, wird von diesem Verteilungsgesetz erfüllt. In den Punkten der Begrenzungslinie AC, Fig. 4, § 37, fällt die Richtung von  $\tau$  mit AC zusammen, und in CBD ist  $\tau = 0$ .

Mit der Veränderlichkeit der Schubspannung ist naturgemäß Krümmung der ursprünglich ebenen Querschnitte verknüpft, bezüglich welcher auf § 52 verwiesen sei.

# § 39. Die Schubspannungen im prismatischen Stabe von beliebigem, jedoch hinsichtlich der Kraftebene symmetrischem Querschnitt.

Es bezeichne unter Bezugnahme auf Fig. 1

- S die Schubkraft, die in die Richtung derjenigen Hauptachse fällt, von der vorausgesetzt werde, daß sie Symmetrieebene des Querschnittes ist,
- $\Theta$  das Trägheitsmoment des Querschnittes in bezug auf diejenige Achse, die zu S senkrecht steht, d. i. die y-Achse,
- f die Größe des Querschnittes,
- 2y die Breite des Querschnittes im Abstande  $\eta$ ,
- $M_{\eta} = \int_{\eta}^{\kappa} 2y \eta d\eta$  das statische Moment der zwischen den Abständen  $\eta$ und e gelegenen (in der Figur durch Strichlage hervorgehobenen)

und e gelegenen (in der Figur durch Strichlage hervorgehobenen) Fläche des Querschnittes hinsichtlich der y-Achse,

- $\varphi'$  den Winkel, den die Tangente im Umfangspunkte P' mit der Symmetrieachse einschließt,
- $\tau'$  die Schubspannung, die in dem um  $\eta$  abstehenden Umfangspunkte P' durch S hervorgerufen wird,
- $k_s$  die zulässige Anstrengung des Materials bei Inanspruchnahme auf Schub.

Nach dem Vorgange in § 38 schneiden wir aus dem Stabe (vgl. auch Fig. 1 und 2, § 38) ein Körperelement, Fig. 2, heraus.

Auf das im Abstande  $\eta$  gelegene Flächenelement  $2 y d \eta$  der Stirnfläche AB wirkt die Normalspannung

$$\sigma_{\eta} = \frac{Px}{\Theta} \eta.$$

Hieraus ergibt sich für die Schnittfläche AB von der Größe  $\int 2 y d\eta$  die Normalkraft



Für die Stirnfläche CD findet sich auf ganz gleichem Wege die Normalkraft

$$N_1 = P x_1 \frac{M_{\eta}}{\Theta}.$$

Demnach der Überschuß  $N_1$  über N

$$N_1 - N = \frac{P}{\Theta} (x_1 - x) M_{\eta}$$

Diese Kraft muß durch Schubspannungen, in der Fläche CA, deren Größe gleich  $(x_1 - x) 2y$  ist, übertragen werden. Dieselben, in Richtung der Stabachse, also senkrecht zur y-Achse wirkend, seien als gleich groß über die Breite 2y vorausgesetzt und mit  $\tau_y$  bezeichnet.

VI. Schub.

Dann folgt

$$N_{1} - N = \tau_{y} \cdot 2 (x_{1} - x) y = \frac{P}{\Theta} (x_{1} - x) M_{\eta},$$
  
$$\tau_{y} = \frac{P}{2y} \cdot \frac{M_{\eta}}{\Theta} \quad \dots \quad \dots \quad \dots \quad \dots \quad 1)$$

Bei der vorstehenden Entwicklung wurde angenommen, daß die Änderung des biegenden Momentes beim Vorwärtsschreiten von dem einen zu dem anderen der beiden um  $x_1 - x$  voneinander abstehenden Querschnitte nach Maßgabe der Fig. 1, § 38, nur von der Kraft Pbeeinflußt werde. Für den Fall, daß diese Voraussetzung nicht zutrifft, daß vielmehr der Stab, Fig. 3, außer durch die am freien Ende angreifende Kraft P auch noch sonst belastet ist, etwa durch eine Kraft P', durch die gleichmäßig über ihn verteilte Last ql, sowie durch eine zwischen den beiden Querschnitten angreifende Last P'', findet sich für

die Stirnfläche AB

die Stirnfläche CD

$$Px + P'x' + q \frac{x^{2}}{2}, \qquad Px_{1} + P'x_{1}' + q \frac{x_{1}^{2}}{2} + P''x_{1}'',$$
  
die Normalspannung  $\sigma_{\eta}$ :  
$$\frac{Px + P'x' + q \frac{x^{2}}{2}}{\Theta} \eta, \qquad \frac{Px_{1} + P'x_{1}' + q \frac{x_{1}^{2}}{2} + P''x_{1}''}{\Theta} \eta,$$
  
die Normalkraft  $\int_{\eta}^{c} 2y \sigma_{\eta} d\eta$ :  
$$N = \frac{Px + P'x' + q \frac{x^{2}}{2}}{\Theta} M_{\eta}, \quad N_{1} = \frac{Px_{1} + P'x_{1}' + q \frac{x_{1}^{2}}{2} + P''x_{1}''}{\Theta} M_{\eta}.$$

Hieraus folgt

$$N_1 - N = \frac{P(x_1 - x) + P'(x_1' - x') + \frac{q}{2}(x_1^2 - x^2) + P''x_1''}{\Theta} M_{\eta}.$$

Wegen

$$\frac{\xi = x_1 - x = x_1' - x',}{\frac{x_1^2 - x^2}{2} = \frac{x_1 + x}{2}(x_1 - x) = \xi \frac{x_1 + x}{2}$$

wi**r**d

$$N_{1} - N = \frac{P\xi + P'\xi + q\frac{x_{1} + x}{2}\xi + P''x_{1}''}{\Theta} M_{\eta}$$

Diese Kraft ist durch die Schubspannungen in der Fläche CAvom Inhalte  $2y\xi$  zu übertragen. Soll deren Größe innerhalb dieser Fläche als konstant angenommen werden dürfen, so muß  $\xi$  unendlich klein gewählt werden. Dann ergibt sich zunächst

$$N_1 - N = \tau_y \, 2 \, y \, \xi$$

und die Schubspannung:

1. für den Querschnitt CD im Abstande  $x_1 = x + \xi$  vom freien Ende

$$\tau_{y} = \frac{P + P' + q \frac{x_{1} + x}{2} + P'' \frac{x_{1}''}{\xi}}{2 y \Theta} M_{\eta},$$

woraus unter Beachtung, daß, wenn  $\xi$  unendlich klein ist,  $\frac{x_1''}{\xi} = 1$  sein muß,

$$\tau_y = \frac{P + P' + qx_1 + P''}{2y\Theta} M_{\eta};$$

2. für den Querschnitt AB im Abstande x vom freien Ende

$$\tau_y = \frac{P + P' + qx}{2\,y\,\Theta}\,M_\eta.$$

Im ersteren Falle ist

$$P + P' + qx_1 + P'' = S$$

und im zweiten

$$P+P'+qx=S.$$

Demnach allgemein

$$\tau_y = \frac{S}{2y} \frac{M_{\eta}}{\Theta}, \quad \dots \quad \dots \quad \dots \quad \dots \quad 1)$$

ganz, wie oben schon gefunden¹).

Dieser Wert, der zunächst nur die wagrechte Schubspannung bestimmt, nach § 30 aber auch gleich der senkrechten Schubspannung in demselben Punkte des in wagrechter Lage gedachten Stabes ist, bedarf noch einer Ergänzung, damit die Forderung befriedigt wird, daß die Schubspannungen in den Querschnittselementen der Umfangspunkte tangential zur Begrenzungslinie gerichtet sind.

Diese Forderung bedingt beispielsweise für das im Punkte P', Fig. 1, gelegene Flächenelement, daß die Schubspannung in die Rich-

$$\frac{dM_b}{dx} = S$$

¹) Die vorstehende Entwicklung läßt sich kürzer und allgemeiner gestalten, wenn von dem Satze Gebrauch gemacht wird, daß der erste Differentialquotient des biegenden Momentes  $M_b$  in bezug auf x gleich der Schubkraft ist, d. h.

Aus leicht ersichtlichem Grunde wurde dem eingeschlagenen Wege der Vorzug gegeben.

tung der Tangente TP'Q oder QP'T fällt. Andererseits fanden wir oben, daß die senkrecht zur y-Achse, also parallel zur Richtung der Schubkraft wirkenden Schubspannungen die nach Gleichung 1 bestimmte Größe  $\tau_y$  besitzen müssen. Beiden Bedingungen wird durch die Annahme Befriedigung, daß die Schubspannung im Punkte P'beträgt

$$\tau' = \frac{\tau_y}{\cos \varphi'} = \frac{S}{2y \cos \varphi'} \frac{\mathcal{M}_{\eta}}{\Theta} \quad \dots \quad \dots \quad 2)$$

und für den beliebig zwischen P'P' gelegenen Querschnittspunkt P

$$\tau = \frac{\tau_y}{\cos\varphi} = \frac{S}{2y\cos\varphi} \frac{M_{\eta}}{\Theta} \quad \dots \quad \dots \quad 3)$$

Gleichung 3, aus der sich die Beziehung 2 mit  $\varphi = \varphi'$  als Sonderwert ergibt, spricht aus, daß die sämtlichen Schubspannungen in den um  $\eta$  von YY abstehenden Querschnittselementen sich in demselben Punkte Q schneiden und die gleiche Komponente  $\tau_y$  in der Richtung von S besitzen.

Wegen  $\tau' \leq k_s$  ergibt sich

oder

Aus der Gleichung 2 folgt nachstehendes.

a) Rechteckiger Querschnitt, Fig. 2, § 38, da hier

$$2 y = b \qquad \varphi' = 0,$$

$$M_{\eta} = b \left(\frac{h}{2} - \eta\right) \frac{\frac{h}{2} + \eta}{2} = \frac{b}{2} \left(\frac{h^{2}}{4} - \eta^{2}\right),$$

$$\tau' = \frac{S}{b} \frac{\frac{b}{2} \left(\frac{h^{2}}{4} - \eta^{2}\right)}{\frac{1}{12} b h^{3}} = \frac{3}{2} \frac{S}{b h} \left[1 - \left(\frac{\eta}{\frac{h}{2}}\right)^{2}\right].$$

und für  $\eta = 0$ 

$$\mathbf{r}_{max} = \frac{3}{2} \frac{S}{bh} = \frac{3}{2} \frac{S}{f},$$

wie schon im § 38 als Gleichung 2 ermittelt.

b) Kreisförmiger Querschnitt, Fig. 4.

$$y = r \sin \psi = r \cos \varphi'$$
  $\Theta = \frac{\pi}{4} r^4$   $f = \pi r^2$ 

Das statische Moment  $M_{\eta}$  des Kreisabschnittes kann unmittelbar bestimmt werden durch Integration oder auch durch die Erwägung, daß der Abstand des Schwerpunktes desselben von der y-Achse

$$\frac{(2y)^3}{12f_a},$$

sofern  $f_a$  den Inhalt des Abschnittes bezeichnet.

$$M_{\eta} = \frac{(2y)^{3}}{12f_{a}} f_{a} = \frac{2y^{3}}{3} = \frac{2r^{3}\cos^{3}\varphi'}{3}$$
$$\tau' = \frac{S}{2r\cos^{2}\varphi'} \frac{2r^{3}\cos^{3}\varphi'}{3\cdot\frac{\pi}{4}r^{4}} = \frac{4\cdot S}{3\pi r^{2}}\cos\varphi' = \frac{4}{3}\frac{S}{f}\cos\varphi' \quad . \quad . \quad 6)$$



oder auch, da

$$\cos \varphi' = \sqrt{1 - \cos^2 \psi} = \sqrt{1 - \left(\frac{\eta}{r}\right)^2}$$
$$\tau' = \frac{4}{3} \frac{S}{f} \sqrt{1 - \left(\frac{\eta}{r}\right)^2}.$$

Für  $\varphi' = 0$ , d. i. für die Nullachse, erlangt  $\tau'$  seinen größten Wert

Bei kreisförmigem Querschnitt ergibt sich demnach die Schubspannung in der Nullachse um  $33^{1/3}/_{3}$  größer, als wenn gleichmäßige Verteilung der Schubkraft über den Querschnitt unterstellt wird.

VI. Schub.

Werden die zu den einzelnen Abständen  $\eta$  gehörigen Werte von  $\tau'$  als wagrechte Ordinaten aufgetragen, so wird, da

$$\left(\frac{\tau'}{\frac{4-S}{3-f}}\right)^2 + \left(\frac{\eta}{r}\right)^2 = 1.$$

das Änderungsgesetz von  $\tau'$  durch eine Ellipse dargestellt.

c) Kreisringförmiger Querschnitt, Fig. 5.

Unter der Voraussetzung, daß die Wandstärke verhältnismäßig klein, aber doch so groß ist, daß die in § 35 besprochene Gefahr der Wellenbildung nicht besteht, und daß es sich nur um die Ermittlung der größten, in der Nullachse auftretenden Schubspannung handelt, findet sich mit

$$2 y = d - d_0 = 2 s \qquad \varphi' = 0 \qquad d + d_0 = 2 d_m$$
  

$$\Theta_z = \frac{\pi}{64} (d^4 - d_0^4) = \frac{\pi}{64} (d^2 + d_0^2) (d + d_0) (d - d_0) = \sim \frac{\pi}{8} d_m^3 s$$
  

$$M_q = \frac{1}{2} \pi d_m s \cdot \frac{1}{\pi} d_m = \frac{1}{2} d_m^2 s,$$





Fig. 5.

Fig. 6.

sofern der Querschnitt des Ringes

$$\frac{\pi}{4} (d^2 - d_0^2) = \pi d_m s = f.$$

Hiernach erscheint die Schubspannung in der Nullachse um 100⁰/₀ größer als bei gleichmäßiger Verteilung der Schubkraft über den Querschnitt.

d) T-Querschnitt, Fig. 6.

In der Mitte des Steges ist

$$2 y = 1,5 \text{ cm}$$
  $q' = 0,$   
 $M_{\eta} = 1.5 \cdot 8 \cdot 4 + 10 \cdot 2 \cdot 9 = 228 \text{ cm}^3,$ 

§ 40. Schubversuche.

$$\Theta = \frac{1}{12} (10 \cdot 20^3 - 8.5 \cdot 16^3) = 3765 \text{ cm}^4,$$
  
$$\tau_{max} = \frac{S}{1.5} \frac{228}{3765} = 0.0404 S.$$

Wegen

$$f = 10 \cdot 20 - 8.5 \cdot 16 = 64$$
 qcm

wird

$$\tau_{max} = 2,59 \frac{S}{f}$$

Streng genommen ist für Querschnitte dieser Art, bei denen sich die Breite 2y und der Winkel  $\varphi'$  beim Übergang des Steges in die Flanschen plötzlich ändern, die Gleichung 2 nicht mehr richtig; jedenfalls kann sie für die Beurteilung der Schubspannungen an dieser Übergangsstelle und in der Nähe derselben ganz unzutreffende Werte liefern. Da, wo ein so plötzlicher Wechsel in der Breite des Querschnittes eintritt. muß die oben gemachte Voraussetzung des Gleichbleibens von  $\tau_y$  über die ganze Breite 2y unzulässig werden.

Die Gleichung 3 und ihre Sonderwerte beruhen auf der Voraussetzung einer unveränderlichen Schubzahl. Bei Materialien, für welche diese Voraussetzung nicht zutrifft, wie z. B. bei Gußeisen, werden dieselben unter Umständen zu mehr oder minder bedeutenden Unrichtigkeiten führen können.

## § 40. Schubversuche.

Dieselben pflegen durchgeführt zu werden nach Maßgabe der Fig. 1, § 37, S. 402, oder insbesondere für Rundstäbe mit der in Fig. 1 dargestellten Einrichtung, wobei der Versuchsstab in zwei Querschnitten, also doppelschnittig, durchgeschert wird.

Bedeutet S die Kraft, die erforderlich ist, um den Stab vom Querschnitte fabzuscheren, so wird der Quotient

$$\frac{S}{f}$$
 (Verfahren Fig. 1, § 37, S. 402),

bzw.

 $\frac{S}{2f}$  (Verfahren Fig. 1)



als Schubfestigkeit oder Scherfestigkeit des Materials bezeichnet. Der letztere Ausdruck erscheint als der zutreffendere. Es wird namentlich durch das Verfahren, wie es Fig. 1, § 37, S. 402,

andeutet, weniger die Widerstandsfähigkeit ermittelt, die bei einem auf Schub beanspruchten Konstruktionsteil nach Maßgabe der Betrachtungen in den §§ 38 und 39 in Frage steht, als vielmehr diejenige Kraft, die erforderlich ist, um den Stab durchzuschneiden. Aus diesem Grunde hat es auch Bedenken, von der so ermittelten Scherfestigkeit auf die zulässige Schubanstrengung zu schließen. In dieser Beziehung sei insbesondere noch auf folgendes hingewiesen.

Nach Gleichung 6, § 31, besteht für durchaus gleichartiges Material zwischen der Schub- und Zuganstrengung die Beziehung

$$k_s = 0.75 \ k_r$$
 bis 0.8  $k_r$ .

Weiter ist beispielsweise nach Gleichung 2, § 38, für einen Stab von rechteckigem Querschnitt

$$\tau_{max} = \frac{3}{2} \frac{S}{bh} = \frac{3}{2} \frac{S}{f},$$
  
oraus wegen  $\tau_{max} \leq k_s$   
 $k_s \geq \frac{3}{2} \frac{S}{f},$   
 $\frac{3}{2} \frac{S}{f} \leq 0.75 k_z$  bis 0.8  $k_z$ .  
 $\frac{S}{f} \leq 0.5 k_z$  bis 0.53  $k_z$ .

Abscherversuche mit Schmiedeisen und zähem Stahl, in einer der beiden beschriebenen Weisen angestellt, liefern die Scherfestigkeit = 0.67 bis 0.8 der Zugfestigkeit, also wesentlich höher.

Für kreisförmigen Querschnitt ist nach Gleichung 7, § 39,

$$\tau_{max} = \frac{4}{3} \frac{S}{f},$$
$$\frac{S}{f} \leq 0.56 \ k_z \text{ bis } 0.6 \ k_z$$

woraus

w

Abscherversuche, nach Fig. 1, S. 413, durchgeführt, pflegen die Scherfestigkeit des Schmiedeisens und des zähen Stahles zu 0,75 bis 0,8 der Zugfestigkeit zu geben, also ebenfalls wesentlich größer.

Die unten folgenden Versuche mit gußeisernen Rundstäben liefern sogar

Scherfestigkeit : Zugfestigkeit = 1620:1595 = 1,02:1, bzw. 1967:1679 = 1,17:1.

Dieses abweichende Verhalten des Gußeisens gegenüber Schmiedeisen und Stahl erklärt sich in erster Linie aus der Veränderlichkeit der Schubzahl  $\beta$  (Dehnungszahl  $\alpha$ ).

Für die Beurteilung der beiden Prüfungsverfahren kommt sodann weiter in Betracht der oben festgestellte Umstand, daß die wirkende Schubkraft von einem biegenden Moment begleitet wird. Bei dem durch Fig. 1, § 37, S. 402, angedeuteten Vorgang läßt sich dasselbe allerdings auf einen nicht bedeutenden Betrag herabdrücken, dagegen tritt es stark auf bei dem Verfahren nach Fig. 1, S. 413: wir haben tatsächlich einen im mittleren Teile (innerhalb der Strecke b) belasteten und nach außen aufliegenden Stab. Eine scharfe Beobachtung zeigt auch deutlich, daß der Versuchskörper durch die Belastung zunächst eine Durchbiegung erfährt und dann erst abgeschert wird. Ist das Material spröde, wie z. B. Gußeisen, so erfolgt zunächst Bruch des Stabes durch das biegende Moment, und zwar innerhalb der Strecke b; erst später (bei höherer Belastung) tritt das Abscheren ein. In dieser Hinsicht geben die nachstehenden Versuche des Verfassers lehrreichen Aufschluß.

Rundstäbe von 20,0 mm Durchmesser (f = 3,14 qcm), aus Gußeisen gedreht, geprüft nach dem Verfahren Fig. 1, S. 413.

Nr. 1. Bei der Belastung S = 3000 kg bricht der Stab infolge Biegung, der Waghebel der Maschine sinkt. Der Versuch wird fortgesetzt, hierbei steigt die Belastung allmählich bis S = 10200 kg, welche Kraft das Abscheren herbeiführt¹).

> Fig. 2 (Taf. XXII) zeigt den an den Enden auf die Länge *b* abgescherten und im mittleren Teile durch Biegung gebrochenen Stabteil. Die von dem biegenden Moment gezogenen Fasern sind gerissen, während die gedrückten zum Teil noch unangegriffen erscheinen.

Die Scherfestigkeit beträgt  $\frac{10200}{2 \cdot 3,14} = 1624 \text{ kg/qcm}.$ 

Nr. 2. Bei der Belastung S = 2825 kg bricht der Stab infolge der Biegung (d. h. die gezogenen Fasern zerreißen), bei S = 9950 kg erfolgt das Abscheren.

Scherfestigkeit = 
$$\frac{9950}{2 \cdot 3.14}$$
 = 1584 kg/qcm.

¹) Diese 1884 vom Verfasser festgestellte Erscheinung der Aufeinanderfolge des Biegungsbruches und des Abscherens sowie der große Unterschied zwischen den betreffenden Belastungen sind um so bemerkenswerter, als die Biegungsfestigkeit gußeiserner Rundstäbe das Doppelte der Zugfestigkeit übersteigt. (Vgl. § 22, Ziff. 2.)

VI. Schub.

Nr. 3. Verhalten ganz wie bei Nr. 1 und 2, S == 3350 kg beziehungsweise 10370 kg.

Scherfestigkeit = 
$$\frac{10370}{2 \cdot 3,14}$$
 = 1651 kg/qcm.

Durchschnitt der Scherfestigkeiten

$$=\frac{1624+1584+1651}{3}=1620 \text{ kg/qcm}.$$

Eine genaue Bestimmung der Biegungsfestigkeit ist nicht möglich, da die Feststellung des biegenden Momentes  $M_b$  die Kenntnis



der Verteilung der Belastung über die Strecken a, b und a voraussetzt, und überdies neben der Biegungsanstrengung auch Schubanstrengung stattfindet. Außerdem kommt noch der Einfluß der Reibungskräfte in Betracht, die durch die Biegung des Stabes in den Auflagerflächen wach gerufen werden. (Vgl. § 46 oder auch Zeitschrift

des Vereines deutscher Ingenieure 1888, Fußbemerkung auf S. 224 u. f.) Wird in Übereinstimmung mit Fig. 3 gleichmäßige Verteilung unterstellt und der Einfluß des Reibungswiderstandes vernachlässigt, so wäre

$$M_{b} = \frac{S}{2} \left( \frac{a}{2} + \frac{b}{2} - \frac{b}{4} \right) = \frac{S}{4} \left( a + \frac{b}{2} \right)$$

und, da im vorliegenden Falle

a = 2,2 cm b = 3,0 cm  $\frac{\Theta}{e} = \frac{\pi}{32} 2^3,$ 

die Biegungsfestigkeit  $K_b$ 

$$\begin{array}{l} \mbox{für Nr. 1} & \frac{\frac{3000}{4}(2,2+1,5)}{\frac{\pi}{32}\cdot 2^3} = \frac{3000\cdot 3,7}{3,14} = \sim 3530 \ \mbox{kg/qcm}, \\ \mbox{für Nr. 2} & \frac{2825\cdot 3,7}{3,14} = \sim 3330 \ \mbox{kg/qcm}, \\ \mbox{für Nr. 3} & \frac{\frac{3350\cdot 3,7}{3,14} = \sim 3950 \ \mbox{kg/qcm}, \\ \mbox{im Durchschnitt } K_b = 3603 \ \mbox{kg/qcm}. \end{array}$$

Die Zugprobe mit denselben Rundstäben hatte ergeben die Zugfestigkeit

							iı	m	Dı	irc	hs	ehr	nitt	; ]	$K_{z}$		1595	kg/qcm.
"	Nr.	3			•	•	•			•	•	•	•	·	•	•	1640	"
"	Nr.	2	•	•	•	•				•	•	•	•	•	•	•	1586	"
für	Nr.	1				•	•	•		•		•	•	•	•	•	1560	kg/qcm

Nach § 22, Ziff. 2, Gußeisen A, S. 292, Nr. 6, wäre hieraus auf eine Biegungsfestigkeit von

 $K_{b} = 2,12 K_{z} = 1595 \cdot 2,12 = 3381 \text{ kg/qcm}$ 

zu schließen, welche Größe nicht sehr bedeutend abweicht von derjenigen, die auf Grund der Annahme gleichmäßiger Verteilung der Kräfte über die Strecken a, b und a erhalten wurde. Würde der das biegende Moment vermindernde Einfluß der Reibung berücksichtigt worden sein, so wäre eine noch weiter gehende Übereinstimmung eingetreten.

Rundstäbe von rund 24 mm Durchmesser, aus Gußeisen gedreht, geprüft nach Fig. 1, S. 413.

	Durch-	Quer- schnitt	Belastung Bruch	Scher- festigkeit		
Nr.	$rac{ ext{messer}}{d}$	$rac{\pi}{4} d^2$	$\underset{S_1}{\operatorname{Biegung}}$	Ab- scheren S.	$\begin{array}{c} \mathbf{K}_{s} = \\ S_{2} : 2 \ \frac{\pi}{4} \ d^{2} \end{array}$	
	em	qem	kg	kg	$\mathbf{kg}/\mathbf{qcm}$	
1	2,38	4,45	7600	17650	1983	
2	2,37	4,41	8250	17060	1934	
3	2,38	$4,\!45$	8450	17750	1994	
		1970				

Die Zugfestigkeit der drei Stäbe war vorher zu

$$K_z = \frac{1766 + 1621 + 1649}{3} = 1679 \text{ kg/qcm}$$

ermittelt worden.

Wird Schmiedeisen der Prüfung nach Fig. 1, S. 413, unterworfen, so erfolgt allerdings vor dem Abscheren kein Bruch, weil das Material dem biegenden Momente gegenüber eine genügend weitgehende Formänderung zuläßt. Da aber bei Konstruktionsteilen derartige Formänderungen in der Regel nicht statthaft erscheinen, so erhellt, daß selbst in Fällen der Beanspruchung, wie sie durch Fig. 1, S. 413, dargestellt wird, die Berechnung auf Biegung wenigstens der Regel nach — maßgebend ist¹).

¹⁾ In dieser Hinsicht bringt die Literatur noch häufig irrtümliche Angaben, obgleich sie hiermit schon seit langer Zeit und naturgemäß im Widerspruch mit dem steht, was zweckmäßigerweise tatsächlich ausgeführt wird. So pflegt beispielsweise in Beziehung auf die Gelenkbolzen bei Dachkonstruktionen u. dgl., für die Keile der Keilverbindungen, die Bolzen gewisser Schraubenverbindungen, die Zähne der Sperräder usf. angegeben zu werden, daß dieselben auf Schub oder gegen Abscheren zu berechnen seien. Hinsichtlich der Gelenkbolzen und ähnlicher Teile dürfte das oben Erörterte zur Klarstellung aus-

C. Bach, Elastizität, 8, Aufl.

Durch Verminderung von b und a kann allerdings das biegende Moment verringert werden; gleichzeitig wächst aber dann die Pressung S:bd gegen die Mantelfläche des Rundstabes. Hierdurch aber wird

reichen (vgl. auch § 52, Ziff. 1a), betreffs der Keile, Gewindegänge usf. sei auf des Verfassers Maschinenelemente 1880, S. 41 u. f. (Taf. 1, Fig. 28 und 30) bzw. S. 50, S. 238, 1891/92, S. 80 u. f., S. 92 usw. verwiesen. In bezug auf Sperrzähne möge das Folgende bemerkt werden.

Die Kraft P, Fig. 4, im ungünstigsten Falle außen im Punkt B angreifend (vgl. den vorletzten Absatz dieser Fußbemerkung), ergibt in bezug auf den zunächst beliebig unter dem Winkel  $\varphi$  angenommenen Bruchquerschnitt AX



Fig. 4.

mit dem Mittelpunkt M ein Kräftepaar vom Moment Px, das auf Biegung wirkt, ferner eine Schubkraft  $S == P \sin \varphi$  und eine Druckkraft  $N == P \cos \varphi$ , welch letztere in der Regel ohne weiteres vernachlässigt werden kann.

Bezeichnet b die Breite der Sperrzähne, so findet sich die größte Biegungsanstrengung  $\sigma$  des Materials nach Gleichung 10, § 16, zu

$$\sigma = \frac{Px}{\frac{1}{6}b\,h^2} = 6\,\frac{Px}{b\,h^2}\,.$$

Es ist nun derjenige Querschnitt festzustellen, für welchen  $\sigma$  den größten Wert erlangt, was bei im allgemeinen beliebiger Gestalt der Begrenzungslinie des Zahnes am einfachsten durch Ausproben geschieht. (S. auch § 52 und § 56.)

Zur Biegungsspannung tritt nun allerdings die Schubanstrengung. Wie in § 52 unter Ziff. 1b erörtert werden wird, ergibt sich jedoch für den rechteckigen Querschnitt. daß die Biegungsanstrengung allein maßgebend ist, solange

$$\frac{x}{\sin\varphi} \ge 0,325 h,$$

d. h. solange

 $x \ge 0.325 h \sin \varphi$ . Diese Bedingung wird fast ausnahmslos erfüllt sein, infolgedessen Sperrzähne ebenso ausnahmslos auf Biegung zu berechnen sind.

Indem der Bruchquerschnitt durch A geführt wird, wie oben geschehen, ist vorausgesetzt, es habe die Begrenzungslinie des Zahnes eine solche Form, daß die Widerstandsfähigkeit der oberhalb A möglichen Bruchquerschnitte einen größeren oder mindestens den gleichen Wert besitzt. Wird P als ganz außen angreifend angenommen, wie in Fig. 4 gezeichnet, so trifft diese Voraussetzung bei den üblichen Zahnformen allerdings nicht zu, wohl aber dann, der Verringerung von *a* und damit auch derjenigen des biegenden Momentes eine Grenze gezogen.

Da die Widerstandsfähigkeit des Stabes vom Durchmesser dgegen Biegung der dritten Potenz von d, gegen Schub dagegen nur der zweiten Potenz von d proportional ist, so muß das Prüfungsverfahren nach Fig. 1, S. 413, für das gleiche Material unter sonst gleichen Verhältnissen Werte für die Schubfestigkeit S:f liefern, die von d abhängig sind. Durch die großen Pressungen gegen die Mantelflächen der abzuscherenden Zylinder, welche Kräfte ihrerseits gegenüber dem Bestreben des Stabes, auf der Unterlage zu gleiten, Reibungskräfte wachrufen (vgl. § 46), findet allerdings eine weitere Trübung dieses Verhältnisses statt.

Das vorstehend Erörterte führt zu dem Ergebnis, daß die Schubversuche, wie sie angestellt zu werden pflegen, nicht geeignet sind, die Richtigkeit der Hauptgleichung (2, § 39) zu prüfen, noch die Unterlagen für die zulässigen Schubanstrengungen mit der wünschenswerten Genauigkeit zu liefern. Eine unmittelbare und genaue Prüfung der Gleichung 2, § 39, auf dem Wege des Versuches begegnet erheblichen Schwierigkeiten. Dieselben erwachsen aus dem Umstande, daß die Schubkraft immer von einem biegenden Moment begleitet ist, und daß da, wo dessen Einfluß zurücktritt, so bedeutende Kräfte auf verhältnismäßig kleine Teile der Mantelfläche des Stabes zusammengedrängt wirken müssen, daß die den weiteren Entwicklungen zugrunde liegende Voraussetzung des Nichtvorhandenseins von Normalspannungen senkrecht zur Stabachse - und unter Umständen diejenige des Nichtauftretens von senkrecht zur Stabachse stehenden Schubanstrengungen, die in Ebenen wirken, die sich in Parallelen zur Achse schneiden - unerfüllt bleibt. (Vgl. auch den Schluß von § 71.)

Über den Einfluß scharfer oder wenig ausgerundeter Ecken (hier bei A) vgl. das S. 569 u. f. Bemerkte. Die Spannungen fallen bei plötzlicher und sehr rascher Querschnittsänderung höher aus, als die obige Rechnung ergibt.

wenn die Angriffslinie von P — in Übereinstimmung mit der Wirklichkeit um eine kleine Strecke von B nach innen verlegt wird. Beim Entwerfen pflegt man in der Weise vorzugehen, daß die Begrenzungslinie des Zahnes gewählt und sodann untersucht wird, ob die Beanspruchung die zulässige Anstrengung des Materials in keinem der möglichen Bruchquerschnitte überschreitet. Bei Inbetrachtziehung von Querschnitten, die oberhalb A gelegen sind, ist sinngemäß in der gleichen Weise vorzugehen, wie oben für den durch A gehenden Querschnitt dargelegt wurde.
#### Dritter Abschnitt.

## Formänderungsarbeit gerader stabförmiger Körper bei Beanspruchung auf Zug, Druck, Biegung, Drehung oder Schub.

#### § 41. Arbeit der Längenänderung.

Ein prismatischer Stab von der Länge l und dem Querschnitt f sei an dem einen Ende festgehalten, am anderen freien Ende durch eine von Null an stetig wachsende Kraft P belastet. Er erfährt hierdurch eine Verlängerung. Solcher Änderungen der Länge sind nach



Maßgabe der Darlegungen in § 4 und § 5 dreierlei zu unterscheiden:

1. die gesamte Längenänderung  $\lambda$ ,

2. die bleibende Längenänderung  $\lambda'$ ,

3. die federnde Längenänderung  $\lambda''$ ,

die mit der Kraft P in einem solchen Zusammenhange stehen, daß

$$\begin{split} \lambda &= f_1\left(P\right) \quad \text{oder} \quad P = F_1\left(\lambda\right), \\ \lambda' &= f_2\left(P\right) \quad , \quad P = F_2\left(\lambda'\right), \\ \lambda'' &= f_3\left(P\right) \quad , \quad P = F_3\left(\lambda''\right). \end{split}$$

Handelt es sich beispielsweise um einen Lederriemen, bei dem die Verlängerungen langsamer wachsen als die Belastungen, so zeigt die Linie, die durch  $\lambda = f_1(P)$  oder  $P = F_1(\lambda)$  bestimmt wird, etwa den in Fig. 1 skizzierten Verlauf. Die mechanische Arbeit, die aufzuwenden ist, den Riemen z. B. um  $\lambda = \overline{OQ_2}$  zu verlängern, wozu die von Null an gewachsene Belastung  $P = \overline{OQ_1} = \overline{Q_2Q}$  gehört, wird dargestellt durch die schraffierte Fläche  $OQQ_2$  von der Größe

$$A_{1} = \int_{0}^{\lambda} P d\lambda = \int_{0}^{\lambda} F_{1}(\lambda) d\lambda \quad . \quad . \quad . \quad . \quad . \quad . \quad 1)$$

Davon ist zu bleibender Formänderung verwendet worden

$$A_{2} = \int_{0}^{\lambda'} P d\lambda' = \int_{0}^{\lambda'} F_{2}(\lambda') d\lambda', \quad . \quad . \quad . \quad . \quad 2)^{1}$$

¹) Im Falle elastischer Nachwirkung wird ein Teil von  $A_2$  wieder frei werden können.

somit die mechanische Arbeit, die der Körper infolge seiner Elastizität in sich aufgespeichert hat, und die er bei der Entlastung wieder zurückzugeben in der Lage ist,

$$A_{3} = A_{1} - A_{2} = \int_{0}^{\lambda''} P \, d\lambda'' = \int_{0}^{\lambda''} F_{3}(\lambda'') \, d\lambda'' \quad . \quad . \quad . \quad . \quad 3)$$

Die Elastizitätslehre, indem sie sich lediglich mit den elastischen Formänderungen beschäftigt, pflegt nur die diesen Formänderungen entsprechende Arbeit als Formänderungsarbeit (Deformationsarbeit) in Betracht zu ziehen und überdies vorauszusetzen, daß Proportionalität zwischen Dehnungen und Spannungen besteht, daß also die Dehnungslinie eine Gerade ist, wie z. B. in Fig. 1, § 2, bis zum Punkte A.

Unter dieser Voraussetzung findet sich, wehn im folgenden die Formänderungsarbeit, in dem soeben bezeichneten Sinne aufgefaßt, mit A und die elastische Längenänderung kurz mit  $\lambda$  bezeichnet wird, die Arbeit der Längenänderung

$$A=\frac{1}{2}P\lambda=\frac{1}{2}f\sigma\lambda,$$

und da nach § 2, sofern Kräfte senkrecht zur Stabachse nicht wirken,

$$\lambda = \alpha \sigma l$$

$$A = \frac{1}{2} \alpha \sigma^2 f l = \frac{1}{2} \alpha \sigma^2 V, \quad \dots \quad \dots \quad \dots \quad 4)$$

d. h. die Arbeit der Längenänderung ist proportional dem Volumen V = fl des Stabes und dem Quadrate der Spannung.

Wird  $\sigma$  durch die verhältnismäßige Dehnung  $\varepsilon$  ersetzt nach Maßgabe der Gleichung

 $\varepsilon = \alpha \sigma$ .

so folgt

Handelt es sich um einen Körper von veränderlichem Querschnitt wie Fig. 1, § 6, so ergibt sich unter der Voraussetzung, daß die Dehnungszahl  $\alpha$  konstant ist, und Kräfte senkrecht zur Stabachse nicht tätig sind, die Arbeit A mit Annäherung¹) durch folgende Erwägung.

¹) Mit Annäherung namentlich deshalb, weil die Spannungen in sämtlichen Punkten eines Querschnittes nicht die gleiche Richtung haben können. Die Spannung im Schwerpunkt des Querschnittes fällt allerdings in die Stabachse, steht also senkrecht zu letzterem, dagegen werden beispielsweise die Spannungen in den auf der Umfangslinie des Querschnitts liegenden Elementen die Richtung der Mantellinien des Stabes besitzen, also geneigt gegen die Stabachse sein müssen.

Damit das im Abstande x von der freien Stirnfläche des Stabes, Fig. 1, § 6, gelegene Körperelement fdx in der Richtung von x um dx gedehnt wird, wobei die Spannung

$$\sigma = \frac{\varepsilon}{\alpha}$$

eintritt, bedarf es der Aufwendung einer Arbeit

$$dA = \frac{1}{2} f \sigma \cdot \varepsilon dx = \frac{1}{2\alpha} f \varepsilon^2 dx = \frac{\alpha}{2} f \sigma^2 dx.$$

Folglich die Arbeit, welche die Formänderung des ganzen Stabes fordert,

Für den Fall, daß der Stab ein Prisma, wird hieraus

$$A = \frac{1}{2\alpha} \epsilon^2 f l = \frac{\alpha}{2} \sigma^2 f l,$$

wie oben bereits ermittelt worden ist¹).

Bei den vorstehenden Erörterungen wurde vorausgesetzt, daß die Belastung von Null an stetig wächst, so daß in jedem Augenblick Gleichgewicht vorhanden ist zwischen der äußeren belastenden Kraft und den hierdurch wachgerufenen inneren Kräften. Wird nun der Stab plötzlich der Einwirkung der ganzen Kraft Püberlassen, ohne daß jedoch ein Stoß hierbei stattfindet, d. h. ohne daß der zweite, den Stab belastende Körper diesen mit einer gewissen Geschwindigkeit trifft, so erhebt sich die Frage nach der Größe der Anstrengung  $\sigma$ , die das Material in dem Augenblick der größten Verlängerung  $\lambda$  des Stabes erleidet. Bei der im folgenden gegebenen Beantwortung, wobei ein prismatischer Stab zugrunde gelegt wurde, soll von dem Einflusse der Zeit auf die Ausbildung der Formänderung abgesehen werden.

Unter der Voraussetzung unveränderlicher Größe der Dehnungszahl  $\alpha$  beträgt die Arbeit, welche die Überwindung der inneren, durch die Dehnung wachgerufenen Kräfte bei der Verlängerung  $\lambda$  fordert,

$$\frac{1}{2}\lambda f\sigma.$$

Dieselbe muß gleich sein derjenigen mechanischen Arbeit, welche

¹) In bezug auf Stäbe, deren Querschnitt sich plötzlich ändert, vgl. Fußbemerkung S. 425.

die äußere Kraft P verrichtet, indem sie in ihrer Richtung um  $\lambda$  fortschreitet, d. i.  $P\lambda$ . Also

woraus

$$\sigma = 2 \frac{P}{f},$$

 $P\lambda = \frac{1}{-\lambda} f\sigma$ .

d. h. die den Stab mit ihrer ganzen Größe plötzlich, jedoch ohne Stoß belastende Kraft P veranlaßt eine doppelt so große Anstrengung des Materials, als wenn P von Null an stetig gewachsen wäre¹).

Nachdem der Stab sich um  $\lambda$  gedehnt hat, in welchem Augenblick  $\sigma f = 2P$  ist, werden die inneren Kräfte, da sie um P größer sind als die äußeren Kräfte P, eine Wiederverkürzung einleiten, die für den Fall vollkommener Elastizität und abgesehen von Widerständen die Stablänge auf l zurückbringt; hieran schließt sich neuerlich eine Verlängerung usf.: der Stab wird Schwingungen vollführen, die, wegen der in Wirklichheit vorhandenen Widerstände fort und fort abnehmend, schließlich Null werden.

#### § 42. Arbeit der Biegung.

Der Körper sei in der Weise gestützt und belastet, daß der Fall der einfachen Biegung vorliegt (III, § 16). Unter Vernachlässigung der Schubkräfte sowie der örtlichen Zusammendrückung, die der Körper da erfährt, wo die äußeren Kräfte auf die Oberfläche wirken, und unter der Voraussetzung, daß die Dehnungszahl  $\alpha$  konstant ist, ergibt sich die Biegungsarbeit durch folgende Betrachtung.

Um das im Abstande  $\eta$  von der Nullachse gelegene, streifenförmige Körperelement vom Querschnitt df und der Länge dx (in Richtung der Stabachse), Fig. 6 und 7, § 16, so zu dehnen, daß dessen Länge die verhältnismäßige Dehnung  $\varepsilon$  erfährt, wobei die Normalspannung

$$\sigma = \frac{\varepsilon}{\mu}$$

eintritt, ist eine Arbeit

$$dA = \frac{\sigma df}{2} \varepsilon dx = \frac{\alpha}{2} \sigma^2 df dx$$

erforderlich.

¹) Daraus darf jedoch nicht geschlossen werden, daß die dynamische Beanspruchung auf das Doppelte der statischen beschränkt sei, wie man sofort erkennt, wenn im Auge behalten wird, daß die belastenden Kräfte mit Massen verknüpft zu sein pflegen, die im Falle von Geschwindigkeit lebendige Kräfte in sich enthalten. Dritter Abschnitt.

Unter der Annahme, daß die Ebene des den Stab biegenden Kräftepaares vom Momente  $M_b$  die eine der beiden Hauptachsen des Querschnittes, dessen Trägheitsmoment in bezug auf die andere Hauptachse mit  $\Theta$  bezeichnet sei, in sich enthält, gilt nach Gleichung 9, § 16,

$$\sigma = \frac{M_{\nu}}{\Theta} \eta \, .$$

Infolgedessen

$$dA = \frac{\alpha}{2} \frac{M_b^2}{\Theta^2} \eta^2 df dx$$

und hiermit die mechanische Arbeit, welche die Biegung des ganzen Körpers beansprucht,

$$A = \frac{\alpha}{2} \int \frac{M_b^2}{\Theta^2} dx \int \eta^2 df = \frac{\alpha}{2} \int \frac{M_b^2}{\Theta} dx, \quad \dots \quad \dots \quad 1$$

wobei die Integration sich auf die ganze Länge des Stabes zu erstrecken hat.

Für den Fall Fig. 1, § 16, — der prismatische Stab ist an dem einen Ende befestigt, am anderen, freien Ende durch die Kraft P belastet — findet sich, sofern man, von B nach Ahin schreitend, (l-x) mit  $\xi$  bezeichnet und dementsprechend  $M_b = P\xi$ einführt sowie dx durch  $d\xi$  ersetzt,

$$A = \frac{\alpha}{2} \int_{0}^{1} \frac{P^2 \xi^2}{\Theta} d\xi = \frac{\alpha}{6} \frac{P^2}{\Theta} l^3.$$

Diese Gleichung gestattet eine sehr rasche Feststellung der Durchbiegung y des freien Stabendes durch die Erwägung, daß die mechanische Arbeit, welche die stetig von Null bis auf P gewachsene Belastung beim Sinken um y verrichtet, d. i.

$$\frac{1}{2}Py$$
,

gleich A sein muß.

Demnach

$$\frac{1}{2} Py = -\frac{\alpha}{6} \frac{P^2}{\Theta} l^3,$$
$$y = -\frac{\alpha}{3} \frac{P}{\Theta} l^3,$$

welches Ergebnis in Übereinstimmung mit Gleichung 4, § 18, steht, sofern man in letzterer die hier nicht vorhandene Belastung Q gleich Null setzt.

424

Wird die Anstrengung an der Befestigungsstelle im Abstande  $\eta = e_1$  von der Nullachse mit  $k_b$  bezeichnet, so folgt

$$Pl = k_b \frac{\Theta}{e_1}$$

und damit

$$A = \frac{\alpha}{6} k_b^2 \frac{\Theta}{e_1^2} l.$$

Wenn

$$\Theta = \iota f e_1^2$$

gesetzt wird, was z. B. ergibt für den rechteckigen Querschnitt

$$\Theta = \frac{1}{12} b h^3 = \iota b h \left(\frac{h}{2}\right)^2 \qquad \iota = \frac{1}{3}.$$

für den kreisförmigen Querschnitt

$$\Theta = \frac{\pi}{64} d^4 = \iota \frac{\pi}{4} d^2 \left(\frac{d}{2}\right)^2 \qquad \iota = \frac{1}{4} ,$$

so findet sich unter Beachtung, daß fl gleich dem Stabvolumen V,

$$A = \frac{\alpha}{6} \iota k_b^2 f l = \frac{\alpha}{6} \iota k_b^2 V, \ldots \ldots 2)$$

d. h. die Biegungsarbeit ist proportional dem Volumen des Stabes und dem Quadrate der Materialanstrengung¹).

Handelt es sich um einen Körper von gleichem Widerstande gegen Biegung (§ 19), so ist

$$k_b = \frac{M_b}{\Theta} e$$

für die einzelnen Querschnitte konstant, wobei unter e der Abstand der hinsichtlich der größten Anstrengung maßgebenden Faser verstanden werden soll. Durch Einführung des hieraus folgenden Wertes von  $M_h$  in Gleichung 1 wird

$$A = \frac{\alpha}{2} \int \left(\frac{\Theta k_b}{e}\right)^2 \frac{dx}{\Theta} = \frac{\alpha}{2} k_b^2 \int \frac{\Theta}{e^2} dx,$$

¹) Bei Stäben, deren Querschnitt sich auf kurze Strecken plötzlich und erheblich ändert, ist das Arbeitsvermögen, das der Stab bis zur eintretenden Spannung  $k_b$  — die im schwächsten Querschnitt sich einstellende ist maßgebend — zu leisten vermag, gering, weil das in Betracht kommende Volumen des Stabteiles mit dem kleinsten Querschnitt nicht groß ist; während gerade infolge der plötzlichen Querschnittsänderung an den mehr oder minder scharfen einspringenden Ecken weitergehende Anforderungen an das Arbeitsvermögen des Materials gestellt werden.

Diese Bemerkung gilt für alle Arten der Beanspruchung. (Vgl. auch § 9, Ziff. 1.)

Bei der S. 145 besprochenen Kerbschlagprobe beruht das Prüfungsverfahren gerade auf dieser örtlichen Begrenzung der Dehnung. Dritter Abschnitt.

und mit Rücksicht darauf, daß  $\Theta = \iota f e^2$ ,

$$A = \frac{\alpha}{2} \iota k_b^2 \int_0^t f \, dx = \frac{\alpha}{2} \iota k_b^2 V \dots \dots \dots \dots 3)$$

Hiernach ist die Biegungsarbeit eines Körpers von gleichem Widerstand bei bestimmter Querschnittsform

- 1. unabhängig von der Art der Unterstützung (Befestigung) und der Belastung,
- 2. proportional dem Volumen des Körpers und dem Quadrate der Materialanstrengung,
- verhältnismäßig 3 mal größer als der Wert Gleichung 2, der sich für den prismatischen Stab Fig. 1, § 16, ergibt.

Für den Stab Fig. 2, § 19, liefert Gleichung 3 wegen

$$\iota = \frac{1}{3}$$
$$A = \frac{\alpha}{6} k_b^2 V$$

#### § 43. Arbeit der Drehung.

Der Körper ist in der Weise beansprucht, daß der Fall der einfachen Drehung vorliegt (V,  $\S$  32).

Vorausgesetzt sei, daß es sich um einen prismatischen Stab handle, daß die örtlichen Formänderungen an den Stellen, wo die äußeren Kräfte auf den Körper einwirken, vernachlässigt werden dürfen, daß sich ein auf gehinderte Ausbildung der Querschnittswölbung gerichteter Einfluß (vgl. § 34, unter Ziff. 3) nicht geltend mache, und daß die Schubzahl  $\beta$  (§ 29) unveränderlich ist.

Um das im beliebigen Punkt P des Querschnittes (Fig. 4, § 32, Fig. 2, § 33, oder Fig. 3, § 34) gelegene Körperelement von der Grundfläche  $dy \cdot dz = df$  und der Länge l so zu verdrehen, daß es die verhältnismäßige Schiebung  $\gamma$  erfährt, wobei die Schubspannung

$$\tau = \frac{\gamma}{\beta}$$

eintritt, ist eine Arbeit

$$dA = \frac{\tau df}{2} \gamma l = \frac{\beta}{2} l \tau^2 df$$

aufzuwenden; demnach zur Verdrehung des ganzen Stabes

426

wobei die Integration sich über den ganzen Querschnitt zu erstrecken hat¹).

Für den kreisförmigen Querschnitt, Fig. 4, § 32, folgt mit  $k_d$  als Drehungsanstrengung im Abstande r

$$\tau = k_{a} \frac{\varrho}{r},$$

$$A = \frac{\beta}{2} l \frac{k_{a}^{2}}{r^{2}} \int \varrho^{2} df = \frac{\beta}{2} l \frac{k_{a}^{2}}{r^{2}} \frac{\pi}{2} r^{4} = \frac{\beta}{4} k_{a}^{2} \pi r^{2} l,$$

und da  $\pi r^2 l$  gleich dem Stabvolumen V,

$$A = \frac{\beta}{4} k_a^2 V, \ldots \ldots \ldots \ldots \ldots 2)^2)$$

worin  $k_d$  bei gegebenem Drehungsmoment  $M_d$  nach Beziehung 3, § 32, bestimmt ist durch die Gleichung

$$M_d = \frac{\pi}{16} k_d d^3$$

Für den Hohlzylinder, Fig. 5, § 39, findet sich

$$A = \frac{\beta}{4} k_d^2 \frac{d^2 + d_0^2}{d^2} V, \quad \dots \quad \dots \quad \dots \quad 3)$$

worin

$$V = \frac{\pi}{4} (d^2 - d_0^2) l,$$
  
$$k_d = \frac{16}{\pi} M_d \frac{d}{d^4 - d_0^4}.$$

Vergleicht man die mechanischen Arbeiten  $A_z$ ,  $A_b$  und  $A_d$ , die ein Kreiszylinder vom Volumen V aus durchaus gleichartigem Material bei Beanspruchung auf Zug bzw. Biegung (Fig. 1, § 16) bzw. Drehung fordert, so erhält man zunächst

nach Gleichung 4, § 41, mit  $\sigma = k_z$   $A_z = \frac{1}{2} \alpha k_z^{3} V$ , ... 2, § 42,  $\mu = \frac{1}{4}$   $A_b = \frac{1}{24} \alpha k_b^{2} V$ , ...  $\eta$  2, § 43,  $A_d = \frac{1}{4} \beta k_d^{2} V$ .

¹) Unter Benutzung von Gleichung 5, § 35 gelangt man zu  $A = \frac{1}{2} M_d \vartheta l = \frac{1}{2} \psi M_d \vartheta \frac{\Theta'}{f^4} \beta l.$ 

²) Vgl. Fußbemerkung S. 425.

Dritter Abschnitt.

Nach Gleichung 3 bzw. 5, § 31, ist

$$\beta = 2 \frac{m+1}{m} \alpha, \qquad \qquad k_s = \frac{m}{m+1} k_z.$$

Wird nun

$$m = \frac{10}{3}, \qquad k_s = k_d, \qquad k_b = k_c$$

gesetzt, womit

$$\beta = 2,6 \alpha, \qquad k_d = \frac{10}{13} k_z,$$

so folgt

$$\begin{aligned} A_z : A_b : A_d &= \frac{1}{2} \, \alpha \, k_z^{\ 2} : \frac{1}{24} \, \alpha \, k_z^{\ 2} : \frac{1}{4} \, 2,6 \, \alpha \left(\frac{10}{13} \, k_z\right)^2 \\ &= 1 : \frac{1}{12} : \frac{10}{13} \\ &= 1 : 0.083 : 0.769 \, . \end{aligned}$$

Hieraus erhellt, daß zur Erreichung einer bestimmten Anstrengung des Materials bei Biegung die geringste Formänderungsarbeit aufzuwenden ist, und daß infolgedessen der gebogene Zylinder auch nur eine verhältnismäßig geringe Formänderungsarbeit in sich aufnimmt.

Für den elliptischen Querschnitt, Fig. 2, § 33, mit den Halbachsen a und b ergibt Gleichung 4, § 33,

$$\tau = \frac{2}{\pi} \frac{M_d}{a^3 b^3} \sqrt{a^4 y^2 + b^4 z^2}.$$

Folglich nach Gleichung 1

$$A = 2 \frac{\beta}{\pi^2} \frac{M_d^2}{a^6 b^6} l \int (a^4 y^2 + b^4 z^2) df,$$

woraus wegen

$$\int y^2 df = \frac{\pi}{4} a b^3, \qquad \int z^2 df = \frac{\pi}{4} a^3 b,$$
$$A = \frac{\beta}{2\pi} \frac{a^2 + b^2}{a^3 b^3} M_d^2 l, \quad \dots \quad \dots \quad \dots \quad 4)$$

und unter Berücksichtigung der Gleichung 7, § 33, mit  $k_d$  als Drehungsanstrengung

$$A = \frac{\beta}{2} \frac{\pi}{4} k_d^2 \frac{b}{a} (a^2 + b^2) l = \frac{\beta}{8} \frac{a^2 + b^2}{a^2} k_d^2 V, \quad . \quad . \quad 5)$$

sofern

$$V = \pi a b l$$

das Volumen des Stabes ist.

**4**28

Die Gleichung 4 ermöglicht die Feststellung des Winkels, um den sich jede der beiden Hauptachsen (das Hauptachsenkreuz) des einen Endquerschnittes des elliptischen Stabes gegenüber der ihr entsprechenden Achse (dem Hauptachsenkreuz) des anderen Endquerschnittes verdreht, in überaus leichter Weise. Dieser Winkel, dividiert durch die Entfernung l der beiden Querschnitte, gibt den verhältnismäßigen Drehungswinkel  $\vartheta$ . (Vgl. § 33, Ziff. 1, d und e.) Seine Größe sei deshalb mit  $\vartheta l$  bezeichnet.

Das drehende Kräftepaar (vgl. auch Fig. 1, § 32), dessen Moment von Null an stetig bis zu  $M_d$  wächst, verrichtet bei der Drehung des einen Querschnittes gegen den anderen, d. h. des Achsenkreuzes des einen Querschnittes gegenüber demjenigen des anderen, um  $\vartheta l$ eine mechanische Arbeit

$$\frac{1}{2} M_d \cdot \vartheta l$$
 .

Dieselbe muß gleich sein der durch Gleichung 4 bestimmten Arbeit, welche die Überwindung der inneren Kräfte fordert, d. h.

$$\frac{1}{2} M_d \vartheta l = \frac{\beta}{2\pi} \frac{a^2 + b^2}{a^3 b^3} M_d^2 l,$$
  
$$\vartheta = \frac{1}{\pi} \frac{a^2 + b^2}{a^3 b^3} M_d \beta, \quad \dots \quad \dots \quad \dots \quad 0)$$

wie in § 36 unter Nr. 3 angegeben ist.

Für den rechteckigen Querschnitt, Fig. 3, § 34, mit der Breite b und der Höhe h findet sich unter Beachtung der Gleichung 4, § 34, die Spannung im beliebigen Punkte P zu

$$\tau = \sqrt{\tau_{y}^{2} + \tau_{z}^{2}} = \sqrt{m^{2} \left[1 - \left(\frac{2z}{h}\right)^{2}\right]^{2} y^{2} + n^{2} \left[1 - \left(\frac{2y}{b}\right)^{2}\right]^{2} z^{2}};$$

infolgedessen

$$\int \tau^2 df = m^2 \int y^2 df + u^2 \int z^2 df - 8 \left( \frac{m^2}{h^2} + \frac{u^2}{b^2} \right) \int y^2 z^2 df + \frac{16 m^2}{h^4} \int y^2 z^4 df + \frac{16 u^2}{b^4} \int y^4 z^2 df.$$

Wegen

$$\int y^2 df = \frac{1}{12} b^3 h, \qquad \int z^2 df = \frac{1}{12} b h^3,$$
$$\int y^2 z^2 df = \frac{1}{144} b^3 h^3.$$
$$\int y^2 z^4 df = \frac{1}{960} b^3 h^5, \qquad \int y^4 z^2 df = \frac{1}{960} b^5 h^3,$$

Dritter Abschnitt.

wird

$$\int \tau^2 df = \frac{1}{10} m^2 b^3 h + \frac{1}{10} n^2 b h^3 - \frac{1}{18} \left( \frac{m^2}{h^2} + \frac{n^2}{b^2} \right) b^3 h^3.$$

Nach § 34 ist

$$m = \frac{2}{b} \tau_a' \qquad \qquad n = \frac{2b}{b^2} \tau_a'.$$

Hiermit folgt, sofern noch die Spannung  $\tau_a'$  im Punkte A des Querschnittumfanges, Fig. 3, § 34, durch  $k_a$  ersetzt wird,

$$\int \tau^2 df = \frac{8}{45} k_d^2 b \; \frac{b^2 + h^2}{h};$$

infolgedessen nach Gleichung 1

$$A = \frac{4}{45} \beta k_d^2 \frac{b}{h} (b^2 + h^2) l = \frac{4}{45} \beta \frac{b^2 + h^2}{h^2} k_d^2 V, \quad . \quad . \quad . \quad 7)$$

sofern

$$V = b h l$$

das Volumen des Stabes bezeichnet.

Wird nach Maßgabe der Gleichung 5, § 34,

$$k_d = \frac{9}{2} \frac{M_d}{b^2 h}$$

gesetzt, so findet sich jetzt

Diese Beziehung gestattet in ganz gleicher Weise, wie oben für den elliptischen Stab erörtert, die Ermittelung des verhältnismäßigen Drehungswinkels  $\vartheta$  für Prismen mit rechteckigem Querschnitt.

Die Arbeit, die das drehende Kräftepaar bei der Verdrehung der um l voneinander entfernten Querschnitte verrichtet, muß gleich A sein, d. h.

$$\frac{1}{2} M_{d} \vartheta l = \frac{9}{5} \beta \frac{b^{2} + h^{2}}{b^{3} h^{3}} M_{d}^{2} l$$
$$\vartheta = 3.6 \frac{b^{2} + h^{2}}{b^{3} h^{3}} M_{d} \beta \dots \dots \dots \dots \dots \dots 9)^{1}$$

Dieses Ergebnis unterscheidet sich von den in § 35, S. 396, aufgenommenen de Saint Venantschen Werten durch den Zahlenkoeffizienten.

¹) Vgl. das auf folgender Seite am Schlusse von § 43 Gesagte.

**4**30

Nach Maßgabe des auf S. 396 Bemerkten hat bei Material mit unveränderlicher Dehnungszahl an die Stelle von 3,6 ein vom Seitenverhältnis abhängiger Zahlenwert zu treten (vgl. daselbst Gleichung 7 und 7a. sowie in der Zusammenstellung von § 36 unter Ziff. 6).

Demgemäß wird sich auch der Zahlenwert in Gleichung 8 veränderlich ergeben.

Mit der Genauigkeit, mit welcher der Zahlenwert in Gleichung 5, § 34, konstant ist, folgt

Für genauere Feststellung von A wird die Veränderlichkeit des bezeichneten Zahlenwertes (vgl. § 36 unter Nr. 6) zu berücksichtigen sein.

#### § 44. Arbeit der Schiebung.

Der Fall der Inanspruchnahme auf Schub allein wird dann als vorhanden betrachtet, wenn sich die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte für den in Betracht gezogenen Querschnitt ersetzen lassen durch eine Kraft S (Schubkraft), die in die Ebene des letzteren fällt und die Stabachse senkrecht schneidet. Wie im zweiten Abschnitt unter VI. erörtert, kann — streng genommen — diese Schubanstrengung in einem geraden stabförmigen Körper niemals allein vorkommen; die Schubkraft S ist vielmehr immer von einem biegenden Moment begleitet.

Wird trotzdem nur diese in Betracht gezogen, die nach Maßgabe der Gleichung 3, § 39, und der Fig. 1, § 39, für den beliebig zwischen P'P' gelegenen Punkt P die Schubspannung

$$\tau = \frac{S}{2 y \cos \varphi} \frac{M_{\eta}}{\Theta}$$

liefert, so ergibt sich unter Voraussetzung der Unveränderlichkeit der Schubzahl $\beta$ folgendes.

Die Herbeiführung der Schiebung  $\gamma$  des im Punkte P, Fig. 1, § 39, der um z von der senkrechten Hauptachse abstehe, zu denkenden Körperelementes von dem Querschnitt

$$df == d\eta dz$$

und der Länge dx, wobei eine Schubspannung

$$\tau = \frac{\gamma}{\beta}$$

wachgerufen wird, fordert eine mechanische Arbeit

$$dA = \frac{\tau df}{2} \gamma dx = \frac{\beta}{2} \tau^2 df dx.$$

Dritter Abschnitt.

Demnach die gesamte Formänderungsarbeit der Schubkräfte

$$A = \frac{\beta}{2} \int dx \int \tau^2 dt = \frac{\beta}{2} \int dx \int \int \tau^2 d\eta \, dz \quad . \quad . \quad . \quad 1)$$

Hieraus findet sich beispielsweise für den rechteckigen Querschnitt von der Breite b und der Höhe h, Fig. 2, § 38, da hier (vgl. § 39 unter a)

$$\varphi = \varphi' = 0, \qquad \tau = \frac{3}{2} \frac{S}{bh} \left[ 1 - \left(\frac{\eta}{h}\right)^2 \right]. \qquad df = b \, d\eta,$$
$$A = \frac{\beta}{2} \int dx \cdot \frac{9}{4} \frac{S^2}{bh^2} \int_{-\frac{h}{2}} \left[ 1 - \left(\frac{\eta}{h}\right)^2 \right]^2 d\eta = \frac{3}{5} \beta \int \frac{S^2}{bh} dx \quad . \quad . \quad 2)$$

#### Vierter Abschnitt.

## Zusammengesetzte Beanspruchung gerader stabförmiger Körper.

## VII. Beanspruchung durch Normalspannungen (Dehnungen).

### Zug, Druck und Biegung.

#### § 45.

#### Allgemeines. Der Stab ist nur durch Kräfte beansprucht, die in Richtung seiner Achse wirken.

#### Allgemeines.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für den in Betracht gezogenen Querschnitt eine in die Stabachse fallende Kraft P und ein Kräftepaar vom Momente  $M_b$ , dessen Ebene den Querschnitt senkrecht schneidet.

Für einen beliebigen Punkt des Querschnittes liefert die Kraft P eine Dehnung und Normalspannung. Gleiche Wirkung hat das biegende Moment  $M_b$ . Die Gesamtdehnung wie auch die Gesamtspannung ergibt sich als die algebraische Summe aus den beiden Einzeldehnungen bzw. Einzelspannungen.

Unter den Voraussetzungen, daß die Ebene des Kräftepaares die eine der beiden Hauptachsen des Querschnittes in sich enthält und daß diese gleichzeitig Symmetrieachse ist, findet sich die durch  $M_b$ im Abstande  $\eta$  von der anderen Hauptachse hervorgerufene Normalspannung nach Gleichung 9, § 16, zu

$$\pm \frac{M_b}{\Theta} \eta$$
.

Treffen diese Voraussetzungen nicht zu, so kann die Normalspannung nach Maßgabe des in § 21 unter 2 Erörterten festgestellt werden. Hinsichtlich der Genauigkeit, mit der dies geschieht, vgl. den ersten Absatz von § 21.

C. Bach, Elastizität. 8. Aufl.

434 VII. Beanspruchung durch Normalspannungen (Dehnungen).

Die Normalspannung, die von P herrührt. beträgt unter der Voraussetzung gleichmäßiger Verteilung über den Querschnitt in allen Punkten des letzteren

$$+\frac{P}{f}$$
.

Das obere Vorzeichen gilt, wenn P ziehend, das untere. wenn P drückend wirkt.

Folglich die Gesamtspannung  $\sigma$  im Abstande  $\eta$  von der bezeichneten Hauptachse





 $M_b$ , P,  $\Theta$  und f sind als absolute Größen zu betrachten, während  $\eta$  als positiv oder negativ einzuführen ist, je nachdem die betreffende Faserschicht auf der erhabenen oder der hohlen Seite der elastischen Linie liegt.

Bei Benutzung der Gleichung 1 sind die Voraussetzungen, die zu ihr führten, im Auge zu behalten; insbesondere kann sie ganz unrichtige Werte ergeben, wenn unter Einfluß von  $M_b$  der Stab sich in solchem Maße durchbiegt, daß P infolge dieser Durchbiegung ebenfalls Momente liefert, die von Bedeutung sind und nicht mehr vernachlässigt werden dürfen.

Hinsichtlich des Krümmungshalbmessers der elastischen Linie sei unter den in § 16 gemachten Voraussetzungen folgendes bemerkt.

Die beiden um dx voneinander abstehenden Querschnitte CCund  $\overline{C_1C_1}$ , Fig. 1, ändern unter Einwirkung der in die Stabachse fallenden Kraft P lediglich ihre Entfernung, und zwar um  $\overline{O_1O_1'} = \varepsilon_0 dx$ , sofern  $\varepsilon_0$  die durch P herbeigeführte verhältnismäßige Dehnung ist, entsprechend der Normalspannung  $\sigma = \frac{P}{f}$ .  $C_1'C_1'$  sei diese neue Lage von  $C_1C_1$  gegenüber CC.

Infolge der Wirksamkeit des Momentes  $M_b$  neigen sich die beiden Querschnitte gegeneinander. Wäre nur  $M_b$  tätig, so würden sich die beiden Querschnitte in der durch den Punkt M bestimmten Linie schneiden, wegen der Parallelverrückung um  $O_1O_1' = \varepsilon_0 dx$ erfolgt dieses Schneiden jedoch in einer dazu parallelen Linie, die sich im Punkte  $M_1$  darstellt, für den gilt

wenn  $\rho$  den Krümmungshalbmesser bedeutet, wie er sich unter Einwirkung des biegenden Momentes allein ergibt. Da  $\varepsilon_0$  eine sehr kleine Größe gegenüber 1 ist, so darf mit Annäherung  $\overline{OM_1} = \sim \varrho$ gesetzt, also mit der oben bezeichneten Annäherung hinsichtlich des Krümmungshalbmessers so verfahren werden, als sei nur das biegende Moment wirksam.

#### Der einerseits befestigte prismatische Stab wird durch eine zur Stabachse parallele, jedoch exzentrisch zu ihr gelegene Kraft P belastet.

#### 1. Die Kraft P wirkt ziehend, Fig. 2 und 3.

Die durch P und die Stabachse bestimmte Ebene schneidet sämtliche Körperquerschnitte in einer der beiden Hauptachsen.

Die hierbei eintretende Biegung des Stabes, Fig. 3, ist eine derartige, daß das biegende Moment, insoweit es von der Größe der Durchbiegung beeinflußt wird, von B nach A

hin abnimmt, also seinen größten Wert Pa im Querschnitt bei B besitzt. Für diesen gilt daher nach Gleichung 1, sofern der Wert von  $\eta$  für die am stärksten gespannte Faser gleich *e* ist.

$$\sigma_{max} = \frac{Pa}{\Theta}e + \frac{P}{f} = \frac{P}{f}\left(1 + \frac{aef}{\Theta}\right).$$

Hierbei ist der - übrigens nicht erheb-



liche - Einfluß, welchen die mit der Durchbiegung verknüpfte Neigung des Querschnittes nimmt, vernachlässigt.

Nach A hin wird sich  $\sigma_{max}$  vermindern in dem Maße, in dem die Durchbiegung den Hebelarm der Kraft P verringert.

Für kreisförmigen Querschnitt vom Durchmesser d und mit  $a = \frac{d}{2}$  (Angriffspunkt der Kraft liegt auf dem Umfange des Querschnittes) folgt beispielsweise

$$f = \frac{\pi}{4} d^{2}, \qquad \Theta = \frac{\pi}{64} d^{4}, \qquad e = \frac{d}{2},$$

$$\sigma_{max} = \frac{P}{f} \left\{ 1 + \frac{\frac{d^{2}}{4} \frac{\pi}{4} d^{2}}{\frac{\pi}{64} d^{4}} \right\} = \frac{P}{f} (1+4) = 5 \frac{P}{f},$$
28*

435

436 VII. Beanspruchung durch Normalspannungen (Dehnungen).

d. h. die größte Anstrengung ist 5 mal so groß als bei zentrischem Angriff der Kraft P. Der Einfluß der Exzentrizität ist demnach ein ganz bedeutender.

Besteht der Stab aus einem Material, für welches die zulässige Anstrengung  $k_b$  gegenüber Biegung, berechnet aus Gl. 9, § 16, wobei eine Veränderlichkeit der Dehnungszahl nicht berücksichtigt ist, sich wesentlich unterscheidet von derjenigen gegenüber Zug, d. i.  $k_s$ , wie dies z. B. für Gußeisen zutrifft (vgl. § 22, Zusammenstellung auf S. 292, 298, Spalte 4, Gleichung 1, § 22 auf S. 293), so würde es unrichtig sein, ohne weiteres nach Maßgabe der Beziehungen

$$rac{P}{f} + rac{Pa}{\Theta} e \leq k_b \quad ext{oder} \quad rac{P}{f} + rac{Pa}{\Theta} e \leq k_z$$

zu rechnen. In solchem Falle ergeben sich mit

$$k_b = \beta_0 k_s$$

die Beziehungen

$$\beta_{0} \frac{P}{f} + \frac{Pa}{\Theta} e \leq k_{b} \quad \text{oder} \quad \frac{P}{f} + \frac{1}{\beta_{0}} \frac{Pa}{\Theta} e \leq k_{z}, \\ \beta_{0} = \frac{k_{b}}{k_{z}} = \frac{\text{zulässige Biegungsanstrengung}}{\text{zulässige Zuganstrengung}}$$

#### 2. Die Kraft P wirkt drückend, Fig. 4.

Voraussetzung wie unter Ziff. 1.

Hier nimmt bei eingetretener Durchbiegung das Moment  $M_b$ von B nach A hin zu, wie bereits in § 24 an Hand der Fig. 1 er-

örtert worden ist. In bezug auf den durch x be-



Fig. 4. woraus

und damit die Durchbiegung des freien Endes

Für den Querschnitt bei A erlangt  $M_b$  den größten Wert, nämlich

$$\max(M_b) = P(a + y') = \frac{Pa}{\cos\left(l\sqrt{\frac{Pa}{\Theta}}\right)};$$

folglich beträgt hier die Gesamtzugspannung der im Abstande  $\eta = + e_1$  gelegenen Fasern nach Gleichung 1

$$\max(\sigma_{1}) = \frac{Pa}{\cos\left(l\sqrt{\frac{Pa}{\Theta}}\right)} \frac{e_{1}}{\Theta} - \frac{P}{f} \leq k_{b} \quad . \quad . \quad . \quad 5)$$

und die Gesamtpressung der im Abstande  $\eta = - \, e_{\! 2}$ gelegenen Fasern

$$\max(\sigma_2) = \frac{Pa}{\cos\left(l\sqrt{\frac{Pa}{\Theta}}\right)} + \frac{P}{f} \leq k, \quad \dots \quad 6)$$

sofern  $k_b$  und k die zulässigen Anstrengungen gegenüber Zug bei Biegung bzw. Druck bezeichnen.

Besteht der stabförmige Körper aus einem Material, für das  $k_b$ erheblich von k abweicht, so muß streng genommen in sinngemäßer Weise so verfahren werden, wie am Schlusse von Ziff. 1 angegeben worden ist. Da jedoch hier unter allen Umständen eine größere Sicherheit darin liegt, wenn die Gleichung 5 ohne weiteres benützt wird, während dort die Außerachtlassung von  $\beta_0$  in der ersten der Beziehungen 2 zu einer wesentlichen Unterschätzung der Materialanstrengung führen könnte, so dürfte an dieser Stelle der gegebene Hinweis genügen.

a) Der Stab ist schlank und der Hebelarm a klein.

Diese Sachlage entspricht dem im ersten Abschnitt unter IV behandelten Falle der Knickung. Dort wurde zwar zentrische Belastung des Stabes durch die Kraft P zunächst vorausgesetzt; wir erkannten aber, daß es sehr schwer hält, diese Voraussetzung zu erfüllen, infolgedessen ein, wenn auch sehr kleiner, Hebelarm als tatsächlich vorhanden angenommen werden mußte. Diese Annahme wurde außerdem noch dadurch zu einer Notwendigkeit, daß in Wirklichkeit die Achse bei längeren Stäben keine gerade Linie, und daß tatsächlich das Material nicht vollkommen gleichartig ist. Wir gelangten sodann in § 24 zu dem Ergebnis, daß, wenn die Belastung P beträgt

$$P_0 = \frac{\pi^2}{4} \frac{1}{\alpha} \frac{\Theta}{l^2},$$

die Durchbiegung y' nach Gleichung 4 selbst für einen sehr kleinen Wert des Hebelarmes a die Größe  $\infty$  annimmt. Infolgedessen war  $P_0$  als diejenige Belastung zu bezeichnen, welche die Knickung, d. h. Bruch oder unzulässige Biegung, des Stabes herbeiführen wird, sofern nur a > 0. Letzteres muß aber aus den bezeichneten Gründen immer angenommen werden.

Demgemäß wurde in § 25 als zulässige Größe der den Stab belastenden Kraft P nur der Ste Teil von  $P_0$  in Rechnung gestellt, also gewählt

$$P = \frac{\pi^2}{4\mathfrak{S}} \frac{1}{\alpha} \frac{\Theta}{l^2}$$

unter Beachtung, daß überdies die Forderung der einfachen Druckbeanspruchung

 $P \leq kf$ 

befriedigt sein muß.

Wird in Gleichung 4 für P der in der vorletzten Gleichung enthaltene Wert eingeführt, so ergibt sich

$$y' = a \left[ \frac{1}{\cos\left(\frac{\pi}{2}\sqrt{\frac{1}{\Im}}\right)} - 1 \right],$$

woraus beispielsweise

für  $\mathfrak{S} = 4$  9 16 25 die Ausbiegungen y' = 0.414 a 0.155 a 0.082 a 0.052 afolgen.

ioigen.

Die Bedingung

$$P \leq \frac{P_0}{\mathfrak{S}}$$

kommt demnach darauf hinaus, daß man die Abweichung y' von der Geraden, d. h. die Ausbiegung, innerhalb einer gewissen Grenze hält.

Ganz entsprechend wird auch hier vorzugehen sein. Der einzige Unterschied besteht darin, daß infolge des exzentrischen Angreifens der Kraft P von vornherein ein Hebelarm gegeben ist. Derselbe, mit  $a_1$  bezeichnet, ist schätzungsweise um einen Betrag  $a_2$  zu vergrößern, der den oben bezeichneten Umständen (Nichtgeradlinigkeit der Stabachse, Ungleichartigkeit des Materials, einschließlich Verschiedenartigkeit seines Zustandes) Rechnung trägt. Hinsichtlich  $a_1$ wird wesentlich die Genauigkeit in Betracht kommen, mit der sich die Lage der auf den Stab wirkenden Kräfte feststellen und wenigstens dahin sichern läßt, daß Überschreitung des in Rechnung genommenen Wertes von  $a_1$  in Wirklichkeit nicht stattfindet. Indem hierbei die Konstruktion. Material, Ausführung und Aufstellung Einfluß nehmen werden, greift die Größe  $a_1$  in das Gebiet von  $a_2$  über.

Liegen die Größen  $a_1$  und  $a_2$ , nach Maßgabe des Vorstehenden mit Rücksicht auf die besonderen Verhältnisse der jeweiligen Aufgabe ermittelt, vor, so kann unter Beachtung, daß die zulässige Biegung y' für nicht federnde Konstruktionsteile sehr klein sein muß, zunächst gesetzt werden

$$M_b := P(a_1 + a_2),$$

womit sich ergibt

$$\begin{array}{c}
\frac{P(a_1 + a_2)}{\Theta}e_1 - \frac{P}{f} \leq k_b, \\
\frac{P(a_1 + a_2)}{\Theta}e_2 + \frac{P}{f} \leq k
\end{array}$$

(Vgl. die Bemerkungen zu Gleichung 5 und 6.)

Befriedigt der Stab diese Bedingungen, so ist die Durchbiegung

zu berechnen und Entschluß hinsichtlich ihrer Zulässigkeit zu fassen. Erforderlichenfalls sind die Abmessungen des Stabes zu ändern.

Die Gleichungen 7 und 8 setzen voraus, daß  $a_3$  in die Richtung von  $a_1$  fällt, was nicht notwendigerweise der Fall sein muß. Ist das Trägheitsmoment  $\Theta$  (bezogen auf die zum Abstande  $a_1$  senkrechte Hauptachse) das kleinere der beiden Hauptträgheitsmomente, so wird diese Annahme allerdings im Sinne des Zweckes der ganzen Rechnung liegen. Wenn dagegen  $\Theta$  das größere Trägheitsmoment ist, so verlangt dieser Gesichtspunkt, daß  $a_2$  senkrecht zu  $a_1$ , sofern nicht besondere Gründe für eine andere Richtung sprechen, angenommen und nach Maßgabe des in § 21 unter 2 Erörterten verfahren wird.

Um die unmittelbare Wahl von  $a_3$  zu umgehen, kann z. B. für Baukonstruktionen in derselben oder in ähnlicher Weise vorgegangen werden, wie dies in § 26 für den Fall einfacher Knickung besprochen worden ist¹): Näheres Eingehen hierauf würde den Rahmen dieser Arbeit weit überschreiten, ganz abgesehen davon, daß die besonderen Einflüsse, die bei den einzelnen Aufgaben zu berücksichtigen sind, die Berechnung des betreffenden Konstruktionsteiles dahin verweisen, wo derselbe seiner Wesenheit nach sowie in seinem Zusammenhange mit den an ihn anschließenden Teilen zu behandeln ist.

#### b) Der Stab ist schlank und der Hebelarm a im Verhältnis zu den Abmessungen des Querschnittes groß.

In diesem Falle wird zunächst die erste der Beziehungen 7 mit  $a_1 + a_2 = a$ ; d. h.

$$\frac{Pa}{\Theta}e_{1}-\frac{P}{f}\leq k_{b}$$

maßgebend; der Einfluß des Gliedes

$$\frac{P}{f}$$

tritt hierbei zurück. Sodann ist für den Fall, daß der Stab dieser Beziehung genügt, die nach Gleichung 8 eintretende Durchbiegung zu ermitteln und über deren Zulässigkeit Entscheidung zu treffen.

c) Die Querschnittsabmessungen des Körpers sind im Vergleich zur Länge desselben und zur Größe des Hebelarmes so bedeutend, daß eine Biegung von Erheblichkeit nicht eintritt.

Dann sind einfach die Gleichungen 7 zu beachten und in ihnen

$$a_1 + a_2 = a$$

zu setzen; Gleichung 8 kommt nicht mehr in Betracht.

Hierher gehören auch Beispiele wie das folgende. Der senkrechte Mauerpfeiler vom Gewichte G und der Länge l, Fig. 5, empfängt durch ein Lager den abwärts gerichteten Druck P. Das im Schwerpunkte angreifende Gewicht ergibt für die Grundfläche ls des Bodens,

¹) S. z. B. v. Tetmajer, Die angewandte Elastizitäts- und Festigkeitslehre, Zürich 1889 und 1905, sowie: Die Gesetze der Knickungs- und der zusammengesetzten Druckfestigkeit der technisch wichtigen Baustoffe, Zürich 1901. v. Tetmajer steht hinsichtlich der Behandlung der Knickungsaufgabe auf einem anderen Standpunkt als Verfasser, weshalb auf dessen Arbeiten besonders aufmerksam gemacht sei. (Vgl. auch des Verfassers Besprechung des zuerst genannten v. Tetmajerschen Buches in der Zeitschrift des Vereines deutscher Ingenieure 1889, S. 474 u. f.)

§ 45. Allgemeines.

auf dem der Pfeiler steht, unter Voraussetzung gleichmäßiger Druckverteilung die Pressung ~

$$\frac{G}{ls}$$
.

Der Druck P, in die Mittelebene des Pfeilers, d. h. um  $\frac{s}{2} - z$ verlegt, liefert eine Kraft P und ein Kräftepaar vom Momente

$$P\left(\frac{s}{2}-z\right)$$

Die erstere führt zu einer gleichmäßig über die Bodenfläche verteilten Pressung

$$\frac{P}{ls}$$
,

das letztere dagegen ergibt für die linke Mauerkante eine Pressung  $\sigma$ , die sich bestimmt aus



zu

mit der Genauigkeit, mit der die Hauptgleichung der Biegungselastizität auf den vorliegenden Fall angewendet werden darf.

Damit beträgt die gesamte Pressung an der linken Mauerkante

\

$$k_1 = \frac{G+P}{ls} + \frac{6P\left(\frac{s}{2}-z\right)}{ls^2},$$

an der rechten dagegen

$$k_{2} = \frac{G+P}{ls} - \frac{6P\left(\frac{s}{2}-z\right)}{ls^{2}}$$

Die erstere soll die für den Boden oder das Fundament höchstens noch als zulässig erachtete Größe nicht überschreiten.

Fig. 6 gibt ein Bild der Pressungsverteilung über die Bodenfläche.

Diese Rechnungsweise gilt für das gewählte Beispiel naturgemäß nur so lange, als  $k_2 \ge 0$  ausfällt. Würde sich  $k_2$  negativ ergeben, so wären an der rechten Kante des Mauerpfeilers von dem Boden Zugspannungen auf diesen auszuüben, was in Wirklichkeit nicht geschehen kann. In solchem Falle würde in allen denjenigen Flächen-

#### 442 VII. Beanspruchung durch Normalspannungen (Dehnungen).

elementen, für die sich Zugspannungen ergeben, die Berührung zwischen Pfeiler und Boden aufhören müssen und damit dieser Teil des Querschnittes für die Druckverteilung nicht mehr in Betracht kommen können. Die Rechnung ist dann derart durchzuführen, daß nur derjenige Teil des Querschnittes berücksichtigt wird, der tatsächlich in Wirksamkeit tritt. Wird unter Bezugnahme auf Fig. 7 mit x die Breite dieses Querschnittsteils bezeichnet, so folgt

$$k_1 = \frac{G+P}{lx} + \sigma,$$

und da

$$P\left(\frac{x}{2}-z\right) - G\left(\frac{s}{2}-\frac{x}{2}\right) = \frac{1}{6} \sigma l x^{2},$$

$$k_{1} = \frac{G+P}{lx} + \frac{6P\left(\frac{x}{2}-z\right) - 6G\left(\frac{s}{2}-\frac{x}{2}\right)}{lx^{2}}$$

Die Unbekannte x ergibt sich aus der Erwägung, daß die Pressung im Abstande x von der linken Pfeilerkante gleich Null sein muß, d. h.



Fig. 7.

$$0 = \frac{G+P}{lx} - \frac{6P\left(\frac{x}{2}-z\right) - 6G\left(\frac{s}{2}-\frac{x}{2}\right)}{lx^2}$$

 $x = 3 \frac{G\frac{s}{2} + Pz}{G + P}.$ 

Denken wir uns P und G durch ihre Resultante P+G ersetzt, so müßte diese im Abstande

$$y = \frac{G\frac{s}{2} + Pz}{G+P}$$

von der linken Pfeilerkante angreifen. Demnach

woraus

$$x = 3 y$$
,

d. h. die Breite x der für die Druckverteilung in Betracht kommenden Fläche ist gleich dem 3 fachen Werte des Abstandes y.

Die Einführung von y in den Ausdruck für  $k_1$  liefert

$$k_{1} = \frac{G+P}{lx} + \frac{6(G+P)\left(\frac{x}{2}-y\right)}{lx^{2}} = \frac{G+P}{3ly} + \frac{6(G+P)0,5y}{9ly^{2}}$$
$$= \frac{2}{3}\frac{G+P}{ly} = 2\frac{G+P}{lx}.$$

d. i. doppelt soviel als bei gleichmäßiger Verteilung des Druckes über den Querschnitt lx.

Galt der oben für  $k_1$  gefundene Ausdruck nur für das durch

$$k_2 = \frac{G - P}{ls} \quad \begin{array}{c} 6 P\left(\frac{s}{2} - z\right) \\ \hline ls^2 \end{array} \stackrel{}{\longrightarrow} \begin{array}{c} 0 \end{array}$$

umschlossene Gebiet, so ist das Geltungsbereich der zuletzt für  $k_{\rm i}$ ermittelten Gleichung durch

$$k_{2} = \frac{G + P}{ls} - \frac{6 P\left(\frac{s}{2} - z\right)}{ls^{2}} \le 0$$

oder durch

$$x = 3 y = 3 \frac{G \frac{s}{2} + Pz}{G + P} \leq s$$

begrenzt. Für den Grenzfall  $k_2 = 0$  oder x = s müssen beide Ausdrücke zu dem gleichen Werte führen. Die Beurteilung kann am raschesten in der Weise geschehen, daß man y ermittelt und zusieht, ob  $y \ge \frac{s}{\leq 3}$  ist. Im ersten und im zweiten Falle gilt der zuerst für  $k_1$  bestimmte Wert. im zweiten und dritten Falle dagegen der zuletzt ermittelte.

Von hierher gehörigen eigenen Versuchen seien die folgenden erwähnt:

a) Versuche mit zentrisch und exzentrisch belasteten Pfeilern aus Backsteinmauerwerk und aus Beton, Zeitschrift des Vereines deutscher Ingenieure 1910, S. 1625 u. f.

b) Versuche mit bewehrten und unbewehrten Betonkörpern, die durch zentrischen und exzentrischen Druck belastet wurden, Heft 166—169 der Mitteilungen über Forschungsarbeiten (1914).

#### § 46. Einfluß von Kräften, die in Richtung der Stabachse oder parallel zu ihr wirken, während der Stab durch Querkräfte durchgebogen wird.

#### 1. Einfluß des Widerstandes beim Gleiten der Oberfläche des beiderseits gelagerten und in der Mitte durch *P* belasteten Stabes gegenüber den Stützen infolge der Durchbiegung.

Der zunächst als gewichtslos gedachte Stab, im ursprünglichen unbelasteten Zustande, berührt die beiden Auflager mit bestimmten Teilen seiner Mantelfläche. Wenn er sich zu biegen beginnt, so muß derjenige Punkt der Stabachse, der ursprünglich über dem einen,

#### 444 VII. Beanspruchung durch Normalspannungen (Dehnungen).

etwa dem linken, Auflager sich befand, nach der Mitte rücken vgl. Fig. 1 —, da die Achse, d. h. die elastische Linie, ihre Länge beibehält. Diese Verrückung  $\Delta$  nach der Stabmitte hin läßt sich auffassen als Unterschied zwischen der halben Stablänge  $l_1 = 0.5 l$  und der halben Sehne des Bogens der elastischen Linie, dessen Länge unveränderlich, nämlich gleich  $l_1$ , und dessen Pfeilhöhe gleich der Durchbiegung y' in der Mitte ist.

Wird, was für unseren Zweck zulässig, die elastische Linie als flacher Parabelbogen aufgefaßt, so erhält man, da für diesen, sofern dessen halbe Sehne a, dessen halbe Länge s und dessen Pfeilhöhe  $\delta$ 

beträgt, bekanntlich gesetzt werden darf



$$s = a \left( 1 + \frac{2}{3} \frac{\delta^2}{a^3} \right),$$

entsprechend einem Unterschied von

$$\frac{2}{3}\left(\frac{\delta}{a}\right)^2 a = \sim \frac{2}{3}\left(\frac{\delta}{s}\right)^2 s$$

zwischen s und a,

$$\Delta = \frac{2}{3} \left( \frac{\mathbf{y}'}{l_1} \right)^2 l_1 = \frac{4}{3} \left( \frac{\mathbf{y}'}{l} \right)^2 l.$$

Gleichzeitig mit dieser Verrückung des Endpunktes der elastischen Linie nach einwärts neigt sich derjenige Stabquerschnitt, der über dem Auflager stand, unter dem kleinen Winkel  $\beta$ . Hiermit ist eine Auswärtsbewegung der Linie (oder des Punktes), in der bzw. in dem der Stab vor der Biegung das Auflager berührte, um  $e\beta$ verknüpft. Da nach Gleichung 13, § 18,

$$\beta = \frac{\alpha}{16} \frac{P l^2}{\Theta},$$

so beträgt diese Auswärtsbewegung

$$\frac{\alpha}{16}\frac{Pl^2}{\Theta}e.$$

Demnach rücken diejenigen Teile der Mantelfläche des Stabes, mit welchen derselbe im unbelasteten Zustande, d. h. bei gerader Achse, die Auflager berührte, nach auswärts um die Strecke

$$x = e\beta - \Delta = \frac{\alpha}{16} \frac{Pl^2}{\Theta} e - \frac{4}{3} \left(\frac{y'}{l}\right)^2 l.$$

Gleichung 14, § 18, ergibt

$$y'=\frac{\alpha}{48}\frac{Pl^{*}}{\Theta},$$

$$x = \frac{\alpha}{16} \frac{P l^2}{\Theta} \left( e - \frac{\alpha P l^3}{108 \Theta} \right).$$

Solange x positiv ist, d. h. wenn

$$e \ge \frac{\alpha P l^3}{108 \Theta},$$
$$P \le 108 \frac{\Theta e}{\alpha l^3},$$

oder nach Einführung von

$$\frac{Pl}{4} = \sigma \frac{\Theta}{e},$$

worin  $\sigma$  die größte Biegungsanstrengung in der Mitte des Stabes bezeichnet,

so lange wird die in Frage stehende Bewegung nach auswärts erfolgen und damit während des Vorsichgehens der Durchbiegung eine auf den Stab wirkende, einwärts gerichtete Kraft R (vgl. Fig. 1) wachgerufen werden. Setzen wir, um zu erkennen, ob diese Voraussetzung für gewöhnlich zutrifft, für Stahl

$$\alpha = \frac{1}{2150000} = 0.465$$
 Milliontel.  $\sigma = 1600$ ,

so findet sich

$$\frac{e}{l} > \sqrt{\frac{1600}{27 \cdot 2150\,000}} \qquad e > \frac{1}{190} \, l,$$

was ausnahmslos der Fall sein wird. Es wirkt also — unter der Voraussetzung kleiner Durchbiegungen — R tatsächlich in der bezeichneten Richtung. Diese Kraft ist für unbewegliche Auflager, die sich nicht in den Stab eindrücken, gleich der Reibung, d. h.

$$R=\frac{P}{2}\mu,$$

sofern  $\mu$  den Koeffizienten der gleitenden Reibung zwischen Staboberfläche und festem Auflager bezeichnet.

Drücken sich die Auflager in den Stab ein, so tritt R nicht mehr als einfache Reibung, sondern als weit größerer Widerstand auf.

Werden die Stützen von Rollen gebildet, die sich um feste Zapfen drehen können (Rollenauflager), so wird R kleiner als 0.5  $P \mu$  ausfallen.

446 VII. Beanspruchung durch Normalspannungen (Dehnungen).

Die Kraft R wirkt nun, abgesehen von ihrem Einflusse auf die Länge der Stabachse, mit dem Momente

$$Re = 0.5 P \mu e \qquad \dots \qquad \dots \qquad \dots \qquad 2)$$

auf den Stab, sofern der Einfluß der Durchbiegung auf das Moment vernachlässigt wird. Für den mittleren Stabquerschnitt ergibt sich alsdann nicht das Moment

 $\frac{Pl}{4}$ ,

sondern

$$\frac{Pl}{4} - Re = \frac{Pl}{4} - \frac{P\mu e}{2} = \frac{Pl}{4} \left(1 - 2\mu \frac{e}{l}\right) \dots \dots 3$$

Beispielsweise beträgt für e = 50 mm und l = 1000 mm die Verminderung des Momentes

bei

bei

$\mu = 0.1$ 1 °/0		$\mu = 0.5$ 5 °/ ₀
e = 200  mm	und	l = 1000  mm
$\mu = 0.1$ 4 °/ ₀		$\mu = 0.5$ 20 °/ ₀

Deutlich zeigt sich der Einfluß der verhältnismäßigen Höhe des Stabes und des Koeffizienten  $\mu$ .





Werden feste Auflager verwendet, welche die Form einer Schneide haben und sich vielleicht gar in den Stab eindrücken, wodurch  $\mu$ einen verhältnismäßig hohen Wert erlangen muß, so kann die Kraft Rselbst bei nicht hohen Körpern in erheblicher Größe auftreten¹).

Handelt es sich z. B. um die Ermittlung der Anstrengung, die eine Schwelle, Fig. 2, beim Eindrücken in die Bettung erfährt, so wird der Einfluß der Reibung, die infolge der Durchbiegung zwischen Bettung und Unterfläche der Schwelle auftritt, nicht ohne weiteres

¹) Aus diesem Grunde sollen der Biegungsprobe zu unterwerfende Stäbe, deren Querschnittsabmessungen nicht klein sind im Vergleich zur Stützweite, Rollenauflager erhalten, was meist zu geschehen pflegt. (Vgl. hierüber Zeitschrift des Vereines deutscher Ingenieure 1888, S. 244 u. f., Fußbemerkung daselbst.)

für

§46. Einfluß von Kräften, die in Richtung der Stabachse wirken. 447

außer acht gelassen werden dürfen. Auch bei gebogenen Federn, die an beiden Enden aufliegen und in der Mitte belastet sind, können infolge des mit der Pfeilhöhe der gebogenen Mittellinie wachsenden Hebelarmes der Reibungskräfte diese von erheblicher Bedeutung werden usw.

Immerhin aber werden es nur Ausnahmefälle sein, in denen auf die im vorstehenden erörterte Wirkung der Reibung zwischen gebogenem Stab und Auflager Rücksicht zu nehmen ist.

Schließlich sei noch darauf hingewiesen, daß bei  $\neg \neg$  auch teilweiser  $\neg \neg$  Entlastung des Stabes sich die Durchbiegung vermindert; damit kehrt die Kraft R ihre Richtung und das Moment Re seinen Sinn um, die Biegungsbeanspruchung nicht mehr vermindernd, sondern vermehrend.

# 2. Der an den Enden drehbar befestigte und hier durch Zugkräfte gespannte prismatische Stab wird durch die gleichmäßig über ihn verteilte Querkraft Q = pl belastet.



Wir denken uns den nach einem flachen Bogen durchhängenden Stab in der Mitte durchschnitten und daselbst eingespannt, wie in Fig. 4 gezeichnet. Dann ergibt sich für den beliebigen^{$\tau$} um x von der Mitte abstehenden Querschnitt bei P das biegende Moment



Fig. 4.

 $M_{b} = \frac{pl}{2} \left( \frac{l}{2} - x \right) - p \frac{\left( \frac{l}{2} - x \right)^{2}}{2} - P(y_{0} - y)$  $= \frac{pl^{2}}{8} - \frac{px^{2}}{2} - P(y_{0} - y)$ 

448 VII. Beanspruchung durch Normalspannungen (Dehnungen). und hiermit unter Beachtung von Gleichung 15, § 16,

$$\frac{\Theta}{\alpha} \frac{d^3 y}{dx^2} = \frac{pl^2}{8} - \frac{px^2}{2} - P(y_0 - y)$$
$$\frac{\Theta}{\alpha} \frac{d^2 y}{dx^2} - Py + \frac{px^2}{2} - \frac{pl^2}{8} + Py_0 = 0.$$

Die Integration dieser Differentialgleichung liefert unter der Voraussetzung, daß  $\Theta$  und  $\alpha$  konstant sind,

$$y = C_1 e^x \sqrt{\frac{aP}{\Theta}} + C_2 e^{-x} \sqrt{\frac{aP}{\Theta}} + \frac{p}{2P} x^2 + \frac{\Theta p}{\alpha P^2} - \frac{1}{P} \left(\frac{pl^2}{8} - Py_0\right) \quad . \quad . \quad 4)$$
  
Da für  $x = 0$ 

$$\frac{dy}{dx} = 0,$$

so folgt

$$\frac{dy}{dx_{x=0}} = \left| C_1 \sqrt{\frac{\alpha P}{\Theta}} e^{x \sqrt{\frac{\alpha P}{\Theta}}} - C_2 \sqrt{\frac{\alpha P}{\Theta}} e^{-x \sqrt{\frac{\alpha P}{\Theta}}} + \frac{p}{P} x \right|_{x=0} = 0,$$

**d**. h.

$$C_1 = C_2 = C.$$

Für  $x = \frac{l}{2}$  ist  $M_b = 0$ , somit  $\varrho = \infty$ , also

$$\frac{1}{\varrho} = \frac{d^2 y}{dx^2} = 0$$

demnach

$$\frac{d^2 y}{dx^2_{x=\frac{l}{2}}} = \left| C \left[ \frac{\alpha P}{\Theta} e^{x \sqrt{\frac{\alpha P}{\Theta}}} + \frac{\alpha P}{\Theta} e^{-x \sqrt{\frac{\alpha P}{\Theta}}} \right] + \frac{p}{P} \right|_{x=\frac{l}{2}} = 0,$$

woraus

$$C = -\frac{p\Theta}{\alpha P^2 \left[ e^{\frac{l}{2} \sqrt{\frac{\alpha P}{\Theta}}} + e^{-\frac{l}{2} \sqrt{\frac{\alpha P}{\Theta}}} \right]}.$$

Ferner muß für x = 0 y = 0 sein, womit aus Gleichung 4 unter Berücksichtigung der Werte der Konstanten folgt

$$y_{0} = \frac{1}{P} \left[ \frac{pl^{2}}{8} - \frac{p\Theta}{\alpha P} + \frac{2p\Theta}{\alpha P} + \frac{2p\Theta}{\alpha P \left(e^{\frac{1}{2}\sqrt{\frac{aP}{\Theta}}} + e^{-\frac{1}{2}\sqrt{\frac{aP}{\Theta}}}\right)} \right].$$

§ 46. Einfluß von Kräften, die in Richtung der Stabachse wirken. 449

Hiermit findet sich das biegende Moment in der Mitte der Stange, d. i. für  $x = \frac{l}{2}$ ,

$$\max(M_b) = \frac{pl^2}{8} - Py_0 = \frac{p\Theta}{\alpha P} \left[ 1 - \frac{2}{e^{\frac{l}{2}}\sqrt{\frac{\alpha P}{\Theta}} + e^{-\frac{l}{2}}\sqrt{\frac{\alpha P}{\Theta}}} \right] . . . 5)$$

und infolgedessen die Biegungsanstrengung

$$\sigma_{b} = \frac{\max\left(M_{b}\right)}{\frac{\Theta}{e_{1}}} = e_{1} \frac{p}{\alpha P} \left[ 1 - \frac{2}{e^{\frac{l}{2}} \sqrt{\frac{aP}{\Theta}} + e^{-\frac{l}{2}} \sqrt{\frac{aP}{\Theta}}} \right] \dots 6 \right]$$

Diese Gleichung liefert beispielsweise für eine 6 m lange Stange von 25 mm Durchmesser, die durch P = 3000 kg gespannt ist, bei Einführung von

$$e_{1} = \frac{2,5}{2}, \quad p = \frac{\pi}{4} \cdot 2,5^{2} \cdot 0,0078 = \sim 0,04 \text{ kg}, \quad \alpha = \frac{1}{2\,000\,000},$$
$$\Theta = \frac{\pi}{64} \cdot 2,5^{4} = 1,914.$$
$$\sigma_{b} = \frac{2,5}{2} \frac{0,04}{\frac{1}{2\,000\,000}\,3000} \left[ 1 - \frac{2}{e^{300}\sqrt{\frac{3000}{2\,000\,000 \cdot 1,914}} + e^{-300}\sqrt{\frac{3000}{2\,000\,000 \cdot 1,914}} + e^{-300}\sqrt{\frac{3000}{2\,000\,000}} + \frac{1}{2\,000\,000} + \frac{1}{2\,000\,000\,000} + \frac{1}{2\,000\,000} + \frac{1}{2\,000\,000} + \frac{1}{2\,000\,000} + \frac{1}{2\,000\,000} + \frac{1}{2\,000\,000} + \frac{1}{2\,000\,000\,000} + \frac{1}{2\,000\,000\,000} + \frac{1}{2\,000\,000\,000} + \frac{1}{2\,000\,000\,000} + \frac{1}{2\,000\,000\,000} + \frac$$

Wie ersichtlich, tritt der Einfluß des zweiten Gliedes der Klammer ganz zurück, so daß es für den Fall größerer Länge der Zugstange und großer Zugkraft bei mäßigem Trägheitsmoment vollständig genügt, die Biegungsanstrengung zu berechnen aus

$$\sigma_b = e_1 \frac{p}{\alpha P}, \quad \dots \quad \dots \quad \dots \quad \dots \quad n$$

d. i. die bereits in § 6, Gleichung 17, für den frei aufgehängten Draht gefundene Biegungsinanspruchnahme, wenn dort e durch  $e_1$  und H durch P ersetzt wird.

Unter den bezeichneten Verhältnissen erscheint hiernach die Biegungsbeanspruchung einer Zugstange so gut wie unabhängig von der Spannweite¹).

¹) Die Berechnung der Biegungsbeanspruchung, z. B. der oben behandelten Stange in der Weise, daß gesetzt wird

$$M_{b} = \frac{pl^{2}}{8} = \frac{0,04 \cdot 600^{3}}{8} = \sigma_{b} \frac{\Theta}{e} = \sigma_{b} \frac{\pi}{32} 2,5^{3},$$

C. Bach, Elastizität. 8. Aufl.

d

450 VII. Beanspruchung durch Normalspannungen (Dehnungen).

In ähnlicher Weise ist vorzugehen, wenn es sich um an den Enden eingespannte oder auch um schräge Zugstangen handelt.

#### 3. Ein dünner Stab ist um eine Rolle geschlungen und durch Zugkräfte belastet, Fig. 5.

Die Beanspruchung des Bandes von der Stärke s, der Breite b, also dem Querschnitt f = bs, setzt sich zusammen aus der An-

> strengung, herrührend von der Zugkraft P, und aus der Anstrengung, die dadurch hinzutritt, daß das Band um die Scheibe geschlungen, also gebogen werden muß. Die erste Inanspruchnahme gibt mit der Genauigkeit, mit der gleichmäßige Verteilung über den Ouerschnitt des

der Genauigkeit, mit der gleichmäßige Verteilung über den Querschnitt des Bandes angenommen werden kann, die Zugspannung

Die letztere Anstrengung pflegt in folgender Weise berechnet zu werden.

Unter der Voraussetzung, daß die Querschnitte des um die Scheibe gebogenen Stabes senkrecht zur gekrümmten Mittellinie stehen, erlangen die äußersten Fasern eine Länge  $\omega(R+s)$ , während sie vor der Biegung die Länge  $\omega\left(R+\frac{s}{2}\right)$  besaßen; sie erfahren also eine Verlängerung um

$$\omega(R+s)-\omega\left(R+\frac{s}{2}\right)=-\omega\frac{s}{2},$$

entsprechend der Dehnung

Fig. 5.

$$\frac{\frac{1}{2}\omega s}{\left(R+\frac{s}{2}\right)\omega} = \sim \frac{s}{2R},$$

woraus folgen würde

 $\sigma_b = \infty 1150 \text{ kg/qcm}$ ,

ergibt somit eine durchaus irrtümliche Beurteilung der Biegungsanstrengung. Sie vernachlässigt eben den starken, das biegende Moment vermindernden Einfluß der Zugkraft P (vgl. Fig. 4) infolge der Durchbiegung.

Die erste dahingehende Veröffentlichung, die dem Verfasser bekannt geworden ist, rührt von J. Schmidt her und findet sich im Civilingenieur 1874. S. 215 u. f. Später hat Tolle den Gegenstand eingehend behandelt: Zeitschrift des Vereines deutscher Ingenieure 1897, S. 855 u. f. § 46. Einfluß von Kräften, die in Richtung der Stabachse wirken. 451

somit der Spannung

sofern  $\alpha$  die innerhalb der eintretenden Beanspruchung als konstant vorausgesetzte Dehnungszahl bezeichnet.

Nach dieser Rechnung zeigt sich in den Querschnitten, die dem gekrümmten Teile des Stabes angehören, die in Fig. 6 — mit übertrieben groß gezeichneter Bandstärke — nach der Linie a b c dargestellte Spannungsverteilung. Zu diesen Biegungsspannungen tritt die von P herrührende Normalspannung  $\sigma_z$ , womit sich als Begrenzungslinie der Gesamtspannungen die Gerade  $a_1$   $b_1$   $c_1$  und infolgedessen  $\sigma_z + \sigma_b$  als Größtwert der Inanspruchnahme ergibt.

Diese Rechnungsweise liefert jedenfalls für den durch AB gegebenen Querschnitt des Bandes eine zu große Beanspruchung, wie sofort aus folgender Erwägung erhellt. In dem durch den Umschlingungswinkel  $\omega$  bestimmten Endquerschnitt AB des gebogenen Stabes soll die Spannungsverteilung nach der Linie  $a_1 \ b_1 \ c_1$  herrschen, also in der äußersten Faser die Zugspannung  $\sigma_b + \sigma_z$ , in

der innersten dagegen die Druckspannung  $\sigma_b - \sigma_z$ , sofern  $\sigma_z < \sigma_b$  ist. Im unmittelbar danebenliegenden Querschnitt EF dagegen soll die konstante Zugspannung  $\sigma_z = \overline{bb_1}$  vorhanden sein. In Wirklichkeit wird sich ein gewisser Ausgleich vollziehen, derart, daß im Querschnitt AB die von der Biegung herrührende Spannung außen und innen kleiner ist, als Gleichung 9 angibt, d. h. der Querschnitt des Stabes nimmt nicht die radiale Lage ein, welche die Rechnung voraussetzt, bleibt vielleicht auch nicht ganz eben, und das Band legt sich infolge seiner Steifigkeit nicht ganz in der angenommenen Weise an den Zylinder an. Die Biegungsanstrengung ist also tatsächlich im Querschnitt AB kleiner, als Gleichung 9 angibt. Dagegen wird sie jedenfalls in dem durch den Umschlingungswinkel  $\frac{\omega}{2}$  bestimmten Stabquerschnitt diese Größe erreichen.

Für den Fall, daß die eine der beiden Zugkräfte P größer ist als die andere, infolgedessen sich Reibungskräfte zwischen Band und Scheibe geltend machen, kann durch diese eine mehr oder minder



452 VIII. Beanspruchung durch Schubspannungen (Schiebungen).

große Abänderung der Spannungsverteilung über die Querschnitte veranlaßt werden¹).

## VIII. Beanspruchung durch Schubspannungen (Schiebungen).

#### § 47. Schub und Drehung.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für den in Betracht gezogenen Querschnitt eine in denselben fallende Kraft S und ein Kräftepaar vom Momente  $M_d$ , dessen Ebene die Stabachse senkrecht schneidet.

In einem beliebigen Element des Querschnittes erzeugt die Schubkraft S eine Schubspannung  $\tau_s$  und das auf Drehung wirkende Moment  $\dot{M}_d$  eine Schubspannung  $\tau_d$ ; die Resultante aus  $\tau_s$  und  $\tau_d$  liefert die Inanspruchnahme in dem betreffenden Querschnittselemente.

Bei Beurteilung derselben sowie bei Wahl der zulässigen Anstrengung ist es von Bedeutung, zu beachten, daß sie nicht bloß in dem Querschnitt, sondern auch senkrecht dazu auftritt (§ 30, s. auch Fig. 5, § 32, und Fig. 6, Taf. XIII, bzw. die Erörterung. die in § 45, Ziff. 1, zur Einführung von  $\beta_0$  und in § 48, Ziff. 2, zur Einführung von  $\alpha_0$  Veranlassung gibt).

¹) Es ist hier der Ort, auf eine häufig anzutreffende irrtümliche Beurteilung der Beanspruchung von Bändern, Drähten usw. aufmerksam zu machen, die über eine Rolle oder Stütze gebogen sind.



Fig. 7 zeigt die Einrichtung einer Drahtzerreißziemlich verbreiteten Das eine Ende des Drahtes maschine. wird um einen Zylinder geschlungen und mittels eines Backens gegen denselben gepreßt. Das andere, durch Backen gehaltene Ende wird durch eine Schraubenspindel wagrecht gezogen, wobei die Belastung des Drahtes in dem Maße stetig steigt, wie der Hebelarm wächst, an dem das Gewicht wirkt. Nach üblicher Auffassung müßte der Draht da reißen, wo er um den Zylinder gebogen ist. In der Regel zerreißt er jedoch in der geraden Strecke.

Dieses Verhalten, auf dem die Verwendbarkeit der Umschlingung des Drahtes als Einspannung beruht, läßt sich auf folgende Weise erklären. Bei

dem Biegen des Drahtes um den verhältnismäßig kleinen Zylinder erfährt er eine starke bleibende Krümmung; die Beanspruchung entspricht auch entfernt

#### 1. Kreisquerschnitt.

Nach § 39, b ist die von S herrührende Schubspannung am größten für die Umfangspunkte des zu S senkrechten Durchmessers, und zwar beträgt sie daselbst

$$\tau_s = \frac{4}{3} \frac{S}{f} = \frac{16}{3\pi} \frac{S}{d^2},$$
$$f = \frac{\pi}{4} d^2$$

 $\mathbf{sofern}$ 

die Größe des Querschnittes und d dessen Durchmesser bezeichnet.

Nach § 32 ist für alle Umfangspunkte die durch  $M_d$  wachgerufene Schubspannung

$$\tau_d = \frac{16}{\pi} \frac{M_d}{d^3}$$

nicht mehr der durch Gleichung 9 bestimmten Größe. Dabei wird das Material überanstrengt, die Festigkeit desselben nimmt zu, die Zähigkeit dagegen ab. Somit besitzt die gekrümmte Strecke eine größere Festigkeit. Bei der Durchführung der Zerreißprobe selbst vermindert sich die Zugbelastung des auf dem Zylinder liegenden Drahtstabes um so mehr, je weiter die Querschnitte von der Ablaufstelle entfernt liegen. Daß Reißen erfolgt alsdann, wenigstens der Regel nach, in der geraden Strecke.

Ähnlich verhält es sich mit einem Bremsband, das um die Bremsscheibe geschlungen wird, oder mit dem Bleche eines Kessels, das kalt gerollt wird, und — wenn auch etwas verschieden davon — mit dem Kabel einer Kabelbrücke da, wo dasselbe auf den gewölbten Lagern ruht usw.

Eine solche Überschreitung der zulässigen Anstrengung des Materials erscheint, bei ausreichender Zähigkeit des letzteren, in den meisten Fällen ebenso wie z. B. das kalte Richten eines Stabes aus zähem Eisen unbedenklich; nur darf es sich nicht oft wiederholen, jedenfalls nicht öfter, als es die Zähigkeit des Materials und dessen nachherige Verwendung gestattet.

Bei Beurteilung der tatsächlichen Inanspruchnahme sind unter Umständen auch die Gegenspannungen ins Auge zu fassen, die sich nach Maßgabe des S. 290 Bemerkten einstellen.

Fig. 8 und 9, Taf. XX, zeigen einen Flußeisenstab mit rechteckigem Querschnitt (43 mm stark, 49 mm breit), der um einen Dorn von 40 mm gebogen worden ist, also eine weitgehende bleibende Formänderung erfahren hat. Deutlich erkennt man, daß die am ursprünglich geraden Stab ebenen Querschnitte um so mehr von der Ebene abweichen, je weiter sie von der Mitte abgelegen sind; sie zeigen S-förmige Gestalt und stehen auch nicht mehr senkrecht auf der Mittellinie. Daraus folgt ohne weiteres, daß die Zugrundelegung von Gleichung 9 für die Beurteilung der Materialanstrengung bei der Biegeprobe des Materials den tatsächlichen Verhältnissen nicht gerecht wird, ganz abgesehen davon, daß die bei der Entwicklung der Gleichung 9 vorausgesetzte Proportionalität zwischen Dehnungen und Spannungen bei der weitgehenden Biegung auch entfernt nicht mehr vorhanden ist.

In Fig. 8 und 9 sind überdies die übrigen Formänderungen von Interesse, namentlich die Wölbung und die Anderung der Größe der Seitenflächen des Stabes; die Querschnitte haben aufgehört, Rechtecke mit geraden Seiten zu sein.

#### 454 IX. Beanspruchung durch Normal- und Schubspannungen.

die größte. Demnach beträgt die resultierende Anstrengung, die in jenen beiden Umfangspunkten den größten Wert erreicht,

$$au_s + au_d = rac{16}{3 \pi} rac{S}{d^2} + rac{16}{\pi} rac{M_d}{d^3} = rac{16}{\pi d^2} inom{S}{3} + rac{M_d}{d} inom{S}{3}$$

#### 2. Kreisringquerschnitt von geringer Wandstärke, Fig. 5, § 39.

Nach § 39, c ist

$$\tau_s = 2 \frac{S}{f}.$$

nach § 32

$$\tau_{d} = \frac{16}{\pi} M_{d} \frac{d}{d^{4} - d_{0}^{4}} = \sim 2 \frac{M_{d}}{d_{m}f}.$$

 $\mathbf{sofern}$ 

$$d_m = \frac{d + d_0}{2}$$
  $f = \frac{\pi}{4} (d^2 - d_0^2).$ 

Folglich

$$\tau_s + \tau_d = \frac{2}{f} \left( S + \frac{M_d}{d_m} \right).$$

#### 3. Rechteckiger Querschnitt, Fig. 2, § 38.

Unter der Voraussetzung, daß S senkrecht zur Breite b wirkt, werden beide Schubspannungen am größten in den Mitten der langen Seiten.

Nach § 38 beträgt hier

$$\tau_s = \frac{3}{2} \frac{S}{b h}.$$

und nach § 34 und § 36

$$au_d = rac{9}{2} \, rac{M_d}{b^2 \, h} \, . \qquad ext{bzw.} \ \ au_d = \psi \, rac{M_d}{b^2 \, h} \, .$$

Somit

$$\tau_s + \tau_d = \frac{3}{2} \frac{1}{b \hbar} \left( S + 3 \frac{M_d}{b} \right). \quad \text{bzw. } \tau_s + \tau_d = \frac{1}{b \hbar} \left( \frac{3}{2} S + \psi \frac{M_d}{b} \right).$$

## IX. Beanspruchung durch Normalspannungen (Dehnungen) und Schubspannungen (Schiebungen). § 48. Größte Anstrengung bei gleichzeitig vorhandener

Dehnung (Normalspannung) und Schiebung (Schubspannung).

1. Begriff der zulässigen Anstrengung des Materials.

Bei den bisherigen Betrachtungen haben wir stillschweigend vorausgesetzt. daß hinsichtlich des Begriffs der zulässigen Anstrengung


§ 48. Anstrengung bei gleichzeitig vorhandener Dehnung und Schiebung. 455

ein Zweifel nicht bestehe. Solange nur Normalspannungen in Richtung der Stabachse (Zug, Druck, Biegung) oder lediglich Schubspannungen (Drehung, Schub) vorhanden sind, pflegt ein solcher auch tatsächlich nicht in die Erscheinung zu treten; anders gestaltet sich jedoch die Sachlage, sobald Normalspannungen und Schubspannungen gleichzeitig tätig, oder senkrecht zueinander wirkende Normalspannungen vorhanden sind. Dann kann in der Tat eine Unsicherheit entstehen. Aus diesem Grunde ist hier, wo uns erstmals gleichzeitig Normalspannungen und Schubspannungen entgegentreten, der Begriff der zulässigen Anstrengung zu erörtern.

Bei der Herleitung der Abmessungen von Maschinen- oder Bauteilen sowie von ganzen Konstruktionen aus den beanspruchenden Kräften sind drei Gesichtspunkte festzuhalten, sofern abgesehen wird von den Fällen, in denen Rücksichten auf Herstellung, Fortschaffung. Abnützung usw. maßgebend erscheinen.

Nur zwei dieser Gesichtspunkte liegen auf dem Gebiete der statischen Elastizitätslehre, mit der sich das vorliegende Buch allein beschäftigt. Im Interesse der Klarstellung erscheint es geboten, hinsichtlich dieser Abgrenzung folgendes zu bemerken.

Die statische Elastizitätslehre setzt voraus, daß in jedem Augenblick zwischen den äußeren Kräften, die den Körper belasten sowie allmählich wachsend angenommen werden, und den hierdurch infolge der Formänderung wachgerufenen inneren Kräften Wenn z. B. die äußeren Kräfte, die auf Gleichgewicht besteht. den Stab einwirken, dies sofort in voller Größe tun und dann wieder aufhören, tätig zu sein, so wird der Körper in Schwingungen geraten, d. h. in eine Aufeinanderfolge wechselnder Formänderungszustände gelangen. Infolge äußerer und innerer Widerstände nimmt die Größe dieser Schwingungen fortgesetzt ab, und schließlich geht der Körper in den Zustand der Ruhe über. Schwingungen des Körpers, wie soeben besprochen, stellen sich auch ein, wenn die auf ihn wirkenden Kräfte in raschem Wechsel Größe oder Richtung oder beides ändern. Sie vermögen unter Umständen unerwartet große Werte zu erreichen. Die Feststellung der Inanspruchnahmen. die infolge dieser Schwingungen auftreten können, erfordert Eingehen auf die in Betracht kommenden dynamischen Verhältnisse und geht deshalb über das Gebiet der statischen Elastizitätslehre hinaus. Die Verfolgung dieser Verhältnisse kann in manchen Fällen notwendig werden, wenn man sich ein zutreffendes Urteil über den Größtwert der Beanspruchung verschaffen will. Namentlich treten solche Fälle im Maschineningenieurwesen auf, haben jedoch in der Literatur erst in neuerer Zeit die ihnen gebührende Beachtung ge-

funden¹). Der erfahrene Ingenieur hat die zusätzlichen Beanspruchungen durch dynamische Wirkungen schon früh beobachtet und sie schätzungsweise durch Herabsetzung der in die Rechnung eingeführten zulässigen Materialanstrengungen berücksichtigt, wenn er sie nicht rechnerisch bestimmen konnte. Daß solchen Schätzungen eine mehr oder minder große Unsicherheit anhaftet, ist natürlich, weshalb die wissenschaftliche Verfolgung der in Betracht kommenden Aufgaben sehr zu begrüßen ist. Diese muß sich allerdings auch auf das tatsächliche Verhalten der Materialien erstrecken, das — ganz abgesehen von anderem — nicht nur mit den Eigenschaften derselben wechselt, sondern überdies abhängt von der Geschwindigkeit, mit der die Kräfte einwirken.

Der erste Gesichtspunkt, der das bestimmt, was der Regel nach als zulässige Anstrengung gilt, liefert die Forderung, daß

a) (nach der Ansicht der einen) die Spannung, oder

b) (nach der Ansicht der ander ) die verhältnismäßige Dehnung in keinem Punkte des Körpers die höchstens für zulässig erachtete Größe überschreite²).

Bei einfacher Zug-, Druck- und Biegungselastizität sowie bei Verbindung derselben besteht — streng genommen allerdings nur im Falle der Unveränderlichkeit der Dehnungszahl — Proportionalität zwischen Dehnungen und den ihnen entsprechenden Normalspannungen. In diesen Fällen kommt deshalb die Forderung a) auf dasselbe hinaus wie diejenige unter b); denn multipliziert man die höchstens für zulässig erachtete Normalspannung mit der Dehnungs-

Roth, Schwingungen von Kurbelwellen, Zeitschrift des Vereines deutscher Ingenieure 1904, S. 564 u. f.

Pfleiderer, Dynamische Vorgänge beim Anlaufen von Maschinen usw. Stuttgart 1906.

v. Kármán in der Enzyklopädie der mathematischen Wissenschaften mit Einschluß ihrer Anwendungen. Bd. IV, 2. II, Heft 3 über "Festigkeitsprobleme im Maschinenbau" unter 12.

Heilandt, Über die Beanspruchung der Förderseile beim Anfahren und Bremsen, München und Berlin 1916.

²) Hinsichtlich weiterer Ansichten vgl. die nächste Fußbemerkung.

¹) Allerdings auch noch mit beschränkenden Voraussetzungen, die von der Wirklichkeit mehr oder minder abweichen können: Frahm, Neue Untersuchungen über die dynamischen Vorgänge in den Wellenleitungen von Schiffsmaschinen mit besonderer Berücksichtigung der Resonanzschwingungen, Zeitschrift des Vereines deutscher Ingenieure 1902, S. 797 u. f. oder Mitteilungen über Forschungsarbeiten, Heft 6.

Sommerfeld, Beitrag zum dynamischen Ausbau der Festigkeitslehre, Physikalische Zeitschrift 1902, S. 266 u. f., Zeitschrift des Vereines deutscher Ingenieure 1902, S. 391 u. f.

§ 48. Anstrengung bei gleichzeitig vorhandener Dehnung und Schiebung. 457

zahl, so tritt an ihre Stelle die höchstens noch für zulässig gehaltene Dehnung.

Da bei einfacher Drehungs- und Schubelastizität sowie bei Verbindung beider ebenfalls Proportionalität zwischen Schubspannungen und den zugehörigen Dehnungen vorhanden ist (§ 31), so dürfen auch in diesen Fällen — Unveränderlichkeit der Dehnungszahl vorausgesetzt — die Bedingungen unter a) und b) als zusammenfallend betrachtet werden.

Wirken dagegen senkrecht zueinander stehende Normalspannungen gleichzeitig, so hört die sonst vorhandene Proportionalität zwischen Dehnungen und Spannungen auf, wie in § 7 und § 14 erörtert worden ist, und die Auffassung nach a) fordert etwas anderes als diejenige nach b). Die erstere räumt den senkrecht zum gezogenen oder gedrückten Stab wirkenden Kräften keinen Einfluß auf die zulässige Anstrengung ein, sie läßt die in § 9, Ziff. 1. erörterten Versuchsergebnisse unbeachtet, sie belastet einen in Richtung der Achse gezogenen und senkrecht zu seiner Achse gedrückten Stab ebenso stark, als wenn die Druckkräfte nicht vorhanden wären, sie wählt die zulässige Anstrengung der Bleischeibe Fig. 1, § 14, ebenso groß wie diejenige der Fig. 2, §14, obgleich dieselbe im letzteren Falle erfahrungsgemäß weit größer genommen werden darf: für sie ist die zulässige Anstrengung im Falle der Fig. 24, § 13 (Fig. 22, § 13), dieselbe, gleichgültig, ob z = 60 mm oder z = 5 mm, und zwar auch dann, wenn etwa an Stelle des Steinwürfels ein solcher aus Schmiedeisen träte; sie kann folgerichtig den in § 20, Ziff. 2, besprochenen Einfluß der Fasern aufeinander nicht anerkennen usf.

Treten gleichzeitig Normal- und Schubspannungen auf, so ergeben sich für den betreffenden Punkt des Körpers eine größte Spannung. und eine größte Dehnung; beide stehen jedoch nicht in dem Verhältnisse wie einfache Normalspannung und Dehnung nach Maßgabe der Gleichung 2 oder 4, § 2. Die Bedingung unter a) verlangt deshalb in solchem Falle auch nicht das gleiche wie die Forderung unter b).

Die Auffassung unter a) ist die ältere und erfreut sich auch heute noch einer großen Verbreitung. Mariotte dürfte wohl der erste gewesen sein, der darauf hingewiesen hat, daß die Dehnung eine gewisse Grenze nicht überschreiten soll; dagegen scheint es, daß erst Poncelet die Forderung unter b) mit Entschiedenheit vertreten und durchgeführt hat.

Daß die Bedingung unter a) in verschiedenen Fällen nicht zutreffend ist, erhellt aus dem Erörterten. Unter diesen Umständen erachtet Verfasser die Feststellung des Begriffes der zulässigen Anstrengung nach Maßgabe der Forderung unter b) für die zweck-

mäßigere, wenigstens zunächst. Welcher Grad der Zuverlässigkeit ihr innewohnt, welche Mängel ihr anhaften, wird durch ausgedehnte übrigens erheblichen Schwierigkeiten begegnende — Versuche noch zu entscheiden sein¹).

Folgerichtig wäre hiernach, mit zulässigen Dehnungen statt mit zulässigen Spannungen zu rechnen. Da sich jedoch der Begriff der zulässigen Anstrengung als einer auf die Flächeneinheit bezogenen Kraft eingebürgert hat, es auch keine Schwierigkeit bietet, zu jeder zulässigen Spannung eine entsprechende Dehnung zu bestimmen²), so erscheint die Beibehaltung der auf die Flächeneinheit bezogenen Kraft als Maß der zulässigen Anstrengung ausführbar und berechtigt. Nur ist hierbei festzuhalten, daß dann in den Fällen gleichzeitigen Vorhandenseins von senkrecht zueinander stehenden Normalspannungen oder von Normal- und Schubspannungen an die Stelle der höchstens zulässigen Dehnung keine wirkliche, sondern nur eine gedachte Spannung tritt, nämlich der Quotient: zulässige Dehnung dividiert durch die Dehnungszahl. (S. Gleichung 5 und 7.)

Gleichgültig, ob man die Forderung unter a) oder diejenige unter b) für die richtigere hält; in beiden Fällen setzt ihre Befriedigung voraus, daß man imstande ist, die größte in dem Körper auftretende Spannung bzw. Dehnung ausreichend genau zu berechnen. Dies ist nun bei den Aufgaben, die an den Ingenieur herantreten, häufig nicht der Fall. Unter solehen Umständen bleibt dem Konstrukteur, wenn er sich nicht auf Abmessungen stützen kann, die als bewährt gelten, nur übrig, die nötige Sicherheit in bezug auf die Widerstandsfähigkeit der von ihm zu entwerfenden Teile sich durch Versuche zu beschaffen. Diese können Bruchversuche sein,

¹) Erst in neuerer Zeit ist das Interesse an der Lösung der hier bezeichneten Aufgabe ein allgemeines geworden. Vgl. u. a. die Veröffentlichungen von Mohr in der Zeitschrift des Vereines deutscher Ingenieure 1900, S. 1524 u. f., 1901, S. 740 u. f., Guest, Philosophical Magazine 1900, nach dem die größte Schubspannung maßgebend sein würde, Roth, Die Festigkeitstheorien und die von ihnen abhängigen Formeln des Maschinenbaues, Leipzig 1902, Scily, Baumaterialienkunde 1902, Heft 21. (Letzterer gelangt, ohne jedoch die Aufgabe als gelöst anzuschen, zu dem Ergebnis: "In unserem Falle scheint es als experimentell bewiesen, daß es nicht die maximale Spannung, sondern die maximale Dehnung ist, die bei der Zerstörung des Materials eine ausschlaggebende Rolle spielt." v. Kármán (Mitteilungen über Forschungsarbeiten, Heft 118 [1912]) behandelt die Frage in seinem Bericht über Versuche mit Marmor unter allseitigem Druck. Sandel (Dissertation Stuttgart 1920) beleuchtet die verschiedenen Vorschläge und spricht sich für Berücksichtigung der Volumänderung aus.

²) Nach S. 465 ist die Normalspannung mit  $\alpha$ , die Schubspannung mit  $\frac{m+1}{2} \alpha$  zu multiplizieren.

m

§ 48. Anstrengung bei gleichzeitig vorhandener Dehnung und Schiebung. 459

wobei der Versuchskörper zum Bruch gebracht, also festgestellt wird, unter welcher Belastung der Körper bricht, oder man kann wenn die Art des Materials es gestattet — ermitteln, bei welcher Belastung die Streckgrenze desselben an den in Betracht kommenden Stellen oder eine gewisse Formänderung erreicht wird. Durch Wahl eines den Verhältnissen entsprechenden Bruchteiles der so bestimmten Belastung als höchstens zulässiger Beanspruchung pflegt alsdann eine Grundlage für die Berechnung der Abmessungen gewonnen zu werden. Daß bei solchen Versuchen, ebenso bei Übertragung ihrer Ergebnisse auf technische Ausführungen, mit größter Sorgfalt vorzugehen ist, darf nicht übersehen werden.

Bei der Wahl der Werte, die als zulässige Anstrengung des Materials jeweils in die Rechnung eingeführt werden, müssen in der Regel die Verhältnisse des einzelnen Falles sorgfältig erwogen werden. In dieser Hinsicht sei beispielsweise folgendes hervorgehoben. In der Regel wird angenommen, daß bei einem auf Biegung beanspruchten Körper die in Gleichung 12, § 16, einzuführende zulässige Anstrengung  $k_z$  für dasselbe Material gleich derjenigen sei, welche im Falle von Zug bei Benutzung von Gleichung 2, § 6, eingesetzt In Wirklichkeit gibt es jedoch viele Fälle, in denen es nicht wird. nur zulässig ist, sondern in Rücksicht auf andere, namentlich wirtschaftliche Verhältnisse (Kosten), auch geboten sein kann, mit der zulässigen Biegungsbeanspruchung, d. h. mit  $k_z$  in Gleichung 12, § 16, höher zu gehen. Zur Klarstellung der Zulässigkeit wollen wir uns zwei gleiche prismatische Stäbe aus demselben Flußeisen — der Einfachheit der Betrachtung wegen mit rechteckigem Querschnitt ---vorstellen:

- $\alpha)$ den einen auf Zug mit  $k_z = 900 \ {\rm kg/qcm}$  in Anspruch genommen,
- $\beta$ ) den anderen an den Stabenden unterstützt und durch eine in der Stabmitte angreifende Kraft so beansprucht, daß in der äußersten Faserschicht die Zugspannung  $k_z = 900 \text{ kg/qcm}$  eintritt.

Im Falle  $\alpha$  ist in allen Punkten aller Querschnitte des prismatischen Stabteiles die Zugspannung von 900 kg/qcm vorhanden, und zwar unter der günstigsten Voraussetzung vollständig gleichmäßiger Verteilung der Zugkraft über den Querschnitt. Schon bei geringer Abweichung hiervon werden sich sofort erheblich höhere Spannungen einstellen, zu den Zugspannungen werden Biegungsspannungen von Bedeutung hinzutreten können.

Im Falle  $\beta$  dagegen ist die Spannung 900 kg/qcm nur in einem einzigen Querschnitt und in diesem nur in der äußersten Faserschicht vorhanden. Sollte diese Faserschicht durch irgendeinen Umstand

(Zufälligkeiten im Betriebe, Materialfehler usw) derart überanstrengt werden, daß das Flußeisen daselbst bleibend nachgibt, so greifen die im Querschnitt weiter nach innen gelegenen und sonst weniger angestrengten Fasern unterstützend ein. Darin liegt es auch begründet, daß solche Stäbe bei Biegungsversuchen eine weit größere Belastung auf Biegung vertragen, als der Zugfestigkeit des Materials bei Zugrundelegung der Gleichung 12, § 16, entspricht (vgl. § 22).

Ändert sich bei Nachgiebigkeit des zähen Materials die Form des auf Biegung beanspruchten Körpers in solcher Weise, daß die Anstrengung abnimmt, so liegt hierin ein weiterer Grund, gebotenenfalls höhere Werte für die zulässige Materialanstrengung einzusetzen (vgl. § 55,1 Kettenhaken). Bei Festsetzung der Höhe der noch als zulässig anzusehenden Beanspruchung wird dann darauf zu achten sein, ob die Kräfte ihre Richtung und Größe ändern oder nicht. Näheres hierüber findet sich in des Verfassers Maschinenelementen.

Auch können unter Umständen noch andere Einflüsse sich geltend machen, die bei Wahl der zulässigen Spannung in Gleichung 12, § 16, Berücksichtigung verdienen, wie z. B. die in § 6 und die in § 22 unter a) erwähnten Vorspannungen oder Gegenspannungen, die sich nach hohen Probebelastungen, die nötig waren und bleibende Formänderungen von Bedeutung zurückließen, in den bei der Biegung am stärksten beanspruchten Fasern einstellen und diese gegenüber der Inanspruchnahme im Betriebe entlasten¹).

Über eigene Versuche mit der Aufgabe, zu ermitteln, welcher Teil der auf die Stirnwandung vom Flüssigkeitsdruck geäußerten Kraft von dem Anker und welcher Teil von der Wandung selbst übertragen wird, ist im Protokoll

 $^{^{1})}$  Vgl. das in § 64, Ziff. 2 letzten Absatz, angeführte sowie das folgende Beispiel.

Die beiden ebenen, mit ihrer Krempung in einen Dampfkesselmantel eingenieteten Stirnwände seien durch Anker miteinander verbunden. Der Einfachheit wegen wollen wir uns einen einzigen Anker in der Mitte denken. Unter Einwirkung des Probedruckes möge sich der Boden an der Krempe zu einem Teile bleibend durchbiegen, während die Stärke des Ankers derart ist, daß er sich nur elastisch dehnt. Wird nun der Probedruck durch Ablassen des Wassers beseitigt, so federt der Anker ganz zurück, während der Boden infolge der bleibenden Formänderung an der Krempung das nicht tut, sondern nur in seiner Mitte durch den Anker veranlaßt wird, sich soweit durchzubiegen, als es die Länge des letzteren verlangt; infolgedessen wird der Anker eine Zugspannung erfahren, während der Boden an der Innenseite der Krempung eine Druckspannung erleidet: Anker und Boden sind also nicht mehr spannungslos, sondern besitzen infolge der bleibenden Formänderung des Bodens Vorspannung. Wenn nun jetzt die Betriebspressung des Kessels wirksam wird, so tritt zu der Anstrengung, die diese im Anker verursacht, die Vorspannung hinzu, während die Beanspruchung, die durch diese Betriebspressung im Innern der Bodenkrempung hervorgerufen wird, um den Betrag der Vorspannung vermindert wird.

§ 48. Anstrengung bei gleichzeitig vorhandener Dehnung und Schiebung. 461

Der zweite Gesichtspunkt ergibt sich in der Forderung, daß die Gesamtformänderung des belasteten Körpers innerhalb der Grenzen bleibe, die durch den besonderen Zweck desselben oder durch den Zusammenhang mit anderen Konstruktionsteilen gesteckt sind. Da wo eine höchstens zulässige Durchbiegung, Verdrehung usw. die Abmessungen bestimmt, ist im allgemeinen eine Rechnung mit zulässiger Anstrengung im soeben erörterten Sinne des Wortes nicht mehr richtig. Dieselbe ist dann eine Funktion der Form und Größe des in Frage stehenden Körpers. (S. auch die erste Fußbemerkung zu § 26, vierten Absatz.)

Gestattet der derzeitige Stand der Rechnungen nicht, die ins Auge zu fassende Gesamtformänderung im voraus ausreichend genau zu ermitteln und kann sich der Konstrukteur nicht auf Abmessungen stützen, die als bewährt anzusehen sind, so muß er auch hier zu Versuchen greifen, für die sinngemäß das oben bei Erörterung des ersten Gesichtspunktes Bemerkte gilt.

Hierher gehören auch die Fälle, in denen die Stabilität der Form gesichert werden muß (Knickung schlanker Stäbe, vgl. § 23 u.f., Einbeulung dünnwandiger Hohlgefäße bei äußerem Überdruck, vgl. § 26, erste Fußbemerkung, Faltung dünnwandiger Hohlkörper bei Druckbeanspruchung, vgl. § 13, Ziff. 1 unter h), Wellenbildung bei Drehungsbeanspruchung, vgl. § 35.)

Der dritte Gesichtspunkt wird durch Eingehen auf die oben (S. 455) bezeichneten dynamischen Verhältnisse gegeben.

Auch hier können Versuche nötig werden. Dabei empfiehlt es sich in vielen Fällen, den schon vor Jahrzehnten auch öffentlich¹) vom Verfasser ausgesprochenen Grundsatz zu beachten: "Versuche sind in der Regel unter solchen Verhältnissen anzustellen, wie sie bei den wichtigeren technischen Anwendungen vorzuliegen pflegen, so daß die ermittelten Erfahrungszahlen auf diese mit ausreichender Sicherheit übertragen werden können."

### 2. Ermittlung der größten Anstrengung.

Wir denken uns in dem Stabe, Fig. 1, ein Körperelement, eine Faser ABCD von der Länge  $\overline{AB} = \overline{DC} = 1$  cm abgegrenzt derart, daß die in AD sich projizierende Stirnfläche mit dem in Betracht gezogenen Stabquerschnitt zusammenfällt, während die Richtungen ABund DC mit der Stabachse parallel laufen. In Fig. 2, S. 462, sei

der 42. Delegierten- und Ingenieur-Versammlung des Internationalen Verbandes der Dampfkessel-Überwachungsvereine zu München 1912 auf S. 31 u. f. berichtet.

¹) S. Schlußabsatz der Fußbemerkung 1, S. 13.

dieses Faserstück, entsprechend dem ursprünglichen Zustande, d. h. vor der Inanspruchnahme des Stabes, in größerem Maßstabe durch die ausgezogenen Linien dargestellt.

Unter Einwirkung der äußeren Kräfte dehne sich die Faser in der Richtung AB um

$$\overline{BE} = \overline{KF} = \varepsilon \cdot \overline{AB}$$
$$\varepsilon = \frac{\overline{BE}}{\overline{AB}}$$

sofern

die verhältnismäßige Dehnung bezeichnet; mit  $\overline{AB} = 1$  wird  $\overline{BE} = \varepsilon$ .



Nach § 1 muß sich die Faser gleichzeitig senkrecht zu ihrer Achse zusammenziehen.

Diese Zusammenziehung betrage

$$\overline{CK} = \overline{DG} = \epsilon_q \cdot \overline{BC},$$
$$\epsilon_q = \frac{\overline{CK}}{\overline{BC}}.$$

wenn

Da (vgl. § 7)  $\varepsilon_q = \varepsilon : m$  ist, kommt hieraus für  $\overline{BC} = a$ 

$$\overline{CK} = \overline{DG} = \frac{a\varepsilon}{m}$$

Zu dieser mit der Normalspannung verknüpften Formänderung tritt nun die der Schubspannung entsprechende. Es verschiebe sich der Querschnitt EF (ursprünglich BC) um

$$\overline{EH} = \overline{FJ} = \gamma \cdot \overline{AE} = \gamma (1 + \epsilon)$$

gegen den Querschnitt AGD, sofern  $\gamma$  die Schiebung (vgl. § 28) bedeutet.

Hierbei dehnt sich die ursprünglich  $\overline{AC}$  lange Strecke bis zur Größe  $\overline{AJ}$ . Ihre spezifische Dehnung beträgt unter Beachtung, daß nach Fig. 2  $\overline{AC} = \frac{1}{\cos \varphi}$ 

$$\epsilon_{\varphi} = \frac{\overline{AJ} - \overline{AC}}{\overline{AC}} = \frac{\overline{AJ}}{\overline{AC}} - 1 = \overline{AJ} \cdot \cos \varphi - 1 \quad . \quad . \quad 1)$$

§ 48. Anstrengung bei gleichzeitig vorhandener Dehnung und Schiebung. 463

Hierin ist nach Fig. 2

$$AJ = \frac{1+\varepsilon}{\cos\psi};$$

ferner unter Beachtung, daß  $EH = \overline{FJ} = \gamma (1 + \epsilon)$  und  $tg \varphi = a: 1 = a$ 

$$\operatorname{tg} \varphi = \frac{a\left(1-\frac{\varepsilon}{m}\right)+\gamma\left(1+\varepsilon\right)}{1+\varepsilon} = \frac{\operatorname{tg} \varphi\left(1-\frac{\varepsilon}{m}\right)+\gamma\left(1+\varepsilon\right)}{1+\varepsilon}$$

Wird, da  $\gamma$  und  $\varepsilon$  kleine Größen sind, deren Produkt  $\gamma \cdot \varepsilon$  gegenüber  $\gamma$  vernachlässigt, so folgt hieraus

$$\operatorname{tg} \psi = \frac{\operatorname{tg} \varphi \left( 1 - \frac{\varepsilon}{m} \right) + \gamma}{1 + \varepsilon}, \dots \dots 2)$$

womit die Größe von  $\overline{AJ} = \frac{1+\epsilon}{\cos \psi}$  bestimmt ist, da

$$\cos \psi = \frac{1}{\sqrt{1 + \mathrm{tg}^2 \psi}} \, \cdot \,$$

Werden auch hier  $\varepsilon^2$ ,  $\varepsilon\gamma$  und  $\gamma^2$  gegenüber  $\varepsilon$  und  $\gamma$  vernachlässigt, so findet sich nämlich

$$\cos \psi = \frac{1+\epsilon}{\sqrt{1+2\epsilon+2\gamma \operatorname{tg} \varphi + \operatorname{tg}^2 \varphi - 2\frac{\epsilon}{m} \operatorname{tg}^2 \varphi}}$$
$$\overline{AJ} = \sqrt{1+2\epsilon+2\gamma \operatorname{tg} \varphi + \operatorname{tg}^2 \varphi \left(1-2\frac{\epsilon}{m}\right)},$$

woraus nach Gl. 1

$$\varepsilon_{\gamma} = \sqrt{(1+2\varepsilon)\cos^{2}\varphi + \gamma\sin^{2}\varphi + \sin^{2}\varphi\left(1-2\frac{\varepsilon}{m}\right) - 1}$$
$$= \sqrt{1+\left(2\varepsilon\cos^{2}\varphi + \gamma\sin^{2}\varphi - 2\frac{\varepsilon}{m}\sin^{2}\varphi\right) - 1}$$
$$= \sim 1+\varepsilon\cos^{2}\varphi + \frac{\gamma}{2}\sin^{2}\varphi - \frac{\varepsilon}{m}\sin^{2}\varphi - 1$$

und mit  $\varepsilon = \alpha \sigma$  sowie  $\gamma = \beta \tau = 2 \frac{m+1}{m} \alpha \tau$  (nach Gl. 3, § 31)

$$\varepsilon_{\varphi} = \cos^2 \varphi \, \frac{m+1}{m} \, \alpha \sigma - \frac{\alpha \sigma}{m} + \frac{m+1}{m} \, \alpha \tau \sin 2 \varphi \quad . \quad . \quad 3)$$

Die Größe der Dehnung in der beliebigen, durch den Winkel  $\varphi$  gekennzeichneten Richtung hängt hiernach von  $\varphi$  ab, sie wird am größten für

Hiermit erscheint die durch  $\varphi$  gegenüber der Stabachse (Richtung der Normalspannung) festgelegte Richtung AC, in der die Dehnung ihren größten Wert erlangt, bestimmt.

Für  $\tau = 0$  ergibt sich  $\varphi = 0$ , d. h. die größte Dehnung findet dann in Richtung der Stabachse statt, wie ohne weiteres klar ist.

Für  $\sigma = 0$  wird

$$\varphi = \frac{\pi}{4} = 45^{0},$$

wie bereits in § 31, Ziff. 1, festgestellt wurde.

Zur Ermittlung des größten Wertes  $\varepsilon_{max}$  der Dehnung ist nun der eben ermittelte Wert von  $\varphi$  in Gl. 3 einzusetzen, d. h. in diese einzuführen

$$\operatorname{tg} 2\varphi = 2 \frac{\tau}{\sigma} \qquad \cos^2 \varphi = \frac{2\tau^2}{\sigma^2 + 4\tau^2 - \sigma\sqrt{\sigma^2 + 4\tau^2}}$$
$$\sin 2\varphi = \frac{2\tau \left(-\sigma + \sqrt{\sigma^2 + 4\tau^2}\right)}{\sigma^2 + 4\tau^2 - \sigma\sqrt{\sigma^2 + 4\tau^2}}.$$

womit sich ergibt

Für  $\tau = 0$  ergibt Gleichung 5

$$\max\left(\frac{\epsilon_1}{\alpha}\right) = \sigma$$

und für  $\sigma = 0$ 

$$\max\left(\frac{\varepsilon_1}{\alpha}\right) = \frac{m+1}{m} \tau.$$

#### § 48. Anstrengung bei gleichzeitig vorhandener Dehnung und Schiebung. 465

Hiernach entspricht die Schubspannung  $\tau$  allein einer Dehnung

$$\frac{m+1}{m}\alpha\tau,$$

während die Normalspannung  $\sigma$  mit einer solchen im Betrage von

ασ

verknüpft ist. Bei gleicher Größe der beiden Spannungen ergibt sich die erstere Dehnung im Verhältnis von (m+1):m bedeutender als die letztere. Soll die Dehnung, d. h. die Anstrengung, in beiden Fällen die gleiche sein, so muß  $\tau$  im Verhältnis von m:(m+1)weniger betragen als  $\sigma$ , wie bereits aus dem in § 31 Erörterten hervorgeht¹).

Die Gleichung 5 setzt voraus, daß das Material in allen Punkten des Körpers nach allen Richtungen hin gleich beschaffen (isotrop) ist. Diese Voraussetzung trifft nun nicht immer zu, so z. B. bei Schweißeisen nicht, dessen Widerstandsfähigkeit nämentlich gegenüber Schubspannungen in Ebenen parallel zur Walzrichtung und senkrecht zur Richtung des beim Walzen ausgeübten Druckes sich vergleichsweise erheblich geringer erweist. In derartigen Fällen ist es natürlich unzutreffend, den Einfluß der Dehnung  $\varepsilon$ , die einer bestimmten Schubspannungen als höchstens zulässig erachtet wird, nach Maßgabe der Gleichung

zu beurteilen. Dann muß vielmehr die Beziehung

$$\gamma = 2 \alpha \frac{m+1}{m} \tau$$

vor Einführung in die Gleichung 3 eine Berichtigung oder Ergänzung erfahren, am einfachsten durch Multiplikation mit einem Koeffizienten  $\alpha_0$ , der ganz allgemein die Aufgabe haben soll, dem Umstande Rechnung zu tragen, daß die zulässige Schubspannung zur zulässigen Normalspannung für die zwischen 4 und 3 liegende Größe *m* nicht immer in dem Verhältnisse

$$m:(m+1) = 4:5$$
 bis  $3:4 = 1:1,25$  bis  $1:1,33$ 

steht. (S. auch Gleichung 5 und 6, § 31.)

¹) Die tatsächlichen Anstrengungen verhalten sich hiernach nicht wie  $\tau:\sigma$ , sondern wie  $\frac{m+1}{m}\tau:\sigma$ .

C. Bach, Elastizität. 8. Aufl.

Mit

$$\gamma = 2 \alpha \frac{m+1}{m} \alpha_0 \tau$$

geht Gleichung 5 über in

$$\max\left(\frac{\varepsilon_{1}}{\alpha}\right) = \frac{m-1}{2m}\sigma + \frac{m+1}{2m}\sqrt{\sigma^{2} + 4(\alpha_{0}\tau)^{2}}} \\ \alpha_{0} = \frac{\text{zulässige Anstrengung bei Normalspannung}}{\frac{m+1}{m}} \\ \left\{ \begin{array}{c} \ddots & 7^{1} \end{array} \right\}$$

Mit Rücksicht hierauf werde  $a_0$  als das Verhältnis der zulässigen Anstrengungen für den gerade vorliegenden Fall oder kurz als Anstrengungsverhältnis bezeichnet.

Setzt man, dem heutigen Stande der Versuchsergebnisse entsprechend und in der Absicht, zu runden Zahlenwerten zu gelangen,

$$m=\frac{10}{3},$$

so gehen die Gleichungen 7 über in

$$\max\left(\frac{\varepsilon_1}{\alpha}\right) = 0.35 \,\sigma + 0.65 \,\sqrt{\sigma^2 + 4 \left(\alpha_0 \tau\right)^2} \bigg\}$$

 $\alpha_0 = \frac{\text{zulässige Anstrengung bei Normalspannung}}{1,3 \cdot \text{zulässige Anstrengung bei Schubspannung}}$ 

. 8)

Der Unterschied, der sich hinsichtlich der Anstrengung  $\max\left(\frac{\varepsilon_1}{\alpha}\right)$  ergibt, je nachdem man m = 3 oder m = 4 oder einen dazwischen gelegenen Wert setzt, ist übrigens unbedeutend.

Durch die Feststellung zu den Gleichungen 7 und 8 erfüllt der Koeffizient  $\alpha_0$  nicht bloß seinen Zweck beim Mangel allseitiger Gleichartigkeit des Materials, sondern auch dann, wenn die Werte für die beiden zulässigen Anstrengungen aus anderen Gründen nicht in dem Verhältnisse (m + 1): *m* stehen. Das wird bei vorhandener Isotropie des Materials allgemein dann der Fall sein, wenn die gleichzeitig auftretenden Normalspannungen und Schubspannungen nicht gleichartig sind, beispielsweise dann, wenn die erstere eine fortgesetzt wechselnde ist (Biegungsanstrengung einer sich drehenden Welle usw.), während die letztere als unveränderlich gelten kann (Drehungsanstrengung derselben Welle bei Überwindung eines konstanten Arbeitswiderstandes) usf.²).

¹) S. des Vorfassers Maschinenelemente, 1881, S. 11, 207, 208, 210, 211, 216 usf.; 1891/92, S. 22 u. f., 330, 331 usf.; 1908 (10. Aufl.), S. 554, uf.

²) S. des Verfassers Maschinenelemente, 1881, S. 18 u. f., 1891/92, S. 34 u. f., 1908 (10. Aufl.), S. 55 u. f., 1920 (12. Aufl.), S. 57 u. f.

#### § 48. Anstrengung bei gleichzeitig vorhandener Dehnung und Schiebung. 467

Bei Entwicklung der grundlegenden Beziehungen 1 bis 3 war in Übereinstimmung mit der hierfür entworfenen Figur 2, S. 462, angenommen worden, daß die Dehnung  $\varepsilon$  (die Normalspannung  $\sigma$ ) in Richtung der Stabachse eine positive sei, entsprechend einem an der betreffenden Stelle wirkenden Zug. Ist das Entgegengesetzte der Fall, erfährt der Stab in Richtung seiner Achse eine Zusammendrückung, d. h. sind  $\varepsilon$  und  $\sigma$  negativ, so führt die gleiche Betrachtung zu dem Ergebnis

$$\max\left(-\frac{\varepsilon_1}{\alpha}\right) = \frac{m-1}{2m}\sigma + \frac{m+1}{2m}\sqrt{\sigma^2 + 4\tau^2} \dots 5a$$

Hierbei ist  $\sigma$  nur mit seiner absoluten Größe einzusetzen. Diese Gleichung unterscheidet sich von der Beziehung 5 lediglich dadurch, daß hier die größte Anstrengung als Druckbeanspruchung erscheint, während sie dort als Zuginanspruchnahme auftrat. Dementsprechend treten an die Stelle der Gleichungen 7 und 8 die Beziehungen

$$\max\left(-\frac{\varepsilon_1}{\alpha}\right) = \frac{m-1}{2m}\sigma + \frac{m+1}{2m}\sqrt{\sigma^2 + 4(\alpha_0\tau)^2} \quad . \quad . \quad 7 \text{ a}$$

bzw.

$$\max\left(-\frac{\varepsilon_1}{\alpha}\right) = 0.35 \sigma + 0.65 \sqrt{\sigma^2 + 4.(\alpha_0 \tau)^2} \dots 8 a$$

Neben dieser Druckbeanspruchung, wie sie hierdurch bestimmt ist, wird unter Umständen noch eine größte Zuganstrengung maßgebend sein können, nämlich dann, wenn die positive Dehnung, die der Schiebung  $\gamma$  entspricht (vgl. § 31, S. 338), die Zusammendrückung, die mit der negativen Normalspannung in Richtung der Stabachse verknüpft ist, bedeutend überwiegt. Die größte Zuganstrengung, die dann gleichzeitig mit der größten Druckbeanspruchung max  $\left(-\frac{\varepsilon_1}{-\alpha}\right)$ auftritt, und die mit max  $\left(\frac{\varepsilon_2}{\alpha}\right)$  bezeichnet sei, kann in gleicher Weise ermittelt werden, wie oben die Gleichung 5 gefunden wurde, oder man kann sie unmittelbar aus Gleichung 5 ableiten, indem in der letzteren  $\sigma$  negativ gesetzt wird. Auf beiden Wegen ergibt sich

und damit nach Gleichung 7 und 8

$$\max\left(\frac{\varepsilon_2}{\alpha}\right) = -\frac{m-1}{2m}\sigma + \frac{m+1}{2m}\sqrt{\sigma^2 + 4(\alpha_0\tau)^2}, \quad . \quad . \quad 7 \text{ b})$$

$$\max\left(\frac{\epsilon_2}{\alpha}\right) = -0.35 \sigma + 0.65 \sqrt{\sigma^2 + 4 (\alpha_0 \tau)^2} \dots .8 b)$$

In diese Beziehungen ist  $\sigma$  natürlich nur mit seiner Größe ohne Rücksicht auf das Vorzeichen einzuführen.

Der absolute Wert von  $\max\left(-\frac{\epsilon_1}{\alpha}\right)$  ist nach Gleichung 5a allerdings größer als derjenige, welchen Gleichung 5b für  $\max\left(\frac{\epsilon_2}{\alpha}\right)$  liefert. Da aber die zulässige Zuganstrengung in manchen Fällen bedeutend geringer zu sein pflegt als die zulässige Druckinanspruchnahme, so kann trotzdem  $\max\left(\frac{\epsilon_2}{\alpha}\right)$  maßgebend werden.

Wie aus dem Gange der Entwicklung folgt, setzt die Gleichung  $5^{1}$ ) voraus, daß die Fasern, aus denen der Stab bestehend gedacht werden kann, auf die ganze Erstreckung weder einen Zug noch einen Druck noch einen Querschub aufeinander ausüben, also auch nicht von außen empfangen.

# § 49. Zug (Druck) und Drehung.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für den in Betracht gezogenen Querschnitt eine in die Richtung der Stabachse fallende Kraft P und ein Kräftepaar vom Momente  $M_d$ , dessen Ebene die Stabachse senkrecht schneidet.

In einem beliebigen Element des Querschnitts von der Größe fwird durch die Zugkraft P eine Normalspannung

$$\sigma = \frac{P}{f}$$

wachgerufen, während das auf Drehung wirkende Moment  $M_d$  eine Schubspannung  $\tau$  erzeugt, die nach den §§ 32 bis 36 zu bestimmen ist. Da  $\sigma$  für alle Punkte des Querschnittes als gleich groß aufgefaßt werden darf, so tritt die bedeutendste Anstrengung da auf, wo  $\tau$  seinen größten Wert erlangt.

Nach den Gleichungen 7, § 48, ergibt sich mit  $k_z$  als zulässiger Zug- und  $k_d$  als zulässiger Drehungsanstrengung

$$k_{z} \geq \frac{m-1}{2m}\sigma + \frac{m+1}{2m}\sqrt{\sigma^{2} + 4(\alpha_{0}\tau)^{2}},$$
  
$$\alpha_{0} = \frac{k_{z}}{\frac{m+1}{m}k_{d}},$$
  
$$\ldots \ldots 1)$$

¹) Die Ableitung aus den allgemeinen Gleichungen der Elastizitätslehre findet sich in § 71.

und mit  $m = \frac{10}{3}$ 

$$\begin{array}{l} k_{z} \geq 0,35 \, \sigma + 0,65 \, \sqrt{\sigma^{2} + 4 \, (\alpha_{0} \, \tau)^{2}} \, , \\ \alpha_{0} = \frac{k_{z}}{1,3 \, k_{d}} \, . \end{array} \right\} \quad . \quad . \quad . \quad . \quad 2)$$

Wirkt P nicht ziehend, sondern drückend, so wird  $\sigma$  negativ, infolgedessen nach Gleichung 8a, § 48, zunächst die mit k als zulässiger Druckanstrengung gültige Beziehung

$$k \ge 0.35 \sigma + 0.65 \sqrt{\sigma^2 + 4 (\alpha_0 \tau)^2}, \\ \alpha_0 = \frac{k}{1.3 k_d}$$

und sodann auch nach Gleichung 8b, §48, die Forderung

$$k_{z} \geq -0.35 \sigma + 0.65 \sqrt{\sigma^{2} + 4 (\alpha_{0} \tau)^{3}},$$
  
$$\alpha_{0} = \frac{k_{z}}{1.3 k_{d}}$$

befriedigt sein muß. Hierbei ist vorausgesetzt, daß Rücksichtnahme auf Knickung (§ 23) nicht nötig wird.

Die Werte von  $\tau$  können unmittelbar aus der Spalte 3 der Zusammenstellung des § 36 entnommen werden, sofern  $k_d$  durch  $\tau$  ersetzt wird. Die Normalspannung  $\sigma$  tritt nur mit ihrer absoluten Größe in die Beziehungen 1 bis 3a ein.

## § 50. Biegung und Drehung.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für den betrachteten Querschnitt zwei Kräftepaare, das eine (biegende) vom Momente  $M_b$  und das andere (drehende) vom Momente  $M_d$ ; die Ebene des ersteren schneidet den Querschnitt, diejenige des letzteren die Stabachse senkrecht.

In einem beliebigen Punkte des Querschnitts verursacht

- $M_b$ eine Normalspannung <br/>  $\sigma,$  die nach § 16 oder § 21 festzustellen ist,
- $M_d$  eine Schubspannung  $\tau$ , deren Bestimmung nach den §§ 32 bis 34 zu erfolgen hat.

Die für den betreffenden Punkt resultierende Anstrengung ergibt sich alsdann aus Gleichung 7, § 48. Bezeichnet  $k_b$  die zulässige Biegungs- und  $k_d$  die zulässige Drehungsanstrengung. so gilt mit  $m = \frac{10}{3}$ 

469

$$k_{b} \geq 0.35 \sigma + 0.65 \sqrt{\sigma^{2} + 4 (\alpha_{0} \tau)^{2}},$$
  
$$\alpha_{0} = \frac{k_{b}}{1.3 k_{d}}$$

Naturgemäß sind  $\sigma$  und  $\tau$  für denjenigen Querschnitt und hier für denjenigen Punkt einzuführen, für den die rechte Seite den größten Wert erlangt.

#### 1. Kreisquerschnitt.

Hier fallen die Punkte der größten Normalspannung

$$\sigma = \frac{32}{\pi} \frac{M_b}{d^3} \text{ (Gleichung 10, §16, und Gleichung 5, §17)}$$

und die Punkte der größten Schubspannung

$$\tau = \frac{16}{\pi} \frac{M_d}{d^3} \text{ (Gleichung 3, § 32)}$$

zusammen, folglich

$$k_{b} \geq 0.35 \frac{32}{\pi} \frac{M_{b}}{d^{3}} + 0.65 \sqrt{\left(\frac{32}{\pi} \frac{M_{b}}{d^{3}}\right)^{2} + \left(\frac{32}{\pi} \frac{M_{d}}{d^{3}} \alpha_{0}\right)^{2}}$$

rund

$$k_b \ge \frac{10}{d^3} \left[ 0,35 \, M_b + 0,65 \, \sqrt{M_b^2 + (\alpha_0 M_d)^2} \, \right] \, . \, . \, . \, . \, . \, 2)$$

Auch für den Kreisringquerschnitt findet dieses Zusammenfallen statt.

2. Elliptischer Querschnitt, Fig. 2, § 33.

a) Die Ebene des biegenden Kräftepaares läuft parallel zur kleinen Achse der Ellipse.

Die größte Normalspannung

$$\sigma = \frac{4}{\pi} \frac{M_b}{a \, b^2}$$

tritt hier auf in den Endpunkten B der kleinen Achse (Gleichung 10, § 16, und 7, § 17).

Die Schubspannung erlangt ihren Größtwert

$$\tau = \frac{2}{\pi} \frac{M_d}{ab^2}$$

an denselben Stellen (Gleichung 6, § 33).

Hiernach findet die größte Anstrengung in den Punkten B statt. Demgemäß ergibt sich aus Gleichung 1

$$k_{b} \geq 0.35 \frac{4}{\pi} \frac{M_{b}}{a b^{2}} + 0.65 \sqrt{\left(\frac{4}{\pi} \frac{M_{b}}{a b^{2}}\right)^{2} + \left(\frac{4}{\pi} \frac{M_{d}}{a b^{2}} \alpha_{0}\right)^{2}}$$
  
$$k_{b} \geq \frac{4}{\pi} \frac{1}{a b^{2}} \left[0.35 M_{b} + 0.65 \sqrt{M_{b}^{2} + (\alpha_{0} M_{d})^{2}}\right] \qquad (3.5)$$

# b) Die Ebene des biegenden Kräftepaares läuft parallel zur großen Achse der Ellipse.

Die Normalspannung besitzt ihren Größtwert in den Endpunkten A der großen Achse, während die Schubspannung in den Endpunkten B der kleinen Achse am größten ausfällt. Infolgedessen muß zunächst ermittelt werden, an welchen Stellen die größte Anstrengung eintritt.

Daß dieselben auf dem Umfange liegen, ist ohne weiteres klar. Nun ist nach Gleichung 9, § 16, die Normalspannung  $\sigma$  im Abstande z' von der kleinen Achse

$$\sigma = \frac{M_b}{\Theta} z' = \frac{M_b}{\frac{\pi}{4} a^3 b} z'$$

und nach Gleichung 5, § 33, die vom drehenden Moment verursachte Schubspannung in den um z' von derselben Achse abstehenden Umfangspunkten

$$\tau = \frac{2}{\pi} \frac{M_d}{ab^2} \sqrt{\left(\frac{y'}{b}\right)^2 + \left(\frac{z'}{a}\right)^2 \left(\frac{b}{a}\right)^2}$$

oder unter Beachtung, daß

$$\left(\frac{y'}{b}\right)^2 = 1 - \left(\frac{z'}{a}\right)^2,$$
$$\tau = \frac{2}{\pi} \frac{M_d}{ab^2} \sqrt{1 - \frac{a^2 - b^2}{a^4} z'^2}.$$

Hieraus ergibt sich die Anstrengung in den durch z' bestimmten Umfangspunkten zu

$$\max\left(\frac{\varepsilon_{1}}{\alpha}\right) = 0.35 \frac{4}{\pi} \frac{M_{b}}{a^{3}b} z' + 0.65 \sqrt{\left(\frac{4}{\pi} \frac{M_{b}}{a^{3}b} z'\right)^{2} + \left(\frac{4}{\pi} \frac{M_{d}}{a^{b}} \alpha_{0}\right)^{2} \left(1 - \frac{a^{2} - b^{2}}{a^{4}} z'^{2}\right)}$$

$$= \frac{4}{\pi} \frac{M_{b}}{a^{3}b} \left[0.35 z' + 0.65 \sqrt{z'^{2} + \left(\frac{M_{d}}{M_{b}} \frac{a^{2}}{b} \alpha_{0}\right)^{2} \left(1 - \frac{a^{2} - b^{2}}{a^{4}} z'^{2}\right)}\right] . . 4)$$

Dieser Ausdruck erlangt seinen Größtwert für den durch

$$d \frac{\max\left(\frac{\varepsilon_1}{\alpha}\right)}{dz'} = 0, \qquad z' = z_0'$$

bestimmten Wert  $z_0'$ , womit dann

$$k_{b} \geq \frac{4}{\pi} \frac{M_{b}}{a^{2} b} \left[ 0,35 \frac{z_{0}'}{a} + 0,65 \sqrt{\binom{z_{0}'}{a}^{2}} + \left(\frac{M_{d}}{M_{b}} \frac{a}{b} \alpha_{0}\right)^{2} \left(1 - \frac{a^{2} - b^{2}}{a^{4}} z_{0}'^{2}\right) \right] \quad 5)$$

Zweckmäßigerweise wird zur Feststellung der größten Anstrengung auch in der Weise vorgegangen werden können, daß man aus Gleichung 4 für verschiedene Werte von z' die Anstrengungen er-

mittelt, diese dann in den zugehörigen Abständen als Ordinaten aufträgt, wie dies in § 52 unter a) und b) für den Fall der Beanspruchung auf Biegung und Schub geschehen ist (Fig. 2 und 3, § 52), und aus dem Verlaufe der so gewonnenen Kurve die größte Ordinate mit der Sicherheit bestimmt, die das zeichnerische Verfahren gestattet.

### 3. Rechteckiger Querschnitt, Fig. 3, § 34.

a) Die Ebene des biegenden Kräftepaares läuft parallel zur kurzen Seite des Rechtecks.

Hier fallen die Stellen der größten Drehungsanstrengung  $\tau$ , d. s. die Mitten der langen Seiten, auf solche der größten Biegungsanstrengung  $\sigma$ , d. s. sämtliche Punkte der langen Seiten.

Wegen

$$\sigma = 6 \, \frac{M_b}{b^2 h}$$
 (Gleichung 10, § 16, und 2, § 17),

 $\tau = 4.5 \frac{M_d}{b^2 h}$  (Gleichung 5, § 34, siehe Fußbemerkung daselbst)

ergibt sich nach Gleichung 1

$$k_{b} \geq \frac{6}{b^{2}h} \left[ 0.35 M_{b} + 0.65 \sqrt{M_{b}^{2} + (1.5 \alpha_{0} M_{d})^{2}} \right] \quad . \quad . \quad 6)$$

und für das Quadrat mit h = b

$$k_{b} \geq \frac{6}{b^{3}} \left[ 0.35 \, M_{b} + 0.65 \, \sqrt{M_{b}^{2} + (1.5 \, \alpha_{0} M_{d})^{2}} \right] \quad . \quad . \quad . \quad 7)$$

# b) Die Ebene des biegenden Kräftepaares läuft parallel zur langen Seite h des Rechtecks.

Hier erlangen  $\sigma$  und  $\tau$  ihre Größtwerte nicht in den gleichen Punkten ( $\sigma$  wird am größten in den kurzen Seiten,  $\tau$  dagegen in den Mitten der langen Seiten), infolgedessen in derselben Weise vorzugehen ist, wie unter Ziff. 2, b für den elliptischen Querschnitt angegeben wurde.

# c) Die Ebene des biegenden Kräftepaares hat keine der beiden unter a) und b) bezeichneten Lagen.

Für ein beliebiges, durch y und z bestimmtes Querschnittselement betrug die Biegungsanstrengung  $\sigma$  nach § 21, Ziff. 2, mit den daselbst gebrauchten Bezeichnungen

$$\sigma = M_b \left( \frac{z \cos \beta}{\Theta_1} - \frac{y \sin \beta}{\Theta_2} \right),$$
  
$$\Theta_1 = \frac{1}{12} b h^3, \qquad \Theta_2 = \frac{1}{12} b^3 h,$$

die Drehungsanstrengung  $\tau$  folgt aus § 34

$$\tau = \sqrt{\tau_y^2 + \tau_z^2},$$

und nach Einführung von

$$\tau_{y} = 9 \frac{M_{d}}{b^{3}h} \left[ 1 - \left(\frac{2z}{h}\right)^{2} \right] y,$$
  

$$\tau_{z} = 9 \frac{M_{d}}{bh^{3}} \left[ 1 - \left(\frac{2y}{b}\right)^{2} \right] z,$$
  

$$\tau = 9 \frac{M_{d}}{bh} \sqrt{\left[ 1 - \left(\frac{2z}{h}\right)^{2} \right]^{2} \frac{y^{2}}{b^{4}} + \left[ 1 - \left(\frac{2y}{b}\right)^{2} \right]^{2} \frac{z^{2}}{h^{4}}}{b^{4}} \dots 9)$$

Diese Werte von  $\sigma$  und  $\tau$  sind nun in die rechte Seite der Gleichung 1 einzuführen, hiermit die Punkte, in denen dieser Ausdruck seinen Größtwert erlangt, zu ermitteln und sodann der letztere selbst zu bestimmen, wie dies unter Ziff. 2, b für den Fall des elliptischen Querschnitts angedeutet worden ist.

Hier führt das am Schlusse von Ziff. 2, b angedeutete zeichnerische Verfahren, den Verhältnissen der vorliegenden Aufgabe entsprechend angepaßt, zu einer verhältnismäßig raschen Lösung¹).

#### § 51. Zug (Druck) und Schub.

Die äußeren Kräfte liefern für den in Betracht gezogenen Querschnitt f eine in die Richtung der Stabachse fallende Zugkraft Pund eine diese senkrecht schneidende Kraft S.

Die mit P verknüpfte und in allen Punkten als gleich angenommene Normalspannung beträgt

$$\sigma = \frac{P}{f},$$

die durch S wachgerufene Schubspannung unter Bezugnahme auf Fig. 1, § 39, und mit den in § 39 aufgeführten Bezeichnungen nach Gleichung 2, § 39, allgemein in dem durch y oder  $\eta$  bestimmten Umfangspunkte

$$\tau' = \frac{S}{2 y \cos \varphi'} \frac{M_{\eta}}{\Theta}$$

473

¹) Die vorliegende Aufgabe ist beispielsweise zu lösen bei der Berechnung einer Dampfmaschinenkurbel. In des Verfassers Maschinenelementen, 1891/92, S. 474 u. f., 1908 (10. Aufl.), S. 792 u. f., findet sich diese Berechnung vollständig durchgeführt. Außer den Schubspannungen, die durch das drehende Moment hervorgerufen werden, sind dabei auch noch die von der Schubkraft veranlaßten Spannungen berücksichtigt.

Maßgebend ist der größte Wert, den  $\tau'$  erreicht, also beispielsweise

für den Kreis 
$$\tau = \frac{4}{3} \frac{S}{\frac{\pi}{4} d^2}$$
  
für das Rechteck  $\tau = \frac{3}{2} \frac{S}{b h}$ .

Nach Gleichung 8, § 48, folgt alsdann mit  $k_z$  als zulässiger Zuganstrengung und  $k_s$  als zulässiger Schubanstrengung

wobei die Punkte der größten resultierenden Anstrengung diejenigen sind. in denen die Schubspannung den größten Wert erlangt.

Wirkt P drückend (Fall der Knickung, § 23, ausgeschlossen), so müssen die aus den Gleichungen 8a und 8b, § 48, folgenden Beziehungen

und

$$\begin{cases} k_z \ge -0.35 \, \sigma + 0.65 \, \sqrt{\sigma^2 + 4 \, (\alpha_0 \tau)^2}, \\ \alpha_0 = \frac{k_z}{1.3 \, k_s}, \end{cases}$$

befriedigt sein.

# § 52. Biegung und Schub.

Die auf den geraden stabförmigen Körper wirkenden äußeren Kräfte ergeben für den betrachteten Querschnitt ein Kräftepaar  $M_b$ , dessen Ebene den Querschnitt senkrecht schneidet, und eine in den letzteren fallende Kraft S.

## 1. Anstrengung des Materials.

In einem beliebigen Querschnittselement verursacht

- $M_b$  eine Normalspannung  $\sigma$ , die nach § 16 oder § 21 festzustellen ist,
  - S eine Schubspannung  $\tau$ , zu deren Bestimmung die Gleichung 3, § 39. zur Verfügung steht.

Da die letztere unter der Voraussetzung entwickelt wurde, daß die Schubkraft S in eine Symmetrieebene des Querschnitts fällt, so muß auch hier diese Beschränkung bezüglich der Lage von S getroffen werden. Demgemäß werde vorausgesetzt, daß der Querschnitt symmetrisch sei, und daß die Ebene des biegenden Kräftepaares  $M_b$ den Querschnitt in der Symmetrielinie schneide. Dann folgt nach § 16 und § 39 unter Bezugnahme auf Fig. 1, § 39, sowie mit den daselbst gewählten Bezeichnungen:

für die in allen um  $\eta$  von der wagrechten Schwerlinie abstehenden Querschnittselementen gleich große Normalspannung  $\sigma = \frac{M_b}{\Theta} \eta$ 

und für die in den Umfangspunkten P' P' ihren Größtwert erlangende Schubspannung

$$\tau' = \frac{S}{2 y \cos \varphi'} \frac{M_{\eta}}{\Theta} .$$
 Fig. 1.

Demnach mit  $k_b$  und  $k_s$  als zulässiger Biegungs-

bzw. Schubanstrengung aus Gleichung 8, § 48, die größte Anstrengung in diesen Punkten

$$k_{b} \geq \max\left(\frac{\varepsilon_{1}}{\alpha}\right)$$

$$= 0.35 \frac{M_{b}}{\Theta} \eta + 0.65 \sqrt{\left(\frac{M_{b}}{\Theta}\eta\right)^{2} + 4\left(\frac{S}{2y\cos\varphi'}\frac{M_{\eta}}{\Theta}\alpha_{0}\right)^{2}}}{\alpha_{0} = \frac{k_{b}}{1.3k_{s}}}.$$
(1)

Hierbei ist derjenige Querschnitt in Betracht zu ziehen sowie für  $\eta$  derjenige Wert einzuführen, wodurch der Ausdruck auf der rechten Seite seinen Größtwert annimmt, und zu beachten, daß im allgemeinen S und  $M_b$  nicht in ein und demselben Querschnitt ihre Größtwerte zu erlangen brauchen.

a) Kreisquerschnitt, Fig. 4, § 39.

Unter Voraussetzung der durch Fig. 1 dargestellten Belastungsweise ergibt sich

$$M_h = Sl$$

und mit

$$\Theta = \frac{\pi}{4} r^4, \qquad \eta = r \sin \varphi',$$
  
$$\sigma = \frac{Sl}{\frac{\pi}{4} r^4} r \sin \varphi' = \frac{4}{\pi} \frac{Sl}{r^3} \sin \varphi'.$$



Gemäß § 39, Gleichung 6, ist

$$\tau' = \frac{4}{3} \frac{S}{\pi r^2} \cos \varphi',$$

somit nach Gleichung 8, § 48,

$$k_b \geq \max\left(\frac{\varepsilon_1}{\alpha}\right)$$

$$= 0.35 \frac{4}{\pi} \frac{Sl}{r^3} \sin \varphi' + 0.65 \sqrt{\left(\frac{4}{\pi} \frac{Sl}{r^3} \sin \varphi'\right)^2 + 4 \left(\frac{4}{3} \alpha_0 \frac{S}{\pi r^2} \cos \varphi'\right)^2},$$
  
$$k_b \ge \max\left(\frac{\epsilon_1}{\alpha}\right) = \frac{Sl}{\frac{\pi}{4} r^3} \left[0.35 \sin \varphi' + 0.65 \sqrt{\sin^2 \varphi' + \left(\frac{2}{3} \alpha_0 \frac{r}{l} \cos \varphi'\right)^2}\right].$$

Wird hierin das Anstrengungsverhältnis  $\alpha_0 = 1$  gesetzt, d. h.

$$k_b = 1,3 k_s$$
 oder  $k_s = 0,77 k_b$ ,

und außerdem die von dem biegenden Moment herrührende Normalspannung

$$\frac{Sl}{\frac{\pi}{4}r^3},$$

welche, in der äußersten Faser stattfindend, die maßgebende Anstrengung sein würde, wenn die Schubkraft gleich Null wäre, durch  $\sigma_b$ ersetzt, so findet sich

$$k_{b} \geq \max\left(\frac{\varepsilon_{1}}{\alpha}\right)$$
$$= \sigma_{b} \left[ 0.35 \sin \varphi' + 0.65 \sqrt{\sin^{2} \varphi' + \left(\frac{2}{3} \frac{r}{l} \cos \varphi'\right)^{2}} \right] \quad . \quad . \quad 2)$$

Behufs Gewinnung eines Urteils über das Gesetz, nach dem sich die resultierende Anstrengung mit  $\frac{r}{l}$  und  $\varphi'$  ändert, werde dieselbe für verschiedene Werte von  $\frac{r}{l}$  und  $\varphi'$  ermittelt.

$$\alpha) \ l=r=\frac{d}{2}.$$

Aus Gleichung 2 wird

$$\max\left(\frac{\epsilon_1}{\alpha}\right) = \sigma_b \left[0,35\sin\varphi' + 0,65\sqrt{\sin^2\varphi' + \left(\frac{2}{3}\cos\varphi'\right)^2}\right]$$

und damit

für 
$$\varphi' = 0^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 0,43 \sigma_{b}$$
 im Punkte 0, Fig. 2,  
",  $\sin \varphi' = 0,25 \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 0,54 \sigma_{b}$  ", ", 1, ", 2,  
",  $\varphi' = 30^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 0,67 \sigma_{b}$  ", ", 2, ", 2,  
",  $\varphi' = 45^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 0,80 \sigma_{b}$  ", ", 3, ", 2,  
",  $\varphi' = 60^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 0,91 \sigma_{b}$  ", ", 4, ", 2,  
",  $\varphi' = 90^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 1,00 \sigma_{b}$  ", ", 5, ", 2  
",  $\varphi' = 90^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 1,00 \sigma_{b}$  ", ", 5, ", 2  
",  $\varphi' = \frac{\delta_{1}}{\delta_{2}} - \frac{\delta_{1}}{\delta_{2}} - \frac{\delta_{2}}{\delta_{2}} - \frac{\delta_{2}$ 

Wir ziehen durch die Kreispunkte 0, 1, 2, 3, 4, 5, Fig. 2, wagrechte Gerade und tragen alsdann von den Punkten O,  $O_1$ ,  $O_2$ ,  $O_3$ ,  $O_4$ ,  $O_5$  des senkrechten Halbmessers  $OO_5$  die Strecken

$$\begin{array}{cccc} \overline{OA_0} = 0.43, & \overline{O_1A_1} = 0.54, & \overline{O_2A_2} = 0.67, \\ \overline{O_3A_3} = 0.80, & \overline{O_4A_4} = 0.91, & \overline{O_5A_5} = 1.00 \end{array}$$

auf und erhalten so in der Schaulinie  $A_0A_1A_2A_3A_4A_5$  ein Bild über das Gesetz. nach dem sich die von  $\sigma$  und  $\tau$  herrührende Anstrengung von Punkt zu Punkt des Umfanges ändert. Im Punkte 0 ist  $\sigma = 0$ und deshalb  $\tau'$  allein maßgebend, im Punkte 5 dagegen ist  $\tau' = 0$ und deshalb  $\sigma$  allein bestimmend für die Anstrengung. Wir erkennen, daß im vorliegenden Falle, d. h. bei

$$l=r=\frac{d}{2},$$

gemäß den Verhältnissen der Fig. 1 die der größten Schubspannung entsprechende Anstrengung noch nicht die Hälfte derjenigen Anstrengung beträgt, die im Umfangspunkte 5 durch die Normalspannung allein bedingt wird. Würde man, wie dies nicht selten für derartige Verhältnisse angegeben ist, den Stab auf Schubinanspruchnahme berechnen, so läge hierin ein Fehler von über  $100^{0}/_{0}$ .

$$\beta) \ l = \frac{1}{2} \ r = \frac{d}{4}.$$

Gleichung 2, die hiermit übergeht in

$$\max\left(\frac{\varepsilon_1}{\alpha}\right) = \sigma_b \left[0,35\sin\varphi' + 0,65\sqrt{\sin^2\varphi' + \left(\frac{4}{3}\cos\varphi'\right)^2}\right]$$

liefert

$$\begin{aligned} & \text{für} \quad \varphi' = \quad 0^{\,0} \quad \max\left(\frac{\epsilon_1}{\alpha}\right) = 0.87 \,\sigma_b, \\ & \text{,} \quad \sin\varphi' = 0.25 \quad \max\left(\frac{\epsilon_1}{\alpha}\right) = 0.94 \,\sigma_b, \\ & \text{,} \quad \varphi' = \quad 30^{\,0} \quad \max\left(\frac{\epsilon_1}{\alpha}\right) = 0.99 \,\sigma_b, \\ & \text{,} \quad \varphi' = \quad 45^{\,0} \quad \max\left(\frac{\epsilon_1}{\alpha}\right) = 1.01 \,\sigma_b, \\ & \text{,} \quad \varphi' = \quad 60^{\,0} \quad \max\left(\frac{\epsilon_1}{\alpha}\right) = 1.01 \,\sigma_b, \\ & \text{,} \quad \varphi' = \quad 90^{\,0} \quad \max\left(\frac{\epsilon_1}{\alpha}\right) = 1.00 \,\sigma_b. \end{aligned}$$

Die bildliche Darstellung liefert in Figur 2 die Schaulinie  $B_0B_1B_2B_3B_4A_5$ , Wir erkennen, daß auch für l = 0.5 r = 0.25 d die größte in der Nullachse eintretende Schubanstrengung noch wesentlich kleiner ist als die Anstrengung, die im Punkte 5 von dem biegenden Moment allein veranlaßt wird. Der Größtwert der resultierenden Anstrengung tritt zwischen  $\varphi' = 45^{\circ}$  und  $\varphi' = 60^{\circ}$  auf und überschreitet  $\sigma_b$  um rund  $1.5^{\circ}/_{0}$ .

$$\gamma) l = \frac{1}{3} r = \frac{d}{6}.$$

In gleicher Weise wie unter  $\alpha$  und  $\beta$  erhalten wir hier

$$\max\left(\frac{\epsilon_1}{\alpha}\right) = \sigma_b \left[0,35\sin\varphi' + 0,65\sqrt{\sin^2\varphi' + (2\cos\varphi')^2}\right]$$

und

für 
$$\varphi' = 0^{\circ} \max\left(\frac{\varepsilon_1}{\alpha}\right) = 1,30 \sigma_b$$
,  
"  $\sin \varphi' = 0,25 \max\left(\frac{\varepsilon_1}{\alpha}\right) = 1,35 \sigma_b$ ,

$$\begin{aligned} & \text{für} \quad \varphi' = 30^{\circ} \quad \max\left(\frac{\varepsilon_1}{\alpha}\right) = 1,35 \,\sigma_b, \\ & \text{,} \quad \varphi' = 45^{\circ} \quad \max\left(\frac{\varepsilon_1}{\alpha}\right) = 1,28 \,\sigma_b, \\ & \text{,} \quad \varphi' = 60^{\circ} \quad \max\left(\frac{\varepsilon_1}{\alpha}\right) = 1,16 \,\sigma_b, \\ & \text{,} \quad \varphi' = 90^{\circ} \quad \max\left(\frac{\varepsilon_1}{\alpha}\right) = 1,00 \,\sigma_b. \end{aligned}$$

Die zugehörige Kurve ergibt sich in  $C_0C_1C_2C_3C_4A_5$ . Wie ersichtlich, überschreitet hier die Schubanstrengung in der Nullachse die Biegungsanstrengung im Punkt 5 um  $30^{0}/_{0}$ , also bedeutend. Der Größtwert der resultierenden Anstrengung findet sich in einem zwischen 0.25 r und 0.5 r gelegenen Abstande von der Nullachse und überschreitet die Anstrengung in letzterer um etwa  $4^{0}/_{0}$ , also nur um wenig; hiernach würde es zulässig sein, bei

$$l = \frac{d}{6}$$

den Stab nur auf Schubinanspruchnahme zu berechnen.

$$\delta$$
)  $l = 0,43 r = 0,215 d$ .

Im Falle

$$l=rac{d}{4}$$

ergab sich die Schubanstrengung in der Stabmitte zu 0.87 der Biegungsanstrengung im Abstande r, für

$$l = \frac{d}{6}$$

dagegen um  $30^0/_0$  größer als die letztere. Es ist nun von Interesse, festzustellen, für welches Verhältnis l:r beide gleich werden.

Dasselbe muß nach Gleichung 2 mit

$$\max\left(\frac{\boldsymbol{\varepsilon}_1}{\boldsymbol{\alpha}}\right) = \boldsymbol{\sigma}_{\boldsymbol{b}} \qquad \boldsymbol{\varphi}' = 0$$

sich ergeben aus

$$1 = 0.65 \frac{2}{3} \frac{r}{l}$$

zu

$$\frac{l}{r} = \frac{1,3}{3} = 0,43$$

Wird dieser Wert in Gleichung 2 eingeführt, so folgt

$$\max\left(\frac{\varepsilon_1}{\alpha}\right) = \sigma_b \left[ 0.35 \sin \varphi' + 0.65 \sqrt{\sin^2 \varphi' + \left(\frac{2}{3} \frac{3}{1.3} \cos \varphi'\right)^2} \right]$$

und hieraus

für 
$$\varphi' = 0^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 1,00 \sigma_{b},$$
  
,,  $\sin \varphi' = 0.25 \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 1,07 \sigma_{b},$   
...  $\varphi' = 30^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 1,10 \sigma_{b},$   
...  $\varphi' = 45^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 1,09 \sigma_{b},$   
...  $\varphi' = 60^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 1,06 \sigma_{b},$   
...  $\varphi' = 90^{\circ} \max\left(\frac{\epsilon_{1}}{\alpha}\right) = 1,00 \sigma_{b}.$ 

Die bildliche Darstellung liefert in Figur 2 die Schaulinie  $D_0D_1D_2D_3D_4A_5$  mit dem Größtwert der Anstrengung ungefähr in halber Höhe. Derselbe beträgt rund  $10^{0}/_{0}$  mehr als die Schubanstrengung in der Nullachse und um ebensoviel mehr als die Biegungsanstrengung im Punkte 5.

Fassen wir das im vorstehenden unter  $\alpha$  bis  $\delta$  Gefundene zusammen, so ergibt sich folgendes:

Bei der Belastungsweise des kreiszylindrischen Stabes nach Fig. 1 genügt es, denselben mit Rücksicht auf die Biegungsanstrengung

$$\sigma_b = \frac{Sl}{\frac{\pi}{32}d^3} = \sim \frac{10Sl}{d^3}$$

allein zu berechnen, solange l nicht wesentlich kleiner als  $\frac{d}{4}$  ist. Beträgt l erheblich weniger als  $\frac{d}{4}$ , so erscheint es ausreichend, nur die Schubanstrengung

$$\tau = \frac{4}{3} \frac{S}{\frac{\pi}{4} d^2}$$

zu berücksichtigen¹).

$$S = P \frac{b}{l}$$
 bzw.  $P \frac{a}{l}$ 

¹) Hiernach hat die Bestimmung der Abmessungen des Körpers von gleichem Widerstande, Fig. 3, § 19, in der Nähe der Punkte A und B zu erfolgen, wobei

ist. Streng genommen wäre die Stabform überhaupt auf Grund der Gleichung 1

Der etwaige Fehler, der hierbei begangen wird und nach Maßgabe der soeben durchgeführten Berechnungen beurteilt werden kann, liegt innerhalb des Genauigkeitsgrades, der bei Festigkeitsrechnungen erreichbar zu sein pflegt.

Die Berechnung auf Schubanstrengung allein in Fällen, in denen

$$l \ge \frac{d}{4}$$
,

erscheint unzutreffend, insbesondere dann, wenn

$$\pi = rac{S}{rac{\pi}{4} d^2}$$

gesetzt wird.

(Vgl. auch die in § 40 mitgeteilten Versuchsergebnisse sowie die Fußbemerkung S. 417 bis 419.)

Ist das Anstrengungsverhältnis  $\alpha_0$  von 1, welcher Wert den besonderen Erörterungen unter  $\alpha$  bis  $\delta$  zugrunde liegt, wesentlich verschieden, so wird auf die Gleichung

$$\max\left(\frac{\epsilon_1}{\alpha}\right) = \sigma_b \left[0,35\sin\varphi' + 0,65\sqrt{\sin^2\varphi' + \left(\frac{2}{3}\alpha_0\frac{r}{l}\cos\varphi'\right)^2}\right]$$

zurückgegriffen werden müssen.

#### b) Rechteckiger Querschnitt.

In ganz entsprechender Weise wie unter a) gelangen wir, sofern b die Breite, h die Höhe des Rechtecks bedeutet, und die Richtung von S parallel zu h läuft, mit

zu

$$\boldsymbol{M}_{b} = Sl$$
 (s. Fig. 1)

$$\sigma = \frac{St}{\frac{1}{12}b\,h^3}\eta,$$

und nach Gleichung 1, § 38, zu

$$\tau = \frac{3}{2} \frac{S}{bh} \left[ 1 - \left(\frac{\eta}{h}\right)^2 \right],$$

gültig für die Spannungen im Abstande  $\eta$  von der Nullachse.

C. Bach, Elastizität. 8. Aufl.

festzustellen und hierbei darauf Rücksicht zu nehmen, daß die Kraft P wie auch S über eine, wenn auch kleine Strecke verteilt angreift.

Eine Ungenauigkeit bleibt allerdings auch noch dann: die Rechnung setzt prismatische Gestalt des Körpers voraus, während der Körper gleicher Festigkeit in der Nähe der Punkte A und B stark gekrümmte Begrenzungsflächen besitzt (vgl. S. 117, 118, letzter Absatz der Fußbemerkung).

Unter der Voraussetzung  $\alpha_0 = 1$  liefert Gleichung 1

$$k_{b} \geq \max\left(\frac{e_{1}}{\alpha}\right)$$

$$= \sigma_{b} \left\{ 0.35 \cdot \frac{\eta}{h} + 0.65 \right] / \left(\frac{\eta}{h}\right)^{2} + \frac{1}{4} \left(\frac{h}{l}\right)^{2} \left[1 - \left(\frac{\eta}{h}\right)^{2}\right]^{2} \right\}, \quad 3)$$

wenn die Biegungsspannung der äußersten Faser

$$\frac{Sl}{\frac{1}{6}b\,h^2} = \sigma_b$$

gesetzt wird.

Wählen wir l = 0.325 h, so findet sich

$$\begin{array}{c} \underbrace{\delta \ell}_{\frac{1}{b} \notin h^2} & \text{für } \eta \equiv 0 & \max\left(\frac{\epsilon_1}{\alpha}\right) \equiv 1,00 \ \sigma_b, \\ \eta \equiv \frac{1}{b} h & \max\left(\frac{\epsilon_1}{\alpha}\right) \equiv 1,04 \ \sigma_b, \\ \eta \equiv \frac{1}{a} h & \max\left(\frac{\epsilon_1}{\alpha}\right) \equiv 1,04 \ \sigma_b, \\ \eta \equiv \frac{1}{a} h & \max\left(\frac{\epsilon_1}{\alpha}\right) \equiv 0,99 \ \sigma_b, \\ \eta \equiv \frac{3}{8} h & \max\left(\frac{\epsilon_1}{\alpha}\right) \equiv 0,91 \ \sigma_b, \\ \end{array}$$
Fig. 3. 
$$\begin{array}{c} \eta = \frac{1}{2} h & \max\left(\frac{\epsilon_1}{\alpha}\right) \equiv 1,00 \ \sigma_b. \\ \eta \equiv \frac{1}{2} h & \max\left(\frac{\epsilon_1}{\alpha}\right) \equiv 1,00 \ \sigma_b. \end{array}$$

Die bildliche Darstellung gibt die Fig. 3. Wie ersichtlich, erlangt die Anstrengung zwischen der Nullachse und

$$\eta = \frac{\hbar}{2}$$

einen größten und einen kleinsten Wert. Ersterer überschreitet  $\sigma_b$ um etwa  $4^0/_0$ , letzterer bleibt um  $9^0/_0$  darunter. Die Anstrengung in der Nullachse (lediglich Schub) ist gleich der Anstrengung in der äußersten Faser (nur Biegung). Wird l < 0.325 h genommen, so übersteigt die erstere die letztere; für l > 0.325 h tritt das Entgegengesetzte ein.

Demgemäß folgt:

Ist bei dem Stabe mit rechteckigem Querschnitt, belastet nach Maßgabe der Fig. 1,  $l \ge 0.325 h$ , so genügt es, ihn mit Rücksicht auf die Biegungsbeanspruchung

$$\sigma_b = \frac{6\,Sl}{b\,h^2}$$

allein zu berechnen; beträgt dagegen  $l \leq 0.325 h$ , so reicht es aus, lediglich die Schubbeanspruchung

$$\tau = \frac{3}{2} \frac{S}{bh}$$

der Berechnung zugrunde zu legen¹).

Die Rücksichtnahme auf die Schubkraft allein, bei lerheblich größer als 0,325 h, muß unzutreffende Ergebnisse liefern. (Vgl. Fußbemerkung S. 417.)

Wenn das Anstrengungsverhältnis  $\alpha_0$  von 1 wesentlich abweicht, so ist auf Gleichung 1 zurückzugehen.

# c) **<u>T</u>**-Querschnitt.

Für Querschnitte dieser und ähnlicher Art lassen sich so einfache Festsetzungen, wie sie unter a) und b) für den Kreis bzw. das Rechteck ausgesprochen werden konnten, nicht aufstellen. Hier muß im einzelnen Falle die Gleichung 1 zum Ausgangspunkte genommen werden unter Beachtung der daselbst angeschlossenen Bemerkung sowie des in § 39d Gesagten.

Hinsichtlich der erforderliehen Stärke des Steges pflegt für den Fall, daß nicht Herstellungsrücksichten die Entscheidung treffen, die Fernhaltung von Ausbiegungen (Knickung) und nicht die Schubspannung in der Nullachse bestimmend zu sein, namentlich dann, wenn die Belastung des Trägers örtlich zusammengedrängt angreift, wie Versuche mit eisernen <u>T</u>-Trägern lehren, und wie sich auch unter Beachtung der geringen Widerstandsfähigkeit verhältnismäßig dünner Wandungen gegenüber Einflüssen, die auf seitliche Ausbiegung hinwirken, aus dem unter "IV. Knickung" Erörterten ohne weiteres ergibt, selbst unter Voraussetzung einer (in bezug auf den Trägerquerschnitt) symmetrischen Belastung. Oft ist jedoch auf eine solche nicht zu rechnen, beispielsweise dann nicht, wenn die Belastung durch Querbalken erfolgt, die mit ihren Enden

¹) Hiernach sind die Abmessungen der in der Nähe des Punktes *B* gelegenen Querschnitte der Körper gleicher Festigkeit, Fig. 1 und Fig. 2, § 19, zu bestimmen. Vgl. auch Fußbemerkung zu a, S. 480 und 481.

Nicht selten wird auch heute noch in Fällen, wie sie Fig. 4 veranschaulicht, und in denen die Biegungsbeanspruchung im Querschnitt AC maßgebend ist, für die Schubbeanspruchung der Querschnitt AB in Betracht gezogen. Dadurch gelangt man zu ungenügend widerstandsfähigen Abmessungen, infolgedessen Brüche eintreten, wie Verfasser wiederholt und bis in die neueste Zeit festzustellen hatte.

Weiteres vgl. S. 569 u. f.



31*

aufliegen. Indem sich dieselben unter ihrer Last durchbiegen, belasten sie den inneren Teil der Trägerflansche stärker, während der äußere Teil entlastet wird. Die Kraft geht nicht mehr durch die Mitte des Steges; sie kann bei entsprechender Flanschenbreite für den Steg unter Umständen ein verhältnismäßig sehr bedeutendes Biegungsmoment ergeben.

Um die Formänderung eines in der Mitte hinsichtlich des Querschnittes symmetrisch belasteten und an den Enden unterstützten Trägers deutlich erkennen zu lassen, wurde ein Träger von 200 mm Höhe aus Hartblei¹) (Flanschen: 70 mm breit, 20 mm stark, Steg: 10 mm stark, Entfernung der Auflager 500 mm) vor der Belastung mit einem Quadratnetz versehen. Fig. 5, Taf. XXI, gibt das Bild des mittleren Teiles dieses Trägers, wie er sich infolge der Belastung gestaltet hat, wieder. Von Interesse ist namentlich die Verfolgung der Änderungen, welche die Form einzelner Quadrate erfahren hat.

#### 2. Formänderung.

### a) Im allgemeinen.

Ein prismatischer Stab sei in der aus Fig. 4, § 20, ersichtlichen Weise belastet. Die auf denselben wirkenden äußeren Kräfte ergeben — abgesehen von dem Eigengewicht —

a) für jeden innerhalb der Strecke AB gelegenen Querschnitt ein biegendes Kräftepaar vom konstanten Moment  $M_b = Pa$ ; infolgedessen die elastische Linie zwischen A und B (vgl. § 16, Gleichung 13) einen Kreisbogen vom Halbmesser

$$\varrho = \frac{\Theta}{\alpha \, M_{b}}$$

bildet;

b) für die Querschnitte außerhalb der Strecke AB, je nach ihrem Abstand von der Querschnittsebene A bzw. B ein verschieden großes, zwischen Pa (im Querschnitt bei A bzw. B) und Null (in den Endquerschnitten) liegendes Moment und eine Schubkraft P.

Um uns ein anschauliches Bild über die hierbei auftretenden Formänderungen zu verschaffen, ziehen wir auf dem unbelasteten Stabe, dessen Querschnitt ein Rechteck mit der Breite b und der in der Bildebene liegenden Höhe h sein mag, nach Maßgabe der Fig. 6, die den halben Stab von der Länge  $a + \frac{l}{2}$  darstellt, gerade

¹) Vgl. Fußbemerkung 2, S. 348.



Fig. 5, § 52, S. 484.

### C. Bach, Elastizitat. 8. Aufl.

C. Bach, Elastizitat. 8. Aufl.

Taf. XXII.

Fig. 9, § 52, S. 487.







Fig. 12, § 52; S. 488.



1

Linien, und zwar zunächst parallel zur Stabachse, die als Achsenlinien bezeichnet werden sollen, und sodann senkrecht zu letzteren, d. s. Querschnittslinien, je in gleichem Abstande voneinander. Hierdurch wird die Seitenfläche von der Höheh in eine Anzahl gleicher Rechtecke eingeteilt.

Unter Einwirkung der Belastung — Fig. 4, § 20 — wird der Stab eine Änderung seiner Gestalt erfahren, wobei die Rechtecke ebenfalls ihre Form ändern müssen.

Für die Stabquerschnitte zwischen A und B liefert die Belastung, wie oben unter a) bereits hervorgehoben wurde, lediglich ein biegendes Moment. Demgemäß werden nach § 16 die oberhalb der Nullachse gelegenen Fasern eine mit ihrem Abstande von dieser zunehmende Deh-



nung, die unterhalb gelegenen eine entsprechende Zusammendrückung erfahren. Die ursprünglich parallelen Querschnitte sind jetzt gegeneinander geneigt, ihr früherer Abstand ist nur noch in der Stabachse

vorhanden. Es treten lediglich Normalspannungen auf, Schubspannungenfehlen; infolgedessen müssen die auf die Stabfläche gezeichneten Achsenund Querschnittslinien die rechten Winkel. unter denen sie sich ursprünglich schnitten, beibehalten: die ursprünglichen Rechtecke gehen in Kreisringsektoren Fig. 7 läßt dieselben über. für die rechte Hälfte von AB(Fig. 4, § 20) erkennen.



Fig. 7.

Auf die rechts von *B* gelegenen Querschnitte wirkt, wie oben unter b) bereits bemerkt, außer dem biegenden Moment noch eine Schubkraft, die Schubspannungen wachruft, die nach § 38 (s. namentlich Fig. 4, § 38) im Abstande  $+\frac{\hbar}{2}$  und  $-\frac{\hbar}{2}$  von der Nullachse, d. h. in der oberen und in der unteren Begrenzungsfläche des Stabes, sofern hier äußere Kräfte nicht angreifen, Null sein müssen, während sie nach der Achse hin zunehmen und in letzterer den größten Wert erreichen. Daraus folgt, daß die auf der Staboberfläche gezogenen Querschnittslinien auch außerhalb der Strecke AB — Fig. 4, § 20 die im Abstande  $+\frac{h}{2}$  und  $-\frac{h}{2}$  befindlichen Begrenzungslinien da, wo äußere Kräfte nicht angreifen, rechtwinklig schneiden müssen, daß sie dagegen die nach der Stabachse zu gelegenen Achsenlinien schiefwinklig zu treffen haben. Die Abweichung von der Rechtwinkligkeit wird in der Stabachse ihren größten Wert erreichen. Nach Fig. 7 muß, sofern GG in E senkrecht zur gekrümmten Stabachse und FF Tangente im Punkt E der Querschnittslinie ist, dieser Größtwert gleich dem Bogen  $\gamma_{max}$  des Winkels FEG sein und mit der durch Gleichung 2, § 38, bestimmten Schubspannung

$$\tau_{max} = \frac{3}{2} \frac{P}{b h}$$

in der Beziehung

$$\gamma_{max} = \beta \tau_{max}$$

stehen, worin  $\beta$  die Schubzahl bedeutet (§ 29). Für eine beliebige, um  $\eta$  von der Nullachse abstehende Stelle ist die Schubspannung nach Gleichung 1, § 38

$$\tau = \frac{3}{2} \frac{P}{b h} \left[ 1 - \left( \frac{\eta}{h} \right)^2 \right]$$

und somit die Abweichung von der Recktwinkligkeit

$$\gamma = \beta \tau = \frac{3}{2} \frac{P}{bh} \left[ 1 - \left( \frac{\eta}{h} \right)^2 \right] \beta.$$

Für

$$\eta = \pm \frac{h}{2}$$

wird  $\gamma = 0$ , wie bereits hervorgehoben.

Dem Vorstehenden gemäß wird der ursprünglich ebene Querschnitt auch dann, wenn er unter Einfluß des biegenden Momentes eben geblieben ist, durch die Einwirkung der Schubkraft in eine gekrümmte Fläche übergehen, wie dies Fig. 7 rechts von B — in übertrieben gezeichneter Weise — erkennen läßt. Diese Wölbungslinie, die in der Stabachse einen Wendepunkt besitzt, ist hiernach eine notwendige Folge der besprochenen Veränderlichkeit der Schubspannung. Eine strenge Darstellung derselben wird zu berücksichtigen haben, daß die äußeren Kräfte nicht in einem Punkte oder einer Linie, sondern in einer Fläche den Stab treffen, so daß also beispielsweise die Querschnitte unmittelbar rechts vom Mittelpunkte oder der Mittelebene *B* des Auflagers nicht sofort die volle Krümmung annehmen, während die unmittelbar links davon gelegenen auch nicht mehr vollkommen eben sein können.

Die anschauliche Darstellung der besprochenen Querschnittswölbung auf dem Wege des Versuches begegnet großen Schwierigkeiten. Um die Krümmung deutlich zu machen, sind im Vergleich zur Länge verhältnismäßig hohe Stäbe zu verwenden; dann aber müssen zur Herbeiführung einer für den bezeichneten Zweck genügenden Formänderung so bedeutende Kräfte auf verhältnismäßig kleine Teile der Staboberfläche wirken, daß hier starke örtliche Formänderungen eintreten, welche die Reinheit des Bildes erheblich beeinträchtigen. Soll dieser Übelstand vermieden werden, so wird man sich mit einer angenäherten Darstellung begnügen und dem Stabe eine solche Gestalt geben müssen, daß schon weit kleinere

Schubkräfte erhebliche Schubspannungen wachrufen. Ein solcher Körper ist in Fig. 8 dargestellt: <u>T</u>-Träger, in der Mittellinie zum Teil ausgebohrt, so daß zur Übertragung der Schubkräfte in der Stabachse nur ein verhältnismäßig kleiner Querschnitt zur Verfügung



steht, weshalb hier die Spannungen bedeutend ausfallen müssen. Wird der Stab in der Mitte belastet und an den Enden unterstützt, so nimmt die ursprünglich ebene Stirnfläche die Gestalt Fig. 9 (Schmiedeisenträger), Taf. XXII, an. Dieselbe entspricht dem Wesen nach der Form, die in Fig. 7 rechts von *B* angegeben wurde: Die gedrückten (hier oben liegenden) Fasern widerstreben der Verkürzung, die gezogenen der Verlängerung infolge der Kleinheit des Querschnittes, durch den sich die Druckkräfte (oberhalb der Nullachse) und die Zugkräfte (unterhalb dieser Achse) ins Gleichgewicht setzen, mit sichtbarem Erfolg. Wird das rechts abgebildete Trägerende ins Auge gefaßt, so erkennt man, daß der obere gedrückte Teil des Trägers auf das stehengebliebene Stegstück nicht bloß abschiebend, sondern auch biegend wirkt, so daß ein Belastungsfall vorliegt, wie er S. 417, 483, Fußbemerkung, bereits hervorgehoben worden ist.

Durch Aussparungen in der Nullachse, wie solche z. B. Fig. 8 zeigt, wird die Widerstandsfähigkeit häufig weit mehr vermindert, als man anzunehmen pflegt. Hierüber geben die in der Materialprüfungsanstalt Stuttgart durchgeführten Untersuchungen Auskunft. Der in Fig. 9, Taf. XXII, dargestellte und aus dem Jahre 1887 stammende Körper zählt zu den ersten dieser Versuche.

Die letzten derselben erfolgten auf Anregung Pfleiderers 1909, der ihrer bedurfte, um die von ihm übernommene Bearbeitung der Ergebnisse der Versuche mit Scheibenkolben, über die in den Mit-

> teilungen über Forschungsarbeiten Heft 31 (1906) berichtet ist, auszuführen. Im Heft 97 dieser Mitteilungen findet sich der Bericht Pfleiderers. ile. Die Probekörper hatten T-förmigen Querschnitt

von den aus Fig. 10 und der hierzu gehörigen Zahlentafel hervorgehenden Abmessungen. Nr. 1 enthält keine Aussparung im Steg, an Nr. 2 bis 7 waren Aussparungen verschiedener Länge (von 30 bis 240 mm) angeordnet. Bei Nr. 8 bis 11 hatten die Ränder der Schlitze Verstärkung erfahren, wie Fig. 11 erkennen läßt.

Die bei der Prüfung gemäß Fig. 8 erlangten Bruchlasten sind in der folgenden Zahlentafel zusammengestellt.

Bal- ken Nr.	$\begin{array}{c c} Abmessungen\\ l_1 & s & d & s_1\\ mm & mm & mm & mm \end{array}$			Bruch- last kg	Bruch erfolgte		
1		14	14,5		18000	nahe der	Mitte
2 3 4 5 6 7	$     \begin{array}{r}       30 \\       60 \\       120 \\       120 \\       240 \\       240 \\       240 \\     \end{array} $	$14 \\ 13,5 \\ 14 \\ 14 \\ 14 \\ 14,5 \\$	$14\\14,5\\14,5\\14\\14,5\\14$		$17250 \\ 15400 \\ 12810 \\ 11145 \\ 6210 \\ 5965$	""" anderAu "• " " " 	" ssparung " " "
8 9 10 11	120 116 242 240	$14 \\ 15,5 \\ 15,5 \\ 14$	13,5514,55141414	5 30 5 32 31 30	$17170 \\ 18050 \\ 9960 \\ 8710$	", " nahe der an der Au	Mitte Issparung "

Fig. 12, Taf. XXII, gibt die geprüften Balken Nr. 1, 5, 6, 9, 8 und 10 wieder. Bei der Prüfung der Balken mit längeren Schlitzen war zu beobachten, daß der Bruch vom Innenrande des Schlitzes je gegen das Ende hin ausging und daß der Riß zunächst nur bis zur Flansche reichte,

also innerhalb des Steges verblieb. Vgl. hierzu die Bemerkungen auf S. 487 zu Fig. 9.

Diese Biegungsbeanspruchung führt. wie die vorstehenden Zahlen

Fig. 10.

Ξ



1000 1100
zeigen, eine Verminderung der Widerstandsfähigkeit herbei, die schon bei kurzen Aussparungen bedeutend ist. Aussparungen im mittleren Teil des Steges, wie sie z. B. zur Durchführung von Kernstützen in Gußstücken angeordnet zu werden pflegen, sollen deshalb nicht länger ausgeführt sein, als unbedingt notwendig ist.

Die bei Nr. 8 bis 11 angeordnete Verstärkung des Randes der Aussparungen hat die Widerstandsfähigkeit erhöht; bei dem Versuchskörper Nr. 9 mit 116 mm langer Aussparung ist der Bruch infolge der Verstärkung nicht an dem Schlitz erfolgt, dagegen war dies bei dem Balken 8 (Länge der Aussparung 120 mm) der Fall.

Hierher gehören auch die Stücke, die bei Biegungsversuchen mit Holz entstehen, das parallel zur Faserrichtung geringe Widerstandsfähigkeit gegen Schub besitzt und infolgedessen durch Abschieben zerstört wird. (Vgl. Fig. 13, Taf. XXII).

b) Durchbiegung mit Rücksicht auf die Schubkraft.

Ein prismatischer Stab sei auf zwei um l voneinander abstehende Stützen aufgelagert und in der Mitte durch die Kraft Pbelastet. Die Durchbiegung, die von P veranlaßt wird, setzt sich aus zwei Teilen zusammen: aus derjenigen Durchbiegung, die von dem biegenden Moment (in der Mitte  $M_b = \frac{Pl}{4}$ ) allein verursacht wird, und aus der Verschiebung, welche die Querschnitte durch die Schubkraft  $\frac{P}{2}$  (Auflagerdruck) erfahren.

Die Durchbiegung der ursprünglich geraden Stabachse im mittleren Querschnitt infolge des biegenden Moments beträgt nach Gleichung 14, § 18,

$$y' = \frac{\alpha}{48} \frac{Pl^3}{\Theta}$$

sofern  $\Theta$  das gegenüber der Biegung in Betracht kommende Trägheitsmoment des Stabquerschnittes bedeutet.

Zur Feststellung desjenigen Teiles der tatsächlichen Durchbiegung, welcher von der Verschie-



bung der Querschnitte herrührt, führt die nachstehende Betrachtung.

ABCD, Fig. 14, sei ein zwischen den beiden Querschnitten ACund BD gelegenes Körperelement des unbelasteten Stabes. Denken wir uns jetzt im Querschnitte BD eine abwärts wirkende Schub-

kraft S tätig, während AC festgehalten wird, so rückt der Querschnitt BD um einen gewissen Betrag  $\overline{BB_1} = \overline{MM_1} = \overline{DD_1}$  abwärts. Unter der Voraussetzung gleichmäßiger Verteilung der Schubkraft S über den Querschnitt würde die Formänderung des Körperelements darin bestehen, daß das Rechteck ABCD in das Parallelogramm AB, D, C übergeht. Die Querschnitte würden Ebenen bleiben. Da nun aber die Schubspannungen von der Mitte nach außen (d. i. von  $M_1$  nach  $B_1$  und  $D_1$ ) hin bis auf Null abnehmen, so müssen dies die Schiebungen ebenfalls tun und damit auch die äußersten Elemente der Querschnittslinien die Begrenzungsstrecken AB₁ und CD₁ senkrecht schneiden, d. h. die Querschnitte müssen sich krümmen, wie in Fig. 14 gestrichelt angegeben ist. Die Strecke  $MM_1$  der Achse, die ursprünglich die Lage MM einnahm und hierbei mit der Querschnittslinie BD einen rechten Winkel bildete, weist jetzt, sofern  $M_1 E \perp M M_1$  und FF Tangente im Punkte  $M_1$  der Querschnittslinie ist, eine Abweichung um den Winkel  $FM_1E$  von dieser Rechtwinkligkeit auf. Nach außen hin nimmt diese Abweichung ab bis auf Null. Wie wir wiederholt gesehen, mißt der Bogen  $\gamma$ , der diesem Abweichungswinkel entspricht, die Schiebung und steht nach Gleichung 2, § 29, zu der Schubspannung  $\tau$  an der betreffenden Stelle in der Beziehung

$$\gamma = \beta \tau$$

Für die Stabachse weist  $\gamma(\tau)$  seinen Größtwert auf, und zwar ist  $\gamma_{max} = tg \swarrow EM_1F = \sim \operatorname{arc} \swarrow EM_1F.$ 

Der Winkel  $EM_1F$  setzt sich aus zwei Teilen zusammen, nämlich

 $\not\prec EM_1F = \not\prec EM_1B + \not\prec B_1M_1F.$ 

Der erste Teil ist gleich

 $\swarrow BAB_1 = \checkmark MMM_1 = \checkmark DCD_1.$ 

Er entspricht also der senkrechten Verschiebung des ganzen Querschnitts, während der zweite Teil die Folge der Querschnittskrümmung ist. Für die Ermittlung der Senkung y'' infolge der Verschiebung des Querschnitts kann demnach nur der erste Teil in Betracht kommen¹). Dieselbe erscheint dadurch bestimmt, daß die

¹) Die Ermittlung der von der Schubkraft S bewirkten Durchbiegung y''nach dem Vorgange Poncelets und Grashofs — Theorie der Elastizität und Festigkeit, 1878, S. 213 u. f. — derart, daß gesetzt wird

$$y'' = \int \gamma_{max} \, dx = \beta \int \tau_{max} \, dx,$$

muß, wie vorstehende Darlegung erkennen läßt, y'' zu groß ergeben. In denjenigen Fällen, in denen die Rücksichtnahme auf y'' überhaupt in Frage zu kommen pflegt (vgl. § 22, S. 287, auch weiter oben), ist übrigens der Einfluß dieses Zugroß nicht von erheblicher Bedeutung.

Die vorstehende Betrachtung über die Wölbung der ursprünglich ebenen

mechanische Arbeit, welche die Schubkraft beim Sinken um  $\overline{BB_1} = \overline{MM_1} = \overline{DD_1}$  verrichtet, gleich sein muß der Summe der Arbeiten der Schubspannungen beim Übergang des Stabelementes ABCD in die Form  $AB_1CD_1$  mit gekrümmter Querschnittsfläche.

Querschnitte eines durch Schub in Anspruch genommenen Körpers läßt sich auch auf den durch ein drehendes Kräftepaar belasteten Stab übertragen, wie folgende Bemerkungen, die der Einfachheit wegen einen bestimmten, und zwar rechteckigen, Querschnitt voraussetzen mögen, erkennen lassen.

Das Gesetz, nach dem sich die Schubspannung in den Querschnittselementen der Umfangsstrecke AC des auf Drehung beanspruchten rechteckigen Stabes, Fig. 3, § 34, ändert, ist - nach der gemachten Annahme das gleiche, dem die Schubspannungen des durch die Schubkraft belasteten rechteckigen Stabes, Fig. 4, § 38, folgen; bei beiden Körpern entspricht der Verlauf der Spannungskurve einer Parabel. Wir haben demnach im ersteren Falle (Drehung) für die in der Umfangsstrecke AC liegenden Querschnittselemente auch dasselbe Krümmungsgesetz zu erwarten wie im zweiten Falle. Tatsächlich zeigen die auf der Staboberfläche liegenden Querschnittslinien der Fig. 1, Taf. XIII, ähnlichen Verlauf, wie er sich in Fig. 9, Taf. XXII fand. Auch für Fig. 1. Taf. XIII, ergibt die Abweichung von der Rechtwinkligkeit, d. i. der Winkel, der die Schiebung und damit die Schubspannung mißt, zwei Teile, von denen der eine die Verschiebung der Querschnittselemente senkrecht zur Stabachse bestimmt, während der andere der eingetretenen Neigung des Querschnittselementes entspricht. Für die Mitte der längeren Seite erreichen beide den größten Wert. Hier wird ihre Summe gemessen durch das Produkt aus  $\tau_a'$  (Gleichung 4, § 34) und  $\beta$ , während der erste Teil durch den Drehungswinkel  $\vartheta$  (Gleichung 9, § 43) bestimmt erscheint, so daß der zweite Teil, d. i. die Neigung, welche die gewölbte Querschnittslinie, Fig. 1, Taf. XIII, in der Mitte der längeren Seite (im Wendepunkte) gegenüber dem ursprünglichen Querschnitt besitzt, den Bogen

$$4,5 \frac{M_d}{b^2 h}\beta - 3,6 \frac{b^2 + h^2}{b^3 h^3} M_d \beta \frac{b}{2} = 4,5 \frac{M_d}{b^2 h} \left[ 0,6 - 0,4 \left(\frac{b}{h}\right)^2 \right] \beta$$
$$= \tau_a' \left[ 0,6 - 0,4 \left(\frac{b}{h}\right)^2 \right] \beta$$

ergibt.

Je größer h im Vergleich zu b, um so bedeutender wird diese Neigung; sie nähert sich hierbei asymptotisch dem Werte

$$4,5 \cdot 0,6 \frac{M_d}{b^2 h} \beta = 2,7 \frac{M_d}{b^2 h} \beta = 0,6 \tau_a' \beta.$$

Für h = b = a, d. h. für den quadratischen Querschnitt, wird sie am kleinsten, nämlich gleich

$$4,5\cdot 0,2\frac{M_d}{a^3}\beta = 0,9\,\frac{M_d}{a^3}\beta = 0,2\,\tau_a'\,\beta\,.$$

Fig. 1, Taf. XIII, und Fig. 2, Taf. XIV (vgl. je die gewölbte Querschnittslinie mit der ursprünglich geraden, durch Striche bezeichneten Querschnittslinie) bestätigen die Abnahme der Neigung mit Annäherung von h an b.

Würde man z. B. für den quadratischen Querschnitt diese Neigung dem eigentlichen Drehungswinkel zuzählen, indem man setzt

$$\vartheta \frac{a}{2} = \tau_a' \beta = 4.5 \frac{M_d}{a^3} \beta,$$

Nach § 44 findet sich für die mechanische Arbeit, welche die Formänderung des  $\overline{AB} = \overline{MM} = \overline{CD} = dx$  langen Körperelementes bei der Verschiebung fordert,

$$\frac{\beta}{2} dx \int \int \tau^2 \, d\eta \, dz.$$

Hierin ist unter Bezugnahme auf Fig. 1, § 39, und nach Gleichung 3, § 39

$$\tau = \frac{S}{2 y \cos \varphi} \frac{M_{\eta}}{\Theta}$$

die Schubspannung in dem um z von der  $\eta$ -Achse abstehenden Punkte P, der mit dem Flächenelemente  $d\eta dz$  zusammenfällt.

Wird nun  $\overline{BB_1} = \overline{MM_1} = \overline{DD_1}$  mit dy'' bezeichnet, so erhalten wir

$$\frac{1}{2}S\,dy'' = \frac{\beta}{2}\,dx \iint \tau^2\,d\eta\,dz$$
$$dy'' = \frac{\beta}{S}\,dx \iint \tau^2\,d\eta\,dz$$
$$y'' = \beta \iint \frac{dx}{S} \iint \tau^2\,d\eta\,dz, \quad \dots \quad \dots \quad 4)$$

sofern die Schubzahl  $\beta$  unveränderlich ist.

Beispielsweise findet sich für den rechteckigen Querschnitt von der Breite b und der Höhe h (vgl. Schluß von § 44), da hier so ergäbe sich

$$\vartheta = 9 \frac{M_d}{a^4} \beta,$$

welcher Wert mit der von Grashof in seiner Theorie der Elastizität und Festigkeit, 1878, S. 144 gefundenen Größe (Gleichung 246) übereinstimmt.

Nach Maßgabe unserer Darlegungen erscheint somit diese um

$$100 \ \frac{9-7,2}{7,2} = 25 \ ^{o}/_{o}$$

zu groß. Wie aus den Erörterungen des Verfassers "Über die heutige Grundlage der Berechnung auf Drehung beanspruchter Körper" in der Zeitschrift des Vereines deutscher Ingenieure 1889, S. 139 (oder auch "Abhandlungen und Berichte" 1897, S. 81 u. f.) erhellt, ergibt sich in Übereinstimmung hiermit der Drehungswinkel nach der Grashofschen Gleichung

für Gußeisen um

$$100 - \frac{1,43 - 1,20}{1,20} = 19^{\circ}/_{\circ},$$

für Schmiedeisen und Stahl um

$$100 \frac{0,883 - 0,696}{0,696} = 27 \, ^{\circ}/_{o}$$

größer, als Bauschinger durch Messung bestimmte.

wegen  $\varphi = \varphi' = 0$  die Schubspannung für alle in demselben Abstande  $\eta$  gelegenen Flächenelemente gleich ist, nämlich

$$\tau' = \tau = \frac{3}{2} \frac{S}{bh} \left[ 1 - \left(\frac{\eta}{h}\right)^2 \right],$$

sodaß an die Stelle von  $d\eta \, dz$  sofort der Flächenstreifen  $b \, d \, \eta$ treten kann,

$$y'' = \frac{9}{4} \beta \int \frac{S \, dx}{b \, h^2} \int_{\frac{h}{2}}^{\frac{h}{2}} \left[ 1 - \left(\frac{\eta}{\frac{h}{2}}\right)^2 \right]^2 d\eta = \frac{6}{5} \beta \int \frac{S}{b \, h} dx \quad . \quad . \quad 5)$$

und bei Unveränderlichkeit von S, b und h innerhalb der Strecke x

$$y'' = \frac{6}{5} \beta \frac{S}{b h} x,$$

d. i.  $\frac{6}{5}$  = 1,2 mal so groß, als wenn die Schubkraft sich gleichmäßig über den Querschnitt verteilt haben würde.

Für den in der Mitte durch P belasteten prismatischen Stab folgt unter Vernachlässigung des Eigengewichtes wegen

$$S = \frac{P}{2},$$
  
$$y'' = \frac{6}{5} \beta \frac{\frac{1}{2}P}{bh} \frac{l}{2} = 0,3 \beta \frac{P}{bh} l \quad . \quad . \quad . \quad . \quad 6)$$

Hiernach die Gesamtdurchbiegung des rechteckigen Stabes in der Mitte

$$y' + y'' = \frac{\alpha}{48} \frac{P l^3}{\frac{1}{12} b h^3} + 0.3 \beta \frac{P}{b h} l$$
$$= \left\{ 0.25 \alpha \left(\frac{l}{h}\right)^2 + 0.3 \beta \right\} \frac{P}{b h} l.$$

Wird die Schubzahl  $\beta$  nach Gleichung 3, § 31, durch

$$\beta = 2 \, \frac{m+1}{m} \, \alpha$$

ersetzt, so folgt

$$y'+y'' = \left\{ 0,25 \left(\frac{l}{h}\right)^2 + 0,6 \frac{m+1}{m} \right\} \alpha \frac{P}{b h} l \quad . \quad . \quad . \quad 7)$$

und mit  $m = \frac{10}{3}$ 

$$y'+y'' = \left\{ 0,25 \left(\frac{l}{h}\right)^2 + 0,78 \right\} \alpha \frac{P}{b h} l \dots \dots N$$

Hierin bestimmt das erste Glied der Klammer den Einfluß des biegenden Momentes auf die Durchbiegung, während das zweite denjenigen der Schubkraft zum Ausdruck bringt. Das Verhältnis von y'' zu y' ist demnach

$$\frac{y''}{y'} = \frac{0.78}{0.25 \left(\frac{l}{h}\right)^2} = \frac{3.12}{\left(\frac{l}{h}\right)^2}.$$

Es beträgt

 für l = 2h 4h 8h 16h 

 0,78:1 0,195:1 0,049:1 0,012:1 

Von praktischer Bedeutung kann die Rücksichtnahme auf y''werden, wenn es sich um die Ermittlung der Dehnungszahl  $\alpha$ aus Biegungsversuchen mit Stäben oder Trägern handelt, deren Höhe erheblich ist, worauf bereits § 22, Ziff. 1, aufmerksam gemacht wurde. Durch die bisher übliche Vernachlässigung von y'' beging man im Falle des rechteckigen Querschnittes bei l = 1000 mm und

$$h = \frac{l}{4} = 250 \text{ mm einen Fehler von } 19,5^{\circ}/_{0},$$

$$h = \frac{l}{8} = 125 \quad \text{,} \quad \text{,} \quad \text{,} \quad \text{,} \quad \text{,} \quad 4,9^{\circ}/_{0},$$

$$h = \frac{l}{16} = 62,5 \quad \text{,} \quad \text{,} \quad \text{,} \quad \text{,} \quad \text{,} \quad 1,2^{\circ}/_{0}.$$

Hieraus folgt, daß die Höhe der Stäbe verhältnismäßig nicht bedeutend sein darf, wenn die Außerachtlassung von y'' zulässig erscheinen soll.

Allgemein wird zur Bestimmung von  $\alpha$  oder  $\frac{1}{\alpha}$  aus Versuchen mit Stäben von rechteckigem Querschnitt die Gleichung 7 zu verwenden sein. Dieselbe liefert

$$\alpha = \frac{bh}{\left\{0,25\left(\frac{l}{h}\right)^2 + 0,6\frac{m+1}{m}\right\}l} \cdot \frac{y'+y''}{P}.$$

Hierbei ist streng genommen m für das untersuchte Material besonders zu bestimmen; doch erweist sich der Einfluß der Abweichung der besonders ermittelten Werte von dem Mittelwert  $\frac{10}{3}$ als so unbedeutend, daß es genügt,  $\alpha$  aus der Gleichung 8, d. h. nach

$$a = \frac{bh}{\left\{0,25\left(\frac{l}{h}\right)^2 + 0,78\right\}l} \frac{y' + y''}{P}$$

zu berechnen. y' + y'' wird zu jedem Werte von P beobachtet und damit für jede Belastung die Dehnungszahl  $\alpha$  bestimmbar.

Ähnlich liegen auch die Verhältnisse bei Körpern, die nicht homogen sind, z. B. wie Holz, Aufbau aus Schichten sehr verschiedener Widerstandsfähigkeit aufweisen. Dann ist das Verhältnis  $\beta:\alpha$ ein anderes als im vorstehenden angenommen. Umfangreiche eigene Versuche über die in einem später erscheinenden Heft der Mitteilungen über Forschungsarbeiten berichtet wird, haben ergeben, daß für solches Material das Verhältnis  $\beta:\alpha$  etwa zwischen 10 und 25 gelegen ist, im Durchschnitt etwa 15 beträgt. So kommt es, daß der Einfluß der Schubkraft auf die Durchbiegung bei Holz viel größer gefunden wird, als aus den oben angegebenen Werten hervorgeht. Soll  $\alpha$  aus Biegungsversuchen ausreichend genau ermittelt werden, ohne daß auf die Schubkraft bei der Berechnung von  $\alpha$  Rücksicht genommen wird, so muß deshalb l:h > 15 gewählt werden.

Ganz bedeutenden Einfluß erlangt unter Umständen die Schubkraft auf die Durchbiegung bei <u>T</u>-Trägern, da hier im Steg die Querschnittsbreite gering, also  $\gamma$  und  $\tau$  groß sein können. (Vgl. Zeitschrift des Vereines deutscher Ingenieure 1888, S. 222 u. f. sowie § 22, Ziff. 1.)

Der Einfluß des in § 46 erörterten Widerstandes, der aus Anlaß des Gleitens der Staboberfläche auf den Stützen (infolge der Durchbiegung) entsteht, ist bei Biegungsversuchen mit erheblich hohen Stäben durch Verwendung von Rollenauflagern nach Möglichkeit herabzumindern, falls weitergehende Genauigkeit der Versuchsergebnisse gefordert wird.

Im Falle des Kreisquerschnitts vom Halbmesser  $r = \frac{d}{2}$  findet sich nach Gleichung 6, § 39, für die Umfangspunkte P' die Schubspannung

$$\tau' = -\frac{4}{3} \frac{S}{\pi r^2} \cos \varphi'.$$

Die Schubspannung  $\tau$  (Fig. 1, § 39), die in dem beliebigen um  $\eta$ 

von der Nullachse und um z von der  $\eta$ -Achse abstehenden Punkte P wirkt, werde in ihre zwei Komponenten zerlegt:

die eine senkrecht zur y-Achse sei  $\tau_y = \tau \cos \varphi$ , die andere senkrecht zur  $\eta$ -Achse  $\tau_\eta = \tau \sin \varphi$ .

Nach § 39 ist die erstere für alle im gleichen Abstande  $\eta$  liegenden Flächenelemente konstant, also

$$\tau_y = \tau' \cos \varphi' = \frac{4}{3} \frac{S}{\pi r^2} \cos^2 \varphi' = \tau_y',$$

während die letztere, von außen nach der Mitte zu bis auf Null abnehmend, in den Umfangspunkten P' die Größe

$$\tau_{\eta}' = \tau' \sin \varphi' = \tau_{y}' \operatorname{tg} \varphi',$$

in dem beliebigen um z von der  $\eta$ -Achse abstehenden Punkte P den Wert

$$\tau_{\eta} = \tau_{y} \operatorname{tg} \varphi = \tau_{y} \frac{z}{y} \operatorname{tg} \varphi'$$

besitzt.

Wegen

$$\tau^{2} = \tau_{y}^{2} + \tau_{\eta}^{2} = \left(1 + \frac{z^{2}}{y^{2}} \operatorname{tg}^{2} \varphi'\right) \tau_{y}^{2}$$

1 ....

ergibt Gleichung 4

$$y'' = \beta \int \frac{dx}{S} \int \tau_y^2 d\eta \int_{-y}^{+y} \left(1 + \frac{z^2}{y^2} \operatorname{tg}^2 \varphi'\right) dz$$
$$= 2\beta \int \frac{dx}{S} \int \left(1 + \frac{1}{3} \operatorname{tg}^2 \varphi'\right) y \tau_y^2 d\eta.$$

Hieraus folgt mit

$$\tau_{y} = \frac{4}{3} \frac{S}{\pi r^{2}} \cos^{2} \varphi', \quad y = r \cos \varphi', \quad d\eta = d \left( r \sin \varphi' \right) = r \cos \varphi' \, d\varphi',$$
$$y'' = \frac{32 \beta}{27 \pi r^{2}} \int S \, dx \int (3 + tg^{2} \varphi') \cos^{6} \varphi' \, d\varphi'$$
$$-\frac{\pi}{2}$$
$$= \frac{32 \beta}{27 \pi r^{2}} \int S \, dx,$$

und, sofern S unveränderlich innerhalb der Strecke x

$$y''=\frac{32}{27}\,\beta\frac{S}{\pi\,r^2}x,$$

d. i.

 $\frac{32}{27}$  = 1,185 mal so groß, als wenn die Schubkraft sich gleichmäßig über den Querschnitt verteilt haben würde.

Für den Fall des auf beide Enden im Abstande l gestützten und in der Mitte mit P belasteten Stabes ist unter Vernachlässigung des Eigengewichts  $S = \frac{P}{2}$  und damit

$$y'' = \frac{32\beta}{27\pi r^3} \int_{0}^{\frac{l}{2}} \frac{P}{2} dx = \frac{32}{27}\beta \frac{P}{\pi r^2} \frac{l}{2}$$
$$= \frac{8}{27}\beta \frac{P}{\pi r^2} l = \frac{8}{27}\beta \frac{P}{\pi r^4} l \dots \dots \dots \dots \dots 9)$$

Hiernach beträgt die Gesamtdurchbiegung

$$y' + y'' = \frac{\alpha}{48} \frac{P l^3}{\frac{\pi}{64} d^4} + \frac{32}{27} \beta \frac{P}{\pi d^2} l$$
$$= \left\{ \frac{4}{3} \alpha \left(\frac{l}{d}\right)^2 + \frac{32}{27} \beta \right\} \frac{P}{\pi d^2} l$$

Mit

$$\beta = 2 \frac{m+1}{m} \alpha$$

wird

$$y' + y'' = \left\{ \frac{1}{3} \left( \frac{l}{d} \right)^2 + \frac{16}{27} \frac{m+1}{m} \right\} \alpha \frac{P}{\frac{\pi}{4} d^2} l, \dots \dots 10$$

und für  $m = \frac{10}{3}$ 

$$y' + y'' = \left\{ \frac{1}{3} \left( \frac{l}{d} \right)^2 + 0.77 \right\} \alpha \frac{P}{\frac{\pi}{4} d^2} l \dots 11$$

Unter Umständen erscheint es vorteilhaft, die nach Maßgabe des Vorstehenden ermittelte Größe y'' allgemein in Vergleich zu stellen mit derjenigen Verschiebung, die sich ergibt, wenn man die (tatsächlich nicht zutreffende) Annahme macht, daß sich die Schubkraft S

C. Bach, Elastizität. 8. Aufl.

gleichmäßig über den Querschnitt f verteile. Diese Unterstellung führt für das Körperelement von der Länge dx zu

$$\gamma dx = \beta \tau dx = \beta \frac{S}{f} dx,$$

während Gleichung 4 für dasselbe liefert

$$\beta \, \frac{\int \int \tau^2 \, d\eta \, dz}{S} \, dx.$$

Demnach das Verhältnis  $\mu$  der letzteren Größe (der tatsächlichen Verschiebung) zu der ersteren (der unterstellten Verrückung)

$$\mu == \frac{f}{S^2} \iint \tau^2 d\eta dz \quad . \quad . \quad . \quad . \quad . \quad . \quad 12)$$

Der Koeffizient  $\mu$ , der für jeden Querschnitt besonders ermittelt werden muß¹), und der als Koeffizient der Querschnittsverschiebung bezeichnet werden kann, ist dann diejenige Zahl, mit der die unter Voraussetzung gleichmäßiger Spannungsverteilung gewonnene Verschiebung multipliziert werden muß, um die tatsächliche zu erhalten. Beispielsweise beträgt derselbe für das Rechteck 1,2, für den Kreis  $1,185^2$ ) — wie wir oben bereits gefunden haben —, für <u>T</u>-Querschnitt steigt er bis auf 3 und darüber.

## § 53. Frage der Einspannung eines Stabes.

Wie in § 18, Ziff. 1, 3 und später, erörtert sowie benützt, liegt dem Begriff der Einspannung eines auf Biegung in Anspruch genommenen Stabes die Auffassung zugrunde, daß an der Einspannstelle die elastische Linie von der ursprünglich geraden Stabachse berührt wird, d. h. daß in diesem Punkte die letztere Tangente an der elastischen Linie ist. Hierdurch wird dieser an der Einspannstelle eine bestimmte Ordinate sowie eine bestimmte Richtung zugewiesen.

Die Einspannung stellt man sich hierbei nicht selten in der Weise vor, daß das eingespannte Ende durch zwei von entgegengesetzten Seiten stützende Auflager, die man als unbeweglich und unzusammendrückbar betrachtet, gehalten wird, wie Fig. 1 zeigt. Als Einspannstelle gilt der Querschnitt A. Zur Bestimmung der beiden in A und C wirkenden Auflagerdrücke denken wir uns in A eine

¹) Ritter hat sich in den "Anwendungen der graphischen Statik", Zürich 1888, Nr. 32 und 36, mit dieser Aufgabe eingehend und erfolgreich befaßt.

²) Die in der Literatur zu findende Angabe  $\mu = 1,11$  beruht auf der Voraussetzung, daß die oben in der Rechnung auftretende Schubspannung  $\tau_{\eta}$  für alle Querschnitte gleich Null sei.

senkrecht abwärts gerichtete Kraft +P und eine zweite vertikal aufwärts wirkende Kraft -P angebracht. Da sich diese zwei Kräfte gegenseitig aufheben, wird hierdurch nichts an dem Gleichgewichtszustande geändert. Wir haben alsdann mit der am freien Ende *B* angreifenden Last P — das Eigengewicht des Stabes werde vernachlässigt — drei Kräfte. +P können wir uns aufgehoben vorstellen unmittelbar durch die Stütze *A*, während — *P* und die Last *P* ein rechtsdrehendes Kräftepaar vom Moment *Pl* bilden, zu dessen Auffangung in *A* und *C* je der Widerlagsdruck  $P_1$  erforderlich ist, der durch die Gleichung

zu

$$P_{1}n = Pl$$
$$P_{1} = P\frac{l}{n}$$

bestimmt wird.



Demnach ergibt sich der Widerlagsdruck in A

$$N_a = P + P \frac{l}{n} = P \left( 1 + \frac{l}{n} \right)$$

und derjenige in C

$$N_c = P \frac{l}{n}$$
.

Je kleiner n im Vergleich zu l, um so bedeutender werden die Kräfte  $N_a$  und  $N_c$  ausfallen. Selbst wenn man sich diese nicht in dem Punkte oder in der Linie A bzw. C zusammengedrängt angreifend denkt, sondern auf kleine Flächen verteilt vorstellt, so werden sie doch eine Zusammendrückung des Materials der Stützen A und C sowie der Oberfläche des Stabes an den Angriffsstellen zur Folge haben. Hiermit aber ist eine Abwärtsbewegung des Stabes bei A und eine — unter sonst gleichen Umständen wegen  $N_a > N_c$  jedoch geringere — Aufwärtsbewegung desselben bei C verknüpft. Der ganze Stab wird sich — abgesehen von der Verschiebung seiner Querschnitte gegeneinander sowie von seiner Biegung — gegen seine ursprüngliche Lage neigen müssen, entsprechend der Drehung um einen zwischen A und C befindlichen Punkt, der infolge  $N_a > N_o$ bei sonst gleichen Verhältnissen näher an C als an A gelegen ist.  $32^*$ 

Wir erkennen, daß die Stützung des Stabes nach Fig. 1 die Auffassung nicht rechtfertigt, die elastische Linie, d. i. die gekrümmte Achse des durch P gebogenen Stabes. habe an der Einspannstelle (d. i. in A) die ursprünglich gerade Stabachse zur Tangente.

Nur dann, wenn die Flächen, gegen die sich der Stab bei A und C legt, so bedeutend sind, daß die Zusammendrückung der Stützen und ihrer Widerlager sowie die örtliche Zusammenpressung



Fig. 3.

Fig. 4.

des Stabes als unerheblich betrachtet werden dürfen. erscheint diese Auffassung mit Annäherung zulässig. Wir gelangen dann zur Konstruktion Fig. 2 mit zwei Auflagerplatten unter A bzw. über C. Dabei ist im Falle strenger Verfolgung der Aufgabe, namentlich für verhältnismäßig große Werte von n zu beachten. daß sich der Stab innerhalb der Strecke CA gleichfalls durchbiegt und seine Achse zwischen beiden Punkten eine wagrechte Tangente erlangt; dann



wird nicht A, sondern deren Berührungspunkt E die von der Rechnung anzunehmende Einspannstelle bestimmen, wie in Fig. 3 angegeben ist. Soll auch auf die Zusammendrückung der Stützen und ihrer Widerlager sowie auf die örtliche Zusammenpressung

des Stabes an den Auflagerflächen Rücksicht genommen werden, so wird die Tangente an der Einspannstelle eine von den in Betracht kommenden Verhältnissen abhängige Neigung besitzen, vgl. Fig. 4.

Genauer würde die Annahme der Einspannung zutreffen im Falle der Fig. 5, wenn der Stab in der Mitte A eine genügend große Auflagerfläche besitzt, so daß die Zusammendrückung daselbst verschwindend wenig beträgt, und wenn er an den beiden Enden gleich starke Belastung erfährt. Dann fällt die Richtung der Tangente im Punkte A der elastischen Linie mit der Richtung der früher geraden Stabachse zusammen. Bei erheblicher Zusammendrückung des Widerlagers und des Stabes würde im Punkte A nur Parallelismus zwischen beiden bestehen.

Wird der Stab, dessen Querschnitt ein Rechteck von der Breite bund der Höhe h sei, nach Maßgabe der Fig. 6 derart befestigt, daß er in unbelastetem Zustande unter Vernachlässigung des Eigengewichtes die obere und untere Wandung, gegen die er sich legt, gerade spannungslos berührt, so liefert die Verlegung der Kraft P in die Mitte zwischen A und C die daselbst senkrecht abwärts wirkende Kraft P

und ein rechtsdrehendes Kräftepaar vom Moment  $P\left(l+\frac{a}{2}\right)$ .



Unter Voraussetzung gleichmäßiger Verteilung von P über die Fläche ab ergibt sich die von P allein herrührende Pressung  $p_1$  zwischem dem Stab und der unteren Wandungsfläche,

$$p_1 = \frac{P}{a \, b} \, .$$

In Fig. 7 ist dieselbe dargestellt.

Das Moment  $P\left(l + \frac{a}{2}\right)$  ruft gegenüber der rechten Hälfte der unteren Wandungsfläche von außen nach innen zu abnehmende Pressungen wach. während die obere Wandungsfläche auf der linken Hälfte aufwärts gerichtete, von der Mitte nach außen wachsende Pressungen erfährt, wie in Fig. 8 dargestellt ist. Mit der Genauig-

keit, mit der die Gleichung 10, § 16, auf den vorliegenden Fall angewendet werden darf, findet sich wegen

$$\sigma_1 = p_2, \qquad M_b = P\left(l + \frac{a}{2}\right), \quad \Theta = \frac{1}{12} b a^3, \quad e_1 = \frac{a}{2}$$

die Pressung

$$p_{2} = \frac{P\left(l + \frac{a}{2}\right)}{\frac{1}{6}ba^{2}} = 6\frac{P}{ab}\left(\frac{l}{a} + \frac{1}{2}\right).$$

Hiermit folgt die resultierende Pressung in der Kante bei A

und an derjenigen bei C

In Fig. 9 ist diese Spannungsverteilung dargestellt. Naturgemäß darf  $p_a$  den für die betreffenden Materialien (Stab; Stütze) noch höchstens für zulässig erachteten Wert der Druckanstrengung nicht überschreiten.

Infolge der örtlichen Zusammenpressung des Stabes wie auch der Zusammendrückung des Materials der Wandung wird sich die Stabachse um den Punkt O drehen, dessen Abstand  $\eta$  von der Mitte der Wandung sich aus der Erwägung ergibt, daß

$$p_2 \frac{\eta}{\frac{a}{2}} = p_1, \quad 6 \frac{P}{ab} \left( \frac{l}{a} + \frac{1}{2} \right) \frac{\eta}{\frac{a}{2}} = \frac{P}{ab}, \quad \eta = \frac{a}{12 \left( \frac{l}{a} + \frac{1}{2} \right)}.$$

Demnach

$$\overline{AO} = \frac{a}{2} + \eta = \frac{a}{2} \left[ 1 + \frac{1}{6\left(\frac{l}{a} + \frac{1}{2}\right)} \right]$$

Wir erkennen, daß auch hier die ursprünglich gerade Stabachse im Einspannungsquerschnitt A die elastische Linie nicht berühren kann.

Würde der Stab im unbelasteten Zustande, d. h. für P=0, die obere und die untere Wandungsfläche nicht spannungslos, sondern

mit einer gewissen Pressung  $p_0$  berühren¹), was z. B. der Fall sein kann, wenn auf dem Balken ein Teil des Gewichts der darüber aufgeführten Mauer lastet, so wird sich die Stabachse auch hier innerhalb der Wandung drehen, jedoch nicht so viel, wie folgende Betrachtung erkennen läßt. Durch die Pressung  $p_0$  findet zunächst eine Zusammenpressung der sich berührenden Oberflächen statt, so daß bei Beginn der Einwirkung der Belastung P die betreffenden Flächen des Stabes und der Wandung sich bereits in weit vollkommenerer Weise berühren als bei ursprünglich spannungsloser Befestigung. infolgedessen der in Frage kommende Einfluß der von P veranlaßten Pressungen kleiner ausfallen muß. Auch die Reibung, die zwischen Wandung und Stab mit innerhalb der Wandung eintretender Biegung (vgl. § 46) wachgerufen wird, wirkt in diesem Sinne, und zwar um so stärker, je größer  $p_0$ .

In ähnlicher Weise wie bei dem nur einerseits gestützten Stabe gelangt man hinsichtlich des beiderseits befestigten Stabes, Fig. 2, § 18, zu der Erkenntnis, daß infolge der Zusammendrückbarkeit des Materials der Wandungen und des Stabes Einspannung in dem strengen Sinne, in dem sie von der Rechnung für ihre Zwecke aufgefaßt wird, auch nicht angenähert vorhanden zu sein pflegt. Recht anschaulich tritt dies vor das Auge, wenn man in einzelnen Fällen, für die ermittelt werden soll, ob der Stab als eingespannt betrachtet werden darf, zunächst unterstellt, der Stab liege beiderseits frei auf, und sodann die Neigung der elastischen Linie über den Stützen bestimmt; hierauf prüft, ob der Stab durch die Befestigung in Wirklichkeit, wenn auch nicht vollständig, so doch ausreichend verhindert ist, diese Neigung anzunehmen. Hierbei wird in der Regel gefunden werden, daß man schon zur Befestigungsweise Fig. 2 mit verhältnismäßig großem Werte von n greifen muß, um die fragliche Neigung genügend zu verhindern. Die Einspannstelle ist alsdann nach Maßgabe des S. 500 u.f. Bemerkten zu bestimmen.

Auch die gegenüber gewissen Teilen der Baukonstruktionen — wie z. B. gegenüber den durch Druck in Anspruch genommenen Brückenstäben, bei denen die Gefahr der Knickung, d. h. der seitlichen Ausbiegung, besteht usw. — oft ohne weiteres gemachte Unterstellung, daß der Stab beiderseits als fest eingespannt zu betrachten sei, erweist sich bei genauer Prüfung ziemlich häufig als unzutreffend.

Am nächsten kommt dem Zustande der vollkommenen Ein-

¹) Bei den Spannungsverbindungen des Maschinenbaues ist eine solche Pressung stets vorhanden (s. des Verfassers Maschinenelemente 1881, S. 39, 1891/92, S. 77, 1908 [10. Aufl.], S. 123, 1920 [12. Aufl.], S. 127).

spannung ein außer an den Enden auch noch in der Mitte so gegelagerter und entsprechend belasteter Träger, daß die ursprünglich gerade Stabachse Tangente an der elastischen Linie im Querschnitt der Mittelstütze ist. Letzterer Querschnitt — bei B, Fig. 10 — kann dann als Einspannstelle betrachtet werden.

Es ist von Interesse und zur Beurteilung der tatsächlichen Inanspruchnahme nicht selten von Wert, zu beachten, daß durch die Nachgiebigkeit an den Befestigungsstellen die Größe der Biegungsanstrengung bis zu einem gewissen Grade der Nachgiebigkeit hin vermindert wird¹), wie folgende Betrach-

tung erkennen läßt.

Der an den Enden befestigte und auf der Längeneinheit mit pbelastete Stab, Fig. 11, ist bei 8 Ziff 3 beansprucht:

vollkommener Einspannung nach §18, Ziff. 3 beansprucht:

an der Befestigungsstelle A (rechts) durch das rechtsdrehende Moment  $M_a = \frac{pl^2}{12}$  und durch die senkrechte Kraft  $\frac{pl}{2}$  (vgl. auch Fig. 12),

in der Mitte C durch das Moment  $M_c = \frac{p l^2}{24}$ .

Gibt die Befestigungsstelle nach, so daß das Moment hier auf einen Wert  $M_a < \frac{pl^2}{12}$  sinkt, dann findet sich unter Beachtung von

$$e \xrightarrow{\ell} \frac{1}{2} \xrightarrow{\ell} \frac{\pi \ell}{2}$$

Fig. 12 das Moment in der Stabmitte zu

$$\mathbf{M}_{c} = \mathbf{M}_{a} - \frac{pl}{2} \frac{l}{2} + \frac{pl}{2} \frac{l}{4} = \mathbf{M}_{a} - \frac{pl^{2}}{8},$$

¹) S. des Verfassers Arbeit: Über die Formänderungen und die Anstrengung flacher Böden in der Zeitschrift des Vereines deutscher Ingenieure 1897, S. 1223 und 1224, oder auch Versuche über die Widerstandsfähigkeit von Kesselwandungen, Heft 3. worin  $M_a$  zwischen  $\frac{pl^2}{12}$  (Stab vollkommen eingespannt) und 0 (Stab frei aufliegend) schwanken kann; somit beispielsweise für

$$\begin{split} M_{a} &= \frac{p\,l^{2}}{12} - \frac{p\,l^{2}}{15} - \frac{p\,l^{2}}{16} - \frac{p\,l^{2}}{24} - 0 \\ M_{c} &= \frac{p\,l^{2}}{24} - \frac{7\,pl^{2}}{120} - \frac{p\,l^{2}}{16} - \frac{p\,l^{2}}{12} - \frac{p\,l^{2}}{8} \,. \end{split}$$

Wie ersichtlich, nimmt  $M_a$  ab. und der Wert von  $M_c$  wächst, bis für  $M_a = \frac{pl^2}{16}$  beide gleich geworden sind; d.h. insbesondere für einen Stab mit rechteckigem Querschnitt: gibt die Befestigung an den Stabenden gegenüber dem Zustande vollkommener Einspannung so weit nach, daß hier das biegende Moment von  $\frac{pl^2}{12}$  auf  $\frac{pl^2}{16}$  sinkt, sich also im Verhältnis von 16:12=4:3 vermindert, so verringert sich auch die größte Biegungsinanspruchnahme des Stabes in dem gleichen Verhältnis, oder die Tragfähigkeit erhöht sich im Verhältnis von  $3:4^{1}$ ).

Ist die Nachgiebigkeit der Befestigung eine weitergehende, so wird die größte Beanspruchung, die nunmehr in C statthat, wieder wachsen, bis das Moment den Wert  $\frac{p l^2}{8}$  erreicht hat für  $M_a = 0$ .

Für  $M_a = M_c = \frac{p l^2}{16}$  liegt der Wendepunkt um 0,1465 l von dem

Stabende entfernt gegen 0.2113 *l* bei  $M_a = \frac{pl^2}{12}$ .

Verfasser hat in neuester Zeit Versuche mit Eisenbetonbalken auszuführen gehabt, durch welche festgestellt werden sollte, ob diese



Fig. 13.

Verbundkörper bei Einspannung derselben Gesetzmäßigkeit folgen, wie homogene Balken. Zu dem Zwecke wurden nach Fig. 13, 14 in BB unterstützte Balken im mittleren Teile durch die daselbst ange-

¹) Ist der Querschnitt des prismatischen Stabes in bezug auf die zur Ebene der belastenden Kräfte senkrecht stehende Hauptachse unsymmetrisch, so muß beachtet werden, daß die am stärksten gezogene Faser an der Befestigungsstelle A oben, in der Stabmitte C unten liegt.

gebenen 6 Kräfte gleich P belastet und sodann jeweils die Belastung P, an den Enden so weit gesteigert, bis der Querschnitt über den Widerlagern BB wieder senkrecht stand, also die elastische Linie daselbst eine wagrechte Tangente besitzt, was sich mittels empfindlicher Wasserwage recht gut ausführen ließ. Durch  $P_{\bullet} \cdot a$  ist alsdann das Moment bestimmt, welches in dem Querschnitt über dem Auflager wirken mußte, um ihn in seiner ursprünglichen Lage zu erhalten.

Wird die so durch den Versuch ermittelte Kraft  $P_e$  verglichen mit demjenigen Wert, der sich aus der Rechnung für  $P_e$  ergibt, die



Fig. 14.

Homogenität des Körpers vorausgesetzt, so ist die Unterlage für die gesuchte Feststellung gewonnen.

Zu der Bedingungsgleichung, aus welcher die Belastung P. rechnerisch bestimmt werden kann, gelangt man am raschesten auf folgendem Wege.

Es bezeichne unter Bezugnahme auf Fig. 14, in welcher A die Mitte des Balkens ist

- $\alpha$  die Dehnungszahl.
- $\Theta$  das Trägheitsmoment des Balkenquerschnitts, das als gleich über die ganze Balkenlänge vorausgesetzt wird.

Der Winkel  $\beta$ , um welchen die elastische Linie der Strecke ABim Punkte B unter Einwirkung der von dem Auflagerdruck  $P_1 + P_2 + P_3$ herrührenden Kraft allein geneigt sein würde (vgl. die gestrichelte Linie) beträgt nach Gl. 2

$$\frac{1}{2} \cdot \frac{\alpha}{\Theta} \cdot \left( P_1 + P_2 + P_3 \right) l^2.$$

Durch die Wirkung der einzelnen Kräfte  $P_1$ ,  $P_2$  und  $P_3$  wird der Winkel vermindert um

$$\frac{1}{2} \cdot \frac{\alpha}{\Theta} \cdot (P_1 x_1^2 + P_2 x_2^2 + P_3 x_3^2)$$

und durch das von  $P_e$  herrührende Moment  $P_e \cdot a$ , das für alle Querschnitte der Strecke AB unveränderlich ist und deshalb die elastische Linie als Kreisbogen vom Krümmungshalbmesser  $\frac{\Theta}{\alpha \cdot P_e \cdot a}$  liefert, um den weiteren Betrag

$$\frac{\alpha}{\Theta} \cdot P_e \cdot \alpha \cdot l.$$

Somit, da  $P_e$  so groß sein soll, daß die elastische Linie bei Beine wagrechte Tangente besitzt

$$\begin{aligned} \frac{1}{2} \cdot \frac{\alpha}{\Theta} \left( P_1 + P_2 + P_3 \right) l^2 &- \frac{1}{2} \frac{\alpha}{\Theta} \left( P_1 x_1^2 + P_2 x_2^2 + P_3 x_3^2 \right) \\ &- \frac{\alpha}{\Theta} P_e \cdot a \cdot l = 0, \end{aligned}$$

woraus

$$\begin{split} P_e &= \frac{1}{2} \cdot \frac{(P_1 + P_2 + P_3)l^2 - (P_1 x_1^2 + P_2 x_2^2 + P_3 x_3^2)}{a \cdot l} \quad . \quad . \quad (1) \\ \text{Mit } a &= 100 \text{ cm}, \quad l = 150 \text{ cm}, \quad P_1 = P_2 = P_3 = \frac{P}{6}, \\ x_1 &= 25 \text{ cm}, \quad x_2 = 75 \text{ cm}, \quad x_3 = 125 \text{ cm} \\ \text{ibt sich} \end{split}$$

erg

$$P_e = 0,2535 \cdot P \quad \dots \quad \dots \quad \dots \quad \dots \quad (2)$$

Die Versuche über die an anderer Stelle ausführlich berichtet werden wird, ergaben sehr befriedigende Übereinstimmung zwischen dem Versuchs- und dem Rechnungswert von  $P_e$ .

### Fünfter Abschnitt.

# Stabförmige Körper mit gekrümmter Mittellinie.

I. Die Mittellinie ist eine einfach gekrümmte Kurve, ihre Ebene Ort der einen Hauptachse sämtlicher Stabquerschnitte sowie der Richtungslinien der äußeren Kräfte.

Die den Stab belastenden Kräfte ergeben dann für einen beliebigen Querschnitt im allgemeinen

- 1. eine im Schwerpunkte des letzteren angreifende Kraft R, die zerlegt werden kann
  - a) in eine tangential zur Mittellinie, also senkrecht zum Querschnitt gerichtete Kraft P (Normalkraft), und
  - b) in eine in den Querschnitt fallende Kraft S (Schubkraft),
- 2. ein auf Biegung wirkendes Kräftepaar vom Moment  $M_b$ .

#### § 54. Dehnung. Spannung. Krümmungshalbmesser.

In dem gekrümmten stabförmigen Körper denken wir uns zwei unendlich nahe gelegene Querschnitte  $C_1O_1C_1$  und  $C_2O_2C_2$ , Fig. 1. Dieselben begrenzen das Stabelement  $C_1O_1C_1CC_2O_2C_2C$  und schneiden sich in der Krümmungsachse M. Der folgenden Betrachtung unterwerfen wir nur die Hälfte  $COCC_1O_1C_1$  und fassen hierbei die Bogenelemente  $CC_1$ ,  $OO_1$  und  $CC_1$  als gerade Linien auf, wie durch Fig. 2, S. 511, in größerem Maßstabe dargestellt ist.

Es bezeichne nun unter Bezugnahme auf Fig. 2:

- f den Querschnitt COC allgemein und dessen Größe im besonderen, f₁ den Querschnitt  $C_1O_1C_1$  allgemein und dessen Größe im besonderen,
- O den Schwerpunkt von f,
- $O_1$  denjenigen von  $f_1$ ,
- $r = MO = \overline{MO_1}$  den Krümmungshalbmesser im Punkte O der Mittellinie vor Eintritt der Formänderung,

- $d\varphi = \not\subset OMO_1$  den Winkel, den die Ebenen der beiden Querschnitte f und  $f_1$  vor der Formänderung mit einander einschließen, oder den Winkel, unter dem die beiden Tangenten an der Mittellinie in den Punkten O und  $O_1$  (vgl. Fig. 1) sich schneiden,
- $ds = rd\varphi$  die Länge des Bogenelementes  $\overline{OO_1}$  der Mittellinie im ursprünglichen Zustande,
- $\overline{PP_1} = ds_1 = (r+\eta) d\varphi = rd\varphi + \eta d\varphi = ds + \eta d\varphi$ die Entfernung zweier in den Querschnitten f und  $f_1$  gleich gelegenen, um  $\eta$ von der Mittellinie abstehenden Punkte, bevor die äußeren Kräfte auf den Stab wirken; wobei der Abstand  $\eta$  als positiv gilt, wenn er von O aus in der Richtung MO zu messen ist, negativ dagegen, wenn er in der Richtung OM, d. h. nach der Krümmungsachse hin, liegt,
- $e_1$  den größten positiven Wert von  $\eta$ ,
- $e_2$  den größten negativen Wert von  $\eta$ ,
- $e = e_1 = e_2$ , falls der Querschnitt so beschaffen ist, daß beide Abstände gleich groß sind,
- $\Theta = \int \eta^2 df$  das Trägheitsmoment des Querschnitts fin bezug auf die in O sich projizierende, also parallel zur Krümmungsachse laufende Hauptachse.



Ferner

- P die Normalkraft im Punkte O des Querschnitts f, positiv oder negativ, je nachdem sie ziehend oder drückend tätig ist,
- $M_b$  das für den Querschnitt f sich ergebende, auf Biegung wirkende Moment, positiv, wenn es eine Vermehrung der Krümmung, also eine Verkleinerung des Krümmungshalbmessers herbeiführt, negativ, wenn das Entgegengesetzte der Fall ist,
- $\sigma = \frac{\varepsilon}{\alpha}$  (§ 2) die durch *P* und *M_b* im Abstande  $\eta$  (von der in *O* sich projizierenden Hauptachse des Querschnittes *f*) hervorgerufene Spannung, entsprechend der daselbst eingetretenen Dehnung  $\varepsilon$ , wobei vorausgesetzt werde, daß Proportionalität zwischen Dehnungen und Spannungen besteht¹),

¹) Diese Voraussetzung schließt nicht nur in sich, daß dem Material an und für sich diese Proportionalität eigen ist, sondern daß auch die Fasern, aus denen der Körper bestehend gedacht werden kann, einen Einfluß senkrecht zueinander nicht ausüben (vgl. die Voraussetzung in § 20 unter Ziff. 2). In Wirklichkeit trifft das nicht zu; doch würde eine strenge Verfolgung dieser Einwirkung — ganz abgesehen von dem Weniger an Anschaulichkeit (vgl. Vorwort zur

510

- $k_z$ , k,  $k_b$  die zulässige Anstrengung des Materials gegenüber Zug, bzw. Druck, bzw. Biegung,
- $\varepsilon_0$  die Dehnung der Mittellinie im Punkte O, d. i.  $\frac{\Delta ds}{ds}$ , sofern sich das Bogenelement ds unter Einwirkung der äußeren Kräfte um  $\Delta ds$  verlängert,
- $\omega$  die verhältnismäßige Änderung des Winkels  $d\varphi$  der beiden Querschnitte, d. i.  $\frac{\Delta d\varphi}{d\varphi}$ , wenn der Winkel  $d\varphi$  infolge der Formänderung in  $d\varphi + \Delta d\varphi$  übergeht, also um  $\Delta d\varphi$  sich ändert,
- $\varrho$  den Krümmungshalbmesser im Punkte O der Mittellinie nach Eintritt der Formänderung.

### 1. Anstrengung des Materials.

#### Die Normalkraft P wirke allein.

Hätte der Stab eine gerade Achse, so wären die beiden Querschnitte f und  $f_1$  parallel; die Normalkraft P würde bei gleichmäßiger Verteilung über den Querschnitt sämtliche dazwischen gelegenen Fasern wegen der Gleichheit ihrer Länge um gleichviel dehnen: es ändert sich nur die Entfernung der beiden Querschnitte, nicht aber ihre Neigung zueinander, dieselbe bleibt Null.

Anders verhält sich das Körperelement, Fig. 2. Hier sind die Fasern zwischen den beiden Querschnitten ungleich groß, und zwar um so länger, je weiter sie von der Krümmungsachse abstehen. Bei gleichmäßiger Verteilung von P über den Querschnitt muß die Spannung  $\sigma$  in allen Querschnittspunkten gleich groß sein; infolgedessen müssen sich die längeren Fasern, absolut genommen, mehr dehnen als die kürzeren, und zwar genau in dem Verhältnis, in dem sie größer sind, d. h. die Verlängerungen müssen sich verhalten, wie die Abstände der Fasern von der Krümmungsachse M. Daraus folgt, daß die Ebene des Querschnitts, von dem angenommen wird, daß er eben bleibt¹), in ihrer neuen Lage  $C_0C_0$  die Krümmungsachse Mschneidet, wie in Fig. 2 angedeutet ist. Wir erkennen: unter

ersten Auflage) — für die verschiedenen in der Technik auftretenden Querschnittsformen zu einem Zeitaufwand führen, der in der Regel in keinem Verhältnis zu dem Wert des Ergebnisses der umständlichen Rechnung steht. Die bis jetzt in dieser Richtung vorliegenden Rechnungen erstrecken sich nur auf den rechteckigen Querschnitt, für den überdies — wenigstens zum Teil — noch die eine Abmessung als klein vorausgesetzt wird und unter einer gewissen Vernachlässigung auf den trapezförmigen Querschnitt. Sie werden beurteilt von Th. v. Karmán in der Enzyklopädie der mathematischen Wissenschaften, Bd. IV. 2. II, Heft 3, S. 337 bis 341.

¹) In bezug auf diese Annahme vgl. § 56, Ziff. 2.

alleiniger Einwirkung der über den Querschnitt sich gleichmäßig verteilenden Normalkraft *P* ändert sich die Neigung desselben derart, daß seine Ebene die bisherige Krümmungsachse schneidet, sich also um diese dreht, daß somit der Krümmungshalbmesser derselbe bleibt.



Normalkraft P und biegendes Kräftepaar vom Moment  $M_b$ sind vorhanden.

Wie soeben erörtert, führt die Normalkraft P den Querschnitt  $f_1$ in die Lage  $C_0C_0$ , Fig. 3, über. Beginnt jetzt das Moment  $M_b$  zu wirken, so wird der Querschnitt  $f_1$  aus der Lage  $C_0C_0$  in eine andere, etwa  $C_1'O_1'C_1'$ , gelangen und die Krümmungsachse von M nach M'rücken, entsprechend einer Verkürzung des Krümmungshalbmessers von r auf  $\varrho$  sowie einer Vergrößerung des Querschnittswinkels  $d\varphi$ auf  $d\varphi + \Delta d\varphi$ . Hierbei erfährt das Bogenelement  $\overline{OO_1} = ds$  der Mittellinie die gesamte Dehnung

$$\varepsilon_0 = \frac{\Delta ds}{ds} = \frac{\overline{O_1 O_1'}}{\overline{OO_1}},$$

während diejenige der im Abstande  $\eta$  gelegenen Faserschicht  $PP_1$ aus der Verlängerung  $\overline{P_1P_1'}$  zu bestimmen ist. Wird durch  $O_1'$  die Gerade  $O_1'N \parallel zu \ C_1C_1$  gezogen, so findet sich  $\overline{P_1P_1'} = \overline{P_1N} + \overline{NP_1'}$ =  $\overline{O_1O_1'} + \overline{NP_1'} = \varepsilon_0 ds + \eta$  arc  $NO_1'P_1' = \varepsilon_0 r d\varphi + \eta \Delta d\varphi$ ; hiermit die Dehnung  $\varepsilon$  im Abstande  $\eta$ 

$$\varepsilon = \frac{P_1 \overline{P_1}'}{\overline{PP_1}} = \frac{\varepsilon_0 r d\varphi + \eta \Delta d\varphi}{(r+\eta) d\varphi} = \frac{\varepsilon_0 + \frac{\eta}{r} \frac{\Delta u\varphi}{d\varphi}}{1 + \frac{\eta}{r}},$$

unter Beachtung, daß

und die zugehörige Spannung, sofern Kräfte senkrecht zur Stabachse nicht einwirken,

Die im Innern des Stabes wachgerufenen Kräfte müssen sich mit den äußeren im Gleichgewicht befinden, d. h.  $(\S 16, Gleichung 3 und Gleichung 6)$ 

$$\int \sigma df = P = \int \frac{1}{\alpha} \left[ \epsilon_0 + (\omega - \epsilon_0) \frac{\eta}{r + \eta} \right] d/, \quad \dots \quad 3)$$

$$\int \sigma \, df \cdot \eta = M_b = \int \frac{1}{\alpha} \eta \left[ \epsilon_0 + (\omega - \epsilon_0) \frac{\eta}{r + \eta} \right] df \quad . \quad . \quad 4)$$

Unter Voraussetzung, daß die Dehnungszahl  $\alpha$  konstant ist, folgt

$$P = \frac{1}{\alpha} \left[ \epsilon_0 \int df + (\omega - \epsilon_0) \int \frac{\eta}{r + \eta} df \right],$$
$$M_b = \frac{1}{\alpha} \left[ \epsilon_0 \int \eta df + (\omega - \epsilon_0) \int \frac{\eta^2}{r + \eta} df \right].$$

Mit

$$\int df = f, \qquad \int \eta \, df = 0$$

und der Bezeichnung

$$\frac{\eta}{r+\eta}df = -\varkappa f, \quad \ldots \quad \ldots \quad \ldots \quad 5)$$

$$\int \frac{\eta^2}{r+\eta} df = \int \left(\eta - r \frac{\eta}{r+\eta}\right) df = -r \int \frac{\eta}{r+\eta} df = \varkappa fr \quad . \quad 6)$$

wird

$$P = \frac{f}{\alpha} \left[ \epsilon_0 - (\omega - \epsilon_0) \varkappa \right],$$
$$M_b = \frac{\varkappa f r}{\alpha} (\omega - \epsilon_0),$$

woraus

$$\omega - \varepsilon_{0} = \alpha \frac{M_{b}}{\varkappa f r}$$

$$\varepsilon_{0} = \alpha \frac{P}{f} + (\omega - \varepsilon_{0}) \varkappa = \frac{\alpha}{f} \left( P + \frac{M_{b}}{r} \right)$$

$$\omega = \varepsilon_{0} + \alpha \frac{M_{b}}{\varkappa f r} = \frac{\alpha}{f} \left( P + \frac{M_{b}}{r} + \frac{M_{b}}{\varkappa r} \right).$$

Hiermit liefert Gleichung 2

$$\sigma = \frac{P}{f} + \frac{M_b}{fr} + \frac{M_b}{\varkappa fr} \frac{\eta}{r + \eta} \quad . \quad . \quad . \quad . \quad 8)$$

Handelt es sich um ein Material, für das die zulässige Anstrengung gegenüber Biegung, d. h.  $k_b$ , erheblich abweicht von derjenigen gegenüber Zug  $k_z$ , so ist das in § 45, Ziff. 1, hierüber Bemerkte zu beachten. Die hier in Betracht kommenden Verhältnisse sind allerdings weniger einfach und erscheinen deshalb der weiteren Klarstellung durch Versuche dringend bedürftig. (Vgl. in dieser Hinsicht die Versuchsergebnisse in § 56.)

Wenn

$$P = 0$$

so wird

$$\sigma = \frac{M_b}{fr} + \frac{M_b}{\varkappa fr} \frac{\eta}{r + \eta}$$

und für  $\eta = 0$ 

$$\sigma = \frac{M_b}{fr}.$$

Bei dem geraden Stabe ergibt sich nach Gleichung 9, § 16, für  $\eta = 0$ 

 $\sigma == 0,$ 

d. h. während bei dem nur durch  $M_b$  belasteten Stabe mit gerader Achse die Normalspannungen in der zur Ebene des Kräftepaares senkrechten Hauptachse des Querschnittes Null sind, herrscht bei dem gekrümmten, auch nur durch  $M_b$  belasteten Stabe in dieser Linie die Spannung  $M_b$ : fr. Die bezeichnete Hauptachse ist demnach hier nicht Nullachse.

C. Bach, Elastizität. 8. Auf.

Stabförmige Körper mit gekrümmter Mittellinie.

Der Grund für dieses abweichende Verhalten liegt einfach darin, daß bei dem gekrümmten Stab die zwischen zwei Querschnitten gelegenen Fasern verschiedene Längen besitzen, während bei dem geraden Stab Gleichheit besteht. (Vgl. das zu Anfang von Ziff. 1 Erörterte.)

Entsteht  $M_b$  dadurch, daß eine Last Q senkrecht zu dem in Betracht gezogenen Querschnitt im Abstande r von dem Schwerpunkt desselben ziehend angreift, also durch den Krümmungsmittelpunkt der Stabachse geht, dabei auf Verminderung der Krümmung hinwirkt, so ist wegen

$$P = Q, \qquad M_b = -Qr$$
nach Gleichung 8
$$\sigma = \frac{Q}{f} - \frac{Qr}{fr} - \frac{Qr}{\varkappa fr} \frac{\eta}{r+\eta} = -\frac{Q}{\varkappa f} \frac{\eta}{r+\eta} = \frac{M_b}{\varkappa fr} \frac{\eta}{r+\eta} \qquad 9)$$

Für 
$$\eta = 0$$
 ergibt sich hieraus  $\sigma = 0$ , obgleich eine Normalkraft vorhanden ist.

Nach Gleichung 6 ist

$$\int \frac{\eta^2}{r+\eta} df = \varkappa fr.$$

Folglich auch

$$\int_{1+\frac{\eta}{r}}^{\frac{\eta^2}{q}} df = \varkappa fr^2.$$

Wenn nun r sehr groß ist gegenüber  $\eta$ , d. h. gegenüber der Abmessung des Querschnittes in Richtung von r, infolgedessen  $\frac{\eta}{r}$ gegen 1 vernachlässigt werden darf, so geht dieser Ausdruck — streng genommen nur für  $r = \infty$  — über in

$$\times fr^2 = \int \frac{\eta^2}{1+\frac{\eta}{r}} df = \sim \int \eta^2 df = \Theta^1 ),$$

woraus

514

$$\varkappa = \frac{\Theta}{fr^2} \quad \dots \quad 10)^{1})$$

¹) Zur Beurteilung, für welche Werte von r — im Verhältnis zu den Querschnittsabmessungen in Richtung von r — diese Annäherungsgleichung benutzt werden kann, sei folgendes bemerkt.

Es ist für den rechteckigen Querschnitt (vgl. Ziff. 2, a) nach Gleichung 13, § 54, da  $\Theta = \frac{1}{12} b h^3 = \frac{2}{3} b e^3$ , Die Einsetzung dieses Wertes in Gleichung 8 führt zu

$$\frac{x fr^2}{\Theta} = \left[\frac{1}{3} \left(\frac{e}{r}\right)^2 + \frac{1}{5} \left(\frac{e}{r}\right)^4 + \frac{1}{7} \left(\frac{e}{r}\right)^6 + \dots\right] \cdot 3 \left(\frac{r}{e}\right)^2$$
$$= 1 + \frac{3}{5} \left(\frac{e}{r}\right)^2 + \frac{3}{7} \left(\frac{e}{r}\right)^4 + \dots$$
$$= 1 + \frac{3}{5} \left(\frac{h}{2r}\right)^2 + \frac{3}{7} \left(\frac{h}{2r}\right)^4 + \dots$$

 $\mathbf{somit}$ 

für

$$r = h$$
 2 h 3 h 4 h  
 $\frac{\kappa f r^2}{\Theta} = 1.18$  1.04 1.02 1.01

Im Falle kreisförmigen oder elliptischen Querschnitts (vgl. Ziff. 2, b) ergibt sich nach Gleichung 16, § 54,

$$\frac{\varkappa fr^2}{\Theta} = 1 + \frac{1}{2} \left(\frac{e}{r}\right)^2 + \frac{5}{16} \left(\frac{e}{r}\right)^4 + \dots,$$

folglich

für 
$$r = 2e$$
  $4e$   $6e$   $8e$   
 $\frac{\varkappa fr^2}{\Theta} = 1,15$   $1,03$   $1,02$   $1,01$ .

Hiernach liefert die Gleichung 8a gegenüber der Gleichung 8 das dritte Glied der rechten Seite zu groß, und zwar beispielsweise bei elliptischem Querschnitt nach Maßgabe der Zahlen 1,15, 1,03 usw.

Wird in diesem Gliede noch der Quotient  $\eta:r$  vernachlässigt, also dasselbe  $\frac{M_{\delta}}{\Theta}\eta$  gesetzt, wie es sich für gerade stabförmige Körper ergibt, so kann dagegen sein Wert erheblich zu klein ausfallen, wie die Zahlen der nachstehenden Betrachtung erkennen lassen.

Für den kreisförmigen Querschnit A des ringförmigen Körpers Fig. 4 beträgt  $M_{b} = -Qr$  und somit der Wert des dritten Gliedes in Gleichung 8 mit  $\eta = -e$ (d. i. für den innersten Punkt)

$$-\frac{Qr-e}{\Theta}\frac{\partial}{1-\frac{e}{r}}\frac{\partial}{xfr^{2}}=\frac{Qr}{\Theta}\frac{e}{1-\frac{e}{r}}\frac{\partial}{xfr^{2}},$$





welche Größe

Stabförmige Körper mit gekrümmter Mittellinie.

und ergibt mit  $r = \infty$ 

$$\sigma = \frac{P}{f} + \frac{M_b}{\Theta} \eta,$$

d. i. die für gerade Stäbe gültige Gleichung 1, § 45.

Soll die Anstrengung durch die Schubkraft S, die sich nach dem oben unmittelbar zu I unter Ziff. 1 b, S. 508, Bemerkten ergibt, ermittelt werden, so kann das mit Annäherung derart geschehen, wie in § 39 beim geraden stabförmigen Körper; nur ist dabei zu berücksichtigen, daß das Gesetz, nach dem sich hier  $\sigma$  ändert, ein anderes ist.

Grashof (Theorie der Elastizität und Festigkeit, Berlin 1878, S. 283 u. f.) gelangt auf diesem Wege zu der Gleichung

$$\tau = \frac{S}{2y \cdot \varkappa f(r \pm \eta)^2 \cos \varphi'} \int_{\eta}^{\varepsilon} \eta df = \frac{SM_{\eta}}{2y \varkappa f(r \pm \eta)^2 \cos \varphi'}, \quad . \quad 11)$$

die unter Bezugnahme auf Fig. 1, § 39, an die Stelle der Beziehung 2, § 39,

$$\tau = \frac{SM_{\eta}}{2y\Theta\cos\varphi'}$$

tritt.

2. Werte von 
$$\varkappa = -\frac{1}{f} \int \frac{\eta}{r+\eta} df$$

a) Rechteckiger Querschnitt.

Mit b als Breite und h als Höhe, so daß

 $df = b d\eta$ , f = bh.

mehr, als der Ausdruck  $\frac{M_b}{\Theta}\eta$ , gültig für gerade stabförmige Körper, mit dem größten Werte von  $\eta$  liefert.

Die resultierende Spannung o würde unter Zugrundelegung dieser Zahlen betragen

4 e bei r = 2eir gekrümmte stab-förmige Körper  $\sigma = 8 \cdot 1.74 \frac{Q}{f}$   $16 \cdot 1.29 \frac{Q}{f}$   $24 \cdot 1.18 \frac{Q}{f}$   $32 \cdot 1.13 \frac{Q}{f}$  $= 13.92 \frac{Q}{f}$ ,  $= 20.64 \frac{Q}{f}$ ,  $= 28.32 \frac{Q}{f}$ ,  $= 36.16 \frac{Q}{f}$ . für gekrümmte stab-Für gerade stabförmige Körper

wird sein

$$\sigma = \frac{Q}{f} + \frac{Qr}{\Theta}e = 9,0 \frac{Q}{f}, \qquad 17 \frac{Q}{f}, \qquad 25 \frac{Q}{f}, \qquad 33 \frac{Q}{f}.$$

ergibt sich

Wird

$$\frac{h}{2} = e$$

gesetzt, so folgt

$$ln\frac{r+\frac{h}{2}}{r-\frac{h}{2}} = ln\frac{1+\frac{e}{r}}{1-\frac{e}{r}},$$

und unter Voraussetzung, daß r > e

$$ln\frac{1+\frac{e}{r}}{1-\frac{e}{r}} = 2\left[\frac{e}{r} + \frac{1}{3}\left(\frac{e}{r}\right)^3 + \frac{1}{5}\left(\frac{e}{r}\right)^5 + \frac{1}{7}\left(\frac{e}{r}\right)^7 + \dots\right],$$

womit

 $\varkappa$  hängt hiernach nur von dem Verhältnis e:r ab. Über die Größe bei verschiedenen Werten dieses Verhältnisses gibt die Zahlentafel S. 519 Auskunft.

Die Spannungen an der äußersten und an der innersten Faserschicht werden nach Gleichung 8, die mit  $\eta = \pm e$  geschrieben werden kann,

$$\sigma = \frac{P}{f} + \frac{M_b}{fr} + \frac{M_b}{fr} \left(\frac{1}{\varkappa} \frac{\pm e}{r \pm e}\right) = \frac{P}{f} + \frac{M_b}{fr} + \frac{M_b}{fr} \left(\frac{1}{\varkappa} \frac{\pm \frac{e}{r}}{1 \pm \frac{e}{r}}\right)$$
$$= \frac{P}{f} + \frac{M_b}{fr} \left(1 \pm \frac{1}{\varkappa} \frac{\pm \frac{e}{r}}{1 \pm \frac{e}{r}}\right), \quad \dots \quad 14)$$

gleichfalls durch das Verhältnis  $\frac{e}{r}$  bedingt, weshalb in die Zahlen-



Diese Werte wie auch die Größen von  $\varkappa$  können überdies aus der Zeichnung Fig. 5 entnommen werden, so daß sich die Ermittelung von  $\sigma$  aus Gleichung 14 sehr einfach gestaltet.

 $\mathbf{518}$ 

Um das Verhältnis der Krümmung des Stabes an der Innenfläche, bestimmt durch  $\varrho = r - e$ , zu der Höhe des Querschnittes für die in Fig. 5 angenommenen Verhältnisse erkennen zu lassen, ist daselbst auch die Linie  $(r - e): 2e = \varrho: h$  eingezeichnet.

e r ==	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,95
× ==	0,003354	0,01366	0,0317	0,0591	0,0986	0,1552	0,2390	0,3733	0,6358	0,92819
$\frac{1}{\varkappa} \cdot \frac{e:r}{1+e:r} =$	27,1	12,2	7,28	4,83	3,38	2,42	1,72	1,19	0,745	0,525
$\frac{1}{z} \frac{-e:r}{1-e:r} =$	33,1	18,3	13,5	11,3	10,1	9,7	9,8	10,7	14,2	20,5

## b) Kreisquerschnitt. Elliptischer Querschnitt.

Zum Zwecke der Entwicklung in eine unendliche Reihe werde gesetzt

Für den Kreis wird infolge der Symmetrie

$$\int \eta^3 df = 0 \qquad \qquad \int \eta^5 df = 0$$

usf.

Ferner gilt, Fig. 4,  $\S$  17, mit *e* als Halbmesser:

$$f = \pi e^2, \qquad \eta = e \sin \varphi, \qquad df = z \, d\eta = 2 \, e^2 \cos^2 \varphi \, d\varphi,$$
$$\int \eta^2 \, df = \frac{\pi}{4} \, e^4.$$

Damit findet sich

$$\int \eta^{4} df = 4 e^{\theta} \int_{0}^{\frac{\pi}{2}} \sin^{4} \varphi \cos^{2} \varphi \, d\varphi = \frac{\pi}{8} e^{\theta},$$
$$\int \eta^{\theta} df = 4 e^{\theta} \int_{0}^{\frac{\pi}{2}} \sin^{\theta} \varphi \cos^{2} \varphi \, d\varphi = \frac{5}{64} \pi e^{\theta}$$

so daß

Derselbe Wert ergibt sich für den elliptischen Querschnitt, sofern *e* diejenige Halbachse der Ellipse ist, die in die Ebene der Mittellinie des Stabes fällt.

Wird hier die gleiche Betrachtung, wie sie unter a) am Schlusse für das Rechteck enthalten ist, angestellt, so ergeben sich die folgende Zahlentafel und die Eintragungen in Fig. 5 für Kreis und Ellipse.

$\frac{e}{r} =$	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,95
	0,002512 <b>6</b>	0,010205	0,0236	0,0436	0,0718	0,1111	0,1668	0,2500	0,3929	0,5241
$\frac{1}{\varkappa} \frac{e:r}{1+e:r} =$	36,2	16,3	9,8	6,55	4,64	3,38	2,47	1,78	1,21	0,930
$\frac{1}{x} \cdot \frac{-e:r}{1-e:r} =$	44,2	24,5	18,2	15,3	13,9	13,5	14,0	16,0	22,9	36,3

c) Trapezförmiger Querschnitt mit Symmetrielinie.

Aus Fig. 6 folgt unmittelbar



## § 54. Dehnung. Spannung. Krümmungshalbmesser.

Wegen

$$\varkappa = -\frac{1}{f} \int \left(1 - \frac{r}{r+\eta}\right) df = -1 + \frac{r}{f} \int \frac{df}{r+\eta}$$

ist zunächst dieses Integral festzustellen.

$$\int \frac{df}{r+\eta} = \left(b_1 + \frac{b-b_1}{h}e_1\right) \int_{-\epsilon_2}^{+\epsilon_1} \frac{d\eta}{r+\eta} - \frac{b-b_1}{h} \int_{-\epsilon_2}^{+\epsilon_1} \frac{\eta \, d\eta}{r+\eta}.$$

Da

$$\int_{-e_{2}}^{+e_{1}} \frac{\eta \, d\eta}{r+\eta} = \int_{-e_{2}}^{+e_{1}} \left(1 - \frac{r}{r+\eta}\right) d\eta = e_{1} + e_{2} - r \ln \frac{r+e_{1}}{r-e_{2}},$$

so folgt

$$\begin{split} \int & \frac{df}{r+\eta} = \left(b_1 + \frac{b-b_1}{h}e_1\right)\ln\frac{r+e_1}{r-e_2} - \frac{b-b_1}{h}\left(e_1 + e_2 - r\ln\frac{r+e_1}{r-e_2}\right) \\ &= \left[b_1 + \frac{b-b_1}{h}\left(e_1 + r\right)\right]\ln\frac{r+e_1}{r-e_2} - (b-b_1), \\ & \varkappa = -1 + \frac{2r}{(b+b_1)h} \left\{ \left[b_1 + \frac{b-b_1}{h}\left(e_1 + r\right)\right]\ln\frac{r+e_1}{r-e_2} - (b-b_1) \right\} \quad 17) \end{split}$$

d) Querschnitt des gleichschenkligen Dreiecks.

Aus Gleichung 17 folgt für

$$b_{1} = 0, \qquad e_{1} = \frac{2}{3}h, \qquad e_{2} = \frac{1}{3}h,$$

$$\varkappa = -1 + \frac{2r}{h} \left[ \left(\frac{2}{3} + \frac{r}{h}\right) \ln \frac{1 + \frac{2}{3}\frac{h}{r}}{1 - \frac{1}{3}\frac{h}{r}} - 1 \right] \dots \dots 18)$$

#### e) Für zusammengesetzte Querschnitte

kann die Bestimmung von  $\varkappa$  in der Weise erfolgen, daß der Querschnitt in eine genügende Anzahl Streifen zerlegt wird, die senkrecht zur Ebene der Mittellinie stehen, so wie dies z. B. Fig. 7, § 17, für eine Eisenbahnschiene angibt.

Ist  $\Delta f$  der Flächeninhalt eines solchen Streifens,  $\eta$  sein Abstand von der Schwerlinie (positiv oder negativ, je nachdem er von der

Krümmungsachse M weg oder nach derselben zu gelegen ist), so sind für alle Streifen die Werte

$$\frac{\eta}{r+\eta}$$
 1f

zu bilden, hierauf ist deren algebraische Summe zu bestimmen und diese schließlich durch — f zu dividieren. Das Ergebnis ist der gesuchte Wert von  $\varkappa$ .

In neuerer Zeit haben A. Bantlin und M. Tolle zeichnerische Verfahren zur Ermittlung von  $\varkappa$  angegeben¹), die allgemein den Vorzug der Anschaulichkeit besitzen, und die namentlich gegenüber zusammengesetzten Querschnitten mit Vorteil benutzt werden können, solange das Verhältnis e:r innerhalb gewisser Grenzen bleibt. Hinsichtlich der Verwendbarkeit der Näherungsgleichung 10. im Falle rgroß gegen e ist, vgl. S. 514 u. f.

Nach dem von Braun 1903 gegebenen Vorgang kann z gemäß Gleichung 5 rechnerisch in folgender Weise ermittelt werden²).

Besteht die Fläche f aus den Teilflächen  $f_1, f_2, f_3$  usw., so folgt unmittelbar aus der Eigenschaft des bestimmten Integrals

$$\varkappa f = \varkappa_1 f_1 + \varkappa_2 f_2 + \varkappa_3 f_3 + \dots$$

wobei hinsichtlich der Werte  $\varkappa_1, \varkappa_2, \varkappa_3$  usw. zu beachten ist, daß für sie jeweils die Größe  $\eta$  im Integral

$$\varkappa_1 f_1 = -\int \frac{\eta}{r+\eta} \, df_1.$$

genommen über die Fläche  $f_1$  usw., sich je auf die Schwerpunktshauptachse der Summenfläche f bezieht.

Die wichtigsten Teilflächen pflegen bei geradlinig begrenzten Querschnitten das Rechteck und das Trapez zu sein.

Für das Rechteck Fig. 7 ergibt sich in bezug auf die Achse des Gesamtquerschnitts nach S. 516 unter Änderung der Integrationskonstanten

$$\approx f \cdots = \int_{e_0}^{e_1} \frac{\eta}{r+\eta} b \, d\eta = \cdots = \int_{e_0}^{e_1} \left(1 - \frac{r}{r+\eta}\right) d\eta = \cdots + r b \ln \frac{r+e_1}{r+e_0},$$

¹) Zeitschrift des Vereines deutscher Ingenieure 1901, S. 164 bis 168, S. 201 bis 205, bzw. 1903, S. 884 u. f. S. auch die Maschinenelemente des Verfassers, 10. bis 12. Aufl., S. 43 und 44.

²) Die gleiche Aufgabe hat Werner unabhängig von Braun (Zeitschrift des Vereines deutscher Ingenieure 1905, S. 257 u. f.), jedoch nur für solche Querschnitte gelöst, deren Begrenzungslinien aus Parallelen und Senkrechten zur Krümmungsachse bestehen. Braun hat sein Verfahren nicht bloß auf gerade, sondern auch auf kreisförmige und parabolische Begrenzungslinien angewendet. und für das Trapez Fig. 8 in gleicher Weise

Damit findet sich beispielsweise für den Querschnitt Fig. 9 nach Bestimmung der Schwerpunktslage

$$\begin{aligned} \varkappa f &= -20 \cdot 11 + 39,3 \cdot 20 \ln \frac{39,3 + 31,7}{39,3 + 20,7} - 11 \cdot 34,8 + 39,3 \cdot 11 \ln \frac{39,3 + 20,7}{39,3 - 14,1} \\ &- 25 \cdot 13,5 + 39,3 \cdot 25 \ln \frac{39,3 - 14,1}{39,3 - 27,6} = 320,86 \\ \varkappa &= \frac{320,86}{940,3} = 0,341. \end{aligned}$$

Für einen gekrümmten Hohlzylinder vom äußeren Halbmesser  $r_a$  und dem inneren Halbmesser  $r_i$  findet sich



## 3. Krümmungshalbmesser.

An Hand der Fig. 3, S. 511, erkannten wir, daß der Querschnittswinkel  $d\varphi$  und der Krümmungshalbmesser r unter der Einwirkung von P und  $M_b$  in  $d\varphi + \Delta d\varphi$  bzw. in  $\varrho$  übergingen. Während für das Bogenelement der Mittellinie vor der Formänderung die Beziehung

$$\overline{OO_1} = ds = rd\varphi$$

galt, ergibt sich für dasselbe nach Eintritt der Formänderung

$$OO_1' = ds + \Delta ds = \varrho \left( d\varphi + \Delta d\varphi \right)$$

woraus nach Division mit ds bzw.  $r d\varphi$ 

$$1 + \frac{\Delta ds}{ds} = \frac{\varrho}{r} \left( 1 + \frac{\Delta d\varphi}{d\varphi} \right),$$
$$1 + \varepsilon_0 = \frac{\varrho}{r} (1 + \omega)$$

und hieraus unter Beachtung der Gleichungen 7

$$\frac{r}{\varrho} = \frac{1+\omega}{1+\varepsilon_0} = 1 + \frac{\omega-\varepsilon_0}{1+\varepsilon_0} = 1 + \frac{M_b}{\varkappa r \left(\frac{f}{\alpha} + P + \frac{M_b}{r}\right)}$$
$$\frac{1}{\varrho} = \frac{1}{r} + \frac{M_b}{\varkappa r^2 \left(\frac{f}{\alpha} + P + \frac{M_b}{r}\right)} \quad \dots \quad 20)$$

Wird berücksichtigt, daß  $e_0$  eine sehr kleine Größe ist, so kann mit genügender Annäherung in der Regel gesetzt werden

$$\frac{r}{\varrho} = 1 + \frac{\omega - \varepsilon_0}{1 + \varepsilon_0} = \sim 1 + \omega - \varepsilon_0,$$

woraus bei Ersatz von  $\omega - \varepsilon_0$  nach Maßgabe der ersten der Gleichungen 7 folgt

$$\frac{1}{\varrho} = \frac{1}{r} + \alpha \frac{M_b}{\varkappa f r^2}.$$

Wenn die Querschnittsabmessungen so klein sind gegenüber r, daß von der Gleichung 10, nach der

$$\varkappa fr^2 = \Theta,$$

Gebrauch gemacht werden darf, so ergibt sich

oder

$$\frac{1}{r} = \alpha \frac{M_0}{\Theta}$$

¹) Diese Annäherungsgleichung wird nicht selten aus der für gerade stabförmige Körper gültigen Beziehung, Gleichung 13, § 16, in der Weise abgeleitet, daß man die ursprüngliche Krümmung mit dem Halbmesser r auffaßt als herbeigeführt durch ein Moment  $M_0$ , für das nach Gleichung 13, § 16, gilt
## 4. Änderung der Koordinaten der Mittellinie.

In Fig. 10 sei APCD die Mittellinie des gekrümmten und bei A eingespannten Stabes vor der Einwirkung der äußeren Kräfte. Dieselbe werde auf ein rechtwinkliges, in ihrer Ebene derart gelegenes Koordinatensystem AX und AY bezogen, daß AX die Normale und AY die Tangente im Punkte A ist. Unter Einwirkung der äußeren Kräfte, die wir uns etwa durch eine im Punkte D angreifende Kraft ersetzt denken wollen, ändert sich die Form der Mittellinie und damit auch die Größe der Koordinaten  $x_c$  und  $y_c$  des Punktes C derselben. Diese Koordinatenänderungen seien mit  $\Delta x_c$ und  $\Delta y_c$  bezeichnet, entsprechend einem Übergange von  $x_c$  und  $y_c$ in  $x_c + \Delta x_c$  bzw.  $y_c + \Delta y_c$ .



Durch Hinzufügung des Momentes  $M_b$  gehe die Krümmung in eine solche mit dem Halbmesser  $\varrho$  über, somit

$$\frac{1}{\varrho} = \alpha \frac{M_0 + M_b}{\Theta}.$$

Wird der erstere Ausdruck von dem letzteren abgezogen, so findet sich

$$rac{1}{arrho} - rac{1}{r} = lpha rac{M_{b}}{\Theta} \quad ext{oder} \quad M_{b} = \left(rac{1}{arrho} - rac{1}{r}
ight) rac{\Theta}{lpha}$$

wie oben angegeben.

Daß diese Vorstellungsweise voraussetzt, es bleibe die Beanspruchung des Stabes unter der Einwirkung von  $M_0$  und  $M_b$  innerhalb der Proportionalitätsgrenze, springt sofort in die Augen wie auch die Tatsache, daß diese Voraussetzung nicht in Übereinstimmung mit der Wirklichkeit steht, die eben einen bereits bleibend gebogenen Stab der Biegung durch  $M_b$  darbietet. Trotz des hierin liegenden Fehlers gewährt diese Ableitungsweise, nachdem der Ausdruck 21 als Annäherungsgleichung auf strengerem Wege ermittelt worden ist. ein bequemes Mittel, um sich die letztere rasch jederzeit aus dem Kopfe herstellen zu können, lediglich auf Grund der für gerade stabförmige Körper gültigen Gleichung 13, § 16. Stabförmige Körper mit gekrümmter Mittellinie.

Zum Zwecke der Ermittlung von  $\Delta x_c$  und  $\Delta y_c$  greifen wir einen beliebigen Punkt P mit den Koordinaten x und y heraus; der Krümmungshalbmesser der Mittellinie betrage hier r. Das zugehörige Bogenelement, das in die Richtung der Tangente PT fällt, besitze die Länge  $ds = rd\varphi$ , sofern  $d\varphi$  den zugehörigen Zentriwinkel bezeichnet oder auch die § 54, S. 509, angegebene Bedeutung hat.

Infolge Einwirkung der äußeren Kräfte wird sich das Bogenelement ds — den Punkt P denken wir uns hierbei fest — um Pdrehen: PT gelangt in die Richtung  $PT_1$ ,  $d\varphi$  ändert sich um  $\Delta d\varphi$ =  $\omega d\varphi$  (nach § 54, S. 510). Außerdem wird ds eine Verlängerung um  $\varepsilon_0 ds$  erfahren.

Die Drehung von ds um  $\Delta d\varphi$  hat zur Folge, daß der Punkt Cauf dem Kreisbogen  $\widehat{CC}_1 = \overline{PC} \cdot \Delta d\varphi$  nach  $C_1$  rückt. Hiernach ändert sich die Abszisse des Punktes C um

$$-(\overline{PC} \cdot \Delta d\varphi) \sin CEA = -\overline{PC} \sin CEA \cdot \Delta d\varphi = -(y - y_c) \Delta d\varphi$$

und die Ordinate um

$$-(PC \cdot \Delta d\varphi) \cos CEA = -PC \cos CEA \cdot \Delta d\varphi = -(x_c - x) \Delta d\varphi.$$

Aus Anlaß der Verlängerung von ds um  $\varepsilon_0 ds$  bewegt sich der Punkt C um  $\varepsilon_0 ds$  in der Richtung von ds, d. h. in der Richtung der Tangente PT vorwärts. Dadurch erfährt die Abszisse von C eine Zunahme um

$$\varepsilon_0 ds \sin \varphi = \varepsilon_0 dx$$

und die Ordinate eine solche im Betrage von

$$\varepsilon_0 ds \cos \varphi = \varepsilon_0 dy.$$

Demnach die Zunahme der Koordinaten  $x_c$  und  $y_c$ , veranlaßt durch die Änderung der Richtung und durch die Änderung der Länge des Bogenelementes ds allein,

$$\begin{aligned} d(\Delta x_c) &= -(y - y_c) \Delta d\varphi + \epsilon_0 dx = y_c \omega d\varphi - y \omega d\varphi + \epsilon_0 dx, \\ d(\Delta y_c) &= -(x_c - x) \Delta d\varphi + \epsilon_0 dy = -x_c \omega d\varphi + x \omega d\varphi + \epsilon_0 dy, \end{aligned}$$

und somit die gesamte Zunahme der Koordinaten  $x_c$  und  $y_c$ , herbeigeführt durch die entsprechenden Änderungen aller zwischen A und C gelegenen Bogenelemente,

$$\exists x_{c} = y_{c} \int_{0}^{\varphi_{c}} \omega \, d\varphi - \int_{0}^{\varphi_{c}} y \, \omega \, d\varphi + \int_{0}^{x_{c}} \varepsilon_{0} \, dx$$

$$\exists y_{c} = -x_{c} \int_{0}^{\varphi_{c}} \omega \, d\varphi + \int_{0}^{\varphi_{c}} x \, \omega \, d\varphi + \int_{0}^{y_{c}} \varepsilon_{0} \, dy$$

Hierin sind  $\omega$  und  $\varepsilon_0$  durch die Gleichungen 7 bestimmt.

Für den Fall, daß die Querschnittsabmessungen senkrecht zur Mittellinie genügend klein gegenüber r sind, so daß von Gleichung 10 Gebrauch gemacht und in der letzten der 3 Gleichungen 7 (rechte Seite) die Summe der beiden ersten Glieder, d. h.  $P + \frac{M_b}{r}$ , gegenüber dem letzten Gliede vernachlässigt werden darf, geht der Ausdruck für  $\omega$  über in

$$\omega = \frac{\alpha}{f} \frac{M_b}{\varkappa r} = \sim \alpha \frac{M_b}{\Theta} r.$$

Hiermit ergeben sich aus den Beziehungen 22 die Annäherungsgleichungen

$$\exists x_{e} = \alpha \left( y_{e} \int_{0}^{T_{e}} \frac{M_{b}}{\Theta} r \, d\varphi - \int_{0}^{T_{e}} y \, \frac{M_{b}}{\Theta} r \, d\varphi + \int_{0}^{T_{e}} \frac{P}{f} \, dx \right)$$

$$\exists y_{e} = \alpha \left( -x_{e} \int_{0}^{T_{e}} \frac{M_{b}}{\Theta} r \, d\varphi + \int_{0}^{T_{e}} x \, \frac{M_{b}}{\Theta} r \, d\varphi + \int_{0}^{Y_{e}} \frac{P}{f} \, dy \right)$$

$$= \left( -x_{e} \int_{0}^{T_{e}} \frac{M_{b}}{\Theta} r \, d\varphi + \int_{0}^{T_{e}} x \, \frac{M_{b}}{\Theta} r \, d\varphi + \int_{0}^{Y_{e}} \frac{P}{f} \, dy \right)$$

sofern bei Einführung von  $\varepsilon_0$  aus der zweiten der Gleichungen 7 noch  $\frac{M_b}{r}$ gegenüber *P* vernachlässigt wird. Bei verhältnismäßig großem *r* tritt überhaupt der durch das dritte Glied der Gleichungen 22 und 23 gemessene Anteil der Formänderung der Mittellinie zurück gegenüber dem Betrage, welchen die Summen der beiden ersten Glieder liefern.

Um ein Urteil über die Abweichungen zu gewinnen, welche die Verwendung der Gleichungen 23 an Stelle



der Gleichungen 22 zur Folge hat, werde die Formänderung für den Teil eines Kreisringes, Fig. 11, ermittelt.

I. Nach der zweiten der Gleichungen 22 beträgt mit  $y_c = r$ und  $\varphi_c = \frac{\pi}{2}$ :

$$\Delta y_{c} = -r \int_{0}^{\frac{\pi}{2}} \omega \, d\varphi + \int_{0}^{\frac{\pi}{2}} x \, \omega \, d\varphi + \int_{0}^{r} \varepsilon_{0} \, dy;$$

hier ist nach Gleichung 7, S. 513, einzusetzen

$$\omega = \frac{\alpha}{f} \left( Q \cos \varphi - \frac{Qr \cos \varphi}{r} - \frac{Qr \cos \varphi}{\varkappa r} \right) = -\frac{\alpha}{f} \frac{Q \cos \varphi}{\varkappa}$$
$$\varepsilon_0 = \frac{\alpha}{f} \left( Q \cos \varphi - \frac{Qr \cos \varphi}{r} \right) = 0.$$

Somit

$$\Delta y_{c} = r \frac{\alpha}{f} \frac{Q}{\varkappa} \int_{0}^{\frac{\pi}{2}} \cos \varphi \, d\varphi - r \frac{\alpha}{f} \frac{Q}{\varkappa} \int_{0}^{\frac{\pi}{2}} (1 - \cos \varphi) \cos \varphi \, d\varphi$$
$$= r \frac{\alpha}{f} \frac{Q}{\varkappa} \int_{0}^{\frac{\pi}{2}} \cos^{2} \varphi \, d\varphi$$
$$\Delta y_{c} = \frac{\pi}{4} r \frac{\alpha}{f} \frac{Q}{\varkappa} \dots \dots \dots \dots$$

II. Nach der zweiten der Gleichungen 23 beträgt mit  $y_c = r$ ,  $\varphi_c = \frac{\pi}{2}$  und  $M_b = -Qr\cos\varphi$ :  $\Delta y_c = \alpha \left( \frac{+r^3}{\Theta} Q_0 \int_0^{\frac{\pi}{2}} \cos\varphi \, d\varphi - \frac{r^3 Q}{\Theta} \int_0^{\frac{\pi}{2}} (1 - \cos\varphi) \cos\varphi \, d\varphi - \int_0^r \frac{Q\cos\varphi}{f} \, dy \right)$  $\Delta y_c = \alpha \left( \frac{r^3 Q}{\Theta} \int_0^{\frac{\pi}{2}} \cos^2\varphi \, d\varphi - \frac{Q}{f} \int_0^r \cos\varphi \, dy \right).$ 

Wird das zweite Glied, dessen Größe gegenüber der des ersten meist ganz zurücktritt, vernachlässigt, so ergibt sich

$$\Delta y_c = \frac{\pi}{4} \frac{r^3 \alpha}{\Theta} Q \quad \dots \quad \dots \quad \dots \quad \dots \quad 25)$$

24)

Die Ergebnisse der unter II und I durchgeführten Rechnungen, d. h. die Werte der Gleichungen 25 und 24, verhalten sich wie

$$\frac{\pi}{4}\frac{r^3\alpha}{\Theta}Q:\frac{\pi}{4}r\frac{\alpha}{f}\frac{Q}{\varkappa}=\frac{\varkappa fr^2}{\Theta};$$

das Verhältnis ist somit dasselbe, wie in Fußnote 1, S. 514 für verschiedene Krümmungen hinsichtlich der Beanspruchung ermittelt. Danach beträgt z. B. bei rechteckigem Querschnitt für einen Krüm-

mungshalbmesser r = 2h der Unterschied  $4^{0}/_{0}$ , bei r = 3h nur noch 2 und bei r = 4h nur  $1^{0}/_{0}$ , d. s. Abweichungen, die in der Regel ganz unbedenklich erscheinen.

Wäre der Ring C geschlossen, so müßte dort ein zunächst unbekanntes Moment M von solcher Größe angebracht werden, daß die Tangente ihre ursprüngliche, wagrechte Richtung beibehält, also die Winkeländerung bei C gleich Null ist, oder die Summe aller Winkeländerungen auf dem Bogen AC Null beträgt. Somit

I. 
$$\int_{0}^{\frac{\pi}{2}} \omega d\varphi = 0 = \int_{0}^{\frac{\pi}{2}} \left( -\frac{\alpha}{f} \frac{Q \cos \varphi}{\varkappa} + \frac{\alpha}{f} \frac{M}{r} + \frac{\alpha}{f} \frac{M}{\varkappa r} \right) d\varphi$$
$$= \frac{\alpha}{f} \left( -\frac{Q}{\varkappa} + \frac{M}{r} \frac{\pi}{2} + \frac{M}{\varkappa r} \frac{\pi}{2} \right);$$
hieraus

II.  

$$\int_{0}^{\frac{\pi}{2}} \omega \, d\varphi = 0 = \int_{0}^{\frac{\pi}{2}} \alpha \, \frac{M_b}{\Theta} r \, d\varphi = \frac{\alpha}{\Theta} r \int_{0}^{\frac{\pi}{2}} (M - Qr \cos \varphi) \, d\varphi$$

$$= \frac{\alpha}{\Theta} r \left( M \, \frac{\pi}{2} - Qr \right)$$

$$M = \frac{2}{\pi} Qr \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad \dots \qquad 27$$

Die Momente nach Gleichung 27 und 26 verhalten sich wie

$$\frac{2}{\pi} Qr : \frac{2}{\pi} \frac{Qr}{(1+\varkappa)} = (1+\varkappa) : 1.$$

# 5. Zeichnerisches Verfahren zur Ermittlung der Formänderung. (O unveränderlich oder veränderlich.)

Die Umformung der Gleichungen 23, S. 527, führt, wenn das dritte, fast immer verhältnismäßig unbedeutende Glied vernachlässigt wird, zu dem folgenden Verfahren¹).

¹⁾ Vgl. R. Baumann, Einfaches Verfahren zur Ermittlung der Formänderung eben gekrümmter stabförmiger Körper. Zeitschrift des Vereines deutscher Ingenieure 1910, S. 1675 u. f., sowie Anschauliche Lösungen einiger statisch unbestimmten Aufgaben, dieselbe Zeitschrift 1913, S. 1911 u. f. Für gerade Stäbe hat Ensslin ein gleiches Verfahren veröffentlicht: Zeitschrift für gewerblichen Unterricht, Bd. XXIII.

C. Bach, Elastizität, 8. Aufl.

Behandelt werde zuerst die unter 4. am Schlusse rechnerisch gelöste Aufgabe ( $\Theta$  unveränderlich). Wird, wie bereits bemerkt, das letzte Glied der Gleichungen 23 vernachlässigt, so kann die zweite derselben geschrieben werden



oder, da nach Fig. 11 für den betrachteten Punkt  $P x_e - x = z$ rund  $M_b = Qz$ 

Der Wert des Integrals in Gleichung 28 wird erlangt, indem man  $\frac{q_e}{r_e}$ 

- 1. den Bogen APC abwickelt (d. h.  $\int_{0}^{T_{e}} r d\varphi$  bildet, vgl. Fig. 12);
- 2. den zu jedem Punkt des Bogens APC gehörigen Hebelarm z der Kraft Q absticht und als Ordinate über dem zugehörigen Punkt der Abwicklung aufträgt, wodurch die Linie der Werte von z in Fig. 12 erhalten wird; diese stellt die Linie des biegenden Momentes für die Kraft Q = 1 dar (das Verfahren besteht also

in der Aufzeichnung der Linie des biegenden Momentes über der Abwicklung der Mittellinie);

- 3. die Werte von  $z^3$  bildet (d. h. jedes biegende Moment mit dem für die Formänderung maßgebenden Hebelarm multipliziert) und über der Abwicklung des Bogens aufträgt, so daß die Linie der Werte von  $z^3$  entsteht (Maßstab 1:10, Fig. 12); denkt man sich die Fläche der  $z^3$  in schmale Streifen von der Breite  $rd\varphi$ zerlegt, so ist der Flächeninhalt eines jeden derselben gleich  $z^2 \cdot rd\varphi$ , somit der Inhalt der ganzen Fläche gleich dem Wert des gesuchten Integrals; man hat also
- 4. die Fläche  $APCA_1A$  zu planimetrieren und das Ergebnis mit  $\frac{\alpha}{\Theta}Q$  zu muliplizieren, um die Verschiebung  $\Delta y_c$  zu erhalten¹).

Denkt man sich die Fläche der z (Fig. 12) gleichfalls in schmale Streifen von der Breite  $rd\varphi$  zerlegt, so erkennt man, daß der Inhalt

dieser Fläche APCOCMA den Wert  $f = \int_{0}^{\varphi_{c}} z \cdot r d\varphi$  besitzt. Folglich ist

$$f \cdot \frac{\alpha}{\Theta} Q = \frac{\alpha}{\Theta} Q \int_{0}^{\gamma_{o}} z \cdot r d\varphi,$$

somit, da  $M_b = Q \cdot z$ ,

$$f\frac{\alpha}{\bar{\Theta}}Q = \frac{\alpha}{\bar{\Theta}}\int M_b \cdot r d\varphi$$

und, nach der Gleichung unmittelbar vor den Gleichungen 23,

$$\dagger \frac{\alpha}{\Theta} Q = \int \omega d\varphi.$$

Der Inhalt der Fläche der z, d. h. der Linie des biegenden Momentes, stellt also die Winkeländerung von A bis C, Fig. 11, dar.

Soll bei C ein Moment M von solcher Größe wirken, daß die Tangente daselbst ihre ursprüngliche Richtung beibehält (Belastungsfall Fig. 4, § 55), so muß  $\int_{0}^{\varphi_c} \omega d\varphi = 0$  sein, d. h. M allein muß in Fig. 12 eine Fläche (Rechteck) der Werte von z hervorrufen, die inhaltsgleich mit APCOCMA (aber von entgegengesetztem Vorzeichen) ist. Man hat also zur Bestimmung von M nur die mittlere Höhe  $\overline{AM}$  der Fläche APCOCMA zu bestimmen, wie sie in Fig. 12 strichpunktiert eingezeichnet wurde. Sie ist gleich der Größe M:Q d. h. M für

¹) Statt sie zu planimetrieren, kann die Fläche durch Zerlegen in Streifen usf. bestimmt werden.

Q = 1; wollte man M selbst erhalten, so müßte man nicht die Linie der z, sondern die Linie der  $Q \cdot z$ , d. h. der biegenden Momente aufzeichnen, was bei anderen Belastungsfällen von Vorteil sein kann (s. u.). Zur Ermittlung der Formänderung im Punkte C (Fig. 11) ist jeder Abschnitt der Ordinaten zwischen M - M und der Linie der z mit dem jeweiligen Wert von z zu multiplizieren; die so entstandene Linie der  $z \left(z - \frac{M}{Q}\right)$  tritt an die Stelle der Werte von  $z^2$ .

Die an jeder Stelle wirkenden biegenden Momente sind durch die erwähnten Ordinatenabschnitte bestimmt. Wie Fig. 12 zeigt, ist bei O das Moment = 0; dort erfolgt also keine Änderung der Krümmung.

Wie aus der vorstehenden Entwicklung hervorgeht, ist es bei der Anwendung des Verfahrens gleichgültig, ob der Krümmungshalbmesser r gleichbleibend oder veränderlich ist, und ob gerade Strecken mit gekrümmten abwechseln. Durch das Abwickeln des Bogens und das Abstechen der Hebelarme z findet die tatsächliche Gestalt des Bogens volle Berücksichtigung.

Die Verschiebung  $\Delta x_c$  kann in sinngemäß gleicher Weise gefunden werden wie  $\Delta y_c$ . Wie aus Gleichung 23 mit  $(y_c - y) = u$ und  $M_b = Q \cdot z$  hervorgeht, ist

$$\Delta x_{c} = -\frac{\alpha}{\Theta} Q \int_{0}^{\varphi_{c}} z \cdot u \cdot r d\varphi.$$

An die Stelle der Linie der  $z^2$  hat also die Linie der  $z \cdot u$  zu treten.

Bisher war nur die Formänderung in dem Punkt gesucht, an dem die Kraft Q angreift. Die folgenden Beispiele zeigen jedoch. daß das Vorgehen sinngemäß ganz das gleiche ist, wenn die Form änderung an einem anderen Punkt und unter anderer Belastung ermittelt werden soll.

Hinsichtlich weiterer Einzelheiten muß auf die in Fußbemerkung 1, S. 529, genannten Arbeiten verwiesen werden.

a) Formänderung am Ende einer gabelförmigen Meßfeder  $(\Theta$  unveränderlich), Fig. 13.

Da der Stab symmetrisch ist, genügt es, die Hälfte desselben zu betrachten und diese bei A als eingespannt anzusehen.

- 1. Die Mittellinie ABDC wird in eine gerade Strecke abgewickelt, Fig. 14.
- 2. Über der letzteren wird die Linie abD des biegenden Momentes für P = 1 kg aufgezeichnet. Sie verläuft über AB gekrümmt,

wie bei Fig. 12, von B bis D geradlinig. Auf der Strecke DC ist das biegende Moment gleich Null.

Der Inhalt der Fläche AabB, Fig. 14, bestimmt die Winkel-



änderung im Punkte B, die Fläche AabD diejenige im Punkte D oder C usf.

3. Da die Durchbiegung bei C in Richtung der y-Achse gesucht ist (Punkt C bewegt sich ungefähr auf einem Kreisbogen um den



Punkt A), wird jede Ordinate der Biegungsmomentenlinie mit dem Abstand (l+z) von C (Fig. 13) multipliziert, also z. B. für den Punkt B das Produkt  $M_b(l+z) = \overline{Bb}(l+a)$  gebildet usf. Diese Produkte sind in Fig. 14 ebenfalls über der Abwicklung der Mittellinie aufgezeichnet (z. B. Strecke  $\overline{Bb_1} = \overline{Bb}(l+a)$ ), womit die Linie  $a_1b_1D$  bestimmt ist.

Stabförmige Körper mit gekrümmter Mittellinie.

Der Inhalt der Fläche  $Aa_1b_1D$  sei F qcm. (Die Teile der Mittellinie waren im Maßstab 1:1, die Ordinaten der Linie des biegenden Momentes  $M_b$  im Maßstab 1:1, die der Linie der Produkte  $M_b(l+z)$ im Maßstab 1:20 aufgezeichnet. Die gesuchte Fläche fand sich zu 106 qcm; für die Ausrechnung ist daher  $F = 20 \cdot 106 = 2120$  qcm einzusetzen. Bei der Wiedergabe fand Verkleinerung im Verhältnis 1:3 statt). Dann ist die gesuchte Zusammenbiegung der halben Feder bei C

$$\Delta y_{c} = \frac{\alpha}{\Theta} P \cdot F = \frac{\alpha}{\Theta} P \cdot 2120 \text{ cm}.$$

Um zu zeigen, welche Vereinfachung dieses Vorgehen gegenüber der Rechnung bedeutet, sei diese ebenfalls durchgeführt. Dabei muß — um die Rechnung einfach zu gestalten — vorausgesetzt werden, daß die Linie AB genau nach einem Kreisbogen gekrümmt. die Strecke BC gerade ist, während beim zeichnerischen Verfahren ein beliebiger Verlauf der Mittellinie gewählt werden kann.

Der Rechnungsgang ist folgender:

1.	Ermittlung	der	Durchbiegung im Punkte $B$ , d. i. $\Delta y_B$ ,
2.	"	"	Winkeländerung bei $B$ , d. i. $\beta_B$ ,
3.	"	"	Durchbiegung der Strecke $BD$ , d. i. $\Delta y_{D_1}$ ,
4.	"	"	" im Punkte D, d. i.
			$\Delta y_{D} = \Delta y_{B} + \Delta y_{D_{1}} + \beta_{B} \cdot a.$
5.	"	"	Winkeländerung der Strecke $BD$ , d. i. $\beta_{D_1}$ .
6.	**	"	" im Punkte D, d. i. $\beta_D = \beta_B + \beta_{D_1}$ ,
7.	**	"	Durchbiegung im Punkte C, d. i. $\Delta y_c = \Delta y_D + \beta_D \cdot l$ .
			•

1. Durchbiegung im Punkte B, d. i.  $\Delta y_B$ .

Nach Gleichung 23 ist unter Vernachlässigung des dritten Gliedes und unter Bezugnahme auf Fig. 13 ( $M_b$  positiv, weil es die Krümmung vermehrt)

$$\Delta y_{B} = \alpha \left\{ -x_{B} \int_{0}^{\frac{\pi}{2}} \frac{M_{b}}{\varphi} r d\varphi + \int_{0}^{\frac{\pi}{2}} x \frac{M_{b}}{\varphi} r d\varphi \right\}$$
  
$$= \frac{\alpha}{\varphi} Pr \left\{ -r \int_{0}^{\frac{\pi}{2}} (a + r \cos \varphi) d\varphi + \int_{0}^{\frac{\pi}{2}} r(1 - \cos \varphi) (a + r \cos \varphi) d\varphi \right\}$$
  
$$= -\frac{\alpha}{\varphi} Pr^{2} \left( a + r \frac{\pi}{4} \right).$$

 $\mathbf{534}$ 

2. Winkeländerung bei B, d. i.  $\beta_B$ .

$$\beta_{B} = \int_{0}^{\frac{\pi}{2}} \omega d\varphi = \int_{0}^{\frac{\pi}{2}} \alpha \frac{M_{b}}{\Theta} r d\varphi = \frac{\alpha}{\Theta} Pr \int_{0}^{\frac{\pi}{2}} (a + r \cos \varphi) d\varphi = \frac{\alpha}{\Theta} Pr \left( a \frac{\pi}{2} + r \right).$$

3. Durchbiegung der Strecke BD; d. i.  $\Delta y_{D_1}$ . Nach § 18 ist unter Berücksichtigung der Durchbiegungsrichtung

$$\Delta y_{D_1} = -\frac{\alpha}{\Theta} P \frac{a^3}{3}.$$

- 4. Durchbiegung im Punkte *D*, d. i.  $\Delta y_D$ .  $\Delta y_D = \Delta y_B + \Delta y_{D_1} + \beta_B \cdot a$  $= -\frac{\alpha}{\Theta} Pr^2 \left( a + r\frac{\pi}{4} \right) - \frac{\alpha}{\Theta} P \frac{a^3}{3} - \frac{\alpha}{\Theta} Pra \left( a\frac{\pi}{2} + r \right).$
- 5. Winkeländerung der Strecke BD, d. i.  $\beta_{D_1}$ . Nach § 18 ist

$$\beta_{D_1} = \frac{\alpha}{\Theta} P \frac{a^2}{2}$$

6. Winkeländerung im Punkte D, d. i.  $\beta_D$ .

$$\beta_D = \beta_{D_1} + \beta_B = \frac{\alpha}{\Theta} P \frac{a^2}{2} + \frac{\alpha}{\Theta} P r \left( a \frac{\pi}{2} + r \right).$$

7. Durchbiegung im Punkte C, d. i.  $\Delta y_c$ .

$$\begin{aligned} \Delta y_{c} &= \Delta y_{D} + \beta_{D} \cdot l = -\left[\frac{\alpha}{\Theta} Pr^{2}\left(a + r\frac{\pi}{4}\right) + \frac{\alpha}{\Theta} P\frac{a^{3}}{3} \\ &+ \frac{\alpha}{\Theta} Pra\left(a\frac{\pi}{2} + r\right) + l\left\{\frac{\alpha}{\Theta} P\frac{a^{2}}{2} + \frac{\alpha}{\Theta} Pr\left(a\frac{\pi}{2} + r\right)\right\}\right] \\ &= -\frac{\alpha}{\Theta} P\left[r^{2}\left(a + r\frac{\pi}{4}\right) + \frac{a^{3}}{3} + ra\left(a\frac{\pi}{2} + r\right) + l\left\{\frac{a^{2}}{2} + r\left(a\frac{\pi}{2} + r\right)\right\}\right].\end{aligned}$$

Mit den in Fig. 13 eingeschriebenen Maßen ergibt sich

$$\Delta y_c = -\frac{\alpha}{\Theta} P \cdot 2121 \text{ cm}$$

(das negative Vorzeichen bedeutet, daß die Feder zusammengebogen wird). Das zeichnerische Verfahren hatte die Zusammendrückung zu

$$\Delta y_c = -\frac{\alpha}{\Theta} P \cdot 2120 \text{ cm}$$

geliefert.

b) Geschlossener Rahmen (Fahrstuhl), Fig. 15.

 $\alpha$ ) Das Trägheitsmoment  $\Theta$  sei unveränderlich.

Wegen der Symmetrie genügt es, ein Viertel des Rahmens zu betrachten. Fig. 16, und es bei A als eingespannt anzusehen. Bei C

greift dann die Kraft Q an. Ferner ist dort das (statisch unbestimmte) Moment M von solcher Größe anzubringen, daß die Tangente daselbst keine Richtungsänderung erfährt.

- 1. Die Mittellinie wird abgewickelt, Fig. 17, und über ihr die Linie des von der Kraft Q herrührenden biegenden Momentes, d. h. Linie abC, aufgezeichnet. Strecke  $\overline{Aa}$  ist also z. B.  $= Q \cdot l$  usf. Der Inhalt der Fläche AabC stellt die durch die Kraft Qallein im Punkte C hervorgerufene Winkeländerung dar, die durch das Moment M zum Verschwinden gebracht werden muß.
- 2. Das Moment M pflanzt sich in konstanter Größe über die Strecke ABC fort. Es bringt also die durch das Rechteck



muß das Rechteck AMMC flächengleich mit AabC sein, d. h. MM ist die Ausgleichslinie für das Trapez AabC.

Die einzelnen Teile des Rahmens sind also durch folgende Momente auf Biegung beansprucht:

bei	$\boldsymbol{A}$	wirkt	ein	Moment	von	$\operatorname{der}$	Größe	Ma, Fig. 17,
"	0	"	"	•,	"	"	••	Null (Wendepunkt).
••	C	"	"	"	"	"	"	$\overline{CM}$ usf.

Wird die Verbiegung des Rahmens gesucht, so ist sinngemäß in gleicher Weise vorzugehen, wie bei den früheren Beispielen. Soll z. B. die Ausbiegung bei C bestimmt werden, so sind die biegenden Momente (d. s. die in Fig. 17 eingezeichneten Ordinatenabschnitte zwischen MM und der Linie abC) mit den zugehörigen Abständen u, Fig. 16, zu multiplizieren. Ist die Einbiegung des Schenkels AB zu finden, so sind dieselben Momente mit den Strecken z, Fig. 16, zu multiplizieren. Die dadurch bestimmten Flächen sind ein Maß für die gesuchte Formänderung.

## $\beta$ ) Das Trägheitsmoment $\Theta$ ist veränderlich.

Auf der Strecke  $\overline{AB}$  sei der Wert  $\Theta_1$ , auf der Strecke  $\overline{BC}$  der Wert  $\Theta_2 = 3\Theta_1$  vorhanden.

Wie aus der Betrachtung von Gleichung 23 hervorgeht, kann bei veränderlichem  $\Theta$  diese Größe nicht mehr vor das Integral genommen, wohl aber mit dem Produkt  $r \cdot d\varphi$  vereinigt gedacht werden.

Statt also die Mittellinie in Teilstrecken  $\Delta l$  abzustechen und diese aneinanderzureihen (Abwicklung), werden die Teilstrecken  $\Delta l$  durch den zugehörigen Wert von  $\Theta$  dividiert und die Beträge  $\frac{\Delta l}{\Theta}$  aneinandergereiht. Durch diese Umrechnung der einzelnen Teile der Abwicklung wird die Veränderlichkeit von  $\Theta$  berücksichtigt.



Demgemäß sind in Fig. 18 die Strecken  $A'B' = \frac{AB}{\Theta_1}$  und  $B'C' = \frac{\overline{BC}}{\Theta_2}$  als Grundlinie abgetragen. Über dieser ist, wie bei Fig. 17, die Linie des von der Kraft Q herrührenden Biegenden Momentes aufgezeichnet (die Strecken  $\overline{A'a'}$ ,  $\overline{B'b'}$  in Fig. 18 sind gleich den Strecken  $\overline{Aa}$ ,  $\overline{Bb}$  in Fig. 17).

Die Ausgleichslinie des Trapezes A'a'b'C' bestimmt das flächengleiche Rechteck A'M'M'C'. Die bei A und C wirkenden Momente sind dann gleich den Strecken

 $\overline{M'a'}$  bei A, Null bei O',  $\overline{M'C'}$  bei C.

Für Fig. 18 war angenommen  $\Theta_2 = 3 \Theta_1$ . Wäre dagegen  $\Theta_1 = 3 \Theta_2$ , so würde sich Fig. 19 ergeben. Aus dem Vergleich von Fig. 17, 18 und 19 geht der Einfluß der verschiedenen Abmessungen auf die Lage des Wendepunktes (O, O', O'') hervor. Stabförmige Körper mit gekrümmter Mittellinie.

Ist das Trägheitsmoment stetig veränderlich, so wird die Mittellinie in angemessen kurze Stücke zerlegt und jedes derselben durch den zugehörigen Wert von  $\Theta_{\bar{x}}$  dividiert.

Bei der Ausführung kann es vorteilhaft sein, statt dieser Division mit dem Verhältnis  $\Theta$ :  $\Theta_x$  zu multiplizieren, worin  $\Theta$  eines der Trägheitsmomente bedeutet.

# c) Gefäß, durch inneren Überdruck p beansprucht ( $\Theta$ unveränderlich), Fig. 20.

Betrachtet werde ein 1 cm breiter Streifen. Es genügt wieder, ein Viertel des rahmenförmigen Körpers zu betrachten. Bei C ist



Fig. 20.

das der Flüssigkeitsdruck auf die Sehne zum Punkte C äußert, also z. B. beträgt bei Punkt B

$$M_{p} = c^{2} p : 2$$

usf. In Fig. 21 ist über der Abwicklung ABC der Mittelinie ABC die Linie  $a_1 OC$  des biegenden Momentes, das vom Flüssigkeitsdruck herrührt, sowie diejenige des von der Reaktionskraft  $p \cdot b$  geäußerten Momentes (Linie  $a_{g}C$ ) und der Unterschied beider, Linie aOCaufgezeichnet. Die mittlere Höhe der Fläche AaOC, d. i. die Strecke CM = AM, ist, wie aus dem Früheren hervorgeht, das bei C wirkende statisch unbestimmte Moment, das die Winkeländerung bei C verhindert. Die Größe der an den einzelnen Stellen des Rahmens auftretenden biegenden Momente ist, wie früher, durch die Ordinatenabschnitte zwischen der Linie MM und der Linie aC bestimmt. Bei O ist das Moment gleich Null; die elastische Linie enthält dort einen Wendepunkt.

## d) Eingespannter Balken, Fig. 22 (vgl. § 18, Ziff. 1).

 $\alpha$ )  $\Theta$  unveränderlich.

1. Aufzeichnen der Linie des biegenden Momentes M über der abgewickelten Mittellinie; sie ist eine Gerade. Die Fläche AaC hat den Inhalt

 $F = \frac{1}{2} P \cdot l \cdot l = \frac{P \cdot l^2}{2}.$ 

Somit Winkeländerung bei C (vgl. § 18)

$$\beta_C = -\frac{\alpha}{\Theta} P \frac{l^2}{2}.$$

2. Aufzeichnung der Produkte  $M_b \cdot z$ , d. i. der Linie  $a_1 C$  (Fig. 22), die im vorliegenden Fall eine Parabel ist, also den Flächeninhalt

$$F = P \frac{l^3}{3}$$

Fig. 22.

besitzt. Somit ist die gesuchte Durchbiegung bei C (vgl. § 18)

$$y_c = \frac{\alpha}{\Theta} P \frac{l^3}{3}.$$

Das Beispiel zeigt, daß die Verbindung von Zeichnung und Rechnung in derartigen Fällen sehr rasch zum Ziel führt.

 $\beta$ )  $\Theta$  veränderlich.

 $\Theta_3 = \frac{1}{2} \Theta_1.$ 

Es sei z. B. unter Bezugnahme auf Fig. 23



Wie bei Beispiel b) besprochen, werden in Fig. 24 als Grundlinie die Strecken  $A'B' = \frac{\overline{AB}}{\Theta_1}$ ,  $\overline{B'D'} = \frac{\overline{BD}}{\Theta_2}$ ,  $\overline{D'C'} = \frac{\overline{DC}}{\Theta_3}$  aufgetragen. Darüber ist der Linienzug  $a_1b_1d_1C'$  aufgezeichnet (Strecke  $\overline{A'a_1}$  in



Fig.  $24 = \overline{Aa}$  in Fig. 22 usf.). Ist der Inhalt der Fläche  $A'a_1b_1d_1C' = F_1$  qem, so beträgt der Neigungswinkel bei C

$$\beta_C = \alpha P \cdot F_1.$$

Zur Ermittlung der Formänderung bei C sind die Ordinaten über der Grundlinie in Fig. 24 mit den zugehörigen Werten von z(Fig. 23) zu multiplizieren, womit sich die Linie  $a_2b_2d_2C'$  ergibt. (Die in Fig. 22 vorhandene Parabel ist in Fig. 24 entsprechend der Streckung der Grundlinie verzerrt.) Ist ihr Flächeninhalt  $F_2$ , so wird

$$y_C = \alpha P F_{\circ} \operatorname{cm}^1$$

Die Ermittlung von  $\beta_c$  und  $y_c$  auf dem Wege der Rechnung wäre weit umständlicher. Dagegen würde auch bei diesem Beispiel die Verbindung von Zeichnung und Rechnung rasch zum Ziel führen.

e) Beiderseits eingespannter Balken, in der Mitte belastet (Fig. 25).  $\Theta$  unveränderlich.

Es genügt infolge der Symmetrie wie früher, die Hälfte des Balkens zu betrachten und bei C anzubringen die Last  $P = \frac{Q}{2}$  und das statisch unbestimmte Moment M, das dafür zu sorgen hat, daß die Tangente an der elastischen Linie in C wagrecht bleibt.



- Aufzeichnen der Linie des biegenden Momentes AaC, herrührend von der Kraft P über der Abwicklung der Mittellinie (Fig. 26)
   Bestimmung der mittleren Hähe der Fläche AaC, der der
- 2. Bestimmung der mittleren Höhe der Fläche A a C, d. h. der Strecke  $\overline{AM} = \overline{MC}$ , die das gesuchte Moment M bei C darstellt. M ist halb so groß, wie das Moment  $\overline{Aa} = P \cdot l$ . Bei O tritt ein Wendepunkt in der elastischen Linie ein. Die Ordinatenabschnitte zwischen MM und aC bestimmen die an jeder Stelle wirkenden biegenden Momente  $M_b$ .

¹) Findet, wie am Schlusse des Beispiels b,  $\beta$ , S. 538 angegeben, Multiplikation der Teilstrecken der Grundliniein Fig. 24 mit dem Verhältnis  $\Theta:\Theta_r$  statt, so wird

$$eta_C = rac{lpha}{\Theta} P \cdot F_1 \quad ext{und} \quad y_C = rac{lpha}{\Theta} P \cdot F_2.$$

3. Wird jedes der letzteren mit der Strecke z multipliziert, so findet sich die in Fig. 27 wiedergegebene Linie der Werte  $M_b \cdot z$ . Ihr Inhalt mißt die Formänderung bei C (der durch Strichelung hervorgehobene Teil ist negativ zu nehmen).

Wäre die Mittellinie vor der Belastung nicht geradlinig, so würde in völlig gleicher Weise vorzugehen sein. Ist  $\Theta$  veränderlich, so kann der beim Beispiel b) oder d) beschriebene Weg beschritten



statisch unbestimmte Moment M ist dann nicht (wie bei Fig. 26) gleich der Hälfte, sondern gleich einem Drittel der Strecke  $\overline{Aa}$ , bei A und B stellen sich doppelt so große biegende Momente ein wie bei C; der Wendepunkt O liegt näher bei A als bei C usf.

f) Dreifach gelagerter Balken (Fig. 29).

 $\Theta$  sei zunächst unveränderlich, die Lager sollen sich nicht senken.

Auch hier genügt es, die eine Hälfte des Trägers zu betrachten; bei B darf, da die Tangente wagrecht bleibt, Einspannung angenommen werden (Fig. 30).



Der Rechnungsgang beruht darauf, zunächst die Auflagerkraft C, die statisch unbestimmt ist, zu entfernen und zu ermitteln, welche Senkung die Kraft P im Punkte C der (bei C nicht unterstützten) Stabmittellinie hervorbrächte, sodann die Kraft P zu entfernen und zu bestimmen, welche Hebung die Kraft C im Punkte C bewirken würde. Da am Auflager keine Senkung eintreten soll, müssen beide Formänderungen gleich groß, aber entgegengesetzt gerichtet sein, wodurch die Kraft C bestimmt erscheint.

1. P wirke allein, C ist entfernt.

Fig. 31 zeigt die Linie des biegenden Momentes aP sowie die der Produkte  $M_b \cdot z$ , d. i.  $a_1P$  über der Abwicklung der Mittellinie. Es ist also z. B.  $\overline{Ba} = P \cdot \frac{l}{2}$ ;  $\overline{Dd} = P\left(z - \frac{l}{2}\right)$ ;  $Dd_1 = \overline{Dd} \cdot z$ .

Die Fläche  $a_1d_1P = F_1$  kann entweder ausgemessen oder bestimmt werden aus der Gleichung



3. Aus der obigen Überlegung folgt

$$\overset{\alpha}{\Theta} Pl^3 \frac{5}{48} = \frac{\alpha}{\Theta} C \frac{l^3}{3}$$
$$C = \frac{5}{16} P.$$

Das biegende Moment bei B beträgt dann

$$M_{B} = P \cdot \frac{l}{2} - \frac{5}{16} P \cdot l = \frac{3}{16} P \cdot l.$$

Der Wendepunkt der elastischen Linie (Fig. 30) ist bestimmt durch die Gleichung

$$P \cdot \left(\frac{l}{2} - x\right) = \frac{5}{16} P(l - x).$$
$$x = \frac{3}{11} l.$$

Soll die Senkung an der Stelle ermittelt werden, an der die Kraft P angreift, so ist zu verfahren, wie beim Beispiel a angegeben, indem, wie beim Beispiel c geschehen, die (algebraischen) Summen der von P und C herrührenden biegenden Momente mit dem Abstand  $\left(\frac{l}{2} - x\right)$  des betrachteten Punktes (Fig. 30) multipliziert und die entstandenen Produkte über der Mittellinie von B bis P aufgezeichnet werden. Ist der Inhalt der so gebildeten Fläche  $F_P$ , so ist

$$y_P = \frac{\alpha}{\Theta} F_P.$$

Wäre  $\Theta$  veränderlich, so würde gemäß Beispiel b verfahren.

# g) Frei aufliegender Balken.

Die bisherigen Beispiele behandeln nur Belastungsfälle, bei denen das eine Ende des Trägers als eingespannt anzusehen war, wie es der Ableitung der Gl. 23, § 54 (Fig. 10 daselbst) entspricht. Um das Verfahren auch auf frei aufgelegte Stäbe anwenden zu können, läßt sich folgender Weg ein-

schlagen, der an dem durch Fig. 32 dargestellten Beispiel besprochen sei.

Die Auflagerkräfte in Aund B werden in der üblichen Weise bestimmt zu A = Pb: (a+b) und B = Pa:(a+b). Der Stab werde nun in A als eingespannt betrachtet und durch P sowie B belastet gedacht. Die Durchbiegung in B ergebe sich dann, in der



oben besprochenen Weise ermittelt, zu  $y_{B_1}$  und in C zu  $y_{C_1}$ . Die gesuchte Durchbiegung des frei aufliegenden, in A nicht einigespannten Stabes ist dann gleich

$$y_C = y_{B_1} \frac{a}{l} - y_{C_1}$$

wie ohne weiteres einzusehen ist (vgl. Fig. 32), auch aus der Anschauung hervorgeht, daß die Einspannung bei A allmählich und solange gelöst wird, bis das freie Ende C des durchgebogenen, in Azunächst eingespannten Stabes eben das Auflager B berührt. Dabei beschreibt der Punkt C den Weg  $y_{B_1} = \frac{a}{l}$ , wenn die Einspannung aufhört. Stabförmige Körper mit gekrümmter Mittellinie.

Bei Ermittlung der Durchbiegungen  $y_{B_1}$  und  $y_{C_1}$  kann mit Vorteil von dem Maxwellschen Satz der Gegenseitigkeit der Verschiebungen Gebrauch gemacht werden: Wenn die Kraft P im Punkte Cangreift, so bewirkt sie in B in Richtung von P eine Formänderung, die ebenso groß ist wie die Formänderung, die im Punkte C entsteht, wenn die Kraft P im Punkte B angreift.

Der eben besprochene Gedankengang, den Stab zunächst in Aals eingespannt zu betrachten und ihn dort nachher freizugeben, kann auch bei rein rechnerischem Vorgehen vielfach von Vorteil sein; auch sonst kann eine solche Verbindung von rechnerischer Auswertung auf der Grundlage des zeichnerischen Verfahrens oft die Lösung erleichtern (vgl. Beispiel f).

# 6. Ermittlung der Formänderung, wenn die Dehnungszahl α veränderlich ist.

# I. Verfahren.

Gleichung 1, S. 512, zeigt, daß die Dehnungen  $\varepsilon$  in verschiedener Entfernung  $\eta$  von der Schwerpunktsachse solche Größe besitzen, daß ihr Verlauf durch eine Hyperbel dargestellt werden kann (vgl. S. 562, Fußbemerkung). Ist die Lage derselben bestimmt, so ist dadurch der Wert von  $\omega$  (spezifische Winkeländerung) für jede größte Beanspruchung oder jedes biegende Moment ermittelt, für das die Untersuchung angestellt wurde.

Unter Verwendung von Gleichung 22, S. 526, kann sodann auf zeichnerischem Wege (der Wert des Integrals läßt sich ganz ähnlich ermitteln, wie S. 529 u. f. für die Auswertung der Gleichung 23 angegeben wurde, wenn beachtet wird, daß  $d\varphi$  der zum Halbmesser 1 gehörige Bogen ist) die Verschiebung  $\Delta x_c$  oder  $\Delta y_c$  bestimmt werden. Näheres findet sich in der Arbeit von R. Baumann in der Zeitschrift des Vereines deutscher Ingenieure 1911, S. 140 u. f., wo auch weitere Anwendungen des Verfahrens beschrieben sind.

## II. Verfahren (für gerade Stäbe).

Nach S. 274 ist

$$\frac{1}{\varrho} = \frac{\varepsilon}{\eta}$$

und nach Gl. 13, § 16 ferner für den geraden Stab

$$\frac{1}{\varrho} = \frac{\alpha}{\Theta} M_b,$$

somit

$$rac{\epsilon}{\eta} = rac{lpha}{\Theta} M_v$$
 $lpha = rac{\Theta}{M_v} \cdot rac{\epsilon}{\eta}$ 

Da der Wert  $\frac{\varepsilon}{\eta}$  auf Grund des in § 22 am Schluß an zwei Beispielen gezeigten Verfahrens ermittelt werden kann, läßt sich die Abhängigkeit der Dehnungszahl  $\alpha$  von der Größe des biegenden Momentes angeben. Die Durchbiegung des Stabes kann dann in ganz gleicher Weise ermittelt werden, wie im vorstehenden unter 5, b,  $\beta$  (S. 537) für den Fall der Veränderlichkeit von  $\Theta$  angegeben. Ebenso lassen sich Fälle behandeln, in denen  $\alpha$  und  $\Theta$  veränderlich sind.

Dieses Verfahren gewährt auch lehrreichen Einblick, wenn es sich darum handelt, den Einfluß von örtlichen Verschwächungen, Fehlstellen (Gußfehlern, Ästen bei Holz) usf. auf die Größe der Durchbiegung zu verfolgen. (Näheres s. in einem später erscheinenden Heft der Mitteilungen über Forschungsarbeiten.)

## § 55. Fälle bestimmter Belastungen.

## 1. Offener Haken trägt eine Last Q. Fig. 1.

Die Kraft Q ergibt für den horizontalen trapezförmigen Querschnitt¹) BOC das größte Moment und die größte Normalkraft. Nach Gleichung 8, § 54, beträgt die Spannung im Abstande  $\eta$  von der Schwerlinie ( $\overline{OO}$  im Grundriß) desselben

$$\sigma = \frac{P}{f} + \frac{M_b}{fr} + \frac{M_b}{\varkappa fr} \frac{\eta}{r+\eta}.$$

Hierin ist

$$P = Q. \qquad \mathbf{M}_{b} = -Q(a + e_{2}),$$
$$f = \frac{b + b_{1}}{2}h,$$

und nach Gleichung 17, § 54,

$$\varkappa = -1 + \frac{2r}{(b+b_1)h} \left\{ \left[ b_1 + \frac{b-b_1}{h} (e_1 + r) \right] \ln \frac{r+e_1}{r-e_2} - (b-b_1) \right\} \quad 1 \right\}$$

Für den Krümmungshalbmesser r der Mittellinie im Punkte Owird gewählt  $r = a + e_2$ . so daß A der Krümmungsmittelpunkt ist.

¹) In der Ausführung werden die scharfen Ecken des Trapezes abgerundet und die hiermit verknüpften Querschnittsverminderungen durch geringe Wölbung der ebenen Begrenzungsflächen des Trapezstabes ausgeglichen.

C. Bach, Elastizität. 8. Aufl.

Stabförmige Körper mit gekrümmter Mittellinie.

Damit folgt dann wegen  $e_1 + r = a + h$  und  $r - e_2 = a$ 

$$\varkappa = -1 + \frac{2r}{(b+b_1)h} \left\{ \left[ b_1 + \frac{b-b_1}{h}(a+h) \right] ln \frac{a+h}{a} - (b-b_1) \right\}$$
$$= -1 + \frac{2r}{(b+b_1)h} \left\{ \left[ b\left(1+\frac{a}{h}\right) - b_1\frac{a}{h} \right] ln \left(1+\frac{h}{a}\right) - (b-b_1) \right\}, \quad 2)$$

woraus für

$$h = 2a, \qquad b = 3b_1,$$
  
wegen  
$$e_2 = \frac{h}{3} \frac{b+2b_1}{b+b_1} = \frac{h}{3} \frac{5b_1}{4b_1} = \frac{5}{12}h = \frac{5}{6}a,$$
  
$$r = a + e_2 = \frac{11}{6}a,$$

sich ergibt



Die Spannung beträgt unter Beachtung, daß

$$r = a + e_{2} = \frac{11}{6}a,$$
  
$$p = -10,27 \frac{Q}{f} \frac{\eta}{\frac{11}{6}a + \eta} \quad . \quad . \quad 3)$$



Fig. 1.

und insbesondere

für  $\eta = -e_2 = -\frac{5}{6}a$   $\sigma = +8,56\frac{Q}{f}$  (im Punkte B) ,  $\eta = -\frac{3}{6}a$   $\sigma = +3,85\frac{Q}{f}$ ,  $\eta = 0$   $\sigma = 0$  (vgl. auch Gl. 9, § 54) ,  $\eta = +\frac{3}{6}a$   $\sigma = -2,20\frac{Q}{f}$ ,  $\eta = +\frac{7}{6}a$   $\sigma = -3.99\frac{Q}{f}$  (im Punkte C).

Die Darstellung dieser Spannungen in Fig. 2 derart, daß senkrecht zur Symmetrielinie des Trapezes die in dem betreffenden Punkte

herrschende Spannung aufgetragen wird (beispielsweise in  $B\overline{BA}$  =

$$=$$
  $+$  8,56  $\frac{Q}{f}$ , in  $C\overline{CE}$   $=$   $-$  3,99  $\frac{Q}{f}$ ), ergibt die Kurve  $AOE$ 

Wird der Querschnitt BOC — Fig. 1 — als einem geraden stabförmigen Körper angehörig betrachtet, so findet sich unter Beachtung der Spalte 11 der Zusammenstellung Ziff. 6 des § 17 wegen

$$\frac{\Theta}{e_2} = \frac{11}{30} b_1 h^2 = \frac{11}{60} fh = \frac{11}{30} af$$

für die Spannung im Punkte B

$$\sigma = \frac{Q}{f} + \frac{Q \frac{11}{6}a}{\frac{\Theta}{e_2}}$$
$$= \frac{Q}{f} + 5 \frac{Q}{f} = +6 \frac{Q}{f}$$

und für diejenige im Punkte C

$$\sigma = \frac{Q}{f} - \frac{Q \frac{11}{6}a}{\frac{\Theta}{e_1}}$$
$$= \frac{Q}{f} - 7 \frac{Q}{f} = -6 \frac{Q}{f}.$$

Die Darstellung dieser Spannungen liefert die Gerade FDG. Wie ersichtlich, ergibt die Unterstellung: der Querschnitt gehöre einem geraden stabförmigen Körper an, die maßgebende Anstrengung im Punkte B um

$$100 \frac{8,56 - 6}{8,56} = 30^{0} / _{0}$$

zu klein, führt also zu einer erheblichen Unterschätzung der Inanspruchnahme. Außerdem würde sie im vorliegenden Falle zu der Auffassung veranlassen, daß die Zuganstrengung in *B* gleich der Druckanstrengung in *C* sei, 35*

während tatsächlich die erstere  $\left(8,56 \frac{Q}{f}\right)$  um mehr als  $100^{\circ}/_{\circ}$ größer ist als die letztere  $\left(3,99 \frac{Q}{f}\right)$ .

Die Beanspruchung des Hakens im Querschnitt BOC wird sich um so mehr derjenigen eines geraden, exzentrisch belasteten Stabes nähern, d. h. die Kurve AOE, Fig. 2, wird um so weniger von der Geraden FDG abweichen. je größer der Krümmungshalbmesser r ist. Es ist deshalb angezeigt, den Krümmungsmittelpunkt für den Punkt Oder Mittellinie nicht nach A, sondern weiter nach rechts von A zu verlegen, also dem Haken in dem gefährdetsten Querschnitt eine möglichst geringe Krümmung zu erteilen¹).

Ferner erhellt aus dieser Sachlage, daß ein aus zähem Material gefertigter Haken, der sich unter Einwirkung der Last bleibend streckt, hierdurch seine Anstrengung — allerdings auch unter Herabsetzung seiner Zähigkeit — vermindert. Vgl. § 22a, § 48, 1. Diese Verminderung kann namentlich bei Haken aus zähem Eisen sehr bedeutend werden (vgl. in § 22 Fig. 2 mit Fig. 1, welche Abbildungen für den geraden Stab gelten: für den gekrümmten Stab fällt der Unterschied noch größer aus). Bei dieser Sachlage erscheint es ganz berechtigt, die zulässige Anstrengung des Materials entsprechend höher zu wählen. Im Falle es sich um sprödes Material handelt, erscheint jedoch große Vorsicht geboten, ebenso bei Material, über dessen Güte Zuverlässiges nicht bekannt ist.

(Vgl. auch § 56, Ziff. 2, insbesondere Schlußbemerkung.)

# 2. Hohlzylinder, der als Walze dient, ist auf die Längeneinheit durch den Druck 2Q belastet, Fig. 3.

Da sich bei dieser Belastungsweise die Viertelzylinder AB, BC, CD und DA gleich verhalten, so genügt es, einen derselben, etwa AB, der Betrachtung zu unterwerfen. Wir denken uns das Viertel AB herausgeschnitten, wie Fig. 4 darstellt, ersetzen die Wirkung der äußeren Kräfte auf den Querschnitt bei A durch Befestigung, auf denjenigen bei B durch die Kraft Q und ein Kräftepaar vom Momente M, das positiv oder negativ genommen wird, je nachdem es auf Vermehrung oder Verminderung der Krümmung der Mittellinie im Punkte B hinwirkt.

Für einen beliebigen, durch den Winkel  $\varphi$  bestimmten Querschnitt *COC* ergibt sich bei Verlegung der Kraft Q nach O die Normalkraft  $P = -Q \cos \varphi$ ,

¹) S. des Verfassers Maschinenelemente, 1891, 92, S. 412, Fig. 252; 1908 (10. Aufl.), S. 710, Fig. 642.

das biegende Moment

$$M_{h} = M - Qr(1 - \cos \varphi).$$

Die Schubkraft  $S = Q \sin \varphi$  werde vernachlässigt. Nach Gleichung 8, § 54, ist

$$\sigma = \frac{P}{f} + \frac{M_b}{fr} + \frac{M_b}{\varkappa fr r + \eta},$$

worin f der auf die Einheit der Zylinderlänge kommende Querschnitt. Folglich

$$f\sigma = -Q\cos\varphi + \frac{M}{r} - Q + Q\cos\varphi + \frac{1}{\varkappa}\left(\frac{M}{r} - Q + Q\cos\varphi\right)\frac{\eta}{r+\eta},$$
  
$$f\sigma = \frac{M}{r} - Q + \frac{1}{\varkappa}\left(\frac{M}{r} - Q + Q\cos\varphi\right)\frac{\eta}{r+\eta}.$$



Zur Bestimmung des unbekannten Momentes M führt die Erwägung, daß, wie auch die Formänderung der Mittellinie AB des Zylinderviertels sein möge, jedenfalls die beiden Normalen AM und BM derselben immer rechtwinklig zueinander bleiben werden, daß also der rechte Winkel AMB, der auch gleichzeitig derjenige der beiden Querschnitte bei A und bei B ist, eine Änderung nicht erfährt.

Es sei  $C_1 O_1 C_1$  ein dem Querschnitt COC unendlich nahe gelegener zweiter Querschnitt und  $d\varphi$  der Winkel, den beide Querschnitte vor Eintritt der Formänderung miteinander einschließen. Unter Einwirkung der äußeren Kräfte wird sich der letztere nach § 54 um

$$\Delta dq = \omega d\varphi$$

ändern. Die Summe dieser Änderungen für alle zwischen B und A

gelegenen Querschnitte muß nach dem eben Erörterten gleich Null sein, d. h.

$$\int_{0}^{\frac{\pi}{2}} \omega d\varphi = 0.$$

Unter Beachtung, daß nach der letzten der Gleichungen 7, § 54

$$\omega = \frac{\alpha}{f} \left( P + \frac{M_b}{r} + \frac{M_b}{\varkappa r} \right),$$

also hier

$$\omega = \frac{\alpha}{f} \left[ \frac{M}{r} - Q + \frac{1}{\varkappa} \left( \frac{M}{r} - Q + Q \cos \varphi \right) \right],$$

wird

$$\int_{0}^{2} \omega \, d\varphi = \frac{\alpha}{f} \left[ \left\{ \frac{M}{r} - Q + \frac{1}{\varkappa} \left( \frac{M}{r} - Q \right) \right\} \frac{\pi}{2} + \frac{1}{\varkappa} \, Q \right] = 0.$$

Somit

π

$$\frac{M}{r} - Q = -\frac{2Q}{(1+\varkappa)\pi}$$

oder

$$M = Q\left(1 - \frac{2}{(1+\varkappa)\pi}\right)r \quad \dots \quad \dots \quad (4)^{1}$$

Die Einführung des für

 $\frac{M}{r} - Q$ 

gefundenen Wertes in die Gleichung zur Ermittlung der Spannungen ergibt

$$\sigma f = -\frac{2Q}{(1+\varkappa)\pi} + \frac{1}{\varkappa} \left( -\frac{2Q}{(1+\varkappa)\pi} + Q\cos\varphi \right) \frac{\eta}{r+\eta},$$
  
$$\sigma = \frac{Q}{f} \left[ -\frac{2}{(1+\varkappa)\pi} + \frac{1}{\varkappa} \left( -\frac{2}{(1+\varkappa)\pi} + \cos\varphi \right) \frac{\eta}{r+\eta} \right] . . 5)$$

Für den rechteckigen Querschnitt ist nach Gleichung 13, § 54,

$$\varkappa = \frac{1}{3} \left( \frac{e}{r} \right)^2 + \frac{1}{5} \left( \frac{e}{r} \right)^4 + \frac{1}{7} \left( \frac{e}{r} \right)^6 + \dots$$

 $^{\rm 1})$  Die Näherungsgleichungen 23, § 54, sowie das oben angegebene zeichnerische Verfahren würden den Wert von

$$M = Q\left(1 - \frac{2}{\pi}\right)r$$

ergeben haben. Dies bedeutet hinsichtlich der Größe des biegenden Momentes für das im folgenden durchgeführte Beispiel mit  $\varkappa = 0.01366$  einen Unterschied im Querschnitt bei B von  $2.4^{0}/_{0}$  und im Querschnitt bei A von  $1.3^{0}/_{0}$ .

und bei dem Verhältnis

$$\frac{e}{r} = \frac{1}{5},$$

das wir wählen wollen

$$\kappa = \frac{1}{3} \left( \frac{1}{5} \right)^2 + \frac{1}{5} \left( \frac{1}{5} \right)^4 + \frac{1}{7} \left( \frac{1}{5} \right)^6 + \dots = 0,01366.$$

Damit folgt

$$\sigma = \frac{Q}{f} \left[ -0,63 + 73,2 \left( -0,63 + \cos \varphi \right) \frac{\eta}{5 e + \eta} \right] \quad . \quad . \quad 6)$$

Grenzwerte ergeben sich für  $\varphi = 0$  (Querschnitt bei *B*) und  $\varphi = \frac{\pi}{2}$  (Querschnitt bei *A*) sowie für  $\eta = \pm e$ . Sie betragen

im Querschnitt bei B  $\varphi = 0$ 

im Querschnitt bei A

$$\varphi = \frac{\pi}{2}$$

innerste Faser,

$$\eta = -e:$$

$$\sigma_i = -\frac{Q}{f} \left( 0,63 + 73,2 \cdot 0,37 \frac{1}{4} \right), \qquad \sigma_i = \frac{Q}{f} \left( -0,63 + 73,2 \cdot 0,63 \frac{1}{4} \right)$$

$$= -7,40 \frac{Q}{f}, \qquad = +10,90 \frac{Q}{f};$$

äußerste Faser,

$$\begin{split} \eta = &+ e: \\ \sigma_a = \frac{Q}{f} \left( -0.63 + 73.2 \cdot 0.37 \frac{1}{6} \right), \qquad \sigma_a = -\frac{Q}{f} \left( 0.63 + 73.2 \cdot 0.63 \frac{1}{6} \right) \\ = &+ 3.88 \frac{Q}{f}, \qquad \qquad = -8.32 \frac{Q}{f}. \end{split}$$

Hiernach findet die größte Anstrengung im Querschnitte bei A, und zwar an der Innenfläche des Hohlzylinders durch tangential gerichtete Zugspannungen ==  $10,90 \frac{Q}{f}$  statt. An der Außenfläche desselben Querschnitts herrscht eine Druckspannung  $8,32 \frac{Q}{f}$ . Im Querschnitt bei B wirkt innen die Druckspannung  $7,40 \frac{Q}{f}$  und außen die Zugspannung  $3,88 \frac{Q}{f}$ . In beiden Querschnitten geht die

Spannung durch Null hindurch. Die Stelle, an der dies stattfindet, ergibt sich

für den Querschnitt 
$$B(\varphi = 0)$$

aus

$$0 = -0,63 + 73,2 \cdot 0,37 \frac{\eta}{5 e + \eta}$$

durch den Wert

$$\eta = 0,12 e,$$
  
für den Querschnitt  $A\left(\varphi = \frac{\pi}{2}\right)$ 

aus

$$0 = -0,63 - 73,2 \cdot 0,63 \frac{\eta}{5 e + \eta}$$

durch den Abstand

$$\eta = -0,067 \, e.$$

Die Darstellung Fig. 5 mit HBJ als Linie der Spannungen im Querschnitte bei B und FEAG als Linie der Spannungen im Querschnitte bei A gibt über das Gesetz, nach dem sich die Spannung in den beiden Querschnitten ändert, ein anschauliches Bild.

Zur Erweiterung desselben in bezug auf dazwischen gelegene Querschnitte werde noch folgendes festgestellt.

Für  $\eta = 0$  findet sich aus Gleichung 6

$$\sigma = -0,63 \frac{Q}{f},$$

also unabhängig von  $\varphi$ , d. h. in allen Punkten der mittleren Zylinderfläche ist die Spannung eine negative, also Pressung, und von gleicher Größe.

Auch gibt es in jedem Zylinderviertel einen Querschnitt, in dem nur Druckspannungen, und zwar ebenfalls von gleicher Größe, auftreten. Setzen wir in Gleichung 5

$$\cos\varphi = \frac{2}{(1+\varkappa)\pi} = 0.63,$$

so entfällt das Glied, das die Veränderlichkeit und den Vorzeichenwechsel von  $\sigma$  bedingt, und es wird

$$\sigma = -\frac{Q}{f} \frac{2}{(1+z)\pi} = -0.63 \frac{Q}{f} ...$$

Dieser Querschnitt ist in Fig. 5 durch die Linie MC wieder-gegeben¹).

¹) Das zeichnerische Verfahren liefert diese Stelle als Punkt O in Fig. 12, S. 530 in sehr einfacher und übersichtlicher Weise.

Zur Feststellung derjenigen Punkte im Innern des Hohlzylinders, in denen  $\sigma = 0$  wird, findet sich nach Gleichung 5

$$0 = -\frac{2}{(1+\varkappa)\pi} + \frac{1}{\varkappa} \left( -\frac{2}{(1+\varkappa)\pi} + \cos\varphi \right) \frac{\eta}{r+\eta},$$
$$\cos\varphi = \frac{2}{\pi} \left( 1 + \frac{\varkappa}{1+\varkappa} \frac{r}{\eta} \right) = 0,64 + 0,043 \frac{e}{\eta},$$



oder

woraus

$$\eta = r \frac{\varkappa}{1 + \varkappa} \cdot \frac{1}{\frac{\pi}{2} \cos \varphi - 1} = 0,0675 e \frac{1}{\frac{\pi}{2} \cos \varphi - 1}$$

An der innersten Faserschicht, d. h. für  $\eta = -e$ , wird  $\sigma = 0$ , wenn

$$\cos \varphi = 0.64 - 0.043 = 0.597$$

an der äußersten Fläche, d. h. für  $\eta = +e$ , fällt  $\sigma = 0$  aus, wenn  $\cos \varphi = 0.64 + 0.043 = 0.683.$ 

Mit  $\cos \varphi = 0.5$  wird  $\sigma = 0$  für

$$\eta = 0,0675 \frac{1}{\frac{\pi}{4} - 1}e = -0,31e,$$

und mit  $\cos \varphi = 0.8$  wird  $\sigma = 0$  für

$$\eta = 0.0675 \frac{1}{0.4 \pi - 1} e = + 0.26 e.$$

Auf diesem Wege erhalten wir, wie Fig. 5 zeigt, zwei Kurven, welche diejenigen Flächenelemente bestimmen, in denen die Normalspannungen gleich Null sind.

Ferner sind daselbst auch noch in radialer Richtung eingetragen die Spannungen, die an den verschiedenen Punkten der Innen- und Außenfläche des Hohlzylinders in tangentialer Richtung herrschen¹).

Was schließlich die Formänderung anbelangt, so ist ohne weiteres zu übersehen, daß die kreisförmige Mittellinie eine ellipsenartige Form annimmt, entsprechend einer Vergrößerung des Krümmungshalbmessers bei A und einer Verkleinerung desselben bei B.

## § 56. Versuchsergebnisse.

### 1. Versuche mit Hohlzylindern. (1886.)

Zu einer teilweisen Prüfung des in § 55, Ziff. 2 gefundenen Hauptergebnisses Gleichung 5 bei Verwendung von Material, das für die Herstellung solcher Hohlzylinder vorzugsweise in Betracht kommen kann, führte Verfasser die nachstehend besprochenen Versuche durch.

Aus einem gußeisernen Hohlstab mit kreisförmigem Querschnitt und zwar von dem Material: Gußeisen A, § 35 (Bruchstück eines der unter c — S. 368 — aufgeführten 3 Hohlstäbe, Zugfestigkeit 1579 kg, Drehungsfestigkeit 1297 kg), wurden kurze Hohlzylinder von der Länge l = 6,0 cm durch Drehen herausgearbeitet und nach Maßgabe der Fig. 3, § 55, mit 2 Ql belastet. Der äußere Zylindermantel wurde nur so weit abgedreht, als es erforderlich war, um den Druckplatten der Prüfungsmaschine gute Anlageflächen zu sichern.

In ganz gleicher Weise wurden kurze Hohlzylinder aus dem Gußeisen *B*, § 35 (Bruchstück eines der unter *b*,  $\alpha$  — S. 378 — erwähnten 2 Hohlstäbe, Zugfestigkeit 1679 kg, Drehungsfestigkeit 1439 kg) hergestellt.

Die Ergebnisse der Gleichung 5, § 55, in der hier

$$q^{\gamma} = \frac{\pi}{2}, \quad \eta = -e, \quad f = \frac{d-d_0}{2}$$
 (Fig. 3, § 35)

¹) Die in Fig. 5 gegebene Darstellung der Spannungsverteilung in einzelnen Querschnitten und der Spannungsänderung von Querschnitt zu Querschnitt ist in den S. 522, Fußbemerkung 1, erwähnten Arbeiten noch erweitert worden.

§ 56. Versuchsergebnisse.

zu setzen ist, wodurch wird

$$\sigma_{max} = \frac{2Q}{d - d_0} \left[ -\frac{2}{(1 + \varkappa)\pi} + \frac{2}{\varkappa(1 + \varkappa)\pi} \frac{\frac{e}{r}}{1 - \frac{e}{r}} \right], \dots \dots 1 \right]$$

finden sich, nach dieser Gleichung berechnet, in der folgenden Zusammenstellung unter  $\sigma_{max}$  eingetragen.

## Gußeisen A.

	Durch	messer	$\frac{e}{r} = \frac{d - d_0}{d + d_0}$	× Gl. 13, § 54	Bruch- belastung 2 <i>Ql</i> kg	Bruch-
Bezeich- nung	äußerer d cm	${{innerer} \over d_0} \ { m cm}$				$\sigma_{max}$ Gl. 1 kg/qcm
1	10,0	7,0	0,176	0,0105	5410 5420	3657 3685
5	10,00	6,92	0,173	0,0104	5420 5170	3269

Hohlzylinder, innen unbearbeitet.

## Bemerkungen.

Der Bruch erfolgt bei Nr. 1 und 3 durch gleichzeitiges Einreißen in den Querschnitten A und C, Fig. 3, § 55, das innen beginnend sich auf etwa drei Viertel der Wandstärke nach außen fortsetzt. Der äußere Zylindermantel bleibt unverletzt.

Im Falle Nr. 5 reißt zunächst der Querschnitt innen bei A allein; die Fortsetzung des Zusammendrückens veranlaßt denjenigen bei C nachzufolgen.

	Durchmesser		Verhältnis	×	Bruch-	Bruch-
Bezeich- nung	äußerer d cm	${{innerer} \over d_0} \ { m cm}$	$\frac{e}{r} = \frac{d - d_0}{d + d_0}$	Gl. 13, § 54	belastung 2 Ql kg	σ _{max} Gl. 1 kg/qcm
2 4	10,06 10,02	7,28 7,32	0,160 0,156	0,00867 0,00823	4410 4395	$3498 \\ 3695$

Hohlzylinder, innen bearbeitet.

Bemerkungen.

Wie oben Nr. 5.

Bezeich- nung	Durch äußerer d cm	$egin{array}{c} { m messer} & \ { m innerer} & \ { m d}_{ m o} & \ { m cm} \end{array}$	$\frac{e}{r} = \frac{d-d_0}{d+d_0}$	× Gl. 13, § 54	Bruch- belastung 2 <i>Ql</i> kg	$egin{array}{c} { m Bruch-} \\ { m festigkeit} \\ \sigma_{max} \\ { m Gl. 1} \\ { m kg/qcm} \end{array}$
1 3	$10,08 \\ 10,06$	$^{6,96}_{6,96}$	$\begin{array}{c}0,183\\0,182\end{array}$	0,0114 0,01127	$5005\\4980$	$\begin{array}{c} 3135\\ 3156 \end{array}$

Hohlzylinder, innen unbearbeitet.

Bemerkungen.

Wie oben bei Gußeisen A, Nr. 5.

Bezeich- nung	Durch äußerer d cm	$\frac{\text{innerer}}{d_0}$	Verhältnis $\frac{e}{r} = \frac{d-d_0}{d+d_0}$	× Gl. 13, § 54	Bruch- belastung 2 <i>Ql</i> kg	Bruch- festigkeit σ _{max} Gl. 1 kg/qcm
$\frac{2}{4}$	10,07 10,04	7,43 7,42	$\substack{0,151\\0,150}$	$0,00771 \\ 0,00760$	$\begin{array}{c} 3980 \\ 4200 \end{array}$	3508 3759

Hohlzylinder, innen bearbeitet.

Bemerkungen.

Wie oben bei Gußeisen A, Nr. 5.

Zu diesen Ergebnissen ist nachstehendes zu bemerken.

a) Hohlzylinder A1 und A3 sind die beiden einzigen der Versuchskörper, die an den zwei diametral einander gegenüberliegenden Stellen gleichzeitig einreißen. Sie müssen demnach einen größeren Wert von  $\sigma_{max}$  aufweisen als sonst gleiche Hohlzylinder, bei denen dieses Einreißen nacheinander stattfindet. Daraus erklärt sich die geringere Bruchfestigkeit von A5 gegenüber A1 und A3 ohne weiteres.

b) Zum Zwecke der Prüfung des Einflusses der Gußhaut kann nach Maßgabe des unter a) Gesagten nur A5 mit A2 und A4 verglichen werden. Hierbei findet sich die Festigkeit der innen von der Gußhaut befreiten Hohlzylinder A2 und A4 um durchschnittlich

$$\frac{3498 + 3695}{2} - 3269 = 3596 - 3269 = 327 \text{ kg},$$

d. s.

$$100 \frac{327}{3269} = 10^{0} /_{0}$$

größer als diejenige des unbearbeiteten Körpers A5.

Für das Gußeisen B ergibt sich dieser Unterschied zu

 $\frac{3508 + 3759}{2} - \frac{3135 + 3156}{2} = 3633 - 3145 = 488 \text{ kg.}$ d. s.  $100 \frac{488}{3145} = 15.5^{0}/_{0}.$ 

Diese Zahlen bestätigen den bereits in § 22, Ziff. 4 festgestellten Einfluß der Gußhaut.

(Vgl. auch § 58, Fußbemerkung 1, S. 589.)

c) Die Zugfestigkeit des Gußeisens A war zu 1579 kg, diejenige des Gußeisens B zu 1679 kg ermittelt worden. Wird nach S. 292 Nr. 4 die Biegungsfestigkeit für den rechteckigen Stab zu 1,75 mal Zugfestigkeit angenommen, so wäre für bearbeitete Stäbe auf eine Biegungsfestigkeit von

 $1579 \cdot 1.75 = 2763 \text{ kg}$ 

bzw.

$$1679 \cdot 1,75 = 2938 \text{ kg}$$

zu rechnen gewesen. Tatsächlich sind die Werte von  $\sigma_{max}$  (trotz des Einreißens an zunächst einer Stelle) für das Gußeisen A (Nr. 2 und 4) um

$$3596 - 2763 = 833 \text{ kg} \text{ oder } 100 \frac{833}{2763} = 30^{0}/_{0},$$

für das Gußeisen B (Nr. 2 und 4) um

$$3633 - 2938 = 695 \text{ kg} \quad \text{oder} \quad 100 \frac{695}{2938} = 24 \, {}^{0}/_{0}$$

größer. Dieser Unterschied ist zum größten Teile auf Rechnung der dem Gußeisen eigentümlichen Veränderlichkeit der Dehnungszahl  $\alpha$ zu setzen, die den Verlauf der Spannungslinie, z. B. A E F im Querschnitt A, Fig. 5, § 55, dahin abändert, daß die wagrechten Ordinaten weniger rasch wachsen, als die Rechnung, welche Unveränderlichkeit der Dehnungszahl voraussetzt, ergibt. War diese Abweichung schon beim geraden stabförmigen Körper von großem Einflusse (vgl. § 20, namentlich Fig. 19), so muß dieser hier noch bedeutender ausfallen¹).

Um zu prüfen, inwieweit etwa Gußspannungen bei der vorliegenden Frage beteiligt seien, wurden diejenigen Hohlzylinder, die nur an einer Stelle gerissen waren, und bei denen der Versuch nicht

¹) Zur Bestimmung des Einflusses der Veränderlichkeit von  $\alpha$  bei gekrümmten stabförmigen Körpern ist auf die in der Fußbemerkung S. 562 angegebene Arbeit von R. Baumann zu verweisen.

bis zum Einreißen an der zweiten (gegenüberliegenden) Stelle fortgesetzt worden war, an der Rißstelle aufgeschnitten und sodann genau gemessen, ob hierbei ein Zusammengehen oder Erweitern des Ringes (oder der Schnittfuge) stattfand. Eine solche Änderung ließ sich nicht oder nur in ganz verschwindender Größe feststellen. Das Ergebnis blieb auch nach vollständiger Beseitigung der äußeren Gußhaut sowie nach Ausbohren des Ringes auf die halbe Stärke das gleiche. Hiernach können Gußspannungen von Erheblichkeit nicht vorhanden gewesen sein.

Werden diejenigen Werte von  $\sigma_{max}$ , die für die ausgebohrten Hohlzylinder ermittelt wurden, in Vergleich mit der Zugfestigkeit gestellt, so findet sich für das Gußeisen A

$$\sigma_{max} = \frac{3596}{1579} K_z = 2,28 \text{ mal Zugfestigkeit},$$

für das Gußeisen B

 $\sigma_{max} = \frac{3633}{1679} K_s = 2,16 \text{ mal Zugfestigkeit},$ 

also durchschnittlich2,22 mal Zugfestigkeit,gegen1,75 mal Zugfestigkeitbeim geneden Stabe

beim geraden Stabe.

# 2. Versuche und Darlegungen zur Frage der Spannungsverteilung über die Querschnitte gekrümmter stabförmiger Körper.

Zur raschen Gewinnung eines Einblicks in die Verhältnisse, die bei Beurteilung dieser vor einiger Zeit aufgeworfenen Streitfrage in Betracht kommen, läßt es sich nicht vermeiden, bereits aus dem Früheren Bekanntes zu wiederholen.

Die Biegungslehre ist bisher sowohl für gerade als auch für gekrümmte stabförmige Körper von den Voraussetzungen:

- 1. daß die Querschnitte eben bleiben,
- 2. daß zwischen Dehnungen und Spannungen Proportionalität besteht,

ausgegangen. Damit gelangt sie

für gerade stabförmige Körper,

in bezug auf deren Belastung angenommen sei, daß die Ebene des biegenden Kräftepaares den symmetrischen Querschnitt in einer der beiden Hauptachsen schneidet, zu den Ergebnissen:

 a) daß die Gerade, in der die Dehnungen und die Spannungen den Wert Null besitzen, die sogenannte "neutrale Achse" oder "Nullachse", durch den Schwerpunkt des Querschnittes geht und mit der anderen Hauptachse zusammenfällt, b) daß die Spannungen  $\sigma$  proportional mit dem Abstande  $\eta$  von der Nullachse wachsen, d. h. unter Bezugnahme auf Fig. 1,

sofern  $\sigma_1$  die Spannung im Abstande 1 bezeichnet, daß also die Verteilung der Spannungen über den Querschnitt nach dem Gesetze der geraden Linie erfolgt.

Für den gekrümmten stabförmigen Körper, in bezug auf den vorausgesetzt werde, daß die Mittellinie eine einfach gekrümmte Kurve und ihre Ebene Ort der einen Hauptachse sämtlicher Stabquerschnitte sowie Ebene des biegenden Kräftepaares



sei, kommt die Biegungslehre unter den bezeichneten Voraussetzungen, Ziff. 1 und 2, zu den Ergebnissen:

- a) daß die oben unter a) bezeichnete Hauptachse des Querschnittes nicht mehr Nullachse ist, daß diese vielmehr parallel dazu liegt,
- b) daß die Spannungen  $\sigma$  nicht mehr proportional mit dem Abstande  $\eta$  von der Nullachse zunehmen, sondern auf der Seite, die der Krümmungsachse zugekehrt ist, rascher und auf der anderen Seite langsamer als  $\eta$  wachsen, wie Fig. 2 erkennen läßt.

Der Grund dieser abweichenden Ergebnisse, zu denen man unter den gleichen Voraussetzungen gelangt, liegt lediglich darin, daß bei dem gekrümmten Stab die zwischen zwei Querschnitten gelegenen Fasern verschiedene Länge besitzen (vgl. das in Fig. 2 gezeichnete Körperelement mit den Stabquerschnitten AD und BC), während bei dem geraden Stabe Gleichheit der Faserlänge vorhanden ist (vgl. das in Fig. 1 dargestellte Körperelement mit den Stabquerschnitten ADund BC). Wenn eine kürzere Faser um die gleiche Strecke gedehnt wird wie eine längere, so wird eben in der ersteren eine größere

spezifische Dehnung und damit auch eine größere Spannung wachgerufen als in der letzteren¹).

Würde die durch Gleichung 1 bestimmte Spannungsverteilung auch beim gekrümmten stabförmigen Körper sich einstellen, so müßten sich die ursprünglich ebenen Querschnitte bei Festhaltung der Proportionalität von Dehnungen und Spannungen — lediglich unter Einwirkung des biegenden Kräftepaares — krümmen. Versuche, die hierüber angestellt worden sind, bestätigen das nicht.

Da die Frage, ob die Anwendung der für den geraden Stab gültigen Gleichungen auf gekrümmte stabförmige Körper zulässig erscheint, von großer praktischer Bedeutung ist, so hat Verfasser seinerzeit (1896) geglaubt, zu den früheren Versuchen in dieser Richtung (vgl. oben unter Ziff. 1) noch weitere hinzufügen zu sollen, über die im nachstehenden berichtet wird. Dabei sind die Körperformen so gewählt, daß vorzugsweise der Einfluß des biegenden Momentes sich äußert, dagegen der einer Normalkraft oder einer Schubkraft zurücktritt.

# a) Versuche mit Stäben aus grauem Gußeisen, Fig. 3.

Bearbeitet.

### Stab 1.

 $l = 552 \text{ mm}, \quad r = 70 \text{ mm}, \quad h = 80 \text{ mm}, \quad b = 24.2 \text{ mm},$  $f = 2,42 \cdot 8 = 19,36 \text{ qcm},$ 

nach Gleichung 12, § 54,

$$\varkappa = -1 + \frac{7}{8} \ln \frac{7+4}{7-4} = 0.137.$$

Der Bruch erfolgt bei P = 855 kg nach der in Fig. 3 eingetragenen Linie 11. Bruchfläche gesund.

Nach Gleichung 8, § 54, berechnet sich hieraus die Bruchfestigkeit

$$\sigma_{max} = \frac{855}{19,36} - \frac{855 \cdot 55,2}{19,36 \cdot 7} + \frac{855 \cdot 55,2}{0,137 \cdot 19,36 \cdot 7} + \frac{44,2 - 348,3 + 3390}{0,137 \cdot 19,36 \cdot 7} = \mathbf{1}$$

Von den beiden Schenkelstücken, die durch den Bruch entstanden waren, wurde das eine bei der Auflagerentfernung von 500 mm als gerader Stab der Biegungsprobe unterworfen. Diese lieferte bei gesunder Bruchfläche nach Gleichung 9, § 16. die Biegungsfestigkeit:  $K_h = 2524 \text{ kg/qcm.}$ 

¹) Die Sache liegt hier ähnlich wie bei dickwandigen Hohlzylindern. Die Anstrengung in tangentialer Richtung ist innen am größten und nimmt nach außen hin ab. (Vgl. S. 585 u. f., insbesondere auch Fig. 4, S. 590.)
Würde man den gekrümmten stabförmigen Körper als geraden behandeln, d. h. seine Anstrengung durch das biegende Moment nach Gleichung 9, § 16, beurteilen, so ergibt sich die Bruchfestigkeit zu

$$(\sigma_{max}) = rac{855}{19,36} + rac{855 \cdot 55,2}{rac{1}{6} \cdot 2,42 \cdot 8^2} = 1873 \text{ kg/qcm}.$$

Die Rechnung auf Grund der Voraussetzung, daß  $\alpha$  unveränderlich ist und die Querschnitte eben bleiben, würde mit der Biegungsfestigkeit  $K_b = 2524$  kg/qcm eine Bruchbelastung



# $P_1 = 855 \frac{2524}{3086} = 699 \text{ kg}$

Fig. 3.

liefern, während die Annahme, daß die Spannungsverteilung nach Gleichung 1 stattfinde, d. h. genau so, als ob der Querschnitt einem geraden stabförmigen Körper angehöre, eine Bruchbelastung  $P_2$  erwarten läßt, die sich aus

$$2524 = \frac{P_2}{2,42 \cdot 8} + \frac{P_2 \cdot 55,2}{\frac{1}{6} \cdot 2,42 \cdot 8^2}$$

oder

$$P_{2} = 855 \frac{2524}{1873}$$

zu

$$P_2 = 1153$$
 kg.

ergibt.

C. Bach. Elastizität. 8. Aufl.

Hieraus folgt, daß die letztere Annahme zu einer bedeutenden Unterschätzung der Anstrengung führt; sie liefert eine um

$$\varphi_1 = 100 \frac{1153 - 855}{855} = \sim 35^{\circ} |_{0}$$

zu große Widerstandsfähigkeit.

Die erste Voraussetzung dagegen beurteilt dieselbe um

$$\varphi_2 = 100 \frac{855 - 699}{855} = 18^{0}/_{0}$$

zu niedrig¹).

¹) Daß der Unterschied  $\varphi_2$  zum größten Teile seine Begründung in der Veränderlichkeit der Dehnungszahl  $\alpha$  bei Gußeisen hat, wurde oben S. 557 bereits hervorgehoben.

Zur Ermittlung der tatsächlich auftretenden Spannungen unter Berücksichtigung, daß die Dehnungszahl  $\alpha$  veränderlich ist, kann folgendermaßen vorgegangen werden.

Gleichung 1, S. 512, läßt erkennen, daß die über dem Querschnitt verzeichnete Linie der Dehnungen  $\varepsilon$  eine Hyperbel  $\left(\varepsilon = \frac{\eta}{r+\eta}\right)$  im Maßstabe  $(\omega - \varepsilon_0)$  darstellt, die von der Nullachse einen Betrag  $\varepsilon_0$  abschneidet. Ist das Gesetz der Abhängigkeit zwischen Dehnungen und Spannungen bekannt, d. h. in Form eines durch den Versuch erlangten Linienzuges oder als Gleichung (vgl. § 22, Ziff. 5) gegeben, so kann über dem Querschnitt die zu der zunächst willkürlich angenommenen Linie (Hyperbel) der Dehnungen  $\varepsilon$  gehörige Linie der Spannungen  $\sigma$  aufgezeichnet werden. Läßt man vorerst die Normalkraft P außer Betracht, indem man sich ihre Berücksichtigung für später vorbehält, so muß die Bedingung erfüllt sein

$$\int \boldsymbol{\sigma} \cdot \boldsymbol{df} = 0.$$

Hierdurch ist die Lage der Hyperbel, deren einer Punkt durch die willkürlich angenommene Dehnung  $\varepsilon_1$  bestimmt ist, festgelegt und damit die Größe von  $\omega$  und  $\varepsilon_0$  gefunden. (Soll die Normalkraft Berücksichtigung finden, so muß der Unterschied der Werte  $\int \sigma df$  auf der Zug- und Druckseite gleich P sein.) Aus der Größe von  $\int \sigma df$  für die Zug- und Druckseite und dem Abstand der Resultierenden dieser Zug- oder Druckkräfte ergibt sich die Größe des biegenden Momentes, das die angenommene Dehnung  $\epsilon_1$  hervorzurufen vermag. Hinsichtlich weiterer Einzelheiten muß auf die folgenden Arbeiten verwiesen werden, in denen gezeigt ist, daß die tatsächlich auftretende Zugspannung beim Bruch fast genau gleich groß ist wie die Zugfestigkeit, die sich aus Zugversuchen für dasselbe Material ergeben würde. Wegen weiterer Einzelheiten vgl. R. Baumann, Über eben gekrümmte stabförmige Körper aus Material mit veränderlicher Dehnungszahl, ihre Beanspruchung und Formänderung, Zeitschrift des Vereines deutscher Ingenieure 1911, S. 140 u. f., sowie Ludwik, Zur Frage der Spannungsverteilung in gekrümmten stabförmigen Körpern mit veränderlicher Dehnungszahl, Technische Blätter, Prag 1905, S. 1 u. f.

#### Stab 2.

l = 554.2 mm, r = 70 mm, h = 80 mm, b = 22.7 mm.Bruch erfolgt bei P = 810 kg nach der in Fig. 3 eingetragenen Bruchlinie 2 2. Bruchfläche gesund.

Es finden sich die Werte

$$\begin{split} \sigma_{max} &= 3128 \text{ kg/qcm}, \quad K_b = 2500 \text{ kg/qcm}, \quad (\sigma_{max}) = 1899 \text{ kg/qcm}, \\ P_1 &= 810 \frac{2500}{3128} = 647 \text{ kg}, \quad P_2 = 810 \frac{2500}{1899} = 1067 \text{ kg}, \\ \varphi_1 &= 100 \frac{1067 - 810}{810} = 32^{0}/_0, \quad \varphi_2 = 100 \frac{810 - 647}{810} = 20^{0}/_0. \end{split}$$

 $l = 552 \text{ mm}, \quad r = 70 \text{ mm}, \quad h = 80 \text{ mm}, \quad b = 23,5 \text{ mm}.$ Bruch erfolgt bei P = 790 kg, nach der in Fig. 3 eingetragenen Linie 3 3. Bruchfläche gesund.

Sämtliche 3 Stäbe zeigen, daß die Voraussetzung, die Spannungsverteilung erfolge nach Gleichung 1, zu einer bedeutenden Unterschätzung der Inanspruchnahme des vorliegenden Materiales führt, und zwar im Durchschnitt um

$$\frac{35+32+31}{3} = \sim 33^{0}/_{0},$$

wenn die ermittelten Werte von  $\varphi_1$  zugrunde gelegt werden.

# b) Versuche mit Stäben aus grauem Gußeisen, Fig. 4. Bearbeitet.

Die Form dieser Stäbe ist so gewählt, daß, wenn die Auffassung, die Spannungsverteilung in dem Querschnitte eines gekrümmten Stabes sei die gleiche, als gehöre derselbe einem geraden stabförmigen Körper an, zutreffend wäre, der Bruch innerhalb der geraden Strecke AB erfolgen müßte; denn für alle anderen Querschnitte würde dann — die Richtigkeit dieser Annahme vorausgesetzt die Beanspruchung geringer sein.

In der Tat ist jedoch keiner der Stäbe in der geraden Mittelstrecke AB gebrochen; selbst dann nicht, wenn der Guß in dieser 36*

#### 564 Stabförmige Körper mit gekrümmter Mittellinie.

Mittelstrecke schlechte Stellen hatte. Sämtliche brachen in der Krümmung. Der Querschnitt des immer von der inneren Krümmung ausgehenden Bruches soll jeweils durch die Größe y, Fig. 4, festgelegt werden.

#### Stab 1.

$$l = 554 \text{ mm}, \quad r = 70 \text{ mm}, \quad h = 80 \text{ mm}, \quad b = 22,4 \text{ mm},$$
  
$$f = 2,24 \cdot 8 = 17,9 \text{ qcm},$$
  
$$\varkappa = -1 + \frac{7}{8} \ln \frac{11}{3} = 0,137.$$



r 1g. 4.

Der Bruch erfolgt bei P = 870 kg in der Krümmung derart, daß y = 1.6 cm. Bruchfläche gesund.

Für den Bruchquerschnitt ergibt sich

das biegende Moment

 $P(l-y) = 870 (55, 4 - 1, 6) = 870 \cdot 53, 8 = \sim 46800 \text{ kg} \cdot \text{cm},$ die Normalkraft 670 kg.

Nach Gleichung 8, § 54, berechnet sich hieraus die Bruchfestigkeit

$$\sigma_{max} = \frac{670}{17,9} - \frac{870 \cdot 53,8}{17,9 \cdot 7} + \frac{870 \cdot 53,8}{0,137 \cdot 17,9 \cdot 7} \frac{4}{7-4}$$
  
= 37 - 374 + 3636 = 3299 kg/qcm.

Von den beiden, durch den Bruch entstandenen Schenkelstücken CD wurde das eine bei 500 mm Auflagerentfernung der Bruchprobe durch Biegung unterworfen. Dasselbe ergab bei gesunder Bruchfläche nach Gleichung 9, § 16, die Biegungsfestigkeit

$$K_b = 2668 \text{ kg/qcm}.$$

Würde das gekrümmte stabförmige Körperstück, innerhalb dessen der Bruch erfolgt ist, als gerader Stab behandelt, d. h. seine Anstrengung durch das biegende Moment nach Gleichung 9, § 16, beurteilt, so fände sich die Bruchfestigkeit

$$(\sigma_{max}) = \frac{670}{17,9} + \frac{870 \cdot 53,8}{\frac{1}{6} \cdot 2,24 \cdot 8^2} = 37 + 1961 = 1998 \text{ kg/qcm.}$$

Die Rechnung, die voraussetzt, daß  $\alpha$  unveränderlich ist und die Querschnitte eben bleiben, würde von der Biegungsfestigkeit  $K_b = 2668 \text{ kg/qcm}$  auf eine Bruchbelastung

$$P_1 = 870 \frac{2668}{3299} = 704 \text{ kg}$$

führen, während die Annahme, daß die Spannungsverteilung so stattfände, als gehöre der Bruchquerschnitt einem geraden stabförmigen Körper an, eine Bruchbelastung

$$P_2 = 870 \frac{2668}{1998} = 1162 \text{ kg}$$

erwarten läßt.

Da der Versuch die Bruchbelastung zu 870 kg ergab, so folgt, daß die letztere Annahme die Widerstandsfähigkeit um

$$\varphi_1 = 100 \frac{1162 - 870}{870} = \sim 34^{0} /_{0}$$

überschätzt.

Die erste Voraussetzung beurteilt diese um

$$q_2 = 100 \frac{870 - 704}{870} = \sim 19^{0} /_{0}$$

zu niedrig¹).

#### Stab 2.

l = 552 mm, r = 69 mm, h = 78 mm, b = 22,4 mm, z = 0,133,

Bruchbelastung P = 790 kg, Normalkraft 645 kg, y = 13 mm, Bruchfläche: fehlerhafte Stelle.

¹) Vgl. Fußbemerkung S. 562.

Es finden sich:

$$\begin{split} \sigma_{max} &= 3131 \text{ kg/qcm}, \quad K_b = 2759 \text{ kg/qcm}, \quad (\sigma_{max}) = 1909 \text{ kg/qcm}, \\ P_1 &= 790 \frac{2759}{3131} = 696 \text{ kg}, \qquad P_2 = 790 \frac{2759}{1909} = 1142 \text{ kg}, \\ \varphi_1 &= 100 \frac{1142 - 790}{790} = 44^{0} /_{0}, \qquad \varphi_2 = 100 \frac{790 - 696}{790} = 12^{0} /_{0}. \end{split}$$

#### Stab 3.

 $l = 554 \text{ mm}, \quad r = 70 \text{ mm}, \quad h = 80,2 \text{ mm}, \quad b = 19,9 \text{ mm},$  $\varkappa = 0,137.$ 

Bruchbelastung P = 780 kg, Normalkraft 685 kg, y = 9 mm, Bruchfläche gesund.

Es ergeben sich die folgenden Werte:

$$\begin{split} \sigma_{max} &= 3378 \text{ kg/qcm}, \quad K_b = 2633 \text{ kg/qcm}, \quad (\sigma_{max}) = 2043 \text{ kg/qcm}, \\ P_1 &= 780 \frac{2633}{3378} = 608 \text{ kg}, \qquad P_2 = 780 \frac{2633}{2043} = 1005 \text{ kg}, \\ \varphi_1 &= 100 \frac{1005 - 780}{780} = 29^{0}/_{0}, \qquad \varphi_2 = 100 \frac{780 - 608}{780} = 22^{0}/_{0}. \end{split}$$

Somit weisen auch hier sämtliche Stäbe nach, daß eine Überschätzung der Widerstandsfähigkeit stattfindet, und zwar im Durchschnitt um

$$\frac{34+44+29}{3} = \sim 36^{\circ}/_{\circ}$$

oder bei Ausschluß des Stabes mit fehlerhafter Bruchfläche um

$$\frac{34+29}{2} = 31,5^{\circ}/_{0},$$

wenn die Spannungsverteilung nach Gleichung 1, also angenommen wird, der Bruchquerschnitt gehöre einem geraden stabförmigen Körper an.

# Schlußbemerkung.

Aus den Versuchen ist folgendes zu schließen.

Die Anwendung der Gleichung 1 für die Spannungsverteilung bei gekrümmten stabförmigen Körpern, d. i. die Behandlung derselben als Stäbe mit geraden Mittellinien, führt bei den Körpern Fig. 3 und 4 zu einer ganz bedeutenden Überschätzung der Wider-

standsfähigkeit, und zwar bei den Stäben Fig. 8 um durchschnittlich  $33^{0}/_{0}$ , bei den Stäben Fig. 4 um durchschnittlich mindestens  $31,5^{0}/_{0}^{-1}$ ).

Diese Unterschätzung der Anstrengung des Materials wird unter sonst gleichen Verhältnissen um so bedeutender ausfallen, je größer die in Richtung des Krümmungshalbmessers r liegende Querschnittsabmessung h im Verhältnis zu r ist. Sie tritt in dem Maße zurück, in dem diese Abmessung h im Vergleich zum Krümmungshalbmesser r abnimmt, wie bereits in § 54, namentlich Fußbemerkung daselbst S. 514 u. f., dargelegt ist.

Die Annahme, daß  $\alpha$  unveränderlich ist und die Querschnitte eben bleiben, führt zu Zahlen, die auf eine Unterschätzung der Widerstandsfähigkeit hindeuten, und zwar bei den Stäben Fig. 3 um durchschnittlich

$$\frac{18+20+20}{2} = \sim 19^{0}/_{0},$$

bei den Stäben Fig. 4 unter Ausschluß des zweiten Stabes um durchschnittlich

$$\frac{19+22}{2} = \sim 20,5^{\circ}/_{o}.$$

Daß dieser Unterschied jedoch zum größten Teile auf Rechnung der dem Gußeisen eigentümlichen Veränderlichkeit der Dehnungszahl  $\alpha$  zu setzen ist, wurde bereits hervorgehoben (vgl. S. 557 und S. 562, Fußbemerkung).

Hiernach muß es als gegen den Sinn des Zweckes unserer technischen Rechnungen verstoßend und deshalb als unrichtig bezeichnet werden, gekrümmte Körper, für die r im Verhältnis zu h nicht ausreichend groß ist, auf Grund des Gesetzes Gleichung 1 allgemein wie Stäbe mit gerader Mittellinie zu berechnen²).

¹) Wie Verfasser aus Anlaß eines Unfalles in der Zeitschrift des Vereines deutscher Ingenieure 1901, S. 1567, und weiterhin 1902, S. 141 und 142 (oder Mitteilungen über Forschungsarbeiten, Heft 4) festgestellt hat, kann diese Überschätzung der Widerstandsfähigkeit in praktisch wichtigen Fällen, je nach der Körper- und Querschnittsform, so weit gehen, daß die tatsächliche Widerstandsfähigkeit rund nur ein Drittel von derjenigen ist, die nach der Auffassung, der Bruchquerschnitt gehöre einem geraden stabförmigen Körper an, sich ergibt.

²) Daß man zu diesem Ergebnis auch auf dem Wege der Überlegung gelangt, folgt aus den oben gegebenen Darlegungen von selbst. Schon die S. 560, Fußbemerkung 1, erwähnte Ähnlichkeit ließ dasselbe erwarten.

Aus neuerer Zeit ist die Arbeit von Aue "Zur Berechnung der Spannungen in gekrümmten Stäben", Dresden 1910, zu erwähnen, die zu demselben Ergebnis gelangt. Vgl. auch Zeitschrift des Vereines deutscher Ingenieure 1911, S. 561 u. f.

Stabförmige Körper mit gekrümmter Mittellinie.

Hieran ändert auch die Erwägung nichts, daß die Querschnitte des gekrümmten Körperteiles da, wo an ihn eine gerade Strecke anschließt, so z. B. im Falle der Fig. 4 bei A und B, oder auch bei C weniger stark beansprucht sind, da in diesen Grenzquerschnitten wegen ihrer Angehörigkeit sowohl zum gekrümmten wie zum geraden Stabstück nicht gleichzeitig die für ersteres und die für letzteres geltende Spannungsverteilung vorhanden sein kann. Vielmehr wird sich hier ein gewisser Ausgleich vollziehen, ähnlich wie er in § 46, Ziff. 3, S. 450 bis 452 besprochen worden ist¹). Die größte Zugspannung wird in diesen Querschnitten (vgl. Fig. 4) kleiner sein, als sie sich für den gekrümmten Stab ergibt, und größer, als sie für den geraden Stabteil berechnet wird. Darin ist es auch begründet, daß keiner der Stäbe Fig. 4 im Querschnitt bei A und B gebrochen ist, obgleich hier das biegende Moment und auch die Normalkraft am größten ausfällt.

Ähnlich liegt der Fall bei dem in § 55, Fig. 1, S. 546 dargestellten Haken. Hier muß der Umstand, daß der Krümmungshalbmesser der Mittellinie oberhalb des Querschnittes *BOC* sehr bald bedeutend zunimmt, eine solche ausgleichende, d. h. die größte Zugspannung in diesem Querschnitt etwas vermindernde, Wirkung äußern. Dagegen wird ein solcher, auf Verminderung der größten Anstrengung wirkender Einfluß bei dem Körper, Fig. 4, § 54, S. 515, nicht erwartet werden können.

Eine Körperform, die sich unter Einwirkung der äußeren Kräfte so ändert, daß r für den in Betracht kommenden Querschnitt zunimmt, während sich gleichzeitig das biegende Moment infolge Abnahme des Hebelarmes verringert, wie dies beispielsweise bei Fig. 4, § 54, S. 515, und Fig. 1, § 55, S. 546, der Fall ist, wird, reichliche Zähigkeit des Materials, d. h. weitgehende Fähigkeit, die Gestalt zu ändern, vorausgesetzt, bei Bruchversuchen — sofern überhaupt Bruch eintritt — naturgemäß eine bedeutend größere Biegungsfestigkeit ergeben müssen, als die Rechnung, die noch dazu Proportionalität zwischen Spannungen und Dehnungen voraussetzt, erwarten läßt. Von der so nach weit getriebener Formänderung ermittelten Festigkeit kann ein Schluß auf die Beanspruchung, wie sie im normalen Zustand des Körpers tatsächlich statthat, auch nicht mit einiger Annäherung gezogen werden, wie bereits für gerade stabförmige Körper in § 22, Ziff. 1 a, S. 288 u. f. dargelegt worden ist²).

¹) An Stellen mit plötzlicher Änderung der Form des stabförmigen Körpers, also mit Stetigkeitsunterbrechungen in der Form, wird sich immer ein solcher Ausgleich einstellen müssen. Vgl. auch E. Daiber, Die Formänderung rechter Winkel. Mannheim 1909.

²) Vgl. auch A. Bantlin, Zeitschrift des Vereines deutscher Ingenieure

### 3. Versuche zur Prüfung der Anwendbarkeit der Gleichung 8, § 54, auf Körper mit scharfen oder ausgerundeten Ecken.

Der Ingenieur kommt nicht selten in die Lage, Körper mit Ansätzen (Schultern), wie z. B. in Fig. 5 dargestellt, gegenüber den wirkenden Kräften ausreichend stark zu bemessen. Eine strenge Verfolgung dieser Aufgabe derart, daß die ausführende Technik von der Lösung Gebrauch machen könnte, liegt bis jetzt noch nicht vor¹). Bei dieser Sachlage empfand der Verfasser die Pflicht, die von ihm

geübte und 1901 aus Anlaß eines Unfalls veröffentlichte Näherungsrechnung (vgl. Zeitschrift des Vereines deutscher Ingenieure 1901, S. 1567; 1902, S. 141 und 142, sowie Mitteilungen über Forschungsarbeiten, Heft 4) dahingehend, der Querschnitt







A - B, nach dem der Bruch erfolgt, gehöre einem gekrümmten stabförmigen Körper an, noch durch weitere Versuche hinsichtlich des Grades ihrer Zuverlässigkeit zu prüfen, was durch Bruchversuche mit Körpern nach Fig. 6 aus gutem Maschinengußeisen (1908) geschehen ist. Dabei betrugen die Abmessungen in abgerundeten Maßen a = 70 mm, b = 40 mm, h = 50 und 80 mm, die Ausrundungen  $\varrho = 15$  mm. 5 mm und 0 mm. Der Abstand x der Kraftrichtung wurde zu rund 16 mm gewählt.

An den Seitenflächen, die sich im Aufriß Fig. 6 als Linien projizieren, waren die Körper bearbeitet, um den Einfluß der Gußhaut auszuschalten.

^{1899,} S. 261 u. f. Gegenrede und Erwiderung hierzu findet sich S. 403 und 404 daselbst.

¹) Diese Anforderung wird auch von der Abhandlung nicht erfüllt, die in der Zeitschrift für Mathematik und Physik (Organ für angewandte Mathematik) 1907, S. 60 u. f. enthalten ist.

Stabförmige Körper mit gekrümmter Mittellinie.

Körper mit h = rund 50 mm.

$$\varrho = 15 \text{ mm}.$$

Körper A brach nach Fig. 7, Taf. XXIII, unter 2Q = 33650 kg"B" "2Q = 36350 kgDurchschnitt 2Q = 35000 kg

Die Bruchflächen erwiesen sich als gesund.

Die Körper rissen zuerst auf der einen Seite unter etwa  $45^{\circ}$  (bei Körper A links).

$$\varrho = 5 \text{ mm}.$$

Körper C brach nach Fig. 8, Taf. XXIII, unter 2Q = 26520 kg" D " 2Q = 27470 kgDurchschnitt 2Q = 26995 kg

Bruchflächen gesund.

$$\varrho = 0$$

Körper E brach nach Fig. 9, Taf. XXIII, unter 2Q = 22970 kg" F "" 2Q = 22430 kgDurchschnitt 2Q = 22700 kg

Bruchflächen gesund.

In allen Fällen beginnt der Anbruch unter ungefähr 45°.

Deutlich zeigt sich Zunahme der Widerstandsfähigkeit mit wachsender Ausrundung.

Trägt man zu den Werten  $\varrho$  als wagrechten Abszissen die Durchschnittswerte von 2Q als Ordinaten auf, so ergibt sich der in Fig. 10 dargestellte Linienzug, der nahezu eine Gerade bildet. Der Umstand, daß für  $\varrho = 0$  noch ein sehr bedeutender Wert für 2Qsich ergibt, spricht deutlich für die alte Erkenntnis, daß sich an der scharfen Ecke ein Ausgleich der Spannungen einstellt, und diese hier nicht unendlich groß werden, wie Rechnungen ergeben, die als streng wissenschaftlich angesehen werden. Dementsprechend rechnet Verfasser bei scharfen Ecken nicht mit  $\varrho = 0$ , sondern mit einem aus Versuchen abgeleiteten Wert  $\varrho_0$ , der von der Querschnittshöhe 2e, Fig. 11, abhängt. Damit ergibt sich für die in Fig. 11 skizzierte Sachlage zur Benutzung von Gleichung 8, § 54:

$$P = Q \sin 45^{\circ}, \quad f = 2be, \quad M_b = Q(x+y), \quad r = e_0 + e.$$

Weitere Versuche mit ähnlich gestalteten Probekörpern führten zu dem in der Zeitschrift des Vereines deutscher Ingenieure 1913, S. 1594 veröffentlichten Rechnungsverfahren, bei dem Gleichung 8, § 54 verwendet und gleichzeitig  $\varrho_0 = \frac{1}{15}$  bis  $\frac{1}{20}$  der Querschnitts-



S. 569 u. f.

Fig. 9, § 56.

Fig. 12, § 56.



höhe 2*e* gesetzt wird. Zur Bestimmung von  $\varkappa$  und  $\eta$  in Gleichung 8, § 54, wird also gerechnet mit

$$r = \frac{1}{10}e + e = 1, 1e$$
 bis  $\frac{1}{7,5}e + e = \frac{17}{15}e$ .

Bei Ausrundung der Ecke, nach Fig. 6, ist der Ausrundungshalbmesser  $\varrho$  um denselben Betrag zu vermehren und zu setzen



Die letzte Gleichung enthält die vorletzte als Sonderfall in sich ( $\rho = 0$ ).

Um den Querschnitt mit der größten Beanspruchung zu ermitteln, ist  $\sigma$  für mehrere Richtungen zu berechnen. In vielen Fällen liegt der am stärksten beanspruchte Querschnitt nahe der Linie, die den Winkel zwischen Q und der Stabachse halbiert. Weiteres s. in der oben bezeichneten Arbeit.

Ausführlicher soll an anderer Stelle über diese Versuche berichtet und dabei auch auf Stabköpfe eingegangen werden, für die hbedeutend größer ist, und deren Bruchlinie anders verläuft, als oben angegeben (vgl. Fig. 12, Taf. XXIII).

Um zu zeigen, daß die Widerstandsfähigkeit von Körpern nach Fig. 6 durch Vermehrung des Ausrundungshalbmessers selbst dann erhöht werden kann, wenn damit eine Verminderung der Abmessungen verknüpft ist — was sich in vielen Fällen nachträglich ausführen läßt — wurde bei früheren Versuchen (1908) mit Stücken, die der Figur 6 ähnlich waren, ein Körper, dessen Ausrundungshalbmesser  $\varrho = 5$  mm betragen hatte — Fig. 13, linke Hälfte durch Abarbeiten mit der Rundung  $\varrho = 15$  mm versehen — Fig. 13, rechte Hälfte —. Es ergab sich

bei  $\varrho = 5$  mm Bruchlast 40100 und 38400, im Durchschnitt<br/>39250 kg, ,  $\varrho = 15$  , , 47550 , .



Fig. 13.

Obgleich also der prismatische Teil sehr bedeutende Verschwächung erfahren. hatte, war die Bruchlast im Verhältnis 47550:39250 = 1,21:1, d. h. um  $21^{0}/_{0}$ größer als im ersteren. Der Bruch erfolgte bei allen drei Körpern wie bei Fig. 7, 8, Taf. XXIII.

Infolge der bei den besprochenen Versuchen auftretenden Biegungsbeanspruchung ist die Verteilung der Spannungen am Ende des prismatischen Teiles stark ungleichförmig, ganz wie bei Stäben, die durch eine in ihrer Achse wirkende Kraft beansprucht sind, deren Querschnitt

aber sprungweise Veränderung erfährt, worauf schon in § 9, Ziff. 1 eingegangen worden ist. Ähnlich wirken alle Stetigkeitsunterbrechungen, scharfe Ecken, Bohrungen usf. Wie in § 66, Ziff. 2 gezeigt, entsteht z. B. durch eine kleine Bohrung in der Mitte einer umlaufenden Scheibe eine Erhöhung der Beanspruchung um  $180^{0}/_{0}$ (vgl. Fig. 3 daselbst).

Über die Arbeiten, die sich mit der rechnerischen Verfolgung der infolge von Bohrungen, Kerben usf. auftretenden Spannungserhöhung befassen, gibt Léon in der Zeitschrift des Vereines deutscher Ingenieure, 1915, S. 11 usf. Auskunft. Auf dem Wege des Versuchs hat Preuß diese Fragen bearbeitet (dieselbe Zeitschrift, 1912, S. 1349, 1780 usf., 1913, S. 664: s. a. Mitteilungen über Forschungsarbeiten, Heft 126, 134).

II. Die Mittellinie ist eine doppelt gekrümmte Kurve.

In Berücksichtigung der Grenzen, die diesem Buche gezogen sind, haben wir uns hier auf das Nachstehende zu beschränken.

## § 57. Die gewundenen Drehungsfedern.

Eine genaue Berechnung dieser Federn ist sehr umständlich; der hiermit verknüpfte Zeitaufwand würde in den allermeisten Fällen außer Verhältnis zur praktischen Bedeutung des Ergebnisses stehen. Infolgedessen pflegt man bei Feststellung der Zusammendrückung oder Ausdehnung sowie der Beanspruchung Annahmen zu machen. die zu genügend einfachen Beziehungen führen¹).

Die Mittellinie ABCDE, Fig. 1, des gewundenen Stabes von gleichem Querschnitte bestehe aus dem Kreisbogen ABCD vom Halbmesser  $\varrho^2$ ) und aus der Geraden DE, welche in die Richtung eines Halbmessers fällt. Im Punkte A sei der Stab eingespannt und im freien Endpunkte E, der gleichzeitig Mittelpunkt des Kreises ist, durch eine Kraft P senkrecht zur Bildebene (Ebene des Kreises) belastet.

Für den beliebigen Querschnitt im Punkte *B*, der durch den Winkel  $\varphi$  bestimmt sein möge, ergibt die Kraft *P* ein auf Drehung wirkendes Kräftepaar vom Moment  $M_d = P\varrho$ und eine Schubkraft *P*, die vernachlässigt wird. Die Materialanstrengung erscheint hiernach festgestellt durch Gleichung 9, § 34, natürlich mit derjenigen Genauigkeit, mit welcher diese





für den geraden Stab entwickelte Beziehung auf den gekrümmten Stab übertragen werden darf.

Der Querschnitt im Punkte C der Mittellinie, der von demjenigen im Punkte B um  $ds = \varrho d\varphi$  absteht, muß sich unter Einwirkung von  $M_d$  gegenüber dem letzteren Querschnitt verdrehen. Ist  $\vartheta$  der verhältnismäßige Drehungswinkel, mit der soeben bezeichneten Genauigkeit bestimmt:

für den kreisförmigen Querschnitt durch Gleichung 5, § 32,

$$\vartheta = \frac{32}{\pi} \frac{P\varrho}{d^4} \beta,$$

für den rechteckigen Querschnitt durch Gleichung 6, § 35, S. 397.

$$\vartheta = \psi_0 \frac{b^2 + h^2}{b^3 h^3} P \varrho \beta,$$

so beträgt diese Verdrehung  $\vartheta ds = \vartheta \varrho d\varphi$ . Dementsprechend wird sich der Angriffspunkt *E* der Kraft *P* um  $\vartheta ds \cdot \varrho = \vartheta \varrho^2 d\varphi$  in Richtung der letzteren bewegen. Hieraus ergibt sich die Strecke y', um

¹) Ausführlicher wird der Gegenstand für Federn mit kreisförmigem Querschnitt von Zacharias behandelt in den Mitteilungen über Forschungsarbeiten, Heft 106 (1911).

²) Die Entwicklungen werden deshalb mit einem um so größeren Fehler behaftet sein, je bedeutender die Steigung im Verhältnis zum Halbmesser ist. Auch die Veränderung des Halbmessers beim Zusammendrücken oder Auseinanderziehen der Feder verdient unter Umständen Beachtung. Ferner nimmt Einfluß das Verhältnis der Querschnittsabmessung in Richtung des Halbmessers zu der Größe des letzteren. Über den Einfluß der letzten Federgänge s. S. 579.

die der Punkt E infolge der Verdrehung sämtlicher Querschnitte des Bogens ABCD fortrückt, zu

$$y' = \int_{0}^{\infty} \vartheta \, \varrho^2 \, d \, \varphi.$$

Durch Einführung von

$$\vartheta = A \cdot \varrho$$
,

wobei beträgt:

für den kreisförmigen Querschnitt

$$A = \frac{32}{\pi} \frac{1}{d^4} P\beta,$$

für den rechteckigen Querschnitt

$$A = \psi_0 \frac{b^2 + h^2}{b^3 h^3} P\beta,$$

folgt

$$y' = A \int_{0}^{\omega} \varrho^{3} d\varphi \quad . \quad 1)$$

Die Bewegung von E aus Anlaß der Durchbiegung des Armes DE wird — als verhältnismäßig klein — vernachlässigt.

#### 1. Die zylindrischen Schraubenfedern, Fig. 2 und 3.

Das in Gleichung 1 gewonnene Gesetz überträgt man nun auf diese Federn, indem bei i Windungen der Schraubenlinie

$$\omega = 2 \pi i$$

gesetzt und an der Stelle von  $\varrho$  der Halbmesser r eingeführt wird. Damit folgt

$$y' = A \int_{0}^{2\pi i} r^3 dq = 2\pi i A r^3.$$

insbesondere für den kreisförmigen Querschnitt unter Beachtung der Gleichung 3, § 32, nach der

$$Pr = \frac{\pi}{16} k_d d^3,$$
  
$$y' = 64 i \frac{Pr^3}{d^4} \beta = 4\pi i \frac{r^2}{d} k_d \beta, \quad \dots \quad \dots \quad 2)$$

und für den rechteckigen Querschnitt bei Berücksichtigung der Gleichung 5, § 34,

$$Pr = \frac{2}{9} k_d b^2 h,$$



$$y' = 2 \psi_0 \pi i \frac{b^2 + h^2}{b^3 h^3} P r^3 \beta = \frac{4}{9} \psi_0 \pi i \frac{b^2 + h^2}{b h^2} r^2 k_d \beta$$
 . . 3)¹

worin b die kleinere Seite des Rechtecks ist, gleichgültig, ob b oder h in die Richtung der Federachse fällt.

¹) Nach Versuchen des Verfassers mit zylindrischen Schraubenfedern aus vorzüglichem Federstahl (gchärtet) erwies sich Gleichung 3 innerhalb des Gebietes h: b = 1 bis 6 und für Worte von h (im Gegensatz zu Fig. 3 senkrecht zur Schraubenachse liegend) bis 0.6 r noch als ausreichend zutreffend, wenn

$$2 \, \gamma_0 = 8,35 - 0,3 \, \frac{h}{b} \, \ldots \, \ldots \, \ldots \, \ldots \, .$$
 7)

gesetzt wird. Dabei war  $\beta = \frac{1}{840\,000} = 1,19$  Milliontel in Rechnung gestellt worden.

Materialanstrengungen, berechnet aus

$$k_d = 4,5 \frac{Pr}{b^2 h},$$

ertrug das Material bis rund  $14\,000 \text{ kg/qcm}$  (vgl. Maschinenelemente, 12. Aufl., S. 63 und 64). Bei Zugrundelegung der Gleichungen 6 und 7, § 34, S. 359, sinkt dieser Wert für die langgestreckten Rechtecksquerschnitte bis auf rund 11000 kg/qcm.

Daß die hier für Schraubenfedern ermittelten Werte  $\psi_0$  von denjenigen abweichen, die S. 397 für gerade stabförmige Körper erlangt wurden, erklärt sich aus dem Einfluß der Schubkraft und der Krümmung der Stabachse; überdies handelt es sich bei den Schraubenfedern um gehärteten Federstahl und bei den S. 397 besprochenen Versuchen um zähes Flußeisen.

Schließlich sei noch besonders hervorgehoben, daß die Widerstandsfähigkeit der auf Drehung beanspruchten Federwindungen ganz bedeutend vermindert wird, wenn das Material Fehlstellen enthält, die in Richtung der Drahtachse gestreckt sind (Walzfehler, Härterisse, Ziehriefen usf.), weil die senkrecht Stabförmige Körper mit gekrümmter Mittellinie.

Diese Gleichung läßt sich auch unmittelbar aus der Beziehung 8a, § 43, ableiten.

Die mechanische Arbeit, welche durch die von Null bis auf P gewachsene Belastung bei Zurücklegung des Weges y' verrichtet wird. ist  $\frac{1}{2} Py'$ . Dieselbe muß gleich sein der Arbeit, welche die Formänderung des gewundenen Stabes, dessen Mittellinie die Länge  $2\pi ri$ besitzt, fordert. Mit der Genauigkeit, mit der die zunächst für den geraden Stab entwickelte Gleichung 8a, § 43, auf den gekrümmten übertragen werden darf, findet sich wegen  $M_d = Pr$  und  $l = 2\pi ri$ .

$$\begin{split} \frac{1}{2} P y' = & \frac{1}{2} \, \psi_0 \beta \, \frac{b^2 + h^2}{b^3 h^3} (Pr)^2 \, 2 \, \pi r \, i, \\ y' = & 2 \, \psi_0 \pi \, i \, \frac{b^2 + h^2}{b^3 h^3} \, P r^3 \beta \, . \end{split}$$

wie oben ermittelt.

In ganz gleicher Weise kann auch die Beziehung 2 aus der Arbeitsgleichung für den kreiszylindrischen Stab abgeleitet werden.

Die mechanische Arbeit A, welche die zylindrische Schraubenfeder aufzunehmen vermag, wird unmittelbar durch die Gleichung 2. § 43, worin

$$V = \frac{\pi}{4} d^2 \cdot 2 \pi r i.$$

bzw. durch die Gleichung 7, § 43, mit

$$V = b h \cdot 2 \pi r i$$

bestimmt oder kann auch mittelst der Beziehungen 2 und 3 unter Berücksichtigung der Gleichungen 3, § 32, und 5, § 34, als Produkt  $\frac{1}{2} Py'$  ermittelt werden.

Beachtung verdient der Umstand, daß mit dem Zusammendrücken oder Auseinanderziehen der Feder eine Verdrehung derselben verbunden ist, die sich am äußeren Umfange bei einer größeren Zahl von Windungen leicht messen läßt. Beim Zusammendrücken dreht sich die Feder auf, entsprechend einer Verminderung der Gangzahl, wenn auch nur um einen sehr kleinen Bruchteil, beim Auseinanderziehen tritt das Entgegengesetzte ein. So ergab

zur Drahtachse gerichtete zweite Schubspannung geringen Widerstand vorfindet. Die Verhältnisse liegen dann ähnlich wie in § 35 bei Versuchen mit geschlitzten und durch Löcher geschwächten Rohren besprochen; vgl. auch Fig. 49. Taf. XV.

sich z. B. für eine aus gehärtetem Federstahl bestehende Feder nach Fig. 3, für die ermittelt worden war:

r = 55.1 mm, Windungszahl i = 26.5,

die kleinere Seite b = 5,58 mm (in axialer Richtung liegend)

" größere " h=33,2 " (" radialer " " ) ganze Höhe, senkrecht — also unter dem Einfluß des Eigengewichts, das 14,88 kg betrug, stehend — gemessen, 958,5 mm,

auf der Belastungsstufe

- P = 50/100 kg 50/150 kg 50/200 kg 50/250 kg 50/300 kg 50/350 kgdie Zusammendrückung
- y' = 84,6 mm 169,2 mm 253,8 mm 338,5 mm 425,1 mm 514,2 mm,die Verdrehung auf dem Zylindermantel vom Durchmesser  $2 \cdot 55,1 + 33,2 = 143,4 \text{ mm}$  gemessen

9,3 mm 18,7 mm 26,5 mm 34,5 mm 40,5 mm 45,5 mm. Dabei vergrößerte sich der ursprüngliche Durchmesser der Feder von  $2 \cdot 55,1 + 33,2 = 143,4$  mm bei vollständiger Zusammendrückung auf rund 145,0 mm.

Ferner ist zu beachten, daß lange Federn, die auf Druck beansprucht werden, die Neigung bekunden, in der Mitte nach der Seite auszuweichen, d. h. auszuknicken; sie müssen deshalb geführt werden und ergeben alsdann einen Reibungswiderstand, der je nach den Verhältnissen mehr oder weniger Einfluß auf die Größen der Formänderungen (Zusammendrückung und Verdrehung) äußern kann.

#### 2. Kegelfedern, Fig. 4, 5 und 6.

Auch auf diese Federn pflegt die Beziehung 1 übertragen zu werden, indem man  $\varrho$  als Veränderliche ansieht und bei i Windungen setzt



Hiermit wird dann

$$y' = -\frac{2\pi i}{r_2 - r_1} A \int_{r_2}^{r_1} \varrho^3 d\varrho_{\bullet}^{\bullet} = \frac{\pi i}{2} \frac{r_2^{\bullet} - r_1^{\bullet}}{r_2 - r_1} A$$
$$= \frac{\pi i}{2} (r_1 + r_2) (r_1^{\bullet} + r_2^{\bullet}) A.$$

C Bach. Elastiz'tät. 8. Aufl

Für den kreisförmigen Querschnitt folgt

$$y' = \frac{\pi i}{2} (r_1 + r_2) (r_1^2 + r_2^2) \frac{32}{\pi} \frac{1}{d^4} P\beta$$
$$= 16 i \frac{(r_1 + r_2) (r_1^2 + r_2^2)}{d^4} P\beta \quad \dots \quad \dots \quad \dots \quad 4)$$

und im Falle der Fig. 6, wegen  $r_1 = 0, r_2 = r$ 

$$y' = 16i \frac{r^3}{d^4} P\beta \quad . \quad . \quad . \quad . \quad . \quad . \quad 5)$$



Die Anstrengung  $k_d$  wird bestimmt aus

$$Pr_2 = \frac{\pi}{16} k_d d^3$$
 (Fig. 4)

bzw.

$$Pr = \frac{\pi}{16} k_d d^3 \quad (\text{Fig. 6})$$

Für den rechteckigen Querschnitt, Fig. 5, ergibt sich

$$y' = \frac{\pi i}{2} (r_1 + r_2) (r_1^2 + r_2^2) \psi_0 \frac{b^2 + h^2}{b^3 h^3} P\beta$$
  
=  $\frac{1}{2} \psi_0 \pi i (r_1 + r_2) (r_1^2 + r_2^2) \frac{b^2 + h^2}{b^3 h^3} P\beta$ ....6)

Die Anstrengung  $k_d$  folgt aus

$$Pr_2 = \frac{2}{9} k_d b^2 h.$$

Die vorstehenden Entwicklungen bedürfen hinsichtlich des Grades der Genauigkeit noch einer gründlichen Prüfung auf dem Wege des Versuchs, namentlich dann, wenn die Querschnittsabmessungen der Federn nicht sehr klein sind gegenüber dem Krümmungshalbmesser der Mittellinie, und wenn die Ganghöhe der Schraubenfedern verhältnismäßig bedeutend ist¹).

Die Ergebnisse von Versuchen mit 4 Federn nach Fig. 5 und deren Abmessungen sind in der folgenden Zahlentafel zusammengestellt. Da die Federn aus unbearbeitetem Bandstahl gewickelt waren, der ziemlich starke Schwankungen in der Dicke aufwies, war die mittlere Stärke zu bestimmen. Dies erfolgte derart, daß die Stärke an zahlreichen (n) Stellen ermittelt und sodann der Wert  $\sqrt[3]{\frac{\sum b^3}{n}}$  gebildet wurde. Ebenso war in bezug auf die Größe von h zu verfahren, da die Windungen an beiden Enden Abschleifen erfahren hatten. Die Windungszahl betrug i=4,75. Da jedoch die oberste und unterste Windung eben abgeschliffen worden war, um gutes Anliegen der Federn zu erreichen, an der Formänderung, die bei

durfte in die Rechnung nur $i=2,75$ eingeführt werden.									
Nr.	2 r ₁ cm	2 r ₂ cm	b cm	h cm	P kg	<i>y'</i> cm	$\psi_0$		
$8 \\ 15 \\ 21 \\ 23$	8,26 8,22 8,50 8,18	16,85 16,47 16,70 16,43	0,90 0,93 0,90 0,92	$11,66 \\ 11,64 \\ 11,78 \\ 11,69$	$2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ $	3,82 3,30 3,85 3,32	2,262,282,342,24		

Ableitung von Gleichung 6 vorausgesetzt ist, also nicht teilnahm,

Gl. 7, S. 575 würde für  $\psi_0$  Werte zwischen 2,21 und 2,29 ergeben, was darauf hindeutet, daß sie auch für diese sehr breiten Federwindungen mit Annäherung zutrifft.

Das Beispiel zeigt deutlich, welch großen Einfluß die Art der Bearbeitung der Federenden auf die Größe der Zusammendrückung äußert. Soll zur Berechnung der letzteren Gl. 2, 3, 4 oder 6 verwendet werden, so sind unter i nur diejenigen Windungen zu verstehen, die sich an der Formänderung und Beanspruchung voll beteiligen. Nicht selten wird der Konstrukteur abzuschätzen haben, welche Windungszahl für die Formänderung der Feder in Betracht kommt.

¹) Die in der Fußbemerkung S. 575 erwähnten Versuche mit zylindrischen Schraubenfedern erachtet Verfasser zur vollen Klarstellung noch nicht für ausreichend. Sechster Abschnitt.

# Hohlkörper. Gefäße.

# § 58. Hohlzylinder.

#### 1. Innerer und äußerer Druck.

Unter Bezugnahme auf Fig. 1 bezeichne

- $r_i\,$ den inneren Halbmesser des an den Stirnseiten geschlossen vorausgesetzten Hohlzylinders,
- $r_a$  den äußeren Halbmesser desselben,
- $p_i$  die Pressung der den Zylinderhohlraum erfüllenden Flüssigkeit,

 $p_a$  die Pressung der den Zylinder umschließenden Flüssigkeit.



Der Abschluß an den Stirnseiten des Zylinders sei derart, daß die Formänderung des abschließenden Bodens einen Einfluß auf die Zylinderwandung nicht äußere, oder daß dieser wenigstens unerheblich ausfalle.

Der Zylinder werde auf ein rechtwinkliges Koordinatensystem bezogen, in der Weise, daß die x-Achse mit der Zylinderachse, die yz-Ebene mit der einen, den Hohlraum begrenzenden Stirnebene des Zylinders zusammenfällt, wie dies Fig. 2 erkennen läßt.

Fig. 1. Wir greifen einen beliebigen Punkt P des Zylinders heraus, der in der xz-Ebene liegt und vor Eintritt der Formänderung absteht:

von der yz-Ebene um x und von der Zylinderachse um z.

Unter Einwirkung der den Zylinder belastenden Flüssigkeitspressungen wird sich außer x noch z, und zwar um  $\zeta$ , vergrößern. Aus der xz-Ebene tritt der Punkt hierbei nicht heraus.

Ferner werden im Punkte P folgende Spannungen entstehen:

- $\sigma_x$  in Richtung der x-Achse, d. i. in axialer Richtung,
- $\sigma_y$ , ", ", ", y-", d. i. in der Richtung des Umfanges in tangentialer Richtung, und
- $\sigma_z$  in Richtung der z-Achse, d. i. in radialer Richtung.

Dementsprechend wirken auf das unendlich kleine Körperelement, Fig. 3, das wir uns durch Zylinderflächen im Abstande z und z + dzaus dem Zylinder herausgeschnitten denken, in der Bildebene der Figur die Kräfte:

> $\sigma_z \cdot 2 z d\varphi dx$  radial einwärts,  $\left(\sigma_z + \frac{d\sigma_z}{dz} dz\right) \cdot 2 (z + dz) d\varphi dx$  radial auswärts,  $\sigma_u \cdot dz dx$  senkrecht zu den beiden Flächen dz dx.



Der Gleichgewichtszustand fordert nun, daß die Summe der Kräfte in senkrechter Richtung gleich Null ist, d. h.

 $\sigma_z \cdot 2 z \, d\varphi \, dx - \left(\sigma_z + \frac{d\sigma_z}{dz} dz\right) \cdot 2 \, (z + dz) \, d\varphi \, dx + 2 \, \sigma_y \cdot dz \, dx \cdot \sin(d\varphi) = 0,^1$ woraus sich unter Beachtung, daß  $\sin(d\varphi) = \sim d\varphi$ , und nach Division mit 2  $d\varphi \, dx \, dz$  bei Vernachlässigung des unendlich kleinen Gliedes

$$\frac{d\sigma_z}{dz}dz$$

¹) Liegt die Aufgabe vor, die Beanspruchung eines rotierenden Hohlzylinders infolge der Fliehkraft zu bestimmen, so ist diese Gleichung noch durch die auswärts gerichtete Fliehkraft des Körperelementes, d. h. durch Hinzufügung des Gliedes

$$-\gamma \frac{2 z \, d\varphi \cdot dz \, dx}{g} \, \omega^2 z$$

zu ergänzen, worin

y das Gewicht der Raumeinheit,

ω die Winkelgeschwindigkeit,

g die Beschleunigung der Schwere bedeutet.

Gleichung 1 geht damit über in

$$\frac{d\sigma_z}{dz} = \frac{1}{z} \left( \sigma_y - \sigma_z \right) - \gamma \frac{\omega^2}{g} \cdot z \,.$$

Diese Aufgabe wird S. 646 u. f. behandelt werden.

gegenüber den übrigen endlichen Größen ergibt

$$\frac{d\sigma_z}{dz} = \frac{1}{z} (\sigma_y - \sigma_z) \quad . \quad . \quad . \quad . \quad . \quad . \quad 1)$$

In § 7 fanden wir unter der Voraussetzung vollkommener Gleichartigkeit des Materials für ein beliebiges Körperelement, das in Richtung der drei Achsen gleichzeitig die Spannungen  $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_s$  erfährt, die hieraus sich ergebenden Dehnungen:

Hieraus folgt

$$\begin{aligned} \varepsilon_1 + \varepsilon_2 + \varepsilon_3 &= \alpha \left( \sigma_x + \sigma_y + \sigma_z - 2 \frac{\sigma_x + \sigma_y + \sigma_z}{m} \right), \\ \sigma_x + \sigma_y + \sigma_z &= \frac{m}{m - 2} \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3}{\alpha} = \frac{m}{m - 2} \frac{e}{\alpha}, \end{aligned}$$

sofern

$$\epsilon_1 + \epsilon_2 + \epsilon_3 = e. \ldots 2)$$

Wird hierzu die aus der ersten der Gleichungen 4, § 7, abgeleitete Beziehung

$$m\sigma_x - \sigma_y - \sigma_z = m \frac{\varepsilon_1}{\alpha}$$

hinzugefügt, so ergibt sich

$$m \sigma_x + \sigma_x = \frac{m}{m-2} \frac{e}{\alpha} + m \frac{\epsilon_1}{\alpha},$$
$$\sigma_x = \frac{m}{1+m} \frac{1}{\alpha} \left( \epsilon_1 + \frac{e}{m-2} \right).$$

Das gleiche Verfahren liefert

$$\sigma_{y} = \frac{m}{1+m} \frac{1}{\alpha} \left( \varepsilon_{g} + \frac{e}{m-2} \right),$$
  
$$\sigma_{z} = \frac{m}{1+m} \frac{1}{\alpha} \left( \varepsilon_{3} + \frac{e}{m-2} \right).$$

 $\mathbf{582}$ 

Hieraus findet sich bei Berücksichtigung der Gleichung 3, § 31,

Im vorliegenden Falle beträgt, da sich z um  $\zeta$  ändert, die tangentiale Dehnung  $\epsilon_2$  im Punkte P

Für die radiale Dehnung  $\epsilon_3$ liefert die Erwägung, daß die Strecke dz die Änderung  $d\zeta$ erfährt, den Ausdruck

Hiermit wird aus den Gleichungen 3

$$\sigma_{x} = \frac{2}{\beta} \left( \varepsilon_{1} + \frac{\varepsilon_{1} + \frac{\zeta}{z} + \frac{d\zeta}{dz}}{m - 2} \right)$$
$$\sigma_{y} = \frac{2}{\beta} \left( \frac{\zeta}{z} + \frac{\varepsilon_{1} + \frac{\zeta}{z} + \frac{d\zeta}{dz}}{m - 2} \right)$$
$$\sigma_{z} = \frac{2}{\beta} \left( \frac{d\zeta}{dz} + \frac{\varepsilon_{1} + \frac{\zeta}{z} + \frac{d\zeta}{dz}}{m - 2} \right).$$

Die Einsetzung des aus der ersten dieser Gleichungen folgenden Wertes

$$\epsilon_1 = \frac{m-2}{2(m-1)} \beta \sigma_x - \frac{\frac{\zeta}{z} + \frac{d\zeta}{dz}}{m-1}$$

in die beiden anderen führt zu

$$\sigma_{\mathbf{y}} = \frac{2}{m-1} \frac{1}{\beta} \left( m \frac{\zeta}{z} + \frac{d\zeta}{dz} \right) + \frac{\sigma_{\mathbf{x}}}{m-1} \\ \sigma_{z} = \frac{2}{m-1} \frac{1}{\beta} \left( \frac{\zeta}{z} + m \frac{d\zeta}{dz} \right) + \frac{\sigma_{\mathbf{x}}}{m-1}$$
 .... 6)

Hier ist unter Voraussetzung gleichmäßiger Verteilung der Axialkraft  $\pi r_i^2 p_i - \pi r_a^2 p_a$  über den Zylinderquerschnitt  $\pi r_a^2 - \pi r_i^2$ , d. h.

$$\pi \left( r_a^2 - r_i^2 \right) \sigma_x = \pi \left( p_i r_i^2 - p_a r_a^2 \right),$$

die axiale Spannung

als unveränderliche Größe anzusehen.

Die Einführung der Werte $\sigma_y$  und  $\sigma_z$  aus den Gleichungen 6 in die Gleichung 1 ergibt

$$z\frac{d^2\zeta}{dz^2} + \frac{d\zeta}{dz} - \frac{\zeta}{z} = 0$$

 $\mathbf{oder}$ 

$$\frac{d^2\zeta}{dz^2} + \frac{d\left(\frac{\zeta}{z}\right)}{dz} = 0.$$

**Durch Integration** 

$$\frac{d\zeta}{dz} + \frac{\zeta}{z} = \text{konstant} = c_1.$$

Hieraus

$$z\frac{d\zeta}{dz}+\zeta=c_1z$$

 $\mathbf{oder}$ 

$$\frac{d(z\zeta)}{dz} = c_1 z$$

und bei nochmaliger Integration

$$z\zeta = \frac{1}{2}c_1 z^2 + c_2.$$

Mit den hieraus sich ergebenden Werten

$$\frac{\zeta}{z} = \frac{c_1}{2} + \frac{c_2}{z^2},$$
$$\frac{d\zeta}{dz} = \frac{c_1}{2} - \frac{c_2}{z^2}$$

liefern die beiden Gleichungen 6

$$\sigma_{y} = \frac{2}{m-1} \frac{1}{\beta} \left[ \frac{c_{1}}{2} (m+1) + \frac{c_{2}}{z^{2}} (m-1) \right] + \frac{\sigma_{x}}{m-1} \\ \sigma_{z} = \frac{2}{m-1} \frac{1}{\beta} \left[ \frac{c_{1}}{2} (m+1) - \frac{c_{2}}{z^{2}} (m-1) \right] + \frac{\sigma_{x}}{m-1} \right\} \quad ... 8)$$

Die zwei Konstanten  $c_1$  und  $c_2$  bestimmen sich aus den Bedingungen, daß sein muß:

d. h.

$$-p_i = \frac{2}{m-1} \frac{1}{\beta} \left[ \frac{c_1}{2} (m+1) - \frac{c_2}{r_i^2} (m-1) \right] + \frac{\sigma_x}{m-1},$$

$$-p_a = \frac{2}{m-1} \frac{1}{\beta} \left[ \frac{c_1}{2} (m+1) - \frac{c_2}{r_a^2} (m-1) \right] + \frac{\sigma_x}{m-1},$$

woraus

$$\begin{split} c_1 &= \frac{m-1}{m+1} \beta \left( \frac{p_i r_i^2 - p_a r_a^2}{r_a^2 - r_i^2} - \frac{\sigma_x}{m-1} \right), \\ c_2 &= \frac{p_i - p_a}{2} \beta \frac{r_a^2 r_i^2}{r_a^2 - r_i^2}. \end{split}$$

Hiermit wird unter Beachtung der Gleichung 7

$$\sigma_{y} = \frac{p_{i}r_{i}^{2} - p_{a}r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} + (p_{i} - p_{a})\frac{r_{a}^{2}r_{i}^{2} \cdot 1}{r_{a}^{2} - r_{i}^{2}}\frac{1}{z^{2}}$$
  
$$\sigma_{z} = \frac{p_{i}r_{i}^{2} - p_{a}r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} - (p_{i} - p_{a})\frac{r_{a}^{2}r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}}\frac{1}{z^{2}}$$
  
. . . . . 9)

Die Dehnungen  $\varepsilon_1$ ,  $\varepsilon_2$  und  $\varepsilon_3$  in den drei Hauptrichtungen ergeben sich aus den Gleichungen 4, § 7, nach Einführung der Werte  $\sigma_x$ (Gleichung 7),  $\sigma_y$  und  $\sigma_z$  (Gleichung 9) zu

$$\begin{split} \epsilon_{1} &= \frac{m-2}{m} \alpha \frac{p_{i}r_{i}^{2} - p_{a}r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}}, \\ \epsilon_{2} &= \frac{m-2}{m} \alpha \frac{p_{i}r_{i}^{2} - p_{a}r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} + \frac{m+1}{m} \alpha \frac{r_{a}^{2}r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} (p_{i} - p_{a}) \frac{1}{z^{2}}, \\ \epsilon_{3} &= \frac{m-2}{m} \alpha \frac{p_{i}r_{i}^{2} - p_{a}r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} - \frac{m+1}{m} \alpha \frac{r_{a}^{2}r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} (p_{i} - p_{a}) \frac{1}{z^{2}}. \end{split}$$
(10)

2. Innerer Überdruck  $p_i(p_a=0)$ .

Die Gleichungen 10 ergeben unter Beachtung des in § 48, Ziff. 1 Erörterten die Materialanstrengung im Punkte P, und zwar

#### Hohlkörper. Gefäße.

in Richtung der Zylinderachse  $\frac{\varepsilon_{1}}{\alpha} = \frac{m-2}{m} \frac{r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} = 0, 4 \frac{r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i},$ in Richtung der Tangente (des Umfanges)  $\frac{\varepsilon_{3}}{\alpha} = \frac{m-2}{m} \frac{r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} + \frac{m+1}{m} \frac{r_{a}^{2} r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} \frac{1}{z^{2}},$   $= 0, 4 \frac{r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} + 1, 3 \frac{r_{a}^{2} r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} \frac{1}{z^{2}},$ in Richtung des Halbmessers  $\frac{\varepsilon_{3}}{\alpha} = \frac{m-2}{m} \frac{r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} - \frac{m+1}{m} \frac{r_{a}^{2} r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} \frac{1}{z^{2}},$   $= 0, 4 \frac{r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} - 1, 3 \frac{r_{a}^{2} r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} \frac{1}{z^{2}},$   $= 0, 4 \frac{r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} - 1, 3 \frac{r_{a}^{2} r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} \frac{1}{z^{2}},$ 

sofern noch jeweils  $m = \frac{10}{3}$  gesetzt wird.

Die Zuganstrengung  $\frac{\epsilon_1}{\alpha}$  in Richtung der Achse tritt vollständig hinter der Zuginanspruchnahme  $\frac{\epsilon_2}{\alpha}$ , die im Sinne des Umfanges statthat, zurück, so daß sie nicht weiter in Betracht gezogen zu werden braucht.  $\frac{\epsilon_2}{\alpha}$  und  $\frac{\epsilon_3}{\alpha}$  erlangen die größten Werte für  $z = r_i$ , d. h. an der Innenfläche des Hohlzylinders. Somit wird mit  $k_z$  als zulässiger Zug- und k als zulässiger Druckanstrengung

$$\max\left(\frac{\epsilon_{2}}{\alpha}\right) = \frac{(m+1)r_{a}^{2} + (m-2)r_{i}^{2}}{m(r_{a}^{2} - r_{i}^{2})} p_{i} = \frac{1,3r_{a}^{2} + 0,4r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} \le k_{z}, \\ \max\left(-\frac{\epsilon_{3}}{\alpha}\right) = \frac{(m+1)r_{a}^{2} - (m-2)r_{i}^{2}}{m(r_{a}^{2} - r_{i}^{2})} p_{i} = \frac{1,3r_{a}^{2} - 0,4r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} \le k. \right\}$$

$$12)$$

Die Zuganstrengung  $\max\left(\frac{\varepsilon_2}{\alpha}\right)$  in Richtung des Umfanges, d. i. in tangentialer Richtung, ist der größere, also der bestimmende Wert. Hiernach findet sich als maßgebende Beziehung

$$k_{z} \geq \frac{\frac{m+1}{m}r_{a}^{2} + \frac{m-2}{m}r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}}p_{i} = \frac{1,3r_{a}^{2} + 0,4r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}}p_{i} \dots 13)$$

oder

$$r_{a} \geq r_{i} \sqrt{\frac{k_{z} + \left(1 - \frac{2}{m}\right)p_{i}}{k_{z} - \left(1 + \frac{1}{m}\right)p_{i}}} = r_{i} \sqrt{\frac{k_{z} + 0.4 \ p_{i}}{k_{z} - 1.3 \ p_{i}}} \quad . \quad . \quad 14)^{1}$$

Für  $1,3 p_i = k_z$  wird  $r_a = \infty$ , gleichgültig, wie klein auch der innere Durchmesser sein mag, sofern er nur größer als Null ist. Da nun der zulässigen Anstrengung  $k_z$  für jedes Material eine unüberschreitbare Grenze gezogen ist, so folgt hieraus, daß nur solche Verhältnisse möglich sind, für die

$$p_i < \frac{k_z}{1,3}$$

oder allgemein

$$p_i < \frac{m}{m+1} k_z$$

(Vgl. hierzu Fußbemerkung 1, S. 589.)

Daß es durch fortgesetzte Vergrößerung der Wandstärke nicht möglich sein soll, die Flüssigkeitspressung über eine gewisse Höhe hinaus zu steigern, kann für den ersten Augenblick überraschen, erklärt sich jedoch durch die Ungleichmäßigkeit der Verteilung der Anstrengung über den Wandungsquerschnitt.

Denken wir uns beispielsweise einen Hohlzylinder aus Gußstahl mit den Durchmessern

$$2r_i = 80 \text{ mm}, \qquad 2r_a = 200 \text{ mm},$$

¹) Zur Entwicklung dieser Beziehung in der Zeitschrift des Vereines deutscher Ingenieure 1880, S. 283 u. f., war Verfasser durch die Beobachtung veranlaßt worden, daß Schläuche, die zum Zwecke der Prüfung innerem Überdruck ausgesetzt wurden, sich verlängern, während die Grundlage der von Grashof in seiner Theorie der Elastizität und Festigkeit, 1878, S. 312, für die Berechnung von Hohlzylindern entwickelten Gleichung

und mit  $m = \frac{10}{3}$ 

die dem Verfasser bis dahin als die zutreffendste erschienen war, infolge der Vernachlässigung der Axialkraft  $\pi r_i^2 p_i$  nicht eine Verlängerung, sondern eine Verkürzung des Hohlzylinders ergibt, indem für die Dehnung  $\varepsilon_x$  in Richtung der Zylinderachse ein negativer Wert gefunden wird. (S. am angegebenen Ort in Nr. 199 den Ausdruck für  $E\varepsilon_x$ , vgl. Zeitschrift des Vereines deutscher Ingenieure 1880, S. 288 und 290.) der Wandstärke

 $r_a - r_i = 100 - 40 = 60 \text{ mm}$ 

hergestellt und einem inneren Überdruck von 1200 kg auf das Quadratzentimeter ausgesetzt. Dann ergibt sich nach der zweiten der Gleichungen 11 die tangentiale Anstrengung  $(Zug)^1$ 

a) an der Innenfläche, d. h. für z = 4 cm,

$$0,4 \frac{4^2}{10^2 - 4^2} 1200 + 1,3 \frac{10^2 \cdot 4^2}{10^2 - 4^2} \cdot 1200 \frac{1}{4^2} = \sim 1950 \text{ kg/qcm};$$

b) in der Mitte, d. h. für 
$$z = 7 \text{ cm}$$
,

$$0,4 \frac{4^2}{10^2 - 4^2} 1200 + 1,3 \frac{10^2 \cdot 4^2}{10^2 - 4^2} \cdot 1200 \frac{1}{7^2} = \sim 700 \text{ kg/qcm};$$

c) an der Außenfläche, d. h. für z = 10 cm,

$$0,4 \frac{4^2}{10^2 - 4^2} 1200 + 1,3 \frac{10^2 \cdot 4^2}{10^2 - 4^2} \cdot 1200 \frac{1}{10^2} = \sim 390 \text{ kg/qcm}.$$

Die Gleichung 15a ist zutreffend, wenn eine Axialkraft nicht wirkt, wie z. B. im Falle eines Hohlzylinders, der beiderseits durch gleichgroße Kolben verschlossen, oder bei dem der Flüssigkeitsdruck auf den Boden nicht durch die Zylinderwand übertragen wird. Ein Beispiel dieser Art s. C. Bach, Die Maschinenelemente, 10. Aufl., S. 739, Fig. 678.

Die Beziehung 15 wurde in der Form

$$\delta = r_a - r_i = r_i \left( -1 + \sqrt{\frac{m \, k_z + (m-1) \, p_i}{m \, k_z - (m+1) \, p_i}} \right)$$

auch als Winklersche Gleichung bezeichnet (v. Reiche, Die Maschinen-fabrikation 1876, S. 37, wobei mit m = 3 gesetzt ist

$$\delta = r_i \sqrt{\frac{3k_z + 2p_i}{3k_z - 4p_i}} - r_i,$$

u. a.). Verfasser, der gelegentlich der Abfassung dieses Buches (1889) die Winklersche Arbeit über zylindrische Gefäße im Zivilingenieur 1860 erstmals durchgesehen hat, fand bei dieser Gelegenheit, daß Winkler bereits damals nicht bloß die Beziehung 15 aufgestellt hatte, sondern auch eine weitere Gleichung, welche die erwähnte Axialkraft berücksichtigte (S. 348 und 349 daselbst), und die sich von Gleichung 14 nur durch den mit 4 etwas zu groß gewählten Wert von m unterscheidet.

¹) Die radiale Anstrengung (Druck) beträgt an der Innenfläche nach der zweiten der Gleichungen 12

$$\max\left(-\frac{\epsilon_3}{\alpha}\right) = \frac{1.3 \cdot 10^2 - 0.4 \cdot 4^2}{10^2 - 4^2} \cdot 1200 = 1766 \text{ kg/qcm},$$

und die axiale Anstrengung (Zug) nach der ersten der 3 Gleichungen 11

$$\frac{\varepsilon_1}{\alpha} = 0.4 \ \frac{4^2}{10^2 - 4^2} \cdot 1200 = 91 \ \text{kg/qcm}.$$

§ 58. Hohlzylinder.

Die Anstrengung beträgt hiernach außen nur den fünften Teil derjenigen an der Innenfläche. Da die letztere maßgebend ist, so wird das nach außen gelegene Material sehr schlecht ausausgenützt¹).

Vergrößern wir die Wandstärke fortgesetzt, bis schließlich in der Gleichung

$$k_{z} = \frac{1.3 r_{a}^{2} + 0.4 r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} = \frac{1.3 + 0.4 \left(\frac{r_{i}}{r_{a}}\right)^{2}}{1 - \left(\frac{r_{i}}{r_{a}}\right)^{2}} p_{i}$$

 $\left(\frac{r_i}{r_a}\right)^2$  Null gesetzt werden darf, so ist  $k_z = 1,3 p_i$ , unter welche Anstrengung also nicht zu gelangen ist, wie oben bereits festgestellt.

Die erkannte Unvollständigkeit der Ausnützung der Widerstandsfähigkeit des Materials, die um so bedeutender ist, je größer die Wandstärke, hat zur Konstruktion von zusammengesetzten Hohlzylindern (Ringgeschützen usw.) geführt, deren Wesen sich aus folgendem ergibt.

¹) Wenn es sich um ein Material handelt mit derart veränderlicher Dehnungszahl, daß dieselbe bei wachsender Spannung zunimmt, so daß also der Stoff um so nachgiebiger ist, je stärker er angestrengt wird, wie dies z. B. bei Gußeisen zutrifft, so zeigt sich diese Ungleichmäßigkeit nicht in dem hohen Grade: an der Innenfläche fällt die Anstrengung geringer, an der Außenfläche größer aus, als die vorstehenden Gleichungen, die Unveränderlichkeit der Dehnungszahl und des Wertes *m* zur Voraussetzung haben, erwarten lassen. Bei Gußeisen kommt andererseits wieder der in § 22, Ziff. 4, festgestellte Einfluß der Gußhaut hinzu. Ist diese, geringere Nachgiebigkeit besitzende Schicht an der Innenfläche vorhanden, so muß sie die Festigkeit vermindernd wirken. Durch Bearbeitung der Innenfläche — vorausgesetzt, daß die Rücksicht auf das Dichthalten gegenüber der Flüssigkeit das Ausbohren gestattet — würde die Widerstandsfähigkeit unter sonst gleichen Verhältnissen erhöht werden können.

(Vgl. in § 56 das unter Ziff. 1b) und c) S. 556 sowie 557 Gesagte.)

Besteht der Zylinder aus zähem Material, z. B. aus Flußeisen, so wird nach Überschreiten der Streckgrenze im Innern das weiter nach außen gelegene Material in höherem Maße herangezogen werden.

Bei Gußeisen und ähnlichen Materialien können Gußspannungen (vgl. S.290) die Widerstandsfähigkeit ganz wesentlich beeinflussen.

Der Einfluß der etwaigen Veränderlichkeit von m ist von keiner großen Bedeutung.

Der Einfluß einseitiger, d. h. innerer oder äußerer Erwärmung (Abkühlung) ist im Auge zu behalten.

Versuche über die Widerstandsfähigkeit dickwandiger Hohlzylinder gegenüber innerem Überdruck sind in neuerer Zeit durchgeführt worden von Krüger (Mitteilungen über Forschungsarbeiten, Heft 87). Aus den Untersuchungen geht hervor, daß die im vorstehenden gegebenen Gleichungen mit den Versuchsergebnissen recht befriedigend übereinstimmen. Wir denken uns den Hohlzylinder des soeben behandelten Beispiels aus zwei Hohlzylindern bestehend:

> einem inneren, für den  $r_i = 40 \text{ mm}$ ,  $r_a = 70 \text{ mm}$ , "äußeren, "" $r_i = 70$  " $r_a = 100$  ".

Der äußere Zylinder sei auf den inneren (warm oder in anderer Weise) so aufgezogen, daß dieser zusammengepreßt wird; infolge-



dessen tritt bei dem inneren Zylinder eine nach innen wachsende Druckspannung auf. Wenn nun jetzt die gepreßte Flüssigkeit (Arbeitsflüssigkeit) den inneren Zylinder belastet, so fällt hier die Zuganstrengung um den Betrag geringer aus, welcher der Druckanstrengung entspricht, die durch das Aufziehen des äußeren Zylinders mit Pressung wachgerufen worden war. Dagegen ergibt sich die Zuganstrengung des äußeren Zylinders um denjenigen Betrag größer, der von dem Aufziehen auf den inneren herrührte. Zweckmäßigerweise wird man bei solchen, aus mehreren Hohlzvlindern zusammengesetzten Zylindern dahin streben müssen, daß die Spannungen an den Innenflächen der einzelnen Zylinder unter Einwirkung der Flüssigkeitspressung gleich groß ausfallen.

Bei Anwendung der entwickelten Gleichungen auf den Fall eines solchen zusammengesetzten Hohlzylinders wird, wenn streng verfahren werden soll, zu beachten

sein, inwieweit die zylindrischen Wandungen in axialer Richtung Dehnungen erfahren.

Für im Verhältnis zum Halbmesser geringe Wandstärke  $s = r_a - r_i$  kann mit genügender Annäherung gleichmäßige Verteilung der Spannungen über den Wandungsquerschnitt angenommen werden. Dies gibt für den l langen Hohlzylinder

woraus

$$2r_i l p_i \leq 2slk_z,$$

10 11

Aus der allgemeinen Gleichung 14 läßt sich diese Beziehung in folgender Weise ableiten.

Mit  $m = \infty$  (d. h. die Zusammenziehung, die ein in Richtung seiner Achse gezogener Stab senkrecht zu dieser erfährt, wird vernachlässigt) folgt zunächst

$$r_a = r_i \sqrt{\frac{k_z + p_i}{k_z - p_i}} = r_i \sqrt{1 + 2\frac{p_i}{k_z - p_i}}$$

Unter Beachtung, daß bei geringer Wandstärke  $p_i$  nur einen kleinen Bruchteil von  $k_z$  bilden kann,

$$r_a = \sim r_i \sqrt{1 + 2 \frac{p_i}{k_z}} = \sim r_i \left( 1 + \frac{p_i}{k_z} \right),$$
$$r_a - r_i = s = r_i \frac{p_i}{k_z},$$

wie oben unmittelbar entwickelt wurde.

Die Spannung  $\sigma$ , die in dem senkrecht zur Achse gelegenen Querschnitt

$$\pi (r_a^2 - r_i^2)$$

des Hohlzylinders eintritt, findet sich aus

$$\pi r_i^2 p_i = \pi (r_a^2 - r_i^2) \sigma$$

zu

$$\sigma = p_i \frac{r_i^2}{r_a^2 - r_i^2} = p_i \frac{r_i}{\frac{r_a + r_i}{r_i}(r_a - r_i)} = \sim \frac{1}{2} p_i \frac{r_i}{s},$$

d. h. halb so groß als die Anstrengung (nach Gleichung 16) in Richtung des Umfanges.

Die Brucherscheinungen bei Hohlzylindern werden, wie diejenigen beim Zerreißen von Zugstäben, in hohem Maße von den

Eigenschaften des Materials beeinflußt. Besteht der Hohlzylinder aus Gußeisen, so erfolgt der Bruch längs einer Mantellinie und die Bruchfläche verläuft ungefähr in einer Ebene, die durch die Zylinderachse geht (Axialebene), vgl. Fig. 5, links.

Besteht der Zylinder aus zähem Material, so erfolgt der Bruch in einer schrägen Fläche, vgl. Fig. 5, rechts.

Fig. 6 und 7, Taf. XXIV, zeigen durch Wasserdruck gesprengte Hohlzylinder aus





Wirkt die Drucksteigerung außerordentlich rasch, so erfolgt Trennung an vielen Stellen gleichzeitig. Hiermit ist die Splitterbildung bei Geschossen zu erklären. Das in Fig. 9. Taf. XXIV. ab-



gebildete Stück zeigt zahlreiche Anrisse, die in Übereinstimmung mit dem oben Bemerkten schräg zum Halbmesser verlaufen. Fig. 10 gibt das Aussehen des Querschnittes nahe der Mitte wieder.

Fig. 11, Taf. XXIV, läßt einen Gußeisensplitter, Fig. 12 dessen Querschnitt erkennen. Die Bruchflächen haben im großen und ganzen die Richtung des Halbmessers.

Ist das Material nicht zäh genug, um überall schräge Bruchrichtung zu bewirken, aber nicht spröde genug, um wie Gußeisen zu brechen, so

treten beide Bruchbilder gemeinsam auf, wie Fig. 13, Taf. XXIV und der zugehörige Querschnitt Fig. 14 zeigen (vgl. auch Fig. 7, Taf. XIV).



Die Gestalt der Splitter hängt also im wesentlichen von den Eigenschaften des Materials, die Zahl derselben überdies von der Geschwindigkeit der Drucksteigerung ab¹).

¹) Bei Vornahme von Prüfungen ist, auch wenn diese durch Wasserdruck erfolgen, große Vorsicht geboten, insbesondere deshalb, weil nicht mit Sicherheit vorausgesagt werden kann, in welchen Richtungen Bruchstücke usw. fortgeschleudert werden können.

C. Bach, Elastizitat. 8. Aufl.

*Taf. XXIV* Fig. 9, § 58, S. 592.



Bei Hohlzylindern, die aus gewalztem Material hergestellt werden, pflegen Materialfehler die Widerstandsfähigkeit dadurch bedeutend zu vermindern, daß sie die Zugfestigkeit in Richtung senkrecht zur Stabachse herabsetzen, insbesondere wenn sie beim Auswalzen stark in die Länge gestreckt worden sind. Prüfung des Materials in dieser Richtung kann durch Aufdornversuche erfolgen, welche gegenüber dem Verfahren, Zugstäbe in der Querrichtung zu entnehmen (wenn dies im Hinblick auf die oft geringen Abmessungen, die solche erhalten müßten, überhaupt möglich ist) den Vorzug bieten, daß alle Stellen des Umfangs gleichzeitig beansprucht werden, sämtliche vorhandenen Fehlstellen also zur Geltung gelangen können.

Solche Aufdornversuche wurden z. B. mit 15 mm hohen Ringen von 23 mm äußerem und 13 mm innerem Durchmesser ausgeführt. Als Dorn diente ein Kegel aus gehärtetem Stahl, dessen Oberfläche poliert war. Steigung 1:60. Einige Versuchsergebnisse sind im folgenden zusammengestellt:

Nr.	Belastung des Dornes beim Bruch kg	Aufweitung beim Bruch mm	Bemerkungen
1	2400	0,3	
2	2500	0,3	_
3	1700	0,2	Anriß bei 1200 kg
4	800	0,3	—
5	11800	2,5	
6	7610	2,0	
7	2600	0,3	
8	1580	0,4	Anriß bei 840 kg
9	8600	5,0	
10	10200	3,0	
11	7340	3,8	

Fig. 15, Taf. XXIV zeigt den Ring Nr. 1 und Nr. 9 nach dem Bruch. Deutlich ist die geringe Formänderung des ersteren und die starke Aufweitung des letzteren zu erkennen.

Die nach geringer Formänderung aufgebrochenen Ringe enthalten sämtlich ausgeprägte Schichtenbildung auf den Bruchflächen. Metallographische Untersuchung ergab, daß diese durch Schlackeneinschlüsse verursacht war, die beim Auswalzen weitgehende Streckung erfahren hatten. Ganz ähnlich verhielten sich auch Ringe mit wesentlich größerer Wandstärke (äußerer Durchmesser bis 36,5 mm, innerer Durchmesser 13 mm).

C. Bach, Elastizität. 8. Aufl.

Zur Erlangung weiteren Einblickes wurden mit kleinen, in der Querrichtung entnommenen Stäben sowie mit Längsstäben Zugversuche vorgenommen, deren Durchschnittsergebnisse im folgenden zusammengestellt sind.

Material der Versuchskörper 1 bis 8				Material der Versuchskörper 9 bis 11				
längs		quer		längs		quer		
Zugfestig- keit kg/qcm	Bruch- deh- nung º/0	Zugfestig- keit kg/qcm	Bruch- deh- nung ⁰ / ₀	Zugfestig- keit kg/qcm	Bruch- deh- nung ⁰ / ₀	Zugfestig- keit kg/qcm	Bruch- deh- nung °/0	
9395	20	5701 bis 8454	$2 \\ \mathrm{bis} \\ 6$	7413	21	7145	9,5	

Deutlich ist zu erkennen, daß bei gutem Material (Ringe 9 bis 11) die Zugfestigkeit in der Querrichtung nicht viel kleiner ist als in der Längsrichtung, während bei einem Teil der Stäbe aus dem schlackenhaltigen Material ein sehr großer Unterschied besteht. Ausgeprägt ist dieser auch bei der Bruchdehnung zu beobachten. Selbst das gute Material (Nr. 9 bis 11) liefert in der Querrichtung weniger als halb so viel Dehnung wie in der Längsrichtung. Bei dem weniger guten Stahl ist der Unterschied noch viel bedeutender.

Näheres über diesen Einfluß der Walzrichtung s. in Festigkeitseigenschaften und Gefügebilder Abschnitt I und IV.

Die Versuchsergebnisse zeigen deutlich, daß für die Prüfung von Material, aus dem stark beanspruchte Hohlkörper, z. B. Gewehrläufe, hergestellt werden sollen, die meist ausgeführten Zugversuche mit Längsstäben nicht geeignet sind, sondern daß in solchen Fällen nur Aufdornversuche der beschriebenen Art den erforderlichen Einblick gewähren.

# 3. Äußerer Überdruck $p_a$ ( $p_i = 0$ ).

Wenn Flachdrücken oder Einbeulen der Wandung und bei großer Länge außerdem die in § 23 besprochene Knickung oder die in § 13, Ziff. 1 h, S. 209 u. f., erörterte Formänderung (vgl. Taf. XI, Fig. 7 und 8) nicht zu erwarten steht, sind die Anstrengungen nach den Gleichungen 10 mit  $p_i = 0$  zu berechnen. Dieselben gehen dann über in

$$\begin{split} \varepsilon_{1} &= -\frac{m-2}{m} \, \alpha \, \frac{r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} \, p_{a}, \\ \varepsilon_{2} &= -\frac{m-2}{m} \, \alpha \, \frac{r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} \, p_{a} - \frac{m+1}{m} \, \alpha \, \frac{r_{a}^{2} r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} \, p_{a} \frac{1}{z^{2}} \, , \\ \varepsilon_{3} &= -\frac{m-2}{m} \, \alpha \, \frac{r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} \, p_{a} + \frac{m+1}{m} \, \alpha \, \frac{r_{a}^{2} r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} \, \frac{p_{a}}{r_{a}^{2} - r_{i}^{2}} \, z^{2} \, . \end{split}$$
Den größten Wert erlangen die Anstrengungen  $\frac{\epsilon_2}{\alpha}$  und  $\frac{\epsilon_3}{\alpha}$ — die Inanspruchnahme  $\frac{\epsilon_1}{\alpha}$  kommt als wesentlich kleiner wie die gleichzeitige Anstrengung  $\frac{\epsilon_2}{\alpha}$  nicht weiter in Betracht — auch hier wieder für das kleinste z, d. h. für die Innenfläche, und zwar in Richtung der Tangente (des Umfanges)

$$\max\left(-\frac{\epsilon_{2}}{\alpha}\right) = \frac{2m-1}{m} \frac{r_{a}^{2}}{r_{a}^{2}-r_{i}^{2}} p_{a} = 1,7 \frac{r_{a}^{2}}{r_{a}^{2}-r_{i}^{2}} p_{a},$$
  
in Richtung des Halbmessers  
$$\max\left(\frac{\epsilon_{3}}{\alpha}\right) = \frac{3}{m} \frac{r_{a}^{2}}{r_{a}^{2}-r_{i}^{2}} p_{a} = 0,9 \frac{r_{a}^{2}}{r_{a}^{2}-r_{i}^{2}} p_{a},$$
  
10

sofern noch  $m = \frac{10}{3}$  eingeführt wird. Hiernach

$$k \ge 1, 7 \frac{r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{a} \quad \text{oder} \quad r_{a} = \frac{r_{i}}{\sqrt{1 - 1, 7 \frac{p_{a}}{k}}} \\ k_{z} \ge 0, 9 \frac{r_{a}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{a} \quad \text{oder} \quad r_{a} = \frac{r_{i}}{\sqrt{1 - 0, 9 \frac{p_{a}}{k_{a}}}}$$
 . . . 18)

Auch hier gilt die zur Gleichung 14 gemachte Bemerkung, daß nur solche Verhältnisse möglich sind, für die

$$p_a < \frac{k}{1,7}$$
 bzw.  $p_a < \frac{k_z}{0,9}$ 

(Vgl. das in Fußbemerkung 1 auf S. 589 über den Einfluß der Veränderlichkeit der Dehnungszahl Bemerkte.)

Für verhältnismäßig geringe Wandstärke  $s = r_a - r_i$  findet sich unter den oben ausgesprochenen Voraussetzungen und auf dem gleichen Wege, der zur Beziehung 16 führte,

Bei den Entwicklungen dieses Paragraphen blieb der etwaige, die Festigkeit des Zylindermantels unterstützende Einfluß der Zylinderböden (und zutreffendenfalls der Quernähte) unberücksichtigt. Je kürzer der Zylinder im Vergleiche zum Durchmesser ist, um so bedeutender wird unter sonst gleichen Verhältnissen dieser Einfluß sein; je größer die Länge, um so mehr wird er verschwinden. In der Mehrzahl der Fälle tritt er in den Hintergrund; wo dies nicht zutrifft, kann seine Berücksichtigung schätzungsweise unter Beachtung 38* der Verhältnisse des gerade vorliegenden Sonderfalles dadurch erfolgen, daß die zulässige Anstrengung des Materials entsprechend höher in die Rechnung eingeführt wird.

Wenn der Hohlzylinder nicht aus dem Ganzen besteht, sondern aus einzelnen Teilen hergestellt wurde, die durch Nietung oder in anderer Weise verbunden sind, so wird auch die Widerstandsfähigkeit der Verbindung in Betracht zu ziehen sein.

Die im vorstehenden gegebene Berechnungsweise von Zylinderwandstärken setzt voraus, daß die Flüssigkeitspressung über den ganzen Umfang gleich groß ist. Die Wirklichkeit kann unter Umständen recht erheblich hiervon abweichen, so z. B. bei sehr weiten wagerechten Rohrleitungen für Wasser, in denen der Druck von der Sohle nach dem Scheitel hin verhältnismäßig bedeutend abnimmt. und die nur an der tiefsten Stelle gelagert sind usw. Solche Fälle bedürfen besonderer Behandlung¹).

Die Ermittlung der Wandstärken solcher Hohlzvlinder, bei denen unter Einwirkung des äußeren Überdruckes ein Flachdrücken (Einknicken, Einbeulen) der Wandung zu befürchten steht, gehört bei dem derzeitigen Stand dieser Aufgabe sowie in Anbetracht der besonderen Einflüsse, die dabei zu berücksichtigen sind, an diejenigen Stellen, wo die betreffenden Gegenstände, zu denen solche Hohlzylinder gehören, behandelt werden²).

### § 59. Hohlkugel.

Mit den Bezeichnungen

r. der innere Halbmesser der Hohlkugel,

Druckanstrengung "

finden sich auf demselben Wege, der in § 58 eingeschlagen worden ist, und für  $m = \frac{10}{3}$  die folgenden Beziehungen.

¹⁾ Vgl. die Arbeit von Forchheimer in der Zeitschrift des österr. Ingenieurund Architekten-Vereines 1904, S. 133 u. f., sowie diejenige von Schmidt in der Zeitschrift des Vereines deutscher Ingenieure 1916, S. 432 u. f., S. 987.

²) Über die Berechnung der äußerem Überdrucke ausgesetzten Flammrohre von Dampfkesseln findet sich Näheres in des Verfassers Maschinenelementen, 1891/92, S. 147 u. f., 1908 (10. Aufl.), S. 237 u. f., 1920 (12. Aufl.), S. 249 u. f.

Daselbst ist auch der Einfluß der Rohrlänge auf die Widerstandsfähigkeit solcher Rohre erörtert.

Über die tatsächlichen zuweilen recht bedeutenden Abweichungen von der Kreisform, die bei derartigen Rohren im Betriebe sich einstellen können, und mit denen trotzdem der Betrieb weitergeführt werden kann, vgl. des Ver-fassers Mitteilungen in der Zeitschrift des Vereines deutscher Ingenieure 1910, S. 1018. Die Darlegungen an dieser Stelle dürften deutlich dafür sprechen, daß Gleichungen für die Wandstärken von Flammrohren usw. nicht lediglich vom Standpunkte der Elastizitäts- und Festigkeitslehre aufgestellt werden können.

### 1. Innerer Überdruck $p_i$ .

Die größte Anstrengung tritt auch hier an der Innenfläche ein: in Richtung der Tangente (des Umfanges)

$$k_{z} \geq \frac{\frac{m+1}{2m}r_{a}^{3} + \frac{m-2}{m}r_{i}^{3}}{r_{a}^{3} - r_{i}^{3}}p_{i} = \frac{0.65r_{a}^{3} + 0.4r_{i}^{3}}{r_{a}^{3} - r_{i}^{3}}p_{i}, \left\{ \dots, 1 \right\}$$

in Richtung des Halbmessers

$$k \geq rac{rac{m+1}{m}r_a^{\,3}-rac{m-2}{m}r_i^{\,3}}{r_a^{\,3}-r_i^{\,3}}p_i = rac{1,3\,r_a^{\,3}-0.4\,r_i^{\,3}}{r_a^{\,3}-r_i^{\,3}}p_i.$$

Naturgemäß sind in denselben nur solche Verhältnisse möglich, für die sich endliche Werte von  $r_a$  ergeben.

Für im Verhältnis zum Halbmesser geringe Wandstärke  $s = r_a - r_i$  ergibt die aus

$$\pi r_i^2 p_i \leq \sim k_z 2 \pi r_i s$$

folgende Beziehung

die Anstrengung bzw. Wandstärke genügend genau.

# 2. Äußerer Überdruck $p_a(p_i=0)$ .

Sofern Einknicken (Einbeulen) der Wandung nicht zu befürchten steht¹), gilt für die Anstrengung, die auch hier wieder an der Innenfläche den Größtwert erreicht.

$$k \ge \frac{3(m-1)}{2m} \frac{r_a^3}{r_a^3 - r_i^3} p_a = 1,05 \frac{r_a^3}{r_a^3 - r_i^3} p_a,$$
  
n Richtung des Halbmessers

iı

$$k_{z} \geq \frac{3}{m} \frac{r_{a}^{3}}{r_{a}^{3} - r_{i}^{3}} p_{a} \qquad = 0.9 \frac{r_{a}^{3}}{r_{a}^{3} - r_{i}^{3}} p_{a}.$$

Für verhältnismäßig geringe Wandstärke wie oben

$$k \ge \frac{1}{2} p_a \frac{r_a}{s}$$
 oder  $s = \frac{1}{2} r_a \frac{p_a}{k}$  . . . . . 4)

Die zwei letzten Sätze von § 58 sind auch sinngemäß auf die Hohlkugel zu übertragen und demgemäß zu beachten.

¹⁾ Über die Berechnung von kugelförmigen Wandungen, bei denen Ein-beulen zu befürchten steht, s. des Verfassers Arbeit "Die Widerstandsfähigkeit kugelförmiger Wandungen gegenüber äußerem Überdruck" in der Zeitschrift des Vereines deutscher Ingenieure 1902, S. 333 u. f., oder Heft 6 der "Versuche über die Widerstandsfähigkeit von Kesselwandungen", oder auch "Maschinenelemente", 10. Aufl., S. 256 u. f., 12. Aufl., S. 269 u. f.

Auch hier gilt der Schlußsatz der vorhergehenden Fußbemerkung.

Siebenter Abschnitt.

# Plattenförmige Körper.

Die Erörterung der Widerstandsfähigkeit ebener Platten und Wandungen gegenüber einer gleichförmigen Belastung, insbesondere durch Flüssigkeitsdruck, oder gegenüber senkrecht zu ihnen wirkenden Einzelkräften führt auf eine der schwächsten Stellen der Elastizitäts- und Festigkeitslehre.

Eine vom mathematischen Standpunkt aus strenge Ableitung der Inanspruchnahme, welche die am Umfange gestützte oder eingespannte Platte bei der bezeichneten Belastung erfährt, war nach Wissen des Verfassers nur für den Fall der ebenen kreisförmigen Platte, der Scheibe, unter gewissen Voraussetzungen gegeben worden, die übrigens in den meisten Fällen zu einem erheblichen Teile mit den tatsächlichen Verhältnissen in Widerspruch stehen, wie später näher auszuführen sein wird (§ 60, Ziff. 2).

Für die elliptische Platte fehlte es trotz ihres häufigen Vorkommens als Mannlochdeckel usw. überhaupt an einer Beziehung zwischen der Flüssigkeitspressung, den Abmessungen und der Materialanstrengung.

Die zur Bestimmung der Inanspruchnahme rechteckiger Platten vorliegenden Angaben beruhen auf Entwicklungen, die zwar zunächst den streng wissenschaftlichen Weg einschlagen, sich jedoch im Verlaufe der Rechnung zu vereinfachenden Annahmen gezwungen sehen, welche die Zuverlässigkeit der Ergebnisse beeinträchtigen. Überdies muß von wesentlichen der gemachten Voraussetzungen das gleiche gesagt werden, was in dieser Hinsicht bei der kreisförmigen Platte bemerkt wurde. Der zur Lösung der Aufgabe nötige Aufwand an mathematischen Hilfsmitteln ist trotzdem und ganz abgesehen von der Umfänglichkeit der Rechnungen ein sehr bedeutender und geht recht erheblich über das Maß hinaus, das dem zwar wissenschaftlich gebildeten, jedoch mitten in der Ausführung stehenden Ingenieur durchschnittlich noch geläufig ist.

Auf andere als ebene Platten erstreckten sich diese Betrachtungen überhaupt nicht, also nicht auf Deckel von den Formen, wie sie z. B. die Figuren 1 bis 5 wiedergeben. Querschnitte dieser Art aber sind bei den in der Wirklichkeit vorkommenden Deckeln und dergleichen weit häufiger zu finden als das einfache Rechteck.

Unter diesen Umständen erschien die Sicherheit, mit welcher der Konstrukteur die Inanspruchnahme von Platten und Wandungen der in Frage stehenden Art tatsächlich feststellen kann, durchschnittlich recht gering; in nicht wenigen Fällen konnte überhaupt nicht von einer Sicherheit, sondern es mußte vielmehr von einer Unsicherheit gesprochen werden, die bezüglich der Widerstandsfähigkeit solcher Konstruktionsteile besteht. Dieser Zustand mußte um so drückender empfunden werden, als auf manchen Gebieten des Maschineningenieur-



wesens (Dampfkessel-, Dampfmaschinenbau usw.) Aufgaben der in Frage stehenden Art sich sehr häufig zu bieten und hier überdies eine hohe, auch auf Menschenleben sich erstreckende Verantwortlichkeit einzuschließen pflegen.

Bei dieser Sachlage hat sich Verfasser zur Befriedigung der vorliegenden überaus dringlichen Bedürfnisse veranlaßt gesehen, einen Näherungsweg einzuschlagen, wie er sich aus dem Späteren (§ 60, Ziff. 4, § 61, § 62, § 63) ergeben wird. Die erste dahingehende Veröffentlichung findet sich in der Zeitschrift des Vereines deutscher Ingenieure 1890, S. 1041 u. f.

# § 60. Ebene kreisförmige Platte (Scheibe).

## 1. Ermittlung der Anstrengung auf dem Wege der Rechnung.

Die Behandlung dieser Aufgabe ist 1860 von Winkler und 1866 von Grashof der Öffentlichkeit übergeben worden. Der Gang der Entwicklungen ist bei beiden im wesentlichen derselbe. Die folgenden Rechnungen geben die Lösung wieder, wie sie sich in Grashofs Theorie der Elastizität und Festigkeit 1878, S. 329 u. f. findet.

Die Scheibe von der Stärke h wird aufgefaßt als am Umfange vom Halbmesser r frei aufliegend, wie in Fig. 6 dargestellt, oder als







daselbst eingespannt, wie Fig. 8 wiedergibt (wobei jedoch der Einfluß des über den Kreis vom Halbmesser r vorstehenden Scheibenrandes auf die Widerstandsfähigkeit unberücksichtigt bleibt), und in bezug auf ihre Belastung angenommen, daß diese im allgemeinen bestehe

aus einer Einzelkraft P, die im Mittelpunkte angreifend senkrecht zur Oberfläche gerichtet ist,

aus einem gleichmäßig über die Oberfläche  $\pi r^2$  verteilten Normal-



druck von der Größe p auf die Flächeneinheit und

aus einer auf die kreiszylindrische Mantelfläche  $2 \pi rh$  gleichmäßig verteilten, radial auswärts wirkenden Kraft, deren Größe  $p_1$ auf die Flächeneinheit beträgt¹).

¹) Wirkt diese Kraft allein, so gilt Gl. 15 in § 66.

Die Scheibe, die zunächst noch nicht belastet sei, denkt man sich auf ein rechtwinkliges Koordinatensystem bezogen, dessen x- und y-Achse in der Mittelebene liegen, während die z-Achse senkrecht dazu (positiv nach unten) gerichtet ist (Fig. 6 und 7). Der in der xz-Ebene gelegene beliebige Punkt P der Scheibe erscheint durch die Abszisse x und den Abstand  $\lambda$  von der ursprünglich ebenen Mittelfläche bestimmt. Unter Einwirkung der Belastung geht die letztere in eine Rotationsfläche über (Fig. 9), deren Meridianlinie durch die Koordinaten x und z festgelegt wird.

Werden nun für den in Betracht gezogenen Punkt P bezeichnet mit  $\sigma_x$  die Normalspannung und mit  $\epsilon_x$  die Dehnung in Richtung der x-Achse,

- mit  $\sigma_y$  die Normalspannung und mit  $\varepsilon_y$  die Dehnung in Richtung der y-Achse,
- mit  $\sigma_z$  die Normalspannung und mit  $\varepsilon_z$  die Dehnung in Richtung der z-Achse,

so ergeben sich auf demselben Wege, auf dem die Beziehungen 3, § 58, gefunden wurden, die Werte

$$\begin{split} \sigma_x &= \frac{2}{\beta} \left( \varepsilon_x + \frac{\varepsilon_x + \varepsilon_y + \varepsilon_z}{m - 2} \right), \\ \sigma_y &= \frac{2}{\beta} \left( \varepsilon_y + \frac{\varepsilon_x + \varepsilon_y + \varepsilon_z}{m - 2} \right), \\ \sigma_z &= \frac{2}{\beta} \left( \varepsilon_z + \frac{\varepsilon_x + \varepsilon_y + \varepsilon_z}{m - 2} \right). \end{split}$$

Unter der Voraussetzung, daß die Stärke h der Scheibe gering ist gegenüber 2 r, kann die Spannung  $\sigma_z$  nur klein ausfallen im Vergleich zu  $\sigma_r$  und  $\sigma_u$ . Demgemäß vernachlässigt man  $\sigma_z$ , d. h. setzt

$$\epsilon_z + \frac{\epsilon_x + \epsilon_y + \epsilon_z}{m-2} = 0,$$

woraus folgt

$$\epsilon_z = -\frac{\epsilon_x + \epsilon_y}{m-1},$$

und erhält hiermit

$$\sigma_{x} = \frac{2}{(m-1)\beta} (m \varepsilon_{x} + \varepsilon_{y}) \\ \sigma_{y} = \frac{2}{(m-1)\beta} (\varepsilon_{x} + m \varepsilon_{y})$$
 . . . . . . 1)

Bedeuten für den Punkt P' der Mittelfläche, der um x von der z-Achse absteht (Fig. 6, 9),

- $\varepsilon_x'$  und  $\varepsilon_y'$  die nach der Richtung der x- bzw. y-Achse genommenen Dehnungen,
- o den Krümmungshalbmesser der Meridianlinie,
- Q₁ ", ", Mittelfläche in dem dazu senkrechten Normalschnitt,
- welche Radien als sehr groß gegenüber den Abmessungen der Scheibe vorausgesetzt werden,

so ist mit der Annäherung, mit welcher die für gerade stabförmige Körper ermittelte Gleichung 1, § 16, nach hier übertragen werden darf,

$$\epsilon_x = \epsilon_x' + \frac{\lambda}{\varrho}$$
 und  $\epsilon_y = \epsilon_y' + \frac{\lambda}{\varrho_1}$ 

Da nach Gleichung 14, § 16,

so ergibt sich

$$\frac{1}{\varrho} = \sim -\frac{d^2z}{dx^2}$$

und ferner  $\varrho_1$  gleich der Länge der Normalen bis zum Durchschnitt mit der Achse der Rotationsfläche ist, d. h. unter Bezugnahme auf Fig. 9

$$\varrho_{1} = \frac{x}{\sin \varphi} = \sim \frac{x}{\operatorname{tg} \varphi} = \frac{x}{-\frac{dz}{dx}},$$

$$\frac{1}{\varrho_{1}} = \sim -\frac{1}{x} \frac{dz}{dx},$$

$$\varepsilon_{x} = \varepsilon_{x}' - \lambda \frac{d^{2}z}{dx^{2}},$$

$$\varepsilon_{y} = \varepsilon_{y}' - \frac{\lambda}{x} \frac{dz}{dx},$$

$$\ldots \ldots \ldots 2)$$

und nach Einführung dieser Werte in die Gleichungen 1

$$\sigma_{x} = \frac{m}{(m^{2} - 1)\alpha} \left\{ m \varepsilon_{x}' + \varepsilon_{y}' - \lambda \left( m \frac{d^{2}z}{dx^{2}} + \frac{1}{x} \frac{dz}{dx} \right) \right\}$$
  
$$\sigma_{y} = \frac{m}{(m^{2} - 1)\alpha} \left\{ \varepsilon_{x}' + m \varepsilon_{y}' - \lambda \left( \frac{d^{2}z}{dx^{2}} + \frac{m}{x} \frac{dz}{dx} \right) \right\}$$
... 3)

Die Spannungen  $\sigma'_x$  und  $\sigma'_y$  in dem Punkte P' der Mittelfläche, die sich aus den Gleichungen 3 für  $\lambda = 0$  ergeben, rühren — unter den gemachten Voraussetzungen — nur von der Spannung  $p_1$  am Umfangsmantel der Scheibe her, somit

$$\sigma_x' = \sigma_y' = p_1$$

und infolgedessen auch aus den Gleichungen 3 mit  $\lambda = 0$ 

$$\sigma_{x}' = \frac{m}{(m^{2} - 1)\alpha} \left\{ m \varepsilon_{x}' + \varepsilon_{y}' \right\} = p_{1}$$
  
$$\sigma_{y}' = \frac{m}{(m^{2} - 1)\alpha} \left\{ \varepsilon_{x}' + m \varepsilon_{y}' \right\} = p_{1},$$

folglich

$$\varepsilon_x' = \varepsilon_y' = \alpha \, \frac{m-1}{m} \, p_1.$$

Hiermit liefern die Gleichungen 2

und die Gleichungen 3

$$\sigma_{x} = p_{1} - \frac{m}{(m^{2} - 1)\alpha} \lambda \left( m \frac{d^{2}z}{dx^{2}} + \frac{1}{x} \frac{dz}{dx} \right)$$
  
$$\sigma_{y} = p_{1} - \frac{m}{(m^{2} - 1)\alpha} \lambda \left( \frac{d^{2}z}{dx^{2}} + \frac{m}{x} \frac{dz}{dx} \right)$$

Vom Punkte P ausgehend denkt man sich ein Körperelement, Fig. 10, mit den Querschnittsabmessungen dx und  $d\lambda$ konstruiert und herausgeschnitten, sodann die auf dasselbe wirkenden Spannungen eingetragen, wobei zu berücksichtigen ist, daß Schubspannungen nur da auftreten können, wo Winkeländerungen (Gleitungen) stattfinden, und die Gleichgewichtsbedingung



$$\sigma_{x} x \, d\varphi \, d\lambda + 2 \sigma_{y} \sin \frac{d\varphi}{2} d\lambda \, dx + \tau_{y} \left( x + \frac{dx}{2} \right) d\varphi \, dx$$
$$- \left( \sigma_{x} + \frac{d\sigma_{x}}{dx} dx \right) (x + dx) \, d\varphi \, d\lambda - \left( \tau_{y} + \frac{d\tau_{y}}{d\lambda} d\lambda \right) \left( x + \frac{dx}{2} \right) d\varphi \, dx = 0$$

aufgestellt. Aus derselben folgt

$$\sigma_{y} - \sigma_{x} - x \frac{d\sigma_{x}}{dx} - x \frac{d\tau_{y}}{d\lambda} = 0,$$

$$\frac{d\tau_{y}}{d\lambda} = \frac{\sigma_{y}}{x} - \frac{\sigma_{x} + x \frac{d\sigma_{x}}{dx}}{x} = \frac{\sigma_{y}}{x} - \frac{1}{x} \frac{d(x\sigma_{x})}{dx}.$$

Nach Einführung der Gleichung 4

$$\begin{split} \frac{d\tau_y}{d\lambda} &= \frac{1}{x} \left[ p_1 - \frac{m}{m^2 - 1} \frac{1}{\alpha} \lambda \left( \frac{d^2 z}{dx^2} + \frac{m}{x} \frac{dz}{dx} \right) - p_1 \right. \\ &+ \frac{m}{m^2 - 1} \frac{1}{\alpha} \lambda \left( mx \frac{d^3 z}{dx^3} + m \frac{d^2 z}{dx^2} + \frac{d^2 z}{dx^2} \right) \right], \\ &\frac{d\tau_y}{d\lambda} &= \frac{m^2}{m^2 - 1} \frac{1}{\alpha} \lambda \left( \frac{d^3 z}{dx^3} + \frac{1}{x} \frac{d^2 z}{dx^2} - \frac{1}{x^2} \frac{dz}{dx} \right) \end{split}$$

und durch Integration in bezug auf die Veränderliche  $\lambda$ 

$$\tau_{y} = \frac{m^{2}}{m^{2} - 1} \frac{1}{\alpha} \frac{\lambda^{2}}{2} \left( \frac{d^{3}z}{dx^{3}} + \frac{1}{x} \frac{d^{2}z}{dx^{2}} - \frac{1}{x^{2}} \frac{dz}{dx} \right) + C$$

Die Konstante C ist bestimmt dadurch, daß für  $\lambda = \pm \frac{h}{2}$  die Schubspannung  $\tau_y = 0$ , somit

$$\tau_y = -\frac{m^2}{m^2 - 1} \frac{1}{\alpha} \frac{h^2 - 4\lambda^2}{8} \left( \frac{d^3 z}{d x^3} + \frac{1}{x} \frac{d^2 z}{d x^2} - \frac{1}{x^2} \frac{d z}{d x} \right) \quad . \quad . \quad 5)$$



Das Vorzeichen von  $\tau$  deutet an, daß der ursprünglich rechte Winkel, an dessen Kanten in Fig. 10 die Schubspannungen eingetragen sind, in einen stumpfen übergeht, diese also nicht in den eingezeichneten, sondern in den entgegengesetzten Richtungen wirken.

Um z als Funktion von x zu erhalten, denkt man sich eine Scheibe vom Halbmesser x, Fig. 11, herausgetrennt. Auf dieselbe wirkt in Richtung der

Scheibenachse die Belastung  $P + \pi x^2 p$ , die durch die Schubkräfte übertragen werden muß, somit

$$\int_{-\frac{h}{2}}^{+\frac{h}{2}} \tau_y \cdot 2\pi x d\lambda = P + \pi x^2 p,$$

wobei die Integration nach Einführung des absoluten Wertes von  $\tau_y$ 

aus Gleichung 5 lediglich in bezug auf  $\lambda$  zu erfolgen hat. Es ergibt sich

$$2\pi x \frac{m^2}{m^2 - 1} \frac{1}{\alpha} \left( \frac{d^3 z}{dx^3} + \frac{1}{x} \frac{d^2 z}{dx^2} - \frac{1}{x^2} \frac{dz}{dx} \right) \int \frac{h^2 - 4\lambda^2}{8} d\lambda$$
  
=  $P + \pi x^2 p$ 

und somit in

$$\frac{d^3z}{dx^3} + \frac{1}{x}\frac{d^2z}{dx^2} - \frac{1}{x^2}\frac{dz}{dx} = 6\frac{m^2 - 1}{m^2}\alpha \frac{1}{h^3}\left(px + \frac{P}{\pi x}\right) \quad . \quad . \quad 6)$$

die Differentialgleichung der Meridianlinie.

Die Einsetzung des Ausdrucks auf der rechten Seite dieser Gleichung in Gleichung 5 ergibt für die absolute Größe der Schubspannung

Wie ersichtlich, würde  $\tau_y$  für x = 0, d. h. für die Mitte der Scheibe, unendlich groß werden, sofern P > 0 ist. Dies verlangt, daß die Einzellast P nicht als im Mittelpunkt der Scheibe zusammengedrängt angreifend, sondern als auf eine mit der Scheibenoberfläche konzentrische Kreisfläche vom Halbmesser  $r_0$  verteilt gedacht wird, wobei  $r_0$  natürlich klein gegenüber r anzunehmen ist. An die Stelle der Kreisfläche  $\pi r_0^2$  kann auch der Kreisumfang  $2\pi r_0$  treten.

Mit den abgekürzten Bezeichnungen

$$\frac{m^2-1}{m^2} \alpha \frac{6}{h^3} p = a, \qquad \frac{m^2-1}{m^2} \alpha \frac{6}{h^3} \frac{P}{\pi} = b$$

geht Gleichung 6 über in

$$\frac{d^{3}z}{dx^{3}} + \frac{1}{x}\frac{d^{2}z}{dx^{2}} - \frac{1}{x^{2}}\frac{dz}{dx} = ax + \frac{b}{x},$$

und da die linke Seite gleich

$$\frac{d}{dx}\left(\frac{d^2z}{dx^2}+\frac{1}{x}\frac{dz}{dx}\right)=\frac{d}{dx}\left\{\frac{1}{x}\frac{d}{dx}\left(x\frac{dz}{dx}\right)\right\},$$

so ist auch

$$\frac{d}{dx}\left\{\frac{1}{x}\frac{d}{dx}\left(x\frac{dz}{dx}\right)\right\} = ax + \frac{b}{x},$$

woraus folgt

$$\frac{1}{x}\frac{d}{dx}\left(x\frac{dz}{dx}\right) = \frac{a}{2}x^{2} + b\ln x + c_{1},$$
$$x\frac{dz}{dx} = \frac{a}{8}x^{4} + b\int x\ln x \, dx + \frac{c_{1}}{2}x^{2} + c_{2},$$

Plattenförmige Körper.

und wegen

$$\int x \ln x \, dx = \frac{x^2}{4} (2 \ln x - 1)$$
$$\frac{dz}{dx} = \frac{a}{8} x^3 + \frac{b}{4} x (2 \ln x - 1) + \frac{c_1}{2} x + \frac{c_2}{x} \dots \dots N$$

Somit

$$z = \frac{a}{32}x^4 + \frac{b}{4}x^2(\ln x - 1) + \frac{c_1}{4}x^2 + c_2\ln x + c_3 \quad . \quad . \quad 9)$$

Hiernach finden sich für die in den Gleichungen 4 auftretenden Werte

$$\frac{1}{x}\frac{dz}{dx} = \frac{a}{8}x^2 + \frac{b}{4}\left(2\ln x - 1\right) + \frac{c_1}{2} + \frac{c_2}{x^2}, \\ \frac{d^2z}{dx^2} = \frac{3}{8}ax^2 + \frac{b}{4}\left(2\ln x + 1\right) + \frac{c_1}{2} - \frac{c_2}{x^2}\right\} \quad \dots \quad 10)$$

Zur Bestimmung der Integrationskonstanten ist zunächst zu beachten, daß für x = 0 auch  $\frac{dz}{dx} = 0$ , d. h., daß die Tangente an der Meridianlinie im Scheitel derselben wagrecht sein muß, also nach Gleichung 8

$$0 = \frac{b}{2} (x \ln x) + \frac{c_2}{x} \quad \text{für } x = 0.$$
$$x \ln x = \frac{\ln x}{1}$$
$$x$$

Da

und dieser Wert für x = 0 zu  $\frac{\infty}{\infty}$  wird, so ist für Zähler und Nenner der erste Differentialquotient zu bilden:

$$\frac{b}{2} \left[ \frac{\frac{d}{dx} (\ln x)}{\frac{d}{dx} (\frac{1}{x})} \right]_{x=0} = \frac{b}{2} \left[ \frac{\frac{1}{x}}{-\frac{1}{x^2}} \right]_{x=0} = -\frac{b}{2} (x)_{x=0} = 0.$$

Hiermit

$$0=0+\left(\frac{c_2}{x}\right)_{x=0},$$

was nur durch  $c_2 = 0$  ermöglicht wird.

Ist die Scheibe am Rande nur gestützt, also lose aufliegend, so muß für alle Punkte des Umfangsmantels der Scheibe,

d. h. für x = r und für jeden möglichen Wert von  $\lambda \sigma_x = p_1$  sein. Nach der ersten der Gleichungen 4 ist das nur möglich, wenn

$$m\frac{d^2z}{dx^2} + \frac{1}{x}\frac{dz}{dx} = 0,$$

woraus nach Einführung der rechten Seiten der Gleichungen 10 folgt

$$c_1 = -\frac{1}{4} \frac{3m+1}{m+1} ar^2 - b \left( \ln r + \frac{1}{2} \frac{m-1}{m+1} \right) \dots 11$$

Ist die Scheibe Rande eingea m spannt, so daß die x-Achse an der Befestigungsstelle Tangente an der Meridianlinie ist, Fig. 12 (vgl. hierüber auch § 53), dann muß



für  $x = r \frac{dz}{dx} = 0$  sein,

somit nach Gleichung 8, da  $c_2 = 0$ ,

$$0 = \frac{a}{8}r^{3} + \frac{b}{4}r(2\ln r - 1) + \frac{c_{1}}{2}r,$$

$$c_{1} = -\frac{a}{4}r^{2} - b\left(\ln r - \frac{1}{2}\right)....12$$

a) Die Scheibe ist nur durch p gleichmäßig belastet; P = 0.

Mit P = 0 wird

$$b = \frac{m^2 - 1}{m^2} \alpha \frac{6}{h^3} \frac{P}{\pi} = 0.$$

Die Konstante c3 der Gleichung 9 bestimmt sich dadurch, daß für  $x = r \ z = 0$  sein muß, also, da  $c_2 = 0$  (S. 606), aus

$$0 = \frac{a}{32}r^4 + \frac{c_1}{4}r^2 + c_3$$

zu

$$c_3 = -\frac{a}{32}r^4 - \frac{c_1}{4}r^2.$$

Damit geht die Gleichung 9 der Meridianlinie über in

$$z = -\frac{a}{32}(r^4 - x^4) - \frac{c_1}{4}(r^2 - x^2) = -\left(a\frac{r^2 + x^2}{8} + c_1\right)\frac{r^2 - x^2}{4}$$
 13)

a) Die Scheibe liegt am Rande lose auf.

Gleichung 11 ergibt mit b = 0

$$c_1 = -\frac{1}{4} \frac{3m+1}{m+1} a r^2.$$

Durch Einführung dieser Größe und von

$$a = \frac{m^2 - 1}{m^2} a \frac{6}{h^3} p$$

in Gleichung 13 liefert diese

$$z = \frac{3}{16} \frac{m^2 - 1}{m^2} \alpha \frac{p}{h^3} \left( \frac{5m + 1}{m + 1} r^2 - x^2 \right) (r^2 - x^2) \quad . \quad . \quad 14$$

Hieraus folgt die Durchbiegung in der Mitte für x = 0

und mit  $m = \frac{10}{3}$ 

$$z' = 0.7 \alpha p \frac{r^4}{h^3} \cdot \ldots \cdot \ldots \cdot \ldots \cdot 16$$

Für  $p_1 = 0$  gehen die Gleichungen 2a über in

$$\begin{split} \varepsilon_{x} &= -\lambda \frac{d^{2}z}{dx^{2}} = \frac{3}{4} \frac{m^{2}-1}{m^{2}} \alpha \frac{p}{h^{3}} \lambda \left( \frac{3m+1}{m+1} r^{2}-3x^{2} \right), \\ \varepsilon_{y} &= -\frac{\lambda}{x} \frac{dz}{dx} = \frac{3}{4} \frac{m^{2}-1}{m^{2}} \alpha \frac{p}{h^{3}} \lambda \left( \frac{3m+1}{m+1} r^{2}-x^{2} \right). \end{split}$$

Diese Dehnungen erlangen ihren größten Wert für x = 0 (Mitte der Scheibe) und für  $\lambda = \pm \frac{h}{2}$  (äußerste Fasern). Diese Höchstwerte sind überdies gleich groß, nämlich

$$\max\left(\varepsilon_{x}\right) = \pm \frac{3}{8} \frac{\left(m-1\right)\left(3\,m+1\right)}{m^{2}} \alpha\left(\frac{r}{h}\right)^{2} p = \max\left(\varepsilon_{y}\right).$$

An den bezeichneten Stellen sind die Schubspannungen nach Gleichung 7 gleich Null, somit ist  $\max \begin{pmatrix} \frac{\epsilon_x}{\alpha} \end{pmatrix}$  die größte Anstrengung und demgemäß mit  $k_b$  als zulässiger Biegungsinanspruchnahme

Mit  $m = \frac{10}{3}$  wird

 $\beta$ ) Die Scheibe ist am Umfange eingespannt.

Gleichung 12 liefert mit b = 0

$$c_1 = -\frac{9}{4}r^2.$$

In ganz gleicher Weise wie unter  $\boldsymbol{e})$ ergibt sich hier die Gleichung der Meridianlinie

$$z = \frac{3}{16} \frac{m^2 - 1}{m^2} \alpha \frac{p}{h^3} (r^2 - x^2)^2 \quad . \quad . \quad . \quad . \quad 19)$$

und hieraus die Durchbiegung in der Mitte (x=0)

und mit  $m = \frac{10}{3}$ 

Aus den Gleichungen 2a folgt. da

$$\frac{1}{x}\frac{dz}{dx} = \frac{3}{4}\frac{m^2-1}{m^2}\alpha\frac{p}{h^3}(r^2-x^2),$$
$$\frac{d^2z}{dx^2} = \frac{3}{4}\frac{m^2-1}{m^2}\alpha\frac{p}{h^3}(r^2-3x^2),$$
$$\frac{e_x}{\alpha} = \frac{m-1}{m}p_1 + \frac{3}{4}\frac{m^2-1}{m^2}\frac{p}{h^3}\lambda(r^2-3x^2),$$
$$\frac{e_y}{\alpha} = \frac{m-1}{m}p_1 + \frac{3}{4}\frac{m^2-1}{m^2}\frac{p}{h^3}\lambda(r^2-x^2).$$

Ist. wie vorausgesetzt.  $p_1 \ge 0$ , so erlangt  $\frac{\varepsilon_x}{\alpha}$  zwei größte Werte: den einen für x = 0 und  $\lambda = \pm \frac{h}{2}$  (Mitte der Scheibe, unterste Faser, bei A. Fig. 13) und den anderen für x = r und  $\lambda = \pm \frac{h}{2}$  (Einspannstelle.oberste



Fig. 13.

Faser. bei B. Fig. 13). Der erstere beträgt

$$\max\left(\frac{\epsilon_x}{\alpha}\right)_1 = \frac{m-1}{m} p_1 + \frac{3}{8} \frac{m^2 - 1}{m^2} \left(\frac{r}{h}\right)^2 p.$$

C. Bach, Elastizität. 8. Aufl.

der letztere

$$\max\left(\frac{\varepsilon_x}{\alpha}\right)_2 = \frac{m-1}{m}p_1 + \frac{3}{4}\frac{m^2-1}{m^2}\left(\frac{r}{h}\right)^2p.$$

Dieser ist der größere¹); somit, da die Schubspannungen nach Gleichung 7 für  $\lambda = \pm \frac{h}{2}$  Null werden,

Für  $p_1 = 0$  wird

$$k_{b} \geq \frac{3}{4} \frac{m^{2} - 1}{m^{2}} \left(\frac{r}{h}\right)^{2} p$$

und mit  $m = \frac{10}{3}$ 

b) Die Scheibe liegt am Rande frei auf und ist nur durch die in der Mitte angreifende Kraft P belästet.

Die Gleichung der Meridianlinie ergibt sich in gleicher Weise, wie unter a) ermittelt, bei Beachtung, daß

$$a = \frac{m^2 - 1}{m^2} \alpha \frac{6}{h^3} p = 0$$
 (wegen  $p = 0$ ),  $c_2 = 0$ ,

und für

$$x = r$$
  $z = 0$ 

aus Gleichung 9 zu

$$z = -\frac{b}{4} \left\{ r^2 \left( ln r - 1 \right) - x^2 \left( ln x - 1 \right) \right\} - \frac{c_1}{4} \left( r^2 - x^2 \right).$$

¹) In Wirklichkeit pflegt die Einspannung nur eine unvollkommene zu sein. Durch Nachgiebigkeit des befestigten Scheibenrandes (gegenüber dem Zustande vollkommener Einspannung) nimmt die Anstrengung der Scheibe an dem Rande ab, dagegen diejenige in der Scheibenmitte zu. Hierbei steigt die letzere für  $p_1 = 0$  von dem Werte  $\frac{3}{8} \frac{m^2-1}{m^2} \left(\frac{r}{h}\right)^2 p$ , d. i. 0,34  $\left(\frac{r}{h}\right)^2 p$  bei  $m = \frac{10}{3}$ , gültig für vollkommene Einspannung, bis zu dem durch Gleichung 17 bestimmten Betrag, d. i. 0,87  $\left(\frac{r}{h}\right)^2 p$  bei  $m = \frac{10}{3}$ , gültig für Freiaufliegen, während die Beanspruchung am Umfange von dem Werte  $\frac{3}{4} \frac{m^2-1}{m^2} \left(\frac{r}{h}\right)^2 p$ , d. i. 0,68  $\left(\frac{r}{h}\right)^2 p$  bei  $m = \frac{10}{3}$ , bis auf Null sinkt. Für eine gewisse Nachgiebigkeit an der Befestigungsstelle wird die Anstrengung der Scheibe am geringsten ausfallen (vgl. S. 504 u. f.).

Nach Einführung von

$$c_1 = -b\left(\ln r + \frac{1}{2}\frac{m-1}{m+1}\right)$$

und

$$b = \frac{m^2 - 1}{m^2} \alpha \frac{6}{h^3} \frac{P}{\pi}$$

wird

$$z = \frac{3}{4\pi} \frac{m^2 - 1}{m^2} \alpha \frac{P}{h^3} \left\{ 2 x^2 \ln \frac{x}{r} + \frac{3 m + 1}{m + 1} (r^2 - x^2) \right\} \dots 24$$

Somit die Durchbiegung in der Mitte der Platte (x=0)

$$z' = \frac{3}{4\pi} \frac{(m-1)(3m+1)}{m^2} \alpha P \frac{r^2}{h^3} \quad . \quad . \quad . \quad . \quad 25)$$

und mit  $m = \frac{10}{3}$ 

Die Gleichungen 2a führen mit den Gleichungen 10 sowie unter Beachtung, daß  $p_1 = 0$ ,  $c_2 = 0$  und  $c_1$  durch Gleichung 11 bestimmt ist, sowie unter Berücksichtigung der Bedeutung von b zu

$$\begin{split} \varepsilon_r &= \frac{3}{\pi} \frac{m^2 - 1}{m^2} \alpha \frac{P}{h^3} \left( \ln \frac{r}{x} - \frac{1}{m+1} \right) \lambda, \\ \varepsilon_y &= \frac{3}{\pi} \frac{m^2 - 1}{m^2} \alpha \frac{P}{h^3} \left( \ln \frac{r}{x} + \frac{m}{m+1} \right) \lambda. \end{split}$$

Wird gemäß der Bemerkung zu Gleichung 7 (S. 605) die Kraft Pauf der Kreislinie  $2 \pi r_0$  — in Wirklichkeit auf der dieser Linie entsprechenden schmalen Kreisringfläche — gleichmäßig verteilt angenommen, wobei  $r_0$  klein gegen r, immerhin aber so groß vorausgesetzt ist, daß der größte Wert der aus Gleichung 7 folgenden Schubspannung, d. i. wegen  $\lambda = 0$ , p = 0 und  $x = r_0$ ,

das höchstens noch für zulässig erachtete Maß nicht überschreitet, so ergeben sich die Größtwerte von  $\epsilon_x$  und  $\epsilon_y$  für

$$x=r_0$$
 und  $\lambda=\frac{h}{2}$ ,

und zwar ist

$$\max\left(\frac{\varepsilon_y}{\alpha}\right) = \frac{3}{2\pi} \frac{m^2 - 1}{m^2} \left(\ln\frac{r}{r_0} + \frac{m}{m+1}\right) \frac{P}{h^2}$$
39*

Plattenförmige Körper

die größere der beiden Anstrengungen¹: somit. da die Schubspannungen nach Gleichung 7 für  $\lambda = -\frac{h}{2}$  Null werden.

$$k_{\nu} \ge rac{3}{2 \pi} rac{m^2 - 1}{m^2} \left( \ln rac{r}{r_0} + rac{m}{m + 1} 
ight) rac{P}{h^2} + \dots + 28$$

Hierbei ist allerdings vorausgesetzt. daß die der Schubspannung Gleichung 27 entsprechende Dehnung nicht eine größere Anstrengung liefert. was im Falle vollkommener Gleichartigkeit des Materials darauf hinauskommt. daß

$$\frac{3}{4\pi} \frac{P}{hr_0} \frac{m+1}{m} \leq \max\left(\frac{\epsilon_y}{\alpha}\right) \dots \dots \dots 29$$

Diese Voraussetzung wird erfüllt sein, wenn die Scheibenstärke hdie nach Gleichung 28 die Anstrengung mit der zweiten Potenz beeinflußt, verhältnismäßig klein gegenüber r ist, welche Annahme der ganzen Entwicklung dieses Paragraphen zugrunde liegt (vgl. S. 601). Andererseits fassen diese Entwicklungen die Scheibe als biegungssteif auf, setzen also voraus, daß sie sich nicht als Membrane verhält.

Gleichung 27 bzw. 29 ermöglicht übrigens in jedem Falle eine Prüfung.

Mit 
$$m = \frac{10}{3}$$
 geht Gleichung 28 über in $k_b \ge 0.334 \left( 1.3 \ln \frac{r}{r_0} + 1 \right) \frac{P}{h^2} \dots \dots \dots \dots 30$ 

## 2. Vergleichung der Voraussetzungen, die bei den unter Ziff. 1 durchgeführten Rechnungen gemacht worden sind. mit den tatsächlichen Verhältnissen²).

In den weitaus meisten Fällen der Verwendung plattenförmiger Körper im Maschinenbau handelt es sich um die Widerstandsfähigkeit gegenüber Flüssigkeitsbelastung. Die Platten müssen alsdann in der Regel, damit sie abdichten. kräftig gegen die Dichtungsfläche

¹) Streng genommen, wäre noch die Formänderung und die Anstrengung innerhalb des mittleren Teiles der Scheibe, entsprechend dem Durchmesser  $2r_0$ , zu untersuchen; hierauf sei zunächst verzichtet.

²) Wie S. 599 bemerkt, entsprechen die unter Ziff. 1 gegebenen Entwicklungen der von Grashof in seiner bekannten scharfen und klaren Weise aufgebauten — erstmals vor rund 50 Jahren veröffentlichten — Berechnung der kreisförmigen Platte. In der "Festigkeitslehre" von Föppl. 1900, S. 273 u. f. ist grundsätzlich in gleicher Weise vorgegangen. jedoch zu einem Teile ein etwas anderer Gang der Rechnung — unter Weglassung der radialen Belastung  $p_1$ am Scheibenumfang — gewählt. Die wesentlichen Voraussetzungen und die Endergebnisse der Rechnung sind die gleichen wie bei Grashof.

Vgl. auch die S. 618 genannten Arbeiten von Ensslin.

gepreßt werden. Sie liegen also keinesfalls lose auf ihrem Widerlager auf, können auch häufig nicht als einfach eingespannt aufgefaßt werden, sind vielmehr meist eigenartig befestigt. Betrachten wir beispielsweise die Scheibe, die in Fig. 14 ein zylindrisches Hohlgefäß verschließt, so erkennen wir sofort, daß, noch bevor die Flüssigkeitspressung wirkt, schon durch das Anziehen der Flanschenschrauben die Scheibe sich wölben muß, und zwar um so mehr, je größer der Abstand x der Schrauben von der Dichtungsstelle; d. h. von derjenigen Umfangslinie ist, in welcher der Widerlagsdruck des Dichtungsringes zusammengedrängt angenommen werden darf. Wo

diese Umfangslinie tatsächlich liegt. d. h. wie sich der Widerlagsdruck über die Breite der Dichtungsscheibe verteilt. ist unbestimmt. Die Scheibe wird also bereits auf Biegung be-



ansprucht, noch ehe eine Flüssigkeitspressung in Tätigkeit getreten ist. Diese Inanspruchnahme kann bei kräftigem Anziehen der Schrauben unter Umständen schon allein die zulässige Anstrengung des Materials überschreiten¹).

Aber selbst dann ist die Sachlage anders, als die Rechnung voraussetzt. wenn ein solcher Hebelarm x nicht vorhanden wäre, wie z. B. im Falle der Fig. 15, welche die vom Verfasser in seinem Versuchsapparat zur Prüfung ebener Platten angewendete Befestigungsweise zeigt²). Die Scheibe liegt hier unten (Seite der gepreßten Flüssigkeit) auf einem Dichtungsring von weichem Kupfer (etwa 8 mm stark) und stützt sich oben gegen eine etwa 2,5 mm breite Ringfläche von dem gleichen mittleren Durchmesser wie der Kupferring. Durch Schrauben wird das Oberteil des Apparates gegen das

¹ Auf die Bedeutung dieser zusätzlichen Inanspruchnahme macht H. Keller in seiner neuesten Arbeit: "Beanspruchung eines Lokomotivzylinderdeckels mit über die Dichtfläche frei hinausragendem Schraubenflansch", Zeitschrift des Vereines deutscher Ingenieure 1917, S. 526 u. f. aufmerksam; in seiner allgemeinen Veröffentlichung "Berechnung gewölbter Platten", Mitteilungen über Forschungsarbeiten Heft 124 (1912) war das noch nicht geschehen. Ausführliche Besprechung dieser Verhältnisse hat Verfasser schon vor einem Vierteljahrhundert gegeben (Protokoll der 21. Versammlung des internationalen Verbandes der Dampfkesselüberwachungsvereine, Nürnberg 1892, S. 83 u. f.; Maschinenelemente, VII. Abschnitt, von der zweiten Auflage, 1891/92, an).

²⁾ Vgl. hierüber die in § 64, S. 638 oben genannte Schrift oder auch Zeitschrift des Vereines deutscher Ingenieure 1890, S. 1041 u. f. oder Abhandlungen und Berichte 1897, S. 111 u. f. Unterteil so stark gepreßt, daß die Abdichtung gesichert ist. Unter Einwirkung der Flüssigkeitspressung biegt sich die Scheibe durch; dabei sucht sie auf dem Dichtungsringe einerseits sowie auf dem Widerlager andererseits zu gleiten und gleitet tatsächlich (vgl. § 46, Ziff. 1). Hiermit aber werden Kräfte in den Berührungsflächen zwischen Dichtungsring und Scheibe sowie zwischen dieser und dem Widerlager wachgerufen, die in der Regel entgegengesetzt gerichtet sind und meist auch von sehr verschiedener Größe sein werden. Diese Kräfte liefern für die Mittelfläche der Scheibe im allgemeinen radial wirkende Kräfte sowie Formänderung und Biegungsanstrengung beeinflussende Momente. Diese Momente. unter Umständen, welche die Regel zu bilden pflegen, von ganz erheblicher Bedeutung, sind



bei den Entwicklungen unter Ziff. 1, a.  $\alpha$ , um die es sich hier handelt, vollständig außer acht gelassen¹). Je größer die Kraft ist, mit der die Scheibe zum Zwecke der Abdichtung angepreßt wird. um so bedeutender werden — unter sonst gleichen Verhältnissen — die erwähnten Momente sein. Hierbei nimmt die Oberflächenbeschaffenheit der Scheibe, des Widerlagers und des Dichtungsringes Einfluß (vgl. § 46. Ziff. 1, insbesondere das über den Wert  $\mu$  Gesagte).

¹) Die mathematische Entwicklung liefert, wie nochmals scharf hervorgehoben werden muß, für die kreisförmige Platte, wenn  $m = \frac{10}{3}$  gesetzt wird (vgl. Fußbemerkung S. 610). je nachdem die Scheibe vollkommen oder nicht eingespannt ist:

a) für die Scheibenmitte

 $k_b \simeq 0.34 \left(rac{r}{h}
ight)^2 p$  beziehungsweise  $0.87 + rac{r}{h}
ight)^2 p$ , b) für den Scheibenrand  $k_b \simeq 0.68 \left(rac{r}{h}
ight)^2 p$  beziehungsweise 0.

Mit diesen Ergebnissen, die nur für die Grenzfälle gelten. zwischen denen die Witklichkeit zu liegen pflegt, überläßt die streng wissenschaftliche Entwicklung den Konstrukteur seinem Schicksal und seiner – oft sehr großen – Verantwortlichkeit. Auch der Umstand kann Einfluß erlangen, daß die Scheibe — Fig. 6, S. 600 — mit ihrem Umfange über das Widerlager hinausreicht, einmal insofern, als durch das überstehende Material die Widerstandsfähigkeit der Scheibe erhöht wird, sodann bei Belastung der über das Widerlager hinausragenden Ringfläche dadurch, daß sich der Charakter der Stützung über dem Widerlager ändert, indem bei ausreichender Größe der Überragung die Scheibe aus dem Zustande der einfachen Stützung in denjenigen des Eingespanntseins übergeführt wird. Bei den üblichen Verhältnissen (r groß im Vergleich zu h) ist der erste Einfluß deshalb von geringer Bedeutung. weil die größte Beanspruchung in der Mitte der Scheibe auftritt Ob der zweite Einfluß bedeutungsvoll auftritt, ist im einzelnen Falle zu entscheiden.

#### 3. Versuchsergebnisse.

Von den Ergebnissen der Versuche, die Verfasser über die Widerstandsfähigkeit ebener Platten seit 1889 angestellt hat, und hinsichtlich welcher im allgemeinen auf § 64 verwiesen werden darf. seien hier diejenigen angeführt, die sich auf kreisförmige Scheiben aus Flußstahlblech erstrecken. Dieses Material besitzt konstante Dehnungszahl; es erscheinen deshalb die an solchen Scheiben innerhalb der Proportionalitätsgrenze gemessenen Durchbiegungen zu einer Prüfung der unter Ziff. 1 erhaltenen Rechnungsergebnisse geeignet. Der Durchmesser (Fig. 15, 16) betrug hierbei 560 mm.

a) Die Scheibe ist nach Maßgabe der Fig. 16 in der Mitte belastet und am Umfange gestützt. Sie legt sich — abgesehen vom Einflusse des Eigengewichts — nur mit derjenigen Pressung gegen das Widerlager, welche durch die den Versuchskörper in der Mitte belastende Kraft hervorgenufen wird.

An Stelle der Dehnungszahl  $\alpha = \frac{1}{2147000} = 0.465$  Milliontel.

welchen Wert Biegungsversuche mit Streifen (Flachstäben) aus genau demselben Material lieferten, ergab sich nach Gleichung 26 (h = 8.4 mm) bei einer federnden

Durchbiegung von 0,205 cm 0,355 cm 0,530 cm 1.1 cm auf der Belastungs-

stufe	2	3.	4	õ
	158/753	753/1373	1373/2258	3688/5208 kg
für <i>c</i>	1	1	1	1
	2900000	3025000	3972000	5116000

Wird die Durchbiegung auf der zweiten Belastungsstufe zugrunde gelegt, so liefert Gleichung 26

 $a = \frac{0,205 \cdot 0.84^3}{0.55 \cdot 28^2 \cdot 753} = \frac{1}{2672000} = 0,374 \text{ Milliontel.}$ 

Wir erkennen, daß mit wachsender Durchbiegung der Scheibe, d. h. mit zunehmender Abweichung derselben von der ebenen Form, also mit wachsender Wölbung, der Wert  $\alpha$  anfangs langsam, dann jedoch rasch abnimmt. später — bei weit getriebener Durchbiegung wird diese Abnahme wieder geringer. Von einer schärferen Untersuchung, die namentlich mit niedrigeren Belastungen¹) und kleineren Belastungsstufen zu arbeiten hätte, würde zu erwarten sein: zunächst angenäherte Proportionalität zwischen Belastungen und Durchbiegungen bis zu einem gewissen Grade der Belastung hin, dann stärkere Zunahme der Durchbiegungen nach Überschreiten der Materialbeanspruchung, die auf der Höhe der Streckgrenze liegt. später wieder langsameres Wachsen (Folge der Wölbung).

Ferner erhellt, daß die aus Gleichung 26 berechnete Dehnungszahl ganz erheblich kleiner ist als die wirkliche Dehnungszahl des Materials. Der Unterschied beträgt bei Zugrundelegung selbst des größten Wertes von  $\alpha$ 

$$100 \frac{0.465 - 0.374}{0.374} = 24.3^{\circ}/_{0}.$$

Es muß zunächst dahingestellt bleiben, ob das verwendete Stahlblech das Material genau in dem Zustande enthielt wie die Streifen²). Aber selbst wenn in dieser Hinsicht ein Unterschied bestanden hätte, der übrigens nicht bedeutend sein könnte, so würde letzterer eine Abweichung von  $24^{0}_{0}$  nicht zu erklären vermogen. Sonach mußte geschlossen werden, daß die Voraussetzungen, auf Grund deren die Gleichung 26 erlangt wurde, nicht — selbst bei lose aufliegender Scheibe — in dem Maße zutreffen, als bei Durchführung der Rechnungen angenommen ist.

Das Unbefriedigende dieses Zustandes gab Veranlassung zu den Versuchen, die von Prof. Dr.-Ing. Ensslin im Laboratorium des Verfassers durchgeführt wurden unter Verwendung vervollkommneter. Einrichtungen; insbesondere wurde die Vorrichtung, die im Jahre 1890 zu den Plattenversuchen mit Belastung durch eine Einzellast getroffen

) Der Belastung  $P=753~{\rm kg}$ entspricht nach Gleichung 30 mit  $r=1.1~{\rm cm}$ eine Anstrengung

 $k_{\lambda} = 0.334 \left[ 1.3 \ln \frac{28}{1.1} - 1 \right] \frac{753}{0.84^2} = 1856 \, \text{kg}, \text{qcm}.$ 

 $^2)$  Die Scheibe war bereits vorher starken Beanspruchungen ausgesetzt gewesen.

war. nämlich hydraulische Presse mit Kolben, der mittelst Stulp abgedichtet wurde¹), durch eine Presse mit eingeschliffenem Kolben, wie in Fig. 17 dargestellt, und durch Vorrichtung zum Messen des



Fig. 17.

Druckes mit Quecksilbersäule (System Amsler-Laffon) ersetzt. Hierdurch war eine von der Kolbenreibung in der Hauptsache unbe-

¹⁾ Zeitschrift des Vereines deutscher Ingenieure 1890, S. 1104, Fig. 12 bzw. S. 1042, Fig. 9 und 10 oder "Abhandlungen und Berichte", S. 126 bzw. 112. Die Knappheit der Geldmittel gestattete damals weitergehende Ausgaben nicht. einträchtigte, also genauere Bestimmung der die Platte belastenden Kraft möglich als früher. Die Belastung der Platte wird durch einen Kupferring auf eine Kreisringfläche vom mittleren Halbmesser  $r_0$ übertragen; somit der Kraftangriff ein bestimmterer als bei den bis dahin vorgenommenen Versuchen. Zunächst wurde  $r_0 = 15$  mm gewählt. Die Messung der Durchbiegungen in der Mitte erfolgte durch das schon 1890 benutzte Instrument¹). Für den Durchmesser des Auflagerringes wurden 560 mm beibehalten.

Über die Ergebnisse hat Ensslin in Dinglers polyt. Journal 1903, Bd. 318, Heft 45, 46, 50 und 51 ausführlich berichtet²). Er ermittelte den größten Unterschied zu  $7.45^{0}/_{0}$  in demselben Sinne wie Verfasser, fand jedoch auch einen solchen in entgegengesetztem Sinne bis zur Höhe von  $3.6^{0}/_{0}$ . Hiernach würden die Entwicklungen, welche die Elastizitätslehre für die am Umfange frei aufliegende Scheibe liefert, als ausreichend genau zu bezeichnen sein.

 b) Die Scheibe ist durch den Flüssigkeitsdruck p gleichmäßig belastet und am Umfange nach Maßgabe der Fig. 15 gestützt und abgedichtet.

Der nach Gleichung 16 für  $\alpha$  berechnete Wert ergibt sich ganz allgemein weit kleiner, als die Dehnungszahl des Materials, außerdem im einzelnen zunehmend mit wachsender Flüssigkeitspressung. Beispielsweise fand sich für die eine Scheibe ( $\hbar = 8,5$  mm)

für die Belastungsstufe p = 0.5 bis 1 kg/qcm 3 bis 3,5 kg/qcm bei einer Gesamtdurchbiegung z' = 0,106 cm 0,450 cm  $\alpha = \frac{1}{6257000}$   $\frac{1}{4434000}$ .

Durch Nachziehen der Muttern, d. h. durch stärkeres Zusammenpressen von Ober- und Unterteil des Versuchsapparates, sinkt  $\alpha$ 

für die Belastungsstufe	p == 4 bis 4,5 kg/qcm
bei einer Gesamtdurchbiegung	z' = 0,585  cm
auf	$a = \frac{1}{8147000}$
	0141000

An dieser Abnahme ist allerdings — jedoch zum weit geringeren Teile — der Einfluß der zunehmenden Wölbung beteiligt. Die Hauptursache aber bildet die Abdichtungskraft, d. h. die Kraft, mit der die Scheibe durch die Schrauben zum Zweck der Abdichtung einer-

¹) S. Fußbemerkung S. 136.

²) Vgl. auch dessen Arbeit "Studien über die Beanspruchung und Formänderung kreisförmiger Platten" in Dinglers polyt. Journal 1904. Bd. 319. Heft 30 bis 43.

seits gegen die Dichtung und andererseits gegen das Widerlager gepreßt wird. (Vgl. das oben unter Ziff. 2 Bemerkte.)

Eine stärkere Scheibe (h = 10,1 mm) liefert für die Belastungsstufe p = 0,5 bis 1 kg/qcm 3 bis 3,5 kg/qcm bei einer Gesamtdurchbiegung z' = 0,090 cm 0,365 cm

 $\alpha = \frac{1}{4444\,000}, \qquad \frac{1}{3\,664\,000}.$ 

also verhältnismäßig größere Werte.

Eine andere Scheibe (h = 8,4 mm) ergibt für die Belastungsstufe p = 0.1 bis 0,7 kg bei einer Gesamtdurchbiegung bis zu 0,143 cm, wenn die Schrauben kräftig angezogen sind:

$$\alpha = \frac{1}{6540000},$$

wenn dieselben allmählich mehr und mehr gelöst werden:

 $\alpha = \frac{1}{5970000}, \quad \frac{1}{4920000} \quad \text{und} \quad \frac{1}{3820000}.$ 

Lösen der Schrauben, d. i. Verminderung der Abdichtungskraft, vermehrt demnach  $\alpha$ , ergibt also Zunahme der Durchbiegung, während Nachziehen der Schrauben, d. i. Vergrößerung der Abdichtungskraft, Verminderung der Durchbiegung zur Folge hat.

Ohne in die Einzelheiten der Wirksamkeit der Abdichtungskraft einzutreten, kann der Einfluß derselben leicht dahin festgetellt werden. daß sich die Scheibe um so mehr von dem Zustande des Loseaufliegens entfernt und um so mehr einem anderen sich nähert, der demjenigen des Eingespanntseins ähnelt¹), je größer — unter sonst gleichen Verhältnissen — die Abdichtungskraft ist. Da nun Lösen der Schrauben diese Kraft vermindert, Anziehen derselben sie vermehrt, so kommt ersteres auf Annäherung an den Zustand des Loseaufliegens, letzteres auf Annäherung an denjenigen des Eingespanntseins hinaus.

Hiernach wird bei derselben Größe der Abdichtungskraft eine stärkere Platte unter sonst gleichen Verhältnissen dem Eingespanntsein sich weniger nahe befinden als eine schwächere, d. h. die stärkere Scheibe muß unter sonst gleichen Umständen eine größere Dehnungszahl ergeben als die schwächere. Das ergab sich auch tatsächlich für die 10,1 mm starke Scheibe, verglichen mit der zuerst angeführten 8,5 mm dicken Scheibe.

¹) Von einer vollständigen Einspannung kann natürlich bei der Sachlage Fig. 15 nicht die Rede sein.

#### 4. Näherungsweg zur Ermittlung der Anstrengung.

a) Die Scheibe, im Umfange vom Halbmesser r aufliegend, wird durch den Flüssigkeitsdruck p über die Fläche  $\pi r^2$ belastet, Fig. 15.

Entsprechend dem Umstande, daß bei Gleichartigkeit des Materials die Querschnitte der größten Anstrengung durch die Mitte der



Scheibe gehen müssen, werde die letztere als ein nach einem Durchmesser eingespannter Stab von rechteckigem Querschnitt, dessen Breite d=2rund dessen Höhe h ist, aufgefaßt, Fig. 18. Belastet erscheint diese Scheibenhälfte bei Vernachlässigung des Eigengewichts:

a) durch die auf die Unterfläche  $0.5 \pi r^2$  wirkende Flüssigkeitspressung r, die mit Rücksicht darauf, daß der Schwerpunkt der Halbkreisfläche um  $\frac{4 r}{3 \pi}$  von der Mitte absteht, für die Einspannstelle das Moment

Fig. 18.

$$0,5\,\pi\,r^2p\cdot\frac{4\,r}{3\,\pi}$$

liefert, und

β) durch den auf die Umfangslinie πr sich verteilenden Widerlagsdruck 0,5 πr²p, der als im Schwerpunkte der Halbkreislinie πr angreifend gedacht werden kann, dessen Abstand  $\frac{2r}{\pi}$ von der Mitte beträgt und deshalb das Moment

$$0.5 \pi r^2 p \cdot \frac{2r}{\pi}$$

ergibt.

Hieraus folgt das biegende Moment

$$0.5 \pi r^2 p \frac{2r}{\pi} - 0.5 \pi r^2 p \frac{4r}{3\pi} = \frac{1}{3} r^3 p$$

und somit nach Gleichung 13, § 20, S. 280, da hier

$$\frac{\Theta}{e} = \frac{1}{12} 2 r \cdot h^3 : \frac{h}{2} = \frac{1}{6} 2 r h^2,$$
$$\frac{1}{3} r^3 p \leq k_b \frac{1}{3} 2 r h^2$$

unter der Voraussetzung, daß sich das Moment gleichmäßig über den Querschnitt von der Breite d = 2r überträgt, und unter Vernachlässigung des Umstandes, daß senkrecht zueinander stehende Normalspannungen vorhanden sind. Tatsächlich treffen diese Voraussetzungen nicht zu; insbesondere werden die nach der Scheibenmitte hin gelegenen Elemente des gefährdeten Querschnittes stärker beansprucht sein. Dem kann dadurch Rechnung getragen werden, daß nicht die volle Querschnittsbreite, sondern nur ein Teil. etwa  $\frac{2r}{\mu}$ . in die Biegungsgleichung eingeführt wird, womit

$$\frac{1}{3}r^3p \leq k_b \frac{1}{6} \frac{2r}{\mu}h^2,$$

so daß

oder

Hierin wird der Größe  $\mu$  ganz allgemein der Charakter eines durch Versuche festzustellen den Berichtigungskoeffizienten beizulegen sein. Derselbe trägt alsdann nicht bloß der ungleichmäßigen Verteilung des biegenden Momentes über den Querschnitt Rechnung (insofern müßte er größer als 1 sein), sondern auch sonstigen Verhältnissen, namentlich dem Umstande, daß senkrecht zueinander wirkende Normalspannungen tätig sind (insofern müßte er kleiner als 1 sein). Er wird sich ferner in erheblichem Maße abhängig erweisen müssen namentlich von der Befestigungsweise der Scheibe sowie von der Größe der Kraft, mit der deren Anpressung erfolgt, von der Art der Abdichtung, von der Beschaffenheit der Oberfläche der Scheibe da, wo diese das Dichtungsmaterial berührt, und da, wo sie sich mit der anderen Seite gegen die Auflagefläche stützt usw. Je größer die Abdichtungskraft ist, um so kleiner — bis zu einer gewissen Grenze hin — wird  $\mu$  ausfallen müssen.

Je nachdem sich die Auflagerung am Umfange mehr dem Zustande des Eingespanntseins oder demjenigen des Freiaufliegens nähert, schwankt  $\mu$  nach dem, was aus den bis heute für Gußeisen erlangten Versuchsergebnissen des Verfassers geschlossen werden darf, zwischen 0,8 und 1,2.

Für die Durchbiegung der Scheibe in der Mitte liefern die Gleichungen 15 (16) und 20 (21)

$$z' = \psi \alpha \frac{r^4}{h^3} p, \quad \dots \quad \dots \quad \dots \quad 32)$$

worin der Koeffizient  $\psi$  nach des Verfassers Versuchen zwischen  $\frac{1}{6} = 0.167$  und  $\frac{3}{5} = 0.6$  schwankt, je nach der Befestigungsweise

der Scheibe am Rande (vgl. das soeben in dieser Beziehung über  $\mu$  Bemerkte).

Handelt es sich um die Ermittlung der Anstrengung von Scheiben. die in der aus Fig. 14 ersichtlichen Weise befestigt sind, sowie um diejenige von Platten, welche Querschnitte besitzen, wie solche in den Fig. 1 bis 5 dargestellt sind, so ist in ganz entsprechender Weise vorzugehen¹). Dabei kann alsdann auch auf die Biegungsanstrengung Rücksicht genommen werden, die bei Vorhandensein des Hebelarmes x, Fig. 14, durch das Anziehen der Flanschenschrauben über diejenige hinaus eintritt, die von der Flüssigkeitspressung herrührt (vgl. S. 613 u. f.).

b) Die Scheibe, im Umfange vom Halbmesser r lose aufliegend, ist in der Mitte durch eine Kraft P belastet, die sich gleichförmig über die Kreisfläche  $\pi r_0^2$  verteilt, Fig. 16.

Nach dem unter a) gegebenen Vorgange findet sich für die nach einem Durchmesser eingespannte Scheibe das Moment, herrührend von dem über die halbe Umfangslinie  $\pi r$  sich gleichmäßig verteilenden Widerlagsdruck 0,5 P,

$$0,5 P \cdot \frac{2r}{\pi}.$$

Demselben wirkt entgegen das Moment, das die über den Halbkreis  $0.5 \pi r_0^2$  gleichmäßig verteilte Kraft 0.5 P liefert, d. i.

$$0,5 P \frac{4 r_0}{3 \pi}.$$

Somit das resultierende biegende Moment

$$M_{b} = 0.5 P \frac{2r}{\pi} - 0.5 P \frac{4r_{0}}{3\pi} = P \frac{r}{\pi} \left( 1 - \frac{2r_{0}}{3r} \right),$$

folglich

$$P\frac{r}{\pi}\left(1-\frac{2}{3}\frac{r_{0}}{r}\right) \leq k_{b}\frac{1}{6}\frac{2r}{\mu}h^{2},$$

woraus

$$k_{b} \geq \mu \frac{3}{\pi} \left( 1 - \frac{2}{3} \frac{r_{0}}{r} \right) \frac{P}{h^{2}} \\ h \geq \sqrt{\mu \frac{3}{\pi} \left( 1 - \frac{2}{3} \frac{r_{0}}{r} \right) \frac{P}{k_{b}}} \right\} \dots \dots \dots 33)$$

oder

¹) Derartige Beispiele finden sich behandelt in des Verfassers Maschinenelementen, 1891/92, S. 512 u. f. (vgl. auch S. 521 u. f. daselbst), 1908 (10. Auflage), S. 835 u. f. (vgl. auch S. 856 u. f. daselbst). § 61. Ebene elliptische Platte.

Für  $P = \pi r_0^2 p$  und  $r_0 = r$  geht diese Beziehung über in

$$h \ge r \sqrt{\mu} \frac{p}{k_b},$$

d. i. Gleichung 31, wie verlangt werden muß.

Für sehr kleine Werte von  $r_0$ , d. h. streng genommen für  $r_0 = 0$ , ist

$$h \ge \sqrt{\mu \frac{3}{\pi} \frac{P}{k_b}}$$

also unabhängig von r oder d.

Diese Unabhängigkeit der Stärke h vom Durchmesser der Scheibe besteht jedoch in Wirklichkeit nicht ganz, da  $\mu$  unter sonst gleichen Verhältnissen mit dem Durchmesser der Scheibe wachsen wird.

Die Durchbiegung bestimmt sich nach Gleichung (25) (26) aus

$$z' = \psi \, \alpha \, \frac{r^2}{h^3} P \, \ldots \, \ldots \, \ldots \, \ldots \, \ldots \, 34)$$

Hierin ist für kleine Werte von  $r_0$ , etwa bis 0,1 r hin, nach des Verfassers Versuchen

 $\mu = 1.5$  und  $\psi = 0.4$  bis 0.5.

Für größere Werte von  $r_0$  nehmen beide Koeffizienten ab, und zwar vermindert sich  $\psi$  erheblich stärker als  $\mu$ .

### § 61. Ebene elliptische Platte, Fig. 1, a > b.

Bevor in gleicher Weise vorgegangen werden kann wie in § 60, Ziff. 4, ist hier der zu erwartende Verlauf der Bruchlinie festzustellen, d. h. zu untersuchen, ob der Querschnitt der größten Anstrengung in die Richtung der großen oder der kleinen Achse fällt.

Zu diesem Zwecke denken wir uns in Richtung der großen Achse a und sodann auch in Richtung der kleinen Achse bje einen (im Vergleich zu a und b) sehr schmalen Streifen von der Breite 1, der Länge a bzw. b herausgeschnitten und zu einem rechtwinkligen Streifenkreuz vereinigt, wie in Fig. 1 gestrichelt angegeben



ist. In der Mitte des Kreuzes wirke eine Last P. Dieselbe wird sich alsdann auf die vier Widerlager an den Enden der Streifen derart verteilen, daß diese in der Mitte sich um gleichviel durchbiegen. Bezeichnet

 $W_a$  die Widerlagskraft je an den beiden Enden des Streifens von der Länge a,

 $W_b$  die Widerlagskraft je an den beiden Enden des Streifens von der Längeb,

so entfällt von der Belastung P auf die Mitte des Streifens von der Länge a die Kraft  $2W_a$  und auf diejenige des Streifens von der Länge b die Kraft  $2W_b$ .

Die Durchbiegung der Mitte eines an den Enden im Abstande lfrei aufliegenden und in der Mitte durch eine Kraft S belasteten Stabes, dessen in Betracht kommendes Trägheitsmoment  $\Theta$  ist, beträgt nach Gleichung 14, § 18,

$$y' = S \frac{\alpha}{\Theta} \frac{l^3}{48},$$

demnach die Durchbiegung  $y'_a$  des Streifens von der Länge a

$$y_a' = 2 W_a \frac{\alpha}{\Theta} \frac{a^3}{48}$$

und diejenige des Streifens von der Länge b

$$y_b' = 2 W_b \frac{\alpha}{\Theta} \frac{b^3}{48}.$$

Wegen  $y_a' = y_b'$  wird  $W_a a^3 = W_b b^3$ ,

d. h.

Die größte Materialanstrengung  $\sigma_a$  in der Mitte des *a* langen Streifens ergibt sich bei Vernachlässigung des Zusammenhanges mit dem anderen Streifen unter Beachtung der Gleichung 7. § 18, aus

$$W_a \frac{a}{2} = \frac{1}{6} \sigma_a h^2$$

zu

$$\sigma_a = 3 W_a \frac{a}{h^2}$$

und in gleicher Weise diejenige des blangen Streifens zu

$$\sigma_b = 3 W_b \frac{b}{\bar{h}^2}.$$

Folglich mit Rücksicht auf Gleichung 1

oder

Da a > b, so ist

$$\sigma_b > \sigma_a$$
,

beispielsweise

für 
$$a = 2b$$
  $\sigma_b = \sigma_a \left(\frac{2b}{b}\right)^2 = 4 \sigma_a,$   
,  $a = 3b$   $\sigma_b = \sigma_a \left(\frac{3b}{b}\right)^2 = 9 \sigma_a.$ 

Wir erkennen — für das Streifenkreuz —, daß die am meisten gespannten Fasern in Richtung der kleinen Achse eine im quadratischen Verhältnisse der Achslängen stärkere Normalspannung erfahren als diejenigen in Richtung der großen Achse, und schließen hieraus, daß die Bruchlinie in der Richtung der großen Achse verlaufen muß.

Dementsprechend ist die elliptische Platte so einzuspannen, daß die große Achse *a* die Breite des Befestigungsquerschnittes bildet¹). a) Die elliptische Platte, die am Umfange, bestimmt durch die große Achse *a* und die kleine Achse *b*, aufliegt, wird durch den Flüssigkeitsdruck *p* über die Fläche  $\frac{\pi}{4}ab$  be-

lastet.

Auf dem in § 60, Ziff. 4 beschrittenen Wege (vgl. Fig. 18 daselbst) wird das biegende Moment  $M_b$  erhalten als Unterschied zwischen dem Moment  $M_u$ , das die von der stützenden Halbellipse (Widerlager) auf die Platte ausgeübten Kräfte, die Umfangskräfte, liefern, und demjenigen Moment, das der Flüssigkeitsdruck ergibt, d. i.

$$\frac{1}{8}\pi a b p \frac{2}{3\pi} b = \frac{1}{12} a b^2 p.$$

¹) Wie oben bemerkt, erfolgt das Herausschneiden zweier Streifen zu dem Zwecke der Gewinnung eines Urteils darüber, ob in der Mitte der Platte die größte Anstrengung in der Richtung der großen oder der kleinen Achse der Ellipse auftritt. Diese Methode, die natürlich keinen Anspruch darauf erheben kann, genau und einwandfrei zu sein, setzt in erster Linie voraus, daß die Formänderung, die den herausgeschnittenen Streifen unterstellt wird, mit ausreichender Annäherung derjenigen entspricht, welche die Streifen in der Platte erfahren, mindestens hinsichtlich der Form an sich. Vgl. hierüber auch 3. Auflage dieses Buches S. 541 u. f.

Das ganze Verfahren hält Verfasser, wie er schon vor 30 Jahren ausgesprochen hat, nur für zulässig, weil der Versuch nebenhergeht, und der Berichtigungskoeffizient  $\mu$  auf Grund von Versuchsergebnissen bestimmt wird, und weil man auf anderem Wege in genügend einfacher Weise nicht zum Ziele gelangt — wenigstens ist dies dem Verfasser bisher nicht gelungen -- und andererseits das vorliegende praktische Bedürfnis dringend Befriedigung verlangt. Er würde es nur begrüßen können, wenn von anderer Seite Vollkommeneres ausfindig gemacht wird.

C. Bach, Elastizität. 8. Aufl.

Die Bestimmung von  $M_{u}$  ist hier jedoch weniger einfach als Bei der kreisförmigen Scheibe durfte ohne weiteres gleichdort. mäßige Verteilung des Widerlagsdruckes über den Kreisumfang angenommen, d. h. vorausgesetzt werden, daß jede Längeneinheit des Umfanges  $\pi d$  von dem Widerlager die gleiche Pressung erfährt. Bei der elliptischen Platte ist diese Annahme nicht zulässig; denn nach Gleichung 1 nimmt der Widerlagsdruck von den Endpunkten der großen Achse, woselbst er durch W gemessen wird, nach den Endpunkten der kleinen Achse hin zu, und zwar im umgekehrten kubischen Verhältnis der Achslängen¹), wenn das für das Streifenkreuz gefundene auf die elliptische Platte übertragen wird. Mit welcher Annäherung dies zulässig ist, muß zunächst dahingestellt bleiben²). Da, wo der Krümmungshalbmesser der Ellipse am kleinsten ist, besitzt auch der Widerlagsdruck seinen geringsten Wert; da, wo jener seinen Größtwert erreicht, weist auch dieser denselben auf.

Der Krümmungshalbmesser der Ellipse ist bekanntlich im Scheitel der großen Achse

$$\varrho_a = \frac{b^2}{2a},$$

im Scheitel der kleinen Achse

$$\varrho_b = \frac{a^2}{2b},$$

demnach

$$\varrho_b: \varrho_a = a^3: b^3,$$

d. i. aber dasselbe Verhältnis, in dem nach Gleichung 1 die Größen  $W_b$  und  $W_a$  zueinander stehen. Es darf daher ausgesprochen werden daß sich  $W_b$  und  $W_a$  wie die zugehörigen Krümmungshalb-

¹) Diese Veränderlichkeit, die beispielsweise bei dem Achsenverhältnis a:b=3:2 nach Gleichung 1 durch die Zahlen

$$3^3: 2^3 = 27: 8$$

gemessen wird derart, daß die Pressung, mit der die elliptische Platte im Scheitel der kleinen Achse gegen das Widerlager drückt, 27:8mal = 3,375mal größer ist als diejenige im Scheitel der großen Achse, bedingt eine ungleichmäßige Belastung gleich weit voneinander abstehender Schrauben, durch die etwa die Platte als Verschlußdeckel befestigt ist. An der Erkenntnis, daß eine solche Ungleichmäßigkeit stattfindet, ändert sich nichts, wenn auch die für das Streifenkreuz ermittelte Gesetzmäßigkeit der Verteilung des Widerlagsdrucks nur mit einer mehr oder minder beschränkten Annäherung auf die elliptische Platte übertragen werden kann. Der Grad der Annäherung oder Abweichung beeinflußt nur das Maß der Ungleichmäßigkeit.

²) Der S. 629 in die Rechnung eintretende, aus unmittelbaren Biegungsversuchen mit elliptischen Platten zu ermittelnde Berichtigungskoeffizient  $\mu$ hat der Abweichung Rechnung zu tragen.

messer verhalten. Je mehr a von b abweicht, um so ungleichförmiger verteilt sich der Flüssigkeitsdruck über das Widerlager.

Zur Feststellung des Momentes  $M_u$ , welches dieser veränderliche Widerlagsdruck in bezug auf den Befestigungsquerschnitt der elliptischen Platte liefert, werde die Ellipse auf ein rechtwinkliges Koordinatensystem bezogen, dessen Ursprung im Mittelpunkt der Ellipse liegt, dessen x-Achse in die große Achse und dessen y-Achse in die kleine Achse fällt. Für einen beliebigen, durch x und y bestimmten Punkt der Ellipse sei das zugehörige Kurvenelement mit ds bezeichnet. Der auf dasselbe wirkende Widerlagsdruck betrage Wds. Dann ist

$$M_u = \int y W ds$$
,

wobei die Integration sich auf die halbe Ellipse zu erstrecken hat. Aus der Gleichung der Ellipse

$$\left(\frac{x}{a}}{2}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$$

folgt, sofern noch  $x = \frac{a}{2} \sin \varphi$  gesetzt wird,

$$y = \frac{b}{a} \sqrt{\left(\frac{a}{2}\right)^2 - x^2} = \frac{b}{2} \cos \varphi,$$
  
$$\frac{dy}{dx} = -\frac{b}{a} \frac{x}{\sqrt{\left(\frac{a}{2}\right)^2 - x^2}} = -\frac{b}{a} \operatorname{tg} \varphi,$$
  
$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \sqrt{1 + \left(\frac{b}{a}\right)^2} \operatorname{tg}^2 \varphi d\left(\frac{a}{2} \sin \varphi\right)$$
  
$$= \frac{a}{2} \sqrt{1 - \frac{a^2 - b^2}{a^2}} \sin^2 \varphi \cdot d\varphi.$$

Nach Einführung von

$$\frac{a^2 - b^2}{a^2} = n^2 = 1 - \left(\frac{b}{a}\right)^2$$

ergibt sich

$$ds = \frac{a}{2} \sqrt{1 - n^2 \sin^2 \varphi} \cdot d\varphi,$$

und

$$y ds = \frac{ab}{4} \sqrt{1 - n^2 \sin^2 \varphi} \cdot \cos \varphi \, d\varphi.$$

Hinsichtlich der Veränderlichkeit des Widerlagsdruckes W fanden wir oben für die zwei Grenzwerte  $W_a$  (in den Scheiteln der großen 40*

Achse) und  $W_b$  (in den Scheiteln der kleinen Achse), daß sie sich verhalten wie die zugehörigen Krümmungshalbmesser. Mit Rücksicht hierauf werde angenommen, daß W in dem beliebigen Punkte x, y proportional dem Krümmungshalbmesser  $\varrho$  an dieser Stelle sei, d. h.

$$W = W_b \frac{\varrho}{\varrho_b} = W_b \frac{\varrho}{a^2} \cdot \frac{2}{b}$$

Da

$$\varrho = + \frac{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}{\frac{d^2y}{dx^2}}$$

so findet sich mit

$$rac{dy}{dx} = -rac{b}{a} \operatorname{tg} \varphi, \qquad rac{d^2 y}{dx^2} = -rac{2b}{a^2} rac{1}{\cos^3 \varphi}$$

die absolute Größe des Krümmungshalbmessers zu

$$\varrho = \frac{a^2}{2b} \sqrt{1 + \left(\frac{b}{a}\right)^2 \operatorname{tg}^2 \varphi \cdot \cos^3 \varphi} = \frac{a^2}{2b} \sqrt{\cos^2 \varphi + \left(\frac{b}{a}\right)^2 \sin^2 \varphi}$$
  
=  $\frac{a^2}{2b} \sqrt{1 - \frac{a^2 - b^2}{a^2} \sin^2 \varphi} = \frac{a^2}{2b} \sqrt{1 - n^2 \sin^2 \varphi}.$   
Für

$$x = 0$$
, d. i.  $\varphi = 0$ , wird  $\varrho = \varrho_b = \frac{a^2}{2b}$ ,  
 $x = \frac{a}{2}$ , d. i.  $\varphi = \frac{\pi}{2}$ ,  $\varphi = \varrho_a = \frac{b^2}{2a}$ ,

wie oben bereits bemerkt.

Hiermit

$$W = W_{b} \frac{q}{a^{2}} = W_{b} \sqrt{1 - n^{2} \sin^{2} q}^{3}$$

und infolgedessen für die halbe Ellipse

$$M_{u} = \int y W ds = 2 \frac{ab}{4} W_{b} \int_{0}^{\frac{a}{2}} (1 - n^{2} \sin^{2} \varphi)^{2} \cos \varphi \, d\varphi$$
$$= \frac{ab}{2} W_{b} \left( 1 - \frac{2}{3} n^{2} + \frac{1}{5} n^{4} \right).$$

Der Wert  $W_{i}$  bestimmt sich aus der Erwägung, daß die Kraft, welche die unter der Pressung p stehende Flüssigkeit auf die Hälfte der elliptischen Platte ausübt, d. i.

$$\frac{\pi a b}{8} p$$

gleich sein muß der Summe der Widerlagskräfte für die halbe Ellipse, sofern von dem Einflusse des Eigengewichts abgesehen wird, und andere, den Widerlagsdruck beeinflussende Kräfte nicht vorhanden sind, d. h.

$$\frac{\pi a b}{8} p = \int W ds = 2 \frac{a}{2} W_b \int_0^{\frac{\pi}{2}} (1 - n^2 \sin^2 \varphi)^2 d\varphi$$
$$= \frac{\pi}{2} a W_b \left( 1 - n^2 + \frac{3}{8} n^4 \right),$$
$$W_b = \frac{b}{4} p \frac{1}{1 - n^2 + \frac{3}{8} n^4}.$$

zu

Die Einführung dieses Wertes in die Gleichung für  $M_u$  liefert

$$M_{u} = \frac{a b^{2}}{8} p \frac{1 - \frac{2}{3} n^{2} + \frac{1}{5} n^{4}}{1 - n^{2} + \frac{3}{8} n^{4}} = \frac{a b^{2}}{15} p \frac{8 + 4 \left(\frac{b}{a}\right)^{2} + 3 \left(\frac{b}{a}\right)^{4}}{3 + 2 \left(\frac{b}{a}\right)^{2} + 3 \left(\frac{b}{a}\right)^{4}}.$$

Hiermit ergibt sich nun die Biegungsgleichung in bezug auf den *a* breiten und *h* hohen Querschnitt der elliptischen Platte bei Einführung des Berichtigungskoeffizienten  $\mu$  (vgl. § 60, Ziff. 4)

$$M_{b} = \frac{a b^{2}}{15} p \frac{8 + 4\left(\frac{b}{a}\right)^{2} + 3\left(\frac{b}{a}\right)^{4}}{3 + 2\left(\frac{b}{a}\right)^{2} + 3\left(\frac{b}{a}\right)^{4}} - \frac{\pi a b}{8} p \frac{2 b}{3 \pi} \leq \frac{1}{6} k_{b} \frac{a}{\mu} h^{2},$$

woraus

$$k_{b} \geq \frac{1}{2} \mu \frac{3.4 + 1.2 \left(\frac{b}{a}\right)^{2} - 0.6 \left(\frac{b}{a}\right)^{4}}{3 + 2 \left(\frac{b}{a}\right)^{2} + 3 \left(\frac{b}{a}\right)^{4}} p \left(\frac{b}{h}\right)^{2}}$$

oder

$$h \ge \frac{1}{2} b \left[ \sqrt{\frac{3,4+1,2\left(\frac{b}{a}\right)^2 - 0.6\left(\frac{b}{a}\right)^4}{2\mu}} \right] \left[ \frac{3,4+1,2\left(\frac{b}{a}\right)^2 - 0.6\left(\frac{b}{a}\right)^4}{3+2\left(\frac{b}{a}\right)^2 + 3\left(\frac{b}{a}\right)^4} \right] \left[ \frac{1}{k_b} \right] \left[$$

Plattenförmige Körper.

Für a = b = d gehen diese Ausdrücke über in

$$k_b \ge rac{1}{4} \mu inom{d}{h}^2 p$$
 bzw.  $h \ge rac{1}{2} d \bigvee \mu rac{p}{k_b}$ 

d. s., wie notwendig, die Gleichungen 31. § 60, für die kreisförmige Scheibe.

Mit Annäherung werde gesetzt

$$\frac{3,4+1,2\left(\frac{b}{a}\right)^{2}-0.6\left(\frac{b}{a}\right)^{4}}{3+2\left(\frac{b}{a}\right)^{2}+3\left(\frac{b}{a}\right)^{4}}=\sim\frac{1}{1+\left(\frac{b}{a}\right)^{2}},$$

infolgedessen

oder

Für den bei Mannlochverschlüssen üblichen Wert $a=\sim 1,5\,b$ liefern die Gleichungen 3

$$k_{b} \geq \frac{1}{2} \mu \frac{3,4+1,2}{3+2} \frac{\frac{4}{9}-0,6}{\frac{16}{81}} \frac{\frac{16}{b}}{\frac{1}{b}} (\frac{b}{h})^{2} p = 0,425 \mu \left(\frac{b}{h}\right)^{2} p$$

bzw.

$$h \ge 0.65 b \sqrt{\mu \frac{p}{k_b}},$$

die Gleichungen 4

$$k_{b} \ge \frac{1}{2} \mu \frac{1}{1 + \frac{4}{9}} \left( \frac{b}{h} \right)^{2} p = 0,346 \mu \left( \frac{b}{h} \right)^{2} p$$

bzw.

$$h \ge 0.59 \, b \sqrt{\mu \, \frac{p}{k_b}}.$$

Demnach ergibt sich im vorliegenden Falle die Wandstärke unter Benutzung der Gleichung 4 um

$$100 \frac{0,65 - 0,59}{0,65} = 9.0/0$$

geringer. als Gleichung 3 liefert.
Der Berichtigungskoeffizient  $\mu$  liegt nach Versuchen des Verfassers etwa zwischen  $\frac{2}{3} = 0,67$  und  $\frac{9}{8} = 1,12$ , je nachdem sich die Auflagerung am Umfange mehr dem Zustande des Eingespanntseins oder demjenigen des Freiaufliegens nähert.

b) Die elliptische Platte wie unter a), lose aufliegend, jedoch nur in der Mitte mit der Kraft P belastet.

Unter a) fand sich für das Moment der am stützenden Umfange der Platte tätigen Widerlagskräfte

$$M_{n} = \frac{ab}{2}W_{b}\left(1 - \frac{2}{3}n^{2} + \frac{1}{5}n^{4}\right).$$

worin bedeutet

$$n^2 = 1 - \left(\frac{b}{a}\right)^2,$$

und worin  $W_b$ , die auf die Längeneinheit der elliptischen Stützlinie bezogene Widerlagskraft im Scheitel der kleinen Achse, hier bestimmt ist durch die Gleichung

$$\frac{P}{2} = \int W ds = 2 \frac{a}{2} W_b \int_0^{\frac{\pi}{2}} (1 - n^2 \sin^2 \varphi)^2 d\varphi$$
$$= \frac{\pi}{2} a W_b \left( 1 - n^2 + \frac{3}{8} n^4 \right).$$

somit beträgt

$$W_{b} = -\frac{P}{\pi a \left(1 - u^{2} + \frac{3}{8} u^{4}\right)}$$

Die Einsetzung dieses Wertes in die Gleichung für  $M_u$ , die unter der Voraussetzung, daß die belastende Kraft sich nur auf eine sehr kleine Fläche in der Mitte der Platte verteilt¹), auch gleichzeitig mit Annäherung das biegende Moment liefert. führt alsdann zu

$$\frac{b}{2\pi}P\frac{1-\frac{2}{3}n^2+\frac{1}{5}n^4}{1-n^2+\frac{3}{8}n^4} \leq k_b \frac{1}{6}\frac{a}{\mu}h^2.$$

¹) Erscheint diese Voraussetzung nicht genügend erfüllt, so ist die Größe der Fläche, über die sich P verteilt, ins Auge zu fassen und so vorzugehen wie oben in § 60, Ziff. 4, b geschehen.

woraus

oder

$$k_{b} \ge \frac{8}{5\pi} \mu \frac{8 + 4\left(\frac{b}{a}\right)^{2} + 3\left(\frac{b}{a}\right)^{4}}{3 + 2\left(\frac{b}{a}\right)^{2} + 3\left(\frac{b}{a}\right)^{4} a h^{2}} \left. \right|$$

$$h \ge \sqrt{\frac{8}{5\pi} \mu} \frac{8 + 4\left(\frac{b}{a}\right)^{2} + 3\left(\frac{b}{a}\right)^{4}}{3 + 2\left(\frac{b}{a}\right)^{2} + 3\left(\frac{b}{a}\right)^{4} a k_{b}} \right|$$

$$\dots 5)$$

( . . . .

Hierin ist nach den Ergebnissen der Versuche des Verfassers

$$\mu = \frac{3}{2} = 1,5$$
 bis  $\frac{5}{3} = 1,67$ 

zu setzen. Unter sonst gleichen Verhältnissen wird  $\mu$  mit b wachsen Mit b = a ergibt sich aus Gleichung 5

$$k_b \geq rac{3}{\pi} \mu rac{P}{h^2},$$

übereinstimmend mit Gleichung 33, § 60, wenn  $r_0 = 0$  gesetzt wird.

## § 62. Ebene quadratische Platte, Seitenlänge a.

Wie in § 61, so muß auch hier zunächst die zu erwartende Linie der größten Anstrengung (Bruchlinie) festgestellt werden. Diesem Zwecke dient die folgende Betrachtung.

Um den Mittelpunkt M der noch unbelasteten Platte werde auf derjenigen Plattenfläche, deren Fasern gezogen werden, ein kleines Quadrat, Fig. 1, gezeichnet, dessen Seiten BAB parallel den Seiten der Platte laufen. Unter Einwirkung der Belastung nehmen die Strecken MA die Länge  $MA_1$  (übertrieben und ohne genaueres Eingehen auf den Verlauf der Formänderung gezeichnet) an, vergrößern sich also um  $AA_1$ . Die Strecken AB dehnen sich als außerhalb der Mitte gelegen, woselbst die Dehnung am größten ist, etwas weniger, etwa so, daß die Punkte B nach B₁ rücken. Dabei geht dann das ursprüngliche Quadrat in die Figur  $A_1B_1A_1B_1A_1B_1A_1B_1$  mit gekrümmten Seiten  $B_1 A_1 B_1$  über.

Es beträgt nun die verhältnismäßige Dehnung in Richtung von MA

•

Ihr gleich erweist sich in dem kleinen (rechts unten gelegenen Vierseit  $MAA_1B_1A_1A$ , in welches das Quadrat MABA übergegangen

ist, nur die Dehnung in der Richtung  $A_1A_1$ . Dieselbe wird gemessen durch

$$\frac{\overline{A_1A_1} - \overline{AA}}{\overline{AA}} = \frac{2(\overline{AA_1}\sqrt{0,5})}{\overline{MA}\sqrt{2}} = \frac{\overline{AA_1}}{\overline{MA}}$$

Die Dehnungen nach allen übrigen Richtungen sind kleiner, wie eine einfache Betrachtung sämtlicher, im ursprünglichen Quadrate MABA beim Übergange in das Vierseit  $MA_1B_1A_1$  eingetretenen Längenänderungen ohne weiteres erkennen läßt. Demnach tritt die größte Anstrengung außerhalb des Punktes M nur in der Richtung AA oder  $A_1A_1$  ein, d. h. der Verlauf der Bruchlinie wird von der Mitte aus nach der Richtung der Diagonale zu erwarten sein.



Noch deutlicher tritt das hervor, wenn auf der bezeichneten Seite der Platte ein Quadratnetz gezeichnet wird, wie in Fig. 2 gestrichelt angedeutet ist. Durch die Belastung werden diese ursprünglich geraden Netzlinien in Kurven übergehen, ungefähr wie in Fig. 2 übertrieben gezeichnet. Daß die Dehnungen senkrecht zur Diagonale am größten sind, somit die Bruchlinie nach dieser verlaufen wird, dürfte die Abbildung deutlich zeigen.

Recht anschaulich lassen sich die Stellen der größten Inanspruchnahme bei Versuchen mit Eisenbetonplatten verfolgen. Bei diesen stellen sich im Beton nach Erreichen genügend hoher Beanspruchung auf der Zugseite Risse ein.

Fig. 3 bis 17, Taf. XXV, lassen die in einer quadratischen, an 16 Stellen (vgl. Fig. 3) durch gleich große Kräfte belasteten Platte von  $2 \cdot 2$  m Auflagerentfernung aufgetretenen Risse erkennen. Die ersten Risse (Fig. 3, 4) stellen sich in Richtung der Diagonale nahe der Plattenmitte ein. Bei Steigerung der Belastung pflanzen sich die Risse in Richtung der Diagonale fort. Später treten solche auch längs der anderen Diagonale auf. Die weitere Verfolgung der Rißbildung, auch an den Seitenflächen, gewährt lehrreichen Einblick in die Verteilung der Beanspruchung und hinsichtlich der Formänderung bei höherer Belastung. Der Bruch erfolgt schließlich (vgl. Fig. 17) in der Hauptsache längs der Diagonalen. Weiteres s. in der Schrift, die im Schlußabsatz der Fußbemerkung auf S. 639 genannt ist.

a) Die quadratische Platte, am Umfange 4a aufliegend. wird durch den Flüssigkeitsdruck p über die Fläche  $a^2$ belastet.

Mit Rücksicht auf das Erörterte werde die quadratische Platte nach Maßgabe der Fig. 18 eingespannt.



dann aus der Erwägung. daß auf jede der vier Quadratseiten eine resultierende Widerlagskraft  $\frac{1}{4}a^2p$  wirkt, deren Angriffspunkt in der Seitenmitte, also im Abstande  $\frac{1}{2}a\sqrt{\frac{1}{2}}$  vom Ein-

Das biegende Moment  $M_b$  ergibt sich als-

spannungsquerschnitt anzunehmen ist, daß es sich für den letzteren um zwei solche Quadratseiten handelt, demnach um ein Moment der Widerlagskräfte von der Größe

Fig. 18.

$$2\cdot \frac{1}{4}a^2p\cdot \frac{1}{2}a\sqrt{\frac{1}{2}}$$

daß der Flüssigkeitsdruck auf die von der Diagonale begrenzte Quadrathälfte  $\frac{1}{2}a^2p$  beträgt und im Schwerpunkte, d. i. im Ab-

stande  $\frac{1}{3} a \sqrt{\frac{1}{2}}$  vom Einspannungsquerschnitt angreift.

Hiermit folgt

$$M_{h} = 2 \cdot \frac{1}{4} a^{2} p \cdot \frac{1}{2} a \sqrt{\frac{1}{2} - \frac{1}{2}} a^{2} p \cdot \frac{a}{3} \sqrt{\frac{1}{2}} = \frac{1}{12} a^{3} p \cdot \sqrt{\frac{1}{2}}$$

und demnach die Biegungsgleichung für den  $a\sqrt{2}$  breiten und h hohen Querschnitt

$$\frac{1}{12}a^{3}\mu \bigvee_{2}^{1} \leq k_{b} \frac{1}{6} \frac{a}{\mu} \frac{1}{2} \frac{b^{2}}{a} = \frac{1}{3\mu} \bigvee_{2}^{1} \frac{1}{2} k_{b} a h^{2}.$$

woraus

oder

Hierin ist nach Versuchen des Verfassers

$$\mu = \frac{3}{4} = 0,75$$
 bis  $\frac{9}{8} = 1,12$ 

zu setzen, je nachdem sich die Auflagerung am Umfange mehr dem Zustande des Eingespanntseins oder demjenigen des Freiaufliegens nähert.

b) Die quadratische Platte, wie unter a), lose aufliegend, jedoch nur in der Mitte durch eine Kraft P belastet.

Auf dem Wege wie unter a) findet sich

woraus

oder

$$h \geq \frac{1}{2} \sqrt{3 \mu \frac{P}{k_b}}$$

Für den Berichtigungskoeffizienten ist zu setzen (Versuche des Verfassers):

$$\mu = \frac{7}{4} = 1,75$$
 bis 2.

## § 63. Ebene, rechteckige Platten, Fig. 1, a > b.

a) Die rechteckige Platte, die im Umfange 2(a+b), bestimmt durch die lange Seite *a* und die kurze Seite *b*, aufliegt, ist durch den Flüssigkeitsdruck *p* über die Fläche *ab* belastet.

Die in § 61 für die elliptische Platte angestellte Betrachtung, die zu der Erkenntnis führte, daß die größte Anstrengung für den Mittelpunkt derselben in Richtung der kleinen Achse stattfindet, kann ohne weiteres auch auf die rechteckige Platte übertragen werden. Sie ergibt, daß für den Mittelpunkt der letzteren die größere Inanspruchnahme in Richtung der kleinen Seite statthat, Additional information of this book

(Elastizität und Festigkeit; 978-3-662-27316-6) is provided:



http://Extras.Springer.com

und daß infolgedessen in der Mitte die Bruchlinie in Richtung der langen Seite verlaufen wird. Nach außen hin wird sie jedoch, wie aus dem in § 62 Erörterten zu schließen ist (vgl. auch Fig. 2, § 62), die Neigung haben müssen, in die Diagonale einzubiegen, etwa nach Fig. 1. Die Wahl unter den Diagonalen dürfte hierbei von Ungleichheiten im Material oder in der Stützung der Platte wesentlich beeinflußt werden.

Recht anschaulich lassen sich auch hier, wie bei der quadratischen Platte (vgl. § 62), die Stellen der größten Inanspruchnahme



bei Versuchen mit Eisenbetonplatten verfolgen. Fig. 2 bis 10, Taf. XXVI, zeigen die Rißbildung einer solchen Platte (Auflagerentfernung  $2 \cdot 4$  m). Deutlich ist zu erkennen, daß die ersten Risse im mittleren Teil der Platte ungefähr parallel zu deren langen Seiten auftreten. Unter höheren Belastungen gesellen sich hierzu der Platte hin verlaufen.

Risse, die gegen die Ecken der Platte hin verlaufen.

Unter diesen Umständen begegnet die zutreffende Annahme des Bruchquerschnitts erheblicher Unsicherheit. In Erwägung des für die Entwicklungen dieses Paragraphen allgomein gemachten und durch Einführung des Berichtigungskoeffizienten  $\mu$  auch rechnerisch zum Ausdruck gebrachten Vorbehalts, die erhaltenen Gleichungen durch Versuche hinsichtlich ihrer Zuverlässigkeit zu prüfen, sowie in Anbetracht der Notwendigkeit, die praktisch wichtige Aufgabe mit einfachen Mitteln der Lösung zuzuführen, entschließen wir uns für die Einspannung nach der Diagonale *BMB* mit der Maßgabe, nur das für diesen Querschnitt sich ergebende biegende Moment in Rechnung zu stellen.

Der gesamte Flüssigkeitsdruck abp verteilt sich allerdings nicht gleichförmig auf die Seiten a bzw. b; vielmehr wird der Auflagerdruck in der Mitte der Seiten am größten sein und nach den Eckpunkten des Rechtecks hin abnehmen. Jedenfalls aber darf davon ausgegangen werden, daß für jede Seite der resultierende Widerlagsdruck durch die Mitte derselben geht, also um

$$\frac{b}{2} \frac{a}{\sqrt{a^2 + b^2}}$$

von dem Einspannungsquerschnitt absteht. So ergibt sich das biegende Moment

$$M_{b} = \frac{1}{2} abp \cdot \frac{b}{2} \frac{a}{\sqrt{a^{2} + b^{2}}} - \frac{1}{2} abp \cdot \frac{1}{3} b \frac{a}{\sqrt{a^{2} + b^{2}}} = \frac{1}{12} \frac{a^{3} b^{3}}{\sqrt{a^{2} + b^{2}}} p$$

und hiermit die Biegungsgleichung für den  $\sqrt{a^2 + b^2}$  breiten und h hohen Querschnitt

$$\frac{1}{12} \frac{a^2 b^3}{\sqrt{a^3 + b^3}} p \leq k_b \frac{1}{6} \frac{\sqrt{a^3 + b^3}}{\mu} h^2,$$

$$k_b \geq \frac{1}{2} \mu \frac{1}{1 + \left(\frac{b}{a}\right)^2} \left(\frac{b}{h}\right)^2 p$$

$$k > \frac{1}{b} \frac{1}{2} \sqrt{\frac{2\mu}{2\mu}} \frac{p}{p}.$$

oder

$$h \geq \frac{1}{2} b \left| \sqrt{\frac{2 \mu}{1 + \left(\frac{b}{a}\right)^2}} \frac{p}{k_b} \right|$$

Wird nach Maßgabe von Fig. 11 die Länge c des Lotes auf die Diagonale, deren Länge d ist, eingeführt, so findet sich durch unmittelbare Ableitung oder auch durch Umrechnung von Gleichung 1

$$h \ge c \sqrt{\frac{\mu p}{2 k_b}}, \quad \dots \quad \dots \quad \dots \quad 1 a)$$

woraus ersichtlich ist, daß die Höhe c allein die maßgebende Größe für die Plattenstärke ist.

Mit b = a ergibt sich

$$k_{b} \geq \frac{1}{4} \mu \left(\frac{a}{h}\right)^{2} p$$
$$h \geq \frac{a}{2} \sqrt{\mu \frac{p}{k_{b}}},$$



oder

wie in § 62 für die quadratische Platte gefunden worden ist.

b) Die rechteckige Platte, wie unter a), am Umfange lose aufliegend, jedoch nur in der Mitte durch eine Kraft P belastet.

Auf dem unter a) beschrittenen Weg findet sich

woraus

oder

Hieraus folgen die Gleichungen 2, § 62, wenn b = a gesetzt wird.

Mit den in Fig. 11 eingetragenen Bezeichnungen ergibt sich

$$\frac{\frac{P}{2}}{\frac{c}{2}} \leq k_b \frac{1}{6} \frac{d}{\mu} h^2$$
$$h \geq \sqrt{\frac{3}{2} \mu \frac{c}{d} \frac{P}{k_b}} \dots \dots \dots \dots \dots 2a$$

Die Gleichungen 2 und 2a sind unter der Voraussetzung entwickelt, daß die belastende Kraft P in der Mitte der Platte angreift. In der Regel wird sie auf eine mehr oder minder große Fläche wirken. Wird beispielsweise angenommen, daß P sich gleichmäßig über eine kleine Kreisfläche  $\pi r_0^2$  verteilt, so lautet die Biegungsgleichung (vgl. S. 622)

$$\frac{F}{2}\frac{c}{2} - \frac{P}{2}\frac{4r_0}{3\pi} \leq k_b \frac{1}{6}\frac{d}{\mu}h^2.$$

## § 64. Versuchsergebnisse.

Die in der Einleitung zu diesem Abschnitt erörterte Sachlage verlangte dringend die Anstellung von Versuchen über die Widerstandsfähigkeit plattenförmiger Körper. Infolgedessen unterzog sich Verfasser dieser Aufgabe und führte 1889/90 nach Konstruktion der erforderlichen Versuchseinrichtungen — solche lagen bisher nicht vor — eine große Anzahl von Versuchen mit Platten von Flußstahlblech und Gußeisen durch. Über dieselben ist in dessen Schrift: "Versuche über die Widerstandsfähigkeit ebener Platten", Berlin 1890, berichtet¹).

¹) Ergänzungen hierzu finden sich in des Verfassers Arbeiten: "Versuche über die Widerstandsfähigkeit der Wasserkammerplatten von Wasserröhrenkesseln" (Versuche über die Widerstandsfähigkeit von Kesselwandungen, Heft 1, Berlin 1893, oder auch Zeitschrift des Vereines deutscher Ingenieure 1893, S. 489 u. f., S. 526 u. f.), "Berechnung von Schieberkastendeckeln" usw. (Protokoll der 21. Delegierten- und Ingenieur-Versammlung des Internationalen Verbandes der Dampfkessel-Überwachungsvereine zu Nürnberg 1892, S. 84 u. f., oder auch Zeitschrift dieses Verbandes 1893, Berlin und Breslau, S. 1 u. f.; dieser Vortrag liefert gleichzeitig einen Beitrag zur Beurteilung des Grades der Verantwortlichkeit, die den einzelnen Ingenieur, dessen Konstruktionen infolge ungenügender Widerstandsfähigkeit ebener Wandungen zu einem Unfalle geführt haben, tatsächlich trifft), "Maschinenelemente" 1891/92 S. 512 u. f., S. 521 u. f., 1908 (10. Aufl.), S. 835 u. f., S. 856 u. f.), an letzteren beiden Stellen ist auch der Einfluß der in den Dichtungsflächen wirkenden Kräfte erörtert. "Die Berechnung flacher durch Anker- oder Stehbolzen unterstützter Kesselwandungen und die Ergebnisse der neuesten hierauf bezüglichen Versuche" (Versuche über die Widerstandsfähigkeit von Kesselwandungen, Heft 2, Berlin 1894, oder auch Zeitschrift des Vereines deutscher Ingenieure 1894, S. 341 u. f., S. 373 u. f.), "Untersuchungen über die Formänderungen und die Anstrengung

Insoweit es sich bei denselben um Scheiben von Flußstahlblech handelt, ist das Wichtigste aus den Ergebnissen in § 60, Ziff. 3, hervorgehoben, so daß hier auszugsweise nur noch der Ergebnisse zu gedenken sein wird, die mit gußeisernen Platten erzielt worden sind. Hinsichtlich der Einzelheiten darf auf die erwähnte Schrift sowie auf die in der Fußbemerkung S. 638, 639 bezeichneten Arbeiten verwiesen werden.

Hiermit verwandte Aufgaben behandelt Verfasser in den Arbeiten: "Versuche über Flanschenverbindungen" (Zeitschrift des Vereines deutscher Ingenieure 1899, S. 321 u. f., S. 346 u. f., oder Versuche über die Widerstandsfähigkeit von Kesselwandungen, Heft 4) und "Unfälle an Dampfgefäßen und die Beanspruchung der Zylinderwandungen solcher Gefäße auf Biegung durch die Flanschenverbindung" (Zeitschrift des Bayerischen Dampfkessel-Revisionsvereines 1901, S. 1 u. f.).

Die Aufstellung von Vorschriften über die Wandstärken von Dampfkesseln für das Deutsche Reich veranlaßte Verfasser zu den Arbeiten: "Zur Widerstandsfähigkeit ebener Wandungen von Dampfkesseln und Dampfgefäßen" (Zeitschrift des Vereines deutscher Ingenieure 1906, S. 1940 u. f.), "Versuche über die Formänderung und die Widerstandsfähigkeit ebener Wandungen" (in derselben Zeitschrift 1908, S. 1781 u. f., S. 1876 u. f.). In ersterer Arbeit ist auch die "Streifenmethode" (im Gegensatz zu der "Balkenmethode", dem in diesem Buche benutzten Annäherungsweg) behandelt, deren man sich mit Annäherung nicht selten recht vorteilhaft bei Berechnung von ebenen Wandungen bedienen kann; in der zweiten Abhandlung ist auf die Formänderung der Platten näher eingegangen. Die Versuche, über die an letzterer Stelle berichtet ist, werden fortgesetzt; sie sind leider noch nicht so weit vorgeschritten, daß eine Behandlung an dieser Stelle mit einem gewissen, wenn auch beschränkten Abschluß möglich wäre.

Nach Aufstellung der behördlichen Bestimmungen, die als Material- und Bauvorschriften für Land- und Schiffsdampfkessel erschienen sind (und zwar je Anlage I und II zu den "Allgemeinen polizeilichen Bestimmungen über die Anlegung von Land- und von Schiffsdampfkesseln vom 17. Dezember 1908) ist die Schrift erschienen: R. Baumann, Die Grundlagen der deutschen Material- und Bauvorschriften für Dampfkessel (1912). In ihr werden auch die Balken- und Streifenmethoden behandelt.

Reiches Versuchsmaterial enthält Heft 30 der Veröffentlichungen des deutschen Eisenbeton-Ausschusses (309 Seiten Text, 512 Abbildungen): C. Bach und O. Graf, Versuche mit allseitig aufliegenden quadratischen und rechteckigen Eisenbetonplatten, 1915. Die Versuchskörper hatten Abmessungen für Auflagerentfernungen von 2000, 3000 und 4000 mm.

flacher Böden" (Versuche über die Widerstandsfähigkeit von Kesselwandungen, Heft 3, Berlin 1897, oder auch Zeitschrift des Vereines deutscher Ingenieure 1897, S. 1157 u. f., S. 1191 u. f., S. 1218 u. f.), "Untersuchungen über die Formänderungen und die Anstrengung gewölbter Böden" (Versuche über die Widerstandsfähigkeit von Kesselwandungen, Heft 5, oder auch Zeitschrift des Vereines deutscher Ingenieure 1899, S. 1585 u. f.), "Versuche mit gewölbten Flammrohrböden" (Mitteilungen über Forschungsarbeiten, Heft 51/52). Der größte Teil der angeführten Arbeiten findet sich auch in des Verfassers "Abhandlungen und Berichte" 1897.

#### 1. Verlauf der Bruchlinie. Sonstiges Verhalten.

In bezug auf den zu erwartenden Verlauf der Bruchlinie wurden in den vorhergehenden Paragraphen (§ 60, Ziff. 4, § 61, § 62 und § 63) gewisse Betrachtungen angestellt, die dazu führten, anzunehmen, daß diese Linie verlaufen werde



Zu Ziff. 2.



bei der kreisförmigen Scheibe ungefähr nach einem Durchmesser,
 , , elliptischen Platte ungefähr in Richtung der großen Achse,
 , , quadratischen , , , , , , Diagonale,
 , , , rechteckigen , , , , , , , , Diagonale,
 Uber den tatsächlichen Verlauf der Bruchlinie geben die Fig. 1

bis 9 im Text und Fig. 10 auf Taf. XXVII Auskunft. Vgl. auch Taf. XXV und XXVI.

Fig. 1 zeigt die Bruchlinie einer gußeisernen Scheibe von 12 mm Stärke (immer auf der Seite der gezogenen Fasern). Andere Scheiben von derselben Stärke weisen ähnliche Bruchlinien auf. Die Scheibe ruht während des Versuchs auf einem Dichtungsring von weichem Kupfer (etwa 8 mm stark) und stützt sich oben gegen eine 2,5 mm breite Ringfläche von dem gleichen mittleren Durchmesser wie der Kupferring, nämlich 560 mm. Die Pressung zwischen der Scheibe und dem Kupferring muß natürlich so groß sein, daß die Abdichtung gesichert ist.







Fig. 2 gibt die Bruchlinie einer gußeisernen Scheibe von 24 mm Stärke wieder: sie verläuft ungefähr nach drei Halbmessern. Weitere Scheiben von dieser Stärke brachen in ähnlicher Weise.

C. Bach, Elastizität. 8. Aufl.

Die der Prüfung unterworfenen Stahlscheiben bogen sich durch, ohne zu brechen.

Wie die Fig. 3 und 4 (gußeiserne Platten) erkennen lassen, entspricht der Verlauf der Bruchlinien mit befriedigender Annäherung der gemachten Annahme, gleichgültig, ob die Platte mehr oder weniger stark ist.

Fig. 5 (Gußeisen) zeigt für die quadratische Platte das Zutreffen der gemachten Voraussetzung.

Die Fig. 6 bis 9 (Gußeisen; a:b=2:3 und 1:3) entsprechen dem Ergebnis der stattgehabten Erwägung mehr oder minder.

Um ein getreues Bild der Formänderungen rechteckiger Platten zu erhalten, wurde 1887 eine solche aus Hartblei (a = 360 mm, b = 240 mm, h = 20 mm) hergestellt und ihre Oberfläche durch die Reißnadel mit einem Netz von Quadraten (je 10 mm Seitenlänge) versehen.



## Fig. 11.

Fig. 10, Taf. XXVII, gibt in ungefähr halber Größe die obere Fläche (Seite der gezogenen Fasern) mit der Bruchlinie wieder. Die Formänderung der ursprünglichen Quadrate zeigt volle Übereinstimmung mit der in § 62 angestellten Betrachtung, ebenso mit dem Ergebnisse, zu dem wir in § 63 hinsichtlich des Verlaufs der Bruchlinie gelangt waren. Oberhalb Fig. 10 ist die Seitenansicht der Platte dargestellt. In diesen Abbildungen bietet sich dem Auge ein außerordentlich lehrreiches Bild über das Verhalten des Materials einer rechteckigen Platte an den verschiedenen Stellen bei Beanspruchung durch Flüssigkeitsdruck.

Wird eine rechteckige, sorgfältig bearbeitete Platte, die das Widerlager im ganzen Umfange 2(a + b) berührt, in der Mitte belastet, so heben sich die Ecken sichtbar vom Widerlager ab, derart daß in den vier Seiten nur der mittlere Teil aufliegt, wie dies Fig. 11 für eine quadratische Platte darstellt. Die Größe dieser in der Mitte jeder Umfangsseite liegenden Berührungsstrecke, innerhalb der die Pressung von der Mitte nach außen hin bis auf Null abnimmt, hängt von der Belastung ab und wird schließlich auch von der örtlichen Zusammendrückung beeinflußt, die das Material erfährt.



Das Lichtdruckbild, Fig. 10, Taf. XXVII, zeigt durch das Auslaufen der Eindrückungen der Widerlager nach den Ecken hin deutlich die Abnahme der Pressung auch für den Fall gleichmäßig über die Platte verteilter Belastung durch Flüssigkeitsdruck; in der einen Ecke verschwindet die Eindrückung ganz, obgleich scharfes Anziehen der Schrauben des Versuchsapparates notwendig war, um die Abdichtung zu sichern. Der Auflagerdruck selbst ist in den Mitten





der langen Seiten des Rechtecks größer als in denjenigen der kurzen Seiten; je mehr a von b abweicht, um so bedeutender fällt dieser Unterschied aus. Der Anschauung zugänglich wird dieses zunächst auffallend erscheinende Verhalten aus der Erkenntnis heraus, daß die Platte, Fig. 11, in der Mitte Neigung hat, eine Kugelschale zu bilden. Die Wölbung geht dann nach den Ecken hin mehr und mehr in eine dachförmige Gestalt über. Die Folge ist, daß die ursprünglich geraden Seiten eine Biegung erfahren, wodurch sie sich an den Ecken von den Auflagern abheben müssen.

Hinsichtlich des Einflusses, den diese Veränderlichkeit der Widerlagspressung auf die Inanspruchnahme der etwaigen Befestigungsschrauben usw. hat. sei auf die Fußbemerkung S. 626 verwiesen.

Flache Böden mit Krempe sind in der Krempung am stärksten beansprucht. Der Bruch erfolgt dann, wenn es sich um Gußeisen handelt, und schlechte Stellen oder Gußspannungen nicht einflußnehmend auftreten, in der Krempung über den ganzen Umfang derart, daß der Boden herausgeschleudert wird. Fig. 12 zeigt die Bruchfläche sowie das herausgesprungene Mittelstück und gibt in anschaulicher Weise Auskunft darüber, daß der am stärksten beanspruchte Querschnitt in der Krempung liegt¹).

## 2. Gesetz der Widerstandsfähigkeit.

Die Beziehungen 18, 23, 30, 31 und 33, § 60; 3, 4 und 5, § 61; 1 und 2, § 62; 1 und 2, § 63, liefern übereinstimmend die Widerstandsfähigkeit ebener Platten proportional dem Quadrate der Stärke h. Die Versuche des Verfassers bestätigen die Richtigkeit dieses Gesetzes²).

Wenn sich bei Belastung von Platten durch Flüssigkeitsdruck, wobei diese zum Zwecke der Abdichtung stark angepreßt werden müssen. ergibt, daß stärkere Platten etwas weniger widerstandsfähig sind, als nach Maßgabe des quadratischen Verhältnisses der Wanddicken zu erwarten ist³), so liegt das in dem Einfluß der Abdichtungskraft, d. h. derjenigen Kraft, mit der die Platten behufs Ab-

¹) Über diese Untersuchungen, die sich auch auf Böden von Flußeisen beziehen, s. die S. 638 in der Fußbemerkung bezeichnete Schrift "Unter-suchungen über die Formänderungen und die Anstrengung flacher Böden."

Hinsichtlich gewölbter Böden liegt in rechnerischer Hinsicht eine wertvolle Arbeit von W.Schüle vor: "Festigkeit und Elastizität gewölbter Platten", Ding-lers polyt. Journal 1900, Bd. 315, Heft 42. Über dahingehende Versuche s. Fuß-bemerkung S. 638. — Ferner sind zu erwähnen: Keller, Berechnung gewölbter Platten in Heft 124 (1912) der Mitteilungen über Forschungsarbeiten sowie dessen auf S. 613, Fußbemerkung, angeführte Arbeit; Frankhauser, Die Festigkeit kegel- und kugelförmiger Böden und Deckel in Heft 162 und 163 (1914) der Mit-Regel- und kugenormiger Boden und Deckel in Hett 162 und 163 (1914) der Mit-teilungen über Forschungsarbeiten; Hager, Berechnung ebener, rechteckiger Platten, München 1911; Stephan, Berechnung der homogenen, quadratischen Platte und deren Aufnahmeträger, Dissertation, Darmstadt 1913; Hencky, Der Spannungszustand in rechteckigen Platten, München 1913; Nádai, Die Formänderungen und die Spannungen von rechteckigen elastischen Platten, Mitt. über Forschungsarbeiten, Heft 170, 171.

²) Hierauf aufmerksam zu machen, erscheint angezeigt, nachdem die Clarksche Berechnungsweise ebener Wandungen auch in die deutsche Literatur (Häder, Bau und Betrieb der Dampfkessel 1893, S. 78 u. f.) übergegangen ist. Nach derselben wäre die Widerstandsfähigkeit einer ebenen Wand proportional Nach derseinen ware die Widerstandstanigkeit einer einen waht proportional der ersten Potenz von *h*. Eine Besprechung der Clarkschen Berechnung seitens des Verfassers findet sich Zeitschrift des Vereines deutscher Ingenieure 1897, S. 1225 und 1226, sowie in "Versuche über die Widerstandsfähigkeit von Kesselwandungen", Heft 3, Berlin 1897. ³) Vgl. z. B. das S. 98 der "Versuche über die Widerstandsfähigkeit ebener Platten" Gesagte im Zusammenhang mit der Feststellung auf S. 86 daselbst.

dichtung angepreßt werden müssen, wie dies bereits am Schlusse von § 60, Ziff. 3, dargelegt wurde.

Haben sich ebene, aus genügend zähem Material bestehende und am Umfange aufliegende oder derart befestigte Platten, daß die größte Anstrengung in der Plattenmitte eintritt, bleibend durchgebogen, sind sie also nicht mehr eben, sondern gewölbt, so besitzen sie in diesem gewölbten Zustande eine erheblich größere Widerstandsfähigkeit gegenüber ruhender Belastung als in ihrer ursprünglich ebenen Form. Die Zähigkeit des Materials hat jedoch durch diese Überanstrengung abgenommen.

#### 3. Schlußbemerkung.

Ein Blick über das in den §§ 60 bis 63 angewendete Verfahren des Verfassers zur Lösung der Aufgaben dieses Abschnittes läßt erkennen, daß es darauf hinausläuft, die schwierigen Aufgaben, die sich auf dem Gebiete der Inanspruchnahme plattenförmiger Körper bieten, auf einfache Biegungsaufgaben zurückzuführen unter Schaffung und Verwendung von Berichtigungskoeffizienten, die aus Versuchen zu bestimmen sind. Die Methode ist keine streng wissenschaftliche: sie liefert aber, da sie sich in der bezeichneten Weise auf Versuche stützt, ausreichend zuverlässige Ergebnisse für die ausführende Technik und ermöglicht die Berechnung überdies jedem Techniker, der auf der technischen Mittelschule gebildet ist. Indem Verfasser diesen Weg einschlug, glaubte er den Interessen nicht bloß der Industrie. sondern der gesamten Technik wie auch denjenigen der Allgemeinheit, die ein Anrecht auf Sicherheit hat - auch dann, wenn es der Wissenschaft noch nicht gelungen ist, eine genaue Berechnungs der hier zur Erörterung stehenden Anstrengung der Materialien zu liefern — am meisten zu nützen, wenigstens so lange; bis es gelingt, Vollkommeneres ausfindig zu machen.

Bei Berechnung einer Platte, eines Deckels u. dgl. wird in der großen Mehrzahl der Fälle ein gewisser, von den Verhältnissen abhängiger Zeitaufwand nicht überschritten werden sollen, namentlich dann nicht, wenn es sich um eine einmalige oder doch nicht häufige Ausführung handelt. Die Berechnung pflegt eben für den in der Industrie stehenden Konstrukteur nicht Selbstzweck, sondern nur Mittel zum Zweck zu sein. Für den Mann der Wissenschaft kann sie allerdings Selbstzweck sein. Eine Berechnungsmethode, die sich in der Technik einführen soll, muß deshalb gegenüber den tatsächlichen Verhältnissen einfach genug sein; andererseits genügt auch eine ausreichende, d. h. den Verhältnissen befriedigend gerecht werdende Annäherung.

## Achter Abschnitt.

# Durch die Fliehkraft beanspruchte Körper¹).

## § 65. Ring und Arm.

#### 1. Der frei umlaufende Ring.

Sofern die Abmessung des betrachteten Ringes in Richtung des Halbmessers im Verhältnis zur Größe des letzteren gering ist, kann die Verteilung der Spannungen über den Ringquerschnitt keine stark ungleichförmige sein (vgl. die sinngemäß gleiche Überlegung bei dem durch inneren Überdruck beanspruchten Hohlzylinder auf S. 590), so daß ohne wesentlichen Fehler gleichförmige Beanspruchung daselbst angenommen werden darf.

Von dem betrachteten Ring, der (ohne Arme) n Umdrehungen in der Minute ausführe, sei eine Scheibe von 1 cm Breite abgeschnitten gedacht und für diese die Rechnung durchgeführt. Es bedeute:

- $\omega = \frac{2 \pi n}{60}$  die Winkelgeschwindigkeit, bezogen auf die Sekunde,
- $\gamma$  das spezifische Gewicht des Ringmaterials (kg/ccm, für Gußeisen z. B. 0,0072),
- g die Beschleunigung durch die Schwere (= 981 cm),
- h die Höhe des Ringes in Richtung des Halbmessers (cm),
- $x_0$  den Abstand des Schwerpunkts des Ringquerschnitts von der Achse (cm),
- $v = \omega \cdot x_0$  die Umfangsgeschwindigkeit (cm/sec),
- $k_z$  die Zugspannung im Ringquerschnitt (kg/qcm).

Die Scheibe sei nach einem Durchmesser A - B geteilt (vgl. Fig. 1) und der Materialzusammenhang durch die auftretende Beanspruchung  $k_x$  ersetzt.

¹) Bearbeitet von R. Baumann.

Vgl. Großmann, Verhandlungen des Vereines zur Beförderung des Gewerbfleißes in Preußen 1883, S. 216 u. f.; Grübler, Zeitschrift des Vereines deutscher Ingenieure 1897, S. 860 u. f.; Lorenz und v. Sanden, ebendort 1910, S. 1397 u. f., 2063 u. f. (Trommeln), sowie insbesondere A. Stodola, Die Dampfturbinen, Berlin 1910, 4. Aufl., S. 242 u. f.

Im Schwerpunkt S des halben Ringes, dessen Abstand vom Mittelpunkt  $\overline{MS} = 2x_0 : \pi$  beträgt, entsteht infolge der Umdrehung die Fliehkraft (die Masse des Ringes ist  $\frac{\gamma}{a}(x_0\pi h \cdot 1)$ ).

$$Q = \left[\frac{\gamma}{g} \cdot (x_0 \pi h \cdot 1)\right] \frac{2 x_0}{\pi} \cdot \omega^2 = 2 \cdot \frac{\gamma}{g} h x_0^2 \omega^2 = 2 \frac{\gamma}{g} h v^2,$$

der entgegenwirkt die aus der Beanspruchung  $k_i$  hervorgehende Kraft $Q = 2 k_i \cdot h \cdot 1$ ,

so daß

 $2k_sh = 2\frac{\gamma}{g}hx_0^2\omega^2 = 2\frac{\gamma}{g}hv^2,$ 



woraus sich ergibt

Die Beanspruchung ist also von der Umfangsgeschwindigkeit und dem spezifischen Gewicht allein abhängig. Wird eine bestimmte Größe der Beanspruchung als zulässig erachtet, so ist damit die Umfangsgeschwindigkeit, die höchstens erreicht werden darf, gleich falls festgesetzt.

Die Dehnung in Richtung des Umfangs und damit auch des Halbmessers beträgt

$$\varepsilon = \alpha k_s = \alpha \frac{\gamma}{g} v^s$$

und damit die halbe Aufweitung des Ringes infolge der Fliehkraft

#### 2. Der frei umlaufende Arm.

Betrachtet werde ein Stab vom Querschnitt f und der Länge  $2x_0$ , der sich um die durch M gehende Achse mit der Winkelgeschwindigkeit  $\omega$  drehe (Fig. 2).

Im Abstand x von M erfolgt Beanspruchung durch die Fliehkraft des  $(x_0 - x)$  langen Stückes, dessen Schwerpunktshalbmesser beträgt

$$x + \frac{1}{2}(x_0 - x) = \frac{1}{2}(x + x_0).$$

Somit ist

$$k_s \cdot f = \left[\frac{\gamma}{g} f \cdot (x_0 - x)\right] \frac{1}{2} (x + x_0) \cdot \omega^3$$
$$= \frac{\gamma}{g} f \cdot \frac{\omega^2}{2} (x_0^3 - x^2);$$

woraus sich die größte. auftretende Beanspruchung zu

$$k_s = \frac{\gamma}{g} \frac{\omega^2}{2} x_0^2 = \frac{\gamma}{g} \frac{v^2}{2}, \quad \dots \quad \dots \quad \dots \quad 3)$$

also halb so groß wie der aus Gleichung 1 folgende Wert, und die Dehnung im betrachteten Punkt ergibt zu

$$\boldsymbol{\varepsilon} = \alpha \, \frac{\gamma}{g} \, \frac{\omega^{\mathbf{s}}}{2} (\boldsymbol{x_0}^{\mathbf{s}} - \boldsymbol{x}^{\mathbf{s}})$$

sowie die Verlängerung des Armes

$$\Delta x_0 = \int_0^{x_0} \varepsilon \cdot dx = \alpha \frac{\gamma}{g} \frac{\omega^2}{2} \int_0^{x_0} (x_0^2 - x^2) dx$$
$$= \alpha \frac{\gamma}{g} \frac{\omega^2}{2} \left(\frac{2}{3} x_0^3\right) = \alpha \frac{\gamma}{g} \frac{\omega^2}{3} x_0^3 = \alpha \frac{\gamma}{g} \frac{v^2}{3} x_0 \dots 4$$

Der Arm verlängert sich also infolge der Umdrehung nur um ein Drittel des Betrages, um den der Halbmesser des Ringes zuzunehmen bestrebt ist (vgl. Gleichungen 2 und 4). Die Folge hiervon ist, daß beim Vorhandensein von Armen im Ring der letztere zurückgehalten wird und dadurch zwischen je zwei Armen zusätzliche Biegungsbeanspruchung erfährt, während die Arme, zum Tragen der Fliehkräfte des Ringes mit herangezogen, größere Kräfte auszuhalten haben. Ist der Ring im Verhältnis zu seiner Höhe breit, so erfährt er infolge der Wirkung der Arme Biegungsbeanspruchung auch in der Querrichtung.

Hinsichtlich der Gesichtspunkte, die bei der Berechnung von solchen Schwungrädern im Auge zu behalten sind, muß auf C. Bach, Maschinenelemente, 11. Aufl. S. 490 u. f., 12. Aufl. S. 499 u. f. verwiesen werden. Über die Berechnung von Trommeln finden sich ausführliche Darlegungen in der Zeitschrift des Vereines deutscher Ingenieure 1910, S. 1397 u. f. sowie 2061 u. f.

## § 66. Umlaufende Scheiben.

#### 1. Die Scheibe gleicher Festigkeit.

Die Scheibe, die ohne Bohrung¹) ausgeführt sei, soll eine solche Formgebung erfahren, daß die durch die Fliehkraft hervorgerufene Beanspruchung an allen Stellen gleich groß und ebenso in Richtung

des Halbmessers von derselben Größe wie in Richtung des Umfangs ist. In Hinsicht auf die Gestalt des durch sein Eigengewicht beanspruchten Stabes gleicher Festigkeit in § 6, S. 115 u. f. ist zu erwarten, daß die Dicke 2x der



Scheibe in der Mitte am größten sein muß und gegen den Rand hin abnimmt, wie in Fig. 1 gezeichnet.

Aus der zur z-Achse symmetrischen Scheibe denken wir uns einen Sektor vom Zentriwinkel  $2 \cdot d\varphi$ , aus diesem ein Ringstück von der Breite dz herausgeschnitten, an den Schnittflächen, wie S. 581 für den Hohlzylinder besprochen, die wirkenden Spannungen  $\sigma$  und im Schwerpunkt die Massenkraft M angebracht, wie Fig. 2 zeigt. Dann beträgt die nach innen gerichtete Kraft an der Zylinderfläche vom Halbmesser z

$$\sigma \cdot 2 x \cdot z \cdot 2 d\varphi$$

die nach außen gerichtete Kraft an der Zylinderfläche vom Halbmesser z + dz und der Höhe 2x + 2 dx

$$\sigma \cdot (2x + 2dx)(z + dz) 2 d\varphi = \sim 2 \cdot \sigma (2xz + 2xdz + 2zdx) d\varphi$$
,  
der nach innen gerichtete Teil der zwei Umfangskräfte

$$2 \cdot \sigma \cdot \left(2 x + \frac{2 dx}{2}\right) \cdot dz \cdot \sin(dq) = -2 \sigma \cdot 2 x \cdot dz \cdot d\varphi,$$

die nach außen gerichtete Massenkraft M

$$\int_{g}^{\gamma} \omega^{2} \left(z + \frac{dz}{2}\right) \left(z + \frac{dz}{2}\right) \cdot \left(2x + \frac{2}{2}dx\right) \cdot 2 \, d\varphi \cdot dz$$
$$= \sim 2 \frac{\gamma}{g} \omega^{2} 2 x z^{3} d\varphi \cdot dz.$$

¹) Über den Einfluß einer Bohrung vergleiche das S. 654 u. f., S. 655, S. 661, Fußbemerkung, towie S. 662 u. f. Ausgeführte.

Aus der Bedingung, daß die Summe aller Horizontalkräfte gleich Null sein muß, folgt sodann

$$2 \sigma \cdot (2 xz + 2 x dz + 2 z dx) d\varphi + 2 \frac{\gamma}{g} \omega^2 2 xz^2 d\varphi dz$$
  
= 2 \sigma 2 xz d\varphi + 2 \sigma 2 x dz d\varphi ... 1)  
$$\frac{d 2 x}{2 x} = -\frac{\gamma}{g} \frac{\omega^2}{\sigma} z dz, \dots \dots 2)$$

und durch Integration

$$\ln\frac{2x}{c} = -\frac{\gamma}{g}\frac{\omega^2}{\sigma}\frac{z^2}{2}$$

oder

$$2x = c \cdot e^{-\frac{\gamma}{g} \frac{\omega^2}{\sigma} \frac{z^2}{2}}$$

In der Regel wird die Scheibe mit Rücksicht auf Herstellung oder aus anderen Gründen am Umfang  $(z = r_a)$  eine bestimmte geringste Dicke *s* haben müssen¹), so daß zur Bestimmung der Integrationskonstanten *c* die Gleichung besteht

$$s = c \cdot e^{-\frac{\gamma}{g} \frac{\omega^2}{\sigma} \frac{\tau_a^2}{2}} \dots \dots \dots \dots \dots 3)$$

Somit

Die Dicke  $s_m$  der Scheibe in der (undurchbohrten) Mitte beträgt mit z = 0

Es treten also hier, wie beim frei umlaufenden Ring, das spezifische Gewicht  $\gamma$ , die Umfangegeschwindigkeit v und die Spannung^a)  $\sigma$ Einfluß nehmend auf.

¹) Dort hört die Scheibe auf, ein Körper gleicher Festigkeit zu sein, sofern nicht am äußeren Rande eine Kraft (z. B. herrührend von der Fliehkraft der Schaufeln oder übertragen durch einen Kranz) angreift. Vgl. hierzu auch Ziff. 4, a, S. 658.

²) Die Beanspruchung, über deren zulässige Größe Bestimmung zu treffen ist, beträgt  $k_r = \frac{e}{\alpha} = \sigma \left(1 - \frac{1}{m}\right)$ , da die Spannung  $\sigma$  in zwei senkrecht



Ist  $v^2:\sigma$  in Gleichung 4 groß, so ergibt sich eine starke Wölbung der Meridianlinie. Damit ist eine Neigung der Spannungen gegen die z-Achse verbunden, wodurch unsere Ableitungen, die eine solche nicht annehmen, unzutreffend werden. (Vgl. auch § 6, S. 117, Ziff. 3 und 4, § 20, Ziff. 2 sowie Fußbemerkung S. 480 und 481.) Gleichung 4 gilt nur für Scheiben, deren Meridianlinien nicht zu stark gegen die z-Achse geneigt sind und keine zu scharfe Krümmung aufweisen.

## 2. Die Scheibe von gleicher Dicke¹).

Wir betrachten die Scheibe als Hohlzylinder. Gemäß der Fußbemerkung 1 auf S. 581, § 58, besteht dann die Gleichung

$$\frac{d\sigma_s}{dz} = \frac{1}{z} (\sigma_y - \sigma_z) - \frac{\gamma}{g} \omega^2 z.$$

Da hier Kräfte in Richtung der x-Achse fehlen, wird  $\sigma_x = 0$ und damit nach S. 582 (Gl. 4, § 7)

$$\epsilon_{1} = \alpha \left( -\frac{\sigma_{y} + \sigma_{z}}{m} \right)$$
$$\epsilon_{2} = \alpha \left( \sigma_{y} - \frac{\sigma_{z}}{m} \right)$$
$$\epsilon_{3} = \alpha \left( \sigma_{z} - \frac{\sigma_{y}}{m} \right)$$

und hieraus

sofern

$$\epsilon_1 - \epsilon_2 + \epsilon_3 = e....7$$

Fügt man zu Gleichung 6 die aus der ersten der Gleichungen 4, § 7 (s. o.) sich ergebende Beziehung

$$-\sigma_{y}-\sigma_{z}=m\frac{\varepsilon_{1}}{c},$$

.

so wird

$$0 == \sigma_r = \frac{m}{\alpha} \left( \epsilon_1 + \frac{\epsilon}{m-2} \right)$$

zueinander stehenden Richtungen auftritt.  $k_z$  und  $\sigma$  sind einander somit proportional.

¹) Weitere Scheibenformen sind an der in Fußbemerkung 1, S. 646 zuletzt genannten Stelle behandelt. und in gleicher Weise

$$\sigma_{y} = \frac{m}{1+m} \frac{1}{a} \left( \varepsilon_{2} \div \frac{e}{m-2} \right),$$
  
$$\sigma_{z} = \frac{m}{1+m} \frac{1}{a} \left( \varepsilon_{3} \div \frac{e}{m-2} \right),$$

wie auf S. 582. Ebenso kann man die dort als Gleichung 3, 4, 5 und 6 bezeichneten Beziehungen unter Beachtung, daß hier  $\sigma_x = 0$ ist, übernehmen, während Gleichung 7 entfällt. Die Einführung der Gleichung 6, S. 583, in die erste Gleichung unter 2) (S. 651) für  $\frac{d\sigma_z}{dz}$  führt sodann zu der Differentialgleichung

$$\frac{d^2\zeta}{dz^2} + \frac{d\zeta}{zdz} - \frac{\zeta}{z^2} = -\frac{m-1}{2m}\beta \cdot \frac{\gamma}{g}\omega^2 z,$$

die sich von der in § 58, S. 584, abgeleiteten nur durch die rechte Seite unterscheidet. Die Integration kann in genau gleicher Weise wie dort angegeben erfolgen und führt zu

$$\zeta z = c_1 \frac{z^2}{2} + c_2 - \frac{m-1}{16m} \beta \frac{\gamma}{g} \omega^2 z^4.$$

Bestimmt man hieraus die Werte von  $\frac{\zeta}{z}$  und  $\frac{d\zeta}{dz}$  (vgl. S. 584) und führt diese in die Gleichung 6, § 58 (S. 583) ein, so findet sich, unter Beachtung, daß nun  $\sigma_r = 0$  ist,

$$\sigma_{y} = \frac{2}{m-1} \frac{1}{\beta} \left\{ \frac{c_{1}}{2} \left(m+1\right) + \frac{c_{2}}{z^{2}} \left(m-1\right) \right\} - \frac{\gamma}{g} \frac{\omega^{2} z^{2}}{8} \left(\frac{3}{m}+1\right) \\ \sigma_{z} = \frac{2}{m-1} \frac{1}{\beta} \left\{ \frac{c_{1}}{2} \left(m+1\right) - \frac{c_{2}}{z^{2}} \left(m-1\right) \right\} - \frac{\gamma}{g} \frac{\omega^{2} z^{2}}{8} \left(\frac{1}{m}+3\right) \right\}$$

$$8)$$

Zur Bestimmung der Integrationskonstanten  $c_1$  und  $c_2$  dienen die Bedingungen, daß, da am äußeren und inneren Scheibenumfang äußere Kräfte nicht wirken sollen, für  $z = r_i \sigma_z = 0$  und ebenso für  $z = r_a \sigma_z = 0$  sein muß. Aus Gleichung 8 findet sich hiermit

$$c_{1} = \beta \frac{m-1}{m+1} {\binom{1}{m}} + 3 \frac{\gamma}{g} \frac{\omega^{2}}{8} (r_{a}^{2} + r_{i}^{2})$$

und

$$c_2 = \beta \left(\frac{1}{m} + 3\right) \frac{\gamma}{g} \frac{\omega^2}{16} r_a^2 r_i^2.$$

Damit lassen sich aus den Gleichungen 8 die Werte von  $\sigma_y$  und  $\sigma_z$  anschreiben, wodurch auch unter Zuhilfenahme der Gleichung 4, § 7 (s. o.) die Hauptdehnungen bestimmt sind.

Es findet sich

und

$$\begin{aligned} \frac{\varepsilon_{1}}{\alpha} &= -\frac{1}{m} \frac{\gamma}{g} \frac{\omega^{2}}{4} \left\{ \left( \frac{1}{m} + 3 \right) (r_{a}^{2} + r_{i}^{2}) - \left( \frac{2}{m} + 2 \right) z^{2} \right\} \\ k_{z} &= \frac{\varepsilon_{2}}{\alpha} = \frac{\gamma}{g} \frac{\omega^{2}}{8} \left\{ \left( \frac{1}{m} + 3 \right) \left[ (r_{a}^{2} + r_{i}^{2}) \left( 1 - \frac{1}{m} \right) \right. \\ &+ \frac{r_{a}^{2} r_{i}^{2}}{z^{2}} \left( 1 + \frac{1}{m} \right) \left] - \left( 1 - \frac{1}{m^{2}} \right) z^{2} \right\} \\ \frac{\varepsilon_{3}}{\alpha} &= \frac{\gamma}{g} \frac{\omega^{2}}{8} \left\{ \left( \frac{1}{m} + 3 \right) \left[ (r_{a}^{2} + r_{i}^{2}) \left( 1 - \frac{1}{m} \right) \right. \\ &- \frac{r_{a}^{2} r_{i}^{2}}{z^{2}} \left( 1 + \frac{1}{m} \right) \left] - \left( 3 - \frac{3}{m^{2}} \right) z^{2} \right\} \end{aligned}$$

Hiermit sind die Gleichungen 9 und 10 § 58 (S. 585) zu vergleichen.

Für den inneren Rand der Scheibe beträgt nach Gleichung 10 mit  $z = r_i$  und  $m = \frac{10}{3}$ 

$$\begin{aligned} \frac{\varepsilon_{1}}{\alpha} &= -\frac{\gamma}{g} \frac{\omega^{2}}{4m} \left\{ r_{a}^{2} \left( \frac{1}{m} + 3 \right) + r_{i}^{2} \left( 1 - \frac{1}{m} \right) \right\} \\ &= -\frac{3}{40} \frac{\gamma}{g} \omega^{2} \left\{ 3.3 r_{a}^{2} + 0.7 r_{i}^{2} \right\} \\ k_{z} &= \frac{\varepsilon_{2}}{\alpha} = \frac{\gamma}{g} \frac{\omega^{2}}{4} \left\{ r_{a}^{2} \left( \frac{1}{m} + 3 \right) + r_{i}^{2} \left( 1 - \frac{1}{m} \right) \right\} = -m \frac{\varepsilon_{1}}{\alpha} \\ &= +\frac{1}{4} \frac{\gamma}{g} \omega^{2} \left\{ 3.3 r_{a}^{2} + 0.7 r_{i}^{2} \right\} \\ \frac{\varepsilon_{3}}{\alpha} &= -\frac{\gamma}{g} \frac{\omega^{2}}{4m} \left\{ r_{a}^{2} \left( \frac{1}{m} + 3 \right) + r_{i}^{2} \left( 1 - \frac{1}{m} \right) \right\} = \frac{\varepsilon_{1}}{\alpha} \\ &= -\frac{3}{40} \frac{\gamma}{g} \omega^{2} \left\{ 3.3 r_{a}^{2} + 0.7 r_{i}^{2} \right\} \end{aligned}$$

wonach der Wert von  $\frac{\varepsilon_2}{\alpha}$  als maßgebend erscheint.

Ist die Bohrung sehr klein, so daß  $0.7 r_i^2$  gegenüber  $3.3 r_a^3$  vernachlässigt werden kann, so ergibt sich die maßgebende Beanspruchung am Lochrande für  $z = r_i$  zu

$$k_{s} = \frac{r_{0}}{\alpha} = \frac{\gamma}{g} \frac{\omega^{3}}{4} r_{a}^{2} \left(\frac{1}{m} + 3\right) = 0.825 \frac{\gamma}{g} \omega^{2} r_{a}^{2} = 0.825 \frac{\gamma}{g} v^{3} . 12)$$

und die Beanspruchung am äußeren Scheibenrand mit  $z = r_a$ 

$$\frac{\epsilon_{a}}{\omega} = \frac{\gamma}{g} \frac{\omega^{a}}{4} r_{a}^{\ 2} \left(1 - \frac{1}{m}\right) = 0,175 \frac{\gamma}{g} \omega^{a} r_{a}^{\ 2} = 0,175 \frac{\gamma}{g} v^{a} . . 12)$$

Ist eine Bohrung in der Scheibe überhaupt nicht vorhanden, so sind zwei neue Bedingungen zu erfüllen, die das Endergebnis der Rechnung beeinflussen:

- I. Für z=0 muß  $\zeta=0$  sein, da im Mittelpunkt der Scheibe keine radiale Verschiebung nach der einen oder anderen Richtung, von denen keine bevorzugt ist, erfolgen kann; dies bedingt, daß in den Gleichungen 8 sowie in der ihnen unmittelbar vorausgehenden Beziehung  $c_2=0$  sein muß.
- II. Für z = 0 muß  $\sigma_y = \sigma_s$  sein, weil im Mittelpunkte der umlaufenden Scheibe (Pol) jeder Durchmesser auch als Tangente an den Kreis mit z = 0 als Halbmesser erscheint. Aus diesem Grunde muß in Gleichung 9 das Glied  $\frac{r_a^3 r_i^2}{z^3}$ , das für z = 0 den Unterschied von  $\sigma_y$  und  $\sigma_z$  hervorbringt, verschwinden, d. h.

$$\frac{r_{a}^{2}r_{i}^{2}}{z^{2}} = \frac{r_{a} \cdot 0}{0} = \frac{0}{0} \text{ mu} = 0$$

werden.

Mit diesen zwei Bedingungen ergeben sich an Stelle der Gleichungen 9 folgende Beziehungen

$$\sigma_{y} = \frac{\gamma}{g} \frac{\omega^{3}}{8} \left\{ r_{a}^{2} \left( \frac{1}{m} + 3 \right) - \left( \frac{3}{m} + 1 \right) z^{2} \right\} \\ \sigma_{z} = \frac{\gamma}{g} \frac{\omega^{3}}{8} \left\{ r_{a}^{2} \left( \frac{1}{m} + 3 \right) - \left( \frac{1}{m} + 3 \right) z^{2} \right\} \right\} \qquad \dots \qquad 9a)$$

Für die maßgebenden Beanspruchungen findet sich damit in der Scheibenmitte (z=0)

$$k_{s} = \frac{\varepsilon_{9}}{\alpha} = \frac{\gamma}{g} \frac{\omega^{9}}{8} r_{a}^{9} \left(\frac{1}{m} + 3\right) \left(1 - \frac{1}{m}\right) = 0.29 \frac{\gamma}{g} \omega^{9} r_{a}^{9} \dots 12 a$$

für den äußeren Rand  $(z = r_a)$ 

$$\frac{r_a}{\alpha} = \frac{\gamma}{g} \frac{\omega^3}{4} r_a^2 \left(1 - \frac{1}{m}\right) \qquad = 0.175 \frac{\gamma}{g} \omega^2 r_a^2 \quad . \quad . \quad 12b)$$

Infolge Fehlens der kleinen Bohrung, die zu den Werten 12 geführt hatte, ist also die Beanspruchung in der Scheibenmitte im Verhältnis 0,29:0,825 kleiner geworden, sie hat auf weniger als die Hälfte  $\left(1:\frac{0,825}{0.29}=1:2,8\right)$  abgenommen. Die Beanspruchungen am äußeren Rand der Scheibe sind, wie zu erwarten war, dieselben geblieben. Es ist jedoch im Auge zu behalten, daß die Spannungszunahme, die mit der Herstellung einer kleinen Bohrung verknüpft erscheint, bei Scheiben aus zähem Material geringer ausfallen wird, als die Rechnung ergibt, weil die sich einstellenden bleibenden Formänderungen bewirken, daß der eintretenden Dehnung (von der ein Teil bleibend wird) eine kleinere Spannung entspricht. Die Verteilung der Spannung wird also in der Tat weniger ungleichförmig, als das Ergebnis der Rechnung erwarten läßt (vgl. hierzu Fußbemerkung 1, S. 589). Dies ist um so mehr der Fall, als die Spannungen von der kleinen Bohrung nach dem Rande zu sehr rasch abnehmen¹) und sich der Größe nähern, die

¹) Zur Erlangung eines Überblicks sind im folgenden die Beanspruchungen zusammengestellt, die sich in verschiedenen Abständen vom Mittelpunkt für eine Scheibe von 50 cm äußerem Halbmesser ergeben,



- L	1.00	- • •			
r	10.	· • ) .			

1.	wenn	die	Scheibe vo	oll ist	$r_{i} = 0$ ,			
2.	"	eine	Bohrung	vom	Halbmesser	$r_i =$	0,1	cm
3.	"	77	n	n	"	$r_i =$	0,5	n
4.	"	"	n	n	n	$r_i =$	1,0	n
5.	n	"	n	n	n	$r_1 =$	2,5	"
6.	"	77	n	n	n	$r_i =$	5,0	"
7.	n	n	77	n	n	$r_i =$	10,0	**
						•	,	

vorhanden ist.

sie ohne Bohrung aufweisen würden. Es empfiehlt sich trotzdem, unnötige Bohrungen zu vermeiden und der erwähnten Spannungserhöhung dieselbe Aufmerksamkeit zu schenken, die auf die Vermeidung scharfer Querschnittsänderungen und Ecken zu verwenden ist (vgl. hierzu § 56, Ziff. 3, S. 569 u. f.).

## 3. Die Wirkung von Kräften (Spannungen), die am Rand der Scheibe von gleicher Dicke angreifen.

Durch Drücke, die in der Bohrung der Scheibe, etwa durch die eingezogene Welle, auftreten, sowie durch Kräfte, die am äußeren Umfang angreifen, wie z. B. die Fliehkraft von Schaufeln, wird die Scheibe in gleicher Weise beansprucht wie ein Hohlzylinder, der innerem und äußerem Überdruck ausgesetzt ist, ohne einer Axialkraft unterworfen zu sein. Die Beanspruchungen ergeben sich aus den Ableitungen in § 58, sofern dort  $\sigma_x = 0$  gesetzt und bei Aufstellung der Bedingungsgleichungen nach Gleichung 8, S. 584, beachtet wird, daß die Spannung am äußeren Rande  $\sigma_i = p_a$ . bzw. am inneren Rande  $\sigma_s = -p_i$  beträgt (Zug am Umfang nach außen gerichtet, bzw. Druck in der Nabe). Man erhält dann an Stelle der Gleichung 10, § 58, die im folgenden angegebenen Beziehungen. Die aus ihnen folgenden Beanspruchungen sind zu den aus Gleichung 10 bis 12 ermittelten algebraisch zu addieren. (Vgl. Ziff. 4.)

Werte von  $\frac{\epsilon_2}{\alpha} \cdot \left(\frac{g}{\gamma} \frac{1}{\omega^2 r_a^{-2}}\right) = \frac{\epsilon_2}{\alpha} \left(\frac{g}{\gamma v^2}\right)$  für Scheiben von  $r_a = 50$  cm äußerem Halbmesser und Bohrungen von verschiedener Weite.

<b>z</b> =	0	0,1	0,5	1	2	2,5	5	10	25	50 cm
1. $r_i = 0$ cm 2. $r_i = 0,1$ " 3. $r_i = 0,5$ " 4. $r_i = 1,0$ " 5. $r_i = 2,5$ " 6. $r_i = 5,0$ " 7. $r_i = 10,0$ "	0,2888 — — — — —	0,8250 	0,3102 0,8250 — — —	0,2887 0,2941 0,4228 0,8251 — —	0,2886 0,2899 0,3220 0,4228 	 0,8254	0,2876 0,2878 0,2930 0,3092 0,4224 0,8268 	0,2842 0,2842 0,2856 0,2897 0,3184 0,4211 0,8320	0,2603 0,2603 0,2606 0,2613 0,2664 0,2847 0,3577	0,1750 0,1750 0,1751 0,1753 0,1771 0,1833 0.2080

Fig. 3 gibt eine zeichnerische Darstellung des Verlaufs der Beanspruchung  $\frac{\epsilon_s}{\alpha}$  über einen Halbmesser in der Nähe der Bohrung wieder; dabei ist als Nullpunkt der innere Rand der Scheibe (bei  $r_i = 0$  der Mittelpunkt) gewählt (als Abszissen treten somit die Werte  $(z - r_i)$  auf), so daß die Breite, auf der die Spannungserhöhung wirkt, erkannt werden kann.

a) Beanspruchung durch die äußere Zugspannung  $p_a$ .

$$\begin{aligned} \frac{e_{2}}{\alpha} &= \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}} \left\{ \left(1 - \frac{1}{m}\right) + \frac{r_{i}^{2}}{z^{2}} \left(1 + \frac{1}{m}\right) \right\} \\ &= \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}} \left\{ 0, 7 + 1, 3 \frac{r_{i}^{2}}{z^{2}} \right\} \\ \frac{\epsilon_{3}}{\alpha} &= \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}} \left\{ \left(1 - \frac{1}{m}\right) - \frac{r_{i}^{2}}{z^{2}} \left(1 + \frac{1}{m}\right) \right\} \\ &= \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}} \left\{ 0, 7 - 1, 3 \frac{r_{i}^{2}}{z^{2}} \right\} \end{aligned}$$
(13)

Somit Beanspruchungen am inneren Rand, d. i.  $z = r_i$ 

$$k_{r} = \frac{\epsilon_{3}}{\alpha} = 2 \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}}$$
  
und  $\frac{\epsilon_{3}}{\alpha} = -\frac{2}{m} \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}} = -0.6 \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}}$ 

am äußeren Rand, d. i.  $z = r_a$ 

$$\frac{\varepsilon_{2}}{\alpha} = \frac{r_{a}^{3} p_{a}}{r_{a}^{2} - r_{i}^{2}} \left\{ \left(1 - \frac{1}{m}\right) + \frac{r_{i}^{3}}{r_{a}^{2}} \left(1 + \frac{1}{m}\right) \right\} \\ = \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}} \left\{ 0, 7 + 1, 3 \frac{r_{i}^{2}}{r_{a}^{2}} \right\} \\ \frac{\varepsilon_{3}}{\alpha} = \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}} \left\{ \left(1 - \frac{1}{m}\right) - \frac{r_{i}^{2}}{r_{a}^{2}} \left(1 + \frac{1}{m}\right) \right\} \\ = \frac{r_{a}^{2} p_{a}}{r_{a}^{2} - r_{i}^{2}} \left\{ 0, 7 - 1, 3 \frac{r_{i}^{2}}{r_{a}^{2}} \right\}$$

Wird  $r_i = 0$ , d. h. ist die Scheibe voll ausgeführt, so muß, wie S. 654 erläutert, der Wert  $r_i^3: z^3 = 0$  werden, womit sich ergibt

$$k_{s} = \frac{\varepsilon_{2}}{\alpha} = p_{a} \left\{ 1 - \frac{1}{m} \right\} = 0,7 p_{a} \quad \text{und} \quad \frac{\varepsilon_{3}}{\alpha} = \frac{\varepsilon_{3}}{\alpha} = 0,7 p_{a}. \quad 15)$$

Da nach Gleichung 13 mit  $r_i = 0$  und  $r_i^2 : z^2 = 0$ 

$$\frac{\epsilon_{9}}{\alpha} = \frac{\epsilon_{3}}{\alpha},$$

ferner aber

$$\frac{\varepsilon_2}{\alpha} = \sigma_y - \frac{\sigma_z}{m} \quad \text{und} \quad \frac{\varepsilon_3}{\alpha} = \frac{\varepsilon_3}{\alpha} = \sigma_z - \frac{\sigma_y}{m},$$
hastizität. 8. Aufi.

C. Bach, Elastizität. 8. Aufl.

so wird

Die Beanspruchung und die Spannung ist also bei der Scheibe ohne Bohrung, sofern an deren äußerem Umfang Zugkräfte  $p_a$  angreifen, unabhängig von der Lage des betrachteten Punktes und an allen Stellen gleich groß.

## b) Beanspruchung durch Pressungen in der Nabe, $p_i$ .

$$k_{s} = \frac{\epsilon_{s}}{\alpha} = \frac{r_{i}^{2} p_{i}}{r_{a}^{2} - r_{i}^{2}} \left\{ \left(1 - \frac{1}{m}\right) + \frac{r_{a}^{2}}{z^{2}} \left(1 + \frac{1}{m}\right) \right\} \\ = \frac{r_{i}^{2}}{r_{a}^{2} - r_{i}^{2}} p_{i} \left\{ 0, 7 + 1, 3 \frac{r_{a}^{2}}{z^{3}} \right\} \\ \frac{\epsilon_{s}}{\alpha} = \frac{r_{i}^{2} p_{i}}{r_{a}^{2} - r_{i}^{2}} \left\{ \left(1 - \frac{1}{m}\right) - \frac{r_{a}^{2}}{z^{3}} \left(1 + \frac{1}{m}\right) \right\} \\ = \frac{r_{i}^{3}}{r_{a}^{2} - r_{i}^{2}} p_{i} \left\{ 0, 7 - 1, 3 \frac{r_{a}^{2}}{z^{3}} \right\} \right\}.$$
 (16)

Die maßgebende Beanspruchung tritt somit am inneren Rande  $(z = r_i)$  ein.

## 4. Krans und Nabe.

a) Die Scheibe gleicher Festigkeit ohne Bohrung.

Wie schon in Fußbemerkung 1, S. 650, erwähnt, muß am Rande der Scheibe gleicher Festigkeit eine Spannung angreifen, die gleich  $\sigma$ ist. Sind die wirkenden Kräfte geringer, so erfährt die Scheibe eine



Entlastung, sind sie größer, so tritt eine Erhöhung der Beanspruchung ein. Im folgenden ist angenommen, daß die Spannung  $\sigma$ am Umfang  $2\pi r_0$  tätig sein soll.

Denkt man sich zunächst den Kranz ohne Zusammenhang mit der Scheibe frei umlaufen, so erfährt er folgende Beanspruchungen (vgl. Fig. 4 hinsichtlich der Ab-

messungen; h sei gegenüber  $r_0$  so klein, daß eine Unterscheidung zwischen innerem und äußerem Halbmesser unterbleiben kann):

1. Zug infolge der Fliehkraft etwa vorhandener Schaufeln, die als eine gleichförmig über den Umfang verteilte Zugkraft  $p_{a}$ kg/qcm betrachtet werde,

$$k'_{a} = \frac{2r_{0}p_{a}b}{2bh} = \frac{p_{a}r_{0}}{h}.$$

2. Zug infolge der Fliehkraft der eigenen Masse (Gleichung 1, § 65)

$$k_s'' = \frac{\gamma v^2}{g} = \frac{\gamma r_0^2 \omega^2}{g}$$

3. Druck infolge der Spannung  $\sigma$  über die Breite s

$$k_{s}^{\prime\prime\prime} = -\frac{2r_{0}\sigma s}{2bh} = -\frac{\sigma sr_{0}}{bh}.$$

Somit gesamte Beanspruchung im Kranz

Hieraus ergibt sich eine halbe Aufweitung des Kranzes um

$$\exists r_0 = \alpha k_z r_0 = \alpha r_0 \left( \frac{p_a r_0}{h} + \frac{\gamma v^3}{g} - \frac{\sigma s r_0}{b h} \right) \quad . \quad . \quad . \quad 18)$$

Die Scheibe erfährt an allen Stellen, also auch am Umfang eine Beanspruchung (Fußbemerkung 2, S. 650)

$$k_{s} = \frac{\varepsilon}{\alpha} = \sigma \left( 1 - \frac{1}{m} \right),$$

somit eine Vergrößerung des äußeren Halbmessers  $r_0$  um

$$\Delta r_0 = r_0 \varepsilon = \alpha \sigma \left( 1 - \frac{1}{m} \right) r_0 \ldots \ldots \ldots 19$$

Da nun der äußere Scheibenrand mit dem inneren Rand des Kranzes zusammenhängt, so müssen die rechten Seiten der Gleichungen 18 und 19 einander gleich sein. Man erhält

$$\alpha \sigma r_0 \left( 1 - \frac{1}{m} \right) = \alpha r_0 \left( \frac{p_a r_0}{h} + \frac{\gamma v^2}{g} - \frac{\sigma s r_0}{b h} \right)$$

oder mit  $m = \frac{10}{3}$ :

oder

$$0.7 \sigma = k_{x} = \frac{p_{a}r_{0}}{h} + \frac{\gamma v^{2}}{g} - \frac{\sigma sr_{0}}{bh}$$

$$h = r_{0} \frac{\frac{\sigma s}{b} - p_{a}}{\frac{\gamma v^{2}}{g} - k_{z}}$$

¹) Aus Gleichung 20 folgt, da *h* stets ein positiver Wert sein muß, die Bedingung  $\frac{\gamma v^3}{g} > k_z$  und gleichzeitig  $\frac{\sigma s}{b} > p_a$ . Wird *k* kleiner ausgeführt, als Gleichung 20 angibt, so fällt dann  $\sigma$  bzw.  $k_z$  kleiner aus als angenommen. 42^a

In Gleichung 20 sind  $k_s$ ,  $p_a$ ,  $r_0$ ,  $\gamma$ , v, g und  $\sigma$  als gegeben anzusehen. Von den Unbekannten b und h kann also eine angenommen und sodann die andere berechnet werden. Ist z. B. eine bestimmte Breite b erforderlich, so findet sich h.

Bei der Rechnung ist stillschweigend angenommen worden, daß der Kranz nicht viel breiter ist als die Scheibe am äußeren Rand, sowie daß der Übergang zwischen Kranz und Scheibe mit sanfter Abrundung erfolgt. Andernfalls treten, da der Kranz von der Scheibe zurückgehalten wird, zusätzliche Beanspruchungen ein, die beträchtliche Größe besitzen können.

Der hier eingeschlagene Weg läßt sich auch auf Scheiben gleicher Festigkeit mit Bohrung anwenden, wenn die Nabe verhältnismäßig schwach ausfällt. Diese Rechnung stellt dann eine Vereinfachung der unter c) gegebenen dar.

## b) Die Scheibe von gleicher Dicke mit Bohrung und verhältnismäßig schwacher Nabe.

Von der Nabe wird für die folgende Buchstabenrechnung der Übersichtlichkeit halber angenommen, daß sie im Verhältnis zur Bohrung geringe Wandstärke besitze, daß sie wenig breiter sei als



die Scheibe und an die letztere mit sanfter Ausrundung anschließe. Aus demselben Grunde sind die Halbmesser für inneren und äußeren Nabenrand sowie inneren und äußeren Rand des Kranzes nicht unter-

schieden, sondern nur die mittleren Halbmesser  $k_0$  und  $r_0$  (vgl. Fig. 5) eingeführt. Bei Durchrechnung eines bestimmten Beispiels läßt sich erforderlichenfalls der bestehende Unterschied leicht berücksichtigen.

Wir betrachten Kranz, Nabe und Scheibe getrennt.

Der Kranz erfährt Beanspruchung und Aufweitung in gleicher Weise, wie vorstehend unter a) ermittelt. Die von der Scheibe auf ihn geäußerte Kraft werde durch die Spannung  $\sigma_a$  über die Breite s hervorgerufen. Somit beträgt seine Beanspruchung

und die halbe Aufweitung

$$\Delta r_0 = \alpha r_0 k_{s,k} = \alpha r_0 \left( \frac{p_a r_0}{h} + \frac{\gamma v^2}{g} - \frac{\sigma_a s r_0}{b h} \right) \quad . \quad . \quad 22)$$

Hierin sind  $\sigma_a$ , b und h unbekannt. Über die Größe von  $k_{s,k}$  ist unter Berücksichtigung des Materials Bestimmung zu treffen.

Die Nabe erfahre von der Welle, auf die sie aufgezogen ist, eine Pressung  $p_i$  (z. B. 50 kg/qcm), die in gleicher Weise tätig ist wie die Zugspannung  $p_a$  am Kranze. Ebenso tritt die von der Scheibe geäußerte Spannung  $\sigma_i$  (über die Breite s) an die Stelle von  $\sigma_a$ , welches beim Kranze zu berücksichtigen war; von  $\sigma_i$  sei jedoch hier angenommen, daß es die Nabe zusammendrücke¹). Somit ergibt sich die Beanspruchung der Nabe zu

Hierin sind  $\sigma_i$ , B und H unbekannt.

Die Scheibe erfährt Beanspruchungen, die durch die Gleichungen 10 (Wert von  $\varepsilon_g: \alpha$ , hervorgebracht durch die Fliehkraft der eigenen Masse), Gleichung 13 (Wert von  $\varepsilon_g: \alpha$ , herrührend von der Zugspannung  $\sigma_a$  am Halbmesser  $z = r_0$ ) sowie Gleichung 16 (Wert von  $\varepsilon_g: \alpha$ , hervorgerufen durch die Druckspannung  $\sigma_i$  am inneren Halbmesser  $z = R_0$ ) bestimmt sind. Aus der Dehnung  $\varepsilon_g$  ergibt sich nach Multiplikation mit  $\alpha r_0$  die halbe Aufweitung am äußeren Scheibenrand  $\Delta r_0$ .

Man erhält hiernach für den äußeren Halbmesser  $(z = r_0)$ 

$$\Delta r_{0} = \alpha r_{0} \left( \frac{1}{4} \frac{\gamma}{g} \omega^{2} \left\{ 3, 3 R_{0}^{2} + 0, 7 r_{0}^{2} \right\} \right.$$

$$+ \frac{\sigma_{a}}{r_{0}^{2} - R_{0}^{2}} \left\{ 0, 7 r_{0}^{2} + 1, 3 R_{0}^{2} \right\} + \frac{R_{0}^{2}}{r_{0}^{2} - R_{0}^{2}} \sigma_{i} \cdot 2 \right) \quad . \quad . \quad 24)$$

und für den inneren Halbmesser  $(z = R_0)$ 

$$k_{z} = \frac{\epsilon_{9}}{\alpha} = \frac{1}{4} \frac{\gamma}{g} \omega^{3} \left\{ 3, 3r_{0}^{3} + 0, 7R_{0}^{2} \right\}$$
$$+ \frac{\sigma_{a}r_{0}^{3}}{r_{0}^{3} - R_{0}^{2}} \cdot 2 + \frac{\sigma_{i}}{r_{0}^{3} - R_{0}^{2}} \left\{ 0, 7R_{0}^{2} + 1, 3r_{0}^{2} \right\}. \quad . \quad . \quad 25)$$

In Gleichung 24 und 25 treten neue Unbekannte nicht auf. Da für  $k_s$  in Gleichung 25 der für zulässig erachtete Wert der Materialbeanspruchung einzuführen ist, so kann aus ihr  $\sigma_a$  oder  $\sigma_i$ berechnet werden.

Wie bei der Rechnung unter a), S. 658, erhält man ferner eine Bedingungsgleichung aus dem Umstand, daß die halbe Aufweitung  $\Delta r_0$ aus Gleichung 22 und 24 gleich sein muß.

¹) Ist die Nabe statkwandig im Verhältnis zu ihrer Beanspruchung, so erfährt sie allein eine geringere Ausdehnung, als sie die Scheibe ohne Nabe erleiden würde. Infolgedessen unterstützt dann die Nabe die Scheibe und vermag die Spannungserhöhung, die durch die Bohrung hervorgebracht wurde vgl. S. 654 u. f.), ganz oder teilweise auszugleichen (vgl. auch c).

Zur Ermittelung der 6 Unbekannten

b, h, B, H,  $\sigma_a$  und  $\sigma_i$ 

stehen zur Verfügung 4 Gleichungen: 21, 23, 25 und die Beziehung, die durch Gleichsetzen der rechten Seiten von Gleichung 22 und 24 erhalten wird. Zwei der Unbekannten können infolgedessen auf Grund gebotener Erwägungen angenommen werden. Streng genommen gehört zu den unbestimmten Größen auch die Stärke s der Scheibe.

## c) Die Scheibe von gleicher Festigkeit mit kräftiger Nabe und Bohrung.

Wird die Nabe so kräftig ausgeführt, daß sie, wie in der Fußbemerkung S. 661 angedeutet, den durch die Bohrung aufgehobenen Materialzusammenhang in der Scheibenmitte ersetzt, so entsteht ein



Körper, der mit Annäherung als Scheibe gleicher Festigkeit betrachtet werden kann. Diese Ausführung eignet sich für rascher laufende Räder, bei denen sich bei Ausführung mit gleichbleibender Dicke nach Gleichung 11 zu große Beanspruchungen ergeben würden¹).

Im Gegensatz zu der Annahme unter b wirke hier die Scheibe ziehend auf die Nabe.

Unter Bezugnahme auf Fig. 6 ergibt sich an der Nabe die halbe Aufweitung außen  $(z = r_i)$  nach Gleichung 11, 16 und 14 unter Beachtung, daß die Spannung  $\sigma$  nur auf die Breite *s* der Scheibe, nicht über die ganze Dicke *B* der Nabe angreift, so daß  $\sigma$  zu ersetzen ist durch  $\frac{\sigma s}{B}$ , zu

$$\Delta r_{i} = \alpha r_{i} \left[ \frac{1}{4} \frac{\gamma}{g} \omega^{3} \left\{ 3, 3 R_{i}^{2} + 0, 7 r_{i}^{2} \right\} + 2 \frac{p_{i} R_{i}^{3}}{r_{i}^{3} - R_{i}^{2}} + \frac{s}{B} \frac{\sigma}{r_{i}^{3} - R_{i}^{3}} \left\{ 1, 3 R_{i}^{2} + 0, 7 r_{i}^{2} \right\} \right] \dots 26)$$

Die halbe Aufweitung der Scheibe gleicher Festigkeit beträgt für  $z = r_i$ 

¹) Über den Bruch eines solchen Rades berichtet F. v. Plato in der Zeitschrift des Vereines deutscher Ingenieure 1914, S. 817 u. f.

Somit ergibt sich zur Bestimmung der Unbekannten B die Gleichung

$$k_{z} = \left[\frac{1}{4} \frac{\gamma}{g} \omega^{2} \left\{3, 3 R_{i}^{2} + 0, 7 r_{i}^{2}\right\} + 2 \frac{p_{i} R_{i}^{2}}{r_{i}^{2} - R_{i}^{2}} + \frac{s}{B} \frac{\sigma}{r_{i}^{2} - R_{i}^{2}} \left\{1, 3 R_{i}^{2} + 0, 7 r_{i}^{2}\right\}\right]$$

oder

$$B = \frac{\frac{s \sigma}{r_i^2 - R_i^2} \left\{ 1, 3 R_i^2 + 0, 7 r_i^2 \right\}}{k_z - \frac{1}{4} \frac{\gamma}{g} \omega^2 \left\{ 3, 3 R_i^2 + 0, 7 r_i^2 \right\} - 2 \frac{p_i R_i^2}{r_i^2 - R_i^2}} \right\} \dots 28)$$

Schließlich beträgt die maßgebende Beanspruchung am inneren Rand der Nabe  $(z = R_i)$ 

$$\frac{\epsilon_2}{\alpha} = \frac{1}{4} \frac{\gamma}{g} \omega^2 \left\{ 3, 3r_i^2 + 0, 7R_i^2 \right\}$$
  
+ 
$$\frac{p_i}{r_i^2 - R_i^2} \left\{ 0, 7R_i^2 + 1, 3r_i^2 \right\} + 2 \frac{\sigma s \cdot r_i^2}{B(r_i^2 - R_i^2)} \cdot \dots 29 )$$

## Neunter Abschnitt.

# Allgemeine Beziehungen über Spannungen und Formänderungen im Innern eines elastischen Körpers.

# § 67. Spannungen in einem beliebigen Punkte eines festen Körpers.

## 1. Begriff der Normal- und Tangential- oder Schubspannung.

Wir legen durch den in Fig. 1 dargestellten Körper, der von äußeren Kräften SS ergriffen ist, die sich an ihm das Gleichgewicht halten, eine Schnittfläche F. Es sei nun P ein Punkt dieser Fläche, PN die Normale im Punkte P und p die Spannung im Punkte P der Fläche F, d. h. die auf die Flächeneinheit bezogene Kraft, welche der an die Fläche F angrenzende und im Sinne der Normalen PN gelegene Körperteil im Punkte P, d. i. in dem Flächenelement, das den Punkt P enthält, auf den jenseits der Fläche F gelegenen ausübt.

Im allgemeinen wird die Richtung der Spannung p von der Richtung der Normalen PN abweichen. Der Winkel zwischen pund PN, also  $\not\lt pPN$ , sei mit  $\varphi$  bezeichnet.

Die Zerlegung von p normal und tangential zur Schnittfläche liefert die beiden Komponenten

 $\sigma = p \cos \varphi$  und  $\tau = p \sin \varphi$ .

Die Komponente  $\sigma$ , in die Richtung der Normalen fallend, heißt die Normalspannung im Punkte P der Fläche F. Sie ist positiv oder negativ, je nachdem  $\varphi \leq 90^{\circ}$ . Im ersteren Falle nennt man sie eine Zugspannung oder Spannung im engeren Sinne des Wortes, im letzteren eine Pressung, einem gegenseitigen Zug bzw. Druck der durch F getrennten Körperteile entsprechend.

Die zweite Komponente  $\tau$  fällt in die Tangentialebene des Punktes P der Fläche F und wird deshalb als Tangential- oder Schubspannung im Punkte P der Fläche F bezeichnet.
§ 67. Spannungen in einem beliebigen Punkte eines festen Körpers. 665

Im allgemeinen wird die Spannung von Flächenelement zu Flächenelement sich ändern, also ein bestimmter Wert von p (bzw.  $\sigma$  und  $\tau$ ) jeweils nur für das in Betracht gezogene Flächenelement dF gelten.

#### 2. Spannungen in drei zueinander senkrechten Ebenen.

Wir stellen uns den betrachteten Körper auf ein rechtwinkliges Koordinatensystem mit den Achsen OX, OY und OZ bezogen vor, Fig. 2. Der beliebige Punkt P des Körpers besitze die Koordinaten x, y, z. Durch P legen wir parallel zu den 3 Koordinatenebenen Schnitte, von denen die unendlich kleinen Flächenele-









1	$\mathbf{mit}$	der	Größe	dy dz,
2	**	"	"	dz dx,
3	"	"	n	dx dy

ins Auge gefaßt werden sollen.

Die Spannungen in diesen Flächenelementen seien

$$p_x \quad p_y \quad p_s$$

Unter Bezugnahme auf die Figuren 3-5 heißt das folgendes.

 $p_x$  ist die auf die Flächeneinheit bezogene Kraft, mit der die die seits des Flächenelementes dy dz gelegenen Körperteile in diesem Element auf die jenseits gelegenen einwirken. Wie ersichtlich, deutet das Fußzeichen x von  $p_x$  an, daß das Flächenelement, in dem  $p_x$  tätig ist, senkrecht zur Richtung der x-Achse steht.

 $p_y$  ist die auf die Flächeneinheit bezogene Kraft, mit der die diesseits des Flächenelementes dz dx gelegenen Körperteile in diesem Element auf die jenseits gelegenen einwirken. Das Fußzeichen yvon  $p_y$  spricht aus, daß das Flächenelement, in dem  $p_y$  wirksam ist, senkrecht zur Richtung der y-Achse steht.

Für  $p_s$  gilt sinngemäß dasselbe wie für  $p_x$  und  $p_y$ .

Die Spannungen  $p_x$ ,  $p_y$  und  $p_z$  besitzen im allgemeinen eine beliebige Neigung gegen die zugehörigen Flächenelemente; sie liefern demgemäß bei Zerlegung Normalspannungen und Schubspannungen, wie Fig. 6 bis 8 erkennen lassen.



 $p_x$  (Fig. 6) ergibt die Normalspannung  $\sigma_x$  und eine Schubspannung, die wir nach den Richtungen der y und z nochmals zerlegen. Die erstere dieser Schubspannungen sei mit  $\tau_{xy}$ , die letztere mit  $\tau_{xz}$ 



bezeichnet. Das Fußzeichen x bei diesen 3 Komponenten deutet an, daß es sich um Spannungen in demjenigen Flächenelement handelt, das senkrecht zur x-Achse steht;  $\sigma_x$  als Normalspannung läuft dann

parallel mit der x-Achse, während  $\tau_{xy}$  und  $\tau_{xz}$  senkrecht dazu gerichtet sind. Das Fußzeichen y in  $\tau_{xy}$  spricht aus, daß  $\tau_{xy}$  parallel zur y-Achse gerichtet ist, das Fußzeichen z in  $\tau_{xx}$ , daß  $\tau_{xz}$  die Richtung der z-Achse besitzt. Hiernach bestimmt bei den beiden Schubspannungen das erste Fußzeichen das Flächenelement im Punkte P,



§ 67. Spannungen in einem beliebigen Punkte eines festen Körpers. 667

für welches die Spannungen gelten, das zweite die Richtung, welche die betreffende Spannung besitzt.

In gleicher Weise ergibt

 $\begin{array}{c} p_y \ (\text{Fig. 7}) \ \text{die} \ \text{Komponenten} \ \sigma_y \ \tau_{yx} \ \tau_{yx}, \\ p_s \ (\text{Fig. 8}) \ n \ n \ \sigma_z \ \tau_{sx} \ \tau_{sy}. \end{array}$ 

Demzufolge erhalten wir

im	Fläche	enelement	dy dz	$p_x$	mit	den	Komponenten	$\sigma_x \tau_{xy} \tau_z$	r: '
"		<b>n</b>	dz dx	$p_y$	"	*	**	$\tau_{yx} \sigma_y \tau_y$	yz '
"	_	<b>7</b>	dx dy	$p_z$	<b>,</b> •	*	n	$\tau_{xx}$ $\tau_{xy}$ $\sigma_{y}$	z
nac	h den	Richtung	en der	•				x-, y-, z	Achse.

# 3. Gleichgewicht der Kräfte an einem unendlich kleinen Parallelepiped.

Mit P als Eckpunkt denken wir uns in dem betrachteten Körper ein unendlich kleines Parallelepiped, dessen Kanten dx, dy, dz sind,



Fig. 9. Auf dasselbe werden die jenseits der Ebenen BPC, CPA und APB gelegenen Körperteile einwirken, und zwar

1. im Flächenelement dy dz mit den Spannungen  $-\sigma_x - \tau_{xy} - \tau_{xz}$ , 2. " " dz dx " " "  $-\tau_{yz} - \sigma_y - \tau_{yz}$ , 3. " " dx dy " " " "  $-\tau_{zx} - \tau_{zy} - \sigma_y$ " ( 4. h. mit den Kräften

1. 
$$-\sigma_x dy dz - \tau_{xy} dy dz - \tau_{xt} dy dz,$$
  
2. 
$$-\tau_{yx} dz dx - \sigma_y dz dx - \tau_{yt} dz dx,$$
  
3. 
$$-\tau_{xx} dx dy - \tau_{yt} dx dy - \sigma_t dx dy.$$

Da die Flächenelemente unendlich klein sind, also die soeben ermittelten Kräfte als gleichmäßig über die Flächenelemente verteilt angenommen werden dürfen, so haben wir uns die Kräfte selbst als

in den Schwerpunkten der 3 Flächen BPC, CPA und APB angreifend vorzustellen. In Fig. 10 sind diese 9 Kräfte an den bezeichneten Punkten 1, 2 und 3 eingetragen. In den drei übrigen Begrenzungsflächen des Parallelepipeds, die um dx, dy, dz von den bereits behandelten abstehen, und deren Schwerpunkte in Fig. 10 mit I, II und III bezeichnet sind, wirken ebenfalls Kräfte, die von den diesseits der Flächen gelegenen Körperteilen ausgehen und deshalb in entgegengesetzter Richtung tätig anzunehmen sind. Hin-



sichtlich der absoluten Größe dieser Kräfte ist zu beachten, daß sich die Kräfte in I von denjenigen in 1 unterscheiden müssen um die Änderungen, welche die letzteren beim Fortschreiten lediglich um dx in dem Körper erfahren, d. h. die absoluten Größen der Kräfte, die oben unter 1 angegeben wurden, werden in I betragen

$$\sigma_{x} dy dz + \frac{\partial (\sigma_{x} dy dz)}{\partial x} \cdot dx = \left(\sigma_{x} + \frac{\partial \sigma_{x}}{\partial x} dx\right) dy dz$$
  
$$\tau_{xy} dy dz + \frac{\partial (\tau_{xy} dy dz)}{\partial x} \cdot dx = \left(\tau_{xy} + \frac{\partial \tau_{xy}}{\partial x} dx\right) dy dz$$
  
$$\tau_{xz} dy dz + \frac{\partial (\tau_{xz} dy dz)}{\partial x} \cdot dx = \left(\tau_{xz} + \frac{\partial \tau_{xz}}{\partial x} dx\right) dy dz.$$

§ 67. Spannungen in einem beliebigen Punkte eines festen Körpers. 669

In ganz gleicher Weise ergeben sich die Kräfte in II, da es sich hierbei nur um ein Fortschreiten um dy handelt, und in III gemäß dem Fortschreiten um dz.

In Fig. 10 sind diese 9 Kräfte. angreifend in den Punkten I, II 'und III, gleichfalls eingetragen.

Außer den 18 Flächenkräften, zu denen uns die Betrachtung geführt hat, sind noch Massenkräfte zu berücksichtigen: die Schwerkraft und bei bewegten Körpern der Trägheitswiderstand, z. B. bei gleichförmig und rasch umlaufenden Zylindern oder Ringen die Fliehkraft. Die Komponenten dieser Massenkräfte nach den 3 Achsrichtungen seien für die Volumeinheit X, Y, Z, also die Seitenkräfte für das Volumen dx dy dz

$$X dx dy dz$$
  $Y dx dy dz$   $Z dx dy dz$ .

Dieselben sind als im Schwerpunkt des Parallelepipeds angreifend zu denken.

Diese 21 Kräfte müssen sich im Gleichgewicht befinden, also die bekannten 6 Gleichgewichtsbedingungen: je Summe der Kräfte in den 3 Achsrichtungen gleich Null, je Summe der Momente in bezug auf die 3 Achsen oder zu ihnen parallele Drehachsen gleich Null, erfüllen.

Die drei ersten Bedingungen führen nach Division durch dx dy dz zu

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \tau_{zx}}{\partial z} + X = 0$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_{zy}}{\partial z} + Y = 0$$

$$\frac{\partial \tau_{zz}}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + \frac{\partial \sigma_z}{\partial z} + Z = 0$$

Bei Aufstellung der Momentengleichung in bezug auf die zur x-Achse parallele Schwerpunktachse des Parallelepipeds erkennt man, daß Momente nicht liefern:

a) sämtliche in den Punkten 1 und I angreifenden Kräfte,

b) die in den Punkten 2 und II angreifenden Kräfte:

$$-\tau_{yx}dzdx - \sigma_{y}dzdx \quad \left(\tau_{yx} + \frac{\partial \tau_{yz}}{\partial y}dy\right)dzdx \quad \left(\sigma_{y} + \frac{\partial \sigma_{y}}{\partial y}dy\right)dzdx,$$

c) die in den Punkten 3 und III angreifenden Kräfte:

$$-\tau_{sx}dzdy - \sigma_sdxdy \qquad \left(\tau_{sx} + \frac{\partial\tau_{sx}}{\partial z}dz\right)dxdy \qquad \left(\sigma_s + \frac{\partial\sigma_s}{\partial z}dz\right)dxdy,$$

#### d) die Massenkräfte.

Es verbleiben somit nur die in Fig. 11 (Schnitt durch den Schwerpunkt senkrecht zur x-Achse) eingetragenen Kräfte, die als Momentengleichung ergeben



Fig. 11.

woraus bei Vernachlässigung der unendlich kleinen Größen vierter Ordnung gegenüber denjenigen dritter Ordnung folgt

$$\tau_{yz} dx dy dz - \tau_{zy} dx dy dz = 0,$$
  
$$\tau_{yz} = \tau_{zy}.$$

In gleicher Weise liefert die Aufstellung der Momentengleichungen in bezug auf die zur y- und zur z-Achse parallelen Schwerpunktsachsen die Beziehungen

$$\tau_{xx} = \tau_{xx}, \qquad \tau_{xy} = \tau_{yx}.$$

Wir erkennen, daß je die beiden zu einer Kante des Parallelepipeds senkrechten Schubspannungen (vgl. Fig. 12 bis 14) einander gleich sind, daß sie also immer paarweise auftreten und in Hinsicht auf die betreffende Kante übereinstimmend (nach derselben hin oder von ihr weg) gerichtet sind. § 67. Spannungen in einem beliebigen Punkte eines festen Körpers. 671

Wir setzen



Durch Einführung der Gleichungen 2 in die Gleichungen 1 wirdt

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_s}{\partial y} + \frac{\partial \tau_y}{\partial z} + X = 0$$

$$\frac{\partial \tau_z}{\partial x} + \frac{\partial \sigma_y}{\partial y} + \frac{\partial \tau_x}{\partial z} + Y = 0$$

$$\frac{\partial \tau_y}{\partial x} + \frac{\partial \tau_x}{\partial y} + \frac{\partial \sigma_z}{\partial z} + Z = 0$$

#### 4. Gleichgewicht der Kräfte an einem unendlich kleinen Tetraeder.

Durch die Punkte ABC des Parallelepipeds (Fig. 9) legen wir eine Ebene und bilden so einen Tetraeder PABC, Fig. 15, dessen Volumen mit dV bezeichnet werde. Die Größe der Fläche ABC sei F. die Stellungswinkel derselben seien mit  $\alpha$ ,  $\beta$  und  $\gamma$  bezeichnet, d. h.

 $\alpha$  ist der Winkel zwischen der Ebene ABC und der Ebene BPC, CPA. ß " " " " APB, γ " " ** " " ** ** so daß

 $CPA = F \cos \beta$ ,  $BPC = F \cos \alpha$ .  $APB = F\cos \gamma$ .

Auf diese 3 Flächenelemente wirken die jenseits derselben gelegenen Körperteile mit den in der Fig. 15 eingetragenen Spannungen ein. Die Spannung, welche die diesseits des Flächenelementes ABC gelegenen Körperteile auf das Tetraeder ausüben, sei p, ihre Richtungswinkel gegenüber den Koordinatenachsen seien  $\lambda$ ,  $\mu$ ,  $\nu$ . Dann ergeben sich in Richtung der letzteren die Gleichgewichtsbedingungen

$$-\sigma_x \cdot F \cos \alpha - \tau_z F \cos \beta - \tau_y F \cos \gamma + p F \cos \lambda + XdV = 0$$
  
-  $\tau_z \cdot F \cos \alpha - \sigma_y F \cos \beta - \tau_x F \cos \gamma + p F \cos \mu + YdV = 0$   
-  $\tau_y \cdot F \cos \alpha - \tau_x F \cos \beta - \sigma_z F \cos \gamma + p F \cos \nu + ZdV = 0$ 

Die 4 ersten Glieder in jeder dieser Gleichungen sind unendlich klein zweiter Ordnung, das letzte Glied wegen dV unendlich klein dritter Ordnung, kann deshalb gegenüber den 4 ersten Gliedern vernachlässigt werden, somit

$$p \cos \lambda = \sigma_x \cos \alpha + \tau_z \cos \beta + \tau_y \cos \gamma$$

$$p \cos \mu = \tau_z \cos \alpha + \sigma_y \cos \beta + \tau_x \cos \gamma$$

$$p \cos \nu = \tau_y \cos \alpha + \tau_x \cos \beta + \sigma_z \cos \gamma$$

$$\dots \dots 4)$$



Fig. 15.

Außerdem besteht die bekannte Beziehung  $\cos^2 \lambda + \cos^2 \mu + \cos^2 \nu = 1.$ 

Wir haben hiernach 4 Gleichungen und sind damit in der Lage, bei gegebenen Werten von  $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_s$ ,  $\tau_x$ ,  $\tau_y$ ,  $\tau_s$  für das beliebige durch  $\alpha$ ,  $\beta$ ,  $\gamma$  bestimmte Flächenelement die Spannung p und ihre Richtungswinkel  $\lambda$ ,  $\mu$ ,  $\nu$  zu ermitteln.

An diesen Verhältnissen ändert sich nichts, wenn wir das Flächenelement immer näher an *P* heranrücken und schließlich mit *P* zusammenfallen lassen. Dann aber wird *p* die Spannung im Punkte *P* einer beliebig durch ihn hindurchgehenden Fläche, deren Tangentialebene im Punkte *P* die Stellungswinkel  $\alpha$ ,  $\beta$ ,  $\gamma$  besitzt, oder deren Normale im Punkte *P* die Richtungswinkel  $\alpha$ ,  $\beta$ ,  $\gamma$  aufweist, d. h. die Spannungskomponenten  $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_x$ ,  $\tau_x$ ,  $\tau_y$ ,  $\tau_z$  bestimmen die Größe und Richtung der Spannung *p*, die im Punkte *P* einer beliebig durch ihn hindurchgehenden Fläche herrscht.

An die Stelle der Spannungskomponenten  $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_s$ ,  $\tau_x$ ,  $\tau_y$ ,  $\tau_s$ können auch deren Resultanten  $p_x$ ,  $p_y$ ,  $p_s$  treten (vgl. oben Ziff. 2).

§ 67. Spannungen in einem beliebigen Punkte eines festen Körpers. 673

#### 5. Geometrische Darstellung der Spannungen.

Denken wir uns die durch den Punkt-P des Körpers gehende Fläche F der vorigen Betrachtung verschiedene Lagen einnehmend, also ihre Stellungswinkel  $\alpha$ ,  $\beta$ ,  $\gamma$  geändert, so wird sich auch die Spannung p im Punkte P dieser Fläche sowohl der Größe als auch der Richtung nach ändern. Um uns das Gesetz, nach dem diese Änderungen vor sich gehen, zu veranschaulichen, tragen wir auf jeder möglichen Spannungsrichtung vom Punkte P aus die Spannung  $p = \overline{PQ}$  auf und bestimmen nun die Gleichung der Fläche, die den geometrischen Ort der Endpunkte Q bildet.



P, Fig. 16, sei der Koordinatenanfang, die Richtungen der Spannungen  $p_x$ ,  $p_y$ .  $p_z$  seien die Koordinatenachsen für die gesuchte Flächengleichung. Da dieselben im allgemeinen schiefe Winkel miteinander einschließen, so wird das System ein schiefwinkliges sein. Die Koordinaten des Punktes Q seien x', y', z'. In Fig. 16 sind überdies die Richtungen PX, PY, PZ der Achsen des früher angenommenen rechtwinkligen Koordinatensystems strichpunktiert eingetragen. Es sei

x', y' und z' geben die Komponenten von  $p = \overline{PQ}$  nach den Richtungen  $p_x$ ,  $p_y$  und  $p_s$ . Die in der Richtung PX genommene C. Bach, Elestisität. 8. Auf. 43

Spannung p muß demnach gleich sein der Summe der nach PX genommenen Komponenten x', y', z', d. h.

$$p\cos\lambda = x'\cos\lambda_x + y'\cos\lambda_y + z'\cos\lambda_z$$

Unter Beachtung der Fig. 6 bis 8 findet sich .

$$\cos \lambda_x = \frac{\sigma_x}{p_x}, \qquad \cos \lambda_y = \frac{\tau_z}{p_y}, \qquad \cos \lambda_z = \frac{\tau_y}{p_z},$$

folglich

$$p\cos\lambda = \sigma_x \frac{x'}{p_x} + \tau_z \frac{y'}{p_y} + \tau_y \frac{z'}{p_z}$$

und mit Rücksicht auf die erste der Gleichungen 4

$$\sigma_x \cos \alpha + \tau_z \cos \beta + \tau_y \cos \gamma = \sigma_x \frac{x'}{p_x} + \tau_z \frac{y'}{p_y} + \tau_y \frac{z'}{p_z},$$

also

$$\cos \alpha = \frac{x'}{p_x}, \qquad \cos \beta = \frac{y'}{p_y}, \qquad \cos \gamma = \frac{z'}{p_z}$$

und wegen

 $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ 

d. i. die Mittelpunktsgleichung eines Ellipsoides in bezug auf die konjugierten Halbmesser  $p_x$ ,  $p_y$ ,  $p_z$  als Achsen. Wir kommen damit zu dem Satz:

Stellt man die Spannungen, die in einem Punkte P des betrachteten Körpers für alle durch diesen Punkt möglichen Schnittflächen auftreten, nach Größe und Richtung durch Gerade dar, die von P ausgehen, so liegen die Endpunkte dieser Fahrstrahlen auf einem Ellipsoid.

Die Spannungen in drei zueinander senkrechten Ebenen sind konjugierte Halbmesser des Ellipsoides.

Dieses Ellipsoid wird als Spannungsellipsoid bezeichnet¹).

#### 6. Hauptspannungen.

Weicht die Spannung p im Punkte P der Fläche F von der Normalen PN in diesem Punkte um den Winkel  $\varphi$  ab, so ist die Normalspannung  $\sigma = p \cos \varphi$ , und da zwischen  $\varphi$ , den Richtungs-

¹) Siehe die Mohrsche Darstellung der Spannungen und Formänderungen in der Zeitschrift des Vereines deutscher Ingenieure 1900, S. 1524 u. f.

§ 67. Spannungen in einem beliebigen Punkte eines festen Körpers. 675

winkeln  $\alpha$ ,  $\beta$ ,  $\gamma$  der Normalen und den Richtungswinkeln  $\lambda$ ,  $\mu$ ,  $\nu$  von p die bekannte Beziehung

$$\cos \varphi = \cos \alpha \cos \lambda + \cos \beta \cos \mu + \cos \gamma \cos \nu$$

besteht,

 $\sigma = p \cos \alpha \cos \lambda + p \cos \beta \cos \mu + p \cos \gamma \cos \nu,$ 

woraus unter Berücksichtigung der Gleichungen 4 folgt

$$\sigma = \sigma_z \cos^2 \alpha + \sigma_y \cos^2 \beta + \sigma_z \cos^2 \gamma + 2\tau_x \cos \beta \cos \gamma + 2\tau_y \cos \gamma \cos \alpha + 2\tau_z \cos \alpha \cos \beta \quad \dots \quad \dots$$

Zur geometrischen Deutung dieser Gleichung tragen wir auf der Normalen von P aus eine Strecke  $\overline{PN} = \frac{1}{\sqrt{\pm \sigma}}$  ab, also gleich dem reziproken Wert der Quadratwurzel aus dem Absolutwert von  $\sigma$ . Dann sind die Koordinaten des Endpunktes N

$$x = rac{\cos lpha}{\sqrt{\pm}\sigma}, \quad y = rac{\cos eta}{\sqrt{\pm}\sigma}, \quad z = rac{\cos \gamma}{\sqrt{\pm}\sigma},$$

Die Einführung der hieraus folgenden Werte von  $\cos \alpha$ ,  $\cos \beta$ und  $\cos \gamma$  in Gleichung 6 gibt

$$\pm 1 = \sigma_x x^2 + \sigma_y y^2 + \sigma_z z^2 + 2\tau_x y z + 2\tau_y z x + 2\tau_z xy, \quad . \quad . 7)$$

d. i. die Mittelpunktsgleichung einer Fläche zweiten Grades. Eine derartige Fläche hat drei zueinander senkrechte Hauptachsen, für die, wenn sie zu Koordinatenachsen gewählt werden, die Glieder mit den Produkten der Koordinaten aus der Flächengleichung verschwinden, für die alsdann

$$\tau_x = 0 \qquad \tau_y = 0 \qquad \tau_z = 0$$

ist. In den drei zueinander senkrechten Ebenen, für welche die Schubspannungen Null werden, müssen alsdann die Spannungen  $p_x$ ,  $p_y$ ,  $p_z$  Normalspannungen sein und senkrecht zueinander stehen. Wir erkennen, daß es in jedem Punkte P des Körpers drei zueinander senkrechte Ebenen gibt, in denen keine Schubspannungen, sondern nur Normalspannungen auftreten.

Diese drei Normalspannungen werden die Hauptspannungen im Punkte P genannt; sie seien mit

σ

$$\sigma_1 \sigma_2 \sigma_3$$

bezeichnet. Sie fallen mit den Hauptachsen des Spannungsellipsoids zusammen; denn sie wirken in drei sich rechtwinklig schneidenden Ebenen, stehen senkrecht zueinander und sind konjugierte Halbmesser des Spannungsellipsoides. Hieraus folgt weiter, daß die Hauptspannungen die größte und die kleinste Spannung im Punkte P unter sich enthalten.

6)

Sind für ein beliebig gewähltes rechtwinkliges Koordinatensystem die Spannungen  $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_z$ ,  $\tau_x$ ,  $\tau_y$ ,  $\tau_z$  gegeben, so lassen sich die drei Hauptspannungen  $\sigma_1$ ,  $\sigma_2$  und  $\sigma_3$  auf folgende Weise bestimmen.

Wenn p im Punkte P der Fläche F eine Hauptspannung ist, so muß sie gleichzeitig Normalspannung sein; demnach müssen ihre Richtungswinkel  $\lambda$ ,  $\mu$ ,  $\nu$  gleich den Richtungswinkeln  $\alpha$ ,  $\beta$ ,  $\gamma$  der Normalen im Punkte P der Fläche sein. Aus den Gleichungen 4 folgt dann mit

$$p = \sigma \qquad \lambda = \alpha \qquad \mu = \beta \qquad \nu = \gamma \sigma \cos \alpha = \sigma_x \cos \alpha + \tau_z \cos \beta + \tau_y \cos \gamma, \sigma \cos \beta = \tau_z \cos \alpha + \sigma_y \cos \beta + \tau_x \cos \gamma, \sigma \cos \gamma = \tau_y \cos \alpha + \tau_x \cos \beta + \sigma_z \cos \gamma.$$

Nach Beseitigung von  $\cos \alpha$ ,  $\cos \beta$  und  $\cos \gamma$  findet sich

$$\begin{split} \sigma^3 &- (\sigma_x + \sigma_y + \sigma_z) \, \sigma^2 + (\sigma_y \sigma_z + \sigma_z \, \sigma_x + \sigma_x \sigma_y - \tau_x^2 - \tau_y^2 \tau_z^2) \, \sigma \\ &- \sigma_x \, \sigma_y \, \sigma_z + \sigma_x \, \tau_x^2 + \sigma_y \, \tau_y^2 + \sigma_z \, \tau_z^2 - 2 \, \tau_x \, \tau_y \, \tau_z = 0 \quad . \quad . \quad 8) \end{split}$$

Die 3 Wurzeln dieser kubischen Gleichung geben die Hauptspannungen  $\sigma_1$ ,  $\sigma_2$  und  $\sigma_3$ .

Nach der Lehre von den kubischen Gleichungen ist

$$\sigma_x + \sigma_y + \sigma_z = \sigma_1 + \sigma_2 + \sigma_3,$$

d. h. die (algebraische) Summe der Normalspannungen im Punkte P ist nach je drei sich rechtwinklig schneidenden Richtungen gleich der Summe der Hauptspannungen, somit unveränderlich.

Fällt in Gleichung 8 das Absolutglied gleich Null aus, d. h. ist

$$-\sigma_{x}\sigma_{y}\sigma_{z} + \sigma_{x}\tau_{x}^{2} + \sigma_{y}\tau_{y}^{2} + \sigma_{z}\tau_{z}^{2} - 2\tau_{x}\tau_{y}\tau_{z} = 0, \quad . \quad . \quad 9)$$

so wird die eine Wurzel, etwa  $\sigma_3 = 0$ . Das Spannungsellipsoid schrumpft auf eine Ellipse, die Spannungsellipse, zusammen, deren Halbmesser  $\sigma_1$  und  $\sigma_2$  sind und als Wurzeln der Gleichung  $\sigma^2 - (\sigma_x + \sigma_y + \sigma_z)\sigma + \sigma_y\sigma_z + \sigma_z\sigma_x + \sigma_x\sigma_y - \tau_x^2 - \tau_y^2 - \tau_z^2 = 0$  10) erhalten werden.

# § 68. Formänderungen in einem beliebigen Punkte eines festen Körpers.

Daß im allgemeinen zweierlei Formänderungen zu unterscheiden sind: Längen- und Winkeländerungen, entsprechend Dehnungen und Schiebungen oder Gleitungen, ist bereits in § 28 dargelegt worden. § 68. Formänderungen in einem beliebigen Punkte eines festen Körpers. 677

# 1. Die Dehnungen nach einer beliebigen Richtung als Funktion von den Dehnungen dreier ursprünglich zueinander senkrechten Richtungen und von Änderungen der Winkel dreier ursprünglich sich rechtwinklig schneidenden Ebenen.

In Fig. 1 seien

P ein beliebiger Punkt des festen Körpers,

x, y, z dessen Koordinaten vor der Formänderung,

P' ein dem Punkte P unendlich nahe gelegener zweiter Punkt desselben Körpers,

x + dx, y + dy, z + dz dessen Koordinaten vor der Formänderung,  $\overline{PP'} = ds = \sqrt{dx^2 + dy^2 + dz^2}$  die Entfernung der beiden Punkte vor der Formänderung,

 $\alpha$ ,  $\beta$ ,  $\gamma$  die Richtungswinkel der Strecke ds.



Unter Einwirkung der den Körper belastenden Kräfte werden folgende Änderungen eintreten:

ds geht über in  $ds + \Delta ds$ , ändert sich also um  $\Delta ds = \epsilon ds$ , sofern  $\epsilon = \frac{\Delta ds}{ds}$  die verhältnismäßige (spezifische) Längenänderung oder kurz Dehnung im Punkte P nach der Richtung, in der die Strecke gemessen wurde, bedeutet: die Koordinaten r = r = r

ule Roordinaten	$\boldsymbol{x}$	y	$\boldsymbol{z}$
<b>g</b> ehen über in	$x+\xi$	$y + \eta$	$z+\zeta$ ,
ändern sich also um	ξ	η	ζ.

Die Änderungen, welche die Koordinaten des Punktes P' erfahren, seien mit  $\xi_1$ ,  $\eta_1$ ,  $\zeta_1$  bezeichnet. Für sie ergeben sich die Beziehungen:

$$\begin{aligned} \xi_1 &= \xi + \frac{\partial \xi}{\partial x} dx + \frac{\partial \xi}{\partial y} dy + \frac{\partial \xi}{\partial z} dz \\ \eta_1 &= \eta + \frac{\partial \eta}{\partial x} dx + \frac{\partial \eta}{\partial y} dy + \frac{\partial \eta}{\partial z} dz \\ \zeta_1 &= \zeta + \frac{\partial \zeta}{\partial x} dx + \frac{\partial \zeta}{\partial y} dy + \frac{\partial \zeta}{\partial z} dz \end{aligned} \right\} \quad \dots \dots \dots \dots \dots \dots \dots 1 )$$

Die Projektionen der Strecke  $\overline{PP'} = ds$  waren vor der Formänderung

$$dx \quad dy \quad dz.$$

Sie haben sich infolge der Formänderung geändert um

$$\xi_1 - \xi \quad \eta_1 - \eta \quad \zeta_1 - \zeta.$$

Die Strecke ds hat sich geändert um eds, so daß aus ihr

$$ds + \epsilon ds = (1 + \epsilon) ds$$

geworden ist. Folglich muß sein

$$(1+\varepsilon)^2\,ds^2 = (dx+\xi_1-\xi)^2 + (dy+\eta_1-\eta)^2 + (dz+\zeta_1-\zeta)^2.$$

Unter der Voraussetzung, daß  $\varepsilon$  ein sehr kleiner Bruch ist, darf  $\varepsilon^2 ds^2$  gegenüber  $2\varepsilon ds^2$  vernachlässigt werden. Da ferner  $\xi_1 - \xi$ ,  $\eta_1 - \eta$  und  $\zeta_1 - \zeta$  als die sehr kleinen Änderungen unendlich kleiner Größen anzuschen sind; so können die Quadrate dieser Änderungen gegenüber den anderen Summanden ebenfalls vernachlässigt werden. Daraus folgt

$$\varepsilon = \frac{\xi_1 - \xi}{ds} \frac{dx}{ds} + \frac{\eta_1 - \eta}{ds} \frac{dy}{ds} + \frac{\zeta_1 - \zeta}{ds} \frac{dz}{ds}.$$

Nach Einführung der Werte von  $\xi_1 - \xi$ ,  $\eta_1 - \eta$  und  $\zeta_1 - \zeta$ , die sich aus den Gleichungen 1 ergeben, und mit

$$\frac{dx}{ds} = \cos \alpha, \qquad \frac{dy}{ds} = \cos \beta, \qquad \frac{dz}{ds} = \cos \gamma$$

findet sich

$$\begin{aligned} \varepsilon &= \frac{\partial \xi}{\partial x} \cos^2 \alpha + \frac{\partial \eta}{\partial y} \cos^2 \beta + \frac{\partial \zeta}{\partial z} \cos^2 \gamma + \left(\frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y}\right) \cos \beta \cos \gamma \\ &+ \left(\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z}\right) \cos \gamma \cos \alpha + \left(\frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial z}\right) \cos \alpha \cos \beta \dots 2) \end{aligned}$$

Für  $\alpha = 0$ , d. h. wenn *ds* parallel zur *x*-Achse, werde  $\varepsilon$  mit  $\varepsilon_x$  bezeichnet; dann findet sich wegen  $\beta = 90^{0}$  und  $\gamma = 90^{0}$ 

$$\epsilon_x = \frac{\partial \xi}{\partial x}$$

§ 68. Formänderungen in einem beliebigen Punkte eines festen Körpers. 679

und ebenso für  $\beta = 0$  bzw.  $\gamma = 0$ 

$$\epsilon_y = \frac{\partial \eta}{\partial y}$$
 bzw.  $\epsilon_z = \frac{\partial \zeta}{\partial z}$ ,

d. h. die Koeffizienten der Glieder mit den Kosinusquadraten in der Gleichung 2, also die partiellen Differentialquotienten von  $\xi$  nach x, von  $\eta$  nach y und  $\zeta$  nach z sind die Dehnungen im Punkte Pnach den Richtungen der Koordinatenachsen.

Zur Ermittlung der Bedeutung der Koeffizienten der Glieder mit den Kosinusprodukten ziehen wir in dem ursprünglichen Zustande des Körpers von dem beliebigen Punkte aus parallel zu den Koordinatenachsen Gerade und tragen auf ihnen die unendlich kleinen

Strecken dx, dy, dz ab. In Fig. 2 (Schnitt senkrecht zur x-Achse) sei die ursprüngliche Lage des Punktes mit  $P_0$  bezeichnet, seine Koordinaten seien y und z, ferner  $\overline{P_0}\overline{B_0} = dy$  und  $\overline{P_0}\overline{C_0} = dz$ . Infolge der Formänderung ändern sich y und z um  $\eta$  bzw.  $\zeta$ . Der Punkt  $P_0$  rückt nach P. Die Punkte  $B_0$  und  $C_0$  würden, falls weitere Änderungen nicht stattfinden, nach *B* bzw. *C* gelangen  $(\overline{PB} = \overline{P_0B_0},$  $PC = \overline{P_0C_0}$ . Im allgemeinen wird jedoch auch noch eine Verschiebung von C nach C' im Sinne der y-Achse um  $\overline{CC'} = \frac{\partial \eta}{\partial z} dz$  und von



Fig. 2.

*B* nach *B'* im Sinne der z-Achse um  $\overline{BB'} = \frac{\partial \zeta}{\partial y} dy$  eintreten, somit eine Änderung des ursprünglich rechten Winkels *BPC* um die beiden sehr kleinen Winkel *CPC'* und *BPB'* statthaben. Wegen der Kleinheit der Winkel darf gesetzt werden

$$\frac{CC'}{\overline{PC}} + \frac{BB'}{\overline{PB}} = \frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} = \gamma_x,$$

d. i. die Änderung des ursprünglich rechten Winkels an der *x*-Kante des Parallelepipeds, also nach § 28 die Schiebung oder Gleitung.

Ebenso finden sich für die Änderungen der ursprünglich rechten Winkel an der y- und der z-Kante

$$\frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} = \gamma_y \qquad \frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} = \gamma_z.$$

Hiernach bedeuten in Gleichung 2 die Koeffizienten der Glieder mit den Kosinusprodukten die Schiebungen an der x-, y- bzw. z-Kante des unendlich kleinen durch dx, dy, dz bestimmten Parallelepipeds. Damit geht die Gleichung 2 über in die folgende:

#### 2. Darstellung der Formänderung.

Wir denken uns in dem Körper — vor der Formänderung eine unendlich kleine Kugel mit P als Mittelpunkt und ds als Halbmesser, Fig. 3. PA, PB und PC seien die den Achsen der x, y, z



parallelen Halbmesser dieser Kugel und dx, dy, dz die Koordinaten eines beliebigen Punktes Q der Kugelfläche in Beziehung auf PA, PB und PCals Achsen. Dann ist

$$\frac{dx^2}{ds^2} + \frac{dy^2}{ds^2} + \frac{dz^2}{ds^2} = 1.$$

Durch die Formänderung erfahren die drei Halbmesser die Dehnungen  $\varepsilon_x$ ,  $\varepsilon_y$ ,  $\varepsilon_z$ , und die ursprünglich rechten Winkel an den Kanten PA, PB und PC ändern sich um  $\gamma_x$ ,  $\gamma_y$ ,

 $\gamma_z$ , so daß das Achsenkreuz jetzt ein schiefwinkliges geworden ist. Der Punkt Q, auf dieses schiefwinklige System bezogen, wird die Koordinaten

$$dx_1 = dx (1 + \epsilon_x), \quad dy_1 = dy (1 + \epsilon_y), \quad dz_1 = dz (1 + \epsilon_z)$$

zeigen, woraus folgt

$$dx = \frac{dx_1}{1+\epsilon_x}, \quad dy = \frac{dy_1}{1+\epsilon_y}, \quad dz = \frac{dz_1}{1+\epsilon_z}$$

und damit

$$\left(\frac{dx_1}{(1+\epsilon_x)ds}\right)^2 + \left(\frac{dy_1}{(1+\epsilon_y)ds}\right)^2 + \left(\frac{dz_1}{(1+\epsilon_z)ds}\right)^2 = 1, \dots 4$$

d. i. die Gleichung eines Ellipsoids in bezug auf die konjugierten Halbmesser  $(1 + \epsilon_x) ds$ ,  $(1 + \epsilon_y) ds$ ,  $(1 + \epsilon_z) ds$  als Achsen. Wir erkennen, daß eine unendlich kleine Kugel durch die Formänderung in ein Ellipsoid übergeht. Dasselbe wird als Formänderungsellipsoid bezeichnet.

Um ein möglichst klares Bild über die Bedeutung der unter Ziff. 1 enthaltenen partiellen Differentialquotienten zu erlangen, § 68. Formänderungen in einem beliebigen Punkte eines festen Körpers. 681 empfiehlt es sich, die Formänderung eines unendlich kleinen Parallelepipeds darzustellen.

In den Fig. 4 bis 6 ist dies in stark übertriebenem Maße ge-



Fig. 4.

schehen; die Ableitungen sind eingetragen. So läßt z. B. Fig. 4 deutlich erkennen, wie der ursprünglich in  $P_0$  liegende Eckpunkt



entsprechend der Änderung von y und z um  $\eta$  bzw.  $\zeta$  nach P gerückt ist, wie die Kanten dy und dz ihre Länge um  $\frac{\partial \eta}{\partial y} dy$  bzw.

 $\frac{\partial \zeta}{\partial z} dz$  geändert haben, und welche parallel zur YZ-Ebene gelegenen

Größen die Änderung der Kantenwinkel bestimmen.

Fig. 5 und 6 zeigen das Entsprechende in bezug auf die parallel zur ZX- bzw. XY-Ebene liegenden Größen.

Die ursprüngliche, durch die Strecken dx, dy, dz gegebene Diagonale ds des Parallelepipeds ist in die Strecke PP' übergegangen und hat dabei die durch die Gleichung 3 bestimmte Dehnung erfahren. Diese Gleichung ergab die Dehnungen der angenommenen Strecke ds



als Funktion von den Dehnungen in drei ursprünglich zueinander senkrechten Richtungen und von Änderungen der Winkel dreier ursprünglich sich rechtwinklig schneidenden Ebenen. Die Darstellung läßt diesen Zusammenhang zwischen der Längenänderung der Diagonale des Parallelepipeds und den Änderungen der Kantenlängen sowie der Kantenwinkel deutlich erkennen.

#### 3. Sätze über die Formänderung.

Die Größe, welche Gleichung 3 für  $\varepsilon$  liefert, hat in Hinsicht auf  $\alpha$ ,  $\beta$  und  $\gamma$  die gleiche Form wie die Größe  $\sigma$ , die sich aus Gleichung 6, § 67, ergibt; der eine Ausdruck geht in den andern über, wenn  $\varepsilon_x$  durch  $\sigma_x$  usw. sowie  $1/2 \gamma_x$  durch  $\tau_x$  usw. ersetzt wird. Infolgedessen können hier sinngemäß die gleichen Schlüsse gezogen werden.

In jedem Punkte des Körpers gibt es immer drei zueinander senkrechte Ebenen, in denen keine Schiebungen auftreten, also  $\gamma_x = \gamma_y = \gamma_z = 0$  sind, so daß also das unendlich kleine Parallelepiped, das von diesen Ebenen begrenzt wird, dessen Kanten also die Richtungen der Durchschnittslinien dieser Ebenen besitzen, rechtwinklig bleibt.

Die Dehnungen nach diesen drei Richtungen heißen die Hauptdehnungen. Unter ihnen befindet sich der größte und der kleinste Wert der Dehnungen, die überhaupt in dem betreffenden Punkte auftreten.

Sie seien mit  $\varepsilon_1$ ,  $\varepsilon_2$  und  $\varepsilon_3$  bezeichnet.

Die Summe der Dehnungen nach je drei beliebig zueinander senkrechten Richtungen ist konstant, und zwar gleich der Summe der drei Hauptdehnungen:

$$\epsilon_x + \epsilon_y + \epsilon_z = \epsilon_1 + \epsilon_2 + \epsilon_3.$$

Diese unveränderliche Summe hat eine besondere Bedeutung. Das Volumen eines unendlich kleinen Parallelepipeds ist vor der Formänderung

$$dx dy dz$$
,

während derselben

$$(1+\varepsilon_x)dx(1+\varepsilon_y)dy(1+\varepsilon_z)dz = \sim (1+\varepsilon_x+\varepsilon_y+\varepsilon_z)dxdydz,$$

sofern die sehr kleinen Größen höherer Ordnung gegenüber denjenigen niederer Ordnung vernachlässigt werden.

Hiermit die Volumenzunahme

$$(\varepsilon_x + \varepsilon_y + \varepsilon_z) dx dy dz$$
,

demnach

$$\epsilon_x + \epsilon_y + \epsilon_z = \epsilon_1 + \epsilon_2 + \epsilon_3 = e \quad . \quad . \quad . \quad . \quad . \quad 5)$$

die Zunahme der Volumeneinheit oder die verhältnismäßige Volumenänderung, die als Volumenausdehnungszahl bezeichnet werde.

# § 69. Beziehungen zwischen Spannungen und Formänderungen.

Die Elastizität des festen Körpers kann in den verschiedenen Punkten desselben nach allen Richtungen gleich groß, oder sie kann in den einzelnen Punkten und nach den verschiedenen Richtungen hin verschieden sein. Das erstere wird dann eintreten, wenn der Körper isotrop, d. h. in jedem seiner Punkte nach allen Richtungen hin gleich beschaffen ist, wie dies z. B. von vorzüglichem Flußstahl

bei nicht zu großen Querschnittsabmessungen mit ziemlicher Annäherung¹) erwartet werden darf. Bei Körpern von regelmäßigem Gefüge, die nicht isotrop sind, lassen sich bestimmte Richtungen erkennen, in denen die Elastizität ausgezeichnete Werte aufweist. So z. B. besitzt ein kreiszylindrisch gewalzter Stab aus gutem, sehnigem Schweißeisen in der Walzrichtung eine solche ausgezeichnete Richtung; in allen Richtungen senkrecht zu dieser darf zwar mit Annäherung wieder ein und dieselbe Elastizität angenommen werden, deren Größe wird jedoch von derjenigen in der Walzrichtung verschieden sein. Man spricht in solchen Fällen von einer ausgezeichnete Richtungen: eine im Sinne der Fasern, die anderen zwei tangential und radial in bezug auf die Jahresringe. Man spricht dann von drei Elastizitätsachsen.

Handelt es sich um einen Stoff, der in verschiedenen Punkten nach verschiedenen Richtungen hin verschiedene Elastizität zeigt, so muß im allgemeinen die Lage der Hauptdehnungen zu den Hauptspannungen von der Veränderlichkeit der Elastizität abhängen. Diese Abhängigkeit wird im allgemeinen nur für isotropes Material verschwinden; für Material mit ausgezeichneten Elastizitätsachsen wird dies nur in besonderen Fällen eintreten können²).

Im Falle der Isotropie des Materials werden — wie ohne weiteres aus der Anschauung gefolgert werden darf — die Achsen des Spannungsellipsoides mit denjenigen des Formänderungsellipsoides, also die Richtungen der Hauptspannungen mit denjenigen der Hauptdehnungen zusammenfallen.

Die allgemeinen Untersuchungen der Elastizitätslehre verlangen, damit sie überhaupt durchgeführt werden können, in der Regel, daß isotropes Material vorausgesetzt wird, was auch im folgenden geschehen soll. Die Ergebnisse solcher Betrachtungen gelten deshalb — streng genommen — auch nur für derartige Körper.

¹) Da auch dieses Material aus Kristallkörnern zusammengesetzt ist, die ausgeprägte Achsen besitzen und sich bei Beanspruchung je nach der Richtung verschieden verhalten, so geht die Annäherung nur so weit, als diese Unterschiede durch das Zusammenarbeiten benachbarter Kristallkörner Ausgleich erfahren. Material mit gut ausgebildeten, großen Kristallen wird sich daher dem Zustand der Isotropie weniger vollkommen nähern, als feinkörniges. Vgl. hierzu Fig. 155 u. f. in "Festigkeitseigenschaften und Gefügebilder", S. 37 u. f.

²) Es läßt sich nachweisen, daß bei Körpern mit drei zueinander senkrechten Elastizitätsachsen die Hauptspannungen nur dann mit den Hauptdehnungen zusammenfallen, wenn die Hauptspannungs- und Hauptdehnungsrichtungen mit den Elastizitätsachsen in dem betreffenden Punkte übereinstimmen, bei Körpern mit einer Elastizitätsachse nur dann, wenn mit ihr eine der Hauptspannungs- oder Hauptdehnungsrichtungen zusammenfällt.

§ 69. Beziehungen zwischen Spannungen und Formänderungen. 685

#### 1. Die Hauptdehnungen und die Hauptspannungen.

Auf das rechtwinklige Parallelepiped ABCD, Fig. 1, das zu dem Koordinatensystem so gelegen sein möge, daß die Kante ACparallel zur x-Achse läuft, wirke je über die beiden Endflächen ABund CD, gleichmäßig verteilt angreifend, die gleiche Kraft  $P_x$  in Richtung der x-Achse. Hierdurch geht der Körper ABCD in ein anderes Parallelepiped  $A_1B_1C_1D_1$  über, und zwar in der Weise, daß die zur Richtung von  $P_x$  parallelen Kanten sich verlängern, während die anderen senkrecht dazu stehenden Kanten sich verkürzen. Die durch  $P_x$  hervorgerufene Spannung ist eine Hauptspannung  $\sigma_1$ , die unter der Voraussetzung, daß zwischen Spannungen und Dehnungen Proportionalität besteht, mit der zu ihr gehörigen Dehnung  $\varepsilon_x$  durch die Gleichung

$$\epsilon_x = \alpha \sigma_1$$

verbunden erscheint, worin  $\alpha$  die in § 2 besprochene Dehnungszahl bedeutet.



Nach den beiden dazu senkrechten Richtungen der y und z wird die Dehnung als gleich groß betrachtet und durch

$$-\frac{\varepsilon_x}{m}$$

gemessen, worin m das als unveränderlich vorausgesetzte Verhältnis der Längsdehnung zur Querzusammenziehung bedeutet (vgl. § 7). Wir haben somit

				die Spannung	die Dehnung
in	Richtung	$\operatorname{der}$	x-Achse	$\sigma_1$	$\epsilon_x = \alpha \sigma_1$
"	**	"	y-Achse	0	$-\frac{\varepsilon_x}{m}$
"	"	"	z-Achse	0	$-\frac{\varepsilon_x}{m}$ .

Würde das Parallelepiped in Richtung der y-Achse — und zwar nur in dieser — gezogen, so daß die Normalspannung  $\sigma_2$  und die Dehnung  $\varepsilon_y = \alpha \sigma_2$  eintritt, so ergäbe sich

				die Spannung	die Dehnung
in	Richtung	der	x-Achse	0	$\underline{\qquad} \frac{\varepsilon_{y_{-}}}{m}$
"	"	**	$y ext{-Achse}$	$\sigma_2$	$\epsilon_y = \alpha \sigma_2$
"	"	77	z-Achse	0	$-\frac{\varepsilon_y}{m}$ .

Würde schließlich der Zug nur in Richtung der z-Achse stattfinden, so daß die Normalspannung  $\sigma_3$  und die Dehnung  $\varepsilon_s = \alpha \sigma_3$ stattfindet, so fände sich

,				die Spannung	die Dehnung
in	Richtung	der	x-Achse	0	$\frac{\varepsilon_z}{m}$
"	"	"	y-Achse	0	$-\frac{\varepsilon_z}{m}$
"	"	"	z-Achse	$\sigma_3$	$\varepsilon_z = \alpha \sigma_3$ .

Wirken sämtliche Zugkräfte gleichzeitig, so bleiben  $\sigma_1, \sigma_2$  und  $\sigma_3$ Hauptspannungen, die Hauptdehnungen aber sind

$$\epsilon_1 = \epsilon_x - \frac{\epsilon_y + \epsilon_z}{m}, \quad \epsilon_2 = \epsilon_y - \frac{\epsilon_z + \epsilon_x}{m}, \quad \epsilon_3 = \epsilon_z - \frac{\epsilon_x + \epsilon_y}{m},$$

woraus nach Einführung der oben angegebenen Werte für  $\varepsilon_x,\ \varepsilon_y$  und  $\varepsilon_z$ 

$$\begin{aligned} \varepsilon_{1} &= \alpha \left( \sigma_{1} - \frac{\sigma_{2} + \sigma_{3}}{m} \right) \\ \varepsilon_{2} &= \alpha \left( \sigma_{3} - \frac{\sigma_{3} + \sigma_{1}}{m} \right) \\ \varepsilon_{3} &= \alpha \left( \sigma_{3} - \frac{\sigma_{1} + \sigma_{2}}{m} \right) \end{aligned}$$

Die Addition dieser Gleichungen gibt unter Beachtung von Gleichung 5, § 68,

Die erste der Gleichungen 1 liefert

$$m\sigma_1 - \sigma_2 - \sigma_3 = m \cdot \frac{\varepsilon_1}{\alpha}$$
,

durch Addition dieser Gleichung zu Gleichung 2

$$\sigma_1(1+m) = \frac{m}{\alpha} \left( \frac{e}{m-2} + \epsilon_1 \right)$$
  
$$\sigma_1 = \frac{m}{1+m} \frac{1}{\alpha} \left( \epsilon_1 + \frac{e}{m-2} \right),$$

§ 69. Beziehungen zwischen Spannungen und Formänderungen. 687

nach Einführung von

$$\frac{1}{2}\frac{m}{1+m}\frac{1}{\alpha} = \frac{1}{\beta} \qquad \text{oder} \qquad \beta = \frac{2(1+m)}{m}\alpha \quad . \quad . \quad 3)$$

und Ermittlung der Werte für  $\sigma_2$  und  $\sigma_3$ 

$$\sigma_{1} = \frac{m}{1+m} \frac{1}{\alpha} \left( \varepsilon_{1} + \frac{e}{m-2} \right) = \frac{2}{\beta} \left( \varepsilon_{1} + \frac{e}{m-2} \right)$$

$$\sigma_{2} = \frac{m}{1+m} \frac{1}{\alpha} \left( \varepsilon_{2} + \frac{e}{m-2} \right) = \frac{2}{\beta} \left( \varepsilon_{2} + \frac{e}{m-2} \right)$$

$$\sigma_{3} = \frac{m}{1+m} \frac{1}{\alpha} \left( \varepsilon_{3} + \frac{e}{m-2} \right) = \frac{2}{\beta} \left( \varepsilon_{3} + \frac{e}{m-2} \right)$$

$$(1)$$

## 2. Spannungen und Formänderungen für drei beliebige, zueinander senkrecht stehende Richtungen.

Die Gleichungen 4, § 67, gelten für das Koordinatensystem, das sich ergibt, wenn wir die Normalspannungen  $\sigma_x$ ,  $\sigma_y$  und  $\sigma_z$  im Punkte P für drei beliebige, senkrecht zueinander stehende Ebenen zu Koordinatenachsen wählen. Nehmen wir statt dessen die drei Hauptspannungen im Punkte P zu Koordinatenachsen, also die Ebenen, in denen die Hauptspannungen wirken, zu Koordinatenebenen, so folgt, da in diesen Ebenen die Schubspannungen  $\tau_x$ ,  $\tau_y$  und  $\tau_z$  gleich Null sind, und an Stelle von  $\sigma_x$ ,  $\sigma_y$  und  $\sigma_z$  die Größen  $\sigma_1$ ,  $\sigma_2$  und  $\sigma_3$ treten, aus den Gleichungen 4, § 67,

 $p\cos\lambda = \sigma_1\cos\alpha, \quad p\cos\mu = \sigma_2\cos\beta, \quad p\cos\nu = \sigma_3\cos\gamma.$ 

Die Normalspannung  $\sigma$  in dem beliebigen durch den Punkt Pgelegten Flächenelement bildet mit der resultierenden Spannung peinen Winkel  $\varphi$ , für den, da die Richtungswinkel

sind, die Beziehung

 $\cos \varphi = \cos \alpha \cos \lambda + \cos \beta \cos \mu + \cos \gamma \cos \nu$ gilt. Somit

 $\sigma = p \cos \varphi = \sigma_1 \cos^2 \alpha + \sigma_2 \cos^2 \beta + \sigma_3 \cos^2 \gamma$ 

und nach Einführung der Werte, welche die Gleichungen 4, § 69, für die Hauptspannungen liefern,

$$\sigma = \frac{2}{\beta} \left( \varepsilon_1 \cos^2 \alpha + \varepsilon_2 \cos^2 \beta + \varepsilon_3 \cos^2 \gamma + \frac{e}{m-2} \right).$$

Die Heranziehung der Gleichung 3, § 68, unter Beachtung, daß die Schiebungen wegfallen, wenn für  $\varepsilon_x$ ,  $\varepsilon_y$  und  $\varepsilon_z$  die Hauptdehnungen  $\varepsilon_1$ ,  $\varepsilon_2$  und  $\varepsilon_3$  gesetzt werden, führt zu

$$\boldsymbol{\varepsilon} = \varepsilon_1 \cos^2 \alpha + \varepsilon_2 \cos^2 \beta + \varepsilon_3 \cos^2 \gamma,$$

folglich

$$\sigma = \frac{2}{\beta} \left( \varepsilon + \frac{e}{m-2} \right) \quad \dots \quad \dots \quad \dots \quad 5)$$

Da diese Gleichung für eine ganz beliebige Richtung gilt, so muß sie auch für drei beliebige zueinander senkrecht stehende Richtungen gelten, somit

$$\sigma_{x} = \frac{2}{\beta} \left( \varepsilon_{x} + \frac{e}{m-2} \right); \qquad \varepsilon_{x} = \alpha \left( \sigma_{x} - \frac{\sigma_{y} + \sigma_{z}}{m} \right)$$
  

$$\sigma_{y} = \frac{2}{\beta} \left( \varepsilon_{y} + \frac{e}{m-2} \right); \qquad \varepsilon_{y} = \alpha \left( \sigma_{y} - \frac{\sigma_{z} + \sigma_{x}}{m} \right)$$
  

$$\sigma_{z} = \frac{2}{\beta} \left( \varepsilon_{z} + \frac{e}{m-2} \right); \qquad \varepsilon_{z} = \alpha \left( \sigma_{z} - \frac{\sigma_{x} + \sigma_{y}}{m} \right)$$
  

$$\sigma_{z} = \frac{2}{\beta} \left( \varepsilon_{z} + \frac{e}{m-2} \right); \qquad \varepsilon_{z} = \alpha \left( \sigma_{z} - \frac{\sigma_{x} + \sigma_{y}}{m} \right)$$

## 3. Bedeutung der Größe $\beta$ .

Die Einführung des Wertes  $\varepsilon$  aus Gleichung 3, § 68, in Gleichung 5 ergibt

$$\sigma = \frac{2}{\beta} \left[ \varepsilon_x \cos^2 \alpha + \varepsilon_y \cos^2 \beta + \varepsilon_z \cos^2 \gamma + \gamma_x \cos \beta \cos \gamma + \gamma_y \cos \gamma \cos \alpha + \gamma_z \cos \alpha \cos \beta + \frac{e}{m-2} (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) \right],$$

wobei der Faktor von  $\frac{e}{m-2}$  am Schlusse mit Rücksicht auf das Spätere an Stelle von 1 gewählt worden ist.

Aus Gleichung 6, § 67, folgt unter Beachtung der Gleichungen 6 dieses Paragraphen

$$\sigma = \frac{2}{\beta} \left[ \epsilon_x \cos^2 \alpha + \epsilon_y \cos^2 \beta + \epsilon_z \cos^2 \gamma + \frac{e}{m-2} (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma) \right] \\ + 2\tau_x \cos \beta \cos \gamma + 2\tau_y \cos \gamma \cos \alpha + 2\tau_z \cos \alpha \cos \beta.$$

Da die beiden für  $\sigma$  gefundenen Werte einander gleich sein müssen, so ergibt sich

$$\frac{2}{\beta} (\gamma_x \cos\beta \cos\gamma + \gamma_y \cos\gamma \cos\alpha + \gamma_z \cos\alpha \cos\beta)$$
  
= 27 \cos \beta \cos \beta \cos \beta + 27 \cos \beta \cos \beta + 27 \cos \beta \cos \beta + 27 \cos \beta \cos \beta \cos \beta + 27 \cos \beta \cos \cos \cos \beta \cos \beta \cos \

 $= 2 \tau_x \cos \beta \cos \gamma + 2 \tau_y \cos \gamma \cos \alpha + 2 \tau_z \cos \alpha \cos \beta$  $(\beta \tau_x - \gamma_x) \cos \beta \cos \gamma + (\beta \tau_y - \gamma_y) \cos \gamma \cos \alpha + (\beta \tau_x - \gamma_z) \cos \alpha \cos \beta = 0.$ 

Soll diese Gleichung für beliebige Werte von  $\alpha$ ,  $\beta$  und  $\gamma$  bestehen, so muß

$$\gamma_x = \beta \tau_x, \qquad \gamma_y = \beta \tau_y, \qquad \gamma_z = \beta \tau_z \ldots \ldots 7)$$

sein, d. h.  $\beta$  ist diejenige Erfahrungszahl, mit der die Schubspannungen multipliziert werden müssen, damit die Schiebungen erhalten werden, also die Schubzahl (§ 29). Zwischen ihr und der Dehnungszahl  $\alpha$  besteht die Beziehung Gleichung 3, wie bereits § 31, Ziff. 2, unmittelbar festgestellt worden ist.

# § 70. Allgemeine Aufgabe der Elastizitätslehre und Weg zur Lösung derselben.

Die Aufgabe der Elastizitätslehre begreift in sich:

1. die Feststellung des Zusammenhanges zwischen den äußeren Kräften, die auf den in Betracht gezogenen Körper wirken, und den durch sie hervorgerufenen Formänderungen,

2. die Feststellung der Abmessungen eines solchen Körpers unter der Bedingung, daß die Formänderung, d. i. die größte Hauptdehnung, in keinem Punkte desselben die höchstens noch für zulässig erachtete Grenze überschreitet, und unter der weiteren Forderung, daß die Gesamtformänderung des belasteten Körpers innerhalb der Grenze bleibe, die durch den besonderen Zweck desselben oder durch den Zusammenhang mit anderen Teilen gesteckt ist.

Die Lösung dieser Aufgabe fordert in erster Linie die Ermittlung der Hauptdehnungen in einem beliebigen Punkte P des Körpers; denn unter ihnen befindet sich die größte und kleinste, welche überhaupt in dem Punkte auftritt.

Allgemein würde dabei in folgender Weise vorzugehen sein.

Für den Punkt P sind x, y und z die Koordinaten vor Eintritt der Formänderung,  $\xi$ ,  $\eta$  und  $\zeta$  deren Änderungen infolge der letzteren und damit nach den Gleichungen 6 sowie 7, § 69, und den in § 68 unter Ziff. 1 für  $\varepsilon_x$ ,  $\varepsilon_y$ ,  $\varepsilon_z$ ,  $\gamma_x$ ,  $\gamma_y$  und  $\gamma_z$  gefundenen Ausdrücken

$$\sigma_{x} = \frac{2}{\beta} \left( \frac{\partial \xi}{\partial x} + \frac{e}{m - 2} \right), \qquad \tau_{x} = \frac{1}{\beta} \left( \frac{\partial \eta}{\partial z} + \frac{\partial \zeta}{\partial y} \right)$$
  
$$\sigma_{y} = \frac{2}{\beta} \left( \frac{\partial \eta}{\partial y} + \frac{e}{m - 2} \right), \qquad \tau_{y} = \frac{1}{\beta} \left( \frac{\partial \zeta}{\partial x} + \frac{\partial \xi}{\partial z} \right)$$
  
$$\sigma_{z} = \frac{2}{\beta} \left( \frac{\partial \zeta}{\partial z} + \frac{e}{m - 2} \right), \qquad \tau_{z} = \frac{1}{\beta} \left( \frac{\partial \xi}{\partial y} + \frac{\partial \eta}{\partial x} \right)$$

worin

$$e = \frac{\partial \xi}{\partial x} + \frac{\partial \eta}{\partial y} + \frac{\partial \zeta}{\partial z}, \qquad \beta = \frac{2(1+m)}{m} \alpha$$

Die aus den Gleichungen 1 folgenden Werte der sechs Spannungskomponenten sind in die Gleichungen 3, § 67, einzusetzen. Hier-C. Bach, Elastizität. 8. Aufl. 44

durch werden drei simultane partielle Differentialgleichungen zweiter Ordnung für die Größen  $\xi$ ,  $\eta$  und  $\zeta$  erhalten.

$$\frac{\partial^{2}\xi}{\partial x^{2}} + \frac{\partial^{2}\xi}{\partial y^{2}} + \frac{\partial^{3}\xi}{\partial z^{2}} + \frac{m}{m-2} \frac{\partial e}{\partial x} + \beta X = 0$$

$$\frac{\partial^{2}\eta}{\partial x^{2}} + \frac{\partial^{2}\eta}{\partial y^{2}} + \frac{\partial^{2}\eta}{\partial z^{2}} + \frac{m}{m-2} \frac{\partial e}{\partial y} + \beta Y = 0$$

$$\frac{\partial^{2}\zeta}{\partial x^{2}} + \frac{\partial^{2}\zeta}{\partial y^{2}} + \frac{\partial^{2}\zeta}{\partial z^{2}} + \frac{m}{m-2} \frac{\partial e}{\partial z} + \beta Z = 0$$

Bei der Integration werden im allgemeinen Funktionen einzuführen sein, die in bezug auf diejenige Veränderliche, nach der jeweils integriert wird, konstant sind. Diese Funktionen sind durch die Oberflächenbedingungen, d. h. dadurch bestimmt,

a) daß die Spannungskomponenten  $p \cos$ 

$$\lambda \quad p \cos \mu \quad p \cos \nu$$

in den Gleichungen 4, § 67, für die Punkte der Körperoberfläche (durch die Belastung) gegebene Werte haben,

b) daß  $\xi$ ,  $\eta$ ,  $\zeta$  für gewisse Punkte von vornherein bekannt sind oder doch ermittelt werden können (Unterstützung des Körpers).

Sind hiernach  $\xi$ ,  $\eta$ ,  $\zeta$  als Funktionen von x, y, z festgestellt, so ergeben sich

$$\sigma_x, \sigma_y, \sigma_z, \tau_x, \tau_y, \tau_z$$

aus den Gleichungen 1, sodann die Hauptspannungen aus Gleichung 8, § 67, und die Hauptdehnungen mittels der Gleichungen 1, § 69.

Oder es kann auch so verfahren werden, daß, nachdem  $\xi$ ,  $\eta$ ,  $\zeta$ als Funktionen von x, y, z vorliegen,

$$\epsilon_x, \epsilon_y, \epsilon_z, \gamma_x, \gamma_y, \gamma_z$$

mittels der in § 68 unter Ziffer 1 für diese Größen gefundenen Beziehungen und aus ihnen die Hauptdehnungen berechnet werden.

In den weitaus meisten Fällen der technischen Anwendung erweist sich die Integration der partiellen Differentialgleichungen als unausführbar, infolgedessen das angedeutete Verfahren, trotz seiner Einfachheit in grundsätzlicher Hinsicht, nur in Ausnahmefällen zum Ziel führt. Unter diesen Verhältnissen geht man zweckmäßigerweise derart vor, daß zunächst einfache Fälle betrachtet und von diesen unter Benützung der gewonnenen Ergebnisse zu zusammengesetzteren fortgeschritten wird. Die hierbei auftretenden Schwierigkeiten sucht man durch geeignete Annahmen zu überwinden. Dieser Weg, der nach heutigem Stand für den Ingenieur - wie bereits bemerkt, mit ganz seltenen Ausnahmen — allein übrig bleibt, ist in den ersten § 71. Anwendung auf den Sonderfall der Belastung usw.

8 Abschnitten dieses Buches beschritten. Daß es trotzdem für den Ingenieur angezeigt ist, die allgemeinen Beziehungen dieses Abschnittes zu kennen, ergibt sich aus dem im Vorwort zur vierten Auflage Bemerkten.

# § 71. Anwendung auf den Sonderfall der Belastung eines geraden stabförmigen Körpers.

F und F', Fig. 1, seien zwei unendlich nahe gelegene Querschnitte des stabförmigen Körpers. Die auf ihn wirkenden äußeren Kräfte lassen sich für den in Betracht gezogenen Querschnitt F ersetzen: durch eine im Schwerpunkte desselben angreifende Kraft R und durch ein Kräftepaar vom Moment M, entsprechend der Paarachse  $\overline{OM}$ .



Durch Zerlegung senkrecht zum Querschnitt und parallel zu demselben ergeben sich

> die Kraftkomponenten  $R_1R_2$ , die Momentkomponenten  $M_1M_2$ .

Die Kraft  $R_1$  veranlaßt, je nachdem sie ziehend oder drückend wirkt, eine Zu- oder Abnahme der Entfernung der beiden Querschnitte F und F' voneinander, verursacht also positive oder negative Dehnungen, ruft demgemäß Normalspannungen wach: Fall der einfachen Zug- oder Druckelastizität (S. 113, bzw. 193).

Das Kräftepaar  $M_2$  mit der Paarachse  $0M_2$  bewirkt eine Änderung der gegenseitigen Neigung von F zu F', verursacht also positive und negative Dehnungen und ruft damit positive und negative Normalspannungen wach: Fall der einfachen Biegungselastizität (S. 232).

Die Kraft  $R_2$  veranlaßt eine Verschiebung der Flächenelemente von F gegen diejenigen von F', d. h. Schiebungen, und ruft dem-

691

entsprechend Schubspannungen wach: Fall der einfachen Schubelastizität (S. 401).

Das Kräftepaar  $M_1$  bewirkt Verdrehungen der Flächenelemente in F gegen diejenigen in F', also Schiebungen, und ruft demgemäß Schubspannungen wach: Fall der einfachen Drehungselastizität (S. 342).

Hiernach haben wir als Hauptwirkungen von R und M erkannt: Änderung der Entfernung und der Neigung der beiden Querschnitte, Verschiebung und Verdrehung der beiden Querschnitte gegeneinander. Im allgemeinen wird noch eine Krümmung derselben eintreten, die von der Gesetzmäßigkeit abhängt, nach der sich die Dehnungen und Schiebungen im Querschnitt F von Flächenelement zu Flächenelement und von den Flächenelementen des Querschnittes F zu den gleichgelegenen von F' ändern.

In dem beliebigen Punkte P des Querschnittes F, Fig. 2, erhalten wir als Gesamtwirkung eine resultierende Normalspannung  $\sigma_x$ (in Richtung der Stabachse wirkend, die wir uns als x-Achse denken wollen) und eine resultierende Schubspannung  $\tau$ . Letztere zerlegen wir nach Fig. 2 in zwei Komponenten parallel zur y- und zur z-Achse und erhalten somit für den Punkt P die Spannungen

$$\sigma_x, \quad \tau_y, \quad \tau_z.$$

Damit geht die Gleichung 8, § 67, für die Hauptspannungen wegen

 $\sigma_{v} = 0^{1}), \qquad \sigma_{z} = 0^{1}), \qquad \tau_{x} = 0^{1})$   $\sigma^{3} - \sigma_{x}\sigma^{2} - (\tau_{v}^{2} + \tau_{x}^{2})\sigma = 0,$ 

über in

woraus die eine Wurzel 
$$\sigma_3 = 0$$
 folgt (das Spannungsellipsoid wird  
zur Spannungsellipse), während für die beiden anderen Hauptspan-  
nungen mit  
 $\tau_u^2 + \tau_z^2 = \tau^2$ 

sich ergibt

$$\sigma_1 = \frac{1}{2} \left( \sigma_x + \sqrt{\sigma_x^2 + 4\tau^2} \right), \ldots \ldots \ldots$$

1)

Für die Hauptdehnungen folgt aus den Gleichungen 1, § 69, wegen  $\sigma_8 = 0$ 

$$\epsilon_1 = \alpha \left(\sigma_1 - \frac{\sigma_2}{m}\right), \quad \epsilon_2 = \alpha \left(\sigma_2 - \frac{\sigma_1}{m}\right), \quad \epsilon_3 = -\alpha \frac{\sigma_1 + \sigma_2}{m},$$

¹) Diese 3 Gleichungen führen zur Erfüllung der Gleichung 9, § 67, und damit — wie schon dort bemerkt — zum Übergang des Ellipsoids in eine Ellipse.

somit

$$\frac{\varepsilon_1}{\alpha} = \frac{m-1}{2m} \sigma_x + \frac{m+1}{2m} \sqrt{\sigma_x^2 + 4\tau^2}, \quad \dots \quad \dots \quad 3)^1$$

$$\frac{\varepsilon_2}{\alpha} = \frac{m-1}{2m} \sigma_x - \frac{m+1}{2m} \sqrt{\sigma_x^2 + 4\tau^2}, \quad \dots \quad \dots \quad 1)^1$$

Ist  $\sigma_x$  positiv, einem Zug entsprechend, so wird, da in der Regel die zulässige Anstrengung gegenüber Zug kleiner zu sein pflegt als gegenüber Druck, Gleichung 3 maßgebend. Wenn  $\sigma_x$  negativ ist, einem Druck entsprechend, so wird Gleichung 4 einen größeren Wert ergeben als Gleichung 3; dabei ist aber immerhin zu prüfen, ob die kleinere aus Gleichung 3 folgende Zuginanspruchnahme nicht maßgebend wird.

Im übrigen ist das im zweiten Teil von § 48 Gesagte, betreffend die Einführung des Berichtigungskoeffizienten  $\alpha_0$ , zu beachten.

Da die Gleichung 3 bzw. 4 häufige Benutzung erfährt, so erscheint es angezeigt, an dieser Stelle nochmals die Voraussetzungen zusammenzustellen, auf denen sie beruht, und das um so mehr, als diese nicht selten recht ungenügend erfüllt sind, ohne daß daran auch nur gedacht wird.

- 1. Die allgemeinen Voraussetzungen der Elastizitätslehre:
  - a) Isotropie des Materials,
  - b) Proportionalität zwischen Dehnungen und Spannungen sowie Unveränderlichkeit des Verhältnisses zwischen Längsdehnung und Querzusammenziehung,
  - c) Formänderungen sind elastisch und klein,
  - d) Elastizität gegenüber Druck ist die gleiche wie gegenüber Zug.
- 2. Die Sondervoraussetzungen:

a) 
$$\sigma_u = 0$$
 und  $\sigma_s = 0$ ,

d. h. Normalspannungen senkrecht zur Stabachse treten nicht auf. (Diese Voraussetzung ist z. B. bei einer Welle da, wo diese durch die Nabe einer Kurbel, eines Rades usw. in radialer Richtung stark gepreßt wird, nicht erfüllt.)

¹) In anderer Weise wurde diese Gleichung bereits in § 48 abgeleitet.

b) 
$$\tau_x = 0$$
,

d. h. Schubspannungen, welche in Ebenen wirken, die sich in Parallelen zur Stabachse rechtwinklig schneiden, sind nicht vorhanden. (Diese Voraussetzung ist beispielsweise bei einer Welle da, wo auf diese durch ein aufgekeiltes Rad oder eine aufgekeilte Kurbel ein bedeutendes Drehmoment übertragen wird, nicht erfüllt.)

Denkt man sich den geraden stabförmigen Körper aus Fasern bestehend, so kommen die Voraussetzungen

$$\sigma_{\mathbf{y}} = 0 \qquad \sigma_{\mathbf{z}} = 0 \qquad \tau_{\mathbf{x}} = 0$$

darauf hinaus, daß diese Fasern weder einen Zug noch einen Druck noch einen Querschub aufeinander äußern, also auch nicht von außen empfangen.

# Bedeutung der in den Gleichungen auftretenden Buchstabengrößen.

- **Formänderungsar**beit (§ 41 u. f.), Konstante.
- Ak Schlagarbeit (S. 145, Fußbemerkung).
- a bei elliptischen Querschnitten die große Halbachse, bei elliptischen Platten die große Achse der Ellipse; die eine Seite eines rechteckigen Querschnitts, einer rechteckigen Platte; Seite des quadratischen Querschnitts, der quadratischen Platte; Abstand (unveränderlicher).
- $a_0$  große Halbachse der inneren Begrenzung eines Ellipsenringes.
- $a_1$ ,  $a_2$  Abstände.
- **B** Konstante.
- bei elliptischen Querschnitten die kleine Halbachse, bei elliptischen Platten die kleine Achse der Ellipse; die andere Seite eines rechteckigen Querschnitts, einer rechteckigen Platte; Seite eines regelmäßigen Dreiecks oder Sechsecks; Breitenabmessung; Abstand (unveränderlicher).
- $b_0$  kleine Halbachse der inneren Begrenzung eines Ellipsenringes; Breitenabmessung.
- $C_1$ ,  $C_2$  Integrationskonstanten.
- c Strecke.
- $c_1$ ,  $c_2$  Integrationskonstanten.
- d Durchmesser im allgemeinen, bei Hohlstäben der äußere Durchmesser; Strecke.
- $d_0$  innerer Durchmesser eines Hohlzylinders.
- $d_m$  mittlerer
- $e_1, e_2$  Abstände, für gerade Stäbe s. § 16, für gekrümmte s. § 54.
- e Kreishalbmesser; Basis der natürlichen Logarithmen.
- $e = \epsilon_1 + \epsilon_2 + \epsilon_3$  (§ 58, Gleichung 2, § 68, § 70).
- F Größe einer Fläche.
- f Querschnitt, Oberfläche des Kugeleindruckes (S. 219).
- $f_0$ ,  $f_1$  Sonderwerte von f.
- $f_{\delta}!$  Querschnitt an der Bruchstelle des zerrissenen Stabes, dessen ursprünglicher Querschnitt die Größe f besaß.
- G Eigengewicht.
- g Beschleunigung infolge der Schwere (§ 18, 65, 66).
- H Horizontalkraft. Härtezahl (S. 219).
- h Höhe eines Querschnitts, eines Prima; Stärke einer Platte.
- $h_0$  Höhenabmessung.
- i Anzahl der Windungen einer Schraubenfeder.
- $K_z$  Zugfestigkeit (§ 3).
- K Druckfestigkeit (§ 11).
- K, Biegungsfestigkeit (§ 22).

696 Bedeutung der in den Gleichungen auftretenden Buchstabengrößen.

- $K_d$  Drehungsfestigkeit (§ 35).
- K. Schubfestigkeit (§ 15, § 40),
- k, zulässige Anstrengung gegenüber Zug.
- k Druck. k, Biegung. •• " ...  $\boldsymbol{k}_d$ Drehung.
- ** ** k, Schub.
- l Länge des Körpers, Abstand.
- l, die Länge, die das ursprünglich l lange Stabstück nach dem Zerreißen besitzt.
- М Moment im allgemeinen. Massenkraft (§ 66).
- $M_A$  Moment im Punkt A (§ 18, Ziff. 3).
- $M_b$  biegendes Moment.
- max  $(M_b)$  Größtwert von  $M_b$ .
- $M_d$  drehendes Moment.
- $M_u$  Moment, herrührend von den auf den Umfang einer Platte wirkenden Widerlagskräften (§ 61).

$$M_{\eta} = \int_{\eta}^{c} 2y\eta \, d\eta$$
 statisches Moment (s. § 39)

- Exponent, der die Veränderlichkeit der Dehnung zum Ausdruck bringt m (§ 4 und § 5, insbesondere Ziff. 3 daselbst); Verhältnis der Längsdehnung zur Querzusammenziehung (§ 7, § 69); Koeffizient (§ 33) Masse (§ 18).
- $m_1$  und  $m_2$ , Sonderwerte des Exponenten m (§ 20, Ziff. 5).
- N Normalkraft.
- Größe einer Strecke: Koeffizient: minutliche Umdrehungszahl (§ 18, 65). n
- Zug- oder Druckkraft, Einzelkraft. Р
- $P_{max}$  Bruchbelastung.
- $P_0$  Knickbelastung (§ 24).
- Belastung der Längeneinheit eines auf Biegung beanspruchten Stabes, р Spannung im allgemeinen.
- p, p1, p2, pa, pc Pressungen auf die Flächeneinheit (§ 60, § 53), Spannungen (§ 66, 67).
- Pressung im Innern eines Hohlgefäßes, für  $p_a = 0$  innerer Überdruck.  $p_i$
- Pressung der das Hohlgefäß umschließenden Flüssigkeiten, für  $p_i = 0$  $p_a$ äußerer Überdruck.
- $p_x$ ,  $p_y$ ,  $p_z$  Spannnungen in drei zueinander senkrechten Ebenen (§ 67).
- gleichmäßig über den gebogenen Stab verteilte Last, Einzellast (§ 55, Ziff. 1). Q
- 2Q Belastung eines Hohlzylinders auf die Längeneinheit (§ 55, Ziff. 2).
- Kreishalbmesser, Krümmungshalbmesser insbesondere der Mittellinie eines r gekrümmten Stabes vor der Formänderung, Trägheitshalbmesser (§ 26).

"

- $r_1$ ,  $r_2$  Sonderwerte von r (§ 57, Fig. 4 bis 6).
- Sonderwert von r (§ 60, Fig. 17; § 66).  $r_0$
- innerer Halbmesser eines Hohlzvlinders, einer Hohlkugel usw.  $r_i$
- äußerer ra
- Sicherheitskoeffizient gegenüber Knickung (§ 25). S
- $\mathbf{S}$ Schubkraft.
- Wandstärke, Strecke. 8
- Wandstärke in der Mitte einer Scheibe (§ 66). 8m
- Umfang des Querschnittes; veränderlicher Hebelarm (§ 54, Ziff. 5). u
- V Volumen.

Bedeutung der in den Gleichungen auftretenden Buchstabengrößen. 697

- v Abstand (§ 16), Umfangsgeschwindigkeit (§ 65, 66).
- x beliebige Strecke, Abszisse.
- x. Schwerpunktsabstand (§ 65).
- x' Koordinate (§ 67).
- y Koordinate, insbesondere Ordinate der elastischen Linie, Querschnittsabmessung.
- $y_A$ ,  $y_B$  usf. Durchbiegung im Punkte A, B usf.
- y' Koordinate, Durchbiegung eines Stabes infolge des biegenden Momentes (§ 24, 52). Zusammendrückung oder Verlängerung einer Schraubenfeder (§ 57).
- y" Durchbiegung eines Stabes infolge der Schubkraft (§ 52, Ziff. 2b).
- W,  $W_a$  und  $W_b$  Widerlagskräfte (§ 61).
- X, Y, Z Komponenten von Massenkräften (§ 67).

 $Z = \int xy df$  (§ 21, Gleichung 2).

- z Koordinate; Abstand, Querschnittsabmessung; veränderlicher Hebelarm (§ 54, Ziff. 5, § 66, Ziff. 1).
- z' Koordinate, Durchbiegung plattenförmiger Körper.
- $z_0'$  Sonderwert von z'.
- $z_0$  Schwerpunktsabstand (S. 293).
- α Dehnungszahl der Federung (§ 2, reziproker Wert des Elastizitätsmodul), Dehnung für die Spannung 1 (§ 4 und § 5); Winkel; Konstante.
- $\alpha_1$  und  $\alpha_2$  Sonderwerte der Dehnung für die Spannung 1 (§ 20, Ziff. 5).
- $\alpha_0$  Anstrengungsverhältnis (§ 48).
- β Schubzahl (§ 29, reziproker Wert des Schubelastizitätsmodul, § 69); Winkel, insbesondere der elastischen Linie mit der ursprünglichen Stabachse (§ 18); Konstante.

 $\beta_0 = \frac{k_b}{k_z}$  (§ 45, Ziff. 1).

 $\gamma$  Schiebung, Winkeländerung (§ 28), Gewicht der Volumeneinheit, Winkel.  $\gamma_x$ ,  $\gamma_y$ ,  $\gamma_z$  Winkeländerung (Schiebung) an der x-, y- bzw. z-Kante (§ 68, § 69).  $\gamma_{max}$  Größtwert der Schiebung  $\gamma$ .

- $\epsilon$  verhältnismäßige Dehnung (§ 2).
- $\varepsilon'$  Sonderwerte von  $\varepsilon$ .
- $\varepsilon_q$  Querdehnung (§ 7).
- $\epsilon_0$  Dehnung der Mittellinie (§ 54).
- ε₁, ε₂, ε₃ die Dehnungen in den drei Hauptrichtungen (§ 58, 66), die Hauptdehnungen (§ 68).
- $\varepsilon_x$ ,  $\varepsilon_y$ ,  $\varepsilon_z$  Dehnungen in Richtung der x-Achse bzw. der y- und z-Achse.
- $\zeta$  Änderung von z (§ 58, § 66, § 68).
- $\eta$  Koordinate; Abstand, insbesondere eines Flächenelementes von der einen Hauptachse des Querschnittes, Änderung von y (§ 68).
- Trägheitsmoment eines Querschnitts im allgemeinen, meist jedoch in bezug auf die eine Hauptachse.
- O' polares Trägheitsmoment eines Querschnitts.
- $\Theta_1$ ,  $\Theta_2$ ,  $\Theta_x$ ,  $\Theta_y$  Trägheitsmomente in bezug auf besonders bezeichnete Achsen.
- verhältnismäßiger Drehungswinkel (§ 33, § 43).
- $\iota$  Koeffizient (§ 42).
- × Zerknickungskoeffizient (§ 26).

$$\begin{aligned} \mathbf{x} &= -\frac{1}{f} \int \frac{\eta}{r+\eta} \, df \text{ (§ 54, Ziff. 2).} \\ \lambda \quad \text{Winkel (§ 67).} \end{aligned}$$

698 Bedeutung der in den Gleichungen auftretenden Buchstabengrößen.

- λ, λ', λ" Längenänderungen eines Stabes (§ 1, § 2, § 4, § 5, § 41).
- μ Koeffizient (§ 46), insbesondere Berichtigungkoeffizient (§ 60, Ziff. 4, § 61 u.f.).
- $\mu_0$  Koeffizient (§ 22, S. 293).
- Winkel.
- $\xi$  Koordinate, Anderung von x (§ 68).
- $\pi = 3,14159.$
- Krümmungshalbmesser, inbesondere der elastischen Linie; Abstand eines beliebigen Querschnittselementes von der Drehungsachse (§ 32, Fig. 4, Gleichung 1), Ausrundungshalbmesser (§ 56).
- $\varrho_a$ ,  $\varrho_b$  Sonderwerte von  $\varrho$  (§ 61).
- σ Normalspannung (§ 1, § 29, erster Absatz).
- $\sigma_{max}$  Größtwert von  $\sigma$ .
- $\sigma_1, \sigma_2$  Sonderwerte von  $\sigma$ .
- $\sigma_x$ ,  $\sigma_y$ ,  $\sigma_z$  Normalspannungen in Richtung der x-Achse bzw. y- und z-Achse.
- $\sigma_a$ ,  $\sigma_b$  größte Normalspannung im Streifen von der Länge a bzw. b (§ 61).
- $\sigma_d$ ,  $\sigma_z$  Druck- bzw. Zugspannung (§ 20, Ziff. 5).
- schubspannung (§ 29).
- $\tau_{max}$  Größtwert von  $\tau$  bei Schub (§ 38, § 39).
- $\tau_1$  Sonderwert von  $\tau$ .
- $\tau_x$ ,  $\tau_y$ ,  $\tau_z$  Schubspannung senkrecht zur Richtung der x-Achse und der y- bzw. z-Achse (§ 67).
- v' Schubspannung an näher bestimmter Stelle.
- $\tau_y'$ ,  $\tau_z'$  die Werte  $\tau_y$  und  $\tau_z$  an einer solchen Stelle.
- $\tau_s$ ,  $\tau_d$  Schubspannungen, unterschieden je nachdem sie von der Schubkraft oder vom drehenden Moment hervorgerufen werden.
- $\tau'_{max}$  Schubspannung in den Endpunkten der kleinen Halbachse eines elliptischen Querschnitts.
- $\tau_a'$ Schubspannung in den Mitten der langen Seiten eines rechteckigen Querschnitts.
- $\tau_b'$  Schubspannung in den Mitten der kurzen Seiten eines rechteckigen Querschnitts.
- Dehnung des zerrissenen Stabes in Prozenten (§ 8); Winkel (von veränder-licher Größe), Koeffizient (§ 34).
- ψ Querschnittsverminderung des zerrissenen Stabes in Prozenten (§ 8); Winkel, Koeffizient (§ 35, Ziff. 2, § 60, Ziff. 4).
- $\psi_0$  Koeffizient (§ 57).
- Befestigungskoeffizient (§ 24, § 25), Winkel.
   Verhältnismäßige Änderung des Querschnittswinkels (§ 54).
   Winkelgeschwindigkeit (§ 65, 66).

# Festigkeitseigenschaften und Gefügebilder der Kon-

-struktionsmaterialien. Von Professor Dr.-Ing. C. Bach (Stuttgart) und Professor B. Baumann (Stuttgart). Zweite, stark vermehrte Auflage. Mit 936 Figuren. Unter der Presse.

#### Die Grundlagen der deutschen Material- und Bauvorschriften für Dampfkessel. Von Professor R. Baumann (Stuttgart). Mit einem Vorwort von Professor Dr.-Ing. C. v. Bach. Mit 38 Text-Kart. Preis M. 2,80. figuren.

Technische Mechanik. Ein Lehrbuch der Statik und Dynamik für Maschinen- und Bauingenieure. Von Ed. Autenrieth. Zweite Auflage. Neubearbeitet von Professor Dr. Ing. Max Enßlin (Stuttgart). Mit 297 Textfiguren. Unveränderter Neudruck. Gebunden Preis M. 38,-..

## Aufgaben aus der technischen Mechanik. Von ö. ö. Professor Ferd. Wittenbauer (Graz).

I. Allgemeiner Teil. 843 Aufgaben nebst Lösungen. Vierte, vermehrte und verbesserte Auflage. Mit 627 Textfiguren.

Gebunden Preis M. 14,--.

II. Festigkeitslehre. 611 Aufgaben nebst Lösungen und einer Formelsammlung. Dritte, verbesserte Auflage. Mit 505 Textfiguren. Gebunden Preis M. 12,--.

III. Flüssigkeiten und Gase. Etwa 586 Aufgaben nebst Lösungen und einer Formelsammlung. Dritte, neu bearbeitete Auflage. In Vorbereitung.

# Lehrbuch der technischen Mechanik. Von Professor M. Grühler (Dresden).

Erster Band: Bewegungslehre. Mit 124 Textfiguren. Preis M. 8,-. Zweiter Band: Statik der starren Körper. Mit 222 Textfiguren. Preis M. 18.---

Dritter Band: Dynamik der starren Körper. Mit etwa 77 Text-Unter der Presse. figuren.

#### Ingenieur-Mechanik. Lehrbuch der technischen Mechanik in vorwiegend graphischer Behandlung. Von Prof. Dr.-Ing. Dr. phil. H. Egerer.

- Erster Band: Graphische Statik starrer Körper. Mit 624 Text-abbildungen sowie 238 Beispielen und 145 vollständig gelösten Auf-Preis M. 14,-; gebunden M. 16,-. gaben.
- Band 2-4 in Vorbereitung. Der zweite und dritte Band behandeln die gesamte Mechanik starrer und nichtstarrer Körper. Der vierte Band bringt die Erweiterung der Festigkeitslehre und Dynamik für Tiefbau-, Maschinen- und Elektroingenieure.

Einführung in die Mechanik mit einfachen Beispielen aus der Flugtechnik. Von o. ö. Professor Dr. Th. Pöschl (Prag). Mit 102 Textabbil-Preis M. 5,60. dungen.

- Taschenbuch für den Maschinenbau. Unter Mitarbeit bewährter Fachmänner herausgegeben von Professor H. Dabbel, Ingenieur, Berlin. Dritte, erweiterte und verbesserte Auflage. Mit 2620 Textfiguren und 4 Tafeln. In zwei Teilen. Unter der Presse.
- Hilfsbuch für den Maschinenbau. Für Maschinentechniker sowie für den Unterricht an technischen Lehranstalten. Von Oberbaurat Fr. Freytag, Professor i. R. Sechste, neubearbeitete Auflage. Mit 1288 in den Text gedruckten Figuren, 1 farbigen Tafel und 9 Konstruktionstafeln. Unter der Presse.

Taschenbuch für Bauingenieure. Unter Mitarbeit zahlreicher Fachgelehrter herausgegeben von Geh. Hofrat Professor Dr.-Ing. M. Feerster (Dresden). Dritte, verbesserte und erweiterte Auflage. Mit 8070 Textfiguren. In zwei Teilen.

In einem Bande gebunden Preis M. 64,-; in zwei Bänden geb. M. 70,-.

Grundzüğe der Kinematik. Von Dipl.-Ing. A. Christmann (Borlin) und Professor Dr.-Ing. H. Baer (Breslau). Mit 161 Textiguren. Preis M. 4,80.

Technische Schwingungslehre. Von Dipl.-Ing. Dr. Wilhelm Hort. Zweite, neubearbeitete und erweiterte Auflage. Mit etwa 250 Textabbildungen. Unter der Press.

# Technische Thermodynamik. Von Professor W. Schüle.

Erster Band: Die für den Maschinenbau wichtigsten Lehren nebst technischen Anwendungen. Vierte, erweiterte Auflage. Mit etwa 244 Textfiguren und 7 Tafeln. In Vorbereitung.

Zweiter Band: Höhere Thermodynamik mit Einschluß der chemischen Zustandsänderungen nebst ausgewählten Abschnitten aus dem Gesamtgebiet der technischen Anwendungen. Dritte, erweiterte Auflage. Mit 202 Textabbildungen und 4 Tafeln. Gebunden Preis M. 36, --

Leitfaden der Technischen Wärmemechanik. Kurzes Lehrhuch der Meckanik der Gase und Dämpfe und der mechanischen Wärmelehre. Von Professor Dipl.-Ing. W. Schüle. Zweite, verbesserte Auflage. Mit 98 Textfiguren und 3 Tafe'n. Preis M. 18,-..

Technische Hydrodynamik. Von Professor Dr. Frans Prásil (Zürich). Mit 81 Textfiguren. Gebunden Preis M. 9, --.

Strömungsenergie und mechanische Arbeit. Beiträge sur abstrakten Dynamik und ihre Anwendung auf Schiffspropeller, schnelllaufende Pumpen und Turbinen, Schiffswiderstand, Schiffssogel, Windturbinen, Trag- und Schlagflügel und Luftwiderstand von Geschossen. Von Paul Wagner, Oberingenieur in Berlin. Mit 151 Textfiguren. Gebunden Preis M. 10,-.